
Philipp Kogelnik, BSc

Convolutional Neural Networks for
Toxicity Classification in Online

Comments

Master’s Thesis
to achieve the university degree of

Master of Science

Master’s degree programme: So�ware Development and Business Management

submi�ed to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Roman Kern

Institute for Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, January 2019

A�idavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. �e text
document uploaded to tugrazonline is identical to the present master‘s thesis.

Date Signature

ii

Abstract

Whether it is a posting spreading hate about a group of people, a comment insulting
another person or a status containing obscenities, such types of toxic content have
become a common issue for many online platforms. Owners of platforms like blogs,
forums or social networks are highly interested in detecting this negative content.

�e goal of this thesis is to evaluate the general suitability of convolutional neural
networks (CNNs) for classifying toxicity in textual online comments. For this pur-
pose di�erent CNN architectures are developed and their performance is compared
to state-of-the-art methods on the data set containing comments from Wikipedia
discussion pages. For a be�er understanding of this type of neural networks this
thesis contains three subquestions: a) Which pa�erns do CNNs learn and which
features are important for the classi�cation when being applied to this task? b)
Which preprocessing techniques are bene�cial to the performance? c) Are CNNs
well-suited for comments from sources other than Wikipedia discussion pages?

�e evaluation showed a performance similar to other classi�ers on the same data
set. Moreover, the model showed a comparable performance on a second data
set created for this thesis. �e best single preprocessing technique in this work
improved the F1 score from 0.636 to 0.645 compared to the baseline. An analysis of
a trained model revealed that some pa�erns detected by the convolutional layer are
interpretable by humans. �e analysis of the in�uence of words to the prediction
highlighted struggles with negations in the text and also revealed a severe bias
included in the model.

iii

Contents

Abstract iii

1. Introduction 1
1.1. Motivation . 3
1.2. Contribution . 4
1.3. Outline . 5

2. Background 7
2.1. Toxicity . 7

2.1.1. Related Terms . 10
2.2. Neural Networks . 10

2.2.1. Convolutional Neural Networks 12
2.2.2. Word Embedding . 14
2.2.3. Transfer Learning . 16

2.3. Data Preprocessing . 17
2.3.1. Data Cleaning . 17
2.3.2. Tokenization . 18

2.4. Evaluation . 18

3. Related Work 21
3.1. Toxicity Classi�cation . 21
3.2. CNNs for Text Classi�cation . 24

4. Preliminary Work 27

5. Method 31
5.1. Preprocessing Pipeline . 31

5.1.1. Baseline Techniques . 31
5.1.2. Evaluated Techniques . 32

v

Contents

5.2. Convolutional Neural Network (CNN) Architectures 34
5.2.1. Singlelayer CNN with Multiple Filter Sizes 35
5.2.2. Multilayer CNN . 35
5.2.3. Multilayer Dilated CNN 37

5.3. Transfer Learning for Small Data Sets 38

6. Tagging Tool 41

7. Experimental Setup 43
7.1. Data Sets . 43

7.1.1. Kaggle Toxic Comment Classi�cation 43
7.1.2. YouToxic English . 45

7.2. Hyperparameters . 47
7.3. Training . 48

8. Evaluation 51
8.1. Comparison of Architectures . 51
8.2. Comparison of Preprocessing Techniques 55
8.3. Feature Importance . 57
8.4. Evaluation on YouToxic Data . 63

9. Discussion 67

10. Conclusion 75
10.1. Further Work . 77

Bibliography 79

A. Experimental Environment 89

B. Additional Filter Activation Analysis 91

vi

List of Figures

2.1. An exemplary neural network architecture 11
2.2. Convolutional layer with a 5x5 receptive �eld 13
2.3. Convolutional layer with 3 kernels 14
2.4. Convolutional layer with various dilation rates 15

4.1. Architecture for relation classi�cation 28

5.1. Architecture of singlelayer CNN with multiple �lter sizes 36
5.2. Architecture of multilayer CNN 37
5.3. Architecture of multilayer dilated CNN 38

6.1. User interface of the tagging tool 42

7.1. Histogram of number of characters per comment 45

8.1. Precision-Recall curve of singlelayer architecture with multiple
�lter sizes . 54

8.2. ROC curve of singlelayer architecture with multiple �lter sizes . . 54
8.3. LIME evaluation results on a toxic comment 59
8.4. LIME evaluation results showing e�ects of negation 59
8.5. LIME evaluation results showing prediction bias 61

vii

1. Introduction

Whether it is a picture including nudity, a comment spreading hate about a group
of people or a video showing violence, such types of toxic content have become a
common issue for many online platforms. Due to the ever increasing amount of
data generated on the internet, this phenomenon has intensi�ed over the years
[15][10]. Owners of platforms like blogs, forums or social networks are highly
interested in �ltering out such content. Leaving it on the platform would create a
negative atmosphere and possibly cause a loss of users.

Not removing toxic content is not just a danger for the image of the platform, but
can also have legal implications for the company. In Germany a new law has come
into force which ensures that social media platforms remove hate speech within 24
hours of noti�cation in straightforward cases [39]. �is means content moderation
needs to be in place which acts quickly but also precisely.

Even if the content is not forbidden by law it can still have serious e�ects on
users which are not desired by the platforms. According to a survey conducted by
Ditch�eLabel 17% of the responding teenagers from schools and colleges in the
United Kingdom have been bullied online [12]. Just looking at this statistics makes
it clear that platforms need to take measures to prevent such situations.

�ere has been research going on in recent years to automatically detect such
content. But up until today this task is still mostly done by human content managers
or users reporting inappropriate content which can be seen in the next subsection.

�e scope of this work is focused on the classi�cation of toxicity in textual comments
on the internet. In general, such content can occur on all kinds of platforms where
users can enter text and make it visible to other users. �is type of content includes
the following sources:

• Tweets on Twi�er
• Comments to YouTube videos

1

1. Introduction

• Status message on Facebook
• Chats in video games
• Discussion pages on Wikipedia
• Comments to newspaper articles

As can be seen in this far from complete list, user-generated text content can be
found all over the internet.

Early approaches of detecting toxicity used a dictionary with words which are
considered as profanity. If such words occur the comment or parts of it got blocked.
But there are several problems with this approach. It is still possible to threaten or
insult other people without using any kind of bad words.

On the other hand comments might get blocked because they contain one of the
black-listed words, but do not use it in a negative sense. �e following example is
clearly an insult and would be justi�ably blocked by such a system:

You are a Nazi!

But the next comment would be blocked as well although it is just an historic
explanation of a term:

�e Nazi Party was a far-right political party in Germany that was
active between 1920 and 1945.

As it can be seen in these examples just relying on words itself is not enough in
all cases. A possible model needs to be able to capture more complex pa�erns and
take into account the connections between words. Moreover, it needs to have at
least some knowledge about sentence structures and grammar.

One way to automatically detect toxicity and not solely relying on bad word
dictionaries is applying machine learning models. Such models have the advantage
of being capable of making decisions for previously unseen scenarios. �ey are
applied to a range of di�erent tasks like spam detection, object recognition or
medical diagnosis.

One type of these models has gained popularity in recent years: arti�cial neural
networks. �eir success can be a�ributed to two main reasons. Firstly, computers
have become fast enough to train and apply them on a larger scale. �is is especially
important as neural networks need large amounts of data to be processed and are

2

1.1. Motivation

computationally expensive to train. �is �rst reason leads to the second one. Due
to suitable hardware have become more a�ordable, more researchers got access to
the computational power needed for their experiments. �is led to trying to apply
neural networks to a very broad range of topics.

A subtopic of neural networks are so called CNNs. Originally, this type was mostly
applied to visual image data where they achieve very good results, especially in
image classi�cation tasks [35][56]. Moreover, compared to other image classi�cation
algorithms there is less preprocessing needed, which also helped increasing their
popularity. In recent years its applications have been extended to other areas as
well, like text classi�cation [32] or sequence modeling [3].

�is work focuses on applying CNNs for classifying toxic comments and investi-
gating their suitability for this topic.

1.1. Motivation

Although companies like Facebook employ thousands of content managers, they
still rely heavily on their users when it comes to reporting inappropriate content.
From October to December 2017 about 76 percent of all hate speech removed from
the platform has been reported by users �rst. �is percentage dropped to 62 for
the period between January and March 2018 [15]. But still, users get to see much
inappropriate content before it gets removed. �ese statistics suggest that content
managers need an improvement of their tool set to handle such amounts of data.

Even if there were enough content managers to detect all harmful content from
the platforms it is still not the desired solution. Especially for the people doing this
job it can result in negative e�ects to their psyche when looking at such amounts
of o�ensive texts every day. �e desired state for this task is an algorithm, which
is able to classify most content completely on its own. �ere should be as li�le
manual work needed as possible.

Another important issue when le�ing humans decide, which comments are o�en-
sive and which are not is their bias. If two persons have a completely di�erent
background it is very likely that they have a slightly varying perception of what is
acceptable. But not only a di�erent background can lead to di�erent results. If a
comment is shown to the same person on di�erent days, their decision might be

3

1. Introduction

di�erent too. Such variation can be caused by a change in the emotional state of the
person or by a shi� of views and opinions over time. All these factors result in a
certain level of disagreement between content managers. �e ideal solution for this
issue is an algorithm which makes deterministic and comprehensible decisions.

One possible way to provide such a tool is the use of a CNN. Although mostly
applied to image data, CNNs have recently been successfully applied to textual
data as well [33] [67]. But even though they work in similar areas it does not mean
that they work for classifying toxic comments too. A problem which hinders such
models from being applied to productive systems is their lack of understandability.
A CNN is o�en referred to as a ”black box”, which means that it is not always
intelligible how it derives its decisions. When being applied on a larger scale one
should at least understand which features are important for result.

1.2. Contribution

In general, this work tries to answer a single main research questions. However, to
support the main question this thesis also contains three di�erent sub questions.

1. Are CNNs suitable for classifying toxic comments?
a) Which features are important for the classi�cation and which pa�erns

do CNNs learn when being applied to this problem?
b) Which kind of preprocessing is bene�cial to the CNN performance in

this area?
c) Do these models perform equally well when being applied to data from

di�erent sources?

For the main question di�erent kinds of CNN models are developed and applied to
data. �eir performance is then assessed and compared to state-of-the-art machine
learning models. To answer this question an architecture needs to be found which
shows performance measures which are at least close to the state of the art.

�e �rst sub question is about giving some insights into what a neural network
learns about this data. �is question is about taking away some parts of the black-
box character of a CNN. To give an appropriate answer to this problem, a closer

4

1.3. Outline

examination of the trained models is done. �e importance of di�erent input features
is assessed and the activation of di�erent parts of the network is analyzed.

Sub question number 2 is about applying di�erent preprocessing techniques to
the data. For this task di�erent pipelines are developed and compared regarding
their performance. �e answer to this question shows which techniques bene�t
the classi�cation results, which take away important information and which ones
don not a�ect the results at all.

For the last sub question the models are applied not just to a single data set, but
to di�erent ones. �e purpose of this task is to show if a CNN can do toxicity
classi�cation on data coming from di�erent sources. A positive answer to this
question would make it more suitable for being applied to production systems.

One of the data sets used for the experiments is created as part of this thesis. It
consists of comments to YouTube videos which are annotated with toxicity and
selected subcategories. To make the annotation process easier a web tool is created
where users can collaboratively work on a data set. �is tool is supposed to be used
to create a multi-lingual toxicity data set. However, the multi-lingual data set is
outside the scope of this thesis.

In addition to the answers of the research questions this work tries to give some
general recommendations about how to use CNNs in this context.

1.3. Outline

In the following chapter necessary background information about the topics covered
in this thesis are given. �is includes a theoretical background about toxicity in
comments and some of its subcategories. To understand the models in this work
this chapter also describes neural networks and some related technical concepts.
Additionally, there are also some preprocessing techniques explained which are
used in this work.

In chapter 3 related work on this topic is shown. �is chapter shows general work
about text classi�cation with a CNN and its state of the art. It also gives some
intuition about toxicity classi�cation in texts and how it has evolved over time.

5

1. Introduction

A preliminary project has been done about classifying relations in sentences with a
CNN. �e details about the project including the architecture and the data used
can be found in chapter 4.

Chapter 5 describes the machine learning pipeline used for this work in depth. It
explains the developed preprocessing pipelines and all their steps. Moreover, it
explains the di�erent developed CNN architectures and their characteristics. Also,
detailed information about the applied algorithms is given here.

In chapter 6 the tool developed for annotating the data set is described. �is includes
all the necessary steps like crawling, the annotation work�ow and the resulting
data set.

Information about the experiments done in the scope of this work can be found in
chapter 7. �is chapter starts o� with describing the data sets which the models
are applied to. Moreover, the implementation details and chosen parameters can be
found here.

Chapter 8 shows the information of the experiments and compares the with other
state-of-the-art techniques. �is part of the work gives some insights about the
suitability of the developed models to the speci�ed problem of toxicity classi�cation.
Also, it covers the analysis of the learned features to give a be�er understanding
on how the models work.

In chapter 9 the �ndings of this work are stated and discussed. To make this �ndings
more helpful to the reader, some recommendations are given on how to prepare
the data for such a problem and how to apply CNNs to it.

�e last chapter gives a short conclusion and additionally, it points out some possible
future directions for doing research on this topic.

6

2. Background

To get a proper understanding of the problem there is some background information
necessary. �is chapter gives some knowledge about the basic concepts which this
work builds up on. Due to the interdisciplinary character of this topic, this chapter
includes both technical and non-technical terms and explains them in su�cient
depth.

As a �rst step it explains the problem topic and gives some intuition on what can
be considered as toxicity and some related and similar terms. Moreover, it talks
about why the detection of toxicity is a non-trivial task. A�er that the technical
background is given and includes the basic concepts of neural networks and some
related technologies. To understand the whole pipeline there is a subsection about
preprocessing which explains the used steps for this work. �e last part of this
chapter gives an explanation of the di�erent evaluation possibilities.

2.1. Toxicity

�e most challenging issue about toxicity and all its related terms is the lack of a
clear and common de�nition. �ere are terms which are seen as overlapping by
some people but are considered as completely distinct things by others. �is leads
to a considerably hard and also highly subjective decision-making process. Former
US Supreme Court Justice Po�er Steward once said in a case that he couldn’t de�ne
what kind of material is obscene, but he knew it when he saw it [28]. �is statement
gives a good intuition on how subjective this �eld is.

�e de�nition for toxicity this work is using is the following one based on the
Wikimedia Detox project [63].

7

2. Background

Toxicity describes the likelihood that someone would leave a discussion
because of this particular comment.

As one might notice, this de�nition only talks about discussions and comments.
�is is due to the focus on textual online comments in this work. To get a general
de�nition for toxicity in conversations, this one would need to be adapted and
extended.

�is de�nition describes what toxicity is, but still does not give a clear decision
boundary of the term. As already mentioned in the introduction it highly depends
on the context on the person who judges the comment. A person who is used to
a high amount of toxicity in his internet consumption very likely has a di�erent
boundary than a person who almost never experiences such content. �at also
means that a person can change its boundary over time. �is can for example
happen a�er being exposed to more toxicity than before for a longer period of time.
Moreover, the decision might also depend on the mood of the person.

�e most challenging thing, however, is the fact that some kinds of content only
feel toxic to a limited amount of persons. If someone is bullied based on an incident
which is only known by a few people, such a comment would not be necessarily
seen as bullying from an outsider. �is means that not only the comment itself, but
also the context of the judging person in�uences the decision.

Also creating a machine learning algorithm for automatically classifying toxicity
can be considered as very di�cult. Such an algorithm would still be trained on data
labeled by humans and therefore take over their bias [1][2]. However, machine
learning algorithms su�er from a couple more problems than just subjective data.

Some examples are given by Hosseini et al [27] who did an analysis of Google’s
Perspective API. �is API takes a textual comment and returns the toxicity score of
it.

In table 2.1 two types of shortcomings are shown for this API. �e le� column gives
comments provided as a sample on the Perspective API Website [30]. On the right
side are the the a�acks developed by Hosseini et al. �e scores calculated by the
API are shown in parentheses.

�e �rst two sentences show an a�ack based on misspelled, but still easily recog-
nizable toxic words. An ideal model should still be able to give such comments a
high toxicity rating. However, in these two cases the score drops to a signi�cantly

8

2.1. Toxicity

Original Phrase (Toxicity
Score)

Modi�ed Phrase (Toxicity
Score)

Climate change is happening
and it’s not changing in our
favor. If you think di�erently
you’re an idiot. (84%)

Climate change is happening
and it’s not changing in our
favor. If you think di�erently
you’re an idiiot. (20%)

It’s stupid and wrong (89%) It’s stuipd and wrong (17%)
�ey are liberal idiots who are
uneducated. (90%)

�ey are not liberal idiots
who are uneducated. (83%)

�ey are stupid and ignorant
with no class (91%)

�ey are not stupid and igno-
rant with no class (84%)

Table 2.1.: A�acks on Google’s Perspective API by Hosseini et al [27]. �e �rst two comments show
a�acks on the API based on misspelled words. Comments 3 and 4 show false positives
because the API does not understand the grammatical structure of the sentences.

lower number which would not be considered as toxic any more. Sentences three
and four show a high toxicity rate although they are modi�ed in a way to not be
toxic any more. In these two cases the API neglects the semantic meaning of ”not”
and the toxicity scores only decreases by a few percent. �ese are two common
examples of shortcomings when using machine learning models for this and related
tasks and show the complexity of this problem.

�is chapter mostly talks about about toxicity in textual content. When considering
social media, however, only focusing on this kind of content is not su�cient. Toxicity
may occur forms other than text too. Examples for this are images, videos or audio
�les. In extreme cases the toxicity even consists of combinations of these forms and
cannot be detected when focusing only on one of them. To �lter out various kinds
of toxicity a combined solution which is able to analyze all of these contents would
be necessary.

9

2. Background

2.1.1. Related Terms

In the section before it is mentioned that toxicity is a very vague term which has
no clear boundary to related terms. �is section describes the related terms which
are bene�cial for a be�er understanding of the topic. It gives an overview of where
toxicity starts, where it ends and which sub classi�cations there are. Moreover,
all the terms which occur in later parts of this thesis are explained in necessary
detail.

Abusive Language

�e term abusive language is a very vague one and used in various ways in literature.
In the scope of this thesis it is de�ned as being meant to insult, threaten or provoke
individuals or groups of people. Moreover, it also includes comments which contain
profane or o�ensive language.

Hate Speech

One term which has been discussed frequently in recent years is hate speech.
According to Merriam-Webster the term is de�ned as ”public speech that expresses
hate or encourages violence towards a person or group based on something such
as race, religion, sex, or sexual orientation” [7]. As the de�nition already suggests
hate speech itself can be further divided into subcategories based on the reason for
the hate. Examples for such categories are racism, sexism, homophobia or political
hate.

Literature shows that creating an annotated data set consisting of hate speech is a
di�cult task [51][61]. Annotators tend to disagree in particular cases and so the
outcome of such a data set highly depends on the persons involved.

2.2. Neural Networks

In general, this work requires the reader to have a basic understanding of arti�cial
neural networks. However, this section provides a short summary of important

10

2.2. Neural Networks

Figure 2.1.: An exemplary architecture of a neural network. It consists of an input layer, an output
layer and a hidden layer in between.

concepts of neural networks.

An arti�cial neural network is a mathematical model inspired by the structure of
human neural networks. It consists of neurons and connections between them.
Usually, they are organized in multiple layers.

In �gure 2.1 an exemplary neural network architecture can be seen. �is particular
model consists of an input layer with 3 neurons, an hidden layer with 5 neurons
and an output layer with 2 neurons. As can be seen on the �gure the data �ows
from the input towards the output layer and there are no connections inside of
a layer or against the �ow direction. Such an architecture is called feed-forward
neural network [55]. Moreover, in this example every neuron in a particular layer is
connected to all neurons of the subsequent layer. Such layers are therefore named
fully-connected layers.

�e characteristics of a neural networks are not only de�ned by the architecture, but
also by its activation functions and the weights of connections. Every connection
in the network has its own weight which which is optimized during the training
phase. In general, a neuron calculates a weighted sum of all of its inputs which can
be seen in equation 2.1. In the equation xi denotes the input from neuron i and wij

11

2. Background

is the weight for the connection from neuron i to neuron j. At the end a bias term
is added to the equation which is denoted by bj .

pj =
∑
i

wij ∗ xi + bj (2.1)

Before passing the value on to the next neuron an output function is calculated on
the weighted sum. A common function in modern neural networks is the Recti�ed
Linear Unit (ReLU) function which is de�ned by equation 2.2 [29][43]. �is function
returns 0 as an output for inputs < 0 and is a linear with slope 1 for inputs > 0.

oj = max(0, pj) (2.2)

During the training stage the weights of the connections are updated to �t the
training data. A very common algorithm to do the optimization is backpropagation
[36] in combination with stochastic gradient descent. �is algorithm calculates the
di�erence between the expected and the actual output in a forward pass through
the network. �is error is then propagated back through the network and used
to calculate the weight updates. �ese updates are proportional to the negative
of the derivative of the error when using stochastic gradient descent. If the error
converges the algorithm stops.

2.2.1. Convolutional Neural Networks

A particular type of neural networks are so called Convolutional Neural Networks
(CNNs). CNNs gained much popularity a�er they were successfully applied to image
classi�cation, especially by Krizhevsky, Sutskever and Hinton in the ImageNet
competition [35]. Since then they have been adopted by other areas and are now
used in text classi�cation too.

In general, this type of network makes use of three concepts: receptive �elds,
shared weights and pooling. In contrast to fully connected layers a neuron in a
convolution layer is not connected to all neurons in the previous layer but just to
the neighboring ones. �ese neighbors are called the receptive �eld of the neuron.
In �gure 2.2 an example of a receptive �eld of size 5x5 can be seen. �is architecture

12

2.2. Neural Networks

Figure 2.2.: �e receptive �eld of the top le� neuron of the convolution layer with a size of 5x5 [45].
�e neuron in the hidden layer is only connected to the neurons in its receptive �eld
instead of all neurons in the input layer.

allows for smaller models and make the network faster to train because of fewer
connections.

�e second concept, shared weights, make Convolutional Neural Networks (CNNs)
even more e�cient to train. Following this concept all neurons in the convolutional
layer share the same set of weights. �is set of weights is referred to as kernel or
�lter. �is means that the top le� neuron in �gure 2.2 has exactly the same weights
as the bo�om right neuron. �e idea behind this is a kernel which learns to detect
one feature regardless of the position in the input. Such a feature could be a corner
in images or a sequence of words in a sentence. However, a convolutional layer
is supposed to detect more than a single feature. �is can be achieved by using
multiple feature maps. Each of them is supposed to learn a di�erent feature and
therefore has its own set of weights. An example of this can be seen in �gure 2.3.
�e hidden layer is a convolutional layer with 3 di�erent feature maps. Each of
them comes with a kernel of size 5x5 and this results in a network which is able to
detect 3 di�erent features. In reality, however, such a layer consists of many more
feature maps than just 3.

�e last concept of a CNN is the use of pooling layers a�er convolutional layers.
�ese layers aggregate the outputs of feature maps in order to provide simpler
information to the following layers. A pooling layer takes all input values in a
speci�ed window and performs a function to aggregate these values. If the size is
set to 2x2 it results in an output with quarter of the size of the input because the

13

2. Background

Figure 2.3.: Result of a convolutional layer with 3 kernels of size 5x5 [45]. �e weights of the kernel
are shared by all neurons in the same feature map.

four values in each window are condensed to only a single output value. A common
type is max-pooling where the highest value in the window is kept and all other
values are discarded. However, a pooling layer is not a necessary part of a CNN.
Springenberg et al show a network without them with results of state-of-the-art
performance in image classi�cation [54].

Dilated Convolution

Dilated convolutions are a special kind of convolutional layers and have been pro-
posed by Yu and Koltun in 2015, who used this method for image segmentation [64].
Where ordinary convolutional layers consist of a continuous receptive �eld dilated
convolutional layers have gaps in between. �is concept allows the receptive �eld
of a neuron to grow exponentially when adding more layers while the number of
parameters just grows linearly. A dilation rate of 1 denotes an ordinary convolution
with no gaps in between. A dilation rate of 2, however, causes a gap of a single
value in the convolutional kernel. In �gure 2.4 examples of the behavior of dilation
rates 1, 2 and 4 can be found.

2.2.2. Word Embedding

A concept which has gained much popularity in recent years and is now widely
used in Natural Language Processing (NLP) is word embedding. When considering

14

2.2. Neural Networks

(a) Dilation rate 1 (b) Dilation rate 2 (c) Dilation rate 4

Figure 2.4.: �ree examples for the change of the receptive �eld with di�erent dilation rates. �e
receptive �eld consists of the blue and the red pixels. �e red pixel also shows the
location of the resulting value in the following layer. a) Dilation rate 1 results in an
ordinary convolutional layer without gaps. b) Dilation rate 2 shows a gap of size 1 in
each direction next to every pixel of the receptive �eld. c) Similarly dilation rate 4 shows
a gap of size 3 in each direction.

a sentence which is split into single words every word is treated as an index in a
dictionary. Usually a neural network would get this data in one-hot encoded form,
where every row denotes a word in the sentence and every column maps a word in
the dictionary. In each row all the values are 0 except for a single 1 which marks
the actual word at this position.

�is is a simple solution but has some serious shortcomings. First of all, this solution
leads to a very large, but also very sparse matrix. When considering a dictionary
size of 10000 words and a sentence length of 10 words this would lead to a input
matrix with 100000 values. Moreover, out of this 100000 values there are only 10
values which contain a 1 whereas all the other values are set to 0. �is results in
a density value for this matrix of only 0.01%. �e second shortcoming is a lack of
contextual information about single words. In a one-hot encoded input it does not
make a di�erence if two words are similar or completely di�erent. �ey are treated
as distinct inputs and do not share any kind of context.

A solution for these two issues can be the utilization of word embeddings. When
applying this technique every word in the dictionary is mapped to a real-valued
vector of a particular length. A vector length of 100 with a sentence length of 10
words would result in an input matrix with 1000 values. It also solves the sparsity
problem of one-hot encoding because such embedding vectors mostly contain
non-zero values.

15

2. Background

A common paradigm to follow when creating such embeddings is based on a
hypothesis of Harris, which states that words which occur in a similar context tend
to have a similar meaning [23]. �e skip-gram model by Mikolov et al [40] [41]
is a technique which follows this paradigm and has been widely used in recent
years. �is model tries to �nd a word representation which is good at predicting
surrounding words of the current word. �is results in vectors which contain a
certain amount of semantic information about the word. With a well trained model
it is even possible to perform algebraic operations to �nd similar words. When
computing the vector X = vector(”biggest”)− vector(”big”) + vector(”small”)
the result is similar to the word representation of ”smallest”.

Other notable algorithms for creating word embeddings are GloVe by Pennington,
Socher and Manning [49] and fastText by Bojanowski et al [5].

2.2.3. Transfer Learning

In general, many machine learning algorithms work under the assumption that
training and test data are drawn from the same distribution. When the distribution
changes most models need to be retrained from scratch with data from the new
distribution. However, this is not always possible as sometimes the collection of
new data is very expensive or time-consuming [47]. In such cases a concept called
transfer learning can be helpful. It allows knowledge obtained from similar domains
to be transferred to the new domain.

An example how transfer learning can bene�t a CNN is shown by Zeiler and Fergus
in 2013 [65]. �ey use a model trained on the ImageNet 2012 data set consisting of
1.3M training examples spread over 1000 categories. A�er that the model is adapted
for classi�cation of the Caltech-101 [16] and Caltech-256 [21] data sets. For this
they crop the last layer of the ImageNet model and train a new layer ��ed on the
particular data set. With this method they surpassed state-of-the-art performance
at that time in both cases.

16

2.3. Data Preprocessing

2.3. Data Preprocessing

Usually when feeding data into a machine learning model not the raw data set
is used. Sometimes it is necessary to transform the data into a shape which is
understandable by the model. In other cases it increases performance if unnecessary
features are removed, new ones are created or existing ones are modi�ed. All
these steps which are performed before actually passing the data to the model
are combined in the term data preprocessing. �is section gives an overview of
preprocessing tasks for textual data used in the scope of this work.

2.3.1. Data Cleaning

Online comments, depending on the source, in some cases contain information
which is not helpful to the task which should be performed by the machine learning
model. �e idea behind this step is to uniform the data and therefore help the
model to generalize be�er to unseen data and not rely on features like misspelled
words, multiple punctuation or URLs. �e danger when performing these tasks is
to remove important information and as a result negatively a�ect the classi�cation
performance. For this reason, these steps need to validated on the actual task instead
of just relying on improved results.

Like mention before content like URLs or hash tags on Twi�er (#hashtag) or men-
tions of other users on YouTube (@username) do not always provide valuable input
for doing the classi�cation task. �erefore, such parts might be removed from the
raw data. An option to further clean the data is removing punctuation either com-
pletely or partially like removing duplicate question marks. On the one hand this
step makes the data simpler but on the other hand it might take away an important
feature.

In some domains a common task is to remove stop words [52]. �is technique
deletes common words which do not contribute to the semantic meaning from the
text. �is includes words like the, a or and. A bene�t of this method is the reduction
in size of the whole data set.

An step which is not in every case easily done automatically is spelling correction.
Misspelled words might be a feature but above all they are di�erently spelled words

17

2. Background

with the exact same meaning as the correct ones. In order to simplify the model and
achieve a be�er generalization such words can be replaced by the correct word.

2.3.2. Tokenization

In section 2.2.2 is it mentioned that every word in the input comment is fed into
the neural network as a separate row in the input matrix. �e step which divides
the comment into its pieces is called tokenization. �is task needs rules where to
split the text and which parts of it to keep as a token. However, there is no standard
for tokenization. �e actual choices made for the implementation highly depend
on the task domain and the data itself [22]. A very simple tokenizer would only
split at white spaces. �is has the disadvantage that punctuation would be part of a
single token with the word before.

When deciding for a tokenization strategy various things need to be taken into
account like treatment of

1. dates
2. numbers
3. acronyms
4. enclitics like in don’t or he’s.

Moreover, another question to ask is the treatment of named entities like New York
City. Syntactically, these are three separate words, but semantically this is a single
entity. �e detection of such entities, however, would require a certain amount of
linguistic processing.

2.4. Evaluation

In order to perform a meaningful evaluation of a neural networks performance it is
necessary to chose suitable evaluation measures. As it can be seen in section 7.1
the data sets used in this work contain highly skewed classes. According to He and
Garcia [24] overall accuracy does not provide adequate information in the cased of
imbalanced data sets. �erefore, other measures need to be used in this work. �is
section gives an overview of alternatives which are more suitable for the scope of
this thesis.

18

2.4. Evaluation

A be�er measure for dealing with imbalanced data is the F1-score which is de�ned as
the harmonic mean of precision (P) and recall (R). �e exact de�nitions for precision,
recall and F1 score can be found in equations 2.3, 2.4 and 2.5 respectively.

Precision =
True Positives

True Positives+ False Positives
(2.3)

Recall =
True Positives

True Positives+ False Negatives
(2.4)

F1 =
2× Precision×Recall

Precision+Recall
(2.5)

Another measure which can be used in such cases is the area under the receiver
operating characteristic curve. �e Receiver Operation Characteristic (ROC) curve
is created by plo�ing the true positive rate against the false positive rate at multiple
classi�cation threshold se�ings [6]. �e true positive rate is also known as recall
and, therefore, de�ned in equation 2.4. �e false positive rate, however, is de�ned
as the number of false positives divided by the number of all negative examples in
the data set which can be seen in equation 2.6. In order to get a single value instead
of a curve for be�er comparison against other models the Area Under the Curve
(AOC) is calculated.

False Positive Rate =
False Positives

True Negatives+ False Positives
(2.6)

A third measure which is suitable for skewed classes if the Ma�hews Correlation
Coe�cient (MCC). In contrast to the other two, this measure gives a value between
-1 and +1. +1 denotes a perfect prediction, 0 is as good as a random prediction and
-1 denotes total disagreement. �e coe�cient is de�ned in equation 2.7. Because of
space limitations this equation uses abbreviations, where TP are true positives, FP
are false positives, TN are true negatives and FN are false negatives. A shortcoming
of the aforementioned F1 score is the lack of in�uence of true negatives to the score.
MCC, however, overcomes this by giving equal focus on true positives and true
negatives. If negative examples are equally important this may be the preferable
measure.

19

2. Background

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.7)

However, in their raw form these three measures evaluate the performance of
binary classi�cation. To use these concepts in multilabel classi�cation scenarios,
like the experiments in this thesis, the measures need to be aggregated to represent
the performance for the whole data set. Two common strategies for aggregating
them are micro- and macro-averaging. Macro-averaging denotes the arithmetic
mean of the measure for each label. �is means every label contributes with the
same importance to the overall value, regardless of its size. Micro-averaging, on
the other hand, sums up the contingency matrices of each label and then calculates
the measure. �is strategy gives an equal importance to every sample in the data
set. �erefore, larger classes have a higher in�uence to the overall value [18].

20

3. Related Work

�is chapter is intended to give an overview of related work on this topic. Due to
the focus of this thesis on both toxicity and CNNs this chapter is divided into two
sections. �e �rst one gives an overview of the work done on toxicity classi�cation
and similar tasks. To get an intuition about the use of CNNs in text classi�cation
tasks the second section focuses on this area.

3.1. Toxicity Classification

�e lack of clear de�nitions of toxicity and similar tasks leads to research on very
similar tasks, but using a di�erent terminology [62]. Moreover, there is no standard
data set for this area. So most of the work done so far uses a di�erent evaluation
set, which makes it even harder to compare their performances. In order to not
hold back important work for this area this section covers not only toxicity but
also work done in related tasks. �is is especially important when considering the
application of transfer learning in this work. Table 3.1 gives and overview of the
related work mentioned in this section.

Early work in this domain used to maintain a blacklist of profane words. If a
comment contains a word on this list it is classi�ed as profane. An example is the
work done by Sood, Antin and Churchill [53] who used public blacklists. Moreover,
they also took into account profane words which are in a certain Levenshtein
distance [37] of words in the comment. However, this approach has a low precision
because some words on the blacklist are not profane in every context. Additionally,
it also lacks recall as the list does not contain all known bad words and misspelled
words might be ignored if the Levenshtein distance is too high.

A di�erent approach are the opinion mining, sentiment analysis and sentiment
classi�cation tasks. �ese concepts are about extracting or classifying the opinion

21

3. Related Work

Year Authors Algorithm Features
2012 Sood, Antin,

Churchill [53]
Unsupervised Words, blacklist

2015 Pandarachalil et
al [48]

Unsupervised Word n-grams, polarity scores

2002 Turney [59] Unsupervised 2-word phrases
2014 Hu�o, Gilbert

[19]
Unsupervised sentiment scores

2014 dos Santos, Ga�i
[14]

CNN Word embeddings, char embeddings

2004 Mullen, Collier
[42]

SVM polarity scores, emotive scores, topic,
syntactic features

2016 Nobata et al [46] Logistic
regression

Char n-grams, linguistic features, syn-
tactic features, word embeddings

2012 Warner and
Hirschberg [60]

SVM Word n-grams, POS tags

2017 Del Vigna et al
[11]

SVM Char-, word-, lemma n-grams, syntac-
tic features (POS tags, …), lexicon fea-
tures (polarity score, …)

2017 Del Vigna et al
[11]

LSTM Word embeddings

2018 Bha�arai [4] LSTM, CNN Word embeddings
2018 Li [38] LSTM, GRU Word embeddings

Table 3.1.: All related work presented in this section in the order of appearance in the text. Con-
tained in the list is work on sentiment analysis, o�ensiveness classi�cation, hate speech
classi�cation and toxicity classi�cation. �e table shows which algorithm is applied by
the authors and which features are used for solving their task.

22

3.1. Toxicity Classification

of a user towards a certain entity. While this is not exactly the same domain as the
problem covered in this thesis there are arguably overlapping features which can
be used both to detect toxicity and extract negative opinions. Work on these tasks
has been done in supervised and unsupervised ways. Unsupervised approaches
[48][59][19] use a similar method as the profanity classi�cation in the previous
paragraph. �ey make use of a sentiment lexicon which includes terms and their
positivity/negativity score. Supervised methods [14][42] on the other hand need
an annotated corpus to train the model on.

For detecting abusive language Nobata et al [46] propose a model which takes
into account character n-grams, linguistic features, syntactic features and word
embeddings. Linguistic features include information like number of capitalized
le�ers, number of blacklisted words or the number of punctuations. Syntactic
features on the other hand make use of word relations inside a sentence or Part-of-
Speech (POS) tags. Chen et al [8] use a similar approach for classifying o�ensive
language in social media. �ey extract the features and feed them into a Support
Vector Machine (SVM) classi�er.

In the area of hate speech detection there has been much research going on in
recent years. Warner and Hirschberg [60] use an SVM fed with n-grams of words
and POS tags. Del Vigna et al [11] compare the performance of SVM classi�ers and
Long Short Term Memory (LSTM) networks.

In the domain of toxicity classi�cation itself not much work has been done so far.
Bha�arai [4] shows a comparison of a bidirectional LSTM and a CNN. �e results
show a be�er performance when using LSTM. Li [38] applies two di�erent types
of recurrent neural networks, LSTM and Gated Recurrent Units (GRU), to this task.
�e results of this work show a slightly be�er performance for the model using a
LSTM network.

�e work by Dixon et al [13] on the other hand is not primarily about the classi�er
itself, but about measuring and mitigating unintended bias in toxicity classi�cation.
Such a bias can emerge from a data set where a word mostly occurs in a toxic
context even though it has non-toxic meanings as well. Comments where this word
exists get a higher toxicity score because of this unintended bias. Obviously, this
can also happen the other way around with a word in the majority of cases occurs
in a non-toxic cases but can mean something toxic too.

23

3. Related Work

A common point which can be observed in all mentioned neural network based
approaches is the application of word embeddings. Apparently this approach has a
positive e�ect on the classi�cation performance for toxicity and related tasks.

3.2. CNNs for Text Classification

As mentioned in the chapters before CNNs have originally been used for computer
vision tasks. In recent years, however, they have been shown to deliver a good
performance in text classi�cation for various domains too. A notable work in
this direction by Kim [32] uses them for classifying sentences. It uses a single 1D
convolution layer but with di�erent �lter sizes which act like sliding word windows
of di�erent lengths. �is architecture is evaluated on 7 data sets where is surpassed
the state-of-the-art performance back then in 4 cases.

A very similar architecture is used for other classi�cation tasks too. Georgakopoulos
et al [17] use this architecture for classifying toxicity in comments. Nguyen and
Grishman [44] apply this setup to the classi�cation of relations between entities in
a sentence.

All aforementioned networks make use of words as input features. A di�erent
approach for feeding texts into CNNs is to treat every character as a single token.
Such a model is proposed by Zhang et al in 2015 [68]. �is has the advantage that
abnormal character combinations such as misspellings might be learned in the
training process. An important choice in this architecture is whether to distinguish
between upper-case and lower-case characters. �ey have observed that it usually
gives worse results when this distinction is made.

None of the networks above use more than a single convolutional layer. In image
classi�cation, however, it is common to use multiple of those, o�en more than
10. Szegedy et al [56] use 22 layers for the ImageNet 2014 competition. For the
ImageNet 2015 classi�cation task He et al [25] integrate 152 layers into their model.
An approach to go deeper for text classi�cation too is proposed by Conneau et
al in 2017 [9]. �eir models incorporate between 9 and 49 convolutional layers
and are fed with character level input. Johnson and Zhang [31] do a comparison
of shallow word-level and deep character-level CNNs. �eir results state that the
shallow word-level model achieves a be�er performance in all of their experiments.

24

3.2. CNNs for Text Classification

Moreover, it also computes much faster than the character model. However, the
deep character-level uses more parameters and therefore consumes more storage
space. �is is not a drawback in all cases but might be considered in cases where
storage is limited.

In addition to pure CNNs there is also work about hybrid models combining con-
volutional layers with other concepts. Zhou et al [69] propose a model which uses
a convolution layer to extract higher-level features and then apply a LSTM layer
on top of it.

25

4. Preliminary Work

In chapter 3.2 the relation classi�cation task is brie�y mentioned. As a preliminary
project before starting with this thesis a CNN was developed which is able to
classify relations.

For the experiments the data set from SemEval 2010 task 8 is used [26]. �is data set
contains a total of 8,000 training and 2,717 testing sentences. Each of them contains
two marked entities e1 and e2. �e relation between them is labeled with one of 9
classes or other, if it is not a relevant relation for this task. Moreover, the direction
of the relation is provided in the data set.

�e <e1>director</e1> has �nished his new <e2>�lm</e2>.

�is is an exemplary sentence in the data set. It is labeled as Product-Producer(e2, e1)
which means that this is a Product-Producer relation. Film (e2) denotes the product
while director (e1) is the producer.

�e architecture for the project can be seen in 4.1. �e network is fed with a matrix
which includes the word index, the relative position to both entities and the POS
tag for each word in the sentence, all of these values one-hot encoded. �e �rst
layer of the network transforms all of these values to dense vector representations.
For the word index pre-trained word2vec embeddings are used whereas the vectors
for positions and POS tags are initialized randomly.

As a next step the embedded input is fed into a single 1D convolution layer where
three di�erent �lter sizes are used (3, 4 and 5). �is approach acts like a sliding
window with di�erent lengths over a sentence. Convolution outputs of each of the
�lter sizes are pooled and then concatenated to a single vector. A fully-connected
layer with so�max activation function serves as the output layer of the network.

�e experiments done for this project mostly focus on the evaluation of di�erent
pooling strategies. �e main approach used is global max pooling where only the

27

4. Preliminary Work

Figure 4.1.: Architecture for the relation classi�cation task using CNNs. �e network is fed with a
matrix which represents a single word per row. Each row consists of the word index in
the dictionary, the relative position to both entities and the POS tag. �e embedding
layer then transforms all of these features to embeddings. �e convolution layer is
divided in three di�erent parts. Each of those applies �lters of a di�erent size to the
embedded input. A�er applying max-pooling the values are concatenated and a so�max
layer calculates the output of the network.

highest activation value of each �lter map is kept. Similarly, 2-max and 3-max
pooling keep the highest 2 and 3 values of every �lter map, respectively. A slightly
more complex approach is called piecewise max pooling [66]. �is concept divides
the output of the convolution layer into k di�erent regions. For each region the
pooling layer keeps the highest value. So instead of keeping a single value like
global max pooling k values are kept. In this project every sentence is divided into
3 regions. One from the beginning to the �rst entity, one between the two entities
and one from the second entity to the end of the sentence.

�e last experiment uses global max pooling but uses a di�erent sliding window
approach which is named E1-W-W-W-E2 approach in this project. It only uses a
single �lter size with length 3 for the convolutional layer. In contrast to the other
models, every receptive �eld gets padded with the two entities. Considering the
example sentence of the data set above the �rst window in the sentence would
include the words the, girl, ran. When the E1-W-W-W-E2 approach is applied the
�rst entity is added to the beginning and the second entity to the end of the window.
�is results in a sliding window girl, the, girl, ran, family. �e idea behind this
concept is a stronger emphasis on the two entities.

All of these experiments are performed 10 times, and the results can be found in
table 4.1. For every experiment the minimum, maximum and average value are
taken. Global max pooling is the best-performing model. 2-max pooling and 3-max

28

Global Max
Pooling

3-max Pool-
ing

2-max Pool-
ing

Piecewise
Max Pool-
ing

E1-W-W-
W-E2

AVG 83.3 81.4 82.3 83.0 82.1
MAX 83.5 81.7 82.8 83.5 82.6
MIN 83.1 81.1 81.9 82.5 81.5

Table 4.1.: F1 scores of all performed relation classi�cation experiments. �e �rst four experiments
are related to di�erent pooling strategies. Global max pooling only keeps the highest
activation per feature map while 2-max pooling and 3-max pooling keep the highest two
and three values, respectively. Piecewise max pooling divides every sentence into three
di�erent regions and keeps the highest value for each of them. E1-W-W-W-E2 relates to
an experiment with a di�erent sliding window approach where each window is padded
with both entities. �is method uses global max pooling.

pooling perform gradually worse. �is suggests that each �lter map learns to detect
a �lter which usually only occurs once in a sentence. �erefore, keeping more than
one activation does not provide any additional value to the network. Piecewise
max pooling performs slightly worse than global max pooling which suggests that
the additional complexity added with this method is not helpful for this task. �e
low performance of the E1-W-W-W-E2 approach might be related to only using a
single �lter size instead of multiple like in the other models.

29

5. Method

Based on the theoretical concepts presented so far this chapter aims to give infor-
mation on how they are applied in this work. It is divided into two di�erent parts.
�e �rst part focuses on the preprocessing pipeline used for the experiments. It
divides them into steps which are performed for all experiments in this work and
the ones which are then evaluated for their contribution to a be�er performance.
�e second part gives information about the neural network architectures. �ese
architectures are examined for their suitability to the task of toxicity detection.

5.1. Preprocessing Pipeline

To feed the comments into the networks a certain amount of preprocessing is
necessary. �is step is important for providing appropriate data to the network
which will then be used for the classi�cation. However, preprocessing involves the
danger of removing meaningful information. Losing too much of this data might
hurt the classi�cation performance in the end.

For this reason, this section is divided into two subsections. �e �rst one presents
baseline preprocessing steps. �ese steps are performed in every experiment and
include very basic techniques. �e second subsection includes all the preprocess-
ing steps which will later be evaluated on their contribution to the classi�cation
performance.

5.1.1. Baseline Techniques

All the preprocessing steps shown in this section are applied in every experiment
of this work. �ey are also meant to serve as a baseline for all experiments on the
evaluation of preprocessing steps.

31

5. Method

�e �rst technique applied is transforming all le�ers in the comments to lowercase
le�ers. �e idea behind this step is to increase the generalization ability of the
classi�er. �is e�ect might be even stronger for texts in online discussions because
they usually contain improper casing. A�er lowercasing all le�ers misspellings
based on wrong casing can not occur any more.

�e second preprocessing step which is applied is the tokenization step. �is is a
necessary step for feeding texts in the networks of this work. Tokenization is done
so that every word is treated as a separate token. Every special character is treated
as its own token. Exceptions of this are emoticons which are preserved and the
whole emoticon is seen as a single token. An example can be seen in the following
comment.

You, sir, are my hero. Any chance you remember what page that’s on?
:-)

A�er tokenizing it these comment will be generated:

[’You’, ’,’, ’sir’, ’,’, ’are’, ’my’, ’hero’, ’.’, ’Any’, ’chance’, ’you’, ’remember’,
’what’, ’page’, ”that’s”, ’on’, ’?’, ’:-)’]

5.1.2. Evaluated Techniques

In contrast to the techniques in the previous section, the ones in this section are not
applied to all experiments. �e preprocessing steps presented here are evaluated on
their bene�t to the performance of the toxicity classi�cation task. All techniques
here are later applied independently from each other and evaluated as such.

�e �rst technique which is evaluated is reducing the length of multiple characters.
In this step every character which occurs more than 3 times in a row are reduced to a
length of 3. A comment �is is waaaaayyyyyy too much for you‼‼‼ gets shortened to
�is is waaayyy toomuch for you‼!. As it can be seen there are less exclamation marks
at the end and the word way is spelled with less l and a. �is step is intended to serve
two purposes. Firstly, it gives less emphasis on the number of special characters in a
row. It does not ma�er if the comment contains 10 sequential exclamation marks or
only three, both are treated the same way. Secondly, it increases the generalization
ability. People sometimes multiply characters in a word to give more focus to it.
While this potentially helpful feature is still retained, the variations are treated as

32

5.1. Preprocessing Pipeline

the same token independently of the number of character extensions. �e number
of retained characters is chosen to be 3 to provide a good balance between keeping
the increased emphasis and increasing the generalization ability. If se�ing this
parameter to 1 or 2, the transformed version loses the emphasis on the word always
(when set to 1) or in some cases (when set to 2 and there are two consecutive le�ers
in the correct word). Increasing this parameter to 4 or even higher would lead to a
lower generalization e�ect. In this case noooo and nooo would be treated as two
di�erent tokens.

Another technique which is applied in the experiments is the removal of special
characters. �e intuition behind this is to create a highly simpli�ed model. �is
preprocessing step very likely removes too much information from the comments
and therefore e�ects in a worse classi�cation performance. On the other hand, such
a model shows the performance when only using plain words without any kind of
additional information. If the results are still reasonably good, this technique might
be used to speed of the training process and shrink the model size. As a weaker
version only special characters which are not in [.,�] are removed. Applying this
weaker �lter retains a minimum of sentence structure. �is version is also evaluated
as part of this work.

A preprocessing technique which focuses on transforming words is called lemma-
tization. �e goal is to get the base form of a word. going and went would both
get transformed to the base word go. �is way the classi�er becomes more robust,
especially when being fed with a previously unseen form of a known base word.
Assuming the training data only contains the two forms going and went. When
using lemmatization the classi�cation pipeline knows how to deal with the word
gone too because all of them are transformed to their base form go. In this work
the original tokens are replaced with their lemmas. A closely related technique is
stemming, which has the same goal as lemmatization. However, the base form a�er
stemming does not necessarily result in an actual word. Stemming is also evaluated
as part of the preprocessing experiments.

�e last technique which is examined in this work is taking a dictionary and
replacing all tokens which do not occur in it with a special token. If this dictionary
is created from a very large corpus this step is intended to remove misspellings and
very rare slang words. �e introduction of this special token indicates a potentially
misspelled word and might be useful as a feature for the classi�er. On the other

33

5. Method

hand, there is also the danger that this removes important information of a comment
and leads to a worse performance.

All of the techniques presented in these sections are applied before feeding the data
into a CNN model. �e results of these experiments can be found in chapter 8.2.

5.2. CNN Architectures

One goal of this thesis is to get an idea of how well CNNs perform on the toxicity
classi�cation task. To answer this question, experiments on four di�erent archi-
tectures are done. �is section presents the developed architectures and describes
them in necessary detail.

�e �rst model can be seen as a simple baseline architecture which all other ar-
chitectures are compared to. It consists of an embedding layer in the beginning
where the word indices are transformed to vectors of size n. �e exact values for
all hyperparameters are given in chapter 7.2. �is embedding layer is followed by
spatial dropout [58]. �e purpose of dropout is to have a regularization e�ect by ze-
roing out random weights during training. However, regular dropout does not take
into account the location of the weights being dropped. Spatial dropout overcomes
this shortcoming and drops out certain areas of weights. In this architecture a 1D
version of spatial dropout is used which zeros out whole word vectors randomly.

�e output of the embedding layer is then fed into a convolutional layer. Instead of
using 2-dimensional convolutions which is used in most work with visual image
data the 1-dimensional version is used here. �e meaning of a token is represented
by a whole row vector. �erefore, 2-dimensional convolutions with a �lter size less
than the length of row vectors would only perceive a partial meaning of a token.
1-dimensional convolutions, on the other hand, contain �lter maps which spread
over whole rows and their size only de�nes how many tokens are seen in a single
�lter. In the end, they act as a sliding window of a certain size which moves over
all tokens in a comment.

�e results of the convolutional layer are then fed into a pooling layer. In the pre-
liminary project shown in chapter 4 several pooling strategies have been evaluated
in the context of relation classi�cation. In this architecture the best performing

34

5.2. CNN Architectures

pooling strategy of the preliminary project is taken - global max pooling. As ex-
plained in 4, this type of pooling only takes the highest activation of each feature
map.

A�er that the pooled output of the convolutional layer is passed to a fully connected
layer. �e result of this layer is then fed into an output layer. �e output layer
contains a neuron for every category in the data set and its result is calculated
using sigmoid activation.

�is is an overview of the baseline architecture. However, there is no detailed infor-
mation given about �lter map sizes, number of hidden units, activation functions
and dropout rates. As already mentioned, the information about which hyperpa-
rameters are used for which experiments is presented in chapter 7.2. �is also holds
for the following architectures presented in this chapter.

5.2.1. Singlelayer CNN with Multiple Filter Sizes

�e �rst architecture which is compared to the baseline architecture is still a
singlelayer approach. In contrast to the baseline, this architecture uses multiple
�lter sizes. �e intuition behind this architecture is learning from pa�erns in token
n-grams of multiple di�erent lengths. Other than that it still shares many concepts
with the baseline model.

�e model is build in a way that three convolutional layers operate in parallel. All
of them get fed with the output of the embedding layer and their result is then
pooled with global max pooling. To combine the di�erent computational paths
again the pooled output is concatenated to a single vector.

�e overall architecture can be found in �gure 5.1. As it can be seen from the
description, this is a similar model to the one used in the preliminary work in
chapter 4.

5.2.2. Multilayer CNN

�e �rst two architectures shown in this chapter both consist of a single convo-
lutional layer. �is one, however, comprises of a second convolutional layer on
top of the �rst one. In general, mutlilayer CNNs are not commonly used in text

35

5. Method

Figure 5.1.: Singlelayer CNN architecture using multiple �lter sizes. �e architecture is similar to
the baseline architecture. �e input is fed into an embedding layer which transforms all
tokens to vectors. A�er that a convolutional layer is applied. Instead of using a single
size for all �lter maps this one uses three di�erent ones. �e pooled and concatenated
output of these three convolutions is then passed to a fully connected layer. �e output
of the network is then calculated by a fully connected layer using the sigmoid activation
function.

classi�cation tasks. �eir main �eld of application are tasks on images, especially
in image classi�cation [35][56][25]. A few studies have been done on using them
for text classi�cation. However, most of them use character level instead of word
level features [9][31]. �is work tries to use them with word level tokens as inputs
to the network.

�e intuition behind using multiple layers is the ability to learn higher level features.
�e �rst convolutional layers learns pa�erns from token n-grams, where n is the
size of the receptive �eld. When applying a second one this one tries to learn
pa�erns from the low-level pa�erns detected in the �rst layer. In theory, such an
architecture is able to model more complex structures in comments.

Like the previous architecture, this one is again derived from the baseline model
and the foundation if these two is still very similar. �e main di�erence is the
second convolutional layer immediately a�er the �rst one. �e size of the �lter
maps does not necessarily have the same size as the one of the lower layer. �is
parameter determines the spread over which higher level features are able to detect
pa�erns. �e calculation of the total receptive �eld size of the second convolutional
layer can be found in equation 5.1.

rout = rin + (k − 1) (5.1)

36

5.2. CNN Architectures

Figure 5.2.: Multilayer CNN architecture. �e foundation is again similar to the baseline architecture.
�e input is fed into an embedding layer which transforms all tokens to vectors. A�er
that a convolutional layer is applied. On top of its output a second convolutional layer
is added which learns higher level pa�erns. Pooling is only applied a�er the second
convolutional layer. �e pooled output is then passed to a fully connected layer. In the
end, the output of the network is calculated by a fully connected layer using the sigmoid
activation function.

In this equation rin is the receptive �eld of the layer below. k denotes the �lter size
in the current convolutional layer. �is is a simpli�ed version for computing the
receptive �eld size in 1D convolutions.

�ere is no pooling layer involved between the two convolutions. �is has the
e�ect that the second layer learns its pa�erns from the raw output of the �rst layer.
Pooling is �nally done on the output of the second convolutional layer. As in the
previous architectures this one also applies global max pooling to only keep the
highest activation of a feature map. �e higher layers follow the same concepts as
in the previous architectures. �ere is a fully connected hidden layer and another
fully connected layer for computing the output of the network. An overview of the
architecture can be found in �gure 5.2.

5.2.3. Multilayer Dilated CNN

�e last architecture which is evaluated as part of this thesis is a multilayer ar-
chitecture with dilated convolutions. Similarly to the regular multilayer CNN the
dilated version of it is also not commonly applied to tasks on textual data. It �nds
its use for example in image segmentation [64]. In this work the goal is to �nd out
if this architecture is suitable for toxicity classi�cation too. A detailed explanation
of dilated convolutions can be found in chapter 2.2.1.

In general, dilated convolutions are a way to increase the size of the receptive �eld
in multilayer CNNs. Compared to a regular convolutional layer this can be achieved
by using fewer parameters which need to be optimized. �e original authors take
convolutions of size 3× 3. �e dilation rates start with 1 in the �rst layer and are

37

5. Method

Figure 5.3.: Overview of the architecture which uses dilated convolutions. Like in the other archi-
tectures an embedding layer transforms the tokens into vectors. �ese embeddings are
passed into three consecutive convolutional layers with di�erent dilation rates and �lter
sizes. Dilation rates > 1 increase the size of the receptive �eld without increasing the
number of parameters to learn. �e output of the last convolutional layer is pooled
and passed to a fully connected layer. As a �nal step a fully connected layer using the
sigmoid function computes the output of the network.

multiplied by two for the subsequent layer. When applying their approach to 1D
convolutions the receptive �eld size for this se�ing can be calculated as stated in 5.2.
In this equation i denotes the index of the convolutional layer. It can be seen that
the receptive �eld grows exponentially, but with a linear increase of parameters by
adding new layers with the same �lter size.

ri = 2i+2 − 1 (5.2)

In the architecture of this work three convolutional layers are used. Assuming the
dilation rates and �lter map sizes of the original authors (dilation rates 1, 2, 4. . . ;
�lter size 3) are applied to this network this would result in a receptive �eld size of
15 in the third layer. When applying regular convolutions with a dilation rate of 1
the receptive �eld would end up with a size of 7. However, both of them use the
same number of parameters. �e actual hyperparameters (dilation rates, �lter sizes,
. . .) which are used for the experiments in this work can be found in chapter 7.2.

An overview of the architecture is given in �gure 5.3. It can be seen that between
the convolutional layers there is no pooling operation applied. �is is consistent to
the regular multilayer CNN in the previous section.

5.3. Transfer Learning for Small Data Sets

One of the goals of this thesis is the evaluation of CNNs on a second data set. �is
is done to verify the results of the experiments on the main data sets. However, in

38

5.3. Transfer Learning for Small Data Sets

section 7.1 it can be seen that there is a large di�erence in the number of comments
between these two. To see if the knowledge of the model trained on the large data
set can be helpful for training on a small comment set for a similar task, transfer
learning is applied.

In this experiment, the singlelayer CNN architecture with multiple �lter sizes is
used for classi�cation. Details about this architecture can be found in section 5.2.1
earlier in this chapter. �is architecture is �rst trained on the large main data set.
As explained in section 2.2.3, the output layer of the model is then cropped and
replaced by a new one. �e number of neurons in the newly created output layer
matches the number of labels in the smaller data set.

A�er that, the model is trained like in all other experiments. �is way, the weights
obtained from training on the larger data set are used for initializing the model
which is then trained on the smaller comment set. Other approaches freeze the
weights transferred from other models and only train the newly added layers. In
this experiment, however, all layers are trained with the same se�ings as in the
training phase on the main data set. �erefore, there are no frozen weights in this
approach. A detailed explanation of the training process can be found in section
7.3.

39

6. Tagging Tool

One of the tasks in this thesis is the creation of a data set for toxicity, abusive
language, hate speech and some related terms. �is is, however, a mostly manual
work and therefore very time consuming. In order to minimize the duration for
creating this and future data sets a web based tagging tool is created.

�e goal of this tool is that a user can upload video metadata crawled from YouTube
and their corresponding comments and replies to the system. Additionally, a tagging
interface is provided where the user can see the video and a single comment of it.
On this interface it is possible to assign labels to this particular comment.

As a prerequisite for the labeling task, a crawling script is developed to load the
needed data from YouTube. It is possible to specify a search term and the number
of videos wanted in the data set. �e script then queries the YouTube API and
writes the videos to a �le. A�er inspecting if all videos are suitable a second script
extracts all the comments to these videos from the API. �e information stored
about comments includes their id, an optional id of a parent comment, the author,
the comment itself and a language code created by the script. �e language code is
calculated by the crawling script but is not used by the tagging tool. �is information
is intended to help �ltering out comments in other language before uploading the
�les. To create a new data set in the system the two generated �les are uploaded
and a title and a language are speci�ed.

When the data set is �nally present in the system users have the possibility to label
the comments in it. For this task two modes are available. �e �rst one provides
the user with comments which have not been labeled before. �is is the main mode
if a user is working on a newly created data set.

However, in some cases it is preferred that multiple people label the same comment.
�is is necessary if the inter-rater agreement should be measured or a more robust
data set with fewer mistakes in it should be created. For these cases the second
mode provides a user with comments already labeled by other people.

41

6. Tagging Tool

Figure 6.1.: User interface of the tagging tool. A tree with bu�ons for all labels is provided. If a user
selects a label, all of its parent labels are automatically selected, too.

A strong emphasis is put on a fast navigation on the tagging interface. �is is
especially important because of the number of comments which need to be tagged
to get a decently sized data set. �e actual tagging interface can be seen on �g-
ure 6.1. �e bu�ons on the screenshot show all the di�erent labels available. To
create a consistent data set the parent label is automatically checked if one of its
children is selected. If a parent is unchecked, on the other hand, all of its children
are automatically unselected. To further speed up the tagging process keyboard
navigation is provided. Pressing the le�er which is speci�ed in parentheses on the
bu�on checks or unchecks this label. Moreover, the user is able to skip a comment
for later tagging.

Supplementary, a classi�cation script is provided which acts as a simple baseline.
�is script should give an intuition of the performance gain when tagging more
comments.

42

7. Experimental Setup

�is section gives the details about the actual setup of all experiments. Special
emphasis is been put on the data sets the models are trained and evaluated on. A
topic of high importance for the performance of a neural network is the choice of
the network’s hyperparameters. �e se�ings of the hyperparameters are listed in
section 7.2. Moreover, it also explains the process of �nding good values for this
problem domain. �e last section in this chapter explains the training process for
the models.

7.1. Data Sets

Although toxicity and related domains like hate speech or abusive language are
widespread phenomenons on the internet there are no standard data set for these
problems. �is section shows the two data sets which are used for the experiments
in this work. Both are taken from di�erent domains are therefore show varying
characteristics. �ese characteristics and the di�erences and similarities of the data
sets are indicated in this section.

7.1.1. Kaggle Toxic Comment Classification

�e �rst data set used for the experiments is part of a Kaggle competition called
”Toxic Comment Classi�cation” by Jigsaw. 1 �e data has been collected by �ain,
Dixon and Wulczyn [57]. It contains comments collected from Wikipedia talk pages
where each comment is labeled by 10 crowd workers.

1h�ps://www.kaggle.com/c/jigsaw-toxic-comment-classi�cation-challenge/

43

7. Experimental Setup

Train Test
Total number of comments 159,571 63,978
No Label 143,346 57,735
Toxic 15,294 6,090
Severe Toxic 1,595 367
Obscene 8,449 3,691
�reat 478 211
Insult 7,877 3,427
Identity Hate 1,405 712

Table 7.1.: �e size of train and test set of the data taken from the Kaggle ”Toxic Comment Classi�-
cation” competition. It can be seen that the data contains highly imbalanced categories.
Roughly 10% of the data is labeled as toxic and all the subcategories are even smaller. �e
smallest class in the training data, threats, only make up for 0.3%.

�e main category in this data set is whether a comment is toxic or not. However,
it also contains 5 subclassi�cations for a further distinction of di�erent reasons
why people consider it as toxic. �erefore, there are 6 labels in total in this data
set: toxic, severe toxic, obscene, threat, insult and identity hate. Severe toxic denotes a
stronger form of toxicity whereas the other 4 categories show the kind of toxicity
present in the comment. Identity hate contains comments which insult a person
or a group of people because of traits like skin color, religion, sexual orientation
or similar. �is content highly correlates with the hate speech de�nition given in
2.1.1.

�e data is divided into two sets, the train and the test set. �e actual sizes and the
number of comments per label in both sets can be found in table 7.1 A point which
is made visible by the class sizes is the highly imbalanced characteristic of this data
set. �e relative sizes vary from 10% of the training data (toxic) to a low of 0.3% of
the training data (threats).

A�er closer examination of the numbers one might notice that the sum of comments
without a label and toxic comments is lower than the number of total comments.
�is states that not all of the categories are subsets of the toxic label. An investigation
of the data resulted in the fact that only severe toxic is a subset of toxic. A comment
labeled as one of the other four categories is not necessarily labeled as toxic too.
So this data set treats these categories as highly overlapping but not as a subset of

44

7.1. Data Sets

Figure 7.1.: �is plot shows the number of characters per comment in the overall data set. �e
median over all comments has a length of 203 characters.

toxicity.

To provide a be�er comparison ability, this section gives some information about
the shapes of the comments in the data set. In �gure 7.1 the number of character
in the comments can be seen. �is gives some intuition about the actual length of
comments on Wikipedia talk pages. �e median length is 203 characters whereas
the maximum is 5000. �is suggests that this data set contains comments only a few
words long as well as ones where multiple sentences are included in it. Another
interesting measure to compare to textual corpora is the punctuation rate in it. �is
measure denotes how much punctuation there is in a comment per character. �e
mean punctuation rate in a comment in this data set is 0.051. Similarly, the mean
rate of uppercase characters in a comment is 0.052. A comparison of the two data
sets can be found in table 7.3.

7.1.2. YouToxic English

In contrast to the Kaggle data set in chapter 7.1.1 the YouToxic data set is created as
part of this thesis. �e goal of using a second data set for evaluation is to show that
Convolutional Neural Networks (CNNs) also work for data coming from sources
other than Wikipedia talk pages. �erefore, YouToxic English provides comments
on videos from the YouTube platform.

45

7. Experimental Setup

Overall
Total number of comments 1,000
No Label 538
Toxic 462
Abusive 353
Hate Speech 138

Table 7.2.: �e size of YouToxic data set created as part of this thesis. In contrast to the Kaggle data
set there are no prede�ned train and test sets. �erefore, the overall numbers are given.
�is data set is much more balanced than the Kaggle set with roughly half the comments
containing a label.

For the creation of this data set the tagging tool in chapter 6 has been utilized.
�e tool has been �lled with comments coming from 13 di�erent videos about the
unrest in Ferguson, Missouri in 2014. 2 �is topic has been chosen because it is
highly controversial and provides a su�cient amount of toxicity in its comments.
As can be seen in chapter 6 the tagging tool provides the ability to give a comment
up to 13 di�erent labels. However, for this work there are only three of them used:
Toxic, Abusive and Hate speech. For a more �ne-grained classi�cation, the data set
does not provide enough data.

In this data set the label Toxic is seen as a parent label for both Abusive and Hate
speech. If a comment is labeled as either one of the two child labels it is also labeled
as the parent label. �is is ensured by the tagging tool used for creating this data
set.

�e actual size of the data set can be seen in table 7.2. In contrast to the Kaggle data
set this one is not divided into train and test set. For this reason, the table gives the
sizes for the whole set. �ere are exactly 1,000 comments available where 538 do
not contain any label and the other 462 are at least labeled as Toxic. It can be seen
that this data set is relatively balanced compared to the Kaggle data set.

Coming from two di�erent sources the data sets show signi�cant di�erences in the
structure of the comments. �e comments coming from Wikipedia discussion pages
are on average more complex. �is complexity exposes itself in a higher number

2h�ps://en.wikipedia.org/wiki/Ferguson unrest

46

7.2. Hyperparameters

Kaggle YouToxic
Number of characters 391 186
Punctuation rate 0.051 0.039
Uppercase rate 0.052 0.053

Table 7.3.: Comparison of both data sets regarding the shape of the containing comments. Each of
the values denotes the mean over all comments. It can be seen that the average comment
in the Kaggle data set is more complex due to a higher number of characters and a higher
punctuation rate. �e rate of uppercase characters is very similar.

of characters and also a higher punctuation rate. �e uppercase rate, on the other
hand, is very similar in both data sets.

7.2. Hyperparameters

To get good results out of a neural network the choice of suitable hyperparameters
is of high importance. �is section gives an overview of the parameters used for
the experiments in this work.

�e basic network structure is the same for all architectures and all experiments.
An embedding layer is used to convert the tokens to vectors of size 300. It can be
seen in equation 7.1 that the number of parameters to be optimized in this layer
highly depends on the number of unique tokens known by the model.

nparams = 300× ntokens + 300 (7.1)

�e number of parameters in this layer constitute the vast majority of the number
of all parameters in the model. �erefore, the preprocessing pipeline has a high
e�ect on the overall model size.

A�er the embedding layer a 1D spatial dropout layer with dropout rate 0.2 is applied.
�is technique is intended to reduce over��ing of the model. In contrast to regular
dropout, the spatial version of it randomly zeros out whole rows of the layer before.
Applied to textual input this makes the network zeroing out a whole token vector
during training.

47

7. Experimental Setup

CNN Filter sizes Number of �lters
Architecture L1 L2 L3 L1 L2 L3

Singlelayer 3 - - 150 - -
Multiwindow 3/4/5 - - 100/100/100 - -
Multilayer 3 3 - 150 150 -
Dilated 3 3 3 150 150 150

Table 7.4.: �is table shows the hyperparameters of the convolutional layers in the four evaluated
architectures. L1-L3 denote the particular convolutional layer. For the multiwindow CNN
the numbers given separately for the three convolutional blocks in the �rst layer.

�e embedding layer with dropout applied is followed by the particular convo-
lutional parts. �ese parts are particular to the di�erent architectures and can
be found later in this section. �e higher layers of the network consist of a fully
connected layer of size 100 where regular dropout is applied to with a rate of 0.4.
�e output of the network is calculated with another fully connected layer where
the size depends on the number of classes in the data set.

An overview of the details of the convolutional parts for each network can be
found in table 7.4. It can be seen that all the layers use �lters of size 3. With
this se�ing �lters in the �rst layer learn to detect pa�erns which spread over a
maximum of 3 tokens. �e only exception is the single layer CNN with multiple
window sizes where the sizes 3, 4 and 5 are used. Similarly, all layers use 150 �lter
maps with the exception of the multiwindow architecture where 100 are used for
each �lter size. �e dilated CNN uses dilation rates 1, 2 and 4 for its three layers.
�e third convolutional layer has a receptive �eld size of 14 tokens with these
hyperparameters.

7.3. Training

�is section gives information about the training process of the neural networks.
Due to the similar architectures and also similar data sets used most parts of the
process are the same for all experiments.

One of the parts where the experiments partially di�er is the initialization of weights.
In all those experiments where pretrained embeddings are used these values are

48

7.3. Training

taken as initial weights for the embedding layer. In all other cases the embedding
layer is initialized with random values taken from a uniform distribution ranging
from −0.05 to +0.05. �e subsequent layers (fully connected and 1D convolutions)
use Xavier uniform initialization [20]. In this initialization method the range of the
uniform distribution depends on the number of incoming and outgoing connections
of the particular neuron.

For optimizing the parameters of the network the Adam algorithm is used [34]. �e
parameters of the algorithm are set to the suggested values in the original paper
(α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8). As a loss function, the experiments
are performed using binary cross-entropy, where the cross-entropy for each label
is calculated and the mean of them is taken. �e de�nition for a single label can be
found in equation 7.2.

L(y, ŷ) = − 1

N

N∑
i=1

[yi log ŷi + (1− yi)log(1− ŷi)] (7.2)

Training is done for 5 epochs and uses a batch size of 64 comments. All the values
in this section are based on �ndings in the literature on similar work. �erefore,
there is no evaluation done on �nding the optimal values for the task of toxicity
classi�cation.

49

8. Evaluation

�is chapter gives information about the results of all experiments. In the �rst
section, the evaluation results of four di�erent CNN architectures are provided.
�e second section shows the measures of di�erent preprocessing techniques and
how they contribute to the classi�cation process. In section 8.3 information about
what the neural networks actually learn can be found. �is includes the importance
of tokens for the classi�cation process and the features which the convolutional
�lters learn to detect.

For performance evaluation of the di�erent models, F1 score is chosen as the
primary measure. However, for the comparison of neural network architectures,
ROC AUC is used as a second measure. �e intuition behind using an alternative
measure is an improved comparability with the results of the Kaggle challenge the
main data set is taken from. F1 score is chosen as the primary one over ROC AUC
because it draws a more realistic picture of the model’s actual capabilities of �nding
toxic comments in these imbalanced data sets.

�e details about the so�ware packages used for implementing the experiments
and also the hardware used for training and evaluating the models can be found in
appendix A.

8.1. Comparison of Architectures

�e main research goal of this thesis is the evaluation of CNNs suitability for
the toxicity classi�cation task. For answering this question the four architectures
presented in chapter 5.2 are evaluated on the data set of the Kaggle toxic comment
classi�cation challenge. �e results are intended to show the raw performance
of a CNN on the data set without using sophisticated preprocessing techniques.
�erefore, the experiments shown in this section only use a minimum amount of

51

8. Evaluation

preprocessing. �e techniques applied to the data consists of lowercasing of all
characters and tokenization using the NLTK TweetTokenizer1.

To provide a be�er comparability with results from Kaggle the experiments in
this section use pretrained word2vec embeddings trained on data obtained from
Google News2. Using these embeddings slightly improves the results which can be
seen when comparing the results in this section with the ones in the preprocessing
section in 8.2 where random initial embeddings are used.

�e actual results of the four evaluated architectures can be found in table 8.1. �e
numbers shown in the table are the micro-averaged scores over all six labels in
the Kaggle data set. All experiments have been performed 5 times and the mean
and standard deviation is presented here. It can be seen that the two single-layer
architectures provide the best performance for this data set with an F1 score of
roughly 0.64. �e multilayer CNN which applies two convolutional layers achieves
a lower score than the aforementioned ones. �e worst-performing architecture is
the dilated CNN, which includes three convolutional layers. �ese results suggest
that the additional complexity of additional layers is not needed for the task on this
data set.

�e precision-recall curves of the singlelayer CNN with multiple �lter sizes can
be seen in �gure 8.1. It shows the curves for all labels in the Kagge data set. It can
be seen in there that the model performs worse for labels with less training data
available. �e more prominent labels toxic, obscene and insult provide both higher
precision and higher recall for most parts of the curve.

As mentioned in the introductory part of this chapter the ROC AUC score show
overly optimistic results for the classi�ers even though the actual classi�cation
capabilities. �e highest ROC AUC score of these models is almost 0.98 whereas the
same model only reaches the aforementioned F1 score of 0.64. �is can be a�ributed
to the strong label imbalance in the data set. �e di�erence between these two

1h�ps://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.casual
2h�ps://code.google.com/archive/p/word2vec/
3h�ps://www.kaggle.com/c/jigsaw-toxic-comment-classi�cation-challenge/discussion/52557
4h�ps://www.kaggle.com/c/jigsaw-toxic-comment-classi�cation-challenge/discussion/52612
5h�ps://www.kaggle.com/c/jigsaw-toxic-comment-classi�cation-challenge/discussion/52762
6h�ps://www.kaggle.com/prashantkikani/pooled-gru-with-preprocessing
7h�ps://www.kaggle.com/demesgal/lstm-glove-lr-decrease-bn-cv-lb-0-047
8h�ps://www.kaggle.com/jhoward/nb-svm-strong-linear-baseline

52

8.1. Comparison of Architectures

Model F1 ROC AUC
Singlelayer CNN 0.6398 ±0.0045 0.9790 ±0.0003
Singlelayer CNN with multiple �lter sizes 0.6401 ±0.0072 0.9790 ±0.0006
Multilayer CNN 0.6327 ±0.0029 0.9776 ±0.0008
Dilated CNN 0.6290 ±0.0059 0.9763 ±0.0006
Kaggle 1st place3 - 0.9885
Kaggle 2nd place4 - 0.9882
Kaggle 3rd place5 - 0.9880
Kaggle GRU + GloVe embeddings6 - 0.9800
Kaggle LSTM + GloVe embeddings7 - 0.9779
Kaggle Logistic Regression8 - 0.9772

Table 8.1.: �is table shows the results of all four evaluated CNN architectures on the Kaggle data set.
�e numbers in the table are the micro-averaged scores over all labels in the data. Each
of the experiments has been performed 5 times and the mean and standard deviation are
given in this table. It can be seen that the singlelayer architecture with multiple windows
sizes performs best for both F1 score and ROC AUC. �e results of the Kaggle challenge
only give ROC AUC results because this is the o�cial measure of the challenge.

measures can easily be seen when comparing the precision-recall curves in 8.1 and
the ROC curves in 8.2.

For a comparison of the models in this work with state-of-the-art methods, the
table includes results from the Kaggle toxic comment classi�cation competition.
As mentioned before they only provide ROC AUC scores, therefore, a comparison
by F1 score cannot be done here. �e �rst place solution uses a bidirectional
GRU architecture which uses multiple pre-trained embeddings. �ey also rely
on augmenting the data set by adding machine-translated comments. Multiple
models were trained and stacked to create a single output in the end. �e second
best model of the competition is an ensemble classi�er using RNNs, CNNs and
gradient boosting machines. �is model also relies on using multiple pretrained
embeddings and machine translation for augmenting the data set. �e third-best
model again uses an ensemble of a variety of classi�ers as LSTM, GRU, logistic
regression etc.

All highly ranked models obtain their good results by heavy data preprocessing and
augmentation and also on training multiple models and aggregating them in various

53

8. Evaluation

Figure 8.1.: �is �gure shows the precision-recall curves of the singlelayer CNN with multiple �lter
sizes. It shows the curves for all labels in the Kaggle data set. It can be seen that the
curves for toxic, obscene and threat show a higher performance and are also stabler. �is
is due to the much higher number of training samples for these three labels.

Figure 8.2.: In contrast to �gure 8.1 this �gure shows the ROC curves for all labels. When comparing
it to the precision-recall curves these ones show an overly optimistic picture of the
actual classi�cation capabilities. Even the labels with less data available (severe toxic,
threat, identity hate) show a very good ROC curve.

54

8.2. Comparison of Preprocessing Techniques

ways. To evaluate the raw suitability of a CNN for classifying toxic comments,
however, the models in this section only apply a minimum amount of preprocessing
and train a single classi�er. �erefore, the comparison should be done with other
raw classi�ers in the Kaggle competition. �ree di�erent results can be found in
table 8.1. It can be seen that an LSTM with a very similar amount of preprocessing
and pretrained GloVe embeddings performs similarly to the singlelayer models
in this thesis. A similar result is obtained by applying logistic regression to TF-
IDF vectors. A model using a GRU network and uses a slightly higher amount of
preprocessing obtains a ROC AUC score of 0.98.

8.2. Comparison of Preprocessing Techniques

In contrast to the previous section, the experiments in this sections focus on the
steps done before feeding a CNN with the data. �ey are intended to show the
e�ectiveness of various preprocessing techniques on the toxicity classi�cation task.
E�ectiveness, however, is not only shown by comparing the performances of the
evaluated approaches. In addition, to that, this section gives information about the
number of unique tokens in the data set and how they in�uence training time and
the number of parameters in the model.

All the results given here are obtained by applying the preprocessing techniques
individually to the Kaggle data set. �e only preprocessing technique which is
applied across all experiments is lowercasing of all characters. As mentioned in the
methods chapter in 5.2.1 these experiments use the singlelayer CNN with multiple
�lter sizes. �e hyperparameters of the model are explained in chapter 7.2. All
experiments in the previous section use pretrained Word2Vec embeddings trained
on Google News. However, to only focus on the preprocessing and to prevent the
pretrained embeddings from in�uencing the performance of certain preprocessing
techniques the embeddings here are randomly initialized. �erefore, the baseline
model here achieves a slightly lower score than the corresponding model in previous
experiments.

An overview of the results can be found in table 8.2. It can be seen that - with
the exception of reducing the length of character sequences - all preprocessing
techniques improve the performance of the classi�er. �e improvements range from
very small ones when removing all or parts of punctuation to relatively signi�cant

55

8. Evaluation

improvements when performing stemming, lemmatization or replacing all words
not found in a dictionary.

In addition to an increased performance, these preprocessing techniques also pro-
vide other advantages. �e results in table 8.2 state that all these techniques also
reduce the number of unique tokens in the data set. �is makes the classi�ers more
robust because they need to focus on a smaller number of features in the data. Also,
stemming and lemmatization transform the tokens to their root form, which helps
the classi�er treat di�erent shapes of the same word the same way.

As brie�y explained in chapter 7.2 the number of unique tokens in the data set
is directly proportional to the number of parameters in the embedding layer. �e
parameters embedding layer represents the majority of parameters in the whole
model. �erefore, these preprocessing techniques also reduce the overall size of the
neural network. Replacing unknown tokens in the data set with a special token, as
explained in section 5.1.2, is a very drastic technique for reducing the number of
tokens. �e dictionary which is used for determining whether a token is known or
not, is the aforementioned Word2Vec model trained on Google News. All tokens
which can be found in there are considered as known. When applying this technique,
there are only 23% of all unique tokens le� in the data.

�is reduction is also visible in the training time per epoch, although to a smaller
extent. Reducing the number of unique tokens from the baseline of 326,175 to
74,212 results in a training speedup from 680 seconds to 545 seconds per epoch,
which is a reduction of around 20%. When using other preprocessing methods
this improvement is not that strong anymore. Removing all punctuation from the
comments leads to a training time of 665 seconds per epoch.

In addition to applying individual preprocessing techniques to the data set, this
thesis also includes experiments on combinations of these approaches. Table 8.2
shows the results of the evaluated combinations. �e �rst four experiments focus
on combining the two approaches for removing punctuation with both stemming
and lemmatization. It can be seen from the results table that all of these combi-
nations achieve a similar performance. Moreover, this performance is similar to
the individual performance of stemming and lemmatization. �e main di�erence
between the four combined preprocessing strategies is the number of unique to-
kens, which ranges from 223,000 to 279,000. �is means the reduction rate varies
varies between 14% and 31%. �e ��h combined approach replaces unknown tokens
and lemmatizes all remaining words in the data set. �e result of this experiment

56

8.3. Feature Importance

again shows a very similar performance as all the other combined preprocessing
strategies. When compared to the individual result of replacing unknown tokens,
however, this combination achieves a lower F1 score. An advantage compared to
the other ones is the even more drastic reduction in the number of unique tokens.
When applying this strategy to the Kaggle data set the number gets reduced by
more than 80%.

8.3. Feature Importance

When applying machine learning models in production systems it is important to
know what the model actually learns and which features in�uence the model’s
decisions. CNNs are considered as being black boxes and hardly interpretable due
to the huge number of parameters and the complex structure. �e results in this
section try to shed light on the knowledge of a CNN trained on classifying toxicity
in online comments.

For the analysis, the trained baseline model of the preprocessing experiments is
used. �is means that, again, there are no pretrained embeddings involved. �e
analysis of the model is done using two di�erent approaches.

�e �rst one is based on a model analysis tool called LIME [50]. �is tool takes
a comment which should be fed into the model and transforms it by creating
new comments where random tokens are removed. �e scores for these altered
comments are then predicted by the model. Based on the di�erences to the full
comment LIME calculates the contribution of each token to the scores for each
label.

As a starting point, the �rst analysis focuses on which tokens the model sees as
important when classifying a comment as toxic. An exemplary explanation of a
prediction result can be found in �gure 8.3. �is is a comment from the Kaggle data
set which is labeled as toxic, obscene and toxic. It can be seen in the �gure that the
trained model correctly predicts all of the labels, toxicity and obscenity even with
a very high score. �e LIME analysis shows which words are important for the
classi�cation of all labels. In the example shown in the image the most important
tokens for all three labels are suck and moron. A human doing this classi�cation
task would see the exact same tokens as important for the results.

57

8. Evaluation

Preprocessing F1 Unique tokens Training
duration
per epoch

Baseline 0.6358 ±0.0085 326,175 680s
Reduce length 0.6357 ±0.0090 325,464 680s
Remove punctuation 0.6380 ±0.0090 268,928 665s
Remove punctuation weak 0.6386 ±0.0066 290,831 670s
Stemming 0.6430 ±0.0103 270,849 645s
Lemmatization 0.6448 ±0.0037 314,708 675s
Replace unknown tokens 0.6451 ±0.0092 74,212 545s
Remove punctuation + stemming 0.6444 ±0.0078 223,050 620s
Remove punctuation + lemmatiza-
tion

0.6449 ±0.0059 257,380 640s

Remove punctuation weak + stem-
ming

0.6443 ±0.0054 245,122 630s

Remove punctuation weak +
lemmatization

0.6443 ±0.0087 279,304 650s

Replace unknown tokens + lemma-
tization

0.6443 ±0.0081 64,418 540s

Table 8.2.: �e �rst part of the table shows the results of all evaluated preprocessing techniques
applied individually on the data set. Results in the second part of the table are obtained
by combining preprocessing approaches. All the experiments done here use the single
layer CNN with multiple windows sizes shown in 5.2.1. �e results represent the micro-
averaged F1 score over all labels in the Kaggle data set. All experiments are performed
5 times and mean and standard deviation of the F1 score can be seen in the table. �e
number of unique tokens is calculated by applying the preprocessing techniques and
using the NLTK TweetTokenizer. Training time can be improved by reducing the number
of tokens. �e hardware and so�ware setup which produces these training times can be
found in appendix A.

58

8.3. Feature Importance

Figure 8.3.: In this �gure the LIME explanations of the predictions for this toxic comment are shown.
It can be seen that this comment receives very high scores for the labels toxic and obscene.
Also the label insult gets a relatively high score assigned. �e words suck and moron
contribute most to the high scores. �is matches the explanation a human would give
for this comment.

(a) An arti�cial comment which is predicted as toxic.

(b) �e same comment as in a), but with a not added to the sentence to make it non-toxic.

Figure 8.4.: �ese �gures show the prediction di�erence between a toxic comment and its negated
form. It can be seen that the added not token decreases the toxicity score from 0.58 to
0.24.

59

8. Evaluation

In chapter 2.1 it is stated that a major challenge in this and similar tasks is the
proper treatment of negations in the text. For evaluating the behavior of this model
when adding negations to the text an simple arti�cial comment which contains
toxicity is created:

there are many silly europeans

�is comment is then transformed to a non-toxic comment by adding a not to the
text. A�er evaluating these two comments with LIME it can be seen in �gure 8.4
that the negated form is correctly labeled as non-toxic. �e word importance shows
a strong in�uence of the not token for classifying the comment as not toxic. �is
is, however, only one side of the story. In many other cases, the negation does
in�uence the result, but not strong enough to change the predicted labels. �is
means the comment would have a lower toxicity score but is still seen as a toxic
comment in the end.

Another important criteria for a good model is a bias-free prediction, especially
when planning to use it in production systems. An example of such a bias would
be a di�erent prediction for two similar comments - one of the directed towards
males, the other one towards females. To test the model for such a behavior three
similar non-toxic sentences are created. �e �rst one talking about Asians, the
second one about Europeans and the last one about Americans. In an ideal model,
these three comments would obtain the same toxicity score. In the model trained
for this experiment, however, the predictions are di�erent. Figure 8.5 shows the
LIME explanations for these comments. �e words Asians and Europeans are treated
as slightly non-toxic. In contrast to that, the token Americans is treated as highly
toxic and increases the overall toxicity score of the comment from 0 to 0.13. �is
shows that there is at least a bias based on the geographical region learned from
the Kaggle data set.

�e analysis method before is oriented towards the in�uence of single words to the
overall classi�cation scores. �e following approach, on the other hand, focuses on
the pa�erns which �lters in the convolutional layer learn to detect. To get a be�er
understanding when particular �lters detect a pa�ern, the highest activation of
each �lter map for each comment in the test set is analyzed. �e location of the
highest activation is then mapped to a region in the comment to get the actual texts
which are detected. Due to the size of the test set, only 10 comments with a very
high activation for the particular �lter are examined.

60

8.3. Feature Importance

(a) A non-toxic comment directed towards Asians.

(b) A non-toxic comment directed towards Europeans.

(c) A non-toxic comment directed towards Americans.

Figure 8.5.: �e �gures show LIME explanation for three similar non-toxic comment directed towards
Asians, Europeans and Americans. It can be seen in from the word highlightings that
Asians and Europeans have a slightly non-toxic e�ect on the score. Americans, however,
is a word with a strongly negative connotation by itself.

61

8. Evaluation

Example 1 Example 2 Example 3
. the author , idiot , mentioned in the
. please deal , immature idiot are in the
on the article’s , renders an joined in the
. the limits , suicides grossly groups in the
edited the introduction a bitch ” name in the
. the links is ridiculous . weigh in if
. please use is horrible . article in the
. the verb is a fact rating in the
. please do then * adam specify in the
. please engage , torein * books in the

Table 8.3.: �is table shows examples of the highest activating text regions of selected convolutional
�lters of size 3. Example 1 seems to detect the beginnings of new sentences, especially
in combination with the tokens the and please. �is seems like a detector for positive
beginnings in sentences Example 2 focuses on content with a higher toxicity level,
preferably a�er commas in the comments. �e third example is a very strong detector on
the pa�ern in the.

�ree examples of size 3 �lters can be found in table 8.3. When having a closer look
at the �rst example one notices the presence of a period at the beginning of 8 out
of 10 regions with high activations. �is suggests that this �lter detects the start of
a new sentence in a comment. Additionally, there are no obscene or in any other
way negatively connoted words in the detected regions. �is observation combined
with the presence of please in 4 regions makes it likely to be a �lter for non-toxic
comments. �e regions in row 3 and 5, however, do not follow these pa�erns.

�e second example in the table shows �lter which is very likely a detector for
toxic regions in a comment. It shows regions with high activations where insults
or negativity is present in 6 out of 10 samples. It also seems to have even higher
activations when toxicity occurs immediately a�er a comma. Like in the �rst
exemplary �lter there are again regions where the reason for activation is not
immediately visible. �e region “, torein *” for example does not contain an actual
English word but, nevertheless, is detected with a high activation.

Column 3 gives an example of an easily interpretable �lter. 9 out of the 10 regions
with the highest activation values end with the pa�ern in the. �erefore, this �lter
can be considered very robust in detecting this pa�ern.

62

8.4. Evaluation on YouToxic Data

All three examples share the property of being interpretable features. But in many
other �lters, the detected pa�erns are not easily interpretable for humans. �ey
detect seemingly random combinations of tokens and make it di�cult to assess
their in�uence on the network. It can also be seen in the examples that there are
sometimes outliers which do not match the main pa�ern of other detected regions
by the same �lter.

More examples of highly activated regions in �lters can be found in appendix B.

8.4. Evaluation on YouToxic Data

So far the experiments have shown the performance of CNNs on data obtained
from Wikipedia discussion pages. �e question is, however, if they work for data
coming from other sources similarly well. For showing the performance on online
comments from another platform the singlelayer CNN with multiple �lter sizes is
evaluated on the YouToxic English data set. �e details of the data set can be found
in section 7.1.2.

�e evaluation on this data set contains three di�erent experiments. �e �rst one
utilizes the singlelayer CNN with multiple window sizes trained on the Kaggle data
set. �is model is then used to predict labels on the YouToxic comments. Such an
experiment gives an intuition of how similar the data sets are in terms of pa�erns
which are used for predicting the labels. �e limitation of this experiment is, that
the labels are not the same in the Kaggle and YouToxic sets. �erefore, only the
matching labels are evaluated. In the second experiment, the same architecture
is trained on the YouToxic data from scratch. �e results of this experiment are
intended to show if the network can be trained with such a small amount of data.

Due to the small number of comments in the YouToxic set a third experiment
is performed. In this one, transfer learning is applied to reuse the knowledge
learned from the Kaggle data set. �e hypothesis is, that this approach improves the
classi�cation performance because the model utilizes the knowledge obtained from
160,000 comments in the other data set. For this experiment, the baseline model of
the preprocessing experiments in section 8.2 is taken. �e output layer is cropped
and a new output layer which maps the labels in this data set is added on top of the
network. �is new output layer again applies sigmoid as its activation function and

63

8. Evaluation

Dataset Label F1 Score
YouToxic Toxic 0.6039
YouToxic Abusive -
YouToxic Hate speech 0.0000
Kaggle Toxic 0.6655
Kaggle Identity Hate 0.5523

Table 8.4.: �is table shows the performance of the model trained on the Kaggle data set when being
applied to YouToxic comments. �e last two rows give the performance on the Kaggle
data set for a be�er comparison. It can be seen that the performance on the toxic label
is not much lower than on the original data set. �e hate speech label, however, is not
classi�ed correctly for any given comment in the YouToxic data set. �is can be seen
from the 0.0 F1 score of this label. For the abusive label, there is no matching label in the
Kaggle data set. �erefore, an evaluation is not possible.

the weights are initialized randomly. �e remaining layers of the network use the
trained weights of the model trained on the Kaggle data set as initial weights.

�e results of the �rst experiment, where a model trained on Kaggle data is applied
to the YouToxic set, can be found in table 8.4. �e performance on the toxic label is
in a similar region as on the Kaggle data set. For the hate speech label, the identity
hate label in the Kaggle data set is identi�ed as a matching label for comparison.
From the table, however, it can be seen that the F1 score is exactly 0, which means
that there were no comments classi�ed correctly. For the label abusive, there is no
matching label in the Kaggle data set. �erefore, an evaluation cannot be done.

�e results of experiments 2 and 3 are presented in table 8.5. Training of the models
is done for a maximum of 20 epochs with 5-fold cross validation for spli�ing the
data into train and test set. Like all other experiments in this thesis, these ones are
run 5 times and the mean and standard deviation of the F1 score is calculated.

In the le� column of the table the results of the model trained from scratch are
given. �e overall F1 score of the model on the YouToxic data set is around 0.607
which is slightly lower than the same architecture evaluated on the Kaggle data set.
However, when only looking at the performance on the Toxic label the results show
a di�erent picture. �e Kaggle model results in an F1 score of around 0.666 whereas
the trained model in this experiment obtains a score of 0.678. �e performance
on the label Abusive also shows a comparatively high F1 score. �e third label

64

8.4. Evaluation on YouToxic Data

Dataset Label From Scratch Transfer Learning
YouToxic All 0.6068 ±0.0055 0.6118 ±0.0101
YouToxic Toxic 0.6779 ±0.0084 0.6801 ±0.0110
YouToxic Abusive 0.6231 ±0.0096 0.6273 ±0.0109
YouToxic Hate speech 0.2175 ±0.0360 0.2367 ±0.0188
Kaggle All 0.6358 ±0.0085
Kaggle Toxic 0.6655 ±0.0102

Table 8.5.: �is table shows the performance of the model trained on the YouToxic data set. �e
le� results show the performance with of a model trained from scratch with randomly
initialized weights. �e right ones denote the performance when using transfer learning
from a model trained on Kaggle data. All experiments are performed 5-times with 5-fold
cross validation. For an easier comparison, the scores on the Kaggle data set are included
in the table. �e records with label All denote the micro-averaged F1 score of all labels in
the particular data set. �e results show that the model performs be�er on the Kaggle
data set. When only looking at the toxicity label, the performance on the YouToxic data
set is slightly higher. It can also be seen that the model using transfer learning has an
edge over the model trained from scratch for each label.

in the YouToxic data set, Hate speech, on the other hand, does only achieve a F1
score of 0.218. �is is also the reason for the lower overall score compared to the
performance on the Kaggle data set.

�e values on the right hand side in table 8.5 show the performance of the model
using transfer learning. It can be seen from there that this model performs slightly
be�er on each of the three labels and also achieves a higher micro-averaged result.

65

9. Discussion

In the previous chapter, the results of the experiments are shown. �is chapter,
however, is intended to discuss the �ndings with respect to the research questions
which are stated in chapter 1.2.

�e main research question is the question of the suitability of CNNs for classi-
fying toxicity in online comments. For this four di�erent architectures have been
developed and evaluated on the Kaggle data set. �e results of these experiments
show that simpler models perform be�er on this task than deeper ones with more
than one layer. �is matches literature found on this topic by Conneau et al [9].
�ey try deep convolutional neural networks on text classi�cation and found out
that they work very well. However, they need larger data sets for training than the
Kaggle one in this thesis.

An interesting �nding of the experiments is the equal performance of both single-
layer architectures. �e simpler one only uses a single convolutional block with
�lter size 3 in the convolutional layer. In contrast, the second one uses three di�er-
ent blocks with �lter sizes 3, 4 and 5. �e hypothesis for developing the multi-size
architectures was that this model is capable of detecting pa�erns spreading over
a longer range of tokens. Results show, however, that their performance is very
similar. �is suggests that pa�erns important for classi�cation do not spread over
more than three tokens most of the times. �is �nding is also backed by the analysis
of �lters in the convolutional layer. �ere are many of them which only detect 1-
or 2-grams in the comments.

When comparing the results of the models in this thesis to the results of the
Kaggle competition, there are some �ndings which can be concluded. First of
all, when looking at Kaggle models with a similar amount of preprocessing it
can be seen that they deliver a similar performance to the CNNs in this work.
Independently of whether they use LSTMs, GRUs or logistic regression with TF-IDF
vectors, their performance lies within a narrow range. �e winning results of the

67

9. Discussion

Kaggle competition, on the other hand, show a higher performance compared
to the mentioned models with li�le preprocessing applied. When looking at the
models of the winners, it can be seen that they heavily rely on data augmentation,
preprocessing, ensembling of classi�ers and blending of models. �is leads to the
conclusion that the classi�er itself is not the deciding factor for a well-working
classi�cation model.

�e models in this thesis work well on 3 out of 6 labels in the Kaggle data set. On
the remaining three labels the results show a very weak precision-recall curve in
section 8.1. �is is due to the much lower number of training comments available
for these labels than for the other three. �e label thread for example only contains
478 samples for training out of 160,000 samples in the whole data set.

All in all, the results of the experiments suggest that CNNs are indeed suitable for
being used in toxicity classi�cation. �eir performance on raw data sets is similar
to those of other classi�ers. It must be ensured, however, that there is enough data
for training available as the weak performances on the labels severe toxic, threat
and identity hate show.

�e �rst sub research question of this thesis is the in�uence of di�erent prepro-
cessing techniques to the classi�cation performance. For this question multiple
preprocessing strategies have been implemented and evaluated with respect to
their performance, the resulting number of unique tokens in the data set and the
training time.

In contrast to the experiments for the architecture comparison, the models for
the preprocessing comparison do not use pretrained word embeddings. A �nding
when comparing the same architecture with and without pretrained embeddings
gets visible when looking at the standard deviation of the F1 scores. �e models
without the pretrained weights produce a higher deviation in their results. �is
can be explained by the random initialization of the initial embeddings which
have a high in�uence on the end result of the trained model. �e models with
pretrained embeddings start from the same initial embedding weights in every run
of the experiment. �e only randomly initialized weights in these models are the
parameters in the higher layers.

�e �rst and probably most surprising �nding in the results of the preprocessing
techniques is the performance when removing all punctuation and special charac-
ters from the data set. As stated in section 5.1.2 the hypothesis for this technique

68

was that it shrinks the model but also removes important information from the
comments. �is would, in the end, harm the performance of the model. �e result
of this technique is quite the contrary to the hypothesis, the classi�cation perfor-
mance even improved a�er removing all these characters. An explanation for this
behavior can be found when having a closer look at the data set. It includes many
samples with misplaced punctuation and also many comments completely without
punctuation. It seems that they are not in all cases a reliable indicator for sentence
structure. Another reason for this �nding is the presence of many non-latin le�ers
in the data set. �ese characters do not add any value to the classi�er. �erefore,
removing them might further improve the performance.

Another well-working preprocessing technique is replacing all unknown tokens
with a special unknown token. For this pretrained word2vec embeddings are taken
as a dictionary of known tokens and all tokens which are not found in there are
replaced. �is technique provides the best performance of all evaluated ones in this
thesis. �is might be explained by the removal of misspelled words or words in
other languages which do not provide much semantic for the classi�er. Replacing
them by the special token still enables the classi�er to detect that a comment
uses non-standard language. In addition to providing the best performance, this
technique also shrinks the model to the smallest size. �is is especially important
for systems where computational resources are limited. �e number of parameters
in the embedding layer to be trained is reduced by more than three quarters. �is
does not only reduce the overall size of the model but also reduces the time needed
for training it. In the experiments, the training duration when using this technique
is reduced by around 20% compared to the baseline.

An interesting observation can be found in the number of unique tokens when
comparing stemming and lemmatization. Despite being two techniques with similar
goals the outcome of these two is very di�erent. Lemmatization reduces the number
of unique tokens only by 3.5% whereas applying the Porter2 stemmer results in
a reduction by 17%. �is �nding combined with the higher performance of the
lemmatization approach leads to the conclusion that the choice between these two
depends on the needs of the system. If the goal is a model as accurate as possible,
the lemmatizer should be favored. If the model should, however, be applied to a
system with limited computational power the stemmer leads to a smaller and faster
model without sacri�cing the performance too much.

�e preprocessing experiments in this thesis are all performed individually. In a real

69

9. Discussion

model, there are usually multiple of these approaches applied together. Even though
techniques work well on their own, combinations of them might lead to a lower
overall performance because important information gets lost in the processing.
�is thesis takes up on this point and evaluates combinations of the previously
mentioned preprocessing techniques.

Experiments are done on the combination of removing punctuation in the strong
and weak form with either stemming or lemmatization. �e results show that all of
these four approaches achieve a very similar F1 score which is similar to the indi-
vidual performance of stemming and lemmatization. �is suggests that removing
punctuation does not add value in terms of a more accurate classi�cation to stem-
ming and lemmatization. However, the reduction of the number of unique tokens
a�er applying one of these four approaches varies between 14% and 31%. It seems
that these strategies combine the performance gain of stemming/lemmatization
with the smaller model and faster training when removing punctuation. �erefore,
even though the performance does not change, such a combination might be the
preferred approach in some cases. Another evaluated combination is replacing all
unknown tokens in the data set �rst and then lemmatizing the remaining tokens.
Performance-wise, this approach performs very similar to the other combinations,
but worse than only replacing all unknown tokens without lemmatization. When
looking at the reduction of the number of unique tokens, this is the most rigorous
approach. A�er applying it the number decreases by more than 80%. From the eval-
uation of combined preprocessing techniques it can be concluded that stemming
and lemmatization improve the performance when being applied to the raw data
set. But they also limit the possible performance when being combined with other
approaches. �is indicates that stemming and lemmatization remove important
information from the comments.

�e second subquestion in this thesis is focused on understanding the knowledge
which is contained in a trained model. For this, such a model is analyzed in two
ways. �e �rst part consists of an examination for which regions in the text the
�lters in the convolutional layers have high activation values. And it also focuses on
the question if the pa�erns detected by the �lters can be interpreted by humans. �e
analysis shows that some of these �lters are easily interpretable. Pa�erns in their
highly activated text regions show for example the beginning of new sentences
a�er a period or toxicity immediately a�er a comma. Most of the visible pa�erns do
not seem to spread over more than 2 or 3 tokens in the text, even in the �lters of size
5. As already mentioned earlier this might also be the main reason why the multi-

70

�lter-size architecture does not give a be�er performance than the architecture
with a single �lter size.

In addition to those �lters which are interpretable, there are many �lters which
learn to detect seemingly random token sequences. It is not clear from the analysis
if these �lters learn to detect hidden but important pa�erns or if they are completely
useless for the classi�cation. A similar question arises when looking at the outliers
of �lters with otherwise clearly visible pa�erns. Do those outlying regions share
hidden pa�erns with the visible pa�erns detected by the �lter or are these just a
product of coincidentally similar embeddings for di�erent tokens. �is is also a
question which can not be answered from the analysis done as part of this thesis.

�e second part of the model analysis consists of using the model analysis tool
LIME to create explanations for the classi�cation of a comment. It can be seen from
the explanation in the evaluation section that the model sees the same words as
important for classi�cation as a human would do. Such behavior makes the model
easier interpretable for their developers.

�is easier interpretability makes it also possible to �nd drawbacks in the model.
�e example in section 8.3 shows a comment where the negation is well perceived.
�is is not the case for all of the evaluated comments, though. In many comments,
the negation is detected by the classi�er and the score shi�s in the correct direction.
But the shi� is not strong enough so that the classi�er still predicts the same label
as without the negation. For a well-working model, the importance of a negated
toxicity needs to be strong enough to change the prediction.

Another important �nding of this analysis is the incorporation of biased word
embeddings in the model. In section 8.3 the evaluation shows a comparison between
three comments. All of them have a similar non-toxic meaning, but all of them are
directed to people from other geographic regions. Two of these regions are slightly
positively connoted, whereas the third one introduces toxicity to the prediction.
�is is an issue which is important to be resolved before using such a model for
real systems. A model for classifying toxicity must not introduce biases which are
themselves toxic against various characteristics of people.

From this analysis, it can be seen that a closer examination of trained models is
a necessary step before applying them elsewhere. Data sets do not always have a
su�cient amount of samples for detecting the aforementioned issues. �erefore, a

71

9. Discussion

manual evaluation for understanding parts of the model is as important as a good
score on the test set.

�e last subquestion of this thesis is oriented towards the applicability of CNNs to
data from di�erent sources. So far all the results discussed in this chapter focus on
comments from Wikipedia talk pages. Section 8.4 closes this gap and evaluates the
singlelayer architecture with multiple �lter sizes on data gathered from YouTube
comments.

In a �rst evaluation, a model trained on the Kaggle data set is applied for predicting
the labels on the YouToxic data set. �e results show that this approach works
well for the toxic label. �is suggests that there are similar pa�erns necessary for
classifying toxicty in these two data sets. For the hate speech label, on the other hand,
this approach does not work. �ere is not a single instance classi�ed correctly. �is
behavior is expected, because the topics of the two data sets are very di�erent and
hate speech occurs in di�erent forms based on the context. So the pa�erns learned
for predicting identity hate in the Kaggle data set is not helpful for predicting hate
speech on YouToxic comments.

�e data set containing YouTube comments is very small compared to the Kaggle
data set. For this reason, training a model on this data set is done in two di�erent
ways. �e �rst experiment uses the same approach as in previous experiments -
the weights are initialized randomly and then trained on the data set. To overcome
the issue of the small data set the second trained model uses a transfer learning
approach. In this method, the weights from a model trained on the Kaggle data
set are taken as initial weights for the new model. �is way, the knowledge of the
Kaggle model can be utilized for the training on the YouToxic data set.

From the results, it can be seen that the overall results are in a similar region
compared to the experiments on the Kaggle data, even with such a small data
set. Moreover, the results show that the model using transfer learning performs
be�er than the model trained from scrach on each label. �is indicates that transfer
learning gives an advantage for such small data sets, even though the di�erence
is small in this experiment. It also suggests that toxicity shows a similar structure
in comments coming from Wikipedia discussion pages and YouTube. �is is also
supported by the �nding before, where the model trained on the Kaggle data set
achieves good results on YouToxic comments.

72

In addition, there are two more observations when comparing the results on the
Kaggle data with those on the YouToxic data. Firstly, when only looking at the
label whether a comment is toxic or not the performance is higher on the YouToxic
data set than on the Kaggle data set. �is is especially surprising given the sizes
of the two data sets. �e Kaggle set contains 30 times more toxic comments than
the YouToxic one. However, the high performance on YouTube comments might
also be partially explained by their simpler structure. In section 7.1.2 there is a
comparison between the two data sets. It can be seen that the YouToxic data shows
a lower number of characters on average per character. Moreover, the punctuation
rate is also lower compared to the data from Wikipedia discussion pages.

In contrast to the high results on toxic comments, the classi�er does not show a
strong performance on the Hate speech label. Hate speech comes in large variety of
forms and shapes and, therefore, needs more data for training a strong classi�er.
Also, the transfer learning approach is not helpful for this task, because it improves
the performance only from an F1 score of 0.21 to 0.23. �is behavior is expected
because of the di�erent topics of the two data sets. In addition to the larger variety,
the structure of hate speech o�en depends on the environment where the comment
is posted. �is suggests that the pa�erns learned for the identity hate label in
the Kaggle data set are not very helpful for classifying hate speech in YouTube
comments.

�e evaluation on the YouToxic data set shows that the same architecture does also
work on comments from di�erent online platforms. �e results suggest, that CNNs
also work for data sets where the number of samples is relatively small. According
to the observations, it is also possible to transfer the knowledge learned from one
data source to a new model for a second data source. �is approach gives results
which are a li�le higher than the ones with the model trained from scratch in the
experiments. �is is a good starting point for cases where there is not enough data
available.

To conclude up the �ndings of this thesis, CNNs are indeed suitable for being
trained on classifying toxicity in online comments. �e experiments show that they
perform similarly well as other classi�ers on the raw Kaggle data sets. Moreover,
a good performance is also achieved on the YouToxic data set which shows that
the architectures work on comments from another source too. For improving the
performance of a CNN on this task the data needs to be preprocessed in a bene�cial
way. In addition to the be�er classi�cation performance, preprocessing is also able

73

9. Discussion

to reduce the size of the model or improve the time needed for training. A�er
training the model a careful evaluation needs to be done to prevent unwanted
biases in the classi�er. Experiments in this thesis show a bias on the geographic
region of people.

74

10. Conclusion

In this chapter, the �ndings of this thesis are concluded and recommendations
for working on this topic are given. Additionally, recommendations for further
research in this area are presented.

In the related work for the toxicity classi�cation task in section 3.1 it can be seen
that most approaches use SVMs, a form of RNNs or even unsupervised approaches.
�is work shows that neural networks containing convolutional layers are also able
to perform this task. �e evaluation presents results which are on a similar level
as other approaches on the data set of the Kaggle Toxic Comment Classi�cation
challenge. Moreover, singlelayer architectures have an edge over the deeper ones in
this evaluation. To show that this performance is not a �nding speci�c to comments
from Wikipedia discussion pages as in the Kaggle data set, a second data set called
YouToxic English has been created. Even on this small data set the CNN shows
good results. Due to the size of the YouToxic data set transfer learning is applied to
make use of the prior knowledge gained from the �rst data set. It can be seen from
the results that CNNs obtain slightly higher scores than the model trained from
scratch.

One of the reasons for the performance gap between the results in this thesis and
the top results in the Kaggle competition is the extensive use of preprocessing. To
get a be�er understanding which preprocessing techniques are useful for CNNs
this thesis does an evaluation on some of these approaches. �e observations show
that some drastic methods show a signi�cant performance gain compared to the
baseline result. Additionally, these approaches shrink the size of the overall model
by the highest rate and reduce the time needed for training. However, this thesis
does only include a basic evaluation of how preprocessing approaches work in
combination.

An important step before using a trained classi�er in production is an analysis
of the knowledge contained in the model. Such an evaluation limits the risk of

75

10. Conclusion

unpredictable behavior when being fed with certain data. �is thesis presents
approaches on how to do this analysis and shows that this knowledge is partially
interpretable by humans when using the right approaches.

In section 2.1 it is stated that negations are a common challenge for classi�ers in the
NLP domain. Observations in this thesis reveal that a CNN is able to detect them.
However, in many cases, their in�uence is not strong enough to turn the prediction
towards the correct label. In addition to that, the analysis of the importance of
tokens for the prediction shows another issue. Some words which are supposed to
be neutral do have a bias towards toxicity or non-toxicity. An example in this work
is a di�erent level of toxicity based on the geographic region of a person. Such a
bias is to be absolutely avoided for such a sensitive topic.

To sum up this thesis, the use of CNNs is indeed suitable for classifying toxicity in
online comments because of a similar performance compared to other classi�ers.
Simpler architectures should be preferred as a �rst step. For achieving a state-of-the-
art performance preprocessing is inevitable. �is thesis suggests that preprocessing
techniques leading to a simpler data set both increase performance and reduce
training time and model size up to a certain degree. A�er successfully training a
model an in-depth analysis of the contained knowledge should be done. �is is
important for detecting unwanted prediction behavior and biases in the model.

A�er the evaluation of CNNs for toxicity classi�cation, there are three recommen-
dations for people who want to work on a similar topic.

1. Start simple! Simple architectures are already able to perform well on some
NLP tasks like toxicity classi�cation. Add complexity only if needed.

2. Know your goals! Di�erent preprocessing techniques have di�erent e�ects
on the model, like an increased performance, a smaller size or faster training.
De�ne your goals early enough to know which techniques are worth being
applied.

3. Analyze your model! A�er training a model on this or similar tasks, ana-
lyzing the knowledge is absolutely necessary. �ere is always the danger of
an unwanted bias when training from user generated texts.

76

10.1. Further Work

10.1. Further Work

�is thesis does an evaluation of the capabilities of CNNs for classifying toxicity.
However, there are still topics not covered by this work. Some recommendations
for further research are given in this section.

Previously in this chapter, it is stated that this thesis only includes basic experiments
on combinations of preprocessing techniques. In practice, there is hardly ever only
a single technique involved. Future work might take up this point and do a more
extensive analysis of combinations of the presented approaches.

In the evaluation chapter, this work shows pa�erns which a trained model learns
to detect. While this leads to a be�er understanding of the model, the analysis
does not give information about the in�uence of these pa�ern to the prediction.
Moreover, there is also the open question about the e�ect of pa�erns which are
not interpretable by humans. Do these pa�erns contribute to the prediction in a
meaningful way or will these pa�erns be ignored in later layers of the model?

�e evaluation of the importance of tokens for the classi�cation shows a signi�cant
bias of supposedly neutral words. �erefore, a possible extension to this work would
be research about model debiasing for CNNs applied to toxicity classi�cation.

Last, but not least, a possible direction is the evaluation of the architectures and
preprocessing techniques in this thesis on comments in other languages. For creat-
ing a YouToxic data set in other languages, the tagging tool presented in chapter 6
can be used to simplify this task.

A combination of this thesis and the possible future work presented in this section
could give end-to-end recommendations for applying a CNN to classifying toxicity
in online comments.

77

Bibliography

[1] J. Angwin and H. Grassegger. Facebook’s secret censorship
rules protect white men from hate speech but not black children.
h�ps://www.propublica.org/article/facebook-hate-speech-censorship-
internal-documents-algorithms, 2017. Accessed: 2018-11-07.

[2] J. Angwin, M. Varner, and M. Tobin. Facebook enabled advertisers to reach ‘jew
haters’. h�ps://www.propublica.org/article/facebook-enabled-advertisers-to-
reach-jew-haters, 2017. Accessed: 2018-11-07.

[3] S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic con-
volutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271, 2018.

[4] S. Bha�arai. Exploring deep learning in combating internet toxicity. 2018.
Accessed: 2019-01-15.

[5] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors
with subword information. Transactions of the Association for Computational
Linguistics, 5:135–146, 2017.

[6] C. D. Brown and H. T. Davis. Receiver operating characteristics curves and
related decision measures: A tutorial. Chemometrics and Intelligent Laboratory
Systems, 80(1):24–38, 2006.

[7] Cambridge. Hate speech. h�ps://dictionary.cambridge.org/dictionary/english/hate-
speech. Accessed: 2018-10-10.

[8] Y. Chen, Y. Zhou, S. Zhu, and H. Xu. Detecting o�ensive language in social
media to protect adolescent online safety. In Privacy, Security, Risk and Trust
(PASSAT), 2012 International Conference on and 2012 International Confernece
on Social Computing (SocialCom), pages 71–80. IEEE, 2012.

79

Bibliography

[9] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun. Very deep convolutional
networks for text classi�cation. arXiv preprint arXiv:1606.01781, 2016.

[10] S. Cook. Cyberbullying around the world – which country has the most
victims? h�ps://www.comparitech.com/internet-providers/cyberbullying-
statistics/, 2018. Accessed: 2018-11-07.

[11] F. Del Vigna, A. Cimino, F. Dell’Orle�a, M. Petrocchi, and M. Tesconi. Hate
me, hate me not: Hate speech detection on facebook. 2017.

[12] Ditch the Label. �e annual bullying survey 2017.
h�ps://www.ditchthelabel.org/research-papers/the-annual-bullying-
survey-2017/, 2017. Accessed: 2018-08-19.

[13] L. Dixon, J. Li, J. Sorensen, N. �ain, and L. Vasserman. Measuring and
mitigating unintended bias in text classi�cation. In available at: www. aies-
conference. com/wp-content/papers/main/AIES 2018 paper 9. pdf (accessed 6
August 2018).[Google Scholar], 2018.

[14] C. dos Santos and M. Ga�i. Deep convolutional neural networks for sentiment
analysis of short texts. In Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers, pages 69–78, 2014.

[15] Facebook. Community standards enforcement preliminary report.
h�ps://transparency.facebook.com/community-standards-enforcement, 2018.
Accessed: 2018-11-07.

[16] R. Fei-Fei. L. and fergus and p. perona. learning generative visual models from
few training examples: an incremental bayesian approach tested on 101 object
categories. In CVPR Workshop on Generative-Model Based Vision, 2004.

[17] S. V. Georgakopoulos, S. K. Tasoulis, A. G. Vrahatis, and V. P. Plagianakos.
Convolutional neural networks for toxic comment classi�cation. arXiv preprint
arXiv:1802.09957, 2018.

[18] N. Ghamrawi and A. McCallum. Collective multi-label classi�cation. In Pro-
ceedings of the 14th ACM international conference on Information and knowledge
management, pages 195–200. ACM, 2005.

80

Bibliography

[19] C. H. E. Gilbert. Vader: A parsimonious rule-based model for sentiment
analysis of social media text. In Eighth International Conference on Weblogs
and Social Media (ICWSM-14). Available at (20/04/16) h�p://comp. social. gatech.
edu/papers/icwsm14. vader. hu�o. pdf, 2014.

[20] X. Glorot and Y. Bengio. Understanding the di�culty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference
on arti�cial intelligence and statistics, pages 249–256, 2010.

[21] G. Gri�n, A. Holub, and P. Perona. Caltech-256 object category dataset. 2007.

[22] B. Habert, G. Adda, M. Adda-Decker, P. B. de Marëuil, S. Ferrari, O. Ferret,
G. Illouz, and P. Paroubek. Towards tokenization evaluation. In Proceedings of
LREC, volume 98, pages 427–431, 1998.

[23] Z. S. Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[24] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering, 21(9):1263–1284, Sept 2009.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pa�ern
recognition, pages 770–778, 2016.

[26] I. Hendrickx, S. N. Kim, Z. Kozareva, P. Nakov, D. Ó Séaghdha, S. Padó, M. Pen-
nacchio�i, L. Romano, and S. Szpakowicz. Semeval-2010 task 8: Multi-way
classi�cation of semantic relations between pairs of nominals. In Proceedings
of the Workshop on Semantic Evaluations: Recent Achievements and Future
Directions, pages 94–99. Association for Computational Linguistics, 2009.

[27] H. Hosseini, S. Kannan, B. Zhang, and R. Poovendran. Deceiving google’s per-
spective api built for detecting toxic comments. arXiv preprint arXiv:1702.08138,
2017.

[28] Jacobellis v. Ohio. 378 U.S. at 197. 1964.

[29] K. Jarre�, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-
stage architecture for object recognition? In 2009 IEEE 12th International
Conference on Computer Vision, pages 2146–2153, Sept 2009.

[30] Jigsaw. Perspective api. h�ps://www.perspectiveapi.com/. Accessed: 2018-10-
05.

81

Bibliography

[31] R. Johnson and T. Zhang. Convolutional neural networks for text cat-
egorization: Shallow word-level vs. deep character-level. arXiv preprint
arXiv:1609.00718, 2016.

[32] Y. Kim. Convolutional neural networks for sentence classi�cation. arXiv
preprint arXiv:1408.5882, 2014.

[33] Y. Kim. Convolutional neural networks for sentence classi�cation. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1746–1751. Association for Computational Linguistics, 2014.

[34] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classi�cation with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[36] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwri�en zip code recognition.
Neural computation, 1(4):541–551, 1989.

[37] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[38] S. Li. Application of Recurrent Neural Networks In Toxic Comment Classi�cation.
PhD thesis, UCLA, 2018.

[39] N. Lomas. Germanys social media hate speech law is now in ef-
fect. h�ps://techcrunch.com/2017/10/02/germanys-social-media-hate-speech-
law-is-now-in-e�ect, 2017. Accessed: 2018-08-03.

[40] T. Mikolov, K. Chen, G. Corrado, and J. Dean. E�cient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[41] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–3119, 2013.

[42] T. Mullen and N. Collier. Sentiment analysis using support vector machines
with diverse information sources. In Proceedings of the 2004 conference on
empirical methods in natural language processing, 2004.

82

Bibliography

[43] V. Nair and G. E. Hinton. Recti�ed linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine
learning (ICML-10), pages 807–814, 2010.

[44] T. H. Nguyen and R. Grishman. Relation extraction: Perspective from convo-
lutional neural networks. In Proceedings of the 1st Workshop on Vector Space
Modeling for Natural Language Processing, pages 39–48, 2015.

[45] M. A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[46] C. Nobata, J. Tetreault, A. �omas, Y. Mehdad, and Y. Chang. Abusive language
detection in online user content. In Proceedings of the 25th international
conference on world wide web, pages 145–153. International World Wide Web
Conferences Steering Commi�ee, 2016.

[47] S. J. Pan, Q. Yang, et al. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2010.

[48] R. Pandarachalil, S. Sendhilkumar, and G. S. Mahalakshmi. Twi�er senti-
ment analysis for large-scale data: An unsupervised approach. Cognitive
Computation, 7(2):254–262, Apr 2015.

[49] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, 2014.

[50] M. T. Ribeiro, S. Singh, and C. Guestrin. ”why should I trust you?”: Explaining
the predictions of any classi�er. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pages 1135–1144, 2016.

[51] B. Ross, M. Rist, G. Carbonell, B. Cabrera, N. Kurowsky, and M. Wojatzki.
Measuring the reliability of hate speech annotations: �e case of the european
refugee crisis. arXiv preprint arXiv:1701.08118, 2017.

[52] C. Silva and B. Ribeiro. �e importance of stop word removal on recall values
in text categorization. In Proceedings of the International Joint Conference on
Neural Networks, 2003., volume 3, pages 1661–1666 vol.3, July 2003.

[53] S. O. Sood, J. Antin, and E. F. Churchill. Using crowdsourcing to improve pro-
fanity detection. In AAAI Spring Symposium: Wisdom of the Crowd, volume 12,
page 06, 2012.

83

Bibliography

[54] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller. Striving for
simplicity: �e all convolutional net. CoRR, abs/1412.6806, 2014.

[55] D. Svozil, V. Kvasnicka, and J. Pospichal. Introduction to multi-layer feed-
forward neural networks. Chemometrics and intelligent laboratory systems,
39(1):43–62, 1997.

[56] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pa�ern recognition, pages 1–9,
2015.

[57] N. �ain, L. Dixon, and E. Wulczyn. Wikipedia Talk Labels: Toxicity.
10.6084/m9.�gshare.4563973.v2, 2017. Accessed: 2018-11-15.

[58] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. E�cient object
localization using convolutional networks. CoRR, abs/1411.4280, 2014.

[59] P. D. Turney. �umbs up or thumbs down?: semantic orientation applied
to unsupervised classi�cation of reviews. In Proceedings of the 40th annual
meeting on association for computational linguistics, pages 417–424. Association
for Computational Linguistics, 2002.

[60] W. Warner and J. Hirschberg. Detecting hate speech on the world wide web.
In Proceedings of the Second Workshop on Language in Social Media, pages
19–26. Association for Computational Linguistics, 2012.

[61] Z. Waseem. Are you a racist or am i seeing things? annotator in�uence on
hate speech detection on twi�er. In Proceedings of the �rst workshop on NLP
and computational social science, pages 138–142, 2016.

[62] Z. Waseem, T. Davidson, D. Warmsley, and I. Weber. Understanding abuse: a ty-
pology of abusive language detection subtasks. arXiv preprint arXiv:1705.09899,
2017.

[63] E. Wulczyn, N. �ain, and L. Dixon. Wikipedia detox.
doi:10.6084/m9.�gshare.4054689, 2016. Accessed: 2018-11-15.

[64] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions.
arXiv preprint arXiv:1511.07122, 2015.

84

Bibliography

[65] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. CoRR, abs/1311.2901, 2013.

[66] D. Zeng, K. Liu, Y. Chen, and J. Zhao. Distant supervision for relation ex-
traction via piecewise convolutional neural networks. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pages
1753–1762, 2015.

[67] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao. Relation classi�cation via con-
volutional deep neural network. In Proceedings of COLING 2014, the 25th
International Conference on Computational Linguistics: Technical Papers, pages
2335–2344. Dublin City University and Association for Computational Lin-
guistics, 2014.

[68] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for
text classi�cation. In Advances in neural information processing systems, pages
649–657, 2015.

[69] C. Zhou, C. Sun, Z. Liu, and F. Lau. A c-lstm neural network for text classi�-
cation. arXiv preprint arXiv:1511.08630, 2015.

85

Appendix

87

Appendix A.

Experimental Environment

Information about the hardware used for training and evaluating the models in this
thesis:

• CPU: Intel i7-7700
• GPU: Nvidia GeForce GTX1070
• RAM: 16GB DDR4

All experiments are implemented using the following so�ware packages with their
corresponding versions:

• CPU: Python 3.6.1
• Keras 2.1.3
• Tensor�ow-gpu 1.5.0
• NumPy 1.15.4
• NLTK 3.2.4
• CUDA 9.0.176

89

Appendix B.

Additional Filter Activation
Analysis

91

Appendix B. Additional Filter Activation Analysis

Example 1 Example 2 Example 3
thanks for experimenting of a political state colleges -
stands for the of femininity you ” dr .
thanks for blocking burn the cell not necessarily correct
thanks for the of vandalism , are o�en supplied
thanks for giving of lumbini buddha samuel becke� infobox
. for example of the oldest establish both points
solution for this carries a political sexes o�en strive
you for understanding of this article publishing various segments
account for yourself blow a 3 in 1994 -
reason for banning follow the basic ‘ ’ oxford

Table B.1.: �ese are three examples of highly activated comment regions of �lters with size 3.
�e �rst one detects the word for, o�en in combination with thanks. �e second one
detects the word of. Example 3, however, detects token sequences which seem random
to humans.

Example 1 Example 2
gay as hell ! he paulus , reached the volga
burn you to hell if uses . perhaps the former
, idiot , jerk , truce was reached in minsk
death is part of the . the ‘ ’ oxford
a bitch . :: : its own format , with
burn in hell . giving the reader the possibility
burn the cell contents , the second de�nes the social
+ torein , torein * . we voted to keep
jews not testing as jews these studies show the endothermic
, suicides grossly misrepresents their the author describes the unveri�able

Table B.2.: �ese are two examples of highly activated comment regions of �lters with size 5. �e
�rst seems like a detector for toxicity. Example 2 looks like it detects rather random, but
neutral, phrases.

92

