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Preface

In 1900 Hilbert posed twenty-three problems, which since then have aroused significant attention
and flourished many mathematical disciplines. Among them, the seventh problem addresses to the
transcendence of numbers of the form ab, where a, b are algebraic, a ∉ {0,1} and b is irrational,
whereas the tenth problem asks for a general algorithm which can decide the existence of solution
for any given Diophantine equation. The seventh problem was solved affirmatively by Gelfond and
Schneider independently in 1934, whereas the tenth problem was solved negatively by Matiyasevich
in 1970.

The quest for generalizing the results of Hilbert’s seventh problem lead to the pioneering work
of Alan Baker on the theory of linear forms in logarithms in the 1960’s. Amazingly, this theory
also provides essential machinery for solving many types of Diophantine equations effectively, hence
furnishes the understanding of Hilbert’s tenth problem. Since Baker’s first series of publications, the
theory (which is also known as Baker’s method) has been widely studied by many mathematicians
and its advancement brings forth the solving of many long-standing classical problems in number
theory, such as the class number problem, the solving of Thue equation effectively, the Catalan’s
equation and so on. The theory of linear forms in logarithms we have nowadays (in Archimedean,
non-Archimedean and elliptic settings) are the collective contributions of many mathematicians
within these decades, and is still regarded as one of the crucial tools for solving Diophantine
equations and other problems in number theory effectively.

In this thesis, we focus on Baker’s method in the Archimedean and non-Archimedean settings.
The plot is as follows. First, we shall give an overview of some important milestones in the
historical development of the theory in Chapter 1. We shall also give a brief description of some
selected problems which are solved with the aid of Baker’s method. These serve as a purpose to
give the readers a brief idea on the usage, strength and limitation of the theory, the demand for
improvement, the issues of concern when improving the existing theory, as well as the difficulty
in achieving the improvement. Chapter 2 gives a brief description and background of my work
achieved during my doctoral studies. These include the work on the lower bounds for linear forms
in two p-adic logarithms (more precisely, the lower bounds of ∣αb11 −αb22 ∣p, where α1, α2 are numbers
algebraic over Q and b1, b2 are positive rational integers), the solving of two variants of a problem
of Pillai (namely Fn − Tm = c which involves Fibonacci and Tribonacci sequences, and Un − Vm = c
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which involves linear recurrence sequences), and the solving of two Diophantine equations (namely
Fn1 + Fn2 = 2a1 + 2a2 + 2a3 and Fm1 + Fm2 + Fm3 = 2t1 + 2t2). Chapter 3 to Chapter 6 are the
documentary of my manuscripts and journal publications.

I am very grateful to Prof. Gisbert Wüstholz, my supervisor, for taking me as his doctoral student.
I am very thankful to have his guidance to explore the field of linear forms in logarithms and related
issues, and to further enhance my understanding and interest to this topic. I wish to express my
deepest gratitude to him for his great effort to cultivate me in the research and for taking care of
my difficulties encountered. I am indebted to him for his endless support, encouragement and his
lead to achieve goals persistently and optimistically.

I would like to express my special thanks to Prof. Robert Tichy, my supervisor, for his support on
providing academic resources and for suggesting a Salzburg collaboration.

My thanks are due to Volker Ziegler and István Pink for their ideas and advice on working towards
the joint papers. My thanks extend to Volker Ziegler for the hospitality during my research visits
to Universität Salzburg and for his kind help with my queries.

My thanks also extend to my course teachers, colleagues from the Institute of Analysis and Number
Theory and from the Discrete Mathematics program, friends and mathematicians that I discussed
with for their help, kindness and advice to make my studies a fruitful and memorable one.

I wish to acknowledge the support from the Austrian Science Fund (FWF) under the projects
P26114 and W1230.

Finally, I am very grateful to my mother for always prioritizing my wishes and fostering a favorable
condition in every circumstance.



Publication List

(In preparation) K. C. Chim, Linear forms in two p-adic logarithms.

K. C. Chim, I. Pink, and V. Ziegler, On a variant of Pillai’s problem. Int. J. Number Theory 13
(2017) No. 7, 1711–1727.

K. C. Chim, I. Pink, and V. Ziegler, On a variant of Pillai’s problem II. J. Number Theory 183
(2018) 269–290.

K. C. Chim and V. Ziegler, On Diophantine equations involving sums of Fibonacci numbers and
powers of 2. Submitted.

vii





Contents

Front Page i

Affidavit iii

Preface v

Publication List vii

1 Linear Forms in Logarithms 1

1.1 Origins and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Baker’s first results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Further development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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Chapter 1

Linear Forms in Logarithms

Diophantine equation is usually referred to as a polynomial equation in two or more unknowns
such that only integer solutions are sought. An exponential Diophantine equation is a Diophantine
equation with variable(s) at the exponent(s). The solving of Diophantine equations or Diophantine
problems in general is very fascinating because it is usually simple to be stated but it can be
very difficult to be solved. The Fermat’s last equation, the Catalan’s equation and the generalized
Fermat equation are illustrative examples.

The theory of linear forms in logarithms of algebraic numbers (Baker’s method) has vast appli-
cations on solving Diophantine equations (in particular exponential Diophantine equations) and
Diophantine problems. Plainly speaking, it obtains the upper bounds for the size of possible solu-
tions to a wide class of Diophantine equations having finitely many solutions. Provided that the
bound is explicit and practically small, one can solve the equations completely by extracting all
solutions from computer enumeration.

In this chapter, we shall give an overview of some important milestones in the development of linear
forms in logarithms, and a brief description of some selected problems being solved with the aid of
this method. These help revealing the usage, strength and limitation of the theory, the demand for
improvement, the issues of concern when improving the existing theory, as well as the difficulty in
achieving the improvement.

1.1 Origins and background

The existence of transcendental numbers was first proved by Liouville in 1844 and the Liouville
constant was constructed in 1851 as one of the first illustrated decimal examples. In 1873, Hermite
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proved that e is transcendental. Cantor showed in 1874 that there are only countably many algebraic
numbers but uncountably many transcendental numbers. In 1882, Lindemann proved that for any
nonzero algebraic number α, the number eα is transcendental. Hence π is transcendental from
the fact that eiπ = −1. The approach was generalized by Weierstrass to give the Lindemann-
Weierstrass theorem in 1885. Besides, the ancient problem of squaring the circle involving compass
and straightedge was proven to be impossible as a consequence of the transcendence of π.

In 1900 Hilbert posed twenty-three problems, which since then have flourished many mathematical
disciplines. Among them, the seventh problem addresses to the quest for the transcendence of
numbers of the form αβ, where α, β are algebraic, α ∉ {0,1} and β is irrational. Hilbert believed
that,

“the expression αβ for an algebraic base α ≠ 0,1 and an irrational algebraic exponent β, e.g. the

number 2
√

2 or eπ, always represents a transcendental or at least an irrational number.”

The Hilbert’s seventh problem was solved affirmatively by Gelfond [45] and Schneider [75] inde-
pendently in 1934. They proved the following Gelfond-Schneider Theorem.

Theorem 1.1 (Gelfond-Schneider Theorem). Suppose that α ≠ 0,1 and β is irrational. Then α, β
and αβ cannot all be algebraic.

Equivalently, for any non-zero algebraic numbers α1, α2, β1, β2 such that logα1 and logα2 are
linearly independent over the rationals, we have

β1 logα1 + β2 logα2 ≠ 0.

The common scheme of the methods of Gelfond and Schneider is to construct auxiliary functions
with a large number of zeros in a certain disc, and enlarge the set of zeros by using a combination
of number-theoretic and analytic means.

In 1935, Gelfond [46] obtained a positive lower bound for ∣β1 logα1 + β2 logα2∣. Suppose β1, β2 are
algebraic numbers not all zero with classical heights at most B (≥ 4), α1, α2 are algebraic numbers
not 0 or 1, the field K generated by the α’s and β’s over the rationals has degree at most d and
logα1

logα2
is irrational. He proved that

∣β1 logα1 + β2 logα2∣ > Ce
−(logB)κ (1.1.1)

where κ > 5 and C > 0 is effectively computable in terms of α1, α2, d and κ. As a remark, the
classical height of an algebraic number is the maximum of the absolute values of the relatively prime
integer coefficients in the minimal defining polynomial. He foresaw the strength and significance of
extending this effective result to arbitrarily many logarithms of algebraic numbers in solving very
difficult problems in modern number theory. In [47, p.177], he mentioned that

“... one may assume... that the most pressing problem in the theory of transcendental numbers is
the investigation of the measures of transcendence of finite sets of logarithms of algebraic numbers.”
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1.2 Baker’s first results

The generalization of Gelfond’s results was eventually achieved by Alan Baker in 1960’s in his series
of papers including [1, 2, 3]. Denote

∣Λ∣ = ∣β0 + β1 logα1 +⋯ + βn logαn∣. (1.2.1)

In [1, 2] Baker obtained lower bound of ∣Λ∣ for the homogeneous case (i.e. taking β0 = 0) whereas
in [3], he obtained lower bound of ∣Λ∣ for the non-homogeneous case (i.e. β0 ≠ 0) and strengthened
slightly the results for the homogeneous case in [1, 2]. His theorems are as follows.

Theorem 1.2 (Baker [3], Theorem 1). Let α1, . . . , αn and β0, β1, . . . , βn denote non-zero algebraic
numbers. Suppose that κ > n + 1, and let d and B denote respectively the maximum of the degrees
and heights of β0, . . . , βn. Then

∣β0 + β1 logα1 +⋯ + βn logαn∣ > Ce
−(logB)κ

for some effectively computable number

C = C (n,α1, . . . , αn, κ, d) > 0.

Theorem 1.3 (Baker [3], Theorem 2). Let α1, . . . , αn and β1, . . . , βn denote non-zero algebraic
numbers. Suppose that either logα1, . . . , logαn or β1, . . . , βn are linearly independent over the
rationals. Suppose further that κ > n, and let d and B denote respectively the maximum of the
degrees and heights of β1, . . . , βn. Then

∣β1 logα1 +⋯ + βn logαn∣ > Ce
−(logB)κ

for some effectively computable number

C = C (n,α1, . . . , αn, κ, d) > 0.

In the above two theorems, the height is referred to as the classical height. The proof of Baker’s
theorems involves the construction of auxiliary functions in several complex variables, with zeros
to high order on a certain set of points. With the hypothesis that ∣Λ∣ is small, number-theoretic
and analytic means are used. With an ingenious extrapolation technique, it can be shown that a
subset of the original set of auxiliary functions has even more zeros on a larger set. By applying the
extrapolation step several times, it can be deduced that an auxiliary function vanishes, leading to
contradiction by using for example the non-vanishing of Vandermonde determinant. The expression
of parameters involved in the derivation are carefully and appropriately chosen which are adequate
to yield the contradiction so that the proof can be established.

There are a handful of immediate consequences and applications of Baker’s first series of results.
To name a few,
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1. Theorem 1.2 implies that eβ0αβ11 ⋯ αβnn is transcendental for any non-zero algebraic numbers
α1, . . . , αn, β0, β1, . . . , βn;

2. the theorem facilitates the determination of explicit upper bounds for the size of all solutions
of Diophantine equations of the type

f(x, y) = 1,

where f denotes any irreducible binary form with integer coefficients and degree at least 3
(see Section 1.6.1);

3. at least in principle, the theorem suffices to settle the celebrated conjecture dating back to
Gauss that there are only nine imaginary quadratic fields with class number 1 (see Section
1.6.2).

Among Hilbert’s twenty-three problems, the tenth problem asks for a general algorithm which
can decide the existence of solution for any given Diophantine equation. Baker’s method, being
an essential machinery for solving many types of Diophantine equations effectively, furnishes the
understanding of this problem. It was eventually solved negatively by Matiyasevich in 1970.

Baker was awarded the Fields Medal in 1970 for his achievement to have “generalized the Gelfond-
Schneider theorem (the solution to Hilbert’s seventh problem). From this work he generated tran-
scendental numbers not previously identified.”

1.3 Further development of Baker’s method and general strategy
of solving Diophantine equations

Since Baker’s first series of results, there were developments on the theory of linear forms in log-
arithms towards several directions, namely, the improvement on the dependence on B and other
parameters in the lower bound, the explicit determination of the constant C, and the generalization
of the theory in ultrametric case. Readers can refer to [15] and [20] for more details.

In 1968, Feldman [43, 44] achieved the best dependence of B in the lower bound as follows.

Theorem 1.4 (Feldman [43, 44]). Let n ≥ 2 be an integer and a1, . . . , an be positive rational
numbers which are multiplicatively independent. Let b1, . . . , bn be rational integers, not all of which
being zero, and set B = max{∣b1∣, . . . , ∣bn∣,3}. Then, there exists a positive, effectively computable
number C, depending only on a1, . . . , an, such that

∣ab11 ⋯ abnn − 1∣ ≥ exp (−C logB) = B−C .
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On the other hand, Baker [4] gave the first explicit results in 1968. Let α1, . . . , αn (n ≥ 2) denote
non-zero algebraic numbers. Suppose the heights and degrees of α1, . . . , αn do not exceed integers
A, d respectively, where A ≥ 4, d ≥ 4. Suppose further that 0 < δ ≤ 1 and logα1, . . . , logαn are the
principal values of the logarithms.

Theorem 1.5 (Baker [4], Theorem). If rational integers b1, . . . , bn exist, with absolute values at
most B, such that

0 < ∣b1 logα1 +⋯ + bn logαn∣ < e
−δB,

then

B < (4n
2

δ−1d2n logA)
(2n+1)2

.

This is the first explicit results by Baker about his theory. This was applied by Baker and Davenport
[17] to demonstrated that there is no other Diophantine quadruple containing 1,3,8 than the set
{1,3,8,120}. As a remark, their paper [17] is the origination of the Baker-Davenport reduction
method. (See Section 1.5.)

Whereas in 1972, Baker [11] obtained the following results, which gives the best possible dependence
with respect to B when A is fixed and with respect to A when B is fixed. Let α1, . . . , αn be non-zero
algebraic numbers with degrees at most d and let the heights of α1, . . . , αn−1 and αn be at most A′

and A (≥ 2) respectively.

Theorem 1.6 (Baker [11], Theorem). For some effectively computable number C > 0 depending
only on n, d and A′, the inequalities

0 < ∣b1 logα1 +⋯ + bn logαn∣ < C
− logA logB

has no solution in rational integers b1, . . . , bn with absolute values at most B (≥ 2).

A more generalized result was given in [12]. As a remark, the generalized ∆-function (refer to [11,
Lemma 1]) and the Kummer’s condition were used in [11, 12].

Lemma 1.7 (Kummer’s condition). Let α1, . . . , αn be non-zero elements of an algebraic num-

ber field K and let α
1/p
1 , . . . , α

1/p
n denote fixed p-th roots for some prime p. Further let K′ =

K (α
1/p
1 , . . . , α

1/p
n−1). Then either K′ (α

1/p
n ) is an extension of K′ of degree p, or we have

αn = α
j1
1 ⋯ αjn−1n−1 γ

p.

for some γ ∈ K and some integers j1, . . . , jn−1 with 0 ≤ jr < p.

In 1973, Baker [12] obtained the following result which fosters general strategy of solving Diophan-
tine equations.
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Theorem 1.8 (Baker [12], Theorem 2). Let α1, . . . , αn be non-zero algebraic numbers with degrees
at most d and let the heights of α1, . . . , αn−1 and αn be at most A′ and A (≥ 2) respectively. If for
some ε > 0, there exist rational integers b1, . . . , bn−1 with absolute values at most B such that

0 < ∣b1 logα1 +⋯ + bn−1 logαn−1 − logαn∣ < e
−εB, (1.3.1)

then B < C logA for some effectively computable number C depending only on n, d, A′ and ε.

It means that having (1.3.1) guarantees the finiteness of the size of b’s in the equation. We can
utilize the above theorem to sketch a general strategy of deriving explicit upper bounds for the size
of possible solutions by Baker’s method (refer to Győry in [96, Chapter 4]):

1. Formulate the Diophantine problem into equation(s) to which Baker’s method is applicable.

2. Reduce the equation(s) to inequalities of the form

0 < ∣αb11 ⋯ αbn−1n−1 − αn∣ < c1 exp{−c2B} (1.3.2)

where α1, . . . , αn are non-zero algebraic numbers, b1, . . . , bn−1 are unknown rational integers,
B = maxi ∣bi∣ and c1, c2 as well as c3, c4 below denote effectively computable positive constants
which are independent of b1, . . . , bn−1. If B is large, (1.3.2) implies that

∣Λ∣ ≤ c3 exp{−c2B} (1.3.3)

where Λ = b1 logα1+⋯+ br logαn−1− logαn. For simplicity, it is assumed here that α1, . . . , αn
are real and positive.

3. The application of Baker’s method gives

exp{−c4(logB)κ} ≤ ∣Λ∣. (1.3.4)

Together with (1.3.3) we come across the inequality

c2B ≤ c4(logB)κ + log c3 (1.3.5)

which yields an explicit upper bound for B, denoted by B0.

4. Deduce an explicit upper bound for the size of unknowns in the initial Diophantine problem.

The essential issue here is that inequality (1.3.5) reveals the desire of keeping κ = 1 and a small
c4 for getting a smaller B0. It should be noted that in solving some equations one may need to
apply Baker’s method several times in a cascaded way so that the explicit upper bound for B
obtained would inevitably be larger. Although further reduction tool may be available to reduce
the upper bound to a greater extent (see Section 1.5), it requires a preliminary upper bound for B
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to start with which should be small enough for initial computer enumeration. All these reinforce
our demand for a small B0 and hence a good dependence on logB and a small c4.

There are further development in this regard. In 1975, Baker announced in [13] the following
sharpening of his previous results. Let α1, . . . , αn be non-zero algebraic numbers with degrees at
most d and suppose that the height of αj is at most Aj (≥ 4). Further, let b1, . . . , bn be rational
integers with absolute values at most B (≥ 4), and let

Λ = b1 logα1 +⋯ + bn logαn,

where the logarithms are assumed to have their principal values.

Theorem 1.9 (Baker [13], Theorem). If Λ ≠ 0, then ∣Λ∣ > B−CΩ log Ω, where

Ω = logA1⋯ logAn,

and C is an effectively computable number depending only on n and d.

Baker mentioned in the paper that “it would be of much interest to eliminate log Ω and to generalize
Λ so as to incorporate these results.”

In 1977, Baker [15] further improved his results as follows. Denote

∣Λ∣ = ∣β0 + β1 logα1 +⋯ + βn logαn∣

where αj and βj are algebraic numbers with heights at most Aj ≥ 4 and B ≥ 4 respectively. The
field K generated by the α’s and β’s over the rationals has degree at most d, Ω = logA1⋯ logAn,
and Ω′ = Ω

logAn
.

Theorem 1.10 (Baker [15], Theorem 1). if Λ ≠ 0, then ∣Λ∣ > (BΩ)−CΩ log Ω′
, where C = (16nd)200n.

When β0 = 0 and β1, . . . , βn are rational integers, the bracketed factor Ω can be eliminated to yield:

Theorem 1.11 (Baker [15], Theorem 2). If, in the rational case, Λ ≠ 0, then ∣Λ∣ > B−CΩ log Ω′
,

where C = (16nd)200n.

1.3.1 Results of Baker and Wüstholz

One of the main problems concerning Baker’s results in 1977 was to eliminate the term log Ω′ in
Theorem 1.11. This has been established by Wüstholz [92, 93], as well as Philippon and Wald-
schmidt [70] independently in 1988. The advancement achieved by Wüstholz was made possible by
the use of the theory of multiplicity estimates of group varieties (see [95] and also [62, 63]), which
replaced the use of Kummer’s theory in the derivation.
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In Wüstholz’s results [93], the Weil height, which has advantages over the classical height, is used
instead. Let K be an algebraic number field and v a place of K. Denote by Kv the completion of
K at v and set dv = [Kv ∶ Qv] if d = [K ∶ Q]. We write v∣p if v is a finite place of K lying over
the prime p and v∣∞ if v is an infinite place. For every place v of K the absolute value ∣ ∣v is
normalized as follows:

(i). ∣p∣v = p
−dv/v if v∣p,

(ii). ∣x∣v = ∣x∣−dv/v if v∣∞, x ∈Kv.

The product formula ∏v ∣x∣v = 1 follows for 0 ≠ x ∈K. Let x = (x1, . . . , xN) be in KN . We put

H(x) ∶=∏
v

max
n

(∣xn∣v)

and the logarithmic height

h(x) ∶=∑
v

max
n

log(∣xn∣v). (1.3.6)

Both heights depend only on the projective coordinates of x due to the product formula. If α ∈K∗

is any algebraic number then we put

H(α) ∶=H((1, α)) and h(α) ∶= h((1, α)).

For the linear form L = β1z1 + ⋯ + βnzn we put h(L) = h((β1, . . . , βn)). The following states the
Theorem of Wüstholz [93].

Theorem 1.12 (Wüstholz [93], Theorem).
If β1, . . . , βn are rational integers, Λ = L(logα1, . . . , logαn) ≠ 0, then

log ∣Λ∣ > −c(n, d)h(L)h(α1)⋯ h(αn)

for an effectively computable positive constant c = c(n, d) depending only on n, d.

In 1993, Baker and Wüstholz [19] obtained the explicit formula for c(n, d) in Theorem 1.12 while
keeping the same structure of dependence of parameters in the lower bound. This celebrated result
signifies a new stage of the Baker’s method. Before stating the results, we shall introduce some
notations. Denote by α1, . . . , αn algebraic numbers, not 0 or 1, and by logα1, . . . , logαn a fixed
determination of the logarithms. Let K be the field generated by α1, . . . , αn over the rationals Q
and let d be the degree of K. For each α ∈ K and any given determination of logα we define the
modified height h′(α) by

h′(α) =
1

d
max(h(α), ∣ logα∣,1),

where h(α) is the standard logarithmic Weil height of α in (1.3.6). Consider the linear form

L(z1, . . . , zn) = b1z1 +⋯ + bnzn,
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where b1, . . . , bn are rational integers, not all 0. In analogy with the modified height introduced
above, we define

h′(L) =
1

d
max(h(L),1),

where h(L) is the logarithmic Weil height of L (and h′(L) = max (log (
max(∣b1∣,... ,∣bn∣)

gcd(b1,... ,bn)
) , 1

d)). Baker

and Wüstholz [19] obtained the following

Theorem 1.13 (Baker and Wüstholz [19], Theorem). If Λ = L(logα1, . . . , logαn) ≠ 0 then

log ∣Λ∣ > −C(n, d)h′(α1)⋯ h′(αn)h
′(L),

where

C(n, d) = 18(n + 1)! nn+1(32d)n+2 log(2nd).

The following version is also provided in order to compare with previous results. Suppose that
B ≥ max ∣bj ∣, and for any α as above we take A as an upper bound for the absolute values of the
relatively prime integer coefficients in the minimal defining polynomial for α. Define Aj like A with
α = αj . Then if A ≥ e, B ≥ e and logα has its principal value we have

h′(L) ≤ logB, h′(α) ≤ π + logA ≤ 4 ⋅ 2 logA.

Since n! ≤ nn+1e−n+1 we have

C(n, d) ≤ 2400(3 ⋅ 5n)2n+3dn+2 log(2nd),

whence

log ∣Λ∣ > −(16nd)2(n+2) logA1 ⋯ logAn logB. (1.3.7)

Theorem 1.13 has vast significance and applications to solving Diophantine problems and became
widely used by many mathematicians since then. A p-adic analogue of [19] is proposed by Yu in
his series [100]–[102].

1.3.2 Other results of linear forms in n logarithms

There are other mathematicians, whose results are not mentioned above, giving contributions to
the development of the Baker’s method. For a more comprehensive account on the historical
development of Baker’s method, readers can refer to [15, Section 1] and [20].

A more recent result is performed by Matveev [64] in 2000, in which he obtained an improved form
cn for the expression of n in the absolute constant. There are also far-reaching conjectures for an
improved dependence of h′(αj) in the lower bound (see [20] and [53]).
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1.3.3 Linear forms in two logarithms by Laurent et al.

Studies by some French mathematicians such as Laurent were performed to use interpolation deter-
minant method to obtain the bound for linear forms in logarithms. In particular, Laurent’s study
in [54] was for n = 2, with

∣Λ∣ = ∣b2 logα2 − b1 logα1∣,

where α1, α2 ≥ 1 are two real and multiplicatively independent algebraic numbers, b1 and b2 are
rational integers ≥ 1 without loss of generality. He obtained a lower bound of the form

log ∣Λ∣ > −CD4 log a1 log a2(log b′)2, (1.3.8)

where D = [Q(α1, α2) ∶ Q], a1, a2 are two real numbers > 1 such that h(αi) ≤ log ai (i = 1,2), with
h(α) being the absolute logarithmic Weil height, and

b′ =
b1

D log a2
+

b2
D log a1

which has a different expression but analogue role as that in Baker and Wüstholz [19]. It should be
noted that (1.3.8) has a weaker dependence on b′ as that of B in (1.3.7). The interest in Laurent’s
result lies in the constant c which gets a size of less than 100. In particular, [54, Theorem 2] was
stated as follows:

Theorem 1.14 (Laurent [54], Theorem 2). Suppose that log a1 ≥ 1, log a2 ≥ 1 and log b′ ≥ 25. Then

log ∣Λ∣ ≥ −87D4(0.5 + log b′)2 log a1 log a2.

The interpolation determinant method used in [54] is different from the classical Baker’s method.
It begins with considering the determinant of a square matrix with maximal rank (as demonstrated
by theory of multiplicity estimates), which represents a non-zero polynomial in α1 and α2. The
lower and upper bounds of the determinant are estimated respectively by arithmetic and analytic
means. Under the hypothesis that ∣Λ∣ is small and with further conditions, contradiction arises. By
asserting appropriate expressions to the intermediate parameters, various theorems in the form of
(1.3.8), such as Theorem 1.14, are obtained.

Laurent’s result was further improved by Laurent, Mignotte and Nesterenko [56], yielding a constant
of roughly 30 and keeping the shape in (1.3.8). Further reduction on the constant was also given
by Laurent in [55]. A p-adic analogue of [54] and [56] was proposed by Bugeaud and Laurent in
1996 [33]. In 2006, Gouillon [50] modified [54] and succeeded in yielding the lower bound with a
dependence on logB instead of (logB)2 (note that here B has a different expression but analogue
role as B in Baker and Wüstholz [19]), maintaining the constant C to be of a reasonable size.
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1.4 p-Adic analogue

The evolution of the theory of p-adic linear forms in logarithms follows closely the development
of the theory of linear forms in logarithms in the complex domain described in previous sections.
It begins with the studies by Mahler who proved the p-adic analogue of the Hermite-Lindemann
theorem [59] in 1932 and obtained the p-adic analogue of the Gelfond-Schneider theorem [60] in
1935. He also founded the p-adic theory of analytic function.

Since Baker’s remarkable results in 1966, several mathematicians provide p-adic analogue of Baker’s
series of results. The p-adic analogue of the tools for proving linear forms in logarithms in the p-adic
case are developed. One of the main challenges in the p-adic domain is to ensure the convergence
of the exponential function. In this regard, appropriate setting has to be adopted so that similar
methodology as in the complex case can be well applied in the p-adic case.

1.4.1 Results of Kunrui Yu

Among all the p-adic analogue results, Kunrui Yu performed p-adic analogues of Baker’s results [12]
and [15, Theorem 2] in his series [97]–[99]. Besides, he performed p-adic analogues of the results
of Baker and Wüstholz [19] and subsequent improvement in his series [100]–[102]. He proposed the
idea of supernormality in dealing with the convergence issue for the exponential function in the
p-adic domain (see [100]).

The following is a consequence of the Main Theorem in Yu [102]. Let α1, . . . , αn (n ≥ 2) be non-zero
algebraic numbers and K be a number field containing α1, . . . , αn with d = [K ∶ Q]. Denote by p
a prime ideal of the ring of integers in K, lying above the prime number p, by ep the ramification
index of p, and by fp the residue class degree of p. It is noted that ep ≤ d and fp ≤ d.

Theorem 1.15 (Yu [102] p.190). Denote Ξ = αb11 α
b2
2 ⋯ αbnn − 1, where b1, . . . , bn are rational

integers, not all zero, and Ξ ≠ 1. Let h0(α) denotes the absolute logarithic Weil height of an
algebraic number α, and hj = max (h0(αj),

1
16e2d2

) (j = 1, . . . , n). Let B be a real number satisfying
B ≥ max{∣b1∣, . . . , ∣bn∣,3}. Then

ordp(Ξ − 1) < nC(n, d, p)h1 ⋯ hn logB,

where

C(n, d, p) = (16ed)2(n+1)n3/2 log(2nd) log(2d)enp
pfp

(fp log p)2
.

Besides getting accord with the development of Baker’s method in the complex case, the develop-
ment of the p-adic case is also driven by practical use in solving Diophantine problems. Section
1.6.4 and Section 1.6.5 provide further illustrations. Readers can also refer to [96, Chapter 2] for a
more comprehensive description on the development of the Baker’s method in p-adic domain.
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1.4.2 Linear forms in two p-adic logarithms by Bugeaud and Laurent

In line with the results of linear forms in two logarithms in [54] and [56], a p-adic analogue was
proposed by Bugeaud and Laurent in 1996 [33] as follows.

Let p be a prime number. Denote Qp as the algebraic closure of Qp. The field Qp has the ultrametric

absolute value ∣x∣p = p−vp(x), where vp is the extension of p-adic valuation in Qp normalized by
vp(p) = 1. Let α1, α2 be two numbers algebraic over Q and we regard them as elements of the field
Qp. Denote Kv = Qp(α1, α2). Denote by e the ramification index of the valuation group from Qp

to Kv and by f the residue class degree of the extension. Set D =
[Q(α1,α2)∶Q]

f .

Theorem 1.16 (Bugeaud and Laurent [33], Corollary 2). Let α1 and α2 be multiplicatively inde-
pendent and satisfy vp(α1) = vp(α2) = 0. Let A1 and A2 be real numbers such that

logAi ≥ max{h(αi),
log p

D
} , i = 1,2.

Let b1 and b2 be positive integers and let

H = max{log (
b1

D logA2
+

b2
D logA1

) + log log p + 0.4,
10 log p

D
,10} .

Then, we have the upper bound

vp (α
b1
1 − αb22 ) ≤

24p (pf − 1)

(p − 1)(log p)4
D4 logA1 logA2H

2.

The interest of this result is the very small size of the constant, though in sacrificed by a worse
dependence on logB (which is analogous to H) as compared to the results by Yu.

1.5 Supplementary tools for solving Diophantine equations com-
pletely

As demonstrated in (1.3.5), linear forms in logarithms is capable of obtaining B0, an explicit upper
bound of the size of unknowns in the Diophantine equation. The tightness of the bound matters
much on c4 and κ. The state of the art is having κ = 1 which is the best possible, and having c4

which depends on n, d and heights of αj explicitly. The size of B0 can reach 1010 and typically
higher (e.g. 1030) especially when n is larger or if linear forms in logarithms is used several times
in a cascaded way. In view of solving the equations completely, it is desirable if B0 is reduced to a
greater extent.
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A tool of this kind, which is regarded as Baker-Davenport reduction method, is first proposed
by Baker and Davenport [17] in 1969. They demonstrated for the first time that linear forms in
logarithms is applied to solve Diophantine equations completely. The tool is modified by Dujella
and Pethő in [42]. In the following, we present a lemma from Bravo et al. [27], which is a slight
variation of the result in [42]. We denote by ∥x∥ = min{∣x − n∣ ∶ n ∈ Z} the distance from x ∈ R to
the nearest integer.

Lemma 1.17 (Bravo et al. [27], Lemma 2.4). Let M be a positive integer, let p
q be a convergent of

the continued fraction of the irrational γ such that q > 6M , and let A, K, µ be some real numbers
with A > 0 and K > 1. Let ε ∶= ∥µq∥ −M∥γq∥. If ε > 0, then there is no solution to the inequality

0 < ∣uγ − v + µ∣ < AK−w, (1.5.1)

in positive integers u, v and w with u ≤M and w ≥
log(Aq/ε)

logK .

Lemma 1.17 is used for linear forms in three logarithms, by rewriting the equation of the form
(1.5.1), where w,M are respectively B,B0 in our previous notation. We take the smallest q > 6M
and test whether ε > 0. If ε > 0 we have a new, usually much smaller upper bound for w than B0.
If ε ≤ 0 we test whether ε > 0 for the next larger denominator q and so on. In case odd scenarios
happen, that is having ε ≤ 0 for repeated trials of q, it can normally be tackled by arguments from
continued fractions.

The reduction method is generalized by Lenstra, Lenstra and Lovász in 1982 [57] to the so-called
LLL-algorithm. To illustrate, we consider for simplicity the case of real approximation lattices. Let
L ⊆ Rk be a k-dimensional lattice. Further, we define

l(L, y) = {
minx∈L{∣∣x − y∣∣}, y ∉ L
min0≠x∈L{∣∣x∣∣}, y ∈ L,

where ∣∣ ⋅ ∣∣ denotes the Euclidean norm on Rk. By applying the LLL-algorithm it is possible to give
a lower bound for l(L, y) ≥ c1 in a polynomial time. (See e.g. [76, Section 5.4], for details.) For
application, suppose we are given δ0, δ1, . . . , δk ∈ R linearly independent over Q and two positive
constants c2, c3 such that

∣δ0 + x1δ1 +⋯ + xkδk∣ ≤ c2 exp(−c3B), (1.5.2)

where xi ∈ Z with 1 ≤ i ≤ k are bounded by ∣xi∣ ≤ Xi with Xi given upper bounds for 1 ≤ i ≤ k. Set
X0 = max1≤i≤s {Xi}. This associates with inequality (1.3.3) before. Referring to de Weger [90] and
[91, Section VI.3]), the basic idea is to approximate the linear form (1.5.2) by an approximation
lattice. Namely, we consider the lattice L generated by the columns of the matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . 0 0
0 1 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋮

0 0 . . . 1 0
⌊Cδ1⌋ ⌊Cδ2⌋ . . . ⌊Cδk−1⌋ ⌊Cδk⌋

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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where C is a large constant usually of size about Xk
0 and y = (0,0, . . . ,−⌊Cδ0⌋). If we have a lower

bound l(L, y) ≥ c1, then we hope to obtain a much reduced upper bound for B in inequality (1.5.2)
by the following lemma from [76].

Lemma 1.18 (Lemma VI.1 in Smart [76]). Assume that S = ∑k−1
i=1 X

2
i and T =

1+∑ki=1Xi
2 . If

c2
1 ≥ T

2 + S, then we have either x1 = x2 = ⋯ = xk−1 = 0 and xk = −
⌊Cδ0⌋
⌊Cδk⌋

or

B ≤
1

c3
(log(Cc2) − log (

√
c2

1 − S − T)) .

Both the Baker-Davenport reduction method and the LLL-algorithm can be used repetitively to
reduce B0 to a greater extent. For the LLL-algorithm in the p-adic domain, readers can refer
to [76, 91]. Nevertheless, it should be emphasized that their usage require a definite knowledge
on the values of αj and in particular B0, which should be small enough for the initial computer
enumeration. Therefore, these reduction strategies cannot substitute linear forms in logarithms.
These considerations reinforce the importance of maintaining a good dependence on logB and a
small constant from the results of linear forms in logarithms.

1.6 Some applications of linear forms in logarithms

The evolution of the theory of linear forms in logarithms brings forth the solving of many long-
standing classical problems in number theory. Here we shall only mention a few of the many appli-
cations that prosper from linear forms in logarithms in either the Archimedean or non-Archimedean
domain, or both. Readers can refer to [14, 20, 69, 76, 86] for more detail accounts.

1.6.1 Effective results of the Thue equation

A Thue equation is a Diophantine equation of the form

F (X,Y ) =m (1.6.1)

where F ∈ Z[X,Y ] is a homogeneous, irreducible polynomial of degree n ≥ 3 and m is a non-zero
integer. It is well known that many Diophantine equations in two unknowns can readily be reduced
to a finite number of equations of the type (1.6.1). The equation is named in honour of A. Thue
who proved in 1909 [88] the following

Theorem 1.19 (Thue). The equation (1.6.1) has only finitely many solutions in integers x and y.

Thue’s original proof is based on a result of the rational approximations of algebraic numbers which
is ineffective. The advancement on the proof and studies of the Thue equation is brought up by
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mathematicians such as Siegel and Mahler. Besides, there are flows of new ideas and methods on
solving the Thue equation. However, most suggested methods are ineffective except for bounds for
the number of solutions and hence fail to obtain complete solutions.

Baker gave breakthrough by providing an effective bound to the size of solutions to the Thue
equation. The first result of this kind [5], established in 1968, depends essentially on Baker’s
theory in [1, 2]. Let m be any positive integer, without loss of generality.

Theorem 1.20 (Baker [5], Theorem 1). All solution of (1.6.1) in integers x, y satisfy

max(∣x∣, ∣y∣) < Ce(logm)κ , (1.6.2)

where κ > n + 1, C is an effectively computable number depending only on n,κ and the coefficients
of F .

The proof also brings forth an effective improvement on Liouville’s inequality. In [6], Baker exploited
the results to obtain an effective upper bound for max(∣x∣, ∣y∣) for the solutions of

y2 = x3 + k

where k is any non-zero integer. The advancement on Baker’s method over the decades also lead
to a better dependence on m in (1.6.2).

1.6.2 Class number problem

Gauss conjectured that the only imaginary quadratic fields Q(
√
−d) with class number 1, where d

is a square-free positive integer, are given by d = 1, 2, 3, 7, 11, 19, 43, 67 and 163. Heilbronn and
Linfoot [52] showed that there can be at most ten such field, whereas Stark [77] showed that the
tenth field with d10, if exists, would satisfy d10 > exp(2.2× 107). Gelfond and Linnik proved in [48]
that if the tenth field exists then

∣x1 logα1 + x2 logα2 + logα3∣ < e
−γ1

√
d10 (1.6.3)

holds, where α1, α2, α3 are fixed algebric numbers whose logarithms are linearly independent over
Q, x1, x2 ∈ Z with ∣x1∣, ∣x2∣ < γ2

√
d10 and γ1, γ2 are effective constants.

Baker’s first results [1] obtains a lower bound for the linear forms in (1.6.3) which together with
the upper bound in (1.6.3) yields an upper bound for d10. In principle, with adequate sharpness of
the bound, it can be shown that the tenth field does not exist if this upper bound contradicts with
d10 > exp(2.2 × 107). The non-existence of the tenth field is also given by Stark [78] independently
with another approach.

Studies on adapting Baker’s method to determine all the imaginary quadratic fields with class
number 2 proceeded soon after. The determination concerns linear forms in three logarithms and



16 CHAPTER 1. LINEAR FORMS IN LOGARITHMS

requires sharp version of Baker’s first series of results (see Baker [7, 9, 10], Baker and Stark [18]
and Stark [79, 80, 81]). The problem is finally completely solved with precisely eighteen such fields.

1.6.3 Catalan’s equation

Catalan, dated back to 1844, states the following

Conjecture 1.21 (Catalan’s Conjecture). The equation

xp − yq = 1 (1.6.4)

has no solutions in integers x, y, p, q > 1 other than 32 − 23 = 1.

A weaker conjecture that equation (1.6.4) has only a finite number of solutions is given by Cassels
[34] in 1953. Only partial results were obtained before Tijdeman’s breakthrough [89] in 1976, in
which he proved the conjecture by Cassels.

Tijdeman deduced a improved version of Baker’s results in [11] for obtaining the upper bounds for
p and q. A novelty in Tijdeman’s version is the explicitly given dependence on the upper bound
of the heights of α1, . . . , αn−1 in the linear forms. Next, an explicit upper bound for max(∣x∣, ∣y∣)
can be obtained using Baker’s results on hyperelliptic equation in [8]. In conclusion there are only
finitely many values of x, y, p, q to check for satisfying (1.6.4), though the quantity is very large.
The Catalan’s conjecture is proved affirmatively by Mihăilescu [67] in 2004 by another approach
(see also [23, 24]).

1.6.4 Results related to the abc-conjecture

Let x, y and z be positive integers and denote by G = G(x, y, z) the greatest square-free factor of
xyz. In 1985, Masser proposed the abc-conjecture [61] as stated below, which is a refinement of a
conjecture formulated by Oesterlé and has profound consequences.

Conjecture 1.22 (abc-Conjecture). For each positive real number ε there is a positive number
c(ε), which depends on ε only, such that, for all positive integers x, y, and z with x + y = z and
(x, y, z) = 1, we have

z < c(ε)G1+ε.

In 1991, Stewart and Yu [84] obtained results towards the abc-conjecture by adopting both the
Archimedean and non-Archimedean estimates of linear forms in logarithms. They proved that
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there exists an effectively computable positive constant c1 such that, for all positive integers x, y
and z, with z > 2 satisfying x + y = z and (x, y, z) = 1,

z < exp (G2/3+c1/ log logG) . (1.6.5)

In 2001 Stewart and Yu [85] strengthened (1.6.5) and yield the following

Theorem 1.23 (Stewart and Yu [85], Theorem 1). There exists an effectively computable positive
number c such that, for all positive integers x, y, and z with x + y = z and (x, y, z) = 1,

z < exp (c G1/3(logG)3) .

They also proved a stronger bound when the greatest prime factor of one of x, y and z is small
relative to G. One of the reasons for these improvements is the use of the non-Archimedean
estimates by Yu [101] which has a better dependence on n (the number of α’s in the logarithmic
forms) and the Archimedean estimates by Baker and Wüstholz [19].

1.6.5 A problem of Erdős and its generalization

In 1965, Erdős conjectured that

P (2n − 1)

n
→∞ as n→∞,

where P (m) denotes the greatest prime divisor of m ∈ Z with the convention that P (m) = 1 when
m ∈ {1,0,−1}. There is also a generalization of the conjecture to Lucas numbers un and Lehmer

numbers ũn that
P (un)
n →∞ and

P (ũn)
n →∞ respectively as n→∞.

The problem and its generalization were studied by Stewart and Yu and were finally proved in
2013. The primary proof in [83] appeals to the intensive work of Yu in [103] which succeeded in
achieving three main refinements in the results of p-adic linear forms in logarithms as compared to
preceding versions. In particular, the refinement in the dependence on p in the p-adic logarithmic
forms is crucial for the proof. Section 9 of [103] remarks the roles of [102] and [103] in solving the
problem and its generalization.

1.6.6 Diophantine m-tuples

A set of m distinct, positive integers {a1, . . . , am} is called a D(n)-m-tuple if aiaj + n is a perfect
square for all 1 ≤ i < j ≤ m (or simply a Diophantine m-tuple when n = 1). The Diophantine
m-tuples problem originates from Diophantus who studied sets of positive rational numbers with
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the same property. The first example for an integral Diophantine quadruple {1,3,8,120} was found
by Fermat and it was found that the set cannot be extended to a Diophantine quintuple by Baker
and Davenport [17]. It is a general belief that no Diophantine quintuple exists.

This conjecture is extensively studied by many mathematicians in particular Dujella and his collab-
orators. Dujella established many results paving the path of development. Among them the mile-
stone result in [41] states that there are only finitely many Diophantine quintuples, with d < 102171

and e < 101026 if {a, b, c, d, e} is a Diophantine quintuple and a < b < c < d < e.

In 2016 He, Togbé and Ziegler [51] announced the proof of the above conjecture. This attributes to
the definition of an operator on Diophantine triples and their classification, the use of sharp bound
for linear forms in three logarithms obtained by applying a result due to Mignotte [66] iteratively,
and the use of new congruences in certain cases. In 2017, Bliznac Trebješanin and Filipin [25]
announced the nonexistence of D(4)-quintuples using similar arguments and further tools.

The conjecture that no Diophantine quintuple exists is regarded as the weak version of the following
Diophantine quintuple conjecture. Let {a, b, c} be a Diophantine triple and

ab + 1 = r2, ac + 1 = s2, bc + 1 = t2,

where r, s, t are positive integers. Define d+ = a+b+c+2abc+2rst. Then {a, b, c, d+} is a Diophantine
quadruple since ad+ + 1 = (at + rs)2, bd+ + 1 = (bs + rt)2 and cd+ + 1 = (cr + st)2.

Conjecture 1.24 (Diophantine quintuple conjecture). If {a, b, c, d} is a Diophantine quadruple
and d > max{a, b, c}, then d = d+.

It remains an open problem. The website [40] prepared by Dujella provides rich resources on the
Diophantine m-tuple problem and the generalization.

1.6.7 Final remark

As a final remark, the theory of linear forms in logarithms is still regarded nowadays as one of the
crucial tools for solving Diophantine equations and other problems in number theory effectively.
There are still demands for the reduction of the size of the constant and the improvement on the
dependence on certain parameters in the results of linear forms in logarithms to suit the practical
use in solving specific Diophantine problems.



Chapter 2

Description of my work

In this chapter, we shall give a brief background and description of the work achieved during my
doctoral studies. The first work (described in Section 2.1) concerns the deduction of a lower bound
for linear forms in two p-adic logarithms. The other work (described in Section 2.2 and Section
2.3) showcase the application of the results of linear forms in logarithms (taking n = 3) by Baker
and Wüstholz [19], together with a version of reduction method (for the work described in Section
2.2.1 and Section 2.3).

To avoid repetition of the introductory information, we try to make it brief here. Readers can refer
to the first section of Chapter 3 to Chapter 6 for more descriptions on each topic.

2.1 Linear forms in two p-adic logarithms

In Chapter 3, we shall develop the lower bounds for linear forms in two p-adic logarithms. More
precisely, we establish the lower bounds for the p-adic distance between two integral powers of
algebraic numbers, i.e. ∣Λ∣p = ∣αb11 − αb22 ∣p, where α1, α2 are numbers algebraic over Q and b1, b2 are
positive rational integers. The chapter is the manuscript of my main research work on linear forms
in two p-adic logarithms.

As mentioned in Chapter 1, there are results on linear forms in n logarithms for complex case and
p-adic case with the dependence on logB, which is regarded as the best possible. For example,
Kunrui Yu published several series of celebrated work on various refinements on the results of p-adic
linear forms in n logarithms with the dependence on logB.

For the particular case when n = 2, Laurent [54] and Laurent, Mignotte and Nesterenko in [56]
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obtained results in 1994 and 1995 respectively. They achieve very sharp bound on numerical
constant (to a size of less than 30 in [56]) with the cost of worsening the dependence of logB to
(logB)2. Bugeaud and Laurent [33] adopted the same format of matrix as in [54, 56] and obtained
the p-adic analogue of these results.

By introducing one more variable to the matrix in [54, 56] and using an improved version on
multiplicity estimates, Gouillon [50] in 2006 suceeded in obtaining the dependence back to logB
and maintaining the numerical constant of reasonable size. He obtained the lower bound of ∣Λ∣ =

∣b2 logα2 − b1 logα1∣, where α1, α2 are two non-zero complex algebraic numbers, logα1, logα2 are
any nonzero determinations of their logarithms and b1, b2 are two nonzero rational integers. The
following states one of his corollaries.

Let D = [Q(α1, α2) ∶ Q]/[R(α1, α2) ∶ R]. Put b = b1
D logA2

+ b2
D logA1

, with A1,A2 real numbers > 1

so that logAi ≥ max{h(αi),
∣ logαi∣
D , 1

D}, (i = 1,2) in which h(αi) is the usual (Weil’s) absolute

logarithmic height of α.

Corollary 2.2 of Gouillon [50]. Suppose that α1 and α2 are multiplicatively independent. Then

log ∣Λ∣ ≥ −9400(3.317 +
1.888

D
+ 0.946 logD)D4h logA1 logA2

with

h = max{log b + 3.1,
1000

D
,498 +

284

D
+ 142 logD} .

Our results presented in Chapter 3 is a p-adic analogue of Gouillon’s results [49, 50]. It is the
first work of linear forms in two p-adic logarithms using interpolation determinant method with
an explicit determination of numerical constant and a dependence on H (which is analogous to
logB in Yu’s results), where H is bounded below by terms involving a logarithm of b1 and b2. We
manage to maintain a reasonable size for the numerical constant.

We follow a similar proof from Bugeaud and Laurent [33] for the arithmetic lower bound of ∣γ∣p,
where γ is the determinant of an extracted square matrix, by means of Liouville’s estimate. For
deducing the analytic upper bound, we refer to the development in the proof of Bugeaud and
Laurent [33] and in Gouillon [49, 50]. We obtain the analytic upper bound by means of Schwarz’s
lemma (p-adic version).

It should be noted that our results as well as results in [33, 49, 50, 54, 56] are established with the
assumption that α1 and α2 are multiplicatively independent.
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2.2 Diophantine equations of Pillai’s type

S. S. Pillai considered Diophantine problems on perfect powers and in particular posed in [71] the
following famous

Conjecture 2.1 (Pillai’s Conjecture). For any integer c ≥ 1, the Diophantine equation

ax − by = c (2.2.1)

has only finitely many positive integer solutions (a, b, x, y), with x ≥ 2 and y ≥ 2.

Another interpretation of Conjecture 2.1 is mentioned in Pillai’s another paper in 1945 [72]. It
refers to the arrangement of all perfect powers of integers in ascending order as

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, . . . .

Denote by an the n-th term in the above series so that a1 = 1, a2 = 4, a3 = 8 etc. Then Conjecture
2.1 is equivalent to

lim inf
n→∞

(an − an−1) =∞.

For c = 1 it becomes Catalan’s conjecture, dated back to 1844 [35] and is eventually solved by
Mihăilescu [67]. For c ≠ 1 Conjecture 2.1 is still open. If one of the four variables a, b, x, y is fixed,
it is known that (2.2.1) has only finitely many solutions. Moreover, there is more understanding
on the solutions of this problem when a and b are fixed. For a more recent results we can refer for
example to the work by Bennett [21], in which he showed that for fixed a and b equation (2.2.1)
has at most two solutions. Besides, he gives the following

Conjecture 2.2 (Bennett [21], Conjecture 1.2). If a, b, c are positive integers with a, b ≥ 2, then
equation (2.2.1) has at most one solution in positive integers x and y, except for those triples (a, b, c)
corresponding to the following set of equations:

3 − 2 = 32 − 23 = 1 23 − 3 = 25 − 33 = 5

24 − 3 = 28 − 35 = 13 23 − 5 = 27 − 53 = 3

13 − 3 = 133 − 37 = 10 91 − 2 = 912 − 213 = 89

6 − 2 = 62 − 25 = 4 15 − 6 = 152 − 63 = 9

280 − 5 = 2802 − 57 = 275 4930 − 30 = 49302 − 305 = 4900

64 − 34 = 65 − 38 = 1215.

2.2.1 On a variant of Pillai’s problem: Fn − Tm = c

The solving of equations involving linear recurrence sequences instead of the sequence of perfect
powers can be regarded as a variant of Pillai’s problem.
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In Chapter 4, we find all integers c having at least two representations of the form Fn − Tm for
some positive integers n and m, with {Fn}n≥0 and {Tm}m≥0 representing the sequences of Fibonacci
number and Tribonacci number respectively.

The content of Chapter 4 is the same as the joint paper with István Pink and Volker Ziegler titled
“On a variant of Pillai’s problem” [36], which is published in the International Jounal of Number
Theory.

2.2.2 On a variant of Pillai’s problem: Un − Vm = c

In Chapter 5, we generalize the setting considered in Chapter 4 and show that under mild con-
ditions there are only finitely many c such that the equation Un − Vm = c has at least two distinct
solutions (n,m), where {Un}n≥0 and {Vm}m≥0 are given linear recurrence sequences.

The content of Chapter 5 is the same as the joint paper with István Pink and Volker Ziegler titled
“On a variant of Pillai’s problem II” [37], which is published in the Journal of Number Theory.

2.3 Sums of Fibonacci numbers and powers of two

A Zeckendorf representation is to express a number as a sum of nonconsecutive Fibonacci numbers,
that is

n =
L

∑
k=0

εkFk

where εi ∈ {0,1} and εkεk+1 = 0. Every positive integer can be written uniquely in this form.

There has been vast studies on solving Diophantine equations involving linear recurrence sequences,
especially the Fibonacci sequence. In Chapter 6, we shall completely solve the Diophantine
equations

Fn1 + Fn2 = 2a1 + 2a2 + 2a3 and Fm1 + Fm2 + Fm3 = 2t1 + 2t2 , (2.3.1)

where Fk denotes the k-th Fibonacci number. In particular, we prove that max{n1, n2, a1, a2, a3} ≤

18 and max{m1,m2,m3, t1, t2} ≤ 16. The solving of (2.3.1) amounts to determining all integers
that have few non-zero integer digits in their binary as well as in their Zeckendorf expansion.1

1In Chapter 6 and in [38] we used sequence {Fn}n≥0 of Fibonacci numbers defined by F0 = 0, F1 = 1 and
Fn+2 = Fn+1 + Fn for n ≥ 0. There should be a shift of the index by two (into F0 = 1, F1 = 2 and Fn+2 = Fn+1 + Fn for
n ≥ 0) when we refer to the Zeckendorf representation.
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The content of Chapter 6 is similar to the submitted joint paper with Volker Ziegler titled “On
Diophantine equations involving sums of Fibonacci numbers and powers of 2” [38].





Chapter 3

Linear forms in two p-adic logarithms

This chapter is the manuscript of the main research work on linear forms in two p-adic logarithms
by the author.

3.1 Introduction

In 1960’s, Baker [1, 2, 3, 4] published a series of papers on linear forms in logarithms. He obtained
in [2] that

∣Λ∣ = ∣β1 logα1 + . . . + βn logαn∣ > Ce
−(logh)κ ,

where α1, . . . , αn are non-zero algebraic numbers such that logα1, . . . , logαn are linearly inde-
pendent over the rationals, β1, . . . , βn are algebraic numbers not all 0. Also, d and h denote the
maximum of the degrees and the classical heights of β1, . . . , βn respectively, κ > 2n + 1 (n ≥ 2) and
C = C(n,α1, . . . , αn, κ, d) > 0 is an effectively computable number.

The studies were performed subsequently by other mathematicians. In particular, Baker and
Wüstholz [19] refined the lower bound for ∣Λ∣ = ∣b1 logα1 + ⋯ + bn logαn∣ with an explicit constant
and a dependence on logB, where B = max{∣b1∣, . . . , ∣bn∣} essentially and b1, . . . , bn are rational
integers (not all 0). It is a vast improvement to the lower bound with a dependence on (logB)2 in
preceding publications by other mathematicians especially Baker’s original results [1, 2, 3, 4]. The
final structure for the lower bound for linear forms in logarithms without an explicit determination
of the constant C(k, d) involved has been established by Wüstholz [93] and the precise determina-
tion of that constant is the central aspect of [19] (see also [20]). An extension theory on generalizing
studies on logarithmic forms to the p-adic domain was also developed. In particular, Kunrui Yu
[100]–[102] performed p-adic analogies of Baker and Wüstholz [19] and subsequent improvement.
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Studies by some French mathematicians such as Laurent were performed to use interpolation de-
terminant method to obtain the bound for linear forms in logarithms. In particular, his study in
[54] was for n = 2, with

∣Λ∣ = ∣b2 logα2 − b1 logα1∣,

where α1, α2 ≥ 1 are two real and multiplicatively independent algebraic numbers, b1 and b2 are
rational integers. The result involves a dependence of (logB)2 for the bound (here B has a different
but analogous expression as Baker and Wüstholz [19]) but the constant C for the lower bound of
was greatly reduced to a size of less than 100. Further improvements on the constant were given by
Laurent, Mignotte and Nesterenko in [56] and Laurent in [55]. Bugeaud and Laurent [33] obtained
the p-adic analogy.

In 2006, Gouillon [50] modified that of Laurent [54] and succeeded in yielding the lower bound of
linear forms in two logarithms with a dependence on logB, and maintain the constant C to be of
reasonable size.

The purpose of this chapter is to obtain an analogy of Gouillon’s results for the non-Archimedean
case. We make use of the method of interpolation determinants in our derivation, and manage
to obtain the lower bound with a dependence of H (which is analogous to logB) and an explicit
constant of reasonable size.

We shall first state the theorem (Theorem 3.1) and the Main Proposition in Section 3.2. A brief
description on the p-adic setting, multiplicity estimates and the ∆-functions will be presented in
Section 3.3. After the construction of the square matrix δ with non-vanishing determinant γ in
Section 3.4, we proceed with deducing the arithmetic lower bound for ∣γ∣p, analytic upper bound
for ∣γ∣p and the Main Proposition in Section 3.5, Section 3.6 and Section 3.7 respectively. Next, we
derive Theorem 3.1 using the Main Proposition and appropriate choices of parameters in Section
3.8 and Section 3.9. Finally, we present results of variants of Theorem 3.1 in Section 3.10. In
proving the Main Proposition, we follow a similar proof from Bugeaud and Laurent [33] for the
arithmetic lower bound of ∣γ∣p by means of Liouville’s estimate. By referring to the development
in the proof of Bugeaud and Laurent [33] and the proof in Gouillon [49, 50], we obtain the analytic
upper bound by means of Schwarz’s lemma (p-adic version).

3.2 Statements of the results

Before stating Theorem 3.1 and the Main Proposition, we shall introduce some notations and the
setting. Let p be a prime number. Denote Qp as the algebraic closure of Qp. The field Qp has

the ultrametric absolute value ∣x∣p = p
−vp(x), where vp is the extension of p-adic valuation in Qp

normalized by vp(p) = 1. Let α1, α2 be two numbers algebraic over Q and we regard them as
elements of the field Qp. We consider obtaining the lower bound of

Λ = α1
b1 − α2

b2 ,
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where b1, b2 are positive rational integers. As in the complex case in [54] and [56], we denote by
h(α) the absolute logarithmic height of α, that is,

h(α) =
1

d
(log ∣a∣ +

d

∑
i=1

log max(1, ∣α(i)∣)) ,

where the minimal polynomial of α is written as a∏di=1(X − α(i)).

The results depends in addition on several parameters related to the field Kv = Qp(α1, α2). Denote
by e the ramification index of the valuation group from Qp to Kv and by f the residue class degree of
the extension. Denote Uv as the multiplicative group of units K∗

v (formed of x ∈ Kv with vp(x) = 0).
Denote by U1

v the subgroup of principal units (for which vp(x − 1) > 0). Put

D =
[Q(α1, α2) ∶ Q]

f
.

We assume that α1 and α2 belongs to Uv (i.e. vp(α1) = vp(α2) = 0) in the rest of the chapter.
Denote by g the smallest positive integer such that

αi
g ∈ U1

v (i = 1,2). (3.2.1)

That is, we have vp(α1
g − 1) > 0 and vp(α2

g − 1) > 0. It should be noted that g divides pf − 1. (See
[33, Lemma 4].) Let A1,A2 > 1 be two real numbers such that

logAi ≥ max{h(αi),
log p

D
} (i = 1,2).

Furthermore, we denote

b′ =
b1

D logA2
+

b2
D logA1

.

We shall state the theorem.

Theorem 3.1. Suppose that α1 and α2 are multiplicatively independent. Then we have the upper
bound

vp(Λ) < C (
p

p − 1
)

gD4

(log p)3
(
Z1 log p

2D
+ 4.85 + logD) logA1 logA2 H

where

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

C = 4300, Z1 = 4, if p = 2,
C = 4700, Z1 = 3, if p = 3,
C = 27600, Z1 = 1, if p ≥ 5,

H = max{log b′ + log log p,
1000 log p

D
,180(

Z1 log p

2D
+ 4.85 + logD) log p} ,

g ≤ pf − 1.
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It should be noted that the values 1000 and 180 in the above expression of H can be changed and
the value of C in the upper bound will be changed accordingly. For example, for the case when
p ≥ 5 if we take

H = max{log b′ + log log p,
10000 log p

D
,1800(

log p

2D
+ 4.85 + logD) log p} ,

then C becomes 27210.

We have a rough estimation that for the case when p ≥ 5 the value of C in the upper bound can be
reduced to roughly 27100 if H is asymptotically large.

If we compare Theorem 3.1 with Theorem 3 from Bugeaud and Laurent [33], we notice that their
final constant is much smaller and the dependence on log p is slightly better. The main difference
however is that our result yields a dependence of H instead of H2 in their results.

Theorem 3.1 can be obtained from the Main Proposition to be stated below. Let us consider the
following additional setting and notations.

Fix in Qp a root of unity ζ with order exactly g. [33, Lemma 4] shows that ζ belongs to the subfield
Kv. We can write α1 and α2 uniquely as

αi = ζ
miθi, θi ∈ U

1
v (i = 1,2) (3.2.2)

with integers m1, m2 determined modulo g. Besides, we have vp(θ1 − 1) > 0 and vp(θ2 − 1) > 0.
Denote by κ ≥ 0 the integer satisfying the inequalities

pκ−1 ≤
2e

p − 1
< pκ (3.2.3)

where e is the ramification index of the valuation group from Qp to Kv defined before. Let K and
L be integers ≥ 1, let T1, T2, T3,R1,R2,R3, S1, S2 and S3 be integers ≥ 0. We set

R = R1 +R2 +R3, S = S1 + S2 + S3, T = T1 + T2 + T3.

For any pair of positive integers (b1, b2), denote pu as the greatest power of p that divides simulta-
neously b1 and b2. Denote

N =
(K + 1)(K + 2)(L + 1)

2
, B̃ =

Rb2 + Sb1
2K

and Ψ(n) = (R + n)(S + n)(T + 1). (3.2.4)

Denote by g0, ω and ω0 real numbers which satisfy the lower bounds:

g0 ≥
1

4
−

gN

12Ψ(g)
, ω ≥ 1 −

gN

2Ψ(g)
, ω0 ≥

3Ψ(g)

2gN
. (3.2.5)
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We introduce the sets

E1A = {rb2 + sb1; 0 ≤ r ≤ R1,0 ≤ s ≤ S1, m1r +m2s ≡ c1 mod g} ,

E1B = {αp
κr

1 αp
κs

2 ; 0 ≤ r ≤ R1,0 ≤ s ≤ S1, m1r +m2s ≡ c1 mod g} ,

E2A = {rb2 + sb1; 0 ≤ r ≤ R2,0 ≤ s ≤ S2, m1r +m2s ≡ c2 mod g} ,

E2B = {αp
κr

1 αp
κs

2 ; 0 ≤ r ≤ R2,0 ≤ s ≤ S2, m1r +m2s ≡ c2 mod g} ,

E3 = {(rb2 + sb1, α
pκr
1 αp

κs
2 ); 0 ≤ r ≤ R3,0 ≤ s ≤ S3, m1r +m2s ≡ c3 mod g}

with c1, c2, c3 residue classes modulo g such that they satisfy the following condition:

T1 ≥K,

Card E1A ≥K + 1,

(T1 + 1)Card E1B ≥ L + 1,

(T2 + 1)Card E2B ≥ 2KL + 1,

(T2 + 1)Card E2A ≥K2 + 1,

(T3 + 1)Card E3 ≥ 3K2L + 1.

(3.2.6)

Furthermore, we introduce

V =
1

4

⎛

⎝
1 −

1

L + 1
+

√

1 −
2

L + 1

⎞

⎠
(K + 2)(L + 1)λ, (3.2.7)

where

V >
1

p − 1
(3.2.8)

and

λ =
ηpκ

2e
with η = 1 − 10−50. (3.2.9)

Our Main Proposition is as follows.

Main Proposition. Suppose the following Condition (1a) holds:

V

2
≥ (T +

K

3
)λ +

K

3(p − 1)
+

D

e log p
(log (

N

2
) +

K

3
(log B̃ + log (

T

KL
) +

1454

309
)

+ (ωT + ω0)(2 + log(
107(K + 3)L

309ωT
+ 1)) + 1 + pκ(L + 1)g0 ((R + g)h(α1) + (S + g)h(α2))) .

(3.2.10)

Then

∣Λ∣p > p
−(V +u). (3.2.11)
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3.3 Backgrounds on the p-adic setting, multiplicity estimates and
the ∆-functions

In this section, backgrounds on the p-adic exponential and logarithmic functions, multiplicity esti-
mates and the ∆-function will be addressed.

3.3.1 The p-adic exponential and logarithmic functions

The convergence of exponential and logarithmic functions is an important issue in the p-adic setting.
There is a comprehensive description on the p-adic exponential and logarithmic functions, normal
series and functions as well as supernormality in Yu [97, Sections 1.1–1.3]. We shall make use of
some facts described there in our work.

Here we shall briefly presents some technical tools about the p-adic exponential function and the
p-adic logarithm. As usual let Cp be the p-adic analogue of the field of complex numbers and B(r)
the open disc ∣x∣p < r. Furthermore we introduce Op as the set of x ∈ Cp such that ∣x∣p ≤ 1 and

write M for the set of x ∈ Op such that ∣x∣p < p
− 1
p−1 . The main object is to establish the following

Proposition 3.1. For x ∈M, z ∈ Op we have

(1 + x)z = 1 + xzv(x, z)

with some power series v(S,T ) ∈ Qp[[S,T ]] such that v(x, z) ∈ Qp with ∣v(x, z)∣p ≤ 1.

Proof. Some properties of the exponential function ez and the logarithm log z are derived which
are necessary to deal with the proof of the proposition. This means that we have to study the
formal power series

Exp(X) = ∑
n≥0

Xn

n!

for the exponential function and at the same time its inverse, the power series

Log(1 +X) = ∑
n≥1

(−1)n−1Xn

n

for the logarithm.

Exp. The formal power series for Exp(X) can be expressed as

Exp(X) = 1 +Xε(X) (3.3.1)

for

ε(X) = ∑
n≥1

Xn−1

n!
= 1 +

X

2
+
X2

3!
+ higher order terms.
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We write ez = Exp(X)∣X=z. Then (3.3.1) means that ∣ez ∣p = 1 for z ∈M.

Log. Similar to Exp(X) the formal power series for the logarithm can be rewritten as

Log(1 +X) =Xλ(X) (3.3.2)

where

λ(X) = ∑
n≥1

(−1)n−1Xn−1

n
= 1 −

X

2
+ higher order terms.

It maps M isomorphically onto itself and has the property that the composition of the two power
series Exp(X) and Log(X) give the identity:

z ∈Mm ↦ ez ∈ 1 +Mm ↦ z ∈Mm,

where Mm is the the ideal {x ∈ Op ∣ ∣x∣p < p
− m
p−1 }.

One derives that

log(1 + z) = zλ(z)

and deduces that

∣ log(1 + z)∣p = ∣z∣p

for z ∈M.

Exponential function (1 +X)Y . We define

(1 +X)Y = Exp(Y log(1 +X)) (3.3.3)

and easily one sees that the series on the right exists as a formal power series. The reason is that
its constant term is zero and one applies standard results from [26]. We then define

(1 + a)z ∶= (1 +X)Y ∣
X=a,Y =z

for a ∈M and z ∈ Op. From above and (3.3.3) it becomes clear that

(1 +X)Y = 1 +XY v(X,Y ),

with ∣v(X,Y )∣p ≤ 1 and that (1 + a)z maps Op into 1 +M. The latter holds for Z and then by
continuity also for Op. This establishes Proposition 3.1.

3.3.2 Multiplicity estimates

We now state the multiplicity estimate used in [49, 50]. We shall adopt the same theory of multi-
plicity estimate for our case with m = 2.
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We work with the product group C2×C× whose group law is written additively by the symbol +. For
any element w in C× and any element (v0, v1) in C2 we denote briefly (v,w) = (v0, v1,w) ∈ C2 ×C×.
Let D ∶= ∂

∂X0
+ Y ∂

∂Y be a derivation operating on the polynomial’s ring C[X,Y ]. Let T be a
non-negative integer. We say that a polynomial P ∈ C[X,Y ] vanishes to order > T with respect to
D on the set Σ ⊆ C2 ×C×, if for any integer 0 ≤ t ≤ T , DtP vanishes identically on Σ.

Theorem 3.2. Let K,L be integers ≥ 1, let T1, T2, T3 be integers ≥ 0 and let Σ1,Σ2,Σ3 be nonempty
finite sets of C2 ×C×. Denote by µj(W ×C×) and µj(W × {1}) the number of distinct elements of
Σj modulo W ×C× and W × {1} respectively. Assume that for all j = 1,2 and any vector subspace
W of C2 with dimension ≤ 2 − j, we have

(
Tj + 1

εj
) µj(W ×C×) >Kj ,where εj = {

1, if (1,0) ∉W,
0, otherwise.

(3.3.4)

Assume further that for all j = 1,2,3 and any vector subspace W of C2 with dimension ≤ 3 − j, we
have

(Tj + 1) µj(W × {1}) > jKj−1L. (3.3.5)

Then any polynomial P ∈ C[X,Y ] of total degree ≤K in X and of degree ≤ L in Y which vanishes
on Σ1 +Σ2 +Σ3 to order > T1 + T2 + T3 with respect to D is identically zero.

Proof. See the proof of [50, Theorem 3.1] and [49, Theorem 2.1].

3.3.3 The ∆-functions and the variation

We shall introduce the ∆-functions and the variation. Define for any z ∈ C and any n ∈ N the
functions ∆, which were introduced by Feldman [43], by

∆(z;n) =
(z + 1)⋯(z + n)

n!
,

with ∆(z; 0) = 1 for n = 0. It is clear that ∆(z;n) takes integer value for all integers z. It should
also be noted that ∆(z; 0),∆(z; 1), . . . ,∆(z;n) forms a basis for the vector space of polynomials of
degree ≤ n. On top of the ∆-function we perform further variation. For any a ∈ N and any b ∈ N∗

we define the polynomial ∆(z; b, a) ∈ Q[z] of degree a by

∆(z; b, a) = ∆(z; b)q∆(z; r),

where by Euclidean division a = bq + r. For any integer c ≥ 0 denote furthermore

π(z; b, a, c) =
1

c!
(
d

dz
)
c

∆(z; b, a) =
1

c!
(
d

dz
)
c

∆(z; b)q∆(z; r).

Denote by ν(b) the least common multiple of 1,2, . . . , b. Finally, denote

∆(l; b, a, c) = ν(b)cπ(l; b, a, c). (3.3.6)

A nice property of ∆(l; b, a, c) is described in



3.3. p-ADIC SETTING, MULTIPLICITY ESTIMATES AND ∆-FUNCTIONS 33

Lemma 3.3. Let a, b and c be integers ≥ 0 with b ≥ 1 and c ≤ a. Then for l ∈ N,

∆(l; b, a, c) ∈ Z.

Proof. It is a modified version of the proof of [89, Lemma T1] since our ∆(l; b, a, c) is defined
differently. First, note that

π(l; b, a, c) =
1

b!qr!
((l + 1)⋯ (l + b))q (l + 1)⋯ (l + r)∑(l + j1)

−1 ⋯ (l + jc)
−1 (3.3.7)

where j1, . . . , jc runs through all the selections of integers from the set 1, . . . , b,1, . . . , r with 1, . . . , b
repeated q times and the right hand side is read as 0 if c > a.
Write π(l; b, a, c) = m

n , where m,n ∈ Z, (m,n) = 1. If p is a prime with p∣n, then from (3.3.7),
p∣(b!qr!) and hence p∣b! and hence p ≤ b. Then the number of factors p of b!qr! is exactly

l ([
b

p
] +⋯ + [

b

pu1
]) + [

r

p
] +⋯ + [

r

pu2
]

where u1 = [ log b
log p] and u2 = [ log r

log p]. Since ∆(l; b, a) =
((l+1)⋯(l+b))q(l+1)⋯(l+r)

b!qr! ∈ Z, the product

((l + 1)⋯(l + b))q (l + 1)⋯(l + r) contains at least as many factors p as in b!qr!. In fact, there may
be more than u1 factors p in a certain factor l + j (1 ≤ j ≤ c) which we have not counted. Hence if
c factors are removed out of this product, the remaining product contains at least

l ([
b

p
] +⋯ + [

b

pu1
]) + [

r

p
] +⋯ + [

r

pu2
] − cu1 (3.3.8)

factors p. It follows that the number of factors p that

((l + 1)⋯ (l + b))q (l + 1)⋯ (l + r)∑(l + j1)
−1 ⋯ (l + jc)

−1

contains is at least that of (3.3.8). As a result, n contains at most cu1 = c [ bp] factors p. This is

exactly the number of factors p of ν(b)c. Therefore Lemma 3.3 follows.

The following lemma reveals an upper bound for ∣∆(l; b, a, c)∣.

Lemma 3.4. Let a, b, q, r, l be non-negative integers with a = bq + r and 0 ≤ r < b. Then we have

∣∆(l; b, a, c)∣ < e
107bc
103 (

a

c
)
(l + b)a−c

ba
ea+b.

Proof. First, by referring to the Taylor expansion of ex, we have eb = 1 + b +⋯+ br

r! +⋯+ bb

b! +⋯ so
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that ( b
b

b! )
q
( b

r

r!
) ≤ ebqer ≤ ea+b and thus 1

b!qr! ≤
1
ba e

a+b. Next,

∆(l; b, a, c) =
ν(b)c

c!
((

d

dz
)
c

∆(z; b)q∆(z; r))
z=l

=
ν(b)c

c!b!qr!
((

d

dz
)
c

((z + 1)⋯ (z + b))q (z + 1)⋯ (z + r))
z=l

=
ν(b)c

b!qr!
((l + 1)⋯ (l + b))q (l + 1)⋯ (l + r)∑(l + j1)

−1 ⋯ (l + jc)
−1

= ν(b)c∆(l; b, a)∑(l + j1)
−1 ⋯ (l + jc)

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(
a
c
) terms

where the sum is over all selections j1, . . . , jc from the set {1,2, . . . , b,1, . . . , r} in which {1, . . . , b}
is repeated q times. We use the estimate ν(b) < exp(1.03883b) < exp (107b

103
) (see [74, p.71, (3.35)]).

Since ∆(l; b, a)(l + j1)
−1 ⋯ (l + jc)

−1 ≤
(l+b)a−c
b!qr! , the upper bound in Lemma 3.4 follows.

3.4 Construction of matrices M, M, M̃ and δ

Our goal of this section is to obtain a square matrix δ with det δ ≠ 0 under condition (3.2.6). Recall
N and Ψ(1) are in (3.2.4). To begin with, we denote by M a matrix of size N ×Ψ(1) with N ≤ Ψ(1)
whose coefficients are the numbers

Dt ⎛

⎝

Xk0
0

k0!
Xk1

1 Y l⎞

⎠
∣
(0,rb2+sb1,α

pκr
1 αp

κs
2 )

= (rb2 + sb1)
k1 lt−k0(

t

k0
)αp

κrl
1 αp

κsl
2 (3.4.1)

where (k0, k1, l) with (0 ≤ k0 + k1 ≤ K,0 ≤ l ≤ L) is the row index, while (r, s, t) with (0 ≤ t ≤ T,0 ≤

r ≤ R,0 ≤ s ≤ S) is the column index. Next, we extract a matrix M, formed by columns (r, s, t)
of M satisfying m1r +m2s ≡ c modulo g, where c = c1 + c2 + c3 and c1, c2 and c3 are fixed integers
satisfying (3.2.6). The numbering of the rows and columns for M and M are not important.

Lemma 3.5. The matrix M has maximal rank, equal to the number of rows N .

Proof. The proof follows along the same line as in [49] with α1 and α2 replaced by αp
κ

1 and αp
κ

2

and changes made to the sets Σ1, Σ2 and Σ3.
We proceed by contradiction assuming that rank(M) < N . Then there exists λ1, . . . , λN ∈ C, not
all zero, such that if we denote by Li (i = 1, . . . ,N) the rows of M, we have the linear relationship

N

∑
i=1

λiLi = 0.

Let

P =
N

∑
i=1

λi
X
k0,i
0

k0,i!
X
k1,i
1 Y li .
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Note that P is not identically zero. Besides, by definition 0 ≤ k0,i + k1,i ≤ K and 0 ≤ li ≤ L for all
i = 1, . . . ,N , so that

degX P = max
1≤i≤N

{k0,i + k1,i} ≤K, degY P = max
1≤i≤N

{li} ≤ L.

By the composition of M, we also notice that DtP vanishes on the set

ΣRS = {(0, rb2 + sb1, α
pκr
1 αp

κs
2 ); 0 ≤ r ≤ R,0 ≤ s ≤ S,m1r +m2s ≡ c mod g}

for all 0 ≤ t ≤ T . Now, let

Σ1 = {(0, rb2 + sb1, α
pκr
1 αp

κs
2 ); 0 ≤ r ≤ R1,0 ≤ s ≤ S1,m1r +m2s ≡ c1 mod g},

Σ2 = {(0, rb2 + sb1, α
pκr
1 αp

κs
2 ); 0 ≤ r ≤ R2,0 ≤ s ≤ S2,m1r +m2s ≡ c2 mod g},

Σ3 = {(0, rb2 + sb1, α
pκr
1 αp

κs
2 ); 0 ≤ r ≤ R3,0 ≤ s ≤ S3,m1r +m2s ≡ c3 mod g}

with c1 + c2 + c3 ≡ c mod g. It can be easily checked that

ΣRS ⊇ Σ1 +Σ2 +Σ3

since R = R1+R2+R3, S = S1+S2+S3 and c = c1+c2+c3. It follows that the polynomial P vanishes
on Σ1 +Σ2 +Σ3 with order > T = T1 + T2 + T3 with respect to the derivation D.

We shall now apply Theorem 3.2 to obtain a contradiction by verifying assumptions (3.3.4) and
(3.3.5) of Theorem 3.2. For this we note that W is a subspace of C2. We first check the assumption
(3.3.4). There are three scenarios. For j = 1, the dimension W must be ≤ 1. We have two cases,
either (1,0) ∉W , or (1,0) ∈W . If (1,0) ∉W , we have to check that

(T1 + 1) µ1(W ×C×) ≥K + 1. (3.4.2)

As µ1(W ×C×) ≥ 1, assumption (3.4.2) is therefore implied by the inequality

T1 ≥K

which is the first condition in (3.2.6). Therefore, assumption (3.4.2) is verified. If (1,0) ∈ W , we
have a check on the inequality

µ1(W ×C×) ≥K + 1. (3.4.3)

Since dimW ≤ 1, it is necessary that W = C(1,0). So,

µ1(C × {0} ×C×) = Card E1A.

Assumption (3.4.3) is thus implied by the second condition in (3.2.6). For j = 2, we have dimW ≤ 0
and hence W = {0,0}. We have a check on the inequality

(T2 + 1) µ2({0,0} ×C×) ≥K2 + 1. (3.4.4)
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Since

µ2({0,0} ×C×) = Card E2A,

the fifth condition in (3.2.6) implies (3.4.4).

By similar deduction, we can check that the third, forth and sixth conditions in (3.2.6) imply
assumption (3.3.5). According to Theorem 3.2, the polynomial is identically zero. However, it
contradicts the fact that λi (i = 1, . . . ,N) are not all zero. Therefore, rank(M) = N .

Now we follow a similar line as in [50] to modify M. First we translate the term (rb2 + sb1)
k1 in

(3.4.1) to ∆(rb2+sb1;k1) by row operations to obtain the first intermediate matrix whose coefficients
are

∆(rb2 + sb1;k1)l
t−k0(

t

k0
)αp

κrl
1 αp

κsl
2 (3.4.5)

and whose rank is the same as rank(M). Next, we are about to replace lt−k0 by π(l;T ′, t, k0). Note
that

lt−k0(
t

k0
) =

1

k0!
(
d

dl
)
k0

lt.

We shall make use of Lemma 3.6 (which corresponds to [50, Lemma 4.2]) below and replace zt by
a well chosen polynomial with the same degree.

Lemma 3.6. Let T,T ′ ∈ N∗ and 0 < T ′ < T . Let Q ∈ GLT+1(Q) be the matrix defined by

(1, z, . . . , zT )Q = (∆(z;T ′,0), . . . ,∆(z;T ′, T )). (3.4.6)

Then for any l ∈ N, any k0 ∈ N and 0 ≤ t ≤ T ,

π(l;T ′, t, k0) =
T

∑
ν=0

qν,t(
ν

k0
)lν−k0 ,

where the qν,t are the coefficients of Q.

Proof. Since each of ∆(z;T ′,0), . . . ,∆(z;T ′, T ) is a polynomial in z with rational coefficients,
hence Q ∈ GLT+1(Q). Let us denote by qν,t the (ν, t)-th entry of Q. From (3.4.6), we have

∆(z;T ′, t) =
T

∑
ν=0

qν,t z
ν , ∀0 ≤ t ≤ T.

Differentiate k0 times with respect to z and divide by k0!, we have

π(l;T ′, t, k0) =
1

k0!
(
d

dl
)
k0

∆(l;T ′, t)

=
1

k0!
(
d

dl
)
k0 T

∑
ν=0

qν,t l
ν =

T

∑
ν=0

qν,t

k0!
(
d

dl
)
k0

lν

=
T

∑
ν=0

qν,t(
ν

k0
)lν−k0 .
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Lemma 3.6 shows that a second intermediate matrix with coefficient

∆(rb2 + sb1;k1) π(l;T
′, t, k0)α

pκrl
1 αp

κsl
2

can be deduced from the first intermediate matrix by linear operations among columns of which r
and s are fixed, hence maintaining the same rank as M.

Furthermore, we multiply each row by ν(T ′)k0 , where T ′ is a parameter with 0 < T ′ < T to be
chosen later. It should be noted from (3.3.6) that ∆(l;T ′, t, k0) = ν(T

′)k0π(l;T ′, t, k0). As a result,
we get a new matrix, denoted by M̃, with coefficients

∆(rb2 + sb1;k1)∆(l;T ′, t, k0)α
pκrl
1 αp

κsl
2 (3.4.7)

in which ∆(rb2+sb1;k1) ∈ Z clearly and ∆(l;T ′, t, k0) ∈ Z by Lemma 3.3. It is trivial that rank(M̃) =

rank(M) = N .

For the last step we extract a square matrix of size N ×N , denoted by δ, with det δ ≠ 0 from M̃.
With a suitable ordering of rows and columns in δ we can write

γ = det δ = det (∆(rjb2 + sjb1;k1,i)∆(li;T
′, tj , k0,i)α

pκrj li
1 α

pκsj li
2 )

1≤i,j≤N
. (3.4.8)

Recall from (3.4.1) that (k0, k1, l) satisfies (0 ≤ k0 + k1 ≤ K,0 ≤ l ≤ L). Denote i and j as the row
index and column index of δ respectively. Let us suppose the rows in δ are ordered in a way that

• li = ⌊ i−1

(
(K+1)(K+2)

2
)
⌋,

• k0,i ≤ k0,i+1, and

• whenever k0,i = k0,i+1 we have k1,i ≤ k1,i+1

for 1 ≤ i ≤ N . With this ordering we have k1,i = 0 whenever i = 1 or k0,i−1 +k1,i−1 =K. Consider the
polynomial

P (X,Y ) =∑
σ

sgn(σ)
N

∏
i=1

∆(b2rσ(i) + b1sσ(i);k1,i)∆(li;T
′, tσ(i), k0,i) ⋅X

∑
N
i=1 lirσ(i)Y ∑

N
i=1 lisσ(i) , (3.4.9)

where σ runs over all permutations σ ∈ SN and where sgn(n) is the signature of the permutation
σ. As discussed in (3.4.7), we notice that P (X,Y ) has integer coefficients. By expanding the

determinant γ, we get γ = P (αp
κ

1 , αp
κ

2 ). We shall present the following lemma for P (X,Y ).
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Lemma 3.7. Let P (X,Y ) be in (3.4.9). Then for any q ∈ Cp, we have

P (X,Y ) = det(
(b2rj + b1sj − q)

k1,i

k1,i!
∆(li;T

′, tj , k0,i)X
lirjY lisj)

1≤i,j≤N

. (3.4.10)

Proof. Referring to (3.4.9), we have

P (X,Y ) = det (∆(rjb2 + sjb1;k1,i)∆(li;T
′, tj , k0,i)X

lirjY lisj)
1≤i,j≤N

. (3.4.11)

Denote ai as the i-th row in P (X,Y ), i.e.

ai = (∆(rjb2 + sjb1;k1,i)∆(li;T
′, tj , k0,i)X

lirjY lisj) , 1 ≤ j ≤ N

so that

P (X,Y ) = det
⎛
⎜
⎝

a1

⋮

aN

⎞
⎟
⎠

1≤i,j≤N

.

Next, denote

Q(q) = det
⎛
⎜
⎝

b1(q)
⋮

bN(q)

⎞
⎟
⎠

1≤i,j≤N

and Q = det
⎛
⎜
⎝

b1

⋮

bN

⎞
⎟
⎠

1≤i,j≤N

where

bi(q) = (
(b2rj + b1sj − q)

k1,i

k1,i!
∆(li;T

′, tj , k0,i)X
lirjY lisj) , 1 ≤ j ≤ N

and bi = bi(0). Further, denote b0(q) = 0. It suffices to show that
(a). P (X,Y ) = Q and
(b). Q(q) = Q.
To prove (a), note that ai can be expressed as

ai = {
bi, if k1,i = 0,

bi +∑
k1,i
x=1mx ai−x, otherwise

where mx ∈ Cp. Thus, if we start rewriting from the last row, we obtain

P (X,Y ) = det

⎛
⎜
⎜
⎜
⎝

a1

⋮

aN−1

bN

⎞
⎟
⎟
⎟
⎠

+
k1,N

∑
x=1

mx det

⎛
⎜
⎜
⎜
⎝

a1

⋮

aN−1

aN−x

⎞
⎟
⎟
⎟
⎠

= det

⎛
⎜
⎜
⎜
⎝

a1

⋮

aN−1

bN

⎞
⎟
⎟
⎟
⎠

.

We proceed similarly to the next preceding row and so on and finally obtain P (X,Y ) = Q.
To prove (b), note that

d

dq
bi(q) = {

0, if k1,i = 0,
bi−1(q), otherwise.
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Therefore,

Q′(q) = det

⎛
⎜
⎜
⎜
⎜
⎝

d
dqb1(q)

b2(q)
⋮

bN(q)

⎞
⎟
⎟
⎟
⎟
⎠

+ det

⎛
⎜
⎜
⎜
⎜
⎝

b1(q)
d
dqb2(q)

⋮

bN(q)

⎞
⎟
⎟
⎟
⎟
⎠

+⋯ + det

⎛
⎜
⎜
⎜
⎜
⎝

b1(q)
b2(q)
⋮

d
dqbN(q)

⎞
⎟
⎟
⎟
⎟
⎠

= 0.

Thus, Q(q) is a constant function for all q ∈ Cp and we have Q(q) = Q(0) = Q.

3.5 Arithmetic lower bound for ∣γ∣p

Our goal of this section is to deduce the arithmetic lower bound for ∣γ∣p. It is stated in the following

Proposition 3.2 (Arithmetic lower bound). We have the lower bound

log ∣γ∣p > −
D

e
(log(N !) +

KN

3
(log B̃ + log(

T

K(L + T ′)
) +

11

3
+

107T ′

103
)

+ (ωT + ω0)N (1 + log(
L + T ′

T ′
)) +NT ′ + 2pκ (G1h(α1) +G2h(α2)) )

(3.5.1)

where G1,G2 are defined in Lemma 3.13 and ω,ω0 are defined in (3.2.5).

3.5.1 Some auxiliary results

Before giving a proof to Proposition 3.2, we shall present some technical lemmas.

Lemma 3.8. Let K,L be integers ≥ 1 and N be in (3.2.4). We have the upper bound

log

⎛
⎜
⎜
⎜
⎝

L

∏
l=0

∏
(k0,k1)∈N2

k0+k1≤K

1

k0!

⎞
⎟
⎟
⎟
⎠

≤ (
11

6 logK
− 1)

KN logK

3
.

Proof. This follows from [49, Lemma A.1 p.73–75]. The above inequality is estimated with the
use of Stirling formula and the Euler-MacLaurin formula

K

∑
k0=1

f(k0) = ∫
K

1
f(x)dx +

f(K) + f(1)

2
+
f ′(K) − f ′(1)

12
+ ∫

K

1
2f (3)(x)

∞

∑
n=1

sin(2πnx)

(2πn)3
dx.

There were slight typos in the proof in [49] but the inequality still holds. We shall omit the
proof.



40 CHAPTER 3. LINEAR FORMS IN TWO p-ADIC LOGARITHMS

Lemma 3.9. Let N be an integer ≥ 1, R, S, T be integers ≥ 0, Ψ(1) be in (3.2.4) with Ψ(1) ≥ N .
Let (t1, . . . , tN) be a sequence of integers between 0 and T with each value appearing at most
(R + 1)(S + 1) times. Then we have

N

∑
i=1

ti ≤ N ((1 −
N

2Ψ(1)
)T +

3Ψ(1)

2N
) . (3.5.2)

Proof. We define a = [ N
(R+1)(S+1)] and consider the scenarios Ψ(1) > N and Ψ(1) = N separately.

For Ψ(1) > N ,

N

∑
i=1

ti ≤ (R + 1)(S + 1)
a

∑
j=0

(T − j).

Whereas for Ψ(1) = N , we have a = [ N
(R+1)(S+1)] = T + 1 and

N

∑
i=1

ti ≤ (R + 1)(S + 1)
a

∑
j=1

((T + 1) − j).

Both are bounded above by NT + (R+ 1)(S + 1)T − N2

2(R+1)(S+1) +
N
2 + 1

2(R+ 1)(S + 1) and hence by

N ((1 − N
2Ψ(1))T +

3Ψ(1)
2N ).

Corollary 3.10. Let N be an integer ≥ 1 and let R, S, T be integers ≥ 0. Further, let R′ + 1 =

[Rg′ ] and S′ + 1 = [ Sg′′ ] be integers ≥ 0, with g = g′g′′ where g′, g′′ are positive integers. Let

(R′ + 1)(S′ + 1)(T + 1) ≥ N . Let (t1, . . . , tN) be a sequence of integers between 0 and T with each
value appearing at most (R′ + 1)(S′ + 1) times. Then we have

N

∑
i=1

ti ≤ N (ωT + ω0)

where ω and ω0 are defined in (3.2.5).

Proof. It is obtained immediately from inequality (3.5.2) of Lemma 3.9 after using the trivial
bounds g′(R′ + 1) ≤ R + g and g′′(S′ + 1) ≤ S + g.

Lemma 3.11. Let T and T ′ be two integers so that 0 < T ′ < T . Let (tk0,k1,l) be a sequence of N
integers between 0 and T where 0 ≤ k0 + k1 ≤ K and 0 ≤ l ≤ L. Assume that each tk0,k1,l appears at
most (R + 1)(S + 1) times, then we have

log
⎛

⎝

L

∏
l=0

∏
k0+k1≤K

∣∆(l;T ′, tk0,k1,l, k0)∣
⎞

⎠

<
KN

3
(log(

T

K(L + T ′)
) +

11

6
+

107T ′

103
) + (ωT + ω0)N (1 + log

L + T ′

T ′
) + T ′N

with ω and ω0 defined in (3.2.5).
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Proof. This is similar to [50, Lemma 4.5], by using Lemma 3.4, Lemma 3.8 and Corollary 3.10.
The proof is presented as follows.

First, by Lemmma 3.4 and (
tk0,k1,l
k0

) ≤ Tk0
k0! ,

∣∆(l;T ′, tk0,k1,l, k0)∣ < e
107T ′k0

103 (
tk0,k1,l
k0

)
(l + T ′)tk0,k1,l−k0

T ′tk0,k1,l
etk0,k1,l+T

′

≤
T k0

k0!

(L + T ′)tk0,k1,l−k0

T ′tk0,k1,l
etk0,k1,l+T

′+ 107T ′k0
103 .

Next, by using Lemma 3.8, Corollary 3.10 and ∑Ll=0∑k0+k1≤K k0 =
KN

3 ,

L

∏
l=0

∏
k0+k1≤K

∣∆(l;T ′, tk0,k1,l, k0)∣

<
L

∏
l=0

∏
k0+k1≤K

T k0

k0!

(L + T ′)tk0,k1,l−k0

T ′tk0,k1,l
etk0,k1,l+T

′+ 107T ′k0
103

≤
⎛

⎝

L

∏
l=0

∏
k0+k1≤K

1

k0!

⎞

⎠

⎛

⎝

L

∏
l=0

∏
k0+k1≤K

T k0
⎞

⎠

⎛

⎝

L

∏
l=0

∏
k0+k1≤K

(
L + T ′

T ′
)

tk0,k1,l⎞

⎠

⎛

⎝

L

∏
l=0

∏
k0+k1≤K

(L + T ′)−k0
⎞

⎠

⎛

⎝

L

∏
l=0

∏
k0+k1≤K

etk0,k1,l+T
′+ 107T ′k0

103
⎞

⎠

≤ e
( 11
6 logK

−1)KN logK
3 ⋅ T

KN
3 ⋅ (

L + T ′

T ′
)

N(ωT+ω0)

⋅ (L + T ′)−
KN
3 ⋅ eN(ωT+ω0+T

′+ 107KT ′
309

).

Thus, the upper bound in Lemma 3.11 follows.

Lemma 3.12. Let K, L, R, S, T be integers ≥ 0, N and Ψ(1) be in (3.2.4) with Ψ(1) ≥ N . Let

lν = [ ν−1
(K+1)(K+2)/2] , (1 ≤ ν ≤ N). For each sequence of integers (r′1, . . . , r

′
N) between 0 and R

such that none of them is repeated more than (S + 1)(T + 1) times, we have the estimates

M ′
1 −G

′
1 ≤

N

∑
ν=1

lνr
′
ν ≤M

′
1 +G

′
1 and M ′

2 −G
′
2 ≤

N

∑
ν=1

lνs
′
ν ≤M

′
2 +G

′
2

where

M ′
1 =

L(r′1 +⋯ + r′N)

2
, G′

1 =
N(L + 1)(R + 1)

2
(

1

4
−

N

12Ψ(1)
) ,

M ′
2 =

L(s′1 +⋯ + s′N)

2
, G′

2 =
N(L + 1)(S + 1)

2
(

1

4
−

N

12Ψ(1)
) .

Proof. The estimate for ∑Nν=1 lνr
′
ν is Lemma A.2 in [49]. The estimate for ∑Nν=1 lνs

′
ν can be obtained

similarly.
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The following Lemma coincides with Lemma 3.12 when g = 1.

Lemma 3.13. Let K, L, R, S, T be integers ≥ 0 and m1, m2, g, c be rational integers with m1,

m2 and g coprime. Let lν = [ ν−1
(K+1)(K+2)/2] , (1 ≤ ν ≤ N). Let (r1, s1), . . . , (rN , sN) be sequence

of N pairs of integers, which among them the same paired value appears at most (T + 1) times,
satisfying the condition

0 ≤ rν ≤ R, 0 ≤ sν ≤ S, m1rν +m2sν ≡ c mod g (3.5.3)

for all ν = 1, . . . ,N . Then we have the estimates

M1 −G1 ≤
N

∑
ν=1

lνrν ≤M1 +G1, M2 −G2 ≤
N

∑
ν=1

lνsν ≤M2 +G2 (3.5.4)

where

M1 =
L(r1 +⋯ + rN)

2
, G1 =

N(L + 1)(R + g)g0

2
,

M2 =
L(s1 +⋯ + sN)

2
, G2 =

N(L + 1)(S + g)g0

2

and g0 is defined in (3.2.5).

Proof. The proof follows closely the proof of [33, Lemma 10]. Here we shall show that M1 −G1 ≤

∑Nν=1 lνrν ≤M1 +G1. The second result M2 −G2 ≤ ∑
N
ν=1 lνsν ≤M2 +G2 can be obtained similary by

simply replacing r with s. Denote

g′ = gcd(m2, g), g′′ = g/g′.

Since m1,m2 and g are coprime, we have gcd(m1, g
′) = 1. Denote by c′ an integer between 0 and

g′ − 1 that satisfies
m1c

′ ≡ c mod g′.

Note that such condition for c′ is always valid since gcd(m1, g
′) = 1. Then it can be shown that the

condition (3.5.3) implies

rν = c
′ + g′r′ν , 0 ≤ r′ν ≤ R

′ ∶= [
R

g′
] .

To show this, we write rν = crν + g
′r′v with 0 ≤ crν ≤ g

′ − 1 and substitute into (3.5.3) to get

m1(crν + g
′r′ν) +m2sν ≡ c mod g

which, by writing m2 = g
′u2, implies

m1crν +m1g
′r′ν + g

′u2sν ≡m1c
′ mod g.

This gives

m1(crν − c
′) + g′(m1r

′
ν + u2sν) ≡ 0 mod g.
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Noting that g = g′g′′ and m1c
′ ≡ c mod g′, the above relation can be further written as

m1(crν − c
′) ≡ 0 mod g′

which gives

crν ≡ c
′ mod g′ since gcd(m1, g

′) = 1

and we deduce that

crν = c
′.

In addition, the same congruence (3.5.3) shows that for r fixed, the class of s modulo g′′ is uniquely

determined. To show this, we write sν = csν + g
′′s′ν with 0 ≤ s′ν ≤ S

′ ∶= [ Sg′′ ] , 0 ≤ csν ≤ g
′′ − 1. We

substitute the expression into (3.5.3) to get

m1rv +m2(csν + g
′′s′ν) ≡ c mod g

which, by writing m2 = g
′u2 and rν = c

′ + g′r′ν , implies

m1(c
′ + g′r′ν) + g

′u2(csν + g
′′s′v) ≡ c mod g.

This gives

g′(m1r
′
ν + u2csν) ≡ c −m1c

′ mod g. (3.5.5)

Therefore, when r is fixed, c′ and r′ν are fixed, so that csν can be determined by (3.5.5). To show
that csν is uniquely determined modulo g′′, suppose there exist csν1 , csν2 such that

g′(m1r
′
ν + u2csν1) ≡ c −m1c

′ mod (g′g′′)

g′(m1r
′
ν + u2csν2) ≡ c −m1c

′ mod (g′g′′)

g′(m1r
′
ν + u2csν1) ≡ g

′(m1r
′
ν + u2csν2) mod (g′g′′)

m1r
′
ν + u2csν1 ≡m1r

′
ν + u2csν2 mod g′′

u2csν1 ≡ u2csν2 mod g′′

csν1 ≡ csν2 mod g′′ since gcd(u2, g
′′) = 1

Thus, the class of s modulo g′′ is uniquely determined. This means that while r is fixed, there are

at most ([ Sg′′ ] + 1) (T + 1) pairs of integers (r, s) satisfying condition (3.5.3), i.e.

0 ≤ rν ≤ R, 0 ≤ sν ≤ S, m1rν +m2sν ≡ c mod g.

By applying Lemma 3.12 to the above sequence of integers (r′1, . . . , r
′
N) gives

M ′
1 −G

′
1 ≤

N

∑
ν=1

lνr
′
ν ≤M

′
1 +G

′
1
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where M ′
1 =

L(r′1+⋯+r
′
N )

2 , G′
1 =

N(L+1)(R′+1)
2 (1

4 −
N

12(R′+1)(S′+1)(T+1)).

Recall that rν = c
′ + g′r′ν and lν = [ ν−1

(K+1)(K+2)/2] for 1 ≤ ν ≤ N . We obtain ∑Nν=1 lν =
NL
2 and thus

M ′
1g

′ + c′
N

∑
ν=1

lν − g
′G′

1 ≤
N

∑
ν=1

lν(c
′ + g′r′ν) ≤M

′
1g

′ + c′
N

∑
ν=1

lν + g
′G′

1

M1 − g
′G′

1 ≤
N

∑
ν=1

lνrν ≤M1 + g
′G′

1.

Trivially, we have the upper bound R′ + 1 = [Rg′ ] + 1 ≤ R+g′
g′ (ı.e. (R′ + 1)g′ ≤ R + g′ ≤ R + g) and

g′′(S′ + 1) ≤ S + g. Therefore,

g′G′
1 =

N(L + 1)(R′ + 1)g′

8
−

N2(L + 1)g′

24(S′ + 1)(T + 1)
≤
N(L + 1)(R + g)

8
−

N2(L + 1)g

24(S + g)(T + 1)
≤ G1.

The proof is completed.

3.5.2 Deduction of Proposition 3.2

We shall prove Proposition 3.2. It is based on the following p-adic analogue of Liouville inequality
which is also used in [33].

Lemma 3.14 (p-adic analogue of Liouville inequality). For any polynomial P (X,Y ), with integer
coefficients and all algebraic numbers ξ and ζ contained in Qp such that P (ξ, ζ) ≠ 0, we have the
lower bound

log ∣P (ξ, ζ)∣p ≥ −
[Q(ξ, ζ) ∶ Q]

ef
(log ∣P ∣ + (degX P )h(ξ) + (degY P )h(ζ)) ,

where e and f denote as before the ramification index and the residue degree of the extension of
Qp(ξ, ζ) over Qp, and where

∣P ∣ = max{∣P (x, y)∣;x ∈ C, y ∈ C, ∣x∣ = ∣y∣ = 1} (3.5.6)

denotes the maximum norm of the polynomial P .

Proof. See Yu [97, Lemma 2.1].

Proof of Proposition 3.2. By referring to P (X,Y ) in (3.4.9), γ in (3.4.8) and Lemma 3.7, we

notice that γ = P (αp
κ

1 , αp
κ

2 ), which can be expressed as

γ =∑
σ

sgn(σ)
N

∏
i=1

(b2rσ(i) + b1sσ(i) − q)
k1,i

k1,i!
∆(li;T

′, tσ(i), k0,i) ⋅ α
pκ∑Ni=1 lirσ(i)
1 α

pκ∑Ni=1 lisσ(i)
2 (3.5.7)
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for any q ∈ Cp, where σ runs over all permutations σ ∈SN and where sgn(n) is the signature of the
permutation σ. We choose q = Rb2+Sb1

2 . Then using (3.5.6), Lemma 3.8, Lemma 3.9 and Lemma
3.11 we deduce that

∣P ∣ ≤∑
σ

RRRRRRRRRRR

N

∏
i=1

(b2rσ(i) + b1sσ(i) − q)
k1,i

k1,i!
∆(li;T

′, tσ(i), k0,i)

RRRRRRRRRRR

≤ N ! max
σ

RRRRRRRRRRR

N

∏
i=1

(b2rσ(i) + b1sσ(i) − q)
k1,i

k1,i!

RRRRRRRRRRR

max
σ

∣
N

∏
i=1

∆(li;T
′, tσ(i), k0,i)∣

< N !B̃
KN
3 (

T

K(L + T ′)
)

KN
3

(
L + T ′

T ′
)

(ωT+ω0)N

exp(
11KN

9
+

107KNT ′

309
+ (ωT + ω0 + T

′)N) .

(3.5.8)

It should be noted that, due to the definition of g in (3.2.1), the integers m1,m2 and g are coprime.
We use (3.5.4) from Lemma 3.13 to estimate ∑Ni=1 lirσ(i) and ∑Ni=1 lisσ(i) in (3.5.7). Denote by V1

(resp. V2) the integral part of M1 +G1 (resp. M2 +G2), and by U1 (resp. U2) the smallest integer
≥M1 −G1 (resp. M2 −G2). Then

γ = P (αp
κ

1 , αp
κ

2 ) = αp
κV1

1 αp
κV2

2 P̃ (
1

αp
κ

1

,
1

αp
κ

2

) ,

where P̃ (X,Y ) is a polynomial with integer coefficients, the norm ∣P̃ ∣ = max{∣P̃ (x, y)∣ ;x ∈ C, y ∈

C, ∣x∣ = ∣y∣ = 1} is equal to ∣P ∣, Also, the degree of X and Y for P̃ (X,Y ) are bounded respectively
by V1 −U1 and V2 −U2.

Now we apply the version of Liouville inequality in Lemma 3.14 to the polynomial P̃ , knowing that

h(αp
κ

i ) = pκh(αi) and note that D =
[Q(α1,α2)∶Q]

f , to give the lower bound

log ∣P̃ (αp
κ

1 , αp
κ

2 )∣
p
≥ −

D

e
(log ∣P̃ ∣ + (degX P̃ )h(αp

κ

1 ) + (degY P̃ )h(αp
κ

2 ))

≥ −
D

e
(log ∣P̃ ∣ + pκ(V1 −U1)h(α1) + p

κ(V2 −U2)h(α2)) .

Note that ∣P̃ ∣ = ∣P ∣, ∣α1∣p = ∣α2∣p = 1 and Vi −Ui ≤ 2Gi for i = 1,2. Thus,

log ∣γ∣p = log ∣P̃ (αp
κ

1 , αp
κ

2 )∣
p

≥ −
D

e
(log ∣P̃ ∣ + pκ(V1 −U1)h(α1) + p

κ(V2 −U2)h(α2))

≥ −
D

e
(log ∣P̃ ∣ + 2pκ (G1h(α1) +G2h(α2))) .

The lower bound in (3.5.1) can be obtained after using the upper bound of ∣P ∣ in (3.5.8).
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3.6 Analytic upper bound for ∣γ∣p

The goal of this section is to deduce the analytic upper bound for ∣γ∣p, which is stated in

Proposition 3.3 (Analytic upper bound). Suppose that

∣Λ∣p ≤ p
−(V +u), (3.6.1)

where V > 1
p−1 is defined in (3.2.7). Then

log ∣γ∣p < N (Tλ −
V

2
+
K

3
(λ +

1

p − 1
)) log p. (3.6.2)

3.6.1 Some auxiliary results

We first present some technical lemmas and the p-adic Schwarz’s lemma.

Lemma 3.15. Let n be a positive integer. Then vp(n!) <
n

p − 1
.

Proof. See for example Neukirch [68], p.138–139.

Lemma 3.16. Let θ be an element of Qp such that vp(θ − 1) > 0. Then

vp(θ
p − 1) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

pvp(θ − 1), if vp(θ − 1) <
1

p − 1
,

vp(θ − 1) + 1, if vp(θ − 1) >
1

p − 1
and

vp(θ
p − 1) ≥

p

p − 1
=

1

p − 1
+ 1, if vp(θ − 1) =

1

p − 1
.

Proof. It has been used for example in the papers of Yu ([97]–[103]). We omit the proof here.

Lemma 3.17. Suppose θ ∈ Kv satisfying vp(θ − 1) > 0 and let κ ≥ 0 be the integer satisfying the
inequalities (3.2.3), i.e.

pκ−1 ≤
2e

p − 1
< pκ.

Then

vp(θ
pκ − 1) ≥

pκ

2e
+

1

p − 1
>

1

p − 1
. (3.6.3)

Proof. The proof follows similar line as in Yu [99, Lemma 1.1]. We omit the details here.
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Lemma 3.18. Let u be a positive integer. For any root of unity ξ of order pu, the ramification
index of the extension Qp(ξ)/Qp is equal to pu−1(p − 1). Furthermore, for any positive integer m
not divisible by p, we have

∑
ξmp

u
=1

ξ≠1

vp(ξ − 1) = u.

Proof. This is rephrased from [33, Lemma 5, p.319].

Lemma 3.19 (Krasner’s Lemma). Let ξ and σ be in an algebraic closure of Qp. Let ξ1 = ξ,
ξ2, . . . , ξd denote the Galois conjugates of ξ over Qp. If

vp(σ − ξ) > vp(σ − ξi), i = 2, . . . , d,

then ξ belongs to the field Qp(σ).

Proof. See for example [73, p.130].

Before stating the p-adic Schwarz’s lemma, we introduce some notations. Let K be a complete
ultrametric valuation field, of characteristic 0 with residual characteristic p. Let f = ∑n≥0 anX

n be
a formal power series with coefficients in K such that there exists a real number R > 0 satisfying
limn→+∞ ∣an∣pR

n = 0. Then, f defines an analytic function on the disc {z ∈ K, ∣z∣p ≤ R}. For any
real number r such that 0 ≤ r ≤ R, we put ∣f ∣r = supn≥0 ∣an∣pr

n. We have

∣f ∣r ≤ ∣f ∣R. (3.6.4)

In particular, if K is algebraically closed, then ∣f ∣r = sup∣z∣p≤r ∣f(z)∣p and inequality (3.6.4) expresses
the maximum principle.

Lemma 3.20 (p-Adic Schwarz’s Lemma). Let p be a prime number. Let TI be a nonnegative
integer, r and R be real numbers satisfying 0 < r ≤ R and f be an analytic function on the disc
{z ∈ Cp ∶ ∣z∣p ≤ R}. Assume f has a zero of multiplicity at least TI at 0. Then

∣f ∣r ≤ (
R

r
)
−TI

∣f ∣R.

Proof. We consider the function z ↦ g(z) = z−TIf(z) which is analytic in the disc {z ∈ Cp ∶ ∣z∣p ≤
R}. Since r ≤ R, we have ∣g∣r ≤ ∣g∣R with

∣g∣r = r
−TI ∣f ∣r and ∣g∣R = R−TI ∣f ∣R.

This completes the proof.
Remark: See also Bertrand [22] and Mahler [60].
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3.6.2 Deduction of Proposition 3.3

In this section we deduce the analytic upper bound for ∣γ∣p in Proposition 3.3. Our derivation
follows first the similar line of [33] and then [50] with the development by the p-adic Schwarz’s
lemma. It is established based on several results which can be best presented by the following
lemmas subsequently. We assumed (3.6.1) holds in this section.

Lemma 3.21. Recall θ1 and θ2 as in (3.2.2). Let

γ′ = det(
(b2rj + b1sj − q)

k1,i

k1,i!
∆(li;T

′, tj , k0,i)θ
pκlirj
1 θ

pκlisj
2 )

1≤i,j≤N

(3.6.5)

where q is any number in Cp and set

Λ̃ = θb11 − θb22 .

Then we have vp(γ) = vp(γ
′) and vp(Λ) = vp(Λ̃).

Proof. We consider the determinant γ stated in (3.4.8) and refer to P (X,Y ) in (3.4.9). Recall

that γ = P (αp
κ

1 , αp
κ

2 ). By referring to P (X,Y ) in (3.4.10), we get

γ = det(
(b2rj + b1sj − q)

k1,i

k1,i!
∆(li;T

′, tj , k0,i)α
pκlirj
1 α

pκlisj
2 )

1≤i,j≤N

.

Since m1rj +m2sj ≡ c mod g (j = 1, . . . ,N), by rewriting α1, α2 as in (3.2.2), we obtain

γ = ζcp
κ(∑ li)γ′.

Therefore, vp(γ) = vp(γ
′) follows because vp(ζ) = 0. Next, according to the assumption (3.6.1),

since
Λ = αb11 − αb22 = ζm1b1θb11 − ζm2b2θb22

has positive valuation, m1b1 and m2b2 are necessarily in the same class modulo g. Thus, it follows
that vp(Λ) = vp(Λ̃).

Lemma 3.21 reveals that it suffices to verify Proposition 3.3 with α1 = θ1 α2 = θ2 being principal
units. Next, we recall that u denotes the integer such that pu divides exactly gcd(b1, b2). In case
that u > 0, we set

b′1 =
b1
pu
, b′2 =

b2
pu
, β =

b1
b2

=
b′1
b′2
, σ =

θ
b′1
1

θ
b′2
2

(3.6.6)

and we can assume without restriction that p does not divide b′2. Let ξ1, . . . , ξpu be all the pu-th
roots of unity in Qp with the ordering

vp(σ − ξ1) ≥ ⋯ ≥ vp(σ − ξpu). (3.6.7)
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Let

Λ′ = θ
b′1
1 − ξ1θ

b′2
1 . (3.6.8)

Lemma 3.22. Suppose that (3.6.1) holds. Then we have ξp
κ

1 = 1 and the lower bound

vp(Λ′) = vp(Λ) − u ≥ V. (3.6.9)

Proof. We follow the line of [33] to achieve this. Note by using Lemma 3.21 and the hypothesis
that

vp(σ
pu − 1) = vp

⎛

⎝

θ
b′1p

u

1 − θ
b′2p

u

2

θ
b′2pu
2

⎞

⎠
= vp

⎛

⎝

Λ̃

θb22

⎞

⎠
= vp (Λ̃) + vp (θ

−b2
2 ) = vp(Λ) ≥ V + u >

1

p − 1
+ u.

In other words, we have

pu

∑
v=1

vp(σ − ξv) = vp(Λ) ≥ V + u >
1

p − 1
+ u, (3.6.10)

where the summation involves all the pu-th roots of unity ξv (v = 1, . . . , pu) in Qp. With the
ordering of these roots as in (3.6.7), we shall show that in fact vp(σ − ξ1) > vp(σ − ξ2). By the
ultrametric inequality,

vp (
ξv
ξ1
− 1) = vp(ξv − ξ1) ≥ min{vp(σ − ξv), vp(σ − ξ1)} = vp(σ − ξv) (v = 2, . . . , pu). (3.6.11)

Next, we consider ∑ξp
u
=1

ξ≠1

vp(ξ − 1), where each of the ξ in the summation represents ξ = ξv
ξ1

(v =

2,3, . . . , pu), so that ξ ≠ 1 and ξp
u
= 1. Besides, for each of these valuations vp(ξ − 1), we have

vp(ξ − 1) = vp (
ξv
ξ1
− 1) ≥ vp(σ − ξv) from (3.6.11). Therefore, using (3.6.10),

vp(σ − ξ1) + ∑
ξp
u
=1

ξ≠1

vp(ξ − 1) ≥ vp(σ − ξ1) +
pu

∑
v=2

vp(σ − ξv) = vp (σ
pu − 1) ≥ V + u >

1

p − 1
+ u.

According to Lemma 3.18, ∑ξp
u
=1

ξ≠1

vp(ξ − 1) = u, yielding vp(σ−ξ1) >
1
p−1 . We claim that this implies

vp(σ − ξ1) > vp(σ − ξ2). Indeed, if vp(σ − ξ1) = vp(σ − ξ2), then with the ultrametric inequality,

1

pw−1(p − 1)
= vp (

ξ2

ξ1
− 1) = vp(ξ2 − ξ1) ≥ vp(σ − ξ2) >

1

p − 1
,

where pw denotes the exact order of the root of unity ξ2
ξ1

≠ 1. Hence there is a contradiction.

Krasner’s Lemma 3.19 then shows that ξ1 belongs to the field Qp(σ) ⊆ Kv. If we denote by pw

the order of the root of unity ξ1, then the ramification index of the extension Qp(ξ1)/Qp equals
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pw−1(p− 1) by Lemma 3.18. It follows from Qp(σ) ⊆ Kv that pw−1(p− 1) ≤ e. Together with (3.2.3)
we have

pw−1(p − 1) ≤ e <
1

2
pκ(p − 1).

It follows that w ≤ κ, and

ξp
κ

1 = 1.

To prove (3.6.9), since ξp
u

1 = 1, Lemma 3.16 and Lemma 3.21 then shows that

vp(Λ) = vp(Λ̃) = vp(σ
pu − 1) = vp ((

σ

ξ1
)
pu

− 1) = vp(σ − ξ1) + u = vp(Λ′) + u.

Alternatively, it is noted that the inequality vp(Λ) = vp(Λ′) + u results also directly from the
ultrametric inequality above. By (3.6.1), the lower bound (3.6.9) follows.

Now we introduce the function ΦI(z) for z ∈ Cp, represented in the form of a determinant with
(i, j) indicating the i-th row and j-column respectively, satisfying

∣z∣p ≤ p
λ (3.6.12)

where λ is in (3.2.9). Let I ⊆ {1, . . . ,N} be any set, σi,j ∈ Qp with ∣σi,j ∣p ≤ 1. We define

ΦI(z) ∶= ±det(
Φ+
I (z)

Φ−
I (z)

) (3.6.13)

where

Φ+
I (z) = (Ci,j(z)) for i ∈ I, Φ−

I (z) = (σi,jCi,j(z)) for i ∉ I

with

Ci,j(z) =
(z(rj + sjβ))

k1,i

k1,i!
∆(li;T

′, tj , k0,i)θ1
pκliz(rj+sjβ) (3.6.14)

and ±1 is chosen for the determinant depending on the positioning of the rows. (Lemma 3.24 and
(3.6.23) reveal another representation for ΦI(z).)

The following lemma (Lemma 3.23) provides a lower bound for vp(ΦI(z)).

Lemma 3.23. For any set I ⊆ {1, . . . ,N} and for any z ∈ Cp so that ∣z∣p ≤ p
λ,

vp(ΦI(z)) > −
KN

3
(λ +

1

p − 1
) .
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Proof. We develop the determinant ΦI(z) in (3.6.13) to get

ΦI(z) = ∑
σ∈SN

sgn(σ)θ1
pκz∑Ni=1 liξ1,σ(i)

N

∏
i=1

⎛

⎝

(zξ1,σ(i))
k1,i

k1,i!
∆(li;T

′, tσ(i), k0,i)
⎞

⎠
∏
i∉I

σi,σ(i).

Moreover, ∣σi,j ∣p ≤ 1 as adopted in ΦI(z). Thus,

vp(ΦI(z))

≥ min
σ∈SN

⎧⎪⎪
⎨
⎪⎪⎩

vp
⎛

⎝
θ1
pκz∑Ni=1 liξ1,σ(i)

N

∏
i=1

⎛

⎝

(zξ1,σ(i))
k1,i

k1,i!
∆(li;T

′, tσ(i), k0,i)
⎞

⎠
∏
i∉I

σi,σ(i)
⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

= min
σ∈SN

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vp (θ1
pκz∑Ni=1 liξ1,σ(i))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(i)

+ vp
⎛

⎝

N

∏
i=1

(zξ1,σ(i))
k1,i

k1,i!

⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(ii)

+ vp (
N

∏
i=1

∆(li;T
′, tσ(i), k0,i))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(iii)

+∑
i∉I

vp (σi,σ(i))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(i) To determine vp (θ1
pκz∑Ni=1 liξ1,σ(i)).

We shall have similar argument as Proposition 3.1 in Section 3.3.1 to θ1
pκz∑Ni=1 liξ1,σ(i) .

First consider

exp((z
N

∑
i=1

liξ1,σ(i)) logp (1 + (θ1
pκ − 1))) . (3.6.15)

(Note: logp denotes the p-adic logarithms.) We shall show that

∣(z
N

∑
i=1

liξ1,σ(i)) logp (1 + (θ1
pκ − 1))∣

p

< p
− 1
p−1 . (3.6.16)

By Lemma 3.17, we have inequalities (3.6.3), i.e. vp(θ
pκ

1 − 1) ≥ pκ

2e +
1
p−1 > 1

p−1 . Therefore,

logp (1 + (θ1
pκ − 1)) converges and

∣logp (1 + (θ1
pκ − 1))∣

p
= ∣θ1

pκ − 1∣
p
≤ p

−(
pκ

2e
+ 1
p−1) < p

− 1
p−1 .

Besides, since li, rσ(i), sσ(i) ∈ Z ⊂ Zp, ∣β∣p = ∣
b′1
b′2
∣
p
≤ 1, so that ξ1,σ(i) = rσ(i) + sσ(i)β ∈ Zp and

hence ∑Ni=1 liξ1,σ(i) ∈ Zp. Therefore, ∣∑Ni=1 liξ1,σ(i)∣p ≤ 1.

Further, for z ∈ Cp such that ∣z∣p ≤ p
λ,

∣z
N

∑
i=1

liξ1,σ(i)∣
p

= ∣z∣p ∣
N

∑
i=1

liξ1,σ(i)∣
p

< p
pκ

2e .
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Therefore,

∣(z
N

∑
i=1

liξ1,σ(i)) logp (1 + (θ1
pκ − 1))∣

p

< p
pκ

2e p
−(

pκ

2e
+ 1
p−1) = p

− 1
p−1 .

Therefore, exp ((z∑Ni=1 liξ1,σ(i)) logp (1 + (θ1
pκ − 1))) converges and

∣exp((z
N

∑
i=1

liξ1,σ(i)) logp (1 + (θ1
pκ − 1)))∣

p

= 1 (3.6.17)

by Proposition 3.1. We have

θ1
pκz∑Ni=1 liξ1,σ(i) = (1 + (θ1

pκ − 1))
z∑Ni=1 liξ1,σ(i)

= exp((z
N

∑
i=1

liξ1,σ(i)) logp (1 + (θ1
pκ − 1)))

and thus

∣θ1
pκz∑Ni=1 liξ1,σ(i) ∣

p
= 1.

Equivalently,

vp (θ1
pκz∑Ni=1 liξ1,σ(i)) = 0. (3.6.18)

(ii) To determine vp
⎛

⎝
∏Ni=1

(zξ1,σ(i))
k1,i

k1,i!

⎞

⎠
.

Since ξ1,j = rj + sjβ, so that vp(ξ1,σ(i)) ≥ 0.

vp
⎛

⎝

N

∏
i=1

(zξ1,σ(i))
k1,i

k1,i!

⎞

⎠
= −vp (

N

∏
i=1

k1,i!) +
N

∑
i=1

k1,i vp (zξ1,σ(i)) ≥ −vp (
N

∏
i=1

k1,i!) +
KN

3
vp(z),

where, using Lemma 3.15,

vp (
N

∏
i=1

k1,i!) = (L + 1)vp
⎛

⎝
∏

k0+k1≤K

k1,i!
⎞

⎠
= (L + 1)

K

∑
n=2

(K + 1 − n)vp(n!)

< (L + 1)
K

∑
n=2

(K + 1 − n)
n

p − 1
=
L + 1

p − 1
⋅
K

6
(K + 4)(K − 1)

<
KN

3(p − 1)
.

Therefore with ∣z∣p ≤ p
λ we have

vp
⎛

⎝

N

∏
i=1

(zξ1,σ(i))
k1,i

k1,i!

⎞

⎠
> −

KN

3
(λ +

1

p − 1
) . (3.6.19)
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(iii) To determine vp (∏
N
i=1 ∆(li;T

′, tσ(i), k0,i)) .

By Lemma 3.3,

vp (
N

∏
i=1

∆(li;T
′, tσ(i), k0,i)) =

N

∑
i=1

vp (∆(li;T
′, tσ(i), k0,i)) ≥ 0. (3.6.20)

Summing (3.6.18), (3.6.19) and (3.6.20), we obtain the result in Lemma 3.23.

Next we wish to obtain a lemma (Lemma 3.25) which concerns the multiplicity of zeros for ΦI(z).
Before achieving this, we start with rewriting ΦI(z). The following lemma concerns Ci,j(z) in
(3.6.14).

Lemma 3.24. For all 1 ≤ j ≤ N and i ∈ I, we have

Ci,j(z) =
T

∑
ν=0

qν,tj (
∂

∂z0
)
νj

ϕi(zξj) (3.6.21)

where qν,tj is in Lemma 3.6, ( ∂
∂z0

)
νj
ϕi(zξj) represents ( ∂

∂z0
)
νj
ϕi(z0, z1)∣(z0,z1)=(zξj)

, with

ϕi(z0, z1) =
z
k1,i
1

k1,i!

ν(T ′)k0,i

k0,i!
z
k0,i
0 ez0liθ1

pκliz1 , ξj = (ξ0,j , ξ1,j) = (0, rj + sjβ). (3.6.22)

Proof. This lemma can be deduced from Lemma 3.6. Indeed, if νj ≥ k0,i,

(
∂

∂z0
)
νj

z
k0,i
0 ez0li =

νj

∑
x=0
x≠k0,i

(
νj
x
)

k0,i!

(k0,i − x)!
z
k0,i−x
0 l

νj−k0,i
i ez0li + (

νj
k0,i

)k0,i! l
νj−k0,i
i ez0li

so that

T

∑
ν=0

qν,tj (
∂

∂z0
)
νj

ϕi(zξj) =
(zξ1,j)

k1,i

k1,i!
ν(T ′)k0,iθ

pκlizξ1,j
1

T

∑
ν=0

qν,tj(
νj
k0,i

)l
νj−k0,i
i = Ci,j(z).

Whereas if νj < k0,i, ( νj
k0,i

) = 0, and

(
∂

∂z0
)
νj

z
k0,i
0 ez0li =

νj

∑
x=0

(
νj
x
)

k0,i!

(k0,i − x)!
z
k0,i−x
0 l

νj−k0,i
i ez0li

thus ∑Tν=0 qν,tj (
∂
∂z0

)
νj
ϕi(zξj) = 0 = Ci,j(z) by Lemma 3.6.
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We can develop the determinant ΦI(z) in (3.6.13) to yield

ΦI(z) = ∑
(ν1,... ,νN )∈NN
νj≤T,1≤j≤N

N

∏
j=1

qνj ,tjΦI,ν(z) (3.6.23)

where

ΦI,ν(z) = ±det(
Φ+
I,ν(z)

Φ−
I,ν(z)

)

with

Φ+
I,ν(z) = ((

∂

∂z0
)
νj

ϕi(zξj)) for i ∈ I, Φ−
I,ν(z) = (σi,j (

∂

∂z0
)
νj

ϕi(zξj)) for i ∉ I (3.6.24)

and ±1 is chosen for the determinant depending on the positioning of the rows. Therefore, in
order to obtain a lower bound for the multiplicity of zero for ΦI(z), it suffices to obtain the lower
bound for the multiplicity of zero for ΦI,ν(z), denoted by TI , for all N -tuples (ν1, . . . , νN), νi ≤ T
(i = 1, . . . ,N).

We rewrite

ϕi(z0, z1) = pi(z0, z1)e
li(z0+z1w) (3.6.25)

where

w = logp(θ
pκ

1 ) (3.6.26)

(Note: logp denotes p-adic logarithm) and

pi(z0, z1) =
1

k1,i!

ν(T ′)
k0,i

k0,i!
z0
k0,iz1

k1,i

is a monomial of total degree ≤K, since k0,i+k1,i ≤K. We apply the change of variable Z0 = z0+z1w
so that eli(z0+z1w) = eliZ0 . This change of variable, being a translation with respect to the variable
z0, is evident as for any continuous function

(
∂

∂z0
) f (z0, z1) ∣(z0, z1)=(0, zξ1,j)

= (
∂

∂Z0
) f (Z0 − z1w, z1) ∣(Z0, z1)=(zξ1,jw, zξ1,j)

.

We denote

Ψ+
I,ν(z) = ((

∂

∂Z0
)
νj

φi(zxj)) ; for i ∈ I, Ψ−
I,ν(z) = (σi,j (

∂

∂Z0
)
νj

φi(zxj)) ; for i ∉ I,

φi(Z0, z1) = qi(Z0, z1)e
liZ0 ; 1 ≤ i ≤ N, xj = ((rj + sjβ)w, rj + sjβ); 1 ≤ j ≤ N,

qi(Z0, z1) =
k0,i

∑
τ=0

pi,τZ0
k0,i−τz1

τ+k1,i ; 1 ≤ i ≤ N pi,τ =
1

k1,i!

ν(T ′)
k0,i

k0,i!
(−w)τ(

k0,i

τ
) 1 ≤ i ≤ N.
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Note that the degree of z1 in the polynomial qi(Z0, z1) is ≤K. It can be verified that the function
ΦI,ν(z) then becomes

ΦI,ν(z) = ΨI,ν(z) = ±det(
Ψ+
I,ν(z)

Ψ−
I,ν(z)

) (3.6.27)

where ±1 is chosen for the determinant depending on the positioning of the rows. Furthermore, it
should be noted that β ∈ Zp from (3.6.6), vp(z) > −

pκ

2e from (3.6.12) and that vp(w) ≥ pκ

2e +
1
p−1 from

(3.6.26), (3.3.2) and Lemma 3.17. Thus, for the substitution of the value z(rj + sjβ)w to Z0 in the
exponential function eliZ0 , we have

vp(liz(rj + sjβ)w) = vp(li(rj + sjβ)) + vp(z) + vp(w) >
1

p − 1
. (3.6.28)

Now we present the following lemma (Lemma 3.25) which concerns the multiplicity of zeros for
ΦI(z). As illustrated before, it suffices to obtain the lower bound for the multiplicity of zero for
ΦI,ν(z) for all N -tuples (ν1, . . . , νN), νi ≤ T (i = 1, . . . ,N).

Lemma 3.25. For any set I ⊆ {1, . . . ,N} of cardinality ∣I ∣, the function ΦI(z) has a zero at the
origin with multiplicity ≥ TI , where

TI ≥ max{
∣I ∣

2
(
∣I ∣ + 1

K + 1
−
K

2
− 1) − TN,0} .

Proof. First, we take the Taylor’s expansion with respect to the variable Z0 for the function
φi(Z0, z1). That is,

φi(Z0, z1) = qi(Z0, z1)
∞

∑
u=0

(liZ0)
u

u!
= ∑
u≥0

k0,i

∑
τ=0

pi,τ
li
u

u!
z1
τ+k1,iZ0

u+k0,i−τ .

It gives, for all 1 ≤ j ≤ N , a development of the form

1

νj !
(
∂

∂Z0
)
νj

φi(Z0, z1) =∑
u≥0

k0,i

∑
τ=0

pi,τ
li
u

u!
(
u + k0,i − τ

νj
) z1

τ+k1,iZ0
u+k0,i−τ−νj .

Further, with the change of variable τ0 = u + k0,i − τ and τ1 = τ + k1,i, we get

1

νj !
(
∂

∂Z0
)
νj

φi(Z0, z1) =
k0,i+k1,i

∑
τ1=k1,i

∑
τ0+τ1≥k0,i+k1,i

(
τ0

νj
) di,τ0,τ1Z0

τ0−νjz1
τ1

= ∑
τ0≥0

K

∑
τ1=0

(
τ0

νj
) di,τ0,τ1Z0

τ0−νjz1
τ1 (3.6.29)

where di,τ0,τ1 = pi,τ
li
τ0+τ−k0,i
τ0+τ−k0,i!

with di,τ0,τ1 = 0 in the i-th row (1 ≤ j ≤ N) when τ1 < k1,i, τ1 > k0,i+k1,i,

τ0 + τ1 < k0,i + k1,i if li > 0 and when τ0 + τ1 ≠ k0,i + k1,i if li = 0.
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Using the expression (3.6.29) above, we can develop ΦI,ν(z) (i.e. ΨI,ν(z)) by modifying the entries
in the submatrix Ψ+

I,ν(z) as

∑
τ0,i≥0

K

∑
τ1,i=0

(
τ0,i

νj
) νj ! di,τ0,i,τ1,i(z(rj + sjβ)w)τ0,i−νj(z(rj + sjβ))

τ1,i .

Now ΦI,ν(z) (i.e. ΨI,ν(z)) can be written as

ΦI,ν(z) = ± det
⎛

⎝

∑τ0,i≥0∑
K
τ1,i=0 (

τ0,i
νj

) νj ! di,τ0,i,τ1,i(z(rj + sjβ)w)τ0,i−νj(z(rj + sjβ))
τ1,i

σi,j (
∂
∂Z0

)
νj
φi(zxj)

⎞

⎠

}i ∈ I
}i ∉ I

= ∑
(τ0,i,τ1,i),i∈I
τ0,i≥0, τ1,i≤K

±det
⎛

⎝

(τ0,i
νj

) νj ! di,τ0,i,τ1,i w
τ0,i−νjξ

τ0,i+τ1,i−νj
1,j zτ0,i+τ1,i−νj

σi,j (
∂
∂Z0

)
νj
φi(zxj)

⎞

⎠

}i ∈ I
}i ∉ I

= ∑
(τ0,i,τ1,i),i∈I
τ0,i≥0, τ1,i≤K

(∏
i∈I

di,τ0,i,τ1,iz
τ0,i+τ1,i−T)(±det ΩI,τ(z)), (3.6.30)

where the entries in ΩI,τ(z) are the functions

Wi,j(z) =

⎧⎪⎪
⎨
⎪⎪⎩

(τ0,i
νj

) νj !w
τ0,i−νjξ

τ0,i+τ1,i−νj
1,j zT−νj , i ∈ I,

σi,j (
∂
∂Z0

)
νj
φi(zxj), i ∉ I

with 0 ≤ νj ≤ T . The matrix ΩI,τ(z) is of rank < N , in the case where there exists i, i′ ∈ I, such
that i ≠ i′ and (τ0,i, τ1,i) = (τ0,i′ , τ1,i′). It follows that the multiplicity of zero of ΦI,ν(z) is greater
than or equal to the minimum value of the sums

∑
(τ0,i,τ1,i),i∈I

τ1,i≤K

(τ0,i + τ1,i − T ), (3.6.31)

where all couples (τ0,i, τ1,i) are pairwise distinct, while excluding the scenarios that di,τ0,τ1 = 0 in
the i-th row (1 ≤ j ≤ N) for i ∈ I.

By referring to the proof of [49, Lemma A.4], it is noted that the derivation involved still applies
to our scenario for obtaining the lower bound of the multiplicity of zero of ΦI,ν(z), after taking
into account scenarios with di,τ0,τ1 = 0 mentioned above. Therefore, it suffices to adopt the bound
obtained in [49, Lemma A.4], that is

∣I ∣

2
(
∣I ∣ + 1

K + 1
−
K

2
− 1) − TN.

Finally, it should be noted that due to the way that ΦI,ν(z) is defined, the actual minimum possible

value of TI is zero. Thus the lower bound TI ≥ max{
∣I ∣
2 (

∣I ∣+1
K+1 −

K
2 − 1) − TN,0} results.
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We have acquired all necessary lemmas to deduce the analytic upper bound for ∣γ∣p (i.e. the lower
bound for vp(γ)) in Proposition 3.3 as follows.

Proof of Proposition 3.3. It is clear from Lemma 3.21 that vp(γ) = vp(γ
′). We now develop γ′

defined in (3.6.5). Recall from (3.6.6) that we assume p ∤ b′2. From the relation

θ
b′2
2 =

θ
b′1
1 −Λ′

ξ1
=
θ
b′1
1 (1 − θ

−b′1
1 Λ′)

ξ1

and noting that ξp
κ

1 = 1 from Lemma 3.22, we obtain

θ
b′2p

κlisj
2 = θ

b′1p
κlisj

1 (1 − θ
−b′1
1 Λ′)p

κlisj (1 ≤ i, j ≤ N). (3.6.32)

By inequalities (3.6.3) in Lemma 3.17,

vp(θ
pκ

i − 1) ≥
pκ

2e
+

1

p − 1
>

1

p − 1
(i = 1,2).

Secondly, by Lemma 3.22 and (3.2.8), vp(Λ′) ≥ V > 1
p−1 so that

vp(θ
−b′1
1 Λ′) >

1

p − 1
.

It should also be noted that vp(p
κlisj/b

′
2) ≥ κ ≥ 0. Raising both sides of (3.6.32) by the power 1

b′2
and taking β as in (3.6.6) gives

θ
pκlisj
2 = θ

pκβlisj
1 (1 − θ

−b′1
1 Λ′)p

κlisj/b
′
2 .

By applying Proposition 3.1 in Section 3.3.1 to (1−θ
−b′1
1 Λ′)p

κlisj/b
′
2 with x = −θ

−b′1
1 Λ′ and z = pκlisj/b

′
2,

we get

θ
pκlisj
2 = θ

pκβlisj
1 (1 + σi,jΛ

′) (1 ≤ i, j ≤ N), (3.6.33)

where σi,j = −θ
−b′1
1 pκlisj/b

′
2v(x, z) ∈ Qp with ∣v(x, z)∣p ≤ 1. In addition, as lisj/b

′
2 ∈ Zp, we deduce

that
∣σi,j ∣p ≤ p

−κ ≤ 1. (3.6.34)

Now we substitute (3.6.33) into the determinant γ′ displayed in (3.6.5). By Lemma 3.6, multilin-
earity of determinants, taking q = 0 and noting (3.3.6),

γ′ = b
∑
N
i=1 k1,i

2 γ′′

where

γ′′ = det (ci,j(1 + σi,jΛ
′))

1≤i,j≤N
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with

ci,j =
(rj + sjβ)

k1,i

k1,i!
∆(li;T

′, tj , k0,i)θ
pκli(rj+sjβ)
1 . (3.6.35)

Trivially,

vp(γ
′) = vp (b

∑
N
i=1 k1,i

2 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

+vp(γ
′′) ≥ vp(γ

′′), (3.6.36)

so from now on we shall focus on obtaining the lower bound for vp(γ
′′). By further developing γ′′,

γ′′ = ∑
I⊆{1,... ,N}

(Λ′)N−∣I ∣ γI (3.6.37)

where ∣I ∣ is the cardinality of I and

γI ∶= ±det(
γI

+

γI
− ) (3.6.38)

with γI
+ = (ci,j) for i ∈ I, γI

− = (σi,j ci,j) for i ∉ I and ±1 is chosen for the determinant depending on
the positioning of the rows. Refering to the function ΦI(z) defined in (3.6.13), it can be observed
that

ΦI(1) = γI . (3.6.39)

We have shown in Lemma 3.25 that the function ΦI(z) has a zero at the origin with multiplicity
≥ TI . We shall apply Lemma 3.20 (p-adic Schwarz’s lemma) with r = 1, R = pλ, f = ΦI(z) to get

∣γI ∣p = ∣ΦI(1)∣p ≤ (pλ)
−TI

max
∣z∣p=pλ

∣ΦI(z)∣p. (3.6.40)

We refer to the lower bound of vp(ΦI(z))) obtained in Lemma 3.23, which essentially gives an
upper bound for max∣z∣p=pλ ∣ΦI(z)∣p. With the fact that pλ > 1 from (3.2.9), we obtain

∣γI ∣p < p
−λmax{

∣I∣
2
(
∣I∣+1
K+1−

K
2
−1)−TN,0}

p
KN
3

(λ+ 1
p−1)

≤ p
−(
∣I∣
2
(
∣I∣+1
K+1−

K
2
−1)−TN)λ+KN

3
(λ+ 1

p−1).

Equivalently,

vp(γI) > (
∣I ∣

2
(
∣I ∣ + 1

K + 1
−
K

2
− 1) − TN)λ −

KN

3
(λ +

1

p − 1
) . (3.6.41)

We shall now obtain the upper bound for ∣γ∣p, which is the same as the upper bound for ∣γ′∣p due
to Lemma 3.21 and we already have ∣γ′∣p ≤ ∣γ′′∣p due to (3.6.36). We refer to (3.6.37) and note from
Lemma 3.6.9 that vp(Λ′) ≥ V . Hence,

vp(γ
′′) ≥ min

I⊆{1,... ,N}
{(N − ∣I ∣)V + vp(γI)}
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where ∣I ∣ is the cardinality of I. But the upper bound of ∣γI ∣p derived before does not depend on
I. So the minimum for (N − ∣I ∣)V + vp(γI) is independent of I. Thus,

vp(γ
′) ≥ vp(γ

′′) > min
∣I ∣

{(N − ∣I ∣)V + (
∣I ∣

2
(
∣I ∣ + 1

K + 1
−
K

2
− 1) − TN)λ −

KN

3
(λ +

1

p − 1
)} .

We shall minimize the following expression with respect to ∣I ∣:

(N − ∣I ∣)V + (
∣I ∣

2
(
∣I ∣ + 1

K + 1
−
K

2
− 1) − TN)λ. (3.6.42)

Note that (3.6.42) is a second degree polynomial in variable ∣I ∣. The minimum is reached on R at
the value

∣I ∣ = (
V

λ
+
K + 2

4
−

1

2(K + 1)
) (K + 1).

The minimum value is then

NV −
V 2(K + 1)

2λ
−
K(K + 3)

4
V −

K2(K + 3)2λ

32(K + 1)
−NTλ. (3.6.43)

Similar to [50], we wish to simplify (3.6.43) by obtaining its lower bound in the form NV
2 −NTλ

instead. It suffices to find the value of parameter V satisfying the quadratic inequality

V 2(K + 1)

2λ
+
K(K + 3)

4
V +

K2(K + 3)2λ

32(K + 1)
≤
NV

2
. (3.6.44)

It can be checked that condition (3.6.44) is satisfied for V defined in (3.2.7). As a result,

vp(γ) = vp(γ
′) >

NV

2
−NTλ −

KN

3
(λ +

1

p − 1
)

where λ is in (3.2.9). It is equivalent to (3.6.2). The proof of Proposition 3.3 (Analytic upper
bound) is completed.

3.7 Proof of the Main Proposition

As a final step, we now present the proof of the Main Proposition.

Proof of the Main Proposition. Suppose on the contrary of (3.2.11) we have (3.6.1), that is

∣Λ∣p ≤ p
−(V +u). (3.6.1)
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We shall demonstrate that there is a contradiction to Condition (1a) (i.e. (3.2.10)) in the Main
Proposition. Combining the results from Proposition 3.2, Proposition 3.3, using the inequality

N ! ≤ (N
2
)
N

and the fact that log ( T
K(L+T ′)) < log ( T

KL
), we obtain

V

2
< (T +

K

3
)λ +

K

3(p − 1)
+

D

e log p
(log (

N

2
) +

K

3
(log B̃ + log (

T

KL
) +

11

3
+

107T ′

103
)

+ (ωT + ω0)(1 + log(
L + T ′

T ′
)) + T ′ +

2pκ

N
(G1h(α1) +G2h(α2)))

(3.7.1)

The value of the variable T ′ is now chosen so that RHS of (3.7.1) is preferably the smallest. By a
similar derivation as in [49], we take for simplicity

T ′ = [
309ωT

309 + 107K
] + 1 ≥

309ωT

107(K + 3)
.

This gives log (L+T
′

T ′ ) < log (
107(K+3)L

309ωT + 1) and (107K
309 + 1)T ′ ≤ 107K

309 + 1 +ωT . Using the definitions

of G1 and G2 in Lemma 3.13 it follows that

V

2
< (T +

K

3
)λ +

K

3(p − 1)
+

D

e log p
(log (

N

2
) +

K

3
(log B̃ + log (

T

KL
) +

1454

309
)

+ (ωT + ω0)(2 + log(
107(K + 3)L

309ωT
+ 1)) + 1 + pκ(L + 1)g0 ((R + g)h(α1) + (S + g)h(α2))) .

However, it contradicts Condition (1a) (i.e. (3.2.10)) in the Main Proposition. The hypothesis
(3.6.1) has to be reversed. The proof of the Main Proposition is completed.
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3.8 Preparation for the proof of Theorem 3.1

Our goal of this section is to obtain Theorem 3.1 by using appropriate formulae and numerical
choices of parameters involved in the Main Proposition. The proof will be divided into two cases
which will be further described in Section 3.9.

3.8.1 Choice of parameters and estimates

We list the choices and assumptions of parameters appeared in the Main Proposition and generated

during the derivation. Recall N =
(K+2)(K+1)(L+1)

2 in (3.2.4) and λ = ηpκ

2e in (3.2.9). We adopt

{
g0 = 0.24, ω = 0.94, ω0 = 12.45, ϑ = 4.35, if p = 2,3,
g0 = 0.239, ω = 0.933, ω0 = 11.06, ϑ = 2.35, if p ≥ 5.

(3.8.1)

Let C0 and C1 be positive real numbers to be specified later. Denote

J = (
2D logE∗

g0
√
a1a2

)

1/3

, Γ = min{
K + 1

2
, L + 1} ,

R∗ = g1/3J(K + 1)2/3

√
a2

a1
, S∗ = g1/3J(K + 1)2/3

√
a1

a2
, and T ∗ =

g1/3(L + 1)(K + 1)2/3

J2
.

We have the following expressions for the parameters:

K = [C0ga1a2D logE∗], (3.8.2)

L = [
C1DH

log p
] , (3.8.3)

R1 = [
R∗

J
(

g

K + 1
)

1/6

] , (3.8.4)

R2 = [
R∗

Γ1/3
] , (3.8.5)

R3 = [31/3R∗] , (3.8.6)

S1 = [
S∗

J
(

g

K + 1
)

1/6

] , (3.8.7)

S2 = [
S∗

Γ1/3
] , (3.8.8)

S3 = [31/3S∗] , (3.8.9)

T1 = max{[
L + 1

K + 1
] ,K} , (3.8.10)

T2 = [
T ∗

Γ1/3
] , (3.8.11)
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T3 = [31/3T ∗] . (3.8.12)

We further pose some conditions to our parameters.

ai =
D logAi

log p
≥ max{

Dh(αi)

log p
,1} , (i = 1,2) (3.8.13)

D logE∗ ≥ {
1.5, if p = 2,3,
2.5, if p ≥ 5,

(3.8.14)

logE∗ ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4
(

2η log p

D
+ 2 +

ω

3
logC0 + ω logD) , if p = 2,

1

4
(

3η log p

2D
+ 2 +

ω

3
logC0 + ω logD) , if p = 3,

1

2
(
η log p

2D
+ 2 +

ω

3
logC0 + ω logD) , if p ≥ 5,

(3.8.15)

H ≥

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

max{log (
b2
a1

+
b1
a2

) ,
1000 log p

D
,720 logE∗ log p} , if p = 2,3,

max{log (
b2
a1

+
b1
a2

) ,
1000 log p

D
,360 logE∗ log p} , if p ≥ 5,

(3.8.16)

8000 ≤ C0 ≤ 10000, (3.8.17)

C1 ≥ {
2, if p = 2,3,
10, if p ≥ 5.

(3.8.18)

We deduce from (3.8.1), (3.8.13), (3.8.14), (3.8.15), (3.8.16) and (3.8.18) that

logE∗ ≥ {
1.5, if p = 2,3,
2.5, if p ≥ 5,

(3.8.19)

K + 1 ≥ {
12000g ≥ 12000, if p = 2,3,
20000g ≥ 20000, if p ≥ 5,

(3.8.20)

L + 1 ≥ {
2000, if p = 2,3,
10000, if p ≥ 5,

(3.8.21)

31/3 +
1

Γ1/3
≤ {

1.522, if p = 2,3,
1.4887, if p ≥ 5.

(3.8.22)

Besides, recalling that R = R1 +R2 +R3, S = S1 + S2 + S3 and T = T1 + T2 + T3, we can obtain the
bounds

R ≤ R∗ (
1

J
(

g

K + 1
)

1/6

+ 31/3 +
1

Γ1/3
) , (3.8.23)

S ≤ S∗ (
1

J
(

g

K + 1
)

1/6

+ 31/3 +
1

Γ1/3
) , (3.8.24)

(L + 1)(K + 1)

D logE∗
⋅

g
2/3
0 (31/3 + 1

Γ1/3 )

22/3C
1/3
0 (1 + 1

gX1
)

1/3
≤ T ≤ max{[

L + 1

K + 1
] ,K} + T ∗ (31/3 +

1

Γ1/3
) (3.8.25)
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where X1 = 11999 when p = 2,3 and X1 = 19999 when p ≥ 5.

These enable us to show that the values chosen for g0, ω and ω0 in (3.8.1) satisfy (3.2.5). The main
step involved is to obtain an estimate for the upper bound

Ψ(g)

gN
=

(R + g)(S + g)(T + 1)

gN
< 2g ⋅

R
g + 1

(K + 1)2/3
⋅

S
g + 1

(K + 1)2/3
⋅

T + 1

(L + 1)(K + 1)2/3
.

The computations are tedious but elementary. We omit the deductions here.

3.8.2 Modification of Condition (1a) (i.e. (3.2.10)) with choices of parameters

Our target in this section is to establish inequality (3.8.43), which is given at the end of this section.
We shall show that using our choice and conditions of parameters in Section 3.8.1, Condition (1a)
(i.e. (3.2.10)) in the Main Proposition can be implied by inequality (3.8.43). We achieve this with
deductions involving several lemmas and a proposition. Denote

Θ =
1

8

⎛

⎝
1 −

1

L + 1
+

√

1 −
2

L + 1

⎞

⎠
. (3.8.26)

Using (3.2.7) and (3.2.9), Condition (1a) (i.e. (3.2.10)) becomes:

Θ(K + 2)(L + 1) (
ηpκ

2e
)

≥ (T +
K

3
)(

ηpκ

2e
) +

K

3(p − 1)
+

D

e log p
(log (

N

2
) +

K

3
(log B̃ + log (

T

KL
) +

1454

309
)

+ (ωT + ω0)(2 + log(
107(K + 3)L

309ωT
+ 1)) + 1 + pκ(L + 1)g0 ((R + g)h(α1) + (S + g)h(α2))) .

(3.8.27)

It is rearranged to yield

Θ(K + 1)(L + 1)η

2
≥ Ξ (3.8.28)

where

Ξ = −
Θ(L + 1)η

2
+ (T +

K

3
)
η

2
+
e

pκ
⋅

K

3(p − 1)
+

D

pκ log p
(log (

N

2
) +

K

3
(log B̃ + log (

T

KL
) +

1454

309
)

+ (ωT + ω0)(2 + log(
107(K + 3)L

309ωT
+ 1)) + 1) +

D

log p
⋅ (L + 1)g0 ((R + g)h(α1) + (S + g)h(α2)) .

(3.8.29)

We begin with several steps to obtain the first upper bound for Ξ. The steps involved are:
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• We refer to (3.2.3) and observe that κ ≥

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2, if p = 2,
1, if p = 3,
0, if p ≥ 5,

so that pκ ≥

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

4, if p = 2,
3, if p = 3,
1, if p ≥ 5,

• use e ≤D, log N
2 < 2 log (K+2

2
) + log(L + 1) and

• use h(αi) ≤ logAi =
ai log p
D , (i = 1,2) by referring to (3.8.13).

These give

Ξ <
DK

3Z1 log p
(log B̃ +

1454

309
+

6

K
log (

K + 2

2
) + log (

T

KL
) +

Z1η log p

2D
+

log p

p − 1
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
terms with K as key term

+
DT

Z1 log p
(
Z1η log p

2D
+ 2ω + ω log(

107(K + 3)L

309ωT
+ 1))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
terms with T as key term

+ g0(L + 1) ((R + g)a1 + (S + g)a2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

terms with g0

+
D

Z1 log p
(2ω0 + ω0 log(

107(K + 3)L

309ωT
+ 1) + 1 + log(L + 1)) −

Θ(L + 1)η

2
(3.8.30)

where

Z1 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

4, if p = 2,
3, if p = 3,
1, if p ≥ 5.

We shall now derive a sequence of lemmata a larger upper bound for Ξ, a proposition to obtain
the upper bound for Ξ

(K+1)(L+1) and then a lower bound for Θη
2 . Then we require that the lower

bound for Θη
2 supersedes the upper bound obtained for Ξ

(K+1)(L+1) . This assertion will be justified

in Section 3.9.1. These show that Condition (1a) (i.e. (3.2.10)) is satisfied with our choice of
parameters.

We shall derive the case when p ≥ 5. The derivation for the case when p = 2 and p = 3 are similar
and shall be omitted. We start with obtaining an upper bound for the terms with K as key term
in (3.8.30). The following lemma is similar to [49, Lemma 5.2] and [50, Lemma 5.1].

Lemma 3.26. With the use of (3.8.1), (3.8.2) and (3.8.13) to (3.8.25), we have

log B̃ +
1454

309
+

6

K
log (

K + 2

2
) + log (

T

KL
) +

η log p

2D
+

log p

p − 1
≤H − 2.23 +

η log p

2D
. (3.8.31)

Proof. Going back to the definition of B̃ in (3.2.4), we start with deducing the upper bound for
R
K and S

K . This can be achieved by adopting the upper bound of R and S in (3.8.23) and (3.8.24)
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respectively and the choice of K in (3.8.2). We obtain

R

K
=

R

K + 1
(1 +

1

K
) ≤

1

a1
(1 +

1

K
)(

1
√
C0D logE∗

+ (
2

g0C0
)

1/3

(31/3 +
1

Γ1/3
))

S

K
=

S

K + 1
(1 +

1

K
) ≤

1

a2
(1 +

1

K
)(

1
√
C0D logE∗

+ (
2

g0C0
)

1/3

(31/3 +
1

Γ1/3
)) .

Together with (3.8.14), (3.8.18) and (3.8.20), we get

R

K
≤

0.16

a1
and

S

K
≤

0.16

a2

and hence

log B̃ ≤ log (
b2
a1

+
b1
a2

) − 2.52. (3.8.32)

Next, we make use of (3.8.20) to obtain

6

K
log (

K + 2

2
) ≤ 0.003 (3.8.33)

and use (3.8.14), (3.8.17), (3.8.20), (3.8.21), g0 in (3.8.1) and the upper bound of T in (3.8.25) to
get

T

KL
≤ (1 +

2

K + 1
)(1 +

2

L + 1
)

T

(K + 1)(L + 1)
≤ 0.008. (3.8.34)

Now making use of (3.8.16), (3.8.32), (3.8.33) and (3.8.34), Lemma 3.8.31 follows.

Next, we shall obtain an upper bound for terms with T as key term in (3.8.30).

Lemma 3.27. With the use of (3.8.1), (3.8.14), (3.8.15), (3.8.17) and the inequalities (3.8.20) and
(3.8.25), we have the upper bound

DT

log p
(
η log p

2D
+ 2ω + ω log(

107(K + 3)L

309ωT
+ 1)) <

DTϑ logE∗

log p
.

Proof. We begin with obtaining the upper bound of log (
107(K+3)L

309ωT + 1). First, we use (3.8.1),

(3.8.20) and the lower bound of T in (3.8.25) to get

(K + 3)L

T
<
K + 3

K + 1
⋅
(K + 1)(L + 1)

T
≤ 2.86C

1/3
0 D logE∗.

Next, we note by using (3.8.1), (3.8.14) and (3.8.17) that

107

309ω
⋅ 2.86C

1/3
0 D logE∗ > 53.
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Finally, by referring to (3.8.1) and (3.8.15), we deduce that

η log p

2D
+ 2ω + ω log(

107(K + 3)L

309ωT
+ 1) <

η log p

2D
+ 2ω + ω log (

54

53
⋅

107

309ω
2.86C

1/3
0 D logE∗)

< (
η log p

2D
+ 2 +

ω

3
logC0 + ω logD) + ω log logE∗

≤ 2 logE∗ + ω log logE∗

= (2 +
ω log logE∗

logE∗
) logE∗

< ϑ logE∗. (3.8.35)

The last step is due to the fact that the function f(x) = logx
x , x > 0 attains maximum at x = e (=

2.718 . . . ).

Remark. As a consequence to (3.8.35), we obtain an upper bound for two terms in (3.8.30), namely

2ω0 + ω0 log(
107(K + 3)L

309ωT
+ 1) <

ω0ϑ

ω
logE∗.

Now we group the term DTϑ logE∗
log p obtained at the upper bound in Lemma 3.27 with the terms with

g0 in (3.8.30). We make use of the upper bounds of R, S in (3.8.23) and(3.8.24) to obtain

Ra1 + Sa2 ≤ 2g1/3√a1a2 (g
1/6

√
K + 1 + J(K + 1)2/3 (31/3 +

1

Γ1/3
)) , (3.8.36)

which is used together with the upper bound of T in (3.8.25) to yield

DTϑ logE∗

log p
+ g0(L + 1) ((R + g)a1 + (S + g)a2) < Φ +

Dϑ logE∗

log p
(
L + 1

K + 1
)

where

Φ =
Dϑ logE∗K

log p
+ gg0(L + 1)(a1 + a2) + 2g0(L + 1)

√
ga1a2(K + 1)

+ (
ϑ

2 log p
+ 2) g

2/3
0 (2ga1a2D logE∗)1/3(L + 1)(K + 1)2/3 (31/3 +

1

Γ1/3
) .

(3.8.37)

Up to now, we have deduced the upper bound

Ξ <
DKH

3 log p
+
ηK

6
−

2.23DK

3 log p
+Φ +

Dϑ logE∗

log p
(
L + 1

K + 1
)

+
D

log p
(
ω0ϑ

ω
logE∗ + 1 + log(L + 1)) −

Θ(L + 1)η

2
.

(3.8.38)

We rewrite the upper bound for Ξ in (3.8.38) as

D(K + 1)H

3 log p
+
Kη

6
−

2.23DK

3 log p
+Φ +Ω,
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where Φ is in (3.8.37) and

Ω = −
Θ(L + 1)η

2
+

D

log p
(−
H

3
+
ω0ϑ

ω
logE∗ + 1 + log(L + 1) + ϑ(

L + 1

K + 1
) logE∗) . (3.8.39)

We shall deduce a larger upper bound for Ξ than that stated above. We proceed by deducing that
Ω < 0 in the following lemma.

Lemma 3.28. Let Φ and Ω be in (3.8.37) and (3.8.39) respectively. We have Ω < 0 and

Ξ <
D(K + 1)H

3 log p
+
Kη

6
−

2.23DK

3 log p
+Φ. (3.8.40)

Proof. First we note by using (3.8.2), (3.8.3) and (3.8.21) that Ω < Ω1 +Ω2, where

Ω1 = −
Θ(L + 1)η

2
+

D

log p
(1.00011 + log(C1H)) +

ϑ(L + 1)

C0g log p
,

Ω2 =
D

log p
(−
H

3
+
ω0ϑ

ω
logE∗ + log (

D

log p
)) .

To show that Ω1 < 0, we make use of (3.8.3), (3.8.21) and the fact that Θ ≥ 0.2499 by referring
to (3.8.26) to verify that Ω1 is a decreasing function in the variable C1H. Then we deduce from
(3.8.16) and (3.8.18) to get Ω1 < 0.

Next, we can show that Ω2 < 0 by using (3.8.1) and (3.8.16). This gives

Ω2 <
D

log p
(−
H

3
+
ω0ϑ

ω
logE∗ + logD − 0.47) <

D

log p
(−150 logE∗ + logD − 0.47) < 0.

Thus, we have Ω < 0 and Lemma 3.28 is proved.

As a last deduction to Ξ, we present the following Proposition, which gives an upper bound for
Ξ

(K+1)(L+1) .

Proposition 3.4. We have

Ξ

(K + 1)(L + 1)
<

1

3C1
+

2g0

C0D logE∗ min{a1, a2}
+
ϑ logE∗

C1H
+

η log p

6C1DH
−

2.2

3C1H
+

2g0

(C0D logE∗)1/2

+
( ϑ

2 log p + 2) g
2/3
0 21/3

C
1/3
0

(31/3 + (min{
C1DH

log p
,
1

2
(C0ga1a2D logE∗)})

−1/3

) .
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Proof of Proposition 3.4. We begin with dividing (3.8.40) in Lemma 3.28 by (K + 1)(L + 1)
and then using the choices of K and L in (3.8.2) and (3.8.3) respectively to get

Ξ

(K + 1)(L + 1)
<

1

3C1
+

η log p

6C1DH
−

2.2

3C1H
+

Φ

(K + 1)(L + 1)
. (3.8.41)

The result follows by adopting the definition of Φ in (3.8.37) and using again the choices of K and
L in (3.8.2) and (3.8.3) respectively.

Finally, we obtain a lower bound for the term Θη
2 , which is actually the LHS of (3.8.28) divided by

(K + 1)(L+ 1). This is simply done by referring to the definition of Θ in (3.8.26) and to the choice
of L in (3.8.3). This yields

Θη

2
≥
η

16

⎛

⎝
1 −

log p

C1DH
+

√

1 −
2 log p

C1DH

⎞

⎠
. (3.8.42)

We require that the lower bound for Θη
2 obtained in (3.8.42) supersedes the upper bound for

Ξ
(K+1)(L+1) obtained in Proposition 3.4. That is, we require that

η

16

⎛

⎝
1 −

log p

C1DH
+

√

1 −
2 log p

C1DH

⎞

⎠
−

2g0

(C0D logE∗)1/2

−
( ϑ

2 log p + 2) g
2/3
0 21/3

C
1/3
0

(31/3 + (min{
C1DH

log p
,
1

2
(C0ga1a2D logE∗)})

−1/3

)

≥
1

3C1
+

2g0

C0D logE∗ min{a1, a2}
+
ϑ logE∗

C1H
+

η log p

6C1DH
−

2.2

3C1H

(3.8.43)

holds. This would imply that Condition (1a) (i.e. (3.2.10)) in the Main Proposition holds. As
a conclusion, for the case when p ≥ 5, we have shown that under the choices and conditions of
parameters in Section 3.8.1, (3.8.43) implies Condition (1a) (i.e. (3.2.10)) in the Main Proposition.

3.9 Proof of Theorem 3.1

In this section we assume that α1 and α2 are multiplicatively independent. We shall prove Theorem
3.1 by considering separately the following two cases:

Case 1 (rb2 + sb1 are all distinct):
For any class c mod g and for i = 1,2,3,

Card{rb2 + sb1; 0 ≤ r ≤ Ri,0 ≤ s ≤ Si,m1r +m2s ≡ c mod g}

= Card{(r, s); 0 ≤ r ≤ Ri,0 ≤ s ≤ Si,m1r +m2s ≡ c mod g} .
(3.9.1)
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Case 2 (rb2 + sb1 are not all distinct):
There exists a class c modulo g and a certain i ∈ {1,2,3} such that

Card{rb2 + sb1; 0 ≤ r ≤ Ri,0 ≤ s ≤ Si,m1r +m2s ≡ c mod g}

< Card{(r, s); 0 ≤ r ≤ Ri,0 ≤ s ≤ Si,m1r +m2s ≡ c mod g} .
(3.9.2)

3.9.1 Derivation for Case 1

Since α1 and α2 are multiplicatively independent, condition (3.2.6) can be rewritten as

T1 ≥K,

(R1 + 1)(S1 + 1) ≥ g ⋅max{K + 1,
L + 1

T1 + 1
} ,

(R2 + 1)(S2 + 1) ≥ g ⋅max{
2KL + 1

T2 + 1
,
K2 + 1

T2 + 1
} ,

(R3 + 1)(S3 + 1) ≥ g ⋅
(3K2L + 1)

T3 + 1
.

(3.9.3)

These inequalities are clearly verified with our choice of parameters (3.8.2) to (3.8.12).

Next we adopt the following explicit expressions for parameters, which can be shown to fulfill
conditions (3.8.13) to (3.8.18) and (3.2.8) trivially.

For p = 2 we take

C0 = 8800, C1 = 3.9, logE∗ =
1

4
(

2 log p

D
+ 4.85 + logD) ,

H = max{log (
b2
a1

+
b1
a2

) ,
1000 log p

D
,180(

2 log p

D
+ 4.85 + logD) log p} ,

for p = 3 we take

C0 = 8800, C1 = 4.25, logE∗ =
1

4
(

3 log p

2D
+ 4.85 + logD) ,

H = max{log (
b2
a1

+
b1
a2

) ,
1000 log p

D
,180(

3 log p

2D
+ 4.85 + logD) log p}

and for p ≥ 5 we take

C0 = 9500,

C1 = 11.6,

logE∗ =
1

2
(

log p

2D
+ 4.85 + logD) ,

H = max{log (
b2
a1

+
b1
a2

) ,
1000 log p

D
,180(

log p

2D
+ 4.85 + logD) log p} .

(3.9.4)
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Again we shall consider the case when p ≥ 5. The derivation for the case of p = 2 and p = 3 are
similar and shall be omitted.

It remains to show that the choices fulfill inequality (3.8.43), and hence Condition (1a) (i.e. (3.2.10)).
We substitute all the parameters in (3.9.4) and (3.8.1) into both the LHS and RHS of inequality

(3.8.43). Besides, notice that logE∗ = 1
2 ( log p

2D + 4.85 + logD) ≥ 1
2 ( log 5

2 + 4.85) ≥ 2.827, so that

H ≥ max{1000 log p
D ,360(2.827) log p}. We get:

LHS ≥
η

16

⎛

⎝
1 −

1

1000C1
+

√

1 −
2

1000C1

⎞

⎠
−

2(0.239)

(9500 (2.827))1/2

−
( 2.35

2 log 5 + 2)0.2392/321/3

95001/3
(31/3 + (min{1000C1,

C0g

2
(2.827)})

−1/3

)

≥ 0.0291

RHS ≤
1

3C1
+

2g0

C0 logE∗
+

1

360C1(logE∗)(log p)
(ϑ logE∗ +

η log p

6D
−

2.2

3
)

≤
1

3C1
+

2g0

C0 logE∗
+

1

360C1
(

ϑ

log p
−

2.2

3(logE∗)(log p)
+

η

6 logE∗
)

≤
1

3C1
+

2g0

C0 logE∗
+

1

360C1
(

1

log 5
(ϑ −

2.2

3 logE∗
) +

η

6 logE∗
)

=
1

3C1
+

1

360C1 logE∗
(

2(0.239)(360)(11.6)

9500
−

2.2

3 log 5
+
η

6
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<0

+
ϑ

360C1 log 5

< 0.029086

< LHS

Thus, (3.8.43) is fulfilled, which implies that Condition (1a) is fulfilled.

Note that pu is the greatest power of p dividing both b1 and b2. Using u ≤
log min{b1,b2}

log p , the upper

bound log b1 ≤ a2 max{log ( b1a2 ) ,1} and (3.8.13), we can obtain the upper bound of u as

u ≤
D2

(log p)3
logA1 logA2 H. (3.9.5)

Finally, we refer to the lower bound for ∣Λ∣p in (3.2.11), use (3.8.2), (3.8.3), (3.8.13), (3.9.4), (3.9.5),
the fact that

V =
1

4

⎛

⎝
1 −

1

L + 1
+

√

1 −
2

L + 1

⎞

⎠
(K + 2)(L + 1)λ <

1

2
(K + 2)(L + 1)λ
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and from (3.2.3) and (3.2.9) that

λ =
ηpκ

2e
≤

ηp

p − 1
,

we get

vp(Λ) <
1

2
(K + 2)(L + 1)λ + u

≤
1

2
(

9500gD3 logA1 logA2

2(log p)2
(

log p

2D
+ 4.85 + logD) + 2)

⋅ (
11.6DH

log p
+ 1)

ηp

p − 1
+

D2

(log p)3
logA1 logA2 H

<
1

4
⋅
gηp

p − 1
(1.0001)(1.0001)(9500)(11.6) (1 +

1

150000
)(

log p

2D
+ 4.85 + logD)

⋅
D4

(log p)3
logA1 logA2 H

< 27600(
p

p − 1
)

gD4

(log p)3
(

log p

2D
+ 4.85 + logD) logA1 logA2 H.

Thus, Theorem 3.1 is proved for Case 1, p ≥ 5.

3.9.2 Derivation for Case 2

We shall derive a stronger upper bound of vp(Λ) for Case 2 using Liouville’s inequality, referring to
the derivation in [33]. From (3.9.2), there exist at least two pairs (r1, s1), (r2, s2) with 0 ≤ r1, r2 ≤ Ri
and 0 ≤ s1, s2 ≤ Si such that

b2(r1 − r2) + b1(s1 − s2) = 0

and m1(r1 − r2) +m2(s1 − s2) ≡ c − c ≡ 0 mod g.

Observe that ∣r1 − r2∣ ≤ Ri ≤ R and ∣s1 − s2∣ ≤ Si ≤ S, thus there is a pair of integers (r0, s0) ≠ (0,0)
satisfying ∣r0∣ ≤ Ri ≤ R and ∣s0∣ ≤ Si ≤ S with

r0b2 + s0b1 = 0, m1r0 +m2s0 ≡ 0 mod g. (3.9.6)

Let
r =

r0

gcd(r0, s0)
, s =

s0

gcd(r0, s0)

in a way that
b1 = nr, b2 = −ns, n ∈ Z.

Then we can write

Λ = αb11 − αb22 = αnr1 − α−ns2 = α−ns2 ((
αr1
α−s2

)

n

− 1) = ∏
ξn=1

(αr1 − ξα
−s
2 ) .
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As n = gcd(b1, b2) = n
′pu with (n′, p) = 1, Lemma 3.18 shows that

∑
ξn=1
ξ≠1

vp(ξ − 1) = u.

Proceeding as in the proof of Lemma 3.3, there exists a unique n-th root of unity µ such that

vp (α
r
1 − µα

−s
2 ) ≥ vp(Λ) − u (3.9.7)

vp (α
r
1 − µα

−s
2 ) > vp (α

r
1 − ξα

−s
2 ) (ξn = 1, ξ ≠ µ)

since vp(Λ) > 1
p−1 + u. Then, Lemma 3.19 shows that µ belongs to the field Qp(α

r
1α

s
2) ⊆Kv.

Consider that ζ is a root of unity of order exactly g. We can write µ = ζmξ, for an integer m and a
pκ-th root of unity ξ. The reason is that the class in Uv/U

1
v of the component of µ of order prime to

p is generated by the classes of α1 and α2, and the order of the p-primary component of µ divides
pκ. Since ξ ∈ U1

v and that vp (α
r
1 − µα

−s
2 ) > 0, a reduction modulo U1

v implies the congruence

m1r ≡ −m2s +m mod g.

Then,

m × gcd(r, s) ≡m1r +m2s ≡ 0 mod g.

Now, let g′ = g
gcd(m,g) . The congruence above shows that gcd(r, s) is divisible by g′. This gives the

upper bound

∣r∣ ≤
R

g′
, ∣s∣ ≤

S

g′
.

We apply the Liouville’s inequality to the polynomial X − Y and obtain

log ∣αr1 − µα
−s
2 ∣p ≥ −

[Q(α1, α2, µ) ∶ Q]

[Qp(α1, α2, µ) ∶ Qp]
(log 2 +

R

g′
h(α1) +

S

g′
h(α2))

≥ −
[Q(α1, α2, µ) ∶ Q]

ef
(log 2 +

R

g′
h(α1) +

S

g′
h(α2)) .

Furthermore, ζm is the root of unity of order exactly g′. We have the upper bound

[Q(α1, α2, µ) ∶ Q]

ef
≤

[Q(α1, α2) ∶ Q] × [Q(ζm) ∶ Q] × [Q(ξ) ∶ Q]

ef
≤
Dg′pκ−1(p − 1)

e
≤ 2Dg.

By (3.8.13), we get

log ∣αr1 − µα
−s
2 ∣p ≥ −2Dg (log 2 +

R

g′
h(α1) +

S

g′
h(α2))

≥ −2(
gD log 2

log p
+

D

log p
Rh(α1) +

D

log p
Sh(α2)) log p

≥ −2(
gD log 2

log p
+Ra1 + Sa2) log p.



3.10. PROOF OF VARIANTS OF THEOREM 3.1 73

Using (3.8.2), (3.8.14) and (3.8.36),

log ∣αr1 − µα
−s
2 ∣p

≥ − 2
⎛

⎝

gD log 2

log p
+ 2g1/3(K + 1)

⎛

⎝
g1/6

√
a1a2

K + 1
+ (

2D logE∗a1a2

g0(K + 1)
)

1/3

(31/3 +
1

Γ1/3
)
⎞

⎠

⎞

⎠
log p

≥ − 2(K + 1)(
gD log 2

(K + 1) log p
+ 2(

1
√
D logE∗C0

+ (
2

g0C0
)

1/3

(31/3 +
1

Γ1/3
))) log p.

By (3.8.1), (3.8.2), (3.8.13), (3.8.17), (3.8.19), (3.8.20) and (3.8.21),

gD log 2

(K + 1) log p
+ 2(

1
√
D logE∗C0

+ (
2

g0C0
)

1/3

(31/3 +
1

Γ1/3
)) < 1.

Thus,

vp (α
r
1 − µα

−s
2 ) < 2(K + 1).

Together with (3.9.7) we get the result

vp(Λ) ≤ vp (α
r
1 − µα

−s
2 ) + u < 2(K + 1) + u. (3.9.8)

However, the upper bound for Case 2 in (3.9.8) is obviously stronger than that obtained in Case 1,
i.e.

vp(Λ) < V + u <
1

2
(K + 2)(L + 1)λ + u.

As a conclusion, Theorem 3.1 is proved for the case when p ≥ 5. The deduction for p = 2 and p = 3
are similar and therefore omitted.

3.10 Proof of variants of Theorem 3.1

By applying the Main Proposition, we can obtain various theorems by having proper choice of
parameters and the values of intermediate constants within the derivation.

The values 1000 and 180 in the expression of H of Theorem 3.1 can be changed and the value of
C in the upper bound will be changed accordingly. In fact, if we change the values 1000 and 180
in the expression of H of Theorem 3.1, we can use the same derivations as before to obtain new
values for (3.8.1) and other intermediate inequalities correspondingly. Then we use new choices for
C0, C1 in (3.9.4) and go through the derivations thereafter.

As an illustration for the case when p ≥ 5, we shall give a list of the modifications to the values
of the parameters/intermediate constants in each scenario and state the corresponding variants
obtained in Table 3.1. Here,

H = max{log b′ + log log p,
x1 log p

D
,x2 (

log p

2D
+ 4.85 + logD) log p}
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and

vp(Λ) < C2 ⋅
p

(p − 1)

gD4

(log p)3
(

log p

2D
+ 4.85 + logD) logA1 logA2 H.

The derivations are very similar to the previous sections and we shall omit the derivations here.

Table 3.1: Summary of results for the case when p ≥ 5
x1 x2 C0 C1 C2 Remark

650 120 9450 11.93 28200
850 150 9500 11.7 27800
1000 180 9500 11.6 27600 This is Theorem 3.1 when p ≥ 5.
5000 900 9500 11.49 27300
10000 1800 9500 11.45 27210
15000 2700 9500 11.42 27140

We have a rough estimation that the value of C in the upper bound of Theorem 3.1 for the case
when p ≥ 5 can be reduced to roughly 27100 when H is asymptotically large.

Remark: For simplicity in comparison, the value of C0 is kept almost unchanged so that the
expression log p

2D +4.85 + logD is unchanged. In fact, if C0 is reduced, the value 4.85 in the expression
will be reduced and vice versa. The value of C2 may be reduced with more flexible choices of C0

and C1.



Chapter 4

On a variant of Pillai’s problem

The content of this chapter is the same as the joint paper with István Pink and Volker Ziegler [36],
which is published in the International Jounal of Number Theory.1

4.1 Introduction

Pillai’s famous conjecture first formulated in [71] states that the Diophantine equation

ax − by = c (4.1.1)

has for any fixed integer c > 0 at most finitely many solutions a, b, x, y in positive integers. This
conjecture is still open for all c ≠ 1. Note that the case c = 1 is Catalan’s conjecture which has been
solved by Mihǎilescu [67]. If we leave a, b and c fixed, then much more is known about the solutions
(x, y). For instance Pillai [71] showed that if c is larger than some constant depending on a and b,
then Diophantine equation (4.1.1) has at most one solution. In particular, he conjectured that in
the case that a = 3 and b = 2 Diophantine equation (4.1.1) has at most one solution if c > 13. This
conjecture was confirmed by Stroeker and Tijdeman [87] and their result was further improved by
Bennett [21], who showed that for fixed a, b and c equation (4.1.1) has at most two solutions.

Recently Ddamulira, Luca and Rakotomalala [39] considered the Diophantine equation

Fn − 2m = c, (4.1.2)

where c is a fixed integer and {Fn}n≥0 is the sequence of Fibonacci numbers given by F0 = 0,
F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0. This type of equation can be seen as a variation

1K. C. Chim was supported by the Austrian Science Fund (FWF) under the projects P24574, P26114 and W1230.
I. Pink and V. Ziegler were supported by the Austrian Science Fund (FWF) under the project P 24801-N26.
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of Pillai’s equation. However Ddamulira et al. proved that the only integers c having at least
two representations of the form Fn − 2m are contained in the set C = {0,−1,1,−3,5,−11,−30,85}.
Moreover, they computed for all c ∈ C all representations of the form (4.1.2).

The purpose of this paper is to consider a related problem. Denote by {Tm}m≥0 the sequence of
Tribonacci numbers given by T0 = 0, T1 = T2 = 1 and Tm+3 = Tm+2 + Tm+1 + Tm for all m ≥ 0. The
main result of our paper is to find all integers c admitting at least two representations of the form
Fn − Tm for some positive integers n and m. It is assumed that representations with n ∈ {1,2}
(for which F1 = F2 = 1) as well as representations with m ∈ {1,2} (for which T1 = T2) count as one
representation to avoid trivial parametric families such as 1−1 = F1−T1 = F2−T1 = F1−T2 = F2−T2.
Therefore we assume that n ≥ 2 and m ≥ 2. We prove the following theorem:

Theorem 4.1. The only integers c having at least two representations of the form Fn − Tm come
from the set

C = {0,1,−1,−2,−3,4,−5,6,8,−10,11,−11,−22,−23,−41,−60,−271}.

Furthermore, for each c ∈ C all representations of the form c = Fn − Tm with integers n ≥ 2 and
m ≥ 2 are:

0 = 1 − 1 = 2 − 2 = 13 − 13 (= F2 − T2 = F3 − T3 = F7 − T6),

1 = 2 − 1 = 3 − 2 = 5 − 4 = 8 − 7 (= F3 − T2 = F4 − T3 = F5 − T4 = F6 − T5),

−1 = 1 − 2 = 3 − 4 (= F2 − T3 = F4 − T4),

−2 = 2 − 4 = 5 − 7 (= F3 − T4 = F5 − T5),

−3 = 1 − 4 = 21 − 24 (= F2 − T4 = F8 − T7),

4 = 5 − 1 = 8 − 4 (= F5 − T2 = F6 − T4),

−5 = 2 − 7 = 8 − 13 = 144 − 149 (= F3 − T5 = F6 − T6 = F12 − T10),

6 = 8 − 2 = 13 − 7 (= F6 − T3 = F7 − T5),

8 = 21 − 13 = 89 − 81 (= F8 − T6 = F11 − T9),

−10 = 3 − 13 = 34 − 44 (= F4 − T6 = F9 − T8),

11 = 13 − 2 = 55 − 44 (= F7 − T3 = F10 − T8),

−11 = 2 − 13 = 13 − 24 (= F3 − T6 = F7 − T7),

−22 = 2 − 24 = 121393 − 121415 (= F3 − T7 = F26 − T21),

−23 = 1 − 24 = 21 − 44 (= F2 − T7 = F8 − T8),

−41 = 3 − 44 = 233 − 274 (= F4 − T8 = F13 − T11),

−60 = 21 − 81 = 89 − 149 (= F8 − T9 = F11 − T10),

−271 = 3 − 274 = 233 − 504 (= F4 − T11 = F13 − T12).
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4.2 Preliminaries

In this section, the result of linear forms in logarithms by Baker and Wüstholz [19] is stated.
Besides, we state a lemma from [30], which is a slight variation of a result due to Dujella and Pethő
[42], of which is a generalization of a result due to Baker and Davenport [17]. Both results will be
used in the proof of Theorem 4.1.

4.2.1 A lower bound for linear forms in logarithms of algebraic numbers

In 1993, Baker and Wüstholz [19] obtained an explicit bound for linear forms in logarithms with
a linear dependence on logB, where B ≥ e denotes an upper bound for the height of the linear
form (to be defined later in this section). It is a vast improvement compared with lower bounds
with a dependence on higher powers of logB in preceding publications by other mathematicians in
particular Baker’s original results [1, 2, 3]. The final structure for the lower bound for linear forms
in logarithms without an explicit determination of the constant involved has been established by
Wüstholz [93] and the precise determination of that constant (which is denoted as C(n, d) in [19]
and later in this section as C(k, d)) is the central aspect of [19] (see also [20]). The improvement
was mainly due to the use of the analytic subgroup theorem established by Wüstholz [94]. We shall
now state the result of Baker and Wüstholz.

Denote by α1, . . . , αk algebraic numbers, not 0 or 1, and by logα1, . . . , logαk a fixed determination
of their logarithms. Let K = Q(α1, . . . , αk) and let d = [K ∶ Q] be the degree of K over Q. For any
α ∈K, suppose that its minimal polynomial over the integers is

g(x) = a0x
δ + a1x

δ−1 +⋯ + aδ = a0

δ

∏
j=1

(x − α(j))

where α(j) are all the roots of g(x). The absolute logarithmic Weil height of α is defined as

h0(α) =
1

δ

⎛

⎝
log ∣a0∣ +

δ

∑
j=1

log (max{∣α(j)∣,1})
⎞

⎠
.

Then the modified height h′(α) is defined by

h′(α) =
1

d
max{h(α), ∣ logα∣,1},

where h(α) = dh0(α) is the standard logarithmic Weil height of α.

Let us consider the linear form

L(z1, . . . , zk) = b1z1 +⋯ + bkzk,
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where b1, . . . , bk are rational integers, not all 0 and define

h′(L) =
1

d
max{h(L),1},

where h(L) = d log (max1≤j≤k {
∣bj ∣
b }) is the logarithmic Weil height of L, where b is the greatest

common divisor of b1, . . . , bk. If we write B = max{∣b1∣, . . . , ∣bk∣, e}, then we get

h′(L) ≤ logB.

With these notations we are able to state the following result due to Baker and Wüstholz [19].

Theorem 4.2. If Λ = L(logα1, . . . , logαk) ≠ 0, then

log ∣Λ∣ ≥ −C(k, d)h′(α1)⋯h
′(αk)h

′(L),

where

C(k, d) = 18(k + 1)!kk+1(32d)k+2 log(2kd).

With ∣Λ∣ ≤
1

2
, we have

1

2
∣Λ∣ ≤ ∣Φ∣ ≤ 2∣Λ∣, where

Φ = eΛ − 1 = αb11 ⋯α
bk
k − 1,

so that

log ∣αb11 ⋯ αbkk − 1∣ ≥ log ∣Λ∣ − log 2.

We apply Theorem 4.2 mainly in a situation where k = 3 and d = 6. In this case

C(3,6) = 18(4!)34(32 × 6)5(log 36) ≈ 3.2718 . . . × 1016.

We will use this value throughout the paper without any further reference.

4.2.2 A generalized result of Baker and Davenport

The following result will be used to reduce the huge upper bounds for n and m which appear during
the course of the proof of Theorem 4.1 (cf. Proposition 4.1). It is [30, Lemma 4], which is regarded
as a slight variation of a result due to Dujella and Pethő [42], of which is a generalization of a result
due to Baker and Davenport [17]. For a real number x, let ∥x∥ = min{∣x−n∣ ∶ n ∈ Z} be the distance
from x to the nearest integer.
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Lemma 4.3. Let M be a positive integer, let p/q be a convergent of the continued fraction of the
irrational τ such that q > 6M , and let A,B,µ be some real numbers with A > 0 and B > 1. Let
ε ∶= ∥µq∥ −M∥τq∥. If ε > 0, then there is no solution to the inequality

0 <mτ − n + µ < AB−k,

in positive integers m,n and k with

m ≤M and k ≥
log(Aq/ε)

logB
.

4.3 Proof of Theorem 4.1

4.3.1 Set up

Assume that (n,m) ≠ (n1,m1) are pairs of indices such that

Fn − Fn1 = Tm − Tm1 . (4.3.1)

We may assume that m ≠ m1, since otherwise (n,m) = (n1,m1). Furthermore we assume that
m > m1. Due to equation (4.3.1) and since the right hand side of equation (4.3.1) is positive, we
get that the left hand side of equation (4.3.1) is also positive and thus n > n1. Therefore, we have
n ≥ 3, n1 ≥ 2 and m ≥ 3, m1 ≥ 2.

During the proof of Theorem 4.1 we use the Binet formulae for the Fibonacci sequence and Tri-
bonacci sequence in the following form:

Fibonacci sequence:

Fk =
αk − βk

α − β
for all k ≥ 0,

where α = 1+
√

5
2 and β = 1−

√
5

2 are the roots of the characteristic equation x2 − x − 1 = 0. Besides,
the inequality

αk−2 ≤ Fk ≤ α
k−1

holds for all k ≥ 1.

Tribonacci sequence:

Tk = cαα
k
T + cββ

k
T + cγγ

k
T for all k ≥ 0,
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where αT , βT and γT are the roots of the characteristic equation x3 − x2 − x − 1 = 0, with

αT =
1

3
(1 +

3
√

19 + 3
√

33 +
3
√

19 − 3
√

33) ,

βT =
1

6
(2 −

3
√

19 + 3
√

33 −
3
√

19 − 3
√

33) +

√
3

6
i(

3
√

19 + 3
√

33 −
3
√

19 − 3
√

33) ,

γT =
1

6
(2 −

3
√

19 + 3
√

33 −
3
√

19 − 3
√

33) −

√
3

6
i(

3
√

19 + 3
√

33 −
3
√

19 − 3
√

33) ,

and the coefficients

cα =
αT

(αT − βT )(αT − γT )
=

1

−α2
T + 4αT − 1

,

cβ =
βT

(βT − αT )(βT − γT )
=

1

−β2
T + 4βT − 1

,

cγ =
γT

(γT − αT )(γT − βT )
=

1

−γ2
T + 4γT − 1

are the roots of the polynomial 44x3 − 2x − 1. Note that

1.839 < αT < 1.840 0.336 < cα < 0.337

βT = γT 0.737 < ∣βT ∣ = ∣γT ∣ < 0.738

cβ = cγ 0.259 < ∣cβ ∣ = ∣cγ ∣ < 0.260.

Finally let us state several useful inequalities. For instance

αk−2
T ≤ Tk ≤ α

k−1
T for all k ≥ 1.

which was already shown in [29]. Using equation (4.3.1) we get that

αn−4 ≤ Fn−2 ≤ Fn − Fn1 = Tm − Tm1 < Tm ≤ αm−1
T , (4.3.2)

and similarly we get

αn−1 ≥ Fn > Fn − Fn1 = Tm − Tm1 ≥ Tm − Tm−1 = Tm−2 + Tm−3 ≥ α
m−4
T + αm−5

T > 2.83αm−5
T . (4.3.3)

Thus

n − 4 <
logαT
logα

(m − 1) and n − 3 >
logαT
logα

(m − 5), (4.3.4)

where
logαT
logα

≈ 1.2663 . . . .

Inequality (4.3.4) implies that if n < 300, then m < 240. By a brute force computer enumeration
for 2 ≤ n1 < n < 300 and 2 ≤ m1 < m < 240 we found all solutions listed in Theorem 4.1. Thus we
may assume from now on that n ≥ 300.
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4.3.2 Linear forms in logarithms

Since n ≥ 300, by the first inequality of (4.3.4) we obtain that m ≥ 235 which combined with the
second inequality of (4.3.4) implies that n >m. Moreover, we have

αn − βn
√

5
−
αn1 − βn1

√
5

= (cαα
m
T + cββ

m
T + cγγ

m
T ) − (cαα

m1
T + cββ

m1
T + cγγ

m1
T ) .

Collecting the “large” terms on the left hand side of the equation we obtain

∣
αn
√

5
− cαα

m
T ∣ = ∣

βn
√

5
+
αn1 − βn1

√
5

+ (cββ
m
T + cγγ

m
T ) − (cαα

m1
T + cββ

m1
T + cγγ

m1
T )∣

≤
αn1

√
5
+ cαα

m1
T +

∣β∣n
√

5
+

∣β∣n1

√
5
+ ∣cβ ∣ ∣βT ∣

m + ∣cγ ∣ ∣γT ∣
m + ∣cβ ∣ ∣βT ∣

m1 + ∣cγ ∣ ∣γT ∣
m1

<
αn1

√
5
+ cαα

m1
T + 0.46

< 0.92 max{αn1 , αm1
T }.

Dividing by cαα
m
T we get

∣(
√

5cα)
−1αnα−mT − 1∣ < max{

0.92

cααmT
αn1 ,

0.92

cα
αm1−m
T }

< max{2.74
αn1

αT

1

αn−4
,2.74αm1−m

T } .

Hence we obtain the inequality

∣(
√

5cα)
−1αnα−mT − 1∣ < max{αn1−n+5, αm1−m+2

T }. (4.3.5)

Let us introduce

Λ = n logα −m logαT − log(
√

5cα)

and assume that ∣Λ∣ ≤ 0.5. Further, we put

Φ = eΛ − 1 = (
√

5cα)
−1αnα−mT − 1

and use the theorem of Baker and Wüstholz (Theorem 4.2) with the data

k = 3, α1 =
√

5cα, b1 = −1, α2 = α, b2 = n, α3 = αT , b3 = −m.

With this data we have K = Q(
√

5, αT ), i.e. d = 6, and B = n. Notice that the minimal polynomial
of α1 is 1936x6 − 880x4 + 100x2 − 125, and we conclude that h′(α1) =

1
6 log 1936. Further we obtain

by a simple computation that h′(α2) =
1
2 logα and h′(α3) =

1
3 logαT .
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Before we can apply Theorem 4.2 we have to show that Φ ≠ 0. Assume to the contrary that
Φ = 0, then αn(α−1

T )m =
√

5cα. But αn(α−1
T )m ∈ OK whereas

√
5cα does not, as can be observed

immediately from its minimal polynomial. Thus Φ = 0 is impossible.

Theorem 4.2 yields

log ∣Φ∣ ≥ −C(3,6) (
1

6
log 1936)(

1

2
logα)(

1

3
logαT) logn − log 2

and together with inequality (4.3.5) we have

min{(n − n1 − 5) logα, (m −m1 − 2) logαT } ≤ 2.02 × 1015 logn.

Thus we have proved so far:

Lemma 4.4. Assume that (n,m,n1,m1) is a solution to equation (4.3.1) with m > m1. Then we
have

min{(n − n1) logα, (m −m1) logαT } < 2.03 × 1015 logn.

Note that in the case that ∣Λ∣ > 0.5 inequality (4.3.5) is possible only if either n−n1 ≤ 5 or m−m1 ≤ 2,
which is covered by the bound provided by Lemma 4.4.

Now we have to distinguish between the following two cases:

Case 1. Let us assume that

min{(n − n1) logα, (m −m1) logαT } = (n − n1) logα.

We rewrite equation (4.3.1) as

∣
αn − αn1

√
5

− cαα
m
T ∣ = ∣−cαα

m1
T +

βn
√

5
−
βn1

√
5
+ (cββ

m
T + cγγ

m
T ) − (cββ

m1
T + cγγ

m1
T )∣

≤ cαα
m1
T +

∣βn∣
√

5
+

∣βn1 ∣
√

5
+ ∣cβ ∣ ∣β

m
T ∣ + ∣cγ ∣ ∣γ

m
T ∣ + ∣cβ ∣ ∣β

m1
T ∣ + ∣cγ ∣ ∣γ

m1
T ∣

and obtain that

∣
αn−n1 − 1

√
5

αn1 − cαα
m
T ∣ < (cα + 0.14)αm1

T .

Dividing by cαα
m
T we get the inequality

∣
αn−n1 − 1
√

5cα
αn1α−mT − 1∣ < 1.42αm1−m

T . (4.3.6)

Case 2. Let us assume that

min{(n − n1) logα, (m −m1) logαT } = (m −m1) logαT .
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We rewrite equation (4.3.1) as

∣
αn
√

5
− cαα

m
T + cαα

m1
T ∣ = ∣

βn
√

5
+
αn1 − βn1

√
5

+ cββ
m
T + cγγ

m
T − cββ

m1
T − cγγ

m1
T ∣

≤
∣βn∣
√

5
+
αn1

√
5
+

∣βn1 ∣
√

5
+ ∣cβ ∣ ∣β

m
T ∣ + ∣cγ ∣ ∣γ

m
T ∣ + ∣cβ ∣ ∣β

m1
T ∣ + ∣cγ ∣ ∣γ

m1
T ∣ .

Thus we get

∣αn −
√

5cα(α
m−m1
T − 1)αm1

T ∣ < 1.4αn1 .

Dividing both sides by
√

5cα(α
m−m1
T − 1)αm1

T we get by using (4.3.2) the following inequality:

RRRRRRRRRRR

αnα−m1
T√

5 cα(α
m−m1
T − 1)

− 1
RRRRRRRRRRR

<
1.4

√
5 cα(1 − α

m1−m
T )αT

αn1

αm−1
T

< 2.22αn1−n+4. (4.3.7)

We want to apply Theorem 4.2 to both inequalities (4.3.6) and (4.3.7) respectively. Let us consider
the first case more closely. We write

Λ1 = n1 logα −m logαT + log(
αn−n1 − 1
√

5cα
)

and assume that ∣Λ1∣ ≤ 0.5. Further, we put

Φ1 = e
Λ1 − 1 =

αn−n1 − 1
√

5cα
αn1α−mT − 1

and aim to apply Theorem 4.2 by taking K = Q(
√

5, αT ), i.e. d = 6, k = 3 and B = n. Further, we
have

α1 =
αn−n1 − 1
√

5cα
, b1 = 1, α2 = α, b2 = n1, α3 = αT , b3 = −m.

Let us estimate the height of α1. Notice that h(α1) ≤ h(η1)+h(η2), where η1 =
αn−n1−1√

5
and η2 =

1
cα

.

The minimal polynomial of η1 divides (e.g. see [39])

5X2 − 5Fn−n1X − ((−1)n−n1 + 1 −Ln−n1),

where {Lk}k≥0 is the Lucas companion sequence of the Fibonacci sequence given by L0 = 2, L1 =

1, Lk+2 = Lk+1 + Lk for k ≥ 0. Its Binet formula for the general term is Lk = α
k + βk for all k ≥ 0.

Thus (cf. [39]),

h0(η1) ≤
1

2
(log 5 + log(

αn−n1 + 1
√

5
)) .

Thus Lemma 4.4 yields an upper bound

h0(η1) <
1

2
log (2

√
5αn−n1) <

1

2
(n − n1 + 4) logα < 1.02 × 1015 logn,
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i.e. h(η1) < 6 × 1.02 × 1015 logn. Since h0(η2) = h0(cα) = 1
3 log 44, i.e. h(η2) = 2 log 44, we have

h(α1) ≤ 6 × 1.02 × 1015 logn + 2 log 44 and finally we obtain that

h′(α1) < 1.03 × 1015 logn.

Moreover, we have that h′(α2) =
1
2 logα and h′(α3) =

1
3 logαT as before.

Now let us turn to the second case. We write

Λ2 = n logα −m1 logαT − log (
√

5 cα(α
m−m1
T − 1))

and assume that ∣Λ2∣ ≤ 0.5. Further, we put

Φ2 = e
Λ2 − 1 = (

√
5 cα(α

m−m1
T − 1))−1αnα−m1

T − 1

and aim to apply Theorem 4.2. As in the previous case we take K = Q(
√

5, αT ), i.e. d = 6, k = 3
and B = n. Further, we have

α1 =
√

5 cα(α
m−m1
T − 1), b1 = −1, α2 = α, b2 = n, α3 = αT , b3 = −m1.

Again, we have to estimate h(α1) and therefore note that h(α1) ≤ h(η1) + h(η2) + h(η3), where
η1 = α

m−m1
T − 1, η2 = cα and η3 =

√
5. By applying Lemma 4.4 we get

h0(η1) ≤ h0(α
m−m1
T ) + h0(−1) + log 2

= (m −m1)h0(αT ) + log 2 =
m −m1

3
logαT + log 2

<
1

3
× 2.03 × 1015 logn + log 2.

Thus

h(α1) < 6(
1

3
× 2.03 × 1015 logn + log 2 +

1

3
log 44 + log

√
5)

and therefore

h′(α1) < 6.77 × 1014 logn < 1.03 × 1015 logn.

Once again, we have that h′(α2) =
1
2 logα and h′(α3) =

1
3 logαT .

In particular, we have shown in both cases that

h′(α1) < 1.03 × 1015 logn, h′(α2) =
1

2
logα, h′(α3) =

1

3
logαT , B = n.

But, before we can apply Theorem 4.2 we have to ensure that Φi ≠ 0 for i = 1,2. Firstly we
deal with the assumption that Φ1 = 0, i.e. αn − αn1 =

√
5cαα

m
T . This is impossible if

√
5cαα

m
T ∈

Q(
√

5, αT ) but ∉ Q(
√

5). Therefore let us assume that
√

5cαα
m
T ∈ Q(

√
5). Since cαα

m
T ∈ Q(αT )
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and Q(αT )∩Q(
√

5) = Q, we deduce from
√

5cαα
m
T ∈ Q(

√
5) that we have

√
5cαα

m
T = y

√
5 for some

y ∈ Q. Let σ ≠ id be the unique non-trivial Q-automorphism over Q(
√

5). Then we get

αn − αn1 =
√

5cαα
m
T = y

√
5 = −σ(

√
5cαα

m
T ) = −σ(αn − αn1) = βn1 − βn.

However, the absolute value of αn − αn1 is at least αn − αn1 ≥ αn−2 ≥ α298 > 2 whereas the absolute
value of βn1 − βn is at most ∣βn1 − βn∣ ≤ ∣β∣n1 + ∣β∣n < 2. By this obvious contradiction we conclude
that Φ1 ≠ 0.

Now let us consider the second case and assume for the moment that Φ2 = 0, i.e. α2n = 5α2m1
T c2

α(α
m−m1
T −

1)2. However, α2n ∈ Q(
√

5) ∖Q, whereas 5α2m1
T c2

α(α
m−m1
T − 1)2 ∈ Q(αT ). Thus we obtain also in

this case a contradiction and we also conclude in this case that Φ2 ≠ 0.

Now, we are ready to apply Theorem 4.2 and get

log ∣Φi∣ > −C(3,6) (1.03 × 1015 logn)(
1

2
logα)(

1

3
logαT) logn − log 2

> − 1.65 × 1030(logn)2

for i = 1,2. Combining this inequality with the inequalities (4.3.6) and (4.3.7), we obtain

(m1 −m) logαT + log 1.42 > −1.65 × 1030(logn)2

and

(n1 − n + 4) logα + log 2.22 > −1.65 × 1030(logn)2

respectively. These two inequalities yield together with Lemma 4.4 the following lemma:

Lemma 4.5. Assume that (n,m,n1,m1) is a solution to equation (4.3.1) with m > m1. Then we
have

max{(n − n1) logα, (m −m1) logαT } < 1.66 × 1030(logn)2.

Note that in the case of ∣Λ1∣ > 0.5, inequality (4.3.6) is possible only if m −m1 = 1 and in the case
of ∣Λ2∣ > 0.5, inequality (4.3.7) is possible only if n − n1 ≤ 6. Both cases are covered by the bound
provided by Lemma 4.5.

One more time we have to apply Theorem 4.2. This time we rewrite equation (4.3.1) as

∣
αn
√

5
−
αn1

√
5
− cαα

m
T + cαα

m1
T ∣ = ∣

βn
√

5
−
βn1

√
5
+ cββ

m
T + cγγ

m
T − cββ

m1
T − cγγ

m1
T ∣ < 0.46.

Dividing both sides by cαα
m1
T (αm−m1

T − 1) we get by applying inequality (4.3.2)

RRRRRRRRRRR

αn−n1 − 1
√

5 cα(α
m−m1
T − 1)

αn1α−m1
T − 1

RRRRRRRRRRR

<
0.46

cα(1 − α
m1−m
T )αT

1

αm−1
T

< 1.64α4−n. (4.3.8)
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In this final step we consider the linear form

Λ3 = n1 logα −m1 logαT + log
⎛

⎝

αn−n1
T − 1

√
5 cα(α

m−m1
T − 1)

⎞

⎠

and assume that ∣Λ3∣ ≤ 0.5. Further, we put

Φ3 = e
Λ3 − 1 =

αn−n1 − 1
√

5 cα(α
m−m1
T − 1)

αn1α−m1
T − 1.

As before we take K = Q(
√

5, αT ), i.e. d = 6, k = 3, B = n and we have

α1 =
αn−n1 − 1

√
5 cα(α

m−m1
T − 1)

, b1 = 1, α2 = α, b2 = n1, α3 = αT , b3 = −m1.

By Lemma 4.5 and similar computations as done before we obtain that

h(
αn−n1 − 1
√

5cα
) ≤ 6(

1

2
(n − n1 + 4) logα) + 2 log 44 < 3 × (1.67 × 1030(logn)2)

and

h(αm−m1
T − 1) ≤ 6(

m −m1

3
logαT + log 2) < 2 × (1.67 × 1030(logn)2) .

Therefore we find the upper bound

h(α1) ≤ h(
αn−n1 − 1
√

5cα
) + h(αm−m1

T − 1) < 5 × (1.67 × 1030(logn)2)

and thus

h′(α1) <
5

6
× (1.67 × 1030(logn)2) .

As before, we have h′(α2) =
1

2
logα and h′(α3) =

1

3
logαT .

Using similar arguments as in the proof that Φ1 ≠ 0 we can show that Φ3 ≠ 0. Now an application
of Theorem 4.2 yields

log ∣Φ3∣ > −C(3,6) (
5

6
× 1.67 × 1030(logn)2)(

1

2
logα)(

1

3
logαT) logn − log 2.

Combining this inequality with inequality (4.3.8) we get

(n − 4) logα < 2.23 × 1045(logn)3

which yields n < 8 × 1051.

Similarly as in the cases above the assumption that ∣Λ3∣ > 0.5 leads in view of inequality (4.3.8) to
n ≤ 5. Let us summarize the results of this subsection:
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Proposition 4.1. Assume that (n,m,n1,m1) is a solution to equation (4.3.1) with m >m1. Then
we have that n < 8 × 1051.

Remark 1. The theorem of Baker and Wüstholz (Theorem 4.2) [19] has a significant role in the
development of linear forms in logarithms. It is the first quantitative version of Baker’s theorem
with a linear dependence of logB at the lower bound instead of higher powers of logB in other
preceding work of Baker’s theorem. It also showcased the use of the analytic subgroup theorem
[95]. It is fully explicit to all parameters and can be easily applied. The reader may note that
a slightly sharper bound for n, namely n < 6 × 1048, may be obtained if Matveev’s result [64] is
used instead. However, the improvement is insignificant in view of our next step, i.e. the use of
the method of Baker and Davenport (Lemma 4.3), in which our upper bound for n can be further
reduced to a great extent.

4.3.3 Generalized method of Baker and Davenport

In our final step we reduce the huge upper bound for n from Proposition 4.1 by applying several
times Lemma 4.3. In this subsection we follow the ideas from [39]. First, we consider inequality
(4.3.5) and recall that

Λ = n logα −m logαT − log(
√

5cα).

For technical reasons we assume that min{n−n1,m−m1} ≥ 20. In the case that this condition fails
we consider one of the following inequalities instead:

• if n − n1 < 20 but m −m1 ≥ 20, we consider inequality (4.3.6);

• if n − n1 ≥ 20 but m −m1 < 20, we consider inequality (4.3.7);

• if both n − n1 < 20 and m −m1 < 20, we consider inequality (4.3.8).

Let us start by considering inequality (4.3.5). Since we assume that min{n − n1,m −m1} ≥ 20 we
get ∣Φ∣ = ∣eΛ − 1∣ < 1

4 , hence ∣Λ∣ < 1
2 . And, since ∣x∣ < 2∣ex − 1∣ holds for all x ∈ (−1

2 ,
1
2) we get

∣Λ∣ < 2 max{αn1−n+5, αm1−m+2
T } ≤ max{αn1−n+7, αm1−m+4

T }.

Assume that Λ > 0. Then we have the inequality

0 < n(
logα

logαT
) −m +

log(1/(
√

5cα))

logαT
<max{

α7

logαT
α−(n−n1),

α4
T

logαT
α
−(m−m1)

T }

<max{48α−(n−n1),19α
−(m−m1)

T }

and we apply Lemma 4.3 with

τ =
logα

logαT
, µ =

log(1/(
√

5cα))

logαT
, (A,B) = (48, α) or (19, αT ).
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We first show that that τ is irrational. Let us assume for the moment that it is rational. Then
τ = a

b with coprime integers a and b, thus αb = αT
a. The fact that αb ∈ Q(α), αT

a ∈ Q(αT ) and

Q(α)∩Q(αT ) = Q implies that αb, αT
a ∈ Q, which can easily be seen to be not the case. Therefore

αb ≠ αT
a and hence τ is irrational. Let τ = [a0, a1, a2, . . . ] = [0,1,3,1,3,13,2,1,8,3,1,5, . . . ] be the

continued fraction of τ . Moreover, we choose M = 8 × 1051 and consider the 104th convergent

p

q
=
p104

q104
=

528419636478855291192208008138409657842309076397924033

669159011284129920139468279297504453112608160771671810
,

with q = q104 > 6M . This yields ε > 0.068 and therefore either

n − n1 ≤
log(48q/0.068)

logα
< 272, or m −m1 ≤

log(19q/0.068)

logαT
< 213.

Thus, we have either n − n1 ≤ 271, or m −m1 ≤ 212.

In the case of Λ < 0 we consider the following inequality:

0 <m(
logαT
logα

) − n +
log(

√
5cα)

logα
<max{

α7

logαT
α−(n−n1),

α4
T

logαT
α
−(m−m1)

T }

<max{61α−(n−n1),24α
−(m−m1)

T }

instead and apply Lemma 4.3 with

τ =
logαT
logα

, µ =
log(

√
5cα)

logα
, (A,B) = (61, α) or (24, αT ).

Let τ = [a0, a1, a2, . . . ] = [1,3,1,3,13,2,1,8,3,1,5,2, . . . ] be the continued fraction of τ . Again,
we choose M = 8 × 1051 but in this case we consider instead of the 104th convergent the 103rd
convergent

p

q
=
p103

q103
=

669159011284129920139468279297504453112608160771671810

528419636478855291192208008138409657842309076397924033
,

with q > 6M . This yields ε > 0.067 and again we obtain either

n − n1 <
log(61q/0.067)

logα
< 272, or m −m1 <

log(24q/0.067)

logαT
< 213.

These bounds agree with the bounds obtained in the case that Λ > 0. As a conclusion, we have
either n − n1 ≤ 271 or m −m1 ≤ 212.

Now, we have to distinguish between the two cases n − n1 ≤ 271 and m −m1 ≤ 212. First, let us
assume that n − n1 ≤ 271. In this case we consider inequality (4.3.6) and assume that m −m1 ≥ 20.
Recall that

Λ1 = n1 logα −m logαT + log(
αn−n1 − 1
√

5cα
)
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and inequality (4.3.6) yields that
∣Λ1∣ < α

m1−m+2
T .

If we further assume that Λ1 > 0, then we get

0 < n1 (
logα

logαT
) −m +

log((αn−n1 − 1)/(
√

5cα))

logαT
<

α2
T

logαT
α
−(m−m1)

T < 6α
−(m−m1)

T .

Again we apply Lemma 4.3 with the same τ and M as in the case that Λ > 0. We use the 104th
convergent p

q =
p104
q104

of τ as before. But, in this case we choose (A,B) = (6, αT ) and use

µk =
log((αk − 1)/(

√
5cα))

logαT
,

instead of µ for each possible value of n−n1 = k = 1,2, . . . ,271. A quick computer aid computation
yields that ε > 0.00038 for all 1 ≤ k ≤ 271. Hence, by Lemma 4.3, we get

m −m1 <
log(6q/0.00038)

logαT
< 220.

Thus, n − n1 ≤ 271 implies m −m1 ≤ 219.

In the case that Λ1 < 0 we follow the ideas from the case that Λ1 > 0. We use the same τ as in the
case that Λ < 0 but instead of µ we take

µk =
log(

√
5cα/(α

k − 1))

logα

for each possible value of n − n1 = k = 1,2, . . . ,271. Using Lemma 4.3 with this setting we also
obtain in this case that n − n1 ≤ 271 implies m −m1 ≤ 219.

Now let us turn to the case that m −m1 ≤ 212 and let us consider inequality (4.3.7). Recall that

Λ2 = n logα −m1 logαT + log
⎛

⎝

1
√

5 cα(α
m−m1
T − 1)

⎞

⎠

and let us assume that n − n1 ≥ 20. Then we have

∣Λ2∣ <
4.44α4

αn−n1
.

Assuming that Λ2 > 0, we get

0 < n(
logα

logαT
) −m1 +

log(1/(
√

5 cα(α
m−m1
T − 1)))

logαT
<

4.44α4

(logαT )αn−n1
< 50α−(n−n1).

Once again we apply Lemma 4.3 with the same τ and M as for the case Λ > 0 before. We take
(A,B) = (50, α) and

µk =
log(1/(

√
5 cα(α

k
T − 1)))

logαT
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for every possible value m −m1 = k = 1,2, . . . ,212. If we use again the 104th convergent of τ , i.e.
we put q = q104, then for each k that yields a positive ε, we get ε > 0.0012. Therefore we get

n − n1 <
log(50q104/0.0012)

logα
< 280

in these cases. But for k = 90 we get a negative ε. In this case we consider the 105th convergent
p

q
=
p105

q105
of τ instead. Let us note that

q105 = 20120013979896675119357414743592977629715414121119669783.

Now we obtain in the case k = 90 that ε > 0.46. Thus

n − n1 <
log(50q105/0.46)

logα
< 275.

In the case that Λ2 < 0 we follow again the ideas from the case that Λ2 > 0. Of course we choose

τ =
logαT
logα

and µk =
log(

√
5 cα(α

k
T − 1))

logα
.

Applying Lemma 4.3 for all possible values of m −m1 = k = 1, . . . ,212 also yields in this case that
n − n1 ≤ 279.

Let us summarize the above computations. First we got that either n−n1 ≤ 271, or m−m1 ≤ 212. If
we assume that n−n1 ≤ 271, then we deduce that m−m1 ≤ 219, and if we assume that m−m1 ≤ 212,
then we deduce that n − n1 ≤ 279. Altogether we obtain n − n1 ≤ 279 and m −m1 ≤ 219.

For the last step in our reduction process we consider inequality (4.3.8). Recall that

Λ3 = n1 logα −m1 logαT + log
⎛

⎝

αn−n1 − 1
√

5 cα(α
m−m1
T − 1)

⎞

⎠
.

Since we assume that n ≥ 300, inequality (4.3.8) implies that

∣Λ3∣ <
3.28α4

αn
.

Let us assume that Λ3 > 0. Then

0 < n1 (
logα

logαT
) −m1 +

log ((αk − 1)/(
√

5 cα(α
l
T − 1)))

logαT
<

3.28α4

(logαT )αn
< 37α−n,

where (k, l) = (n−n1,m−m1). We apply Lemma 4.3 once more with the same τ and M as for the
case when Λ > 0. Moreover, we take (A,B) = (37, α), and put

µk,l =
log ((αk − 1)/(

√
5 cα(α

l
T − 1)))

logαT
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for 1 ≤ k ≤ 279 and 1 ≤ l ≤ 219. We consider the 104th convergent p
q =

p104
q104

. For all pairs (k, l) such

that ε is positive we have indeed ε > 2.8 × 10−6. Thus for these pairs (k, l) Lemma 4.3 yields that

n <
log(37q104/0.0000028)

logα
< 292.

For all the remaining pairs (k, l) which yield a negative ε, we consider the 105th convergent p
q =

p105
q105

instead. And for all those pairs (k, l) the quantity ε is positive for this choice of q. In particular,
we have that ε > 0.0018 for all these cases, hence

n <
log(37q105/0.0018)

logα
< 286.

In the case that Λ3 < 0 the method is similar. In particular we have to apply Lemma 4.3 with

τ =
logαT
logα

and µk,l =
log ((

√
5 cα(α

l
T − 1))/(αk − 1))

logα
.

However, we obtain in this case the slightly smaller bound n < 289.

Altogether our reduction procedure yields the upper bound n ≤ 291. However, this contradicts our
assumption that n ≥ 300. Thus Theorem 4.1 is proved.





Chapter 5

On a variant of Pillai’s problem II

The content of this chapter is the same as the joint paper with István Pink and Volker Ziegler [37],
which is published in the Journal of Number Theory.1

5.1 Introduction

A linear recurrence sequence is a sequence {Un}n≥0 such that for some k ≥ 1, we have

Un+k = c1Un+k−1 +⋯ + ckUn

for all n ≥ 0, where c1, . . . , ck are given complex numbers with ck ≠ 0. When c1, . . . , ck are integers
and U0, . . . , Uk−1 are also integers, Un is an integer for all n ≥ 0 and we say that {Un}n≥0 is defined
over the integers. In what follows we will always assume that {Un}n≥0 is defined over the integers.

It is known that if we write

F (X) =Xk − c1X
k−1 −⋯ − ck =

t

∏
i=1

(X − αi)
σi ,

where α1, . . . , αt are distinct complex numbers, and σ1, . . . , σt are positive integers whose sum is
k, then there exist polynomials a1(X), . . . , at(X) whose coefficients are in Q(α1, . . . , αt) such that
ai(X) is of degree at most σi − 1 for i = 1, . . . , t, and such that furthermore the formula

Un =
t

∑
i=1

ai(n)α
n
i

1K. C. Chim was supported by the Austrian Science Fund (FWF) under the projects P26114 and W1230. I. Pink
and V. Ziegler were supported by the Austrian Science Fund (FWF) under the project P 24801-N26.
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holds for all n ≥ 0. We may certainly assume that ai(X) is not the zero polynomial for any
i = 1, . . . , t. We call α = α1 a dominant root of {Un}n≥0, if ∣α1∣ > ∣α2∣ ≥ ⋅ ⋅ ⋅ ≥ ∣αt∣. In this case the
sequence {Un}n≥0 is said to satisfy the dominant root condition.

This paper is a follow-up to our previous work [36], in which we found all integers c admitting
at least two distinct representations of the form Fn − Tm for some positive integers n ≥ 2 and
m ≥ 2. Here we denote by {Fn}n≥0 the sequence of Fibonacci numbers given by F0 = 0, F1 = 1 and
Fn+2 = Fn+1 + Fn for all n ≥ 0, and denote by {Tm}m≥0 the sequence of Tribonacci numbers given
by T0 = 0, T1 = T2 = 1 and Tm+3 = Tm + Tm+1 + Tm+2 for all m ≥ 0. In [36] the main result is the
following:

Theorem 5.1. The only integers c having at least two representations of the form Fn − Tm come
from the set

C = {0,1,−1,−2,−3,4,−5,6,8,−10,11,−11,−22,−23,−41,−60,−271}.

Furthermore, for each c ∈ C all representations of the form c = Fn − Tm with integers n ≥ 2 and
m ≥ 2 are obtained.

The above problem of obtaining all integers c having at least two representations of the form Fn−Tm
can be regarded as a variant of Pillai’s problem. Readers can refer to [36] for the complete list
of representations and some historical development of the Pillai’s problem. The interested reader
may also refer to the paper of Pillai [71] for the original problem, the papers of Stroeker and
Tijdeman [87] and Bennett [21] for tackling special cases and the papers of Ddamulira, Luca and
Rakotomalala [39] and Bravo, Luca and Yazán [32] for other variants.

The purpose of this paper is to generalize Theorem 5.1. Assume that we are given two linear
recurrence sequences {Un}n≥0 and {Vm}m≥0 defined over the integers which satisfy the dominant
root condition, then under some mild restrictions there exist only finitely many integers c such that
the equation

Un − Vm = c

has at least two distinct solutions (n,m) ∈ N×N, where N = {0,1, . . .} is the set of natural numbers.
That is, we want to solve

Un −Un1 = Vm − Vm1 (5.1.1)

for (n,m) ≠ (n1,m1).

In order to avoid linear recurrence sequences which would yield infinitely many solutions trivially,
we assume that both {Un}n≥0 and {Vm}m≥0 are eventually strictly increasing in absolute values.
That is, we assume that there exist constants N0 and M0 such that ∣Un+1∣ > ∣Un∣ > 0 for all n ≥ N0

and ∣Vm+1∣ > ∣Vm∣ > 0 for all m ≥M0. We shall therefore require n ≥ N0 and m ≥M0 when solving
equation (5.1.1). For instance in the case that {Un}n≥0 is the Fibonacci sequence we would find
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infinitely many integers c such that c has at least two distinct representations of the form Un −Vm.
Indeed all integers of the form c = 1−Vm would yield the two representations F1 −Vm = F2 −Vm = c.

Throughout this paper, we denote by C0,C1, . . . , C45 effectively computable constants. We prove
the following theorem:

Theorem 5.2. Suppose that {Un}n≥0 and {Vm}m≥0 are two linear recurrence sequences defined
over the integers with dominant roots α and β respectively. Furthermore, suppose that α and β
are multiplicatively independent. Suppose also that {Un}n≥0 and {Vm}m≥0 are strictly increasing in
absolute values for n ≥ N0 and m ≥M0 respectively. Then there exists a finite set C such that the
integer c has at least two distinct representations of the form Un − Vm with n ≥ N0 and m ≥M0, if
and only if c ∈ C. The set C is effectively computable.

Besides, the assumption that α and β are multiplicatively independent is needed to avoid scenarios
such as having {Un}n≥0 = {Fn}n≥0, {Vm}m≥0 = {Fm}m≥0. In this case equation c = Fn+2 − Fn+1 =

Fn+1 − Fn−1 holds for all n ≥ 1 and we have infinitely many c that yield at least two solutions to
equation Un − Vm = c.

It should be also noted that the assumption that α and β are multiplicatively independent is not
necessary for the existence of only finitely many c. Consider the case where {Un}n≥0 = {2n + 1}n≥0

and {Vm}n≥0 = {4m + 2}m≥0. By elementary divisbility criteria one can easily verify that the only
solutions to (5.1.1) with n ≠ n1 satisfy n = 2m and n1 = 2m1, i.e. c = −1. Although (5.1.1) has
infinitely many solutions the only c such that Un − Vm = c has at least two solutions is c = −1.

In view of the two examples above it seems to be an interesting problem to relax the condition that
α and β are multiplicatively independent in Theorem 5.2.

We shall prove Theorem 5.2 by applying the results of linear forms in logarithms and some results
on the heights of algebraic numbers several times to obtain an effectively computable upper bound
for the value of the largest unknown among {n,m,n1,m1}.

5.2 Preliminaries

In this section we present two basic tools needed in the proof of Theorem 5.2. Firstly, we state
a result on lower bounds of linear forms in logarithms due to Baker and Wüstholz [19]. Secondly
we provide a lower bound for the height of numbers of the form αn

βm provided that α and β are

multiplicatively independent, and an upper bound for the height of
p(n)
q(m)

, where p, q are arbitrary
but fixed polynomials.
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5.2.1 A lower bound for linear forms in logarithms of algebraic numbers

In 1993, Baker and Wüstholz [19] obtained an explicit bound for linear forms in logarithms with
a linear dependence on logB, where B ≥ e denotes an upper bound for the height of the linear
form (to be defined later in this section). It is a vast improvement compared with lower bounds
with a dependence on higher powers of logB in preceding publications by other mathematicians in
particular Baker’s original results [1, 2, 3]. The final structure for the lower bound for linear forms
in logarithms without an explicit determination of the constant involved has been established by
Wüstholz [93] and the precise determination of that constant (which is denoted as C(n, d) in [19]
and later in this section as C(k, d)) is the central aspect of [19] (see also [20]). We shall now state
the result of Baker and Wüstholz.

Denote by α1, . . . , αk algebraic numbers, not 0 or 1, and by logα1, . . . , logαk a fixed determination
of their logarithms. Let K = Q(α1, . . . , αk) and let d = [K ∶ Q] be the degree of K over Q. For any
α ∈K, suppose that its minimal polynomial over the integers is

g(x) = a0x
δ + a1x

δ−1 +⋯ + aδ = a0

δ

∏
j=1

(x − α(j))

where α(j), j = 1, . . . , δ are all the roots of g(x). The absolute logarithmic Weil height of α is
defined as

h0(α) =
1

δ

⎛

⎝
log ∣a0∣ +

δ

∑
j=1

log (max{∣α(j)∣,1})
⎞

⎠
.

Then the modified height h′(α) is defined by

h′(α) =
1

d
max{h(α), ∣ logα∣,1},

where h(α) = dh0(α) is the standard logarithmic Weil height of α.

Let us consider the linear form

L(z1, . . . , zk) = b1z1 +⋯ + bkzk,

where b1, . . . , bk are rational integers, not all 0 and define

h′(L) =
1

d
max{h(L),1},

where h(L) = d log (max1≤j≤k {
∣bj ∣
b }) is the logarithmic Weil height of L, with b as the greatest

common divisor of b1, . . . , bk. If we write B = max{∣b1∣, . . . , ∣bk∣, e}, then we get

h′(L) ≤ logB.

With these notations we are able to state the following result due to Baker and Wüstholz [19].
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Theorem 5.3. If Λ = L(logα1, . . . , logαk) ≠ 0, then

log ∣Λ∣ ≥ −C(k, d)h′(α1)⋯h
′(αk)h

′(L),

where
C(k, d) = 18(k + 1)!kk+1(32d)k+2 log(2kd).

With ∣Λ∣ ≤ 1
2 , we have 1

2 ∣Λ∣ ≤ ∣Φ∣ ≤ 2∣Λ∣, where

Φ = eΛ − 1 = αb11 ⋯ αbkk − 1,

so that
log ∣αb11 ⋯ αbkk − 1∣ ≥ log ∣Λ∣ − log 2. (5.2.1)

5.2.2 Some results on heights

Before we state our results let us recall some well known properties of the absolute logarithmic
height:

h0(η ± γ) ≤ h0(η) + h0(γ) + log 2,

h0(ηγ
±1) ≤ h0(η) + h0(γ),

h0(η
`) = ∣`∣h0(η), for ` ∈ Z,

where η, γ are some algebraic numbers.

Upon applying inequality (5.2.1) from Theorem 5.3, which is only valid for Λ ≠ 0, we need to treat
the situation Λ = 0 separately. We shall make use of the following lemma repeatedly applied when
dealing with this situation.

Lemma 5.4. Let K be a number field and suppose that α,β ∈K are two algebraic numbers which
are multiplicatively independent. Moreover, let n,m ∈ Z. Then there exists an effectively computable
constant C0 > 0 such that

h0 (
αn

βm
) ≥ C0 max{∣n∣, ∣m∣}.

Although Lemma 5.4 seems to be well known we found no apropriate reference. In order to keep
the paper as self contained as possible we give a proof of this Lemma.

Before we start with the proof of Lemma 5.4 we want to fix some notations. Let K be a number
field. We denote by MK the set of places of K. For each v ∈MK we denote by ∥ ⋅ ∥v the normalized
absolute value corresponding to v, i.e., if v lies above p ∈ MQ ∶= {∞} ∪ P, where P is the set of

rational primes, then the restriction of ∥ ⋅ ∥v to Q is ∣ ⋅ ∣
[Kv ∶Qp]/[K ∶Q]
p , where Qp and Kv are the p-adic
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and v-adic completions of Q and K respectively. Here, ∣ ⋅ ∣∞ is the usual absolute value and for a
prime p the norm ∣ ⋅ ∣p is the usual p-adic norm such that ∣p∣p =

1
p .

Let us note that with these notations the product formula (see e.g. [68, Chapter III, Theorem 1.3])
states that

∑
v∈MK

log ∥α∥v = 0

and the height can be written as

h0(α) = ∑
v∈MK

max{0, log ∥α∥v}.

With these notations at hand we can turn to the proof of Lemma 5.4.

Proof of Lemma 5.4. Denote by S ⊆MK the finite set of places where the valuation of either α or
β is non-zero. i.e.

S = {v ∈MK ∶ ∥α∥v ≠ 0 or ∥β∥v ≠ 0}.

We consider a Log function defined as follows:

Log ∶K Ð→∏
v∈S

R α z→ (log ∥α∥v)v∈S .

Obviously, Log has the properties that

αn z→ n Log(α), and α ⋅ β z→ Log(α) + Log(β),

so that

Log(
αn

βm
) = n Log(α) −m Log(β).

Since α and β are multiplicatively independent, there exist valuations v1, v2 ∈ S such that the
matrix

M = (
log ∥α∥v1 log ∥β∥v1
log ∥α∥v2 log ∥β∥v2

)

is non-singular. For the moment let us write A = αn

βm . If we consider the system of linear equations

n log ∥α∥v1 −m log ∥β∥v1 = log ∥A∥v1

n log ∥α∥v2 −m log ∥β∥v2 = log ∥A∥v2 ,

we obtain from Cramer’s rule that

∣n∣ ≤
2 max{∣ log ∥A∥v1 ∣, ∣ log ∥A∥v2 ∣} ⋅max{∣ log ∥β∥v1 ∣, ∣ log ∥β∥v2 ∣}

detM
,

∣m∣ ≤
2 max{∣ log ∥A∥v1 ∣, ∣ log ∥A∥v2 ∣} ⋅max{∣ log ∥α∥v1 ∣, ∣ log ∥α∥v2 ∣}

detM
.
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From the above inequality, we have

max{∣ log ∥A∥v1 ∣, ∣ log ∥A∥v2 ∣} ≥ max{C̃1∣n∣, C̃2∣m∣} ,

where

C̃1 =
detM

2 max{∣ log ∥β∥v1 ∣, ∣ log ∥β∥v2 ∣}
> 0

and

C̃2 =
detM

2 max{∣ log ∥α∥v1 ∣, ∣ log ∥α∥v2 ∣}
> 0.

As noted above we have that

h0(A) = ∑
v∈MK

max{log ∥A∥v,0} and ∑
v∈MK

log ∥A∥v = 0.

From the product formula we deduce that there exists v ∈MK such that

log ∥A∥v ≥
1

∣S∣
⋅max{∣ log ∥A∥v1 ∣, ∣ log ∥A∥v2 ∣}.

Thus, we obtain

h0(A) = h0 (
αn

βm
) ≥

1

∣S∣
max{∣ log ∥A∥v1 ∣, ∣ log ∥A∥v2 ∣}

≥
1

∣S∣
max{C̃1∣n∣, C̃2∣m∣}

≥ C0 max{∣n∣, ∣m∣} ,

where we may choose C0 =
1
∣S∣ min{C̃1, C̃2}.

Let us also state the following result as a lemma:

Lemma 5.5. Let K be a number field and p, q ∈K[X] arbitrary but fixed polynomials. Then there
exists an effectively computable constant C = C(p, q) such that

h0 (
p(n)

q(m)
) ≤ C log max{n,m}.

Proof. Since h0 (
p(n)
q(m)

) ≤ h0(p(n)) + h0(q(m)) it suffices to prove that there exists an effectively

computable constant C such that h0(p(n)) ≤ C logn for some fixed polynomial p ∈K[X]. Assume
that p(n) = ckn

k + ⋅ ⋅ ⋅ + c1n + c0, then we have

h0(p(n)) = h0(ckn
k + ⋅ ⋅ ⋅ + c1n + c0)

≤ h0(ck) + kh0(n) + ⋅ ⋅ ⋅ + h0(c0) + k log 2

≤ C logn.
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5.3 Proof of Theorem 5.2

5.3.1 Set up

Recall that we wish to solve equation (5.1.1):

Un −Un1 = Vm − Vm1 ,

for (n,m) ≠ (n1,m1), with n,n1 ≥ N0 and m,m1 ≥M0.

We may assume that m ≠ m1, since otherwise (n,m) = (n1,m1). Without loss of generality we
may assume that m > m1. But, then we have to distinguish between the two cases n > n1 and
n < n1. Since the proof of the second case is obtained by interchanging the roles of n and n1, i.e.
to interchange n1 and n everywhere, we only give the proof of the first case. Therefore we assume
from now on that n > n1 ≥ N0 and m >m1 ≥M0.

In the following we use the L-notation. Assume f(x), g(x) and k(x) are real functions and that
k(x) > 0 for x > 1. We shall write

f(x) = g(x) +L(k(x))

for
g(x) − k(x) ≤ f(x) ≤ g(x) + k(x).

The use of the L-notation is like the use of the O-notation but with the advantage to have an
explicit bound for the error term.

Let us consider the linear recurrence sequences {Un}n≥0 and {Vm}m≥0 a bit closer. Let us assume
that the characteristic polynomials of {Un}n≥0 and {Vm}m≥0 are

FU(X) =
t

∏
i=1

(X − αi)
σi and FV (X) =

s

∏
i=1

(X − βi)
τi

respectively.

Let α and β be the dominant roots of {Un}n≥0 and {Vm}m≥0 respectively. According to our
assumptions we can write

Un = a(n)α
n + a2(n)α

n
2 + ⋅ ⋅ ⋅ + at(n)α

n
t

= a(n)αn +L (a′′nAαn2)

= a(n)αn +L(a′α′
n
)

(5.3.1)

where a′, a′′,A are suitable but effectively computable, non-negative constants, a(X), ai(X) ∈

Q(α1, . . . , αt)[X], 2 ≤ i ≤ t and α′ ∈ R is such that ∣α1∣ = ∣α∣ > α′ > ∣α2∣. Note that in case that
t = 1 we put α2 = 1 and a′ = a′′ = A = 0 and with this choice (5.3.1) still holds. Let us also note
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that by our assumption that {Un}n≥0 is non-degenerate and defined over the integers the dominant
root α is a real algebraic integer which is not a root of unity, hence we have ∣α∣ > 1. Thus we may
assume that also ∣α∣ > α′ > 1 holds. This also implies that {∣Un∣}n≥0 is eventually strictly increasing.
Moreover we may assume that ∣a(n)∣ is increasing for all n ≥ N1 for some suitable constant N1. In
addition, we choose N1 large enough such that ∣a(n)∣ ≥ ∣a(n′)∣ for all n > N1 and n > n′ > 0.

Similarly we may write
Vm = b(m)βm +L(b′β′

n
) (5.3.2)

where b′, β′ are suitable constants. By the same arguments as above we may also assume that
∣β∣ > β′ > 1 and ∣b(m)∣ is increasing provided that m ≥ M1, where M1 is some sufficiently large
number. Moreover we assume that M1 is chosen large enough such that ∣b(m)∣ ≥ ∣b(m′)∣ for all
m ≥M1 and m >m′ > 0.

Without loss of generality, let us assume that ∣α∣ > ∣β∣. We denote by σ and τ the degree of a(n) and
b(m) respectively. Besides, we know that ∣Un∣ ∼ an

σ ∣αn∣ as n→∞, where a is the leading coefficient
of a(n). Similarly we know that ∣Vm∣ ∼ bmτ ∣βm∣ as m→∞, where b is the leading coefficient of b(n).
Therefore there are positive constants C1,C2 and C3,C4 such that C2/C1 < ∣α∣ and C4/C3 < ∣β∣ with

C1n
σ ∣α∣n ≤ ∣Un∣ ≤ C2n

σ ∣α∣n for all n ≥ N2

C3m
τ ∣β∣m ≤ ∣Vm∣ ≤ C4m

τ ∣β∣m for all m ≥M2,

where N2 and M2 are sufficiently large.

Let us assume for the moment that n > n1 ≥ N2 and m > m1 ≥M2. Using equation (5.1.1) we get
that

∣Un −Un1 ∣ ≤ ∣Un∣ + ∣Un1 ∣ ≤ C2n
σ (∣α∣n + ∣α∣n1) = C2n

σ ∣α∣n (1 +
1

∣α∣n−n1
)

≤ C2n
σ ∣α∣n (1 +

1

∣α∣
) = C5n

σ ∣α∣n

and

∣Un −Un1 ∣ ≥ ∣Un∣ − ∣Un1 ∣ ≥ C1n
σ ∣α∣n −C2n

σ ∣α∣n1 = C1n
σ ∣α∣n (1 −

C2

C1∣α∣n−n1
)

≥ C1n
σ ∣α∣n (1 −

C2

C1∣α∣
) = C6n

σ ∣α∣n.

Similarly, we have

∣Vm − Vm1 ∣ ≤ ∣Vm∣ + ∣Vm1 ∣ ≤ C4m
τ (∣β∣m + ∣β∣m1) = C4m

τ ∣β∣m (1 +
1

∣β∣m−m1
)

≤ C4m
τ ∣β∣m (1 +

1

∣β∣
) = C7m

τ ∣β∣m
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and

∣Vm − Vm1 ∣ ≥ ∣Vm∣ − ∣Vm1 ∣ ≥ C3m
τ ∣β∣m −C4m

τ ∣β∣m1

= C3m
τ ∣β∣m (1 −

C4

C3∣β∣m−m1
)

≥ C3m
τ ∣β∣m (1 −

C4

C3∣β∣
) = C8m

τ ∣β∣m.

Therefore, we have

C6n
σ ∣α∣n ≤ ∣Un −Un1 ∣ = ∣Vm − Vm1 ∣ ≤ C7m

τ ∣β∣m (5.3.3)

and

C5n
σ ∣α∣n ≥ ∣Un −Un1 ∣ = ∣Vm − Vm1 ∣ ≥ C8m

τ ∣β∣m. (5.3.4)

Note that we proved (5.3.3) and (5.3.4) only under the assumption that n > n1 ≥ N2 and m >

m1 ≥ M2. However since by assumption n > n1 ≥ N0 and m > m1 ≥ M0 we have ∣Un∣ > ∣Un1 ∣ and
∣Vm∣ > ∣Vm1 ∣ respectively. Therefore by enlarging C7 and C5 respectively decreasing C6 and C8 we
obtain that (5.3.3) and (5.3.4) also holds under the assumption that n ≥ N2, n1 ≥ N0 and m ≥M2,
m1 ≥M0. Thus

n ≤m
log ∣β∣

log ∣α∣
+ τ

logm

log ∣α∣
+C9, (5.3.5)

where 0 <
log ∣β∣
log ∣α∣ < 1.

Inequality (5.3.5) implies that m > n for m ≥M3, where M3 is sufficiently large. Denote by N3 the
infimum for n when m ≥M3. Let us assume in the following that n > N4 = max{N0,N1,N2,N3,2}
and m > M4 = max{M0,M1,M2,M3,2} (and n1 ≥ N0 and m1 ≥ M0). Let us note that if m is
bounded from above by an effectively computable constant as M4 also n is bounded from above
by an effective computable constant due to inequality (5.3.5). Thus we can deduce that also c
is bounded and Theorem 5.2 holds in this case. Note that we assume for technical reasons that
N4,M4 ≥ 2. Therefore we may assume that m >M4 and hence m > n.

Furthermore let us fix the following notation for the rest of the paper. Let us write

K = Q(α1, . . . , αt, β1, . . . , βs) and d = [K ∶ Q].

5.3.2 Linear forms in logarithms

We refer to equation (5.1.1) and make use of the asymptotic estimates (5.3.1) and (5.3.2). Thus
we get

(a(n)αn +L(a′α′n)) − (a(n1)α
n1 +L(a′α′n1)) = (b(m)βm +L(b′β′m)) − (b(m1)β

m1 +L(b′β′m1))
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Collecting the “large” terms on the left hand side of the equation we obtain

a(n)αn − b(m)βm = a(n1)α
n1 − b(m1)β

m1 +L (a′α′
n
+ a′α′

n1 + b′β′
m
+ b′β′

m1)

and therefore the inequality

∣a(n)αn − b(m)βm∣ ≤ ∣a(n1)∣∣α∣
n1 + ∣b(m1)∣∣β∣

m1 + a′α′
n
+ a′α′

n1 + b′β′
m
+ b′β′

m1 .

Dividing through b(m)βm and using the inequalities (5.3.3) and (5.3.4), we get (note that we
assume n ≥ N3 and m ≥M3, i.e. ∣a(n)∣ ≥ ∣a(n1)∣ and ∣b(m)∣ ≥ ∣b(m1)∣):

∣
a(n)αn

b(m)βm
− 1∣ ≤

∣a(n1)∣∣α∣
n1

∣b(m)∣∣β∣m
+

∣b(m1)∣∣β∣
m1

∣b(m)∣∣β∣m
+

a′α′
n

∣b(m)∣∣β∣m
+

a′α′
n1

∣b(m)∣∣β∣m
+

b′β′
m

∣b(m)∣∣β∣m
+

b′β′
m1

∣b(m)∣∣β∣m

≤
C7m

τ ∣a(n1)∣∣α∣
n1

C6nσ ∣b(m)∣∣α∣n
+

∣b(m1)∣∣β∣
m1

∣b(m)∣∣β∣m
+

C7m
τa′α′

n

C6nσ ∣b(m)∣∣α∣n
+

C7m
τa′α′

n1

C6nσ ∣b(m)∣∣α∣n

+
b′β′

m

∣b(m)∣∣β∣m
+

b′β′
m1

∣b(m)∣∣β∣m

≤ C11∣α∣
n1−n + ∣β∣m1−m +C12 (

∣α∣

α′
)

−n

+C13∣α∣
n1−n +C14 (

∣β∣

β′
)

−m

+C15∣β∣
m1−m

≤ C11∣α∣
n1−n + ∣β∣m1−m +C12 (

∣α∣

α′
)

n1−n

+C13∣α∣
n1−n +C14 (

∣β∣

β′
)

m1−m

+C15∣β∣
m1−m

≤ max{C16 (
∣α∣

α′
)

n1−n

,C17 (
∣β∣

β′
)

m1−m

} .

Note that
mτ ∣a(n1)∣

nσ ∣b(m)∣

mτ ∣a(n)∣
nσ ∣b(m)∣

,
∣b(m1)∣

∣b(m)∣
and so on are bounded by absolute constants since deg(a) = σ

and deg(b) = τ . Hence we obtain the inequality

∣
a(n)

b(m)
αnβ−m − 1∣ ≤ max{C16 (

∣α∣

α′
)

n1−n

,C17 (
∣β∣

β′
)

m1−m

} . (5.3.6)

Let us introduce

Λ = n log ∣α∣ −m log ∣β∣ + log ∣
a(n)

b(m)
∣

and assume that ∣Λ∣ ≤ 0.5 and
a(n)
b(m)

αnβ−m > 0. Further, we put

Φ = eΛ − 1 = ∣
a(n)

b(m)
∣ ∣α∣n∣β∣−m − 1

and use the theorem of Baker and Wüstholz (Theorem 5.3) with the data

k = 3, η1 = ∣
a(n)

b(m)
∣ , b1 = 1, η2 = ∣α∣, b2 = n, η3 = ∣β∣, b3 = −m.
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Note that with this data we have B =m. It should be noted that we have complete information on
the minimal polynomial of α and β. Therefore, h′(α), h′(β) are effectively computable. Moreover,

due to Lemma 5.5 we have h0 (
a(n)
b(m)

) ≤ C̃ logm and thus

h′ (
a(n)

b(m)
) =

1

d
max{dh0 (

a(n)

b(m)
) , ∣log(

a(n)

b(m)
)∣ ,1} ≤ C̃ ′ logm.

Before we can apply Theorem 5.3 we have to ensure that Φ ≠ 0. Assume to the contrary that Φ = 0,

then
a(n)
b(m)

= ±β
m

αn . With the use of Lemma 5.4 we get

C̃ logm ≥ h0 (
a(n)

b(m)
) = h0 (

βm

αn
) ≥ C0 max{n,m} = C0m

which yields an absolute upper bound for m. Therefore also n and c are bounded, i.e. Theorem
5.2 holds in this special case.

An application of Theorem 5.3 yields

log ∣Φ∣ ≥ −C(3, d)h′ (
a(n)

b(m)
)h′(α)h′(β) logm − log 2

and together with inequality (5.3.6) we have

min{(n − n1) log(
∣α∣

α′
) , (m −m1) log(

∣β∣

β′
)} < C18(logm)2.

Thus we have proved so far:

Lemma 5.6. Assume that (n,m,n1,m1) is a solution to equation (5.1.1) with m > m1. Then we
have

min{(n − n1) log(
∣α∣

α′
) , (m −m1) log(

∣β∣

β′
)} < C18(logm)2.

Note that in the case that ∣Λ∣ > 0.5 or
a(n)
b(m)

αnβ−m < 0 inequality (5.3.6) is possible only if

max{C16 (
∣α∣

α′
)

n1−n

,C17 (
∣β∣

β′
)

m1−m

} ≥ e
1
2 − 1 > 0.648,

which leads to either

n − n1 ≤
log ( C16

0.648
)

log (
∣α∣
α′ )
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or

m −m1 ≤
log ( C17

0.648
)

log (
∣β∣
β′ )

.

These can be covered by the bound provided by Lemma 5.6 as long as we choose

C18 ≥
1

(logM3)2
max{log (

C16

0.648
) , log (

C17

0.648
)} .

Now we have to distinguish between the following two cases:

Case 1. Let us assume that

min{(n − n1) log(
∣α∣

α′
) , (m −m1) log(

∣β∣

β′
)} = (n − n1) log(

∣α∣

α′
) ,

i.e. we assume that (
∣α∣
α′ )

n1−n
≤ (

∣β∣
β′ )

m1−m
.

By collecting the “large terms” on the left hand side, we can rewrite equation (5.1.1) as

a(n)αn − a(n1)α
n1 − b(m)βm = −b(m1)β

m1 +L (a′α′
n
+ a′α′

n1 + b′β′
m
+ b′β′

m1)

and obtain the inequality

∣a(n)αn1 (αn−n1 −
a(n1)

a(n)
) − b(m)βm∣ ≤ ∣b(m1)∣∣β∣

m1 + a′α′
n
+ a′α′

n1 + b′β′
m
+ b′β′

m1 .

Dividing through b(m)βm and using the inequalities (5.3.3) and (5.3.4), we get

RRRRRRRRRRRRRR

a(n)αn1 (αn−n1 −
a(n1)

a(n) )

b(m)βm
− 1

RRRRRRRRRRRRRR

≤
∣b(m1)∣∣β∣

m1

∣b(m)∣∣β∣m
+

a′α′
n

∣b(m)∣∣β∣m
+

a′α′
n1

∣b(m)∣∣β∣m

+
b′β′

m

∣b(m)∣∣β∣m
+

b′β′
m1

∣b(m)∣∣β∣m
,

where

∣b(m1)∣∣β∣
m1

∣b(m)∣∣β∣m
≤ (

∣β∣

β′
)

m1−m

,

a′α′
n

∣b(m)∣∣β∣m
≤

C7m
τa′α′

n

C6nσ ∣b(m)∣∣α∣n
≤ C19 (

∣α∣

α′
)

−n

≤ C19 (
∣α∣

α′
)

n1−n

≤ C19 (
∣β∣

β′
)

m1−m

,

a′α′
n1

∣b(m)∣∣β∣m
≤

C7m
τa′α′

n1

C6nσ ∣b(m)∣∣α∣n
≤ C20 (

∣α∣

α′
)

n1−n

≤ C20 (
∣β∣

β′
)

m1−m

,

b′β′
m

∣b(m)∣∣β∣m
≤ C21 (

∣β∣

β′
)

−m

≤ C21 (
∣β∣

β′
)

m1−m

b′β′
m1

∣b(m)∣∣β∣m
≤ C22∣β∣

m1−m ≤ C22 (
∣β∣

β′
)

m1−m

.
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Hence we obtain the inequality

∣
a(n)

b(m)
(αn−n1 −

a(n1)

a(n)
)αn1β−m − 1∣ ≤ C23 (

∣β∣

β′
)

m1−m

. (5.3.7)

Case 2. Let us assume that

min{(n − n1) log(
∣α∣

α′
) , (m −m1) log(

∣β∣

β′
)} = (m −m1) log(

∣β∣

β′
) .

i.e. we assume that (
∣β∣
β′ )

m1−m
≤ (

∣α∣
α′ )

n1−n
.

Similarly as in Case 1 we collect the “large terms” on the left hand side and rewrite equation (5.1.1)
as

a(n)αn − b(m)βm + b(m1)β
m1 = −a(n1)α

n1 +L (a′α′
n
+ a′α′

n1 + b′β′
m
+ b′β′

m1)

and obtain the inequality

∣b(m)βm1 (βm−m1 −
b(m1)

b(m)
) − a(n)αn∣ ≤ ∣a(n1)∣∣α∣

n1 + a′α′
n
+ a′α′

n1 + b′β′
m
+ b′β′

m1 .

We obtain the inequality

∣
b(m)

a(n)
(βm−m1 −

b(m1)

b(m)
)α−nβm1 − 1∣ ≤ C28 (

∣α∣

α′
)

n1−n

(5.3.8)

by the same arguments as in Case 1 by interchanging a(n), α, n, n1, a
′ and α′ with b(m), β,m,m1, b

′

and β′.

We want to apply Theorem 5.3 to both inequalities (5.3.7) and (5.3.8) respectively. Let us consider
the first case more closely. We write

Λ1 = n1 log ∣α∣ −m log ∣β∣ + log ∣
a(n)

b(m)
(αn−n1 −

a(n1)

a(n)
)∣

and assume that ∣Λ1∣ ≤ 0.5 and
a(n)
b(m)

(αn−n1 −
a(n1)

a(n) ) > 0. Further, we put

Φ1 = e
Λ1 − 1 = ∣

a(n)

b(m)
(αn−n1 −

a(n1)

a(n)
)∣ ∣α∣n1 ∣β∣−m − 1

and aim to apply Theorem 5.3 with B =m. Further, we have

η1 = ∣
a(n)

b(m)
(αn−n1 −

a(n1)

a(n)
)∣ , b1 = 1, η2 = ∣α∣, b2 = n1, η3 = ∣β∣, b3 = −m.
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It should be noted that as before h′(α) and h′(β) are effectively computable. For h′(η1), we can
use the properties of height and the results of Lemma 5.6 and Lemma 5.5 to get

h0(η1) = h0 (
a(n)

b(m)
(αn−n1 −

a(n1)

a(n)
))

≤ h0 (
a(n)

b(m)
) + (n − n1)h0(α) + h0 (

a(n1)

a(n)
) + log 2

≤ h0 (
a(n)

b(m)
) +

C18(logm)2

log (
∣α∣
α′ )

h0(α) + h0 (
a(n1)

a(n)
) + log 2

≤ C29(logm)2

and thus

h′(η1) =
1

d
max{dh0(η1), ∣ log η1∣,1} ≤ C30(logm)2.

Now let us turn to the second case. We write

Λ2 =m1 log ∣β∣ − n log ∣α∣ + log ∣
b(m)

a(n)
(βm−m1 −

b(m1)

b(m)
)∣

and assume that ∣Λ2∣ ≤ 0.5 and
b(m)

a(n) (βm−m1 −
b(m1)

b(m)
) > 0. Further, we put

Φ2 = e
Λ2 − 1 = ∣

b(m)

a(n)
(βm−m1 −

b(m1)

b(m)
)∣ ∣α∣−n∣β∣m1 − 1

and aim to apply Theorem 5.3. As in the previous case we also have B =m. Further, we have

η1 = ∣
b(m)

a(n)
(βm−m1 −

b(m1)

b(m)
)∣ , b1 = 1, η2 = ∣α∣, b2 = −n, η3 = ∣β∣, b3 =m1.

It should be noted that as before h′(α) and h′(β) are effectively computable. For h′(η1), we can
use the properties of height and the results of Lemma 5.6 and Lemma 5.5 to get

h0(η1) = h0 (
b(m)

a(n)
(βm−m1 −

b(m1)

b(m)
))

≤ h0 (
b(m)

a(n)
) + (m −m1)h0(β) + h0 (

b(m1)

b(m)
) + log 2

≤ h0 (
b(m)

a(n)
) +

C18(logm)2

log (
∣β∣
β′ )

h0(β) + h0 (
b(m1)

b(m)
) + log 2

≤ C31(logm)2

and thus

h′(η1) =
1

d
max{dh0(η1), ∣ log η1∣,1} ≤ C32(logm)2.
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Before we can apply Theorem 5.3 we have to ensure that Φi ≠ 0 for i = 1,2. Firstly we deal with

the assumption that Φ1 = 0, i.e. ±
a(n)
b(m)

(αn−n1 −
a(n1)

a(n) ) = βm

αn1 . This together with Lemma 5.6 yields

h0 (
βm

αn
) = h0 (

a(n)

b(m)
(αn−n1 −

a(n1)

a(n)
)) < C29(logm)2

as determined before. With the use of Lemma 5.4 we get

C29(logm)2 > h0 (
βm

αn1
) ≥ C0 max{n1,m} ≥ C0m.

Thus m is bounded by an effectively computable constant. Besides, since m > n so n is also bounded
and therefore also c, i.e. Theorem 5.2 holds in this case. A similar argument also applies to Case
2.

Now, we are ready to apply Theorem 5.3 and get

log ∣Φi∣ > −C(3, d)h′(η1)h
′(α)h′(β) logm − log 2

for i = 1,2. Combining this inequality with the inequalities (5.3.7) and (5.3.8), we obtain

(m −m1) log(
∣β∣

β′
) < C33(logm)3 and (n − n1) log(

∣α∣

α′
) < C34(logm)3

respectively. Let C35 = max{C33,C34}. These two inequalities yield together with Lemma 5.6 the
following lemma:

Lemma 5.7. Assume that (n,m,n1,m1) is a solution to equation (5.1.1) with m > m1. Then we
have

max{(n − n1) log(
∣α∣

α′
) , (m −m1) log(

∣β∣

β′
)} < C35(logm)3.

Note that in view of ∣Λ1∣ > 0.5 or
a(n)
b(m)

(αn−n1 −
a(n1)

a(n) ) < 0, inequality (5.3.7) is possible only if

C23 (
∣β∣

β′
)

m1−m

≥ e
1
2 − 1 > 0.648,

which leads to m −m1 ≤
log(

C23
0.648

)

log(
∣β∣
β′ )

. In view of ∣Λ2∣ > 0.5 or
b(m)

a(n) (βm−m1 −
b(m1)

b(m)
) < 0, inequality

(5.3.8) is possible only if

C28 (
∣α∣

α′
)

n1−n

≥ e
1
2 − 1 > 0.648,

which leads to n − n1 ≤
log(

C28
0.648

)

log(
∣α∣
α′ )

. Both cases can be covered by the bound provided by Lemma 5.7

as long as

C35 ≥
1

(logM3)3
max{log (

C28

0.648
) , log (

C23

0.648
)} .
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One more time we have to apply Theorem 5.3. This time we rewrite equation (5.1.1) by collecting
“large” terms on the left hand side as

a(n)αn − a(n1)α
n1 − b(m)βm + b(m1)β

m1 = L (a′α′
n
+ a′α′

n1 + b′β′
m
+ b′β′

m1)

and obtain

∣a(n)αn1 (αn−n1 −
a(n1)

a(n)
) − b(m)βm1 (βm−m1 −

b(m1)

b(m)
)∣ ≤ a′α′

n
+ a′α′

n1 + b′β′
m
+ b′β′

m1 .

Dividing through b(m)βm1 (βm−m1 −
b(m1)

b(m)
) and using the inequalities (5.3.3) and (5.3.4) we get

RRRRRRRRRRRRRR

a(n)αn1 (αn−n1 −
a(n1)

a(n) )

b(m)βm1 (βm−m1 −
b(m1)

b(m)
)
− 1

RRRRRRRRRRRRRR

≤
a′α′

n

∣b(m)∣∣β∣m1 ∣βm−m1 −
b(m1)

b(m)
∣
+

a′α′
n1

∣b(m)∣∣β∣m1 ∣βm−m1 −
b(m1)

b(m)
∣

+
b′β′

m

∣b(m)∣∣β∣m1 ∣βm−m1 −
b(m1)

b(m)
∣
+

b′β′
m1

∣b(m)∣∣β∣m1 ∣βm−m1 −
b(m1)

b(m)
∣
.

We make use of inequality (5.3.5) to get

α′
n
= exp (n logα′)

< exp(m
log ∣β∣

log ∣α∣
logα′ + τ

logα′

log ∣α∣
logm +C9 logα′)

= exp(m
logα′

log ∣α∣
log ∣β∣) (mτ)

logα′
log ∣α∣ exp (C9 logα′)

< C36m
τγm,

where γ = ∣β∣
logα′
log ∣α∣ . Note that since ∣α∣ > α′ > 1 and ∣β∣ > 1 we have that ∣β∣ > γ > 1. So that

a′α′
n

∣b(m)∣∣β∣m1 ∣βm−m1 −
b(m1)

b(m)
∣
<

C36a
′mτγm

∣b(m)∣∣β∣m ∣1 − βm1−m b(m1)

b(m)
∣

=
C36a

′mτγm

∣b(m)∣∣β∣m ∣1 −
b(m1)

b(m)βm−m1
∣

≤
C36a

′mτγm

∣b(m)∣∣β∣m ∣1 − 1
β ∣

≤ C37 (
∣β∣

γ
)

−m

.

In addition, since we assume that α′ > 1, we have

a′α′
n1

∣b(m)∣∣β∣m1 ∣βm−m1 −
b(m1)

b(m)
∣
<

a′α′
n

∣b(m)∣∣β∣m ∣1 −
b(m1)

b(m)βm−m1
∣

<
C36a

′mτγm

∣b(m)∣∣β∣m ∣1 − 1
β ∣

≤ C37 (
∣β∣

γ
)

−m

.
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Furthermore,
b′β′

m

∣b(m)∣∣β∣m1 ∣βm−m1 −
b(m1)

b(m)
∣
≤

b′β′
m

∣b(m)∣∣β∣m ∣1 − 1
β ∣

≤ C38 (
∣β∣

β′
)

−m

.

Since we may assume that β′ > 1 we get

b′β′
m1

∣b(m)∣∣β∣m1 ∣βm−m1 −
b(m1)

b(m)
∣
≤

b′β′
m

∣b(m)∣∣β∣m ∣1 − 1
β ∣

= C39 (
∣β∣

β′
)

−m

.

Therefore,

RRRRRRRRRRRRRR

a(n) (αn−n1 −
a(n1)

a(n) )

b(m) (βm−m1 −
b(m1)

b(m)
)
αn1β−m1 − 1

RRRRRRRRRRRRRR

≤ C40Γ−m, (5.3.9)

where Γ = min{
∣β∣
β′ ,

∣β∣
γ }. In this final step we consider the linear form

Λ3 = n1 log ∣α∣ −m1 log ∣β∣ + log

RRRRRRRRRRRRRR

a(n) (αn−n1 −
a(n1)

a(n) )

b(m) (βm−m1 −
b(m1)

b(m)
)

RRRRRRRRRRRRRR

and assume that ∣Λ3∣ ≤ 0.5 and
a(n)(αn−n1−a(n1)

a(n) )

b(m)(βm−m1−
b(m1)
b(m) )

> 0. Further, we put

Φ3 = e
Λ3 − 1 =

RRRRRRRRRRRRRR

a(n) (αn−n1 −
a(n1)

a(n) )

b(m) (βm−m1 −
b(m1)

b(m)
)

RRRRRRRRRRRRRR

∣α∣n1 ∣β∣−m1 − 1.

As before we take B =m and we choose

η1 =

RRRRRRRRRRRRRR

a(n) (αn−n1 −
a(n1)

a(n) )

b(m) (βm−m1 −
b(m1)

b(m)
)

RRRRRRRRRRRRRR

, b1 = 1, η2 = ∣α∣, b2 = n1, η3 = ∣β∣, b3 = −m1.

For h′(η1), we can use the properties of the height and the results of Lemma 5.5 and Lemma 5.7
to get

h0(η1) = h0

⎛
⎜
⎝

a(n) (αn−n1 −
a(n1)

a(n) )

b(m) (βm−m1 −
b(m1)

b(m)
)

⎞
⎟
⎠

≤ h0 (
a(n)

b(m)
) + (n − n1)h0(α) + (m −m1)h0(β) + h0 (

a(n1)

a(n)
) + h0 (

b(m1)

b(m)
) + 2 log 2

≤ h0 (
a(n)

b(m)
) +

C35h0(α)(logm)3

log (
∣α∣
α′ )

+
C35h0(β)(logm)3

log (
∣β∣
β′ )

+ h0 (
a(n1)

a(n)
) + h0 (

b(m1)

b(m)
) + 2 log 2

≤ C41(logm)3
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and thus

h′(η1) =
1

d
max{dh0(η1), ∣ log η1∣,1} ≤ C42(logm)3.

It should be noted that as before h′(α) and h′(β) are effectively computable.

Before we can apply Theorem 5.3 we have to ensure that Φ3 ≠ 0, i.e.

±
a(n) (1 −

a(n1)α
n1−n

a(n) )

b(m) (1 −
b(m1)βm1−m

b(m)
)
=
βm

αn
.

This together with Lemma 5.7 yields

h0 (
βm

αn
) = h0

⎛
⎜
⎝

a(n) (1 −
a(n1)α

n1−n
a(n) )

b(m) (1 −
b(m1)βm1−m

b(m)
)

⎞
⎟
⎠
< C43(logm)3.

Similar to the argument in Case 1 and Case 2, we deduce by using Lemma 5.4 that

C43(logm)3 > h0 (
βm

αn
) ≥ C0 max{n,m} ≥ C0m.

Thus m is bounded by an effectively computable constant. Besides, since m > n so n is also bounded
and therefore also c and we deduce Theorem 5.2 in this case.

Now an application of Theorem 5.3 yields

log ∣Φ3∣ > −C(3, d)h′(η1)h
′(α)h′(β) logm − log 2.

Combining this inequality with inequality (5.3.9) we get

m log Γ + logC42 < C44(logm)4 + log 2.

which yields m < C45.

Similarly as in the cases above the assumption that ∣Λ3∣ > 0.5 or

a(n) (αn−n1 −
a(n1)

a(n) )

b(m) (βm−m1 −
b(m1)

b(m)
)
< 0

leads in view of inequality (5.3.9) to

C40Γ−m ≥ e
1
2 − 1 > 0.648,

which leads to m ≤
log(

C40
0.648

)

log Γ . These can be covered by the above bound m < C45 as long as

C45 ≥
log ( C40

0.648
)

log Γ
.
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As a conclusion, if n ≥ N3 and m ≥M3, we have n <m < C45, where C45 is an effectively computable
constant. Therefore, together with those finitely many cases where n ≤ N4, m ≤M4 and all possible
cases of (m,n) which yield ∣Φ∣, ∣Φi∣ = 0 for i = 1,2,3, there can only be finitely many integers c
having at least two distinct representations of the form Un −Vm. The number of integers c and the
corresponding values of c are both effectively computable. Therefore Theorem 5.2 is proved.



Chapter 6

Sums of Fibonacci numbers and
powers of two

The content of this chapter is similar to the submitted joint work with Volker Ziegler titled “On
Diophantine equations involving sums of Fibonacci numbers and powers of 2” [38].1

6.1 Introduction

There is a vast literature on solving Diophantine equations involving the sequence {Fn}n≥0 of
Fibonacci numbers (defined by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for n ≥ 0), the sequence

{F
(k)
n }n≥0 of k-generalized Fibonacci numbers, the sequence {Pn}n≥0 of Pell numbers or other

recurrence sequences. For instance, recent results include Bravo and Luca [31] where they studied
the Diophantine equation

Fn + Fm = 2a.

In [28] they extended their work to k-generalized Fibonacci number F
(k)
n , and studied the equation

F (k)
n + F (k)

m = 2a.

Besides, Bravo, Faye and Luca [27] studied the Diophantine equation

Pl + Pm + Pn = 2a.

The most general results in this respect are due to Stewart [82], who studied representations of
integers in two different bases. Note that e.g. the result due to Bravo and Luca [31] can be seen

1K. C. Chim was supported by the Austrian Science Fund (FWF) under the projects P26114 and W1230.
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as an attempt to find all integers that have only few digits in base 2 and the Zeckendorf expansion
simultaneously. Also Luca [58] proves a similar result. Finally let us mention a recent result due
to Meher and Rout [65] on the Diophantine equation

Un1 + ⋅ ⋅ ⋅ +Unt = b1p
z1
1 + ⋅ ⋅ ⋅ + bsp

zs
s

in non-negative integers n1, . . . , nt, z1, . . . , zs, where {Un}n≥0 is a binary, non-degenerate recurrence
sequence with positive discriminant, b1, . . . , bs are fixed non-negative integers and p1, . . . , ps are
fixed primes.

Also recently Diophantine equations have been studied which can be regarded as variants of Pillai’s
problem [71]. For instance, Chim, Pink and Ziegler [36] obtained all the integers c such that the
Diophantine equation

Fn − Tm = c

has at least two solutions. Here Tm denotes the m-th Tribonacci number. Ddamulira, Luca, and
Rakotomalala [39] considered the Diophantine equation

Fn − 2m = c

and found all integers c for which this Diophantine equation has at least two solutions. Recently,
Bravo, Luca and Yazán [32] considered the Diophantine equation

Tn − 2m = c

instead. The most general result is due to Chim, Pink and Ziegler [37] who considered the case,
where Un and Vm are the n-th and m-th numbers in linear recurrence sequences {Un}n≥0 and
{Vm}m≥0 respectively and found effective upper bounds for ∣c∣ such that the Diophantine equation

Un − Vm = c

has at least two solutions.

All the problems stated above are solved by a similar strategy, the iterated application of linear
forms in logarithms. We extend this strategy and study the two Diophantine equations

Fn1 + Fn2 = 2a1 + 2a2 + 2a3

and
Fm1 + Fm2 + Fm3 = 2t1 + 2t2 .

In particular, we prove the following two theorems.

Theorem 6.1. Let (n1, n2, a1, a2, a3) ∈ N5 be a solution to the Diophantine equation

Fn1 + Fn2 = 2a1 + 2a2 + 2a3 (6.1.1)

such that n1 ≥ n2 ≥ 0 and a1 ≥ a2 ≥ a3 ≥ 0, then n1 ≤ 18 and a1 ≤ 11. In particular, equation (6.1.1)
has exactly 78 solutions.



6.1. INTRODUCTION 115

Theorem 6.2. Let (m1,m2,m3, t1, t2) ∈ N5 be a solution to the Diophantine equation

Fm1 + Fm2 + Fm3 = 2t1 + 2t2 (6.1.2)

such that m1 ≥ m2 ≥ m3 ≥ 0 and t1 ≥ t2 ≥ 0, then m1 ≤ 16 and t1 ≤ 10. In particular, equation
(6.1.2) has exactly 116 solutions.

Remark 2. The list of solutions to equations (6.1.1) and (6.1.2) is given in the Appendix. So we
keep the statement of Theorems 6.1.1 and 6.1.2 short and compact.

We shall prove both Theorems 6.1 and 6.2 by the typical strategy also performed in [31, 32,
36, 37, 39]. First we extract by a simple computer search all solutions (n1, n2, a1, a2, a3) with
n1 < 360 to equation (6.1.1) and all solutions (m1,m2,m3, t1, t2) with m1 < 360 to equation (6.1.2),
respectively. The key argument to obtain upper bounds for n1 = max{n1, n2, a1, a2, a3} and m1 =

max{m1,m2,m3, t1, t2} respectively is to apply lower bounds for linear forms in logarithms. This is
done in the seven steps described below, where c1, . . . , c7 denote effectively computable constants.
These seven steps are in case of the proof of Theorem 6.1 the following:

Step 1 We obtain an upper bound

min{(a1 − a2) log 2, (n1 − n2) logα} ≤ c1 logn1.

Hence we have to distinguish between the following two cases:

Case 1 min{(a1 − a2) log 2, (n1 − n2) logα} = (a1 − a2) log 2 ≤ c1 logn1

Case 2 min{(a1 − a2) log 2, (n1 − n2) logα} = (n1 − n2) logα ≤ c1 logn1

Step 2 We consider Case 1 and show that (a1 − a2) log 2 ≤ c1 logn1 yields

min{(a1 − a3) log 2, (n1 − n2) logα} ≤ c2(logn1)
2.

Thus we have to further subdivide Case 1 into the following two cases:

Case 1A min{(a1 − a3) log 2, (n1 − n2) logα} = (a1 − a3) log 2 ≤ c2(logn1)
2

Case 1B min{(a1 − a3) log 2, (n1 − n2) logα} = (n1 − n2) logα ≤ c2(logn1)
2

Step 3 We consider Case 1A and show that (a1 − a3) log 2 ≤ c2(logn1)
2 implies that

(n1 − n2) logα ≤ c3(logn1)
3.

Step 4 We consider Case 1B and show that (a1−a2) log 2 ≤ c1 logn1 and (n1−n2) logα ≤ c2(logn1)
2

yield the upper bound
(a1 − a3) log 2 ≤ c4(logn1)

3.

Step 5 We consider Case 2 and show that (n1 − n2) logα ≤ c1 logn1 yields the upper bound

(a1 − a2) log 2 ≤ c5(logn1)
2.
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Step 6 We continue to consider Case 2 and show that assuming the upper bounds (a1 −a2) log 2 ≤
c5(logn1)

2 and (n1 − n2) logα ≤ c1 logn1 yield the upper bound

(a1 − a3) log 2 ≤ c4(logn1)
3.

This is basically Step 4 again, but with probably slightly different constants. However after
Step 6 we have found upper bounds for (a1 − a2) log 2, (a1 − a3) log 2 and (n1 − n2) logα.

Step 7 We show that the upper bounds found in the previous steps yield an inequality of the form
n1 ≤ c7(logn1)

4. Thus we obtain an absolute bound for n1.

As soon as we have found an upper bound for n1 we go through all seven steps again but apply
instead of lower bounds for linear forms in logarithms the Baker-Davenport reduction method and
obtain in all steps small, absolute bounds respectively. In case the Baker-Davenport reduction
method fails we can make use of a criteria of Legendre for continued fractions to reduce the huge
upper bounds to rather small upper bounds. Indeed we succeed to show that all solutions satisfy
n1 < 360, which already have been found by our previous computer search.

Of course, a slight modification of these seven steps also leads to a proof of Theorem 6.2.

It should be noted that due to having more terms in each equation as compared to the equations
considered in [31, 32, 36, 37, 39], we apply several times more the results of linear forms in logarithms
and the reduction method. E.g. instead of using only twice the results on linear forms in logarithms
and the reduction method as in [31] we apply them seven times.

6.2 Preliminaries

In this section, the result of linear forms in logarithms by Baker and Wüstholz [19] is stated. Besides,
we state a lemma from [27], which is a generalization of a result due to Baker and Davenport [17]
the so-called Baker-Davenport reduction method. Both results will be used to prove Theorems 6.1
and 6.2.

6.2.1 A lower bound for linear forms in logarithms of algebraic numbers

In 1993, Baker and Wüstholz [19] obtained an explicit bound for linear forms in logarithms with
a linear dependence on logB, where B ≥ e denotes an upper bound for the height of the linear
form (to be defined later in this section). It is a vast improvement compared with lower bounds
with a dependence on higher powers of logB in preceding publications by other mathematicians in
particular Baker’s original results [1, 2, 3].
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Denote by α1, . . . , αk algebraic numbers, not 0 or 1, and by logα1, . . . , logαk a fixed determination
of their logarithms. Let K = Q(α1, . . . , αk) and let d = [K ∶ Q] be the degree of K over Q. For any
α ∈K, suppose that its minimal polynomial over the integers is

g(x) = a0x
δ + a1x

δ−1 +⋯ + aδ = a0

δ

∏
j=1

(x − α(j))

where α(j), j = 1, . . . , δ, are all the roots of g(x). The absolute logarithmic Weil height of α is
defined as

h0(α) =
1

δ

⎛

⎝
log ∣a0∣ +

δ

∑
j=1

log (max{∣α(j)∣,1})
⎞

⎠
.

Then the modified height h′(α) is defined by

h′(α) =
1

d
max{h(α), ∣ logα∣,1},

where h(α) = dh0(α) is the standard logarithmic Weil height of α.

Let us consider the linear form

L(z1, . . . , zk) = b1z1 +⋯ + bkzk,

where b1, . . . , bk are rational integers, not all 0 and define

h′(L) =
1

d
max{h(L),1},

where h(L) = d log (max1≤j≤k {
∣bj ∣
b }) is the logarithmic Weil height of L, with b as the greatest

common divisor of b1, . . . , bk. If we write B = max{∣b1∣, . . . , ∣bk∣, e}, then we get

h′(L) ≤ logB.

With these notations we are able to state the following result due to Baker and Wüstholz [19].

Theorem 6.3. If Λ = L(logα1, . . . , logαk) ≠ 0, then

log ∣Λ∣ ≥ −C(k, d)h′(α1)⋯h
′(αk)h

′(L),

where
C(k, d) = 18(k + 1)!kk+1(32d)k+2 log(2kd).

With ∣Λ∣ ≤ 1
2 , we have 1

2 ∣Λ∣ ≤ ∣Φ∣ ≤ 2∣Λ∣, where

Φ = eΛ − 1 = αb11 ⋯α
bk
k − 1,
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so that
log ∣αb11 ⋯α

bk
k − 1∣ ≥ log ∣Λ∣ − log 2.

We apply Theorem 6.3 mainly in the situation where K = Q(
√

5), k = 3 and d = 2. In this case we
obtain

C(3,2) = 18 ⋅ 4! ⋅ 34 ⋅ 645 log 12 < 9.34 ⋅ 1013.

We will use this value throughout the paper without any further reference. Besides, let us recall
some well known properties of the absolute logarithmic height:

h0(η ± γ) ≤ h0(η) + h0(γ) + log 2,

h0(ηγ
±1) ≤ h0(η) + h0(γ),

h0(η
`) = ∣`∣h0(η),

where η, γ are some algebraic numbers and ` ∈ Z.

6.2.2 A generalized result of Baker and Davenport

The following result will be used to reduce the huge upper bounds for n1 and m1 found in Propo-
sitions 6.1 and 6.2 respectively. Let us state Lemma 6 in [27] which is regarded as a generalization
of a result due to Baker and Davenport [17]. We denote by ∥x∥ = min{∣x − n∣ ∶ n ∈ Z} the distance
from x ∈ R to the nearest integer.

Lemma 6.4. Let M be a positive integer, let p/q be a convergent of the continued fraction of the
irrational γ such that q > 6M , and let A,B,µ be some real numbers with A > 0 and B > 1. Let
ε ∶= ∥µq∥ −M∥γq∥. If ε > 0, then there is no solution to the inequality

0 < ∣uγ − v + µ∣ < AB−w, (6.2.1)

in positive integers u, v and w with

u ≤M and w ≥
log(Aq/ε)

logB
.

Remark 3. Let us explain how we will make use of Lemma 6.4 and explain how we proceed, if
we are given an inequality of the form (6.2.1) and an upper bound M for solutions with u ≤ M .
We start with the smallest denominator q = qj of the j-th convergent

pj
qj

of γ that exceeds 6M . If

ε = ∥µq∥−M∥γq∥ > 0, we compute the respective upper bound w <
log(Aq/ε)

logB . If we get a negative ε,

we consider the denominator qj+1 of the (j + 1)-th convergent pj+1/qj+1 instead. If a positive ε is
obtained we compute the respective upper bound for w. If also the denominator qj+1 of the (j+1)-th
convergent yields a negative ε we consider the denominator of the next convergent until we obtain
a positive ε. Let us note that it is very unlikely that after several iterations no instance occurs
with a positive ε, without any good reason. Usually this reason is a rational linear dependence on
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1, γ and µ. If we find such a linear relation involving 1, γ and µ, inequality (6.2.1) turns into an
inequality of the form

0 < ∣u′γ − v′∣ < AB−w

and we are reduced to a classical approximation problem and may use the theory of continued
fractions. We will treat such cases separately.

6.3 Set up

During the proof of both theorems we use the Binet formula for the Fibonacci sequence in the
following form:

Fk =
αk − βk

α − β
∀k ≥ 0, (6.3.1)

where α = 1+
√

5
2 and β = 1−

√
5

2 are the roots of the characteristic polynomial x2 − x − 1. Moreover,
we have the inequality

αk−2 ≤ Fk ≤ α
k−1 ∀k ≥ 1. (6.3.2)

Without loss of generality, we may assume that n1 ≥ n2 ≥ 0 and a1 ≥ a2 ≥ a3 ≥ 0. Similarly, we may
assume that m1 ≥m2 ≥m3 ≥ 0 and t1 ≥ t2 ≥ 0 when solving equation (6.1.2).

6.3.1 Scenario for equation (6.1.1)

Recall that we would like to solve

Fn1 + Fn2 = 2a1 + 2a2 + 2a3

for n1, n2, a1, a2 and a3. Thus we get

αn1−2 ≤ Fn1 ≤ Fn1 + Fn2 = 2a1 + 2a2 + 2a3 ≤ 3 ⋅ 2a1 , (6.3.3)

and
2αn1−1 ≥ 2Fn1 ≥ Fn1 + Fn2 = 2a1 + 2a2 + 2a3 > 2a1 . (6.3.4)

Hence

n1 − 2 ≤ a1 ⋅
log 2

logα
+

log 3

logα
and n1 − 1 ≥ (a1 − 1) ⋅

log 2

logα
, (6.3.5)

where log 2
logα = 1.4404 . . .. In particular, we have n1 > a1.

In a first step, we solve equation (6.1.1) for all n1 < 360. Inequality (6.3.5) implies that in this case
we have a1 < 251. By a brute force computer enumeration for 0 ≤ n2 ≤ n1 < 360 and 0 ≤ a3 ≤ a2 ≤

a1 < 251 we found all solutions listed in the Appendix.
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6.3.2 Scenario for equation (6.1.2)

Recall that we would like to solve

Fm1 + Fm2 + Fm3 = 2t1 + 2t2

for m1,m2,m3, t1 and t2. Similarly as above we obtain

αm1−2 ≤ Fm1 ≤ Fm1 + Fm2 + Fm3 = 2t1 + 2t2 ≤ 2t1+1 (6.3.6)

and

3αm1−1 ≥ 3Fm1 ≥ Fm1 + Fm2 + Fm3 = 2t1 + 2t2 > 2t1 . (6.3.7)

Thus

m1 − 2 ≤ t1 ⋅
log 2

logα
+

log 2

logα
and m1 − 1 > t1 ⋅

log 2

logα
−

log 3

logα
. (6.3.8)

In particular, we have m1 > t1.

We solve equation (6.1.2) for 0 ≤m3 ≤m2 ≤m1 < 360 and 0 ≤ t2 ≤ t1 < 251 by a brute force computer
enumeration and find all solutions listed in the Appendix.

By these computer searches we may assume now that n1 ≥ 360 for solving equation (6.1.1) (re-
spectively m1 ≥ 360 for solving equation (6.1.2)). Moreover, we want to emphasize that the second
inequality of (6.3.5) (respectively (6.3.8)) implies that n1 > a1 (respectively m1 > t1).

6.4 A first upper bound - Application of linear forms in logarithms

In this section, we shall establish the following two propositions concerning Diophantine equations
(6.1.1) and (6.1.2) respectively.

Proposition 6.1. Assume that (n1, n2, a1, a2, a3) is a solution to equation (6.1.1) with n1 ≥ n2 ≥ 0
and a1 ≥ a2 ≥ a3 ≥ 0. Then we have that n1 < 4.1 ⋅ 1062.

Proposition 6.2. Assume that (m1,m2,m3, t1, t2) is a solution to equation (6.1.2) with m1 ≥m2 ≥

m3 ≥ 0 and t1 ≥ t2 ≥ 0. Then we have that m1 < 4.2 ⋅ 1062.

6.4.1 Proof of Proposition 6.1

We follow the steps explained in the introduction. We start with
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Step 1: Show that

min{(a1 − a2) log 2, (n1 − n2) logα} < 2.61 ⋅ 1013 logn1.

Equation (6.1.1) can be rewritten as

αn1 − βn1

√
5

+
αn2 − βn2

√
5

= 2a1 + 2a2 + 2a3 .

In the first step we consider n1 and a1 to be large and by collecting “large” terms to the left hand
side of the equation, we obtain

∣
αn1

√
5
− 2a1∣ = ∣2a2 + 2a3 +

βn1

√
5
−
αn2 − βn2

√
5

∣ < 2a2+1 +
αn2

√
5
+ 0.45 < 2.9 max{2a2 , αn2}.

Dividing through 2a1 we get

∣
αn1

√
5

2−a1 − 1∣ < max{2.9 ⋅ 2a2−a1 ,
2.9αn2

2a1
} < max{2.9 ⋅ 2a2−a1 ,

8.7αn2

αn1−2
} .

Hence we obtain the inequality

∣
αn1

√
5

2−a1 − 1∣ < 22.78 max{2a2−a1 , αn2−n1} . (6.4.1)

In Step 1 we consider the linear form

Λ = n1 logα − a1 log 2 − log
√

5

and assume that ∣Λ∣ ≤ 0.5. Further, we put

Φ = eΛ − 1 = αn12−a1
√

5
−1
− 1

and use the theorem of Baker and Wüstholz (Theorem 6.3) with the data

α1 = α, α2 = 2, α3 =
√

5, b1 = n1, b2 = −a1, b3 = −1.

Since n1 > a1 we have B = n1. By simple computations, we obtain h′(α1) =
1
2 , h′(α2) = log 2 and

h′(α3) = log
√

5.

Before we can apply Theorem 6.3 we have to show that Φ ≠ 0. Assume to the contrary that Φ = 0,
then αn1 =

√
5 ⋅ 2a1 . Let σ ≠ id be the unique non-trivial Q-automorphism over Q(

√
5). Then we

get

αn1 =
√

5 ⋅ 2a1 = −σ (
√

5 ⋅ 2a1) = −σ (αn1) = −βn1 .
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However, the absolute value of αn1 is at least α360 > 2 whereas the absolute value of −βn1 is at
most ∣β∣360 < 1. By this obvious contradiction we conclude that Φ ≠ 0.

Theorem 6.3 yields

log ∣Φ∣ ≥ −C(3,2) (
1

2
) (log 2) (log

√
5) logn1 − log 2

and together with inequality (6.4.1) we have

min{(a1 − a2) log 2, (n1 − n2) logα} < 2.61 ⋅ 1013 logn1.

Thus we have proved so far:

Lemma 6.5. Assume that (n1, n2, a1, a2, a3) is a solution to equation (6.1.1) with n1 ≥ n2 ≥ 0 and
a1 ≥ a2 ≥ a3 ≥ 0. Then we have

min{(a1 − a2) log 2, (n1 − n2) logα} < 2.61 ⋅ 1013 logn1.

Note that in the case that ∣Λ∣ > 0.5, inequality (6.4.1) is possible only if either a1 − a2 ≤ 5 or
n1 − n2 ≤ 7, which are covered by the bound provided by Lemma 6.5.

Now we have to distinguish between

Case 1 min{(a1 − a2) log 2, (n1 − n2) logα} = (a1 − a2) log 2 and

Case 2 min{(a1 − a2) log 2, (n1 − n2) logα} = (n1 − n2) logα.

We will deal with these two cases in the following steps.

Step 2: We consider Case 1 and show that under the assumption that (a1 − a2) log 2 < 2.61 ⋅
1013 logn1 we obtain

min{(a1 − a3) log 2, (n1 − n2) logα} < 8.5 ⋅ 1026(logn1)
2.

Since we consider Case 1 we assume that

min{(a1 − a2) log 2, (n1 − n2) logα} = (a1 − a2) log 2 < 2.61 ⋅ 1013 logn1.

By collecting “large” terms, i.e. terms involving n1, a1 and a2, on the left hand side, we rewrite
equation (6.1.1) as

∣
αn1

√
5
− 2a1 − 2a2∣ = ∣2a3 +

βn1

√
5
−
αn2

√
5
+
βn2

√
5
∣ < 2a3 +

αn2

√
5
+ 0.45
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and obtain that

∣
αn1

√
5
− 2a2 (2a1−a2 + 1)∣ < 1.9 max{2a3 , αn2} .

Dividing through αn1√
5

we get by using inequality (6.3.4)

∣α−n12a2
√

5 (2a1−a2 + 1) − 1∣ < max{
1.9

√
5

αn1
⋅ 2a3 ,1.9

√
5αn2−n1}

≤ max{
1.9

√
5

2a1−1α
⋅ 2a3 ,1.9

√
5αn2−n1}

and obtain the inequality

∣α−n12a2
√

5 (2a1−a2 + 1) − 1∣ < 5.26 max{2a3−a1 , αn2−n1} . (6.4.2)

We shall apply Theorem 6.3 to inequality (6.4.2). Therefore we consider the following linear form
in logarithms:

Λ1 = −n1 logα + a2 log 2 + log (
√

5 (2a1−a2 + 1)) .

Let us assume for the moment that ∣Λ1∣ ≤ 0.5. Further, we put

Φ1 = e
Λ1 − 1 = α−n12a2

√
5 (2a1−a2 + 1) − 1

and aim to apply Theorem 6.3 by taking

α1 = α, α2 = 2, α3 =
√

5 (2a1−a2 + 1) , b1 = −n1, b2 = a2, b3 = 1.

Note that since n1 > a1 > a2 we have B = n1. Next, we estimate the height of α3 by using the
properties of heights and Lemma 6.5:

h0(α3) ≤ h0(
√

5) + (a1 − a2)h0(2) + log 2

≤ log
√

5 + (a1 − a2) log 2 + log 2

< 2.62 ⋅ 1013 logn1,

which gives h′(α3) < 2.62 ⋅1013 logn1. As before we have h′(α1) =
1
2 and h′(α2) = log 2. By a similar

argument as in Step 1 we conclude that Φ1 ≠ 0. Now, we are ready to apply Theorem 6.3 and get

log ∣Φ1∣ > −C(3,2) (
1

2
) (log 2) (2.62 ⋅ 1013 logn1) logn1 − log 2

> − 8.49 ⋅ 1026(logn1)
2.

Combining this inequality with inequality (6.4.2), we obtain

min{(a1 − a3) log 2, (n1 − n2) logα} < 8.5 ⋅ 1026(logn1)
2. (6.4.3)

Note that in the case that ∣Λ1∣ > 0.5 inequality (6.4.2) is possible, only if either a1 − a3 ≤ 3 or
n1 − n2 ≤ 4. Both cases are covered by the bound provided by inequality (6.4.3).

At this stage, we have to consider two further sub-cases.
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Case 1A min{(a1 − a3) log 2, (n1 − n2) logα} = (a1 − a3) log 2 and

Case 1B min{(a1 − a3) log 2, (n1 − n2) logα} = (n1 − n2) logα.

We will deal with Case 1A in Step 3 and with Case 1B in Step 4.

Step 3: We consider Case 1A and show that under the assumption that (a1 − a3) log 2 < 8.5 ⋅
1026(logn1)

2 and (a1 − a2) log 2 < 2.61 ⋅ 1013 logn1 we obtain that

(n1 − n2) logα < 2.77 ⋅ 1040(logn1)
3.

In this step we consider n1, a1, a2 and a3 to be large. By collecting “large” terms on the left hand
side we rewrite equation (6.1.1) as

∣
αn1

√
5
− 2a1 − 2a2 − 2a3∣ = ∣

βn1

√
5
−
αn2

√
5
+
βn2

√
5
∣ <

αn2

√
5
+ 0.45

and obtain that

∣
αn1

√
5
− 2a1 (1 + 2a2−a1 + 2a3−a1)∣ < 0.9αn2 .

Dividing through αn1√
5

yields the inequality

∣α−n12a1
√

5 (1 + 2a2−a1 + 2a3−a1) − 1∣ < 2.02αn2−n1 . (6.4.4)

We want to apply Theorem 6.3 to inequality (6.4.4) and consider the linear form

ΛA = −n1 logα + a1 log 2 + log (
√

5 (1 + 2a2−a1 + 2a3−a1)) .

Let us assume that ∣ΛA∣ ≤ 0.5. Further, we put

ΦA = eΛA − 1 = α−n12a1
√

5 (1 + 2a2−a1 + 2a3−a1) − 1

and aim to apply Theorem 6.3 with

α1 = α, α2 = 2, α3 =
√

5 (1 + 2a2−a1 + 2a3−a1) , b1 = −n1, b2 = a1, b3 = 1.

Similarly as before we get that B = n1. Next, let us estimate the height of α3. Using the properties
of heights, Lemma 6.5 and inequality (6.4.3) we get

h0(α3) ≤ h0(
√

5) + (a1 − a2)h0(2) + (a1 − a3)h0(2) + log 2

≤ log
√

5 + (a1 − a2) log 2 + (a1 − a3) log 2 + log 2

< 2.61 ⋅ 1013 logn1 + 8.5 ⋅ 1026(logn1)
2 + log 2

√
5

< 8.51 ⋅ 1026(logn1)
2,
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which gives h′(α3) < 8.51 ⋅ 1026(logn1)
2. As before we have h′(α1) =

1
2 , h′(α2) = log 2 and ΦA ≠ 0.

An application of Theorem 6.3 yields

log ∣ΦA∣ > −C(3,2) (
1

2
) (log 2) (8.51 ⋅ 1026(logn1)

2) logn1 − log 2

> − 2.76 ⋅ 1040(logn1)
3.

Combining this inequality with inequality (6.4.4) we obtain

(n1 − n2) logα < 2.77 ⋅ 1040(logn1)
3. (6.4.5)

Note that in the case that ∣ΛA∣ > 0.5 inequality (6.4.4) is possible only if n1−n2 ≤ 2. This is covered
by the bound provided by inequality (6.4.5).

Step 4: We consider Case 1B and show that under the assumption that (n1 − n2) log 2 < 8.5 ⋅
1026(logn1)

2 and (a1 − a2) log 2 < 2.61 ⋅ 1013 logn1 we obtain that

(a1 − a3) log 2 < 1.39 ⋅ 1040(logn1)
3.

By collecting “large” terms to the left hand side, where we consider n1, n2, a1 and a2 to be large,
we rewrite equation (6.1.1) as

∣
αn1

√
5
+
αn2

√
5
− 2a1 − 2a2∣ = ∣2a3 +

βn1

√
5
+
βn2

√
5
∣ < 2a3 + 0.45

and obtain that

∣
αn2

√
5
(αn1−n2 + 1) − 2a2 (2a1−a2 + 1)∣ < 1.45 ⋅ 2a3 .

Dividing through 2a2 (2a1−a2 + 1) we obtain the inequality

∣αn22−a2 (
αn1−n2 + 1

√
5 (2a1−a2 + 1)

) − 1∣ < 1.45 ⋅ 2a3−a1 (6.4.6)

We want to apply Theorem 6.3 to inequality (6.4.6). Hence we consider the linear form

ΛB = n2 logα − a2 log 2 + log(
αn1−n2 + 1

√
5 (2a1−a2 + 1)

)

and assume that ∣ΛB ∣ ≤ 0.5. Further, we put

ΦB = eΛB − 1 = αn22−a2 (
αn1−n2 + 1

√
5 (2a1−a2 + 1)

) − 1
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and aim to apply Theorem 6.3 by taking

α1 = α, α2 = 2, α3 =
αn1−n2 + 1

√
5 (2a1−a2 + 1)

, b1 = n2, b2 = −a2, b3 = 1.

and get B = n1 as in the steps before. Let us estimate the height of α3. Using the properties of
heights, Lemma 6.5 and inequality (6.4.3) we get

h0(α3) ≤ (n1 − n2)h0(α) + log 2 + h0(
√

5) + (a1 − a2)h0(2) + log 2

=
1

2
(n1 − n2) logα + log

√
5 + (a1 − a2) log 2 + 2 log 2

<
1

2
(8.5 ⋅ 1026(logn1)

2) + 2.61 ⋅ 1013 logn1 + log 4
√

5

< 4.26 ⋅ 1026(logn1)
2,

which gives h′(α3) < 4.26 ⋅ 1026(logn1)
2. A similar deduction as before yields h′(α1) =

1
2 , h′(α2) =

log 2 and ΦB ≠ 0. Now, we apply Theorem 6.3 and get

log ∣ΦB ∣ > −C(3,2) (
1

2
) (log 2) (4.26 ⋅ 1026(logn1)

2) logn1 − log 2

> − 1.38 ⋅ 1040(logn1)
3.

Combining this inequality with inequality (6.4.6), we obtain

(a1 − a3) log 2 < 1.39 ⋅ 1040(logn1)
3. (6.4.7)

Note that in the case of ∣ΛB ∣ > 0.5, inequality (6.4.6) is possible only if a1 − a3 ≤ 1 which is covered
by the bound provided by inequality (6.4.7).

Step 5: We consider Case 2 and show that under the assumption that (n1 − n2) logα < 2.61 ⋅
1013 logn1 we obtain

(a1 − a2) log 2 < 4.26 ⋅ 1026(logn1)
2.

Since we consider Case 2 we assume that

min{(a1 − a2) log 2, (n1 − n2) logα} = (n1 − n2) logα < 2.61 ⋅ 1013 logn1.

In this step we consider n1, n2 and a1 to be large and by collecting “large” terms to the left hand
side, we rewrite equation (6.1.1) as

∣
αn1

√
5
+
αn2

√
5
− 2a1∣ = ∣2a2 + 2a3 +

βn1

√
5
+
βn2

√
5
∣ < 2 ⋅ 2a2 + 0.45
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and obtain that

∣
αn2

√
5
(αn1−n2 + 1) − 2a1∣ < 2.45 ⋅ 2a2 .

Dividing through 2a1 we get the inequality

∣αn22−a1 (
αn1−n2 + 1

√
5

) − 1∣ < 2.45 ⋅ 2−(a1−a2). (6.4.8)

Similarly as above we shall apply Theorem 6.3 to inequality (6.4.8). Hence we consider the linear
form

Λ2 = n2 logα − a1 log 2 + log(
αn1−n2 + 1

√
5

)

and assume that ∣Λ2∣ ≤ 0.5. Further, we put

Φ2 = e
Λ2 − 1 = αn22−a1 (

αn1−n2 + 1
√

5
) − 1

and

α1 = α, α2 = 2, α3 =
αn1−n2 + 1

√
5

, b1 = n2, b2 = −a1, b3 = 1.

Once again this choice yields B = n1. Next, let us estimate the height of α3. Using the properties
of heights and Lemma 6.5 we find

h0(α3) ≤ (n1 − n2)h0(α) + log 2 + h0(
√

5)

=
1

2
(n1 − n2) logα + log 2 + log

√
5

<
1

2
(2.61 ⋅ 1013 logn1) + log 2

√
5

< 1.31 ⋅ 1013 logn1,

which gives h′(α3) < 1.31 ⋅1013 logn1. A similar deduction as before gives h′(α1) =
1
2 , h′(α2) = log 2

and Φ2 ≠ 0. Thus by applying Theorem 6.3 we get

log ∣Φ2∣ > −C(3,2) (
1

2
) (log 2) (1.31 ⋅ 1013 logn1) logn1 − log 2

> − 4.25 ⋅ 1026(logn1)
2.

Combining this inequality together with inequality (6.4.8), we obtain

(a1 − a2) log 2 < 4.26 ⋅ 1026(logn1)
2. (6.4.9)

Note that in the case of ∣Λ2∣ > 0.5, inequality (6.4.8) is possible only if a1 − a2 ≤ 2 which is covered
by the bound provided by inequality (6.4.9).



128 CHAPTER 6. SUMS OF FIBONACCI NUMBERS AND POWERS OF TWO

Step 6: We continue to consider Case 2 and show that under the assumption that (n1−n2) logα <

2.61 ⋅ 1013 logn1 and (a1 − a2) log 2 < 4.26 ⋅ 1026(logn1)
2 we obtain

(a1 − a3) log 2 < 1.39 ⋅ 1040(logn1)
3.

We shall apply once more Theorem 6.3 to obtain an upper bound for (a1−a3) log 2. The derivation is
very similar to Case 1B. By collecting “large” terms on the left hand side, we rewrite equation (6.1.1)
as

∣
αn1

√
5
+
αn2

√
5
− 2a1 − 2a2∣ = ∣2a3 +

βn1

√
5
+
βn2

√
5
∣ < 2a3 + 0.45.

By the same derivation as in Step 4 we obtain inequality (6.4.6), i.e.

∣αn22−a2 (
αn1−n2 + 1

√
5 (2a1−a2 + 1)

) − 1∣ < 1.45 ⋅ 2a3−a1 .

We have the same setting as in Case 1B, except that the estimate for the height of α3 becomes

h0(α3) ≤ (n1 − n2)h0(α) + log 2 + h0(
√

5) + (a1 − a2)h0(2) + log 2

=
1

2
(n1 − n2) logα + log

√
5 + (a1 − a2) log 2 + 2 log 2

<
1

2
(2.61 ⋅ 1013 logn1) + 4.26 ⋅ 1026(logn1)

2 + log 4
√

5

< 4.27 ⋅ 1026(logn1)
2,

which gives h′(α3) < 4.27 ⋅ 1026(logn1)
2 instead of h′(α3) < 4.26 ⋅ 1026(logn1)

2 . Therefore by
applying Theorem 6.3 similarly as before we obtain

(a1 − a3) log 2 < 1.39 ⋅ 1040(logn1)
3 (6.4.10)

which coincides with inequality (6.4.7). Table 6.1 summarizes our results obtained so far.

Table 6.1: Summary of results
Upper bound of Case 1A Case 1B Case 2

(a1 − a2) log 2 2.61 ⋅ 1013 logn1 2.61 ⋅ 1013 logn1 4.26 ⋅ 1026(logn1)
2

(a1 − a3) log 2 8.51 ⋅ 1026(logn1)
2 1.39 ⋅ 1040(logn1)

3 1.39 ⋅ 1040(logn1)
3

(n1 − n2) logα 2.77 ⋅ 1040(logn1)
3 8.5 ⋅ 1026(logn1)

2 2.61 ⋅ 1013 logn1

Step 7: We assume the bounds given in Table 6.1 and show that n1 logα < 4.54 ⋅ 1053(logn1)
4,

hence n1 < 4.1 ⋅ 1062.
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We have to apply Theorem 6.3 once more. This time we rewrite equation (6.1.1) as

∣
αn1

√
5
(1 + αn2−n1) − 2a1(1 + 2a2−a1 + 2a3−a1)∣ = ∣

βn1

√
5
+
βn2

√
5
∣ < 0.45.

Dividing through αn1√
5
(1 + αn2−n1) we obtain the inequality

∣α−n12a1 (

√
5(1 + 2a2−a1 + 2a3−a1)

1 + αn2−n1
) − 1∣ < 1.01α−n1 . (6.4.11)

In this final step we consider the linear form

Λ3 = −n1 logα + a1 log 2 + log(

√
5(1 + 2a2−a1 + 2a3−a1)

1 + αn2−n1
)

and assume that ∣Λ3∣ ≤ 0.5. Further, we put

Φ3 = e
Λ3 − 1 = α−n12a1 (

√
5(1 + 2a2−a1 + 2a3−a1)

1 + αn2−n1
) − 1.

We take

α1 = α, α2 = 2, α3 =

√
5(1 + 2a2−a1 + 2a3−a1)

1 + αn2−n1
, b1 = −n1, b2 = a1, b3 = 1.

Thus we have B = n1. By the results in Table 6.1 and similar computations done before we obtain

h0 (α3) ≤ h0 (
√

5) + (a1 − a2) h0(2) + (a1 − a3) h0(2) + (n1 − n2)h0(α) + 2 log 2

≤ (a1 − a2) log 2 + (a1 − a3) log 2 +
1

2
(n1 − n2) logα + log 4

√
5

< 1.4 ⋅ 1040(logn1)
3,

which gives h′(α3) < 1.4 ⋅ 1040(logn1)
3. As before we have h′(α1) =

1
2 , h′(α2) = log 2 and Φ3 ≠ 0.

Now an application of Theorem 6.3 yields

log ∣Φ3∣ > −C(3,2) (
1

2
) (log 2) (1.4 ⋅ 1040(logn1)

3) logn1 − log 2.

Combining this inequality with inequality (6.4.11) we get

n1 logα < 4.54 ⋅ 1053(logn1)
4

which yields

n1 < 4.1 ⋅ 1062.

Similarly as in the cases above the assumption ∣Λ3∣ > 0.5 leads in view of inequality (6.4.11) to
n1 ≤ 0 which is impossible. Thus Proposition 6.1 is established.
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6.4.2 Proof of Proposition 6.2

Since the deduction of an upper bound for solutions to (6.1.2) is similar to the proof of Proposition
6.1 we only sketch the argument. In the case of equation (6.1.2), we have

αm1 − βm1

√
5

+
αm2 − βm2

√
5

+
αm3 − βm3

√
5

= 2t1 + 2t2 .

Step 1: Show that

min{(t1 − t2) log 2, (m1 −m2) logα} < 2.61 ⋅ 1013 logm1.

First, we rearrange equation (6.1.2) and make use of inequalities (6.3.6) and (6.3.7) to get

∣
αm12−t1

√
5

− 1∣ < 14.67 max{2t2−t1 , αm2−m1} . (6.4.12)

We consider Γ =m1 logα − t1 log 2 − log
√

5 with ∣Γ ∣ ≤ 0.5. Further, we put

Ψ = eΓ − 1 = αm12−t1
√

5
−1
− 1

and apply the theorem of Baker and Wüstholz (Theorem 6.3) with the data

α1 = α, α2 = 2, α3 =
√

5, b1 =m1, b2 = −t1, b3 = −1,

i.e. B = m1. By a simple computation, we obtain h′(α1) =
1
2 , h′(α2) = log 2 and h′(α3) = log

√
5.

Similarly as in the proof of Proposition 6.1 we may assume that Ψ ≠ 0. Then Theorem 6.3 yields

log ∣Ψ ∣ ≥ −C(3,2) (
1

2
) (log 2) (log

√
5) logm1 − log 2

and together with inequality (6.4.12) we have

min{(t1 − t2) log 2, (m1 −m2) logα} < 2.61 ⋅ 1013 logm1.

Thus instead of Lemma 6.5 we obtain now

Lemma 6.6. Assume that (m1,m2,m3, t1, t2) is a solution to equation (6.1.2) with m1 ≥ m2 ≥

m3 ≥ 0 and t1 ≥ t2 ≥ 0. Then we have

min{(t1 − t2) log 2, (m1 −m2) logα} < 2.61 ⋅ 1013 logm1.

The scenarios for which ∣Γ ∣ > 0.5 can be easily dealt with. Now we have to distinguish between two
cases:
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Case 1 min{(t1 − t2) log 2, (m1 −m2) logα} = (m1 −m2) logα and

Case 2 min{(t1 − t2) log 2, (m1 −m3) logα} = (t1 − t2) log 2

We will deal with these cases in the following steps.

Step 2: We consider Case 1 and show that under the assumption that (m1 −m2) logα < 2.61 ⋅
1013 logm1 we obtain

min{(t1 − t2) log 2, (m1 −m3) logα} < 4.26 ⋅ 1026(logm1)
2.

We rearrange equation (6.1.2) and make use of inequalities (6.3.6) and (6.3.7) to get

∣Ψ1∣ = ∣
αm22−t1 (αm1−m2 + 1)

√
5

− 1∣ < 12.31 max{2−(t1−t2), α−(m1−m3)} . (6.4.13)

We apply Theorem 6.3 to inequality (6.4.13) by taking b1 = m2, b2 = −t1 and b3 = 1, i.e. B = m1

since m1 >m2, t1. Further, we choose α1 = α, α2 = 2 and α3 =
αm1−m2+1√

5
. Note that by our standard

arguments we obtain that h′(α3) < 1.31 ⋅ 1013 logm1 and Ψ1 ≠ 0. Finally we get

min{(t1 − t2) log 2, (m1 −m3) logα} < 4.26 ⋅ 1026(logm1)
2.

At this stage, we have to consider the following two sub-cases for Case 1:

Case 1A min{(t1 − t2) log 2, (m1 −m3) logα} = (m1 −m3) logα and

Case 1B min{(t1 − t2) log 2, (m1 −m3) logα} = (t1 − t2) log 2.

We will deal with these sub-cases in the steps below.

Step 3: We consider Case 1A and show that under the assumption that (m1 −m2) logα < 2.61 ⋅
1013 logm1 and (m1 −m3) logα < 4.26 ⋅ 1026(logm1)

2 we obtain that

(t1 − t2) log 2 < 6.94 ⋅ 1039(logm1)
3.

We rearrange equation (6.1.2) and make use of inequalities (6.3.6) and (6.3.7) to get

∣ΨA∣ = ∣
αm12−t1 (1 + αm2−m1 + αm3−m1)

√
5

− 1∣ < 1.9 ⋅ 2t2−t1 . (6.4.14)
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We apply Theorem 6.3 to inequality (6.4.13) with B =m1, α1 = α, α2 = 2, α3 =
(1+αm2−m1+αm3−m1)

√
5

.

Note that we have h′(α3) < 2.14 ⋅ 1026(logm1)
2 and ΨA ≠ 0. Therefore, we get

(t1 − t2) log 2 < 6.94 ⋅ 1039(logm1)
3.

Step 4: We consider Case 1B and show that under the assumption that (m1 −m2) logα < 2.61 ⋅
1013 logm1 and (t1 − t2) log 2 < 4.26 ⋅ 1026(logm1)

2 we obtain that

(m1 −m3) logα < 1.4 ⋅ 1040(logm1)
3.

We rearrange equation (6.1.2) and make use of inequalities (6.3.6) and (6.3.7) to get

∣ΨB ∣ = ∣α−m22t2
√

5(
2t1−t2 + 1

αm1−m2 + 1
) − 1∣ < 3.02αm3−m1 (6.4.15)

We apply Theorem 6.3 to inequality (6.4.15) by taking B =m1, α1 = α, α2 = 2 and α3 =
√

5(2t1−t2+1)

αm1−m2+1 .
With this choice we have h′(α3) < 4.27 ⋅ 1026(logn1)

2 and ΨB ≠ 0. and we obtain

(m1 −m3) logα < 1.4 ⋅ 1040(logm1)
3.

Step 5: We consider Case 2 and show that under the assumption that (t1 − t2) log 2 < 2.61 ⋅
1013 logm1 we obtain

(m1 −m2) logα < 8.5 ⋅ 1026(logm1)
2.

We rearrange equation (6.1.2) and make use of inequalities (6.3.6) and (6.3.7) to get

∣Ψ2∣ = ∣α−m22t2
√

5 (2t1−t2 + 1) − 1∣ < 4.03α−(m1−m2). (6.4.16)

We apply Theorem 6.3 to inequality (6.4.16) by taking B =m1, α1 = α, α2 = 2, α3 =
√

5 (2t1−t2 + 1).
In this case we have that h′(α3) < 2.62 ⋅ 1013 logm1 and also Ψ2 ≠ 0. Therefore we get

(m1 −m2) logα < 8.5 ⋅ 1026(logm1)
2.

Step 6: We continue to consider Case 2 and show that under the assumption that (t1 − t2) log 2 <
2.61 ⋅ 1013 logm1 and (m1 −m2) logα < 8.5 ⋅ 1026(logm1)

2 we obtain that

(m1 −m3) logα < 1.38 ⋅ 1040(logm1)
3.
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Again we apply Theorem 6.3 to obtain an upper bound for (m1 −m3) logα. The derivation is very
similar to Case 1B. In particular, we have

∣α−m22t2
√

5(
2t1−t2 + 1

αm1−m2 + 1
) − 1∣ < 3.02αm3−m1

and the same setting as in Case 1B, except that h′(α3) < 4.26⋅1026(logm1)
2. Therefore Theorem 6.3

gives us

(m1 −m3) logα < 1.38 ⋅ 1040(logm1)
3.

Table 6.2 summarizes our results obtained so far.

Table 6.2: Summary of results
Upper bound of Case 1A Case 1B Case 2

line (m1 −m2) logα 2.61 ⋅ 1013 logm1 2.61 ⋅ 1013 logm1 8.5 ⋅ 1026(logm1)
2

(m1 −m3) logα 4.26 ⋅ 1026(logm1)
2 1.4 ⋅ 1040(logm1)

3 1.38 ⋅ 1040(logm1)
3

(t1 − t2) log 2 6.94 ⋅ 1039(logm1)
3 4.26 ⋅ 1026(logm1)

2 2.61 ⋅ 1013 logm1

Step 7: We assume the bounds given in Table 6.2 and show that m1 < 4.2 ⋅ 1062.

Once again we have to apply Theorem 6.3. We rearrange equation (6.1.2) and make use of inequal-
ities (6.3.6) and (6.3.7) to get

∣Ψ3∣ = ∣α−m12t1 (

√
5(1 + 2t2−t1)

1 + αm2−m1 + αm3−m1
) − 1∣ < 2.02α−m1 . (6.4.17)

In our last step we apply Theorem 6.3 to inequality (6.4.17) by taking B = m1, α1 = α, α2 = 2,

α3 =
√

5(1+2t2−t1)
1+αm2−m1+αm3−m1

. By our usual arguments we show that h′(α3) < 1.41 ⋅ 1040(logm1)
3 and

Ψ3 ≠ 0. Thus we get

m1 < 4.2 ⋅ 1062,

hence Proposition 6.2 is established.

Remark 4. The theorem of Baker and Wüstholz (cf. Theorem 6.3) [19] has a significant role in the
development of linear forms in logarithms. The final structure for the lower bound for linear forms
in logarithms without an explicit determination of the constant involved has been established by
Wüstholz [93] and the precise determination of that constant is the central aspect of [19] (see also
[20]). The reader may note that slightly sharper bounds for n1 and m1 could be obtained by using
Matveev’s result [64] instead. However, the improvement is insignificant in view of our next step,
i.e. the use of the method of Baker and Davenport (Lemma 6.4), in which our upper bounds for
n1 and m1 are further reduced to a great extent.
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6.5 Reduction of the bound

In our final step we reduce the huge upper bound for n1 obtained in Proposition 6.1 (respectively
m1 in Proposition 6.2) by applying several times Lemma 6.4.

6.5.1 Proof of Theorem 6.1

First, we consider inequality (6.4.1) and recall that

Λ = n1 logα − a1 log 2 − log
√

5.

For technical reasons we assume that min{n1 − n2, a1 − a2, a1 − a3} ≥ 20. In the case that this
condition fails we do the following:

• if a1 − a2 < 20 but a1 − a3, n1 − n2 ≥ 20, we consider inequality (6.4.2), i.e. we go to Step 2;

• if a1 − a2, a1 − a3 < 20 but n1 − n2 ≥ 20, we consider inequality (6.4.4), i.e. we go to Step 3;

• if a1 − a2, n1 − n2 < 20 but a1 − a3 ≥ 20, we consider inequality (6.4.6), i.e. we go to Step 4;

• if n1 − n2 < 20 but a1 − a2, a1 − a3 ≥ 20, we consider inequality (6.4.8), i.e. we go to Step 5;
then we consider inequality (6.4.6), i.e. we go to Step 6;

• if all a1 − a2, a1 − a3, n1 − n2 < 20, we consider inequality (6.4.11), i.e. we go to Step 7.

Step 1: We show that a1 − a2 ≤ 218 or n1 − n2 ≤ 315.

Let us start by considering inequality (6.4.1). Since we assume that min{n1 − n2, a1 − a2} ≥ 20
we get ∣Φ∣ = ∣eΛ − 1∣ < 1

4 , hence ∣Λ∣ < 1
2 . And, since ∣x∣ < 2∣ex − 1∣ holds for all x ∈ (−1

2 ,
1
2) we get

∣Λ∣ < 45.56 max{2a2−a1 , αn2−n1}. Then we have the inequality

0 < ∣n1 ⋅
logα

log 2
− a1 +

log(1/
√

5)

log 2
∣ <max{

45.56

log 2
⋅ 2−(a1−a2),

45.56

log 2
α−(n1−n2)}

<max{66 ⋅ 2−(a1−a2),66α−(n1−n2)}

and we apply the algorithm described in Remark 3 with

γ =
logα

log 2
, µ =

log(1/
√

5)

log 2
, (A,B) = (66,2) or (66, α).

Let us be a bit more precise. We note that γ is irrational since 2 and α are multiplicatively indepen-
dent, hence Lemma 6.4 is applicable. Let γ = [s0, s1, s2, . . . ] = [0,1,2,3,1,2,3,2,4,2,1,2,11, . . . ] be
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the continued fraction expansion of γ. Moreover, we choose M = 4.1 ⋅ 1062 and consider the 125-th
convergent

p125

q125
=

2028312018571414606476009600985599840687019168230545776285240837

2921621381175511963618293669947470310883223581600886270426241482
,

with q = q125 > 6M . This yields ε > 0.24 and therefore either

a1 − a2 ≤
log(66q/0.24)

log 2
< 219 or n1 − n2 ≤

log(66q/0.24)

logα
< 316.

Thus, we have either a1 − a2 ≤ 218 or n1 − n2 ≤ 315.

From this result we distinguish between

Case 1 a1 − a2 ≤ 218 and

Case 2 n1 − n2 ≤ 315.

Step 2: We consider Case 1 and show that under the assumption that a1 − a2 ≤ 218 we have that
a1 − a3 ≤ 225 or n1 − n2 ≤ 324.

In this step we consider inequality (6.4.2) and assume that a1 − a3, n1 − n2 ≥ 20. Recall that

Λ1 = −n1 logα + a2 log 2 + log (
√

5 (2a1−a2 + 1))

and inequality (6.4.2) yields that ∣Λ1∣ < 10.52 max{2−(a1−a3), α−(n1−n2)}. Then we get

0 <
RRRRRRRRRRR

n1 ⋅
logα

log 2
− a2 +

log (1/ (
√

5 (2a1−a2 + 1)))

log 2

RRRRRRRRRRR

< 16 max{2−(a1−a3), α−(n1−n2)} .

We apply the algorithm explained in Remark 3 again with the same γ and M as in Step 1, but
now we choose (A,B) = (16,2) or (16, α) and

µ = µk =
log (1/ (

√
5 (2k + 1)))

log 2

for each possible value of a1 − a2 = k = 0,1, . . . ,218. With these parameters we run our algorithm
and obtain for each instance a new and rather small upper bound either for a1 − a3 or n1 − n2. In
particular

q128 = 49310467685085622966403899548743583219671853934492723134649593651

is the largest denominator that appeared in applying our algorithm. Overall, we obtain

a1 − a3 ≤ 225 or n1 − n2 ≤ 324.

Within Case 1 we have to distinguish between two further sub-cases:
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Case 1A a1 − a3 ≤ 225 and

Case 1B n1 − n2 ≤ 324.

Step 3: We consider Case 1A and show that under the assumption that a1 − a2 ≤ 218 and
a1 − a3 ≤ 225 we have that n1 − n2 ≤ 334.

In this step we consider inequality (6.4.4) and assume that n1 − n2 ≥ 20. Recall that

ΛA = −n1 logα + a1 log 2 + log (
√

5 (1 + 2a2−a1 + 2a3−a1))

and inequality (6.4.4) yields that ∣ΛA∣ < 4.04α−(n1−n2). Then we get

0 <
RRRRRRRRRRR

n1 ⋅
logα

log 2
− a1 +

log (1/
√

5 (1 + 2a2−a1 + 2a3−a1))

log 2

RRRRRRRRRRR

< 6α−(n1−n2).

We proceed as in Remark 3 with the same γ and M as in Step 1, but we use (A,B) = (6, α) instead.
Moreover we consider

µ = µk,l =
log (1/

√
5 (1 + 2−k + 2−l))

log 2

for each possible value of a1−a2 = k = 0,1, . . . ,218 and a1−a3 = l = 0,1, . . . ,225 (with respect to the
obvious condition that a1 − a2 ≤ a1 − a3). As in the previous step we apply the algorithm described
in Remark 3 to each instance (k, l) and start with the 125-th convergent p

q =
p125
q125

of γ as before and
continue with the algorithm until a positive ε is obtained for every k and l. Thus we can compute

a new upper bound for n1 −n2 by the formula n1 −n2 <
log(6q/ε)

logα for the respective choices of q and
ε. Overall we obtain that

n1 − n2 ≤ 334.

Step 4: We consider Case 1B and show that under the assumption that a1 − a2 ≤ 218 and
n1 − n2 ≤ 324 we have that a1 − a3 ≤ 233.

Thus we consider inequality (6.4.6) and assume that a1 − a3 ≥ 20. In view of Step 6 we perform
the following reduction by considering a1 − a2 ≤ 224 instead of a1 − a2 ≤ 218. Note that the same
inequality (6.4.6) will be used once more with a slightly higher upper bound a1−a2 ≤ 224 in Step 6.
Recall that

ΛB = n2 logα − a2 log 2 + log(
αn1−n2 + 1

√
5 (2a1−a2 + 1)

)

and inequality (6.4.6) yields that ∣ΛB ∣ < 2.9 ⋅ 2−(a1−a3). Then we get

0 <
RRRRRRRRRRR

n2 ⋅
logα

log 2
− a2 +

log ((αn1−n2 + 1)/ (
√

5 (2a1−a2 + 1)))

log 2

RRRRRRRRRRR

< 5 ⋅ 2−(a1−a3).
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We apply our algorithm with the same γ and M as in the previous steps, but we use (A,B) = (5,2)
and

µ = µk,r =
log ((αr + 1)/ (

√
5 (2k + 1)))

log 2

for each possible value of a1 − a2 = k = 0,1, . . . ,224 and n1 − n2 = r = 0,1, . . . ,324. We run
our algorithm starting with q = q125 and compute the upper bound for a1 − a3 by the formula

a1 − a3 <
log(5q/ε)

log 2 for respective choices of q and ε, provided the algorithm terminates. For those

pairs (k, r) for which the algorithm terminates we obtain

a1 − a3 ≤ 233.

However, in case that (k, r) ∈ {(0,2), (0,6), (2,10), (4,18)} problems arise and our algorithm does
not terminate. This is because in these cases there exist multiplicative dependences between µk,r,
2 and α. In particular, one can easily check that

α2 + 1

2
√

5
=
α

2
,

α6 + 1

2
√

5
= α3,

α10 + 1

5
√

5
= α5,

α18 + 1

17
√

5
= 2α9.

Using these dependencies we obtain

ΛB = (n2 + 1) logα − (a2 + 1) log 2, ΛB = (n2 + 3) logα − a2 log 2,

ΛB = (n2 + 5) logα − a2 log 2 and ΛB = (n2 + 9) logα − (a2 − 1) log 2

for (k, r) = (0,2), (0,6), (2,10), (4,18) respectively. Thus we get

∣γ −
a2 + 1

n2 + 1
∣ <

5

2a1−a3(n2 + 1)
, ∣γ −

a2

n2 + 3
∣ <

5

2a1−a3(n2 + 3)
,

∣γ −
a2

n2 + 5
∣ <

5

2a1−a3(n2 + 5)
and ∣γ −

a2 − 1

n2 + 9
∣ <

5

2a1−a3(n2 + 9)

respectively. If a1 − a3 ≤ 211 the previous bound is still true. Now assume a1 − a3 > 211. Then
2a1−a3 > 4.2 ⋅ 1063 > 10(n2 + 9), hence

5

2a1−a3(n2 + 1)
<

1

2(n2 + 1)2
,

5

2a1−a3(n2 + 3)
<

1

2(n2 + 3)2
,

5

2a1−a3(n2 + 5)
<

1

2(n2 + 5)2
and

5

2a1−a3(n2 + 9)
<

1

2(n2 + 9)2

respectively. By a criterion of Legendre each of a2+1
n2+1 , a2

n2+3 , a2
n2+5 and a2−1

n2+9 is a convergent to γ

and we may assume that a2+1
n2+1 , a2

n2+3 , a2
n2+5 and a2−1

n2+9 is of the form
pj
qj

for some j = 0,1,2, . . . ,124.

Indeed, we may assume that j ≤ 124 since q125 > 4.2 ⋅ 1062 > n2 + 9 but q124 < 4.2 ⋅ 1062. However it
is well known (see e.g. [16, page 47]) that

1

(sj+1 + 2)q2
j

< ∣γ −
pj

qj
∣ .
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and since max{sj+1 ∶ j = 0,1,2, . . . ,124} = 134, we have

1

136q2
j

<
5

2a1−a3qj

and qj divides one of {n2 + 1, n2 + 3, n2 + 5, n2 + 9}. Thus the inequality

2a1−a3 < 5 ⋅ 136(n2 + 9) < 5 ⋅ 136 ⋅ 4.2 ⋅ 1062

yields a1 − a3 < 218. Hence even in the case that (k, r) ∈ {(0,2), (0,6), (2,10), (4,18)} we obtain
the upper bound a1 − a3 ≤ 233.

Step 5: We consider Case 2 and show that under the assumption that n1 − n2 ≤ 315 we have that
a1 − a2 ≤ 224.

In this step we consider inequality (6.4.8) and assume that a1 − a2, a1 − a3 ≥ 20. Recall that

Λ2 = n2 logα − a1 log 2 + log(
αn1−n2 + 1

√
5

)

and inequality (6.4.8) yields that ∣Λ2∣ < 4.9 ⋅ 2−(a1−a2). Then we get

0 < ∣n2 ⋅
logα

log 2
− a1 +

log((αn1−n2 + 1)/
√

5)

log 2
∣ < 8 ⋅ 2−(a1−a2).

We apply our algorithm with the same γ and M , but we use (A,B) = (8,2) and

µ = µr =
log((αr + 1)/

√
5)

log 2
,

for each possible value of n1 − n2 = r = 0,1, . . . ,315. Similar as in Step 4 we obtain a1 − a2 ≤ 224,
except in the problematic case that r ∈ {2,6}. However these two problematic cases can be treated
in a similar way as the problematic cases in Step 4. That is we find a multiplicative relation between

2, α and
log((αr+1)/

√
5)

log 2 and reduce linear form Λ2 to a linear form in two logarithms and use the
theory of continued fractions to obtain also in these problematic cases upper bounds for a1 − a2.
Thus in any case we obtain a1 − a2 ≤ 224.

Step 6: We continue to consider Case 2 and show that under the assumption that n1 − n2 ≤ 315
and a1 − a2 ≤ 224 we have that a1 − a3 ≤ 233.

Now we have n1 − n2 ≤ 315 and a1 − a2 ≤ 224 and we shall assume that a1 − a3 ≥ 20 and attempt to
reduce the huge upper bound for a1−a3 with the use of inequality (6.4.6). This setting has already
been considered in Case 1B, where we obtained

a1 − a3 ≤ 233.
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Table 6.3 summarizes our results obtained so far.

Table 6.3: Summary of results
Upper bound of (≤) Case 1A Case 1B Case 2 Overall

a1 − a2 218 218 224 224
a1 − a3 225 233 233 233
n1 − n2 334 324 315 334

Step 7: Under the assumption that n1 − n2 ≤ 334, a1 − a2 ≤ 224 and a1 − a3 ≤ 233 we show that
n1 ≤ 343.

For the last step we consider inequality (6.4.11). Recall that

Λ3 = −n1 logα + a1 log 2 + log(

√
5(1 + 2a2−a1 + 2a3−a1)

1 + αn2−n1
)

and inequality (6.4.11) yields that ∣Λ3∣ < 2.02α−n1 . Then we get

0 <
RRRRRRRRRRR

n1 ⋅
logα

log 2
− a1 +

log ((1 + αn2−n1) / (
√

5 (1 + 2a2−a1 + 2a3−a1)))

log 2

RRRRRRRRRRR

< 3α−n1 .

We proceed as described in Remark 3 with the same γ and M as in the previous steps, but we use
(A,B) = (3, α) and

µ = µk,l,r =
log ((1 + α−r) / (

√
5 (1 + 2−k + 2−l)))

log 2
,

for each possible value of a1 − a2 = k = 0,1, . . . ,224 , a1 − a3 = l = 0,1, . . . ,233 (with respect to
the obvious condition that a1 − a2 ≤ a1 − a3) and n1 − n2 = r = 0,1, . . . ,334. Starting with q125 we

compute the upper bound for n1 by the formula n1 <
log(3q/ε)

logα for the respective choices of q such

that ε > 0. For all triples (k, l, r) except

(k, l, r) ∈ {(0,1,10), (0,3,18), (1,1,2), (1,1,6), (1,3,14), (3,3,10), (5,5,18)}

the algorithm terminates and yields

n1 ≤ 343. (6.5.1)

The problematic cases can be treated in a similar way as in Step 4 and yield similarly small upper
bounds for n1. In particular we obtain that n1 ≤ 343 in all cases. However this upper bound
contradicts our assumption that n1 ≥ 360. Therefore no further solutions to (6.1.1) exist and
Theorem 6.1 is proved.
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6.5.2 Proof of Theorem 6.2

We reduce the upper bound for m1 obtained in Proposition 6.2 by applying several times our algo-
rithm described in Remark 3. We do this in a similar manner as in the proof of Theorem 6.1.

Step 1: We show that t1 − t2 ≤ 218 or m1 −m2 ≤ 314.

First, we consider inequality (6.4.12) and deduce that

0 < ∣m1 ⋅
logα

log 2
− t1 +

log(1/
√

5)

log 2
∣ <max{43 ⋅ 2−(t1−t2),43α−(m1−m2)} .

We apply Lemma 6.4 with the same γ = logα
log 2 as in the case of Theorem 6.1.1, but we use M =

4.2 ⋅ 1062, (A,B) = (43,2) or (43, α) and µ =
log(1/

√
5)

log 2 . We consider the 125-th convergent p125
q125

of γ
and obtain ε > 0.24 and therefore either

t1 − t2 ≤
log(43q/0.24)

log 2
≤ 218, or m1 −m2 ≤

log(43q/0.24)

logα
≤ 314.

Now, we distinguish between

Case 1 m1 −m2 ≤ 314 and

Case 2 t1 − t2 ≤ 218.

Step 2: We consider Case 1 and show that under the assumption that m1 −m2 ≤ 314 we have
t1 − t2 ≤ 226 or m1 −m3 ≤ 326.

We consider inequality (6.4.13) and get

0 <
RRRRRRRRRRR

m2 ⋅
logα

log 2
− t1 +

log ((αm1−m2 + 1) /
√

5)

log 2

RRRRRRRRRRR

< 36 max{2−(t1−t2), α−(m1−m3)} .

We apply our algorithm (cf. Remark 3) for each possible value of m1 −m2 = k ≤ 314 and the
algorithm yields t1 − t2 ≤ 226 or m1 −m3 ≤ 326 for all k = 1,2, . . . ,314 except k ∈ {2,6}. These two
problematic cases can be treated by using continued fractions and Legendre’s criterion. Thus we
obtain in all cases that t1 − t2 ≤ 226 or m1 −m3 ≤ 326.

Within Case 1, we distinguish between the following two sub-cases:
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Case 1A m1 −m3 ≤ 326 and

Case 1B t1 − t2 ≤ 226.

Step 3: We consider Case 1A and show that under the assumption that m1 − m2 ≤ 314 and
m1 −m3 ≤ 326 we have t1 − t2 ≤ 231.

We consider inequality (6.4.14) and get

0 <
RRRRRRRRRRR

m1 ⋅
logα

log 2
− t1 +

log ((1 + αm2−m1 + αm3−m1) /
√

5)

log 2

RRRRRRRRRRR

< 6 ⋅ 2−(t1−t2).

For each possible value of m1 −m2 = k ≤ 314 and m1 −m3 = l ≤ 326 (with respect to the obvious
condition m1 −m2 ≤m1 −m3) except for

(k, l) ∈ {(0,3), (1,1), (1,5), (3,4), (7,8)},

our algorithm yields t1 − t2 ≤ 231. Note that the same upper bound can be concluded for the
exceptional cases by using continued fractions and Legendre’s criterion.

Step 4: We consider Case 1B and show that under the assumption that m1 − m2 ≤ 314 and
t1 − t2 ≤ 226 we have m1 −m3 ≤ 336.

In view of Step 6 we consider m1 −m2 ≤ 323 instead of m1 −m2 ≤ 314 as required in this step. We
consider inequality (6.4.15) and get

0 <
RRRRRRRRRRR

m2 ⋅
logα

log 2
− t2 +

log ((αm1−m2 + 1)/ (
√

5 (2t1−t2 + 1)))

log 2

RRRRRRRRRRR

< 9α−(m1−m3).

By applying our algorithm for each possible value of m1 −m2 = k ≤ 323 and t1 − t2 = r ≤ 226 we
get m1 −m3 ≤ 336, except for (k, r) ∈ {(2,0), (6,0), (10,2), (18,4)}). However, by using continued
fractions and Legendre’s criterion we obtain the same upper bound also for these exceptional cases.

Step 5: We consider Case 2 and show that under the assumption that t1 − t2 ≤ 218 we have
m1 −m2 ≤ 323.

We consider inequality (6.4.16) and get

0 <
RRRRRRRRRRR

m2 ⋅
logα

log 2
− t2 +

log (1/ (
√

5 (2t1−t2 + 1)))

log 2

RRRRRRRRRRR

< 12α−(m1−m2).
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For each possible value of t1 − t2 = r ≤ 218 our algorithm yields m1 −m2 ≤ 323.

Step 6: We continue to consider Case 2 and show that under the assumption that t1− t2 ≤ 218 and
m1 −m2 ≤ 323 we have m1 −m3 ≤ 336.

This situation is covered by Step 4 and we obtain that m1 −m3 ≤ 336. Table 6.4 summarizes our
results obtained so far.

Table 6.4: Summary of results
Upper bound of (≤) Case 1A Case 1B Case 2 Overall

m1 −m2 314 314 323 323
m1 −m3 326 336 336 336
t1 − t2 231 226 218 231

Step 7: Under the assumption that t1 − t2 ≤ 231, m1 −m2 ≤ 323 and m1 −m3 ≤ 336 we show that
m1 ≤ 353.

For the last step in our reduction process we consider inequality (6.4.17) and get

0 <
RRRRRRRRRRR

m1 ⋅
logα

log 2
− t1 +

log ((1 + αm2−m1 + αm3−m1) / (
√

5 (1 + 2t2−t1)))

log 2

RRRRRRRRRRR

< 6α−m1 .

We apply our algorithm for each possible value of m1 −m2 = k ≤ 324 , m1 −m3 = l ≤ 337 (with
respect to the obvious condition m1 −m2 ≤m1 −m3) and t1 − t2 = r ≤ 232 and get m1 ≤ 353 except
in the case that

(k, l, r) ∈ {(0,3,0), (1,1,0), (1,5,0), (3,4,0), (7,8,0), (1,9,2), (11,12,2), (1,17,4), (19,20,4)}.

These exceptional cases can be treated by using continued fractions and Legendre’s criterion. Thus
we obtain the upper bound m1 ≤ 353 in all cases. But this upper bound contradicts our assumption
that m1 ≥ 360. Therefore, no further solutions to (6.1.2) exist and Theorem 6.2 is proved.

6.6 Appendix - Lists of solutions for Theorem 6.1 and Theorem
6.2

The solutions for Diophantine equation (6.1.1) in Theorem 6.1 are displayed below. Since F1 = F2,
the solutions involving F1 are not displayed for the sake of simplicity.

F3 + F2 = 20 + 20 + 20 = 3, F3 + F3 = 21 + 20 + 20 = 4,
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F4 + F0 = 20 + 20 + 20 = 3, F4 + F2 = 21 + 20 + 20 = 4,

F4 + F3 = 21 + 21 + 20 = 5, F4 + F4 = 21 + 21 + 21 = 6,

F4 + F4 = 22 + 20 + 20 = 6, F5 + F0 = 21 + 21 + 20 = 5,

F5 + F2 = 21 + 21 + 21 = 6, F5 + F2 = 22 + 20 + 20 = 6,

F5 + F3 = 22 + 21 + 20 = 7, F5 + F4 = 22 + 21 + 21 = 8,

F5 + F5 = 22 + 22 + 21 = 10, F5 + F5 = 23 + 20 + 20 = 10,

F6 + F0 = 22 + 21 + 21 = 8, F6 + F2 = 22 + 22 + 20 = 9,

F6 + F3 = 22 + 22 + 21 = 10, F6 + F3 = 23 + 20 + 20 = 10,

F6 + F4 = 23 + 21 + 20 = 11, F6 + F5 = 23 + 22 + 20 = 13,

F6 + F6 = 23 + 22 + 22 = 16, F7 + F0 = 23 + 22 + 20 = 13,

F7 + F2 = 23 + 22 + 21 = 14, F7 + F4 = 23 + 22 + 22 = 16,

F7 + F5 = 23 + 23 + 21 = 18, F7 + F5 = 24 + 20 + 20 = 18,

F7 + F6 = 24 + 22 + 20 = 21, F7 + F7 = 24 + 23 + 21 = 26,

F8 + F0 = 24 + 22 + 20 = 21, F8 + F2 = 24 + 22 + 21 = 22,

F8 + F4 = 23 + 23 + 23 = 24, F8 + F4 = 24 + 22 + 22 = 24,

F8 + F5 = 24 + 23 + 21 = 26, F8 + F7 = 24 + 24 + 21 = 34,

F8 + F7 = 25 + 20 + 20 = 34, F8 + F8 = 25 + 23 + 21 = 42,

F9 + F0 = 24 + 24 + 21 = 34, F9 + F0 = 25 + 20 + 20 = 34,

F9 + F2 = 25 + 21 + 20 = 35, F9 + F3 = 24 + 24 + 22 = 36,

F9 + F3 = 25 + 21 + 21 = 36, F9 + F4 = 25 + 22 + 20 = 37,

F9 + F6 = 25 + 23 + 21 = 42, F9 + F9 = 25 + 25 + 22 = 68,

F9 + F9 = 26 + 21 + 21 = 68, F10 + F2 = 25 + 24 + 23 = 56,

F10 + F7 = 25 + 25 + 22 = 68, F10 + F7 = 26 + 21 + 21 = 68,

F10 + F8 = 26 + 23 + 22 = 76, F11 + F6 = 26 + 25 + 20 = 97,

F11 + F10 = 26 + 26 + 24 = 144, F11 + F10 = 27 + 23 + 23 = 144,

F12 + F0 = 26 + 26 + 24 = 144, F12 + F0 = 27 + 23 + 23 = 144,

F12 + F2 = 27 + 24 + 20 = 145, F12 + F3 = 27 + 24 + 21 = 146,

F12 + F6 = 27 + 24 + 23 = 152, F12 + F12 = 27 + 27 + 25 = 288,

F12 + F12 = 28 + 24 + 24 = 288, F13 + F10 = 27 + 27 + 25 = 288,

F13 + F10 = 28 + 24 + 24 = 288, F13 + F11 = 28 + 26 + 21 = 322,

F14 + F6 = 28 + 27 + 20 = 385, F14 + F12 = 29 + 23 + 20 = 521,

F15 + F9 = 29 + 27 + 22 = 644, F16 + F10 = 210 + 24 + 21 = 1042,

F17 + F4 = 210 + 29 + 26 = 1600, F18 + F6 = 211 + 29 + 25 = 2592.
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The solutions for Diophantine equation (6.1.2) in Theorem 6.2 are displayed below. Since F1 = F2,
the solutions involving F1 are not displayed for the sake of simplicity.

F2 + F2 + F0 = 20 + 20 = 2, F2 + F2 + F2 = 21 + 20 = 3,

F3 + F0 + F0 = 20 + 20 = 2, F3 + F2 + F0 = 21 + 20 = 3,

F3 + F2 + F2 = 21 + 21 = 4, F3 + F3 + F0 = 21 + 21 = 4,

F3 + F3 + F2 = 22 + 20 = 5, F3 + F3 + F3 = 22 + 21 = 6,

F4 + F0 + F0 = 21 + 20 = 3, F4 + F2 + F0 = 21 + 21 = 4,

F4 + F2 + F2 = 22 + 20 = 5, F4 + F3 + F0 = 22 + 20 = 5,

F4 + F3 + F2 = 22 + 21 = 6, F4 + F4 + F0 = 22 + 21 = 6,

F4 + F4 + F3 = 22 + 22 = 8, F4 + F4 + F4 = 23 + 20 = 9,

F5 + F0 + F0 = 22 + 20 = 5, F5 + F2 + F0 = 22 + 21 = 6,

F5 + F3 + F2 = 22 + 22 = 8, F5 + F3 + F3 = 23 + 20 = 9,

F5 + F4 + F0 = 22 + 22 = 8, F5 + F4 + F2 = 23 + 20 = 9,

F5 + F4 + F3 = 23 + 21 = 10, F5 + F5 + F0 = 23 + 21 = 10,

F5 + F5 + F3 = 23 + 22 = 12, F6 + F0 + F0 = 22 + 22 = 8,

F6 + F2 + F0 = 23 + 20 = 9, F6 + F2 + F2 = 23 + 21 = 10,

F6 + F3 + F0 = 23 + 21 = 10, F6 + F3 + F3 = 23 + 22 = 12,

F6 + F4 + F2 = 23 + 22 = 12, F6 + F5 + F4 = 23 + 23 = 16,

F6 + F5 + F5 = 24 + 21 = 18, F6 + F6 + F0 = 23 + 23 = 16,

F6 + F6 + F2 = 24 + 20 = 17, F6 + F6 + F3 = 24 + 21 = 18,

F6 + F6 + F6 = 24 + 23 = 24, F7 + F3 + F2 = 23 + 23 = 16,

F7 + F3 + F3 = 24 + 20 = 17, F7 + F4 + F0 = 23 + 23 = 16,

F7 + F4 + F2 = 24 + 20 = 17, F7 + F4 + F3 = 24 + 21 = 18,

F7 + F5 + F0 = 24 + 21 = 18, F7 + F5 + F3 = 24 + 22 = 20,

F7 + F6 + F4 = 24 + 23 = 24, F7 + F7 + F6 = 25 + 21 = 34,

F8 + F3 + F2 = 24 + 23 = 24, F8 + F4 + F0 = 24 + 23 = 24,

F8 + F6 + F4 = 24 + 24 = 32, F8 + F6 + F5 = 25 + 21 = 34,

F8 + F7 + F0 = 25 + 21 = 34, F8 + F7 + F3 = 25 + 22 = 36,

F9 + F0 + F0 = 25 + 21 = 34, F9 + F2 + F2 = 25 + 22 = 36,

F9 + F3 + F0 = 25 + 22 = 36, F9 + F4 + F4 = 25 + 23 = 40,

F9 + F5 + F2 = 25 + 23 = 40, F9 + F7 + F2 = 25 + 24 = 48,

F9 + F8 + F7 = 26 + 22 = 68, F9 + F9 + F0 = 26 + 22 = 68,

F10 + F5 + F5 = 26 + 20 = 65, F10 + F6 + F2 = 25 + 25 = 64,



6.6. APPENDIX - LISTS OF SOLUTIONS 145

F10 + F6 + F3 = 26 + 20 = 65, F10 + F6 + F4 = 26 + 21 = 66,

F10 + F6 + F5 = 26 + 22 = 68, F10 + F7 + F0 = 26 + 22 = 68,

F10 + F10 + F9 = 27 + 24 = 144, F11 + F5 + F3 = 26 + 25 = 96,

F11 + F9 + F5 = 26 + 26 = 128, F11 + F9 + F7 = 27 + 23 = 136,

F11 + F9 + F8 = 27 + 24 = 144, F11 + F10 + F0 = 27 + 24 = 144,

F12 + F0 + F0 = 27 + 24 = 144, F12 + F6 + F6 = 27 + 25 = 160,

F12 + F7 + F4 = 27 + 25 = 160, F12 + F11 + F10 = 28 + 25 = 288,

F12 + F12 + F0 = 28 + 25 = 288, F13 + F8 + F3 = 27 + 27 = 256,

F13 + F8 + F4 = 28 + 20 = 257, F13 + F9 + F5 = 28 + 24 = 272,

F13 + F9 + F8 = 28 + 25 = 288, F13 + F10 + F0 = 28 + 25 = 288,

F14 + F5 + F3 = 28 + 27 = 384, F14 + F12 + F10 = 29 + 26 = 576,

F16 + F9 + F4 = 29 + 29 = 1024, F16 + F9 + F5 = 210 + 21 = 1026,

F16 + F12 + F8 = 210 + 27 = 1152.
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[96] G. Wüstholz, editor. A Panorama of Number Theory or The View from Baker’s Garden.
Cambridge University Press. 2002.

[97] Kunrui Yu, Linear forms in p-adic logarithms, Acta Arith. 53(2) (1989) 107–186.

[98] Kunrui Yu, Linear forms in p-adic logarithms II, Compositio Mathematica 74(1) (1990) 15–113.



BIBLIOGRAPHY 153

[99] Kunrui Yu, Linear forms in p-adic logarithms III, Compositio Mathematica 91(3) (1994) 241–
276.

[100] Kunrui Yu, p-adic logarithmic forms and group varieties I, J. Reine Angew. Math. 502 (1998)
29–92.

[101] Kunrui Yu, p-adic logarithmic forms and group varieties II, Acta Arith. 89 (1999) 337–378.

[102] Kunrui Yu, p-adic logarithmic forms and group varieties III, Forum Math. 19 (2007) 187–280.

[103] Kunrui Yu, p-adic logarithmic forms and a problem of Erdős, Acta Math. 211(2) (2013)
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