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Abstract

Searching for a real estate on broker applications especially on mobile
applications and websites is challenging and time-consuming. This is due to
the fact that the demand for real estates is higher than the supply and users
are not able to specify their preferences on real estate broker applications.
In this work we focus on a content-based recommender system for broker
applications as filtering and ordering mechanism to ease the search for
real estates. The system constructs a user profile which reflects the user’s
preferences with the use of real estate attributes (content) such as the price or
footage of a flat. On the basis of this profile, the system calculates the most
appropriate real estates and presents the results to the user in descending
order – the first hit meets the user’s preferences most while the least one at
least. Furthermore, the system tracks the interactions of the user to improve
its parameters and the user profile. Interactions in this case above all refer
to liking and disliking real estates. A like indicates that the user likes a
real estate and a dislike means the opposite. We applied our approach
to manually searched real estates marked with likes and dislikes from a
participant and achieved an accuracy of 80 % in the recommended set.
This means that eight of ten recommended real estates were marked as
liked by the participant. We were able to surpass our initially set goal of
70 % accuracy and thus made a significant contribution to the research on
recommender systems for real estates.

vii





Contents

Abstract vii

1 Introduction 1
1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5
2.1 Real Estates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Real Estate Web Search based on Property Characteristics . . 6

2.3 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Collaborative Filtering . . . . . . . . . . . . . . . . . . . 10

2.3.2 Content-Based Filtering . . . . . . . . . . . . . . . . . . 13

2.3.3 Knowledge-Based Recommendation . . . . . . . . . . . 16

2.3.4 Hybrid Recommendations . . . . . . . . . . . . . . . . 19

2.3.5 Further Similarity Metrics . . . . . . . . . . . . . . . . . 20

2.4 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Requirements 27
3.1 RESTful API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Software-Architecture . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Programming Language . . . . . . . . . . . . . . . . . . . . . . 30

4 Approach 31
4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Application Programming Interface of the RS . . . . . . . . . 36

4.2.1 RESTful Setup . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Connection Object . . . . . . . . . . . . . . . . . . . . . 42

ix



Contents

4.3.2 Datasource . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.4 Datasink . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Filter Options . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Swipeable Cards . . . . . . . . . . . . . . . . . . . . . . 57

5 Evaluation and Results 67
5.1 Test Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Cycle 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.2 Cycle 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.3 Cycle 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Discussion and Conclusion 77
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 81

x



List of Abbreviations

APH Analytical Hierarchy Process

API Application Programming Interface

CBF Content-Based Filtering

CF Collaborative Filtering

CS Cosine Similarity

ED Euclidean Distance

GCF Google Cloud Functions

GCP Google Cloud Platform

HR Hybrid Recommendations

IBCF Item-Based Collaborative Filtering

JS Jaccard Similarity

KBR Knowledge-Based Recommendation

LIB Less Is Better

MIB More Is Better

MSD Mean Squared Difference

NIB Nearer Is Better

NN Nearest Neighbours

PCC Pearson Correlation Coefficient

REST Representational State Transfer

xi



Contents

RS Recommender System

UBCF User-Based Collaborative Filtering

xii



List of Figures

1.1 Example of filter options at willhaben.at . . . . . . . . . . . . . 2

1.2 First questions of Immoky’s tutorial . . . . . . . . . . . . . . . 4

2.1 Listing information used on real estate websites . . . . . . . . 6

2.2 AHP for housing selection. . . . . . . . . . . . . . . . . . . . . 7

2.3 Dataflow of a CBF RS. . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Iterative process of a KBR . . . . . . . . . . . . . . . . . . . . . 17

3.1 Pipeline approach of a Pipe-And-Filter software architecture . 29

4.1 Architecture of the customer’s application . . . . . . . . . . . 32

4.2 Sequence diagram for recommendation and feature update . 35

4.3 Pipe-And-Filter elements of the RS . . . . . . . . . . . . . . . . 42

4.4 Real estate represented as swipeable card . . . . . . . . . . . . 58

4.5 Example: New location for user value based on liked flag . . 62

xiii





Listings

3.1 Answer of a GET request . . . . . . . . . . . . . . . . . . . . . 28

3.2 HTTP GET request . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Feature object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Server and API setup . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Recommendation route . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Feedback route . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Base used by a Pipe-And-Filter component . . . . . . . . . . . 40

4.6 Parent object for executing the pipeline . . . . . . . . . . . . . 41

4.7 Body-format used for the recommendation request . . . . . . 44

4.8 Configuration file for the feature extraction . . . . . . . . . . . 45

4.9 Feature extraction example from a user and real estate object 46

4.10 Function for the feature conversion and datamatrices setup . 48

4.11 User feature of enumerate type . . . . . . . . . . . . . . . . . . 50

4.12 Defining position object for a feature . . . . . . . . . . . . . . . 56

4.13 Body-format used for the feedback request . . . . . . . . . . . 59

4.14 Recap: Feature of enumerate type . . . . . . . . . . . . . . . . 63

4.15 Enumerate feature equipment of real estate . . . . . . . . . . . 63

4.16 Enumerate feature equipment of user before adoptionn . . . . 63

4.17 Enumerate feature equipment of user after adoption . . . . . . 64

xv





List of Tables

2.1 Search options used on immobilienscout24.at, findmyhome.at
and willhaben.at. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Order options used on immobilienscout24.at, findmyhome.at
and willhaben.at. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Detail view used on immobilienscout24.at, findmyhome.at
and willhaben.at. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Rating matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Item matrix of movies . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Item matrix of movies with liked flag . . . . . . . . . . . . . . . 15

5.1 Classification of a recommendation . . . . . . . . . . . . . . . 68

5.2 Participant’s preferences for test scenario . . . . . . . . . . . . 70

5.3 Amount of real estates, liked/not liked and features of the
test scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Features used for the recommendation request of cycle 1 . . . 71

5.5 New feature values after the feedback request of cycle 1 . . . 71

5.6 Recommendations of cycle 1 (green rows indicate recom-
mended real estates and red ones not recommended) . . . . . 72

5.7 Features used for the recommendation request of cycle 2 . . . 73

5.8 New feature values after the feedback request of cycle 2 . . . 73

5.9 Recommendations of cycle 2 (green rows indicate recom-
mended real estates and red ones not recommended) . . . . . 74

5.10 Features used for the recommendation request of cycle 3 . . . 75

5.11 New feature values after the feedback request of cycle 3 . . . 75

5.12 Recommendations of cycle 3 (green rows indicate recom-
mended real estates and red ones not recommended) . . . . . 76

xvii





1 Introduction

A statistic on the European Union shows a sustained upward trend of
people moving from the country towards the city during the last few years
(Statista, 2018). This trend is accompanied by the need for more real estates
in cities and thus leads to an imbalance between supply and demand. A
study about regional price indices in Austria describes that in the years
from 2010 to the mid of 2017 the need for real estates was always higher
than the available offerings (Mundt and Karin, 2017). Due to this fact,
prices for real estates have kept on rising continuously ever since. Hence,
purchasing or renting a real estate is getting expensive and problematic.
Either there is no appropriate real estate available, or the prices are too high
to afford the property (Geymüller and Christl, 2014). Especially students
studying at university who want to live close to their university have a
limited budget (Horstmann, 2017). These conditions make the search for a
real estate challenging and time-consuming.

Since the Digital Age has widely spread across the world, many possibilities
for the real estate market relating to the web arose. People are sharing flats
via Facebook or Instagram, using websites such as willhaben.at or immo-
bilienscout24.at, etc. instead of publishing their offerings in the newspaper.
However, all of these platforms only offer filtering and sorting options
to refine the search results of their users. This means the user defines a
search criterion and sorting order for the application by selecting her or his
preferences from a list of predefined attributes. Depending on the property,
the user can also define specific values such as the minimal and maximal
price for the rental fee seen in 1.1.

1



1 Introduction

Figure 1.1: Example of filter options at willhaben.at
Source: Screenshot by author. (Willhaben, 2018)

In the course of this master’s thesis we created a content-based recommender
system for real estate to ease the time-consuming searching on broker
applications. Therefore, the recommender system uses a user profile which
reflects the user’s preferences regarding real estate attributes for its similarity
measurements. In the following chapters, we describe our approach and
reached goals based on an analysis conducted on the application domain.

1.1 Goals

Three research questions formulate the goal of this work. The questions are
as follows:

1. Is it possible to recommend real estates to a user based on real estate
characteristics such as price or living space?

2. Is a content-based approach suitable to make real estate recommenda-
tions?

2



1.2 Customer

3. How can the user-behaviour represented by user likes and dislikes be
used to adapt the parameters of the recommender system?

Furthermore, our goal is to implement a recommender system which
achieves at least an accuracy of about 70 % for the real estates recom-
mended to the user. Therefore, we consider likes as positive labels and
dislikes as negative ones.

1.2 Customer

The Austrian start-up Immoky, headquartered in Graz and founded in the
year 2017, wants to make the search for real estate easier and faster by pro-
viding an easy-to-use mobile application. According to Armin Zangerl, the
CEO of Immoky, the key resources for a successful business model are good
usability and an intelligent search mechanism for the application. There-
fore, Immoky tries to keep the user interface as simple as possible. Armin
Zangerl used the following words to describe the idea behind Immoky
(Armin Zangerl, personal communication, October 17, 2018):

”Das Start-Up-Unternehmen ”Immoky“, welches im Frühjahr 2017
gegründet wurde, ist eine Immobilienplattform, welche die Suche nach
der Traumimmobilie sowie die Kommunikation zwischen den Nutzer-
gruppen durch einfache und innovative Features wesentlich erleichtert
und mit einem benutzerfreundlichen User Interface überzeugt.”

The search for real estate in Immoky’s mobile application is based on a
tutorial in which the user has to answer a few questions. These answers
represent the user’s preferences and are further used for the filtering the real
estate results. On the basis of these answers the system filters the available
properties. In contrast to broker applications, Immoky uses swipeable cards
for the presentation of a real estate as seen in figure 1.2.

3



1 Introduction

Figure 1.2: First questions of Immoky’s tutorial
Source: Created by author based on screenshots from Immoky. (Zangerl, 2018)

A swipeable card is a screen which the user can swipe either to the right
or to the left. Swiping the card to the right is a gesture that describes that
the user likes a real estate while swiping it to the left indicates a dislike.
The search mechanism of the application learns from these interactions and
thus provides better search results. On the basis of this, Immoky identified
two core requirements for its system. First, the search itself and second, the
refinement of the search mechanism.

Immoky funded the project of this thesis to use the implemented recom-
mender system as search engine for its application. Thus, when we write
about the customer or requirements, we mean Immoky and the company’s
requirements regarding the recommender system.

4



2 Related Work

In this chapter, we conduct a research on the topics real estates, recom-
mender systems (RS) and their knowledge discovery processes. On the basis
of this analysis, we implement our approach. Furthermore, we examine
whether there exist reasonable approaches for applying a RS to the real
estate market.

2.1 Real Estates

Before approaching the technical part of this work, we analyse the term
real estate, its categories and the real estate related broker websites. For the
analysis regarding the websites, we focus on the Austrian market.

A real estate is a property consisting of a land and its affixed physical
properties and improvements such as buildings on it (Merriam-Webster,
2018). In this work we consider a real estate to be an object that satisfies
the need for permanent accommodation. This does not include real estate
objects that are used for business and storage needs. Thus, we mainly
deal with apartments and houses which are accompanied by different
characteristics. On the basis of these characteristics, we can describe and
translate a particular object to be usable for a RS (Menzies, 2014a).

5



2 Related Work

2.2 Real Estate Web Search based on Property
Characteristics

The internet has become a source for real estate brokers to publish their
available real estatea on several real estate broker websites. Hence, many
users are not able to reduce the effort for searching their desired accom-
modation (Zumpano, Johnson, and Anderson, 2003). This is due to the fact
that standard searching mechanisms do not include a multitude of personal
preferences. Instead, constraining search and order options are available to
refine the search result. Thus, a stepwise and time-consuming procedure
is necessary to find your desired real estate (Ho, Chang, and Ku, 2015).
According to Bond et al., 2000, most of the real estate websites are using a
few common characteristics as listing information to describe the advertised
objects (seen in figure 2.1). On the basis of these characteristics the users are
often not able to decide if the real estate meets their needs and preferences.

Figure 2.1: Listing information used on real estate websites
Source: Bond et al., 2000
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2.2 Real Estate Web Search based on Property Characteristics

Ho, Chang, and Ku, 2015 investigated the housing selection topic and in-
troduced an Analytical Hierarchy Process (AHP) with three different layers
as seen in figure 2.2. Layer one defines the overall goal, layer two the at-
tributes used for the house selection and layer three is used for determining
sub-attributes. Ho, Chang, and Ku, 2015 further group the attributes into
housing value, structure, neighbourhood and location.

Figure 2.2: AHP for housing selection.
Source: Ho, Chang, and Ku, 2015

Since we focus on the Austrian market, we further investigate the most
popular and most frequently used real estate websites in Austria. For the
research we used the blog 10 beliebte Immobilienportale aus Österreich from
the year 2016 which is about ten popular websites for searching real estates
(Leichtgemacht, 2016). From the sites listed, on this website we used im-
mobilienscout24.at, findmyhome.at and willhaben.at for our research. The
goal of this research is to determine the most common search features and
listing information. This includes the most common features to adjust the
search result and the detail view of a real estate.

We grouped the result into search options, order options and detail view.
An x in a cell indicates that the option is available on the corresponding real
estate website.

7



2 Related Work

Search options immobilienscout24.at findmyhome.at willhaben.at

Type of real estate x x x
Type of payment x x x
Location x x x
Multiple locations x
Price (from/to) x x
Square foot (from/to) x x
Options (garden,
balcony etc.) x x

Objecttypes (penthouse,
garconniere etc.) x

Text search x x

Table 2.1: Search options used on immobilienscout24.at, findmyhome.at and willhaben.at.

Order options immobilienscout24.at findmyhome.at willhaben.at

Most recently adevertised x
Price
(ascending/descending) x x x

Square foot
(ascending/descending) x x x

Location (zip ascending) x x
Location (zip descending) x

Table 2.2: Order options used on immobilienscout24.at, findmyhome.at and willhaben.at.

Detail View immobilienscout24.at findmyhome.at willhaben.at

Images x x x
Description x x x
General information x x x
Detailed information x x x
Infrastructure/surroundings x
Online contact details x x x

Table 2.3: Detail view used on immobilienscout24.at, findmyhome.at and willhaben.at.
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2.3 Recommender Systems

Based on the information stated in the tables 2.1, 2.2 and 2.3, we note that
the websites used for our research also use search and order options to filter
and adopt the search result. Additionally, all three websites use the same
approach for their detail view. Only findmyhome.at, in addition to images,
description, general information, detailed information and online contact,
includes the rubrics infrastructure and surroundings. However, the user is
not able to add preferences to the search mechanism to find an appropriate
real estate more quickly.

2.3 Recommender Systems

After we had identified the common approaches of real estate websites in
Austria regarding search mechanisms and object descriptions, we examined
the core component of this work, the RS.

An RS is a decision support system which recommends items to users
based on their preferences. An item is a particular object of the RS domain.
This could be for example a book in an online bookstore, an article in a
news-paper or a song in a music library. The design, the graphical user
interface and core recommendation technique are all domain-related and
customised to provide useful information for the user. A common approach
is to use an RS as a ranking system which presents the most suitable items
to the user in descending order. For the calculations and improvements it is
necessary to collect information about the interactions of a user. Interactions
are for example ratings of several products or the navigation to a particular
view in the system’s user interface. (Ricci, Rokach, and Shapira, 2015)

Depending on the domain and importance of the accuracy there are several
approaches for RS. However, the three major recommendation approaches
are collaborative filtering (CF), content-based filtering (CBF) and knowledge-
based recommendation (KBR). Furthermore, there are combinations of the
major methods which are called hybrid recommendations (HR). (Felfernig,
Jeran, et al., 2014)
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2 Related Work

2.3.1 Collaborative Filtering

RS which are based on the CF approach use ratings of a user without having
any information about the item (Koren and Bell, 2015). Schafer et al., 2007

state that the term collaborative filtering has been existing only for a few
decades, but people have been sharing opinions with others since centuries
which is the basic idea behind CF – the sharing of opinions with other
people.

Most CF RS use a rating matrix of dimension m ∗ n where m is the number
of users and n is the number of considered items (see table 2.4). A number
in a cell represents the rating of a user of the corresponding item. As already
mentioned, a CF RS does not use any information of an item such as its con-
tent or metadata. Thus, the similarity measurements are only based on the
item ratings of all users represented in the stated rating matrix. (Hernando,
Jesús Bobadilla, and Fernando Ortega, 2016)

Item 1 Item 2 Item 3 Item 4 Item 5

Dem. User 5 2 - 5 4

User 1 - 3 - 4 5

User 2 1 5 2 - 1

User 3 - - 3 2 5

User 4 1 2 3 1 4

User 5 2 1 - 3 -

Table 2.4: Rating matrix

There are two different types of CF: memory-based collaborative filtering
and model-based filtering (Koohi and Kiani, 2016). In this work, we only fo-
cus on memory-based CF since a model-based CF determines a model such
as a Bayesian classifier to predict ratings instead of similarity measurement
methods based on historical data such as user ratings which we propose to
use for our approach (J. Bobadilla, F. Ortega, et al., 2013).

10



2.3 Recommender Systems

The ranking calculation of the memory-based approach relies on a spe-
cific amount of nearest neighbours (NN) which are either users or items.
Depending on the type of NN there are two different CF approaches: User-
Based Collaborative Filtering (UBCF) and Item-Based Collaborative Filtering
(IBCF). (Felfernig, Jeran, et al., 2014)

User-Based Collaborative Filtering

UBCF RS identify a set of NN which are, in case of this approach, users with
similar preferences/ratings to provide recommendations for the demanding
user. From these ratings, the RS predicts the rating for an unrated item.
Therefore, a specific amount of neighbours who have already rated the
target item is chosen from the NN set. (Cai et al., 2014)

An RS determines the set of NN from the similarity between users and their
item ratings. Koohi and Kiani, 2016 state that there are two ways to measure
similarity: traditional similarity measures and clustering algorithms. A
commonly used method is the Pearson correlation coefficient (Liu and
Lee, 2010) (Jannach et al., 2010) (J. Bobadilla, Serradilla, and Bernal, 2010)
(Felfernig, Jeran, et al., 2014) (Koohi and Kiani, 2016); see equation 2.1.

sim(a, b) =
∑p∈P(ra,p − ra)(rb,p − rb)√

∑p∈P(ra,p − ra)2
√

∑p∈P(rb,p − rb)2
(2.1)

The Pearson correlation coefficient 2.1 calculates the similarity between the
rating vectors of the users a and b. P is the set of items which has been rated
by the demanding user and all users of the NN. Ratings are indicated by
the variable r. Thus, ra,p and rb,p are ratings of the item p and rb and rb are
average ratings. The results of this equation can be between −1 and 1 where
-1 indicates contrary vectors and 1 identically ones.

The final step of a CF RS is to predict ratings for unrated items. Therefore,
it takes a defined amount from the NN set who has already rated items the
demanding user has not rated yet. There are several methods to estimate the
rating for an unrated item. However, a common approach is to calculate the

11



2 Related Work

weighted average from the neighbours’ ratings (Liu and Lee, 2010) (Koohi
and Kiani, 2016); see equation 2.2. The weighting is defined by the similarity
of the demanding user and the neighbour.

pred(a, p) = ra +
∑b∈NN sim(a, b)(rb,p − rb)

∑b∈NN(sim(a, b)
(2.2)

As mentioned, equation 2.2 predicts the rating for an item p which has not
been rated yet by the demanding user a. It approximates the rating by using
the ratings rb,p and average ratings rb from the neighbours b. Due to the fact
that some users are more general than others, equation 2.2 takes the average
rating ra of the demanding user a as the basis for the prediction.

The RS executes the previous step multiple times and represents the items
for example in descending order where the item listed first is the most
similar one and the item listed last is the least similar result (Ricci, Rokach,
and Shapira, 2015).

Item-Based Collaborative Filtering

In contrast to UBCF, an IBCF based RS uses the similarity between items
instead of users (Cai et al., 2014). Thus, NN are in case of this approach
items with high similarity to each other which were already rated by the
demanding user (Kim et al., 2010). The remaining steps are similar to those
of the UBF approach.

For both approaches, UBCF and IBCF, the same calculation methods for the
similarity measurement and rating prediction can be used (Cai et al., 2014)
(Felfernig, Jeran, et al., 2014). The similarity measurement is an essential
aspect of an accurate RS since it is responsible for determining the most
similar users or items which are fundamental for the rating prediction
later on. Cai et al., 2014 states that, ”Pearson correlation coefficient, cosine-
based similarity, vector space similarity, and so on are widely used in similarity
measurement in CF methods”.
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2.3 Recommender Systems

2.3.2 Content-Based Filtering

CBF RS rely on the fact that users have monotonic preferences regarding a
certain topic. For example, a user who in general positively rates fantasy
movies will also like fantasy movies in the future. (Felfernig, Jeran, et al.,
2014)

As the name suggests, a CBF based RS predicts ratings for items based
on their content. The basic idea of this approach is to create a user profile
from the content of liked items which reflects the user’s preferences as item
properties (Cai et al., 2014). A CBF RS includes two basic steps: first, the
determination of the user profile; second, the rating prediction of items
based on similarity measurements with the user profile. Figure 2.3 shows
the process and data flow of a CBF based RS..

Figure 2.3: Dataflow of a CBF RS.
Source: Felfernig, Jeran, et al., 2014

One of the fundamental questions which appears in several literary works
is (Pazzani and Billsus, 2007) (Barragáns-Martı́nez et al., 2010) (Felfernig,

13



2 Related Work

Jeran, et al., 2014): What is content?. According to Felfernig, Jeran, et al.,
2014, there are two types of content. First, the item content description
such as the text of an article which is processed to determine keywords.
Second, the metadata of an item called categories such as the genre of a
movie. These keywords and categories are further used for the similarity
measurement between the user and items. In this work, we only focus on
the categories type since the available real estates we are using in this work
includes mainly predefined properties.

A CBF based RS also builds a matrix for its recommendation calculations.
In the case of this approach, the matrix includes m items and n different cat-
egories also called features (Pazzani and Billsus, 2007). We used an example
with movies to visualise the format of a simple item/feature matrix as can
be seen in table 2.5.

Title Genre Director Actors Year

Item 1 Lord of the
Rings Fantasy Peter Jackson Elijah Wood, Ian McKellen,

Orlando Bloom 2001

Item 2 Harry Potter Fantasy Chris Columbus Daniel Radcliffe, Rupert Grint,
Richard Harris 2001

Item 3 Titanic Drama James Cameron Leonardo DiCaprio, Kate Winslet,
Billy Zane 1997

Item 4 Pulp Fiction Crime Quentin Tarantino John Travolta, Uma Thurman,
Samuel L. Jackson 1994

Item 5 Gladiator Action Ridley Scott Russell Crowe, Joaquin Phoenix,
Connie Nielsen 2000

Item 6 Avatar Adventure James Cameron Sam Worthington, Zoe Saldana,
Sigourney Weaver 2009

Table 2.5: Item matrix of movies

Coming to the detailed description of the two steps mentioned before: first,
we investigate the user profile and afterwards determine similar items re-
garding the user’s preferences.

There are several ways to create a user profile. Pazzani and Billsus, 2007

describe so-called user customisations the user can use to define one’s
preferences. Therefore, a user interface has generally different types of input
controls such as checkboxes or input boxes for arbitrary texts. An issue
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which is accompanied by this approach is the time-consuming definition of
the user’s preferences before one receives any recommendations. However,
there arise possible synergies between the Austrian real estate market and
this type of approach. As we described in section 2.2, most real estate broker
websites define search and order options to refine a search result which we
can use to build an initial user profile for the RS.

Another common approach is to create and update the user profile from
the user’s interactions such as visiting a detail view, buying a product
or liking/rating an item Pazzani and Billsus, 2007 (Felfernig, Jeran, et al.,
2014) (Gemmis et al., 2015). Such interactions are called feedback (Gemmis
et al., 2015). Furthermore, Gemmis et al., 2015 states that it is necessary to
distinguish between positive and negative feedback since positive feedback
generally reflects the user’s preferences.

As example we use the categories from 2.5 and expand them with a liked
flag as can be seen in table 2.6.

Title Genre Director Actors Year Liked

Item 1 Lord of the
Rings Fantasy Peter Jackson

Elijah Wood,
Ian McKellen,

Orlando Bloom
2001 Yes

Item 2 Harry Potter Fantasy Chris Columbus
Daniel Radcliffe,

Rupert Grint,
Richard Harris

2001 Yes

Item 3 Titanic Drama James Cameron
Leonardo DiCaprio,

Kate Winslet,
Billy Zane

1997 No

Item 4 Pulp Fiction Crime Quentin Tarantino
John Travolta,

Uma Thurman,
Samuel L. Jackson

1994 Yes

Item 5 Gladiator Action Ridley Scott
Russell Crowe,

Joaquin Phoenix,
Connie Nielsen

2000 Yes

Item 6 Avatar Adventure James Cameron
Sam Worthington,

Zoe Saldana,
Sigourney Weaver

2009 No

Table 2.6: Item matrix of movies with liked flag
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For the user profile determination, we go through all liked movies step by
step, analyse their categories and add a keyword to the corresponding cate-
gory from the user if it is not included yet. This process results in a vector
which looks like an item from table 2.5. For example, the content of the Genre
category includes the keywords < Action, Adventure, Crime, Fantasy >.

Based on the extracted keywords which are assigned to the corresponding
categories, the next step is to determine the similarity between the items
and the user profile. Depending on the type of content there are several
similarity measurement functions (Van Le, Nghia Truong, and Vu Pham,
2014). For our movie example we use the dice-coefficient (see equation 2.3)
(Felfernig, Jeran, et al., 2014).

sim(u, i) =
2 ∗ categories(u) ∩ categories(i)

categories(u) + categories(i)
(2.3)

The dice-coefficient 2.3 is based on quantity functions. Therefore, categories(u)
and categories(i) define the amount of unique elements in the category of
the user u and item i. After the equation is applied to multiple unrated
items, a list of ranked items can be determined (ordered by similarity) and
provided to the user.

2.3.3 Knowledge-Based Recommendation

The last approach of the three major recommendation methods is called
Knowledge-Based Recommendation (KBR). Traditional RS such as CF and
CBF approaches often have issues with complex items such as cars. KBR
systems are built to tackle these problems (Felfernig, Friedrich, et al., 2015).
KBR RS use a knowledge base about a specific domain, its users, the product
assortment and the user preferences to provide appropriate items (Mandl
et al., 2011). (Ricci, Rokach, and Shapira, 2015) (Lopes Rosa et al., 2018).
The determination of the user and the presentation of the recommendation
result are embedded in an iterative process (Mandl et al., 2011) (see figure
2.4).
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Figure 2.4: Iterative process of a KBR
Source: Created by author based on Mandl et al., 2011

As mentioned and seen in figure 2.4, Mandl et al., 2011 uses a four-step
phase to describe the basic cycle of an KBR.

1. Requirements specification: In the first phase the system collects the
preferences on the basis of the user’s interactions.

2. Repair of inconsistent requirements: In the second phase the system
executes repair actions if preferences could not be identified or were
insufficient to determine appropriate items for the demanding user.

3. Result presentation: Depending on the domain, in the third phase,
the recommendation result is presented to the user, for example as an
ordered list.

4. Explanations: The fourth phase is used to explain to the user why the
items were identified as an appropriate choice during the recommen-
dation process.
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Based on Smyth, 2007, Felfernig, Jeran, et al., 2014 and Felfernig, Friedrich,
et al., 2015, we further distinguish, between constraint-based and case-based
KBR systems.

Constraint-Based KBR

Constraint-Based KBR systems rely on explicitly defined constraints repre-
senting the user’s requirements such as the maximum price for a car and
a set of items Felfernig, Jeran, et al., 2014. As already mentioned for the
requirements definition, in case of this approach these are constraints, a
domain-related user interface is provided in which the user can explicitly de-
fine one’s preferences. If an item fulfils all requirements, it is recommended
to the user.

(Felfernig, Friedrich, et al., 2015) define two sets of variables and three types
of constraints. The variables include the customer properties which repre-
sent the user requirements and the product properties which represent the
product assortment and its characteristics such as the performance of a car.
Furthermore, the constraints are split up into constraints, filter conditions
and products. Constraints are restricting instantiations of customer proper-
ties (constraints which do not exclude each other). Next, filter conditions
prevent the system from providing items which do not meet the user’s
requirements such as suggesting a professional camera to someone who
is new to photography. Finally, products define the instantiated product
properties based on the constraints and filter conditions.

Case-Based KBR

Case-Based KBR systems make use of similarity measurement functions
to retrieve items which meet the user’s requirements (Felfernig, Friedrich,
et al., 2015). This approach has some similarities with CB RS since both
approaches identify the content of items from the given domain. While CB
systems often use unstructured content such as the text of an article, case-
based RS rely on structured content Smyth, 2007. For example, a camera

18



2.3 Recommender Systems

could include properties such as the price, the resolution, the display size,
its possible zoom settings and the weight.

After the user has defined her or his requirements in the system, the next
step is to calculate the similarity between the items and the user model
Smyth, 2007. For the similarity measurement, common functions such as
the Pearson correlation coefficient are used as described in 2.3.1.

2.3.4 Hybrid Recommendations

In this section, we describe possible combinations of the major recommen-
dation approaches categorised as hybrid RS (Felfernig, Jeran, et al., 2014)
(Paradarami, Bastian, and Wightman, 2017). The goal of hybrid RS is to
achieve better results as they make use of the advantages of the three major
recommendation approaches.

Burke, 2002 defined the following hybridisations:

• Weighted: A weighted hybrid RS weights the included components of
the system. Afterwards, the system combines the results into a single
one. The simplest form of a weighted hybrid approach is a linear
combination.

• Switching: This approach switches between recommendation tech-
niques. Every switch is based on defined switching criteria (depending
on the current situation). Thus, the system needs an additional param-
eterisation for the switching mechanics.

• Mixed: A mixed hybrid RS combines the output of the included com-
ponents into a mixed result.

• Feature Combination: In case of this approach the features of the
included components are combined to provide a broader bandwidth
in terms of the content.
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• Cascade: The cascade hybrid approach uses piping modules to pipe
the result from the first recommendation technique as input to the
next component of the system. Therefore, a priority scheme for the
components is defined.

• Feature Augmentation: Like the cascade approach, this approach uses
a staging mechanism. However, in case of this approach, the features
of the first component are used by the second one.

• Meta-Level: In a meta-level hybrid RS the first component generates a
model for the second component. In contrast to the feature augmen-
tation this approach operates at a lower level. This means the model
exists already in the feature augmentation approach.

2.3.5 Further Similarity Metrics

As already mentioned there are further similarity functions which can be
used depending on the type of RS approach and content. In this section, we
state the most common similarity functions for content values and vector
comparisons.

For the adoption of numeric values, for example numeric content values in
a CBF RS, different functions can be used to adopt the value. The choice of
which function to use depends on the type of category and content such as
maximising the processor speed of a PC. (McSherry, 2003)

Nearer Is Better (NIB):

sim(vc, va) = 1− |vc − va|
max(va)−min(va)

(2.4)

More Is Better (MIB):

sim(vc, va) =
vc −min(va)

max(va)−min(va)
(2.5)
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Less Is Better (LIB):

sim(vc, va) =
max(va)− vc

max(va)−min(va)
(2.6)

In the equations 2.4, 2.5 and 2.6 the variables c and a represent the current
value and the category.

For the similarity measurement between vectors, for example item-to-item,
there are several functions as well. Most of these equations can be applied
to all three major RS approaches. (Polamuri, 2015) (Agarwal and Chauhan,
2017)

Pearson Correlation Coefficient (PCC):

sim(a, b) =
∑p∈P(ra,p − ra)(rb,p − rb)√

∑p∈P(ra,p − ra)2
√

∑p∈P(rb,p − rb)2
(2.7)

For further details on PCC please see equation 2.1.

Cosine Similarity (CS):

sim(a, b) =
Ra · Rb

||Ra|| ∗ ||Rb||
(2.8)

Ra and Rb represent a rating vector of an item rated by the users a and b.

Jaccard Similarity (JS):

sim(a, b) =
|Ia ∩ Ib|
|Ia ∪ Ib|

(2.9)

Ia and Ib are set of items rated by the users a and b.
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Mean Squared Difference (MSD):

MSD(a, b) = ∑
p∈P

(ra,p − rb,p)
2 (2.10)

sim(a, b) =
L−MSD(a, b)

L
(2.11)

P is the set of items which has been rated by the users a and b. ra,p and rb,p
are a particular rating of an item p. L is a given threshold.

Euclidean Distance (ED):

ED(a, b) =
√

∑
r∈R

(ra − rb)2 (2.12)

The ED calculates the distance between two vectors.

2.4 Data Mining

In this section we investigate the data mining processes which are necessary
for the real estate domain based on the gathered knowledge from section
2.1. In general, the data mining process includes data preprocessing, model
learning and result interpretation (Amatriain and Pujol, 2015). Since we
build a content-based approach with similarity measurement methods for
real estates, we mainly focus on the data preprocessing step. The other two
steps, model learning and result interpretation, which are mainly used for
classification approaches are therefore not relevant in our case. For further
readings we refer to (Amatriain and Pujol, 2015) (Menzies, 2014b).

The data preprocessing is the first step of the data mining process. We
identified three types of data: the items representing the real estates, the
user data and the interactions with the systems including filter options and
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the likes of a user. Liking is a gesture of the user which implies that the user
is fond of the corresponding real estate.

Menzies, 2014b classified the data regarding an RS as follows:

• Tables including items as rows and features as columns
• Columns are numeric or alpha-numeric
• Some columns are goals (things we want to predict using the other

columns)
• Features which are not included in an item called missing values

An RS executes data preprocessing steps on the raw data in order to be
processable in the used approach and to improve the RS’s parameters.
(Amatriain and Pujol, 2015) describe four different challenges in the data
preprocessing step which are explained below. Furthermore, we investigate
feature scaling since every real estate has a broad range of features, data
types and values (Bollegala, 2017).

Similarity Measures: Similarity Measures: First, the similarity metrics for
the kNN identification (k represents the amount of NN) which we described
in the sections 2.3.1 and 2.3.5.

Sampling: Sampling refers to the identification of a particular subset from
a big amount of data. Sampling is often used to determine training and
test sets from the provided data (Amatriain and Pujol, 2015). We skip the
sampling methods since we neither need a classification of real estates nor
training and test samples for our proposed approach. This is supported by
the fact that we only use similarity measurements for the ranking determi-
nation.

Reducing Dimensionality: Reducing dimensionality is the process of defin-
ing a high-dimensional space with a low amount of features. Therefore,
correlating features are dismissed to reduce the total amount of features.
The most relevant dimension reduction algorithms are principal component
analysis, single value decomposition and matrix factorisation (Amatriain
and Pujol, 2015). In the context of this work a dimension reduction is not
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necessary since only a small set of features is available in the context of
real estates. A part of our future work is the filtering of features based on a
correlation matrix.

Denoising: The last of the four challenges is called denoising. Denoising
refers to removing unwanted effects through noise such as outliers or
missing values included in the items (Amatriain and Pujol, 2015). O’Mahony,
Hurley, and Silvestre, 2006 define two classes of noise: natural noise and
malicious noise. Natural noise includes errors produced by the users during
their interactions with the system such as defining their preferences. Hence,
malicious noise occurs when an external source influences the RS. For
example, if an author wants to promote her or his book. This step is the
most relevant one for this work since items mainly do not provide the full
amount of features in the context of real estates.

How noise or missing data are dealt with depends on the kind of problem.
Swalin, 2018 states that there are two possibilities for handling missing data.
One may either delete the data or impute data.

Deletion refers to deleting an explicit fragment of data.

• Deleting rows (listwise): Removes a row from an observation if one
or more values are missing.

• Pairwise deletion: Analyses all cases in which variables are present
and tries to maximise the available data based on an analytical basis.
For example, determining the covariance between rows where a value
is missing.

• Deleting columns: Drops the feature if too many items do not include
the feature. Therefore, often a threshold is used.

Imputation uses the available data to determine a value for the missing
features on a statistical basis. Furthermore, a classification of the problem
is necessary to apply the right method for determining the missing values.
This depends on two different problems. First, if the problem is accompanied
by time-series issues such as if they exhibit a trend and seasonality. Second,
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if it the data is continuous or categorical. The following methods can be
applied to both of the problems.

• Mean, Median and Mode: Calculates the mean, median or mode for
a feature. A disadvantage of this method is that it reduces the variance
of the dataset.

• Linear Regression: This method uses a correlation matrix to predict
several predictors for missing variables. Afterwards, the system’s best
predictor is identified as an independent variable for the linear equa-
tion while the missing data is defined as a dependent variable. For
the equation only cases including all variables are used to generate
the equation for the prediction later on. This process is then applied
iteratively to the other missing values.

• Multiple Imputation: In the first stage, the entries of the incomplete
dataset are imputed based on a Bayesian approach. Therefore, imputed
values are used for the missing data. After that, the imputed values
are analysed and integrated as a final result.

• kNN: In this case the determined kNN of an item are used to de-
termine the missing value. For the NN determination, we refer to
2.3.1.

Feature Scaling: As already mentioned, the features of real estates vary
highly in terms of magnitude, unit and range. Thus, we have to scale all
features in order to be of the same weight. A common approach for feature
scaling is normalisation (Kantardzic, 2003) (Asaithambi, 2017). The article
from (Asaithambi, 2017) published on Medium, an online publishing plat-
form, introduced four different approaches on how to scale features.

Standardisation:
x′ =

x− x
σ

(2.13)

Scales the value by using the standard deviation σ. The values are between
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−1 and 1.

Mean Normalisation:

x′ =
x− x

max(x)−min(x)
(2.14)

The values are between −1 and 1.

Min-Max Scaling:

x′ =
x−min x

max(x)−min(x)
(2.15)

The values are between 0 and 1.

Unit Vector:
x′ =

x
||x|| (2.16)

The scaling is based on the whole feature vector.
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In this chapter, we describe the requirements for the integration of the RS
into the application of the customer, Immoky. For a smooth integration, we
identified three different requirements. First, a RESTful Application Pro-
gramming Interface (API) for the communication between the customer’s
application and the RS. Second, a software architecture which ensures an
easy adoption and extension of the RS. Third, a programming language
with which the customer is comfortable and which is suitable for the imple-
mentations of the RS.

3.1 RESTful API

As already mentioned, we use a RESTful API for the communication be-
tween the customer’s application and the RS. In this section, we shortly
describe the fundamental principles and functionalities of a RESTful API.

Representational state transfer (REST) is a client-server architecture based
on the HTTP protocol (Chen et al., 2017). RESTful web services are a
popular approach for computer programmes to communicate on an internet
basis. They are used, for example, for requesting data from a server. The
applications which communicate via the interface can access and manipulate
data with the defined HTTP standard methods GET, POST, PUT, DELETE,
HEAD and OPTIONS (Abts, 2015).

• GET: A GET request is used to retrieve data with reading access. Thus,
data manipulation is not possible (the source on the server stays the
same).
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• POST: The POST method is used to create a new resource on the
server with a given URI. Additionally, an arbitrary process can be
triggered.

• PUT: A PUT request is used to update an already existing resource.

• DELETE: With a DELETE request, the deletion of an existing resource
from the server is triggered.

• HEAD: In contrary to the GET request, a HEAD request queries meta-
data from the server such as the status of a resource.

• OPTIONS: An OPTIONS call is used to get information about a
resource such as the content type.

Listing 3.2 shows the answer as JSON object of an GET request using the
route http : //localhost : 3333/recommendersystem of a simple API we
implemented.

1 {
2 data: "Hello Recommender System!"

3 }

Listing 3.1: Answer of a GET request

The request of the call looks as shown in listing 3.2. We used Postman, an
API development tool, as software Postman, 2018 to trigger the call.

1 GET /recommendersystem HTTP /1.1

2 Host: localhost :3333

Listing 3.2: HTTP GET request
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3.2 Software-Architecture

After we defined the type of interface for the communication, the next step
is to determine a software architecture for the RS which is modular and
easy to extend.

Therefore, we use a Pipe-And-Filter approach. This type of architecture
includes filters (components) and pipes (channels) (Philipps and Rumpe,
2014). The former part is the processing module, also called filter, while
the latter is the connection module of the components. A component or
filter is an independent entity which can be executed either sequentially
or in parallel. (Kumar, 2014) defined three variations of the architecture:
pipelines, bounded pipes and typed pipes.

• Pipelines: A pipeline allows to execute filters only sequentially (see
figure 3.1).

• Bounded pipes: In this variation, pipes can have a restricted amount
of data.

• Typed pipes: A typed pipe restricts the type of data within the system.

Figure 3.1: Pipeline approach of a Pipe-And-Filter software architecture
Source: Created by author.
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3.3 Programming Language

In the last section of this chapter, we define the programming language
which we use for the implementation of the RS. Therefore, we focus on an
established programming language for machine learning algorithms. As
a result, we concluded to use Python (Python, 2018), since Python is well
known for its libraries such as Scikit (Scikit, 2018) or Numpy (NumPy, 2018)
and because of its simplicity (Protasiewicz, 2018).
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On the basis of our research questions, we chose to use a two-way approach
for the RS to achieve the best possible accuracy with our proposed approach.
First, we recommend real estates to the user with a content-based approach
described in 2.3.2. Second, we refine values of the user’s features through
her or his behaviour and interactions. The customer must perform these
two steps separately and sequentially since we need the data from the user
behaviour represented through likes and dislikes for the feature update
calculations.

In the following chapters, we describe the architecture of Immoky includ-
ing the communication between the entities, the recommendation and the
refinement of the user features.

4.1 Architecture

For nearly all processes of the mobile application, the customer uses ser-
vices from Google Cloud Platform (GCP). These are mainly processes which
query, mutate and access data from the database and file storage. Only
for the web interface and iOS/Android App they use standalone Linux
servers. The customer deploys all data processing processes as GCP service.
Thus, we also got a GCP service on which we deploy the RS. 4.1 shows all
processes and the corresponding communication. An arrow indicates the
direction of an interaction between two processes.
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Figure 4.1: Architecture of the customer’s application
Source: Created by author.

In this work, we focus only on the process marked in green, which is the RS,
as seen in figure 4.1. The customer’s application architecture strictly splits
the presentation of the data from its processing. Server-side processes are
grouped as the backend and client-side applications as the frontend.

Frontend: Frontend entities are client-side processes which are responsible
for the presentation of the data retrieved from the server. In case of the
customer’s application, these are the mobile application (iOS and Android)
and the web interface. These applications retrieve the data from the central
unit, the Google Cloud Functions (GCF) which process the data on the
server 4.1.

• iOS: This mobile application is explicitly implemented for Apple de-
vices. These devices use iOS as an operating system. Thus, a separate
application is necessary.
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• Android: Due to compatibility reasons, the customer needs to imple-
ment a separate application for Android devices as well.

• Web: For the administration of real estate, user profiles and accounting,
the customer uses a web interface. Currently, only the customer’s team
has access to the interface, but in further stages, estate agents can
advertise, adapt and dismiss real estates on their own.

Backend: Backend entities, are server-side processes which send the data
to the requesting client. Figure 4.1 states all included backend services.

• Customer’s GCF: The GCF services on GCP are a serverless infras-
tructure approach. Instead of launching the programming code of,
e.g. an API, a programmer needs to deploy only fragments of her or
his system. These fragments are called cloud functions. To retrieve or
process data, a client invokes a function directly on the server with
a HTTP request using the POST, PUT, GET, DELETE and OPTIONS
methods described in 3.1. Based on this service structure, Google ap-
plies a different cost structure for GCF. The customer has to pay only
for the number of calls instead of the whole server (Malawski et al.,
2017).
The customer uses this service as a central data processing and com-
munication unit for their application. They deploy functions for the
following functionalities:

– Endpoint for clients to request and manipulate data from and on
the server

– To organise real estates and user profiles in the database
– To store files on the cloud storage
– To retrieve recommendations from the RS

• Firebase: The customer uses the Firebase service on GCP as a database.
The Google Firebase real-time database is a cloud-hosted NoSQL
database using a JSON format for its data structure. The service
provides many built-in functions such as instant messaging or user
authentication which make the programming of an API easier (Li et al.,
2018).
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• Cloud Storage: The next entity is the cloud storage. The customer
uses this service as a file server to save files and images of users and
real estates. Again, this storage is a built-in service of GCP.

• RS App Engine: The last process is the RS of this work which we
deploy as App Engine service on GCP. A Google App Engine allows
a programmer to implement web applications or a backend with
good possibilities to scale high. Based on the server utilisation, Google
increases the server properties such as processing power or the used
servers. A programmer has to administrate the settings on her or his
own. These settings are used by GCP for the server setup and scaling.
For users who are not comfortable with the setup and administration
of servers, this service is, in general, a good alternative. (Mohsin, 2015)

As mentioned before, we only focus on the RS and its communication with
the GCF. Figure 4.2 states the included processes of the RS for the recom-
mendation and feedback function. An arrow indicates the direction of a
communication.
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Figure 4.2: Sequence diagram for recommendation and feature update
Source: Created by author.

As shown in figure 4.2 there are two separate requests: a request to get
recommendations and a request which triggers the feedback calculations
for the features. For the latter request interactions (likes and dislikes of real
estates) from the users are necessary. Thus, the general process is to request
first recommendations for the user and then to update the features from the
user based on her or his feedback. These steps are executed in sequential
order and repetitive.
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4.2 Application Programming Interface of the RS

In this section we explain the interface between the API of the customer
(GCF) and the RS. As already described in chapter 3 we use a RESTful ar-
chitecture for the communication. In case of this work, we have two routes,
one for the recommendation and one for the feedback.

The next step is to define a data format for the recommendation and feed-
back request. Since the customer wants to extend and configure the RS in
further stages, we need to implement a generic data model. For example, if
the customer wants to add or remove real estate attributes. Therefore, we
use a JSON object for each feature which includes the name of the feature,
its data type, the value and a weighting if defined (see listing 4.1). In a CBF
based RS, real estate attributes reflect the user’s preferences. Thus, we use
the same format for the features for both entities.

1 {
2 feature: String,

3 type: FeatureType,

4 value: Value dependent on FeatureType,

5 weight: [0-5]

6 }

Listing 4.1: Feature object

As shown in the listing 4.1, there are four different keys in the feature object:
f eature, type, value and weight.

• Feature: This is the unique name of the feature.

• Type: The type of feature defines the data type. Based on this informa-
tion we convert the feature value to a value which is interpretable by
our RS. Since real estate features have different types and formats,
a property for this information is necessary. Based on our research
and the test samples from the customer, we identified the following
data types: number, date, the days between two dates, if in range
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of two values, the distance between to addresses (coordinates) and
enumerative values.

• Value: This is the actual value of the feature from the corresponding
real estate or user profile.

• Weight: The weight key defines the importance of a feature based on
the user’s preferences.

This feature format implies a generic interface since we can add arbitrary
features by using the unique name as f eature and its type as type.

4.2.1 RESTful Setup

In this section we describe the RESTful setup of the RS. Python provides
a library called Flask which provides simple functions for setting up a
RESTful server architecture (Ronacher, 2018).

Setup: For the setup we instantiate a Flask class for the server and Flask
RESTful class for the API. The RESTful instance provides a addresource
function which we use to register the recommendation and feedback route. .

1 app = Flask(__name__)

2 api = Api(app)

3

4 #Define routes

5 api.add_resource(Recommendation , ’/recommendation ’)

6 api.add_resource(Feedback , ’/feedback ’)

7

8 if __name__ == ’__main__ ’:

9 np.set_printoptions(suppress=True)

10

11 app.run(port=’3000’)

Listing 4.2: Server and API setup
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In line one and two we instance the server app and the RESTful API api.
Afterwards, as mentioned before, we register the routes for the recommen-
dation /recommendation and feedback / f eedback request in the api. The last
line invokes the server to listen on port 3000. Thus, we access the server of
the system, if locally hosted, at the address localhost : 3000.

4.2.2 Routes

As already mentioned in section 4.2, we implement two routes for the RS
— one route for the recommendation and one for the feedback request.
With the feedback request, we trigger an update of the user’s preferences to
improve the parameters of the RS for higher accuracy. Therefore, we update
the features based on the user’s interactions by considering the feature
values of the liked or disliked real estate.

For both endpoints we use a HTTP POST request and receive the data for
the calculations through its body.

Recommendation: The customer uses this route to only present real es-
tates to a user which meet the user’s preferences in the best possible way. In
our approach, we have to consider two different scenarios. First, we use the
user’s answers from the tutorial as initial features for the first recommenda-
tions. Second, we update the features from the user’s feedback regarding
the previous recommendations. These features represent the preferences of
the user in higher dimensional space. Thus, we either build a feature set
from the user’s answers from the tutorial or use an already existing and
updated one from the user’s interactions.

1 class Recommendation(Resource):

2 def post(self):

3 body = request.json

4

5 #Set original data already here (normally DataSource)

6 dataPipe = DataPipe ()

7 dataPipe.originalData = body
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8

9 #Calculate ranking now

10 recommenderSystem = RecommenderSystem ([ FeatureFilter (),

11 ImputationFilter (),

12 NormalizationFilter (),

13 WeightingFilter (),

14 RankingFilter ()])

15 recommenderSystem.run(dataPipe)

16

17 #Remove features to provide only the ids

18 for realEstate in dataPipe.realEstates:

19 del realEstate[’features ’]

20

21 return dataPipe.realEstates

Listing 4.3: Recommendation route

As seen in listing 4.3 there are three coding parts headed with a comment.
The first one sets up the connection object called DataPipe, the second one
runs the ranking calculations with all necessary data processing filters and
the last one extracts the identifiers from the ordered real estates. In the
request body request.json, we receive the necessary data for the recommen-
dation process.

Feedback: The feedback request is used to update the user’s features
based on her or his interactions with the mobile application. Currently
the customer only transmits real estates the user liked or disliked. A like
indicates that the user likes a real estate, a dislike means the opposite. We
use this information to update the user’s feature set which presents the
user’s preferences.

1 class Feedback(Resource):

2 def post(self):

3 body = request.json

4

5 #Calculate ranking now

6 feedbackSystem = FeedbackSystem ()

7

8 #Make feedback calculation
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9 return feedbackSystem.updateUserProfile(body[’features ’

], body[’realEstates ’])

Listing 4.4: Feedback route

In the code snippet seen in listing 4.4 there are two lines which are re-
sponsible for the update procedure. First, line six, where we instance the
feedback system and second, line nine, where we update the user’s feature
set by calling the function updateUserPro f ile. The latter function receives the
user’s features and real estates marked with a liked flag as parameters. In
the request body request.json, we receive the necessary data for the feedback
process again.

4.3 Recommendation

In this section, we describe the implementation of the RS. As a software
design, we use an adapted Pipe-And-Filter architecture as described in
chapter 3.2. The adaptation is related to the filter mechanism. In addition to
the filtering, we also transform and process the data in the filter components.
We use a push-pipeline approach for our implementations in which data is
only forwarded sequentially from one element to the following one. As a
connection module for the components we define an object for the request-
ing user, the real estates and matrices used for the ranking calculations. To
stick to the restrictions of a push-pipeline, we register the components in
an array and execute them in the right order with the connection object
as a parameter. Therefore, we build a Pipe-And-Filter base class with a
generic process function. A deriving filter component of the base class has
to implement the function with its data processing functionality.

1 class PipeAndFilterBase:

2 __metaclass__ = ABCMeta

3

4 @abstractmethod

5 def process(self , dataPipe):

6 pass

Listing 4.5: Base used by a Pipe-And-Filter component
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Listing 4.5 shows the implementations of the Pipe-And-Filter class. We use
the annotation @abstractmethod to ensure that the deriving class implements
the process function.

In addition to the base class, we use a parent object called RecommenderSystem
that contains the component array described before and a run unction which
executes the process function of the included components in the right order.
This approach ensures the restrictions of the push-pipeline are adhered to.

1 class RecommenderSystem:

2 def __init__(self , entities):

3 self.entities = entities

4

5 def run(self , dataPipe):

6 for entity in self.entities:

7 entity.process(dataPipe)

Listing 4.6: Parent object for executing the pipeline

Listing 4.6 shows the parent object which represents the RS. It has a func-
tion run which executes the process functions of the pipeline components
sequentially by using a for-loop.

As already mentioned, we use a Pipe-And-Filter architecture because of
our sequential data processing steps. First, a datasource determines the
necessary data, then components filter, transform and process the data
and last, a datasink further processes the result. In case of our approach,
we create one datasource for the data retrieval (user profile and relevant
real estates), five filters for the data preprocessing and recommendation
calculations and one datasink for returning the result to the client. A client
is, for example, the mobile application of the customer.
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Figure 4.3: Pipe-And-Filter elements of the RS
Source: Created by author.

The pipeline seen in figure 4.3 states all included components of our RS: the
datasource, all data filtering, transforming and processing components and
the datasink.

4.3.1 Connection Object

As already described, we use a connection object called DataPipe for the
communication between two components. The name DataPipe refers to
the piping mechanism of the components. However, in this work, we also
process the data saved in the connection object instead of only filtering. For
our filters, we use two different types of properties: one for saving plain
features and one for the recommendation calculations. The properties are
described in detail below:

• Original Data: Represents the original data how we retrieve it from
an external source such as the mobile application of the customer.
This object will be further processed to extract the features from the
corresponding user and real estates.

• User-Features: This property includes the user’s features of the orig-
inal data sorted by their key. The key is a unique identifier of the
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feature.

• Real Estates: We save the real estate data objects separately from the
original data object since we adopt them in the datasink to send their
IDs ordered by similarity.

• User Datamatrix: The datamatrix is the object we use for the similarity
calculations. This object is a numeric and one-dimensional matrix
which contains the features of a user ordered by their keys.

• Real Estates Datamatrix: In contrast to the user datamatrix, the real
estate datamatrix contains all real estates and their features. The count
column equals the number of real estate, and the count row represents
the number of the user’s features. This means if a real estate contains
a property which is not included in the user’s feature set, we remove
it. Whereas, if a real estate does not contain a feature from the user’s
feature set, we mark it with NaN which indicates that the value is
missing. Furthermore, we sort the features in the same order as the
user’s features in the user datamatrix, i.e. ordered by the key of the
feature.

4.3.2 Datasource

In this section we describe the datasource of the RS. As the name suggests,
a datasource is used to determine data for the following process. This work
focuses on two different implementations: one in which we determine the
data from an external file and one in which we retrieve data from the cus-
tomer’s mobile application.

As already mentioned in the previous chapters, we need to achieve a generic
interface for a smooth adoption which ensures an easy-to-extend system.
Therefore, we defined an object of the JSON format including the user’s
profile and all relevant real estates. For both types we use an array of type
feature to describe the corresponding object. The customer can easily extend
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the array after the completion of the project since one only needs to adopt
the feature configuration file.

1 {
2 userId: ID,

3 features: [FeatureType],

4 realEstates: [

5 {
6 id: ID,

7 features: [FeatureType]

8 }
9 ]

10 }

Listing 4.7: Body-format used for the recommendation request

As stated in listing 4.7, there are three different first keys in the first layer of
the JSON object – the userId representing a unique identifier of the user, the
f eatures array which belong to the user and the realEstates-array including
the relevant real estates. The type FeatureType represents the format of a
feature described in listing 4.1.

File Datasource

Our first implementation step refers to a datasource based on a file. Since
we could not connect to the API of the customer in the early stages, we read
the data from an external file. On the basis of some test records provided by
the customer, we created an initial file with real estates. Therefore, we used
the same format from chapter 4.3.2 for the test set (user features and real
estate). This approach ensured static progress for our RS.

RESTful Datasource

In this section, we refer to the RESTful interface described in 4.2. The
recommendation request localhostl : 3000/recommendation route represents
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the RESTful Datasink. This includes the parsing of the request body, the
instancing of the RecommenderSystem class and the execution of the run
function.

Feature Extraction Class: In addition to the interface, we implement a
parsing class which extracts the features for a user or real estate from a
database object of the customer. Therefore, we define a configuration object
that specifies the name of a feature and its type and position in the database
object. We use separate properties for the position of a user and a real estate
since they have a different structure in the database. Listing 4.8 shows an
example of a possible configuration.

1 const FEATURE_TYPE_NUMBER = "number";

2 const FEATURE_TYPE_DATE = "date";

3 const FEATURE_TYPE_IN_RANGE = "inRange";

4 const FEATURE_TYPE_ADDRESS = "address";

5 const FEATURE_TYPE_ENUM = "enum";

6

7 private relevantFeatures = [

8 {

9 name: identifier of feature ,

10 type: feature type defined by the constantsFEATURE_TYPE_*

11 // Position of feature in database object

12 userFeature: [keys defining position],

13 realEstateFeature: [keys defining position]

14 }

15 ];

Listing 4.8: Configuration file for the feature extraction

As seen in listing 4.8, we define five different constants, FEATURE TYPE NUMBER,
FEATURE TYPE DATE, FEATURE TYPE IN RANGE, FEATURE TYPE ADDRESS
and FEATURE TYPE ENUM which represent the possible types of a fea-
ture. The array called relevantFeatures defines the features and their position
in the corresponding database objects. Therefore, we use four different keys
which are explained below:

• Name: The name is a unique identifier that maps the feature of a user
with the one of a real estate. This is necessary since a feature can have
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different names for a user and real estate. For example the rental fee
is named max rental f ee for the user and price for the real estate.

• Type: This property refers to the feature types of the RS. These are
indicated by the prefixes FEATURE TYPE ∗, where ∗ stands for a
place-holder for the type.

• User feature: Defines the position of the feature in the database object
of a user. Therefore, we use an array in which the first element defines
the position of the first layer in the corresponding object,the second
one in the second layer and so forth.

• Real Estate Feature: As already mentioned, the name of a feature in a
user object may differ from the real estate one. Therefore, we define a
separate property which contains the name of the feature in the real
estate object.

Listing 4.9 shows a fictitious example of how we extract a feature and its
values from a user and real estate object by using the described keys.

1 // Fictitious object defining a feature definition

2 const relevantFeature = {

3 name: "feature_1",

4 type: FEATURE_TYPE_NUMBER

5 // Position of feature in database object

6 userFeature: ["key_layer_1_b", "key_layer_2_a"],

7 realEstateFeature: ["key_layer_1_c"]

8 }

9

10 // Fictitious database object representing a user

11 const user = {

12 key_layer_1_a: value_layer_1_a ,

13 key_layer_1_b: {

14 key_layer_2_a: numeric value of user which is used for

feature_1 ,

15 key_layer_2_b: value_layer_2_b

16 },

17 key_layer_1_b: value_layer_1_b ,

18 }

19
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20 // Fictitious database object representing a real estate

21 const realEstate = {

22 key_layer_1_a: value_layer_1_a ,

23 key_layer_1_b: value_layer_1_b ,

24 key_layer_1_c: numeric value of real estate which is used for

feature_1 ,

25 key_layer_1_d: {

26 ...

27 }

28 }

Listing 4.9: Feature extraction example from a user and real estate object

As seen in listing 4.9, we have an object called relevantFeature which defines
the features to be extracted from the objects user and realEstate. Both objects
have several and arbitrary values as content. Thus, we use the userFeature
and realEstateFeature array to determine the position of the values in the
user and real estate object. This value will then further be processed under
the name f eature 1 and type number in the RS.

Due to no access to the customer’s database, she or he integrates the
feature extraction class directly into her or his system. If issues regarding
performance arise, we integrate the interface directly into the RS and connect
it to the Firebase database for direct access. Additionally, we modify the
RESTful API and change the recommendation and feedback routes with a
trigger request and fetch the necessary data directly from the database.

4.3.3 Filter

The next entities of the Pipe-And-Filter architecture are the filter components.
As already described, a standard filter reduces data sequentially rather than
processing or formatting it. However, we make use of the piping mechanism
to process the data sequentially. In the following sections, we describe the
included filters we use for the filtering, processing and transformation of
the data.
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Feature Filter

The first filter of the RS is the feature filter which relates to determining
and converting features. It includes two steps: As a first step, based on the
user’s features, we check whether a feature exists or is missing in a real
estate. Second, we convert the features to numbers and save them in the
corresponding datamatrix. We use a function called buildUpDatamatrices
to do so:

1 def buildUpDatamatrices(self , dataPipe):

2 dataPipe.userDataMatrix = np.zeros ((len(dataPipe.

userFeatures), 1))

3 dataPipe.realEstateDataMatrix = np.zeros ((len(dataPipe.

userFeatures), len(dataPipe.realEstates)))

4

5 #Loop through relevant features and build up matrix

6 for indexF , userFeature in enumerate(dataPipe.

userFeatures):

7 #Extract value for user feature

8 dataPipe.userDataMatrix[indexF ][0] = self.

getUserValue(userFeature)

9

10 for indexRe , realEstate in enumerate(dataPipe.

realEstates):

11 features = realEstate[’features ’]

12 try:

13 match = next(f for f in features if f[’

feature ’] == userFeature[’feature ’])

14 except Exception as inst:

15 match = None

16

17 #Extract value for real estate feature

18 if (match == None):

19 dataPipe.realEstateDataMatrix[indexF ][

indexRe ]= None

20 else:

21 dataPipe.realEstateDataMatrix[indexF ][

indexRe] = self.getRealEstateValue(

userFeature , match)

Listing 4.10: Function for the feature conversion and datamatrices setup

As seen in listing 4.10, we first initialise the data matrices with zero. For
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both matrices we use the same amount of columns which is defined by the
number of features of the user. Next, we iterate through the features and
real estates to determine the values for both of the entities. Therefore, we
invoke the function getUserValue to get the numeric value of a feature from
the user and getRealEstateValue for each of the real estates. Furthermore,
we check if a feature is missing in the real estate. If so, we use NaN as value
for the feature.

For the conversion functions getUserValue and getRealEstateValue, we use
the type from the feature. Depending on the type, we convert the features
as follows:

• Number: Is a numeric value which we do not process further.

• Date: For both entities, user and real estate, we determine the differ-
ence between the provided date and today’s date. Afterwards, we use
the range in days for the corresponding entity.

• Range-Days: Date of a property like the year of construction. For the
user, we use 0 as a uniform value, and for the real estate, we determine
the days between the user’s and real estate’s date.

• In-Range: Defines if the real estate’s value has to be between a mini-
mum and maximum value from the user. For the conversion, we use 1

as a uniform value for the user, whereas we use 1 for the real estate
value if in range and 0 if not.

• Address: An address is represented as coordinates (latitude and lon-
gitude). We calculate the straight-line distance in kilometres between
the address of the real estate and the desired location of the user. Next,
we use the distance for the real estate and 0 as a uniform value for
the user. The range calculation is based on the Haversine formula
(Alam2016).

• Enumerate: An enumerate represents characteristics of a real estate
property such as builtInKitchen in the feature equipment. In addition
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to the characteristic, we add a counter which indicates the importance
of the property for the user. We increment the counter if the user
liked a real estate with this entry and decrement it otherwise. As with
the types, date, in-range and address, we use 0 as a uniform value
for the user. The calculation of the real estate value looks as follows:
First, we determine the intersection between the user’s and the real
estate’s array. Then we calculate the sum of the counters of the in-
tersected entries. Listing 4.11 states an example calculation of this type.

1 {
2 feature: "equipment",

3 type: "enum",

4 value: [

5 {
6 name: "builtInKitchen",

7 count: 5

8 },
9 {

10 name: "basement",

11 count: 1

12 }
13 ]

14 }

Listing 4.11: User feature of enumerate type

Missing Values Filter

The first filter which adapts the numeric values in the data matrices is
the Missing Values Filter. A missing value refers to attributes which were
not provided through the corresponding real estate. Since Immoky does
not administrate all objects on its own, there may be several real estates
with sparse data. This is due to various reasons. The information is either
not available, does not exist for the real estate at all, or the real estate is
badly administrated. For such missing attributes we used NaN as already
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described in section 4.3.3.

Missing values may falsify the result of an RS or make it even impossible.
Thus, we determine the mean value of the feature including the user and all
other real estates. The following matrices show an example of the filtering
result.

M =



u v1 v2 v3

i1 0 11.1 100.2 240.8
i2 0 3 59 NaN
i3 1 NaN 1 NaN
i4 1200 1200 NaN NaN
i5 52 49 42 30
i6 650 630 540 440

 →


u v1 v2 v3

i1 0 11.1 100.2 240.7
i2 0 3 59 20.7
i3 1 1 1 1
i4 1200 1200 1200 1200
i5 52 49 42 30
i6 650 630 540 440



The matrix is a joint matrix consisting of the user’s and real estate’s data-
matrix. Thus, u represents the user’s features, v1...4 are four real estates and
i1...6 represent the features. As already mentioned NaN indicates a missing
value. We calculate the mean value row-wise and save it in the right matrix.
The mean value is calculated as follows:

x =
ui + vi,1 + ... + vi,n

1 + N
i...row index of feature, n...real estates, N...amount of real estates

Normalization Filter

First, we take care of the missing values, next we normalise the data matrices
to a unit norm between 0 and 1. This is necessary since the features of a real
estate vary highly in magnitude, unit and range. A higher-valued feature
would be more important than one with lower values. To fix this problem,
we normalise the data matrices as described in 2.4. The following matrices
show an example of the normalisation process.
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M =



u v1 v2 v3

i1 0 11.1 100.2 240.8
i2 0 3 59 20.7
i3 1 1 1 1
i4 1200 1200 1200 1200
i5 52 49 42 30
i6 650 630 540 440

 →


u v1 v2 v3

i1 0 0.04 0.38 0.92
i2 0 0.05 0.59 0.33
i3 0.5 0.5 0.5 0.5
i4 0.5 0.5 0.5 0.5
i5 0.59 0.56 0.48 0.34
i6 0.57 0.552 0.47 0.39



As in the previous section 4.3.3 u , v1...4 and i1...6 represent the user, the real
estates and the features. The left matrix, which includes the values before
the normalisation, has a broad range from 0 to 1200. We normalised the
joint matrix which resulted in the left matrix. All values lay between 0 and
1 and are therefore of the same importance.

Weighting Filter

The last step before we calculate the similarity between the real estates and
the user’s preferences (features) is the weighting of features. In general, some
attributes are more important for users than others. A possible approach to
consider these tendencies is to make features more important by weighting
them. In this work, we multiply a weighting factor with the corresponding
feature. The customer provides the factor as additional property in the
feature of the user. We define weights initially for a user which she or he
can directly overwrite in the mobile application. For example, the rental
fee is generally an important feature for a user. The weighting factor can
lay between 0 to 5, where 0 stands for an irrelevant feature and 5 for an
essential one. Therefore, we use the following equation to determine the
new values.

xi = xi ∗ weightui ∗ 0.2

x...user or real estate feature, i...row index of feature, weight...weighting of
feature (0...5)
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We apply the equation to all features. As an example, we use the values
0.5 and 0.75 to describe the calculation. Before applying the weighting, the
difference between the values is 0.25. Afterwards, the difference decreases to
0.05 and thus has less impact on the calculations as before. If no weighting
is provided for a feature, we use 3 by default. The following matrices show
an example before and after we applied the weighting to the features.

M =



u v1 v2 v3

i1 0 0.04 0.38 0.92
i2 0 0.05 0.59 0.33
i3 0.5 0.5 0.5 0.5
i4 0.5 0.5 0.5 0.5
i5 0.59 0.56 0.48 0.34
i6 0.57 0.552 0.47 0.39

 →


u v1 v2 v3

i1 0 0.03 0.23 0.55
i2 0 0.03 0.57 0.2
i3 0.3 0.3 0.3 0.3
i4 0.3 0.3 0.3 0.3
i5 0.12 0.11 0.1 0.07
i6 0.57 0.55 0.47 0.39



In the example above, we use the weighting 5 for the feature i = 5 and 1

for i = 6. Only the feature on which we applied the weighting 5 stayed the
same since 5 represents 100 percent of the value. All other values decreased,
whereas the values of feature i = 6 with the lowest importance sank the
most.

Ranking Filter

The filters described in the previous sections are used to apply different
processing methods on the original data. These steps are necessary to make
a user profile or real estate usable for our RS. In this section, we describe
the calculations which are necessary for the similarity measurement.

For our RS, we use a CBF-based approach to recommend real estates to a
user. The term content relates to the information which describes an item as
already described in section 2.3.2. In case of real estates, these are common
characteristics such as the monthly rent, the footage or the number of rooms.
With the same characteristics, we reflect the user’s preferences. Furthermore,
we use the user’s interactions with the system to refine the features.As with
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the types of RS, there are also several functions for comparing items. Besides
the comparison functions, we can further parameterise the system as well.
For the RS of this work we use the similarity function Cosine Similarity
described in section 2.3.5.

An RS sorts the items, for example, by their similarity with user’s prefer-
ences. For the calculations, we use the datamatrix and apply the similarity
function to the items. Therefore, for each column in the real estate datama-
trix we calculate the Euclidean distance with the user datamatrix. A column
in the real estate datamtrix represents the numeric form of a particular real
estate. Afterwards, we save the distance in the corresponding real estate by
using the same index of the loop mentioned before. When all similarities are
determined, we sort the real estates accordingly in ascending order. Thus,
the first entry in the real estate array represents the item which meets the
user’s requirements best. The higher the distance between the user and the
real estate vector the more they differ. We overwrite the real estate’s array of
the DataPipe object to pipe the result to the datasinkfor further processing.
We applied the calculations on the example matrices used in the previous
sections and get the following result:

M =



u v1 v2 v3

i1 0 0.026 0.23 0.553
i2 0 0.029 0.566 0.2
i3 0.3 0.3 0.3 0.3
i4 0.3 0.3 0.3 0.3
i5 0.118 0.111 0.095 0.068
i6 0.569 0.552 0.473 0.385



→ sim(uuu, vvv1) = 0.9984, sim(uuu, vvv2) = 0.7217, sim(uuu, vvv3) = 0.687
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4.3.4 Datasink

The datasink is the last component of our RS. Here, the result of the filter
components gets further processed. We either save the result in a file or
send it back to the customer’s mobile application. In both cases, we first
extract the unique identifiers, the IDs, from the sorted real estate array of the
connection object, the DataPipe. Therefore, we delete all properties within a
real estate object except for the id.

File Datasink

We use the file-based datasink for testing the RS without connecting to an
external system. As with the file-based datasource from section 4.3.2, this
component uses a file in a specific path in which we save the IDs of the
sorted real estates.

RESTful Datasink

Since the RESTful datasource 4.3.2 refers to the recommendation request
localhost : 3000/recommendation, the RESTful datasink is merely the re-
sponse to this call. Thus, it only represents the returning of the result to the
customer’s mobile application.

4.4 Feedback

The second part of our work is to improve the RS by using the interactions of
the user with the customer’s mobile application. Therefore, we consider two
different types of interactions: filter options and swipeable cards which
represent real estates.
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4.4.1 Filter Options

For the first recommendation for a user, we use the answers from the cus-
tomer’s tutorial which are considered as filter options. These filter options
are saved in the user profile and used in two different ways. First, the
customer pre-filters the real estates based on some knock-out criteria such
as object type or pricing model for the RS later on. Therefore, some filter
options are pre-defined as knock-out criteria such as object type or pricing
model. Second, we use the answers as initial features for the RS by apply-
ing the feature extraction class described in paragraph 4.3.2 on the user’s
profile. Since a user can customise her or his filter options, we modify the
RS-related features as well. We assume that if a user changes her or his
filtering options and therefore her or his preferences, the user is not satisfied
with the recommended real estates. Thus, we reset the features by using the
new filter options of the user.

Furthermore, a user can choose between four different object types. These
are apartments, houses, commercial space and investment offerings. In this
work, we consider only those objects which satisfy the need for accommoda-
tion, such as apartments and houses. For these two object types, we create a
separate feature profile for the user. Thus, we can apply the feature profile
regarding the searched object type.

As already mentioned before, we apply configurations used in a feature ex-
traction class to build up our feature profile for a user. These configurations
need to be related to the object type since each type has different attributes
and positions for a feature. Therefore, we extend the configurations object
of the feature extraction class 4.3.2 by adding a separate array for each of
the remaining object types. These arrays define the position of a feature,
such as the userFeature, and realEstateFeature objects do. This results in the
object seen in listing 4.12.

1 private relevantFeatures = [

2 {

3 name: identifier of feature ,

4 type: feature type

5 // Position of feature in database object
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6 userFeature: [keys defining position],

7 appartmentFeature: [keys defining position],

8 houseFeature: [keys defining position]

9 }

10 ];

Listing 4.12: Defining position object for a feature

Listing 4.12 shows which keys are used to extract a feature from a database
object. We use one for the user called userFeature and two for the real estate
object types called appartmentFeature and houseFeature. These keys repre-
sent the position of the feature in the database object as already described in
section 4.3.2. If a particular feature is not available in an object type, we set
the corresponding key to null. This indicates that we skip the feature during
the extraction process. Thus, if we want to determine the initial features
for an apartment, we loop through the defined feature objects and consider
only features in which the appartmentFeature is defined.

With the use of these filter options, we overcome the known cold start
problem of a content-based RS described in section 2.3.2. The next step is to
refine the features and their values by using the swipeable cards to provide
better recommendations for a user.

4.4.2 Swipeable Cards

As described in the previous section 4.4.1, for the first recommendations,
we use the answers from the customer’s tutorial described in section 4.4.1.
Next, we use the user’s feedback related to the recommended real estates
represented as swipeable cards. The user can swipe a card to the left or
right and indicates if she or he likes or dislikes a real estate. We use these
interactions to further improve the features of the user. The process looks as
follows:

1. Real estates as swipeable cards: First, we calculate recommendations
for a user based on her or his filter options as described in 4.4.1. The
customer always uses the received real estates and presents them to
the user as swipeable cards.
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Figure 4.4: Real estate represented as swipeable card
Source: Created by author based on screenshots from Immoky. (Zangerl, 2018)

2. User’s likes and dislikes: Afterwards, the user analyses the presented
real estates and likes or dislikes them by swiping the cards. In parallel,
the customer saves the information of the interactions (likes and dis-
likes) for the feedback procedure afterwards. After the user has seen
all real estate offers, the customer requests the feedback procedure
with the f eedback route and transmits the gathered likes and dislikes.
Thus, the call is used to determine new features for one particular user
and object type.

3. Feature Determination: Next, we determine new features and calcu-
late new values for already included ones. We add a feature to the
user’s preferences if it misses and is provided through a liked real
estate. For the value update, we consider the liked flag and the corre-
sponding real estate value of the feature. Afterwards, we send back
the new features to the customer.

4. Updating user profile: Last, the customer overwrites the feature pro-
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file related to the object type in the user profile. For the next recom-
mendations, the customer uses the new features.

Feature Update

In this section, we investigate the feature update process. Therefore, we use
the feedback from the user regarding real estates.

For the feature update, the customer invokes the f eedback route of the RS
described in section 4.2. The necessary data (information on likes and dis-
likes) is provided through the body of the request. Therefore, we use the
same format for data, as for the recommendation call and extend the real
estate object with a Boolean property called liked (see listing 4.13).

1 {
2 userId: ID,

3 features: [FeatureType],

4 realEstates: [

5 {
6 id: ID,

7 liked: Boolean

8 features: [FeatureType]

9 }
10 ]

11 }

Listing 4.13: Body-format used for the feedback request

In the API of the RS we parse the body and execute the feedback procedure
with the user features and real estates. Therefore, we iterate through the
real estates and and features. Since a real estate can have more features
than the amount in the user’s feature set, we have two scenarios for the
feature update. In the first scenario, a real estate feature is not included in
the user’s feature set, in the second one it is. The former case happens most
likely when a user uses the mobile application for the first time and thus
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has only a few features in her or his set (e.g. answers from the tutorial). On
the basis of these scenarios we implement two methods to determine the
value for a feature.

Feature is not included: First, we check if the feature of the real estate is
already included in the user’s feature set. Next, we check if the current real
estate was either liked or disliked by the user. Since a dislike indicates that
the user does not like the attributes of the real estate, we do not add the
feature to the user’s feature set. If the user liked the real estate, however, we
add the feature to the user’s feature set with its value.

Feature is included: If the feature of a real estate is in the user’s feature
set, we update the value. Our standard approach for the calculation is based
on the mean value between the user’s and real estate’s value. Next, we
multiply the determined mean value with a scaling factor and add the result
to the user value. The used scaling factor depends on the liked flag of the
real estate. We take 0.5 if the real estate was liked and -0.2 if it was not. A
calculation which looks for a feature of the type number looks as follows:

For this example, we use the property price as a feature, choose e550 as
user value and e600 as real estate’s value. Furthermore, in this example the
user liked the real estate. Thus, the scaling factor is 0.5 which means that
we move the value half to the mean value.

1. Mean Value:

x̄ =
userj + realestatei,j

2
=

550 + 600
2

= 575

i...index of current real estate, j ... index of the current feature of the real estate

2. Delta User Value/Mean Value:

∆x = x̄− userj = 575− 550 = 25

3. Scale delta and add to user value:

userj = userj + (∆x ∗ 0.5) = 550 + (25 ∗ 0.5) = 562.5
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The result of the equations, 562.5, is then used as the new value for the
user feature. Since a feature can occur in multiple real estates, we repeat the
calculations as often as the feature occurs. Thus, the final value which we
return to the customer is the one of the last calculation.

The example for the value update stated before is based on numeric values.
However, since a feature can have different types, we adopt the calculations
according to the type. Therefore, we use the following approaches based on
the feature type:

• Number: The calculation for numeric values looks like the example
we showed before, only the scaling factor changes to -0.2 if the user
disliked a real estate.

• Date: A feature of the date type is used to determine the days between
the feature’s value and today’s date. In case of this type, we compare
the user value with the real estate. Therefore, we use the mean value,
the middle of the days, again for the calculation. Afterwards, we add
the scaled mean value, dependent on the liked flag, to the user’s date.

• Range Days: As with a date feature, we determine the days between
two dates again. But instead of using today’s date, we take the real
estate’s date as second value to the user’s value. The calculation for
the new value looks the same as for the date type. We determine the
mean value and add the scaled mean value to the user’s date.

• In-Range: A feature of the in-range type is used for real estates to
define a minimum and maximum border such as the level from/to.
We use for the recommendation calculation Boolean values. If in range,
the value is 1, otherwise it is 0. For the update, we use the middle of
the borders as mean value and apply our standard approach.

• Address: The address property is used to determine the range be-
tween a real estate and the desired location of the user in kilometres.
Therefore, we use the Haversine formula to determine the distance
between these addresses as mentioned in section 4.3.3. In our refine-
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ment calculations, the middle between those two addresses represents
the mean value. Afterwards, we apply the same calculations as for the
previous feature types. Figure 4.5 provides a visual example showing
in which direction the location is moved based on the scaling factor.

Figure 4.5: Example: New location for user value based on liked flag
Source: Created by author.

As seen in figure 4.5 we used two points to represent the real estate’s
and the user’s location before the calculation. The green point indi-
cates a movement towards the real estate’s address when it was liked
and the red one vice versa. The green point was moved further away
from the user’s old address since the scaling factor for a liked real
estate is higher than for a disliked one.

• Enumerate: For the enumerate type we use a completely different
approach for the feature value determination. As described in section
4.3.3 we use an array and a counter to define several characteristics
within a feature.
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1 {
2 feature: identifier of feature,

3 type: "enum",

4 value: [

5 {
6 name: identifier of enumerate feature,

7 count: current value

8 }
9 ]

10 }

Listing 4.14: Recap: Feature of enumerate type

On the basis of the liked flag, we adopt the counter of the entries in the
feature value. When the real estate was liked, we increase the counter
and otherwise we decrement it. We apply this step to all enumeration
entries in the real estate’s value. As a basis for the counter we use the
old value array of the user’s feature. If an enumerate does not exist in
the user’s feature we use 0 as a basis for the counter instead.

We use the following two values to describe the feature adoption if
the real estate was liked (liked flag = 1).

Real estate value:

1 {
2 feature: "equipment",

3 type: "enum",

4 value: ["builtInKitchen", "basement", "

fullyFurnished"]

5 }

Listing 4.15: Enumerate feature equipment of real estate

User value before adoption:

1 {
2 feature: "equipment",
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3 type: "enum",

4 value: [

5 {
6 name: "builtInKitchen",

7 count: 5

8 },
9 {

10 name: "basement",

11 count: 1

12 }
13 ]

14 }

Listing 4.16: Enumerate feature equipment of user before adoptionn

User value after adoption: The entries and their counters of the user’s
value will be increased by 1 since the real estate was liked by the user.

1 {
2 feature: "equipment",

3 type: "enum",

4 value: [

5 {
6 name: "builtInKitchen",

7 count: 6

8 },
9 {

10 name: "basement",

11 count: 2

12 },
13 {
14 name: "fullyFurnished",

15 count: 1

16 }
17 ]

18 }

Listing 4.17: Enumerate feature equipment of user after adoption
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The counter of the entries builtInKitchen and basement were increased
by one while a counter of 1 was added to the f ullyFurnished since it
was not present beforehand.
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As a first step we implement the RS for real estates. Next, we evaluate the
test results of our used approach based on our defined research questions
and goals. Since we implemented the system in a modular and integrative
way, we did not expect any issues during the final tests (modular and inte-
grative in terms of the implementation, validation and verification process).
Due to our proposed pipeline software architecture, we were able to imple-
ment and test every component separately and in an integrative manner
with the already implemented components.

For our tests we built an offline experiment (Shani and Guy, 2010) (Gunawar-
dana and Shani, 2015) since when the evaluation was carried out, Immoky
only included the RS in its system without having the user interface fin-
ished. Thus, it was necessary to build a test scenario for participants to get a
valuable amount of test data which we used as historical data to simulate a
user’s behaviour (Gunawardana and Shani, 2015). The test scenario includes
the following steps:

1. Filter options as initial features: First, a participant defines filter op-
tions as initial features for the RS. Thus, she or he was asked to share
the maximal rental fee, footage and type of real estate she or he prefers.

2. Searching real estates: The next step is to search for real estates on an
arbitrary broker website which meet the preferences of the participant
including a tolerance limit of about 30 percent. This means if the user
prefers a flat with a footage of 50 square metres, we also take a flat
with 35 and 65 square metres into account. Next, we transfer the real
estate offers including their features except for images and description
into a table from which we extract the data for the RS afterwards. For
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one test scenario we search for 50 real estates.

3. Participant evaluates real estates: After we gathered the real estates,
we show them to the participant. She or he evaluates then all of the
offers and marks them as liked or disliked.

4. Real estates data to JSON: Next, we extract all real estates including
their features and likes/dislikes from the table we created before and
convert them into a JSON object. For the JSON object we use the
defined format for the RS as seen in listing 4.7.

5. Calculate recommendations: The RS then determines the similarity
for the real estates with the preferences defined in the step filter options
as initial features. As a result, we get the IDs of the real estates in an
ordered way.

6. Evaluate recommendations: For the evaluation, we consider the first
10 as recommended and the remaining 40 as not recommended. Fi-
nally, we calculate precision and recall (Gunawardana and Shani, 2015).
Precision is the amount of liked real estates in the recommended set
while recall refers to the fraction of liked real estates from the recom-
mended set over the total amount of liked real estates (Gunawardana
and Shani, 2015) (see table 5.1 and equations 5.1 and 5.2).

Recommended Not recommended

Liked True-positive (tp) False-negative (fn)
Not liked False-positive (fp) True-negative (tn)

Table 5.1: Classification of a recommendation

precision =
#tp

#tp + # f p
(5.1)
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recall =
#tp

#tp + # f n
(5.2)

7. New values for features via feedback: First we evaluate the result
and after that execute the feedback function to calculate new values
for the participant’s features. Therefore, we take the 10 recommended
real estates and forward them to the RS with the likes/dislikes we
already gathered from the participant. The new features are then used
for the next recommendation cycle.

The recommendation cycle including the steps calculate recommendations,
evaluate recommendations and new values for features via feedback is executed
three times. As a result, the accuracy should increase since the RS can refine
the features by using the feedback from the user.

In the next section, we show an example of the described iterative scenario.
First, we define the setup of the scenario. Next, we calculate rankings and
evaluate the first recommendation results based on the participant’s likes
and dislikes. In the last two steps, we adopt the features of the participant
via the feedback function for a further recommendation calculation. At the
end of a recommendation cycle, we calculate precision and recall to state if
the accuracy increases.

5.1 Test Scenario

For the test scenario of this section we asked a student from Graz, Austria
who was searching for a flat while studying at university to be our test
participant. Table 5.2 states the participant’s preferences for the flat search.
We use these preferences as initial features for the first recommendation
cycle.
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Max. rental fee Footage Real estate type Location

Student e600 50 m2 Flat Inffeldgasse
8010 Graz

Table 5.2: Participant’s preferences for test scenario

Next, we searched for 50 real estates and used the available features on the
website for the RS. We did not consider images and arbitrary texts such as
the description for the ranking calculations. If a feature was not available,
we used NaN as value for the real estate instead. Table 5.3 states the number
of real estates, liked/not liked real estate offers and features of the test
scenario.

Searched real estates Liked Not liked Features

Test scenario 50 22 28 11

Table 5.3: Amount of real estates, liked/not liked and features of the test scenario

Since the approach of this work is one of the customers unique selling
propositions, we are not allowed to publish the feature combination and
their weightings which were used for the test scenario. Thus, we include
only the rental fee, the footage and the location in the stated results.
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5.1.1 Cycle 1

In the first recommendation step we used the defined preferences from the
user as initial features for the recommendation request (see table 5.4).

Rental fee Footage Location

Student e600 50 m2
Inffeldgasse
8010 Graz

Table 5.4: Features used for the recommendation request of cycle 1

The values used for precision 5.3 and recall 5.4 are based on the results
stated in table 5.6.

precision =
#tp

#tp + # f p
=

8
8 + 2

= 0.8 (5.3)

recall =
#tp

#tp + # f n
=

8
8 + 14

= 0.364 (5.4)

For the feedback request of the first cycle, we used the features from the
recommendation request and the recommended real estates (see tables 5.4
and 5.6). The new values for the rental fee, footage and location are shown
in table 5.5.

Rental fee Footage Location

Student e630.1 51.16 m2
Petersgasse
8010 Graz

Table 5.5: New feature values after the feedback request of cycle 1

The values for the rental fee and footage increased which means the par-
ticipant tends to a bigger flat and is also prepared to pay more. Also, the
location changed and moved towards the centre of Graz.
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ID Rental fee Footage Location Similarity Liked

14 590 49 Petrifelderstrasse, 8041 Graz 0.00441 false
31 592 50 Anton Wildgangs-Weg 15, 8043 Graz 0.00664 true
46 629 50 St.Peter Hauptstrasse, 8042 Graz 0.00714 true
9 581 52 Neufeldweg 75, 8010 Graz 0.00715 true
10 620 53 Neufeldweg 75, 8010 Graz 0.00952 true
26 640 49 Niesenbergergasse 41, 8020 Graz 0.01098 false
48 649 51 Muenzgrabenstrasse, 8010 Graz 0.01148 true
13 649 51 Grazbachgasse, 8010 Graz 0.01178 true
47 649 51 Wartingergasse 30, 8010 Graz 0.01259 true
15 630 54 Petrifelderstrasse, 8041 Graz 0.01315 true

49 592 53 Mariatrost, 8044 Graz 0.01354 true
21 655 49 Billrothgasse, 8010 Graz 0.01368 true
23 549 48 Florianigasse, 8020 Graz 0.01376 false
28 652 48 Niesenbergergasse 41, 8020 Graz 0.01413 false
12 610 45 Geidorf, 8010 Graz 0.01458 false
45 650 53 Muehlgasse 60, 8010 Graz 0.0151 true
32 670 51 Plueddemanngasse, 8010 Graz 0.01615 true
22 670 50 Billrothgasse, 8010 Graz 0.01661 true
30 670 51 Wartingergasse 30, 8010 Graz 0.01694 true
35 650 54 Mariengasse, 8020 Graz 0.0171 true
50 676 51 Dietrichsteinplatz, 8010 Graz 0.0176 true
43 682 51 Obere Teichstrasse 59, 8010 Graz 0.01902 true
7 561 56 Annenstrasse 7/7a, 8020 Graz 0.01921 false
2 539 55 Elisabethinergasse, 8020 Graz 0.02007 false
25 583 57 Oeverseegasse, 8020 Graz 0.02009 false
27 687 52 Niesenbergergasse 41, 8020 Graz 0.0212 false
24 523 46 Florianigasse, 8020 Graz 0.02122 false
36 690 48 Augasse, 8020 Graz 0.02269 true
1 700 53 Geidorf, 8010 Graz 0.02452 true
29 500 47 Koenigshoferstrasse 23, 8020 Graz 0.02533 false
6 700 54 Keesgasse 4, 8010 Graz 0.02538 true
17 700 54 Keesgasse 4, 8010 Graz 0.02538 true
11 710 56 Geidorf, 8010 Graz 0.03019 true
39 529 41 Algersdorferstrasse, 8020 Graz 0.03067 false
40 519 41 Hauseggerstrasse 45, 8020 Graz 0.03173 false
8 576 61 Krottendorfer Strasse 50, 8052 Graz 0.03196 false
20 670 60 Vinzenzgasse, 8020 Graz 0.03267 false
4 485 41 Wielandgasse, 8010 Graz 0.03599 false
33 499 60 Josef Huber Gasse 12, 8010 Graz 0.03603 false
37 469 42 Kossgasse, 8010 Graz 0.03692 false
3 529 37 Geidorf, 8010 Graz 0.03932 false
5 644 64 Handelstrasse 10/10a, 8020 Graz 0.04049 false
44 505 35 Schillerplatz, 8010 Graz 0.04642 false
38 740 62 Algersdorferstrasse, 8020 Graz 0.04648 false
42 482 36 Lazarettguertel, 8020 Graz 0.04697 false
16 480 36 Petrifelderstrasse, 8041 Graz 0.04708 false
19 470 36 Kossgasse, 8010 Graz 0.04836 false
34 742 65 Wielandgasse, 8010 Graz 0.05226 false
18 750 65 Keesgasse 4, 8010 Graz 0.05341 false
41 714 57 Peter-Rosegger-Strasse 117 0.99985 false

Table 5.6: Recommendations of cycle 1 (green rows indicate recommended real estates and
red ones not recommended)
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5.1.2 Cycle 2

For the second recommendation step we used the adopted features from
the feedback request done in the first cycle (see table 5.7).

Rental fee Footage Location

Student e630.1 51.16 m2
Petersgasse
8010 Graz

Table 5.7: Features used for the recommendation request of cycle 2

The values used for precision 5.5 and recall 5.6 are again based on the results
from the recommendation request stated in table 5.9.

precision =
#tp

#tp + # f p
=

6
6 + 4

= 0.6 (5.5)

recall =
#tp

#tp + # f n
=

6
6 + 16

= 0.273 (5.6)

For the feature adoption we executed the same scenario as in the first cycle
5.1.1. However, we did not use the original user data but the feedback we
got in cycle 1 (see tables 5.7 and 5.9).

Rental fee Footage Location

Student e662.74 50.33 m2
Brandhofgasse

8010 Graz

Table 5.8: New feature values after the feedback request of cycle 2

In the second feedback request, only the rental fee changed significantly and
increased about e30. The footage and the location only slightly changed.
Thus, we assume that the participant is prepared to pay more than the initial
maximum rental fee to get her or his desired real estate.
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ID Rental fee Footage Location Similarity Liked

31 592 50 Anton Wildgangs-Weg 15, 8043 Graz 1.18522 true
48 649 51 Muenzgrabenstrasse, 8010 Graz 1.1913 true
13 649 51 Grazbachgasse, 8010 Graz 1.1913 true
30 670 51 Wartingergasse 30, 8010 Graz 1.19133 true
23 549 48 Florianigasse, 8020 Graz 1.19159 false
24 523 46 Florianigasse, 8020 Graz 1.19164 false
7 561 56 Annenstrasse 7/7a, 8020 Graz 1.19184 false
36 690 48 Augasse, 8020 Graz 1.19217 true
8 576 61 Krottendorfer Strasse 50, 8052 Graz 1.19224 false
1 700 53 Geidorf, 8010 Graz 1.19225 true

35 650 54 Mariengasse, 8020 Graz 1.19236 true
29 500 47 Koenigshoferstrasse 23, 8020 Graz 1.19248 false
4 485 41 Wielandgasse, 8010 Graz 1.19292 false
19 470 36 Kossgasse, 8010 Graz 1.19297 false
37 469 42 Kossgasse, 8010 Graz 1.19308 false
33 499 60 Josef Huber Gasse 12, 8010 Graz 1.19348 false
40 519 41 Hauseggerstrasse 45, 8020 Graz 1.19382 false
46 629 50 St.Peter Hauptstrasse, 8042 Graz 1.19851 true
47 649 51 Wartingergasse 30, 8010 Graz 1.19852 true
26 640 49 Niesenbergergasse 41, 8020 Graz 1.19853 false
45 650 53 Muehlgasse 60, 8010 Graz 1.19854 true
32 670 51 Plueddemanngasse, 8010 Graz 1.19855 true
15 630 54 Petrifelderstrasse, 8041 Graz 1.19855 true
14 590 49 Petrifelderstrasse, 8041 Graz 1.19856 false
10 620 53 Neufeldweg 75, 8010 Graz 1.19856 true
50 676 51 Dietrichsteinplatz, 8010 Graz 1.19857 true
28 652 48 Niesenbergergasse 41, 8020 Graz 1.19857 false
9 581 52 Neufeldweg 75, 8010 Graz 1.19858 true
27 687 52 Niesenbergergasse 41, 8020 Graz 1.19858 false
49 592 53 Mariatrost, 8044 Graz 1.1986 true
17 700 54 Keesgasse 4, 8010 Graz 1.19864 true
6 700 54 Keesgasse 4, 8010 Graz 1.1987 true
11 710 56 Geidorf, 8010 Graz 1.19874 true
43 682 51 Obere Teichstrasse 59, 8010 Graz 1.19891 true
12 610 45 Geidorf, 8010 Graz 1.19891 false
18 750 65 Keesgasse 4, 8010 Graz 1.19945 false
3 529 37 Geidorf, 8010 Graz 1.19947 false
34 742 65 Wielandgasse, 8010 Graz 1.19955 false
16 480 36 Petrifelderstrasse, 8041 Graz 1.19972 false
44 505 35 Schillerplatz, 8010 Graz 1.19984 false
39 529 41 Algersdorferstrasse, 8020 Graz 1.19988 false
38 740 62 Algersdorferstrasse, 8020 Graz 1.19996 false
42 482 36 Lazarettguertel, 8020 Graz 1.20082 false
2 539 55 Elisabethinergasse, 8020 Graz 1.20229 false
22 670 50 Billrothgasse, 8010 Graz 1.21206 true
21 655 49 Billrothgasse, 8010 Graz 1.21211 true
20 670 60 Vinzenzgasse, 8020 Graz 1.21247 false
5 644 64 Handelstrasse 10/10a, 8020 Graz 1.24174 false
25 583 57 Oeverseegasse, 8020 Graz 1.2513 false
41 714 57 Peter-Rosegger-Strasse 117 1.56159 false

Table 5.9: Recommendations of cycle 2 (green rows indicate recommended real estates and
red ones not recommended)
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5.1.3 Cycle 3

In the last recommendation step we used the features from the feedback
request of the previous cycle 5.1.2 5.1.2 to find the similarities for the real
estate offers (see table 5.10).

Rental fee Footage Location

Student e662.74 50.33 m2
Brandhofgasse

8010 Graz

Table 5.10: Features used for the recommendation request of cycle 3

The values used for precision 5.7 and recall 5.8 are based on the results of
the recommendation request stated in table 5.12.

precision =
#tp

#tp + # f p
=

8
8 + 2

= 0.8 (5.7)

recall =
#tp

#tp + # f n
=

8
8 + 14

= 0.364 (5.8)

For the third feedback request we also used the features stated in table 5.10

and the recommended real estates as shown in table 5.12.

Rental fee Footage Location

Student e665.66 51.15 m2
Hartiggasse
8010 Graz

Table 5.11: New feature values after the feedback request of cycle 3

In the third cycle we reached a point at which all features had changed only
slightly. Based on the stated results and a further feedback step we conclude
that the features and thus the participant’s preferences converge starting
from the third feedback request.
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ID Rental fee Footage Location Similarity Liked

31 592 50 Anton Wildgangs-Weg 15, 8043 Graz 1.31767 true
30 670 51 Wartingergasse 30, 8010 Graz 1.32317 true
13 649 51 Grazbachgasse, 8010 Graz 1.3232 true
48 649 51 Muenzgrabenstrasse, 8010 Graz 1.3232 true
1 700 53 Geidorf, 8010 Graz 1.32389 true
36 690 48 Augasse, 8020 Graz 1.32389 true
35 650 54 Mariengasse, 8020 Graz 1.32412 true
29 500 47 Koenigshoferstrasse 23, 8020 Graz 1.32443 false
19 470 36 Kossgasse, 8010 Graz 1.32474 false
32 670 51 Plueddemanngasse, 8010 Graz 1.32966 true

28 652 48 Niesenbergergasse 41, 8020 Graz 1.32968 false
47 649 51 Wartingergasse 30, 8010 Graz 1.32968 true
45 650 53 Muehlgasse 60, 8010 Graz 1.32968 true
26 640 49 Niesenbergergasse 41, 8020 Graz 1.32969 false
27 687 52 Niesenbergergasse 41, 8020 Graz 1.3297 false
46 629 50 St.Peter Hauptstrasse, 8042 Graz 1.32972 true
6 700 54 Keesgasse 4, 8010 Graz 1.32972 true
15 630 54 Petrifelderstrasse, 8041 Graz 1.32972 true
17 700 54 Keesgasse 4, 8010 Graz 1.32973 true
50 676 51 Dietrichsteinplatz, 8010 Graz 1.32973 true
14 590 49 Petrifelderstrasse, 8041 Graz 1.32978 false
11 710 56 Geidorf, 8010 Graz 1.32979 true
43 682 51 Obere Teichstrasse 59, 8010 Graz 1.32983 true
10 620 53 Neufeldweg 75, 8010 Graz 1.32984 true
9 581 52 Neufeldweg 75, 8010 Graz 1.32987 true
12 610 45 Geidorf, 8010 Graz 1.3299 false
18 750 65 Keesgasse 4, 8010 Graz 1.33041 false
38 740 62 Algersdorferstrasse, 8020 Graz 1.33066 false
3 529 37 Geidorf, 8010 Graz 1.33073 false
39 529 41 Algersdorferstrasse, 8020 Graz 1.33075 false
44 505 35 Schillerplatz, 8010 Graz 1.33086 false
16 480 36 Petrifelderstrasse, 8041 Graz 1.33089 false
42 482 36 Lazarettguertel, 8020 Graz 1.33159 false
23 549 48 Florianigasse, 8020 Graz 1.33998 false
24 523 46 Florianigasse, 8020 Graz 1.33999 false
7 561 56 Annenstrasse 7/7a, 8020 Graz 1.3411 false
37 469 42 Kossgasse, 8010 Graz 1.34142 false
8 576 61 Krottendorfer Strasse 50, 8052 Graz 1.34151 false
40 519 41 Hauseggerstrasse 45, 8020 Graz 1.34169 false
33 499 60 Josef Huber Gasse 12, 8010 Graz 1.34189 false
4 485 41 Wielandgasse, 8010 Graz 1.342 false
20 670 60 Vinzenzgasse, 8020 Graz 1.34242 false
49 592 53 Mariatrost, 8044 Graz 1.34605 true
34 742 65 Wielandgasse, 8010 Graz 1.34693 false
2 539 55 Elisabethinergasse, 8020 Graz 1.35001 false
22 670 50 Billrothgasse, 8010 Graz 1.35792 true
21 655 49 Billrothgasse, 8010 Graz 1.35795 true
5 644 64 Handelstrasse 10/10a, 8020 Graz 1.38462 false
25 583 57 Oeverseegasse, 8020 Graz 1.41003 false
41 714 57 Peter-Rosegger-Strasse 117 1.66419 false

Table 5.12: Recommendations of cycle 3 (green rows indicate recommended real estates
and red ones not recommended)
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6 Discussion and Conclusion

In this thesis we implemented a CBF-based RS for real estates in order to
facilitate and speed up the search procedure on real estate broker applica-
tions. We identified three research questions which represent the goal of the
RS. On the basis of the previous chapters and our test results, we discuss
and conclude our achievements, the challenges we faced and our future
work to improve the recommender system.

First, we investigate the three research questions and use the test results
to show if we achieved an accuracy of at least 70 %. Last, we refer to the
limitations of the approach and state the content of our future work.

The first research question is fundamental for this work since it determines
whether we are able to implement an RS for real estates at all. Our first
actions were to analyse the content which is available on real estate broker
websites. As a result, we identified the most commonly used listing infor-
mation and search/order options. Later on we used this data as content
information for real estates and initial features for our RS. Knowing this,
we researched the major RS approaches to examine those which are based
on content. As described in the RS section 2.3 of our work, there are two
possible approaches. The first one is CBF which determines the similarity
between an item’s content and the user’s preferences reflected as item prop-
erties. The second approach is KBR which recommends items based on the
knowledge about the item domain and their content. The former approach
is the one we used for this work.

Next, we focused on research question number two which questions if a
CBF RS is suited to recommending real estates. We chose this question
and used the word suited for our measurement since we want to use it for

77
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commercial purposes. To measure whether a CBF RS is suitable, we defined
an accuracy of 70 %. This means a user has to like at least seven of ten
recommended real estates. A like indicates that the real estate meets the
preferences of the user.

The results we gained from research question number one, showed that
there is content available to describe a real estate. To feel fully confident
with implementing a CBF RS, we generated a little test example and did the
calculations by hand to prove that our proposed approach works. Therefore,
we created about fifteen test records without missing values, included only
a few features such as the rental fee or footage and marked them with a
liked flag. Already after the first cycle the results were convincing. Thus, we
kept going with the project.

After we verified that it is possible to recommend real estates using a CPF
approach, the next step was to analyse the content of a real estate. Therefore,
we categorised the content and created feature types to make the features
interpretable for an RS. We applied the feature extraction method to a few
test sets we got from our customer and identified two challenges: missing
values and features with different norms. On the basis of the research we
had done before we knew that these two challenges are common issues
in the context of RS. In order to tackle the problem of missing values we
calculated the mean value of the corresponding feature and for features
with different norms, we applied the normalisation function. As a result,
we got a matrix with no missing values and a single norm which we further
used to determine the Euclidean distance as similarity between the user
preferences represented as item vector and the real estates. Thus, it is
possible to recommend real estates using a CBF approach.

Coming to the accuracy, we achieved with our implemented approach.
Therefore, we refer to chapter 5 and the described test scenario within. We
executed three recommendation steps on a test set of 50 real estates. In
the first step we already achieved a precision of 0.8 (= accuracy of 80 %)
with three features. After the first feedback request which adopted and
advanced of the initial three features, the accuracy decreased to 60 %. This
mainly happened because of the new features added to the user’s feature
set. However, in the final recommendation step, we achieved an accuracy
of 80 % again since the features which were added before were adapted in
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the second cycle. We also executed the whole process a fourth time and did
not identify any further changes as already mentioned in the last section of
chapter 5.

On the basis of the research we conducted, we proved that it is possible
to recommend real estates with an accuracy of at least 70 % using a CBF
approach.

Finally, we investigated the feedback topic of an RS which is the last question
of this thesis. In general, the purpose of an RS is to recommend items which
meet the preferences of a user as much as possible. As described in chapter
2 an RS interprets the user’s interactions with the system to improve its
parameters. In case of this work, a user likes or dislikes recommended
real estates. We regard a like as a positive feedback and a dislike as a
negative one. Thus, we have two types of information which we used
for the parametrisation of the RS: the content of the real estate and the
corresponding liked information from the user. Based on this information
we either move the user’s features in the direction of a real estate or vice
versa. Since a user profile reflects the attributes of a real estate, we can easily
adopt the features.

The test results stated in section 5.1 also showed that the feedback of the par-
ticipant could have been interpreted without a loss of accuracy. In the first
recommendation step only three features were used while in the following
two the number of features increased to 11 reasoned by the feedback cycles.
This means we reflect the participant’s preferences on a higher-dimensional
space. Also, the values of the initial features changed in the latter cycles
which indicates that the participant is initially not able to define her or his
preferences accurately.

In total, our chosen approach for the given domain was a success since
we could answer all research questions positively and also exceeded the
indented accuracy of at least 70%. The next section focuses on some im-
provements we want to implement in the future.
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6.1 Future Work

In the last section we state the content of our future work. In our future
work we focus on improving two different parts: first, the features and
second, the feedback process.

During our tests we identified some issues with the feature selection and
weighting. The initial setup of this work included a feature extraction com-
ponent and three data preprocessing components. However, none of these
components reduced the dimension of the features or identified features
which were not relevant for a user. Since we used a software architecture
which eases the extension of the recommender system, we would imple-
ment a correlation filter and a feature selection filter in a future system.
The former component filters features based on a correlation matrix. If a
feature correlates strongly with another, the feature will be removed from
the feature set. For the latter one, we intend to use a liked real estate set
and calculate the variance of the features. If a feature varies strongly, we
remove the feature from the feature set since we assume that a high variance
indicates non-relevance for a user. For example, a user liked several real
estates with many different building types such as old, new or renovated.
Furthermore, we want to implement two different types of enumeration
values. The types should indicate if a real estate can have single or multiple
values of a feature. For example, a real estate can only have one building
type while it can have several furnishings.

The last part of our future work relates to the feedback process. Currently,
we are using two scaling factors for the feature adoption. 0.5 of the mean
value between the user and real estate value if the real estate was liked and
-0.2 if not. At this point, we want to try different scaling factors for different
feature types and other methods if a real estate was disliked.
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