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Abstract

In this thesis, we give a brief introduction to the topic of the fractional Laplacian and
present an analytical solution to the corresponding Dirichlet problem in the ball. All
the methods used to prove the result only make use of elementary methods, so no
pre-existing knowledge on the topic is necessary. We start by introducing the concept
of the fractional Laplacian and all the necessary techniques that we will make use of.
Next, we take functions that are well known from regular Laplacian analysis and rede-
fine them in the context of the fractional Laplacian. With these tools, we are able to
establish the main result, which can be found in Theorem 4.1, followed by an outlook
on how to further pursue the topic beyond the concepts of this thesis.

In dieser Arbeit werden wir den fraktionellen Laplace-Operator einführen und eine
analytische Lösung für das zugehörige Dirichlet-Problem im Ball präsentieren. Wir
werden uns dabei auf elementare Techniken beschränken, etwaiges Vorwissen zu diesem
Thema ist daher nicht notwendig. Nachdem wir uns mit dem Konzept des fraktionellen
Laplace-Operators vertraut gemacht haben, werden wir einige zusätzliche Konzepte
einführen, die wir später benötigen werden. Danach werden wir einige Funktionen, die
aus der Analysis des regulären Laplace-Operators bereits bekannt sind, im Kontext des
fraktionellen Laplace-Operators definieren. Mit diesen Hilfsmitteln sind wir schließlich
in der Lage, das Hauptresultat, welches in Theorem 4.1 formuliert wird, zu zeigen.
Abschließend geben wir einen Ausblick, wie die hier beschriebenen Konzepte und Ideen
über den Umfang dieser Arbeit hinaus weiter vertieft werden können.
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Introduction

Over the last decade, the analysis of pseudo-differential equations involving the so-
called fractional Laplace operator p�∆qs for s P p0, 1q has received a lot of attention.
The applications for these kinds of equations are numerous; as a model for fractional
diffusion (see [5, 8, 9, 19]) as well as an infinitesimal generator of Lévy processes (see
[13, 20]), the fractional Laplacian is used in various different topics such as electro-
magnetic fluids, ground-water solute transports, biology and finance.
In this thesis, we will consider the problem of analytically solving the equation

p�∆qsu � 0

in the ball Bρp0q for ρ ¡ 0 with Dirichlet boundary conditions, understood in a suitable
sense.
We first point out that there are a multitude of different ways to approach introducing
p�∆qs as a local operator, which are not necessarily equivalent with each other, as
is also shown in [15]. The operator obtained by the approaches that we are pursuing
in this thesis is also referred to as Riesz fractional Laplacian or integrated fractional
Laplacian, other approaches yield the so-called spectral fractional Laplacian or the
regional fractional Laplacian. Since we will only deal with the integrated one in this
thesis, we will omit the prefix and simply refer to p�∆qs as the fractional Laplacian
from now on. For a more broad introduction that showcases alternative definitions
for the global and local fractional Laplacian and the interplay between the resulting
operators, we refer to [6, 14, 15].
One of the essential differences between the Dirichlet problem involving the fractional
Laplacian as opposed to the regular Laplacian is that p�∆qs is non-local. As can be
seen in [15], it is necessary to give boundary conditions not only on the sphere BBρp0q,
but on the entire exterior space RnzBρp0q. So for the full problem, we consider the
equation #

p�∆qs u � 0 in Bρp0q
u � g in RnzBρp0q

(0.1)

for a sufficiently smooth given function g.
This thesis is structured as follows: In Chapter 1, we introduce some fundamental tools
that we require later on, Chapter 2 gives an introduction to the fractional Laplace
operator, showing off several equivalent definitions. Afterwards, in Chapter 3, we will
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8 Einleitung

take a look at several important functions known from regular Laplacian-analysis,
which we will then generalize in a way that allows them to be used in the framework
of the fractional Laplacian. The main result of this thesis is formulated in Theorem
4.1, and its respective proof can be found in Chapter 4. We will see how the functions
introduced in the previous chapter are used to give an analytical solution to (0.1). As
an interesting side result, we will also obtain a way of analytically solving the global
fractional Poisson equation

p�∆qs � f (0.2)

for a sufficiently smooth function f , see Theorem 4.6.
The content of this thesis follows the observations and ideas made by [2] and [7],
though we try to go a little more into detail on various statements and the respective
proofs.



1. Fundamental definitions and
concepts

For the entire thesis, let n P N be arbitrary but fixed.

Starting off, we establish various basic concepts that we are going to make use of later
on.

1.1. The Fourier Transform

One representation of the fractional Laplace operator, which we are going to use later,
relies on the concept of Fourier transformation. In order to give a proper definition,
we need the theorem of Plancherel as stated in [16, Theorem 3.12]:

Theorem 1.1 (Theorem of Plancherel). There is a unique operator F : L2pRnq Ñ
L2pRnq with

xFf,FgyL2pRnq � xf, gyL2pRnq @f, g P L2pRnq,
such that

pFfq pξq � 1

p2πqn{2
»
Rn

fpxqe�iξ�x dx,

for f P L1pRnq X L2pRnq. It holds true that

pF�1fqpxq � pFfqp�xq
almost everywhere for all f P L2pRnq.
The above setting is quite general, we will instead mostly work with the following
functional space:

Definition 1.2. The Schwartz space of rapidly decaying functions is defined as

S pRnq :�
"
f P C8pRnq

���� sup
xPRn
|xαDβfpxq|   8, @α, β P Nn

0

*
,

with S �pRnq denoting the topological dual space of S pRnq.
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10 1. Fundamental definitions and concepts

Remark 1.1. By equipping the Schwartz space with the family of seminorms

rf sNS pRnq :� sup
xPRn

max
|α|,|β| N

∣∣xαDβfpxq∣∣
for every N P N0, it becomes a locally convex topological space.

With this space, we can introduce the Fourier transform and its inverse in a well-
defined way, see [16, Chapter 3] for details.

Definition 1.3. For any f P S pRnq, we define the Fourier transform as

pfpξq :� pFfqpξq :� 1

p2πqn{2
»
Rn
fpxqe�iξxdx

and the inverse Fourier transform as

qfpxq :� pF�1fqpxq :� 1

p2πqn{2
»
Rn
fpξqeixξdξ.

Remark 1.2. By substituting ξ � 0 and x � 0 in the respective definitions above, we
obtain the identities

1

p2πqn{2
»
Rn
fpxqdx � pfp0q,

1

p2πqn{2
»
Rn

pfpξqdξ � fp0q.

1.2. The Gamma- and Beta-function

In order to solve certain integrals later on, we will need the concept of the gamma and
beta functions and their respective properties. A more detailed introduction to the
topic containing all the results below can be found in [18, Chapter 2]

Definition 1.4. The gamma function is defined for x P R as

Γpxq :�
» 8

0

tx�1e�tdt.

We give some elementary properties of the gamma function.

Proposition 1.5. The following identities hold:

Γpnq � pn� 1q! for any n P N,
Γptq � pt� 1qΓpt� 1q for any t ¡ 0,

21�2t
?
π

Γptq � Γp1
2
� tq

Γp2tq for any t ¡ 0,

ΓpsqΓp1 � sq � π

sinpπsq for any s P p0, 1q,

Γ
�1

2
� s

�
Γ
�1

2
� s

� � π

cospπsq for any s P p0, 1q.
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Definition 1.6. The Beta function is defined for any x, y ¡ 0 as

Bpx, yq :�
» 8

0

tx�1

p1 � tqx�y dt.

The next proposition will establish a connection between the beta and the gamma
function.

Proposition 1.7. The beta function can equivalently be written as

Bpx, yq �
» 1

0

tx�1p1 � tqy�1dt � ΓpxqΓpyq
Γpx� yq

for any x, y ¡ 0, see [12, page 908] for further details

1.3. Circle inversion with the center point x0

An essential tool for transforming certain integrals is the so-called circle inversion. In
the following, let r ¡ 0 and x0 P Brp0q.
Definition 1.8. We define the inversion of a point x P Rnztx0u with center x0 as

Kx0pxq :� x0 � r2 � |x0|2

|x� x0|2
px� x0q. (1.1)

Figure 1.1.: Inversion of a point x with center x0

To obtain a better understanding on how the above transformation works, we look at
the following two observations.



12 1. Fundamental definitions and concepts

Remark 1.3. Kx0 is an involution on Rnztx0u. For any x P Rnztx0u, the points
x0, x,Kx0pxq lie on one line, x0 separates x and Kx0pxq and the identity

|x0|2 � |x� x0| |Kx0pxq � x0| � r2 (1.2)

holds.

Proof.
It is easy to see that the mapping Kx0 is bijective. Now let x P Rnztx0u be arbitrary
and x� � Kx0pxq. From the definition of Kx0 , it is obvious that the three points lie on
one line. To see that x0 separates x and x�, we need to check that |x� x0| ¤ |x� � x|
and |x� � x0| ¤ |x� � x| hold. Straightforward estimation yields

|x� x0| ¤
�

1 � r2 � |x0|2

|x� x0|2

�
|x� x0| �

∣∣∣∣∣�px� x0q � r2 � |x0|2

|x� x0|2
px� x0q

∣∣∣∣∣
�

∣∣∣∣∣x0 � r2 � |x0|2

|x� x0|2
px� x0q � x

∣∣∣∣∣ � |x� � x|

as well as

|x� � x0| � r2 � |x0|2

|x� x0|2
|x� x0| ¤

�
1 � r2 � |x0|2

|x� x0|2

�
|x� x0| � |x� � x| .

Using the definition of Kx0 , we can easily prove identity (1.2):

|x0|2 � |x� � x0| |x� x0| � |x0|2 �
∣∣∣∣∣x0 � r2 � |x0|2

|x� x0|2
px� x0q � x0

∣∣∣∣∣ |x� x0|

� |x0|2 � r2 � |x0|2

|x� x0|2
|x� x0|2 � r2.

Finally, by using (1.2), we get

pKx0 �Kx0qpxq � Kx0px�q � x0 � r2 � |x0|2

|x� � x0|2
px� � x0q

� x0 � r2 � |x0|2

pr2�|x0|2q2
|x�x0|2

r2 � |x0|2

|x� x0|2
px� x0q � x,

showing that Kx0 is also an involution. l

Proposition 1.9. Let x� and y� be the inversions of x P Rnztx0u and y P Rnztx0u
respectively. Then
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1. If x P BBrp0q, then x� P BBrp0q,
2. If x P Brp0q, then x� P RnzBBrp0q and vice versa,

3.

|x� x0|2

pr2 � |x0|2qpr2 � |x|2q �
1

|x�|2 � r2
, (1.3)

4.

|detpDKx0pxqq| �
�
|x� � x0|
|x� x0|


n

, (1.4)

where DKx0pxq denotes the Jacobian of Kx0 evaluated at x,

5.

|x� � y�| � �
r2 � |x0|2

� |x� y|
|x� x0| |y � x0|

. (1.5)

Proof.
For the sake of simplicity and without loss of generality, we choose the center of the
point inversion at zero, meaning x0 � 0. The general case can be proven by using the
Pythagorean theorem, see e.g. [7, Proposition A.3].

1. Let x P BBrp0q, meaning |x| � r. Then we have

|x�| �
∣∣∣∣ r2

|x|2
x

∣∣∣∣ � r2

|x|
� r

and therefore x� P BBrp0q.
2. For x P Brp0q we have |x|   r, which yields

|x�| �
∣∣∣∣ r2

|x|2
x

∣∣∣∣ � r2

|x|
¡ r.

Similarly, it can be shown that if x P RnzBr, then x� P Br.

3. By using (1.2), we can calculate

1

|x�|2 � r2
� 1

r4

|x|2 � r2
� 1

r4�r2|x|2
|x|2

� |x|2

r2pr2 � |x|2q ,

which shows identity (1.3).
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4. First, we evaluate the Jacobian of K0:

DK0pxq � r2

|x|4

�����
2x2

1 � |x|2 2x1x2 . . . 2x1xn
2x1x2 2x2

2 � |x|2 . . . 2x2xn
...

. . .
...

2x1xn 2x2xn . . . 2x2
n � |x|2

����,
where x � px1, x2, . . . , xnqT P Rn. Since K0 is invariant under rotation, we can
assume without loss of generality that x � |x| e1, which simplifies the Jacobian
to

DK0pxq � r2

|x|4

�����
|x|2 0 . . . 0

0 � |x|2 . . . 0
...

. . .
...

0 0 . . . � |x|2

����,
yielding

|detpDK0pxqq| �
∣∣∣∣ r2n

|x|4n
p�1qn�1 |x|2n

∣∣∣∣ � 1

|x|n
r2n

|x|n
� |x

�|n

|x|n
.

5. We write x � px1, . . . , xnq and y � py1, . . . , ynq and compute

|x� � y�| � r2

∣∣∣∣ x|x|2 � y

|y|2

∣∣∣∣ � r2

|x|2 |y|2

����x |y|2 � y |x|2
����

� r2

|x|2 |y|2

d
ņ

i�1

�
xi |y|2 � yi |x|2

�2

� r2

|x|2 |y|2

d
ņ

i�1

�
x2
i |y|

4 � 2xiyi |x|2 |y|2 � y2
i |x|

4
�

� r2

|x|2 |y|2

d
|x|2 |y|4 � 2 |x|2 |y|2

ņ

i�1

xiyi � |y|2 |x|4

� r2

|x| |y|

d
|y|2 � 2

ņ

i�1

xiyi � |x|2

� r2

|x| |y|

d
ņ

i�1

pxi � yiq2 � r2 |x� y|
|x| |y|

,

proving the last identity.

l



2. The fractional Laplacian and its
framework

From now on, for this and the upcoming chapters, let s P p0, 1q be arbitrary but fixed.

As we pointed out in the introduction, there are various different ways to define the
fractional Laplace operator. Our first definition will work via the Cauchy principal
value integral:

Definition 2.1. Let u P S pRnq. Then we define

p�∆qsupxq :� Cpn, sq p.v.
»
Rn

upxq � upyq
|x� y|n�2s dy (2.1)

with

Cpn, sq :� 22sΓpn
2
� sq

π
n
2 Γp1 � sq . (2.2)

Remark 2.1.

• The singularity in the integral in (2.1) is in general not integrable, which means
it has to be understood in the sense of a Cauchy principal value, namely

p.v.

»
Rn

upxq � upyq
|x� y|n�2s dy :� lim

ρÑ0

»
RnzBρpxq

upxq � upyq
|x� y|n�2s dy.

• The classical Laplacian can be expressed in a similar way, see [6, page 9].

By shifting the singularity in the above integral from an arbitrary point x to the origin
(see [17, Lemma 3.2] for a detailed proof), we obtain the following identity:

Proposition 2.2. Let p�∆qs be the fractional Laplacian defined by (2.1) and let
u P S pRnq. Then we have

p�∆qsupxq � Cpn, sq
2

»
Rn

2upxq � upx� yq � upx� yq
|y|n�2s dy. (2.3)

15



16 2. The fractional Laplacian and its framework

The definition of the fractional Laplacian via (2.3) is motivated by the mathematical
problem of modeling a random walk with arbitrarily long jumps, see [20].

Additionally, one can show that the fractional Laplacian can be equivalently defined
via Fourier transformation.

Proposition 2.3. Let p�∆qs be the fractional Laplacian defined by (2.1) and let
u P S pRnq. Then we have

p�∆qsupxq � F�1
�
|ξ|2s pupξq� pxq. (2.4)

We refer to [6, Lemma 3.1.1] for the proof. The constant Cpn, sq was chosen to guar-
antee the equivalencies between (2.1), (2.3) and (2.4), as can also be seen in [6].

Notice that this definition gives a visible connection between the regular and the
fractional Laplacian in the following way:

Remark 2.2. Recall that for u P S pRnq, the classical Laplacian can be written as

�∆upxq � �∆pF�1pûpxqqq � �∆

�
1

p2πqn{2
»
Rn
ûpξqeixξdξ



� 1

p2πqn{2
»
Rn
|ξ|2 ûpξqeixξdξ � F�1p|ξ|2 ûpξqq,

which makes p�∆qs a natural generalization of the classical Laplacian with the limit
cases

lim
sÑ1

p�∆qs u � �∆u and lim
sÑ0

p�∆qs u � u,

see [17] for further details about the subject.

We underline that only functions defined on the whole space Rn can be applied to the
fractional Laplacian, therefore the problem (0.1) has to be understood in the following
way: For a function u in the ball Bρ, ρ ¡ 0, we define the following extension:

rupxq :�
#
upxq for x P Bρp0q
0 for x P RnzBρp0q.

Whenever we write p�∆qsu for such a function, it will be understood as p�∆qsru.

The next regularity result will be useful later on. The respective proof can be found
in [19, Proposition 2.1.7].
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Proposition 2.4. Let ε ¡ 0 and u P C0,2s�ε. Then the mapping

Rn Ñ Rn,

x ÞÑ p�∆qsupxq (2.5)

is continuous.

As is the case of many other differential equations, it will be useful to define a solution
to the problem in a weak sense. To do so, we introduce additional weighted functional
spaces.

Definition 2.5. For s P p0, 1q, we define the weighted L1 space as

L1
spRnq :�

"
u P L1

locpRnq
���� »

Rn

|upxq|
1 � |x|n�2sdx   8

*
,

along with the weighted L1-norm

‖u‖L1
spRnq :�

»
Rn

|upxq|
1 � |x|n�2sdx.

Remark 2.3. It is possible to allow the fractional Laplacian to be defined for a
broader set of functions. Indeed, for any ε ¡ 0 and x P Rn, the term p�∆qsupxq,
as given by (2.1), is well defined at x for any u P L1

spRnq that is either C0,2s�ε

for s   1
2

or C1,2s�ε�1 for s ¥ 1
2

in a neighborhood of x. A proof can be found
in [19, Proposition 2.1.4].

Definition 2.6. For any s P p0, 1q, the weighted Schwartz space is defined as

SspRnq :�
"
f P C8pRnq

���� @α P Nn
0 , sup
xPRn

 �
1 � |x|n�2s

�
|Dαfpxq|(   8

*
,

with S �
s pRnq denoting the topological dual space of SspRnq.

Remark 2.4. By equipping the weighted Schwartz space with the family of seminorms

rf s|α|SspRnq :� sup
xPRn

p1 � |x|n�2sq |Dαfpxq| ,

for every α P Nn
0 ,it becomes a locally convex topological space.

In order to establish a well-defined framework for a weak solution, we need the following
statement:

Lemma 2.7. Let u P S pRnq. Then p�∆qsu P SspRnq.
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Proof.
We will prove the statement via induction over |α| for α P Nn

0 . Starting with the basis,
let α � 0, which means we need to prove�

1 � |x|n�2s
�
|p�∆qsupxq|   8

for any x P Rn. This follows by showing that for any fixed x P RnzB1p0q, the bound

|p�∆qsupxq| ¤ cn,s

|x|n�2s

holds. To see this, we first use a Taylor expansion of u to obtain

upx� yq � upxq �∇upxqJ � y � 1

2
yJ �D2upξ1q � y,

upx� yq � upxq �∇upxqJ � y � 1

2
yJ �D2upξ2q � y,

where D2upξiq is the Hessian matrix of u evaluated at ξi P B|y|pxq for i P t1, 2u. We
can now estimate

|p�∆qsupxq|
¤
»
|y|  |x|

2

|2upxq � upx� yq � upx� yq|
|y|n�2s dy � 2

»
|y|¥ |x|

2

|upxq � upx� yq|
|y|n�2s dy

¤
»
|y|  |x|

2

|D2upξq|
|y|n�2s�2 � 2 |upxq|

»
|y|¥ |x|

2

1

|y|n�2sdy �
2n�2s�1

|x|n�2s

»
|y|¥ |x|

2

|upx� yq| dy

¤ cp1qn,s
∣∣D2upξq∣∣� cp2qn,s |upxq|�

2n�2s�1

|x|n�2s ‖u‖L1pRnq

¤ cp1qn,s

�
|x|
|ξ|


n�2s p1 � |ξ|qn�2

|x|n�2s

∣∣D2upξq∣∣� cp2qn,s
p1 � |x|qn�2

|x|n�2s |upxq|� 2n�2s�1

|x|n�2s ‖u‖L1pRnq,

where ξ P B|y|pxq. We see that

|ξ| ¥ |x|� |y| ¥ |x|� |x|
2
¥ |x|

2

and therefore

|x|
|ξ|

¤ 2.
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which ultimately yields

|p�∆qsupxq|
¤ 1

|x|n�2s

�
cp1qn,s2

n�2sp1 � |ξ|qn�2
∣∣D2upξq∣∣� cp2qn,sp1 � |x|qn�2 |upxq|� 2n�2s�1‖u‖L1pRnq

	
¤ rcn,s
|x|n�2s

�
sup
zPRn

 p1 � |z|qn�2
∣∣D2upzq∣∣(� sup

zPRn

 p1 � |z|qn�2 |upzq|(� ‖u‖L1pRnq



� cn,s

|x|n�2s ,

where we have made use of the fact that u P S pRnq.
With the basis proven, we now assume that�

1 � |x|n�2s
�
|Dαp�∆qsupxq|   8

for a fixed α P Nn
0 and let k P t1, ...nu be also fixed. Since Bku P S pRnq, this estimate

also holds true for Bku. Additionally, by making use of (2.4), we have that

Bxkp�∆qsupxq � BxkF�1
�
|ξ|2s pupξq� pxq � F�1

�
iξk |ξ|2s pupξq� pxq

� F�1
�
|ξ|2s pBxkupξq	 pxq � p�∆qsBxkupxq,

which results in�
1 � |x|n�2s

�
|BkDαp�∆qsupxq| � �

1 � |x|n�2s
�
|Dαp�∆qsBkupxq|   8,

finishing the induction. l

The Poisson problem (0.2), which we will solve along the main result in Chapter
4, can now be considered in a distributional sense.

Definition 2.8. Let f P S �pRnq. We say that u P S �
s pRnq is a solution of (0.2) in

the distributional sense if

xu, p�∆qsϕy �
»
Rn
fpxqϕpxqdx for any ϕ P S pRnq,

where x�, �y is the duality pairing of S �
s pRnq and SspRnq.

In addition, we want to keep the following estimate in mind:

Remark 2.5. For any u P L1
spRnq and v P SspRnq, we have

|xu, vy| ¤
»
Rn
|upxq| |vpxq| dx �

»
Rn

|upxq|
1 � |x|n�2s

�
1 � |x|n�2s

�
|vpxq| dx

¤ sup
xPRn

 �
1 � |x|n�2s

�
|vpxq|( »

Rn

|upxq|
1 � |x|n�2sdx

� rvs0SspRnq‖u‖L1
spRnq   8.





3. Important functions and
properties

In this chapter we are going to give an introduction to three functions along with some
of their most important properties. All the gathered results are going to be applied in
Chapter 4.

3.1. The s-mean value property

The first function that we want to discuss will be a very useful tool in showing if a
function is s-harmonic.

Definition 3.1. For any ρ ¡ 0 fixed, we define

Aρpxq �
$&%cpn, sq �

ρ2s

|x|n p|x|2 � ρ2qs for x P RnzBρp0q
0 for x P Bρp0q,

for all x P Rn, where

cpn, sq :� sinpπsqΓpn
2
q

π
n
2
�1

(3.1)

is a dimensional constant.

The choice of the constant cpn, sq will become apparent in the following normalization
property.

Lemma 3.2. For any ρ ¡ 0, we have»
|x|¥ρ

Aρpxqdx � 1. (3.2)

21
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Proof.
We first use the transformation r � Φpxq :� |x| to change to polar coordinates»

|x|¥ρ
Aρpxqdx � cpn, sq

»
|x|¥ρ

ρ2s

|x|n p|x|2 � ρ2qsdx

� cpn, sq
» 8

ρ

ρ2s

rnpr2 � ρ2qs �
1

|detpDΦq|dr

� cpn, sq
» 8

ρ

ρ2s

rnpr2 � ρ2qs �
Sn�1

r1�n dr

� cpn, sqSn�1

» 8

ρ

ρ2s

rpr2 � ρ2qsdr,

where Sn�1 is the measure of the pn� 1q-dimensional unit sphere. By plugging in the
values of both Sn�1 and cpn, sq, we further get»

|x|¥ρ
Aρpxqdx � sinpπsqΓpn

2
q

π
n
2
�1

� 2π
n
2

Γpn
2
q
» 8

ρ

ρ2s

rpr2 � ρ2qsdr

� 2 sinpπsq
π

» 8

ρ

1

rp r2
ρ2
� 1qsdr.

Substituting t � r2

ρ2
� 1 along with (A.3) yields»
|x|¥ρ

Aρpxqdx � sinpπsq
π

» 8

0

1

pt� 1qtsdy � 1.

l

One might recall that a function is harmonic with respect to the regular Laplacian if
and only if the so-called mean value property holds true. We now want to introduce a
suitable counterpart for the fractional Laplacian.

Definition 3.3. Let x P Rn be arbitrary but fixed and u P L1
spRnq be continuous in a

neighborhood of x. We say u has the s-mean value property at x if

upxq � pAρ � uq pxq
holds for any ρ ¡ 0 arbitrarily small. If this property holds true for any x P Ω � Rn,
then u is said to have the s-mean value property in Ω.

The upcoming theorem is vital since it shows us that a sufficiently smooth function
that has the s-mean value property, is also s-harmonic, which will give us a great
alternative method for showing s-harmonicity of a function.

Theorem 3.4. Let ε ¡ 0 and x P Rn. In addition, let u P L1
spRnq and the following

hold:
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1. u P C0,2s�ε in a neighborhood of x P Rn for s   1
2
,

2. u P C1,2s�1�ε in a neighborhood of x P Rn for s ¥ 1
2
.

If u has the s-mean value property at x, then we have

p�∆qsupxq � 0.

Proof.
Let x P Rn and ρ ¡ 0 be arbitrarily small. Then the s-mean value property of u along
with (3.2) yields»

|y|¥ρ

upxq � upx� yq
|y|n

�
|y|2 � ρ2

�s dy
� 1

ρ2s

�
upxq

»
|y|¥ρ

ρ2s

|y|n
�
|y|2 � ρ2

�sdy � »
|y|¥ρ

ρ2s

|y|n
�
|y|2 � ρ2

�supx� yqdy
�

� 1

cpn, sqρ2s

�
upxq

»
|y|¥ρ

Aρpyqdy �
»
|y|¥ρ

Aρpyqupx� yqdy



� 1

cpn, sqρ2s
pupxq � pAρ � uqpxqq � 0.

If we can show

lim
ρÑ0

»
|y|¥ρ

upxq � upx� yq
|y|n�2s dy � lim

ρÑ0

»
|y|¥ρ

upxq � upx� yq
|y|n

�
|y|2 � ρ2

�s dy, (3.3)

then we’re done since

p�∆qs upxq � Cpn, sq lim
ρÑ0

»
|y|¥ρ

upxq � upx� yq
|y|n�2s dy

� Cpn, sq lim
ρÑ0

»
|y|¥ρ

upxq � upx� yq
|y|n

�
|y|2 � ρ2

�s dy � 0.

Let R ¡ ρ
?

2 be fixed. We split the right hand side of (3.3) into two parts:»
|y|¥ρ

upxq � upx� yq
|y|n

�
|y|2 � ρ2

�s dy
�
»
|y|¥R

upxq � upx� yq
|y|n

�
|y|2 � ρ2

�s dy � »
ρ¤|y| R

upxq � upx� yq
|y|n

�
|y|2 � ρ2

�s dy
�: Iρpxq � rIρpxq.

We need to compute

lim
ρÑ0

Iρpxq �
»
|y|¥R

upxq � upx� yq
|y|n�2s dy, (3.4)

lim
ρÑ0

rIρpxq � lim
ρÑ0

»
ρ¤|y| R

upxq � upx� yq
|y|n�2s dy (3.5)



24 3. Important functions and properties

to prove identity (3.3). For |y| ¥ R ¡ ρ
?

2 ¡ 0, using |y|2 ¡ 2ρ2, we can estimate

|y|2

|y|2 � ρ2
� 1

1 � ρ2

|y|2
  1

1 � 1
2

� 2,

which implies

1�
|y|2 � ρ2

�s   2s

|y|2s
.

This, along with the fact that u P L1
spRnq, allows us to obtain

upxq � upx� yq
|y|n

�
|y|2 � ρ2

�s ¤ 2s
|upxq � upx� yq|

|y|n�2s P L1pRnzBRp0q, dyq.

The dominated convergence theorem now proves (3.4).
For ρ ¤ |y|   R we define

Jρpxq :� rIρpxq � »
ρ¤|y| R

upxq � upx� yq
|y|n�2s dy

�
»
ρ¤|y| R

pupxq � upx� yqq
�

1

|y|n
�
|y|2 � ρ2

�s � 1

|y|n�2s

�
dy

and claim that limρÑ0 Jρpxq � 0. To show this, we consider two cases: For s   1
2
, we

use that u P C0,2s�ε to estimate

|Jρpxq| ¤
»
ρ¤|y| R

|upxq � upx� yq|
�

1

|y|n
�
|y|2 � ρ2

�s � 1

|y|n�2s

�
dy

¤ c

»
ρ¤|y| R

|y|2s�ε
�

1

|y|n
�
|y|2 � ρ2

�s � 1

|y|n�2s

�
dy.

For s ¥ 1{2 and u P C1,2s�1�ε we use that

|upxq � upx� yq � y �∇upxq| �
∣∣∣∣� » 1

0

d

dt
upx� tyqdt� y �∇upxq

∣∣∣∣
�

∣∣∣∣» 1

0

y p∇upx� tyq �∇upxqq dt
∣∣∣∣

¤ |y|
» 1

0

|∇upx� tyq �∇upxq| dt
¤ cps, εq |y|2s�ε .
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This, together with the fact that y�∇upxq
p|y|2�ρ2qs|y|n and y�∇upxq

|y|n�2s are odd functions and hence

vanish when integrated on the symmetrical domain BRzBρ, yields

|Jρpxq| �
∣∣∣∣∣
»
ρ¤|y| R

upxq � upx� yq
|y|n

�
|y|2 � ρ2

�s � upxq � upx� yq
|y|n�2s dy

∣∣∣∣∣
�

∣∣∣∣∣
»
ρ¤|y| R

upxq � upx� yq � y �∇upxq
|y|n

�
|y|2 � ρ2

�s � upxq � upx� yq � y �∇upxq
|y|n�2s dy

∣∣∣∣∣
¤ cps, εq

»
ρ¤|y| R

|y|2s�ε
�

1

|y|n
�
|y|2 � ρ2

�s � 1

|y|n�2s

�
dy.

Since we end up with the same estimate for both s   1{2 and s ¥ 1{2, we obtain that

|Jρpxq| ¤ cps, εq
»
ρ¤|y| R

|y|2s�ε
�

1

|y|n
�
|y|2 � ρ2

�s � 1

|y|n�2s

�
dy

holds for all s P p0, 1q. By passing to polar coordinates and making the change of
variables t :� r{ρ, we can further estimate

|Jρpxq| ¤ cpn, s, εq
» R

ρ

r2s�ε
�

1

rn pr2 � ρ2qs �
1

rn�2s



rn�1dr

� cpn, s, εq
» R

ρ

r2s�ε
�

r2s

r1�2s pr2 � ρ2qs �
1

r1�2s



dr

� cpn, s, εq
» R

ρ

1

r1�ε

�
r2s

pr2 � ρ2qs � 1



dr

� cpn, s, εq
» R

ρ

1

1

ptρq1�ε
� ptρq2s
pptρq2 � ρ2qs � 1



rdt

� cpn, s, εqρε
» R

ρ

1

1

t1�ε

�
t2s

pt2 � 1qs � 1



ρdt

� cpn, s, εqρε
» R

ρ

1

1

t1�ε

��
t

t� 1


s�
t

t� 1


s

� 1



dt

  cpn, s, εqρε
» R

ρ

1

1

t1�ε

��
t

t� 1


s

� 1



dt

� cpn, s, εqρε
�» ?

2

1

1

t1�ε

��
t

t� 1


s

� 1



dt�

» R
ρ

?
2

1

t1�ε

��
t

t� 1


s

� 1



dt

�
.
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The first integral is finite since» ?
2

1

1

t1�ε

��
t

t� 1


s

� 1



dt ¤

» ?
2

1

1

t1�s�ε

�
1

pt� 1qs �
1

ts



dt

¤ rcpn, sq » ?
2

1

1

pt� 1qs �
1

ts
dt   8.

For the second integral, we use that for all t ¥ ?
2�

t

t� 1


s

� 1 ¤ s

t
�

1 � 1?
2

	s�1 ,

which yields

lim
ρÑ0

» R
ρ

?
2

1

t1�ε

��
t

t� 1


s

� 1



dt ¤ cpsq

» 8

?
2

1

t2�ε
dt   8.

With this we have shown the claim limρÑ0 Jρpxq � 0, which proves (3.5) and thus
(3.3), concluding the proof of the theorem. l

3.2. The Poisson Kernel

The Poisson Kernel is a well-known tool in potential theory to analytically solve the
Laplace equation with Dirichlet boundary conditions in the ball. We will again give a
more generalized definition that works for the context of the fractional Laplacian.

Definition 3.5. Let ρ ¡ 0, x P Bρp0q and y P RnzBρp0q. We define the Poisson-
Kernel Pρ by

Pρpx, yq :� cpn, sq
|x� y|n

�
ρ2 � |x|2
|y|2 � ρ2

�s

, (3.6)

where cpn, sq is the same dimensional constant chosen in (3.1).

As it was the case with Aρ in the last section, the constant cpn, s) was chosen for the
sake of normalization.

Lemma 3.6. For any ρ ¡ 0 and x P Bρp0q, we have»
|y|¥ρ

Pρpx, yqdy � 1. (3.7)
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Proof.
In order to compute the integral, we will use hyperspherical coordinates with radius
r ¡ 0 and angles φ1 P r0, 2πs, φ2, ...φn�1 P r0, πs. Any y P RnzBρp0q can then be
written as

yn � r cospφn�1q
yn�1 � r sinpφn�1q cospφn�2q
yn�2 � r sinpφn�1q sinpφn�2q cospφn�3q

...

y2 � r sinpφn�1q sinpφn�2q sinpφn�3q ... sinpφ2q cospφ1q
y1 � r sinpφn�1q sinpφn�2q sinpφn�3q ... sinpφ2q sinpφ1q,

with the absolute value of the Jacobian given by∣∣∣∣det
Bpyiq
Bpr, φjq

∣∣∣∣ � rn�1
n�2¹
k�1

sinkpφk�1q.

Since x P Bρp0q, we can make use of the spherical symmetry of Bρp0q, so we can
assume without loss of generality that x � |x| en. Then by the law of cosines, the
identity

|x� y|2 � |x|2 � r2 � 2r |x| cosφn�1

holds, see Figure 3.1 for an illustration.

Figure 3.1.: Law of Cosines in Rn
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Also note that we have |y| � r, which can easily be seen by factorizing and making
use of the Pythagorean trigonometric identity. Using the above change of coordinates,
we further obtain»

|y|¥ρ
Pρpx, yqdy

� cpn, sq �ρ2 � |x|2�s »
|y|¥ρ

1�
|y|2 � ρ2

�s |x� y|n
dy

� cpn, sq �ρ2 � |x|2�s » 8

ρ

» 2π

0

» π

0

...

» π

0

rn�1
±n�2

k�1 sinkpφk�1qdφn�1...dφ1dr

pr2 � ρ2qs �|x|2 � r2 � 2r |x| cosφn�1

�n
2

.

We rename the integration variables and further calculate»
|y|¥ρ

Pρpx, yqdy

� 2πcpn, sq�ρ2 � |x|2�s n�3¹
k�1

» π

0

sink φ dφ

» 8

ρ

» π

0

rn�1 sinn�2 φ dφdr

pr2 � ρ2qs �|x|2 � r2 � 2r |x| cosφ
�n

2

� 2πcpn, sq
�
ρ2

|x|2
� 1


s n�3¹
k�1

» π

0

sink φ dφ

» 8

ρ

» π

0

rn�1 sinn�2 φ dφdr�
r2

|x|2 �
ρ2

|x|2

	s
|x|n

�
1 � r2

|x|2 �
2r cosφ

|x|

	n
2

.

Substituting rr � r
|x| and rρ � ρ

|x| yields»
|y|¥ρ

Pρpx, yqdy

� 2πcpn, sq �rρ2 � 1
�s n�3¹

k�1

» π

0

sink φ dφ

» 8

rρ

» π

0

prr |x|qn�1 sinn�2 φ dφ |x| drr
prr2 � rρ2qs |x|n p1 � rr2 � 2rr cosφqn2

� 2πcpn, sq �rρ2 � 1
�s n�3¹

k�1

» π

0

sink φ dφ

» 8

rρ

rrn�1

prr2 � rρ2qs
» π

0

sinn�2 φ dφ

p1 � rr2 � 2rr cosφqn2
drr.

Renaming rr and rρ back to r and ρ, respectively, further results in»
|y|¥ρ

Pρpx, yqdy

� 2πcpn, sq �ρ2 � 1
�s n�3¹

k�1

» π

0

sink φ dφ

» 8

ρ

rn�1

pr2 � ρ2qs
�» π

0

sinn�2 φ

p1 � r2 � 2r cosφqn2
dφ

�
dr,

now with r ¡ 1 and ρ ¡ 1. We can now use (A.1), (A.4) and (A.5) along with the
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definition of cpn, sq from (3.1) to finally calculate»
|y|¥ρ

Pρpx, yqdy

� 2πcpn, sq�ρ2 � 1
�s n�3¹

k�1

» π

0

sink φ dφ

» 8

ρ

rn�1

pr2 � ρ2qs
1

pr2 � 1qrn�2

�» π

0

sinn�2 φ dφ



dr

� cpn, sq
�
π
n�2¹
k�1

» π

0

sink φ dφ

���
ρ2 � 1

�s » 8

ρ

2r

pr2 � ρ2qs pr2 � 1qdr



� Γpn
2
q sinpπsq
π
n
2
�1

� π
n
2

Γpn
2
q �

π

sinpπsq � 1.

l

3.3. The fundamental solution

The third and last function that we want to discuss in the framework of the fractional
Laplace operator is the fundamental solution. As we are going to see, the interplay
between this function and Aρ as well as Pρ yields a handful of useful properties.

Definition 3.7. Let n � 2s. Then for any x P Rnzt0u, the fundamental solution is
defined by

Ψpxq :� apn, sq
|x|n�2s ,

where

apn, sq :� Γpn
2
� sq

22sπ
n
2 Γpsq . (3.8)

Remark 3.1. The case n � 2s is only possible, if n � 1 and s � 1
2
. For this specific

case, we define the fundamental solution as

Ψpxq � a
�
1,

1

2

�
logp|x|q,

with

ap1, 1

2
q � � 1

π
.

We recognize that Ψ is a weighted L1-function.
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Lemma 3.8. For any n P N and s P p0, 1q, we have Ψ P L1
spRnq.

Proof.
It is easy to see that Ψ P L1

locpRnq. Now let n � 2s. We split the integral»
Rn

|Ψpxq|
1 � |x|n�2sdx � apn, sq

»
Rn

|x|2s�n

p1 � |x|n�2sqdx

into two parts:»
Rn

|Ψpxq|
1 � |x|n�2sdx � apn, sq

�»
|x| 1

|x|2s�n

1 � |x|n�2sdx�
»
|x|¥1

|x|2s�n

1 � |x|n�2sdx

�
�: apn, sq pI1 � I2q .

For the first integral, we use the estimate 1� |x|n�2s ¥ 1 and pass to polar coordinates
to get

I1 �
»
|x| 1

|x|2s�n

1 � |x|n�2sdx ¤
»
|x| 1

1

|x|n�2sdx   8

by making use of Lemma A.1. For the second integral, the estimate 1�|x|n�2s ¡ |x|n�2s

along with a polar transformation an again Lemma A.1 yields

I2 �
»
|x|¥1

|x|2s�n

1 � |x|n�2sdx  
»
|x|¥1

1

|x|n�2s |x|n�2sdx �
»
|x|¥1

1

|x|2n
dx   8.

For the case n � 2s � 1, using similar techniques yields»
R

|Ψpxq|
1 � |x|2dx � 1

π

»
R

|logp|x|q|
1 � |x|2 dx

� 1

π

�
2

» 1

0

|logpxq|
1 � x2

dx� 2

» 8

1

|logpxq|
1 � x2

dx



¤ 1

π

�
2

» 1

0

|logpxq| dx� 2

» 8

1

|logpxq|
x2

dx



� 1

π
p2 � 2q   8.

l

Just as for the regular Laplacian, a global solution for the problem

p�∆qs � f

for a sufficiently smooth function f can be established via convolution with Ψ. The
next lemma will establish that the fractional Laplacian can be applied to the resulting
function .
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Lemma 3.9. Let f P CcpRnq be a continuous function with compact support, then
f � Ψ P L1

spRnq.
Proof.
Since f P CcpRnq, there exists R ¡ 0 such that supp f � BRp0q. Now with the use of
the Fubini Theorem, we can estimate»

Rn

pf � Ψqpxq
1 � |x|n�2sdx ¤

»
Rn

1

1 � |x|n�2s

�»
|y| R

|fpyq| |Ψpx� yq| dy


dx

�
»
|y| R

|fpyq|
�»

Rn

|Ψpx� yq|
1 � |x|n�2sdx



dy

¤ ‖f‖L8pRnq
»
|y| R

�»
Rn

|Ψpx� yq|
1 � |x|n�2sdx



dy

� ‖f‖L8pRnq
»
|y| R

I1pyq � I2pyqdy,

with

I1pyq �
»
|y| 2R

|Ψpx� yq|
1 � |x|n�2sdx,

I2pyq �
»
|y|¥2R

|Ψpx� yq|
1 � |x|n�2sdx.

The usage of the Fubini Theorem is justified since we are going to show that the above
term is finite.
We will focus on the first integral. For n � 2s, we can estimate»

|y| R
I1pyqdy � apn, sq

»
|y| R

�»
|x| 2R

1

|x� y|n�2s
�
1 � |x|n�2s

�dx� dy

¤ apn, sq
»
|y| R

�»
|x| 2R

1

|x� y|n�2sdx



dy

� apn, sq
»
|y| R

�»
|rx�y| 2R

1

|rx|n�2sdrx
 dy
¤ apn, sq

»
|y| R

�»
|x| 2R�|y|

1

|rx|n�2sdrx
 dy
� cn,s

»
|y| R

�» 2R�|y|

0

rn�1

rn�2s
dr

�
dy

� cn,s

»
|y| R

�» 2R�|y|

0

1

r1�2s
dr

�
dy � cn,s

2s

»
|y| R

p2R � |y|q2s dy

� rcn,s » R

0

p2R � ρq2s ρn�1dρ   8,
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while for n � 2s � 1 we can use the triangle inequality to get

π

»
|y| R

I1pyqdy �
» R

�R

�» 2R

�2R

|logp|x� y|q|
1 � |x|2 dx



dy ¤

» R

�R

�» 2R

2R

|logp|x|� |y|q| dx


dy

¤
» R

�R

�» 2R

�2R

|logp|x|�Rq| dx


dy � 2R

» 2R

�2R

|logpx�Rq| dx   8.

For the second integral, we will have to treat 3 separate cases. For n ¡ 2s, we use the
reverse triangle inequality and the fact that 1 � |x|n�2s ¡ |x|n�2s to obtain

»
|y| R

I2pyqdy � |apn, sq|
»
|y| R

�»
R{B2Rp0q

1

|x� y|n�2s
�
1 � |x|n�2s

�dx� dy

  |apn, sq|
»
|y| R

�»
R{B2Rp0q

1

p|x|� |y|qn�2s |x|n�2sdx



dy

� cn,s

» R

0

�» 8

2R

rn�1

pr � ρqn�2s rn�2s
dr



ρn�1dρ

¤ cn,s

» R

0

ρn�1dρ

» 8

2R

1

pr �Rqn�2s r1�2s
dr

¤ cn,s,R

» 8

2R

1

pr �Rqn�2s pr �Rq1�2sdr

� cn,s,R

» 8

2R

1

pr �Rqn�1dr   8.

For 2s ¡ n � 1, we can again use the triangle inequality to get

» R

�R
I2pyqdy � |apn, sq|

» R

�R

�»
|x|¥2R

|x� y|2s�1

1 � |x|1�2s dx

�
dy

  |apn, sq|
» R

�R

�»
|x|¥2R

p|x|� |y|q2s�1

|x|1�2s dx

�
dy

� rcn,s » R

0

�» 8

2R

pr � ρq2s�1

r1�2s
dr

�
dρ

� rcn,s » 8

2R

1

r1�2s

�» R

0

pr � ρq2s�1 dρ



dr   8.
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And in the case n � 2s � 1 we can estimate

π

» R

�R
I2pyqdy �

» R

�R

�»
|x|¥2R

|logp|x� y|q|
1 � |x|2 dx



dy

¤
» R

�R

�»
|x|¥2R

|logp|x|� |y|q|
|x|2

dx



dy

¤ 2R

»
|x|¥2R

|logp|x|�Rq|
|x|2

dx � cn,R

» 8

2R

|logpt�Rq|
t2

dx   8.

In any case, we have shown that there exists a constant cn,s,R ¡ 0 such that»
Rn

pf � Ψqpxq
1 � |x|n�2sdx ¤ cn,s,R‖f‖L8pRnq   8 (3.9)

holds, which proves f � Ψ P L1
spRnq. l

Another fundamental property motivating the definition of Ψ is the following:

Theorem 3.10. In the distributional sense, we have

p�∆qsΨ � δ0, (3.10)

where δ0 is the Dirac delta centered at zero.

Proof.
See Chapter 4, page 46. l

With the basic framework of Ψ established, we will now focus on the important inter-
play between the fundamental solution and the two integral kernels Aρ and Pρ.

Lemma 3.11. For any ρ ¡ 0 and any x P RnzBρp0q we have

Ψpxq �
»
|y|¥ρ

AρpyqΨpx� yqdy. (3.11)

Proof.
Let ρ ¡ 0 and x P RnzBρp0q be arbitrary but fixed. Now we first consider the case
n � 2s. Plugging in the definitions of the fundamental solution and Aρ, we get»

|y|¥ρ
AρpyqΨpx� yqdy � apn, sqcpn, sq

»
|y|¥ρ

�
ρ2

|y|2 � ρ2


s
1

|x� y|n�2s

1

|y|n
dy.

Before we continue with the above term, we will focus solely on the integrand. For
any y P RnzBρp0q, we set y� � K0pyq as well as x� :� K0pxq, where K0 is the point
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inversion at zero as defined in (1.1). From Proposition 1.9, we know that x�, y� P Bρp0q,
and by using (1.4), (1.2) and (1.3), (1.5) and then again (1.2), we can calculate�

ρ2

|y|2 � ρ2


s
1

|x� y|n�2s

1

|y|n
p |detpDK0pyqq| q�1

�
�

ρ2

|y|2 � ρ2


s
1

|x� y|n�2s

1

|y�|n

�
�
|y�|2

ρ2 � |y�|2
�s

1

|x� y|n�2s

1

|y�|n

�
�
|y�|2

ρ2 � |y�|2
�s�

ρ2

|x| |y| |x� � y�|


n�2s
1

|y�|n

� 1

|x|n�2s

1�
ρ2 � |y�|2�s |x� � y�|n�2s

�
ρ2

|y| |y�|


n�2s

� 1

|x|n�2s

1�
ρ2 � |y�|2�s |x� � y�|n�2s

.

Using this, we can simplify the above integral using a change of variables given by the
point inversion transformation and obtain»

|y|¥ρ
AρpyqΨpx� yqdy � apn, sqcpn, sq

|x|n�2s

»
|y�| ρ

1�
ρ2 � |y�|2�s |x� � y�|n�2s

dy�

� apn, sq
|x|n�2s � Ψpxq,

where we have also used identity (A.6) at the end. For the case n � 2s � 1, assuming
without the loss of generality that ρ � 1, we need to calculate»

|y|¥1

AρpyqΨpx� yqdy � � 1

π2

»
|y|¥1

logp|x� y|q
|y|

a
y2 � 1

dy � � 1

π2

»
|y|¥1

logp|x� y|q
y2
b

1 � 1
y2

dy.

We substitute u :� 1
x

and v :� 1
y

and obtain»
|y|¥1

AρpyqΨpx� yqdy � � 1

π2

» 1

�1

logp∣∣ 1
u
� 1

v

∣∣q
1
v2

?
1 � v2

1

v2
dv

� � 1

π2

» 1

�1

logp∣∣v�u
uv

∣∣q?
1 � v2

dv

� � 1

π2

» 1

�1

logp|u� v|q � logp|v|q � logp|x|q?
1 � v2

dv.
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To solve these integrals, we use (A.2) and the fact that |u|   1 to finally get»
|y|¡1

AρpyqΨpx� yqdy � � 1

π2

�
�π logp2q � π logp2q � logp|x|q

» 1

�1

1?
1 � v2

dv



� � 1

π2
logp|x|qπ � � 1

π
logp|x|q � Ψpxq.

l

On the other hand, we get the following identity for the Poisson kernel:

Lemma 3.12. For any ρ ¡ 0, let x P Bρp0q be fixed. Then for any z P RnzBρp0q, the
equality

Ψpx� zq �
»
|y|¥ρ

Pρpx, yqΨpy � zqdy (3.12)

holds.

Proof.
Let ρ ¡ 0 and both x P Bρp0q and z P RnzBρp0q be arbitrary but fixed. We again first
consider the case n � 2s. Plugging in the definitions of the fundamental solution and
the Poisson kernel, we obtain»

|y|¥ρ
Pρpx, yqΨpy � zqdy � apn, sqcpn, sq

»
|y|¥ρ

�
ρ2 � |x|2
|y|2 � ρ2

�s
|y � z|2s�n

|x� y|n
dy.

Starting with focusing on the first integrand, we set y� � Kxpyq as well as z� :� Kxpzq,
where Kx is defined as in (1.1) From Proposition 1.9, we know that x�, y� P Bρp0q,
and by using (1.4), (1.3), (1.2) and (1.5), we can calculate�

ρ2 � |x0|2

|y|2 � ρ2

�s
1

|y � z|n�2s

1

|x� y|n
p|detpDKxpyqq|q�1

�
�
ρ2 � |x|2
|y|2 � ρ2

�s
1

|y � z|n�2s

1

|y� � x|n

�
� �

ρ2 � |x|2�2

|y � x|2
�
ρ2 � |y�|2�

�s

1

|y � z|n�2s

1

|y� � x|n

�
�
|y� � x|2

ρ2 � |y�|2
�s�

ρ2 � |x|2
|y � x| |z � x| |y� � z�|

�n�2s
1

|y� � x|n

� 1

|z � x|n�2s

1�
ρ2 � |y�|2�s |y� � z�|n�2s

�
ρ2 � |x|2

|y � x| |y� � x|

�n�2s

� 1

|z � x|n�2s

1�
ρ2 � |y�|2�s |y� � z�|n�2s

.
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Applying a change of variables and using (A.6) yields»
RnzBρp0q

Pρpx, yqΨpx� yqdy

� apn, sqcpn, sq
|z � x|n�2s

»
|y�| ρ

1�
ρ2 � |y�|2�s |y� � z�|n�2s

dy�

� apn, sq
|x� z|n�2s � Ψpx� zq.

For the case n � 2s � 1, we need to calculate»
|y|¡1

Pρpx, yqΨpy � zqdy � � 1

π2

»
|y|¥1

logp|y � z|q
|y � x|

d
1 � x2

y2 � 1
dy.

We substitute u :� zx�1
z�x and v :� yx�1

y�x and obtain»
|y|¡1

Pρpx, yqΨpy � zqdy

�� 1

π2

»
|v|¤1

log

�∣∣∣∣vx0 � 1

v � x0

� ux0 � 1

u� x0

∣∣∣∣

gffe 1 � x2

0

pvx0�1q2�pv�x0q2
pv�x0q2

1

v � x0

dv

�� 1

π2

»
|v|¤1

log

�∣∣∣∣v � u� x2
0pv � uq

pv � x0qpu� x0q
∣∣∣∣


d
1 � x2

0

v2x2
0 � x2

0 � v2 � 1
dv

�� 1

π2

»
|v|¤1

�
log

�∣∣∣∣ v � u

v � x0

∣∣∣∣
� log

�∣∣∣∣1 � x2
0

u� x0

∣∣∣∣


d

1 � x2
0

p1 � x2
0qp1 � v2qdv

�� 1

π2

»
|v|¤1

�
log p|v � u|q � log p|v � x0|q � log p|x� z|q



1?

1 � v2
dv.

By observing that |u| ¤ 1 as well as |x0| ¤ 1, and applying (A.2), we finally get»
|y|¡1

Pρpx, yqΨpy � zqdy�� 1

π2

�
�π logp2q � π logp2q � logp|x� z|q

»
|v|¤1

1?
1 � v2

dv



�� 1

π2
logp|x� z|qπ � � 1

π
logp|x� z|q � Ψpx� zq.

l



4. An analytical solution in the ball

Now that all the necessary concepts have been introduced, we are able to formulate
the main theorem of this thesis:

Theorem 4.1. Let ρ ¡ 0, g P L1
spRnq X CpRnq and Pρ be the Poisson kernel defined

by (3.6). Then the function

ugpxq �
$&%
»
|y|¥ρ

Pρpx, yqgpyqdy if |x|   ρ

gpxq if |x| ¥ ρ

is the unique pointwise continuous solution of the problem#
p�∆qs u � 0 in Bρp0q,

u � g in RnzBρp0q.
(4.1)

Before we are able to prove this formula, a few additional statements are necessary.
Starting off, the following proposition shows how the Fourier transform of the funda-
mental solution can be expressed.

Proposition 4.2. Let n ¡ 2s, let g P CpRnq X L1pRnq with qg P SspRnq. Then the
equality

p2πqn2
»
Rn

Ψpxqqgpxqdx � »
Rn

gpxq
|x|2s

dx (4.2)

holds, where Ψ is the fundamental solution given by Definition 3.7.

Proof.
We will start by showing that identiy (4.2) is indeed well-defined. From Lemma 3.8,
we know that Ψ P L1

spRnq, which shows that the left hand side of (4.2) is finite thanks
to Remark 2.5. The right hand side is also finite since»

Rn

|gpxq|
|x|2s

dx �
»
B1p0q

|gpxq|
|x|2s

dx�
»
|x|¥1

|gpxq|
|x|2s

dx

¤ sup
xPB1p0q

|gpxq|
»
B1p0q

1

|x|2s
dx�

»
|x|¥1

|gpxq| dx

¤ cn,s sup
xPB1p0q

|gpxq|� ‖g‖L1pRnq   8

37
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by Lemma A.1. Next, we define

rapn, sq :� a1pn, sq
p2πq2s a2pn, sq

,

with

a1pn, sq :�
» 8

0

t
n
2
�s�1e�πtdt,

a2pn, sq :�
» 8

0

ts�1e�πtdt.

Both constants a1pn, sq and a2pn, sq are finite since n
2
� s � 1 ¡ �1 and s � 1 ¡ �1.

Additionally, by using the change of variables τ � πt, we have

a1pn, sq �
» 8

0

�τ
π

	n
2
�s�1

e�τ
1

π
dτ � πs�

n
2

» 8

0

τ
n
2
�s�1e�τdτ � πs�

n
2 Γ

�n
2
� s

�
,

as well as

a2pn, sq �
» 8

0

�τ
π

	s�1

e�τ
1

π
dτ � π�s

» 8

0

τ s�1e�τdτ � π�sΓpsq,

which yields the identity

rapn, sq :� πs�
n
2 Γpn

2
� sq

p2πq2sπ�sΓpsq �
Γpn

2
� sq

22sπ
n
2 Γpsq � apn, sq.

With this in mind, we can rearrange (4.2) to get

p2πqn2 a1pn, sq
p2πq2s

»
Rn

qgpxq
|x|n�2sdx � a2pn, sq

»
Rn

gpxq
|x|2s

dx. (4.3)

We will now prove identity (4.3) by changing the left hand side. Using the change of
variable τ � t{ |x|2, we compute

p2πqn2 a1pn, sq
p2πq2s

»
Rn

qgpxq
|x|n�2s dx

� p2πqn2�2s

» 8

0

t
n
2
�s�1e�πtdt

»
Rn

qgpxq
|x|n�2sdx

� p2πqn2�2s

»
Rn

�» 8

0

�
τ |x|2

�n
2
�s�1

e�πτ |x|
2 qgpxq
|x|n�2s |x|

2 dτ



dx

� p2πqn2�2s

» 8

0

τ
n
2
�s�1

�»
Rn
e�πτ |x|

2qgpxqdx
 dτ. (4.4)
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We now use the fact that the Fourier transform of the Gaussian distribution is given
by

F pe�πτ |x|2q � 1

p2πτqn2
e�

|x|2
4πτ

for any τ ¡ 0. Applying the Plancharel identity for f :� e�πτ |�|
2

and h :� qg now yields»
Rn
e�πτ |x|

2qgpxqdx � »
Rn
fpxqhpxqdx �

»
Rn

pfpxqphpxqdx � 1

p2πqn2
»
Rn
τ�

n
2 e�

|x|2
4πτ gpxqdx.

Inserting this identity into (4.4) and using the change of variable t � |x|2 { p4π2τq
finally yields

p2πqn2 a1pn, sq
»
Rn

qgpxq
|x|n�2sdx � p2πqn2�2s

» 8

0

τ
n
2
�s�1

�»
Rn
e�πτ |x|

2qgpxqdx
 dτ
� 1

p2πq2s
»
Rn

�» 8

0

τ�s�1e�
|x|2
4πτ dτ



gpxq dx

� 1

p2πq2s
»
Rn

��» 8

0

�
|x|2

4π2t

��s�1

e�πt
|x|2

4π2t2
dt

�gpxq dx
� 1

p2πq2s
p4π2qs�1

4π2

» 8

0

ts�1e�πtdt
»
Rn

gpxq
|x|2s

dx

� a2pn, sq
»
Rn

gpxq
|x|2s

dx,

which concludes the proof. l

The last proof relied on the fact that n ¡ 2s. If n ¤ 2s, it is no longer guaranteed
that (4.2) and (4.3) are well defined. Therefore, additional properties are necessary.

Proposition 4.3. Let n � 1, and s ¥ 1
2
, let g P CpRqXC1 pp�8, 0q Y p0,8qqXL1pRq

with qg P SspRq. If there exist constants c1, c2, c3, c4 ¡ 0 such that

|gpxq| ¤ c1 |x|2s for x P R,

|gpxq| ¤ c2

|x|
for |x| ¡ 1,

|g1pxq| ¤ c3

|x|1�2s for 0   |x| ¤ 1, (4.5)

|g1pxq| ¤ c4

|x|
for |x| ¡ 1,

then equality (4.2) holds.
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Proof.
It follows again from Lemma 3.8 that the left hand side of (4.2) is well defined. For
the right hand side, we make use of (4.5) and obtain»

R

|gpxq|
|x|2s

dx �
» 1

�1

|gpxq|
|x|2s

dx�
»
|x|¥1

|gpxq|
|x|2s

dx ¤ 2c1 � ‖g‖L1pRq   8.

In addition, the constant ap1, sq can be rewritten as

ap1, sq � 21�2s
?
π � Γp1

2
� sq

Γpsq � 2π
� Γp1

2
� sqΓp1

2
� sq

2πΓp2sq � 1

2 cospπsqΓp2sq , (4.6)

where we have made use of the properties of the Gamma function, see Proposition 1.5.
Now let s ¡ 1

2
. We have to prove»

R
Ψpxqqgpxqdx � ap1, sq lim

RÑ8

» R

�R
|x|2s�1 qgpxqdx � 1?

2π

»
R

gpxq
|x|2s

dx.

Therefore, for R ¡ 0 we estimate» R

�R
|x|2s�1 qgpxqdx �

» 0

�R
p�xq2s�1qgpxqdx� » R

0

x2s�1qgpxqdx
�

» R

0

x2s�1
�qgp�xq � qgpxq�dx

� 1?
2π

» R

0

x2s�1

�»
R
gpξq �e�ixξ � eixξ

�
dξ



dx

� 1?
2π

» R

0

x2s�1

�»
R
gpξq2 cospxξqdξ



dx

� 2?
2π

»
R
gpξq

�» R

0

x2s�1 cospxξqdx


dξ.

Focusing on the inner integral for any ξ P R, integration by parts and the change of
variables t � |ξ|x yields» R

0

x2s�1 cospxξqdx � x2s�1 sinpxξq
ξ

����R
0

� p2s� 1q
» R

0

x2s�2 sinpxξq
ξ

dx

� x2s�1 sinpxξq
ξ

����R
0

� p2s� 1q
» R|ξ|

0

�
t

|ξ|


2s�2 sin
�
ξ
|ξ|t

	
ξ

1

|ξ|
dt

� R2s�1 sinpRξq
ξ

� 2s� 1

|ξ|2s
» R|ξ|

0

sinptq
t2�2s

dt,
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which yields» R

�R
|x|2s�1 qgpxqdx � 2R2s�1

?
2π

»
R
gpξqsinpRξq

ξ
dξ

� 2p2s� 1q?
2π

»
R

gpξq
|ξ|2s

�» R|ξ|

0

sinptq
t2�2s

dt

�
dξ. (4.7)

We will proceed by evaluating both terms as R tends to infinity. We claim that

lim
RÑ8

R2s�1

»
R
gpξqsinpRξq

ξ
dξ � 0 (4.8)

as well as

lim
RÑ8

»
R

gpξq
|ξ|2s

�» R|ξ|

0

sinptq
t2�2s

dt

�
dξ � �Γp2s� 1q cospπsq

»
R

gpξq
|ξ|2s

dξ. (4.9)

Starting with the first identity, we use integration by parts to estimate∣∣∣∣» 8

0

gpξq
ξ

sinpRξqdξ
∣∣∣∣ �

∣∣∣∣gpξqξ cospRξq
R

����8
0

�
» 8

0

ξg1pξq � gpξq
ξ2

cospRξq
R

dξ

∣∣∣∣
¤ |gpξq|

ξ

|cospRξq|
R

����8
0

�
» 8

0

|g1pξq|
ξ

|cospRξq|
R

dξ

�
» 8

0

|gpξq|
ξ2

|cospRξq|
R

dξ �: I1pRq � I2pRq � I3pRq.

By using (4.5), we get

lim
ξÑ0

|gpξq|
ξ

|cospRξq|
R

¤ lim
ξÑ0

1

R

c1 |ξ|2s

ξ
¤ lim

ξÑ0

c1

R
|ξ|2s�1 � 0,

since 2s� 1 ¡ 0. For all ξ with |ξ| ¡ 1 we have

|gpξq|
ξ

|cospRξq|
R

¤ c2

ξ2
,

hence

lim
ξÑ8
|gpξq|
ξ

|cospRξq|
R

� 0.

This implies I1pRq � 0 for every R ¡ 0. For the second and third term, by changing
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variables t � ξR, we estimate

I2pRq � 1

R

�» 1

0

|g1pξq|
ξ
|cospRξq| dξ �

» 8

1

|g1pξq|
ξ
|cospRξq| dξ



¤ 1

R

�
c3

» 1

0

1

ξ2�2s
|cospξRq| dξ � c4

» 8

1

1

ξ2
|cospRξq| dξ



� 1

R

�
c3

R2s�1

» R

0

1

t2�2s
|cosptq| dt� c4R

» 8

R

1

t2
|cosptq| dt



¤ 1

R

�
c3

2s� 1
� c4



¤ c

R

and

I3pRq � 1

R

�» 1

0

|fpξq|
ξ2
|cospRξq| dξ �

» 8

1

|fpξq|
ξ2
|cospRξq| dξ



¤ 1

R

�
c1

» 1

0

1

ξ2�2s
|cospRξq| dξ � c2

» 8

1

1

ξ3
|cospRξq| dξ



� 1

R

�
c1

R2s�1

» R

0

1

t2�2s
|cosptq| dt� c2R

2

» 8

R

1

t3
|cosptq| dt



¤ 1

R

�
c1

2s� 1
� c2

2



¤ rc
R
.

Similar estimations can be made for∣∣∣∣» 0

�8

gpξq
ξ

sinpRξqdξ
∣∣∣∣ � ∣∣∣∣» 8

0

gp�ξq
ξ

sinpRξqdξ
∣∣∣∣ ,

which means there exists a constant k ¡ 0 such that»
R
gpξqsinpRξq

ξ
dξ ¤ k

R
.

This now yields

lim
RÑ8

R2s�1

»
R
gpξqsinpRξq

ξ
dξ ¤ lim

RÑ8
R2s�1 k

R
� lim

RÑ8
k

R2�2s
� 0

which proves (4.8). In order to show (4.9), we first show that

lim
RÑ8

»
R

gpξq
|ξ|2s

�» R|ξ|

0

sinptq
t2�2s

dt

�
dξ �

»
R

gpξq
|ξ|2s

�» 8

0

sinptq
t2�2s

dt



dξ. (4.10)
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We use integration by parts to estimate the difference∣∣∣∣∣
» 8

0

sinptq
t2�2s

dt�
» R|ξ|

0

sinptq
t2�2s

dt

∣∣∣∣∣ �
∣∣∣∣» 8

R|ξ|

sinptq
t2�2s

dt

∣∣∣∣
¤ |cosptq|
|t|2�2s

����8
R|ξ|

� p2s� 2q
» 8

R|ξ|

|cosptq|
|t|3�2s dt

¤ 1

pR |ξ|q2�2s �
1

pR |ξ|q2�2s �
2

pR |ξ|q2�2s ,

and thus there exists a rk ¡ 0 such that���� »
R

gpξq
|ξ|2s

�» 8

0

sinptq
t2�2s

dt�
» R|ξ|

0

sinptq
t2�2s

dt

�
dξ

����
¤ 2

R2�2s

»
R

|gpξq|
|ξ|2

dξ

¤ 2

R2�2s

�
c1

» 1

�1

1

|ξ|2�2sdξ � c2

»
|ξ|¥1

1

|ξ|3
dξ



¤

rk
R2�2s

,

which vanishes as R goes to infinity, thus showing (4.10). This, together with Lemma
A.8, now yields

lim
RÑ8

»
R

gpξq
|ξ|2s

�» R|ξ|

0

sinptq
t2�2s

dt

�
dξ �

»
R

gpξq
|ξ|2s

�» 8

0

sinptq
t2�2s

dt



dξ

� �Γp2s� 1q cospπsq
»
R

gpξq
|ξ|2s

dξ,

implying (4.9). By using (4.6), (4.7), (4.8) and (4.9), we finally obtain»
R

Ψpxqqgpxqdx � ap1, sq lim
RÑ8

» R

�R
|x|2s�1 qgpxqdx

� lim
RÑ8

2ap1, sqR2s�1

?
2π

»
R
gpξqsinpRξq

ξ
dξ

� lim
RÑ8

2ap1, sqp2s� 1q?
2π

»
R

gpξq
|ξ|2s

�» R|ξ|

0

t2s�2 sinptqdt
�
dξ

� 2ap1, sqp2s� 1q?
2π

Γp2s� 1q cospπsq
»
R

gpξq
|ξ|2s

dξ

� ap1, sq?
2π

2Γp2sq cospπsq
»
R

gpξq
|ξ|2s

dξ � 1?
2π

»
R

gpξq
|ξ|2s

dξ,
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which proves the result for all s ¡ 1
2
.

Now let s � 1
2
. Similar to our calculations to obtain (4.7), we get» R

�R
logp|x|qqgpxqdx � 2?

2π

»
R
gpξq

�» R

0

logpxq cospξxqdx


dξ.

Using integration by parts, we can observe that» R

0

logpxq cospξxqdx � logpxqsinpξxq
ξ

����R
0

� 1

ξ

» R

0

sinpξxq
x

dx

� logpRqsinpξRq
ξ

� 1

|ξ|

» R|ξ|

0

sinptq
t

dt,

which implies» R

�R
logpxqqgpxqdx � 2 logpRq?

2π

»
R
gpξqsinpξRq

ξ
dξ � 2?

2π

»
R

gpξq
|ξ|

�» R|ξ|

0

sinptq
t

�
dξ.

We now show that

lim
RÑ8

»
R
gpξqsinpξRq

ξ
dξ � 0. (4.11)

Splitting the integral yields» 8

0

gpξqsinpξRq
ξ

dξ �
» 1

R

0

gpξqsinpξRq
ξ

dξ �
» 8

1
R

gpξqsinpξRq
ξ

dξ.

The first term vanishes as R goes to infinity since by using (4.5) we get∣∣∣∣∣
» 1

R

0

gpξqsinpξRq
ξ

dξ

∣∣∣∣∣ ¤
» 1

R

0

|gpξq| ξR
ξ
dξ ¤ c1R

» 1
R

0

ξdξ ¤ c1

2R
,

while for the second term, we use integration by parts to obtain∣∣∣∣∣
» 8

1
R

gpξq
ξ

sinpξRqdξ
∣∣∣∣∣ ¤ |gpξq|ξ

|cospξRq|
R

����8
1
R

�
» 8

1
R

|gpξq|
ξ2

|cospξRq|
R

dξ

�
» 8

1
R

|g1pξq|
ξ

|cospξRq|
R

dξ � rI1pRq � rI2pRq � rI3pRq.

For ξ sufficiently large, we have that

|gpξq|
ξ

|cospξRq|
R

¤ c2

Rξ2
,
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which vanishes as ξ goes to infinity, while for all |ξ| ¡ 0, we have

|gpξq|
ξ

|cospξRq|
R

¤ c1

R
.

Altogether, this yields

lim
RÑ8

logpRq � I1pRq � lim
RÑ8

�
logpRq
R

lim
ξÑ8

c2

ξ2



� lim

RÑ8
logpRqc1

R
� 0.

Next we use the change of variables t � ξR to obtain

logpRq � I2pRq � logpRq
R

�» 1

1
R

|gpξq|
ξ2
|cospξRq| dξ �

» 8

1

|gpξq|
ξ2
|cospξRq| dξ

�

¤ logpRq
R

�
c1

» 1

1
R

|cospξRq|
ξ

dξ � c2

» 8

1

|cospξRq|
ξ3

dξ

�

¤ logpRq
R

�
c1

» R

1

|cosptq|
t

dt�R2c2

» 8

R

|cosptq|
t3

dt



¤ logpRq

R

�
c1

» R

1

|cosptq|
t

dt�R2c2

» 8

R

|cosptq|
t3

dt



¤ c1

log2pRq
R

� c2
logpRq

2R
,

and hence

lim
RÑ8

logpRq � I2pRq � 0.

Similarly, we obtain

logpRq � I3pRq � logpRq
R

�» 1

1
R

|g1pξq|
ξ
|cospξRq| dξ �

» 8

1

|g1pξq|
ξ
|cospξRq| dξ

�

¤ logpRq
R

�
c3

» 1

1
R

|cospξRq|
ξ

dξ � c4

» 8

1

|cospξRq|
ξ2

dξ

�

¤ logpRq
R

�
c3

» R

1

|cosptq|
t

dt�Rc4

» 8

R

|cosptq|
t2

dt



¤ logpRq

R

�
c3

» R

1

|cosptq|
t

dt�Rc4

» 8

R

|cosptq|
t2

dt



¤ c3

log2pRq
R

� c4
logpRq
R
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and thus

lim
RÑ8

logpRq � I3pRq � 0,

which ultimately shows (4.11) since the same bounds also hold for» 0

�8
gpξqsinpξRq

ξ
dξ �

» 8

0

gp�ξqsinpξRq
ξ

dξ.

We have now shown that

lim
RÑ8

» R

�R
logp|x|qqgpxqdx � lim

RÑ8
� 2?

2π

»
R

gpξq
|ξ|

�» R|ξ|

0

sinptq
t

�
dξ.

Observe that (4.9) can also be applied for s � 1
2

in the following sense:

lim
RÑ8

»
R

gpξq
|ξ|

�» R|ξ|

0

sinptq
t

dt

�
dξ � π

2

»
R

gpξq
|ξ|

dξ.

This finally yields»
R

Ψpxqqgpxqdx � � 1

π
lim
RÑ8

» R

�R
logp|x|qqgpxqdx

� 1

π
� 2?

2π
� π

2

»
R

gpξq
|ξ|

dξ � 1?
2π

»
R

gpξq
|ξ|

dξ,

which concludes the proof. l

With the help of identity (4.2), we are now able to give the proof to the claim

p�∆qs Ψ � δ0

stated in the previous chapter.

Proof of Theorem 3.10.
In order to show (3.10) in the distributional sense, we have to check that

xΨ, p�∆qs ϕy � ϕp0q
holds for any ϕ P S pRnq. Let ϕ P S pRnq be arbitrary but fixed and choose gpxq :�
|x|2s pϕpxq. For n ¡ 2s, we want to apply Proposition 4.2 to g. It is easy to see that
g P CpRnq. Straightforward computation alongside the usage of Lemma A.1 also yields»

Rn
|gpxq| dx ¤

»
B1p0q
|pϕpxq| dx� »

|x|¥1

|x|2s |pϕpxq| dx
¤ sup

xPB1p0q
|pϕpxq|� »

|x|¥1

|x|2s�n�2 |x|n�2 |pϕpxq| dx
¤ sup

xPB1p0q
|pϕpxq|� rpϕsn�2

S pRnq

»
|x|¥1

1

|x|n�2�2sdx   8,
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which shows that g P L1pRnq. In addition we have F�1g � F�1
�
|ξ|2s pϕpξq� �

p�∆qs ϕ P SspRnq (see Chapter 1).
For 2s ¥ n � 1, we will check the additional conditions from Proposition 4.3:

|gpxq| ¤ |x|2s |pϕpxq| ¤ ‖pϕ‖L1pRq |x|
2s � c1 |x|2s for x P R,

|gpxq| ¤ |x|3 |pϕpxq|
|x|3�2s ¤ rpϕs3S pRq

|x|3�2s ¤ c2

|x|
for |x| ¡ 1.

Since ϕ P S pRq, we have g P C1pRq and we can estimate∣∣∣∣ ddxgpxq
∣∣∣∣ ¤ 2s |x|2s�1 |pϕpxq|� |x|2s ∣∣∣∣ ddx pϕpxq

∣∣∣∣
¤

�
2s‖pϕ‖L8pRq � |x| ∥∥∥∥ d

dx
pϕ∥∥∥∥

L8pRq

�
|x|2s�1

¤
2s‖pϕ‖L8pRq � ∥∥ d

dx
pϕ∥∥

L8pRq
|x|1�2s � c3

|x|1�2s

for 0   |x| ¤ 1 and∣∣∣∣ ddxgpxq
∣∣∣∣ ¤ 2s |x|2s�1 |pϕpxq|� |x|2s ∣∣∣∣ ddx pϕpxq

∣∣∣∣
¤

�
2s |x|2 |pϕpxq|� |x|3 ∣∣∣∣ ddx pϕpxq

∣∣∣∣
 |x|2s�3

¤ 2srpϕs2S pRq � rpϕs3S pRq
|x|3�2s � c4

|x|

for |x| ¡ 1.

Since the conditions from Proposition 4.2 and Proposition 4.3 are met for n ¡ 2s
and n ¤ 2s respectively, (4.2) holds for all n P N and s P p0, 1q which finally yields

xΨ, p�∆qs ϕys �
»
Rn

ΨpxqF�1
�
|ξ|2s pϕpξq� pxqdx � »

Rn
Ψpxqqgpxqdx

� 1

p2πqn2
»
Rn

gpxq
|x|2s

dx � 1

p2πqn2
»
Rn

pϕpxqdx � ϕp0q

for all n P N and s P p0, 1q, where the last equality followed from Remark 1.2. l

From Proposition 4.2, we can also derive how the Fourier transform of the convo-
lution between Ψ and a smooth function f can be established for n ¡ 2s.
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Proposition 4.4. Let n ¡ 2s, let f P C8
c pRnq and let g P CpRnq X L1pRnq withqg P SspRnq. Then the equality»

Rn
pf � Ψqpxqqgpxqdx � »

Rn

qfpxqgpxq
|x|2s

dx (4.12)

holds.

Proof.
We start by applying Fubini’s theorem to the left hand side of (4.12) to obtain»

Rn
pf � Ψqpxqqgpxqdx �

»
Rn

�»
Rn
fpx� yqΨpyqdy


qgpxqdx
�

»
Rn

Ψpyq
�»

Rn
fpx� yqqgpxqdx
 dy

�
»
Rn

Ψpyq
�»

Rn
fpxqqgpx� yqdx



dy. (4.13)

For u P C8
c and v P SspRnq we define the operation

u�̂vpyq :�
»
Rn
upxqvpx� yqdx. (4.14)

This operation is obviously well defined and the identity

F pu�̂vq � p2πqn2 qu � pv
holds since

F ppu�̂vq pxqqpξq � 1

p2πqn2
»
Rn
pu�̂vq pxqe�ix�ξdx

� 1

p2πqn2
»
Rn

�»
Rn
upyqvpx� yqdy



e�ix�ξdx

� 1

p2πqn2
»
Rn

»
Rn
upyqvpx� yqe�ipx�yq�ξeiy�ξdxdy

� 1

p2πqn2
»
Rn
upyqeiy�ξ

»
Rn
vpx� yqe�ipx�yq�ξdx dy

� 1

p2πqn2
»
Rn
upyqeiy�ξdy

»
Rn
vpzqe�iz�ξdz � p2πqn2 qupξq � pvpξq.

We now define

hpξq :� 1

p2πqn2
F pf �̂qgqpξq � qfpξq � gpξq,
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which allows us to write (4.13) as»
Rn
pf � Ψqpxqqgpxqdx � p2πqn2

»
Rn

Ψpyqqhpyqdy.
We will show that h P L1pRnqXCpRnq and F�1h � f �̂qg P SspRnq so that Proposition
4.2 can be applied. As a product of continuous functions, we obviously have h P CpRnq.
Additionally, we can estimate»
Rn
|hpξq| dξ �

»
Rn
|F pf �̂qgqpξq| dξ ¤ »

Rn

�� qfpξq�� |gpξq| dξ ¤ ∥∥ qf∥∥
L8pRnq‖g‖L1pRnq   8,

which shows h P L1pRnq. To show the last claim, let R ¡ 0 such that supp f � BRp0q.
We show that p1 � |x|n�2sq |pf � qgqpxq|   8 for all x P R. For |x| ¤ 2R, we have that

�
1 � |x|n�2s

�
|pf � qgqpxq| ¤ �

1 � p2Rqn�2s
� »

BRpxq
|fpx� yqqgpyq| dy

¤ cn,s,R‖f‖L8pBRp0qq‖qg‖L8pB3Rp0qq   8

since both f and g are bounded on a bounded domain. Now let |x| ¡ 2R, and observe
that for qg P SspRnq, we have the bound p1 � |x|n�2sq |qgpxq| ¤ rqgs0SspRnq and therefore

also p1 � |x� y|n�2sq |qgpx� yq| ¤ rqgs0SspRnq for every y P Rn. This yields the bound

|qgpx� yq| ¤ rqgs0SspRnq
1 � |x� y|n�2s ¤

rqgs0SspRnq
|x� y|n�2s (4.15)

for every y P Rn. We can now estimate

�
1 � |x|n�2s

�
|pf �̂qgqpxq| ¤ |x|n�2s

»
|y| R

|fpyqqgpx� yq| dy

¤ ‖f‖L8pRnqrqgs0SspRnq |x|n�2s

»
|y| R

1

|x� y|n�2sdy.

It is easy to see that for y P BRp0q, we have 2 |y| ¤ 2R   |x|, which further yields

|x� y| ¥ |x|� |y| ¥ |x|
2

and therefore

�
1 � |x|n�2s

�
|pf �̂qgqpxq| ¤ ‖f‖L8pRnqrqgs0SspRnq »

|y| R
2 dy   8.

In the same way it can also be proven that
�
1 � |x|n�2s

�
|pf �Dαqgqpxq|   8 for all

α P Nn
0 since Dαf�qg � f�Dαqg and Dαqg P SspRnq. Applying Proposition 4.2 finally
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yields »
Rn
pf � Ψqpxqqgpxqdx �

»
Rn

Ψpyq
�»

Rn
fpxqqgpx� yqdx



dy

� p2πq2s
»
Rn

Ψpyqqhpyqdy � p2πq2s
»
Rn

hpxq
p2π |x|q2sdx

�
»
Rn

qfpxq � gpxq
|x|2s

dx.

l

We treat the case n ¤ 2s separately as it will make use of Proposition 4.3 instead.

Proposition 4.5. Let n � 1 and s ¥ 1
2
, let f P C8

c pRq and let
g P CpRq X C1 pp�8, 0q Y p0,8qq X L1pRq with qg P SspRq. If there exist constants
d1, d2, d3, d4 ¡ 0 such that

|gpxq| ¤ d1 |x|2s for x P R,

|gpxq| ¤ d2

|x|
for |x| ¡ 1,

|g1pxq| ¤ d3

|x|1�2s for 0   |x| ¤ 1,

|g1pxq| ¤ d4

|x|
for |x| ¡ 1,

then equality (4.12) holds.

Proof.
The proof is very similar to the proof of Proposition 4.4. We again set

hpξq :� 1?
2π

F pf �̂qgqpξq � qfpξq � gpξq,
where �̂ is the operation defined in (4.14), and now we seek to apply Proposition 4.3
instead. We notice that h P CpRqXC1 pp�8, 0q Y p0,8qqXL1pRq and F�1h � f �̂qg P
SspRnq as was shown in the last proof. This means we only need to check (4.5) to
finish the proof. For x P R we have

|hpxq| ¤ | qfpxq| |gpxq| ¤ ‖ qf‖L8pRqd1 |x|2s �: c1 |x|2s ,

while for x with |x| ¤ 1 we can estimate

|h1pxq| ¤ | qfpxq| |g1pxq|� ∣∣∣∣ ddx qfpxqgpxq∣∣∣∣ ¤ ‖ qf‖L8pRqd3 |x|2s�1 � ‖ξfpξq‖L1pRqd2 |x|2s

¤
�
d3‖ qf‖L8pRq � d2‖ξfpξq‖L8pRq

	
|x|2s�1 �: c3 |x|2s�1 .
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For x with |x| ¡ 1, we have

|hpxq| ¤ | qfpxq| |gpxq| ¤ ‖ qf‖L8pRq d2

|x|
�:

c2

|x|

and

|h1pxq| ¤ | qfpxq| |g1pxq|� �� d
dx

qfpxqgpxq�� ¤ | qfpxq| d4

|x|
�
∣∣∣∣»

R
fpξqpiξqeixξdξ

∣∣∣∣ |gpxq|
¤ ‖ qf‖L8pRq d4

|x|
� ‖ξfpξq‖L1pRq

d2

|x|
� d4‖ qf‖L8pRq � d2‖ξfpξq‖L1pRq

|x|
�:

c4

|x|
.

This concludes the proof. l

The next result is really important in itself as it shows how the fundamental solution
can be used to solve the global Poisson equation involving the fractional Laplacian.

Theorem 4.6. Let ε ¡ 0 and f P C0,2s�ε
c pRnq. Then the function u :� f � Ψ belongs

to L1
spRnq X C0,2s�εpRnq and solves

p�∆qsu � f, (4.16)

both in the distributional sense as well as pointwise for all x P Rn.

Proof.
We have shown in Lemma 3.9 that u P L1

spRnq. And thanks to [21, Theorem 9.3], we
have u P C0,2s�εpRnq. This ensures that (4.16) is well defined both in a distributional
and pointwise sense. We will now prove that u is the distributional solution of (4.16)
by showing that

xu, p�∆qsϕys � xf, ϕyL2pRnq

holds for every ϕ P S pRnq. We will start by proving this identity for f P C8
c pRnq.

Let ϕ P S pRnq be arbitrary but fixed and define gpξq :� |x|2s pϕpξq. Then f and g
satisfy the conditions of both Proposition 4.4 and 4.5 (see the proof of Theorem 3.10
for further details). Thus, by (4.12), we get

xu, p�∆qsϕys �
»
Rn
pf � Ψqpxqp�∆qsϕpxqdx �

»
Rn
pf � ΨqpxqF�1

�
|ξ|2s pϕpξq� dx

�
»
Rn
pf � Ψqpxqqgpxqdx � »

Rn

qfpxqgpxq
|x|2s

dx �
»
Rn

qfpxqpϕpxqdx
� @ qf, pϕD

L2pRnq � xf, ϕyL2pRnq,

where we used Plancherel’s identity for the last equality, which is assured since f , qf
and ϕ are sufficiently smooth. This shows that u is indeed the distributional solution
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of (4.16) for f P C8
c pRnq.

Let now ε ¡ 0, f P C0,2s�ε
c and ϕ P S pRnq be arbitrary but fixed. Then there exists a

sequence of functions pfkqk � C8
c pRnq with ‖fk � f‖L8pRnq

kÑ8ÝÝÝÑ 0, which also implies

lim
kÑ8

xfk, ϕyL2pRnq � xf, ϕyL2pRnq.

In addition, the functions defined by uk :� Ψ � fk all satisfy

xuk, p�∆qsϕys � xfk, ϕyL2pRnq. (4.17)

Additionally, by using both Remark 2.5 and (3.9), there exists a constant cn,s,R such
that

xu� uk, p�∆qsϕys ¤ rp�∆qs ϕs0SspRnq ‖uk � u‖L1
spRnq

� rp�∆qs ϕs0SspRnq

�»
Rn

upxq � ukpxq
1 � |x|n�2s


 1
2

� rp�∆qs ϕs0SspRnq

�»
Rn

pΨ � pf � fkqq pxq
1 � |x|n�2s


 1
2

¤ cn,s,R rp�∆qs ϕs0SspRnq ‖f � fk‖L8pRnq
kÑ8ÝÝÝÑ 0.

Together with (4.17), this yields

xu, p�∆qsϕys � lim
kÑ8

xuk, p�∆qsϕys � lim
kÑ8

xfk, ϕyL2pRnq � xf, ϕyL2pRnq,

hence we have proven that u solves (4.16) in the distributional sense for all f P
C0,2s�ε
c pRnq. To obtain pointwise solvability, we will first recall that Remark 2.3 en-

sures that p�∆qsu is well defined since u P C0,2s�εpRnq X L1pRnq. Moreover, thanks
to Proposition 2.4, we have that

³
Rnp�∆qsupxqϕpxqdx is well defined. In addition, by

using Fubini’s Theorem and changing variables, we obtain that for any ϕ P S pRnq»
Rn
fpxqϕpxqdx �

»
Rn
upxqp�∆qsϕpxqdx �

»
Rn
p�∆qsupxqϕpxqdx.

Since both f and p�∆qsu are continuous, we conclude that (4.16) holds pointwise in
Rn l

As an immediate consequence, we obtain another representation of a function be-
longing to C8

c pRnq.

Corollary 4.7. For any u P C8
c pRnq there exists a function f P C8pRnq such that

pf � Ψqpxq � upxq
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holds for all x P Rn. Additionally, there exists a constant cn,s ¡ 0 such that

|fpxq| ¤ cn,s

|x|n�2s . (4.18)

Proof.
Let u P C8

c pRnq be arbitrary and define f :� p�∆qs u P C8pRnq. Then applying
Theorem 4.6 yields

pf � Ψqpxq � pp�∆qs u � Ψq pxq � upxq

pointwise for all x P Rn. The bound (4.18) is shown in the proof of Lemma 2.7. l

We now have all the tools necessary to prove of the main result of this paper.

Proof of Theorem 4.1.
We will divide the proof into multiple steps:

Step 1: The solution is unique.

Step 2: ug P CpRnq.
Step 3: ug P L1

spRnq.
Step 4: ug has the s-mean value property in Bρp0q for g P C8

c pRnq.
Step 5: ug has the s-mean value property in Bρp0q for any g P L1

spRnq X CpRnq.

We will prove all these steps one after another, which will ultimately prove the theorem.

Step 1: Let u1, u2 P CpRnq be two solutions of the Dirichlet problem (4.1). Then
u1 � u2 �: u P CpRnq is a solution of the problem#

p�∆qs u � 0 in Bρp0q,
u � 0 in RnzBρp0q.

By [6, Theorem 3.3.3], the solution is constant, and since u continuous and
zero in RnzBρ, we have u1 � u2 everywhere.

Step 2: Since ug is obviously continuous in Bρp0q and in RnzBρp0q, we need to check
the continuity at the boundary BBρ. Therefore, let y0 P BBρ and ε ¡ 0
arbitrarily small but fixed. By the continuity of g, there exists a δε such that

|gpy0q � gpyq|   ε
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for any y P Bδεpy0q. We fix µ ¡ 0 arbitrarily small such that µ   δε
2

as well as
R ¡ 2ρ. Our aim is to show that

lim
xÑy0

xPBµpy0qXBρp0q
pugpxq � ugpy0qq � 0, (4.19)

as is shown in Figure 4.1.

Figure 4.1.: Framework for proofing continuity

Now let x P Bµpy0q XBρp0q and estimate

��ugpxq � ugpy0q
�� �

∣∣∣∣»
|y|¥ρ

Pρpx, yqgpyqdy � gpy0q
»
|y|¥ρ

Pρpx, yqdy
∣∣∣∣

¤
»
|y|¥ρ

Pρpx, yq |gpyq � gpy0q| dy

¤
»

|y|¥ρ
|y�y0| δε

Pρpx, yq |gpyq � gpy0q| dy �
»

|y|¥ρ
|y�y0|¥δε

Pρpx, yq |gpyq � gpy0q| dy

¤ ε

»
|y|¥ρ

Pρpx, yqdy �
»

|y|¡ρ
|y�y0|¥δε

Pρpx, yq p|gpyq|� |gpy0q|q dy

� ε� �
ρ2 � |x|2�s »

|y|¡ρ
|y�y0|¥δε

|gpyq|� |gpy0q|�
|y|2 � ρ2

�s |x� y|n
dy,
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where we have made use of (3.7) twice. Before we continue with the above
term, we observe that for any x P Bρp0q and y P RnzBRp0q we have

1�
|y|2 � ρ2

�s |x� y|n
¤ 2n�s

|y|n�2s , (4.20)

since by using the inequality |x� y| ¥ |y|� ρ, we can estimate

|y|n�2s�
|y|2 � ρ2

�s |x� y|n
¤

�
|y|
|x� y|


n
�
|y|2

|y|2 � ρ2

�s

¤
�
|y|
|y|� ρ


n�
4

3


s

¤ 2n � 2s � 2n�s.

Additionally, we notice that

ρ2 � |x|2 � pρ� |x|q pρ� |x|q   2ρ |y0 � x|   2ρµ.

By using this, (4.20) and the fact that |x� y| ¥ δε � µ ¡ δε
2

for any y P
Rn zBδpy0q with ρ   |y|   R, we obtain��ugpxq � ugpy0q

��
¤ε� p2ρµqs

���»
ρ |y| R
|y�y0|¥δε

|gpyq|� |gpy0q|�
|y|2 � ρ2

�s |x� y|n
dy �

»
|y|¥R

|gpyq|� |gpy0q|�
|y|2 � ρ2

�s |x� y|n
dy

��
¤ε� p2ρµqs

���2n

δnε

»
ρ |y| R
|y�y0|¥δε

|gpyq|� |gpy0q|�
|y|2 � ρ2

�s dy �2n�s
»
|y|¥R

|gpyq|� |gpy0q|
|y|n�2s dy

��
¤ε� p2ρqs

�
2n

δnε
scpρ,R, s, gq � 2n�s‖g‖L1

spRnq � |gpy0q| Sn�1

2sR2s



µs

� ε� cpn, s, R, ρ, g, δεqµs,
where Sn�1 is the measure of the pn� 1q-dimensional unit sphere. This shows
that the term |ugpxq � ugpy0q| tends to zero as both µ and ε tend to zero,
which proves that the limit on the left hand side of (4.19) exists and is in fact
zero, thus showing the continuity of ug.

The aim of the next 3 steps is to show that all the requirements for Theorem
3.4 are met for any x P Bρp0q. Theorem 3.4 then implies that p�∆qs ugpxq � 0
for all x P Bρp0q.

Step 3: In order to show that ug P L1
spRnq, we need to show that»

Rn

|ugpxq|
1 � |x|n�2s �

»
|x| ρ

|ugpxq|
1 � |x|n�2sdx�

»
|x|¥ρ

|gpxq|
1 � |x|n�2sdx (4.21)
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is finite. The latter integral is finite since g P L1
spRnq, so we now show that ug

is bounded in Bρp0q to prove the finiteness of the former integral. Let R ¡ 2ρ
and x P Bρp0q, then by using (4.20), we can estimate

|ugpxq| ¤
»
ρ¤|y| R

Pρpx, yq |gpyq| dy �
»
|y|¥R

Pρpx, yq |gpyq| dy

¤ sup
ρ¤|y|¤R

|gpyq|� 2n�scpn, sq �ρ2 � |x|2�s »
|y|¥R

|gpyq|
|y|n�2sdy

¤ sup
ρ¤|y|¤R

|gpyq|� 2n�scpn, sqρ2s

»
|y|¥R

|gpyq|
|y|n�2sdy   8.

This shows that both terms in (4.21) are finite.

Step 4: Let g P C8
c pRnq and x P Bρp0q be arbitrary but fixed. We will show that ug

has the s-mean value property at x, meaning that for all 0   r   ρ� |x|, the
identity

pAr � ugq pxq � ugpxq (4.22)

holds. By Corollary 4.7, there exists a function f P C8pRnq such that for all
y P RnzBρp0q we have

gpyq �
»
Rn
fpzqΨpy � zqdz

�
»
|z| ρ

fpzqΨpy � zqdz �
»
|t|¡ρ

fptqΨpy � tqdt.

Using identity (3.12) we obtain

gpyq �
»
|z| ρ

fpzq
�»

|t|¡ρ
Pρpz, tqΨpy � tqdt



dz �

»
|t|¡ρ

fptqΨpy � tqdt

�
»
|t|¡ρ

�»
|z| ρ

fpzqPρpz, tqdz



Ψpy � tqdt�
»
|t|¡ρ

fptqΨpy � tqdt

�
»
|t|¡ρ

�»
|z| ρ

fpzqPρpz, tqdz � fptq



Ψpy � tqdt

�:

»
|t|¡ρ

hptqΨpy � tqdt.

This together with (3.12) allows us to rewrite ug as

ugpxq �
»
|y|¡ρ

Pρpx, yqgpyqdy �
»
|y|¡ρ

Pρpx, yq
�»

|t|¡ρ
hptqΨpy � tqdt



dy

�
»
|t|¡ρ
hptq

�»
|y|¡ρ

Pρpx, yqΨpy � tqdy


dt

�
»
|t|¡ρ
hptqΨpx� tqdt. (4.23)
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The use of Fubini’s Theorem is justified since we have shown in step 3 that
|ugpxq|   8 for x P Bρp0q. Now we can prove that ug has the s-mean value
property at x. Since for r ¤ ρ� |x| we have that |x� t| ¥ |t|� |x| ¥ r, which
allows us to use (3.11) and obtain

pAr � ugq pxq �
»
|y|¡r

Arpyqugpx� yqdy

�
»
|y|¡r

Arpyq
�»

|t|¡ρ
hptqΨpx� y � tqdt



dy

�
»
|t|¡ρ

hptq
�»

|y|¡r
ArpyqΨpx� t� yqdy



dt

�
»
|t|¡ρ

hptqΨpx� tqdt � ugpxq,

where we have also made use of equation (4.23) twice. This proves identity
(4.22) holds for every g P C8

c pRnq.
Step 5: Now let g P L1

spRnq X CpRnq and r ¡ 0 be arbitrarily small. Our aim is that
identity (4.22) still holds for this setting. In order to do so, let pνkqkPN �
C8
c pRnq be a sequence of functions with νkpxq P r0, 1s, νk � 1 in Bkp0q and

νk � 0 in RnzBkp0q, and Bk � Bk�1. Then gk :� νkg P C8
c pRnq converges

towards g pointwise in Rn, uniformly on compact sets and in the Ls1pRnq-norm.
Now, thanks to step 4, we know that

pAr � ugkq pxq � ugkpxq (4.24)

for any k P N. Moreover, we will show that

lim
kÑ8

ugkpxq � ugpxq (4.25)

and

lim
kÑ8

pAr � ugkq pxq � pAr � ugq pxq (4.26)

for any x P Bρp0q. By using these 3 identities, we have that

ugpxq � lim
kÑ8

ugkpxq � lim
kÑ8

pAr � ugkq pxq � pAr � ugq pxq, (4.27)

proving that g indeed has the s-mean value property.
Starting with proving (4.25), let x P Bρp0q and choose R ¡ 2ρ. Then by again
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making use of (3.7) and (4.20) , we have that��ugpxq � ugkpxq
��

¤
»
|y|¥ρ

Pρpx, yq |gpyq � gkpyq| dy

� cpn, sq �ρ2 � |x|2� »
|y|¥R

|gpyq � gkpyq|�
|y|2 � ρ2

�s |x� y|n
dy

�
»
ρ¤|y| R

Pρpx, yq |gpyq � gkpyq| dy

¤ 2n�scpn, sq �ρ2 � |x|2� »
|y|¥R

|gpyq � gkpyq|
|y|n�2s dy

� sup
yPBRp0qzBρp0q

|gpyq � gkpyq|
»
ρ¤|y| R

Pρpx, yqdy

¤ 2n�sρ2cpn, sq
»
|y|¥R

|gpyq � gkpyq|
|y|n�2s dy � sup

ρ¤|y|¤R
|gpyq � gkpyq| ,

which vanishes as k approaches infinity by the convergence in L1
spRnq norm

and the uniform convergence on compact sets of gk to g.
The next step is to prove (4.26), so let x P Bρp0q and choose R ¡ 2r. Plugging
in the definitions of Aρ and Pρ results in��Ar � ugpxq � Ar � ugkpxq

��
¤

»
|y|¡r

Arpyq |ugpx� yq � ugkpx� yq| dy

¤
»

|y|¡r
|x�y|¥ρ

Arpyq |gpx� yq � gkpx� yq| dy

�
»

|y|¡r
|x�y| ρ

Arpyq
�»

|z|¡ρ
Pρpx� y, zq |gpzq � gkpzq| dz



dy

�: I1pxq � I2pxq.

We estimate the first integral by using (3.2) and (4.20), obtaining

I1pxq � cpn, sqr2s

»
|y|¡r

|x�y|¥ρ

|gpx� yq � gkpx� yq|�
|y|2 � r2

�s |y|n dy

¤ sup
r¤|y|¤R

|gpx� yq � gkpx� yq|
»
r |y| R

Arpyqdy

�2n�scpn, sqr2s

»
|y|¡R

|gpx� yq � gkpx� yq|
|y|n�2s dy,



59

which again vanishes as k approaches infinity by the convergence in L1
spRnq

norm and the uniform convergence on compact sets of gk to g. For the second
integral, we choose an rR ¡ 2ρ, then by using the bound (4.20) as well as
identities (3.2) and (3.7), we estimate

I2pxq �
»

|y|¡r
|x�y| ρ

Arpyq
»
ρ |z| R

Pρpx� y, zq |gpzq � gkpzq| dz dy

�
»

|y|¡r
|x�y| ρ

Arpyq
»
|z|¡R

Pρpx� y, zq |gpzq � gkpzq| dz dy

¤ sup
ρ¤|z|¤R

|gpzq � gkpzq|
»

|y|¡r
|x�y| ρ

Arpyq
»
ρ |z| R

Pρpx� y, zqdz dy

�cpn, sq
»

|y|¡r
|x�y| ρ

Arpyqρ2s

»
|z|¡R

|gpzq � gkpzq|�
|z|2 � ρ2

�s |px� yq � z|n
dz dy

¤ sup
ρ¤|z|¤R

|gpzq � gkpzq|� 2n�sρ2scpn, sq
»
|z|¡R

|gpzq � gkpzq|
|z|n�2s dz,

which vanishes as k goes to infinity by the same argument we used for I1. This
proves (4.26), finishing the proof of step 5. Therefore ug has the s-mean value
property, which immediately implies the claim of the theorem.





5. Conclusion and further results

With the main result now proven, we have seen that many of the tools known from reg-
ular Laplacian analysis can be also used in the setting of the solution of the fractional
Laplace operator. We were able to establish an analytical formula for the according
Dirichlet problem for a sufficiently smooth given function on the exterior space. A
reasonable next step would be to ask for the related Neumann problem and a suit-
able Dirichtlet-to-Neumann operator, though this comes with a few difficulties. In
particular, the definition of a nonlocal fractional normal derivative has to be carefully
introduced, a method of doing so was proposed by Dipierro, Ros-Oton, and Valdinoci
in [10] and was further studied in [1].

Furthermore, we recall that there are other ways of defining the fractional Laplacian
depending on the respective physical approach taken. While all these definitions turn
out to be equivalent when looking at the operator in a global sense, these equivalencies
no longer hold true when looking at the operator on a bounded domain Ω. Even though
the fractional Laplacian turns out to be non-local no matter which definition is used,
it turns out that for the Dirichlet problem with respect to the spectral fractional
Laplacian p�∆qsS and the regional fractional Laplacian p�∆qsR, it is sufficient to specify
the boundary values. This means that for these operators, the well-posed Dirichlet
problem takes the more familiar form of#

p�∆qs� u � 0 in Ω

u � g on BΩ,

for a sufficiently smooth given function g, where � P tS,Ru. This results in very dif-
ferent analytical and numerical solving strategies from the beginning. The following
paper goes into more detail about the analytical aspects of these operators: [11].

As one might expect, the studies on numerical solutions for semi-differential equations
involving any type of the fractional Laplacian are vast. The definition of the integrated
fractional Laplacian in particular allows the introduction of a fitting Sobolev space in
a straightforward way as

HspΩq :�
#
u P L2pΩq

�����
»

Ω

»
Ω

pupxq � upyqq2
|x� y|n�2s dx dy   8

+
.

61
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This makes the operator amenable to a number of variational techniques, and we refer
to [3, 5] for further information on the topic.
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A. Useful integral identities and
estimations

Lemma A.1. Let k, ρ ¡ 0. Then, if k   n, it holds that»
|x| ρ

1

|x|k
dx   8.

On the other hand, if k ¡ n, we have that»
|x|¥ρ

1

|x|k
dx   8.

Proof.
For any k   n, we use the substitution |x| � r to obtain»

|x| ρ

1

|x|k
dx � Sn�1

» ρ

0

rn�1

rk
dr � Sn�1

» ρ

0

1

rk�n�1
dr,

where Sn�1 is the measure of the pn�1q-dimensional unit sphere. Since k�n�1   1,
the above integral is obviously finite. The case for k ¡ n can be shown analogously.

l

The next lemma is found and proven as identity (A.25) in [7].

Lemma A.2. For any r ¡ 1, we have that» π

0

sinn�2 φ

p1 � r2 � 2r cosφqn2
dφ � 1

pr2 � 1qrn�2

» π

0

sinn�2 φ dφ (A.1)

The proof of the next result can be found in [4, page 549].

Lemma A.3. For any z P B1p0q, we have» 1

�1

logp|z � v|q?
1 � v2

dv � �π logp2q. (A.2)

Lemma A.4. For any s P p0, 1q, we have that» 8

0

1

tsp1 � tqdt �
π

sinpπsq . (A.3)
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Proof.
We make use of the fundamental properties of the Gamma and Beta-function and get» 8

0

1

tsp1 � tqdt �
» 8

0

tp1�sq�1

p1 � tqp1�sq�sdt � Bp1 � s, sq � Γp1 � sqΓpsq � π

sinpπsq .

l

Lemma A.5. For any ρ ¡ 1, we have that�
ρ2 � 1

�s » 8

r

2r

pr2 � ρ2qs pr2 � 1qdr �
π

sinpπsq . (A.4)

Proof.
We use the change of variable t � r2�ρ2

ρ2�1
along with (A.3) to calculate

�
ρ2 � 1

�s » 8

r

2r

pr2 � ρ2qs pr2 � 1qdr �
» 8

0

1

ts pt� 1qdt �
π

sinpπsq .

l

Lemma A.6. The identity

π
n�2¹
k�1

» π

0

sink φ dφ � π
n
2

Γpn
2
q . (A.5)

holds

Proof.
We first start by calculating the integral on the left hand side for every k P N�. We
set

Ik :�
» π

0

sink φ dφ

and notice that I0 � π and I1 � 2. Then, using integration by parts, we have that

Ik �
» π

0

sink�1pφq sinpφq dφ � � sink�1pφq cospφq
����π
0

� pk � 1q
» π

0

sink�2pφq cos2pφq dφ

� pk � 1q
» π

0

sink�2pφq �1 � sin2pφq� dφ

� pk � 1q
�» π

0

sink�2pφq dφ�
» π

0

sinkpφq dφ



� pk � 1q pIk�2 � Ikq ,
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resulting in the recursion

Ik � k � 1

k
Ik�2 , I0 � π , I1 � 2.

Solving this recursion gives

Ik �
#
π
± k

2
i�1

2i�1
2i

if k even,

2
±t k

2
u

i�1
2i

2i�1
if k odd,

for every k P Nzt1u. We will now solve (A.5) for the case that n is even. Elementary
computations then yield

π
n�2¹
k�1

» π

0

sink φ dφ � π
n�3¹
k�1
k odd

Ik

n�2¹
k�2
keven

Ik � 2
n
2
�1π

n
2

n
2
�1¹

k�2

k�1¹
i�1

2i

2i� 1
�

n
2¹

k�2

k�1¹
i�1

2i� 1

2i

� 2
n
2
�1π

n
2

n
2
�2¹

k�1

�
2k

2k � 1


n
2
�k�1

�
n
2
�1¹

k�1

�
2k � 1

2k


n
2
�k

� 2
n
2
�1π

n
2

n
2
�1¹

k�1

1

2k
� π

n
2±n

2
�1

k�1 k
� π

n
2

Γpn
2
q ,

and very similar calculations show the same result for the case that n is odd. l

The next lemma is used to prove the identities (3.11) and (3.12).

Lemma A.7. Let r ¡ 0 and x P Brp0q. Then we have

cpn, sq
»
|y| r

1�
r2 � |y|2�s |x� y|n�2s

dy � 1, (A.6)

where cpn, sq is the constant defined by (3.1)

Proof.
Let r ¡ 0 and x P Brp0q be arbitrary but fixed. For any y P RnzBρp0q, we set
y� :� Kxpyq, where Kx is the point inversion at x as defined in (1.1). By making use
of (1.4) and (1.3), we obtain

1�
r2 � |y|2�s |x� y|n�2s

p|detpDKxpyqq|q�1 �
�
|x� y|
r2 � |y|2


s
1

|x� y�|n

�
�
r2 � |x|2
|y�|2 � r2

�s
1

|x� y�|n
,
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which, together with (3.7), gives us

cpn, sq
»
|y| r

1�
r2 � |y|2�s |x� y|n�2s

dy � cpn, sq
»
|y�|¥r

�
r2 � |x|2
|y�|2 � r2

�s
1

|x� y�|n
dy�

�
»
|y�|¥r

Prpx, y�qdy� � 1.

l

Lemma A.8. For any s P p0, 1q we have that

» 8

0

t2s�2 sinptqdt � � cospπsqΓp2s� 1q.

Proof.
The proof will be using some complex analysis. First, by using Euler’s formula, we
get

» 8

0

t2s�2 sinptqdt � �
» 8

0

t2s�2=pe�itqdt � �=
�» 8

0

t2s�2e�itdt


. (A.7)

To evaluate the integral on the right hand side, let r ¡ 0 be arbitrary but fixed and
define the domain Ωr :� pr0, rs � r0, rsq X Brp0q. Then we have that the contour
integral

³
BΩr

z2s�2e�zdz is 0 by Cauchy’s Theorem since Ωr is a star domain with no
poles in its interior. By setting γr :� BBrp0qX pr0, rs � r0, rsq (see Figure A.1), we can
then split the contour integral into

0 �
»
BΩr

z2s�2e�zdz

�
» r

0

t2s�2e�tdt�
»
γr

z2s�2e�zdz � i

» r

0

pitq2s�2e�itdt. (A.8)
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Figure A.1.: Contour integration along BΩr

Sending r to infinity will yield an important correlation between (A.7) and (A.8).
Therefore, we need to estimate the absolute value of

³
γr
z2s�2e�zdz. By using polar

coordinates z � reiϕ and then changing variables to t � cosϕ, we estimate∣∣∣∣»
γr

z2s�2e�zdz

∣∣∣∣ �
∣∣∣∣∣
» π{2

0

r2s�2eiϕp2s�2qe�re
iϕ

ieiϕdϕ

∣∣∣∣∣
�

∣∣∣∣∣
» π{2

0

r2s�1eipϕp2s�1q�r sinϕqe�r cosϕdϕ

∣∣∣∣∣
¤ r2s�1

∣∣∣∣∣
» π{2

0

e�r cosϕdϕ

∣∣∣∣∣ � r2s�1

∣∣∣∣» 1

0

e�rt?
1 � t2

dt

∣∣∣∣
¤ 2r2s�1

?
3

∣∣∣∣∣
» 1{2

0

e�rtdt

∣∣∣∣∣� r2s�1e�r{2
∣∣∣∣» 1

1{2

1?
1 � t

dt

∣∣∣∣
¤ 2?

3r2�2s
pe�r{2 � 1q � r2s�1e�r{2

?
2.

The first term obviously tends to 0 as r goes to infinity. The same holds for the second
term, though L’Hospital’s rule is needed for s P p1{2, 1q. Therefore, we have

lim
rÑ8

»
γr

z2s�2e�zdz � 0.

Now we pass to the limit in (A.8) as r goes to infinity and obtain

0 �
» 8

0

t2s�2e�tdt� i

» 8

0

pitq2s�2e�itdt

� Γp2s� 1q � i2s�1

» 8

0

t2s�2e�itdt,
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which yields the identity» 8

0

t2s�2e�itdt � i1�2sΓp2s� 1q.

By inserting this into (A.7) and using the fact that

i1�2s �
�

cos
�π

2

	
� i sin

�π
2

		1�2s

� cos
�π

2
p1 � 2sq

	
� i sin

�π
2
p1 � 2sq

	
� cos

�π
2
� πs

	
� i sin

�π
2
� πs

	
� sin pπsq � i cos pπsq ,

we finally get» 8

0

t2s�2 sinptqdt � �=
�» 8

0

t2s�2e�itdt


� �= �i1�2sΓp2s� 1q�

� �=
�
psin pπsq � i cos pπsqq



Γp2s� 1q � � cospπsqΓp2s� 1q.

l
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