
Thomas Absenger, BSc

Growing Decision Trees with
Reinforcement Learning

Master’s Thesis
to achieve the university degree of

Master of Science

Master’s degree programme: Computer Science

submi�ed to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Roman Kern

Institute for Interactive Systems and Data Science
Head: Univ.-Prof. Dr. Stefanie Lindstaedt

Graz, December 2018

A�idavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. �e text
document uploaded to tugrazonline is identical to the present master‘s thesis.

Date Signature

ii

Abstract

Decision trees are one of the most intuitive models for decision making used in
machine learning. However, the greedy nature of state of the art decision tree
building algorithms can lead to subpar results. �is thesis aimed to use the non-
greedy nature of reinforcement learning to overcome this limitation. �e novel
approach of using reinforcement learning to grow decision trees for classi�cation
tasks resulted in a new algorithm that is competitive with state of the art methods
and is able to produce optimal trees for simple problems requiring a non-greedy
solution. We argue that it is well suited for data exploration purposes due to diverse
results and direct in�uence on the trade-o� between tree size and performance.

iii

Contents

Abstract iii

1 Introduction 1

2 Related Work 3
2.1 Machine Learning . 3

2.1.1 Learning . 4
2.1.2 Categorization of Machine Learning Methods 5
2.1.3 Classi�cation . 7
2.1.4 Deep Learning and Arti�cial Intelligence 8

2.2 Reinforcement Learning . 9
2.2.1 Elements . 10
2.2.2 Possibilities and Limitations 13
2.2.3 Supervised Versus Unsupervised 14

2.3 Decision Trees . 15
2.3.1 Decision Trees as Models 17
2.3.2 Decision Tree Learning 17
2.3.3 Possibilities and Limitations 18
2.3.4 Overcoming Limitations 19

2.4 State Of �e Art . 22
2.4.1 Reinforcement Learning 22
2.4.2 Decision Trees . 25

3 Method 29
3.1 Methodology . 29

3.1.1 �e Overall Algorithm . 30
3.1.2 State Representation . 37
3.1.3 Reward Function . 45
3.1.4 Reinforcement Learning 51

v

Contents

3.1.5 De�nition of Done . 55
3.1.6 Post Processing . 56

3.2 System . 56
3.2.1 Components . 57
3.2.2 Con�guration . 57
3.2.3 Environments . 59
3.2.4 Solvers . 62
3.2.5 Trees . 64
3.2.6 Analyzer . 65

4 Evaluation 67
4.1 Evaluation Methodology . 67

4.1.1 Methodology . 67
4.1.2 Environment . 68

4.2 Data Sets . 68
4.2.1 Generated Data Sets . 69
4.2.2 Real Data Sets . 70

4.3 Results . 72
4.3.1 Reward Functions . 73
4.3.2 State Representations . 76
4.3.3 Reinforcement Learning 76
4.3.4 Greediness . 78
4.3.5 State of the Art . 80

4.4 Discussion . 81
4.4.1 Productive Application . 81
4.4.2 Insights . 83

5 Conclusion 87
5.1 Future Work . 88

Bibliography 91

vi

List of Figures

2.1 Cartpole . 11
2.2 Decision tree for classifying mangoes 16
2.3 Mango data with decision boundaries 16
2.4 Linear versus decision tree boundaries 20

3.1 Deeper decision tree for classifying mangoes 33
3.2 Comparison of decision tree information metrics 34
3.3 Decision tree with data examples 39
3.4 States for new nodes tree illustration 45
3.5 Basic components . 58
3.6 Methodology and implementation �ow chart 66

4.1 Greedy Tree by C4.5 (WEKA) . 79
4.2 Optimal non-greedy tree . 79

vii

1 Introduction

Decision trees are a well-understood research topic with wide-spread applications
in data science and machine learning. �e bene�ts of using decision trees for
machine learning tasks such as classi�cation are numerous. One of the most vital
bene�ts is that decision trees are intuitive and easy to understand, especially when
compared to other prominent models like neural networks. �e white box model
o�ered by decision trees visualizes the decision process, which is likely close to
the way humans reach decisions when faced with various alternatives. �ere are,
however, several downsides to decision trees, �rst and foremost among which is
the fact that building optimal decision trees is an NP-hard problem. Traditional
decision tree building algorithms circumvent this problem with a non-optimal
greedy approach.

Using reinforcement learning, which is non-greedy by nature, as a tool to grow
decision trees may create a synergy between the method and the outcome which
leads to overall be�er results. While decision trees (once built) are easily understood
and o�er insights about the data, reinforcement learning may be able to o�er a very
human-like approach to how decision trees are built. �erefore, we can identify
three main reasons of combining these methods.

• �e black box model used by reinforcement learning can be alleviated by
producing an intuitive and easy to understand outcome.

• �e process of building decision trees is done in a human-like fashion (as
o�ered by the naturally inspired reinforcement learning).

• �e non-greedy nature of reinforcement learning o�ers an advantage over
current greedy methods, potentially resulting in be�er performing decision
trees.

�e combination of using reinforcement learning to build decision trees is, to
the best of our knowledge, a novel approach, which poses the following leading
research questions.

1

1 Introduction

• Is it possible to build decision trees with reinforcement learning?
• What is a suitable approach (algorithm) to build decision trees with reinforce-
ment learning?

• Can such an approach produce non-greedy results?

�ese research questions emphasize the scienti�c nature of the thesis. �erefore, the
goal is not to develop a tool which can be used productively but to explore the pos-
sibilities of this novel approach and evaluate its feasibility compared to other state
of the art methods. A successfully designed algorithm which can compete with state
of the art approaches would open up research for further improvements, utilizing
the recently discovered power of deep learning and reinforcement learning.

To answer these research questions this thesis �rst discusses the background in
chapter 2 Related Work. Having formed a basis of de�nitions and mutual under-
standing, state of the art research results for reinforcement learning and decision
trees are discussed. �e following chapter 3 Method introduces the methodology of
how the new algorithm was designed and the concepts and numerous possibilities
o�ered by the combination of reinforcement learning and decision trees. Sub-
sequently, section 3.2 System describes the actual implementation, its parameters
and their connection to the concepts introduced in the Method chapter. In chapter 4
Evaluation various parameter con�gurations are tested to assess the hypotheses
stated by the research questions and the ideas introduced in the Method chapter.
A�erwards, the results and their implications for the feasibility of the approach
are discussed. Finally, chapter 5 Conclusion sums up the approach, re�ects on the
research questions and sheds light on possible future work.

2

2 Related Work

�is thesis mainly touches two large topics: decision trees and reinforcement
learning. While understanding these terms in a broader scope across multiple
research �elds can be bene�cial, the focus lies on using and de�ning them within
the context of computer science and, more speci�cally, machine learning. Both
methods can be viewed as subtopics of machine learning and share certain ideas,
which makes combining them an interesting endeavour. To de�ne these terms,
general concepts of machine learning will be explained �rst to provide a common
basis. �is basis will then be used to de�ne decision trees and reinforcement learning.
Once the background has been established, state of the art research will be examined
brie�y.

2.1 Machine Learning

In general it can be stated that machine learning is concerned with detecting
pa�erns in data automatically. �ere is a wide area of application for machine
learning and it already performs a multitude of meaningful tasks in our everyday
lives (like spam �ltering for emails or automatic face recognition). What sets it
apart from traditional computer so�ware is that the performed tasks usually are of
such high complexity that manually de�ning a set of rules (or similar mechanisms)
would be unfeasible. However, if a task cannot be programmed explicitly how is a
computer able to perform it? �e key is to empower a program to learn and adapt
by itself, which is a key characteristic of machine learning [44].

�e following sections provide understanding of key aspects of (machine) learn-
ing and explain its connection to the prominent terms arti�cial intelligence and
deep learning which are particularly relevant for reinforcement learning. A more

3

2 Related Work

technical perspective reveals a categorization of machine learning methods in su-
pervised and unsupervised learning. �is distinction is necessary to understand
how input data shapes machine learning approaches and where reinforcement
learning and decision trees �t in. Additionally, the machine learning application
classi�cation will be discussed as it is the practical task used in this thesis.

2.1.1 Learning

�is section is mainly based on [44], where Shalev-Shwartz and Ben-David highlight
the importance of understanding what learning encompasses. Its importance quickly
becomes apparent, as the ability to learn and adapt is one of the most fundamental
aspects of life in general. Learning enables humans (and, generally, animals) to
adapt to changes on an individual basis. While some machine learning approaches
try to replicate the way humans learn, others employ more arti�cial methods.
However, certain fundamentals remain the same and they are especially interesting
concerning reinforcement learning. For this reason, understanding the term learning
is necessary.

A basic example of learning for animals is bait shyness (or poison shyness). Rats
encountering unknown food will �rst consume only a small amount of this food to
check whether it will have bad e�ects. If bad e�ects are experienced the rat will
avoid food with the same taste and smell in the future. A similar machine learning
task is avoiding spam emails. In this case the machine memorizes a large amount
of spam emails (labeled by humans as such) and is able to compare new emails
to the memorized ones. However, the spam scenario is an example of learning
by memorization and lacks the ability to generalize. If the approach is not able to
generalize from previous experience, it will not be able to correctly predict new
unseen data, which is a vital ability of a learning agent.

To illustrate another essential ability, the rat example is extended. An experiment
performed by Garcia and Koelling [14] showed that rats avoid food causing typical
symptoms of poisoning but do not avoid food associated with electrical shocks
(or other stimuli which are not logically related to food). Rats apparently have
prior knowledge telling them that electrical shocks cannot be a consequence of
consuming a certain food item. Such prior knowledge is essential for making correct
decisions and dramatically impacts performance of machine learning algorithms.

4

2.1 Machine Learning

In conclusion, two vital components of learning can be determined: generalization
and prior knowledge. Prior knowledge should be viewed with caution as (in ma-
chine learning) it typically introduces restrictions and makes the application of an
algorithm less �exible [44].

2.1.2 Categorization of Machine Learning Methods

To get a be�er understanding of what kind of learning task has to be performed
in which context, a rough categorization of methods is provided in this section.
Machine learning methods are able to solve a wide variety of tasks. It is logical
to base the categorization of machine learning methods on the type of problem
which has to be solved, or rather how the agent solving a task can interact with the
environment in the most e�cient way. A �rst categorization yields the following
distinction:

• Supervised learning
• Unsupervised learning
• Semi-Supervised learning

Most of the machine learning algorithms can be assigned to one of these categories
and are in fact built upon the principles they represent, as available data o�en
dictates what is or is not possible (in terms of desired outcome and methodology)
[44].

Supervised Learning

In an abstract way, in supervised learning the process of learning is aided by a
supervisor which tells the agent whether the learned model �ts the desired outcome
[44]. For the example of a classi�cation task, the supervisor can tell whether a sample
has been classi�ed correctly and give the agent corresponding feedback (aiding it
in its learning). As it would be extremely ine�cient to have a human supervisor,
information about correct classi�cation (labels) is contained within the training
and test data.

Zhu [54] describes some of the pros and cons of supervised learning. If a dataset
is labeled in a task-relevant way, choosing a supervised approach will generally

5

2 Related Work

be advisable as it leads to be�er performance. But while the task of supervising
the learning agent cannot realistically be performed by a human, labeling the
initial test and training data is o�en done by humans. As this is tedious and time-
consuming work or might not even be possible, using supervised learning is not
always feasible.

Unsupervised Learning

As described in [19], unsupervised learning lacks any supervisors which can tell
the agent whether the learned model �ts the desired outcome. �is typically means
that datasets are not labeled. Without clear feedback, unsupervised approaches
have to produce internal measures to gauge the learning progress. However, the
lack of a feature to predict leads to the question of what is the desired outcome
in the �rst place. Typically, unsupervised learning methods are used to discover
interesting characteristics of a dataset, for pre-processing or visualizations.

A typical use case of unsupervised learning is clustering of data. Similar data
points are clustered together which can lead to the discovery of di�erent classes
of data points. �ese clusters and their boundaries could then be used to perform
classi�cation on unseen data. Assigning meaningful labels to the clusters is not
trivial, but possible (with limited outcomes). However, the results are more accurate
with data labeled by external agents (for example humans). But simply clustering
the data and performing a rough analysis of the outcome can be enough to gain
new insights, making it useful for data analysis.

Due to these restrictions, some tasks cannot be solved with unsupervised learning
alone.

Semi-Supervised Learning

While labeled data (in combination with supervised learning) is o�en necessary to
solve certain tasks it is also hard to obtain [44]. Semi-supervised learning uses both
labeled and unlabeled data to reduce the amount of necessary labeled data and to
provide more data in general, which can lead to be�er generalization. However,
using a semi-supervised approach (as opposed to supervised learning alone) does
not always translate to be�er performance.

6

2.1 Machine Learning

Semi-supervised approaches are a prominent example for active learning as well. In
active learning, the agent does not rely purely on the data provided but may also
”ask” a supervisor for additional information [44]. Optimally, this bit of information
improves performance signi�cantly as it represents an especially tough situation
or data point. In the case of unlabeled data, the agent may ask for labels.

�is basic categorization has been widely adopted in the machine learning com-
munity and serves as a �rst decision point when considering which algorithm to
use. However, not all methods can be assigned to a category cleanly as can be seen
in the section about reinforcement learning.

2.1.3 Classification

Two of the most prominent and (arguably) important machine learning applica-
tions are regression and classi�cation. As the practical examples in this thesis use
classi�cation as a task, it will be discussed brie�y. Both regression and classi�ca-
tion share the concept of mapping an input to an output, mostly via supervised
learning [2]. While the goal of regression is to predict a quantitative (numeric)
output, classi�cation aims to predict to which class the input belongs (nominal).
�e predictor used in this thesis (decision trees) can be used for regression and
classi�cation tasks [19]. However, classi�cation is more natural as a class can be
assigned to each leaf of the tree (as opposed to assigning numbers of continuous
nature to each leaf which naturally lacks precision).

�ere are numerous widely used applications for classi�cation [2]. Some of them
simply perform binary classi�cation, where samples have to be assigned to one
of two classes. An o�en occurring example is spam �ltering, where an email is
an input-sample and the classi�er predicts whether it belongs to the class spam
or no spam. A more business oriented use case is credit scoring, where potential
customers are classi�ed into high-risk and low-risk groups (in respect to o�ering
them credits).

A more complex example is the classi�cation of handwri�en le�ers. �e input for
such a predictor are images (of handwri�en le�ers) and the output predicts which
le�er a given image represents. Not only are there at least as many classes as le�ers
in the alphabet, but each le�er exists in an in�nite amount of variations (due to

7

2 Related Work

di�erent handwriting). Not all of these variations can be present in the training
data, hence the need for generalization. While it is not always possible to assess
whether machine learning or humans perform be�er, generally no machine has
managed to outperform humans in handwri�en le�er recognition yet [2].

�ese examples and various others like speech recognition or medical diagnoses
highlight the usefulness but also the complexity of classi�cation.

2.1.4 Deep Learning and Artificial Intelligence

Deep learning and arti�cial intelligence are terms which have gained popularity in
the last few years due to breakthroughs in research (several among which happened
around 2012 in object recognition, �rst among those the winner of the ImageNet
competition 2012, Krizhevsky et al. [25] which is believed to have had the largest
impact on the rise of popularity of deep learning [34]). �e �eld of machine learning
as a whole has been deeply impacted by this rise of popularity and signi�cantly
boosted the state-of-the-art in several areas. �is leads to some confusion about
the terms machine learning, deep learning and arti�cial intelligence, especially for
readers not familiar with the �eld. �erefore, a distinction between them has to be
drawn.

Deep Learning

Even though deep learning as an acknowledged research term has been around since
1986 [10], its viability relies heavily on high processing power. Due to this reliance it
has only become popular more recently (with the rise of GPU calculations for deep
learning). �e reliance on processing power stems from the basic idea behind deep
learning: Hierarchical representation of processing. Deep learning - also known as
hierarchical learning - aims to process data in multiple layers, each layer responsible
for extracting speci�c information [27]. A hierarchy of layers, each representing a
simple concept, can be built this way. To model complex dependencies with such a
hierarchy, it has to be several layers deep (hence deep learning) [16]. As each layer
has multiple connections to other layers, the spanned network can become complex,
and computationally expensive to learn. In summary, deep learning can be viewed
as a machine learning technique which relies on deeply layered representations of
simple concepts.

8

2.2 Reinforcement Learning

Artificial Intelligence

Arti�cial intelligence (AI) is a much more loosely de�ned term which constantly
changes with the rise and fall of speci�c technologies. In fact, the de�nition of what
is or is not arti�cially intelligent changes so o�en that this change in de�nition has
its own name: AI e�ect [31]. �is phenomenon describes the trend that AI problems
are dubbed as only computations or not intelligent a�er they have been solved.

Even one of the most highly cited references on arti�cial intelligence by Russell
and Norvig [43] does not de�ne arti�cial intelligence clearly. Instead, they list mul-
tiple de�nitions across two dimensions: thinking versus acting and being human
versus rationally ideal performance. �ese dimensions encompass the di�erent
understandings and expectations of arti�cial intelligence. For example, de�nitions
which reside in the being human area focus on the concept of an arti�cial intelli-
gence which models human thinking, acting, learning and behaviour. In contrast,
a rationally ideal agent learns and performs the same tasks, but does not model
humans. By de�nition, both agents are intelligent and arti�cially created.

Even though no clear de�nition can be determined, arti�cial intelligence research
usually involves creating intelligent agents. An intelligent agent is an entity (for
example a program) which perceives the environment and acts based on its ob-
servations [43]. �is idea is directly mirrored in reinforcement learning, a prime
example of arti�cial intelligence research.

2.2 Reinforcement Learning

�e main machine learning method used in this thesis is reinforcement learning.
�e main ideas behind reinforcement learning originate in psychology research
and were used computationally in several early works starting in the late 1950s.
Research was soon neglected due to a lack of feasibility mainly caused by low
computational power and confusion about the de�nition of reinforcement learning
[48]. However, in recent years reinforcement learning was rediscovered and lead to
some of the most impressive achievements in the �eld of computational intelligence.
Examples include learning how to play ATARI games with human performance
levels [33] and beating a Go world champion in a game of Go [45].

9

2 Related Work

�e idea behind reinforcement learning is based on learning as found in nature
and humans: learning through interaction, trial and error. Interacting with our
environment is one of the most fundamental and also most important ways to dis-
cover consequences and learn about what causes which e�ects [48]. More precisely,
by performing di�erent actions and observing the response of the environment,
animals and humans can learn without the need for teachers. As a consequence, a
mapping - called policy - between environment states, actions and corresponding
responses of the environment is learned. If such a response is desirable, it is associ-
ated with a (positive) reward to strengthen (reinforce) the tie between state and
action. A set of vital elements can be extracted from this basic idea which will be
explained in the next section.

�e following sections will explore the necessities, possibilities and limitations of
reinforcement learning to give a comprehensive overview over the main ideas.

2.2.1 Elements

According to Su�on and Barto [48], several elements can be identi�ed. �ese
elements play a major role when viewing learning through interaction as a compu-
tational approach and form the basis of reinforcement learning. �e elements are
listed here and will be explained in more detail in the following paragraphs, mostly
based on [48].

• An agent
• �e environment
• Actions
• Rewards
• A value function
• A policy

Agent

�e agent is the entity which performs the actions and in�uences the environment
by doing so. In typical reinforcement learning problems, the agent does not possess
prior knowledge about the problem or environment which marks its main di�erence
to learning in nature.

10

2.2 Reinforcement Learning

Figure 2.1: Cartpole. A pole balanced on a cart which has to be kept upright by applying force (le�
or right) to the cart. Based on the OpenAI learning framework [6].

Environment

�e environment represents the environment the agent acts in and is a collection of
all possible states the observed environment can take. Depending on the problem
it can take many forms and might expose very li�le or an overwhelming amount
of information. To emphasize the di�erent forms environment can take, two polar
examples are discussed: Cartpole and real life environments as viewed by humans.

A classical control problem in machine learning is Cartpole [3]. �e goal of Cartpole
is to keep a pendulum, which is balanced on a cart, upright while keeping the cart
approximately centered. A graphical representation as provided by the learning
framework OpenAI [6] can be seen in �gure 2.1. �e cart (black box) can be pushed
le� or right to in�uence the movement of the pendulum. In the classical form of
the problem as described in [3] the agent only receives four pieces of information
per time-step (representing the current state): position of the cart, velocity of the
cart, angle of the pendulum and angular velocity of the pendulum.

Due to the continuous nature of each variable, the amount of di�erent states is
in�nite, making the environment in�nitely large. However, each state only consists
of four meaningful one-dimensional variables, which will mostly stay within the
same boundaries making generalizing over them fairly easy (as discussed by Geva
and Si�e in [15]).

In contrast, real life environments as viewed by humans are very complex. In-
formation humans receive about the environment is very detailed and consists

11

2 Related Work

of multiple variables: high resolution vision, hearing, smelling, touching and oth-
ers. Additionally, each of these variables is multi-dimensional or cannot even be
modeled properly. If one wants to build machines with human-like decisions, all
of these factors may play a role, highlighting the signi�cance of this seemingly
non-relevant example.

Both discussed environments have an in�nite amount of states, but the composition
of each state di�ers drastically.

Actions

�e possible actions an agent can perform in an environment are typically referred
to as action space and correspond to the decisions an agent can make. In the previous
example of Cartpole, the action space is limited to two actions (apply force to the
cart from the le� or the right). While having a low dimensional action space can be
helpful for the performance of an algorithm, it does not imply that the underlying
problem can be solved easily. However, having a large action space typically makes
learning more di�cult, as exploration of di�erent state-action pairs is more costly.
Results from the ATARI games solved by Mnih et al. in [33] support this.

Rewards

�e rewards or reward signals are provided by the environment to de�ne how
bene�cial an action is. As the goal of a reinforcement learning agent is to reach
the maximum (accumulated) reward, the reward signals de�ne which goal should
be achieved. For humans, examples for rewards are feeling pleasure (positive) or
feeling pain (negative). It is important to note that the reward signal alone does not
ensure the long-term success of the agent as a reward is always associated with one
speci�c state-action pair. If an agent always chose to perform the most rewarding
action (at the current moment), it could potentially end up in a sub-optimal position.
Instead, it might be bene�cial to accept some negative consequences early on to
perform be�er in the long run. Such behaviour is called non-greedy and is a common
characteristic of more re�ned reinforcement learning methods.

12

2.2 Reinforcement Learning

Value Functions

While rewards specify how bene�cial a state-action pair is at a given moment,
value functions hold information about the long-term impact of states. A loose
description of the value of a state is how much future rewards can be expected a�er
reaching this state. An agent should seek to reach high-value states to maximize
the long-term bene�t of actions. However, learning a value function can be highly
di�cult and is the main challenge of reinforcement learning.

Policy

Policies de�ne the behaviour of the agent. �ey basically are a mapping from states
to actions and provide an action for each state (the choice of the action can be
stochastic). Policies can be considered the outcome of a reinforcement learning
algorithm as they are the only element needed to determine the agent’s behaviour.

2.2.2 Possibilities and Limitations

Reinforcement learning is one of the more general and intuitive approaches to
learning. It o�ers a vast amount of possibilities and advantages over other methods.
�e most important ones, extracted from [48], are brie�y discussed.

• Reinforcement learning is an intutive approach to learning as it is most likely
similar to the way animals and humans learn (by trial-and-error).

• �e distinction from supervised and unsupervised learning opens up new
possibilities for solving challenging problems.

• It is possible to provide end-to-end solutions as opposed to only viewing
isolated sub-problems, like most other approaches do.

• Reinforcement learning has a lot of natural synergies to other research �elds
like neuro-science or psychology. Both sides of the synergies have bene�ted
greatly from each other so far.

• Due to the incorporation of temporal di�erence learning, reinforcement
learning is generally non-greedy and can learn globally optimal policies.

13

2 Related Work

Unfortunately, reinforcement learning also comes with limitations, �rst among
which is the complexity of solving reinforcement learning problems itself. A brief
discussion of limitations, based on [48], follows.

• Reinforcement learning algorithms and models usually come with numerous
hyper-parameters which have to be �ne-tuned.

• Reinforcement learning su�ers from the di�cult trade-o� between explora-
tion and exploitation. It is necessary to explore a great proportion of state-
action pairs to gain a powerful value function. However, without performing
already known bene�cial actions, later states cannot be reached.

• �e model of the value function is usually abstract and hard to interpret.
• �e need for exploration usually causes comparatively long training times.
• Reinforcement learning could greatly bene�t from integrating prior know-

ledge. While this is true for most machine learning methods, it is still hard to
achieve.

It has to be noted that both reinforcement learning and decision trees are intuitive
in their own way. While reinforcement learning closely models the way humans
learn, decision trees are an intuitive representation of how to make decisions.

2.2.3 Supervised Versus Unsupervised

In the previous sections a distinction between di�erent categories of machine
learning methods was drawn. As already implied, assigning reinforcement learning
to one of these sections is subject to some discussion. �e general consensus is that
reinforcement learning resides in its own category [44, 48]. Why is that?

• �e goal of supervised learning mostly lies in building a model which directly
�ts the training data based on clearly de�ned labels. Generalization and
recognizing pa�erns directly in the data are key characteristics of supervised
learning. On the other hand, reinforcement learning learns a model which
represents the value function, a mapping from states to actions based on
rewards and trial-and-error. As rewards can be seen as a form of supervising,
the confusion present especially in early days of reinforcement learning
research [48] is understandable.

• �e goal of unsupervised learning is to discover new pa�erns or structures in
the input data without any kind of external supervisor (like labels or reward).

14

2.3 Decision Trees

�e distinction to reinforcement learning which relies on rewards is clear in
this case.

2.3 Decision Trees

Decision trees are most commonly used for classi�cation problems [44]. Other uses
like regression are possible and some more creative use cases will be mentioned in
section 2.4 State Of �e Art. As stated in [19], in general, a decision tree splits the
input space into di�erent segments. Each of these segments contains data points
matching a chain of decision criteria. �ese segments can be given meaning by
assigning certain classes to them and stating: samples in this segment belong to
class X. In case of regression, the mean (or other measures) of all samples in a
segment can be seen as the regression output.

A simple decision tree for binary classi�cation with two-dimensional data can be
seen in �gure 2.2. �e accompanying data is plo�ed in �gure 2.3. �ese �gures
show a simple example of how to classify mangoes into two categories: ripe and not
ripe. While the chosen features and decision criteria are �ctional, the logic behind
the decision process can be easily understood just by looking at the decision tree
in �gure 2.2. A mango can be classi�ed as ripe if it weighs more than 425 grams
and is so�er than a speci�c threshold. �is example highlights one of the most
important perks of decision trees (especially in the context of this thesis), the ease
of interpreting them [44]. �is ease of interpretation stands in direct contrast to
most of the reinforcement learning models, which are black boxes and hence not
easily understandable.

Unlike reinforcement learning, decision trees generally cannot be seen as a machine
learning method. Rather, they are modelling the data, much like neural networks
do in reinforcement learning. Decision tree learning on the other hand is a term
which encompasses various methods and algorithms for building decision trees.
Both sides, decision trees as models and decision tree learning, will be elaborated
in the following sections.

15

2 Related Work

True False

Weight
< 425g

Not Ripe

True False

Softness
< 0.7

Not Ripe Ripe

Figure 2.2: A decision tree for classifying mangoes. A simple decision tree with two spli�ing criteria
which decides whether mangoes are ripe. �e rectangular shapes show decision nodes,
the elliptical shapes show leaves of the tree (representing classes). At each decision node,
a sample (mango) either ful�lls the criterion and follows the True path or does not ful�ll
it and follows the False path until a leaf (and hence decision) is reached. See �gure 2.3
for data and the resulting regions and decision boundaries.

Figure 2.3: Mango data with decision boundaries. Nine mangoes are plo�ed according to so�ness
and weight. Blue circles represent ripe mangoes, orange X’s represent unripe mangoes.
�e decision boundaries segment the data into three regions corresponding to the leaves
in the decision tree which can be seen in �gure 2.2.

16

2.3 Decision Trees

2.3.1 Decision Trees as Models

Decision trees do not originate from computer science and have been used for
decision tasks (especially for business decisions) for a long time. In 1964, Magee [30]
praised decision trees as an up-and-coming tool for business decisions. He highlights
their power in complex decisions involving multiple consecutive decisions or events,
stating that they illustrate alternative outcomes (as well as their likelihood) in an
easily understandable manner. Even today, decision trees and tree structures in
general are o�en used in planning problems in decision theory [26, p. 268].

In the context of computer science, decision trees as a model are considered one
of the most useful predictive models for interpretation [19]. �ey have relevance
in multiple �elds, but most prominently machine learning and data mining. In
contrast to decision theory, in the context of data mining and machine learning,
decision trees do not have to be used for making decisions. Rather, they are used for
modelling data. �e resulting model can be used for making decisions (for example
deciding whether a mail is spam or not) but can also be used for several other
purposes like information extraction or simply to give interpretable insights into a
data mining process [42].

2.3.2 Decision Tree Learning

Stating that decision trees can be used as (predictive) models raises the question of
how such a model can be built. In the context of machine learning and classi�cation
and regression tasks, decision tree learning answers this question as it encompasses
methods and algorithms used for building decision trees as predictive models.
Shalev-Shwartz and Ben-David [44] describe the building of decision trees as a
trade-o� between training risk (performance) and size of the tree. Intuitively, large
trees can easily reach high training performance as a large quantity of decision
criteria can split the sample space into many small regions/clusters. �e most
extreme example maps every training sample to a leaf of a tree. In this example,
the decision tree loses most of its advantages (like ease of interpretation) and most
likely over�ts. It is also easily contrived that small decision trees may not produce
enough decision boundaries to e�ectively segment the sample space. However,
�nding an optimal decision tree (with minimum size) is an NP-complete problem.
As a consequence, most methods rely on heuristics, mostly greedy learning, to build

17

2 Related Work

decision trees. While greedy algorithms can produce good results the limitation of
relying on local optima can lead to bad results in certain scenarios [7].

2.3.3 Possibilities and Limitations

According to [19] decision trees have several advantages opposed to other meth-
ods:

• As already mentioned, a key advantage is that they are easy to understand
and interpret. �is is especially useful in classi�cation or regression tasks
where it is necessary to o�er transparency or to discover new facts about the
data (for example when classifying real estate by value, it is vital to know
why an object belongs to a certain class).

• Visualizing decision trees is straight-forward. �e resulting visualization
(especially for smaller trees) is easy to understand and o�ers quick insights.

• Decision trees work with both categorical and numerical input features.
Additionally, data usually does not have to be normalized or prepared in
other ways. As a consequence, only li�le preprocessing is necessary.

• Decisions based on decision trees feel more natural to some people, as they
seem to model human decision making. �is is particularly apparent when
comparing them to other machine learning methods. In [44] it is also stated
that human programmers produce code similar to the logic of decision trees
when writing a predictor.

• Decision trees as models are e�cient at handling large amounts of data (when
already built).

On the other hand, decision trees have signi�cant limitations as well:

• Decision trees typically perform worse than other regression and classi�ca-
tion methods [19]. However, decision trees can also be uniquely suited for
speci�c problems as can be seen in �gure 2.4. While reasonably small decision
trees fail to �nd a good decision boundary for linearly separated data, they
outperform other methods in circumstances like the bo�om right non-linear
example.

• Robustness. Small changes in the training data can lead to signi�cantly dif-
ferent outcomes [19].

18

2.3 Decision Trees

• Decision tree learning is an NP-complete problem and has to rely on heuristics
to achieve results in a reasonable amount of time [44].

• Decision trees are prone to over�t. Several countermeasures exist, but their
performance is debatable [18, 46].

Due to these limitations, decision trees o�en cannot compete with the results of
other methods. However, some of the limitations can be overcome by employing
methods like bagging. Several methods will be explained in the following section.

2.3.4 Overcoming Limitations

Some of the most common strategies to boost the performance of decision trees
include tree pruning, bagging, random forests and boosting. �e idea behind these
methods will be explained based on James et al. [19]. �ese methods are relevant
for this thesis as they can likely be utilized well when growing decision trees with
reinforcement learning.

Tree Pruning

Tree pruning is mostly used to counter over��ing. A�er initial training, decision
trees are o�en large, complex and tailored to closely to a training set. �e idea
behind tree pruning is to reduce the size of an initially large tree by taking a subtree
(or pruning away other branches) with similarly good performance but greater
generalization. As examining each possible subtree is computationally unfeasible,
a more sophisticated method has to be employed, the most popular of which is
cost complexity pruning, originally introduced 1984 by Breiman et al. [4]. Tree
pruning not only increases performance on unseen samples but also leads to be�er
readability of the trees (due to their smaller size).

Bagging

Bagging is not exclusive to decision trees but describes a general method of reducing
variance between outcomes of multiple training runs (with di�ering training data).
Decision trees are fairly unstable and prone to changing signi�cantly based on the
selection of training data (and hence having a high variance). �is limitation makes

19

2 Related Work

Figure 2.4: Linear versus decision tree boundaries. Two dimensional data with perfect linear separa-
tion (top row) and non-linear separation (bo�om row). �e black lines show exemplary
decision boundaries for linear estimators (le� column) and decision trees (right column).
Both linear and decision tree approaches perform well in one scenario, but badly in the
other. [Image extracted from [19] under © James, Wi�en, Hastie & Tibshirani. Used
under the terms of Austrian copyright law: §42f]

20

2.3 Decision Trees

the application of bagging ideal for decision trees. �e idea is to reduce the variance
by averaging over multiple outcomes produced by di�erent training sets. As the
amount of training data is usually limited, choosing incomparable (non-overlapping)
training sets is o�en not possible. To counter this problem, bootstrapping is used to
produce several training sets which can contain duplicate samples from the training
data. While the decision trees resulting from these training sets have high variance
among each other, the average over the trees (in case of regression) or resulting
majority vote (in case of classi�cation) is typically fairly low. However, it has to be
noted that bagging comes at the expense of interpretability as not only one tree is
produced but multiple (typically more complex) trees.

Random Forests

Random forests build on the same principles as bagging. Several decision trees are
trained based on di�erent bootstrapped training sets and the average over these
trees produces the prediction. However, random forests not only reduce the overall
variance but also decorrelate the trees. In the scenario of a small percentage of
dominant features (for example three out of twenty features), trees produced by
bagging will be highly similar (correlated) as choosing the dominant features as
spli�ing criteria is the preferred option for most training sets. Hence, all trees
will be biased towards the dominant features. Random forests aim to eliminate
correlation between trees by restricting the choice of spli�ing criteria for each tree
node. When building a tree, for each split, the algorithm randomly chooses a subset
of features to be considered, eliminating most of the features as possible choices
(among which might be dominant features). When building a su�ciently large
amount of trees, this restriction bene�ts the overall performance.

Boosting

Boosting describes a procedure which is not unique to decision trees. However,
for decision trees, it is once again based on the idea of producing multiple trees
and combining them to a �nal predictive model. However, in contrast to bagging
and random forests, no bootstrapping is used to produced di�erent training sets. In
fact, only one training set is used which is modi�ed incrementally. �e basic idea
behind boosting is to build on previously learned decision trees and modify the

21

2 Related Work

training data in such a way that problematic splits are brought to the foreground.
�e process is arti�cially slowed down to allow multiple trees to �t similar data,
resulting in another di�erence to bagging and random forests: the size of the trees.
It is o�en su�cient to produce trees with a small amount of splits (sometimes just
one). Unfortunately, small trees do not stop boosting from su�ering from the same
disadvantage as bagging and random forests: a lack of interpretability.

2.4 State Of The Art

�e current state of the art in the research �elds reinforcement learning and decision
trees will be discussed in the following sections. Some historically signi�cant
publications will be examined as well to further the understanding of the topics.
To the best of our knowledge, the main topic of this thesis - using reinforcement
learning to grow decision trees - has not been discussed in any research and is a
novel idea.

2.4.1 Reinforcement Learning

Publications in the �eld reinforcement learning are frequent due to its recent rise
in popularity. Simply performing a search on Google Scholar1 using the keyword
reinforcement learning yields hundreds of results per year. �is section provides an
overview over historically important and more recent state of the art publications.

Skipping publications from the earliest stages of reinforcement learning, the �rst
paper in this section by Su�on [47] highlights the formal introduction of one of the
key success factors of reinforcement learning: temporal di�erence (TD) learning. In
contrast to traditional learning methods which only try to learn by comparing �nal
predictions and outcomes, TD learning learns by comparing successive predictions
along the timeline to the outcome. Su�on shows that TD learning generally pro-
duces more accurate results with less computational e�ort in multi-step prediction
scenarios (prediction and outcome are separated by multiple steps). �e learning
rule TD(λ), where λ ∈ [0, 1] is introduced. λ controls how signi�cant temporally
far removed states are. TD(1) is identical (in outcome) to supervised learning and

1https://scholar.google.com/ (Accessed on: 2018-10-13)

22

https://scholar.google.com/

2.4 State Of The Art

TD(0) is very short-sighted and only considers the next state within a sequence
of states. Su�on proves that TD(0) and TD(1) asymptotically converge to the
minimal error with a rigorous mathematical proof which goes beyond the scope
of this section. �e ability to reach optimal results with TD learning is proven
mathematically and empirical results show it reaches these results faster than
traditional methods (in the examined scenarios). In conclusion, TD learning is an
important foundation for modern reinforcement learning, as it models the temporal
connection between far removed states.

Another in�uential paper by Watkins [51] describes Q-Learning, which was ori-
ginally formulated in his PhD thesis [52] in 1989. Q-Learning forms the basis
of numerous modern reinforcement learning algorithms (for example Deep Q-
Networks [33]). Building on the idea of TD learning (described in the previous
paragraph), Q-Learning describes an algorithm which learns an optimal policy by
estimating Q values. Q values represent the value of an action a given the state x
and are de�ned as

Qπ(x, a) = Rx(a) + γ
∑
y

Pxy[π(x)]V
π(y) (2.1)

where π is the policy, Rx(a) is the reward of performing action a in state x and γ is
the weight for the sum of future rewards when following policy π. �e sum over all
states y consists of the probability Pxy, going from state x to state y based on the
action chosen by the policy times the value V π(y) of the following state y. Since
the current reward and future rewards are considered, choosing the action a which
maximizes Qπ(x, a) is the optimal action to perform in state x. �e challenge lies
in learning a model for Qπ(x, a), which is solved by a straightforward algorithm
described in the paper.

Up to the point of the publication of [33] by Mnih et al. in 2015, reinforcement
learning could only be used reliably for problems with small states, eliminating
most real world applications. �e introduction of Deep Q-Networks (DQN) revital-
ized reinforcement learning research by proving its sole prowess to solve complex
problems in the form of ATARI 2600 games and can be considered a state of the art
algorithm. Mnih et al. present several novel ideas to address the shortcomings of
previous reinforcement learning algorithms. To handle complex high-dimensional
states, deep neural networks are employed. To handle possible divergence and
instability of neural networks, two adaptions to standard Q-Learning are employed:

23

2 Related Work

Experience replay to ba�le correlation among state sequences, and a target net-
work as source for error calculations, once again reducing correlation within the
error calculation. Further techniques used to increase performance are minimal
preprocessing of states (images from the games), states consisting of four consecut-
ive frames and minibatch-learning. In conclusion, DQN manages to learn ATARI
games at human-level performance solely based on the pixel values of the game
with an end-to-end reinforcement learning solution without injecting any prior
knowledge.

So far only reinforcement learning approaches for discrete action spaces have been
discussed. Gu et al. [17] introduce a state of the art reinforcement learning algorithm
for continuous action spaces. �e algorithm, normalized advantage functions (NAF),
introduces two key novelties. Firstly, Q-Learning is modi�ed to produce continuous
actions. Secondly, the representative power of model-based learning is used to
accelerate generalization of the model-free approach. Traditionally, reinforcement
learning algorithms for continuous action spaces require a dedicated model for
the policy (policy gradient) and, if the value functions should be integrated, a
second model for the value function (actor-critic). NAF represents an approach
with only one network which represents value function and policy. �is approach
is more elegant, easier to implement and generally more e�cient. �e adaption to
Q-Learning is the spli�ing of the Q values into two summands

Q(x, a) = A(x, a) + V (x) (2.2)

where x is the current state, a is the performed action, A(x, a) the advantage
and V (x) the value of the state x. �e advantage can be viewed as the value the
action a has compared to other actions a′. �is representation allows for analytical
solutions for maximizing continuous actions. Learning can be further accelerated
by incorporating knowledge from external models, which inject complete state-
action-reward triples into the replay memory with so-called imagination rollouts.
In conclusion, [17] introduces NAF, a Q-Learning based algorithm for continuous
action spaces which is elegant and performs well.

�e �nal paper [13] of this section combines trees and reinforcement learning, but
in an entirely di�erent way than this thesis. Farquhar et al. present the aptly named
algorithms TreeQN and ATreeC (word plays on the popular DQN [33] and A3C
[32] algorithms). �e goal of the incorporation of trees is to re�ne conventional
estimates of the value function and Q values (via neural networks) with look-ahead

24

2.4 State Of The Art

trees. To achieve this, at each step at state s, a look-ahead tree of con�gurable
depth is used which considers future state-action-reward triples. Predicting such
triples makes the estimates for the current state more accurate and meaningful.
For the adaption of DQN, this enhanced estimate of the Q values directly replaces
the traditional deep neural network. For A3C, the tree architecture is used for
predicting Q values in the policy (actor) network with the same implementation.
In conclusion, enhancing DQN and A3C with on-line look-ahead trees for more
accurate predictions of Q values boosts their performance in selected ATARI games
and other discrete action space tasks.

2.4.2 Decision Trees

Decision trees are an empirically well understood topic with large amounts of
publications. However, the current frequency of publications is not on the same
level as reinforcement learning as decision tree learning has reached a high degree
of maturity. Some of the most in�uential publications will be discussed here as well
as state of the art algorithms.

Using decision trees for regression or classi�cation was an idea which came up sur-
prisingly late (in the 1970s [9]) and was spearheaded by Leo Breiman who published
his �ndings in 1984 [5]. �is book extensively covers decision trees and produced
some key ideas about building decision trees, resulting in the basic algorithm now
called CART (Classi�cation and Regression Trees). Like most methods for building
decision trees it is greedy and relies on recursive binary spli�ing. Each split is
optimal in respect to information gain. However, due to the greedy nature, the
resulting tree may not be optimal. �e key ideas introduced are:

• �e choosing of splits is based on probability theory. In case of classi�cation,
gini impurity can be used as a measure. Regression requires other measures
like the sum squared error. �e gini impurity of a node N from a dataset with
C classes is given by

g(N) = 1−
C∑
i=1

(
|samples ∈ Ci|
|samples ∈ N |

)2

(2.3)

where the sum represents the fraction of samples belonging to class Ci across
all samples in node N squared.

25

2 Related Work

• A variety of stopping criteria are discussed and their impact highlighted. A
simple but powerful criterion is a minimum number of samples per leaf.

• Trees can be built large and then pruned to be smaller and more readable.
�e key factor is to use cross validation for performing tree pruning.

An algorithm introduced shortly a�er CART and based on very similar ideas
is Iterative Dichotomiser 3 (ID3) [36]. Like CART, ID3 performs recursive binary
spli�ing with various small di�erences. �e measure to evaluate splits is information
gain and therefore based on entropy (however, there is li�le to no theoretical and
practical di�erence between using information gain and gini impurity [38]). �e
information gain in a node T according to split a is given by

IG(T, a) = H(T)−H(T |a) (2.4)

where H is the entropy. While information gain is used as the measure to decide
how to perform splits, an additional restriction is employed: In any given path in
the tree, each feature may only occur once. �is severely limits the size but also
the expressive power of the tree.

Due to severe limitations of ID3 (like inability to split continuous features) �inlan
developed successors called C4.5 [37] and C5.0, both of which are distributed under
a commercial license. Even though C4.5 was published in 1993, it still o�ers state
of the art performance and is one of the most widely used algorithms for building
decision trees [53]. �inlan provides several improvements over ID3 in [37]. Most
noticeable among which are:

• Handling of continuous features by dividing them into discrete intervals. Due
to this division, they can be used like discrete features internally.

• �e restriction of only selecting a feature once per path in the tree is li�ed.
To counter over��ing and large trees, pruning is used.

• Features can be preprocessed in two particular ways. Certain features can
be treated as high-cost features, indicating that they should preferably be
selected at deeper nodes. Additionally, values can be marked as not available
which leads to disregarding them for calculations. �is signi�cantly boosts
performance for incomplete or noisy data.

Possibly one of the highest impact changes is the adaption of the feature selection for
splits. �e selection in ID3 su�ers from a bias towards features with a wide diversity
of discrete values, which would require a split for each value. As such spli�ing is not

26

2.4 State Of The Art

bene�cial for the overall outcome, it has to be avoided. C4.5 introduces weighting
to counteract such values

gainratio(T, a) =
IG(T, a)∑n
i H(|Ti||T |)

(2.5)

where T is the node split by a and the sum represents the entropy of spli�ing T
into n (number of classes) parts.

While there have been only few developments for building single decision trees,
ensemble methods such as boosting have made progress more recently. �e �nal
paper in this section concerns such a method: rotation forests [41]. Rodrı́guez,
Kuncheva and Alonso address the trade-o� between accuracy and diversity which
is present in nearly all ensemble method. It describes the common problem that
overall performance of ensemble methods relies on diverse and accurate predictors.
However, diversity implies straying from optimal solutions and hence hinders
accuracy. �e concepts behind bagging and random forests have already been
explained previously. Rotation forests build on both ideas and add Principal Com-
ponent Analysis (PCA) as means for achieving higher diversity and accuracy. It
has been shown that PCA (for dimensionality reduction) is not well suited for
classi�cation in any part of the pipeline. In rotation forests, an ensemble method,
PCA is used for the sole reason of creating greater diversity. PCA is performed
on a randomly selected subset of features and samples to extract the principal
components used for transforming the data. �e transformed data is then used as
training data for building decision trees. �e produced trees generally have higher
accuracy and diversity than comparable methods which translates into slightly
be�er overall performance. �is does, however, come with the cost of even further
reduced readability of the trees.

27

3 Method

�is chapter consists of two main parts. First, the methodology which discusses the
theory and ideas behind the design of the algorithm and how these ideas were born
is explained. �e Methodology section covers all the components of the algorithm
and discusses various approaches to each component and the algorithm as a whole.
A�er the overall components are de�ned, the System section describes how they
were implemented and how the various ideas can be mapped to actual testable
parameters.

3.1 Methodology

In this section, the methodology of how the algorithm introduced in this thesis
was developed is covered. A�er explaining the basic idea, the various sub-elements
and their challenges are discussed, �nally resulting in a complete algorithm. As
the development of the algorithm was accompanied by trial and error, not only
successful but also failed ideas are mentioned.

�e idea of combining decision trees and reinforcement learning to perform clas-
si�cation is lead by two main motivators. Numerous state-of-the-art methods for
classi�cation use black-box models to perform predictions. As transparency is an
important aspect of classi�ers, the intuitive interpretability o�ered by decision
trees is an a�ractive approach to classi�cation. However, state-of-the-art decision
tree building algorithms conquer the NP-hard problem employing greedy meth-
ods. Additionally, peak performance is only reached when using methods like
bagging, which considerably reduce the interpretability of decision trees. In sum-
mary, the two main issues with decision tree classi�ers are greediness and lack of
interpretability.

29

3 Method

Both of these issues can be conquered with reinforcement learning. As reinforce-
ment learning is - by its nature - non-greedy, decision trees can be built in a
non-greedy manner. �is non-greediness, in turn, leads to more optimal trees
which o�er higher performance without the need for bagging, maintaining the
interpretability of a single decision tree. Additionally the black-box reinforcement
learning model is used to build a white box model. So in theory, the combination of
decision trees and reinforcement learning o�ers results greater than the sum of its
parts.

�is reasoning (and simple curiosity about whether it could work) lead to the idea
of combining decision trees and reinforcement learning. However, the novelty of
this approach provides a huge number of possibilities which need to be explored.
To provide the development work�ow and this thesis structure, the main elements
of the algorithm (and the challenges and possibilities they o�er) are explained in
the following sections. It is important to note that not all mentioned possibilities
can be explored in great depth, as the scope of such an endeavor would be too
big.

For all the elements, the basic scienti�c approach for designing and assessing them
is as follows.

1. Make reasonable hypotheses and test them. It is vital that results can be
compared easily and objectively.

2. Start with the simplest possible implementation and dataset to assess the
hypothesis.

3. If possible make switching between di�erent variants possible via parameters.
4. Re�ect, evaluate, make conclusions and adapt where necessary.
5. Increase the complexity of the problem.
6. Got to step 2.

3.1.1 The Overall Algorithm

�e overall algorithm has the largest impact as it describes the structure of the
algorithm. While speci�c elements of the algorithm (like the reward function)
can impact the performance strongly, the general structure answers important
fundamental questions by making certain assumptions. �e main questions are
mainly concerned with which part of the algorithm handles which problem and

30

3.1 Methodology

generally de�ne how the tree is built. A brief listing of the most important aspects
of the overall structure reads as follows.

• How is the tree built?
• Is the tree built iteratively, recursively or in one step?
• If it is not built in one step, where are new nodes a�ached?
• What are the responsibilities of the reinforcement learning output?
• What are the responsibilities of the environment?

�ese fundamental questions shape the structure of the algorithm. As each variation
in the overall algorithm changes the other elements in a signi�cant way, only a
small amount of overall variations are examined. For example, the decisive power of
the reinforcement learning algorithm is tried with di�erent variants while the way
in which the tree is built (iteratively) does not change. Making di�erent assumptions
here (for example generating trees in a single step) would result in such a distinctly
di�erent algorithm that it would form an additional dedicated research topic.

�e most basic version of the algorithm is given in algorithm 3.1. �is representation
speci�cally leaves out details and could be applied to any kind of assumed answers
of the above questions. It only de�nes the following aspects:

• A dataset is the input of the algorithm.
• A decision tree should be built to classify this data.
• �e environment is de�ned by the dataset and some parameters θE . It provides

states (s), rewards (r) and whether the episode is done (done) for a given
action a.

• A reinforcement learning algorithm is used to built the decision tree. It is
de�ned by its parameters θRL and learns a policy π which is responsible for
choosing actions (a) based on the current state (s).

• Learning happens for a set number of episodes Nmax.

Building The Tree

�e algorithm can be extended with the following assumptions, which shape the
structure of actions and states.

• �e tree is a binary tree.
• �e tree is built iteratively.

31

3 Method

Algorithm 3.1 Basic Algorithm
Require: Dataset D
Ensure: Decision tree classi�er over D

Initialize Environment E ⇐ (D, θE)
Initialize reinforcement learning algorithm with parameters θRL
nep ⇐ 0
while nep ≤ Nmax do
s⇐ empty state
while stopping criterion not reached do
a⇐ π(s)
(s, r, done)⇐ E(a)
Perform the reinforcement learning algorithm learning procedure to update
the policy π

end while
end while

• �e environment decides where new nodes are a�ached.

As a consequence, the following can be stated about actions and states: An action
is responsible for appending a single node to the tree built in a given episode at the
position provided by the environment. States have to represent the current position
in the tree, be it via structural information about the tree, data available at this
point or any other representation.

Since the environment provides the position of where new nodes should be at-
tached to the tree, a mechanism for doing just that has to be de�ned. If possible,
this mechanism should not in�uence the greediness of the algorithm or worsen
the interpretability of the tree while still providing sensible locations. Various
possibilities can be identi�ed:

• Choosing new node positions at random.
• Building a full binary tree (for example by building level a�er level, from le�

to right).
• Choosing positions based on a measure.

Obviously, building a full binary tree is not optimal, as the assumption of optimal
decision trees being full binary trees intuitively does not hold. �e underlying
problem is illustrated by the decision tree seen in �gure 3.1. If we assume that this

32

3.1 Methodology

Weight
< 425g

False

Softness
< 0.7

Color
= green

False

Not Ripe

Not Ripe

Not Ripe Ripe

True

True

True False

Figure 3.1: A (�ctional) deeper decision tree for classifying mangoes. Rectangular shapes are nodes,
elliptical shapes represent leaves.

tree is close to optimal (with a node count of three, excluding leaves), a full binary
tree with comparable performance would have nnodes = 2depth − 1 = 23 − 1 = 7
nodes. A signi�cantly larger tree. For trees with more depth, the disparity becomes
even greater.

Choosing new node positions randomly would probably work but could result
in unnecessarily large trees as well. However, the third alternative - choosing
positions based on some measure - o�ers the bene�t of choosing consistently
meaningful positions. Additionally, an appropriate measure does not even in�uence
the greediness of the algorithm.

Fortunately, traditional decision tree algorithms provide metrics which ful�ll these
requirements. CART [5] uses a metric called gini impurity (or gini score) to evaluate
the information gain provided by a split. In CART, it is used to choose the split
o�ering the highest information gain and is mainly responsible for the greedy
behaviour of the algorithm. However, it not only describes information gain but can
also be used to the represent the purity (with respect to class distribution) of the
data present in a node (a�er �ltering the data through the tree up to this node). ID3

33

3 Method

Figure 3.2: Comparison of decision tree information metrics. Gini impurity and scaled Entropy are
nearly identical and are maximized at highest uncertainty (p = 0.5). Missclassi�cation
error is of limited use due to a bias towards unbalanced datasets. [Image extracted from
[39] under MIT License, published in [40].]

and its successor C4.5 use a similar metric simply called information gain which
is based on entropy. As there is no practical di�erence between gini impurity and
entropy (in the context of decision trees, see �gure 3.2) but gini impurity is slightly
faster to calculate [38], gini impurity is used in this thesis.

Gini impurity in general calculates as given in equation (3.1) where C represents
the number of classes, Ci class i and s is a data sample. �e probability P [s ∈ Ci]
describes the probability of an arbitrary sample s belonging to class Ci.

g =
C∑
i=1

P [s ∈ Ci](1− P [s ∈ Ci]) = 1−
C∑
i=1

P [s ∈ Ci]2 (3.1)

So this formula describes the probability of a sample belonging to class Ci being
wrongly labeled as any other class Cj where j 6= i, summed over all classes. It has
several bene�cial properties [40, 5].

• It is zero when all samples belong to a class Ci.

34

3.1 Methodology

• It is independent of the number of samples (it is normalized by the use of
probabilities).

• �e function is nearly identical to scaled entropy (see �gure 3.2) and has
similar properties like a maximum function value for maximum uncertainty.

• It is not a�ected by unbalanced datasets.

In the context of decision trees and the data available at speci�c nodes, the formula
can be adapted as seen in equation (3.2). For a given nodeN the formula is identical
to equation (3.1) with the restriction that only samples available in this node are
considered. Additionaly the probability P [s ∈ Ci] is given as the fraction of the
number of samples belonging to class Ci and the total number of samples in node
N .

g(N) = 1−
C∑
i=1

(
|samples ∈ Ci|
|samples ∈ N |

)2

(3.2)

Due to the properties of gini impurity, selecting where to a�ach new nodes to
the tree is straightforward. An algorithm describing the procedure is given in
algorithm 3.2. �e idea is to choose the leaf with the highest uncertainty (which
is equal to highest gini impurity). As, most of the time, it does not make sense to
introduce a split when there is a small number of samples present, an additional
condition dmin (minimum samples per leaf) is introduced. �is approach does not
introduce greediness as it does not in�uence the decision of the split performed at
the chosen position. Furthermore, the node with maximum impurity causes bad
performance so it has to be split anyway. Since leaves do not in�uence each other
(the lie on di�erent paths in the tree), the order in which new nodes are a�ached to
leaves is irrelevant.

Balance Between Reinforcement Learning and Environment

So far, the questions Is the tree built iteratively, recursively or in one step? and Where
are new nodes a�ached? have been answered. �is leaves the question about the
balance of responsibilities between environment and reinforcement learning. Since
the reinforcement learning part is responsible for the actual learning, this question
of balance also determines the amount of freedom the learning agent is given.
Responsibilities of the environment are restricting the freedom of the learning

35

3 Method

Algorithm 3.2 New Node Position
Require: Dataset D, Tree T
Ensure: New node gets added where most bene�cial.
dmin ⇐ appropriate minimum samples per leaf
if T is empty then
return empty

else
Classify D on T
lmax ⇐ arbitrary leaf(T)
for l⇐ leaf(T) do
if gini(l) > gini(lmax) and |(d ⊆ D) ∈ l| ≥ dmin then
lmax ⇐ l

end if
end for
return lmax

end if

agent by making certain assumptions about the way the tree is built or the nature
and amount of information given to the learning agent.

In theory, the more power and information the learning agent has, the be�er the
outcome since the whole picture is seen and can be modeled by the agent. However,
in practice, more information and more power also mean higher complexity, more
di�culty in learning (and therefore longer learning times) and possible divergence
of the learning process. To achieve good results in a reasonable amount of time,
trade-o�s have to be made.

Two assumptions which restrict the learning agent have already been mentioned
(building the tree iteratively and leaving node a�achment position to the environ-
ment). Further restrictions are discussed in the following sections.

Other parts of the algorithm are discussed in their respective subsection. �e
structure of states and the amount of information they contain are discussed in
subsection 3.1.2 State Representation. Reward functions and their impact and im-
plications are explained in subsection 3.1.3 Reward Function. �e various challenges
and adjustable parameters of reinforcement learning algorithms (in the context of

36

3.1 Methodology

this thesis) are described in subsection 3.1.4 Reinforcement Learning. In subsec-
tion 3.1.5 De�nition of Done, conditions for terminating the algorithm are discussed.
And �nally, subsection 3.1.6 Post Processing elaborates methods of post-processing
the results obtained from the basic algorithm to modify performance or interpretab-
ility.

3.1.2 State Representation

Choosing appropriate state representations is a challenging task as the number of
possible representations is high and the implications they produce are extensive. As
the state is the input of the reinforcement learning policy which produces actions
π(s) = a, the state representation controls the nature and amount of information
available to the reinforcement learning agent.

In this thesis, three categories of state representations were identi�ed. While com-
binations of the three categories are possible, doing so was deemed out of scope
for this thesis.

• Data states. States directly contain samples from the dataset.
• Extracted feature states. States contain metrics calculated from features or

samples in the dataset.
• Tree states. States represent the current structure of the tree which is being

built or the node which should be a�ached.

�e following subsections will examine each category in more detail, describing
the idea and potential problems, advantages and disadvantages.

Data States

In case of data states, a state only consists of samples taken directly from the
dataset. �e idea is that the learning agent sees the data present at a given node and
chooses a new split based on it. As the data is naturally �ltered through the tree,
the samples present at a node are an accurate representation of the current state,
as they implicitly contain information about previous splits. �is approach can be
compared to a human given a number of samples and choosing an appropriate split

37

3 Method

based on it. From a human perspective, it is already apparent that this task is not
trivial.

In more detail, given a dataset D with n samples and m features (including labels),
a state containing all samples and features simply is an n×m matrix with each
row representing one sample and each column one feature. Consequently, the state
has a size of ssize = nm. For large datasets this can be problematic.

�e state contains the full dataset in the root node only. �e �rst split happening in
the root node splits the data into two parts. For a new node a�ached as the le� child
of the root (binary tree), the state only contains samples which ful�ll the spli�ing
criterion in the root node. Consequently, the number of samples present in this
node is smaller than n. From here on, the number of samples present in a node
is denoted as ni where i corresponds to the index of the node starting with i = 0
for the root node. Consequent indices calculate as i = 2iparent + (1 if left else 2)
and correspond to a breadth �rst node counting of a full binary tree. An examplary
tree augmented with indices and data counts (based on table 3.1) can be seen in
�gure 3.3.
Since ni < n ∀ i > 0, but the state (input of the neural network used as the
reinforcement learning model) must always have the same size, a way to generate
states from samples which do not �t the �xed state size has to be provided. �ere
are several options to do this.

• Always provide all samples but provide an additional column which repres-
ents whether a sample is active at the current node. For the data in table 3.1
this would mean adding an extra column with the value 1 if the sample is
active and 0 otherwise.

• Always provide all samples, but �ll values of samples which are not active at
the current node with a set value. For the data in table 3.1 this would mean
se�ing all values of currently inactive samples to (for example) −1.

• Set the state size to any value greater than zero but smaller or equal to n
and only provide currently active samples. As the number of samples may be
smaller than the chosen state size, the remaining slots have to be �lled. �is
can be done either by one of the above two options (padding or contained
column), or by randomly drawing samples from the pool of active samples
and pu�ing them in the remaining slots (potentially resulting in samples
being present multiple times in a single state).

38

3.1 Methodology

Age Weight [kg] Height [cm]
15 40 163
25 97 170
32 73 180
10 18 120

Table 3.1: Fictional data showing age, weight and height of humans.

Age < 16
i = 0
n0 = 4

Weight < 30kg
i = 2
n2 = 2

True False

Weight < 30kg
i = 1
n1 = 2

i = 5
n5 = 0

True

i = 3
n3 = 1

True

Figure 3.3: An incomplete decision tree for classifying obesity. Each node contains the index i of
this node and the number of samples ni which are active. �e sample count is based on
the data given in table 3.1.

• With networks like recurrent neural networks it is possible to feed samples
one by one, eliminating the need for any of the above methods.

All of these options have potential advantages and disadvantages. Including all
samples in the state leads to states of size ssize = nm or in case of the additional
column ssize = n(m+1). As already mentioned, this is unfeasible for large datasets.
However, the natural counter-measure of reducing the state size to not include
all samples limits the information the learning agent sees, potentially removing
vital information. But learning in batches, relying on random sampling and good
generalization might eliminate this issue.

Data states can be modi�ed in several other ways. For example, the state matrix can
be �a�ened from its natural n×m shape to a vector of shape nm×1, simplifying the
input dimensionality at the cost of potentially losing structural inter-dimensional

39

3 Method

correlations. Another item which has not been discussed so far is whether the labels
should be included in states. In theory, labels can be excluded as the model can
learn to assign actions to certain data states without the need for labels. �is has
the advantage of removing a column, making the state more manageable. However,
labels provide vital information, probably outweighing the upside of leaving them
out.

Some potential advantages of data states are:

• �e reinforcement learning agent almost sees the full picture.
• �e learned model may be applicable to other datasets with reduced learning

e�ort due to pa�ern recognition directly in the data.

On the other hand, several potential disadvantages can be identi�ed:

• High state complexity. Large networks with comparatively long training
times might be a consequence.

• Some trade-o�s between state size and information contained have to be
made.

• �e state of the tree is not explicitly known to the learning agent.

Extracted Feature States

In the case of extracted feature states, states consist of metrics calculated from
the active samples of a node. For each feature multiple metrics can be calculated.
Examples for such metrics are mean or variance but could also include more soph-
isticated measures (like principal component analysis) tailored to the classi�cation
task. Additionally, metrics across multiple features can be included (like the node
purity). �is approach, when transferring it to a human perspective, is analogous to
a human only being given metrics like mean and variance about some data samples
and choosing a bene�cial split based on it. �is comparison highlights the potential
di�culty of this task, as the given information is very limited.

More speci�cally, for a dataset D with n samples and m features (including labels),
state size is independent of n as no samples or information per sample are included.
When calculating t metrics per feature and u additional metrics, the state has a size
of ssize = mt+ u. �e state size being independent of n of is a useful property as it

40

3.1 Methodology

prevents the issue of dealing with di�erent numbers of active samples per node (as
discussed in subsection 3.1.2 State Representation).

Potential advantages of using extracted feature states are.

• Low state complexity.

�e potential disadvantages outweigh the advantages heavily.

• �e learning agent does not see the full picture. It is constrained by external
preprocessing.

• �e simpli�cation of samples produces the risk of losing the representative
power of states necessary to map actions to states.

• �e learning agent is constrained in its freedom. �e agent should be able
to �nd its own internal metrics (in the model) instead of relying on external
sources to choose them.

• �e state of the tree is not explicitly known to the learning agent.

Tree States

So far, approaches relying directly on the data samples or metrics about the data
have been discussed. Data states allow the learning agent to see the full picture
at the cost of large states with possibly complex inter-dimensional dependencies
while extracted feature states reduce the state complexity at the cost of external
preprocessing, which hides information from the learning agent. Tree states repres-
ent an alternative approach which do not explicitly include information about the
active samples. Instead, only information about the currently built tree is present
in the state. �e most obvious choice of information about the tree is the structure
of the tree itself.

�is approach can be compared to a human being presented with a partially built
decision tree with the task of choosing the next split at a given position. Without
access to the dataset, this task seems impossible at the �rst glance. However, suppose
this human has seen this partially built tree (or fairly similar ones) a thousand times
before and knows from experience that spli�ing based on one particular feature
leads to a good end result. Now, performing splits is straight-forward and simply
based on experience. �is idea of choosing actions based on experience and trial

41

3 Method

and error is what reinforcement learning is built for. �erefore, theoretically, this
approach should work.

To be more speci�c, for a datasetDwith n samples andm features (including labels),
the state size is independent of n and m as the state contains information about
the tree, not the data. As the state is independent of the dataset, other measures
have to de�ned.

Building states representing trees o�ers a lot of freedom about the structure of
the state and the information contained in the state. However, two fundamental
aspects of reinforcement learning states in general have to be considered:

• A state should uniquely represent a given situation. As the policy chooses
actions based on states, identically looking states will result in identical ac-
tions. If those states represent di�erent situations requiring di�erent actions,
the idea of a policy based on states does not work.

• States representing similar situations should look similar. If this is not the
case, generalization cannot work.

In conclusion, the structure and information of a state should be unique per unique
situation but also similar to similar situations. To make this work, a way of uniquely
describing a (partially built) decision tree has to be found. Additionally, information
about where the next node should be a�ached has to be included in the state (see
section 3.1.1 Building �e Tree).

Generally, the act of serializing a binary tree is not a new problem and is traditionally
done either via a linked list or a simple array representation. �e more concise
representation (in the context of reinforcement learning) is the array representation.
It is based on the index i of a node, which starts with i = 0 for the root node.
Consequent indices calculate as i = 2iparent + (1 if left else 2) and correspond to
a breadth �rst node counting of a full binary tree. �e array representation of the
structure of a binary tree is an array with entries set to 0 or 1. �e array is 1 for all
node indices of the tree and 0 otherwise.

�is representation only contains the structure of the tree and is not unique for
decision trees. Two decision trees can have the same structure but with di�erent
splits applied at each node. Consequently, additional information has to be provided.
For each node, this information is:

• �e feature this node splits.

42

3.1 Methodology

• �e criterion by which the feature is split.

�e 1s in the array representation are replaced with the spli�ing feature and
criterion and the 0s with two padding values. While this representation ful�lls the
state criteria, the size of this representation is problematic. For example a binary
tree of depth d (with any number of nodes larger than d) would lead to a state
of size ssize(d) = 2(2d − 1). If the state should be able to represent all trees with
a maximum depth of d = 10, this leads to ssize(10) = 2046. �is problem can
be circumvented by making one array entry per node and simply including the
index of this node. While a full binary tree of depth d would still result in a similar
state size, representing deep but narrow trees is not problematic anymore. As this
scenario is far more likely for decision trees, the representation favoring deep trees
should be preferred.

While representing the full tree is a suitable approach, an even simpler and arguably
be�er approach exists. �e full tree representation based on indices su�ers from
too high similarity of states as two di�erent trees can only be distinguished by node
indices, which are close to each other. Additionally, the full tree representation is
not even necessary to provide a unique and meaningful state for a new split at
a given position. Instead, it is enough to only look at the path through the tree
leading to the new node. Why is that?
As data is �ltered through the tree, only samples ful�lling all spli�ing criteria
along the path leading to the new node actually reach the new node. All the other
samples end up at other nodes. As the split introduced at the new node only a�ects
samples which actually reach it, only the characteristics of these samples have to
be considered. Samples reaching the new node are in turn characterized by the
path they took through the tree. �erefore, all nodes of the tree, apart from the
path to the new node, can be ignored as they have no impact on the data reaching
the new node.
To illustrate this statement, consider the decision tree in �gure 3.4. Node 1 contains
samples with characteristics age smaller than sixteen and body weight smaller
than thirty kilograms. �e split introduced at Node 1 only impacts samples which
actually ful�ll the criteria of the path leading to it. On the other hand, the rest of the
tree has no in�uence on this new split at all as the relevant samples never visited
the other nodes.
Taking it one step further, it is even bene�cial to leave out the rest of the tree as
it represents additional irrelevant information which only confuses the learning
agent. Looking at the tree in �gure 3.4 again illustrates this example. �e split

43

3 Method

introduced in Node 1 should be the same, independent of the information present
in the other path (for example whether Node 2 was already added). Consequently,
only including the path to the new node in the state should speed up the learning
process as the additional rule of ignoring irrelevant parts of the tree does not have
to be learned.

Serializing a single path through the tree is trivial. One can simply put the nodes on
the path in an array. To ensure the uniqueness of states, the following information
has to be included per node:

• �e feature this node splits.
• �e criterion by which the feature is split.
• Whether the path ful�lling the spli�ing criterion is taken (for each node).

�e third item is necessary as can be illustrated in the following example. Figure 3.4
shows an incomplete decision tree which could be used to decide whether a person
is obese. A path state only containing information about features and spli�ing
criteria would look identical for Node 1 and Node 2. When the agent is given the
task to add a new node to the position of Node 1 or Node 2, the information it
sees is identical resulting in the same action. However, Node 1 and Node 2 contain
vastly di�erent data. A person younger than sixteen years with a body weight
under thirty kilograms (Node 1) can be considered normal in most cases while a
person older than sixteen years with a body weight smaller than thirty kilograms
(Node 2) would likely be underweight. Adding information about which direction
is taken at each node makes the states for Node 1 and Node 2 unique, giving the
agent a solid basis to decide on.

An even more simpli�ed tree state could omit the path to the new node and instead
only include the parent of the node and its depth in the tree. By leaving out the
path to the node, the state becomes even smaller. However, this representation
once again cannot guarantee the uniqueness of states, as the path to two identical
nodes at the same depth can be vastly di�erent. In conclusion, path states o�er a
compromise between full tree states and smaller states which still guarantees the
desired properties.

So far basic concepts behind tree based states have been discussed. Implementing
these basic concepts still o�ers a lot of freedom for various options with possible
implications. �ese options will be discussed in section 3.2.3 Tree Environment
when a broad overview over the whole system is given.

44

3.1 Methodology

Age
< 16

Body weight
< 30kg

True False

Body weight
< 30kg

Node 1

True

Node 2

True

Figure 3.4: An incomplete decision tree for classifying obesity to highlight states for new nodes
and the necessary information they should contain. Given states which only contain
information about features and spli�ing criteria, the paths to Node 1 and Node 2 are
identical. However, the data context is vastly di�erent.

Tree based states o�er various potential advantages.

• States have a low complexity independent of the size of the dataset.
• �e tree is explicitly represented in the state, resulting in unique but general-

izable states.
• Tree states are an elegant approach circumventing many of the problems of

data based states.

However, potential disadvantages can be identi�ed as well.

• �e reinforcement learning agent only implicitly sees the full picture.
• Tree states rely heavily on exploration.
• �e model learned based on tree states is highly connected to the dataset it

was learned from. Adapting such a model to other datasets is most likely not
feasible.

3.1.3 Reward Function

One of the most vital components of the algorithm is the reward function. It is
responsible for assigning rewards to actions performed at a given state. As the

45

3 Method

reinforcement learning agent tries to maximize the (accumulated) reward it receives,
the reward function directly in�uences the agent and therefore the result. �e
reward function essentially shapes the result.

To illustrate the impact the reward function can have, chess is taken as an example.
�e ultimate goal of chess is to win by taking the opponent’s king before losing your
own. �ere are numerous ways and strategies to reach this goal. For a beginner, the
most obvious way to success may be to try to eliminate as many of the opponent’s
chess pieces as possible to gain a numbers advantage. Ultimately, this advantage
may lead to victory. A reward function re�ecting this strategy could simply give a
reward of r = 1 whenever a move (action) results in one of the opponent’s chess
pieces being taken and r = 0 otherwise. �ere are several obvious issues with this
reward function:

• �ere is no punishment for losing your own chess pieces (especially your
king).

• Taking the opponent’s king and therefore winning the game gives a reward
of r = 1, the same as taking any other piece.

Consequently, this naive reward function could result in an agent which mindlessly
tries to take any opponent’s piece, the more the be�er. Losing the game early or
losing too many pieces would still be prevented as it cuts of any future rewards.
However, winning a game in only a few moves would result in a lower accumulated
reward than losing a�er a long game. So the true goal (winning the game) di�ers
from the goal the reward function implies (eliminate the opponent’s pieces). �is
di�erence between the true goal and the implied goal happens because of wrong
assumptions. In this case the assumption was that removing the opponent’s pieces
leads to victory.

The Overall Goal

�e chess example illustrates the pitfall (wrong or incomplete assumptions) of
designing reward functions in an obvious way. However, not all problems are as
intuitive as chess and o�er a clear goal. In the case of decision trees questions like
What is an optimal tree? and What is the ultimate goal? cannot simply be answered
with Winning the game!.

46

3.1 Methodology

Consequently, the �rst step is de�ning the goal. But the goal may vary depending
on the use case the decision tree is built for. Some examples for goals are:

• A decision tree with maximum F1-score for high classi�cation accuracy.
• A multitude of diverse decision trees (for an ensemble method).
• A small and easily interpretable decision tree (for illustration purposes).

�e reward function can be modeled to represent these goals. �is thesis mainly
focuses on single decision trees (not ensemble methods). �erefore, catering to
the goal of multiple diverse trees is not important. �e remaining goals are both
important. On the one hand, a tree should perform well (high classi�cation accuracy
or F1-score) but on the other hand it should still be small and interpretable. From
this reasoning one �xed rule can be derived: If a smaller tree with similar or be�er
performance exists, this tree should be found. In summary, the resulting goals are
de�ned as:

• Find a decision tree with high performance.
• If a smaller tree with similar or be�er performance exists, �nd it.

In practice, these goals may oppose each other. Bigger trees will mostly have higher
performance (at least for training data). �e reward function, among other things,
models this trade-o�.

Performance Measures

De�ning an appropriate reward function ful�lling the goal requires adequate per-
formance measures to gauge the impact of an action. Again, several options can be
identi�ed.

A widely established performance measure for classi�cation tasks is the F1-Score
[44]. It is usually preferred over classi�cation accuracy as it produces meaningful
numbers for datasets with uneven class distribution due to the use of precision and
recall. Precision (see equation (3.3)) measures the percentile of correct predictions
of one class over all predictions of this class, so how many of the predicted class i
samples actually belong to class i. Recall (see equation (3.4)) measures the percentile
of correctly classi�ed samples of class i over all samples of class i, so how many
out of all samples were predicted correctly. Maximizing both precision and recall
usually results in a trade-o� between the two measures. �is trade-o� is measured

47

3 Method

by the F1-score, which is de�ned in equation (3.5). In its basic form, F1-score is
a measure for binary classi�cation. It can be applied to multiclass problems by
applying a weighted average across all classes.

precision =
True Positives

Predicted Positives (3.3)

recall =
True Positives

Actual Positives (3.4)

F1 = 2 · precision · recall
precision+ recall

(3.5)

F1-score is a suitable measure to assess the performance of a (�nished) decision
tree for classi�cation. However, it may not be suitable to evaluate the value of a
single action while building the decision tree.

Another well established measure in the context of decision trees can be used to
measure the performance of decision trees. Gini impurity has already been discussed
in section 3.1.1 Building �e Tree and is given in equation (3.2). It measures the
purity of samples in a node and therefore provides a measure of how well a node or
leaf has isolated samples of a single class. In contrast to F1-score it is more suitable
for evaluating single nodes as opposed to the whole tree. �is focus on single nodes
makes it an ideal candidate to judge the isolated impact of appending a new node
to the tree.

Reward Functions

Having a de�nite goal and performance measures to evaluate whether the goal was
reached (at least partly) only leaves the actual de�nition of the reward function. As
always, several options can be identi�ed. Each option has implications about the
resulting tree, mostly about greediness, size, classi�cation performance and e�-
ciency of the algorithm, most of which stand in contrast to each other. �e optimal
reward function would result in a small, non-greedy tree with high classi�cation
performance which is built with high e�ciency.

Before de�ning concrete reward functions, the concept of node rewards and tree
rewards is introduced. Node rewards focus on giving rewards which rate the impact
of appending a single node to the tree. �is can be achieved by an appropriate

48

3.1 Methodology

performance measure or by taking the di�erence between the status before and
status a�er appending a node. Tree rewards on the other hand rate the tree as a
whole. �is not only includes the classi�cation performance of the tree but may
also include the size or even more abstract measures like readability of the tree.

�e �rst option focuses on the non-greediness of the tree by providing sparse
rewards. While reinforcement learning itself is a non-greedy approach, this property
can be strengthened (and must indeed to a certain extent be enforced) with an
appropriate reward function. �e idea is to give no rewards while building the tree
but only when the tree is �nished. �e reward given when the tree is �nished (see
subsection 3.1.5 De�nition of Done) has to be a tree reward to rate the whole tree.
�e function can be stated as seen in equation (3.6) where r(s, a) is the function
giving the reward based on the current state s and action a performed on it. State
and action can be viewed as the current tree receiving a new node based on action
a. �e tree reward rtree is then calculated for the resulting new tree.

r(s, a) =

{
rtree, if done
0, otherwise

(3.6)

�ere are several options to calculate the tree reward rtree. �ese options are
calculated based on several measures including measures like the F1-score, gini
impurity, tree size and maximum tree size. Numerous sensible combinations of these
measures are possible and can be scaled with the likes of logarithmic functions.
One such option can be seen in equation (3.7) where T is the tree. �is option rates
the tree based on the F1-score and the tree size. Smaller trees with similar F1-scores
will yield higher rewards. However, signi�cantly smaller trees with worse F1-scores
may also produce higher rewards. Scaling the tree size fraction with a logarithmic
function levels out the more extreme di�erences between tree sizes.

rtree(T) = F1(T) + F1(T) · log
(

maximum tree size
size(T)

)
(3.7)

While sparse rewards theoretically produce great results, they can also signi�cantly
impede the learning process as they blur the cause e�ect relation. �e chess example
from the beginning of this section illustrates this problem. As a human without
any knowledge about chess, learning from an entire game of chess solely based
on the outcome (win or lose) seems nearly impossible. Unfortunately, introducing

49

3 Method

intermediate rewards also means that new assumptions have to be made and forced
on the learning agent. In the case of decision tree learning, intermediate rewards
(in the form of node rewards) usually result in some sort of greediness.
�e most basic approach is to de�ne a reward like given in equation (3.8). It is based
on the gini impurity of the newly added node N . If a newly added node N is pure,
g(N) will be small and hence close to the optimal reward of zero (other rewards
are negative).

rnode(N) = −g(N) (3.8)

�is approach has a signi�cant problem. Suppose two nodes Ni−1 and Ni are added
to the tree, where Ni is a child of Ni−1. If Ni−1 introduced a highly bene�cial split
to the tree its gini impurity will be fairly low, resulting in a good reward. Its child
Ni will most likely have low impurity as well, independent of the split it introduces
as the active samples in the node were already separated by the parent node. So
adding the node Ni produces a high reward without being a bene�cial action.
Countering this problem is straight-forward and only requires to take the di�erence
between the state before and a�er. �e adapted formula can be seen in equation (3.9)
where gchildren(N) represents the weighted sum of gini impurities of the children
of node N .

rnode(N) = g(N)− gchildren(N) (3.9)

�e gini impurity before, g(N), examines all active samples at node N while the
gini impurity a�er, gchildren(N), examines the children resulting from the split in-
troduced by node N . �is reward function rates local improvement and is therefore
greedy. Similar reward functions based on other performance measures can be
introduced. An example based on F1-score can be seen in equation (3.10) where
Ti−1 is the tree before adding a new node and Ti the tree a�er adding it.

rnode(Ti−1, Ti) = F1(Ti)− F1(Ti−1) (3.10)

So far, tree rewards and node rewards have been examined. Tree rewards potentially
produce be�er results due to non-greediness while also making learning more
di�cult. Node rewards are greedy by nature but provide the learning agent with

50

3.1 Methodology

immediate feedback, potentially speeding up the learning process signi�cantly. To
get the best of both worlds, a combination of the two seems to be the logical step.
Equation (3.11) o�ers such a combination. While the tree is being built, node rewards
are provided. �e �nished tree then receives a tree reward which has to balance
out the greedy rewards by being more signi�cant.

r(s, a) =

{
rtree, if done
rnode, otherwise

(3.11)

Another option is to always provide tree rewards and node rewards but weight them.
Equation (3.12) shows such an approach with wnode weighting node rewards and
wtree weighting tree rewards. �e weights can be either �xed or chosen dynamically
based on the progress of the building process (for example weight tree rewards
higher when the tree size is larger).

r(s, a) = wnode · rnode + wtree · rtree (3.12)

�is weighting approach is more powerful and basically models all previously
discussed reward functions. �e weights simply have to be set accordingly. �ey
also allow for a dynamic focus on the importance of tree size, performance and
greediness as tree and node rewards represent di�erent characteristics.

While pu�ing all the discussed reward functions into one function is neat, the
di�erent choices for tree rewards, node rewards and their respective weights still
provide a huge space of possibilities which have to be evaluated.

3.1.4 Reinforcement Learning

�e overall algorithm examined the basic usage of reinforcement learning in the
whole process. For reinforcement learning to function, an environment which
provides states and rewards and accepts the execution of actions has to de�ned. All
of these items have been discussed. �is leaves reinforcement learning itself, the
method which is responsible for learning to execute the correct action at a given
moment based on the rewards it receives. �is thesis mainly focuses on �nding a
new method for generating decision trees. Reinforcement learning is mainly used
as a tool to ful�ll this goal and not the focus of experimentation, examination

51

3 Method

and evaluation. However, reinforcement learning methods have a large amount of
parameters or even signi�cantly di�erent models and concepts which may have an
impact on the overall concept. For this reason, a closer look at di�erent concepts,
models and parameter con�gurations has to be made.

Discrete and Continuous Actions

�e �rst and most signi�cant di�erence (in the context of this thesis) between
reinforcement learning methods is the nature of actions they can predict. Originally,
reinforcement learning was designed for taking discrete actions (choosing an action
out of n possible actions). As building a decision tree requires a choice of features
(discrete) but also spli�ing points (continuous), designing an optimal algorithm
solely based on discrete actions is probably impossible. One possibility to deal with
this limitation is to limit the reinforcement learning agent to only choosing features
(which are discrete) and leaving the choice of spli�ing point to an external agent.

However, modi�ed reinforcement learning methods can also deal with continuous
action spaces. As the continuous action space is in�nitely large, this problem is
naturally harder. Methods like NAF [17] do not choose actions in the same way
as discrete reinforcement learning methods do. As the action space is in�nitely
large, it is approximated quadratically with the turning point representing the set of
action values with approximated maximum Q-value. �is renders a discrete action
based on Q-values infeasible. Instead, a continuous value for each feature (which
can be loosely interpreted as a con�dence measure) is responsible for making the
discrete choice. �e continous spli�ing point comes more naturally.

In conclusion, the methods for discrete and continuous actions o�er two interesting
options.

1. �e (discrete) reinforcement learning agent only makes discrete choices (it
chooses which feature to split on). An external agent is responsible for choos-
ing where to split this feature. Traditional decision tree building algorithms
o�er (greedy) options for designing such an agent.

2. �e (continuous) reinforcement learning agent chooses the feature and the
spli�ing point. �is approach is much harder but also provides the learning
agent with more freedom, making the results potentially less greedy and
therefore theoretically be�er.

52

3.1 Methodology

Other options like stacks of agents or ensemble methods exist but are deemed out
of scope of this thesis.

Model

�e model (typically some form of a neural network) takes states as inputs and
produces measures (for example Q-values) which allow for choosing good actions.
�e choice of which model to use is mainly in�uenced by the state representation.
�e following models are commonly used.

• Feed forward neural networks (can be applied to all kinds of problems as
they are very general)

• Convolutional neural networks (typically used for processing images due to
their suitability for pa�ern recognition)

• Recurrent neural networks (typically used for processing time series)

For the di�erent proposed states (see subsection 3.1.2 State Representation), ar-
guments can be made for all three model architectures. Tree based and extracted
features states are small and most suited to feed forward neural networks. For data
states, convolutional neural networks are an interesting choice due to the ability
to recognize pa�erns in the data. For data states arranged like a series of indi-
vidual samples, recurrent neural networks are intriguing. �is thesis only examines
feed forward neural networks, leaving the possibility of utilizing convolutional or
recurrent neural networks (or other architectures) for future examination.

Parameters

Modern reinforcement learning methods come with numerous tunable parameters
which are mostly interconnected. Parameters like learning rate or target network
update frequency have a high impact on performance but li�le to no implications
for the outcome. �ese parameters simply have to be optimized. Other parameters
like γ, which weights the signi�cance of future rewards have implications for the
outcome and will be brie�y discussed here.

• Gamma (γ): Controls how much in�uence the value of future states has on
the Q-value of the current state based on the action taken. High values rate
the future higher and implicate a far look-ahead (provided the future can

53

3 Method

be predicted fairly accurately). Low values are short-sighted and focused on
locally optimal actions. �is directly in�uences the greediness of the tree
building process.

• State history size: Depending on the chosen state representation it may be
necessary to not only look at the current state but also consider previous
states to make meaningful decisions. �is parameter controls how many past
states should be provided to the learning agent. For decision trees this is
the equivalent of not only considering the current status of the tree when
making a decision but also considering previous states. Intuitively, actual tree
states likely will not pro�t from a state history as it provides no additional
information. For other representations, it remains interesting.

• Replay bu�er: �e replay bu�er holds previously encountered state-action-
reward triples and provides the samples for experience replay. �e starting
size and maximum size of the replay bu�er controls the size and length
of the experience the learning agent can use for learning. A small replay
bu�er indicates that previously encountered experiences are more important.
Depending on the exploration and learning rate of the agent, it can have
impact on the �nal outcome.

Exploration Strategy

Exploration is a vital part of reinforcement learning. It ensures that the learning
agent does not get stuck in only locally optimal or even suboptimal positions. As
reinforcement learning can be seen as a guided random exploration of possibil-
ities (which becomes less and less random as time goes on), ensuring that this
randomness does not end too soon but also considers all relevant possibilities is an
interesting challenge (exploration versus exploitation). In this thesis a simple but
well proven exploration strategy is used: epsilon greedy exploration, the same as
used in various papers like DQN [33] or NAF [17]. �e idea is simple. Epsilon (ε)
represents the probability of choosing a random action. �is idea is formulated in
equation (3.13) where s represents the current state and a an action.

action =

{
random, with probability ε
maxaQ(s, a), otherwise

(3.13)

To reduce the amount of random choices as the agent learns, ε has to be adjusted.
�is adjustment is controlled by the parameter εdecay which typically takes values

54

3.1 Methodology

in the range [0.95, 1). It is used as shown in equation (3.14) and gradually makes ε
smaller in each step until it reaches a certain threshold.

εi+1 = εi · εdecay (3.14)

�is strategy alone only works for discrete action spaces. Continuous actions require
the exploration of a continuous space. Commonly used strategies include:

• Linear decay exploration
• Ornstein-Uhlenbeck exploration (based on the Ornstein-Uhlenbeck process

[49] as used in [28])

All strategies work by adding noise to the original continuous values. �e amount
of noise is typically controlled by mean, variance and the length of the previous
learning process (similar to ε decay). Further particulars of individual strategies are
not discussed at this point.

3.1.5 Definition of Done

An essential question has not been answered yet: When is the tree which is being
built considered to be �nished? �is question is not be confused with the end of
the learning procedure, it is solely concerned with individual trees. In this thesis,
whenever the keyword done is used it refers to one episode being �nished which is
the equivalent of a tree being completed.

�e methods to determine when a tree is �nished are simple and utilize the following
questions.

• Has the tree size (number of nodes) exceeded a certain threshold?
• Do the performance measures (for example F1 score) indicate a su�cient

level of performance?
• Do the current leaves contain enough samples to justify adding another node

to the tree?

In other words, a tree is considered to be �nished if it has reached a certain size or
if its performance is su�ciently good. Additionally, the requirement of a minimum
number of samples per node has to be met. A leaf which only contains a small

55

3 Method

amount (for example less than ten) active samples is considered to not have a
large enough sample size to justify adding another split as the low number of
samples simply make the decision too much of a guess (the samples may not be
representative).

3.1.6 Post Processing

Traditional decision tree building algorithms have a post processing step which
reduces the usually large trees to a manageable size. �is step is called pruning
and is necessary to make the tree smaller, interpretable and to avoid over��ing.
�e characteristic of producing large trees stems from the greedy nature of the
algorithms. As most greedy decision tree building algorithms are deterministic,
they run only once and cannot change the structure of the tree to incorporate
decisions at another point.
Due to the non-greedy nature of reinforcement learning, pruning is not necessary
for the trees produced by this algorithm. In fact, no post processing is needed
whatsoever.

Another additional method to boost the performance of decision trees is to apply
ensemble methods like bagging or random forests. In this thesis, none of these
methods are applied. However, implementing them would be straight-forward and
complemented by the nature of the algorithm, which relies on a stochastic process
to build decision trees.
Decision tree ensemble methods rely on the diversity of trees to produce good
results. �e process by which trees are built in this thesis o�ers various possibilities
to produce diverse trees which will be discussed later in section 5.1 Future Work.

3.2 System

�is section deals with the implementation of the algorithm. First, the overall
architecture is described with focus shi�ing to more detailed components in the
later stages of this section. All components of this system were implemented in the
following environment.

56

3.2 System

• Programming language: Python 3.5
• Machine learning framework: Tensor�ow r1.2 [1]
• Utility functions: Scikit-learn 0.20 [35]

3.2.1 Components

�e algorithm is implemented with various components. An overview can be seen
in �gure 3.5. A brief description of each component reads as follows.

• Main: Controls the overall execution of the algorithm by se�ing con�guration
parameters and triggering evaluation.

• Con�guration: Holds all con�gurable parameters for the whole algorithm
(excluding externals like which dataset to process).

• Environment: A representation of the reinforcement learning environment
which supports taking steps and returning states and rewards. It is responsible
for assembling the tree based on the actions provided by the agent. Multiple
environments exist, modelling di�erent state representations.

• Solver: Responsible for solving the environment by providing appropriate
actions for given states based on rewards. Multiple solvers were implemented
representing di�erent reinforcement learning algorithms.

• Trees: �is component is a binary decision tree implementation which sup-
ports various operations necessary for execution of the algorithm.

• Analyzer : Responsible for evaluating the performance of the algorithm and
of the outcome with various plots and textual summaries.

�e following sections describe each component in more detail.

3.2.2 Configuration

�e con�guration component is responsible for providing a single access point
for all changeable parameters. Di�erent presets can be loaded to examine speci�c
parameter sets. �e parameters it controls are described in the following subsections
where they belong semantically. �e con�guration also contains two top-level
parameters.

• Environment: �e environment to be used.

57

3 Method

controls execution

Main

solves

builds

Solver

processes

processesEnvironment Data

evaluates

Analyzer

Trees

configures

Configuration
Algorithm

Figure 3.5: �e basic components and their connection. �e implementation of the algorithm is
shaped by the components in the algorithm frame which implement the various op-
tions. Each of these options is controlled via parameters in the con�guration component.
Based on the con�guration, the solver is responsible for solving the environment, which
provides states and rewards and processes actions to build trees. �e solver indirectly
builds trees via the environment. Finally, the analyzer component evaluates the perform-
ance of algorithm and outcome.

58

3.2 System

• Solver : �e selected solver.

3.2.3 Environments

�e environments component is responsible for executing steps and providing
resulting states and rewards. It assembles the currently built decision tree and
accesses the dataset which is being solved.

�e environment implementation has a high overall impact as it controls several
key factors.

• �e state representation.
• It decides where new nodes will be a�ached to the tree (see algorithm 3.2).
• It gives rewards.
• It decides when building the tree is �nished (done).
• Depending on the nature of the reinforcement learning algorithm (discrete

or continuous), it is responsible for deciding where to split a given feature
(base on traditional decision tree building algorithms).

As di�erent state representations require vastly di�erent handling, an environment
for each state representation was implemented. Before examining these speci�c
environments, the parameters they share will be discussed.

• Maximum tree size: �e maximum size (number of nodes excluding leaves) the
tree can have (Default: 11). �is parameter also controls the maximum number
of steps the learning agent takes in each episode (as each step corresponds to
adding a node to the tree).

• Maximum tree depth: �e maximum depth the tree can reach (excluding
leaves) (Default: 11).

• Minimum samples per leaf : �e minimum number of active samples each
node or leaf can contain (Default: 5).

• Node reward: �e chosen node reward function (Default: gini impurity di�er-
ence).

• Tree reward: �e chosen tree reward function (Default: F1 score normalized
by tree size).

• Node punishment: �e punishment given for adding a new node to control
the size of the tree (Default: 0).

59

3 Method

• Empty leaf punishment: If the reinforcement learning agent decides to add a
node which has a leaf with zero active samples, this punishment is admin-
istered (Default: 0).

• Scale gini leaf sum: Indicates whether the sum of gini impurities across all
leaves should be scaled by the respective number of active samples in each
leaf (Default: true). �e gini sum is used as a performance measure for rewards
and the done check.

• Normalize gini leaf sum: Indicates whether the sum of gini impurities across
all leaves should be normalized by the total sample count (Default: true).

• Stopping criterion gini sum: A threshold based on the sum of gini impurities
across all leaves which decides whether the tree is completed (Default: 0.1).

• Stopping criterion F1 score: A threshold based on the F1 score which decides
whether the tree is completed (Default: 0.9).

• Normalize data: Indicates whether data should be normalized (Default: False).

Data Environment

Data environments are characterized by directly including data samples in the
states. As datasets can be big, a way of reducing the state size has to be introduced.
�is is simply done by only including a �xed amount of samples per state. If the
number of active samples for a state is larger or equal to the chosen state size,
samples are randomly picked from the active samples. In case of too few active
samples, samples are drawn from the active sample pool repeatedly.

�e parameters speci�c to the data environment are the following.

• Fla�en states: Indicates whether states should be �a�ened from n × m to
1× nm (Default: false), where n is the number of samples and m the number
of features.

• Remove labels: Indicates whether labels should be removed from the data
when passing it to the reinforcement learning agent (Default: false).

• State size: �e number of samples included per state. If the dataset is large, it
is impractical to pass all samples to the learning agent as the state size would
be too big.

60

3.2 System

Tree Environment

Tree environments produce states which directly model the tree without including
any data samples. �e two main ways of doing this are either via states including
information about the whole tree or via states including only information about
the path from the root node to the new node which should be added. Building
these states o�ers a lot of freedom about what information to include in which way,
which is re�ected by the large number of parameters for this environment.

�e parameters speci�c to the tree environment are the following.

• State structure: Controls whether states should encompass the whole tree or
only the path leading to the node which should be added next (Default: path
only).

• State ordering: Controls whether characteristics of one node should be grouped
together (called alternating) or if the characteristics should be grouped to-
gether (called group). If one node has the information (index, feature, split),
alternating states would include one node a�er each other, resulting in an
alternating repetition of (index, feature, split). Groups would put all indices
together, followed by all features et cetera (Default: alternating).

• Inner state ordering: Controls the ordering of node characteristics of above
representation (for example whether the order should be (index, feature, split)
or (index, split, feature)) (Default: (index, direction, feature, split)).

• Full tree structure: If the state structure represents whole trees, this parameter
controls whether the default array serialization (called full tree) or the com-
pact serialization relying on indices should be used (called compact) (Default:
compact).

• Include indices: Indicates whether node indices should be included in the state
for each node (Default: false).

• Include spli�ing criteria: Indicates whether node spli�ing criteria should be
included in the state for each node (Default: true).

• Include directions: Indicates whether node directions (le� or right) should be
included in the state for each node (Default: true).

• Include feature dimensions: Indicates whether node feature dimensions (the
feature to split on) should be included in the state for each node (Default:
true).

61

3 Method

• Bo�om to top: Indicates whether trees and paths should be serialized from
bo�om to top (leaf to root) or starting from the root down to the leaves
(Default: top to bo�om).

3.2.4 Solvers

�e solver component is in general responsible for choosing actions based on
previously encountered states and rewards. Reinforcement learning was chosen
as the method to implemented solvers. �ree di�erent reinforcement learning
algorthims were implemented, each with their own solver. �ey share various
parameters which are listed here.

• Training episodes: �e number of episodes the agent trains (Default: 500).
Each episode corresponds to one tree being built.

• Testing episodes: �e number of episodes used for testing the learned model
(Default: 50).

• Hidden layer neurons: �e number of hidden layers and the amount of neurons
used in them (in a feed forward neural network) (Default: Two layers with
three hundred neurons each).

• Learning rate: �e learning rate of the agent (Default: 0.005).
• Learning rate decay: �e factor by which learning rate decays each step

(Default: 1.0, no decay).
• Gamma: Gamma (γ) controls how much in�uence the value of future states

has on the Q-value of the current state based on the action taken. A high
value indicates a far look-ahead and li�le greediness (Default: 0.995).

• Epsilon: �e starting value for Epsilon (ε) used in the epsilon greedy explora-
tion (Default: 1.0, fully random).

• Epsilon decay: �e rate at which ε decays in each step (Default: 0.9995).
• Epsilon �nal: �e �nal ε value. Lower values are not possible during training

(Default: 0.08).
• Minibatch size: �e size of the batches used for learning (Default: 25).
• Replay bu�er start size: �e amount of steps taken to �ll the replay memory

before learning starts (Default: 500).
• Replay bu�er maximum size: �e maximum number of steps stored in the

replay memory (Default: 100000).

62

3.2 System

• State history size: �e amount of preceding steps appended to the current
state. �is state history gives the agent a small look in the past (Default: 1).

• Train every n steps: If steps are very small and do not change the state signi�c-
antly, it might make sense to only train every n steps to get greater stability
and less bias. As this is not true for the algorithm proposed in this thesis, the
parameter can be le� at its default (Default: 1, train every step).

By default, all solvers use feed forward neural networks as models. As the state
representation is customizable, the default parameters and network structure may
change according to the state representation or task at hand. �is in turn has an
impact on the other parameters. For example, changing the state representation
from a small tree state to data states results in larger, more complex states that
require a larger network to model the mappings. A larger network possibly requires
more training to achieve good results without over��ing, resulting in a smaller
learning rate. Another factor is the reinforcement learning algorithm itself. �e
indivdual implementations will be brie�y examined.

DQN Solver

Deep Q Networks (DQN), published by Mnih et al. in 2015 [33] is used as a bench-
mark for most reinforcement learning algorithms. Some of the most important
parameters discussed as general reinforcement learning parameters originated from
this paper. �e algorithm was implemented like described in the paper with minor
adjustments for reward handling. A parameter which is speci�c to DQN and DDQN
is the target network update frequency.

• Update frequency: �e target network (used for error calculation) is updated
every n steps to be identical to the main network (Default: 100).

DDQN Solver

Double DQN (DDQN) [50] is an improved version of DQN which tries to improve a
common issue of reinforcement learning methods: overestimation of speci�c action
values. �e overestimation happens because standard DQN evaluates and selects
actions based on the same measure. If this measure is inaccurate, an inappropriate
action is selected with the evaluation of the action not raising any warnings. DDQN

63

3 Method

separates selection and evaluation to reduce bias. �is modi�cation is surprisingly
simple in its idea. Instead of using only the target network, the current and target
network are used for selection and evaluation respectively. No new parameters are
introduced for DDQN as it uses the same parameters as DQN.

NAF Solver

Normalized Advantage Functions (NAF) [17] is a state of the art algorithm for
continuous action spaces. �e core is based on Q learning, but modi�ed to handle
continuous actions. �e implementation is based on the paper, excluding model
based acceleration (as it requires external models). New parameters introduced by
NAF are the following.

• Tau: Tau (τ) is used for a so� update of the target network. Instead of making
the target network identical to the current network every n steps, the target
network is continuously udated by the factor τ (Default: 0.001).

• Updates per step: To accelerate learning and reduce the amount of (possibly
expensive) steps in the environment, several learning updates per step are
performed (Default: 5).

3.2.5 Trees

�e trees component is an enhanced binary tree implementation. It is enhanced
with various functions needed for decision trees and decision tree learning. Some
of the more prominent additions are listed here.

• Classi�cation ability based on splits in each node.
• E�cient calculations of various metrics like gini impurity or F1 score while

building the tree.
• Memory- and performance-e�cient handling of data passing through the

tree.
• Tree plo�ing.

64

3.2 System

3.2.6 Analyzer

�e analyzer component evaluates the performance of both algorithm and the
outcome of the algorithm. Various plots and textual outputs give an overview over
the performance. �e most important aspect of this component is that it documents
con�gurations and according outputs in such a manner that they can analyzed and
reproduced easily.

In summary, this chapter introduced the methodology and ideas used for designing
a new decision tree building algorithm based on reinforcement learning. �e need
for assumptions which enforce restrictions on the learning agent has been discussed
as well as the various components of the algorithm. Each component o�ers several
possibilities of how it can be implemented. �eoretical arguments for and against
these possibilities were discussed to form a concise outline for the algorithm.
Finally, these ideas and possibilities got mapped to a concrete implementation, with
changeable parameters representing the various ideas and possibilities mentioned
earlier. �e most important decisions for the methodology and implementation are
shown in �gure 3.6, where the bold path represents the default con�guration. �e
next chapter will evaluate the algorithm and the decision trees it produces to get a
clear and objective picture about the ideas and theories proposed in this chapter.

65

3 Method

Tree Building
Methodology Yes

No

Iterative

Out of scope

By
Environment

By Agent

New Node
PositionYes

No

Binary
Trees

Yes (Gini)

No

Based on
Measures

State Representation

Data States Tree States Composition

Full Trees Path only

Node Reward

Discrete

Continuous

Solver

Sparse Nonsparse

Reward
Measure

Yes

No

Tree
Reward

F1 Score Gini Impurity

F1 Score

Implementation

Yes

No

Post
Processing

Out of scope

Figure 3.6: A �ow chart showing the most important decisions in methodology and implementation.
�e bold path represents the default con�guration.

66

4 Evaluation

In this chapter the proposed algorithm is evaluated in various con�gurations to
answer the main research questions.

• Is it possible to build decision trees with reinforcement learning?
• What is a suitable way of building decision trees with reinforcement learning?
• Can the algorithm produce non-greedy results?

Additionally, the performance of the algorithm and the outcome is tested and
compared to state of the art decision tree building algorithms. Before presenting the
results, the evaluation methodology is explained followed by a closer look on the
used data sets. Based on this methodology the results for the data sets are presented
and �nally discussed.

4.1 Evaluation Methodology

�is section describes the evaluation methodology as well as the environment it is
executed in.

4.1.1 Methodology

�e questions which should be primarily answered by the evaluation are the re-
search questions. To get meaningful answers to these questions several other
sub-questions have to be answered as well. Several theories have been proposed in
the chapter 3 Method. �e most important ones will be examined in more detail.
To answer such a question the following methodology is applied.

1. Formulate the question.

67

4 Evaluation

2. Apply a suitable parameter con�guration.
3. Test this parameter con�guration an adequate number of times by training

with a training set and testing with a testing set with a random split of 75%
training to 25% testing data.

4. Present the average results.

An interpretation of the results is then conducted in section 4.4 Discussion.

4.1.2 Environment

To make the results replicable and comprehensible, the environment in which the
following results are obtained has to be recorded. All test are run on a middle-
class desktop computer with the speci�cations which can be seen in table 4.1.
All components are run at stock speed (no over- or underclocking). �e machine
learning framework (Tensor�ow) supports GPU calculations. However, not using
the GPU yields similar execution times as the learning procedure for problems used
in this thesis does not take long and the overhead of using a GPU is noticeable.

Type Component
CPU Intel(R) Core(TM) i5-6600 @ 3.30 GHz
RAM 16 GB
GPU GeForce(R) GTX 1060
VRAM 6 GB
OS Ubuntu 16.10

Table 4.1: Hardware and operating system used for testing.

4.2 Data Sets

�e data sets used for evaluating the algorithm were either generated or taken from
the UCI Machine Learning Repository [11]. �e chosen data sets are diverse in size,
number of features and class distribution and are suitable for classi�cation. First,
generated data sets will be examined followed by real data sets in no particular
order.

68

4.2 Data Sets

4.2.1 Generated Data Sets

Generating data sets allow for easier testing of speci�c hypotheses and are a great
aid while developing an algorithm. Two types of data sets were generated and will
be explained shortly.

Parametrized Data Set

�e dataset mainly used for designing and testing new features is a parametrized
generated dataset. It can be adapted easily via parameters to adapt the di�culty of
solving it. �e following parameters de�ne the dataset.

• Size: �e number of samples.
• Features: �e number of features (including labels).
• Classes: �e number of di�erent classes the samples belong to (equally dis-

tributed).

�e dataset is generated in such a way that the optimal tree is known.

Non-Greedy Data Set

�is data set is generated in such a way that it cannot be solved optimally with a
greedy algorithm. �e purpose of this data set is to check whether the algorithm
proposed in this thesis can solve it in a non-greedy and therefore optimal way.
It has three binary features (taking the values 0 or 1). Feature 1 and 2 have a
random uniform distribution of zeros and ones. �e label is set to be the logical
operation XOR (exclusive or) of feature 1 and 2. Feature 3 is equal to the label with a
percentage higher than ��y percent. As spli�ing on feature 3 provides the highest
gain, a greedy algorithm will split on feature 3 �rst and then on feature 1 and 2. An
optimal algorithm will only split on feature 1 and 2 (to model the XOR relationship
which de�nes the labels) and will therefore produce smaller trees.

69

4 Evaluation

4.2.2 Real Data Sets

Real data sets taken from the UCI Machine Learning Repository [11] are brie�y
described in the following sections.

Cryotherapy

�e cryotherapy data set [24, 23] contains information about the treatment of warts
using cryotherapy with the target being the success or failure of treatment. Its key
characteristics can be seen in table 4.2. �e characteristics suggest a small and well
balanced data set with few a�ributes.

Property Value
Samples 90
Features 7
Classes 2
Class distribution (47%, 53%)

Table 4.2: Key characteristics of the cryotherapy data set.

Parkinsons

�e parkinsons data set [29] contains processed voice recordings of people with and
without parkinsons disease. Based on the di�erent voice measures, the recordings
should be assigned to healthy or parkinsons a�icted. Its key characteristics can be
seen in table 4.3. �e higher number of features and uneven class distribution set
this data set apart.

Property Value
Samples 195
Features 23
Classes 2
Class distribution (25%, 75%)

Table 4.3: Key characteristics of the parkinsons data set.

70

4.2 Data Sets

User Knowledge Modeling

�is data set [22] examines a users knowledge level based on several features like
study time or exam performances. Table 4.4 shows the key characteristics of this
data set. �e higher number of fairly balanced classes make this data set an entry
point for multi-class classi�cation.

Property Value
Samples 258
Features 6
Classes 4
Class distribution (9%, 24%, 32%, 34%)

Table 4.4: Key characteristics of the user knowledge modeling data set.

Urban Land Cover

�is data set [20, 21] contains preprocessed aerial images. Each image corresponds
to one sample which should be classi�ed as a type of urban land cover (for example
trees or buildings). �e key characteristics in table 4.5 show a very high feature
count as well as multiple classes with fairly equal distribution.

Property Value
Samples 168
Features 148
Classes 9
Class distribution (9%, 14%, 10%, 15%, 8%, 17%, 10%, 8%, 9%)

Table 4.5: Key characteristics of the urban land cover data set.

Student Performance

�e student performance data set [8] contains samples about students and their
social background. Goal of the classi�cation is to predict the �nal grade in a given
subject (math). Table 4.6 shows the key characteristics. �e high number of features

71

4 Evaluation

and classes as well as a very limited amount of samples per class make this data set
very challenging.

Property Value
Samples 395
Features 31
Classes 18
Class distribution (10%, 1%, 2%, 4%, 2%, 8%, 7%, 14%, 12%,

8%, 8%, 7%, 8%, 4%, 2%, 3%, 1%, 1%)

Table 4.6: Key characteristics of the student performance data set.

4.3 Results

�is section presents the results achieved with the algorithm proposed in this thesis.
�e following metrics are examined to gauge the performance.

• F1-score (of training and test set)
• Execution time of the algorithm
• Size of the resulting tree (always without leaves)

Multiple parameter con�gurations are tested on all data sets to �nd a suitable
con�guration which is then compared to other state of the art algorithms, including
C4.5. As few changes as possible are applied to the default parameter con�guration
to keep the results as comparable as possible. However, not adapting the parameters
signi�cantly also leads to results which are not optimal (especially for di�erent
data sets) which has to be considered when viewing the results. Additionally,
fundamental questions arising in the chapter 3 Method are examined. �e discussion
of the results happens in a later section 4.4 Discussion.

All results obtained with the algorithm feature two separate outcomes. On the
one hand, the building process (and resulting tree) the reinforcement learning
process converges to and on the other hand, the best tree which is created during
the training procedure. As reinforcement learning is a stochastic method which
relies on exploration, not every explored possibility is guaranteed to have a high
impact on the converged outcome. Consequently, a tree with be�er performance

72

4.3 Results

might be created during training than during testing (which works with the �nal
reinforcement learning model and hence, policy).

To provide a baseline, partially random trees were built and tested. �e default con-
�guration runs for 500 episodes, resulting in 500 trees being built. To get comparable
results, 500 partially random trees with a maximum of eleven nodes (excluding
leaves) were generated. �e trees are generated in a similar fashion to the one used
in the algorithm for discrete actions. While the environment provides new node
positions and calculates the locally optimal split for each node, the choice of feature
per node is randomized. �e results for this baseline can be seen in table 4.7.

Dataset Best F1(test) Tree size
Cryotherapy 0.788 10.8
Parkinsons 0.773 11
User Knowledge 0.664 11
Urban Land Cover 0.393 11
Student Performance 0.08 11
Average 0.540 10.96

Table 4.7: Average results over �ve runs (500 random trees per run) for random feature selection.
New node positions and spli�ing points are not random. Results are given for each data
set and averaged over all data sets in the �nal row. �e F1 score shows the average best
performing random tree on the test data and the tree size its size.

4.3.1 Reward Functions

So far reward functions have been treated as one of the deciding factors in the
performance of the learning agent. �is assumption is tested by comparing sparse
and non-sparse reward functions, as well as two di�erent reward measures (F1
score and gini impurity). Additionally, the impact of introducing a separate tree
reward is examined.

Sparsity of Rewards

For sparse reward functions, rewards are only given once the tree is complete. �e
reward given is the negative sum of gini scores of all leaves. Results for all data sets
averaged over �ve runs are visible in table 4.8.

73

4 Evaluation

Dataset Time[s] F1(train) F1(test) Tree size F1(best)
Cryotherapy 19 0.931 0.831 9.4 0.944
Parkinsons 45 0.898 0.839 7.4 0.947
User Knowledge 61 0.823 0.726 10.2 0.928
Urban Land Cover 110 0.429 0.481 11 0.726
Student Performance 44 0.131 0.212 11 0.202
Average 56 0.63 0.62 10 0.757

Table 4.8: Average results over �ve runs for sparse rewards. Results are given for each data set and
averaged over all data sets in the �nal row. �e F1 scores show the performance of trees
produced by the �nal (converged) reinforcement learning policy for the training data set
(train) and the testing data set (test) as well as the tree size. �e �nal column shows the
performance of the best trees found (based on F1 score) during training.

Non-sparse node rewards assign a meaningful reward to each individual action.
Results based on the di�erence of gini impurity scores before and a�er adding a
new node can be seen in table 4.9

Dataset Time[s] F1(train) F1(test) Tree size F1(best)
Cryotherapy 18 0.897 0.911 6.6 0.947
Parkinsons 41 0.89 0.873 6.2 0.948
User Knowledge 58 0.79 0.78 10.8 0.934
Urban Land Cover 105 0.512 0.439 11 0.801
Student Performance 43 0.114 0.167 11 0.203
Average 53 0.64 0.63 9.12 0.767

Table 4.9: Average results over �ve runs for non-sparse rewards based on gini impurity. Results
are given for each data set and averaged over all data sets in the �nal row. �e F1 scores
show the performance of trees produced by the �nal (converged) reinforcement learning
policy for the training data set (train) and the testing data set (test) as well as the tree
size. �e �nal column shows the performance of the best trees found (based on F1 score)
during training.

Overall, both results are very similar. Non-sparse rewards perform slightly be�er
in all categories with the most signi�cant di�erence visible in tree size, where non-
sparse rewards result in trees which are on average one node smaller. Individual
results and standard deviation (which are not listed here for clarity of results) also
suggest that non-sparse rewards are considerably more stable. Purely based on
these results, non-sparse rewards should be preferred.

74

4.3 Results

Reward Measures

From the possible choices of reward measures, F1 score and gini impurity are
examined as node rewards. Both rewards are given as non-sparse rewards. Results
for gini impurity can be seen in table 4.9. When using F1 score as the reward measure,
the results seen in table 4.10 are the outcome. When compared to gini impurity,
no signi�cant di�erence can be found. Due to the similar nature of the reward
calculation this result is to be expected. However, the results for gini impurity are
slightly be�er in most categories, making the use of gini impurity preferable.

Dataset Time[s] F1(train) F1(test) Tree size F1(best)
Cryotherapy 16 0.919 0.799 5.2 0.958
Parkinsons 48 0.889 0.842 8.8 0.949
User Knowledge 59 0.888 0.854 11 0.94
Urban Land Cover 111 0.453 0.423 11 0.764
Student Performance 43 0.123 0.168 11 0.205
Average 55 0.655 0.617 9.4 0.763

Table 4.10: Average results over �ve runs for non-sparse F1 score based rewards. Results are given
for each data set and averaged over all data sets in the �nal row. �e F1 scores show the
performance of trees produced by the �nal (converged) reinforcement learning policy
for the training data set (train) and the testing data set (test) as well as the tree size. �e
�nal column shows the performance of the best trees found (based on F1 score) during
training.

Tree Rewards

�e tests conducted so far all employed separate tree rewards. When only using
node rewards (in the form of gini impurity), the results visible in table 4.11 are the
consequence. Not using tree rewards has no signi�cant impact on the performance
of the algorithm, with one exception. �e average tree size is considerably larger.
�e larger tree size does not seem to bring any bene�ts and can therefore be
considered undesirable.

75

4 Evaluation

Dataset Time[s] F1(train) F1(test) Tree size F1(best)
Cryotherapy 12 0.919 0.822 10 0.95
Parkinsons 46 0.909 0.871 10.5 0.949
User Knowledge 56 0.823 0.801 11 0.938
Urban Land Cover 112 0.488 0.514 11 0.774
Student Performance 44 0.143 0.199 11 0.208
Average 55 0.657 0.641 10.7 0.764

Table 4.11: Average results over �ve runs when only using node rewards (no tree rewards). Results
are given for each data set and averaged over all data sets in the �nal row. �e F1 scores
show the performance of trees produced by the �nal (converged) reinforcement learning
policy for the training data set (train) and the testing data set (test) as well as the tree
size. �e �nal column shows the performance of the best trees found (based on F1 score)
during training.

4.3.2 State Representations

Several di�erent state representations have been introduced in the chapter 3 Method.
Results obtained from all three representations (tree paths, full trees and data states)
are compared in this section. As tree paths are the default con�guration, previous
results all use tree paths with table 4.9 forming the baseline. Using full tree states
in the compact form (the default binary tree serialization produces states which are
too large to handle appropriately) results in table 4.12. �e data state representation
is limited to 20 samples per state to reduce the state size. Results can be seen in
table 4.13.

�e results put the default con�guration with tree paths on top. Full tree states are
a close contender but are noticably slower and produce bigger trees. Data states
fall o� in all categories. When using data states, trees take signi�cantly longer to
build, perform worse and are bigger.

4.3.3 Reinforcement Learning

While reinforcement learning has several adjustable parameters, the focus of this
section lies on a comparison of continuous and discrete actions. Discrete actions
only choose the feature to split while continuous actions choose the feature and
the spli�ing point. In theory, the be�er, less-greedy version are continuous actions.

76

4.3 Results

Dataset Time[s] F1(train) F1(test) Tree size F1(best)
Cryotherapy 18 0.897 0.888 7.8 0.939
Parkinsons 48 0.889 0.876 8.6 0.95
User Knowledge 61 0.72 0.702 11 0.926
Urban Land Cover 116 0.563 0.534 11 0.799
Student Performance 40 0.106 0.172 11 0.199
Average 57 0.635 0.635 9.8 0.762

Table 4.12: Average results over �ve runs when using full tree states. Results are given for each data
set and averaged over all data sets in the �nal row. �e F1 scores show the performance
of trees produced by the �nal (converged) reinforcement learning policy for the training
data set (train) and the testing data set (test) as well as the tree size. �e �nal column
shows the performance of the best trees found (based on F1 score) during training.

Dataset Time[s] F1(train) F1(test) Tree size F1(best)
Cryotherapy 22 0.866 0.888 9.6 0.947
Parkinsons 58 0.907 0.844 10 0.95
User Knowledge 52 0.871 0.860 11 0.937
Urban Land Cover 192 0.576 0.499 11 0.792
Student Performance 58 0.086 0.085 11 0.201
Average 77 0.661 0.635 10.52 0.765

Table 4.13: Average results over �ve runs when using data states. Results are given for each data set
and averaged over all data sets in the �nal row. �e F1 scores show the performance of
trees produced by the �nal (converged) reinforcement learning policy for the training
data set (train) and the testing data set (test) as well as the tree size. �e �nal column
shows the performance of the best trees found (based on F1 score) during training.

However, the increased di�culty of choosing feature and spli�ing point makes it a
hard task. �e following results show an objective comparison of both approaches.
So far, discrete actions have been used with the baseline formed by table 4.9. Using
continuous actions gives results visible in table 4.14.

Compared to discrete actions, continuous actions clearly fall o� in all categories.
�e execution time is the highest among all tested con�gurations by a large margin
while also producing the worst results. �e results presented in table 4.14 only
show tests for real data sets. When running the same con�guration for generated
data sets with adaptive di�culty, this con�guration does manage to �nd optimal
results for easier problems. �e most di�cult generated data sets which can be

77

4 Evaluation

solved stably with this con�guration has the following parameters.

• Size: 100 samples
• Features: 7 features (including labels).
• Classes: 3 classes (equally distributed).

While this con�guration is similar to the cryotherapy data set, the generated data
set is still less complex.

Dataset Time[s] F1(train) F1(test) Tree size F1(best)
Cryotherapy 209 0.832 0.507 11 0.85
Parkinsons 377 0.712 0.580 11 0.743
User Knowledge 205 0.639 0.572 11 0.737
Urban Land Cover 3840 0.153 0.081 11 0.437
Student Performance 473 0.069 0.047 11 0.164
Average 1021 0.481 0.357 11 0.586

Table 4.14: Average results over �ve runs when using continuous actions. Results are given for
each data set and averaged over all data sets in the �nal row. �e F1 scores show the
performance of trees produced by the �nal (converged) reinforcement learning policy
for the training data set (train) and the testing data set (test) as well as the tree size. �e
�nal column shows the performance of the best trees found (based on F1 score) during
training.

4.3.4 Greediness

One of the fundamental research questions of this thesis is: Can the algorithm
produce non-greedy results? �is question can be answered by looking at the
performance for the non-greedy data set discussed earlier in this chapter. To get
a greedy baseline, an implementation of C4.5 provided by the machine learning
tool WEKA [12] was used. It produces the tree visible in �gure 4.1 when outpu�ing
a tree without post-processing. �is tree has a perfect F1-score (1.0) but is not
optimal due to the �rst split on feature f3.

�e new algorithm of this thesis produces trees as seen in �gure 4.2. �is tree also
has a perfect F1-score but is smaller due to not considering feature f3 as a bene�cial
split. As the algorithm manages to produce this result stably, it can be considered
to be able to produce non-greedy results.

78

4.3 Results

Figure 4.1: A greedy decision tree for the generated non-greedy data set produced by C4.5 (WEKA
implementation) without post-processing.

f1 <=0

Class: 1 (54%)

f2 <=0

Class: 1 (52%)

True

f2 <=0

Class: 1 (55%)

False

Class: 0 (100%)

True

Class: 1 (100%)

False

Class: 1 (100%)

True

Class: 0 (100%)

False

Figure 4.2: An optimal non-greedy decision tree for the generated non-greedy data set produced by
the algorithm proposed in this thesis. Percentages represent the con�dence of predicting
the respective class in this leaf/node.

79

4 Evaluation

4.3.5 State of the Art

�e results obtained so far compared internal con�gurations among each other. To
determine whether the achieved results are competitive they have to be compared
to other state of the art methods. �e methods of choice are C4.5 and random forests
with implementations provided by WEKA [12]. �e default parameters from WEKA
are used with the same training-test data split as used for this algorithm. When
using default parameters for all three algorithms (with the exception of binary
splits for C4.5), the results visible in table 4.15 show the performance measured by
F1 score, averaged over 5 runs. Table 4.16 compares the average resulting tree sizes.
For execution times, a comparison table is unnecessary as the WEKA implement-
ations all �nish in less than one second, making them faster by several orders of
magnitude.

Apart from execution time, the decision trees produced by the algorithm proposed in
this thesis perform noticeably be�er than C4.5 but also slightly worse than random
forests. While performance is fairly similar, the tree sizes di�er signi�cantly. C4.5
always produces the same tree (as it is deterministic) and therefore a tree of the
same size. �e new algorithm, on the other hand, can produce substantially smaller
trees and does so on average. Overall the comparison shows that traditional greedy
algorithms execute faster but produce bigger trees and perform marginally be�er
(random forests) or slightly worse (C4.5).

New C4.5 Random forest
Dataset F1(best) F1(test) F1(test) F1(test)
Cryotherapy 0.947 0.901 0.863 0.908
Parkinsons 0.948 0.917 0.884 0.938
User Knowledge 0.934 0.824 0.877 0.828
Urban Land Cover 0.801 0.778 0.756 0.83
Student Performance 0.203 0.173 0.128 0.11
Average 0.767 0.719 0.702 0.723

Table 4.15: Comparison of average F1 score performance over �ve runs between this algorithm,
C4.5 and random forests. For this algorithm the F1 training score is omi�ed as the best F1
result can be considered more relevant. Results are given for each data set and averaged
over all data sets in the �nal row.

80

4.4 Discussion

Dataset New C4.5 Random forest
Cryotherapy 6.6 3 -
Parkinsons 6.2 11 -
User Knowledge 10.8 13 -
Urban Land Cover 11 13 -
Student Performance 11 121 -
Average 9.12 32.2 -

Table 4.16: Comparison of average tree sizes over �ve runs between this algorithm, C4.5 and random
forests. �e individual random forest trees are not accessible in WEKA but have a
maximum depth of 100 and can therefore be considered large. Results are given for each
data set and averaged over all data sets in the �nal row.

4.4 Discussion

Having presented the results objectively, a discussion of the results is in order. �is
section views the results from other angles and evaluates them not in terms of
numbers but from a more practical point of view. �e implications of the results
for real world applications are discussed as well as insights about why certain
behaviours can be observed in the results.

4.4.1 Productive Application

An important question when proposing a new algorithm is whether it can be used
in a meaningful way in a productive environment. Does the algorithm have any
bene�ts already existing methods cannot o�er? Are there any deal breakers which
make the algorithm infeasible for real world applications? In the context of this
thesis, the short answer to these questions is: It depends. A more elaborate answer
consists of the various advantages and disadvantages this algorithm brings to the
table.

Starting with the disadvantages, the list reads as follows.

• �e algorithm is comparably slow. �e average execution time of approxim-
ately 50 seconds stands in stark contrast to sub one second execution times
of greedy algorithms. �is makes the algorithm unsuitable for any kind of
real time applications.

81

4 Evaluation

• �e number of adjustable parameters is very high. While the same parameters
have been used for all data sets, adjusting them could certainly lead to be�er
results. In general, a high number of parameters is undesirable, even if they
are robust (which can be argued in this case).

• �e implementation requires the use of multiple components. Implementing
a reinforcement learning algorithm is not a trivial task.

• �e execution time for big data sets is problematic. If execution time is not an
issue, the algorithm can certainly be applied to bigger problems as well. But
the substantially faster greedy algorithms produce similar results, making
them a more interesting alternative (depending on the use case).

However, the advantages which can be identi�ed are certainly useful for many use
cases and might give the algorithm an edge over the greedy competitors.

• �e resulting decision trees require no post-processing (especially pruning).
• �e single tree performance (no ensembles) is comparable or even slightly

be�er than C4.5, a state of the art algorithm.
• �e stochastic nature of the learning process leads to diverse trees which

are produced during training or from the �nished trained model with slight
adjustments to the way the policy selects actions. �e diversity of trees o�ers
two key advantages over deterministic methods: Additional insights can be
gained when interpreting multiple diverse trees as opposed to only a single
tree. Moreover, this diversity can most likely be used for creating ensemble
methods (even though no such a�empt has been made in this thesis).

• �e trees are smaller but have similar or be�er performance. �is can be a
huge bonus for the interpretability of the tree.

• When building decision trees, the trade-o� between performance and size is
always problematic. �is trade-o� can be directly in�uenced by the choice of
reward signals.

�ese advantages and disadvantages suggest that there are use cases for which our
algorithm can be used. �e advantages suggest a focus on data exploration. �e
natural diversity of resulting trees as well as the in�uence on the size-performance
trade-o� make it an intriguing choice for exploring data.

�at being said, the results presented in the previous section are not necessarily
representative of a real world application. For scienti�c purposes the same para-
meter con�gurations were used for all data sets and as few adaptions as possible
were made when changing speci�c parameters. While this suggest robustness, it

82

4.4 Discussion

also means that the results can most likely be improved in all aspects. �e learning
procedure usually converges faster than the maximum amount of episodes set in
the default parameters which means execution time can be reduced. Tailoring the
parameters to data sets would most likely result in be�er performance (F1 score
and tree size) as well.

4.4.2 Insights

�e results show several peculiarities which have to be discussed. Understanding
why a certain behaviour occurs is not always straight-forward and sometimes
cannot even be proven objectively. Especially when using black box approaches like
reinforcement learning, explaining an observation o�en relies on experience and
understanding of the ma�er. Since the algorithm proposed in this thesis is a com-
bination of reinforcement learning and deterministic approaches, some more light
can be shed on observations. �e following sections will discuss the observations
which can give us more insight to the internal workings of the algorithm.

Overall Performance

When viewing the results, the relatively stable performance of F1 scores stands
out. While execution times and tree sizes vary from con�guration to con�guration,
F1 scores stay on a high level in most experiments. �e only strong exception are
the results from continuous actions (see table 4.14). �is suggests that the fairly
consistent F1 scores stem from the way splits are calculated. And indeed, in the dis-
crete action case, splits are calculated deterministically and greedily. Consequently,
the splits which are calculated will always yield at least some improvement. So
as long as the choice of features to split is sensible, the greedy calculation of the
spli�ing criterion will produce results. �is statement is supported by the fact that
for easier data sets (like cryotherapy) in the discrete action case, trees consistently
produce high F1 scores, even during earlier stages of training because the choice of
feature is not as important as long as the tree is su�ciently large.
What sets apart the di�erent con�gurations is the resulting tree size. To produce
small trees which perform well, the choice of features to split is important. During
training, the F1 score will increase slowly and steadily but start out with acceptable
values. On the other hand, trees are always big at the beginning of training and will

83

4 Evaluation

become drastically smaller as the model is trained. If the model cannot be trained
appropriately, the trees will not become as small as possible. As a consequence, the
main criterion for judging con�gurations is the average tree size (which sets the
con�guration relying on tree path states and tree rewards apart).

Performance Versus Freedom

While implementing the algorithm certain assumptions had to made. A prominent
assumption is that the position of new nodes should be decided by the environment
rather than the reinforcement learning agent. Relying on the environment to choose
node positions restricts the freedom of the learning agent but also makes its job
easier. In the case of node positions, the deterministic approach theoretically only
has li�le negative impact on the greediness of the algorithm, making it a save
assumption.

�is trade-o� between performance and freedom of the learning agent is con-
sistently observable in the results for the di�erent con�gurations. �e strongest
restriction of freedom - the choice of spli�ing criteria - also produces the highest
di�erence in results. One only has to compare continuous actions (table 4.14) and
discrete actions (table 4.9) to see the di�erence. Restricting the learning agent to
only choosing the features to split instead of both the feature and the split dramat-
ically boosts the performance but also relies on external greedy splits, the impact
of which likely prevents the creation of optimal trees in complex scenarios.
On a smaller scale, the trade-o� is also visible in most other con�guration compar-
isons. For example, sparse rewards only give sparse but highly accurate rewards
making overall rewards less greedy. However, the performance su�ers slightly.

Reward Functions

�e comparison of di�erent reward functions yielded straight-forward results.
Sparse rewards perform worse than non-sparse rewards. Additionally, node rewards
based on gini impurity work be�er than node rewards based on F1 score. And �nally,
the introduction of tree rewards reduces the tree size signi�cantly. However, simply
stating the facts does not explain them.

84

4.4 Discussion

�e di�erence between sparse and non-sparse rewards has already been discussed
and is a performance versus freedom trade-o�. From a more technical perspective,
the temporal di�erence learning employed by the reinforcement learning agent
seems unable to accurately assign the �nal sparse tree rewards to the individual
actions which produced the reward. In other words, the temporal di�erence between
action and reward is too big or the connections too complex. �is behaviour can be
observed in the erratic error calculation which seems unable to accurately predict
the impact of actions on future states.

Using node rewards based on F1 score su�ers from other problems. �e premise of
basing rewards directly on the performance measure used for evaluating the whole
tree seems promising. However, there seem to be two problems.
�e �rst one can be stated with certainty: F1 score was originally used for evaluating
binary classi�cation problems. A suitable workaround for multi-class classi�cation
is to use the weighted average of individual binary classi�cations. However, this
average is ill-de�ned if no sample is predicted to belong to a certain class. At the
beginning of building the tree, the tree only consists of the root node and two
leaves and can predict two classes at most, making the F1 score ill-de�ned for the
arguably most important node of the tree. �is problem persists until at least one
leaf per class is added to the tree.
�e second problem is not as tangible. Simply put, F1 score is not perfectly suited
for valuing the addition of single nodes (even taking the di�erence between before
and a�er adding a node). While adding a node might lead to be�er separation
in this node, this separation may not be re�ected in the leaves of this node. �is
cause-e�ect relation simply seems to be be�er modeled by gini impurity.

F1 score does however have a place in the reward function as it is perfectly suited
for assessing the performance of a �nished tree. Using F1 scores in addition to tree
sizes in tree rewards proves to be driving factor in keeping trees small. �e reason
behind this is simple. Node rewards are based on the value a single node adds to the
tree locally and are, as such, greedy. When only relying on node rewards, the best
policy is likely to add as many nodes as possible, each with small improvements,
to gain the maximum accumulated reward. Tree rewards counter this policy by
giving a comparably signi�cant reward to �nished trees which scales based on the
tree size. �e accumulated reward now heavily relies on the tree reward which is
smaller when the tree is big.

85

4 Evaluation

State Representations

Comparing the di�erent state representations is di�cult as the interpretation of
states happens in the black box model of reinforcement learning. Still, using tree
path states is the most successful approach. �e reasons behind this cannot be
proven, but strong statements about the reasons can be made.

For data states, the reasons of weaker performance are the most obvious. Large
state sizes make an interpretation of the states more di�cult and simply make
learning much more complex. Higher execution times with worse performance
make this assessment plausible. Another problem arises from the limited access
to active samples. �e number of samples has to be kept small so the state size
does not explode even further. �e more samples are included in the states, the
harder learning gets and the more learning tends to diverge (as experienced while
experimenting with the parameter con�gurations). As a consequence, states are
much more confusable with each other, making a mapping from states to actions
hard and cause-e�ect relations vague.

Full tree states are fairly similar to tree path states. Both use the tree as the basis for
the reward and both contain similar information. However, the way this informa-
tion is arranged is likely the key di�erence that leads to di�erences in performance.
As stated in the Method chapter, full tree states have to be compressed to a compact
representation to keep the state size manageable. As this compact representation
relies on the inclusion of node indices, serializations of di�erent trees might look
fairly similar (only distinguishable by node indices that might be close to each
other). Similar states for di�erent trees leads to confusion as generalization is not
as successful. Instead, states basically have to be learned by heart.

To summarize, this chapter introduced the evaluation methodology and data sets
used for evaluating key performance aspects of the algorithm. Various parameter
con�gurations were tested to highlight some of the fundamental assumptions
made in the method chapter and to answer essential research questions. �e results
obtained via this evaluation suggest a viable alternative to state of the art algorithms
for speci�c use cases. To shed some light on the internal workings of the algorithm,
the key aspects of the algorithm were discussed, most important of which are the
performance-freedom trade-o�, the impact of reward functions and the role of the
choice of spli�ing criteria calculation.

86

5 Conclusion

Designing a novel approach, such as described in this thesis, is not only about com-
ing up with a solution with satisfactory results. �e challenge has to be considered
in its entirety to produce di�erent angles and perspectives from which the problem
can be viewed. As such, a review of the research questions is in order.

�e �rst, most fundamental questions is: Is it possible to build decision trees with re-
inforcement learning? �is question cannot simply be answered with a yes, but with:
Yes, but not only is it possible, we also de�ned numerous aspects and perspectives
which have to be considered when building decision trees with reinforcement learn-
ing. Instead of only looking for a solution we also de�ned the whole environment
of which the solution is one possible manifestation. �e chapter 3 Method described
this environment, �rst in general terms and then with more speci�c assumptions
and options to handle each of the identi�ed components. In summary the solution
environment is spanned by the following components.

• �e overall algorithm, which de�nes the responsibilities of each component,
especially the amount of freedom the reinforcement learning agent has.

• State representations, which control the nature and amount of information
available to the learning agent.

• Reward functions, which directly impact the way decision trees are built by
choosing which actions to reward in what way.

• Reinforcement learning itself. �e various di�erent algorithms, parameters
and models they use have widespread implications.

• �e de�nition of when the tree building process is done.
• Post processing, which takes the unmodi�ed output of the algorithm and can

elevate it or cater it to speci�c needs.

�ese components de�ne the concepts which have to be considered when designing
a decision tree building algorithm with reinforcement learning.

87

5 Conclusion

�e second research question reads: What is a suitable approach to build decision
trees with reinforcement learning? A�er laying out the components of a solution,
designing an algorithm required �nding suitable combinations of possibilities which
work together. As the space of possibilities is huge, some assumptions and com-
promises had to be made. Ultimately, a suitable approach was found and tested
in various (partly vastly di�erent) con�gurations. �e main innovations involved
in the algorithm were the introduction of tree based states and the separation of
rewards into tree rewards and node rewards to �nd a balance between performance
and tree size.
Due to these innovations, the algorithm outperforms another state of the art al-
gorithm (C4.5) in most data sets used for evaluation (while also producing smaller
trees) and performs slightly worse than the random forest ensemble method. How-
ever, due to the comparably long execution times and complex implementation, it
is not suitable for all use cases. But the diversity of results and direct in�uence on
the size-performance trade-o� make it an interesting choice for data exploration.

�e algorithm developed in this thesis not only produces competitive results to
other state of the art methods but also has a positive answer to the �nal research
question: Can the algorithm produce non-greedy results? �e results clearly showed
that the algorithm stably �nds optimal solutions for a data set which is solved in
non-optimal way by greedy algorithms.

Ultimately, all research questions could be answered satisfyingly, producing results
that look very promising for current and future work. A�er all, the premise of this
work is too intriguing to not work out: Using a decision-making method to make
decision about how to make decisions.

5.1 Future Work

�e various possibilities and ideas introduced in the chapter 3 Method leave a lot of
room for further experimentation and improvements. Without going into too much
detail, several items for future work can be identi�ed. Due to the novel nature of
this thesis, this the following list could be expanded even further.

• One of the main drawbacks of data states is the huge state size. As already
mentioned, a way of circumventing this would be to use a recurrent neural

88

5.1 Future Work

network and feed the samples individually. �is way, the state size would be
limited to single samples and the varying amount of active samples per node.

• Sticking to data states as they are, convolutional neural networks could be
used to handle large state sizes.

• In this thesis, three reinforcement learning algorithms were used. As new and
improved methods are presented, the performance of this algorithm would
bene�t from adapting them. Especially for continuous action spaces, which
produced sub-optimal results.

• �e performance-freedom trade-o� could be explored in both directions.
Handing more power to the learning agent could lead to be�er results while
restricting the agent even further could boost the problematic execution
times.

• No individual parameter tuning was performed in this thesis. �e automatic
adaption of parameters based on data set characteristics would be an inter-
esting approach to circumvent manual parameter search.

• �e stochastic nature of reinforcement learning could be exploited to generate
diverse trees for ensemble methods.

• A limited amount of reward functions was tested in this thesis. Experimenting
with reward signals opens a lot of room for further experimentation.

• �e state representations can be changed in many ways. Especially combina-
tions of the three mentioned possibilities (tree states, data states, extracted
feature states) could lead to interesting results. �e more the learning agent
sees, the be�er informed its choices are.

89

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghem-
awat, G. Irving, M. Isard, et al. Tensor�ow: a system for large-scale machine
learning. In OSDI, volume 16, pages 265–283, 2016.

[2] E. Alpaydin. Introduction to machine learning. MIT press, 2009.

[3] A. G. Barto, R. S. Su�on, and C. W. Anderson. Neuronlike adaptive elements
that can solve di�cult learning control problems. IEEE transactions on systems,
man, and cybernetics, (5):834–846, 1983.

[4] L. Breiman. Classi�cation and regression trees. Routledge, 2017.

[5] L. Breiman, J. Friedman, C. Stone, and R. Olshen. Classi�cation and Regression
Trees. �e Wadsworth and Brooks-Cole statistics-probability series. Taylor &
Francis, 1984.

[6] G. Brockman, V. Cheung, L. Pe�ersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. MIT press, 2009.

[8] P. Cortez and A. M. G. Silva. Using data mining to predict secondary school
student performance. 2008.

[9] A. Cutler et al. Remembering leo breiman. �e Annals of Applied Statistics,
4(4):1621–1633, 2010.

[10] R. Dechter. Learning while searching in constraint-satisfaction problems. Uni-
versity of California, Computer Science Department, Cognitive Systems Labor-
atory, 1986.

[11] D. Dheeru and E. Karra Taniskidou. UCI machine learning repository, 2017.

91

Bibliography

[12] F. Eibe, M. Hall, and I. Wi�en. �e weka workbench. online appendix for ”data
mining: Practical machine learning tools and techniques”. Morgan Kaufmann,
2016.

[13] G. Farquhar, T. Rocktäschel, M. Igl, and S. Whiteson. Treeqn and atreec:
Di�erentiable tree planning for deep reinforcement learning. arXiv preprint
arXiv:1710.11417, 2017.

[14] J. Garcia and R. A. Koelling. Relation of cue to consequence in avoidance
learning. Foundations of animal behavior: classic papers with commentaries,
4:374, 1996.

[15] S. Geva and J. Si�e. A cartpole experiment benchmark for trainable controllers.
IEEE Control Systems, 13(5):40–51, 1993.

[16] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

[17] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with
model-based acceleration. In International Conference on Machine Learning,
pages 2829–2838, 2016.

[18] T. Hothorn, K. Hornik, and A. Zeileis. Unbiased recursive partitioning: A
conditional inference framework. Journal of Computational and Graphical
statistics, 15(3):651–674, 2006.

[19] G. James, D. Wi�en, T. Hastie, and R. Tibshirani. An introduction to statistical
learning, volume 112. Springer, 2013.

[20] B. Johnson and Z. Xie. Classifying a high resolution image of an urban area
using super-object information. ISPRS journal of photogrammetry and remote
sensing, 83:40–49, 2013.

[21] B. A. Johnson. High-resolution urban land-cover classi�cation using a compet-
itive multi-scale object-based approach. Remote Sensing Le�ers, 4(2):131–140,
2013.

[22] H. T. Kahraman, S. Sagiroglu, and I. Colak. �e development of intuitive
knowledge classi�er and the modeling of domain dependent data. Knowledge-
Based Systems, 37:283–295, 2013.

92

Bibliography

[23] F. Khozeimeh, R. Alizadehsani, M. Roshanzamir, A. Khosravi, P. Layegh, and
S. Nahavandi. An expert system for selecting wart treatment method. Com-
puters in biology and medicine, 81:167–175, 2017.

[24] F. Khozeimeh, F. Jabbari Azad, Y. Mahboubi Oskouei, M. Jafari, S. Tehranian,
R. Alizadehsani, and P. Layegh. Intralesional immunotherapy compared to
cryotherapy in the treatment of warts. International journal of dermatology,
56(4):474–478, 2017.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classi�cation with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[26] H. Laux, R. M. Gillenkirch, and H. Y. Schenk-Mathes. Entscheidungstheorie.
Springer-Verlag, 2012.

[27] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436,
2015.

[28] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[29] M. A. Li�le, P. E. McSharry, S. J. Roberts, D. A. Costello, and I. M. Moroz. Ex-
ploiting nonlinear recurrence and fractal scaling properties for voice disorder
detection. Biomedical engineering online, 6(1):23, 2007.

[30] J. F. Magee. Decision trees for decision making. Harvard Business Review, 1964.

[31] P. McCorduck. Machines who think: A personal inquiry into the history and
prospects of arti�cial intelligence. AK Peters/CRC Press, 2009.

[32] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, pages 1928–1937, 2016.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[34] R. Parlo�. Why deep learning is suddenly changing your life. Fortune. New
York: Time Inc, 2016.

93

Bibliography

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. �irion, O. Grisel,
M. Blondel, P. Pre�enhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of machine learning research, 12(Oct):2825–2830,
2011.

[36] J. R. �inlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[37] R. J. �inlan. C4. 5: Programs for machine learning. 1993.

[38] L. E. Raileanu and K. Sto�el. �eoretical comparison between the gini index
and information gain criteria. Annals of Mathematics and Arti�cial Intelligence,
41(1):77–93, 2004.

[39] S. Raschka. Python machine learning. https://github.com/rasbt/
python-machine-learning-book, 2015. Accessed on 27.12.2018.

[40] S. Raschka. Python Machine Learning. Packt Publishing, Birmingham, UK,
2015.

[41] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso. Rotation forest: A new
classi�er ensemble method. IEEE transactions on pa�ern analysis and machine
intelligence, 28(10):1619–1630, 2006.

[42] L. Rokach and O. Z. Maimon. Data mining with decision trees: theory and
applications, volume 69. World scienti�c, 2008.

[43] S. J. Russell and P. Norvig. Arti�cial intelligence: a modern approach. Malaysia;
Pearson Education Limited,, 2016.

[44] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[45] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schri�wieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[46] C. Strobl, J. Malley, and G. Tutz. An introduction to recursive partitioning:
rationale, application, and characteristics of classi�cation and regression trees,
bagging, and random forests. Psychological methods, 14(4):323, 2009.

[47] R. S. Su�on. Learning to predict by the methods of temporal di�erences.
Machine learning, 3(1):9–44, 1988.

94

https://github.com/rasbt/python-machine-learning-book
https://github.com/rasbt/python-machine-learning-book

Bibliography

[48] R. S. Su�on and A. G. Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[49] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion.
Physical review, 36(5):823, 1930.

[50] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with
double q-learning. In AAAI, volume 2, page 5. Phoenix, AZ, 2016.

[51] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[52] C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, King’s College,
Cambridge, 1989.

[53] X. Wu, V. Kumar, J. R. �inlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan,
A. Ng, B. Liu, S. Y. Philip, et al. Top 10 algorithms in data mining. Knowledge
and information systems, 14(1):1–37, 2008.

[54] X. Zhu. Semi-supervised learning literature survey. 2005.

95

