
Daniel Schoberegger, BSc

Evolutionary Development of WEB-based
Information Systems

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Software Development and Business Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Nikolai Scerbakov

Institute of Interactive Systems and Data Science
Head: Univ.-Prof. Dipl-Inf. Dr. Stefanie Lindstaedt

Graz, September 2018

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Abstract

The development of a modern web-based information system is hard. Es-
pecially for startups with a limited budget. A startup thinks visionary and
plans usually a web-based information system for millions of concurrent
active users. A web-based information system runs on multiple server in-
stances at a cloud provider. The cloud provider establishes the necessary
infrastructure and charges computing resources. The problem is that a cloud
provider also charges idle servers instances.

The purpose of this thesis is to find an evolutionary development of web-
based information systems in regards to avoid idle server instances and
reduce infrastructure costs.

The result is an evolutionary development environment based on the ”Unix
philosophy” and extended with the best practices ”Twelve-Factor App”
and ”jHipster”. An intensive literature research compares the architectural
pattern monolithic, microservice and serverless. In addition, an industrial
case study of the command device ’Amazon Alexa’ is implemented in
each architectural pattern. Common pitfalls and problems are shown in the
process of developing a web-based information system. The architectural
pattern monolith, microservice and serverless is discussed in regards to the
impact on infrastructure costs. Especially their application characteristics
high availability and scalability have a different impact on infrastructure
costs. The case study shows that the evolutionary environment with a
serverless architectural pattern can reduce infrastructure costs by 30 percent.
The results of the thesis change the economy of hosting. Therefore, a startup
has only to pay for actual utilization instead of reserved capacity and idle
server instances.

iii

Contents

Abstract iii

1 Introduction 1
1.1 Problem Statement . 1

1.2 Motivation . 1

1.3 Definition . 3

1.3.1 Case Study - Functional Requirements 4

1.3.2 Case Study - Non-Functional Requirement 5

1.3.3 Tasks . 5

2 Fundamentals and Related Work 9
2.1 Web Application . 9

2.2 Architectural Pattern . 10

2.2.1 Pattern Definition . 11

2.2.2 Pattern Categories . 12

2.2.3 Pattern Integration in a Evolutionary Development
Approach . 15

2.2.4 Pattern Description Format 16

2.2.5 Pattern Description Language 17

2.2.6 Common Pattern Misconceptions 18

2.3 Infrastructure Cost . 19

2.4 Monolithic Architectural Pattern 23

2.4.1 Pattern Description Format 25

2.4.2 Summary . 26

2.5 Microservice Architectural Pattern 26

2.5.1 Microservice Philosophy 28

2.5.2 Characteristics . 28

2.5.3 Pattern Description Format 31

2.5.4 Complexity Monolith vs. Microservice 32

v

Contents

2.5.5 Summary . 33

2.6 Serverless Architectural Pattern 34

2.6.1 Novelty Serverless . 34

2.6.2 Definition . 36

2.6.3 Pattern Description Format 38

2.6.4 Summary . 39

2.7 Further Characteristics of the Case Study 39

2.7.1 HTTP Endpoint . 39

2.7.2 JSON . 41

2.7.3 Synchronous and Asynchronous Invocation 42

2.7.4 Summary . 43

2.8 Evolutionary Development . 43

2.8.1 Basics of the Unix Philosophy 44

2.8.2 Do One Thing and Do It Well 44

2.8.3 KISS Principle . 45

2.8.4 Eric Raymond’s 17 Unix Rules 46

2.8.5 Twelve-Factor App . 50

2.8.6 jHipster Policies . 54

2.8.7 Conway’s Law . 55

2.8.8 Problems and Pitfalls 56

2.8.9 Modularization . 63

2.8.10 Layered Architecture . 63

2.8.11 Summary . 64

3 Methodology 65

4 Result 69
4.1 Demo Application . 69

4.2 Infrastructure Costs . 70

4.3 Monolith Architectural Pattern 72

4.3.1 Overview . 72

4.3.2 Development on Amazon AWS 74

4.3.3 Amazon AWS Infrastructure Costs 76

4.4 Microservice Architectural Pattern 77

4.4.1 Overview . 77

4.4.2 Development on Amazon AWS 84

4.4.3 Amazon AWS Infrastructure Costs 88

vi

Contents

4.5 Serverless Architectural Pattern 91

4.5.1 Overview . 91

4.5.2 Development on Amazon AWS 94

4.5.3 Amazon AWS Infrastructure Costs 95

4.6 Summary Infrastructure Costs 97

4.7 Performance Evaluation . 97

4.7.1 Performance Monolithic Architectural Pattern 99

4.7.2 Performance Microservice Architectural Pattern 100

4.7.3 Performance Serverless Architectural Pattern 101

4.7.4 Summary Performance Test 102

5 Conclusion and Future Work 103

Appendix 105

Bibliography 111

vii

List of Figures

1.1 Mastering Chaos . 2

2.1 Monolith . 24

2.2 Microservice . 27

2.3 Database Monolith vs. Microservice 31

2.4 Overview Monolith vs. Microservice 32

2.5 Complexity Monolith vs. Microservice 33

2.6 Google Trend Analysis . 34

2.7 Conway’s Law in Action . 57

2.8 Cross-functional teams . 58

3.1 Performance Test Scenario with jMeter 68

4.1 Overview Demo Application 70

4.2 Monolith Application Overview 73

4.3 Monolith Application Architecture and High Availability . . . 75

4.4 Monolith Application Deployment Architecture on AWS . . . 76

4.5 Microservice Architecture Overview 79

4.6 Microservice Architecture and Higher Granularity 80

4.7 Microservice Architecture and Lower Granularity 81

4.8 Microservice Architecture with Registry and Gateway 83

4.9 Microservice Architecture and High Availability 85

4.10 Microservice Deployment Architecture on AWS 86

4.11 Serverless Architecture Overview 92

4.12 Serverless Architecture Deployment on AWS 94

4.13 Serverless Synchronous Execution Overview 96

4.14 Monolith Response Time . 100

4.15 Microservice Response Time 101

4.16 Serverless Response Time . 102

ix

List of Figures

.1 Monolith Latency . 109

.2 Microservice Latency . 109

.3 Serverless Latency . 110

x

1 Introduction

Consider you as an entrepreneur start your own company and you launch
a new web-based information system worldwide. You think visionary and
you plan your web application for millions of concurrent active users. You
run your application on server instances at a cloud provider. The cloud
provider charges you for this infrastructure costs. As a startup, you have
a limited budget. For example, in the beginning, you do not have active
users on your application and so you do not generate revenue. But the cloud
provider still charges infrastructure costs. The problem is that you have to
pay these fix costs, even if you have no active users on your application.

The main purpose of this thesis is to find an evolutionary development
environment for a modern web-based information system.

1.1 Problem Statement

I am working on architectural patterns for web applications because I want
to find out how fix infrastructure costs can be reduced in order to help
startups to work longer with their limited budget.

1.2 Motivation

A cloud provider charges costs even for idle server instances. My motivation
is to raise awareness for fix infrastructure costs and help startups to avoid
them. In addition, I provide a shared vocabulary for discussing this problem.
I use technology on its best edge and I do not accept why I have to pay for
something that I do not use.

1

1 Introduction

Figure 1.1: Mastering Chaos - Source: Evans (2016)

I believe that you can reduce infrastructure costs by tackling software
challenges on the level of architecture most efficiently. If you choose the
correct architectural pattern, you can save infrastructure costs. Therefore,
I discuss the three architectural patterns: monolithic, microservice and
serverless.

The lead developer Josh Evans at Netflix inspired me with an impressive pre-
sentation on the InfoQ Conference: Evans (2016). The presentation is called
”Mastering Chaos - A Netflix Guide to Microservices”. In this presentation
he came up with the figure 1.1.

The figure 1.1 shows an entire web application. Each circle represents an
individual service, which offers functionality to the end user. The relation-
ships between these services are shown by the arrows. As you can see in this
figure, a modern application consists of many services and they correlate
each other. If you do not want to end up in chaos with high infrastructure
costs, you have to choose the correct architectural pattern. As Evans (2016)
mentioned in his talk, you have to embrace the tension between order and
chaos. It motivates me to find a healthy mix of well-proved disciplines and

2

1.3 Definition

methodologies. I call this mix in this thesis as an evolutionary development
of web-based information systems.

As a software engineer in the last five years, I learned myself that every
developed solution was born out of pain for me and my customers. I am
very vigilant to set up the best architecture for web application and evolving
them continuously. The knowledge about architectural patterns helps to
find the best solution in a chaotic and vibrant world of web applications.

1.3 Definition

This thesis sees a web-based information system as a web application
with following characteristics:

• involves persistent data
• data accessed concurrently
• integrate with other web applications
• using different interfaces and offers HTTP endpoints

The term web-based information system and web application is used equally
and stands for the same meaning in this thesis. The short version for
application is ”app”, which is the same thing as an application or web-
based information system.

This thesis sees infrastructure costs as the costs of all server instances.

A server instance is a unit where the web application runs on it. The costs
are charged and determined by the cloud provider. This paper analyzes
the pricing of the cloud provider Amazon AWS. The charges of a server
instance vary from the computing resource of a server instance. In this
paper computing resources are memory processor, memory, storage, and
network capacity. Infrastructure costs can be only analyzed if you know
the software requirements. For example, if you know that you have one
request per hour for your application then you do not need a powerful and
expensive infrastructure. Therefore this paper defines requirements for a
case study application and the same application is implemented in three
different architectural pattern: monolithic, microservice and serverless.

3

1 Introduction

1.3.1 Case Study - Functional Requirements

The following requirements define the demonstration application. The
demonstration application is used to determine the infrastructure costs
at the cloud provider.

1. New Alexa skill in the Amazon skill store: The demonstration appli-
cation is a new Alexa skill and is available in the skill store worldwide.
Everyone with a valid Amazon Alexa account can add the skill on his
own Alexa device.

2. Web application: The Alexa skill itself is a web application and offers
HTTP endpoints to communicate with users and Alexa devices.

3. Persistent data in PostgreSQL: The text description of a cryptocur-
rency fact is stored in a relational PostgreSQL database. In total 20

facts.
4. Communication format is JSON: To each user request a random fact

will be chosen and sent it back to the user’s device via JSON.
5. Persistent data in MySQL: Newer Alexa skill devices can display an

image as well. Therefore each cryptocurrency fact contains one image.
The URL to the image is stored in a MySQL database. In total 20 links.

6. Images on file storage: The image itself is stored on the file system
and each image is accessible via HTTPS Endpoint.

7. High availability: The web application has to be redundant and no
single point of failure exist. Failure of one service does not mean the
failure of the entire web application (high availability).

8. SSL certificates: HTTPS endpoints are secured with SSL (HTTPS).
9. Response time: The maximum response time is 3000 ms for each fact

request.
10. Latency time: The maximum latency time is 2000 ms for each fact

request.
11. Throughput: The maximum throughput is 10 fact requests per second.
12. Scalability: The web application scales up intermediately. From zero

requests per second to the maximum of 10 requests per second. This
happens with no communication errors and each request has to be
under the mentioned response time (3000 ms) and latency time (2000

ms).

4

1.3 Definition

1.3.2 Case Study - Non-Functional Requirement

1. Concurrent device failures: Services are not designed to sustain con-
current device failures. As I mentioned in the requirements the design
can handle single point of failures. This does not mean that the system
can sustain concurrent device failures. Due to the requirements, the
service runs redundant on two different server instances (requirement
number 7). Each service runs redundant on two server instances. Each
server instance is located in a physically separated availability zone
to eliminate the single point of failure. In the worst case both server
instances can fail concurrently and then the service fails as well.

As you can see the demonstration application is defined by functional and
non-functional requirements. The demo application delivers the business
value retrieving cryptocurrency facts via a new Alexa skill. The mentioned
requirements have an impact on server infrastructure costs and will be
analyzed in this paper.

1.3.3 Tasks

The main purpose of this thesis is to find an evolutionary development
environment for a modern web-based information system.

The thesis consists of the following further tasks:

• I prove that the ’Unix philosophy’ is the basis for a modern develop-
ment environment (2.8.1).

• I confirm that an evolutionary development environment follows the
best practice guidelines ”Twelve-Factor-App” and ”jHipster” 2.8.5.

• I come up with a clear definition for architectural pattern 2.2.1.
• I prove that the architectural patterns monolithic, microservice and

serverless can be described via pattern description format. The pattern
description format consists of a context, problem and solution 2.2.4.

• I build an industrial case study for the Amazon voice control device
Alexa. This application is used to determine the infrastructure costs on
the cloud provider Amazon AWS. The result shows that the explained

5

1 Introduction

evolutionary development environment with a serverless architectural
pattern reduces infrastructure costs by 29.47 percent (Section 4).

• I define the case study with specific requirements. I prove that not all
requirements influence the server infrastructure cost. The result is that
high availability mostly influences the infrastructure costs (Section
2.3).

• I implement the case study in three independent application archi-
tectures: monolithic, microservice and serverless. The result is that
the same business value is delivered in three different architectural
pattern. I prove that all three applications fulfill the requirements, but
each architecture ends up with different infrastructure costs (Section
4).

• I come up with a clear definition for monolithic, microservice and
serverless architectural pattern.
Currently, the research community uses a quite range of unclear defi-
nitions (Section 2).

• I prove that infrastructure costs consist of fix and variable costs. The
result is that monolithic and microservice architecture have the same
fix costs. The serverless architecture has the lowest fix costs (Section
4.5.3).

• I prove that all three application can sustain a performance test. During
a throughput of 10 requests per second, the response time is lower
than 3000ms and the latency is lower than 2000ms (Section 4.7).

• I prove that a monolithic application does not scale efficiently like a
microservice or serverless architecture. The result is high infrastructure
costs for a monolithic application (Section 4.3).

• I prove that a monolithic application gains high availability easily. The
result is a duplication of the entire application and this doubled the
infrastructure costs.

• I prove that the case study application requirements can be decom-
posed into independent services. This result is 5 independent services
(Section 4.3.1).

• I prove that all three applications have no single point of failure. The
result is higher infrastructure costs to gain this requirement (Section
4.4).

• I prove that all the microservice architecture is a more agile approach.
The result is a finer granularity of scalability and this reduces the

6

1.3 Definition

infrastructure costs by 4.72% in comparison to the monolithic approach
(Section 4.4).

7

2 Fundamentals and Related Work

The purpose of this thesis is to analyze web application environments and
their architectural patterns because I want to find out how fix infrastructure
costs can be reduced in order to help startups to work longer with their
limited budget.

First of all, I explain what do I mean by the term web application in this
thesis.

2.1 Web Application

It is hard to come up with a precise definition of the term web application
because it would not clear enough to express this term. It is better to speak
about common characteristics of how I understand the term modern web
application. The author Fowler (2002) argues in his book ”Patterns of
Enterprise Application” in the same way. He cannot give a definition, but
he comes up with the following characteristics of an application. I adapt
these characteristics of how this thesis sees a web application.

Web application involves persistent data. The data is persistent because
data needs to be around between multiple runs of the application. This
thesis deals with persistent data in the context of the fact description and
the corresponding image URL.

There is usually a lot of data. A modern application has over 1TB of data
organized in tens of millions for records. The demo application handles
much less data because data management is not the goal of this thesis. For
example, the demo application has in total 20 fact records in a relational
database. This results in a few KB of used storage.

9

2 Fundamentals and Related Work

Many user access data concurrently. For example, the demo application
can handle a throughput of 10 requests per seconds. This means 10 users
access data at the same time and this should not cause errors.

A web application has different interfaces and exposes data via HTTP
protocol. For example, the demo application sends data via JSON format
over the HTTP protocol to the voice control device Alexa.

Web applications integrate with other web applications.

Of course, there may be further characteristics of a modern web application
but these mentioned characteristics are sufficient for further discussion in
this thesis. This thesis defines a web application with the characteristics:

• persistent data
• huge dataset
• concurrent data
• different interfaces
• integration with other web applications

A web application consists of different components. And how these compo-
nents work together are explained with the term architectural pattern. In
the next step, I explain how this thesis sees the term architectural pattern.

2.2 Architectural Pattern

Scerbakov (2018) explains in his lecture notes ”Internet-Based Information
Systems”: A web application is based on the client-server architecture. A
client sends an HTTP request, and the server returns an HTTP response.
The demo application is based on this mentioned client-server architecture.
For example, the Alexa device sends an HTTP request as JSON data to the
server, the server process the request and sends back an HTTP response as
JSON data with a fact description and image URL.

This thesis sees the client-server architecture in more finer granularity. I
introduce the three architectural pattern: monolithic, microservice and
serverless. In the entire thesis, the term application architecture always re-
lates to one of these three approaches: monolithic, microservice or serverless.

10

2.2 Architectural Pattern

It does not mean that the client-server architecture is not valid anymore. A
monolithic, microservice and serverless web application is still based on a
client-server architecture. The difference is this: A monolithic, a microservice
and a serverless architecture influences infrastructure costs in a different
way. The main purpose of this thesis is to analyzes these influences. The
term client-server architecture does not influence infrastructure costs on
that fine granular level because the term is valid for all three architectural
patterns without any distinguishes.

2.2.1 Pattern Definition

Kamal and Avgeriou (2010) defined in their research work an architectural
pattern as follows: ”Architectural patterns provide proven solutions to recur-
ring design problems that arise in a system context. They specify guidelines
for designing the structural and behavioral aspects of a system. An archi-
tectural pattern details a fundamental solution to a design problem in the
form of pre-defined pattern participants like pattern-specific components,
classes, or objects that work together to resolve the identified problem.”

Similarly, Buschmann et al. (1996) defined the term: ”An architectural pat-
tern expresses a fundamental structural organization schema for software
systems. It provides a set of predefined subsystems, specifies their responsi-
bilities, and includes rules and guidelines for organizing the relationships
between them.”

In summary, a web application consists of multiple components. And the
architectural pattern describes how the components work together.

The term architectural pattern is a subcategory of the common term pattern.
In the following section, I define the common term pattern.

As Tešanović (2001) described in her report, that the common term pattern
as a widely discussed term between software engineers. But patterns are
an effective way to communicate with software developers. Patterns bring
order in a chaotic life of the software development process. Because pattern
represent best practices, proven solutions and lessons learned to the engi-
neering discipline of software development. Therefore, patterns improve

11

2 Fundamentals and Related Work

the software development process. Every software developer should be
comfortable to analyze and use a different pattern when designing and
implementing a web-based information system. Experienced engineers have
extensive knowledge about a large set of patterns.

The term pattern originally was introduced and defined by the architect
Alexander (1979): ”Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice.”

And later the term pattern was adopted to software engineering. In soft-
ware design the term pattern appeared in the late 1980s when Beck (1998)
developed a set for patterns for developing elegant user interfaces in the
programming language Smalltalk. At around the same time, the researcher
Coplien (1992) was creating a catalog of pattern in the programming lan-
guage C++ and called them idioms.

Beck et al. (1996) said that ”a pattern is a particular form of recording design
information such that design which has worked well in particular situations
can be applied again in similar situations in the future by others. Patterns
are grouped in categories. In the next section, I describe these categories.

2.2.2 Pattern Categories

The researcher Buschmann et al. (1996) divided the common term pattern
into three categories:

• architectural pattern
• design pattern
• idioms

As I already mentioned in section 2.2.1, these categories are subcategories
of the common term pattern.

Tešanović (2001) analyzed in her work the term pattern and proved that the
difference between these three categories is in their level of abstraction and
detail.

12

2.2 Architectural Pattern

Buschmann et al. (1996) acknowledged the difference in the granularity of
abstraction. Architectural patterns are high-level strategies that deal with
global properties and mechanism of a system. An architectural pattern is
a fundamental design decision and has an impact on the entire software
system. A design pattern has a finer granularity. In contrast to an architec-
tural pattern, a design pattern define microarchitectures of subsystems and
components. Design pattern does not influence the entire software system.
Design patterns are smaller in scale than architectural patterns. A design
pattern has no impact on the fundamental structure of a software system.
The finest granularity of abstractions are idioms. Idioms deal with the imple-
mentation of particular design issues. They are specific for a programming
language or programming technique.

Buschmann et al. (1996) define architectural pattern, design pattern and
idioms as follows: ”An architectural pattern expresses a fundamental struc-
tural organization schema for software systems. It provides a set of pre-
defined subsystems, specifies their responsibilities, and includes rules and
guidelines for organizing the relationships between them.”

”A design pattern provides a scheme for refining the subsystem or compo-
nents of a software system, or the relationship between them. It describes a
commonly-recurring structure of communication components that solves a
general design problem within a particular context.”

”An idiom is a low-level pattern specific to a programming language. An
idiom describes how to implement particular aspects of components or the
relationships between them using the features of the given language.”

In summary, the three mentioned pattern categories abstract a software sys-
tem on different levels. An architectural pattern is a high-level abstraction
of the entire system. A design pattern is a medium-level abstraction of a
specific component. Finally, an idiom is a low-level abstraction in a specific
programming language.

Of course, the placing of a pattern in one of the three categories can be
difficult, because several patterns could be placed into at least two categories.
This problem the researcher (Tichy, 1997) mentioned in his work. It is not
always possible to place one pattern into exactly one category. For example,

13

2 Fundamentals and Related Work

the more problem areas a pattern includes, the more likely a pattern is to
be placed in multiple categories.

Therefore, Tichy introduced a catalogue with following categories:

• Decoupling: ”dividing a software system into independent parts in
such a way that the parts can be built, changed, replaced, and reused
independently.”

• Variant Management: ”treating different objects uniformly by factor-
ing out their commonality.”

• State Handling: ”generic manipulation of object state.”
• Control: ”control of execution and method selection.”
• Virtual Machines: ”simulated processors.”
• Convenience Patterns: ”simplified coding.”
• Compound Patterns: ”patterns composed from others, with the origi-

nal patterns visible.”
• Concurrency: ”controlling parallel and concurrent execution.”
• Distribution: ”problems germane to distributed systems.”

These mentioned categories are more precise and mutually exclusive.

But this thesis focuses on the three patterns: monolithic, microservice and
serverless. And these three patterns can be placed precisely into the group
of architectural patterns, defined by Buschmann et al.

A modern development of a web-based information system combines archi-
tectural, design and idiom patterns. As Buschmann et al. (1996) mentioned,
pattern categories help to pre-select potentially useful patterns for a given
design problem. Rech and Ras (2011) analyzed, that skilled software en-
gineers have a good knowledge of patterns and their usage. And skilled
software engineers often reuse fundamental existing pattern and apply
established processes to construct complex web-based information systems.
Rech and Ras (2011) says, ”without the reuse of well-proven knowledge,
e.g., in the form of software patterns, we would have to rebuild and re-
learn it again and again.” The already mentioned pattern categories help to
classify patterns. In the next section, I discuss the pattern integration in an
evolutionary development process of an web-based information system.

14

2.2 Architectural Pattern

2.2.3 Pattern Integration in a Evolutionary Development
Approach

A modern development uses architectural, design and idiom patterns. Ex-
perienced software engineers have a broad knowledge of theoretical facts of
patterns and their usage. But it is hard to identify the correct pattern of the
huge amount of all existing pattern. Also, the already existing experience of
each engineer plays a role in choosing a pattern. Each engineer has its own
favorite pattern and their bad or good experiences influence the choosing
process. As Buschmann et al. (1996) say, ”patterns help you build on the
collective experience of skilled software engineers. They capture the existing,
well-proven experience in software development and help to promote good
design practise. Every pattern deals with a specific, recurring problem in
the design or implementation of a software system. Patterns can be used to
construct software architectures with specific properties”.

An architectural pattern can be used at the beginning of the planning process
of the entire application. Design patterns are used during the design phase
of specific components. And idioms are used during the implementation
phase in a concrete programming language. For example, the case study
shows such a design problem. The requirements in section 1.3.1 define the
design problem. But using the correct pattern is a highly discussed problem
in the computer science research community. Ras, Rech, and Weber (2009)
summarized in their research that many software projects are developed
under tight deadlines and with changing stakeholder requirements. There-
fore, the process for evaluating, discussing and implementing a pattern
is very limited. As I already mentioned, pattern categories help to group
patterns. But you still need a concept of how you can describe a specific
pattern. Therefore, Buschmann et al. (2000) explained a pattern description
format. The format consists of three sections: context, problem, and solution.
This format follows the pattern form described originally by the author
Buschmann et al. (1996). In the next chapter, I discuss this specific pattern
description format.

15

2 Fundamentals and Related Work

2.2.4 Pattern Description Format

Buschmann et al. (2000) describe each pattern with three sections: a cor-
responding context, problem, and solution. In this thesis, I use the same
pattern format to describe the monolithic, microservice and serverless archi-
tectural pattern.

• Context: Expressed as generally as possible, to avoid limiting their
applicability to a particular configuration.

• Problem: Whenever such a problem arises the pattern can be applied.
• Solution: Present more detailed information about how the pattern

works.

This described form for patterns is self-contained and allows to present the
essence and the key details of a pattern. It gives an overview of the pattern’s
fundamental ideas, as well as how the patterns work in depth for engineers
who want to know all the details. It helps to formalize pattern.

Researches and software engineers write out the three sections, context,
problem, and solution, for each pattern. And then they keep them in a
catalog. In addition, if someone uses a pattern, he or she gains experiences
with a concrete pattern. The author Rech and Ras (2011) analyzed in his
work this aggregation of experiences. He used experience factories and
established management techniques to summarize and preserve valuable
knowledge from an old software project. The results are new software
patterns. Buschmann et al. (1996) confirmed that the most successful patterns
will be created bottom-up, by generalizing from the collective experience
of expert engineers and software architects. ”This inductive process has a
better chance of success that approaches that try to define pattern-oriented
methods and principles top-down”.

So far we know a description format for patterns. This form consists of three
sections: context, problem, and solution. But researchers still trying to find
a more general and formal format. Therefore, they try to form a pattern
description language.

16

2.2 Architectural Pattern

2.2.5 Pattern Description Language

Researchers try to go from a pattern description format, explained the
previous chapter, towards to a general pattern description language.

Why a pattern language description language is important?

As I mentioned in section 2.2.2, patterns belong to categories. And each
category has a different level of abstraction. ”An architectural pattern intro-
duce a structure and defines the base architecture of an entire system. Each
component in such an entire system is complex by itself, and often these
components can be implemented using other design patterns. Therefore, it
is important to express the relationship between such patterns to determine
which pattern to apply first and which later” (Buschmann et al., 2000).
Adding relationship means connecting patterns. Patterns should strive to
connect patterns that can complement and complete each other (Alexander,
1977).

This thesis deals with three architectural patterns: monolithic, microservice
and serverless. And all three patterns belong exactly to one category, called
architectural pattern. In this thesis, I do not deal with design patterns and
idioms. Therefore, I do not have to analyze which pattern comes first. An
architectural pattern comes always before a design pattern or an idiom.
In conclusion, you can use either a monolithic pattern or a microservice
pattern or a serverless pattern at the beginning. An architectural pattern
defines the basic structure of the entire system. Therefore this thesis does
not identify and analyze relationships between patterns. And the thesis does
not define a pattern ordering based on the relationships. But the essential
goal of a pattern description language is to find a way how different pattern
correlates with each other and how you can describe these relationships
in a formal way. These relationships also help to find what pattern comes
first in a software development process. What comes first means, what
is an underlying pattern and has to be defined at the beginning of the
design process. As I mentioned in chapter 2.2.3, an architectural pattern is
an underlying pattern and has to be defined at the beginning of the design.
An architectural pattern is the basis of the entire system. Design pattern and
idioms are more granular and are applied for individual components of the
entire system. Therefore, design pattern and idioms come after architectural

17

2 Fundamentals and Related Work

pattern. As I mentioned, this thesis only analyses the architectural patterns
and therefore the relationship and order are not a part of this thesis. The
architectural pattern always comes first. First means at the beginning of the
planning process of a web-based information system. Later means at the
time of implementing a specific component of the system.

In conclusion, a pattern description language gives more information than
a pattern description format. More information means additional details
about their relationships with each other. A pattern description language
also helps to order pattern. Therefore, you can say what pattern comes
at the beginning during the planning process. And what pattern comes
later during the concrete implementation phase. This thesis deals with
architectural pattern and as you can see an architectural pattern always
comes first: At the beginning of the planning process of the entire web-based
information system. Therefore the pattern description format is sufficient to
describe the patterns monolithic, microservice and serverless in this thesis. I
do not use a pattern description language.

In the next chapter, I clarify common misconceptions about patterns.

2.2.6 Common Pattern Misconceptions

A common misconception about patterns can be summarized as follows
(Tešanović, 2001):

• patterns are only object-oriented
• patterns provide only one solution
• patterns are implementations
• every solution is a pattern

Patterns are not only reduced to object-oriented programming languages. Of
course, many patterns are implemented in an object-oriented programming
language. But patterns also exist in other programming concepts, for exam-
ple, functional programming. As I already mentioned in section 2.2.2, if you
are on the level of programming languages, then you deal with patterns on a
very fine granularity. They are called low-level pattern and they are specific
to a programming language and language concept. These patterns belong

18

2.3 Infrastructure Cost

to the pattern category idioms. In this thesis, I only explore architectural
patterns. Therefore, the distinguish in different programming languages are
not necessary. As Beck et al. (1996) acknowledged, patterns can be found in
a variety of software systems, independently of the programming concept
used in developing those systems.

Patterns provide more than one solution. A common misconception is that
a pattern provides exact one solution for the problem. A pattern describes
a solution to the reducing problems. It is rather a collection of more than
one solution than exactly one solution. As (Tešanović, 2001) confirmed: ”a
pattern is not an exact implementation: a pattern may provide hints about
potential implementation issues. The pattern only describes when, why and
how one could create an implementation”.

Not every solution, algorithm or heuristic can be viewed as a pattern, said
(Tešanović, 2001) in her work: ”In order to be considered as a pattern, the
solution must be verified as a recurring solution to a recurring problem.”
The identification of a recurring problem is done by the pattern description
format, mentioned in section 2.2.4. The context is the design situation that
raises a design problem. The problem is a set of forces occurring in that
context. A solution is a form of rule that can be applied to resolve the
problem.

In summary, patterns are not only object-oriented, they are also not only one
implementation to solve a problem and not every solution is a pattern.

2.3 Infrastructure Cost

A web application runs on a server instance at the cloud provider. Each
server instance allocates computing resources (Chhabra and Dixit, 2015).
In this thesis compute resources refers to a processor, memory, storage,
and network capacity. When computing resources are allocated, the cloud
provider charges them. In this thesis, I call this costs infrastructure costs.
When a cloud provider runs your application this process is also called
hosting (Spillner, 2017). As investigated by Marathe et al. (2014), a cloud
provider separates costs into fix and variable cost. In this thesis, fix cost

19

2 Fundamentals and Related Work

relates to processor, memory, and storage Variable costs dependents on the
amount of user request. The thesis sees the network capacity as variable
costs.

The main problem is that the cloud provider charges fix costs during the
entire time that the application is hosted, regardless of whether the applica-
tion was used. The cloud provider does not take idle time into account. Idle
time means that there are no requests or the application is not running.

Koomey Jonathan (2015) investigated idle server instances at cloud providers.
The core findings of the study were that 30 percent of server instances were
idle. These instances have not delivered information or computing capacity
in six months or more.

The findings support previous research performed by the Uptime Institute1,
which also found that around 30 percent of servers are unused.

Kaplan James M. (2008) from McKinsey and Company analyzed the utiliza-
tion of servers. The core findings of the study were that no more than 6

percent of the examined server instances reach their maximum computing
output in one year.

As you can see a cloud provider charges you for unused compute capacity.
So far we know that around 30 percent of server instances is idle and does
not offer any value. The main purpose of this thesis is to eliminate idle
server instances.

This thesis monetizes the costs for idle servers and so we get a fixed amount
of infrastructure costs. A monetizing of costs is only possible when we know
the requirements and how the requirements influence the costs. When your
web application is accessed by only a few users per second then you do
not need a powerful infrastructure. For example, the number of concurrent
users is defined by performance metrics.

Therefore, we have to analyze the defined requirements in 1.3.1.

The requirements define a modern demo web application. This thesis de-
composes the requirements into the following cost factors. A cost factor
establishes infrastructure costs.

1https://uptimeinstitute.com/resources/asset/comatose-server-savings-calculator

20

2.3 Infrastructure Cost

Cost Factor 1: Amount of stored and transferred data. The application has
persistent data. First, the facts description and corresponding image URL
is stored in a relational database. Second, the image itself is stored in a file
system storage.

The number of records in the database and the number of files influence
infrastructure costs.

Cost Factor 2: High availability. The application is designed to sustain the
failure of a server instance. We call this high availability. Failure of a server
instance does not follow in a failure of the entire application. If one failure
would lead to failure of the entire application, a single point of failure
exists. The application is designed to have no single point of failure. High
availability is established when you spread your application on multiple
server instances and let them run redundantly. As proposed by Len Bass
(2012) a load balancer is required to support availability. A load balancer
distributes each user request across these multiple server instances. The
entry point of your application is only the load balancer. In case of a server
instance failure the load balancer recognize the failure and does not redirect
any requests anymore to this failed instance. The same application runs
redundantly on another server instance and the load balancer redirects all
user requests to only correct working server instances. We call a redundant
application on another server instance also a replica in this thesis. All server
instances together behind a load balancer are called a cluster.

In this thesis, a load balancer is maintained by the cloud provider. This
means there is no additional effort to set up a load balancer from scratch.
But the cloud provider also charges you infrastructure costs for the load
balancer.

In summary, high availability needs a load balancer and additional server
instances. Therefore, high availability is a cost factor for infrastructure
costs.

Cost Factor 3: Scalability As I mentioned in the previous section, high
availability means adding multiple server instances behind a load balancer.
Adding new server instances results in allocating more computing capac-
ity. Basically, we enlarge the entire application. We call this enlarging of
application scalability.

21

2 Fundamentals and Related Work

This thesis distinguishes between high flexibility and low flexibility for
scaling. When you replicate the entire application behind a load balancer
we call this low flexibility for scaling. If you only duplicate parts of your
application then we speak about more flexibility in regarding scalability. We
also use the synonym ’granularity of scalability’ for the meaning ’flexibility
of scaling’.

Higher flexibility of scaling concludes in a higher amount of server instances
and this finally impacts the infrastructure costs.

Cost Factor 4: Performance An increase in computing capacity also con-
tributes positively to the overall performance of your application. For ex-
ample with additional server instances your application can handle more
user request per second than with few server instances. López and Spillner
(2017) confirmed a directly proportional relationship between the number
of server instances and the performance.

According to the defined requirements of the demo application in 1.3.1,
the application has to handle 10 user requests per second without any
communication errors. Therefore, we have to find a suitable number of
server instances to reach this performance metric.

The mentioned 10 user requests per seconds are called throughput. Ad-
ditional performance metrics in this thesis are response time and latency.
Response time is the elapsed time from just before sending the request
to just after the last response has been received. Latency is the time from
just before sending the request to just after the first response has been
received2.

In summary, the performance metrics influence the total amount of server
instances. The total count of server instances is responsible for the infras-
tructure costs.

This section list the cost factor that influences the infrastructure costs. As
you can see the thesis investigates four cost factors:

• Amount of data
• High availability

2https://jmeter.apache.org/usermanual/glossary.html

22

2.4 Monolithic Architectural Pattern

• Scalability
• Performance

The demo application is defined by its requirements in 1.3.1. These require-
ments lead to cost factors of the infrastructure. As you remember the goal of
this thesis is to reduce infrastructure costs. Now we have to find leverages
where we can optimize these cost factors. The easiest way would be to cancel
requirements. For example, high availability is not necessary anymore and
so you do not need replicas and so you decrease the total amount of server
instance. This approach is not an option in this thesis because we do not
want to reduce the functionalities of the demo application.

I follow the idea to investigate in different application architectures. I
implement the application from scratch in three different architectures:
monolithic, microservice and serverless. Each architecture has an impact
on the previously mentioned cost factors. Therefore, choosing different
application architectures gives us leverage to optimize infrastructure costs.

Villamizar et al. (2017) further pointed out, that a serverless architecture
reduces infrastructure costs by up to 77.08%. He examined the effects in
laboratory experiments.

Adzic and Chatley (2017) presented in his paper two industrial case studies
how migrating an application to a serverless deployment reduced hosting
cost by between 66% and 95%.

Carrasco, Bladel, and Demeyer (2018) confirmed that more and more com-
panies adopt the microservice architecture, but he did not monetize the
costs.

Here in this thesis, we discuss the three architecture on a real business
application. We investigate the mentioned cost factors and monetize the
costs for each architecture.

2.4 Monolithic Architectural Pattern

The term comes from the Unix community and appears the first in the book
’The Art of Unix Programming’ by Raymond (2003). The author describes

23

2 Fundamentals and Related Work

Figure 2.1: Monolith - Source: Fowler (2014)

a system that gets too ’big’ as a monolithic application. The characteristic
’bigness’ does not really fit into my implemented demo monolithic applica-
tion because However, the characteristic ’big’ is subjective and a monolithic
application has to be defined more precisely. The same author Raymond
mentioned in his book another characteristic. He says a monolithic applica-
tion runs in one single process. This is much more accurate than big. He
did not come up with a definition and so other researchers grasp the term
and formed a definition. For example, Fowler (2014) defined:”A monolithic
application puts all its functionality into one application and runs the
application as a single process.”

For the further discussion, this thesis uses exact this definition. In figure 2.1
you can the illustration of the monolithic architectural pattern.

24

2.4 Monolithic Architectural Pattern

As I mentioned in the methodological framework in section 3 the demo
application runs on the web server Wildly. All functionality is packed into
one single process. This has the advantage that a monolithic application gets
high availability easily. You just have to run multiple copies of the whole
application behind a load balancer.

The advantage is that the scalability is not very detailed, because you always
replicate the entire application. You cannot separate your application into
smaller parts because the whole application runs as a single process.

A monolithic application runs on multiple server instances. This results in
linear scalability (1X, 2X, 3X etc.) (Villamizar et al., 2017). If you want to
scale your monolithic application at a more granular level (1.1X, 1.4X, 2.5X
etc.) you have to use server instances with different computer resources.
However, these strategies are difficult. Villamizar et al. (2017) found out in
his study, that Amazon AWS only allows the same server type four auto-
scaling groups, therefore a monolith can be only scaled in a linear way. In
addition, a monolithic can only scale in one dimension. It scales by running
more replicas and so you always add all computer resources (processor,
memory, storage, and network) with each new instance. This is called on
one dimension. If you just want to scale one part of your application, for
example, the component which handles database connections, you cannot do
this with a monolithic approach. This is called scaling in another dimension
for example as mentioned database component.

2.4.1 Pattern Description Format

The monolithic pattern can be explained by using the pattern description
format in section 2.2.4.

Context

A monolithic application is built as a single unit.

25

2 Fundamentals and Related Work

Problem

The application cannot be split into individual services or modules.

Solution

All the code is in a single codebase that is compiled together and produces
a single application, which runs in its own single process.

2.4.2 Summary

In summary, a monolithic application can be scaled easily based on a linear
strategy in one dimension by running multiple replicas behind a load
balancer. But the replication of entire application results in an allocation
of unnecessary computer resources because the scalability is not on a fine
level. This results in high infrastructure costs.

Therefore we need a more agile approach to avoid infrastructure costs. In the
next section, we discuss the microservice architecture, which decomposes
the entire application into smaller parts.

2.5 Microservice Architectural Pattern

As Fowler (2014) defined, a microservice architecture puts each element
of functionality into a separate service. Therefore we have to analyze the
requirements in section 1.3.1 again and derive individual services. Each
service runs as a separate process and communicates with each other. In
figure 2.2 you can find an illustration of the microservice architectural
pattern. The microservice architectural pattern designs the application as
suites of independently deployable services.

26

2.5 Microservice Architectural Pattern

Figure 2.2: Microservice - Source: Fowler (2014)

27

2 Fundamentals and Related Work

2.5.1 Microservice Philosophy

The philosophy of a microservice architectural pattern is essentially equal
to the Unix philosophy of ”do one thing and do it well”. This philosophy
was stated by the Unix pioneer (McIlroy, 1978). When splitting a monolith
into smaller microservices, then each service has to be small and focused
on doing one thing well. This can be difficult because the codebase of a
monolithic application is large. The concept is called ”cohesion”.

Newman (2015) stated cohesion as follows: ”Cohesion is the drive to have
related code grouped together. This is an important concept when we think
about microservices.”

R. C. Martin and M. Martin (2006) reinforced the concept cohesion and
defined the ”Single Responsibility Principle”, which states ”Gather together
those things that change for the same reason, and separate those things that
change for different reasons.”

In a monolithic application, you force the ”Single Responsibility Principle”
by trying to get clear modules.

Microservices use the same approach to get independent services.

2.5.2 Characteristics

The characteristics of a microservice pattern are as follows (Fowler, 2014):

1. Componentization via Services
2. Organized around Business Capabilities
3. Products not Projects
4. Smart endpoints and dumb pipes
5. Decentralized Governance
6. Decentralized Data Management
7. Infrastructure Automation
8. Design for failure
9. Evolutionary Design

28

2.5 Microservice Architectural Pattern

Componentization via Services

As I already defined in the pattern definition section 2.2.1, a web-based in-
formation system consists of multiple components. And in the microservice
architectural pattern, a component is realized as its own service.

Organized around Business Capabilities

When you split an application into smaller parts, you may have the problem
that you split them around business capabilities. This well-known phe-
nomenon is called Conway’s law and is discussed in section 2.8.7 in this
thesis.

Products not Projects

The microservice model uses the approach to build and operate each ser-
vice as a product over the full lifetime: The development team takes full
responsibility for the software in production.

Smart endpoints and dumb pipes

Microservices uses simple communication protocols to communicate with
each other. The logic itself is implemented in the service.

Decentralized Governance

A decentralized governance means, that you can use different programming
languages and technologies for solving a problem. Each microservice can
be implemented in a different programming language and communicates
with a lightweight protocol each other.

Decentralized Data Management

Each microservice has its own persistent data and the management is
decentralized.

Infrastructure Automation

An application with an microservice architectural pattern consists of many
services. Therefore, you need as much automation as possible. Otherwise,
you can not deploy and test efficiently.

Design for failure

29

2 Fundamentals and Related Work

In a microservice architecture, the failure of one service does not mean that
the entire application is down.

Evolutionary Design

The microservice approach stands for an evolutionary approach. Therefore,
I discuss this approach in this thesis. Together with the other mentioned
aspects in this thesis, I form an evolutionary development of web-based
information systems.

The communication between services is an additional challenge because it
has to be organized.

Firstly, you have to know which service is running and available. As pro-
vided by Newman (2015), a service discovery application is needed that
registers all available services. In this thesis, we call a service discovery
application also registry application.

As proved by Torkura, Sukmana, and Meinel (2017) the microservice reg-
istry is an essential component of the microservice architecture. It ties all
components together and enables them to communicate with each other.

Secondly, you need a central entry point for your user. In a microservice
architecture, we call this entry point ’gateway’. As proved by (Wizenty et al.,
2017) a microservice gateway is the central access point to the user. The
gateway routes each user request to the appropriate service application. It
also verifies if the client is authorized to perform the request to the service.

In regards to infrastructure costs, we need additional server instances for
the microservice gateway a registry.

A microservice pattern also decentralizes the database storage. Microservices
prefer that each service handles its own database. In figure 2.3 you can see
the difference between the persistence model of a monolith and microservice
architectural pattern.

In comparison to the monolithic architecture, a microservice architecture has
a higher flexibility for scaling. As Fowler (2014) mentioned, a microservice
architecture scales by distributing services across servers. Therefore we do
not need to replicate the entire application, just small parts as needed. A
part of an application allocates less computing capacity than the entire

30

2.5 Microservice Architectural Pattern

Figure 2.3: Database Monolith vs. Microservice - Source: Fowler (2014)

application. Therefore a microservice application has higher flexibility for
scaling and this ends up in fewer infrastructure costs. In figure 2.4 you can
see the difference between the monolith and microservice architecture.

2.5.3 Pattern Description Format

The microservice pattern can be explained by using the pattern description
format from section 2.2.4.

Context

The microservice pattern designs the application as suites of independently
deployable services.

31

2 Fundamentals and Related Work

Figure 2.4: Overview Monolith vs. Microservice - Source: Fowler (2014)

Problem

Any changes to the application involve building and deploying the entire
application. You have one big application, which is not maintainable.

Solution

As Fowler (2014) defined, ”a microservice architectural style is an approach
to developing a single application as a suite of small services, each running
in its own process and communication with a lightweight mechanism, often
an HTTP resource API.”

2.5.4 Complexity Monolith vs. Microservice

As you can see, splitting a monolith into individual services takes additional
effort. And you need a registry and gateway for the microservice infrastruc-

32

2.5 Microservice Architectural Pattern

Figure 2.5: Complexity Monolith vs. Microservice - Source: Fowler (2015)

ture. In the beginning, a microservice infrastructure is more complex than a
monolithic setup. In figure 2.5 you can see an illustration of the complexity
for monolithic and microservice setup.

2.5.5 Summary

In summary, a microservice architecture decomposes an application into ser-
vices. Instead of one process, you have a network of communicating process.
This communication is organized via a registry application. The access point
is a gateway application. Scalability works on basis of a finer granularity

33

2 Fundamentals and Related Work

Figure 2.6: Google Trend Analysis

and therefore infrastructure costs are lower in comparison to a monolithic
application. But you still not tackle the problem with infrastructure cost for
idle sever instances. Finally, we discuss the agilest approach that is called
serverless architecture.

2.6 Serverless Architectural Pattern

The term serverless is very new. A Google Trends3 analysis indicates the
novelty of serverless.

2.6.1 Novelty Serverless

Figure 2.6 shows how often the term serverless is searched globally on
Google4.

The interest over the last 2 years has been increasing rapidly. The number
on the y-axis represents search interest relative to the highest point. The
time is given by the x-axis. A value of 100 is the peak popularity for the
term in August 2018. A value of 50 means that the term is half as popular
as the peak. Likewise, a score of 1 in August 2015 means the term was 1%
as popular as the peak.

3https://trends.google.com
4https://www.google.com

34

2.6 Serverless Architectural Pattern

Therefore, a cloud provider such as Amazon AWS5 or Google6 is trying
to brand the term with their products. Each company does this in a dif-
ferent way and this leads to misunderstanding and confusing in the IT
community.

Amazon AWS announced via Twitter7 on 12 October 2017:

Enterprises using #serverless don’t manage infrastructure.

Faster time to market + lower costs = happier customers.

In a similar way, Google Cloud advertised their products via Twitter8 on 9

March 2017:

Now in beta: Google Cloud Functions #serverless #googlenext17

Platform for building event-based microservices.

Both companies speak in a very general way about serverless. Amazon AWS
connects with the term unmanaged infrastructure, faster time to market,
lower costs and happier customers.

Google Cloud sees a platform for event-based microservices. This is a very
broad spectrum and supports the misunderstanding in the IT community.

Due to the novelty of the term serverless, also only a few pieces of scientific
literature exists about the term. Eyk, Iosup, Seif, et al. (2017) confirmed, that
we have a lack of clearly defined terminology of serverless in the scientific
literature. In addition, they provided that the term serverless suffers from a
community problem that faces every emerging technology, which has also
hampered cloud computing a decade ago: lack of clear terminology and
scattered vision about the field.

Roberts (2016) acknowledged this missing definition and confirmed that
serverless is a trend and there is no one clear view of what is serverless.

In contrast to previous research work and the mentioned marketing terms, I
focus on clarifying the term serverless in this thesis.

5https://aws.amazon.com
6https://cloud.google.com
7https://twitter.com/awscloud/status/918625698323030017

8https://twitter.com/awscloud/status/918625698323030017

35

2 Fundamentals and Related Work

2.6.2 Definition

The term serverless is used one of the first times in an article in the year
2012 by Fromm (2012). Fromm mentioned ’serverless thinking’ among other
things. Software developers should not think so much about the underneath
server infrastructure and so they can focus more on creating business value.
He wanted to improve the developer experience. In the same year, 2012, the
platform Iron.io9 used the term serverless as well and speaks from an idea
of an ’on-demand’ or ’pay as you go’ model.

But in the year 2012, the term serverless was not broadly known in the IT
community.

As you can see in figure 2.6 the term become more popular in 2015, when
Amazon launched their serverless service ’AWS Lambda’ and advertised
the platform in 2014.10

Developer experience is also mentioned by Roberts (2016). But he also
mentioned the benefit of cost optimization. He confirmed that a serverless
architecture reduces costs in regards to availability and scalability. Because
the cloud provider always guarantees high availability and scalability for
offered serverless services and so the user does not need extra server
instances to establish these requirements. Of course, the cloud provider
will host your application on several servers. Serverless does not mean
that we are no longer use servers. The cloud provider also charges extra
costs when he offers services such as high availability and scalability to the
user. But Eyk, Iosup, Seif, et al. (2017) found out that costs for a serverless
architecture are up to 77.08% lower than costs for a monolithic architecture.
The difference is the cost model. You only pay for the duration of the
executing time. Therefore you also only pay the cost for high availability
and scalability when your application is actually running and needed.

So far we have found an architecture that tackles our main problem with
idle server instances.

9https://www.iron.io/
10https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-

lambda.pdf

36

2.6 Serverless Architectural Pattern

Eyk, Iosup, Abad, et al. (2018) acknowledged in a study that a serverless
architecture minimizes infrastructure costs in comparison to server instances
that are used for monolithic and microservice applications. In a previous
study, the same author Eyk, Iosup, Seif, et al. (2017) defined a serverless
architecture by three key characteristics:

• Granular billing: The user is charged only when the application is
actually executing.

• Almost no operational costs: The cloud provider takes over about
scalability and high availability. These costs are already included in
the charge for the application. But the difference is that the cloud
provider only charges the actual executing time and no idle time.
Therefore the total infrastructure costs for a serverless application are
lower than for a monolithic application.

• Event-Driven: Interactions with serverless applications are short lived.
The application responds to events when needed. In regards to the
demo application, an event represents a user request from the Alexa
device.

The Cloud Native Computing Foundation (CNCF) acknowledge these three
factors in their current serverless white paper (CNCF, 2018).

In this thesis serverless architecture is defined by these three characteristics:
granular billing, no operational costs and event-driven.

In a serverless architecture, an application runs as a serverless function. Eyk,
Iosup, Seif, et al. (2017) define a serverless function as a small, stateless,
on-demand service with a single functional responsibility.

• The characteristic small represents a function with a single functional
responsibility. On function implements exact one specific business
logic. For example, in the demo application, one specific business logic
is reading all available facts from the database.

• A stateless function is a function that does not persist any state from
one invocation to the next invocation (Baldini et al., 2017). This means,
each user request has its own data and does not transfer any data to
the next user request. Even when the same user triggers several times
the same function, stateless means data are not shared. Except for data
that is stored persistently in a database.

37

2 Fundamentals and Related Work

• The characteristics on-demand stands for a function that only runs
when the function is actually needed. Therefore a serverless function
is never idle and the cloud provider does not charge any costs for idle
server capacities.

In this thesis, we reduce the term serverless to a serverless function. When-
ever we speak about serverless architecture we refer the term to one or more
serverless function as described in this section.

But remember, servers are still required to run a serverless architecture. The
main difference is the on-demand cost model.

2.6.3 Pattern Description Format

The serverless pattern can be explained by using the pattern description
format in section 2.2.4.

Context

Software developers do not have to think about the underneath infrastruc-
ture, they can focus more on creating business value.

Problem

You have already split your application into individual services, but you
still have high costs for idle server instances.

Solution

The cloud provider offers an on-demand cost model for their infrastructure.
You only pay costs when you run a specific function. Therefore, a serverless
function is never idle.

38

2.7 Further Characteristics of the Case Study

2.6.4 Summary

Finally, I use a serverless approach to run the code for the Alexa skill logic.
As a developer, I do not care of the underneath server infrastructure. My
primary goal is to deliver business value. The business value in the practical
example to deliver the Alexa skill.

So far we have investigated in all three software architectures and their
infrastructure costs. We know how scalability and high availability influence
the costs in each architecture. When you consider the requirements in section
1.3.1 we still have undiscussed functionalities such as HTTP endpoints or
the communication format JSON.

In the next section, we discuss the remaining requirements and their influ-
ence on infrastructure costs.

2.7 Further Characteristics of the Case Study

In the previous section, we have discussed the requirements scalability,
high availability, and performance. These requirements turned out as cost
factors for serer infrastructure. These cost factors vary from architecture to
architecture. We have seen that a serverless architecture has fewer fix costs
than a monolithic architecture.

In the next section, we discuss further requirements of the demo application
and how they influence infrastructure costs.

2.7.1 HTTP Endpoint

As I already mentioned the demo application uses the client-server model.
The client sends a request to the server and the server sends a response
back to the client. The server offers entry points to the client for the com-
munication. Such an entry point is called an HTTP endpoint. The offering
of HTTP endpoints allocates computing resources and the cloud provider

39

2 Fundamentals and Related Work

charges costs. The total costs depend on the number of endpoints and how
often they are called by the clients.

The structure of such a request to an HTTP endpoint is defined in the Hy-
pertext Transfer Protocol (HTTP). Berners-Lee (1989) originally introduced
the term hypertext that stands for an ”human-readable information linked
together in an unconstrained way”. And HTTP is the protocol to send and
receive hypertext.

The open standard organizations ’Internet Engineering Task Force’ (IETF)11

and the World Wide Web Consortium (W3C)12 redefined the HTTP protocol
in a series of publication. For example, R. Fielding and Reschke (2014b)
defined in an IETF standard the HTTP method POST. The demo application
sends all request via the POST method. A POST request sends data as a
block of data in the request to the server and the server processes this
data. The processing on the server allocates computing capacity and the
cloud provider charges costs. The more data the more computing capacity
is needed and the more the cloud provider charges costs to you. The block
of data can be called ’payload body’ as well.

R. Fielding and Reschke (2014a) also defined the HTTP as a stateless pro-
tocol. We have already discussed the characteristic stateless in context of
serverless functions in section 2.6.2. In the context of HTTP, stateless has the
same meaning: Each request can be understood as isolation and does not
share any state or data with other requests.

In this thesis, each HTTP endpoint is implemented as a RESTful web service.
R. T. Fielding (2000) introduced and defined the term Representational State
Transfer (REST) in his doctoral dissertation. REST is not a standard itself,
but it is most commonly used over HTTP.

REST basically means that all necessary parameters for calling a web service
are encoded into an URL (Scerbakov, 2018).

As Newman (2015) summarized in his work, ”REST itself does not really talk
about underlying protocols. Although it is most commonly used over HTTP.
Most important is the concept of resources: You can think of a resource as a

11https://www.ietf.org
12https://www.w3.org

40

2.7 Further Characteristics of the Case Study

thing that the service itself knows about, like a Customer. The server creates
different representations of this Customer on request. How a resource is
shown externally is completely decoupled from how it is stored internally.
A client might ask for a JSON representation of a Customer, for example,
even if it is stored in a completely different format. Once a client has a
representation of this Customer, it can then make requests to change it, and
the server may or may not comply with them”.

In summary, the demo web application is implemented via RESTfull web
services. Data are sent as a POST request to the server and the communica-
tion is stateless over the protocol HTTP. The entry point of a web service is
called an HTTP endpoint.

Each request has a specific format of the data. In the next section, we speak
about the data format JSON.

2.7.2 JSON

As I already mentioned in the previous section, data are sent as a block in
the request to the server. This block has a specific format. In this thesis, we
use the JavaScript Object Notation (JSON). Bray (2017) defined the format as
a lightweight, text-based data interchange format. The basic formatting rules
are key/value pairs. A single comma separates a key from the following
pair. Each key/value pair is surrounded with curly brackets.

JSON is an open standard and therefore you do not have to pay any costs
for the usage of the format. But the format is text-based and the more
data is transferred, the more data has to be processed on the server. The
processing on the server itself allocates computing resources and therefore
the cloud provider charges costs. And so the amount of data influences the
infrastructure costs.

The demo application only accepts data in JSON format as input for all web
services. The generated output of all web services is also in JSON format.

In the next section, we discuss how different services can be invoked.

41

2 Fundamentals and Related Work

2.7.3 Synchronous and Asynchronous Invocation

The demo application is decomposed into services. Each service is responsi-
ble for one specific business logic of the entire web application.

The user invokes a service through the HTTP endpoint. The service pro-
cesses the request and responses with data in the JSON format.

A service can also invoke other services. For example, one service uses the
output from another service as input. Therefore, another service has to be
invoked. In this case, the service, that invokes another service, can only
process a request as fast as the other invoked service can perform them. In
regards to the demo application, a sequence of service invocations might
have a longer response time than just an invocation of one single service.
The maximal response time of the demo application is defined in section
1.3.1. Therefore, the invocation type has to be considered when the demo
application fulfills all requirements.

Hohpe and Woolf, 2003 described in their book the different invocation
types: synchronous and asynchronous.

• Synchronous invocation: The caller invokes a service and waits for a
response. It is also called a request-reply or sequence model.

• Asynchronous invocation: The caller invokes a service and does not
wait for a response. The caller continues its remaining work. This is a
parallel invocation model.

Of course, an asynchronous invocation model only works when the caller
service does not directly rely on data from the invoked other services. In the
case of the demo application, the caller service always relies on data from
invoked services and therefore all services are synchronously invoked.

In summary, the demo application consists of multiple services. Each service
can be invoked synchronously or asynchronously. Synchronous invocation
means that the caller service waits for the response of the invoked service.
In contrast, the asynchronous model does not wait for a response, but an
asynchronous model only works when the caller service does not directly
need the other service’s output for the remaining work. When a service
waits, the waiting has an influence on the maximal response time of the

42

2.8 Evolutionary Development

entire application and therefore we consider the invocation model in the
demo application.

2.7.4 Summary

The user invokes a service through an HTTP endpoint. Each service is
implemented as a RESTful web service. All services accept only JSON data
and respond accordingly with JSON data. When a service invokes another
service, then the invocation model is synchronous. The caller service waits
for the response of the called service and then the output of the called
service is used for further work.

In the next section, I discuss the term ’evolutionary development’.

2.8 Evolutionary Development

This thesis follows the basic rules of the ’Unix Philosophy’. On top of
these basic rules, I use the guidelines ’Twelve-Factor App’ and ’jHipster’ to
analyze and implement the case study.

The development of a modern web application is hard.

Evolutionary development is an iterative, agile and flexible methodology
to implement the case study web application in each specific approach
(monolithic, microservice and serverless).

Wright and Perry (2012) analyzed in his paper common pitfalls for hosted
web applications. He also investigated the relationship between software
architecture and development process.

During software development, you have to tackle problems and pitfalls. Best
practices help to avoid these problems. Especially, this thesis focuses on
reducing infrastructure costs and therefore I follow best practices to avoid
infrastructure costs.

43

2 Fundamentals and Related Work

The ”one-size-fits” methodology for software development does not exist,
but best practices are exist to tackle common problems. Wiggins (2018) pro-
vide with ”Twelve-Factor-App” a set of practices for architecting , building
and maintaining modern web applications.

First of all, I explain the basics of the Unix Philosophy.

2.8.1 Basics of the Unix Philosophy

Evolutionary development of web-based information system follows the
basic rules of the ’Unix Philosophy’. The Unix Philosophy is a set of cultural
norms and philosophical approaches to minimalist and modular software
development. It is based on the experience of leading developers of the Unix
operating system.

The Unix philosophy is not a formal design method, created by theoretical
computer scientists. It is pragmatic and grounded in experience. It is not to
be found in official methods and standards, but rather found in the implicit
knowledge of the expertise in the Unix culture community. It encourages a
sense of proportion and skepticism. (Raymond, 2003).

The most important concepts in software engineering are modularity and
reusability. In these concepts are well summarized in the Unix philosophy.

In conclusion, the Unix philosophy helps to build simple, short, clear,
modular and extensible code that can be easily maintained and changed. It
gives us the basis of evolutionary development of web-based information
system. In the next section, I discuss further details of the Unix philosophy.

2.8.2 Do One Thing and Do It Well

The researcher McIlroy (1978) firstly documented the Unix philosophy and
characterized them as follows:

• Make each program do one thing well. To do a new job, build afresh
rather than complicate old programs by adding new features.

44

2.8 Evolutionary Development

• Expect the output of every program to become the input to another, as
yet unknown, program. Don’t clutter output with extraneous informa-
tion. Avoid stringently columnar or binary input formats. Don’t insist
on interactive input

• Design and build software, even operating systems, to be tried early,
ideally within weeks. Don’t hesitate to throw away the clumsy parts
and rebuild them

• Use tools in preference to unskilled help to lighten a programming
task, even if you have to detour to build the tools and expect to throw
some of them out after you’ve finished using them.

It was later summarized by Salus (1994) as follows:

• Write programs that do one thing and do it well.
• Write programs to work together.
• Write programs to handle text streams, because that is a universal

interface.

2.8.3 KISS Principle

Basically, all the Unix philosophy boils down to one iron law: the KISS
principle. KISS stands for ’Keep It Simple, Stupid!’ (Raymond, 2003). This
is the Unix philosophy summarized in one sentence. And also the entire
operating system Unix is an excellent example and base for applying KISS
principle. Unix developers followed the KISS principle and created, for
example, the simple and powerful command line tools cat or grep.

In this thesis, you see the KISS principle in the REST endpoints and the
simple JSON format. There is a lot of hype surrounding REST or JSON, but
I do not adopt or reject it uncritically. I carefully follow the KISS principle
and keep them simple.

As you can see, the ’KISS principle’ and ’Do one thing and do it well’
concept are basics of evolutionary development of a web-based information
system.

45

2 Fundamentals and Related Work

In conclusion, this is the Unix philosophy defined by Salus (1994): ”Write
programs that do one thing and do it well. Write programs to work to-
gether. Write programs to handle text streams, because that is a universal
interface.”

On the top of these basics, researches created following further rules.

2.8.4 Eric Raymond’s 17 Unix Rules

The Unix enthusiast, programmer and researcher Raymond (2003) provided
a series of design rules:

1. Rule of Modularity: Build modular programs
2. Rule of Clarity: Write readable programs
3. Rule of Composition: Use composition
4. Rule of Separation: Separate mechanisms from policy
5. Rule of Simplicity: Write simple programs
6. Rule of Parsimony: Write small programs
7. Rule of Transparency: Write transparent programs
8. Rule of Robustness: Write robust programs
9. Rule of Representation: Make data complicated when required, not

the program
10. Rule of Least Surprise: Build on potential users’ expected knowledge
11. Rule of Silence: Avoid unnecessary output
12. Rule of Repair: Write programs which fail in a way easy to diagnose
13. Rule of Economy: Value developer time over machine time
14. Rule of Generation: Write abstract programs that generate code instead

of writing code by hand
15. Rule of Optimization: Prototype software before polishing it
16. Rule of Diversity: Write flexible and open programs
17. Rule of Extensibility: Make the program and protocols extensible

As Raymond (2003) confirmed, most of these mentioned rules are highly
recommended in software engineering. The operating system Unix is a great
example. All these rules are conducted within Unix. Therefore, we also
adapt these rules to the evolutionary development of web-based information
systems.

46

2.8 Evolutionary Development

Rule of Modularity: Write simple parts connected by clean interfaces.

The researcher Kernighan and Plauger (1976) stated an impressive result:
”Controlling complexity is the essence of computer programming”. This
mean, if you want to write complex software, you have to control its global
complexity. Therefore, you have to build simple local parts connected by
well-defined interfaces. If one small local part gets down, then the remaining
global system still works.

Rule of Clarity: Clarity is better than cleverness.

In the Unix tradition, you choose algorithms and implementations for future
maintainability. This advice goes beyond just commenting your code. A
code is written to the human beings who will read and maintain the source
code in the future. Not otherwise. You do not write code for the computer.

Rule of Composition: Design programs to be connected with other pro-
grams.

As Raymond (2003) summarized, ”To make programs composable, make
them independent. A program on one end of a text stream should care as
little as possible about the program on the other end. It should be made
easy to replace one end with a completely different implementation without
disturbing the other.”

Rule of Separation: Separate policy from mechanism; separate interfaces
from engines.

In general, you should separate the interface (=front-end) from the engine
(=back-end). The front-end implements policy and the back-end implements
mechanism.

Rule of Simplicity: Design for simplicity; add complexity only where
you must.

You should encourage a software culture, that knows that small is beautiful
and resists complexity. The goal is to put a high value on simple solutions.

Rule of Parsimony: Write a big program only when it is clear by demon-
stration that nothing else will do.

47

2 Fundamentals and Related Work

A big program is large in volume of code and of internal complexity. Large
programs are difficult to maintain.

Rule of Transparency: Design for visibility to make inspection and de-
bugging easier

Raymond (2003) acknowledged, that debugging often occupies three-quarters
or more of development time. Therefore, you should ease debugging by
designing for transparency and discoverability.

Rule of Robustness: Robustness is the child of transparency and simplic-
ity.

A robust software performs well under unexpected conditions. Therefore
you need a transparent and simple software. ”A software is transparent
when you can look at it and immediately see what is going on. It is simple
when is going on is uncomplicated enough for a human brain to reason
about all the potential cases without strain” (Raymond, 2003).

Rule of Representation: Fold knowledge into data, so program logic can
be stupid and robust.

You should shift complexity from program logic to the data structure. Then
you will see a difference in transparency and clarity. Because procedural
logic is hard for humans to verify, but complex data structure is fairly easy
to model and express (Raymond, 2003).

Rule of Least Surprise: In interface design, always do the least surprising
thing.

The easiest program interfaces use the pre-existing knowledge of their
users.

Rule of Silence: When a program has nothing surprising to say, it should
say nothing.

These design rules say you should treat the user’s attention only when it is
necessary.

Rule of Repair: Repair what you can — but when you must fail, fail
noisily and as soon as possible

48

2.8 Evolutionary Development

Software should be transparent. In case of an error, the software should
never quietly quit the error and hide the error to the user.

Rule of Economy: Programmer time is expensive; conserve it in prefer-
ence to machine time

This rule means, that the machine should do more of the low-level work
of programming. For example, a programmer does not teach memory
management to the machine or write it from scratch. The programmer shifts
this low-level work to the machine itself. This lets to the next following
rule.

Rule of Generation: Avoid hand-hacking; write programs to write pro-
grams when you can

In the Unix tradition, you use generic and abstracted code. The best example
is the usage of a code generator. You do not start every project from scratch
and you automate error-prone detail work. In this thesis, we use the code
generator jHipster. This generator is described in section 2.8.6.

Rule of Optimization: Prototype before polishing. Get it working before
you optimize it.

In the Unix world exists a long tradition: Make it work first and then make
it work fast.

Rule of Diversity: Distrust all claims for “one true way”.

The Unix tradition includes a healthy mistrust of ”one true way” in software
design and implementation. You always have multiple languages, open
extensible systems, and much customization.

Rule of Extensibility: Design for the future, because it will be here sooner
than you think.

Software should be able to add new features without rebuilding the archi-
tecture.

49

2 Fundamentals and Related Work

Summary

The Eric Raymond’s 17 Unix rules give a fundamental setting for software
development. The success you can see on the operating system Unix, which
is used worldwide. In addition, this thesis adds best practice guidelines
and forms the evolutionary development of web-based information systems.
One of the best practices is called ”The Twelve-Factor App”, described in
the following section.

2.8.5 Twelve-Factor App

The ”Twelve-Factor App”13 is a set of guidelines for building modern
web-based information systems. The Twelve-Factor App has elements of
costs and architecting, therefore I discuss the guidelines in this thesis. An
evolutionary development environment means, that you find methodologies
in the development process to build web-based applications efficiently.

As Lerner (2014) summarized in his article, ”the well-known hosting com-
pany Heroku14 looked at thousands of web applications and tried to extract
from the factors that made it more likely that they would succeed.”

Heroku’s CTO, Adam Wiggins, wrote up all recommendations and named
them the ”Twelve-Factor App”. These twelve factors describe practices that
Heroku believes will make an evolutionary development of web application
and more likely result in a successful and maintainable application.

In this section, I discuss the twelve factors for an evolutionary development
of a web-based information system. These factors describe best practices for
a maintainable web application. I describe each factor what they mean and
how you can use them. In addition, I discuss how you can use the factors
in each architectural pattern in this thesis: monolithic, microservice and
serverless.

Here you can find the 12 factors for an evolutionary development, summa-
rized by Lerner (2014):

13https://12factor.net/
14https://www.heroku.com

50

2.8 Evolutionary Development

1. Codebase
One codebase tracked in revision control, many deploys.

2. Dependencies
Explicitly declare and isolate dependencies.

3. Config
Store config in the environment.

4. Backing services
Treat backing services as attached resources.

5. Build, release, run
Strictly separate build an run stages

6. Process
Execute the app as one or more stateless processes.

7. Port binding
Export services via port binding

8. Concurrency
Scale-out via the process model

9. Disposability
Maximize robustness with fast startup and graceful shutdown

10. Dev/prod parity
Keep development, staging, and production as similar as possible

11. Logs
Treat logs as event streams.

12. Admin processes
Run admin/management tasks as on-off processes.

Codebase

A twelve-factor app is always tracked in a version control system, for

51

2 Fundamentals and Related Work

example Git15. This is called code repository.

The case study uses for each implementation a single repository. You can
find them in the methodology section 3.

Dependencies

Twelve-factor apps never rely on implicit existence of system-wide packages.
Therefore, the case study uses a central configuration file with strict versions.
All dependencies are included as well in the central configuration file and
the software never loads a new library into the project automatically.

Config

An evolutionary development of web-based information systems uses dif-
ferent configurations for deployment environments, such as development,
staging or production. You should store these configuration parameters
in a separate place than the actual codebase. This is especially critical for
passwords. Twelve-factor app methodology recommended, that the best
practice is to store configuration values in environment variables that are
populated during deploy.

Backing services

The Twelve-Factor methodology sees any service, which is consumed over
the network as backing service. For example, the database MySQL16 or
PostgreSQL17. These are attached resources. An attached resources can be
swapped without code changes.

Build, release, run

The twelve-factor app uses strict separation between the build, release and
run stages. The build stage converts a code repository into an executable
bundle known as a build. The release stage takes the build and combines it
with the deploy’s current config. The result is ready for immediate execution
in the execution environment. The run stage runs the app in the execution
environment.

15https://git-scm.com
16https://www.mysql.com
17https://www.postgresql.org

52

2.8 Evolutionary Development

Processes

Twelve-factor processes are stateless and share nothing. Any data that needs
to persist must be stored in a baking service, for example, a database service.
The monolithic application runs as one single and stateless process. Each
microservice in the microservice architectural pattern runs as own stateless
process as well. And each serverless function is a stateless function.

Port binding Twelve-factor apps do not rely on the underlying infrastruc-
ture. It always exposes all necessary ports itself. If a web server is necessary,
then the application itself brings its own web server.

Concurrency The application runs by one or more processes. It is the process
model that you know from the operating system. Scaling an application just
means starting a new process on the same or different server.

Disposability

The twelve-factor app’s processes are disposable. This means, that they can
be started or stopped at a moment’s notice.

Dev/prod parity

The twelve-factor app is designed for continuous deployment by keeping
the gap between development and production small.

Logs Logs should be written to the output stream of the application. The
stream can be routed to a file or to a terminal. But the application never
concerns itself with routing or saving of the log output stream.

Admin processes

All admin process must be run in isolated processes on the identical envi-
ronment as the production.

Summary

The Twelve-factor App principles help you to create a robust web-based
information system. These principles are an essential part of an evolutionary
development environment.

53

2 Fundamentals and Related Work

In the next chapter, I discuss the code generator jHipster.

2.8.6 jHipster Policies

As I already mentioned a modern application is configured via code gener-
ator. You do not start from scratch. You use already a best practice setup.
For example, you can use the code generator JHipster (Raible, 2018). This
technique is also called ”scaffolding” tool. You can build a minimal setup
easily. That enhances your productivity and satisfaction when building a
modern web application.

The JHipster development team follow coding policies. The term ”best prac-
tices” or ”guidelines” can be used as well and stands for coding policies in
this thesis.

• Policy 0: Polices are voted by the development team
JHipster has a core development team of 19 developers and over
350 contributors18. They all discuss together their own policies on
the mailing list19. Each policy comes from the team itself and it is
never forced from one individual person or institution without any
discussion.

• The Technology used by JHipster have their default configuration
used as much as possible
Each technology has already a very good default configuration and
there is no reason to change usual naming and coding conventions.
Many changes in the standard configuration lead the system to work
in an ”unusual way” and are difficult to understand.

• Only add options when there is sufficient added-value in the gen-
erated code
Only add complex options to the JHipster code generator. A complex
option implies a configuration or coding in several components.

18http://www.jhipster.tech/team
19http://www.goo.gl/ABR9s3

54

2.8 Evolutionary Development

• Follow the IntelliJ formatting and coding guidelines
The default Java rules provided by IntelliJ IDEA are the standard
formatting and coding guidelines for the JHipster project 20.

• Use strict versions for third-party libraries
Different library versions lead to conflicts. Never load a new library
version into your project automatically. It is primarily a JavaScript
problem, but be safe and declare your strict version in a centralized
configuration file, for example, bower.json or package.json.

2.8.7 Conway’s Law

When you talk about architectural patterns, then you also have to take a look
at the organizational structure of a company. Because the organizational
structure is responsible for producing the software and their architecture.
And the structure of a company influences the produced software. The
researcher Conway (1968) introduced this idea and it states that ”organiza-
tions which design systems are constrained to produce designs which are
copies of the communication structures of these organizations. Any piece of
software reflects the organizational structure that produced it.” For example,
”if you have four teams working on a compiler you will end up with a four
pass compiler.”

Conway argues, that multiple developers must communicate frequently
with each other to create a functional software. Therefore, the produced
software will reflect the social boundaries of the organization. This described
sociological phenomenon is called Conway’s Law.

Raymond (1996) restated Conway’s law: ”The organization of the software
and the organization of the software team will be congruent”.

Coplien and Harrison (2004) acknowledged Conway’s Law as well: ”If
the parts of an organization (e.g., teams, departments, or subdivisions) do
not closely reflect the essential parts of the product, or if the relationship
between organizations do not reflect the relationships between product parts,

20https://www.jetbrains.com/help/idea/code-style-java.html

55

2 Fundamentals and Related Work

then the project will be in trouble... Therefore: Make sure the organization
is compatible with the product architecture.”

Additionally, Conway’s Law can be also seen in the design of corporate
websites. Bevan (1999) stated: ”Organizations often produce websites with
content and structure which mirrors the internal concerns of the organiza-
tion rather than the needs of the users of the site.”

Why do we discuss Conway’s Law in this thesis?

When you split a monolithic application into smaller microservices, then you
often focus only on the technology layer. This means that you split teams
across the technology. For example a UI team, server-side logic team, and
database team. These teams will produce silo application architecture if they
do not communicate effectively with each other. In this example, you can
see Conway’s Law in action. The figure 2.7 illustrated the silo architecture,
because of Conway’s law.

The solution for tackling this problem is setting up cross-functional teams.
A cross-functional team includes the full range of skills: user experience,
database, and project management. In figure 2.8 you can see the cross-
functional teams.

In conclusion, you can see if you talk about architectural patterns, then
you also have to take a look at the organizational structure of a company.
Because the structure of a company influences the produced software. The
goal is to build cross-functional teams in tackling the Conway’s Law.

2.8.8 Problems and Pitfalls

Idle Server Instances

As I mentioned in chapter 2.3 the main problems are idle server instances
that increase server infrastructure costs. Koomey Jonathan (2015) and Kaplan
James M. (2008) proved this in their reports.

Software Erosion

56

2.8 Evolutionary Development

Figure 2.7: Conway’s Law in Action - Source: Fowler (2014)

57

2 Fundamentals and Related Work

Figure 2.8: Cross-functional teams - Source: Fowler (2014)

Another problem is called software erosion. Wiggins (2011) argues in his
report that software erosion is a heavy cost. Software erosion describes
the process of software that is becoming faulty. A software run in an en-
vironment and this environment changes continuously. For example, the
operating system installs updates on the server instances. This is a change
of the underlying environment in which the software is running. In this
case, the software has also to be tested and if needed the software needs
updates as well. If no one takes care of the software, the software erodes.
A software development team has to fight against software erosion and
these leads to additional costs. The chosen software architecture has an
impact on software erosion. For example, a monolithic application packs
all services into one big process. This process runs on a web server on a
server instance. The software development team is in charge of the entire
monolithic application. This means, the software team has to update the
operating system, the web server and the application itself. As you can see
this takes much effort to update all components of a monolithic application.
It is a traditional server-based development. The code, config, processes,

58

2.8 Evolutionary Development

and logs are deeply coupled with the underlying server setup.

In comparison to a microservice architecture, these update activities are
even more complicated. Because in a microservice approach all services
are spread across multiple server instances. A change has an impact on
the system-wide microservices. For example in case of an operating system
update, multiple server instances have to be updated and the running service
on it has to be tested and updated as well. This thesis sees a microservice
architecture deeply coupled with the underlying server setup.

The easiest way the avoid software erosion is the serverless approach. Be-
cause as I mentioned, the cloud provider takes care about the underlying
server instances. The cloud provider guarantees a running system if you fol-
low the requirements for a serverless function. It is the most abstract model
and therefore all manual updates are reduced to a minimum. Basically, the
cloud provider avoids for you the software erosion.

The goal for a modern software development team is to avoid software
erosion and establish a platform which is erosion-resistant. In this thesis, the
serverless function platform on Amazon AWS is seen as an erosion-resident
platform. Amazon AWS provides an execution environment for your web
application21. AWS supports following runtime versions listed at September
20, 2018.

• Linux kernel version – 4.14.62-84.118.amzn2.x86-64.
• Node.js – v8.10, v6.10 or v4.3
• Java – Java 8

• Python – Python 3.6 and 2.7
• .NET Core – .NET Core 1.0.1, .NET Core 2.0, and .NET Core 2.1
• Go – Go 1.x

If you follow an evolutionary software development process as described in
this thesis, then your software team build the software for an environment
runtime, for example, Java 8. At the cloud provider, a serverless architecture
is configured which automatically setup up the necessary infrastructure
for Java 8 applications. The cloud provider guarantees that the underlying
infrastructure is always compatible to Java 8 and therefore the cloud provider

21https://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html

59

2 Fundamentals and Related Work

fights against the software erosion on your behalf. This reduces costs in a
modern application development team.

Another reason for software erosion is the fact that you have unused ser-
vices which run on your server instances and these services are responsible
for unnecessary infrastructure costs. Boss et al. (2016) analyzed how such
unused services can be discovered. This mentioned research is focused on
embedded software development. Especially embedded software develop-
ment is a good example of reducing unnecessary computing resources and
avoiding costs. Because an embedded software run on hardware where
the resources are very limited. In comparisons to a server instance at a
cloud provider, a hardware with a embedded software only has few MB
memory, for example 256MB. A evolutionary software development team
chooses a process that efficiently uses this limited resources. And detecting
unused services is a key factor in am modern application. This mentioned
paper implemented software checks into continuous integration to check
absolute services. However, this thesis has not the focus on discovering
unused services in the application.

Gurp and Bosch (2002) acknowledged that erosion is a common problem
in software engineering. They proved that a higher complexity of archi-
tecture results in a higher software erosion over time. Software tends to
erode over time, and redesign from scratch becomes a viable alternative
compared to prolonging the life of the existing architecture. As you can see
the described monolithic architecture in section 2.4 and the microservice
architecture in 2.5 have a higher complexity than the serverless approach in
section 2.6. The monolithic architecture is strictly coupled with the under-
lying web server and operating system. The same coupling is valid for the
microservice approach. In addition, the microservice architecture is spread
across multiple servers and illustrates even a more complex architecture.
Therefore, a monolith and microservice application tend to software erosion.
The serverless function approach has a less complex architecture for the
development team and therefore software erosion is lower and finally less
costs are necessary for the software development team. As you can see a
correct chosen architectural design are essential to avoid software erosion.

Mair, Herold, and Rausch (2014) discovered a divergence between the
intended software architecture and the actually realized architecture during

60

2.8 Evolutionary Development

the development phase. This means you have a progressive divergence
during the development phase of a web application. The reasons for this
divergence are manifold. For example, coding workaround through time
pressure or employee turnover. (Muthig and Lindvall, 2008) analyzed that
also adopting new requirements leads to software erosion.

Iyengar et al. (2009) proved that eroded software becomes too costly to be
maintained and might need to be replaced be expensive re-developments.
An eroded software is difficult for maintaining and adapting. Iyengar et al.
(2009) describe it as an unmanageable monolith. The most expensive solution
is that developers often rewrite the entire application. For very large systems
such approaches are typically impossible to conduct. As an alternative, the
modularization approach decomposes the entire application into modules.
Each module has a well-defined interface for the communication. As you
can see the mentioned microservice approach uses this modularization
approach. Each service is an individual modul and communicates with each
other. The HTTP endpoints are the well-defined communication interfaces.
Iyengar et al. (2009) suggest following additional guidelines for modules:

• Put cohesive functions, data, and files together in one module. A good
module provides a set of services related to a specific purpose.

• One module should operate independently of other modules. A mod-
ule should capture and encapsulate a set of design decisions. The
implementation is hidden from other modules. The interaction be-
tween modules is through module interfaces, for example, HTTP
endpoints.

• A module should not share data structures among other modules. As
well function definitions should not be shared across other modules.
The result is that each module is built and test independently.

• Reduce compile time dependencies among modules. The result is
easier configuration management of the entire application.

Ramage and Bennett (1998), as well as Bisbal et al. (1999) indicated a positive
correlation between software maintainability and modularization.

Furthermore, Iyengar et al. (2009) mentioned a layered module approach.
A system should be organized into a layered architecture. Each layer has
a specific responsibility. For example, a database layer is responsible for
database access. A layered architecture has the following characteristics:

61

2 Fundamentals and Related Work

• Modules that reside in the same layer can communicate with each
other through interfaces.

• Modules that reside in upper layer levels can communicate with the
layers below.

• Modules that resides in a layer at lower level should not communicate
with modules in higher layers.

This mentioned layered architecture is also included in the described mi-
croservice architecture in section 2.5. As you remember, the gateway is the
entry point for the microservice approach. The gateway represents an upper
layer. The upper layer communicates with the lower layers. The multiples
services represent the lower level.

Moreover, Iyengar et al. (2009) use the modularization approach to form
modules around business domains. The business domain is a set of func-
tionalities to deliver the same business value. For example, loan calculation.
However, some business domains have many business operations. Therefore
you have to decompose a complex domain module into submodules.

The researchers Iyengar et al. (2009) mentioned another important practice:
The usage of a code generation tool. A coder generator creates a significant
part of the code automatically. This thesis uses the code generator jHipster22.
JHipster creates base code for a Java Spring Boot Application. It uses a
modern approach to create a monolithic or microservice application.

Also, the researcher Lerner (2014) tried to find a way to avoid clutter and
chaos in web application projects. He suggested the prominent framework
”Ruby on Rails” among other things, which uses the model of ”convention
over configuration”. It means, that ”developers should sacrifice some free-
dom in naming conventions and directory locations”. Therefore, you can
maintain better your web application project. For example, if the method-
ology dictates the naming conventions and directory locations, then de-
velopers understand faster the application and can begin to improve the
code faster. The mentioned code generator jHipster gives automatically a
structure and naming conventions for your web application.

22https://www.jhipster.tech

62

2.8 Evolutionary Development

2.8.9 Modularization

As described in section 2.8.8 a modularization approach decomposes the
entire application into smaller parts. Smaller parts can plan, develop, operate
and maintain easier than the entire application. The microservice approach
introduces its own set of complexity.

”When you use microservice you have to work on automated deployment,
monitoring, dealing with failure, eventual consistency and other factors that
a distributed system introduces” (Fowler, 2015).

Also within a monolith, you should pay attention to good modularity
(Fowler, 2015). Modularization is also used for monolithic applications. You
do not have to split everything into service, for getting good modularity.

2.8.10 Layered Architecture

As described in section 2.8.8 a layered architecture helps to avoid software
erosion as well. Services on different levels keep the entire application in
a better organization. As I mentioned, gateway and registry within the
microservice architectural pattern run on different levels than the other
services. This means that the user can only reach the gateway from outside.
Therefore, the gateway works on a higher level than the other service behind
the gateway.

Gurp and Bosch (2002) proved that The result is that the higher the ar-
chitectural complexity is, the more likely it is that software erosion might
occur.

In conclusion, the usage of a code generator, for example jHipster, helps
to build modern web applications from scratch. In addition, the concept
of modularization and layered architecture helps to keep the software
development process in a better organization. These mentioned concepts
are summarized in best practices.

But the most important thing among these describes solution is the usage
of a well-known best practice methodology.

63

2 Fundamentals and Related Work

2.8.11 Summary

In conclusion, the Unix philosophy gives you a fundamental environment of
a robust approach for software development. In addition, the Twelve-Factor
App guidelines and the jHipster code generator creates an evolutionary
environment for developing web-based information systems.

64

3 Methodology

In this section, I present the methodological framework and so you can
replicate the results of this thesis.

Each web application is implemented in Java 1.81 and is stored in a public
Git repository (Figure 3.1). A README file in each root folder explains how
you can compile and deploy the application. The persistent storage is two
relational database servers: MySQL 5.7.222 and PostgreSQL 9.6.63.

All applications run on the cloud provider Amazon Web Services (AWS)4. The
entire setup is configured in the AWS Region EU Irland (eu-west).

Figure 3.2 lists all products that are necessary to set up the deployment
environment on AWS.

The costs depend on the computing capacity of the chosen product. In
Figure 3.3 you can see the product name with the corresponding computing
resource. The pricing of each product is listed on the AWS Pricing Website5.
In the thesis, I used the prices that Amazon listed on August 1, 2018.

The entire monolithic application runs on the web server Wildfly 11.0.06.
Each microservice Java application runs on the web server Undertow 1.4.257.
All Microservice application are created via jHipster 5.2.08 projects. The

1http://oracle.com/java
2https://mysql.com
3https://postgresql.org
4https://aws.amazon.com/
5https://aws.amazon.com/pricing
6http://wildfly.org
7http://undertow.io
8https://www.jhipster.tech

65

3 Methodology

Application Git
Monolith
Java Application https://bitbucket.org/tugraz-thesis/monolith

Microservice
jHipster Gateway https://bitbucket.org/tugraz-thesis/microservice-gateway
jHipster Registry https://bitbucket.org/tugraz-thesis/microservice-registry
Handle Input/Output (Service 1) https://bitbucket.org/tugraz-thesis/microservice-service1

Get Random Fact (Service 2) https://bitbucket.org/tugraz-thesis/microservice-service2

Get Fact Description (Service 3) https://bitbucket.org/tugraz-thesis/microservice-service3

Get Image URL (Service 4) https://bitbucket.org/tugraz-thesis/microservice-service4

Get Image from Storage (Service 5) https://bitbucket.org/tugraz-thesis/microservice-service5

Serverless
Handle Input/Output (Lambda 1) https://bitbucket.org/tugraz-thesis/serverless-service1

Get Random Fact (Lambda 2) https://bitbucket.org/tugraz-thesis/serverless-service2

Get Fact Description (Lambda 3) https://bitbucket.org/tugraz-thesis/serverless-service3

Get Image URL (Lambda 4) https://bitbucket.org/tugraz-thesis/serverless-service4

Get Image from Storage (Lambda 5) https://bitbucket.org/tugraz-thesis/serverless-service5

Table 3.1: All implemented Java Applications and their Git repositories

jHipster Microservice Registry application is based on the Netflix Eureka
Server 2.1.0. 9

I ran the performance test via Apache jMeter 4.010. The configuration was as
follows: The tool jMeter sent 10 requests per second as an HTTP Post request
to the application. In the body of the HTTP POST request was a specific
JSON payload. In section Appendix chapter you can see an example JSON
request to the application and the corresponding JSON response from the
application. This JSON request represents a JSON request that an original
Alexa device sends to the application. You can find the jMeter configuration
in a separate Git repository (Figure 3.4).

The performance test was configured on a separate server instance and ran
against each server architecture approach: monolithic, microservice and
serverless. You can see the test scenario in figure 3.1.

In summary this section I explained the methodological framework and so
you replicate the result of this thesis anytime.

9https://cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html
10https://jmeter.apache.org

66

Application AWS product name
Monolith
Java Application EC2 t2.xlarge

Microservice
jHipster Gateway EC2 t2.small
jHipster Registry EC2 t2.small
Handle Input/Output (Service 1) EC2 t2.small
Get Random Fact (Service 2) EC2 t2.small
Get Fact Description (Service 3) EC2 t2.small
Get Image URL (Service 4) EC2 t2.small
Get Image from Storage (Service 5) EC2 t2.small

Serverless
Handle Input/Output (Lambda 1) Lambda Function
Get Random Fact (Lambda 2) Lambda Function
Get Fact Description (Lambda 3) Lambda Function
Get Image URL (Lambda 4) Lambda Function
Get Image from Storage (Lambda 5) Lambda Function

Relational database
MySQL DB RDS db.t2.small
PostgreSQL RDS db.t2.small

Load Balancer ELB Load Balancer
File Storage (Images) S3 Bucket

Table 3.2: All configured AWS products

67

3 Methodology

AWS product name computing capacity

EC2 t2.xlarge
Ubuntu Linux 64bit
4 vCPUs, 2.3 GHz,
16 GiB memory

EC2 t2.small
Ubuntu Linux 64bit
vCPUs, 2.5 GHz,
2GiB memory

RDS db.t2.small

Multi-AZ Deployment
1vCPU
2GiB memory
50GB storage

S3 Bucket Storage 20GB storage
Lambda 512MB memory

Table 3.3: AWS product name and corresponding computing capacity

Application Git repository
jMeter configuration https://bitbucket.org/tugraz-thesis/jmeter

Table 3.4: Git repository with jMeter configuration

Application
(monolithic, microserivce

or serverless)

Region EU Ireland (eu-west)

Amazon RDS

Amazon RDS

PostgreSQL
db.t2.small

MySQL SQL
db.t2.small

S3 Bucket
Storage

jMeter

EC2 t2.xlarge

JSON

Figure 3.1: Performance test scenario with jMeter.

68

4 Result

In this solution chapter, I implemented the three different software ar-
chitectures: monolithic, microservice and serverless. Therefore I created
a demonstration application in each software architecture. The goal is to
deliver the same business value in different architectures.

4.1 Demo Application

The demo application demonstrates a real business scenario. I implemented
following business case: A person is interested in cryptocurrencies and can
ask the voice command device Amazon Alexa1 to tell a fact about cryptocur-
rencies.

For example, the user ask the following question: ”Alexa, tell me a crypto
fact.”

Then Alexa answers with following example answer: ”Small fractions of
bitcoins are called Satoshi.”

Figure 4.1 illustrates the usage of the demonstration application. The voice
command device Alexa recognize the question ”Alexa, tell me a crypto fact”
and invokes the implemented Java Application. The Java Application has
multiple HTTP endpoints and accepts JSON data as input. In the Appendix
you can find an example request in the JSON format. The Java Application
achieve the fact in the relational database MySQL and PostgreSQL. In
addition, the URL of a fact image is added to the response and the entire
answer is sent back to the Alexa device as JSON. Finally, the Alexa device

1https://developer.amazon.com/alexa

69

4 Result

User
Alexa

(voice-command device)

Alexa, tell me a crpyto fact.
Amazon RDS

Amazon RDS
PostgreSQL

MySQL

File storageJava
Application

Small factions of bitcoins are
called Satoshi.

JSON

Figure 4.1: Overview Demo Application

translates the fact into voice and the user can hear a random cryptocurrency
fact.

This explained usage of Alexa is an additional feature and does not come
with the standard Alexa device. Amazon allows developers to expand
the voice device with additional skills. In the demonstration application,
I add the Alexa skill to tell a fact about cryptocurrencies. Alexa offers an
interface for new skills. The Interface is free, but the developer is responsible
for hosting the application and therefore infrastructure costs are incurred.
In the next chapter, I analyze the infrastructure costs for the Alexa skill
application.

4.2 Infrastructure Costs

Infrastructure costs can be only analyzed if you know the software require-
ments. For example, if you know that you have one request per hour for your
application then you do not need a powerful and expensive infrastructure.

The requirements have an impact on infrastructure costs as follows:

70

4.2 Infrastructure Costs

1. New Alexa skill in the Amazon skill store
The Alexa skill store is free and therefore no infrastructure costs are
charged.

2. Web application
The web application has to run on a web server. The webs server allo-
cates computing resources and therefore the cloud provider charges
costs.

3. Persistent data in PostgreSQL
The number of records influences the PostgreSQL database server
infrastructure costs.

4. Communication format is JSON
The size of the JSON data influences the processing on the web server.
The more data the more processing time and this leads in allocating
more computing resources. Allocating computing resources results in
infrastructure costs.

5. Persistent data in MySQL
The number of records influences the MySQL database server infras-
tructure costs.

6. Images on file storage
The number of images and the file size of each image influence the
infrastructure costs.

7. High availability
For high availability, the same application runs on multiple servers.
Each replica allocates computing resources and this ends up in more
infrastructure costs.

8. SSL certificates
A web server has to be configured and run with a valid SSL certificate,
but these maintaining costs are not investigated in this thesis.

9. Response time, latency time and throughput
Server instances must have enough computing capacities to fulfill
these performance metrics. More computing capacities lead to more
costs.

10. Scalability
A finer granularity of scalability results in more server instances and
these impacts on more infrastructure costs.

The demo application delivers the business value retrieving cryptocurrency

71

4 Result

Requirement Infrastructure
cost analysis

1. Amazon skill store no
2. Web application yes
3. PostgreSQL database yes
4. JSON communication yes
5. MySQL database yes
6. File Storage yes
7. High Availability yes
8. SSL certificate no
9. Response time yes
10. Throughput yes
11. Scalability yes

Table 4.1: Requirements and impact on infrastructure costs

facts via a new Alexa skill. As you can see the mentioned requirements
have an impact on infrastructure costs. In table 4.1 I summarize up the
requirements and which of them are influence the infrastructure costs. In
the thesis, I analyze the requirements which are marked with ’yes’ in the
column infrastructure costs’.

4.3 Monolith Architectural Pattern

A monolithic application packs all services in one single application.

4.3.1 Overview

In the first step, I broke down the requirements in section 1.3.1 into following
5 services:

• Service 1 (S1): Handle JSON input and JSON Output
• Service 2 (S2): Get the total amount of facts and chose a random fact.
• Service 3 (S3): Get the fact description in PostgreSQL

72

4.3 Monolith Architectural Pattern

S1

S2

S3

S4

S5

MySQL

PostgreSQL

JavaEE Application

Monolith Architecture

User

Figure 4.2: Monolith Application Overview

• Service 4 (S4): Get the image URL in MySQL
• Service 5 (S5): Get the image from the file storage system

Next, I set up a Java web application project with the Google Web Toolkit
(GWT). The application runs in one process on the application Server Wild-
fly.

You can see an architecture overview in figure 4.2. All services are packed
into one big application on one server.

At the current state, the monolithic architecture has a single point of failure
architecture. The web server, the two database server, and the web applica-
tion run on one single server. If the server crashes, currently no redundancy
exists. Even if one service crashes, for example, S1, the entire system does
not work anymore.

Therefore the production environment has additional high availability con-
figuration. As you remember, the requirements in chapter 1.3.1 define a
redundancy system.

A monolith application gets redundant if you put the same application
behind a load balancer on a second server. Figure 4.3 shows the monolith
application in the production environment. The two database servers are

73

4 Result

duplicated in a cluster and so you gain also redundancy for the databases.
As you can see a high availability system increases the infrastructure costs,
because you need a load balancer, a second server, and a clustered database
server.

As you can see, you put the entire application with all services on the second
server. This gives you less flexibility for scalability. For example, if only S1

has too much load, you cannot put only this service on a new machine. You
have to put the entire application to a second machine, even the services
with less load. This increases infrastructure costs because each copy of the
whole application allocates servers resources.

In the next step, I set up the production environment on the cloud provider
Amazon AWS.

4.3.2 Development on Amazon AWS

According to AWS services, the production system is shown in figure 4.4.
The AWS load balancer is named with Elastic Load Balancing (EBS). The
two servers are virtual machine instances and are called EC2 t2.xlarge. The
redundant database instances are called RDS db.t2.small. The entire setup
is configured in the Amazon AWS Region EU Irland (eu-west). Each Region
is a separate geographic area. Each region has multiple, isolated locations
known as Availability Zones.2 If one or all instances fail in availability Zone A,
then the instance in Zone B handle the requests and vice versa. The images
itself are not stored on the local file system of the virtual server instance.
They are separated from the application and can be retrieved via Amazon S3
Bucket Storage. Each image has a unique HTTP URL on the bucket storage
and the image URL is saved in the MySQL database. Amazon offers for
database an instance called Amazon Relational Database Service (RDS). They
are redundant and located in multiple Availability Zones. The PostgreSQL
database keeps the fact description and the MySQL database stores to
corresponding HTTP URL for the images. The image itself is retrieved with
this URL from the file system on the Bucket Storage. This separation from

2https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-
availability-zones.html

74

4.3 Monolith Architectural Pattern

S1

S2

S3

S4

S5

JavaEE Application

Monolith architecture - server 1

User

S1

S2

S3

S4

S5

JavaEE Application

Monolith architecture - server 2

Load Balancer

MySQL
MySQL

PostgreSQL

Figure 4.3: Monolith Application Architecture and High Availability

75

4 Result

S1 S2
S3 S4

S5
PostgreSQL
MongoDB

S1 S2
S3 S4

S5

EC2 t2.xlarge

EC2 t2.xlarge

User

ELB

Availablity Zone A

S1 S2
S3 S4

S5

Availability Zone B

Region EU Ireland (eu-west)

Amazon RDS

Amazon RDS

RDS
PostgreSQL
db.t2.small

RDS
MySQL SQL
db.t2.small

Multiple Availability
Zones

S3 Bucket
Storage

Figure 4.4: Monolith Application Deployment Architecture on AWS

the local server instance file system is necessary because we want to have
”stateless” services and there should be no affinity to the underlying server
instances.

In the next step, I analyze the costs at the cloud provider Amazoan AWS.

4.3.3 Amazon AWS Infrastructure Costs

In table 4.2 you can find all the detailed infrastructure costs for the mono-
lithic approach. The two server instances cost 204.48$ per month and the
load balancer 18.14$ per month. The file storage for the images costs 3.56$
per month. Amazon does not charge any data transfer costs from the storage

76

4.4 Microservice Architectural Pattern

instances to Alexa. These are fix costs and if you have no user requests you
still have to pay these fix costs. The variable costs for the load balancers
increase with the number of requests. As in the requirements (chapter 1.3.1)
mentioned, the maximum throughput is 10 requests per seconds. The table
lists the maximum variable costs with 5.76$ per month according to the
current price list.

The described monolithic application has fix costs of 488.10$ per month in
total. The number of requests per minute influences the variable costs. The
more requests the more variable costs. In case of the maximum throughput
of 10 requests per second, you have costs of 493.86$ per month in total.

This cost analysis shows the main problem with monolithic architectures.
You have already fix infrastructure costs even without any user requests.
A monolithic application is not an agile architecture, because you always
put the entire application to a new instance behind a load balancer. This
does not give enough flexibility for scaling because you cannot put only one
service on the new server instance. This ends up in increasing unnecessary
infrastructure costs.

In the next chapter, I examine the more agile approach Microservices to
reduce infrastructure costs.

4.4 Microservice Architectural Pattern

The microservices approach decomposes the entire application into smaller
parts. The smaller parts can develop, test, scale, operate and upgrade indi-
vidually.

4.4.1 Overview

The monolith approach in chapter 4.3 defines the 5 services, but they are
still in one big application.

• Service 1 (S1): Handle JSON input and JSON Output
• Service 2 (S2): Get the total amount of facts and chose a random fact.

77

4 Result

AWS service
costs/
hour

(USD)

costs/
month

(24h*30d)
(USD)

amount
costs/
month
(USD)

total costs/
month
(USD)

EC2 Linux Instance
t2.xlarge
(4 vCPUs, 2.3 GHz,
16 GiB memory)

0.142 102.24 2 204.48

ELB Load Balancer
fix costs 0.0252 18.14 1 18.14

Amazon RDS
PostgreSQL Multi-AZ
db.t2.small
(1vCPU, 2GB)

0.078 53.82 2 107.64

Postgre SQL 50 GB
SSD Storage
(0.253/GB)

12.65 2 25.30

Amazon RDS
MySQL Multi-AZ
db.t2.small
(1vCPU, 2GB)

0.072 51.84 2 103.68

MySQL 50 GB
SSD Storage
(0.253/GB)

12.65 2 25.30

Amazon S3 Bucket
Standard Storage
10GB size
200 GET requests/second
(no data transfer charge
to Alexa)

1 3.56

= 488.10
ELB Load Balander
max. variable costs
200 requests/second

0.008 5.76 1 5.76

= 493.86

Table 4.2: AWS monolithic infrastructure costs

78

4.4 Microservice Architectural Pattern

S1
MySQL

PostgreSQL

Spring App 1

Microservice Architecture

User

S2

Spring App 2

Spring App 3 Spring App 4

Spring App 5

S3 S4

S5

Figure 4.5: Microservice Architecture Overview

• Service 3 (S3): Get the fact description in PostgreSQL
• Service 4 (S4): Get the image URL in MySQL
• Service 5 (S5): Get the image from the file storage system

Therefore I implemented each service as a Spring Boot Java Application. In
figure 4.5 you can see an overview of the microservice architecture and the
5 different Java Applications. These 5 individual Java applications give you
more flexibility for scalability. If only S2 has too much load, then you can
just put this service on a new and stronger instance. In comparison to the
monolith approach, the microservice approach gives you more flexibility
for scalability. So you can reduce infrastructure costs.

The microservice approach gives you the flexibility to choose the granularity
of scalability:

• Finest granularity: put each service on an individual server instance.
• Coarsest granularity: put all services on one server instance shown

in figure (same as a monolithic approach, but with the possibility to

79

4 Result

S1

Spring App 1

Microservice Architecture

S2

Spring App 2

Spring App 3 Spring App 4

Spring App 5

S3 S4

S5

Server 1 Server 2

Server 3 Server 4

Server 5

Figure 4.6: Microservice Architecture and Higher Granularity

detach services from the entire application)

In figure 4.6 you can see the highest flexibility for scaling and in figure 4.7
the lowest flexibility. Each service is an individual Java application and can
be moved to another server instance anytime. Each Java application runs
as an own process and holds its own data. Remember, a microservice can
implement, deployed and tested independently. In a monolithic architecture,
you only have one big process and you do not have this flexibility. In the
demo application, I chose the finest granularity and put each service on an
individual server instance as shown in 4.6.

In regards to the demo application requirements (1.3.1) the microservice

80

4.4 Microservice Architectural Pattern

S1

Spring App 1

Microservice Architecture

S2

Spring App 2

Spring App 3 Spring App 4

Spring App 5

S3 S4

S5

Server 1

Figure 4.7: Microservice Architecture and Lower Granularity

81

4 Result

architecture does not fulfill all requirements yet. The demo application does
not achieve the high availability requirement yet. For example, if one service
fails, the entire application is down because the service is not redundant
yet. It does not matter if the service runs on its own server instance or if
the service runs together with several services on the same server instance.
Currently, all services are single points of failure. Therefore, I use a load
balancer and put the same service behind the load balancer again. It is the
similar concept as in the monolithic architecture. The difference is the size
of the application behind the load balancer. In the microservice architecture,
the service is an individual application it represents a small part of the entire
application. In comparison to the monolithic architecture, the application
behind the load balancer represents the entire application.

As you can see a microservice architecture deals with many individual
services. In case of no redundancy, you have to handle 5 different services in
the demo application. If you also add high availability, then you duplicate
each service behind a load balancer and this ends up in 10 individual
applications in total. In addition, each service communicates with each
other via JSON. As you remember, the requirements in chapter 1.3.1 define,
that the communication format between services is JSON. One of the basic
principles is the usage of a Microservice Gateway and Microservice Registry.

The Microservice Gateway is the single entry point for user requests. Each
user request is routed to the appropriate service application. The gateway
also verifies if the client is authorized to perform the request.

The Microservice Registry is an essential component of the microservice
architecture. The registry ties all components together and enables them
to communicate with each other. The registry tells the gateway which
microservice are available.

In figure 4.8 you can see how the components interact with each other.
The user only sends a request to the gateway. If the user is authorized for
the requested service, the gateway forwards to request to the service. Each
service has to be registered on the registry and the gateway communicates
with the registry to get all the information for the service.

In the microservice demo application, the gateway and the registry are
another Spring Boot application. Both of them are deployed on an individual

82

4.4 Microservice Architectural Pattern

S1

Spring App 1

Microservice Architecture (Registry and Gateway)

User

S2

Spring App 2

Spring App 3 Spring App 4

Spring App 5

S3 S4

S5

Gateway

Registry

Figure 4.8: Microservice Architecture with Registry and Gateway

83

4 Result

server instance because they are essential components of the microservice
architecture.

Figure 4.8 shows almost a best practice example of a microservice architec-
ture. Only almost because the high availability requirement is still missing.
Each service is not redundant and represents a single point of failure. Even
the core components registry and gateway are not redundant.

Finally, I gain high availability by putting a second gateway behind a load
balancer, adding a second registry and duplicating each spring application.
register each spring application twice on the registry. In figure 4.9 no single
point of failure exists anymore.

Adding high availability increases infrastructure costs because you need for
the gateway and registry additional individual server instances.

Quick overview about the server instances in figure 4.9

• 2 individual server instances for the 2 gateways
• 2 individual server instances for the 2 registries
• At least 2 server instances for all 5 microservice applications: It de-

pends on the chosen granularity how many services run on one indi-
vidual server instance. If you chose the lowest granularity, then you
put all 5 services on one server instance. Due to the high availability,
you need a second server with the same 5 services. That is the reason
for at least 2 servers for the service applications.

The production environment is set up on the cloud provider Amazon
AWS.

4.4.2 Development on Amazon AWS

According to AWS services, the production system is shown in figure 4.10.

The Amazon load balancer ELB redirects each request either to the gateway
in Zone A or to the gateway in Zone B. These requests are pink-marked.
As you can remember the requirements in chapter 1.3.1 define a high
availability system. Amazon uses different Availability Zones. If you put all
you server instances in just one Zone, for example, Zone A, Amazon does

84

4.4 Microservice Architectural Pattern

Microservice Architecture (Registry, Gateway and High Availability)

User

Gateway

Load Balancer

Gateway
Registry

Spring App 2

S2

Spring App 4

S4

Spring App 5

S5

Spring App 3

S3

Spring App 1

S1

Figure 4.9: Microservice Architecture with Registry, Gateway, and High Availability

85

4 Result

t2.small

User

ELB

Availability Zone A

Gateway

Availability Zone B

Region EU Ireland (eu-west)

RDS
PostgreSQL
db.t2.small

RDS
MySQL SQL
db.t2.small

Multiple
Availability Zones

Registry

S1

S5

S4

S2

S3

t2.small
t2.small

t2.small

t2.small

t2.smallt2.small

t2.small

Registry

S2
S1

S4

S3

t2.small

t2.small

t2.small

t2.small
t2.small

t2.small

Gateway

S5

Request to Zone A/B

Request from Gateway in Zone A
Request from Gateway in Zone B

DB Request to Multiple Zones

From/To Registry in Zone A/B

S3 Bucket
Storage

File Request to Multiple Zones

Figure 4.10: Microservice Deployment Architecture with Registry, Gateway and High Avail-
ability on AWS

86

4.4 Microservice Architectural Pattern

not guarantee high availability. It does not matter how many redundant
server instances you put behind the load balancer in the same zone. If they
are all in the same Zone A you do not have high availability because the
entire Zone could be down and all your server instances are not available
anymore. Therefore, each component runs on a second server instance in
Zone B. Adding new server instances always increases the infrastructure
costs.

The gateway is the main entry point in the microservice architecture and
forwards each request to the appropriate service. The gateway itself runs
on an individual server instance Amazon EC2 t2.small in Zone A and in
Zone B. Both gateways have exact the same configuration and knowledge
of all available services. If one gateway crashes, the other gateway would
take over the entire work. All requests from the gateway in Zone A to any
service are red-marked and all requests from the gateway in Zone B to
any service are black-marked. The gateway forwards the request either to a
service in Zone A or to a service in Zone B. As you can see the gateway is
an essential component in a microservice architecture and has to handle all
user requests.

The registry is another essential component in the microservice architecture.
The registry tells the gateway which service is available. Therefore, the
registry has to communicate with all services in Zone A and Zone B. The
communication is marked with a dashed black line. Both registries have the
same configuration. If one registry crashes the other registry would take
over the entire work.

Each service (S1 to S5) is an individual Java application. In regards to
analyzing the maximum infrastructure costs, I chose the finest granularity.
This means each application runs on an individual server instance. Each
server instance allocates additional resources and increases the infrastructure
costs. In total 10 server instances are necessary. Each service allocates 2 server
instances. One instance in Zone A and one instance in Zone B. For example,
if the server instance with S1 crashes another instance with S1 will deal all
relevant S1 requests. One server instance is in Zone A and another server
instance is in Zone B.

Amazon offers for databases an instances called Amazon Relational Database
Service (RDS). I use two instances of a MySQL database and two instances

87

4 Result

of a PostgreSQL database. They are redundant and located in Zone A and
Zone B. As you remember in chapter 4.3 I decompose the requirements into
5 services. Only the service 4 needs to establish a database connection to
the MySQL server. The PostgreSQL server is contacted from service 2 and
service 3. The remaining services do not have persistent data in relational
databases and therefore no database connection is necessary. All database
connections are green-marked.

In a microservice architecture, you have the flexibility to provide a database
connection to individual services instead of the entire application. This
gives you more flexibility for scaling. Let us assume the application is
under heavy load, for example, 200 requests per second. The monitoring
tools show that service 4, which deals with the MySQL connection, is
overloaded and the server instance t2.small has not enough computing
resources to handle all requests. The remaining services work fine and can
handle the high load. So you just have to give the service 4 application more
computing resources. In the demo application, you can add a third t2.small
instance, install the service 4 application and register the service on the
registry. The registry tells the gateway about a third service 4 application
and so you increased the computing resources just for the service 4. This
flexibility reduces infrastructure costs because you do not have to duplicate
the entire application such as in a monolithic architecture. As I mentioned
the remaining services work fine and there is no need to allocate also
computing resources for them. Therefore a microservice architecture reduces
infrastructure costs.

In the next step, you can find a detailed costs analysis for the microservice
architecture.

4.4.3 Amazon AWS Infrastructure Costs

All the costs for microservice architecture are shown in table 4.3. In com-
parison, the monolithic architecture has server instance costs of 102.24$ per
month for the entire application (4.2). In the microservice architecture, the
additional small server instance for service 2 costs only 12.96$ per month.

88

4.4 Microservice Architectural Pattern

AWS service
costs/
hour
(USD)

costs/
month
24h*30d
(USD)

amount
costs/
month
(USD)

total costs/
month
(USD)

ELB Load Balancer
fix costs 0.0252 18.14 1 18.14

EC2 Linux Instance
Microservice Gateway
t2.small (1 vCPUs, 2.5 GHz,
2 GiB memory)

0.018 12.96 2 25.92

EC2 Linux Instance
Microservice Registry
t2.small (1 vCPUs, 2.5 GHz,
2 GiB memory)

0.018 12.96 2 25.92

Amazon RDS,
Postgre SQL
Multi-AZ Deployment
db.t2.small (1vCPU, 2GB)

0.078 53.82 2 107.64

Postgre SQL
50 GB SSD Storage
(0.253/GB)

12.65 2 25.30

Amazon RDS,
MySQL
Multi-AZ Deployment
db.t2.small (1vCPU, 2GB)

0.072 51.84 2 103.68

MySQL
50 GB SSD Storage
(0.253/GB)

12.65 2 25.30

EC2 Linux Instance
5 services with high availability
t2.small (1 vCPUs, 2.5 GHz,
2 GiB memory)

0.018 12.96 10 129.60

Amazon S3 Bucket
Standard Storage
10GB size
100 GET requests/seconds

3.56 1 3.56

= 465.06
ELB Load Balancer
max. variable costs
10 requests per second

0.008 5.76 1 5.76

= 470.82

Table 4.3: AWS microservice infrastructure costs

89

4 Result

monolith costs
(USD)

microservice costs
(USD)

difference
(USD)

fix
costs

variable
costs

total
costs

fix
costs

variable
costs

total
costs

total
costs

488.10 5.76 493.86 465.06 5.76 470.82
23.04
(4.67%)

Table 4.4: Total infrastructure costs comparison between monolith and microservice

The total costs for the microservice architecture are 470.82$ per month. In
comparison to the monolithic architecture, the total costs are 493.86$ per
month. The analysis shows that the microservice total infrastructure costs
are 4.67% lower in comparison to the monolithic architecture. You can see
the summary in table 4.4. The microservice approach has no impact on
the variable costs for the load balancer because the load balancer has to be
dimensioned for max. 200 requests per seconds. If you reach this amount
of requests Amazon charges 46.08$ per month. It does not matter what
architecture you have behind the load balancer.

The detailed costs for the microservices architecture are as the following:
The fix costs for the load balancer and the database instances are equal to the
costs of monolithic architecture. The difference is the smaller server instances
for the microservice itself. Each microservice run on an individual EC2
Linux instance t2.small and each instance costs 12.96$ per month. You have
5 server instances without high availability. According to high availability,
you run the same service on a second server instance in a different Zone.
Therefore, you have 10 server instances in total for the microservices. All the
10 microservices instances cost 129.60$ per month. The redundant MySQL
database server instances with 50GB storage cost 128.98$ per month (103.68$
+ 25.30$) and the redundant PostgreSQL database server instances with
50GB storage cost 132.94$ per month (107.64$ + 25.30$). As I mentioned, the
microservices architecture needs a gateway and a registry. Both of them use
an EC2 Linux instance t2.small and therefore you have total costs of 51.84$ per
month (4 x 12.96$). Gateway and registry are duplicated in another zone and
this ends up in 4 instances in total. The image retrieving from the file system
is realized with the S3 Bucket instance. The redundant storage instance in
multiple Availability Zones costs 3.56$ per month. As you remember from

90

4.5 Serverless Architectural Pattern

the monolithic approach Amazon does not charges any data transfer costs
from the S3 Bucket to Alexa.

All these mentioned costs are fix costs. You always have to pay them monthly,
even without any user requests to your application. Except for the variable
costs for the load balancer. The variable costs are the same as the for the
monolithic architecture with 5.76$ per month.

As you can see the microservice infrastructure fix costs are 4.67% lower
in comparison to the monolithic architecture. In addition, you get more
flexibility for scaling. You can move any service anytime to a new server
instance. Therefore you do not have to allocate new server resources for the
entire application, just for the service itself. You can safe infrastructure costs
with a microservice architecture because it is a more agile approach and
gives you more flexibility for scaling. However, you still have the problem
with fix costs. Therefore, in the next chapter, I try to reduce the fix costs
with a serverless architecture.

4.5 Serverless Architectural Pattern

The goal is to avoid fix costs from the previously explained monolithic and
microservice architecture.

4.5.1 Overview

The result of the cost analysis for monolithic and microservice architecture
shows that the server instances EC2 Linux instance t2.small and EC2 Linux
instance EC2 t2.xlarge are the biggest block of fix costs.

A serverless architecture allows you to deploy the demo application without
thinking about server instances. That means you just can focus on your
application and the cloud provider takes care of the server instances.

As you can remember the demo application consists of the following 5

services:

91

4 Result

S1

MySQL

PostgreSQL

Serverless
function 1

Serverless Architecture

User

S2
Serverless
function 2

Serverless
function 3

Serverless
function 4

Serverless
function 2

S3 S4

S5

Files

Figure 4.11: Serverless Architecture Overview

• Service 1 (S1): Handle JSON input and JSON Output
• Service 2 (S2): Get the total amount of facts and chose a random fact.
• Service 3 (S3): Get the fact description in PostgreSQL
• Service 4 (S4): Get the image URL in MySQL
• Service 5 (S5): Get the image from the file storage system

In a serverless architecture, you can deploy each service independently
without thinking about the underlying server instances. This influences also
the charging model. The cloud provider only charges costs if you actually
use the service.

Figure 4.11 shows an overview of the serverless architecture.

The services S1 to S5 are independently deployed without creating underly-
ing server instances. In a serverless architecture, an individual application
is called a serverless function. All 5 services are deployed as a serverless
function.

I implement each serverless function as an individual Java application
and run each of them as a serverless function. The difference to the Java
application in the monolithic and microservice architecture is the complexity
of the Java Application. As you remember the monolithic applications use

92

4.5 Serverless Architectural Pattern

the Google Web Toolkit Framework. The microservice architecture uses the
Spring Boot Framework. Here the serverless function is kept simple with
few dependencies. A serverless function does not use complex frameworks
such as Spring Boot or GWT. The reason is that you need a Java application
which loads quickly. The cloud provider will start your serverless function
on behalf of users requests. In a serverless architecture, you will never have
services which run all the time. Each service is started on behalf of requests
and therefore you only pay what resources you actually use. Therefore,
you can avoid server instances and reduce fix infrastructure costs. Each
serverless function runs only for the duration of user requests. A serverless
function starts and stops automatically. The cloud provider creates the
underlying server instances automatically and only charges you for the
duration of the running services to handle the user inquiry.

As you remember we outsource the image storage from service 5. Images
are not stored on the local file system, they are stored on an individual
instance. Here you can see the reason for this outsourcing. If you bundle all
your images with the corresponding serverless function, then the function
cannot be started on behalf of requests quickly enough. Assume you have
stored around 1,000 images with size 1MB each image. So you have local
file storage of 1GB in total and for each user request you have to set-up
this storage or copy the files from central storage. You could not handle
user requests quickly enough. Therefore all images stored on an individual
file storage instance outside of the serverless architecture. This persistent
file system storage is shared across all serverless functions. A serverless
function never holds its own data. Each serverless function is a stateless
function.

A stateless function does not hold any database data as well. All database
data are stored outside from the serverless architecture. The MySQL and
PostgreSQL database run on its own server instance and can be accessed
from each serverless function. Imaging each serverless function starts their
own database with each request. This would lead to a long start time for
each service. Therefore lambda function never holds any databases and data
are always stored in an individual instance. The database instances can be
accessed from all serverless functions.

Another benefit of using a serverless architecture is the high availability. The

93

4 Result

Amazon RDS

Amazon RDS
User

RDS
PostgreSQL
db.t2.small

RDS
MySQL

db.t2.small

S3 Bucket
Storage

S2

S1

S3

S4

S5

Multiple Availability Zones

Region EU Ireland (eu-west)

Figure 4.12: Serverless Architecture Deployment on AWS

cloud provider takes also care about redundancy and offers high availability
for your serverless functions.

In the next step, I deploy the demo application with a serverless architecture
on the cloud provider Amazon AWS.

4.5.2 Development on Amazon AWS

The cloud provider Amazon AWS named their serverless architecture AWS
Lambda. As I mentioned, an application which runs in a serverless architec-
ture is called a serverless function. Amazon named a serverless function
AWS Lambda function.

Finally, I run each service of the demo application as a Lambda function.
The deployment is shown in figure 4.12.

The 5 individual lambda functions are the core of the serverless architecture
deployment on AWS. Each lambda function represents a service from the
demo application. As you remember service 1 deals with the user’s input
and output via JSON format. Therefore, the service 1, implemented as a

94

4.5 Serverless Architectural Pattern

lambda function 1, stands for the entry point of the user. Lambda function
1 does not perform the entire application logic alone. The application logic
is spread across further 4 lambda functions. The lambda functions 2 and
3 retrieve data from the PostgreSQL database. The lambda function 4 get
data from the MySQL database and the lambda function 5 reads images
from the file system storage. The figure 4.12 shows the application logic in
a more detailed view.

All functions are synchronously invoked. The lambda function 1 is the
access point for the user. Then lambda function 1 calls all other functions
and function 1 waits for the response of the invoked function.

4.5.3 Amazon AWS Infrastructure Costs

In the previously mentioned serverless and microservice architecture the
server instances run always and therefore the exact duration time of the
application itself is not important in regards to infrastructure cost. The
serverless architecture is the exact opposite. The cloud provider measures
the execution time of the application and charges them.

Therefore, we have to know how often the application is executed and
how long is the execution time. The requirements in section 1.3.1 define
the maximal throughput (10 requests per second) and maximal response
time (3000ms). We calculate the maximum costs of infrastructure costs and
therefore we assume the maximal performance metrics for the entire month.
The result is the maximum infrastructure costs for the entire application.

Figure 4.13 illustrates the maximum execution time of all services and their
synchronous execution.

The service 1 waits for the processing time of service 2 to service 5. The total
execution time of 3000ms are linearly separated into the 4 services with
an execution time of 750ms. Of course, the actual execution time will be
shorter than the maximum response time. But we calculate the maximum
possible infrastructure costs and therefore we have to take the maximum
execution time as well.

95

4 Result

Service1

Service2 Service3 Service4 Service5

execution time

3000ms

750ms 750ms 750ms 750ms

Figure 4.13: Serverless Synchronous Execution Overview

Lambda
Function

Cost Factor
GB/Second

Memory
(GB)

Function
Duration

(s)

Total
GB-Second
(Function

Duration *
Memory)

Price
pro request

(Cost Factor *
Total GB-Second)

Total request
per month

(=10 requests *
60* 24*30)

Total
Costs
(USD)

Service 1 0.00001667 2 3 6 0.00010002 432000 43.21

Service 2-5 0.00001667 2 0.75 1.5 0.000025005 1728000 43.21

Table 4.5: Lambda Function Costs

Amazon measures the execution time of each service and multiplies this time
with a cost factor. The cost factor depends on the memory of the serverless
function. The memory can be configured for each function. This is the
maximum memory that the function can allocate. In the demo application,
each serverless function has a total memory of 2024MB.

Amazon lists the prices for serverless functions as a price for ’GB-Seconds’.
The Gigabyte refers to the mentioned pre- configured memory of the server-
less function. And the ’Seconds’ are the execution time of the serverless
function.

The calculations are done with the listed GB-Seconds price of 0.00001667$
per month.

Table 4.5 illustrates the detailed costs of all serverless functions.

96

4.6 Summary Infrastructure Costs

The service 1 is the entry point for the user’s request and has infrastructure
costs of 43.21$. The service 1 has a maximal execution time of 3000ms.
During this time, service 1 executes 4 further services. Each of the 4 services
has a maximum execution time of 750ms. This results in total costs of 43.21$
for the services 2-5. In total, all services have infrastructure costs of 86.42$
(43.21$ + 43.21$).

Of course, you also have costs for the database and the image file storage.
Table 4.6 lists all serverless infrastructure costs.

The database and file storage fix costs are the same for the monolithic, server-
less and microservice architecture. In contrast, a serverless architecture does
not have an explicit load balancer as a cost factor. As I already mentioned,
the cloud provider already guarantees high availability for serverless func-
tions and offers them already redundantly. Therefore, you do need a load
balancer. In total the serverless architecture has variable costs of 86.42$.
This is the maximum variable costs during a throughput of 10 requests per
second over the entire month.

In summary, you have total costs of 348.34$ for the serverless architecture
on Amazon AWS.

4.6 Summary Infrastructure Costs

As you can see the infrastructure costs depend on the chosen architecture.
Table 4.7 summarizes the cost analysis results.

The result is that a serverless architecture can reduce infrastructure cost by
29.47% in comparison to the monolithic architecture.

4.7 Performance Evaluation

The demo application is implemented in the three different approaches:
monolithic, microservice and serverless. In this section, we evaluate whether
all three approaches fulfill the performance metrics throughput, latency

97

4 Result

AWS service
costs/
hour
(USD)

costs/
month
24h*30d
(USD)

amount
costs/
month
(USD)

total costs/
month
(USD)

Amazon RDS
PostgreSQL
Multi-AZ Deployment
db.t2.small(1vCPU, 2GB)

0.078 53.82 2 107.64

PostgreSQL
50GB SSD Storage
(0.253/GB)

12.65 2 25.30

Amazon RDS
MySQL
Multi-AZ Deployment
db.t2.small(1vCPU, 2GB)

0.072 51.84 2 103.68

MySQL
50GB SSD Storage
(0.253/GB)

12.65 2 25.30

= fix costs = 261.92

Lambda Function
(Service 1) 43.21

Lambda Function
(Service 2-5) 43.21

= variable costs = 86.42
= total costs = 348.34

Table 4.6: Serverless Architecture - Infrastructure Costs

monolith costs
(USD)

microservice costs
(USD)

serverless costs
(USD)

fix
costs

variable
costs

total
costs

fix
costs

variable
costs

total
costs

total
costs
difference
to monolith
(USD)

fix
costs

variable
costs

total
costs

total
costs
difference
to monolith
(USD)

488.10 5.76 493.86 465.06 5.76 470.82 23.04
(4.67%) 261.92 86.42 348.34

145.52
(29.47%)

Table 4.7: Cost Comparison

98

4.7 Performance Evaluation

Total Amount
HTTP requests

Test
Duration

(s)

Throughput
(requests/
second)

Min
Response

Time
(ms)

Max
Response

Time
(ms)

Average
Response

Time
(ms)

100 10 10 56 163 72

Table 4.8: Summary Monolith Performance

time and response time. As we defined in section 1.3.1 during a throughput
of 10 requests per second the response time has to be lower than 3000ms
and the latency has to be lower than 2000ms.

4.7.1 Performance Monolithic Architectural Pattern

The results of the monolith performance test are summarized in table 4.8.

The average response time is 72ms. During the test, the response time
reaches a maximum of 163ms.

Figure 4.14 illustrates the response time over the performance test duration.
As you can see at the beginning the application process requests slower than
during the remaining test. The reason for the slower processing time, in the
beginning, is that the application has to create a connection to two relational
databases and establish a cache. For the remaining test, the average response
time is continuous around 72ms.

In the Appendix, you can find the illustration of the latency time. The
latency time is nearly as equal to the response time. The reason is the small
response size. The HTTP response with JSON data has approximately a
size of 952 Bytes (773 Bytes body and 179 Bytes header). The image is not
transferred via an HTTP request. Just the URL to the image on the Amazon
S3 is transferred.

Therefore, the latency time and the response time are nearly equal. The
transfer time of 952 Bytes does not make a big difference. The different is
just the time to transfer 952 Bytes from the server to the client.

99

4 Result

Figure 4.14: Monolith Response Time

Total Amount
HTTP requests

Test
Duration

(s)

Throughput
(requests/
second)

Min
Response

Time
(ms)

Max
Response

Time
(ms)

Average
Response

Time
(ms)

100 10 10 39 86 49

Table 4.9: Summary Microservice Performance

4.7.2 Performance Microservice Architectural Pattern

The results of the monolith performance test are summarized in table 4.9.

The average response time is 49ms. During the test the response time reaches
a maximum of 86ms.

Latency and response time are nearly equal because the size of the response
is only around 952 Bytes.

100

4.7 Performance Evaluation

Figure 4.15: Microservice Response Time

4.7.3 Performance Serverless Architectural Pattern

The serverless performance metrics are as follows: The average response
time is 216ms. The maximum response time is 424ms.

In figure 4.16 you can see the response time over the test duration.

At the beginning the response reaches 424ms. The reason is that the server-
less function is executed on-demand and the cloud provider has to set
up the infrastructure on-demand. The underlying server infrastructure is
provided by the cloud provider automatically. The cloud provider starts
on-demand the necessary infrastructure for processing the serverless func-
tion calls. As you can see the first requests take longer than the remaining
calls. But still, the remaining calls have not such a constant response time as
the monolithic application in section 4.7.1. The on-demand setup from the
cloud provider does guarantee such a constant response time as we can see
in the monolithic approach. Each serverless function is isolated and caching
mechanism from the monolithic approach does not work in the same way
for serverless functions. Therefore we have more variety in the response
time in comparison to the monolithic approach.

101

4 Result

Figure 4.16: Serverless Response Time

Architecture
Average Response

Time
(ms)

monolithic 72

microservice 49

serverless 216

Table 4.10: Average Response Time: monolithic, microservice and serverless

Due to the small response size, the latency time is nearly equal to the
response time.

4.7.4 Summary Performance Test

As you can see the performance requirements as defined in section 1.3.1 are
completely accomplished by all three approaches.

In table 4.10 you can see the average response time of the monolithic,
microservice and serverless approach.

102

5 Conclusion and Future Work

This thesis defines the ”Unix philosophy” as a basic setting for a modern
software development. The result combines the ”Unix philosophy” with best
practice guidelines ”Twelve-Factor App” and ”jHipster” as an evolutionary
development of web-based information systems.

The result of a costs analysis shows that scalability and high availability
mostly influence the infrastructure costs at the cloud provider Amazon AWS.
Especially the chosen architectural pattern has a huge influence on the total
infrastructure costs and idle server instances. The case study shows, that the
evolutionary development environment based on a serverless architectural
pattern can reduce infrastructure costs by 30 percent. The main reason is
the on-demand cost model offered by the cloud provider. Therefore, an
evolutionary development reduces idle server instances. It is always a good
idea to think about alternatives to the monolithic architectural pattern.
Further analysis shows, that infrastructure costs can be separated into fix
and variable costs. Database storage and file system storage are still fixed
costs in all three architectural patterns.

In further work to costs for database instances can be analyzed. Also
the cloud provider Amazon AWS could be compared with other service
providers in further work. The performance test acknowledges the defined
throughput, latency and response time. In further work, the maximum
throughput of the different approaches could be tested and compared.

103

Appendix

105

JSON Output
{

"version": "1.0",

"userAgent": "ask-java/2.3.1 Java/1.8.0_141",

"response": {

"outputSpeech": {

"type": "SSML",

"ssml": "<speak>Small fractions of bitcoins are called Satoshi.<break time=\"1s\"/> Would you like to hear another..</speak>"

},

"card": {

"type": "Simple",

"title": "Cryptocurrency Facts",

"content": "Small fractions of bitcoins are called Satoshi"

},

"reprompt": {

"outputSpeech": {

"type": "SSML",

"ssml": "<speak>Small fractions of bitcoins are called Satoshi<break time=\"1s\"/> Would you like to hear...</speak>"

}

},

"directives": [

{

"type": "Display.RenderTemplate",

"template": {

"type": "BodyTemplate3",

"image": {

"sources": [

{

"url": "https://s3-eu-west-1.amazonaws.com/alexaskillimagestorage/images/crypto1.jpg"

}

]

},

"title": "Cryptocurrency Facts",

"textContent": {

"primaryText": {

"type": "RichText",

"text": "Small fractions of bitcoins are called Satoshi"

},

"secondaryText": {

"type": "RichText"

}

}

}

}

],

"shouldEndSession": false

}

}

JSON Input
{

{

"version": "1.0",

"session": {

"new": false,

"sessionId": "amzn1.echo-api.session.2aa145f6-5199-4358-af45-0036f97de6f8",

"application": {

"applicationId": "amzn1.ask.skill.4e9e9096-382c-499d-bae7-773054be091a"

},

"user": {

"userId": "amzn1.ask.account.xyz"

107

}

},

"context": {

"Display": {

"token": ""

},

"System": {

"application": {

"applicationId": "amzn1.ask.skill.4e9e9096-382c-499d-bae7-773054be091a"

},

"user": {

"userId": "amzn1.ask.account.xyz"

},

"device": {

"deviceId": "amzn1.ask.device.xyz": {

"Display": {

"templateVersion": "1.0",

"markupVersion": "1.0"

}

}

},

"apiEndpoint": "https://api.eu.amazonalexa.com",

"apiAccessToken": "xyz"

}

},

"request": {

"type": "IntentRequest",

"requestId": "amzn1.echo-api.request.fd16dc5f-a3e7-4700-b9c5-7a8bb274ea86",

"timestamp": "2018-07-22T22:49:20Z",

"locale": "en-US",

"intent": {

"name": "FactIntent",

"confirmationStatus": "NONE"

}

}

}

108

Figure .1: Monolith Latency

Figure .2: Microservice Latency

109

Figure .3: Serverless Latency

110

Bibliography

Adzic, Gojko and Robert Chatley (2017). “Serverless Computing: Economic
and Architectural Impact.” In: Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering. ESEC/FSE 2017. Paderborn,
Germany: ACM, pp. 884–889. isbn: 978-1-4503-5105-8. doi: 10.1145/
3106237 . 3117767. url: http : / / doi . acm . org / 10 . 1145 / 3106237 .

3117767 (cit. on p. 23).
Alexander, Christopher (1977). A Pattern Language: Towns, Buildings, Con-

struction. Oxford University Press. isbn: 0195019199. url: http://www.
amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21 (cit. on
p. 17).

Alexander, Christopher (1979). The Timeless Way of Building. Oxford Univer-
sity Press. isbn: 0195024028 (cit. on p. 12).

Baldini, Ioana et al. (2017). “The Serverless Trilemma: Function Composition
for Serverless Computing.” In: Proceedings of the 2017 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. Onward! 2017. Vancouver, BC, Canada: ACM,
pp. 89–103. isbn: 978-1-4503-5530-8. doi: 10.1145/3133850.3133855.
url: http://doi.acm.org/10.1145/3133850.3133855 (cit. on p. 37).

Beck, Kent (1998). “Using a pattern language for programming.” In: In
Addendum to the Proceedings of 00PSLA ’87. Vol. 23. 00PSLA ’87, p. 16

(cit. on p. 12).
Beck, Kent et al. (1996). “Industrial Experience with Design Patterns.” In:

Proceedings of the 18th International Conference on Software Engineering.
ICSE ’96. Berlin, Germany: IEEE Computer Society, pp. 103–114. isbn:
0-8186-7246-3. url: http://dl.acm.org/citation.cfm?id=227726.
227747 (cit. on pp. 12, 19).

Berners-Lee, Tim (1989). Information management: A proposal. url: http:
//www.w3.org/History/1989/proposal.html (cit. on p. 40).

Bevan, Nigel (1999). “Usability Issues in Web Site Design.” In: (cit. on p. 56).

111

http://dx.doi.org/10.1145/3106237.3117767
http://dx.doi.org/10.1145/3106237.3117767
http://doi.acm.org/10.1145/3106237.3117767
http://doi.acm.org/10.1145/3106237.3117767
http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/0195019199/citeulike04-21
http://dx.doi.org/10.1145/3133850.3133855
http://doi.acm.org/10.1145/3133850.3133855
http://dl.acm.org/citation.cfm?id=227726.227747
http://dl.acm.org/citation.cfm?id=227726.227747
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html

Bibliography

Bisbal, Jesús et al. (1999). “Legacy Information Systems: Issues and Direc-
tions.” In: IEEE Softw. 16.5, pp. 103–111. issn: 0740-7459. doi: 10.1109/
52.795108. url: https://doi.org/10.1109/52.795108 (cit. on p. 61).

Boss, Birgit et al. (2016). “Setting Up Architectural SW Health Builds in a
New Product Line Generation.” In: Proccedings of the 10th European Con-
ference on Software Architecture Workshops. ECSAW ’16. Copenhagen, Den-
mark: ACM, 16:1–16:7. isbn: 978-1-4503-4781-5. doi: 10.1145/2993412.
3003392. url: http://doi.acm.org/10.1145/2993412.3003392 (cit. on
p. 60).

Bray, T. (2017). The JavaScript Object Notation (JSON) Data Interchange Format.
STD 90. RFC Editor. url: http://www.rfc-editor.org/rfc/rfc8259.
txt (cit. on p. 41).

Buschmann, Frank et al. (1996). Pattern-Oriented Software Architecture - Volume
1: A System of Patterns. Wiley Publishing. isbn: 0471958697, 9780471958697

(cit. on pp. 11–16).
Buschmann, Frank et al. (2000). Pattern-Oriented Software Architecture, A

System of Patterns: Volume 1 (Wiley Software Patterns Series). Wiley (cit. on
pp. 15–17).

Carrasco, Andrés, Brent van Bladel, and Serge Demeyer (2018). “Migrat-
ing Towards Microservices: Migration and Architecture Smells.” In:
Proceedings of the 2Nd International Workshop on Refactoring. IWoR 2018.
Montpellier, France: ACM, pp. 1–6. isbn: 978-1-4503-5974-0. doi: 10.
1145/3242163.3242164. url: http://doi.acm.org/10.1145/3242163.
3242164 (cit. on p. 23).

Chhabra, Shruti and V. S. Dixit (2015). “Cloud Computing: State of the Art
and Security Issues.” In: SIGSOFT Softw. Eng. Notes 40.2, pp. 1–11. issn:
0163-5948. doi: 10.1145/2735399.2735405. url: http://doi.acm.org/
10.1145/2735399.2735405 (cit. on p. 19).

CNCF (2018). Serverless Whitepaper v1.0. Cloud Native Computing Founda-
tion (CNCF). url: https://github.com/cncf/wg-serverless/tree/
master/whitepapers/serverless-overview (cit. on p. 37).

Conway, Melvin E. (1968). “How do committees invent.” In: Datamation 14.4,
pp. 28–31. url: http://www.melconway.com/Home/pdf/committees.pdf
(cit. on p. 55).

Coplien, James O. (1992). Advanced C++ Programming Styles and Idioms.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. isbn:
0-201-54855-0 (cit. on p. 12).

112

http://dx.doi.org/10.1109/52.795108
http://dx.doi.org/10.1109/52.795108
https://doi.org/10.1109/52.795108
http://dx.doi.org/10.1145/2993412.3003392
http://dx.doi.org/10.1145/2993412.3003392
http://doi.acm.org/10.1145/2993412.3003392
http://www.rfc-editor.org/rfc/rfc8259.txt
http://www.rfc-editor.org/rfc/rfc8259.txt
http://dx.doi.org/10.1145/3242163.3242164
http://dx.doi.org/10.1145/3242163.3242164
http://doi.acm.org/10.1145/3242163.3242164
http://doi.acm.org/10.1145/3242163.3242164
http://dx.doi.org/10.1145/2735399.2735405
http://doi.acm.org/10.1145/2735399.2735405
http://doi.acm.org/10.1145/2735399.2735405
https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
http://www.melconway.com/Home/pdf/committees.pdf

Bibliography

Coplien, James O. and Neil B. Harrison (2004). Organizational Patterns of
Agile Software Development. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc. isbn: 0131467409 (cit. on p. 55).

Evans, Josh (2016). “Mastering Chaos - A Netflix Guide to Microservices.” In:
InfoQ. url: https://www.infoq.com/presentations/netflix-chaos-
microservices (cit. on p. 2).

Eyk, Erwin van, Alexandru Iosup, Cristina L. Abad, et al. (2018). “A SPEC
RG Cloud Group’s Vision on the Performance Challenges of FaaS Cloud
Architectures.” In: Companion of the 2018 ACM/SPEC International Con-
ference on Performance Engineering. ICPE ’18. Berlin, Germany: ACM,
pp. 21–24. isbn: 978-1-4503-5629-9. doi: 10.1145/3185768.3186308. url:
http://doi.acm.org/10.1145/3185768.3186308 (cit. on p. 37).

Eyk, Erwin van, Alexandru Iosup, Simon Seif, et al. (2017). “The SPEC
Cloud Group’s Research Vision on FaaS and Serverless Architectures.”
In: Proceedings of the 2Nd International Workshop on Serverless Computing.
WoSC ’17. Las Vegas, Nevada: ACM, pp. 1–4. isbn: 978-1-4503-5434-9.
doi: 10.1145/3154847.3154848. url: http://doi.acm.org/10.1145/
3154847.3154848 (cit. on pp. 35–37).

Fielding, R. and J. Reschke (2014a). Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. RFC 7230. RFC Editor. url: http://www.rfc-
editor.org/rfc/rfc7230.txt (cit. on p. 40).

Fielding, R. and J. Reschke (2014b). Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content. RFC 7231. RFC Editor. url: http://www.rfc-
editor.org/rfc/rfc7231.txt (cit. on p. 40).

Fielding, Roy Thomas (2000). “Architectural Styles and the Design of
Network-based Software Architectures.” AAI9980887. PhD thesis. isbn:
0-599-87118-0 (cit. on p. 40).

Fowler, Martin (2002). Patterns of Enterprise Application Architecture. first
edition. Addison-Wesley Professional. isbn: 0321127420 (cit. on p. 9).

Fowler, Martin (2014). Microservices - A Definition of this new Architectural
Term. url: https://martinfowler.com/articles/microservices.html
(cit. on pp. 24, 26, 28, 30, 32).

Fowler, Martin (2015). Microservice Premium. url: https://martinfowler.
com/bliki/MicroservicePremium.html (cit. on pp. 33, 63).

Fromm, Ken (2012). Why The Future Of Software And Apps Is Serverless. url:
https://readwrite.com/2012/10/15/why-the-future-of-software-

and-apps-is-serverless/ (cit. on p. 36).

113

https://www.infoq.com/presentations/netflix-chaos-microservices
https://www.infoq.com/presentations/netflix-chaos-microservices
http://dx.doi.org/10.1145/3185768.3186308
http://doi.acm.org/10.1145/3185768.3186308
http://dx.doi.org/10.1145/3154847.3154848
http://doi.acm.org/10.1145/3154847.3154848
http://doi.acm.org/10.1145/3154847.3154848
http://www.rfc-editor.org/rfc/rfc7230.txt
http://www.rfc-editor.org/rfc/rfc7230.txt
http://www.rfc-editor.org/rfc/rfc7231.txt
http://www.rfc-editor.org/rfc/rfc7231.txt
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/bliki/MicroservicePremium.html
https://martinfowler.com/bliki/MicroservicePremium.html
https://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless/
https://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless/

Bibliography

Gurp, Jilles van and Jan Bosch (2002). “Design erosion: problems and
causes.” In: Journal of Systems and Software 61.2, pp. 105–119. issn:
0164-1212. doi: https://doi.org/10.1016/S0164-1212(01)00152-
2. url: http : / / www . sciencedirect . com / science / article / pii /

S0164121201001522 (cit. on pp. 60, 63).
Hohpe, Gregor and Bobby Woolf (2003). Enterprise Integration Patterns: De-

signing, Building, and Deploying Messaging Solutions. Addison-Wesley
Professional. isbn: 0321200683 (cit. on p. 42).

Iyengar, M. K. et al. (2009). “Modularization of a Large-Scale Business
Application: A Case Study.” In: IEEE Software 26, pp. 28–35. issn: 0740-
7459. doi: 10.1109/MS.2009.42. url: doi.ieeecomputersociety.org/
10.1109/MS.2009.42 (cit. on pp. 61, 62).

Kamal, Ahmad Waqas and Paris Avgeriou (2010). “Modeling the Variability
of Architectural Patterns.” In: Proceedings of the 2010 ACM Symposium
on Applied Computing. SAC ’10. Sierre, Switzerland: ACM, pp. 2344–
2351. isbn: 978-1-60558-639-7. doi: 10.1145/1774088.1774572. url:
http://doi.acm.org/10.1145/1774088.1774572 (cit. on p. 11).

Kaplan James M. Forrest William, Kindler Noah (2008). Revolutionizing Data
Center Efficiency. McKinsey and Company (cit. on pp. 20, 56).

Kernighan, Brian W. and P. J. Plauger (1976). Software tools. Addison-Wesley
(cit. on p. 47).

Koomey Jonathan, Taylor Jon (2015). New data supports finding that 30 percent
of servers are ’Comatose’, indicating that nearly a third of capital in enterprise
data centers is wasted. Oakland, CA: Anthesis Group (cit. on pp. 20, 56).

Len Bass Paul Clements, Rick Kazman (2012). Software Architecture in Practice.
third edition. Addison-Wesley Professional; isbn: 0321815734 (cit. on
p. 21).

Lerner, Reuven M. (2014). “At the Forge: 12-factor Apps.” In: Linux J.
2014.245. issn: 1075-3583. url: http://dl.acm.org/citation.cfm?
id=2682554.2682559 (cit. on pp. 50, 62).

López, Manuel Ramı́rez and Josef Spillner (2017). “Towards Quantifiable
Boundaries for Elastic Horizontal Scaling of Microservices.” In: Com-
panion Proceedings of the10th International Conference on Utility and Cloud
Computing. UCC ’17 Companion. Austin, Texas, USA: ACM, pp. 35–40.
isbn: 978-1-4503-5195-9. doi: 10.1145/3147234.3148111. url: http:
//doi.acm.org/10.1145/3147234.3148111 (cit. on p. 22).

114

http://dx.doi.org/https://doi.org/10.1016/S0164-1212(01)00152-2
http://dx.doi.org/https://doi.org/10.1016/S0164-1212(01)00152-2
http://www.sciencedirect.com/science/article/pii/S0164121201001522
http://www.sciencedirect.com/science/article/pii/S0164121201001522
http://dx.doi.org/10.1109/MS.2009.42
doi.ieeecomputersociety.org/10.1109/MS.2009.42
doi.ieeecomputersociety.org/10.1109/MS.2009.42
http://dx.doi.org/10.1145/1774088.1774572
http://doi.acm.org/10.1145/1774088.1774572
http://dl.acm.org/citation.cfm?id=2682554.2682559
http://dl.acm.org/citation.cfm?id=2682554.2682559
http://dx.doi.org/10.1145/3147234.3148111
http://doi.acm.org/10.1145/3147234.3148111
http://doi.acm.org/10.1145/3147234.3148111

Bibliography

Mair, Matthias, Sebastian Herold, and Andreas Rausch (2014). “Towards
Flexible Automated Software Architecture Erosion Diagnosis and Treat-
ment.” In: Proceedings of the WICSA 2014 Companion Volume. WICSA ’14

Companion. Sydney, Australia: ACM, 9:1–9:6. isbn: 978-1-4503-2523-3.
doi: 10.1145/2578128.2578231. url: http://doi.acm.org/10.1145/
2578128.2578231 (cit. on p. 60).

Marathe, Aniruddha et al. (2014). “Exploiting Redundancy for Cost-effective,
Time-constrained Execution of HPC Applications on Amazon EC2.” In:
Proceedings of the 23rd International Symposium on High-performance Parallel
and Distributed Computing. HPDC ’14. Vancouver, BC, Canada: ACM,
pp. 279–290. isbn: 978-1-4503-2749-7. doi: 10.1145/2600212.2600226.
url: http://doi.acm.org/10.1145/2600212.2600226 (cit. on p. 19).

Martin, Robert C. and Micah Martin (2006). Agile Principles, Patterns, and
Practices in C# (Robert C. Martin). Upper Saddle River, NJ, USA: Prentice
Hall PTR. isbn: 0131857258 (cit. on p. 28).

McIlroy, M. D. (1978). “UNIX time-sharing system: Foreword.” In: The
Bell System Technical Journal 57.6, pp. 1899–1904. issn: 0005-8580. doi:
10.1002/j.1538-7305.1978.tb02135.x (cit. on pp. 28, 44).

Muthig, D. and M. Lindvall (2008). “Bridging the Software Architecture
Gap.” In: Computer 41, pp. 98–101. issn: 0018-9162. doi: 10.1109/MC.
2008.176. url: doi.ieeecomputersociety.org/10.1109/MC.2008.176
(cit. on p. 61).

Newman, Sam (2015). Building Microservices: Designing Fine-Grained Systems.
O’Reilly Media. isbn: 1491950358 (cit. on pp. 28, 30, 40).

Raible, Matt (2018). The JHipster Mini-Book. lulu.com. isbn: 132963814X (cit.
on p. 54).

Ramage, M. and K. Bennett (1998). “Maintaining Maintainability.” In: Pro-
ceedings of the International Conference on Software Maintenance. ICSM ’98.
Washington, DC, USA: IEEE Computer Society, pp. 275–. isbn: 0-8186-
8779-7. url: http://dl.acm.org/citation.cfm?id=850947.853301
(cit. on p. 61).

Ras, Eric, Jörg Rech, and Sebastian Weber (2009). Knowledge Services for
Experience Factories (cit. on p. 15).

Raymond, Eric S. (1996). The New Hacker’s Dictionary (3rd Ed.) Cambridge,
MA, USA: MIT Press. isbn: 0-262-68092-0 (cit. on p. 55).

Raymond, Eric S. (2003). The Art of Unix Programming. first edition. Addison-
Wesley Professional. isbn: 0131429019 (cit. on pp. 23, 24, 44–48).

115

http://dx.doi.org/10.1145/2578128.2578231
http://doi.acm.org/10.1145/2578128.2578231
http://doi.acm.org/10.1145/2578128.2578231
http://dx.doi.org/10.1145/2600212.2600226
http://doi.acm.org/10.1145/2600212.2600226
http://dx.doi.org/10.1002/j.1538-7305.1978.tb02135.x
http://dx.doi.org/10.1109/MC.2008.176
http://dx.doi.org/10.1109/MC.2008.176
doi.ieeecomputersociety.org/10.1109/MC.2008.176
http://dl.acm.org/citation.cfm?id=850947.853301

Bibliography

Rech, Jörg and Eric Ras (2011). “Aggregation of Experiences in Experience
Factories into Software Patterns.” In: SIGSOFT Softw. Eng. Notes 36.2,
pp. 1–4. issn: 0163-5948. doi: 10.1145/1943371.1943390. url: http:
//doi.acm.org/10.1145/1943371.1943390 (cit. on pp. 14, 16).

Roberts, Mike (2016). Serverless Architectures. url: https://martinfowler.
com/articles/serverless.html (cit. on pp. 35, 36).

Salus, Peter H. (1994). A Quarter Century of UNIX. New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co. isbn: 0-201-54777-5 (cit. on
pp. 45, 46).

Scerbakov, Nikolai (2018). Internet-Based Information Systems - Lecture Notes.
url: https://coronet.iicm.tugraz.at/is/scripts/lesson08.pdf
(cit. on pp. 10, 40).

Spillner, Josef (2017). “Practical Tooling for Serverless Computing.” In: Pro-
ceedings of the10th International Conference on Utility and Cloud Computing.
UCC ’17. Austin, Texas, USA: ACM, pp. 185–186. isbn: 978-1-4503-5149-2.
doi: 10.1145/3147213.3149452. url: http://doi.acm.org/10.1145/
3147213.3149452 (cit. on p. 19).

Tešanović, Aleksandra (2001). What is a pattern? (Cit. on pp. 11, 12, 18, 19).
Tichy, W. F. (1997). “A Catalogue of General-Purpose Software Design

Patterns.” In: Proceedings of the Tools-23: Technology of Object-Oriented
Languages and Systems. TOOLS ’97. Washington, DC, USA: IEEE Com-
puter Society, pp. 330–. isbn: 0-8186-8383-X. url: http://dl.acm.org/
citation.cfm?id=832250.832625 (cit. on pp. 13, 14).

Torkura, Kennedy A., Muhammad I.H. Sukmana, and Christoph Meinel
(2017). “Integrating Continuous Security Assessments in Microservices
and Cloud Native Applications.” In: Proceedings of the10th International
Conference on Utility and Cloud Computing. UCC ’17. Austin, Texas, USA:
ACM, pp. 171–180. isbn: 978-1-4503-5149-2. doi: 10.1145/3147213.
3147229. url: http://doi.acm.org/10.1145/3147213.3147229 (cit. on
p. 30).

Villamizar, Mario et al. (2017). “Cost comparison of running web applica-
tions in the cloud using monolithic, microservice, and AWS Lambda ar-
chitectures.” In: Service Oriented Computing and Applications 11.2, pp. 233–
247. issn: 1863-2394. doi: 10.1007/s11761-017-0208-y. url: https:
//doi.org/10.1007/s11761-017-0208-y (cit. on pp. 23, 25).

Wiggins, Adam (2011). The Twelve-Factor App. url: https://12factor.net/
(cit. on p. 58).

116

http://dx.doi.org/10.1145/1943371.1943390
http://doi.acm.org/10.1145/1943371.1943390
http://doi.acm.org/10.1145/1943371.1943390
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://coronet.iicm.tugraz.at/is/scripts/lesson08.pdf
http://dx.doi.org/10.1145/3147213.3149452
http://doi.acm.org/10.1145/3147213.3149452
http://doi.acm.org/10.1145/3147213.3149452
http://dl.acm.org/citation.cfm?id=832250.832625
http://dl.acm.org/citation.cfm?id=832250.832625
http://dx.doi.org/10.1145/3147213.3147229
http://dx.doi.org/10.1145/3147213.3147229
http://doi.acm.org/10.1145/3147213.3147229
http://dx.doi.org/10.1007/s11761-017-0208-y
https://doi.org/10.1007/s11761-017-0208-y
https://doi.org/10.1007/s11761-017-0208-y
https://12factor.net/

Bibliography

Wiggins, Adam (2018). The Twelve-Factor App. url: https://12factor.net/
(cit. on p. 44).

Wizenty, Philip et al. (2017). “MAGMA: Build Management-based Genera-
tion of Microservice Infrastructures.” In: Proceedings of the 11th European
Conference on Software Architecture: Companion Proceedings. ECSA ’17.
Canterbury, United Kingdom: ACM, pp. 61–65. isbn: 978-1-4503-5217-8.
doi: 10.1145/3129790.3129821. url: http://doi.acm.org/10.1145/
3129790.3129821 (cit. on p. 30).

Wright, Hyrum K. and Dewayne E. Perry (2012). “Release Engineering
Practices and Pitfalls.” In: Proceedings of the 34th International Conference on
Software Engineering. ICSE ’12. Zurich, Switzerland: IEEE Press, pp. 1281–
1284. isbn: 978-1-4673-1067-3. url: http://dl.acm.org/citation.cfm?
id=2337223.2337395 (cit. on p. 43).

117

https://12factor.net/
http://dx.doi.org/10.1145/3129790.3129821
http://doi.acm.org/10.1145/3129790.3129821
http://doi.acm.org/10.1145/3129790.3129821
http://dl.acm.org/citation.cfm?id=2337223.2337395
http://dl.acm.org/citation.cfm?id=2337223.2337395

	Abstract
	Introduction
	Problem Statement
	Motivation
	Definition
	Case Study - Functional Requirements
	Case Study - Non-Functional Requirement
	Tasks

	Fundamentals and Related Work
	Web Application
	Architectural Pattern
	Pattern Definition
	Pattern Categories
	Pattern Integration in a Evolutionary Development Approach
	Pattern Description Format
	Pattern Description Language
	Common Pattern Misconceptions

	Infrastructure Cost
	Monolithic Architectural Pattern
	Pattern Description Format
	Summary

	Microservice Architectural Pattern
	Microservice Philosophy
	Characteristics
	Pattern Description Format
	Complexity Monolith vs. Microservice
	Summary

	Serverless Architectural Pattern
	Novelty Serverless
	Definition
	Pattern Description Format
	Summary

	Further Characteristics of the Case Study
	HTTP Endpoint
	JSON
	Synchronous and Asynchronous Invocation
	Summary

	Evolutionary Development
	Basics of the Unix Philosophy
	Do One Thing and Do It Well
	KISS Principle
	Eric Raymond's 17 Unix Rules
	Twelve-Factor App
	jHipster Policies
	Conway's Law
	Problems and Pitfalls
	Modularization
	Layered Architecture
	Summary

	Methodology
	Result
	Demo Application
	Infrastructure Costs
	Monolith Architectural Pattern
	Overview
	Development on Amazon AWS
	Amazon AWS Infrastructure Costs

	Microservice Architectural Pattern
	Overview
	Development on Amazon AWS
	Amazon AWS Infrastructure Costs

	Serverless Architectural Pattern
	Overview
	Development on Amazon AWS
	Amazon AWS Infrastructure Costs

	Summary Infrastructure Costs
	Performance Evaluation
	Performance Monolithic Architectural Pattern
	Performance Microservice Architectural Pattern
	Performance Serverless Architectural Pattern
	Summary Performance Test

	Conclusion and Future Work
	Appendix
	Bibliography

