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Abstract

Magnetic Resonance Imaging (MRI) emerged during the second half of the
last century to one of the most important clinical device for non-invasive
imaging of the human body. By now it is not only possible to achieve in-
credible image quality with very high resolutions and different soft-tissue
contrast but also to extract a wide range of more complex information such
as diffusion, perfusion, flow, brain activation, or even metabolic information.
MRI became the leading technology for diagnostic imaging of many diseases
such as tumor, stroke, or cardiovascular diseases with the advantage of not
using ionizing radiation as in computer tomography.
For many of the more complex information made accessible with MRI, it
is necessary to encode dynamic processes, such as imaging of the beating
heart, capturing the temporal course of an injected contrast agent with
high temporal resolution or inferring on quantitative information from a
characteristic signal evolution. In order to reach and improve necessary
conditions of spatio-temporal resolution and spatial coverage the encoding
process needs to be very fast.
Today, sequence design for rapid imaging already reached limitations de-
fined by hardware and energy deposition constrains, such that further
progress is only achievable by leaving out acquisitions steps. This, however,
comes at the cost of increasing the ill-posedness of the corresponding recon-
struction problem that would conventionally lead to severe artifacts and
noise corruption. From a mathematical view-point it is therefore necessary
to employ the concept of regularisation, where strong improvements require
the regularisation to be tailored specifically to the dynamic MRI reconstruc-
tion problem.
The core of this thesis is the analysis and application of modern dynamic
regularization strategies to different dynamic MRI (dMRI) modalities. Cov-
ered examples include functional cardiac imaging and cardiac perfusion
imaging, dynamic contrast enhanced MRI, time-resolved angiography, and
accelerated MR parameter mapping.
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Kurzfassung

Die Magnetresonanztomographie (MRT) trat im Laufe der zweiten Hälfte
des letzten Jahrhunderts als eines der wichtigsten klinischen Techniken für
die nicht-invasive Bildgebung des menschlichen Körpers hervor. Inzwis-
chen ist es nicht nur möglich mit sehr hohen Auflösungen und vielfältigem
Weichteilkontrast eine unglaubliche Bildqualität zu erzielen, sondern auch
eine Vielzahl komplexerer Informationen wie Diffusion, Perfusion, Fluss,
Gehirnaktivierung oder sogar metabolische Informationen zu extrahieren.
Die MRT wurde zur führenden Technologie für die diagnostische Bildge-
bung vieler Krankheiten wie Tumor-, Schlaganfall- oder Herz-Kreislauf-
Erkrankungen mit dem Vorteil, keine ionisierende Strahlung wie in der
Computertomographie zu verwenden.
Für viele der komplexeren Informationen, die mit der MRT zugänglich
gemacht werden, ist es notwendig, dynamische Prozesse zu kodieren. Promi-
nente Beispiele sind die Darstellung des schlagenden Herzens, den zeitlichen
Verlauf eines injizierten Kontrastmittels mit hoher zeitlicher Auflösung zu
erfassen oder aus einer charakteristischen Signalentwicklung auf quanti-
tative Informationen zu schließen. Um notwendige Bedingungen für die
räumlich-zeitliche Auflösung und räumliche Abdeckung zu erreichen und
zu verbessern, ist es notwendig den Prozess der Signalkodierung zu beschle-
unigen.
Da inzwischen die Möglichkeiten der schnellen Bildgebungs-Stratgien bere-
its an technische und gesundheitliche Grenzen stoßen, ist eine weiterge-
hende Beschleunigung nur noch durch Reduzierung von Akquisitionsschrit-
ten erreichbar. Dies führt jedoch zu einer Zunahme der Schlechtgestelltheit
des Rekonstruktionsproblems, was herkömmlicherweise zu starken Bildarte-
fakten führt. Aus mathematischer Sicht ist es daher notwendig, das Konzept
der Regularisierung zu verwenden, welche speziell auf das Problem der
Rekonstruktion dynamischer MRT-Bilder zugeschnitten werden muss, um
eine Verbesserung der Bildqualität zu erreichen. Der Kern dieser Arbeit
ist die Analyse und Anwendung moderner dynamischer Regularisierungs-
Strategien für verschiedene dynamische MRT-Verfahren. Die in dieser Ar-
beit behandelten Anwendungen umfassen funktionelle Herzbildgebung
und kardiale Perfusionsbildgebung, dynamische kontrastverstärkte MRT,
zeitaufgelöste Angiographie sowie beschleunigte MR-Parameterkartierung.
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1 Introduction

The fascinating technique of Magnetic Resonance Imaging (MRI) emerged
during the second half of the last century to one of the most important
clinical device for non-invasive imaging of the human body. Already forty
years have passed after the fundamental physical theory of nuclear magnetic
resonance was investigated before the first scanners were constructed in
the late 1970s. By now it is not only possible to achieve incredible image
quality with very high resolutions and different soft-tissue contrast but also
to extract a wide range of more complex information such as diffusion, per-
fusion, flow, brain activation, or even metabolic information. MRI became
the leading technology for diagnostic imaging of many diseases such as
tumor, stroke, or cardiovascular diseases with the advantage of not using
ionizing radiation as in computer tomography. A huge society of researchers
is dedicated to continuously advance technical possibilities and enable new
clinical, biological, and psychological insights in the understanding, imag-
ing, and treatment of diseases and about the human being in general.
For many of the more complex information made accessible with MRI, it is
necessary to encode dynamic processes, such as imaging of the beating heart
or inference of quantitative information from a characteristic signal evolu-
tion. This, however, poses more difficulties for the design of the imaging
and encoding process and requires fast imaging strategies. Since the later
already reached limitations defined by hardware and energy deposition
constrains, further progress is only achievable on the encoding side, by
leaving out acquisitions but comes at the cost of increasing ill-posedness of
the reconstruction problem. Suitable regularization, tailored to dynamic MRI
reconstruction and the demonstration of applicability to different dynamic
MRI (dMRI) modalities, is the core of this thesis.
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1 Introduction

1.1 Overview of the Thesis

The thesis is organized as follows. In Chapter 2 the basics of MRI is briefly
outlined and the principal characteristic signal equation is derived. Further-
more, an overview about encoding strategies for different dMRI applications
is provided. The following Chapter 3 is concerned with the analysis of the
MR reconstruction problem for dynamic data under the condition of noise,
discretization and undersampling. State-of-the-art reconstruction methods
for parallel imaging and compressed sensing are reviewed and a newly pro-
posed regularization functional, termed infimal convolution of total generalized
variation functionals, is put in the context of ongoing research. Furthermore,
the numerical solution, methods and the principal problem of evaluation is
described before practical aspects are summarized. With this basis laid out,
the next three chapters are concerned with specific applications. Chapter
4 describes the application to accelerated functional cardiac and cardiac
perfusion imaging. This chapter provides the major discussion of the pro-
posed regularization strategy and the comparison to other state-of-the-art
methods. Chapter 5 deals with the application to perfusion MRI with two
examples of dynamic contrast-enhanced MRI and dynamic MR angiography.
In Chapter 6 the reconstruction of quantitative information from undersam-
pled spatio-parametric data is discussed. This also includes the proposal
and evaluation of a fitting algorithm that utilizes regularization on multiple
parameter-maps. Finally, a conclusion and outlook is provided in Chapter
7.
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2 Principles of Magnetic
Resonance Imaging

2.1 Physics of Magnetic Resonance Imaging

The following chapter, oriented on the books by Levitt [1] and Brown et
al. [2], provides a brief summary of the fundamental physics, necessary to
understand MRI. For the basic notation used in quantum mechanics the
reader is also referred to part three in Levit2007. A general introduction to
imaging of dynamic information in MRI is provided in the second part.

2.1.1 Nuclear Spin

The physical basis for magnetic resonance imaging is the nuclear paramag-
netism and the existence of the quantum mechanical spin property for atomic
nuclei, denoted as Ŝ.Many atomic nuclei posses a non-zero spin which re-
sults in a magnetic moment ~µ with the fundamental linear relationship given
by

µ̂ = γŜ, (2.1)

where γ denotes the gyro-magnetic ratio. In MRI the major nuclei used for
imaging is the spin-1

2 system hydrogen 1H, because of its big occurrence
within the human body. For this particular case the gyro-magnetic ratio
equals γ = 2π · 42.5775 MHz

T and the spin-operator Ŝ = h̄
2

(
σx, σy, σz

)
can be

described with the pauli matrices σx,y,z =
h̄
2Ix,y,z with
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Figure 2.1: Illustration of Zeeman Splitting of a Spin- 1
2 system in an external static magnetic

field B0.

Ix =

(
0 1
1 0

)
, Iy =

(
0 −i
i 0

)
, Iz =

(
1 0
0 −1

)
. (2.2)

2.1.2 Zeeman States

Exposing this single spin-1
2 system to a static magnetic field along the z-axis

with magnitude B0, i.e. ~B = B0~ez, lifts the degeneracy of energetically equal
spin states into Zeeman states |α〉 and |β〉 as first observed by Zeeman in
1897 [3].

|α〉 =
∣∣∣∣n, l,+

1
2

〉
=

∣∣∣∣+1
2

〉
and |β〉 =

∣∣∣∣n, l,−1
2

〉
=

∣∣∣∣−1
2

〉
. (2.3)

For this short notation the principal quantum number n = 1 (assumed to be
in ground-state) as well as the orbital quantum number l = 1

2 are omitted.
Also, the coupling of electron and nuclear magnetic momentum for weak
external magnetic fields is not taken into account.

The defined states |α〉 and |β〉 are eigen-states to the spin Hamiltonian H0
defined as

H0 = −µ̂ · ~B = −ω0Iz (2.4)
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2.1 Physics of Magnetic Resonance Imaging

with eigen-values of ±ω0, where ω0 = −γB0 is called the Larmor frequency.
As illustrated in Figure 2.1 the difference in energy between the two states
is ∆E = h̄ω0. It is important to note that each single-spin system can not be
considered to be either in state |α〉 or |β〉 but always as a super-position

|ψ〉 = cα |α〉+ cβ |β〉 (2.5)

and (|α〉 , |β〉) form an orthonormal basis with mixing coefficients cα and cβ

(cα + cβ = 1) . Generally, the time-dependent evolution of the spin-state is
determined by the time-dependent Schrödinger equation:

i h̄
∂

∂t
|ψ(t)〉 = H0 |ψ(t)〉 (2.6)

2.1.3 Spin Ensembles

Since always the contribution of a number of spins Ns ∼ 1019 per mm3 of
human tissue (average) is measured instead of a single spin, it is necessary to
find a description of spin systems, which can be given by a density operator

ρ̂ = |ψ〉 〈ψ| = Ns
−1

N

∑
i=0
|ψi〉 〈ψi| (2.7)

and writes as follows using the representation in 2.5:

ρ̂ =

[
cαc?α cαc?β
cβc?α cβc?β

]
=

[
ραα ραβ

ρβα ρββ

]
(2.8)

This representation already leads us to the more intuitive and macroscopic
picture of net-longitudinal or transversal magnetization, calling ραα and ρββ

average populations of state |α〉 and |β〉 respectively and ραβ and ρβα average
coherences. For the real and positive populations it holds that ραα + ρββ =
1, which means that, if in average both populations are unequal, a net-
magnetization either parallel or anti-parallel to the direction of the external
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2 Principles of Magnetic Resonance Imaging

magnetic field is built up. The coherences, on the other hand, are complex
and represent a directional transverse magnetization, perpendicular to the
external magnetic field.
In order to describe the temporal behavior of the coherences and populations
one needs to use the Liouville-van-Neumann equations, that can be derived
from the time-dependent Schrödinger equation (2.6):

i h̄
d
dt

ρ̂(t) = [H, ρ̂(t)] =
(
H ρ̂(t)− ρ̂(t)H

)
(2.9)

2.1.4 Thermal Equilibrium

Considering an undisturbed spin-system, i.e. neglecting the exchange with
the molecular surrounding, the statistical occupation of a spin-populations
ξ ∈ (α, β) will follow the Boltzmann distribution

p(ξ) =
exp

{
− Eξ

kBT

}
∑

ξ∈(α,β)
exp

{
− Eξ

kBT

} (2.10)

leading to a higher occupation of the lower energy level of the order of 10−5

for room temperature and fields of the order of 1 T. kB = 1.380 66× 10−23 J/K
denotes Boltzmann’s constant. The population difference in the high-temperature
approximation (∆E << kBT) is ∆N = Ns(p(α)− p(β)) ≈ Ns

2 B, where

B =
h̄γB0

kBT
(2.11)

denotes the Boltzmann Factor. Considering the sum over all magnetic mo-
ments ~µi, this leads to a longitudinal equilibrium magnetization of

M||,eq = Ns
γ2h̄2B0

4kBT
(2.12)
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2.1 Physics of Magnetic Resonance Imaging

parallel to the static B0 field as mentioned earlier in Subsection 2.1.3. The
number of spins Ns in a typical imaging volume of 1 mm3 is around 6× 1019,
and thus compensates for the considerable small difference in occupation,
which establishes the basis for a reasonable MRI signal for hydrogen. For
other spin-1

2 systems this is markedly harder to achieve. The coherences
between all states are zero, thus no transversal net-magnetization will be
present in the equilibrium state.

2.1.5 Free Precession and Excitation

With the static Hamiltonian H0 = ω0 Îz, and using the definitions in Equ.
2.7 and Equ. 2.8 for the spin-ensembles, a time-dependent solution for the
Liouville equations 2.9 can be given as

ρ̂(t) = R̂z(ω0t)ρ̂(t = 0)R̂z(−ω0t) where R̂z(α) =

[
e−iα 0
0 eiα

]
(2.13)

This means that the populations ραα and ρββ are stationary while the co-
herences ραβ and ρβα are rotating with the Larmor frequency ω0, which is
commonly called free precession.
Even without considering differences in magnetization due to tissue relax-
ation properties, the spin density Ns

V will generate a first imaging contrast.
Since only rotating transversal magnetization can be detected it is neces-
sary to translate the equilibrium longitudinal magnetization to excitation of
coherences. This can be achieved via RF pulses in resonance with the Lar-
mor frequency ω0. A description of the new time-dependent Hamiltonian
H(t) = H0 +Hrf(t) can be given with the time-dependent RF-Hamiltonian
Hrf(t) with phase Φp and rf-frequency ωrf.

Hrf(t) = −h̄γB1
(
cos
(
ωrft + Φp

)
Îx sin

(
ωrft + Φp

)
Îy
)

(2.14)

Simplifying the situation to ”on-resonance pulses“, i.e. when ωrf = ω0, and
removing the time-dependence by switching the coordinate system to the
”rotating frame“, i.e. into a coordinate system rotating with the Larmor
frequency, the evolution of the density operator can be computed as

7



2 Principles of Magnetic Resonance Imaging

ρ̂(t) = R̂Φp(θ)ρ̂(t = 0)R̂Φp(−θ) (2.15)

where θ = |h̄γB1|τp is the nutation angle for a hard RF-pulse with amplitude
|B1| and pulse duration τp and R̂Φp(θ) is called the general rotation operator

R̂Φp(θ) = R̂z(Φp)R̂x(θ)R̂z(−Φp), R̂x(α) =

[
cos
(

α
2

)
− i sin

(
α
2

)
−i sin

(
α
2

)
cos
(

α
2

)] . (2.16)

Using this results one can compute two important experiments.

90 deg hard RF pulse

In this case the general rotation operator reduces to R̂x(
π
2 ). The initial state

ρ̂(0) = 1
2 1+

B
2 Îz, i.e. only unequal populations and no coherences resulting

in a net-longitudinal magnetization vector, is transformed to ρ̂(τp) =
1
2 1− Îy.

This state exhibits equalized populations with the differences transferred to coher-
ences. The corresponding ”classical“ picture is that of tilting the longitudinal
magnetization M|| = Mz pointing in z-direction into the transversal plane,
creating transversal magnetization M⊥ = (Mx, My).

180 deg hard RF inversion pulse

Here the general rotation operator writes as R̂x(π). Performing the calcula-
tion on the initial state ρ̂(0) as above, this translates into ρ̂(τp) =

1
2 1−

B
2 Îz,

i.e. the sign of the populations switched, effectively creating an inversion of
the populations, while the zero coherences are preserved.
It is important to note the connection to the concept of absorption and stim-
ulated emission. Transferring energy via on-resonant RF-pulses to the spin
system causes a transition between the two spin-states and annihilates the
difference in population while creating coherences. Further energy deposi-
tion even inverts the equilibrium state with further absorption, reaching a
maximum in system-energy. However, continued energy deposition again

8



2.1 Physics of Magnetic Resonance Imaging

reduces the system-energy by stimulated emission back to the initial equilib-
rium. The flip-angle θ can be generalized to arbitrary RF-pulse shapes by
computing

θ =

τp∫
0

γB1(τ)dτ. (2.17)

2.1.6 Relaxation

In the ideal situation of non-interacting spin-systems with the molecular sur-
roundings, an arbitrary RF-Pulse would produce a specific amount of shift in
populations, while producing coherences that would undergo free precession
forever. Of course, this situation is not encountered in real experiments and
natural decays of both, populations back to the thermal equilibrium state,
as well as vanishing coherences can be observed. This tissue-dependent
process is called relaxation and is the basis for generating basic MRI con-
trasts. There exist two types of relaxation, firstly spin-lattice relaxation, that
describes the relaxation of populations and secondly spin-spin relaxation,
describing the relaxation of coherences. Phenomenologically, these can be
expressed in a macroscopic model with the Bloch equations, that describe the
time-dependency of the magnetization vector ~M = (Mx, My, Mz).

d~m
dt

= γ~m(t)× ~B(t)− 1
T1

 0
0

Mz −Meq
z

− 1
T2

 mx(t)
my(t)

mz(t)−Meq
z

 . (2.18)

The Bloch equations give a phenomenological description in the macroscopic
limit, but can also be derived from quantum-mechanical viewpoint based on
the Redfield theory. Spin-lattice relaxation attributes to the thermal exchange
of excited protons with the surrounding tissue, leading to an exponential
return to the thermal equilibrium, while spin-spin relaxation corresponds to
the interaction of magnetic moments and a loss of coherence and, therefore,
transverse magnetization. Spin-spin relaxation occurs faster, such that T2 ≤
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2 Principles of Magnetic Resonance Imaging

T1. In practice the transverse magnetization vanishes much faster, due to B0
inhomogeneities, with time constant T?

2 .

2.1.7 Signal Detection

As indicated before, only the net transversal magnetization can be detected.
Since it rotates with the Larmor frequency and thus generates a time de-
pendent magnetic flux Φ(t). According to Faraday law of induction, this
produces a proportional voltage U(t), that also corresponds to the measured
signal, within a receive coil of area A, i.e.

U(t) ∝ −dΦ(t)
dt

=
∫
A

∂~B
∂t

dA.

With the principle of reciprocity, which means that the role of magnetization
and coil can be reversed, this leads to

U(t) ∝
∫
V

~M(~r′, t)
µ0

4π

∮
wire

dl × (~r−~r′)
‖~r−~r′‖3

d3r′

︸ ︷︷ ︸
B(~r′):Biot-Savart’s law

(2.19)

Here it is useful to write the transverse magnetization in complex notation
as M⊥(~r, 0) = Mx(~r, 0) + iMy(~r, 0). Neglecting relaxation processes, the
time dependent magnetization rotates with spatially independent Larmor
frequency,

M⊥(~r, t) = M⊥(~r, 0)eiω0t

and yields, making use of Eq. 2.19, the MR signal equation with complex
coil sensitivity ~B(~r) = Bx(~r) + iBy(~r), i.e.

s ∝
∫
V

~M⊥(~r, 0)~B(~r)eiω0d~r (2.20)
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It is important to note that in reality the principle of reciprocity might be
violated, especially at high fields, such that there is a difference between
the two circularly polarized components of ~B(~r), where the transmit field
is usually denoted as B+ and the receive field, i.e. the coil sensitivities, are
denoted as B− [4], [5].

2.2 Spatial Encoding

2.2.1 Fourier Imaging

So far the theory for nuclear magnetic resonance of protons was described.
In 1973 the later Nobel prize laureate Lauterbur came up with the idea
to use spatially varying gradient fields overlayed onto the principal static
magnetic field to spatially encode the magnetization [6]. These gradient fields
are generated with a coil system embedded on the inside of the main
magnet. The fast switching of the gradient system and the emerging Lorentz
forces are responsible for the characteristic and often deafening sound of
MR systems. Generation of a linearly varying field ~G(t) alters the Larmor
frequency, such that

ω(~r, t) = ω0 − γ~G(t)~r

translates Eq. 2.20 after demodulation as outlined in Haacke [2], i.e. removing
the constantly rotating part (ω0),

s(t) ∝
∫

V
~M⊥(~r, 0)~B−(~r)e−i~k(t)~rd~r. (2.21)

The set of discrete signal samples s(ti) at times ti is called k-space with
k-space coordinates~k(ti)

~k(t) = γ

t∫
0

~G(t′)~rdt′. (2.22)
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2 Principles of Magnetic Resonance Imaging

If all time dependencies but the magnetic gradients are neglected, one can
see that these are constructed to generate Fourier coefficients of localized
transverse magnetization, such that the MR image can be reconstructed
afterwards under the limitations of sampling theory - discussed in the next
chapter - via Fourier transformation. Here, the concept of Fourier encoding
is described for 3D encoding (2D Fourier encoding is commonly used in
practise) after slice-selective encoding, also introduced by Mansfield [7]. Slice-
selective encoding refers to excitation of spin-systems within a defined slice.
This can be achieved with a linear gradient in slice direction together with
an adequate RF pulse, tailored to excite a defined frequency bandwidth.
For both 2D or 3D encoding, the transverse magnetization is not static
but decays very rapidly with time-constant T?

2 , which was termed the free-
induction decay (FID). The need to generate sufficient signal within hardware
constraints, lead to the development of a rich variety of MR pulse sequences to
generate usable signal or echoes at specific time points. Since the signal is not
only dependent on the proton density but also on the signal history, this also
forms the basis of one of the major strengths of MRI, namely the ability to
generate different contrasts dependent on sequence parameters and tissue
specific relaxation properties. These sequences for echo generation can
roughly divided into gradient-echo (GE) and spin-echo (SE) sequences.

2.2.2 Pulse Sequences

For gradient-echo imaging, also referred to as gradient recalled imaging,
a dephasing gradient is administered after the excitation pulse, that causes
the magnetization to decay even more rapidly than the FID. Afterwards a
gradient of opposite polarity is switched on that causes the spins to partially
re-phase (see Fig. 2.2). A loss of coherence due to field inhomogeneities can
not be reversed, such that the signal intensity at echo time (TE) is propor-
tional to e−TE/T?

2 . Fast repetitions of excitation pulses lead to a influence of
longitudinal relaxation, since there is insufficient time for complete recovery.
After a series of initial pulses this results in a defined steady-state signal that
is used for imaging.
Also, a train of RF pulses always causes spin and stimulated echoes. A very
popular sequence, termed fast low-angle shot FLASH [8], that is also used

12
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Spin Echo
TE
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�
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~e�t/T2 

 

G

Gradient Echo
TE

Figure 2.2: Schematic mechanism to produce gradient (left) and spin (right) echoes.

in this thesis, combines low flip angle RF pulses with additional spoiler
gradients and RF spoiling to destroy residual transverse magnetization and
suppress the influence of spin and stimulated echoes.
A technique that makes use of all available signal components without spoil-
ing is called Steady state free precession (SSFP). To achieve such a situation
it is necessary to rephase all signal before the next excitation and employ
higher flip-angles to enhance the spin and stimulated echo amplitudes. This
technique is often used in cardiac imaging due to favorable contrast between
blood and myocardium.
Spin echoes firstly described by Hahn [9] on the other hand use a second
refocusing 180 deg RF pulse for echo generation. The RF pulse administered
at the half of the echo time, inverts the dephasing transversal magnetization,
such that the coherences are restored and form the spin echo (see Fig. 2.2).
This technique is very robust to field inhomogeneities but deposits more RF
energy due to the second pulse and is also not as time efficient as GE based
sequences. Because of that, spin echo sequences are rarely used in clinical
practice in contrast to fast derivations like fast spin echo (FSE) or half-fourier
acquisition single-shot turbo spin echo (HASTE).

2.2.3 K-space Trajectories

The basic pulse sequence block need to be repeated to gather a sufficient
number of echoes that correspond to the desired image contrast and fill
the k-space. To this end, the spatial encoding gradients need to be adapted
for every repetition. Classically, this is divided into frequency and phase

13



2 Principles of Magnetic Resonance Imaging

α 

Gx

TR

Gy

Figure 2.3: Cartesian sampling

encoding, a terminology that corresponds to Cartesian k-space sampling
as depicted in Fig. 2.3. Originally Lauterbur proposed a radial sampling as
illustrated in Fig. 2.4. Radial sampling is also used extensively throughout
this thesis, due to many advantages for dynamic applications and image
reconstruction discussed later. Back then, it turned out that the hardware
requirements were not capable to achieve these k-space trajectories with
sufficient accuracy, such that Cartesian imaging became, and still remain, a
standard for most applications.

2.3 Imaging of Spatio-temporal or -Parametric
Information

Dynamic MRI is a generic term that includes a manifold of applications
with change of intensity information within an additional dimension. This
needs to be discriminated more thoroughly, dependent on the dynamic in-
formation that is of interest. The applications investigated within this thesis
can be divided into firstly (1) imaging of physiological movements, i.e. spatial
displacements, where cardiac functional imaging is investigated. Secondly,
(2) imaging of temporal processes, namely the continuous alterations of signal
evolution due to the passing contrast agent in perfusion MRI and lastly

14
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α 

TR

Gy

Figure 2.4: Radial sampling

(3) imaging of parametrically changing information, based on sequence mod-
ifications to encode quantitative information. In practice these categories
can be mixed, e.g. one can be interested to encode parametric information
for cardiac imaging. This section is dedicated to give an overview of dedi-
cated encoding strategies for the described categories and describe the major
assumptions, and limitations.

2.3.1 Encoding of Spatial Displacements

Cardiac and respiratory motions are the major movements of the human
body. They can be described as pseudo-periodic, since the need for repetition
can be perturbed by e.g. cardiac arrhythmia. While respiratory motion is, in
general, no information of interest, it is a major source for artifacts. Imaging
of the cardiac function, on the other hand, with cardio-vascular diseases
being among the major causes for mortality, is a very important tool in
MRI that allows for detection, therapy planing, and monitoring of cardiac
dysfunctions.
The pseudo-continuous nature of the cardiac movement allows the employ-
ment of cardiac triggering, i.e. the synchronization of the MR signal acqui-
sition with, most-importantly, the electrocardiogram (ECG), gained with
externally placed ECG-electrodes or other navigator signals. This technique
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Figure 2.5: Illustration of the principle of CINE cardiac imaging using the ECG signal.
The cardiac cycle is divided in n phases that are acquired in N segments and
therefore N heartbeats.

is commonly termed CINE because of its ”cinematographic” appearance.
CINE imaging can usually be performed in two fashions, namely retrospec-
tively and prospectively, i.e. sorting the acquired data after acquisition or
define an acquisition window beforehand. Although, fast imaging sequences
have been developed, the acquisition time is still very limited in comparison
to the time-scale of physiological motion, such that only a small amount of
data can be acquired during one heartbeat. Under conventional sampling
limits, several heartbeats, depending on the image resolution, are required
to gain a sufficient amount of data per imaged slice as displayed in Fig. 2.5.
It is also necessary that the intervals of the cardiac cycle are defined, such
that the assumption of motion consistency within one time-frame is valid,
which is bounded by the fastest motion phase during heart contraction
in systolic phase. A general rule of thumb is that the temporal resolution
should be below 50 ms to ensure this constraint. Furthermore, all scans have
to be performed under breath-held condition for about 15 to 20 seconds,
which can be problematic to achieve for sick patients. The most promising
solution to image patients with arrhythmia or breath-held incapabilities
is real-time imaging, i.e. acquiring all necessary data for one slice in one
heartbeat, which conventionally requires to drastically reduce the spatial
resolution and employ parallel imaging strategies, subject to the next chap-
ter.
Currently most of the clinical routine cardiac protocols consist in slice-per-
slice imaging for different cardiac orientations with conventional Cartesian
sampling using FLASH or SSFP based signal encoding, where the later
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2.3 Imaging of Spatio-temporal or -Parametric Information

provides a better contrast between blood and myocardium. Mayor progress
has been achieved by employing non-Cartesian trajectories, in particular
radial readouts.
Radial sampling can be used as surrogate to Cartesian sampling in CINE
based ECG-triggered cardiac imaging, real-time imaging [10] or as self-gated
version, where the navigator signal can be extracted from the data since
every spoke samples the DC component of k-space [11]. Very recently, this
lead to the development of 3D whole-heart imaging approaches, that can be
acquired in a stack-of-stars sampling or a full 3D spiral phylotaxis pattern. Both
approaches offer the possibility to extract, both, a cardiac and respiratory
signal directly from the data and use this information for retrospective
binning into cardiac and respiratory phases of the whole 3D volume. This is
commonly termed self navigation. A necessary condition to guarantee a cer-
tain degree of k-space coverage for each motion-bin is a modification of the
conventional linear sampling scheme to the sampling with golden-angles [12]
in the 2D stack case and the spiral phylotaxis [13], [14] for full 3D acquisition.
Binning for respiratory states can be effectively used to correct for breathing
motion [15] but was also found to provide additional information in cardiac
MRI [16]. The golden-angle radial stack-of-stars or RAdial Volumetric Encoding
(RAVE) is also a suitable basis for encoding of temporal processes.

2.3.2 Encoding of Temporal Processes

Perfusion imaging tries to capture the temporal dynamic of an injected
contrast agent. The modalities investigated in this thesis are, firstly, car-
diac perfusion imaging and, secondly, dynamic contrast-enhanced MRI in
body imaging and MR angiography (MRA). For cardiac perfusion imag-
ing, breathing and heart motion need to be suppressed while imaging the
contrast agent in consecutive heartbeats for a larger heart-volume. This is
achieved with gating the signal acquisition to a diastolic window during
breath-hold as illustrated in Fig. 2.6. For conventional acquisition only lim-
ited spatial coverage with low in-plane resolution is possible. As outlined in
Chap. 5, it is important to capture the contrast dynamic with high temporal
frame-rate in a larger volume. Here the aforementioned golden-angle RAVE
approach is very suitable, since each measurement provides complementary
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2 Principles of Magnetic Resonance Imaging

Figure 2.6: Illustration of the principle of cardiac perfusion imaging. K-space data from
several slices (usually three short-axis and one four-chamber view) is acquired
with the corresponding distribution of the contrast agent within the cardiac
volume and tissue in each of N heartbeats in breath-hold.

information and allows a retrospective selection of temporal resolution
by grouping together a different fibonacci-number of consecutive measure-
ments into one temporal frame. It is important to choose a Fibonacci number,
i.e. fn = fn−1 + fn−2, n ≥ 2, f0 = 0, f1 = 1, to yield a uniform distribution of
data in each k-space time-frame. The in-plane golden-angle radial sampling
is combined with Cartesian encoding in slice direction. As described in [11]
this ”hybrid scheme provides better performance for fat saturation, reduced
sensitivity to eddy-currents and k-space discontinuities and data acquisi-
tions with flexible slice resolution”. Also it allows for entangling the 3D
encoding with 1D Fourier transformation in slice direction which is useful
to reduce the computational burden. Fig. 2.7 illustrates this principle.

2.3.3 Parametric Encoding for Quantitative Parameter
Estimation

Parametric encoding, as described more in detail in chapter 6, is more
easy to achieve, in comparison to the aforementioned encodings, since
the signal is altered directly with sequence parameter choices rather than
physiological motion. However, this degree of freedom needs to be chosen
such that sampling efficiency and parameter sensitivity is high. Again 3D
stack-of-stars sampling, e.g. for T1 encoding based on the FLASH signal
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2.3 Imaging of Spatio-temporal or -Parametric Information

Figure 2.7: Illustration of the principle of radial stack-of-stars imaging. One stack of spokes
is measured with the same angle and corresponding angles are acquired with
multiples of the golden angle. Figure adapted from [17].
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2 Principles of Magnetic Resonance Imaging

Figure 2.8: Illustration of the principle of parametric encoding with radial stack-of-stars
imaging.

equation, is an efficient strategy because of the benign pronunciation of
undersampling artifacts as basis for advanced reconstruction methods, as
illustrated in Fig. 2.8
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3 Principles of dynamic MR Image
Reconstruction from
undersampled Data

With the theoretical basics of the MR experiment described in chap. 2 this
chapter is now concerned with the analysis of the corresponding MR image
reconstruction problem. More specifically the analysis is given by taking into
account the process of discretization, noise influence and more importantly
reducing the number of acquisitions, commonly termed ”undersampling”.
To stabilize the inversion under these conditions the concept of regulariza-
tion and compressed sensing is introduced and generalized to the situation
of dMRI applications.

3.1 The MRI inverse problem

Starting again with the principal MR signal equation for a stationary mag-
netization, a Fredholm integral of first order,

sj(~k) =
∫
Ω

d~r m⊥(~r)cj(~r)e−i<~k,~r>, (3.1)

the corresponding inverse problem is to compute the transverse magnetization
m⊥(~r) on its support Ω ⊂ RD, D ∈ {2, 3}, from observed signals sj(~k) given
the known encoding function for the j-th receiver coil cj(~r), i.e. Ej(~k,~r) =

cj(~r)e−i<~k,~r>. This task is also commonly termed MR reconstruction.
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3 Principles of dynamic MR Image Reconstruction from undersampled Data

Inverse problems are said to be ill-posed if one or more of the following
properties stated by Hadamard in 1902 [18] are violated.

1. Existence: A solution exists
2. Uniqueness: The solution is unique
3. Stability: The solution depends continuously on the data

3.1.1 Discretization

For simplicity we first consider the single-coil reconstruction problem, i.e.
c1(~r) = 1 for the one-dimensional case (m⊥(~r) = m⊥(x)). The signal must
be acquired discretely and with a finite number of samples, such that an
infinite number of continuous solutions for m⊥(~r) exist. The problem of
reconstructing a continuous function from its noiseless, discretely sampled
Fourier coefficients is described in seminal works on sampling theory, most
notably by Whittaker, Nyquist, Kotel’nikov and Shannon (e.g. [19], [20]).
Assuming that the magnetization has a finite support, i.e. m⊥(x) = 0 for
|x| < FOV

2 , commonly termed the Field-of-View FOV, it can be shown that
the MR image can be perfectly reconstructed from an infinite number of its
discrete Fourier coefficients as follows

m⊥(x) = ∆k
∞

∑
n=−∞

s(n∆k)e2πi(n∆k)x, |x| < 1
2∆k

, (3.2)

with sampling intervals ∆k, such that the Nyquist limit can be defined as

FOV <
1

∆k
. (3.3)

Sampling below the Nyquist limit results in aliasing artifacts within the
reconstructed image.Furthermore, only a finite number of samples can be
acquired, i.e. n ∈ {−N

2 , · · · , N
2 }. Thus a continuous approximation of the

magnetization can only be calculated using a minimum-norm constrain on
the missing Fourier coefficients, effectively setting these to zero. This leads
to the description of the reconstruction problem with the discrete Fourier
transform (DFT ) for an image evaluation on the m-th discrete pixel:
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3.1 The MRI inverse problem

m⊥(m∆x) = ∆k
N
2 −1

∑
n=− N

2

s(n∆k)e2πi(n∆k)(m∆x)

= ∆k
N
2 −1

∑
n=− N

2

s(n∆k)e2πinm/N.

(3.4)

Here,

∆x ≤ 1
N∆k

, (3.5)

is called the pixel resolution. A low number of acquisitions and therefore low
spatial resolution leads to more pronounced Gibbs Ringing and partial-volume
effects. It can be shown that a therefore desirable higher spatial resolution
can only be achieved by acquiring a higher number of samples at the cost
of increased acquisition time and reduced SNR. Zero-filled reconstruction
of such a low amount of acquired k-space effectively leads to an image
interpolation but does not add additional information. For a more exhaustive
description concerning the pixel resolution the reader is referred to [21].
Since the numerical computation itself relies on a discretized model, this
will from now on be indicated by switching the notation for Eq. 3.1, by
defining the discrete MR forward model K,

K : U 7→ V

K : u 7→
(
DFT {Ĉcu}

)Nc
c=1 := d,

(3.6)

that maps the discretized magnetization u ∈ U = CNx×Ny , with Nx and
Ny being the number of image-pixels in x- and y-direction respectively, to
k-space data d ∈ V = CNr×Ne×Nc , where Nr and Ne denotes the number
of samples in readout and phase-encoding direction, and Nc the number
of receiver coils. Nr and Ne are also used for notation of Non-Cartsian
trajectories, where Nr always denotes the number of samples acquired
during one ADC readout and Ne the number of encodings for successive
echoes, e.g. the number of radial spokes. Ĉ j describes the linear operation
of point-wise multiplication of the j-th receiver coil sensitivity with the
magnetization.
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3 Principles of dynamic MR Image Reconstruction from undersampled Data

3.1.2 Noise

Concerning the stability of computing the inverse solution noise is a major
issue. Dependent on the corresponding forward model the uncertainty in
the data can be augmented tremendously in the solution.Noise is always
present in the MRI experiment, with thermal noise from the imaging object
being the primarily source apart from thermal fluctuation of charges with
the individual receiver coil-elements. As described by Nyquist and Johnson
[22], [23] the thermal noise generates stationary, additive and normally
distributed noise with zero mean and variance σ2 for both imaginary and
real component with the following proportionality:

σ2 ∝ 4RkbBWT (3.7)

Here R denotes the coils effective resistance, BW the readout bandwidth, kb the
Boltzmann constant, and T the temperature in Kelvin, yielding noisy, discrete
data d̃n,c for the n-th sample in the c-th coil.

d̃n,c = dn,c + nn,c, nn,c ∝ N (0, σ2
c ) (3.8)

For array coils there exist individual variances σ2
c and noise correlations

between the receiver coils due to electromagnetic coupling that can be
described by a noise covariance matrix Σ. Having access to Nsamp ∼ 105 noise-
only-samples ηc for each coil, that are mostly contained in measurement
files or can be acquired with zero-flip-angle acquisition, the elements of Σ
can be computed as follows:

Σn,m =
1

Nsamp
< ηn, ηm > n, m = 1, · · · , Nc (3.9)

The noise covariance matrix (see Fig. 3.1) can be employed to improve the
reconstruction quality by computing the weighted least-squares solution (see
3.7.4). For fully sampled data the noise variance in data-space σd translates
directly to globally equal noise in image space σi due to the linearity of the
Fourier transform, such that
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3.1 The MRI inverse problem

Figure 3.1: Example for noise covariance matrix for measurement with a 32-channel head-
coil

σ2
i =

σ2
d

N
(3.10)

for an image matrix of N = NxNy pixels. The SNR in this case can be
defined on a pixel basis as:

SNR(un) =
|un|
σi

. (3.11)

3.1.3 Undersampling and Parallel Imaging

As outlined before, the requirement for consecutive measurements leads to
time-consuming acquisition times, which states a fundamental drawback
for MRI. Acquiring a lower amount of data, with respect to the theoretical
limits stated by Nyquist and Shannon, reduces the scanning time. This
is commonly termed sub-Nyquist sampling or just undersampling. If the
reconstruction is carried out by applying the inverse Fourier transformation
to the incomplete MR data, the reconstructed image will be corrupted by
intense aliasing artifacts that are characteristic for the employed sampling
trajectory (see Fig. 3.2).

The loss in encoding information can be compensated to a certain extend by
employing the spatial information of the localization with multiple receiver
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3 Principles of dynamic MR Image Reconstruction from undersampled Data

Figure 3.2: Effect of sub-Nyquist sampling for Cartesian (left), radial (middle) and spiral
(right) acquisition.

26



3.1 The MRI inverse problem

coils. After early investigations by Carlson et al. [24], Sodickson et al. [25]
found a formalism to describe missing k-space coefficients by simultaneous
acquisition of spatial-harmonics SMASH constructed from the coil sensitivi-
ties. This laid the basis for a very important development in MRI known
as parallel imaging (PI), that is nowadays used routinely to accelerate MR
acquisition.
It is out of scope to give a complete overview of PI methods in this thesis,
however some important works should be mentioned. PI is roughly divided
in k-space based and image based methods. K-space based PI refers to estima-
tion of correlations from multi-coil autocalibration-lines ACL, acquired within
the Nyquist limit. Missing data points are then interpolated according to
these correlations and their proximal acquired data points. In that way, the
coil sensitivity information that is captured in the low-frequency information,
is used inherently. Among, k-space based methods, generalized autocalibrating
partially parallel acquisitions GRAPPA by Griswold et al. [26] and Iterative
Self-consistent Parallel Imaging Reconstruction From Arbitrary k-Space SPIRiT
are the most robust and clinically applied method based on SMASH.
In contrast, image-space based methods require an explicit estimation of the
coil sensitivities in image space. After early works by [27] the first robust
in-vivo implementation for undersampled Cartesian data with Sensitivity
Encoding SENSE was achieved by Pruessmann et al [28]. There, the regular
aliasing was entangled by computing the least-squares solution on a voxel-
per-voxel basis given the coil sensitivities. However, this is a specific setting
to which a general solution for arbitrary k-space trajectories was described
two years later again by Pruessmann et al. [29].
The employment of arbitrary trajectories and the advantage of easier inte-
gration of image priors makes image-space methods the preferable choice.
However, the explicit estimation of coil sensitivities was problematic such
that more robust but less accurate k-space based methods are favored in
clinics.
Recently, Uecker et al. [30] nicely described the connection between the two
approaches which yields a more complete and robust method to explicitly
estimate an extended set of coil sensitivities and combine the advantages
from both proposals. With the coil sensitivities included in the forward
mapping as defined in Eq. 3.6 the image space PI problem as also described
in [29] reads as follows:
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3 Principles of dynamic MR Image Reconstruction from undersampled Data

u? = arg min
u

1
2
‖Ku− d‖2

2 (3.12)

and leads to the solution

u? = (KHK)−1KHd (3.13)

where K† = (KHK)−1KH is called the pseudo inverse. Since the direct com-
putation of the pseudo inverse is computationally tedious and requires a
lot of memory an efficient solution needs to be computed iteratively. In [29]
the conjugate gradient (CG) algorithm is used, giving rise to the terminology
CG-SENSE. The CG algorithm is an optimal first order algorithm for con-
vex and differentiable problems. However, the adjoint KH of the forward
problem is needed for which a derivation can be found in the Appendix
(see App. 8.3.3).
However, a stable inversion of (KHK) is in general not possible, which is
the crucial point for ill-posed linear inverse problems. This is where the im-
portant concept of regularization arises, that will be outlined in the statistical
context. Furthermore, even if the inversion is stabilized with regularization,
this will lead to a spatially dependent variation of SNR dependent on the
receiver coil orientation and undersampling pattern, known as geometry
factor or g-factor also described in [28].

3.1.4 Bayesian Point of View

From an Bayesian point of view the image reconstruction problem leaves
us with a statistical uncertainty of finding the discrete MRI image u given
discrete observations (measured data) d. Thus, we need to treat u as a ran-
dom variable, that is governed by some probability distribution dependent
on the observation. This probability density function or posterior probability
p(u|d) can be expressed with Bayes rule as

p(u|d) = p(d|u)p(u)
p(d)

, (3.14)
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3.1 The MRI inverse problem

where p(u) is the prior probability, p(d) is called the evidence - that can be
treated as a constant scaling factor - and p(d|u) is the likelihood. The likeli-
hood loosely states how well the observed data is described by a possible
solution. Given independent and identically distributed (iid) samples, which
holds for the MR measurement process, the likelihood can be expressed
with a multi-variate Gaussian distribution:

p(d|u) ∝ exp
{
−(Ku− d)Σ−1(Ku− d)

}
. (3.15)

The more difficult question now is the design of a suitable prior probability
p(u). The seminal works of Phillips [31] and Tikhonov [32] proposed a
stabilizing functional that yields a prior distribution of the form

p(u) ∝ e−α‖Γu‖2
2 . (3.16)

The statistical interpretation therefore assumes that u should be drawn from
a multi-variate Gaussian distribution with zero means.Substituting the now
given likelihood and prior probability into Eq. 3.14, assuming for simplicity
Σ = Id, yields:

p(u|d) ∝ e

−‖Ku− d‖2
2 −

α

2
‖Γu‖2

2︸ ︷︷ ︸
:=−E(u) (3.17)

Given this posterior distribution, the maximum-a-posteriori (MAP) estimator
is defined as:

u? = arg max
u

p(u|d). (3.18)

This is equivalent to compute the minimum of E(u), that is often termed
free energy due to the connection to Gibbs free energy in statistical thermo-
dynamics, and leads to the variational problem

u? = arg min
u

1
2
‖Ku− d‖2

2︸ ︷︷ ︸
D(u,d)

+
α

2
‖Γu‖2

2︸ ︷︷ ︸
R(u)

. (3.19)
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3 Principles of dynamic MR Image Reconstruction from undersampled Data

This yields the Phillips-Tikhonov regularized solution of Eq. 3.13 for a given
data fidelity D(u, d) and regularization functional R(u) with the solution

u? = (KHK + αΓHΓ)−1KHd. (3.20)

It can be shown that (KHK + αΓHΓ) is invertible and its inverse is bounded,
i.e.

‖(KHK + αΓHΓ)−1‖2 ≤
1√
α

, (3.21)

yielding the desired stabilization. It is also worth to note that when the solu-
tion is computed iteratively with gradient-based methods, as for CG-SENSE,
the regularization is realized in an implicit way (Landweber regularization).
To sum up the previous section, the MR reconstruction problem of discrete
data is ill-posed due to noise corruption and furthermore due to the desired
goal of accelerating the acquisition process by sub-Nyquist sampling. It
was outlined that a data fidelity term D(u, d) can be defined on a statistical
basis and that the computation of a solution to the PI problem requires
stabilization on the basis of a-priori information contained in a suitable
regularization functional R(u), such that the generic problem can always
described as

u? = arg min
u

D(u, d) +R(u) (3.22)

The next sections are now concerned with the specification of these two
”ingredients”. First, the description of data fidelity is extended to the problem
of undersampled dynamic MRI, addressing specific sampling strategies.
Second, and more importantly, advanced regularization strategies for stable
reconstruction of image series will be described.
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3.2 The dynamic MRI Forward Problem

3.2 The dynamic MRI Forward Problem

First we introduce a time-dependent magnetization m⊥(~r, t) into the signal
equation as follows

sj(t) =
∫
Ω

d~r m⊥(~r, t)cj(~r)e−i<~k(t),~r>. (3.23)

Usually, time-independent static receiver coils can be assumed, that holds
true for static head-coils but might be violated for abdominal applications
during free-breathing. There the receiver coil is flexible attached to the body.
The MR operator for the discrete dynamic setting is then redefined as

K : U 7→ V

K : u 7→
(
DFT t{Ĉ jut}

)t=1,··· ,Nt

c=1,··· ,Nc
:= d,

(3.24)

where U = CNx×Ny×Nt with Nt being the number of time-frames and d is
now the measured data in k-t-space [33], i.e. d ∈ V = CNr×Ne×Nc×Nt . The
time-dependence in DFT t indicates the possibility of variable sampling in
k-t-space. It is important to note that for dynamic imaging the data points
sampled in one time-frame must be considered motion-consistent, i.e. it can
be controlled or assumed that no inter-frame motion occurs. This would
lead to artifacts due to k-space inconsistencies. Correction of intra-frame
motion is adverse to imaging inter-frame movement, since it aims to correct
for application-specific motion-related artifacts, such as involuntary head
movement (see e.g.[34]), instead of imaging diagnostically valuable dynamic
information. However, mixing of the two situations occurs frequently, such
as breathing-artifact correction for cardiac MRI [35], [36].
For dynamic MRI we can define a temporal resolution ∆t, i.e. the time between
adjacent time-frames that must always been interpreted in the context of
the application.
Since a common issue of all dMRI applications is the ultimate trade-off
between temporal and spatial resolution and/or coverage, these benefited
also strongly from PI techniques. Here, the additional degree of freedom of
how to vary the temporal sampling pattern arouse and triggered a manifold
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3 Principles of dynamic MR Image Reconstruction from undersampled Data

Figure 3.3: Overview of different k-t-sampling methods for view-sharing (a), uniform (b)
and variable (c) sampling density. Adapted from [44]

of different methods. A very early work termed MR fluoroscopy [37] falls
under the class of keyhole imaging, where only low frequency information is
updated after acquisition of a fully sampled first scan. Other techniques like
TRICKS [38] or TWIST [39] update different parts of k-space at randomly
at different times. Other methods that explicitly employ PI reconstruction
are TSENSE [40], TGRAPPA [41], k-t-SENSE [42] and k-t-GRAPPA [43]
among many others. General classes of sampling approaches are illustrated
in Fig. 3.3 adapted from [44], where a very complete and extensive review
about acceleration of temporal techniques is given. This review also gives
an overview compressed sensing techniques in the spatio-temporal context
that is also covered in the next section.

3.3 Variational Models and Compressed Sensing
for dynamic MRI

Adding a-priori information to the reconstruction problem in the form
of advanced regularization strategies enables improved suppression of
artifacts and noise, with stabilization of the corresponding inverse problem.
As outlined before, the Tikhonov type regularization for image denoising
was proposed as the L2 norm of the differential of the image function on its
support Ω ⊂ C, i.e.
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3.3 Variational Models and Compressed Sensing for dynamic MRI

R(u) =
∫
Ω

|Du|2dΩ, (3.25)

where D denotes the differential operator. R(u) has a low value for images
with low gradient and thus low noise but leads to over-smoothing of edge
structures.A key feature for visual perception in natural images are jump
discontinuities. The space of functions of bounded variation (BV) defined as

BV(Ω) =

{
u ∈ L1(Ω) |

∫
Ω

|Du|dΩ < ∞
}

(3.26)

contains image functions that are said to have finite total variation (TV).
Total variation is a very famous and extensively studied functional used for
denoising of images with preservation of edges introduced by Rudin, Osher
and Fatemi in 1992 [45], thus often termed the ROF model, that enforces
the mentioned requirement of preserving jump discontinuities by enforcing
piecewise constancy [46]. TV is essentially the L1-norm of the image gradient
and is defined in the continuous setting for a image function u as

TV(u) = sup
v

{ ∫
Ω

u div v dΩ | v ∈ C1
c (Ω, C2), ‖v‖∞ ≤ 1

}
. (3.27)

For u being differentiable this can also be written as

TV(u) =
∫
Ω

|Du| dΩ. (3.28)

Using the discretized gradient

(∇u)i,j =

(
δ+x ui,j
δ+y ui,j

)
, (3.29)

with the discrete forward differences δ+x,y as defined in the Appendix (see
App. 8.2) this yields the discretized TV. The norm of the x- and y-derivative
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can be varied to yield either the isotropic or anisotropic formulation of TV,
i.e.

TViso(u) = ∑
i,j

√
|δ+x ui,j|2 + |δ+y ui,j|2 (3.30)

or
TVaniso(u) = ∑

i,j
|δ+x ui,j|+ |δ+y ui,j|. (3.31)

However, it is known that the anisotropic definition of TV yields poor results
as it favors horizontal or vertical structures. The numerical definition of TV
in reference to different choices for combining gradient directions is still an
ongoing research topic (e.g. [47]).

Compressed Sensing

While the principal motivation of investigating suitable image regularizers
is to find an abstract description for a general image model this has a strong
connection to the concept of Compressed Sensing (CS). Compressed sensing
was investigated independently by Donoho [48] and Candés [49] around
2004 and states a theory to enable the recovery of signals with sparse repre-
sentation from incoherent measurements. Interestingly the first numerical
and puzzling demonstration was the recovery of a Shepp-Logan from its
radially undersampled Fourier-data using TV as sparsifying transform[50]
(not mentioning MRI). The principal CS problem for an under-determined
system in the MRI reconstruction context, i.e. K is the single-coil Fourier-
Operator with the number of randomly sampled Fourier coefficients below
the Nyquist limit, writes as

u? = arg min
u

‖Φu‖0, s.t. ‖Ku− d‖2
2 ≤ ε. (3.32)

Here Φ is a suitable sparsifying transform that maps the image u to a
representative space that can be described with few coefficients. Popular
choices are the Wavelet transformation, trained dictionary patches or the
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sparse image gradients (see Fig. 3.4). The ”sparsest” solution is measured
with the L0-norm, i.e. the number of non-zero elements, which is an NP-
hard problem. This lead to the use of L1-norm as closest convex surrogate
to the L0 norm, and thus enables an efficient computation of a solution. The
unconstrained CS problem with regularization parameter α is then defined
as

u? = arg min
u

1
2
‖Ku− d‖2

2 + α‖Φu‖1 (3.33)

In order to give any recovery guarantee, the sampling has to fulfill the
so-called restricted-isometry-property (RIP), that is the sensing matrix K needs
to satisfy

(1− δk)‖s‖2
2 ≤ ‖Ks‖2

2 ≤ (1 + δk)‖s‖2
2 (3.34)

where 0 < δk < 1 is the isometry constant for a k-sparse vector s = Φu, u ∈
CN, i.e. u can be described with k << N coefficients in the transform
domain. Descriptively, this means that a conventional reconstruction of
the sparsely sampled signal should result in incoherent noise-like artifacts,
which holds for randomly or radially sampled MR data (see Fig. 3.2 ).
While the construction of image prior models is driven by considerations
about penalizing unnatural image features, such as highly disorganized
and non-smooth images while conserving jumps at image borders, the
theory of CS describes the recovery of image signals under the condition of
sparsity, incoherence through non-linear reconstruction. Since both approaches
are concerned with equal problems, their basic ideas are strongly connected.
In e.g. [51] CS is discussed in the context of image processing, where the
”sparse and redundant representation modeling” is described as ”a way
of synthesizing signals according to a prior defined on the coefficients of
this [sparse] representation”. It is also worth to note that in many image
processing tasks such as denoising, incoherence is implicitly given, while in
MRI reconstruction this condition depends on the way the k-space trajectory
is designed.
In the further discussion of reconstruction methods in dynamic MRI both
view points are taken into account, while in the MRI community the CS
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Figure 3.4: Examples for sparse transformations with Wavelets (middle) and spatial gradi-
ents (right) of a T1-weighted MR head image (left).

argumentation prevails. This must be amounted to historical reasons, since
the first applications to MRI reconstruction by Block [52] using TV and
Lustig [53] using Wavelets were implemented shortly after the establishment
of CS theory by Candés and Donoho and the close geographical relation
between Donoho and Lustig at Standford University.

3.3.1 Total Generalized Variation

Although the classical choice of TV as image regularization functional en-
forces piecewise constancy while having a simple convex structurethis leads
to the well known staircasing effect (e.g. [54]). To overcome this limitation
Bredies et al. [55] introduced the concept of total generalized variation (TGV)
that enables the incorporation of higher-order derivatives up to a certain
order and enforces piecewise smoothness. This assumption proved to yield
enhanced reconstruction quality for natural images in different image pro-
cessing tasks [56], [57]. A denoising example is provided in Fig. 3.5. In MRI
this situation is met for low SNR scenarios but more importantly also for
pathological structures embedded in homogeneous tissue.
The definition of the TGV functional of order k with positive weights
{αi}i=0,··· ,k−1 is defined in the dual formulation as
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TGVk
α(u) = sup

{ ∫
Ω

u divk v dx | v ∈ Ck
c (Ω, Symk(U)),

‖divl v‖∞ ≤ αl, l = 0, · · · , k− 1
}

.

(3.35)

Here Symk(U) is the space of symmetric tensors on U and Ck
c (Ω, Symk(U))

with Ω ⊂ U = CNx×Ny the space of compactly supported symmetric ten-
sor fields [58]. TGVk

α defines a convex semi-norm favoring piecewise k-
polynomial intensity variations. This definition generalizes TV as TGV1

α(u) =
α TV(u). A popular and computationally traceable version, that is also used
throughout this work is the second order TGV2

TGV2
α(u) = sup

{ ∫
Ω

u div2 v dx | v ∈ C2
c (Ω, Sym2(U)),

‖v‖∞ ≤ α0, ‖div v‖∞ ≤ α1

}
.

(3.36)

In the minimum and discretized representation (see [59]) this writes as

TGV2
α(u) = min

v
α1‖∇u− v‖1 + α0‖Ev‖1, (3.37)

with E defining the symmetrized gradient E on v = (vx, vy) ∈ U2 as
Ev = 1

2(∇v + (∇v)T)

(Ev)i,j =

 (δ−x vx)i,j
1
2

[
(δ−x vy)i,j + (δ−y vx)i,j

]
1
2

[
(δ−x vy)i,j + (δ−y vx)i,j

]
(δ−y vy)i,j

 (3.38)

where the numerical backward differences are again defined in the Appendix
(see App. 8.2).
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3 Principles of dynamic MR Image Reconstruction from undersampled Data

It is out of the scope of this thesis to provide mathematical rigorous descrip-
tions and definitions for TGV and such that the interested reader is referred
to [55]. TGV2-regularized MRI reconstruction for static images was applied
for the first time by Knoll et al. [60] and consecutively to different other
MR applications such as non-linear PI reconstruction [61], Diffusion-Tensor
imaging [62], PatLoc imaging [63], susceptibility mapping [64], [65], and
ASL denoising [66] among others. The following section is now concerned
with the concepts for regularization of spatio-temporal data.

Original image Noisy image TV denoised TGV2
α denoised

Figure 3.5: Comparison of TV and TGV2
α models for variational image denoising with

L2-discrepancy from [67]. The TV-denoised image clearly exhibits stair-casing
artifacts.

3.3.2 Regularization for spatio-temporal data

Given the definition of spatial TV and TGV it is straightforward to define
their spatio-temporal versions by adding the temporal dimension and spatial
and temporal weights β = (µx, µy, µt) to the gradient and symmetrized
gradient in the discretized spatio-temporal domain U = CNx×Ny×Nt , such
that

∇β : U 7→ U 3

(∇βu)i,j,t =

µx(δ+x u)i,j,t
µy(δ+y u)i,j,t
µt(δ

+
t u)i,j,t

 (3.39)

38



3.3 Variational Models and Compressed Sensing for dynamic MRI

Eβ : v = (vx, vy, vt) ∈ U 3 7→ U 6

(Eβv)i,j =



µs(δ−x vx)i,j,t
µs(δ−y vy)i,j,t
µt(δ

−
t vt)i,j,t

1
2

[
µy(δ−y vx)i,j,t + µx(δ−x vy)i,j,t

]
1
2

[
µt(δ

−
t vx)i,j,t + µx(δ−x vt)i,j,t

]
1
2

[
µt(δ

−
t vy)i,j,t + µy(δ−y vt)i,j,t

]


(3.40)

Note that in the definition of Eβ the dimension was reduced since the sym-
metric elements are counted only once in order to reduce the computational
burden which has to be accounted for the corresponding norms. By apply-
ing the resulting TVβ or TGV2

β regularization functionals to spatio-temporal
data it can expected to obtain good results for image sequences that are
piecewise constant, resp. piecewise smooth in space and time. However, it
is not clear how to choose the temporal weighting µt since it depends on
the local temporal evolution of a pixel in time in correspondence with the
spatial weighting. For the later it is clear since the discretized voxel-sizes
are given trough the defined measurement matrix. Furthermore, in [68] it is
pointed out that the ”human eye is for example very sensitive to brightness
variations in time on a stable background”, which is an indication that
for image sequences different considerations as for static images must be
taken into account, which is also an open topic within the image processing
community. Especially the extension of TV to the temporal domain was not
found suitable to not provide such a realistic model for dynamic data [69].
In [70] an approach is presented by regularizing only the static background
of an image sequence after separation into foreground and background.
This already aimed in the direction of dynamic image separation with
low-rank and sparse decomposition based approaches, that also became very
popular for MRI reconstruction. Prior to low-rank and sparse decomposition,
many different regularization approaches for dynamic MRI applications
were used based on CS. Due to the quasi-periodic nature in cardiac imag-
ing the temporal Fourier transform was used as sparsifying transform in
the k-t-FOCUSS [71] and k-t-SPARSE-SENSE [72] method. Wavelet based
spatio-temporal regularization [73], spatio-temporal finite differences [74]
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or combinations of these, e.g. k-t-SPARSE [75] or [76], have also been suc-
cessfully applied for this application.
Even though the temporal Fourier transformation turned out to be a suit-
able choice for periodic applications, such as cardiac cine imaging, limita-
tions were reported for the non-periodic setting, such as dynamic contrast-
enhanced (DCE) applications. In [77], Liang proposed to reconstruct under-
sampled dynamic data by exploiting a representation with a low number of
temporal basis functions trained with singular value decomposition from
fully sampled low resolution data. This method was the basis for following
work as described in [78], [79], employing principal component analysis
(PCA), and more recently, in [80], to efficiently reconstruct dynamic data.
Using PCA as sparsifying transform was also discussed in [76], [81].
The exploration of data driven sparsifying transforms, as with PCA, as-
sumes that the dynamic data lies in a low dimensional subspace, i.e., that
an appropriate matrix representation of the image sequence is of low rank.
Mathematical foundations of low-rank matrix recovery from undersam-
pled data were studied in [82], where the nuclear norm is used as convex
relaxation of the non-convex low-rank constraint. The image series is orga-
nized in a matrix with N = Nx × Ny rows with the spatial information and
M = Nt columns with the temporal frames. The nuclear norm is defined
for u ∈ CN×M as

‖u‖? =
min(M,N)

∑
n

σn (3.41)

where σn are the singular values of the singular-value decomposition of u.
Recovery guarantees can again be stated under restricted isometry proper-
ties. One of the first applications of such a regularization to dMRI recon-
struction was reported in [83], where the connection to the earlier work of
[77] was pointed out.
In consequence to former findings of using sparsity constraints for dMRI
reconstructions, a joint combination of sparsity and low-rank constraints on
dMRI data was developed in [84]–[86]. In [84], non-convex Schatten p-quasi-
norms were suggested as improvement to the nuclear norm, which, due to
non-convexity, impose more difficulties to computing a robust numerical
solution.
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In [87], [88] a decomposition into low-rank and sparse component (L+S) was
proposed which is also referred to as robust PCA. This was applied in [89],
[90] and [91] (k-t-RPCA) to dMRI reconstruction, explicitly in combination
with PI in [90]. The corresponding reconstruction problem with weights for
the low-rank component λL and sparse component λS reads as follows:

u? = arg min
L,S

1
2
‖Ku− d‖2

2 + λL‖L‖? + λs‖ΦS‖1 s.t. u = L + S. (3.42)

In [90], the authors argue that L+S is a natural choice for dynamic data
as it models innovations on top of a highly correlated background and
is therefore applicable for all kind of dMRI applications. Actually, these
models require a global and explicit separation of dynamic data and back-
ground. Such a separation is, however, not generally applicable and recent
works employ a patch-based decomposition to locally improve reconstruc-
tion quality [92]–[94] with increased computational complexity. In [94] for
instance, patches are generated from an initial dynamic CS reconstruction
via motion tracking, followed by a patch-based low-rank reconstruction,
yielding further improvements in image quality. In contrast to that Holler et
al. [95] addressed the problem of extending the concept of total variation
type functionals to the dynamic setting.

3.3.3 Infimal Convolution of Total Generalized Variation

To illustrate the concept of Infimal Convolution of Total Generalized Variation
(ICTGV) we first consider again the spatio-temporal TVβ functional defined
as

TVβ(u) = ∑
i,j,t

√
|µsδ

+
x ui,j,t|2 + |µsδ

+
y ui,j,t|2 + |µtδ

+
t ui,j,t|2 (3.43)

and β = (µs, µt), the ratio µt
µs

fixes the space-time scaling and leads to a
temporal regularization proportional to this ratio. As this ratio cannot be
defined in advance, it must be tuned to adapt to the specific regularization

41



3 Principles of dynamic MR Image Reconstruction from undersampled Data

properties. For typical dMRI datasets, however, a uniform choice is difficult
due to locally contradicting requirements. Different parts of a dynamic data
set may require either a stronger spatial or stronger temporal regularization
depending on the dynamic properties of the investigated region. Defining
β1 = (µ1,s, µ1,t) and β2 = (µ2,s, µ2,t) with either large or small space-time
ratio, i.e. µ1,t

µ1,s
> 1 and µ2,t

µ2,s
< 1, Holler et al. proposes to employ the infimal

convolution of the two differently spatio-temporally weighted functionals
TVβ1 and TVβ2 , i.e.

ICTVβ,γ(u) = min
v

TVβ1(u− v) + TVβ2(v). (3.44)

Since TVβ1 emphasizes piecewise regularity in space and time, while allow-
ing more deviation in time, TVβ2 acts the other way around. The combina-
tion of these two limiting cases via infimal convolution, yields an automatic
separation into components (u− v) and v, where either one of the requiring
conditions is fulfilled.
To avoid the introduction of staircasing artifacts of TV regularization, balanc-
ing between two differently weighted second-order spatio-temporal TGV2

functionals is employed, defining the second order ICTGV2 functional with
weighting parameters {γ1, β1, γ2, β2} as

ICTGV2
β1,2,γ1,2

(u) = min
v

γ1 TGV2
β1
(u− v) + γ2 TGV2

β2
(v) (3.45)

with the definition of TGV2 as in Eq. 3.37 and the definition of the weighted
gradient and symmetrized gradient as in Eq. 3.39 and 3.40.
It was shown in [68] that ICTGV2 yields an analytically well defined convex
regularization functional that, in the setting of differently weighting tem-
poral and spatial derivatives, is invariant with respect to translations and
rotations in space. Numerically, the solution of ICTGV2 regularized inverse
problems can be carried out with the same techniques as for TV regulariza-
tion, only the number of variables increases. Particularly for convex data
fidelity term - such as the one resulting from MR modeling - state of the
art duality based optimization algorithms can be applied and the approxi-
mation of globally optimal solutions can be assured. With the established
definitions of the dynamic MR data fidelity and regularization functionals
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it is now possible to put these ingredients together and describe the main
reconstruction problem of this thesis.

3.3.4 Spatio-Temporal Variational Regularization for
Dynamic MRI Reconstruction

The application of ICTGV2
γ,β, TGV2

β and TVβ regularization for reconstruc-
tion of accelerated dynamic MRI with the defined dMRI forward operator
K in Eq. 3.24 amounts to solve the following minimization problems:

u? ∈ arg min
u

λ

2
‖Ku− d‖2

2 + TVβ, (3.46)

u? ∈ arg min
u

λ

2
‖Ku− d‖2

2 + TGVβ, (3.47)

u? ∈ arg min
u

λ

2
‖Ku− d‖2

2 + ICTGV2
γ,β . (3.48)

These minimization problems are non-smooth but convex and can be solved
by a first-order duality based method that is outlined in the section 3.5 after
the description of model parameter normalization.

3.3.5 Model and regularization parameters

Variational methods use a regularization parameter, denoted by λ in Equ.
3.48, that weights data fidelity versus regularization and should be cho-
sen according to the expected noise level. In addition to that, the pro-
posed regularization functional encompasses several weighting parameters
{α0, α1, γ1, β1, γ2, β2} that define a model of the expected image structure
(model parameters).

Regularization parameter: Given a fixed set of model parameters only the
choice of one regularization parameter remains. This choice should depend
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on the SNR, the number of voxels, time frames and, the subsampling rate
of the MR data. Concerning the later, the cost of the data fidelity term
decreases linearly with the subsampling ratio, since the forward operator
maps only to sampled data. Based on this observation the regularization
parameter is defined as a linear function of the subsampling or reduction factor
r, i.e., λ(r) = ar + b, and hence need to fix the slope a and intercept b. A
further adaption to the noise level and image dimension is possible but
omitted for the sake of simplicity.

Model parameters: The parametrization of the regularization functional
is performed in a way that a variation of the model parameter does not
influence the overall trade-off between regularization and data fidelity.
Hence, the model parameters must be chosen only once for an expected
image structure, e.g. CINE cardiac imaging, and remain unaffected from the
noise level and subsampling ratio of subsequent measurements.
The first parameter that is inherent to TGV2 regularization is the ratio α1

α0
that defines the weighting of the different orders of differentiation. Previous
TGV2 imaging applications and studies found that fixing this ratio to 1√

2
yields a robust choice [56], [96], which is used throughout this work.

Concerning the weighing parameters {γ1, β1, γ2, β2} in Eq. 3.45 the ICTGV2

functional can be rewritten as

ICTGV2
s,t1,t2

(u) = min
v

γ1(s)TGV2
β(t1)

(u− v) + γ2(s)TGV2
β(t2)

(v). (3.49)

Thus, only three parameters remain to be fixed: s ∈ [0, 1] defines the weights
γi(s) of the first and the second TGV2 functional and ti ∈ (0, ∞) define two
different weightings β(t1), β(t2) of the temporal versus the spatial derivative.
The functions γi(·) are chosen with the intention of not influencing the trade-
off between data fidelity and regularization as follows:

γ1(s) :=
s

min(s, 1− s)
, γ2(s) :=

1− s
min(s, 1− s)

.

In contrast to a straightforward convex combination, i.e. s and (1− s), this
ensures that the overall cost of the functional does not reduce to zero as s
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comes close to zero or one. The smaller of the two factors γ1(s) and γ2(s)
always equals one and hence s allows to balance between the TGV2

β(ti)
func-

tionals without reducing or increasing the overall cost of ICTGV2
s,t1,t2

.
In order to normalize the weighting between spatial and temporal regular-
ization we pursue the following approach: Given again weights µs and µt of
the spatial and temporal derivative, respectively, we require that integrating
the resulting vector norm on the gradient over all possible directions gives
the same results as the standard Euclidean norm. This amounts to fix

1 =
1

2π

∫ π

0

∫ 2π

0

√
(µs sin θ cos ϕ)2 + (µs sin θ sin ϕ)2 + (µt cos θ)2 dϕ dθ

and provides the spatial and temporal weights as function of their ratio, i.e.
(µs, µt) = β(t), with a given ratio t = µt

µs
∈ (0, ∞). The thus defined model

parameters {s, t1, t2} define a unique decomposition into two components
(u− v) and v as defined in Equ. 3.49.

3.4 Decomposition into components

The definition of the ICTGV2 model parameters yields a new approach for
a decomposition into two components that reflect locally different require-
ments for stronger or weaker temporal regularity, between the two extremes
defined with β(t1) and β(t2). Additionally, it is possible to weight the two
spatio-temporal regularization functionals with γ(s). It is intuitively clear
that a set of model parameters will depend on the type of dynamic modality,
e.g. cardiac functional or dynamic contrast enhanced MRI. However, within
the application model parameterers are fixed and thus represent an general
selection strategy for a given modality, reflecting generic spatio-temporal
behavior.
Fixation of the model parameters is realized by grid-search for a de-
fined parameter range and evaluation against constructed ground-truths
(see Sec. 3.6), either from numerical phantoms or fully-sampled measure-
ments. Training was performed over heuristic ranges for t1 ∈ {1, 2, · · · , 9},
t2 ∈ {0.25, 0.5, 1, 2, 3} and s ∈ {0.2, 0.3577, 0.5, 0.6423, 0.8}. Figure 3.6 ex-
emplary shows the ”energy”, i.e. the sum over all pixel intensities, of the
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Figure 3.6: Energy (blue) and normalized RMSE (red) of ICTGV (first column) recon-
struction, component 1 (u− v) (second column) and component 2 (v) (third
column)for different model parameter choices (s ∈ {0.3577, 0.5, 0.6423}, t1 ∈
{1, 2, · · · , 9} and t2 ∈ {0.25, 0.5, 1, 2, 3}) computed from undersampled recon-
struction of numerical DCE phantom data ([97]).

components together with the reconstruction error in terms of root-mean-
squared-error (RMSE) for a numerical DCE phantom. Although ”optimal”
parameters can be derived in terms of lowest RMSE, it is apparent that actu-
ally a set of optimal parameters with minor deviations in error norm can be
given. Thus, it is possible to achieve similar overall reconstruction results,
with the possibility to alter the information content in the two different
components.
In Fig. 3.7 an optimal choice for model parameterers is given for the ap-
plication to perfusion MRI as treated in Chap. 5 in comparison to a L+S
decomposition. Similar to L+S, a decomposition in tracer kinetic and struc-
tural information is achieved but with higher differentiation into faster
and slower tracer characteristics. The investigation of potentially diagnostic
information from varying decompositions is subject to future research. It is
also notable that ICTGV can be extended to yield a decomposition into an
arbitrary number of components, with the drawback of increased computa-
tional complexity. Also, ICTGV model parameters can be tuned to yield a
L+S like decomposition.
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3.5 Numerical Solution

As pointed out, the numerical optimization problem that needs to be solved
is convex yet non-smooth. Convex optimization became increasingly impor-
tant with the growing number of optimization problems and computational
power. While the convex and smooth PI problems are most efficiently solved
with the conjugate gradient (CG) method, most of the CS problems like k-t-
SPARSE-SENSE or L+S can be solved with the fast iterative soft-thresholding
algorithm (FISTA) introduced by Beck and Teboulle [98]. It is essentially a
proximal gradient method that uses the unitary of the sparsifying trans-
form which holds for Fourier and Wavelet transformation. The derivative
operation is not unitary such that often a ε-smoothed version of TV is em-
ployed that reduces the problem from convex but non-smooth to convex and
smooth. Luckily the watershed in optimization is between non-convex and
convex optimization, where for the later it is possible to derive convergence
guarantees and rates.
A working horse to solve the dMRI ICTGV problem is the primal-dual split-
ting algorithm investigated by Chambolle and Pock [99]. With this algorithm
it is possible to compute solutions for a generic problem description that
reads as

min
x

F(Hx) + G(x), (3.50)

and corresponds to the saddle-point problem that is formulated with the use
of convex conjugate (definition see App. 8.1) as follows

min
x

max
y

< Hx, y > −F?(y) + G(x). (3.51)

Here G : Cn 7→ R+ and F : Cn 7→ R+ are convex functions with its convex
conjugate F? and H is a continuous linear operator. In [99] the authors define
the following iterative update rules with dual and resp. primal step-sizes σ
and τ:
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τσ‖H‖2 < 1, θ ∈ [0, 1] , update xn, yn, x̄n :
yn+1 = (Id + σ∂F?)−1(yn + σHx̄n)

xn+1 = (Id + τ∂G)−1(xn − τHHyn+1)

x̄n+1 = xn+1 + θ(xn+1 − xn).

(3.52)

(Id + τ∂G)−1 and (Id + τ∂F?)−1 are the proximal mapping operators on F?,
resp. G and HH is the hermitian adjoint operator to H. The definitions of
the convex conjugate and proximal mappings are given in the Appendix
(see App. 8.1). It is now necessary to cast the optimization problems defined
in Eq. 3.46, Eq. 3.47, and Eq. 3.48 in the form of Eq. 3.50, which is exemplary
carried out for ICTGV2. With the definitions of the 2d-time gradients and
symmetrized gradients and corresponding norms that can be found in the
Appendix (see App. 8.3) the full optimization problem writes as:

min
u,w1,v,w2

λ

2
‖Ku− d‖2

2

+ γ1(s)
(

α1‖∇β(t1)
(u− v)− w1‖1 + α0‖Eβ(t1)

w1‖1

)
+ γ2(s)

(
α1‖∇β(t2)v− w2‖1 + α0‖Eβ(t2)w2‖1

)
.

(3.53)

It is our goal to obtain a saddle-point or primal-dual problem as in Eq. 3.50

that is equivalent to our original problem. To this aim, first note that ICTGV
can be reformulated as

ICTGV2
β,γ(u) = min

x=(u,w1,v,w2)
‖H1x‖1,α,γ

with

H1 =


∇β(t1)

−Id −∇β(t1)
0

0 Eβ(t1)
0 0

0 0 ∇β(t2) −Id
0 0 0 Eβ(t2)

 , (3.54)
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and

‖(p1, q1, p2, q2)‖1,α,γ = γ1(s) (α1‖p1‖1 + α0‖q1‖1)+γ2(s) (α1‖p2‖1 + α0‖q2‖1)

representing a weighted L1 norm. Furthermore, the convex conjugates of
‖ · ‖1,α,γ and λ

2 ‖ · −d‖2
2 are required and are given for z = (p1, q1, p2, q2) as

‖z‖∗1,α,γ := sup
z′

< z, z′ > −‖z′‖1,α,γ = I{‖·‖∞,α,γ≤1}(z),

where

I{‖·‖∞,α,γ≤1}(z) =

{
0 if max{γ1α1‖p1‖∞, γ1α0‖q1‖∞, γ2α1‖p2‖∞, γ2α0‖q2‖∞} ≤ 1,
∞ else,

and

(
λ

2
‖ · −d‖2

2)
∗(r) := sup

r′
< r′, r > −λ

2
‖r′ − d‖2

2 =
1

2λ
‖r‖2

2+ < d, r > .

The expression I{‖·‖∞,ν≤1} is an abbreviation for the convex indicator func-
tion of the set {q ∈ U | ‖q‖∞ ≤ 1}. Then, a formulation equivalent with the
minimization problem in 3.53 is obtained as

⇔min
u

λ

2
‖Ku− d‖2

2 + ICTGV2
s,t1,t2

(u)

⇔ min
x=(u,w1,v,w2)

λ

2
‖Ku− d‖2

2 + ‖H1x‖1,α,γ

⇔ min
x=(u,w1,v,w2)

max
y=(z,r)

< Ku, r > − < d, r > − 1
2λ
‖r‖2

2+ < H1x, z > −I{‖·‖∞,α,γ≤1}(z)

⇔ min
x=(u,w1,v,w2)

max
y=(z,r)

< Hx, y > − < d, r > − 1
2λ
‖r‖2

2 − I{‖·‖∞,α,γ≤1}(z)

⇔ min
x=(u,w1,v,w2)

max
y=(z,r)

< Hx, y > −F∗(y).

with H =

(
H1
K1

)
, K1x = Ku, G ≡ 0 and

F∗(y) = F∗(z, r) =< d, r > +
1

2λ
‖r‖2

2 + I{‖·‖∞,α,γ≤1}(z),
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the convex conjugate of F(y) = F(z, r) = λ
2 ‖r− d‖2

2 + ‖z‖1,γ,β.

In the update-scheme of the primal-dual algorithm also the adjoint of H1
and K are required. While the adjoint of K is given in the Appendix (see
App.8.3.3) the adjoint of H1 with the definitions of the divergences given in
App. 8.3 reads as:

HH
1 =


div1

β1
0 0 0

−Id div2
β1

0 0
−div1 β1 0 div1

β2
0

0 0 −Id div2
β2

 . (3.55)

For the case of TGVβ, TVβ or ICTVs,t1,t2 the considerations can be carried
out in the same manner such that only H1 needs to be redefined as

Htv
1 = ∇β, (3.56)

Htgv
1 =

(
∇β −Id
0 Eβ

)
, (3.57)

Hictv
1 =

(
∇β1 −∇β1

0 ∇β2

)
. (3.58)

The final update schemes for the corresponding algorithms for TVβ (Alg.
3), TGVβ (Alg. 4), ICTVβ,γ (Alg. 5), and ICTGV2

β,γ (Alg. 6), as well as the
corresponding proximal mappings for F∗ (App. 8.3.2) are described in the
algorithm section of the Appendix 8.5.
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3.5 Numerical Solution

3.5.1 A Primal-Dual Implementation of
k-t-SPARSE-SENSE and L+S Reconstruction

It is also straight forward to restate the k-t-SPARSE-SENSE reconstruction
method using temporal differences, i.e.

Hktss
1 = ∂t, (3.59)

in the same manner with only minor changes. It is also convenient to use
the primal-dual algorithm for solving the L+S reconstruction problem with
temporal differences as follows.

⇔min
L,S

1
2
‖K(L + S)− d‖2

2 + λS‖∂tS‖1 + λL‖L‖?

⇔ min
x=(L,S)

max
y=(z,r)

< Hx, y > −F∗(y) + G(x).
(3.60)

with HL+S =

(
K K
0 ∂t

)
, G = λL‖L‖? and

F∗(y) = F∗(z, r) =< d, r > +
1

2λ
‖r‖2

2 + I{‖·‖∞,λS
≤1}(z).

Note, that with a change of variables u = L + S it is also possible to write
Eq. 3.60 in a infimal convolution type reconstruction problem, i.e.

⇔min
u,L

1
2
‖Ku− d‖2

2 + λS‖∂t(u− L)‖1 + λL‖L‖?. (3.61)

The proximal mapping for (Id + τ∂G)−1 has to be computed, which can
be obtained as soft-thresholding on the singular values of the low-rank
component L and is defined in the Appendix (8.3.2). Both corresponding
algorithms were implemented for comparison purpose and are also given
in the Appendix: Primal-Dual k-t-SPARSE-SENSE (Alg. 1) and Primal-Dual-
Low-Rank-Sparse (Alg. 2).
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3 Principles of dynamic MR Image Reconstruction from undersampled Data

3.5.2 Step Sizes

The algorithms described above converge with convergence order of O(1/k)
as long as the primal and dual step-sizes σ and τ fulfill στ‖H‖2 ≤ 1. How-
ever it is desirable to make as large steps as possible for fast convergence.
The step-sizes can either be set constant after estimation of ‖H‖2, where the
part given by the gradient and symmetrized gradient can be estimated as in
[55] like ‖∇‖2, ‖E‖2 ≤

√
8,
√

12 and the varying part of the MR-Operator
can be accessed via power iterations. In the current implementation an
adaptive step-size choice as described in [57] is employed. The adaptive
choice still ensures convergence but potentially allows larger step-sizes and
hence accelerates convergence. This is realized by the mapping S , which for
θ ∈ (0, 1) and

n =
‖(x̄)− x‖2

‖H(x̄− x)‖2

is defined as

S(στ, n) =


n if

√
θστ ≥ n,√

θστ if
√

στ ≥ n >
√

θστ,√
στ else.

(3.62)

In [100] an adaption of the used primal-dual algorithm with line-search
is proposed, that was also implemented but lead to the same convergence
speed as the strategy with step-size adaption.

3.5.3 Primal-Dual Gap

The convergence proof of the general algorithm in [99] is based on the
primal-dual gap. To monitor the rate of convergence a modified primal-dual
gap is introduced as in [57], that in the case of ICTGV2 reconstruction is
given for x = (u, v, w1, w2) and y = (r, p1, p2, q1, q2) as:
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3.6 Evaluation and validation

G(xn, yn) =F(Hxn)+ < d, r > +
1

2λ
‖r‖2

2

+ ∑
i,j,t
|(−div1 p1 − KH r)i,j,t|+ ∑

i,j,t
|(−p1 − div2 q1)i,j,t|

+ ∑
i,j,t
|(−div1 p1 − div1 p2)i,j,t|+ ∑

i,j,t
|(−p1 − div2 q2)i,j,t|.

(3.63)

3.5.4 GPU implementation

A major obstacle of advanced reconstruction methods are the prolonged
computation times due to the algorithms complexity. A drawback of the
employed primal-dual algorithm is the need to introduce dual variables
that consume additional memory. In order to reduce reconstruction times
the MATLAB prototype was translated to C++/CUDA enabling highly
parallel GPU computations. As a consequence, the computational speed was
improved drastically with up to 50-fold acceleration. Table 3.1 summarizes
reconstruction times for typical data dimensions and a fixed number of
iterations. According to the experience 500 iterations are sufficient for the
primal-dual gap to indicate a voxel-wise error in the range of

[
10−5, 10−2].

The CUDA framework, termed AVIONIC1 is able to perform all of the above
described dynamic reconstructions as well as reconstruction for static 2D
and 3D TGV2 regularization.

3.6 Evaluation and validation

Evaluation of the reconstruction quality of MR images and validation of
newly proposed reconstruction methods is a critical task for different rea-
sons. However, it is complicated to establish a suitable ground-truth, i.e.
a MRI scan of the investigated modality with high SNR and possibly no

1GNU GPLv3 license https://github.com/IMTtugraz/AVIONIC
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3 Principles of dynamic MR Image Reconstruction from undersampled Data

Table 3.1: ICTGV reconstruction times in seconds (500 iterations), obtained with a MATLAB
CPU implementation (Intel i5-2500K, 3.30GHz) and a CUDA GPU implementa-
tion (NVidia GeForce GTX 770), for different data-dimensions (3rd to 5th column)
denoted as (Nx, Ny, Nt, Nc). The top rows depict the time in seconds to perform
500 iterations while the bottom rows show the total reconstruction time including
coil sensitivity estimations.

Device (128, 128, 40, 12) (416, 168, 25, 32) (256, 216, 32, 30)

CPU Iterations 1325.38 5783.43 8919.39

Total 1365.86 6238.18 9355.47

GPU Iterations 34.54 134.34 199.33

Total 39.73 176.61 244.61

measurement- or motion related artifacts. This is even more complicated
for the dynamic MR applications due to the inherent temporal limitations,
e.g. breath-hold for cardiac imaging. The construction MR phantoms for
dynamic applications is also quite challenging. On the numerical side, many
approaches exist to synthesize MR data on the sequence simulation basis
like MRiLab [101] or JEMRIS 2. However, these are limited to static MRI
acquisition. For dynamic applications numerical phantoms were constructed
in image space based on established scanning procedures, e.g. MRXCAT
[97] for cardiovascular applications or for perfusion [102]. In that case one
often faces so called inverse crimes, i.e. when the same discrete model is
used for generating and reconstructing the data, from an actually infinite-
dimensional quantity as outlined in Sec. 3.1.1. An approach to overcome
this problem was presented in [103].
Secondly, the question remains what could be a suitable metric to rate
medical images, where the end point is the diagnostic relevant information
that could be of large or very tiny extend. Global measures like pixel-wise
(RMSE) are not suitable to capture that information and furthermore do
not take considerations about the human perception of images into account.
The later problem triggered many attempts to investigate metrics based on
the human visual system (HVS). Among these the structural-similarity index
(SSIM) [104], [105] evolved to a sophisticated and accepted standard among

2http://www.jemris.org
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image quality metrics [106].
However, emphmedical images, inherit far more complex information, as
the general HVS is assuming, such that only skilled radiologists with many
hours of training are capable of identifying pathological information3. This
boils down to the problem of how advanced reconstruction methods need to
be evaluated, since the prior knowledge introduced in form of regularization
is constructed in a way to enforce typical image structures and not particu-
larly typical medical image structures, which of course can not be specified
easily. The eligible concern is that medical image information might be lost
while achieving good reconstruction quality in terms of ”nicely” looking im-
ages. On the other hand the difference in natural and medical images needs
to be proven by carrying out extensive clinical studies. A selection of studies
performed with CS methods can be found in [107].These observations and
the still prolonged and/or computationally expensive reconstruction times
are the major drawbacks of constrained reconstruction that impedes the
clinical applicability.
Increased pressure for the technological transfer was built up for applica-
tions that strongly required acceleration to be applicable in the first place.
Parallel imaging reconstruction was translated quite quickly to e.g. cardiac
functional imaging to achieve acquisition times in breath-hold-duration.
The supposed advantage of PI was that the reconstruction is still linear and
translates the noise in well-behaved manner but results in a spatially vari-
able noise enhancement, known as g-factor [28], that is effectively the main
limitation for further acceleration. The g-factor that is accessible analytically
can also provide a useful confidence measure. Advanced regularization is
able to effectively suppress the noise enhancement an thus enables higher
acceleration potential. As outlined in Sec. 3.1.4, the reconstruction as proba-
bility density would also provide such a confidence measure, but is hard
to achieve. An alternative approach is the pseudo-replica approach [108] to
access a reliability measure from non-linear filter responses and can also be
used to gain MR reconstruction in SNR units as proposed by Kellman and
Hansen et al. [109], [110].
The pseudo-replica approach roughly approximates the posterior distribu-
tion p(u|d) by computing the reconstruction several times with varying

3Ehman, ”What a radiologist sees” http://cds.ismrm.org/protected/

DataSampling13/Program/talks/30800/
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3 Principles of dynamic MR Image Reconstruction from undersampled Data

noise-inputs but equivalent noise standard deviation. Afterwards the SNR
units are given by computing the mean < u >and standard-deviation σin
each voxel, such that the real voxel-wise SNR can be defined by

SNR =
< u >

σ
. (3.64)

The g-facor map is then defined for an acceleration factor r as

g =
SNRunacc√

r SNRacc
(3.65)

Fig. 3.8 exemplary shows g-factor maps and SNR unit reconstructions for
linear (CG-SENSE) and ICTGV-regularized reconstructions for a numerical
MRXCAT cine-cardiac dataset [97] with regualar undersampling pattern
and different target SNR. The g-factor map indicates that a almost 100-
fold suppression of noise is achieved with ICTGV, while leading to more
uncertainty at morphological boundaries. For lower target SNR g-factor
structures as visible for the linear reconstruction are again emphasized.

3.7 Practical Aspects for Reconstruction

After describing the principal reconstruction framework, this sections serves
to briefly summarize important practical aspects useful for preprocessing
of MR data. More specifically, aspects of Non-Cartesian reconstruction,
sensitivity estimation, coil-compression, pre-whitening and general aspects
of the MRI data-pipeline are discussed.

3.7.1 Non-Cartesian reconstruction

A great part of the reconstructions described in this work are computed
from Non-Cartesian, more specifically golden-angle radial stack-of-stars
MR data, with specific advantages over Cartesian imaging. One important
aspect is the robustness to motion, since the k-space center is sampled every
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repetition such that no aliasing like artifacts in phase-encoding direction can
occur. Furthermore, there are no wrapping-artifacts for a smaller FOV since
readout-oversampling can be performed for each spoke and undersampling
artifacts appear more benign. Most importantly for dynamic applications,
the golden angle sampling scheme [12] enables a retrospective selection of
temporal resolution by grouping together a Fibonacci number of spokes to
achieve an evenly coverage in each time-frame. However, several drawbacks
also have to be compensated, like correction of gradient delays [111], or
additional fat suppression to avoid blurring artifacts. In [112] an extensive
summary is provided.
Concerning the reconstruction, Non-Cartesian data imposes additional
difficulties. The data needs to be interpolated on a Cartesian grid, such that
this type of reconstruction is also often termed gridding. Here, the choice
of the gridding kernel is crucial, and most often Kaiser-Bessel windows
are used. This convolution operation with a specific gridding-kernel has
again to be corrected which is called deapodization. First implementations
in MRI reconstruction were described in [113]. Today many tools exist to
perform the non-uniform fast-fourier transform (NUFFT) with all necessary
steps, like that Matlab implementation by Fessler et al. [114]. Since the
computation is usually a bottleneck in iterative reconstruction, speed-up is
very important, which can be achieved e.g. with the gpuNUFFT tool4 [115]
by Schwarzl et al. or the NFFT5 [116].
Since for radial sampling, the density of sampling points for equidistant
sampling on each spokes becomes higher this has to be compensated for
and is known as density compensation. For radial data this has to be carried
out in a linear way since the area around each sampling point increases
linearly with the distance from the center, i.e. the density compensation
dc f for the n-th sample (n ∈ [−0.5, · · · , 0.5]) with Nr being the number of
readout samples per spoke with two-fold oversampling and Ne the number
of encoded spokes is given as

dc f (n) = N|n| = πNe

4Nr
|n|. (3.66)

4http://www.opensourceimaging.org/project/gpunufft/
5https://www-user.tu-chemnitz.de/~potts/nfft/index.phppackage
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3 Principles of dynamic MR Image Reconstruction from undersampled Data

The normalization factor N guarantees that the scaling between k-space and
image is preserved independent on the number of spokes in one frame. For
arbitrary trajectories density compensation can be computed with voronoi
cells or e.g. with an iterative approach proposed by Pipe et al.[117]. Finally
it is important to note, that for iterative reconstruction the data has to be
scaled once with the square-root of the density compensation. Also, forward
and backward gridding operations need also be performed with the square-
root of the density compensation to ensure adjointness of the Non-Cartesian
MR operator.

3.7.2 Coil Sensitivity Estimation

Proper estimation of coil sensitivity profiles for reconstruction of undersam-
pled dynamic MR data is a crucial point, since the reconstruction quality
is bounded by the degree of correct sensitivity estimation.The sensitivities
need also to be estimated for every patient individually, even for fixed coil
setups, since the coil loading changes. Usually it is sufficient to assess the
information from a reference set of low-frequency k-space samples, which is
intuitive, given that the image structure of the sensitives is spatially smooth.
In the dynamic imaging setting however, one has the advantage that tempo-
ral sampling can be adapted to yield a fully sampled time-averaged k-space.
Assuming that the receiver coils are fixed in time, the coil sensitivity estima-
tion can be computed from the temporally averaged k-space.
It is out of scope to describe existing methods in detail. A frequently used
approach is based on the work by Walsh et al. [118] (WALSH), where the
actual concern was multi-coil image reconstruction with a matched filter
approach. As mentioned, a recent approach by Uecker et al. termed ESPIRiT
[30], provides a mathematical profound analysis about the connection be-
tween image-spaced and data-space based PI. There, it is described how
not only the sensitivity maps are estimated from an eigenvalue problem
but that it is also possible to derive an extended set, that includes additional
information for limited FOV imaging. Image-based PI with the extended
set is termed soft-SENSE, and can be applied in combination with other
regularization strategies.
Another strategy also proposed by Uecker et al. is the non-linear inversion
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algorithm (NLINV), that solves the MRI inverse problem in Eq. 3.1 by consid-
ering the coil sensitivity maps as unknowns. The corresponding non-linear
problem is solved with an iteratively regularized Gauss-Newton algorithm,
penalizing the sensitivities with a smoothness constrained [119]. Thus, both
the magnetization and sensitivities are jointly reconstructed and the later is
rather a side product. The framework also allows to regularize the magneti-
zation, i.e. Tikhonov regularization as in the original paper, while TV and
TGV constraints for improved noise suppression were also proposed in [61].
Throughout this work an image-space approach is employed that enforces
smoothness assumptions on the sensitivities and TGV2 constraint on the
time-averaged magnetization in an iterative fashion over all receiver coils.
The corresponding algorithm (VARCOIL) was presented in [120] and can
also be found in the Appendix 8.4. It is also available online within the
AVIONIC framework. For dynamic applications it was found that the VAR-
COIL algorithm yields equivalent reconstruction quality as ESPIRiT or
NLINV sensitivities with superior quality compared to the WALSH ap-
proach. As mentioned this holds true for the assumption of static receiver
coils and a ”fully” sampled temporally averaged k-space. In the case of
real-time imaging a motion robust approach again is the NLINV approach,
where the coil sensitivities are estimated individually for each time frame
[10]. Finally, the inherent normalization for the described methods, i.e.√√√√ Nc

∑
i=1
|ci|2 = 1,

effectively realizes a receive-sensitivity inhomogeneity correction as de-
scribed in [26] and ensures adjointness of the MR operator.

3.7.3 Coil Compression

The development of array coils with many channels laid the basis for the
developement of PI. However, the acceleration potential is not easy to deter-
mine since it depends on the number of independent receiver coils, which is
lower than the number of physical channels due to the limited space of posi-
tional alignment. A high number of receive channels on the other side poses
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an additional computational burden, especially for iterative reconstruction
methods and increased demand of data storage. To this end, Buehrer et al.
proposed a method for coil compression based on PCA [121].
The coil compression used in this work is based on [122], where a singular
value decomposition is used on the data directly. In Fig. 3.9 displays an
example of the information content given by the magnitude of the singular
values for the converted channels for a 24-channel head array. A threshold
defined usually to 10% to 15% of the largest singular value yields a compres-
sion of around 30% to 50%. For dynamic data, however, the strategy needs
to be adapted since a different compression for each time-frame potentially
yields different virtual receiver coils for every time-frame, that need to be
estimated from the compressed data. Instead it is possible to compute a
singular value decomposition from the time-averaged data, and apply the
same transformation for every time-frame.

3.7.4 Pre-Whitening

As outlined in Sec. 3.1.2 the coil elements usually exhibit different noise lev-
els and may be subject to inter-channel correlations due to cross-talk, which
is undesirable. As already outlined in the CG-SENSE paper by Pruessman
[29] it is possible to perform a weighted least-squares reconstruction, that
takes the noise-correlation matrix into account, i.e. adapting Eq. 3.19 and
solve

u? = arg min
u

1
2
(Ku− d)HΣ−1(Ku− d) +

α

2
‖u‖2

2. (3.67)

This requires the estimation of Σ as pre-processing step, which can be
achieved with zero flip-angle acquisition but can also be contained within
the measurement files. Instead of including the noise covariance matrix in
the reconstruction iteratively the equivalent result is yielded by computing
once pre-whitened data, i.e. de-correlating and normalizing the data in each
channel, as

d̃ = L−1d, Σ = LLH. (3.68)
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Here d̃ is the pre-whitened data with equal variance in each channel and L
is a lower triangular matrix computed with Cholesky decomposition from
Σ. However, pre-whitening is mainly necessary in the case of defective coil
elements, where a suppression of artifacts is achieved. A numerical example
is given in Fig. 3.10

3.7.5 Data Pipeline

To conclude this section, some relevant information about the MR data
pipeline, specifically for Siemens systems, is given. MR rawdata is stored
in a proprietary measurement data file format that can be exported from
the scanner. It is also possible to enable a real time export in smaller data
fragments during scanning in the DICOM standard. Rawdata from the mea-
surement file can be extracted including meta-information with a Matlab
based framework developed by the MR community (mapVBVD 6). However,
it can be tedious to pre-process the rawdata according to measurement
parameters like partial-fourier or oversampling and apply necessary cor-
rections, such as EPI phase-corrections. For different vendor platforms,
commercially available software exists to handle such problems (like Gyro-
tools for Phillips), unfortunately not for Siemens. However, it is in principal
possible to program reconstruction software in the Siemens MARS frame-
work.
A promising community driven development is a new data standard for MRI
data, termed international society for magnetic resonance in medicine (ISMRM)
rawdata (ISMRMRD) [123], with available modules to convert the propri-
etary vendor measurement data for all major vendors to a generic HDF5

standard. Parallel to that, community driven reconstruction frameworks
supporting this standard are being developed like Gadgetron [124] or the
Berkely-Advanced-Reconstruction-Toolbox (BART) [125]. BART includes
many pre-processing procedures like coil-compression and advanced recon-
struction strategies. While Gadgetron can be run directly on the scanner
console, many advanced reconstruction procedures require high compu-
tational power. For Siemens platforms, the Yarra framework7 completes

6https://www.mr-idea.com/
7https://yarra.rocks/doc/concept/
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to aforementioned developments, as it enables the automatic transfer of
Siemens rawdata together with a reconstruction procedure to an external
workstation, from which, after successful reconstruction, DICOM images
can be re-imported again automatically into a picture-archiving system
PACS.
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Figure 3.7: Comparison of decomposition into components for ICTGV based reconstruction
(Comp.1 and Comp. 2) and L+S (low-rank and sparse component) for a DCE
dataset.
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and 6 for a uniformly shifted undersampling pattern.
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Figure 3.9: Sorted singular values from a singular-value decomposition of MR data acquired
with 24 channels of a head-neck coil
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Figure 3.10: Numerical example to display the effect of accelerated Cartesian CG-SENSE
reconstruction (r=4) without pre-whitening (left) and with pre-whitening
(right). The noise covariance matrix of the broken eight coil receiver coil is
displayed in the middle.
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4 Cardiac Imaging

4.1 Introduction

Cardiac imaging is an important field of application in MRI. The sequence
design for fast imaging and PI already enabled to study the heart function
of the beating heart and myocardial perfusion, with CINE techniques based
on ECG-triggering, within a single breath-hold [126].
For CINE cardiac imaging this requires the validity of a high degree of
periodicity and the synchronization of the data acquisition with a navigator
signal over several heartbeats, such that a slice may be acquired in around
10s for 1 mm2 isotropic resolution. In the case of arrhythmia, real-time imag-
ing with decreased spatial resolution can be performed, which accounts to
acquire a sufficiently filled k-space for each time-frame during one heart-
beat. In order to avoid inter-frame motion artifacts an adequate temporal
resolution (< 50 ms) needs to be adjusted, bounded by the phase of fasted
heart contraction in systole, which typically yields around 20 time-frames.
First breath-hold cinematographic cardiac MRI was based on multi-shot
FLASH sequences [127], acquiring multiple phase-encoding lines for one
time-segment during one heartbeat. However, spoiled GE delivers poorer
contrast between blood and myocardium with short repetition times or
slow blood flow, which lead to the use of SSFP based imaging with higher
contrast-to-noise ratio, excellent blood-myocardial contrast and minimum
TR. Although, a SSFP imaging is very sensitive to off-resonance effects,
expressed as banding artifacts, and requires the use of frequency-scouts,
it is now the dominant sequence for functional cardiac imaging in clinical
routine. The mode for CINE acquisition is most commonly set to retrospective
sorting, i.e. data is acquired continuously and sorted afterwards according
to the ECG signal, in distinction to prospective triggering, where the acquisi-
tion window is defined at the beginning. Retrospective triggering enables
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a maximum sampling efficiency of the cardiac cycle. Cardiac imaging is
always performed in a specially defined orientation system, e.g. two, three
and four-chamber or short-axis view [128].
Examining the myocardial viability was made feasible with gadolinium-
based contrast-enhanced cardiac perfusion imaging and is now considered
the standard methodology to characterize acute and chronic myocardial
infarction. The contrast agent distributes itself during the first pass accord-
ing to the extracellular fluid volume, that is larger for myocardial scars,
and, in the case of acute infarction diffusion into the intracellular space is
possible due to irregular cell-membrane permeability. In order to capture
the single contrast injection dynamically with the requirement of highest
possible spatial coverage, usually three slices in short-axis view (basal, mid
and apical) together with a four-chamber view are acquired with low res-
olution during diastole. T1-weighting is required and commonly achieved
with inversion-recovery GE imaging [129].
Both CINE cardiac and cardiac perfusion imaging, already required the
development of PI because the corresponding fast sequences operate on the
SAR and nerve-stimulation limits. In order to acquire a sufficient amount of
data within the constraints of breath-hold and spatial coverage undersam-
pling strategies are required accounting for the ultimate trade-off between
spatial resolution and/or coverage and temporal resolution. The develop-
ment of CS is therefore a crucial development to further accelerate the MR
acquisition to enable higher resolutions, reduced scan times or imaging of
multiple slices in the case of CINE cardiac imaging, and increased spatial
resolution and coverage for cardiac perfusion MRI.
These two applications also comprise two major classes of change in dy-
namic information, i.e. temporal change in morphology due to heart motion
with conserved contrast and temporal change of contrast with fixed mor-
phology due to the passing contrast agent. The sampling trajectory specific
acceleration potential of the proposed regularization approach is therefore
evaluated most extensively for these two applications. To this end, numerical
simulations were performed and a comparison to state-of-the-art methods
is given in this chapter according to previously published work [130].
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4.2 Material and Methods

CINE cardiac MRI was evaluated with six datasets. Three fully sampled
datasets were made available from the ISMRM reconstruction challenge
2013-2014

1 and a forth fully sampled dataset was a retrospectively gated
balanced SSFP short-axis view of a health volunteer measured on a 3T
scanner (Skyra, Siemens Healthcare, Erlangen, Germany) with the follow-
ing scan parameters: FOV = 275 mm× 340 mm, matrix size = 208× 168,
25 cardiac phases with a temporal resolution of 42.72 ms, TR/TE/FA =
3.56 ms/1.78 ms/40◦, 6 mm slice-thickness, acquisition time (TA)=16 s. For
reconstruction 30 channels from spine- and body-coil elements were auto-
matically selected.
For evaluating the acceleration potential with the available sampling strate-
gies on the 3T system two datasets were measured. Firstly a prospectively
gated balanced SSFP dataset in short-axis view was acquired with regu-
larly shifted Cartesian undersampling (TPAT) with acceleration factors of
r = {4, 6, 8} which corresponds to acquisition times of 3.55 s, 2.36 s and
1.27 s. The same orientation was measured with radial sampling with
108, 52 and 24 radial spokes per time-frame that corresponds to acqui-
sition times of 9.37 s, 4.8 s and 1.22 s. The common imaging parameters
were: 24 cardiac phases with temporal resolution 42.72 ms, TR/TE/FA =
3.56 ms/1.78 ms/40◦, 6 mm slice-thickness, matrix size = 224× 184 (Cart.)
resp. 224× 224 (rad.).
One dynamic perfusion dataset was made available from New York School
of Medicine (NYU). It was acquired in a healthy adult volunteer with a
modified Turbo-FLASH pulse sequence on a whole-body 3T scanner (Tim
Trio, Siemens Healthcare, Erlangen, Germany) using a 12-element matrix
coil array and was already used for evaluation purposes of undersampled
dynamic MRI reconstruction in [90].
Different levels of acceleration from 4 to 16 were simulated from the fully-
sampled multi-coil data with an optimized Cartesian sampling scheme for
dynamic time-series as proposed in [131], which was found to be more effi-
cient as variable density sampling. Multi-coil reconstructions from ICTGV,
spatio-temporal TGV, TV and L+S [90] were evaluated quantitatively by
means of SSIM and signal-to-error ratio (SER) as used in [84], [91] and

1http://challenge.ismrm.org/
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defined in App. 8.1.0.12, against the sum-of-squares (SOS) reconstruction of
the fully sampled data within a region of interest encompassing the heart.
For additional evaluation of single-coil reconstructions with kt-RPCA [91],
kt-SLR [84] and kt-FOCUSS [71] the coil-combined fully sampled references
were transformed to data space. Artificial degrees of subsampling from 2 to
12 were computed again with the sampling pattern described in [131] with
an additional block of 8 lines of low-resolution data around the k-space-
center. This results in effective acceleration factors r ∈ {1.96, 3.6, 5.2, 6.5, 7.5}
for the CINE cardiac and r ∈ {1.9, 3.5, 4.8, 5.7, 6.5, 7.3} for the cardiac perfu-
sion dataset.
The image reconstruction pipeline for ICTGV2, TGV2 and TV was used
as described in Sec. 3.5.4. For the L+S reconstruction, the implementation
provided at http://cai2r.net/resources/software was used, where the
proposed temporal Fourier transform was replaced by a temporal TV regu-
larization, also provided by the authors, since this improved the results. For
comparison to kt-RPCA, kt-SLR and kt-FOCUSS the reconstruction code
provided online by the authors was used2.
For ICTGV2, a parameter tuning, as described in more detail below, was
carried out a-priori and parameters where then fixed for CINE and per-
fusion imaging for all further experiments. A similar parameter tuning
was also carried out for TGV and TV based reconstruction as depicted in
Fig. 4.10. To ensure the best results, the parameters for L+S reconstruction
were optimized separately for each individual case and acceleration factor used
in the evaluation. Optimization was carried out on the parameter range as
described in [90] and parameters were adapted for each case based on
quantitative comparison to the (in practice unknown) ground truth.
The parameter choices for kt-RPCA, kt-SLR and kt-FOCUSS were also
trained a-priori according to the parameter-ranges described in [91] for
one acceleration factor of r = 8 (with additional k-space-center lines for
kt-FOCUSS). As result, the parameters were fixed to (µperf, ρperf) = (200, 2),
(µCINE, ρCINE) = (10, 2) for kt-RPCA, (αperf, βperf) = (αCINE, βCINE) =
(500, 10−3) for kt-SLR and λperf = λCINE = 10−3 for kt-FOCUSS, respec-
tively.

2kt-RPCA: http://agsp.org/bt/ktrpca/, kt-SLR: http://user.engineering.uiowa.
edu/~jcb/Software/ktslr_matlab/Software.html, kt-FOCUSS: http://bispl.weebly.
com/k-t-focuss.html.
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4.2 Material and Methods

The coil sensitivities for all multi-coil reconstructions were estimated with
an iterative variational approach from the subsampled data as described in
[120] (see App. 8.4).

Parameter Training

The three ICTGV2 model parameters s, t1, t2 were fixed by evaluating a range
of parameter sets with respect to SSIM and RMSE. For CINE cardiac imag-
ing, two test cases from the ISMRM reconstruction challenge 2013-2014,
different from the ones presented in the evaluation below, were used. The
training was carried out for two acceleration factors (r1 = 5, r2 = 10), for
which a ground truth and a good choice of regularization parameter was
known. For cardiac perfusion imaging, the model parameter training was
carried out with the MRXCAT perfusion phantom [97] with a selected slice
in mid-ventricular short-axis view, standard settings and additional subsam-
pling of r = 6, and the perfusion dataset from NYU. As a result, the model
parameters were fixed as (t1, t2, s) = (4, 0.5, 0.5) for CINE cardiac imaging
and (t1, t2, s) = (9, 1, 0.6423) for cardiac perfusion imaging.
The same test cases were also used for regularization parameter training.
Based on the sampling-pattern described in [131], incomplete data was
generated for different subsampling rates and the reconstructions for differ-
ent parameter choices were compared against the ground truth. According
to these experiments, final values the slope a and offset b, as described
in Subsec. 3.3.5, were fixed to (a, b) = (0.34, 4.57) for CINE cardiac and
(a, b) = (0.08, 1.56) for cardiac perfusion imaging. Single-coil reconstruc-
tions were carried out with the same parameters as for the multi-coil setting.
An exemplary visualization of our results for parameter tuning is displayed
in Fig. 4.1 and Fig. 4.2, respectively. A summary of all relevant parameter
choices is given in Table 4.1. In order to remove a dependency of the regular-
ization parameter from the signal range of the image data, a normalization
to the median of the highest ten percent of the time-averaged reconstruction
as preprocessing step was carried out.

71



4 Cardiac Imaging

Table 4.1: Regularization and model parameter choice

Symbol Denomination Chosen value Testing range

Model parameter CINE Perf.

α0/α1 Ratio of TGV
weights

1/
√

2 1/
√

2 −

t1 → β(t1) Spatio-temporal
weight 1st compo-
nent

4 9 [2, 4, 6.5, 9, 10]

t2 → β(t2) Spatio-temporal
weight 2nd compo-
nent

0.5 1 [0.2, 0.4, 0.5, 1, 2.5, 3]

s→ γ1,2(s) Weighting be-
tween 1st and 2nd
component

0.5 0.6423 [0.3577, 0.5, 0.6423]

Regularization parameter

λ(r) = ar + b Regularization pa-
rameter

−− λ ∈ [0.5, · · · , 27]
r ∈ [4, 8, 12, 16]

a Slope 0.34 0.08 −−
b Intercept 4.57 1.56 −−

4.3 Results

Figure 4.3 shows ICTGV2 reconstructions of a CINE cardiac dataset from
the ISMRM challenge for different acceleration factors. The reconstructions
exhibit a high degree of accordance to the fully-sampled reconstruction with
improved noise-suppression in the background up to very high acceleration
factors. Figure 4.4 shows down-sampling experiments for the measured
short-axis dataset with an additional comparison to L+S reconstruction for
acceleration factors of 12 and 16. Again the ICTGV2 reconstruction reaches
excellent quality up to r = 12 with slightly reduced fidelity for r = 16, while
L+S based reconstructions exhibit corruption with residual undersampling
and temporal blocking artifacts. Again, for L+S the parameters were trained
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4.3 Results

Figure 4.1: Evaluation of the model parameters s, t1, t2 by means of RMSE (solid lines) and
SSIM (dashed lines) for a CINE cardiac test-case with acceleration factors r = 5
(a) and r = 10 (b). The colors indicate three different choices for s. The horizontal
axis show different values for t1 and the vertical axis the corresponding best
RMSE and SSIM values achieved with t2 ∈ {0.2, 0.4, 0.5, 1, 2.5, 3}, which are
marked (arrow) with the corresponding best value for t2.

for the same test case and each acceleration factor separately, while for
ICTGV2 parameters were fixed a-priori based on different data.
Figure 4.5 displays the results from a down-sampling experiment using

perfusion data, where a good delineation of the myocardial wall and the
papillary muscles was achieved up to r = 16. Reconstruction quality with
L+S is slightly worse than with ICTGV2, in particular a loss of spatial details
is apparent.
A quantitative evaluation by means of SER and SSIM against the fully sam-

pled reference as ground truth is summarized in Table 4.2. There, ICTGV2

regularization is compared against spatio-temporal TGV2
β and TVβ reg-

ularization and L+S reconstruction. Model and regularization parameter
training was also carried out for both, TGV2

β and TVβ reconstruction. For
the L+S reconstruction parameter training was also carried out by means of
SER and SSIM for each individual test case and acceleration factor of the
evaluation. For CINE cardiac test cases, ICTGV2 almost always scores best
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Figure 4.2: (a) RMSE (blue curves) and SSIM (red curves) evaluation exemplified for one
CINE cardiac test case for different regularization parameters λ and acceleration
factors r = 4 (solid line), r = 8 (dashed line), r = 12 (dashed-dotted line) and
r = 16 (dotted line). The corresponding optimal values for λ are indicated
with black circles and were calculated by spline-interpolation between the used
sample-points. (b) Optimal values for λ according to RMSE (blue) and SSIM
(red) for different acceleration factors and the test case displayed in (a) (squares)
and the second test case (dots). The linear regression to both cases and metrics
(black dashed line) yields the proposed parameter choice.

for both metrics with considerable improvement against L+S, in particular
for higher acceleration factors. Compared to temporal TGV2

β and TVβ, recon-
struction quality improves slightly. In contrast to that, a substantial increase
is observable when comparing ICTGV2 reconstruction against temporal
TGV2

β and TVβ for the cardiac perfusion test case. Comparison to L+S for
the perfusion case again shows a solid improvement with ICTGV2.
Comparison of reconstruction quality between ICTGV2 and TGV for multi-
coil reconstruction of both, CINE cardiac imaging (r = 16) and cardiac
perfusion (r = 12) reconstructions is displayed in Fig. 4.8. While the results
for the CINE dataset are similar, the perfusion results show a loss of spatial
details and a temporal blurring with spatio-temporal TGV. In particular, the
ICTGV2 reconstruction still allows to detect small image features that are
lost with TGV.
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4.3 Results

Figure 4.3: Magnitude images from simulated accelerations r = (4, 8, 12, 16) for the four-
chamber-view bSSFP dataset. The fully sampled sum-of-squares reconstruction
is displayed in the 1st column and the therein indicated time-lines are shown in
the 2nd and 3rd row.

Finally, reconstruction results for prospectively accelerated data acquisition
procedures as available on current MR systems are displayed in Fig. 4.11 for
regular Cartesian undersampling (termed TPAT in Siemens terminology)
and radial undersampling in Fig. 4.12, together with PI reconstruction with
the vendor implementation. For both sampling schemes a drastic gain in
reconstruction quality is achieved.
Reconstruction results for single-coil data with ICTGV2, kt-RPCA, kt-SLR

and kt-FOCUSS from undersampled cardiac perfusion (r = 7.3) and CINE
cardiac imaging (r = 3.6, r = 7.5) are displayed in Figure 4.6 and 4.7, re-
spectively, together with the computed SER values in dB and indicated
time courses (CINE) or the mean intensity within a ROI in the left ventricle
(perfusion). A more detailed summary of quantitative evaluation results
by means of SER and SSIM for acceleration factors is given in Table 4.3.
The results show advantages of ICTGV2 in terms of error measures, consis-
tently for all acceleration factors. For the perfusion case, the ICTGV2 signal
time course is very close to the reference data set. The single time frames
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Figure 4.4: Comparison of magnitude images of fully sampled reference reconstruction
(1st column), L+S (2nd and 3rd column) and ICTGV2 reconstruction (4th and
5th column) for bSSFP CINE cardiac data acquired in short-axis-view and
undersampling factors of r = (12, 16). A late diastolic time-frame is displayed
in the 1st row and indicated vertical and horizontal time-lines in the 2nd and
3rd row. A closeup of the heart region is displayed in the 4th row.

of ICTGV2 and kt-SLR appear somewhat denoised, and some details, as
highlighted by arrows, are best visible in the ICTGV2 reconstruction. The
individual images of all CINE reconstructions appear similar, however, the
x-t plot exhibits some rippling for kt-FOCUSS and particular for kt-RPCA.
For the perfusion dataset the decomposition into ICTGV2 components for

r = 8 is shown in Fig. 4.9. Here, the static background, slower contrast
dynamics with increased temporal blurring as well as morphologic changes
are stored within the first component, while more rapid intensity changes
(ventricles) are mapped in the second component. The separation is also
displayed by the mean intensity change (magnitude) within the right ventri-
cle (Fig. 4.9 b) and myocardium (Fig. 4.9 c), where a high agreement of the
ICTGV2 reconstruction to the fully sampled reference is observable.
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4.4 Discussion and Conclusion

Figure 4.5: Comparison of magnitude images of fully sampled reference reconstruction
(1st column), L+S (2nd and 3rd column) and ICTGV2 reconstruction (4th and
5th column) for the cardiac perfusion dataset and undersampling factors of
r = (12, 16). A selected time-frame is displayed in the 1st row and the indicated
time-line in the 2nd row. A close-up of the heart region is displayed in the 33rd
row.

4.4 Discussion and Conclusion

The results presented in this work demonstrate the performance of ICTGV2

as new spatio-temporal regularization approach for the reconstruction of
undersampled dynamic multi-coil MRI data. Two exemplary application
scenarios were considered: Cardiac CINE imaging with quasi-periodic mor-
phological motion and cardiac perfusion imaging reflecting contrast changes
to due alteration of tissue relaxation properties. The corresponding experi-
ments show the capability of the proposed method to obtain artifact free
results with high temporal fidelity and improved noise suppression for both
applications up to high acceleration factors. This is confirmed both quan-
titatively, in terms of SER and SSIM, as well as qualitatively with selected
frames and the visualization of time lines.
Furthermore, the proposed method was evaluated against state of the art
reconstruction methods for single-coil and multi-coil reconstruction. In the
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Table 4.2: Quantitative evaluation (best values underlined) of multi-coil reconstruction
for ICTGV2 against TGV2

β, TVβ and L+S reconstruction for CINE cardiac and
cardiac perfusion cases by means of SER and SSIM against the fully sampled
sum-of-squares reconstruction.

ICTGV2 TGV2
β TVβ L+S

SER (dB) SSIM SER (dB) SSIM SER (dB) SSIM SER (dB) SSIM

Short-axis view

r = 4 25.79 0.9167 25.85 0.9164 25.60 0.9154 25.78 0.9154

r = 8 23.18 0.8738 23.13 0.8744 22.89 0.8690 21.75 0.8475

r = 12 21.45 0.8376 21.37 0.8374 21.21 0.8320 19.09 0.7802

r = 16 20.47 0.8160 20.41 0.8147 20.28 0.8107 17.31 0.7177

Four Chamber

r = 4 20.32 0.8267 20.37 0.8216 20.26 0.8220 20.29 0.8109

r = 8 19.72 0.7787 19.72 0.7726 19.64 0.7718 19.54 0.7408

r = 12 19.17 0.7445 19.16 0.7399 19.11 0.7397 18.36 0.6853

r = 16 18.94 0.7211 18.92 0.7165 18.84 0.7154 17.43 0.6346

Cardiac Perfusion

r = 4 21.30 0.8631 20.91 0.8554 19.91 0.8256 20.74 0.8564

r = 8 20.34 0.8347 19.77 0.8191 18.16 0.7554 19.58 0.8172

r = 12 18.71 0.8059 18.28 0.7817 16.57 0.6895 17.79 0.7855

r = 16 17.54 0.7813 17.28 0.7495 15.38 0.6407 17.01 0.7597

multi-coil setting, a comparison to the L+S approach shows improved per-
formance both for CINE and perfusion imaging. This is quantified in SER
and SSIM error metrics and can also be observed visually. Interestingly, also
spatio-temporal TGV and TV regularization lead to comparable or improved
results compared to L+S in terms of error metrics. One possible explanation
for that is that L+S in fact does not make use of any regularity in space. Spa-
tial regularity, however, is a strong source of redundancy which is exploited
both by spatio-temporal TV/TGV and ICTGV2. A second explanation might
be the global nature of the low-rank prior, which is not able to adapt locally
to contrast or morphological changes, a shortcoming which is overcome by
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Table 4.3: Quantitative evaluation (best values underlined) of single-coil reconstruction for
ICTGV2 against kt-RPCA and kt-SLR and kt-FOCUSS reconstruction for CINE
cardiac and cardiac perfusion cases by means of SER and SSIM against the fully
sampled single-coil reconstruction.

ICTGV2 kt-RPCA kt-SLR kt-FOCUSS
SER (dB) SSIM SER (dB) SSIM SER (dB) SSIM SER (dB) SSIM

Four Chamber View

r = 1.96 29.24 0.9217 27.71 0.9214 28.86 0.9169 27.49 0.9052

r = 3.6 25.66 0.8524 21.63 0.8216 24.85 0.8295 24.56 0.8436

r = 5.2 23.42 0.8047 19.95 0.7674 22.52 0.7759 22.58 0.7955

r = 6.5 22.30 0.7680 18.70 0.7260 21.36 0.7335 20.87 0.7429

r = 7.5 20.98 0.7274 17.87 0.6879 20.29 0.6920 19.83 0.7058

Cardiac Perfusion

r = 1.9 27.19 0.9429 25.99 0.9394 26.90 0.9421 26.63 0.9420

r = 3.5 24.73 0.9096 23.14 0.8980 23.94 0.8979 23.37 0.8946

r = 4.8 23.23 0.8847 21.41 0.8662 21.95 0.8562 21.59 0.8614

r = 5.7 22.16 0.8713 20.45 0.8505 20.76 0.8302 20.54 0.8415

r = 6.5 21.64 0.8614 19.93 0.8391 19.40 0.7780 20.14 0.8325

r = 7.3 20.62 0.8402 18.69 0.8118 18.50 0.7500 18.83 0.7988
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Figure 4.6: Coil-combined fully sampled reference (1st column), ICTGV2 (2nd column),
kt-RPCA (3rd column), kt-SLR (fourth column) and kt-FOCUSS (fifth column)
single-coil reconstructions from undersampled Cartesian data (r = 7.3) for the
cardiac perfusion dataset with computed SER values in dB. The mean time-
course of an indicated 3× 3 voxel region within the right ventricle is plotted for
all methods under investigation with a closeup view of the peak-signal.

ICTGV2 regularization. The kt-RPCA [91] method is, in principle, identical
with L+S, yet, in contrast to the multi-coil reconstruction with L+S, temporal
Fourier transform (tFT) is used instead of temporal TV. While L+S also
proposed tFT as preferred choice, temporal TV gave improved results in our
experiments and was hence used for comparison. The kt-SLR method on
the other hand imposes sparsity constraints with spatio-temporal TV and
non-convex low-rank constraints with Schatten p-quasi-norms (see App. 8.1)
jointly, instead of the proposed decomposition approach. Using non-convex
quasi-norms results in a challenging optimization problem, yet, with the
parameters tuning as suggested in [91], reconstruction results remain very
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Figure 4.7: Coil-combined fully sampled reference (1st column), ICTGV2 (2nd column),
kt-RPCA (3rd column), kt-SLR (fourth column) and kt-FOCUSS (fifth column)
single-coil reconstructions from undersampled Cartesian data with r = 3.6
(1st to 3rd row) and r = 7.5 (4th to 6th row) for the four chamber CINE
cardiac dataset. Reconstructions are displayed with a selected time-frame and
the indicated horizontal and vertical time-lines.

competitive to ICTGV2. Computationally, however, ICTGV2 reconstruction
has the advantage of comprising the solution of a convex optimization
problem, for which to proposed numerical algorithm guarantees global con-
vergence. Also reconstructions gained with kt-FOCUSS, that conditionally
requires low-resolution data, remain competitive for both applications yet
with increased residual flickering in the temporal domain.
The evaluation against the vendor implementation clearly displays the
drastic increase in reconstruction quality. However, due to restrictions on
adjustable acceleration factors and not optimal sampling patterns on current
systems it is not possible to exhaust the full potential of ICTGV2 based
reconstruction.
To assess the benefit of the proposed balancing between spatial and tem-
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Figure 4.8: Comparison of ICTGV2 vs TGV2
β multi-coil reconstruction for CINE cardiac

imaging (1st and 2nd column, r = 16) and cardiac perfusion imaging (3rd and
4th column, r = 12).

poral regularization, a comparison to spatio-temporal TGV2
β and TVβ was

carried out. A quantitative evaluation for different acceleration factors, test
cases and error metrics shows the superiority of ICTGV2, in particular for
perfusion imaging (Table 4.2). The stronger improvement obtained with
perfusion imaging can be explained by the observation that rapid intensity
changes due to contrast inflow make a decomposition to different scales
of temporal regularity even more beneficial. The comparison of Figure 4.8
further shows visual differences between ICTGV2 and TGV reconstructions,
which are apparent for the perfusion case, where small features are lost with
TGV but still recovered with ICTGV2. Overall, the experiments confirm that,
even though the differences with CINE imaging might be subtle, ICTGV2 is
consistently superior to spatio-temporal TGV over different experimental
setups.
In this context, it is also interesting to note that for spatio-temporal TV
and TGV regularization, the parameter defining the ratio between temporal
and spatial regularization, denoted by t, was optimized to achieve the best
results. As can be seen in the plots provided in Fig. 4.10, the optimal value
was found to be roughly in the interval [3,5] for both approaches, with
a strong decrease of image quality for t → 0 and t → ∞. Hence a small
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Figure 4.9: (a) Fully sampled reference (1st column), ICTGV2 reconstruction (2nd column),
1st component (3rd column) and 2nd component (4th column) for a fixed
reduction factor of r = 8 and a selected time-frame of a short axis perfusion
dataset with the corresponding horizontal and vertical time-lines in the 2nd and
3rd row as indicated in the reference frame. Mean intensity change (magnitude)
over time within the right ventricle (b) and the myocardium (c) due to the
contrast agent for the reference (black-dotted line), ICTGV2 reconstruction (blue
solid line) and components (red and yellow solid line). The second component
was rescaled for display purposes.
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spatio-temporal TGV
RMSE SSIM

spatio-temporal TV
RMSE SSIM

t t t t

Figure 4.10: Quantitative evaluation of reconstruction results for different choices of the
time-space-weighting t, for spatio-temporal TV (1st and 2nd column) and
spatio-temporal TGV (3rd and 4th column), by means of RMSE and SSIM.

or large choice of t, which for spatio-temporal TV/TGV approximately
yields pure spatial and pure temporal TV/TGV regularization, respectively,
significantly worsens reconstruction quality. This indicates that both, pure
spatial and pure temporal TV/TGV regularization are not sufficient to
achieve state-of-the art results for undersampled dMRI reconstruction and a
combined exploration of spatio-temporal redundancies is necessary.
An additional feature of the presented method is that a decomposition
into two components is obtained. For cardiac perfusion imaging, slower
portions of the intensity changes due to the passing contrast agent, e.g. in
the myocardium, as well as changes in morphology are accumulated in the
first component, while regions of fast intensity changes within the ventricles,
liver and kidney are captured by the second component (see Fig. 4.9). This
has similarities to a decomposition into a temporal component with corre-
lated background (low-rank) and another with temporal changes (sparse).
Yet our methods acts locally, while the low-rank assumption is inherently
global. The local distribution of the image content to the two ICTGV2 com-
ponents depends on the model parameters, which were optimized for the
overall reconstruction quality.
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Figure 4.11: Reconstructions with ICTGV2 (a-c) and Vendor implementation (d-f) for accel-
erated CINE cardiac imaging and T-PAT undersampling strategy (r = 2, 4, 8).

4.5 Conclusion

ICTGV2 constitutes a powerful regularization functional for the investigated
application to accelerated CINE cardiac and cardiac perfusion imaging.
The experiments confirm a good visual representation of morphological
details as well as contrast dynamics for acceleration factors of 12 and
beyond. This enables CINE imaging in real-time without degrading spatial
resolution or cardiac perfusion imaging with increased spatial resolution
and coverage. A extensive comparison to existing state-of-art regularization
strategies as well as spatio-temporal TGV and TV was carried out where
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superior reconstruction quality was achieved especially for cardiac perfusion
imaging. Since the two investigated modalities represent major classes for
signal evolutions the general applicability of ICTGV2 for dynamic MRI
applications with yet application-specific model-parameters can be claimed.
As an additional feature, the method allows a local separation of components
beyond the paradigm of background and dynamic information and provides
a model of different temporal scales of motion in MRI.
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Figure 4.12: Reconstructions with ICTGV2 and Vendor implementation for accelerated
CINE cardiac imaging and radial undersampling strategy (r = 2, 4, 8).
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5.1 Introduction

Contrast-Enhanced CE MRI uses contrast agents (CA) with low molecular
weight, based on gadolinium (Gd) compounds, to alter the signal contrast
due to shortening T1 and T2 of blood and tissue. The CA is injected ve-
nously (suggested 0.1 mmol kg−1) with a short bolus (∼ 3 ml s−1) followed
by a saline flush. This bolus is then distributed in the vascular system and
also diffusing into the extra-vascular/ extra-cellular (EES) or leakage space
dependent on the permeability and surface area of the micro-vessels and
the blood-flow. This generates a specific time-dependent signal change in
dependence on blood flow and micro vessel permeability. Dynamic contrast-
enhanced (DCE) MRI refers to T1-weighted dynamic imaging of the CA
distribution resulting in a bright depiction of the CA, in distinction to dy-
namic susceptibility contrast (DSC) MRI based on higher CA concentration
and T?

2 -weighted contrast, predominantly used in brain perfusion. In this
chapter the proposed dynamic reconstruction framework is exemplarily
applied to improve upon two important applications in dynamic contrast-
enhanced MRI.
First, in the context of oncology where CE MRI is an important modality for
diagnosing and characterization of tumors [132]. While in clinical routine a
first qualitative analysis is based on acquiring only pre- and postcontrast im-
ages, i.e. before and after CA administration, to detect hyper- or hypointense
tissue areas, a more meaningful analysis can be derived from the complete
temporal course of the CA by means of semi-quantitative or quantitative
analysis. Fully quantitative analysis can be achieved by fitting the signal
intensity time-course to one of the recognized pharmacokinetic models
(review of existing models given in [133]). The extended Tofts model [134]
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assumes a two compartment model, i.e. blood plasma and the mentioned
leakage space and is given as

ctissue(t) = Ktrans

t∫
0

cp(t)e
Ktrans(t−t′)

νe dt′ + νpcp(t), (5.1)

where νe and νp denote the fractional volume of the CA in the leakage
space and blood plasma, Ktrans measured in ml min−1 kg−1 a exchange rate
constant between the two compartments and ctissue and cp the CA concen-
trations in mmol l−1 at time-point t within the examined tissue and the
blood plasma, resp. cp is also often denoted as the arterial-input-function
(AIF). Furthermore, the concentration is not linearly related to the measured
T1-weighted signal, such that additional T1-mapping has to be performed,
among other necessary correction such as B1 inhomogeneity correction.
It was shown, that the quantitative maps, especially Ktrans that is related to
perfusion and tissue permeability, are valuable biomarkers for tumor char-
acterization [135] with better repeatability than semi-quantitative methods
[136]. However, the AIF should be sampled with a temporal resolution of
less than 1 s [137] for accurate fitting , which is conventionally only achiev-
able with decreased spatial coverage or spatial resolution at the increased
risk to underestimate tumor ”hot-spots” .
In this work a T1-weighted 3D spoiled gradient-echo sequence with golden-
angle stack-of-stars radial encoding, termed RAVE, is used [112] to continu-
ously sample the CA uptake. This does not only allows for efficient timing
of the acquisition with the CA administration but also for retrospective
definition of the temporal resolution by grouping together the smallest
possible Fibonacci number of spokes-per-time-frame. For conventional re-
construction, this, however, results in severe corruption with undersampling
artifacts, that are eliminated with a ICTGV-based reconstruction.
The second investigated applications is dynamic contrast-enhanced MR
angiography (CE-MRA), with the more specific and common target to im-
age the rapid transit of the CA in arterial-venous malformations (AVM)
[138]. An AVM is defined by the existence of a short-circuit between the
arterial and venous system that bypassing the capillary bed and usually
manifests itself in a complex network called nidus. This nidus can extend
from a few millimeters to centimeters in diameter. The requirements for
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accurate diagnosis, surgical planing, and monitoring is sufficient spatial and
temporal resolution to correctly identify arterial feeder vessels, drainage
patterns and vascular anomalies, e.g. aneurysms [139]. Clinically available
state-of-art imaging methods rely on 3D encoded gradient echo imaging
with view-sharing techniques and PI, such as Time-resolved angiography With
Interleaved Stochastic Trajectories [140], [141] (TWIST), that enables tempo-
ral resolutions of ∼ 2 s for spatial resolutions of ∼ 1 mm2. The proposed
approach to improve the temporal resolution is a combination of ICTGV
reconstruction from golden-angle RAVE data, that enables temporal resolu-
tions between 0.5 s to 0.8 s dependent on the number of spokes-per-frame
used.
Before applying ICTGV based reconstruction on measured data, an evalu-
ation based on numerical perfusion phantom simulations for training the
regularization and model-parameters is given. Concurrently, a comparison
to state-of-the-art methods, i.e. Golden-angle radial sparse parallel (GRASP)
method [142], that is effectively the application of the k-t-SPARSE-SENSE
[72] reconstruction to the described golden-angle radial data, and L+S recon-
struction [90], was carried out. As for the measured data no ground-truth
can be derived a comparison to conventional gridding reconstruction is given
[142], [143]. Although these reconstructions are heavily corrupted with
streaking artifacts, these appear noise-like and the temporal time-course is
defined only by the data-fidelity.

5.2 Material and Methods

5.2.1 Numerical Simulations

Numerical simulations were carried out on the basis of a Sheep-Logan
perfusion phantom used to evaluate GRASP reconstructions [102] for a
specific kinetic parameter choice of Ktrans = (0.88, 0.63, 0.51, 0.26)/60 1

min
and νe = (1.43, 0.96, 0.76, 0.36) within four specific regions. As AIF a Parker
model was used to compute data for 480 spokes in 60 s, resulting in a
temporal resolution of ∆t = 0.125 s per spoke. This would be equivalent to
sample 25 slices with TR of 5 ms. Additionally, data with the same temporal
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resolution for 600 time-points was computed from a second abdominal
phantom with different perfusion characteristics. For both phantoms 12-
channel receiver coil sensitivities were simulated according to Biot-Savarts
law to compute golden-angle data from each image time-point using the
gpuNUFFT library [115]. Afterwards a realistic level of complex Gaussian
noise was added to all channels with a target SNR of 30dB.
After parameter training reconstructions with ICTGV (optimal parame-
ter (sopt, topt

1 , topt
2 ) = (0.6423, 9, 1), GRASP and L+S were carried out for

spf={21, 13, 8} equivalent to a temporal resolutions of ∆t = {1 s, 1.625 s, 2.625 s}.
For the numerical simulations parameter evaluation for GRASP and L+S
were carried out as follows:
λL+S

L ∈ {10−3, 50−3, 10−2, 50−2, 10−1, 50−1}, λL+S
S ∈ {50−3, 10−2, 50−1, 10−3},

λGRASP ∈ {0.1, 0.5, 1, 1.5, 2, 5, 10} for each acceleration. For ICTGV the model
parameter training was carried out as described in Sec. 3.4. The comparison
as well as the parameter selection is given according to PSNR, that is well
defined for the numerical phantom.

5.2.2 Abdominal dynamic T1w-Contrast-Enhanced MRI

Two dataset for abdominal T1w DCE MRI were evaluated. The first was
made available together with GRASP reconstruction code from NYU1. As
stated in [142], the HIPPA compliant data was acquired with the described
RAVE sequence using a golden-angle acquisition scheme on a whole-body
3T scanner (Magnetom Verio, Siemens Healthcare, Erlangen, Germany)
equipped with a 12-element receiver coil array and the following imag-
ing parameter: 30 slices with 3mm slice-thickness, spatial resolution of
1× 1mm2, imaging matrix of 384× 384, 600 spokes with 768 samples per
spoke, TR/TE/FA=3.83ms/1.71ms/12◦, resulting in a temporal resolution
of ∆t= 0.115s per stack-of-spokes and an acquisition time of TA= 69s.
The second RAVE dataset was made available at the courtesy of Tobias Block
and was measured on a 1.5T scanner (Mangetom Avanto, Siemens Health-
care, Erlangen, Germany) with a 6-element body coil with the following
imaging parameters: 38 Slices with 3mm slice-thickness, spatial resolution
of 1.5× 1.5mm2, imaging matrix of 256× 256, 2100 spokes with 512 samples

1http://cai2r.net/resources/software/grasp-matlab-code
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per spoke, TR/TE/FA=4.27ms/1.88ms/12◦, resulting in a temporal resolu-
tion of ∆t= 0.162s per stack-of-spokes and an acquisition time of TA= 340s.
For both datasets the CA injection was initiated intravenously with 10mL
of gadopentate dimeglumine (Gd-DTPA) (Magnevist, Bayer Healthcare,
Leverkusen) followed by a 20mL saline flush, both injected at a rate of
2mL s−1.

5.2.3 Time-resolved Magnetic Resonance Angiography

After obtaining informed consent, a scan of seven AVM patients was
performed using both the TWIST and RAVE techniques on a 3T scan-
ner with a 32-channelhead-neck coil, approved by the responsible ethics
committee. First, one half dose (0.1ml kg−1) equaling 8mL of Dotarem
contrast media was injected with 3mL s−1 with a consecutive saline flush
of 20mL at the same rate and TWIST imaging was performed with the
following imaging parameters: 26 Slices with 3.5mm slice-thickness and
15.5% slice-oversampling, spatial resolution of 1.05 × 1.05mm2, imaging
matrix of 240× 230, 75% phase-oversampling and iPAT-factor 4 (GRAPPA),
BW= 650Hz/pixel, TR/TE/FA=3.01ms/1.1ms/23◦, resulting in a temporal
resolution of ∆t= 2.1s per imaging volume.
Two hours later, the second half of the contrast agent was injected at 6mL s−1

with a consecutive saline flush of 30mL at the same rate, and the RAVE
measurement was acquired with the following imaging parameters: 26 Slices
with 3.5mm slice-thickness and 15.5% slice-oversampling, spatial resolution
of 1.05× 1.05mm2, imaging matrix of 320× 320, 700 spokes with 640 sam-
ples per spoke, TR/TE/FA=3.85ms/1.79ms/23deg, resulting in a temporal
resolution of ∆t= 0.115s per stack-of-spokes and an acquisition time of
TA= 80s.

5.2.4 Reconstruction

For reconstruction the first DCE and the angiography dataset were com-
pressed via SVD-based channel compression to 6 and 9 virtual channels.
For the angiography dataset, data from receive channels with dominant
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streaking artifacts in the time-averaged reconstructions were removed man-
ually after visual inspection as described in [112] and K-space calibration
was performed with the available correction data as described in [111]. The
temporal coverage of the second DCE- and the angiography dataset was
reduced to 600 measured spokes covering the essential part of the contrast
dynamic. This can be selected easily by peak detection of the k-space-center
energy over time, which corresponds to highest enhancement due to the
CA.
ICTGV reconstruction was carried out with the GPU based AVIONIC frame-
work with the regularization- and model parameters found optimal for
reconstructing the numerical phantom data with similar noise-behavior as
the measurement data. GRASP and L+S reconstructions were carried out
for the same parameters found optimal in the numerical training. However,
the reconstruction quality was checked individually for the same parameter
ranges as used for the numerical phantoms. For GRASP and L+S recon-
struction the algorithms in the primal-dual implementation as described in
Sec. 3.5 were used due to unresolved scaling issues in the non-Cartesian
implementation provided by the authors of the GRASP and L+S method.
For ICTGV additional reconstructions were carried out with increased and
decreased weighting on the regularization to study the effect on the tempo-
ral behavior in connection to the image quality in the spatial domain.
For the first DCE dataset, ICTGV, GRASP and L+S reconstructions were
computed from 8 spokes-per-frame corresponding to a temporal resolu-
tion of ∆t= 0.92s and for the second DCE dataset from 13 (∆t= 2.1s), 8

(∆t= 1.3s) and 5 (∆t= 0.81s ) spokes-per-frame. For the angiography dataset
reconstructions were computed from 8 (∆t= 0.92s) and 5 (∆t= 0.58s) spokes-
per-frame. For the angiography dataset all acquired slices were reconstructed
individually to compute a coronal dynamic maximum-intensity-projection
(MIP) from the baseline-subtracted image sequences.
For all studied datasets an evaluation is given by comparing the mean signal
intensity in characteristic regions (3× 3 voxels) to the gridding reconstruc-
tion and displaying reconstructions for time-frames in baseline, arterial
phase and venous phase. Selected characteristic regions were the aorta (AO)
and portal vein (PV) to study the enhancement for the DCE datasets and
apical and basal arteries, nidus and apical vein in a coronal slice containing
the nidus for the angiography dataset.
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5.3 Results

Fig. 5.1 and Fig. 5.2 display closeups of the simulation results for the
numerical Sheep-Logan and abdominal DCE phantom.There, a selected
arterial phase time-frame from reconstructions with ICTGV, GRASP and
L+S from 21, 13 and 8 spokes-per-frame is compared to the noiseless ground-
truth. Each phantom has four regions with AIF and characteristic tissue
enhancement for which the temporal evolution for all methods and ROIs
is displayed in Fig. 5.3 and Fig. 5.4 for two different temporal resolutions.
Table 5.1 summarizes the evaluation of the reconstruction quality in terms
of PSNR values according to Def. 8.1.0.14 and the noise-free numerical
reference. All methods were trained to match the true time-course of the
characteristic signal enhancement, where a higher temporal resolution leads
to better fidelity of the temporal evolution. In the spatial domain however,
ICTGV reconstruction yields almost perfect results, while GRASP and
L+S still exhibit residual noise and undersampling artifacts which is also
reflected by the quantitative evaluation with an increase of PSNR around
10dB for ICTGV. Fig. 5.5 displays the temporal evolution of the locally
different decomposition into components (magnitude) for ICTGV based
reconstruction for both numerical phantoms and all four regions.

Table 5.1: PSNR values in dB for both numerical DCE phantoms and ICTGV, GRASP and
L+S reconstructions from 21, 13 and 8 spokes-per-frame. The PSNR values are
computed with respect to the interpolated time-points in the noise-less ground-
truth.

Phantom 1

ICTGV GRASP L+S

21 spf 52.98 45.88 44.85

13 spf 52.86 45.67 45.02

8 spf 51.77 45.26 44.36

Phantom 2

21 spf 59.11 50.09 47.47

13 spf 57.70 49.14 47.17

8 spf 55.84 47.94 46.43
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Figure 5.1: Close-up of simulation results from numerical perfusion phantom with simu-
lated temporal resolutions of 8, 13 and 21 spokes-per-frame (spf). Comparison
between ICTGV, L+S and GRASP reconstruction against the reference for a
selected time-frame.
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Figure 5.2: Close-up of simulation results from numerical perfusion phantom with simu-
lated temporal resolutions of 8, 13 and 21 spokes-per-frame (spf). Comparison
between ICTGV, L+S and GRASP reconstruction against the reference for a
selected time-frame.
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Figure 5.3: Simulation results for the first numerical perfusion phantom with simulated
temporal resolutions of 21 (a) and 8 (b) spokes-per-frame (spf). The plots
compare the mean signal intensity variation within selected regions-of-interest
between reference, ICTGV, GRASP and L+S reconstruction against the true
reference.
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Figure 5.4: Simulation results for the second numerical perfusion phantom with simulated
temporal resolutions of 21 (a) and 8 (b) spokes-per-frame (spf). The plots
compare the mean signal intensity variation within selected regions-of-interest
between Reference, ICTGV, GRASP and L+S reconstruction against the true
reference.
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Figure 5.5: ICTGV based decomposition into components for regions with different tem-
poral dynamics for the numerical prostate (a) and Sheep-Logan phantoms
(b).
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A comparison between ICTGV, GRASP and L+S reconstruction from 8

spokes-per-frame for the first DCE dataset is displayed in Fig. 5.6 for se-
lected time-frames in baseline, arterial and venous phase with a closeup in
Fig. 5.7. The corresponding temporal signal evolution within the AO and
PV together with the gridding reconstructions are displayed in Fig. 5.8. As
before, all reconstructions match the signal evolution corresponding to the
gridding reconstruction with pronounced second pass. In comparison to
ICTGV reconstruction GRASP and L+S reconstructions are disturbed in the
spatial domain due to insufficient noise-suppression and residual streaking
artifacts.
Fig. 5.9 shows the influence of ICTGV reconstruction with high, optimal
and low weighting on the regularization on the image quality in the spatial
domain in Fig. 5.10 and resp Fig. 5.11 the corresponding decomposition into
components for the AO and PV. For high influence of the regularization no
residual streaking artifacts are visible, while structures tend to blur. More
importantly, the temporal evolution does not follow the gridding recon-
struction anymore and peak values are diminished, which also influences
the decomposition. For low influence of the regularization, noise is en-
hanced and streaking artifacts disturb the image quality while the temporal
evolution matches to the gridding reconstruction. Optimal regularization
fulfills both requirements of matching the temporal evolution while yielding
sharp image structures with noise- and streaking-artifact suppression for
a characteristic component decomposition. As visible in Fig. 5.10 and Fig.
5.11 the influence of streaking artifacts gets enhanced mainly in the second
component for low influence in the regularization.

In Fig. 5.12 ICTGV reconstructions from the second DCE dataset are com-
pared for different factors of 13, 8 and 5 spokes-per-frame again for baseline,
arterial and venous phase together with the depiction of a temporal cross-
section including the AO in Fig. 5.13 and the mean signal evolution in the
AO and PV in Fig. 5.14. With the increase in temporal resolution residual
streaking artifacts become more visible but still a high quality in terms of
depiction of spatial details and fidelity of the temporal evolution can be
preserved for temporal resolutions.

Reconstructions from a coronal slice containing the AVM with 5 spokes-
per-frame are displayed for baseline, arterial and venous time-frames again
for different weightings on the regularization in Fig. 5.15 and comparing
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Figure 5.6: Comparison on gridding, ICTGV, L+S and GRASP reconstruction 8 spokes-per-
frame for optimal reconstruction parameters for the first DCE dataset. Frames
are displayed for three characteristic time-points (baseline, arterial phase, venous
phase ).
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Figure 5.7: Closeup comparison of gridding, ICTGV, L+S and GRASP reconstruction from
8 spokes-per-frame for optimal reconstruction parameters for the first DCE
dataset. Frames are displayed for three characteristic time-points (baseline,
arterial phase, venous phase ).
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Figure 5.8: Comparison of the intensity time-course within the aorta (AO) and portal vein
(PV) for gridding, ICTGV, L+S and GRASP reconstructions.

to GRASP and L+S reconstruction in Fig. 5.18. Corresponding temporal
evolutions in four regions (apical and basal artery, nidus and apical vein) are
shown in Fig. 5.16 for different weightings, decomposition into components
in Fig. 5.17 and comparison to GRASP and L+S in Fig. 5.19. Similar to
the observations for the abdominal DCE datasets, optimal weighting for
ICTGV reconstruction yields results with high quality depiction of imaging
structures with an acceptable level of residual noise and streaking while
preserving the temporal fidelity. Reconstructions from GRASP and L+S
are corrupted with higher levels of noise and residual streaking while still
preserving the temporal fidelity.
Finally, selected time-frames of the dynamic MIP computed from all slices
that show the contrast enhancement within the nidus with a temporal
resolution of ∆t= 0.58s are displayed in Fig. 5.20. Enhancement within the
arteries is clearly distinguishable before enhancement within the nidus.
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Figure 5.9: Comparison of ICTGV reconstructions for different data-fidelity weights.
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Figure 5.10: Comparison of the intensity time-course within the aorta (AO) for ICTGV
reconstructions and different data-fidelity weights and corresponding decom-
position.
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Figure 5.11: Comparison of the intensity time-course within the portal vein (PV) for ICTGV
reconstructions and different data-fidelity weights and corresponding decom-
position.
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Figure 5.12: Comparison of ICTGV reconstructions for 13, 8 and 5 spokes-per-frame for
three temporally aligned characteristic time-points (baseline, arterial phase,
venous phase ).
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Figure 5.13: Comparison of ICTGV reconstructions for 13, 8 and 5 spokes-per-frame with a
temporal cross section.
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Figure 5.14: Comparison of the intensity time-course within the aorta (AO) and portal
vein (PV) for ICTGV reconstruction from 13, 8 and 5 spokes-per-frame for the
second DCE dataset to a gridding reconstruction from 8 spokes-per-frame.
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Figure 5.15: Comparison of ICTGV reconstructions for different data-fidelity weights and
GRASP reconstruction from 5 spokes-per-frame for characteristic time-points.
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Figure 5.16: Comparison of the intensity time-course within different characteristic regions
(nidus, basal and apical arteries and vein) for ICTGV reconstruction from
5 spokes-per-frame for the angiography dataset and different data-fidelity
weights.
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Figure 5.17: Display of the intensity time-course of ICTGV reconstruction and correspond-
ing decomposition within different characteristic regions (nidus, basal and
apical arteries and vein) from 5 spokes-per-frame for the angiography dataset.
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Figure 5.18: Comparison of ICTGV against GRASP and L+S reconstructions from 5 spokes-
per-frame for characteristic time-points.
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Figure 5.19: Display of the intensity time-course of ICTGV against gridding, GRASP and
L+S reconstruction within different characteristic regions (nidus, basal and
apical arteries and vein) from 5 spokes-per-frame for the angiography dataset.
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frame 1 frame 2 frame 3 frame 4 frame 5

frame 6 frame 6 frame 8 frame 9 frame 10

Figure 5.20: Dynamic maximum-intensity-projection (MIP) for ten selected time-frames
displaying the enhancement within the nidus with 0.58s temporal resolution
(5 spokes-per-frame) from all reconstructed slices after baseline subtraction.
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5.4 Discussion and Conclusion

In literature high temporal resolution was found to be important for correct
determination of the AIF [137] (∆t ≤ 1 s), exact parameter mapping with
complex models [144] or lesions with rapid enhancement [143] (∆t ≤ 2 s).
In the simulation as well as the measured data, this holds true for 8 spokes-
per-frame corresponding to a temporal resolution of ∆t= 1 s. A high tem-
poral resolution, however, comes at the cost of increased excess of residual
undersampling artifacts and noise-enhancement. For all methods under
investigation it is possible to weight the data-fidelity strongly enough to
preserve the correct temporal behavior at the cost of decreased suppression
of noise and residual undersampling artifacts. When the regularization is
too strongly weighted it is possible to almost completely eliminate noise and
artifacts, while diverging from the temporal fidelity. It is therefore crucial
to find an optimal balancing parameter λ to fulfill both requirements. For
the numerical simulations it was found that for a given noise-level λ can
be used for different acceleration factors due to the inherently scaling of
the density compensation to a lower number of data per temporal frame as
described in Sec. 3.7.1.
For ICTGV reconstruction the model-parameter training based on the numer-
ical phantoms with fixed λ and noise-level yields a specific choice for DCE
applications and therefore a characteristic decomposition into components
reflecting locally varying requirements for spatio-temporal regularization.
This enables for higher weighting on the regularization while still preserving
locally different temporal evolutions with enhanced quality of the spatial
depiction. For GRASP-based reconstruction no additional parameters for
the temporal weighting is required since this methods omits spatial regu-
larization that comes at the cost of the decreased ability to suppress noise
and undersampling artifacts in the spatial domain. High regularization for
GRASP still results in improved image quality with loss in temporal fi-
delity, since this effectively accounts for temporal averaging with improving
the SNR. Interestingly, no mayor improvement of L+S decomposition over
GRASP could be observed, which means that for a global decomposition no
additional information could be exploited.
Reconstruction parameters for the numerical setting could be transferred to
the in-vivo measurements that exhibit a similar noise-behavior. For these
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datasets care has to be taken to correctly pre-process the data such as
dismissing data from erroneous receive channels. This is most faithfully
avoided by excluding receive-channels that are distant to the iso-center as
described in [112].
The evaluation against the reference methods was evaluated under the con-
dition that the temporal fidelity for each method matches either the gridding
reconstruction or the true numerical reference. Under this condition ICTGV
based reconstruction yields an improvement in image quality in the spatial
domain with improved residual artifact- and noise suppression.
For abdominal DCE imaging this poses a basis for further improvement in
quantitative evaluation according to pharmako-kinetic models. This how-
ever requires further considerations for additional pre-processing like B+

1 -,
slice-profile and concentration corrections and is subject to future research.
In the case of time-resolved MRA an almost four-fold increase in temporal
resolution as compared to state-of-the-art imaging with the TWIST tech-
nique with the same imaging geometry and spatial coverage is feasible with
acceptable image quality and correct temporal behavior.For this application
high temporal resolution is hypothesized to yield a diagnostic improvement
by increased detectability of feeding arteries to the AVM, which is part of
an ongoing patient-study.
Limitations to the proposed method are the complexity and consequently
long reconstruction times in the order of 5 to 10 minutes per slice using coil-
compression with optimized GPU code and sufficient primal-dual iterations.
This point might be overcome by improved algorithmic design with better
convergence behavior like [145] or learned reconstruction procedures [146].
Also the robustness of the weighting-parameter λ in the case of more drasti-
cally varying SNR scenarios is still an issue and requires further reasoning.
Furthermore, long reconstruction times and extensive consumption of mem-
ory impedes the possible reconstruction of 3D-temporal volumes with a
further expected improvement in image quality.
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6.1 Introduction

The defined goal of quantitative MRI (qMRI) is the extraction of tissue
characteristic quantifiable information from a MRI scan. This requires the
formulation of a model that connects the measured MRI signal with physi-
cal and physiological properties. It is then possible to use these quantities
as biomarkers, given sufficient statistically significant difference between
healthy and diseased tissue conditions. Biomarkers serve as a very valuable
tool for monitoring the status, change, or chronic condition of a pathology
independent on the used scanner platform. The following chapter is con-
cerned with the imaging of longitudinal relaxation time T1, based on the
Variable-Flip-Angle VFA method with the focus on accelerated imaging and
accurate, robust parameter quantification.
The T1 time is intrinsically connected to the water content, the macro-
molecule concentration, water binding and water proton exchange. Thus,
for brain imaging T1 times for myelin in white matter (WM) are shorter than
for gray matter (GM). Demyeliniation and increase in water content due
to multiple sclerosis therefore increases T1, where significant differences to
normal controls were reported in [147]. Further applications for T1 mapping
include the assessment of myocardial infarction [148] and tissue remodeling
[149], normalization of contrast agent concentration in DCE MRI among
others. For an extensive review about important applications for T1 mapping
the reader is referred to [150].
Many approaches were developed to measure the longitudinal relaxation
time. While the Inversion-Recovery IR method, based on the early work
of Hahn [151] for NMR measurements with robust MRI in-vivo protocols
([152]), can be considered as ground-truth, measurement times are far be-
yond clinical feasibility. The inversion-recovery Look-Locker (IRLL method
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[153] is based on the IR method but leads to decreased measurement times
by applying a train of low flip angle pulses with defined spacing after an
initial inversion pulse.
The investigated VFA method on the other hand uses 3D spoiled steady-
state gradient echoes with constant TR, constant TE and different flip angles
θp [154] and is also termed DESPOT (Driven-equilibrium single-pulse obser-
vation of T1 ) [155]–[157]. For the described assumptions the well-known
analytical expression of the signal-intensity S is dependent on M0 and T1
for a given flip-angle θp as follows:

Sp(u = (M0, T1)) = M0
1− e−

TR
T1

1− cos θpe−
TR
T1

sin θp (6.1)

In theory the VFA approach requires only two ”ideal” flip angles for most
correct estimation of a specific T1 value [158], however more measure-
ments with varying flip angle are needed to improve the accuracy for a
broader range of T1 values. It was investigated that a larger set of flip an-
gles increases the accuracy for the physiological range of T1 [159], while
it decreases the accuracy for a specific T1 value gained from a two-angle-
measurement. In [158] acquisition of up to 10 flip-angles in the context of
neurological brain T1 mapping are proposed based on a genetic algorithm
approach, giving the basis for choosing a set of angles used in this work, i.e.
θ = {2, 3, 4, 5, 7, 9, 11, 14, 17, 22}◦ for both simulations and real data acquisi-
tions. The non-linear signal model in Eq. 6.1 can be rearranged to facilitate
the computation of M0 and T1 by a linear fitting routine, that is yet biased
by noise [160] for low SNR regimes.
Sufficient SNR is also necessary to improve the well-posedness of the corre-
sponding fitting problem, which can be achieved by additional averaging
with increased scan time or larger slice-thickness with increased sensitivity
to partial-volume effects. This problem is addressed by improved regular-
ization of the inversion problem as described later.
Additionally, the VFA method assumes an exact flip-angle over the whole
FOV, which is not the case with pronounced spatially-dependent deviations
from the nominal flip-angle at field strengths of 3 T. To account for this
issue the estimation of a B1 map is necessary as preprocessing procedure.
While the Double-Angle-Method DAM [161] describes an important and
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robust approach for in-vivo estimation of the active B1 field more recent
approaches are less time-consuming. In this work the Bloch-Siegert Method
(BSM) [162] with an highly accelerated extension [163] based on variational
modeling is used.
Although, necessary corrections as described above are considered, it was
found in a study [164] that T1 values vary across sites and in-vivo measure-
ments up to 30%, due to incomplete spoiling and inaccurate B1 mapping
for IR, IRLL and VFA, where the later tends to overestimate and IRLL to
underestimate T1. In [165] differences between measurements from different
vendors, measurement methods, scanner type, sample positions and field
strength measured with a standardized phantom were reported. These stud-
ies suggest individual calibration of the used methods against the inversion
recovery reference method to improve the accuracy of T1 mapping.
With the established method of VFA for T1 mapping the requirement of
imaging several 3D volumes with high resolution, SNR, and several flip-
angles is time-consuming and therefore leads to higher error-proneness
due to patient motion, such that acceleration of the measurement process
is highly desirable. Furthermore, requirements for high resolutions with
whole-brain coverage biases the parameter estimation due to increased
noise levels. These two problems are addressed by firstly, sub-sampled
data-acquisition and ICTGV-based dynamic reconstruction that exploits
the information redundancy in the parametric dimension and secondly
the point of robust parameter fitting under varying SNR conditions is ad-
dressed by proposing an image-space model-based reconstruction MBR
framework. The later is based on the iteratively regularized Gauss-Newton
algorithm with additional multi-spectral variational regularization. The pro-
posed combination yields a two-step procedure addressing the goal of fast
and robust biomarker imaging exemplified for T1 estimation based on the
VFA method.
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6.2 Proposed Reconstruction from Accelerated
Radial VIBE Data

In order to achieve a scan-time reduction, sub-sampling is performed in
each of the parametric measurements. For T1 estimation from VFA mea-
surements the aim is to determine the acceptable acceleration potential
in order to reduce the overall scan time. This is investigated on the basis
of 3D golden-angle radial stack-of-stars RAVE acquisitions [112]. Com-
pared to conventional Cartesian VIBE acquisition this has the advantage
that sub-sampling can be performed for each slice by grouping different
amounts of Fibonacci-numbers of spokes, instead of sub-sampling in the
two phase-encoding dimensions, where for VIBE measurements the number
of kz-phase encodings is typically smaller.
The successive reconstruction of the parameter maps is carried out in a
two-step procedure. First, a ICTGV reconstruction is performed on the
under-sampled spatio-parametric datasets to remove aliasing artifacts and
perform denoising. To this end the corresponding ICTGV model parameters
(see Sec. 3.3.5), that are model-free in the sense that no explicit information
about the VFA signal equation is used, are trained on numerical phantom
data for this specific application with locally different smooth signal be-
havior in the parametric dimension. The smoothness assumption is not
enforced particularly but is implicitly contained in the piece-wise smooth-
ness assumption of the spatio-temporal TGV functionals. The reconstruction
can be carried out in a convex setting. In the second step the parameter
maps are estimated with a iteratively regularized Gauss-Newton IRGN
framework employing additional multi-spectral regularization strategies
to further stabilize the parameter estimation. This is adverse to MBR in
k-space, where the model-specific equation is included in the MRI forward
model and a solution is computed directly.
The present work can be integrated into the context of existing approaches
for accelerated qMRI methods. ”Two step-procedures” include the semi-
nal work by Doneva et. al [166], where regularization was trained from
specific signal-models to mitigate under-sampling artifacts for IRLL and
multi-echo spin-echo MESE measurements, that effectively laid the basis for
the concept of MR fingerprinting [167]. In [168] a temporal-smoothness CS
reconstruction is carried out for accelerated Cartesian VFA reconstructions
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and in [169] low-rank or locally low-rank [170] and sparsity constraints
are employed, usually followed by conventional parameter estimation on a
voxel-by-voxel basis. Important works for k-space based MBR are, e.g. accel-
erated T2 estimation from radial [171] and Cartesian [172], [173] fast-spin
echo data, or T1 mapping from single-shot IR-LL radial data [174], with
additional estimation of the B1 map in [175], [176]. The later works also
employ the IRGN approach, that is used in this work for the image based
MBR approach.

MBR in image space

The generic reconstruction problem for general qMRI problems, with Np
parametric maps u = (qi)i=1,··· ,Np , e.g. u = (M0, T1) can be written as
follows:

u? = (q?i )i=1,··· ,Np = arg min
u

λ

2 ∑
p
‖Sp(u)− Ip‖2

2 (6.2)

Here Sp(u) denotes the signal in image space according to the model S as
for VFA given in Eq. 6.1, for a given parameter p and Ip the reconstructed
image for parameter p. Since Sp(u) is in general non-linear, a solution is
proposed according to the Gauss-Newton strategy. To this end Sp(u) needs
to be linearized at a given point uk with a first order Taylor approximation,
i.e.

Sp(u) ≈ Sp(uk) + DSp|u=uk(u− uk) (6.3)

with DSp|u=uk being the differential operator of Sp(u) evaluated at uk. Eq.
6.2 can then be rewritten as

u?
k+1 = arg min

u

λ

2 ∑
p
‖DSpu− Ĩp‖2

2, Ĩp = Ip + DSpuk − S(uk) (6.4)

for the solution of the k-th Gauss-Newton step. In order to control the
convergence an additional step size penalty and regularization on the
parameter-maps is added, yielding the following reconstruction problem.

u?
k+1 = arg min

u

λ

2 ∑
p
‖DSpu− Ĩp‖2

2 +
δ

2
‖u− uk‖2

2 +R(u) (6.5)
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As a choice for the regularization functionalR(u) two versions are proposed.
Firstly, TGV2 regularization on each parameter map separately (TGV2

sep)and
secondly a coupling between the multiple parameter maps with multi-
channel TGV2 using a point-wise Frobenius norm (TGV2

frob). The later
promotes joint sparsity of the edge sets of both parameter maps that are con-
sidered to have structural similarity. The TGV2

frob norm has been employed
for denoising of multi-channel images in [67] or for the joint reconstruction
of PET and MR images in [177]. The corresponding regularization terms are
defined as follows:

TGV2
sep(u) =

N

∑
i=1

TGV2
α(qi), (6.6)

and
TGV2

frob(u) = arg min
w

α1‖|∇u− w|frob‖1 + α0‖|Ew|frob‖1. (6.7)

It is worthy to note, that the reconstruction problems in each Gauss-Newton
step are strongly convex due to the step size penalty and can be solved
efficiently with the aforementioned primal-dual algorithm and with the
Conjugate-Gradient algorithm for L2-regularization using only the step size
penalty. The algorithms for the numerical solution to the corresponding
reconstruction problems can be found in the Appendix (see App. 8.5.7).
These also require the evaluation of the forward and adjoint derivative
operators DSk and resp. DSH

k for the k-th Gauss-Newton step and the given
signal model. For the VFA approach these are defined as follows.

DSk : u = (M0, T1) 7→
(∂Spi(u)

∂M0
|u=uk M0 +

∂Spi(u)
∂T1

|u=uk T1

)
i=1,··· ,Np

(6.8)

DSH
k : y 7→

( Np

∑
i

∂Spi(u)
∂M0

|u=uk yi,
Np

∑
i

∂Spi(u)
∂T1

|u=uk yi

)
(6.9)

6.3 Material and Methods

The first part of the evaluation of the proposed two-step reconstruction
approach consists in numerical simulations for the VFA technique with the
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model-based approach under different levels of SNR. To this end, a numeri-
cal brain phantom from MRiLab1 [101] was used. Synthetic VFA contrasts
with matrix size of 200× 200 were generated in image space according to
the signal equation 6.1 for θ = {2, 3, 4, 5, 7, 9, 11, 14, 17, 22}◦ and TR= 5 ms
assuming a perfect uniform spatial B1 distribution. Different levels of noise
were modulated to yield PSNR of {10, 15, 20, 25, 30}dB according to Def.
8.1.0.14 and normalized to the Ernst angle. Afterwards, the T1 and M0
maps were again estimated with the proposed IRGN method with the
different regularization approaches from the noisy data. The statistical dis-
tribution of deviation from the true T1 values for three characteristic brain-
specific T1 values of WM (Twm

1 = 600 ms, #voxels∼ 104), GM (Tgm
1 = 950 ms,

#voxels∼ 104) and cerebrospinal-fluid (CSF) (Tcs f
1 = 2500 ms, #voxels∼ 104)

was computed.
Afterwards, synthetically accelerated golden-angle radial MRI data was gen-
erated for the same flip angle set and for Fibonnaci numbers of spf =
{55, 34, 21, 13, 8} spokes-per-frame with a target PSNR of 30dB, which
roughly accords to in-vivo measurements described later for 1 mm2 in-plane
resolution and 3 mm slice-thickness. Acceleration factors to fully sampled
reconstructions are calculated according to the theoretical Nyquist-limit for
radial acquisitions, i.e. Nπ

2spf spokes for matrix size of N × N. Reconstruction
parameters for ICTGV and concurrent MBR estimation were trained from
these numerical examples for ICTGV parameter ranges as described in
Section 3.4.
Fully sampled RAVE measurement data were obtained from a cylindric
MR phantom that contains five compartments with different amounts of
Gd doped water leading to T1 ranges of 200 ms to 1600 ms with 3 mm2

slice-thickness. As reference, a fully sampled IR scan with inversion times
of TI = {80, 200, 400, 800, 1200, 2000}ms and a Cartesian VIBE scan with
equal measurement parameters as with the RAVE dataset was carried out.
A comparison is based on computing the T1 times within ROIs of the five
compartments for fully sampled IR, Cartesian VIBE and RAVE data and
concurrently retrospectively sub-sampled RAVE data from 34, 21 and 13
spokes-per-frame for the central slice. Flip-angle correction was taken into
account with BSM.
Fully sampled RAVE in-vivo head measurement data were acquired from

1https://leoliuf.github.io/MRiLab/
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Table 6.1: Measurement and reconstruction parameters.

RAVE parameter
FOV 256× 256mm2

matrix 256× 256
TR/TE 5 ms/2.2 ms

θ {2, 3, 4, 5, 7, 9, 11, 14, 17, 22}◦
BW 510 Hz/pixel

ICTGV parameter
λ 0.3

(t1,t2,s) (8, 1, 0.58)
PD iterations 1000

α0
α1

1√
2

MBR parameter
(λ, δ, γ) (103, 102, 10)

(qλ, qδ, qγ) (1, 0.95, 0.95)
Gauss-Newton steps 30

PD iterations 500

three different healthy volunteers with slice-thicknesses/number of par-
titions of 5 mm/30, 3 mm/40 and 1 mm/30 with the described set of flip-
angles. Reconstructions from retrospectively selected under-sampled data
with 34,21 and 13 spokes-per-frame were computed with the described two-
step procedure from the central slice only after 1D Fourier-transformation
along the kz direction. Corresponding imaging and reconstruction param-
eters are summarized in Tab. 6.1. The evaluation was carried out by com-
puting the mean and standard-deviation within four characteristic regions:
frontal and apical WM (#voxels∼ 200), cortical GM (#voxels∼ 50) and puta-
men ,#voxels∼ 50. Flip-angle correction was again taken into account with
the BSM.
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6.4 Results

Fig. 6.1 displays the results of T1 estimation with the proposed fitting rou-
tines L2, TGV2

sep and TGV2
frob compared to the standard linearized solution

(DESPOT) from simulated VFA image data with different target SNR noise
levels. The corresponding mean T1 values with standard deviation are sum-
marized in Tab. 6.2 and the convergence of the corresponding algorithms is
displayed in Fig. 6.2. For low SNR situations (15dB) the DESPOT method
exhibits substantial noise-bias as known from literature, while fitting the
non-linear model with step size penalty (L2) preserves the mean T1 time
with diminished variance. Outliers that are still visible in L2 based esti-
mation are erased with TGV2

sep and TGV2
frob regularization. Employing the

separate TGV regularization on M0 and T1 lead, however, to incorrect T1
estimation in low-and high signal areas which is overcome with TGV2

frob
regularization. The later however tends to degrade T1 values in high signal
areas (CSF), which becomes more drastic with lower SNR. Results for T1
estimation from under-sampled numerically simulated measurement data
according to the golden-angle RAVE acquisition with fixed noise level after
ICTGV reconstruction are displayed in Fig. 6.3 for TGV2

frob and L2 only.
Again, a summary of the corresponding mean T1 values and standard-
deviation is given in Tab. 6.3 and the convergence of the corresponding
algorithms in Fig. 6.4. Results gained with TGV2

sep are not displayed since
these exhibit the same behavior as in Fig. 6.1. Again, L2-T1 estimation yields
correct mean T1 estimates with residual outliers that are suppressed for
estimation with TGV2

frob regularization. The later also improves robustness
of the estimation which is reflected by decreased standard-deviation for
all ROIs of about 50% to 25%. For simulated WM and GM T1-values a
good accordance to the ground-truth could be achieved, while for high T1
values (CSF) again a reduced bias is apparent for all estimation methods.
Fig. 6.5 displays reconstruction results from retrospectively under-sampled
RAVE MR phantom data from 34, 21 and 13 spokes-per-frame compared
to standard fully-sampled gridding reconstruction with L2-fit. For the MR
phantom evaluation fully sampled IR data and standard Cartesian VIBE
data with the same measurement parameters as the RAVE scan was acquired
for comparison purpose. Fig. 6.6 displays the corresponding results, com-
paring firstly fully sampled RAVE and Cartesian VIBE measurements to the
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Figure 6.1: Results of T1 estimation with the proposed fitting routines from a 10-angle VFA
simulation with different SNR (normalized to the Ernst angle).
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Table 6.2: Mean T1 times with standard-deviation for the different parameter estimation
methods and SNR levels under investigation for three ROIs of the numerical
brain phantom.

DESPOT L2 TGV2
sep TGV2

frob

White Matter - 600 ms
15 dB 691 ± 139 611 ± 117 614 ± 90 608 ± 96

20 dB 628 ± 73 603 ± 65 612 ± 51 603 ± 53

25 dB 609 ± 40 601 ± 37 611 ± 29 602 ± 30

30 dB 603 ± 22 601 ± 20 609 ± 16 601 ± 17

Gray Matter 950 ms
15 dB 1060 ± 224 961 ± 188 965 ± 136 947 ± 143

20 dB 987 ± 117 956 ± 106 977 ± 81 951 ± 82

25 dB 961 ± 64 952 ± 59 978 ± 46 949 ± 46

30 dB 953 ± 36 950 ± 33 973 ± 26 949 ± 26

CSF 2500 ms
15 dB 2542 ± 956 2497 ± 768 2488 ± 534 2365 ± 222

20 dB 2608 ± 542 2499 ± 416 3234 ± 694 2450 ± 131

25 dB 2547 ± 294 2508 ± 239 3646 ± 313 2446 ± 56

30 dB 2512 ± 161 2498 ± 132 3666 ± 209 2478 ± 39
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Figure 6.2: Evaluation of the convergence for L2, TGV2
sep and TGV2

frob based T1-estimation
from numerically simulated VFA data with different SNR by computing the
residuum for each Gauss-Newton step.
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Figure 6.3: T1 maps estimated with L2 and TGV2
frob regularized IRGN method from a

10-angle under-sampled (55, 34, 21 and 13 spokes-per-frame) numerical VFA
phantom data series reconstructed with ICTGV
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Figure 6.4: Evaluation of the convergence for L2,TGV2
sep and TGV2

frob based T1-estimation
from numerically simulated VFA data with different under-sampling factors by
computing the residuum for each Gauss-Newton step.
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Table 6.3: Mean T1 times with standard-deviation for the different parameter estimation
methods and acceleration factors under investigation for three ROIs of the
numerical brain phantom.

DESPOT L2 TGV2
sep TGV2

frob

600 ms - White Matter
55 spf 602 ± 23 600 ± 20 609 ± 11 600 ± 11

34 spf 603 ± 28 600 ± 25 609 ± 15 600 ± 15

21 spf 606 ± 35 602 ± 31 606 ± 53 601 ± 22

13 spf 610 ± 42 607 ± 38 614 ± 30 607 ± 30

950 ms - Gray Matter
55 spf 953 ± 46 952 ± 41 973 ± 24 948 ± 20

34 spf 952 ± 53 951 ± 47 972 ± 31 948 ± 28

21 spf 953 ± 66 951 ± 59 964 ± 112 948 ± 41

13 spf 950 ± 80 946 ± 72 968 ± 61 948 ± 58

2500 ms - CSF
55 spf 2616 ± 324 2489 ± 180 3523 ± 180 2383 ± 60

34 spf 2585 ± 365 2493 ± 182 3490 ± 438 2371 ± 66

21 spf 2520 ± 443 2483 ± 282 2640 ± 1009 2337 ± 98

s 13 spf 2510 ± 541 2471 ± 291 3289 ± 540 2310 ± 131
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Figure 6.5: Reference T1 map from fully sampled 10 flip-angle RAVE data (400 spokes-
per-frame) and L2-estimation compared to accelerated subsets with 34, 21
and 13 spokes-per-frame reconstructed with ICTGV and fitted with TGV2

frob
regularized IRGN method.

IR gold standard, where in both cases BSM mapping was performed, and
secondly an comparison between reconstructions from unaccelerated and
accelerated RAVE measurements for the five doped phantom compartments,
where also a forward computation of the VFA-model for each compartment
and all measured flip-angles is provided. Both, fully sampled RAVE and
Cartesian VIBE based T1-estimations are in good accordance with the IR
measurements. Also, the mean T1 values computed from accelerated mea-
surement are in excellent accordance to the unaccelerated reconstructions
with L2-based T1-estimation. This is also reflected by comparing the forward
signal-model Sθ(M0, T1) for each flip-angle according to the estimated T1
and M0 estimates to the fully-sampled measurement for each compartment.
Close-ups for all in-vivo T1 reference datasets, computed with L2 regular-

ization from fully-sampled gridding reconstruction with different SNR are
displayed in Fig. 6.7. The corresponding T1-estimates with the linearized
voxel-wise computation (DESPOT) from ICTGV reconstructions of accel-
erated subsets (34, 21 and 13 spokes-per-frame) are displayed in Fig. 6.8.
Similarly, T1-estimates gained with L2-based estimation are displayed in Fig.
6.9, while results computed with TGV2

frob regularization are displayed in
Fig. 6.10. The corresponding mean T1-estimates based on L2 and TGV2

frob
regularization from four characteristic regions are summarized in Tab. 6.4
for the data-set with 1 mm slice-thickness, for 3 mm in Tab. 6.5, and Tab. 6.6
for 5 mm.
For all cases ICTGV reconstruction enables a removal of under-sampling
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Figure 6.6: (a) Comparison of IR fit for the five compartments of the MR phantom against
T1 estimates with L2-IRGN estimation from fully sampled VFA RAVE and
Cartesian VIBE data. (b) Comparison of T1 estimates with L2-IRGN method
from fully sampled RAVE data against T1 estimates from ICTGV reconstructed
subsampled RAVE data with TGV2

frob estimation. (c) Comparison of the forward
computation according to the VFA signal model with M0 and T1 maps from
accelerated measurements against fully sampled reconstructions for each flip-
angle
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5 mm 3 mm 1 mm

Figure 6.7: T1 maps estimated with L2-IRGN method from fully sampled VFA-RAVE data
(10 measurements) with 5 mm, 3 mm and 1 mm slice-thickness with indicated
ROIs (frontal and apical WM, cortical GM and putamen).

artifacts with high image fidelity for accelerations up to 13 spokes-per-
frame (∼ 30-fold acceleration). For the dataset with higher base SNR (3 mm
and 5 mm) the standard-deviation for both L2 and TGV2

frob reconstructions
is almost equal. With increasing acceleration the error at tissue bound-
aries increases for all estimation methods. For the low SNR dataset (1 mm
slice-thickness), DESPOT and L2 based T1 estimation leads to increased
uncertainty within homogeneous tissue regions and a higher number of out-
liers, which is improved substantially by employing TGV2

frob regularization.
For this dataset a bias towards increased mean T1 estimates with higher
acceleration is apparent.

6.5 Discussion and Conclusion

The analysis of the proposed MBR methods with different regularization
strategies shows that a substantial improvement in terms of accuracy and
robustness is achievable compared to state-of-the-art voxel-wise estimation
with a linearized model (DESPOT) when insufficient SNR is present. The
proposed algorithms based on the IRGN method solves the non-linear sig-
nal model and are able to remove a noise-bias towards increased T1 values
proportional to the SNR. L2 regularization on both M0 and T1 already regu-
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Figure 6.8: T1 maps estimated with the DESPOT method from accelerated ICTGV recon-
structed 10 flip-angle RAVE datasets with 5mm, 3mm and 1mm slice-thickness
and corresponding error-maps (% deviation) to the fully sampled references
(see Fig. 6.7)

Table 6.4: Mean T1 times with standard-deviation for L2- and TGV2
frob-IRGN based parame-

ter estimation within four characteristic ROIs from the RAVE invivo-dataset with
1mm slice-thickness

WM frontal WM apical GM cortical Putamen

Reference (L2) 858 ± 52 885 ± 55 1406 ± 74 1170 ± 88

55 spf - TGVfrob 858 ± 48 884 ± 52 1404 ± 62 1200 ± 86

L2
860 ± 69 889 ± 87 1402 ± 99 1213 ± 158

34 spf -TGVfrob 869 ± 54 886 ± 73 1387 ± 65 1181 ± 77

L2
872 ± 78 893 ± 108 1385 ± 101 1197 ± 156

21 spf -TGVfrob 852 ± 75 899 ± 77 1436 ± 74 1190 ± 110

L2
856 ± 96 905 ± 109 1434 ± 95 1190 ± 168

13 spf -TGVfrob 872 ± 72 895 ± 66 1388 ± 65 1202 ± 211

L2
876 ± 93 900 ± 102 1387 ± 99 1235 ± 309
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Figure 6.9: T1 maps estimated with the L2-IRGN method from accelerated ICTGV recon-
structed 10 flip-angle RAVE datasets with 5mm, 3mm and 1mm slice-thickness
and corresponding error-maps (% deviation) to the fully sampled references
(see Fig. 6.7)

Table 6.5: Mean T1 times with standard-deviation for L2- and TGV2
frob-IRGN based parame-

ter estimation within four characteristic ROIs from the RAVE invivo-dataset with
3mm slice-thickness

WM frontal WM apical GM cortical Putamen

Reference (L2) 870 ± 31 838 ± 38 1513 ± 62 1123 ± 34

55 spf - TGVfrob 874 ± 26 837 ± 37 1524 ± 61 1126 ± 39

L2
874 ± 26 837 ± 37 1524 ± 62 1126 ± 39

34 spf -TGVfrob 880 ± 27 846 ± 43 1522 ± 62 1122 ± 47

L2
880 ± 27 846 ± 43 1522 ± 63 1122 ± 47

21 spf -TGVfrob 881 ± 33 846 ± 32 1508 ± 68 1143 ± 39

L2
881 ± 34 846 ± 32 1508 ± 68 1143 ± 39

13 spf -TGVfrob 886 ± 27 856 ± 41 1523 ± 70 1161 ± 66

L2
886 ± 27 856 ± 41 1523 ± 70 1161 ± 66
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Figure 6.10: T1 maps estimated with the TGV2
frob-IRGN method from accelerated ICTGV

reconstructed 10 flip-angle RAVE datasets with 5 mm, 3 mm and 1 mm slice-
thickness and corresponding error-maps (% deviation) to the fully sampled
references (see Fig. 6.7)

Table 6.6: Mean T1 times with standard-deviation for L2- and TGV2
frob-IRGN based parame-

ter estimation within four characteristic ROIs from the RAVE invivo-dataset with
5mm slice-thickness

WM frontal WM apical GM cortical Putamen

Reference (L2) 782 ± 31 788 ± 31 1258 ± 68 999 ± 36

55 spf - TGVfrob 785 ± 30 794 ± 25 1259 ± 67 995 ± 32

L2
785 ± 30 794 ± 25 1259 ± 67 995 ± 32

34 spf -TGVfrob 787 ± 26 794 ± 25 1265 ± 68 1000 ± 33

L2
787 ± 26 794 ± 26 1265 ± 68 1000 ± 34

21 spf -TGVfrob 785 ± 24 801 ± 27 1282 ± 79 1011 ± 39

L2
785 ± 24 801 ± 27 1282 ± 79 1011 ± 39

13 spf -TGVfrob 791 ± 24 809 ± 29 1295 ± 98 1020 ± 33

L2
791 ± 24 809 ± 30 1295 ± 98 1020 ± 34
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larizes jointly on both parameters and leads to a stable estimation without
exploiting similar spatial structures. Regularizing with TGV2 constraints
separately lead, however, to convergence problems and ambiguities in spe-
cific regions due to the non-convexity optimization problem. It could be
shown that a further improvement can be achieved by treating the parame-
ter maps as multiple channels and employing TGV2

frob type regularization
as in [67]. This regularization strategy stabilizes deviations from target T1
values by enforcing spatial smoothness properties while allowing for jump
discontinuous at tissue borders on all parameter-maps jointly. However, it
was found that at discontinuities with greater difference in magnitude sharp
transitions may be blurred and thus bias mean T1-estimates within these
homogeneous ROIs towards lowered values. Employing nuclear-TGV2 as
e.g. in [177] might lead to further improvement for this situation.
The performance of developed algorithms was exemplarily evaluated in the
context of T1 estimation from noisy VFA data but can be adapted to other
parameter mapping situations with multiple parametric dimensions and
spatial structure, such as e.g. fitting pharmaco-kinetic parameter from DCE
MRI data as described in Chap. 5.
A validation of the signal model was evaluated by using an MRI phantom
that contains five water compartments with differently high fractions of Gd
doping. A T1 ground-truth was established with a standard IR experiment.
The correspondence of T1 values computed from the IR experiment were in
good accordance to both fully-sampled spoiled-gradient echo non-Cartesian
RAVE and Cartesian VIBE measurements as long as flip-angle deviations
are taken into account. The goal of accelerated T1 estimation was achieved
by acquiring golden-angle radial RAVE data below the Nyquist limit. In
this situation off-set angles have to be determined for the following scan
with different flip-angle according to the fibonacci-number of spokes chosen
for acceleration. For better comparison purpose to a gold-standard 550

spokes were measured for each volume and accelerated subsets with correct
offsets were drawn from the fully-sampled datasets. ICTGV regularization
was employed to achieve a stable reconstruction while removing under-
sampling artifacts. A differentiation to other reconstruction methods was
omitted due already performed extensive comparisons in Chap. 4 and 5.
The established two-step procedure, i.e. ICTGV reconstruction followed
by MBR, was evaluated for numerical and MR phantoms as well as for
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in-vivo head measurements in different SNR situations. For all situations
reconstruction parameters were trained on the numerical datasets. Adequate
data-normalization to the median of the highest ten percent of the gridding
reconstruction of the averaged data over all parametric encodings guaran-
teed the usability of trained reconstruction parameters for reconstruction of
MR measurement data.
It was found that a sufficient SNR level does not increase the quality of T1
estimation by image MBR with better priors, since an sufficient amount of
denoising can already be achieved during the ICTGV reconstruction. For low
SNR scenarios, it turned out, however, that a bounded weight on the data-
fidelity in ICTGV regularized reconstruction better preserves the signal evo-
lution in the parametric domain, while residual noise-enhancement remains.
In concurrent MBR a further improvement with TGV2

frob-regularization can
then be realized. Stronger ICTGV regularization in the first place would lead
to improved denoising at the ost of deviations from the true, characteristic
signal evolution which then leads in incorrect T1 estimation in MBR. Again,
a proper selection of the regularization parameter plays a crucial role.
Concerning the chosen signal model, the application of ICTGV on VFA
data requires a high number of measurements in the parametric domain
which was set to ten according to literature suggestions that target the
correct estimation of a broader range of T1 values. Determination of optimal
sequence parameter adjustments for VFA based T1 estimation dependent
on SNR and sensitivity to T1 remains an ongoing research area (e.g. [178]),
and the relation to specific acceleration strategies based on incomplete data
requires additional considerations that are out of scope of this work. Mea-
suring radial stack-of-stars data instead of Cartesian VIBE data gives the
freedom to use favorable radial undersampling patterns in isotropic slices
over randomly Cartesian undersampling in two phase-encoding directions.
To reduce the computational burden the inherently 3D RAVE measurements
can be entangled in slice encoding direction but ideally the reconstruction
should take place on the 3D-temporal volume which is limited by available
GPU memory.
Finally, it needs to be argued that ICTGV enforces characteristic properties
on image sequences in general and no further information about the signal
model is provided. This is adverse to acceleration strategies in MR param-
eter estimation based on the works of Doneva et al [166] or Velikina et al
[168], where model-specific information is used during the iterative recon-
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struction as regularization information followed by voxel-wise estimation of
the parameter-maps. Another counterpart is to use MBR directly in k-space
as originally proposed by [171] or [172] by incorporating the signal model
directly in the data-fidelity that, however, imposes more complexity on the
convergence properties. Additional regularization in that case has to be ap-
plied directly to the parametric maps, where a TGV2

frob type regularization
is used in [179]. It is hard to determine which strategy is superior to another
since all have specific strengths and limitations. A possible improvement
on the currently proposed two-step procedure would be to project on the
image-space MBR estimates already several times during the ICTGV regu-
larized reconstruction. Still, it was shown that a huge acceleration potential
of r = 20 (21spf), · · · , 30 (13spf) for high quality and accurate T1 estimation
from RAVE-VFA data is possible within measurement times of 0.65 s (13 spf)
to 1 s (21 spf) per slice. Current fingerprinting protocols report measurement
times from 48 s per slice [180] to 4 s per slice [181] for joint estimation of M0,
T1 and T2 maps.
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The goal of this thesis was the analysis of regularization strategies in the con-
text of different characteristic dynamic MRI applications with varying goals.
For cardiac imaging based on Cartesian encoding it was shown that 12 to 16-
fold acceleration of data acquisition is feasible with the potential to achieve
equivalent spatial resolutions for real-time imaging as under breath-hold
conditions or increase spatial resolution and coverage drastically for cardiac
perfusion imaging. For DCE MRI based on golden-angle radial stack-of-stars
encoding the proposed reconstruction framework is able to provide high
image quality with temporal resolutions below one second while preserving
a high spatial coverage and spatial-resolution. This reflects a standard that
was recently only achievable with computer-tomography and lays the basis
for improving the analysis of DCE MRI. For dynamic MRA the increase in
temporal resolution is sought to increase the detectability of AVM feeder
vessels but requires further evaluation. Finally, the same sequence design
was also exploited to accelerate the mapping of longitudinal relaxation rates
and enables measurement times of around one second per slice with 1 mm2

resolution. In conjunction a general variational framework in image-space
was presented to improve multi-parameter estimation from non-linear signal
models in low SNR situations.
The ICTGV2 regularization functional, consisting of two second order TGV2

functionals, proved to state a powerful a-priori model for stabilizing the
reconstruction of MR image sequences under the condition of incomplete
dynamic MR data with different k-space sampling trajectories and under
varying noise levels with different temporal/parametric signal evolutions.
The concept enables the automatic decomposition into two components
with locally different requirements on spatio-temporal regularization. Cor-
responding training of reconstruction and model-parameters and evalu-
ations against constructed ground-truths indeed revealed that this leads
to improved reconstruction quality and therefore supports the theoretical
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reasoning behind the decomposition approach. It can be argued that for
specific situations where the signal evolution is less complex, e.g. similarly
smooth in time for different image patches, similar reconstruction quality
can be achieved with less model-complexity and computational burden.
However, specific cases are inherently contained in the more complex model
such that an increased robustness can be expected for unforeseen situations
within the same modality.
Consecutively, the ICTGV2 concept was put in the context of state-of-the-art
image sequence regularizers and parallel-imaging/compressed-sensing re-
construction models applied in MRI, and was shown to yield superior image
quality while preserving the temporal fidelity. However, it might be possible
to further increase reconstruction quality by selecting a higher number
of components. The analytical framework described in [68] as well as the
numerical implementation in principle allow the inclusion of an arbitrary
number of TGV or other functionals. This could be interesting to resolve
different types or scales of motion, e.g. for free-breathing DCE application,
but again comes at the cost of increased model-parameter complexity and
computational burden.
The presented method clearly distinguishes between model and regulariza-
tion parameters. The assumption that the former influence the image model
but are independent of the overall trade-off between regularization and data
fidelity has been confirmed by experiments showing that the optimal choice
of model parameters is robust along different subsampling rates and yields
different optimal choices for different dynamic MRI applications.
The choice of the regularization parameter remains a crucial task. A low
emphasis on the data-fidelity alters the true temporal or parametric sig-
nal evolution while giving he illusion of high image quality in the spatial
domain.The later observation also holds for all investigated regularization
strategies such that a meaningful comparison can only be given under the
condition of preserved temporal fidelity.For Cartesian imaging the proposed
linear adaptation of the regularization parameter constitutes a heuristic
to compensate for alteration of the data-fidelity-cost due to subsampling
which was confirmed by experimental results that also showed a robustness
against deviations from the optimal weighing of roughly 10%. In general,
the regularization parameter needs to be tuned according to the noise
level and matrix size. For applications where a similar noise behavior and
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imaging parameters are expected, the implemented data normalization
procedure guarantees the re-usability of the regularization weighting. In
this work it has been omitted that the noise level may also vary along
the temporal/parametric dimension which actually would require a set of
regularization weights as described in [182].
In this work suitable regularization- and model-parameters were computed
by grid-search on reasonable parameter-ranges according to constructed
ground-truths. For cases like CINE cardiac imaging or quantitative MRI a
ground-truth can be established with long scanning times. In DCE MRI this
is not possible due to temporal restrictions of the passing contrast-agent
dynamics such that parameter tuning was carried out with artificial numeri-
cal ground-truths. A further improvement in selecting better reconstruction
parameters will be found in the emerging field of learning these within a
deep variational network as described e.g. in [183], [184] not yet applied for
dynamic data or using a learned version of the primal-dual algorithm as
described in [146]. With these approaches it should be possible to drasti-
cally reduce the reconstruction times that are still beyond clinical demands
even for GPU optimized computation. Concurrently this will also enable
the fast computation of 3D-temporal/parametric volumes with extended
regularization possibilities in 4D.
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8 Appendix

8.1 Definitions

Definition 8.1.0.1. Proximal mapping
The proximal mapping with respect to a convex function f is defined as

x? = (Id + ν f )−1(ξ) = Pν(ξ) = arg min
x

‖x− ξ‖2
2

2
+ ν f (x) (8.1)

Definition 8.1.0.2. Convex Conjugate
Let F : CN 7→ R, then the convex conjugate (or Fenchel dual) is defined as

F?(y) = sup
x

< x, y > −F(x) (8.2)

For x ∈ CN the following norms are defined:

Definition 8.1.0.3. Lp norm

‖x‖p =

(
N

∑
n=1
|xn|p

) 1
p

(8.3)

Definition 8.1.0.4. L2 norm

‖x‖2 =

√√√√ N

∑
n=1
|xn|2 (8.4)

Definition 8.1.0.5. L∞ or Chebyshev norm

‖x‖∞ = lim
p→∞
‖x‖p = max{|xi| | i = 1, · · · , N} (8.5)
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Definition 8.1.0.6. L0 norm (no real norm)

‖x‖0 = lim
p→0
‖x‖p

p = card{i ≤ N | xi 6= 0} (8.6)

Definition 8.1.0.7. Frobenius norm
For x ∈ CN×M the Frobenius norm is defined as

‖x‖frob =

√√√√ M

∑
m=1

N

∑
n=1
|xm,n|2 (8.7)

Definition 8.1.0.8. Nuclear norm
For x ∈ CN×M and σn being the singular values of x the Nuclear norm is
defined as

‖x‖? =
min(M,N)

∑
n=1

σn (8.8)

Definition 8.1.0.9. Schatten p-norm
For x ∈ CN×M and σn being the sorted singular values of x, i.e. σi ≥ σi + 1,
the Schatten p-norm is defined as

‖x‖p =

(
min(M,N)

∑
n=1

σ
p
n

) 1
p

(8.9)

Definition 8.1.0.10. Scalar product for functions on L2(Ω)
f , g ∈ L2(Ω), Ω = C

< f , g >=
∫
Ω

dx f (x)g(x) < ∞

Definition 8.1.0.11. Adjoint operator
The adjoint or hermitean-conjugate KH of a linear operator K ∈ L(X ,Y) is

defined as
< KHy, x >=< y, Kx > ∀x ∈ X , y ∈ Y

Definition 8.1.0.12. Signal-to-Error-Ratio
The signal-to-error-ratio SER in dB between a reference vector x and y,

x, y ∈ CN is defined as

SER(x, y) = −10 log10
‖x− y‖2

2
‖x‖2

2
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Definition 8.1.0.13. Root-Mean-Squared-Error
The Root-Mean-Squared-Error RMSE between a two vectors x and y, x, y ∈

CN is defined as

RMSE(x, y) =
‖x− y‖2√

N

Definition 8.1.0.14. Peak-Signal-to-Noise-Ratio
The Peak-Signal-to-Noise-Ratio PSNR in dB for the noisy approximation y

of a noise-free vector x, x, y ∈ CN is defined as

PSNR(x, y) = −10 log10
max(x)2

‖x− y‖2
2

8.2 Discrete 2d-time forward and backward
differences

Definition 8.2.0.1. Discrete Forward-Differences
The discrete forward differences U = CNx×Ny×Nt , δ+x , δ+y , δ+t : U 7→ U with
Dirchlet boundary conditions are defined as

δ+x ui,j,t =

{
ui+1,j,t − ui,j,t if 0 ≤ i < Nx − 1,
0 if i = Nx − 1,

δ+y ui,j,t =

{
ui,j+1,t − ui,j,t if 0 ≤ j < Ny − 1,
0 if j = Ny − 1,

δ+t ui,j,t =

{
ui,j,t+1 − ui,j,t if 0 ≤ t < Nt − 1,
0 if t = Nt − 1,

(8.10)

Definition 8.2.0.2. Discrete Backward-Differences
The discrete backward differences on U = CNx×Ny×Nt , δ−x , δ−y , δ−t : U 7→ U
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with Dirchlet boundary conditions are defined as

δ−x ui,j,t =

{
ui,j,t − ui−1,j,t if 0 < i ≤ Nx − 1,
0 if i = 0,

δ−y ui,j,t =

{
ui,j,t − ui,j−1,t if 0 < j ≤ Ny − 1,
0 if j = 0,

δ−t ui,j,t =

{
ui,j,t − ui,j,t−1 if 0 < t ≤ Nt − 1,
0 if t = 0,

(8.11)

Definition 8.2.0.3. Adjoint of discrete Forward-Differences
The adjoint of discrete forward differences U = CNx×Ny×Nt , δ∗+x , δ∗+y , δ∗+t :
U 7→ U with Dirchlet boundary conditions are defined as

δ∗+x ui,j,t =


u2,j,t if i = 1
ui+1,j,t − ui,j,t if 0 < i < Nx,
−uNx,j,t if i = Nx,

δ∗+y ui,j,t =


ui,2,t if j = 1
ui,j+1,t − ui,j,t if 0 < j < Ny,
−ui,Ny,t if j = Ny,

δ∗+t ui,j,t =


ui,j,2 if t = 1
ui,j,t+1 − ui,j,t if 0 < t < Nt,
−ui,j,Nt if t = Nt,

(8.12)

Definition 8.2.0.4. Adjoint of discrete Backward-Differences
The discrete backward differences on U = CNx×Ny×Nt , δ∗−x , δ∗−y , δ∗−t : U 7→
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U with Dirchlet boundary conditions are defined as

δ∗−x ui,j,t =


u1,j,t if i = 1
ui,j,t − ui−1,j,t if 0 < i < Nx,
−uN−1,j,t if i = Nx,

δ∗−y ui,j,t =


ui,1,t if j = 1
ui,j,t − ui,j−1,t if 0 < j < Ny,
−ui,M−1,t if j = Ny,

δ∗−t ui,j,t =


ui,j,1 if t = 1
ui,j,t − ui,j,t−1 if 0 < t < Nt,
−ui,j,Nt−1 if t = Nt,

(8.13)

8.3 Discrete 2d-time operations

We denote by Nx and Ny the image space dimensions, by Nt the number of
time-frames, by U = CNx×Ny×Nt the space of image sequences and by C the
number of coils. Spatio-temporal weights are denoted as β = (µx, µy, µt).

Definition 8.3.0.1. Gradient
The gradient is defined as

∇β : U 7→ U 3

(∇βu)i,j,t =

µx(δ+x u)i,j,t
µy(δ+y u)i,j,t
µt(δ

+
t u)i,j,t

 =

v1

v2

v3

 (8.14)

Definition 8.3.0.2. Divergence
The divergence is defined as the adjoint operation to the gradient, i.e.
∇∗β = −div1

β

div1
β : U 3 7→ U

(div1
β v)i,j,t =

(
µx(δ

∗−
x v1)i,j,t + µy(δ

∗−
y v2)i,j,t + µt(δ

∗−
t v3)i,j,t

) (8.15)
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Definition 8.3.0.3. Symmetrized Gradient
The symmetrized gradient is defined as

Eβ : v = (v1, v2, v3) ∈ U 3 7→ U 6

(Eβv)i,j,t =



µx(δ−x v1)i,j,t
µy(δ−y v2)i,j,t
µt(δ

−
t v3)i,j,t

1
2

(
µy(δ−y v1)i,j,t + µx(δ−x v2)i,j,t

)
1
2

(
µt(δ

−
t v1)i,j,t + µx(δ−x v3)i,j,t

)
1
2

(
µt(δ

−
t v2)i,j,t + µy(δ−y v3)i,j,t

)


=



w1

w2

w3

w4

w5

w6


(8.16)

Definition 8.3.0.4. Symmetrized Divergence
The symmetrized divergence is defined as the adjoint operation to the
gradient, i.e. E∗β = −div2

β

div2
β : w = (w1, w2, w3, w4, w5, w6) ∈ U 6 7→ U 3

(div2
β v)i,j,t =

µx(δ∗+x w1)i,j,t + µy(δ∗+y w4)i,j,t + µt(δ
∗+
t w5)i,j,t

µx(δ∗+x w4)i,j,t + µy(δ∗+y w2)i,j,t + µt(δ
∗+
t w6)i,j,t

µx(δ∗+x w5)i,j,t + µy(δ∗+y w6)i,j,t + µt(δ
∗+
t w3)i,j,t

 (8.17)

8.3.1 Norms

We denote by Nx and Ny the image space dimensions, by Nt the number
of time-frames, by U = CNx×Ny×Nt the space of image sequences and by Nc
the number of coils.

The L2 norm is defined for d ∈ CNx×Ny×Nt×Nc as

‖d‖2
2 = ∑

i,j,t,c
|di,j,t,c|2

The L1 norm ‖ · ‖1 is defined - abusing notation for v = (v1, v2, v3) ∈ U3 -
as

‖v‖1 = ∑
i,j,t

√
|v1

i,j,t|2 + |v2
i,j,t|2 + |v3

i,j,t|2
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and for w = (w1, w2, w3, w4, w5, w6) ∈ U6 as

‖w‖1 = ∑
i,j,t

√
|w1

i,j,t|2 + |w2
i,j,t|2 + |w3

i,j,t|2 + 2|w4
i,j,t|2 + 2|w5

i,j,t|2 + 2|w6
i,j,t|2,

where the factor 2 in front of w4, w5, w6 compensates for the symmetrization
of the Jacobian in the definition of Eβ.

8.3.2 Proximal mappings

The relevant proximal mappings (Definition 8.1) in this work are computed
as

• F∗(y) = I{‖·‖∞,η≤1}(y)

PσF∗(ξ) = Pη(ξ) = arg min
y

‖y− ξ‖2
2

2
+ I{‖·‖∞,η≤1}(y),

which is the point-wise projection on the L∞ unit ball for each voxel ξi,j,t

Pη(ξ)i,j,t =
ξi,j,t

max
(

1,
|ξi,j, f |

η

)
• F∗(y) = 1

2λ‖y‖2
2+ < d, y >

PσF∗(ξ) = PL2(ξ) =
ξ − σd
1 + σ

λ

• G(x) = λL‖x‖∗ = λL‖ΣL‖1,

x = UΣLVH, Σ = diag(σi)

σ̂i = P∗,η(σi) = sign(σi)max(0, |σi| − η)

L̂ = UΣ̂VH
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8.3.3 MR Adjoint

Using the definition the scalar product 8.1.0.10 and adjointness 8.1.0.11 the
adjoint of the MR signal equation 3.1 can be computed as follows

< y, Kx > =
Nc

∑
j=1

∫
d~k s(~k)

∫
d3r m⊥(~r)cj(~r)ei<~k,~r>︸ ︷︷ ︸

K x

=

∫
d3rm⊥(~r)

Nc

∑
j=1

cj(~r)
∫

d~k s(~k)e−i<~k,~r>

︸ ︷︷ ︸
KHy

=< KH y, x >

8.4 Variational Approach for Coil-Sensitivity
Estimation

Variational approach to estimate coil sensitivities from temporal averaged
dynamic MRI data as described in [120].

1. Compute time-averaged, coil-wise reconstructions (cj) for the j-th coil,
and u0 with masks Mt

cj = arg min
v

T

∑
t=1

1
2
‖dj,t −MtF (v)‖2

2

⇒ cj = F−1

(
1
M

T

∑
t=1

dj,t

)

where M =
T

∑
t=1

Mt

u0 =

√√√√ Nc

∑
j=1
|cj| · exp{i

Nc

∑
j=1

∠(cj)}

(8.18)
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2. Get absolute value of coil-sensitivities bj with H1-regularization, µ =

10−5

|bj| = arg min
b

µ

2
‖bu0 − |cj|‖2

2 +
1
2
‖∇b‖2

2

⇒ |bj| = (µuH
0 u0 + ∆)−1(µu0 − |cj|)

normalize bj : |bj| =
|bj|

Nc
∑

i=1
|bi|2

(8.19)

3. Choose j0, such that |cj0 | is maximal, w: weights for area of already
explored coil-sensitivities

bj0 = |bj0 | → initialize with zero-phase

uj0 = arg min
u

νTGV(u) +
1
2
‖bj0u− cj0‖

2
2

for k = 2, · · · , Nc

weights w =
k

∑
l=1
|ujl |

jk = max
jk
|bjk · cjk−1 | : most overlap with cjk−1

∠(bjk) = arg min
v

µ

2
‖∇v‖2

2 +
1
2
‖w
(
vujk−1 |bjk | − cjk

)
‖2

2

bjk = |bjk | · exp
(
i∠bjk

)
ujk = arg min

u
νTGV(u) +

k−1

∑
i=0

1
2
‖bji u− c0k‖

2
2

end

(8.20)

4. Post-process

bj = arg min
b

µ

2 ∑
j

(
‖b‖2

2 +
1
2
‖ub− cj‖2

2

)
(8.21)

8.5 Algorithms
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8.5.1 k-t SPARSE SENSE reconstruction - primal dual

Algorithm 1: Primal-dual algorithm for solving k-t-SPARSE-SENSE
[72] regularized dynamic MR reconstruction

Initialize: u, ū, p, σ, τ > 0
Iterate:

Dual Update:
p← PλS (p + σ∂tū)
r ← PL2 (r + σKū)

Primal Update:
u+ ← u− τ

(
−divt p+ + KHr+

)
Stepsize Update (Definition of S and H see Section 3.5):

σ+ ← S
(

στ, ‖(u
+)−u‖

‖H(u+)−u‖

)
τ+ ← σ+

Extrapolation and update:
ū← 2u+ − u
u← u+
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8.5.2 Low-rank plus Sparse reconstruction - primal dual

Algorithm 2: Primal-dual algorithm for solving L+S [90] regular-
ized dynamic MR reconstruction

Initialize: L, L̄, S, S̄, p, σ, τ = 1√
12+2‖K‖

Iterate:

Dual Update:
p← PλS (p + σ∂tS̄)
r ← PL2 (r + σK(L̄ + S̄))

Primal Update:
L+ ← P∗,τλL

(
L− τKHr+

)
S+ ← S− τ

(
KHr+ − divt p+

)
Extrapolation and update:
L̄← 2L+ − L
L← L+

S̄← 2S+ − S
S← S+
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8.5.3 spatio-temporal TV reconstruction - primal dual

Algorithm 3: Primal-dual algorithm for solving TGV regularized
dynamic MR reconstruction

Initialize: u, ū, p, σ, τ > 0
Iterate:

Dual Update:
p← Pα1

(
p + σ∇βū

)
r ← PL2 (r + σKū)

Primal Update:

u+ ← u− τ
(
−div1

β p+ + KHr+
)

Stepsize Update (Definition of S and H see Section 3.5):

σ+ ← S
(

στ, ‖(u+)−u‖
‖Htv(u+)−u‖

)
τ+ ← σ+

Extrapolation and update:
ū← 2u+ − u
u← u+
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8.5.4 spatio-temporal TGV2 reconstruction - primal dual

Algorithm 4: Primal-dual algorithm for solving TGV regularized
dynamic MR reconstruction

Initialize: (u, w), (ū, w̄), (p, q), σ, τ > 0
Iterate:

Dual Update:
p← Pα1

(
p + σ∇βū− w̄

)
q← Pα0

(
q + σEβw̄

)
r ← PL2 (r + σKū)

Primal Update:

u+ ← u− τ
(
−div1

β p+ + KHr+
)

w+ ← w− τ
(
−p+ − div2

β q+1
)

Stepsize Update:

σ+ ← S
(

στ, ‖(u+,w+)−(u,w)‖
‖H((u+,w+)−(u,w))‖

)
τ+ ← σ+

Extrapolation and update:
(ū, w̄)← 2(u+, w+)− (u, w)
(u, w)← (u+, w+)
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8.5.5 spatio-temporal ICTV reconstruction - primal dual

Algorithm 5: Primal-dual algorithm for solving ICTV regularized
dynamic MR reconstruction

Initialize: (u, v), (ū, v̄, ), (p1, p2), σ, τ > 0
Iterate:

Dual Update:
p1 ← Pγ1α1

(
p1 + σ∇β1(ū− v̄)

)
p2 ← Pγ2α1

(
p2 + σ∇β2 v̄

)
r ← PL2 (r + σKū)

Primal Update:

u+ ← u− τ
(
−div1

β1
p+1 + KHr+

)
v+ ← v− τ

(
−div1

β1
p+1 − div1

β2
p+2
)

Stepsize Update (Definition of S and H see Section 3.5):

σ+ ← S
(

στ, ‖(u+,v+)−(u,v)‖
‖H((u+,v+)−(u,v))‖

)
τ+ ← σ+

Extrapolation and update:
(ū, v̄← 2(u+, v+)− (u, v)
(u, v)← (u+, v+)
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8.5.6 spatio-temporal ICTGV2 reconstruction - primal dual

Algorithm 6: Primal-dual algorithm for solving ICTGV regularized
dynamic MR reconstruction

Initialize: (u, v, w1, w2), (ū, v̄, w̄1, w̄2), (p1, q1, p2, q2), σ, τ > 0
Iterate:

Dual Update:
p1 ← Pγ1α1

(
p1 + σ∇β1(ū− v̄)− w̄1

)
q1 ← Pγ1α0

(
q1 + σEβ1w̄1

)
p2 ← Pγ2α1

(
p2 + σ∇β2 v̄− w̄2

)
q2 ← Pγ2α0

(
q2 + σEβ2w̄2

)
r ← PL2 (r + σKū)

Primal Update:

u+ ← u− τ
(
−div1

β1
p+1 + KHr+

)
w+

1 ← w1 − τ
(
−p+1 − div2

β1
q+1
)

v+ ← v− τ
(
−div1

β1
p+1 − div1

β2
p+2
)

w+
2 ← w2 − τ

(
−p+2 − div2

β2
q+2
)

Stepsize Update (Definition of S and H see Section 3.5):

σ+ ← S
(

στ, ‖(u+,v+,w+
1 ,w+

2 )−(u,v,w1,w2)‖
‖H((u+,v+,w+

1 ,w+
2 )−(u,v,w1,w2))‖

)
τ+ ← σ+

Extrapolation and update:
(ū, v̄, w̄1, w̄2)← 2(u+, v+, w+

1 , w+
2 )− (u, v, w1, w2)

(u, v, w1, w2)← (u+, v+, w+
1 , w+

2 )
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8.5.7 Iteratively-regularized Gauss-Newton Algorithm for
qMRI

Algorithm 7: Iteratively regularized Gauss-Newton algorithm reg-
ularization for qMRI

Initialize:
k = 0, uk = (q1, · · · , qNq) = 0, λ, δ, γ, qδ, qγ

while k < Nmax do
Initialize DS|u=uk , DSH|u=uk
Compute Ĩp = Ip + DSpuk − Sp(uk), p = 1, · · · , Np

Choose regularization strategy:
if RL2(u) then

Compute uk+1 with algorithm 8

end
if R(u) = TGV2

sep(u) then
Compute uk+1 with algorithm 9

end
if R(u) = TGV2

frob(u) then
Compute uk+1 with algorithm 10

end
δ← δqδ

γ← δqδ

end
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Algorithm 8: Conjugate gradient method for L2 regularized sub-
problem of Alg. 8.5.7 for qMRI

Definitions:
U = CNx×Ny , Initialize:

u ∈ UP, M = λDSHDS + δId, r = λDSH Ĩ + δuk

Solve with Conjugate-Gradient Method
r0 = r−Mx0, p0 = r0
while k < Nmax do

αk =
<rk,rk>

<pk,Mpk>

u+ ← uk + αk pk
r+ ← rk + αk Mpk

βk =
<r+,r+>
<r,r>

p+ = r+ + βk pk
end
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Algorithm 9: Primal-Dual method for TGV2
sep regularized subprob-

lem of Alg. 8.5.7 for qMRI

Definitions:
U = CNx×Ny ,
∇ : U → U2, E : U2 → U3

Initialize:
σ, τ = 1√

12
ui, ūi ∈ U, vi, v̄i ∈ U2, pi ∈ U2, qi ∈ U3,i = 1, · · · , P,

M = λDSHDS + ( 1
τ + δ)Id, rpart = λDSH Ĩ + δuk

while k < Nmax do

Dual Update:
pi ← Pγ (pi + σ(∇ūi − v̄i))
qi ← P2γ (qi + σE v̄i)

Primal Update:
u+

i ← PL2(ui + τ div1 p+i )
v+i ← v− τ(−p+i − div2 q+i )

Extrapolation and Update:
(ūi, v̄i)← 2(u+

i , v+i )− (ui, vi)

(ui, vi)← (u+
i , v+i )

end

Pη(ξ)j,l =
ξ j,l

max
(

1,
|ξ j,l |

η

) and PL2(ξ) = M−1
(

rpart +
ξ

τ

)
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Algorithm 10: Primal-Dual method for TGV2
frob regularized sub-

problem of Alg. 8.5.7 for qMRI

Definitions:
U = CN, N = NxNy, space of vectorized 2d parameter images,
∇ : UP → UP×2, E : UP×2 → UP×3

Initialize:
σ, τ = 1√

12
, u, ū ∈ UP, v, v̄ ∈ UP×2, p ∈ UP×2, q ∈ UP×3,

M = λDSHDS + ( 1
τ + δ)Id, rpart = λDSH Ĩ + δuk

while k < Nmax do

Dual Update:
p← Pγ (p + σ(∇ū− v̄))
q← P2γ (q + σE v̄)

Primal Update:
u+ ← PL2(u + τ div1 p+)
v+ ← v− τ(−p+ − div2 q+)

Extrapolation and Update:
(ū, v̄)← 2(u+, v+)− (u, v)
(u, v)← (u+, v+)

end

Pη(ξ)i,p =
ξi,p

max
(

1, |ξ|frob
η

) and PL2(ξ) = M−1
(

rpart +
ξ

τ

)
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122, 123, 125, 134–138

IRLL Inversion-Recovery-Look-Locker 119, 121, 122

ISMRM International Society for Magnetic Resonance
in Medicine 61

ISMRMRD ISMRM Raw Data 61

L+S Low Rank Plus Sparse Decomposition xiii, 41,
46, 47, 51, 69, 70, 72–74, 76–78, 80, 91, 92, 94,
95, 101, 104, 116
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Acronyms

LL Lock-Locker 123

MAP Maximum-A-Posteriori Estimator 29

MBR Model-Based Reconstruction 121–123, 125,
135, 139–141

MESE Multi-Echo-Spin-Echo 122

MIP Maximum-Intensity-Projection 94, 104

MRA Magnetic Resonance Angiography 17, 117

MRI Magnetic Resonance Imaging iv, 1, 143–145

NMR Nuclear Magnetic Resonance 119

NUFFT Non-Uniform Fast Fourier Transform 57

PACS Picture Archiving and Communication Sys-
tem 62

PCA Principal Component Analysis 40, 41, 60

PI Parallel Imaging 27, 30, 38, 47, 55, 58, 59, 67,
68, 75, 91

PSNR Peak-Signal-to-Noise-Ratio 92, 95, 125, 149

qMRI Quantitative MRI 119, 122, 123

RAVE RAdial Volumetric Encoding xviii, 17, 90–93,
122, 125, 127, 134–141

RF Radio Frequency 7–9, 12, 13

RIP Restricted Isometry Property 35

RMSE Root-Mean-Squared Error xii–xiv, 46, 54, 71,
73, 74, 84, 149

ROF Rudin-Osher-Fatemi 33

SAR Specific Absorption Rate 68

SE Spin Echo 12

SENSE Sensitivity Encoding 27

SER Signal-to-Error-Ratio xiv, 69, 73, 75, 77–80, 148

SMASH Simultaneous Acquisition of Spatial Harmon-
ics 27

SNR Signal-to-Noise Ratio, 23, 25, 28, 36, 44, 53, 55,
56, 120, 121, 125, 127, 133, 135, 140
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Acronyms

SOS Sum-Of-Squares reconstruction 70

SPIRiT Iterative Self-consistent Parallel Imaging Re-
construction From Arbitrary k-Space 27

SSFP Steady-State Free Precession 13, 16, 67, 69

SSIM Structural Similarity Index xii–xiv, 54, 69, 71,
73–75, 77–79, 84

TE Echo Time 12, 120

TGV Total Generalized Variation 36, 59

TI Inversion Time 125

TR Repetition Time 67, 91, 120

TV Total Variation 33, 59

TWIST Time-resolved angiography With Interleaved
Stochastic Trajectories 91, 93, 117

VFA Variable-Flip-Angle xviii, 119–125, 127, 133–
135, 139–141

VIBE Volume-Interpolated-Breathhold Examination
xviii, 122, 125, 127, 134, 139, 140

WM White Matter 119, 125, 126
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List of Symbols

BW Readout Bandwidth 24, 93

Ktrans Exchange rate constant between plasma and leakage space 90, 91

Nc Number of receiver coils 23, 155

Ne Number of samples along encoding direction 23, 57

Nr Number of samples along readout direction 23, 57

Nt Number of samples along outer temporal direction 31

Nx Number of pixels in x-image dimension 23

Ny Number of pixels in y-image dimension 23

∆t Temporal resolution 31, 91–94, 104, 116

H Hamiltonian 4

Σ Noise-Covariance Matrix 24, 60, 61

η Vector with Noise Samples 24

Ĉ Coil Sensitivity Operator 23, 31

DFT Discrete Fourier transform 22, 23, 31

K MR forward operator 23

U image space 23, 31, 38, 39, 151, 152

V data space 31

νe Fractional volume of contrast agent in leakage space 90

νp Fractional volume of contrast agent in blood plasma 90

spf Number of spokes per dynamic frame for golden-angle radial acquisi-
tions 92, 125, 141

cp Tracer concentration in blood plasma 90

kb Boltzmann’s constant 24

r Reduction factor 44, 56
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