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Abstract

The acceleration of magnetic resonance imaging (MRI) has been a central
research topic for many years.
In addition to the correct measurement of time-dependent processes and the
reduction of motion artifacts, the acceleration of MRT is of particular impor-
tance for the clinical applicability of new specific examination methods.
Recently, work has focused in particular on subsampled ”Parallel Imaging”
methods. Only subsegments of the data necessary for a conventional recon-
struction are acquired, but these are measured with several receiving coils
in parallel. In combination with new mathematical methods it is possible to
reconstruct artifact-free images or scans with high temporally resolution from
these accelerated, mutli-coil measurements.
With a special technique, the iteratively regularized Gauss-Newton (IRGN)
method, it is also possible to determine the influence of the spatially variable
receiver coil sensitivity in the reconstruction.
The runtime-optimal implementation of this sophisticated reconstruction proce-
dure in combination with different regularization techniques (Tikhonov L2-norm,
”total variation” and ”total generalized variation”) is the subject of this work.
To achieve fast reconstruction we leverage the power of high-end GPUs with
CUDA and compared the results to a reference implementation in Matlab. In
this thesis the mathematical background is described and then implementation
techniques for a fast image reconstruction are discussed.
A special challenge of the inherent nonlinear inverse problem is the Primal-Dual
Extra-Gradient Algorithm for IRGN, which causes a high computational load.
In order to accelerate the matrix-based calculations, the existing C++ Agile
Library of the Institute of Medical Engineering was extended to include a
CUDA framework for GPU image reconstruction.
The GPU implementation made it possible to reduce the image reconstruction
time to one tenth of the reference implementation.
This work was concluded with a comparative analysis of the reconstruction
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quality by graphics card compared to a reference implementation in Matlab.
The visual impression of the tissue signals showed no immediately recognizable
differences. In the subtraction analysis differences occurred primarily at the
tissue edges. The results of the numerical evaluation showed deviations which
are below the typical noise level.

Keywords: Magnetic Resonance Imaging (MRI), Image Reconstruction, Acceler-
ated Imaging, Constrained Reconstruction, Parallel Imaging, Inverse Problems,
Numerical Optimization.
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1 Introduction

1.1 Parallel imaging as non-linear inverse problem

The signal acquired from a single voxel consists of the spin density ρ in the
object’s voxel volume and additional factors like relaxation, flow, diffusion and
field inhomogeneities (Bernstein et al. 2004).

s⊥(~r, t) ∝ ω0

∫
FOV

d3rM⊥(~r)B⊥(~r)e−i(ω0−Ω)t−φ(~r,t)d~r (1.1)

The field component ~B in equation 1.1 describes the spatial field distribution
of the receiver coil.
The inducing component of the magnetic field originating from the voxel volume
is called magnetization ~M and is responsible for the tissue depending image
contrast.

~M = ~M0(1− e−t/T1)e−t/T∗2 (1.2)

~M⊥ = ~M0 · e−t/T∗2 (1.3)

The signal change in the observed voxel depends on the tissue related T1 time,
which reduces the longitudinal component of the magnetization.
The effect of the tissue related T2 decay is pronounced due to additional field
influences. This results in the observed T∗2 time, which damps the transversal
magnetization.
The magnetic field ~M0 in equation 1.2 represents the initial magnetization after
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1 Introduction

a 90◦ excitation pulse in the target volume, which is damped over time by the
relaxation terms.
Because of the approximately 100-1000 times shorter T∗2 time the influence of
the longitudinal magnetization can be neglected and the signal s⊥ is mainly
depending on the transversal component ~M⊥ (equation 1.3, Haacke et al. 1999).

φ(~r, t) = φ0(~r)− γB(~r)t = φ0(~r)− θB(~r, t) (1.4)

The phase φ(~r, t) of the signal oscillating with the Lamor-frequency (ωL = γB),
depends on the field angle θB relative to the initial angle φ0 at t = 0, right
after the excitation pulse.
It is therefore strong related to the configured MRI excitation coming from a
RF (radio frequency) pulse or applied field gradient switches.
Additional factors like the larmor frequency ω0 and distance-properites like d
and r do also scale the signal amplitude.
The vector~r is the spatial offset from the gradient isocenter, which defines the
center of the FOV.

By using a quadrature amplitude demodulator (QAD) with frequency Ω the
signal can be split into the corresponding transverse components, which equals
the real and imaginary part of the acquired signal (equation 1.5).

s⊥(t) = Re(s⊥(t)) + i · Im(s⊥(t)) (1.5)

Because the induced signal originating from the field M⊥ is proportional to the
spin density ρ and the coil sensitivities cj equal the representative field B⊥(~r)
per receiver coil, equation 1.1 can be rewritten into equation 1.6,

sj(kx, ky) =
∫

FOV

ρ(x, y)cj(x, y)e−i(kxx+kyy)dxdy (1.6)

where the kspace-trajectory vector ~k is split into the components kx and ky,
which equal the corresponding phase shifts φ(x, t) and φ(y, Gy) that are applied
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1.1 Parallel imaging as non-linear inverse problem

to encode the position of the acquired voxels in x and y direction (equation 1.7
and 1.8).
The gyromagnetic constant γ is specific for different kinds of nuclei. For example
the hydrogen atom, which is mainly used in medical MRI, has a value of
2π · 42.58 MHz

T .

φ(x, t) = kxx = −γx
t∫

0

Gx(τ)dτ (1.7)

φ(y, Gy) = kyy = −γy
T∫
0

Gy(τ)dτ (1.8)

In parallel imaging the MRI signal is acquired from several coils surrounding
the object with their corresponding coil sensitivity profiles.
To increase the speed of the acquisition of an entire image it is possible to
acquire a reduced kspace and use the spacial coding of the coil sensitivities as
additional information to prevent aliasing artifacts.
The spacial information can either be used to restore missing kspace lines prior
to the Fourier transform (SMASH, GRAPPA), or in image space after the
Fourier transform (SENSE, Pruessmann et al., 1999).
Because of the bi-linear structure it is not possible to single out the sensitivity
profiles directly from the signal s(t). One possibility is to perform a separate
reference scan independent from the image acquisition.

1.1.1 IRGN background

The described IRGN method estimates the coil sensitivities c1 from the acquired
image with additional information about the field distribution in the image
space.
To solve for the unknown object ρ(~r) function and the unknown sensitivity
profiles cj(~r) at once, a non-linear inversion technique like non-linear CG (Hager
et al. 2006), BFGS (Broyden–Fletcher–Goldfarb–Shanno) (BFGS algorithm
1970) or a Gauss-Newton algorithm needs to be applied.
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1 Introduction

By using the iteratively regularized Gauss-Newton (IRGN) method it is possible
to solve the MRI signal equation 1.9. It can be understood as a non-linear
operator equation with an operator F, which maps the proton density and the
coil sensitivity profiles to the measured data y. (Uecker, 2009)

y = F(x) x =


ρ
c1
...

cN

 (1.9)

The operator function F(ρ, c) = PkFρc, where Pk is the sampling pattern,
which is one for the positions where the measured data exists and zero for
non-sampled data positions.

In this work three different IRGN regularization strategies are described:

• Tikhonov (L2) regularization.
• Total variation (TV) regularization: Has positive effects for edge preserva-

tion and noise removal. But often leads to cartoon-like staircasing artifacts
within inhomogeneous areas.(Knoll, 2011)
• Total generalized variation (TGV) regularization: Has the same advan-

tages like TV in terms of edge preservation and noise removal and also
suppresses staircasing artifacts.(Knoll, 2011)

To be able to solve the non-differentiable variational constraints (TV and TGV)
for the IRGN algorithm a primal-dual extra gradient algorithm is used.

A drawback of the IRGN method is the increased computational burden,
because it requires the calculation of a linear subproblem in several Gauss-
Newton steps.

1.1.2 Gauss-Newton algorithm

The Gauss–Newton algorithm is a well known method to solve non-linear mini-
mization problems.
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1.1 Parallel imaging as non-linear inverse problem

The described method minimizes the squared L2-norm of the residuals, which
can be interpreted as minimizing the squared euclidean length.

Starting with initial values x0 the method updates the parameters xn per
iteration n by a calculated δxn until a configured minimum residual norm
rnorm(x) is reached.

xn+1 = xn + δxn (1.10)

r(xn) = y− F(xn) (1.11)

rnorm(xn) = ‖y− F(xn)‖2
2 (1.12)

Using the Taylor series expansion and stopping after the first derivative, equation
1.9 can be approximated into equation 1.13 which states the Gauss-Newton
method to linearize the problem.

F(x) ≈ F(x) + DF(x)δx (1.13)

F(xn + δxn) ≈ F(xn) + DF(xn)δxn (1.14)

F(xn+1) = F(xn) + DF(xn)δxn (1.15)

δxn+1 = arg min
δxn
‖y− F(xn+1)‖2

2 (1.16)

δxn+1 = arg min
δxn
‖y− F(xn)− DF(xn)δxn‖2

2 (1.17)

To solve the minimization problem 1.17 the derivative of the approximated
residual with respect to the update gap needs to be calculated and set to zero.
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1 Introduction

∂[y− F(xn)− DF(xn)δxn]2

∂[δxn]
= 0 (1.18)

2(y− F(xn)− DF(xn)δxn)(−DF(xn)H) = 0 (1.19)

y(−DF(xn)H) + F(xn)DF(xn)H + DF(xn)δxn)(DF(xn)H) = 0 (1.20)

Equation 1.21 gives the Gauss-Newton formulation with lhs (left-hand-side)
and rhs (right-hand-side) notation.

DF(xn)HDF(xn)δxn = DF(xn)H(y− F(xn)) (1.21)

Equation 1.22 gives the result for a Gauss-Newton update step.

δxn = (DF(xn)HDF(xn))−1DF(xn)H (y− F(xn)) (1.22)

1.1.3 Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm extends the approximated Hessian
(DF(x)HDF(x)) by a positive definite regularization matrix (λI) to .

For large λ, this method is close to the steepest descent method 1.1.6, which is
preferable at the beginning when the process is far off the solution.

For small λ, this method is close to the faster Gauss-Newton method 1.22,
which is preferable, when the optimizer is close to the optimal point.

This way the algorithm becomes more robust, which means that in many
cases it finds a solution even if the linearized equations are bad conditioned

6



1.1 Parallel imaging as non-linear inverse problem

(start very far off the final minimum) (Levenberg–Marquardt algorithm 2018).

δxn+1 = arg min
δxn
‖y− F(xn)− DF(xn)δxn‖2

2 + λn ‖δxn‖2
2 (1.23)

The update rule for δx stated in Equation 1.24 correspond to the squared
minimization problem 1.23 with an additional Tikhonov L2-norm regularization
therm (Tikhonov regularization 2018).

δxn = (DF(xn)HDF(xn) + λn I)−1DF(xn)H (y− F(xn)) (1.24)

Another improvement is to apply the regularization not to the step δx, but to
the result of the update with respect to the initial guess xn + δx− x0 (Uecker,
2009), which yields to the following minimization equation 1.25.

δxn+1 = arg min
δxn
‖y− F(xn)− DF(xn)δx‖2

2 + λ ‖xn + δxn − x0‖2
2 (1.25)

Taking the derivative in respect to δx and setting the result equal to zero gives
the result:

∂[(y− F(xn)− DF(xn)δx)2 + λn(xn + δx− x0)2]

∂[δx]
= 0 (1.26)

∂[(y− F(xn)− DF(xn)δx)2]

∂[δx]
= 2(y− F(xn)− DF(xn)δx)DF(xn)H

∂[λn(xn + δx− x0)2]

∂[δx]
= 2(xn + δx− x0)λn

(1.27)

Applying the equations 1.27 to equation 1.26 gives the following result.
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1 Introduction

(y− F(xn)− DF(xn)δx)DF(xn)H + (xn + δx− x0)λn = 0 (1.28)

yDF(xn)H − F(xn)DF(xn)H − DF(xn)δxDF(xn) +

λnδx + λn(xn − x0) = 0 (1.29)

DF(xn)δxDF(xn) + λnδx =

yDF(xn)H − F(xn)DF(xn)H + λn(xn − x0) (1.30)

The optimal solution of the IRGN algorithm for the update rule δx is stated in
equation 1.31.

δx = (DF(xn)HDF(xn) + λn I)−1DF(xn)H(y− F(xn)) + λn(xn − x0)
(1.31)

1.1.4 Determination of coil sensitivities

In general the coil sensitivities are rather smooth compared to the acquired
object which does contain edges.
This a priori knowledge is used to achieve the desired regularization of the coil
profiles.
The implemented algorithm is using a kspace weighting matrix to penalty
height frequencies, which prefers coil intensity profiles (Uecker, 2009).
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1.1 Parallel imaging as non-linear inverse problem

Figure 1.1: kspace intensity image of the applied weighting matrix Wkspace

Equation 1.32 and 1.33 show the applied operators for W and WH.

W(ξ) = F−1(Wkspace · ξ) (1.32)

WH(ξ) = Wkspace · F (ξ) (1.33)

1.1.5 Differential of the function F(x)

For the calculation of an update step, the differential of the function F(x)
(equation 1.9) and its adjoint is needed.
Equation 1.34 and 1.35 shows DF(x), which is the derivative of the operator
function F(x) and its adjoint DFH(x) (Uecker, 2009).

DF(x)


δρ
δc1
...

δcN

 =

 PkF (ρ ·W(δc1) + δρ ·W(c1))
...

PkF (ρ ·W(δcN) + δρ ·W(cN))

 (1.34)
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1 Introduction

DFH(x)

 δy1
...

δyN

 =


∑N

i=1 W(c)∗i · F−1(Pkδyi)
WH(ρ∗ · F−1(Pkδy1))

...
WH(ρ∗ · F−1(PkδyN))

 (1.35)

Where δyi equals the difference between input rawdata yi and the updated
rawdata based on the current status of weighted coil sensitivities and image ρ
(equation 1.36).

δyi = F (ρ ·W(ci))− yi (1.36)

The complex conjugated proton density and weighted coil sensitivities are
written as ρ∗ and c∗.

1.1.6 Steepest Descent algorithm

The steepest descent algorithm finds the local minimum of a function by taking
steps proportional to the negative gradient direction of the function.
Therefore the algorithm is also known as gradient descent.

For large damping values λ the Levenberg-Marquardt formulation 1.24 equals
the steepest descent update.

δxn = (λn I)−1DF(xn)H (y− F(xn)) (1.37)

1.1.7 IRGN with L2 regularization

In chapter 1.1.2 the result of the minimization algorithm includes the Tikhonov
L2-norm regularization.
The solution of the IRGN minimization algorithm is shown in figure 1.2.

Equation 1.25 can also be rewritten in the following form 1.39 with α and β be-
ing the regularization parameter for the coil sensitivities c and the spin-density
ρ respectively.
F (xn)− y equals the residuum δyi (equation 1.36) per Gauss Newton step.
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1.1 Parallel imaging as non-linear inverse problem

δxn+1 = arg min
δxn
J (δρ, δc) (1.38)

J (δρ, δc) =
1
2
‖DF(xn)δx + F(xn)− y‖2

2 +
α

2
‖W(cn + δcn)‖2

2 +
β

2
‖ρn + δρn‖2

2

(1.39)

The result for the derivative with respect to ρ and c can be derived by applying
equation 1.34 and 1.35 on 1.27.
The results are shown in equation 1.40 and 1.41.

∂J (ρ, c)(δρ, δc)

∂ρ
=

N

∑
i=1

[W(c)∗i · F−1(F (ρ ·W(δci) + W(ci) · δρ) + δyi)]

+ β(ρ + δρ− ρ0) (1.40)

∂J (ρ, c)(δρ, δc)

∂c
= WH[ρ∗ · F−1(F (ρ ·W(δci) + W(ci) · δρ) + δyi]

+ α(c + δci) (1.41)

1 f unc t i on IRGN(y, α, β, τ)
2 ρ← 1
3 c, ρ0 ← 0
4

5 repeat
6 δρ, δc ⇐ Solve (ρ, c, α, β, τ)
7 ρ = ρ + δρ
8 c = c + δc
9 α = max(αmin, α ∗ αq)

10 β = max(βmin, β ∗ βq)
11 tvits = min(tvmax, tvits ∗ 2)
12 until maxit
13 return ρ, c

Figure 1.2: IRGN algorithm with solve call L2Solve, TVSolve or TGVSolve

11



1 Introduction

1 f unc t i on L2Solve(ρ, c, α, β, τ)

2 δρ , δc , δ̂ρ , δ̂c ← 0
3

4 repeat
5 ηρ = ∂ρJ (ρ, c)(δ̂ρ, δ̂c)

6 ηc = ∂cJ (ρ, c)(δ̂ρ, δ̂c)
7 δρold = δρ
8 δcold = δc
9 δρ = δρ− τ ∗ ηρ

10 δc = δc− τ ∗ ηc

11 δ̂ρ = 2 ∗ δρ− δρold

12 δ̂c = 2 ∗ δc− δcold
13 until tvits
14 return δρ, δc

Figure 1.3: Solution of the IRGN-L2 sub-problem

Figure 1.3 shows the calculation of the update rules δρ and δc for every Gauss
Newton iteration of the IRGN algorithm shown in figure 1.2.

The primal descent step applies the τ scaled, negative gradient onto δρ and δc
respectively. The calculation for the step length τ is shown in section 1.1.9.
Also an extra gradient term 2 ∗ x− xold is used in every iteration.

1.1.8 TV and TGV regularization

The quadratic nature of the L2 regularization penalizes large values much
stronger than small values originating from noise (Knoll, Kristian Bredies,
et al., 2011).
To overcome this problem other regularization techniques like total variation
(TV) or total generalized (TGV) can be used.
The algorithms for the TV and TGV subproblems are shown in figure 1.4 and
1.5.

TV(u) = β
∫

Ω
‖∇u‖1 dx (1.42)
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1.1 Parallel imaging as non-linear inverse problem

The regularization functional for the total variation is shown in equation 1.42.
It changes the algorithm to a saddle point problem with the following form
(1.43).

min
δρ,δc

max
pβ

Ĵ (δρ, δc) + 〈∇xy(ρ + δρ), p̂β〉 − 1‖·‖∞≤α,β( p̂β) (1.43)

Ĵ (δρ, δc) =
1
2
‖DF(xn)δx + F(xn)− y‖2

2 +
α

2
‖W(cn + δcn)‖2

2 (1.44)

The TV functional only applies changes to the minimization problem with
respect to ρ. Therefore the derivative with respect to c has the same result like
in the L2 regularization case.
The result for the derivative with respect to ρ is shown in equation 1.45.

∂J (ρ, c)(δρ, δc)

∂ρ
=

N

∑
i=1

[W(c)∗i · F−1(F (ρ ·W(δci) + W(ci) · δρ) + δyi)]

+∇T
xy( p̂β) (1.45)

p̂β =
pβ + σ∇xy(ρ + δ̂ρ))

max(1, β−1
∥∥∥pβ + σ∇xy(ρ + δ̂ρ)

∥∥∥
2
)

(1.46)

The nabla operator ∇xy calculates point-wise the discrete differences.

It’s adjoint operator ∇T
xy equals the negative derivative −div and calculates

the point-wise transposed descrete finite differences (Finite difference 2018).

The term pβ + σ∇xy(ρ + δ̂ρ)) is called the dual ascent step.
It applies a positive gradient with step size σ on the dual variable pβ.
The parameter β in equation 1.46 controls how strong the dual update affects
the primal gradient calculation.
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1 f unc t i on TVSolve(ρ, c, α, β, τ)

2 δρ , δc , δ̂ρ , δ̂c , pβ p̂β ← 0

3

4 repeat
5 ηρ = ∂ρJ (ρ, c)(δρ̂, δ̂c)

6 ηc = ∂cJ (ρ, c)(δ̂ρ, δ̂c)
7 δρold = δρ
8 δcold = δc
9 δρ = δρ− τ ∗ ηρ

10 δc = δc− τ ∗ ηc

11 δ̂ρ = 2 ∗ δρ− δρold

12 δ̂c = 2 ∗ δc− δcold
13 until tvits
14 return δρ, δc

Figure 1.4: Solution of the IRGN-TV sub-problem

A downside of the TV regularization is the assumption of piece-wise constant
regions, which leads to a visual stair casing artifact (Knoll, 2011).
This problem can be solved by using the total generalized variation.
The TGV-functional changes the algorithm to a saddle point problem with the
following form (equation 1.47).

min
δρ,δc,v

max
p̂β,p̂2β

Ĵ (δρ, δc) + 〈∇xy(ρ + δρ)− v, p̂β〉+ 〈Ev, p̂2β〉

− 1‖·‖∞≤α,β,2β( p̂β, p̂2β) (1.47)

Ĵ (δρ, δc) =
1
2
‖DF(xn)δx + F(xn)− y‖2

2 +
α

2
‖W(cn + δcn)‖2

2 (1.48)

The primal descent variable v balances the first and second derivative (see
equation 1.49) in the TGV functional 1.47.
To calculate v a separate primal descent step per iteration of the sub-problem
is included in the algorithm 1.5.
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1.1 Parallel imaging as non-linear inverse problem

Ev =
1
2

(∇xyv +∇T
xyv) = (−div2) · v (1.49)

Similar to the derivation of the minimization problem with TV regularization,
also the TGV functional only has components depending on ρ.
The result of the derivative with respect to ρ and c is shown in equation 1.50
and 1.41.

∂J (ρ, c)(δρ, δc)

∂ρ
=

N

∑
i=1

[W(c)∗i · F−1(F (ρ ·W(δci) + W(ci) · δρ) + δyi)]

+∇T
xy( p̂β) (1.50)

Due to the dependency of the dual ascent step on the primal descent variable
v, equation 1.46 changes to 1.51.
Equation 1.52 calculates the dual ascent step depending on the regularization
parameter β and the step length σ.

p̂β =
pβ + σ∇xy(ρ + δ̂ρ)− v)

max(1, β−1
∥∥∥pβ + σ∇xy(ρ + δ̂ρ)− v

∥∥∥
2
)

(1.51)

p̂2β =
p2β + σ(Ev)

max(1, 2β−1
∥∥p2β + σ(Ev)

∥∥
2)

(1.52)

To calculate the primal dual variable v for the next iteration, an extra gradient
term 2 ∗ v− vold is used.
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1 f unc t i on TGVSolve(ρ, c, α, β, τ)

2 δρ , δc , δ̂ρ , δ̂c , pβ , p̂β , v , v̂ ← 0

3

4 repeat
5 ηρ = ∂ρJ (ρ, c)(δ̂ρ, δ̂c)

6 ηc = ∂cJ (ρ, c)(δ̂ρ, δ̂c)
7 ηv = −divxy p̂2β − p̂β

8 δρold = δρ
9 δcold = δc

10 vold = v
11 δρ = δρ− τ ∗ ηρ

12 δc = δc− τ ∗ ηc
13 v = v− τ ∗ ηv

14 δ̂ρ = 2 ∗ δρ− δρold

15 δ̂c = 2 ∗ δc− δcold
16 v̂ = 2 ∗ v− δvold
17 until tvits
18 return δρ, δc

Figure 1.5: Solution of the IRGN-TGV sub-problem

1.1.9 Lipschitz step-size

To calculate the Lipschitz constant L the implementation 1.6 uses some iterations
of the power iteration method (Power iteration 2018) to approximately compute
the norm of the partial Fréchet derivatives of the operator function F(x).
Equation 1.53 shows an calculation step of the norm of DF(x), which is used
to estimate the Lipschitz constant 1.54.
The initial values for xρ and xc are random distributed.

δxi+1 =
DF(x)δxi

‖DF(x)δxi‖
(1.53)

L = (DF(x)δxi+1)T · δxi+1 (1.54)
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1.1 Parallel imaging as non-linear inverse problem

Figure 1.6 shows an implementation of the algorithm used to calculate the
step-size τ for the primal update term.
σ is the step-size for the dual update used for TV and TGV regularization.
The calculated step lengths σ and τ are in a range where the assumption
στL2 < 1 holds (Knoll, 2011).

1 % est imate operator norm us ing power i t e r a t i o n
2 x1 = rand (n ,m) ; x2 = rand (n ,m, nc ) ;
3 [ y1 , y2 ] = M( x1 , x2 ) ;
4 f o r i =1:10
5 i f norm( y1 ( : ) )˜=0
6 x1 = y1 . / norm( y1 ( : ) ) ;
7 e l s e
8 x1 = y1 ;
9 end

10 x2 = y2 . / norm( y2 ( : ) ) ;
11 [ y1 , y2 ] = M( x1 , x2 ) ;
12 l 1 = y1 ( : ) ’∗ x1 ( : ) ;
13 l 2 = y2 ( : ) ’∗ x2 ( : ) ;
14 end
15 L = 2∗max( abs ( l 1 ) , abs ( l 2 ) ) ; % L i p s c h i t z constant est imate ,
16 tau = 1/ s q r t (8+(L) ) ; % primal s tep s i z e
17 sigma = 1/ s q r t (8+(L) ) ; % dual s tep s i z e

Figure 1.6: Estimate operator norm using power iteration for estimating the Lipschitz constant
and defining the primal and dual step-size (Lipschitz constant for gradient operator
equals to 8)
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1.1.10 Data initialization

As input data the algorithm receives the coil sensitivity data and regularization
factors needed for the calculation.

The rawdata is normalized in the way, that the initial norm of the residuum
(equation 1.12) has a value of 100.
This can be achieved with equation 1.55.

y =
100
‖data‖ · data (1.55)

1.1.11 Postprocessing

The applied postprocessing, which is shown in equation 1.56 scales the derived
proton-density values with the RSS (root-sum-squared) of the calculated coil
sensitivities.

To be able to compare different regularization techniques (Knoll, 2011) the
result is also scaled by the normalization factor (see equation 1.55).

ρirgn = ρ ·

√√√√ N

∑
i=1
|W(ci)|2 ·

100
‖data‖ (1.56)
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1.2 CUDA

1.2 CUDA

Because of the nature of a graphics processing unit (GPU) to handle and
calculate big datasets concurrently, it is also used in computational medicine.

The compute unified device architecture (CUDA) by Nvidia offers an ap-
plication programming interface (API) which allows software developers the
use of Nvidia-GPUs as general purpose processing unit.
This approach is also known as GPGPU.

Modern computer architectures are classified by the Flynn‘s Taxonomy.
The definitions (1.1) are based upon the possible number of concurrent instruc-
tions and data streams in a processing unit (Flynn’s taxonomy 2018).

SISD single-instruction, single-data e.g. single core CPU
MIMD multiple-instruction, multiple-data e.g. multi core CPU
SIMD single-instruction, multiple-data e.g. data-based parallelism
MISD multiple-instruction, single-data e.g. fault-tolerant computers
SIMT single-instruction, multiple-threads Is a combination of SIMD with multi

threading, which is used in modern par-
allel computing (CUDA).

Table 1.1: Extended Flynn‘s Taxonomy

Since the goal for a CPU is to get the best performance for a single heavy
weight thread, it’s latency oriented design concentrates following factors:

• Big data caches
• Low latency arithmetic units
• Complex Control Logic: Branch prediction, Out-of-order-execution

The purpose of a GPGPU is to get the best performance for a lot of simple
threads, which leads to an throughput oriented design:

• Small caches
• Hide latency with computation
• In-order execution without branch prediction
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1 Introduction

• Issue the same command to multiple cores

Figure 1.7 shows the dependency of reachable speedup by parallelizing sequential
instructions.
Amdahl’s definition for the achievable speedup s is a function (1.57) depending
on the number of processors p and the fraction of parallelize-able code N
Amdahl’s law 2018.

s =
1

(1− p) + p
N

(1.57)

Figure 1.7: Amdahl’s Law

1.2.1 CUDA environment

A CUDA program calls kernel functions, which execute a set of 32 parallel
threads with the same instructions.
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1.2 CUDA

A unit of 32 threads is called a warp (NVidia, 2012).

Each thread is running on a scalar processor (Scalar processor 2017) with
very fast memory access to its own registers and local memory areas (see figure
1.8).
A streaming multiprocessor (SM) consists of several scalar processors and a
fast L1 cache with a shared memory space for inter-block communication.

Figure 1.8: CUDA memory model

An example call of a kernel function with defined sizes for blocks per grid and
threads per block is shown in figure 1.9.

1 functionName<<<blocksPerGrid , threadsPerBlock>>>(output , input ) ;

Figure 1.9: Example for a CUDA device function call with defined block and grid size

Because the IRGN and Agile implementation focuses on fast matrix and vector
calculations, it is crucial to use as many threads with fast memory access per
calculation as possible.
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A grid element can only share its results into the global memory space af-
ter a kernel-wide global synchronization, which makes the calculation slow and
is therefore used for other application concepts.

To utilize as many threads with a fast memory communication pipeline as
possible, the correct number of blocks per grid and number of threads per block
needs to be calculated.
Equation 1.58 shows the calculation of the needed number of blocks nbBlocksPerGrid
for a maximal number of threads per block nbThreadsPerBlock and given data
elements N.

nbBlocksPerGrid =
N + nbThreadsPerBlock− 1

nbThreadsPerBlock
(1.58)

Since the release of devices with compute compatibility 3.0 the maximal number
of threads per block for dimension x is 1024 (CUDA C Programming Guide
2018).
Another limiting factor is the size of the shared memory in a streaming multi-
processor, which executes the instructions of a block (see figure 1.10).
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1.2 CUDA

Figure 1.10: CUDA’s automatic scalability for multi streaming multiprocessor architectures

1 template <typename f loatType , typename complexType>
2 void pattern ( f loatType ∗ z ,
3 complexType const ∗ x ,
4 unsigned const & s i z e )
5 {
6 unsigned nbBlocksPerGrid = ( s i z e + maxNumThreadsPerBlock − 1)
7 / maxNumThreadsPerBlock ;
8 unsigned nbThreadsPerBlock = maxNumThreadsPerBlock ;
9

10 patternGPU<f loatType> <<<nbBlocksPerGrid , nbThreadsPerBlock>>>(
11 z ,
12 x ,
13 s i z e ) ;
14 }

Figure 1.11: CUDA device function patternGPU call with defined block and grid size

Figure 1.11 shows the call of the kernel function patternGPU with defined
number of blocks and threads.
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The purpose of the multiprocessor control unit is to schedule the warp ex-
ecutions, which strongly depends on their execution time.

To gain high performance the first step is to maximize the overall memory
throughput for the application by minimizing data transfers with low bandwidth
(CUDA C Programming Guide 2018).

Another important performance factor is to maximize the instruction through-
put with following measurements:

• use of arithmetic instructions with high throughput: intrinsic functions,
single-precision.
• minimize divergent warps caused by control flow instructions.
• optimize synchronization points ( syncthreads()).

To declare a host side function execution on the GPU, the keyword global
needs to be used.
Each thread that executes the kernel function is given an unique thread index
number in a block, that is accessible through the built-in threadIdx variable.
Also each block in a grid has an identification number, which is defined via the
built-in variable blockIdx.
To access the currently running thread, it’s global id threadId can be calculated
using the defined variables threadIdx, blockIdx and the actual block and grid
dimensions (blockDim, gridDim).
An example for the calculation of the thread ID in an one dimensional block
can be seen in equation 1.59.

threadId = blockDim.x ∗ blockIdx.x + threadIdx.x; (1.59)

Figure 1.12 shows the source code of the kernel function patternGPU.
To avoid an out of range access of the given data-pointer, the upper boundary
for the threadId must be set to the given data size N.
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1.2 CUDA

1 template <typename f loatType , typename complexType>
2 g l o b a l void patternGPU ( f loatType ∗ z ,
3 complexType const ∗ x ,
4 unsigned const & N)
5 {
6 unsigned threadId = blockDim . x ∗ blockIdx . x + threadIdx . x ;
7

8 i f ( th r ead id < N)
9 {

10 f loatType norm = a g i l e : : norm( x [ threadId ] ) ;
11 z [ threadId ] = ( s q r t (norm) > 0) ? f loatType (1 ) : f loatType (0 ) ;
12 }
13 }

Figure 1.12: CUDA global device function patternGPU

cuBLAS

The cuBLAS library is part of the AGILE environment and used for the IRGN
calculation.
It is an addition to the AGILE low-level implementation of basic matrix and
vector calculations.

Nvidia’s cuBLAS library is a parallelized implementation of BLAS (Basic
Linear Algebra Subprograms), which provides standard building blocks to
perform basic vector and matrix operations (BLAS (Basic Linear Algebra
Subprograms) 2018).

The functionality is divided into three levels, which correspond to the complex-
ities of the algorithms.
Level 1 performs scalar, vector and vector-vector operations, Level 2 matrix-
vector operations and Level 3 performs matrix-matrix operations.

The Agile classes for matrix (GPUMatrix 2.2.1) and vector (GPUVector
2.2.1) calculations define wrapper functions for the second version of cuBLAS
(cuBLAS v2).
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cuFFT

The Nvidia’s cuFFT implementation is based on the Cooley-Tukey and Bluestein
algorithm for the calculation of the Fast Fourier Transform.

The implementation uses a divide-and-conquer algorithm with unrolled recur-
sion, loops and conditionals cuFFT :: CUDA Toolkit Documentation 2018.

The combination of the floating-point power and parallelism of the GPU
with this technique, optimizes the efficiency to calculate the discrete Fourier
transform.

The cuFFT library supports the following features:

• Complex and real-valued 1D, 2D and 3D transforms.
• Highly optimization for input sizes of the powers of two.
• Floating point numbers up to double-precision (64-bit).
• Streamed and batched execution, enabling asynchronous computation

and data movement.

1.3 Agile

The functionality for the CUDA powered implementation of the IRGN-T(G)V
algorithm is based on the AGILE library (Freiberger et al., 2013).
AGILE offers an environment for Linear and non-linear image reconstruction
using the GPU and is an open source library.
It is implemented with C++ and the project is managed with CMake.
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2 Methods

The CUDA powered IRGN-T(G)V application got developed on a PC worksta-
tion equipped with a CUDA-powered GPU.
A 64bit linux operating system has been chosen as compile target.
The used PC or server operating system is Ubuntu linux version 16.04.5 LTS -
cenial.
The linux operating system can be downloaded from the official ubuntu home-
page (https://www.ubuntu.com).

2.1 Getting started

To be able to compile, link and execute the application, the Nvidia driver for
the GPU need to be installed on the system.

2.1.1 Qt creator

The Qt Creator IDE can be downloaded and installed via the YaST package
manager. The used version is 2.6.2.

2.1.2 CUDA

The CUDA Framework can be downloaded from the Nvidia homepage
https://developer.nvidia.com/cuda-downloads.
The used toolkit version is v7.5.
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2 Methods

According to the used CUDA version, also the used compiler needs to be
updated according to the Nvidia reference.

2.1.3 Agile

The Agile library can be downloaded from a GIT repository which is located
at https://github.com/IMTtugraz/AGILE.

2.2 Agile additions

The agile library has been extended with low and high-level code for the calcu-
lation of the IRGN algorithm.

High-level extensions effect the implementation of the GPUMatrix, GPUVector,
GPUComplex classes.
The Agile low-level implementation of the cuBLAS v2 functionality is located
in the file gpu matrix.ipp.
GPU kernel implementations are located in the file gpu vector.ipp.

2.2.1 Matrix functions

The following GPUMatrix methods wrap functions of the second cuBLAS
version (cuBLAS v2) and the agile low-level implementation:

• Scale a matrix A with a scalar alpha and copy the result to B.

1 template <typename TType>
2 void s c a l e ( const typename t o r e a l t y p e <TType> : : type& alpha ,
3 const GPUMatrix<TType>& A,
4 GPUMatrix<TType>& B ) ;

• This method calculates the phase of complex matrix elements by using
the low-level phaseVector method located in gpu vector.ipp.
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2.2 Agile additions

1 template <typename TType1 , typename TType2>
2 i n l i n e void phase ( const GPUMatrix<TType1>& X,
3 GPUMatrix<TType2>& Y ) ;

• fftshift and ifftshift perform a shift of the zero-frequency component to
center the spectrum of a kspace data matrix.
Both are wrapper functions for the low-level implementation located in
the gpu vector.ipp file.

1 template <typename TType1>
2 void f f t s h i f t (TType1∗ x , unsigned rows , unsigned c o l s ) ;
3

4 template <typename TType1>
5 void i f f t s h i f t (TType1∗ x , unsigned rows , unsigned c o l s ) ;

• Complex or real square-root low-level calculation

1 template <typename TType>
2 g l o b a l void sqrt GPU ( const TType∗ x , TType∗ y , unsigned

s i z e )
3 {
4 unsigned thread id = blockDim . x ∗ blockIdx . x + threadIdx . x ;
5 i f ( th r ead id < s i z e ) // whi l e
6 {
7 y [ th r ead id ] = a g i l e : : cusqr t ( x [ th r ead id ] ) ;
8 // thread id += blockDim . x∗gridDim . x ;
9 }

10 }

Square root of a complex number

The Agile library has been extended with the functionality to calculate the
square-root of a complex number (Rabinowitz, n.d.).
The calculation is shown in equation 2.1.

√
x + iy =

√√√√√√x2 + y2 + x
2

+ sign(y) ∗ i

√√√√√√x2 + y2 − x
2

(2.1)
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The compiler flag inline is used to reduce instruction fetch stalls during a
warp execution. It should only be used in conjunction with small functions.

The method complexSqrt() is compiled for the device (GPU) and the host
(CPU) by using the flags device and host .

• Implementation of the complex square-root calculation.

1 // c l a s s−wide d e f i n i t i o n :
2 #d e f i n e DEVICEHOST i n l i n e d e v i c e h o s t
3

4 DEVICEHOST GPUComplex complexSqrt ( ) const
5 {
6 TType vz=1;
7 i f (y<0)
8 vz=−1;
9 TType r e a l = TType( s q r t f ( ( s q r t f ( x∗x+y∗y )+x ) /2) ) ;

10 TType imag = TType( vz∗ s q r t f ( ( s q r t f ( x∗x+y∗y )−x ) /2) ) ;
11

12 re turn GPUComplex( r ea l , imag ) ;
13 }

2.2.2 Vector functions

• Low-level phase calculation of the entries in the complex vector x.

1 void phaseVector ( const TType1∗ x ,
2 TType2∗ y ,
3 unsigned s i z e ) ;

• Calculation of the pattern vector as described in 2.2.3.

1 void pattern ( const TType∗ x ,
2 typename t o r e a l t y p e <TType> : : type∗ z ,
3 unsigned s i z e ) ;

30



2.2 Agile additions

• The get content method performs a hard-copy in the global memory of
the given data pointer xdata with defined sizes.

1 void ge t content ( const TType∗ x data ,
2 unsigned rows ,
3 unsigned co l s ,
4 unsigned row o f f s e t ,
5 unsigned c o l o f f s e t ,
6 TType∗ z ,
7 unsigned z rows ,
8 unsigned z c o l s ) ;

2.2.3 FFT class

The FFT class provides methods to transform a matrix from the kspace (Fourier
domain) to the image space and vice versa.
The forward and inverse fast Fourier transform is computed by the NVIDIA R©
CUDATM cuFFT library (see chapter 1.2.1).

FFT

private

variable declarations

cufftHandle

unsigned

agile::GPUMatrix<TType>

agile::GPUMatrix<typename agile::to real type<TType>::type>

std::vector<TType>

GPUMatrix<TType>

Figure 2.1: FFT private Class structure
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FFT

public

constructor / destructor

FFT()

FFT(unsigned num rows, unsigned num columns)

virtual FFT()

method

void Init()

void setfftplan(unsigned, unsigned);

int CenterdIFFT(const GPUMatrix<TType>&, GPUMatrix<TType>&);

int CenterdFFT(const GPUMatrix<TType>&, GPUMatrix<TType>&);

int CenterdIFFTpattern(const GPUMatrix<TType>&, GPUMatrix<TType>&);

int CenterdFFTpattern(const GPUMatrix<TType>&, GPUMatrix<TType>&);

void calc pattern(const GPUMatrix<TType>&);

int CenteredForward(const GPUVector<TType>&, GPUVector<TType>&, unsigned, unsigned);

int CenteredInverse(const GPUVector<TType>&, GPUVector<TType>&, unsigned, unsigned);

int Forward(const GPUVector<TType>&, GPUVector<TType>&, unsigned, unsigned);

int Inverse(const GPUVector<TType>&, GPUVector<TType>&, unsigned, unsigned);

get and set methods

agile::GPUMatrix<TType>* get pattern()

void set pattern(const agile::GPUMatrix<TType>&)

Figure 2.2: FFT public Class structure
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Description of methods

The methods CenteredFFT and CenteredIFFT are used to shift between cen-
tered and not centered Fast Fourier Transform.
This considers the matrix element [0,0] to be the DC-part in the center of the
kSpace.

CenterdFFTpattern and CenterdIFFTpattern apply a calculated pattern (calc pattern)
in the fourier-domain.

• Default constructor.

1 FFT( )

• Constructor with fft-plan definition for given size.

1 FFT( unsigned num rows ,
2 unsigned num columns )

• Destructor destroys the predefined fft-plan.

1 v i r t u a l ˜FFT( )

• The init-method initializes the ones complex vec cpu nxns matrix with
TType value 1, which is needed for pattern generation.

1 void I n i t ( )

• The cuFFT API provides a simple configuration mechanism, which is
called plan, that uses internal building blocks to optimize the transfor-
mation for the given configuration.
setfftplan creates a plan by wrapping the cufftPlan2d method.

1 void s e t f f t p l a n ( unsigned num rows ,
2 unsigned num columns ) ;

• Calculates a pattern matrix from given in mat and saves the result in the
member variable pattern complex with value type TType.
The calculated pattern value is 1 (for complex value: 1+0i), if the absolute
input value is greater than 0.

1 void c a l c p a t t e r n ( const GPUMatrix<TType>& in mat ) ;

• A pre-calculated pattern matrix can be set or get via the following public
methods.
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2 Methods

1 a g i l e : : GPUMatrix<TType>∗ ge t pa t t e rn ( )
2 void s e t p a t t e r n ( const a g i l e : : GPUMatrix<TType>& pattern mat ) ;

• Calculates the centered fourier transform of in mat.
The result is given by reference in new out mat matrix.

1 i n t CenterdIFFT ( const GPUMatrix<TType>& in mat ,
2 GPUMatrix<TType>& out mat ) ;}
3 i n t CenterdFFT ( const GPUMatrix<TType>& in mat ,
4 GPUMatrix<TType>& out mat ) ;

• Calculates the centered fourier transform of in mat with applied pattern.
The result is given by reference in new out mat matrix.

1 i n t CenterdIFFTpattern ( const GPUMatrix<TType>& in mat ,
2 GPUMatrix<TType>& out mat ) ;
3 i n t CenterdFFTpattern ( const GPUMatrix<TType>& in mat ,
4 GPUMatrix<TType>& out mat ) ;

• Calculates the fourier transform of a given input vector in vec with the
predefined fft-plan.
A start offset of the data-pointer can be set via in offset and out offset.

1 i n t Forward ( const GPUVector<TType>& in vec ,
2 GPUVector<TType>& out vec ,
3 unsigned i n o f f s e t = 0 ,
4 unsigned o u t o f f s e t = −1) ;
5 i n t Inve r s e ( const GPUVector<TType>& in vec ,
6 GPUVector<TType>& out vec ,
7 unsigned i n o f f s e t = 0 ,
8 unsigned o u t o f f s e t = −1) ;

• Calculates the centered fourier transform of a given input vector in vec
with the predefined fft-plan.
A start offset of the data-pointer can be set via in offset and out offset.

1 i n t CenteredForward ( const GPUVector<TType>& in vec ,
2 GPUVector<TType>& out vec ,
3 unsigned i n o f f s e t = 0 ,
4 unsigned o u t o f f s e t = −1) ;
5 i n t CenteredInverse ( const GPUVector<TType>& in vec ,
6 GPUVector<TType>& out vec ,
7 unsigned i n o f f s e t = 0 ,
8 unsigned o u t o f f s e t = −1) ;
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2.2 Agile additions

2.2.4 KSpaceFOV class

To prevent backfolding artifacts in the frequency encoded direction, the FOV
(field of view) has to be larger than the imagined specimen.
Due to the fast sampling of the frequency direction it is common to configure a
rectangular FOV.
With the help of the KSpaceFOV class it is possible to resize a kspace matrix
by cropping the data matrix in the image domain.

PostProcess

public

constructor / destructor

KSpaceFOV()

KSpaceFOV()

methods

int genkspace fov(const GPUMatrix<TType>&, GPUMatrix<TType>&);

private

variable declarations

agile::FFT<TType>* fftobj ;

Figure 2.3: KSpaceFOV public Class structure
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2 Methods

Description of methods

• The default constructor initializes a new FFT object.

1 KSpaceFOV( )

• Destructor frees the FFT object and releases its resources.

1 v i r t u a l ˜KSpaceFOV( )

• The method genkspace fov resizes the FOV for the input matrix in mat
and returns the result by reference in out mat.
The resulting matrix has a squared dimension with the size defined by
the number of input rows (phase direction).

1 i n t genkspace fov ( const GPUMatrix<TType>& in mat ,
2 GPUMatrix<TType>& out mat ) ;

2.2.5 PostProcess class

The PostProcess Class consists of methods to get the real or imaginary part
from a complex valued matrix.
Methods to calculate the absolute or phase value are also included.
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PostProcess

public

constructor / destructor

PostProcess()

PostProcess(unsigned, unsigned, unsigned = 1)

PostProcess()

method

void calc abs(const GPUMatrix<TType>*, GPUMatrix<TType real>&);

void calc phase(const GPUMatrix<TType>*, GPUMatrix<TType real>&);

void calc imag(const GPUMatrix<TType>*, GPUMatrix<TType real>&);

void calc real(const GPUMatrix<TType>*, GPUMatrix<TType real>&);

get and set methods

void set size(unsigned, unsigned, unsigned = 1)

private

variable declarations

unsigned num rows ;

unsigned num columns ;

unsigned num coils ;

Figure 2.4: PostProcess public Class structure

Description of methods

• The default constructor initializes a PostProcess object.

1 PostProcess ( )

• Constructor to initialize a PostProcess object with given dimensions.

1 PostProcess ( unsigned num rows ,
2 unsigned num columns ,
3 unsigned num coi l s = 1)
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• Destructor

1 v i r t u a l ˜ PostProcess ( )

• Calculates the absolute values of an input matrix and returns a reference
to the resulting matrix.

1 void c a l c a b s ( const GPUMatrix<TType>∗ in mat ,
2 GPUMatrix<TType real>\& out mat ) ;

• Calculates the phase values of an input matrix and returns a reference to
the resulting matrix.

1 void ca l c phas e ( const GPUMatrix<TType>∗ in mat ,
2 GPUMatrix<TType real>\& out mat ) ;

• Returns a reference to a matrix with the imaginary values of an input
matrix.

1 void ca lc imag ( const GPUMatrix<TType>∗ in mat ,
2 GPUMatrix<TType real>\& out mat ) ;

• Returns a reference to a matrix with the real values of an input matrix.

1 void c a l c r e a l ( const GPUMatrix<TType>∗ in mat ,
2 GPUMatrix<TType real>\& out mat ) ;
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2.3 IRGN-L2/T(G)V implementation

2.3 IRGN-L2/T(G)V implementation

The implementation of the IRGN algorithm in C++ is based on the Matlab
code written by Clason and Bredies (Clason, Bredies 2011).
To simplify the comparison of the implementation between the Matlab and
C++, the method (function) names are equal and start with a capital letter
(in contrast to usual coding standards).

The IRGN algorithm (figure 1.2) is implemented in the Iteration method
located in the IRGN class.
The update rules δρ and δc for every Gauss Newton iteration of the IRGN algo-
rithm can be calculated by using one of the three implemented sub-problems.
The solver for the IRGN sub-problem with a L2 regularization is shown in
figure 1.3.
The implemented counterpart in C++ is implemented in the L2Solve class.
Implementations for the IRGN sub-problems with TV (figure 1.4) and TGV
(figure 1.5) regularization can be found in the classes TVSolve and TGVSolve
respectively.

2.3.1 Structure

The abstract base class IRGN implements methods to initialize and compute
the IRGN algorithm.
The ability to choose between different solvers with L2, TV or TGV regularizers
is implemented via the object oriented polymorphism mechanism.
The classes L2Solve, TVSolve and TGVSolve inherit from the abstract base
class IRGN and override the pure virtual method Solve(...).

Figure 2.5 shows the inheritance structure.
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2 Methods

IRGN

declarations

virtual void Solve(...) = 0;

L2Solve

declarations

void Solve(...)

TVSolve

declarations

void Solve(...)

TGVSolve

declarations

void Solve(...)

Figure 2.5: IRGN Structure
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2.3 IRGN-L2/T(G)V implementation

2.3.2 IRGN parameter configuration

Figure 2.6 shows the IRGN params structure, which declares the IRGN algo-
rithm configuration.

IRGN Params

public

variable declarations

unsigned int maxit;

unsigned char tvtype;

unsigned int tvits;

float alpha min;

float beta min;

float alpha0;

float beta0;

float alpha q;

float beta q;

Figure 2.6: IRGN Params structure

2.3.3 IRGN class

Figure 2.7, 2.8 and 2.9 show the declaration structure of the IRGN class.
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IRGN

public

constructor / destructor

IRGN()

IRGN(GPUMatrix<TType>*, unsigned int, IRGN Params)

IRGN(GPUMatrix<TType>*, unsigned int)

IRGN()

method

void HighFreqPenalty();

void Normalize();

void Iteration();

void Postprocess();

get and set methods

void set param(IRGN Params)

void set break calc(bool)

void set num coils(unsigned int)

void set num rows(unsigned int)

void set num columns(unsigned int)

void set coil(GPUMatrix<TType>*, unsigned int)

GPUMatrix<TType>* get coil()

unsigned int get numcoils()

std::vector<float> get nr k()

GPUMatrix<TType>* get us mat()

GPUMatrix<typename agile::to real type<TType>::type>* get image()

Figure 2.7: IRGN Class Structure Public
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2.3 IRGN-L2/T(G)V implementation

IRGN

protected

methods

void CenterdFFT(const GPUMatrix<TType>*, GPUMatrix<TType>*, unsigned int)

void CenterdIFFT(const GPUMatrix<TType>*, GPUMatrix<TType>*, unsigned int);

void CenterdFFTpattern(const GPUMatrix<TType>*, GPUMatrix<TType>*, unsigned int);

void CenterdIFFTpattern(const GPUMatrix<TType>*, GPUMatrix<TType>*, unsigned int);

void ApplyW(const GPUMatrix<TType>*, GPUMatrix<TType>*, unsigned int);

void ApplyWH(const GPUMatrix<TType>*, GPUMatrix<TType>*, unsigned int);

void ApplyDFH(GPUMatrix<TType>*, const GPUMatrix<TType>*);

void ApplyM(GPUMatrix<TType>*, GPUMatrix<TType>*,
const GPUMatrix<TType>*, const GPUMatrix<TType>*);

void CopyMatrixZ(const GPUMatrix<TType>*, GPUMatrix<TType>*, unsigned int);

TType2 calcLipschitz();

void Solve( const GPUMatrix<TType>*,
const GPUMatrix<TType>*,
const GPUMatrix<TType>*,
const GPUMatrix<TType>*,
unsigned,
typename TType::value type,
typename TType::value type,
GPUMatrix<TType>*,
GPUMatrix<TType>*) = 0;

variable declarations

unsigned int

GPUMatrix<typename agile::to real type<TType>::type>

GPUMatrix<TType>

GPUMatrix<TType>*

Figure 2.8: IRGN Class Structure Protected
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IRGN

private

methods

void Init();

typename TType::value type randomcalc(int);

bool irgn param test(IRGN Params&);

variable declarations

typename agile::to real type<TType>::type

GPUMatrix<TType>*

cufftHandle

agile::FFT<TType>*

GPUMatrix<typename agile::to real type<TType>::type>

GPUMatrix<TType>

std::vector<float>

std::vector<typename agile::to real type<TType>::type>

std::vector<TType>

bool

Figure 2.9: IRGN Class Structure Private

Description of methods

Public methods

• The default constructor creates an empty IRGN object.

1 IRGN( )

• This constructor initializes an IRGN object with defined data and config-
uration parameters.
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2.3 IRGN-L2/T(G)V implementation

1 IRGN(GPUMatrix<TType>∗ c o i l ,
2 unsigned i n t num coi ls ,
3 IRGN Params param )

• Constructor to initialize an IRGN object with defined data.

1 IRGN(GPUMatrix<TType>∗ c o i l ,
2 unsigned i n t num coi l s )

• Destructor frees used resources.

1 ˜IRGN( )

• Calculates the high frequency penalty ’weight’ matrix.

1 void HighFreqPenalty ( )

• Normalizes the data matrices of the provided coil data.

1 void Normalize ( )

• Starts the calculation of the Gauss-Newton algorithm.

1 void I t e r a t i o n ( )

• Post-processes the calculated data.

1 void Postproces s ( )

• Sets the IRGN parameters for the declared IRGN Params structure.

1 void set param (IRGN Params param )

• Force the iteration of a Gauss-Newton step to break.

1 s e t b r e a k c a l c ( bool b r eak ca l c )

• Sets the number of coils.

1 void s e t num co i l s ( unsigned i n t num coi l s )

• Sets the number of rows.

1 void set num rows ( unsigned i n t num rows )

• Sets the number of columns.

1 void set num columns ( unsigned i n t num columns )

• Sets a GPUMatrix<TType> pointer to the coil data with given number
of columns.
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1 void s e t c o i l (GPUMatrix<TType>∗ c o i l ,
2 unsigned i n t num coi l s )

• Returns a GPUMatrix<TType> pointer to the coil data.

1 GPUMatrix<TType>∗ g e t c o i l ( )

• Returns the number of coils.

1 unsigned i n t get numco i l s ( )

• Returns the actual number of iterations.

1 std : : vector<f l o a t > ge t nr k ( )

• Returns a GPUMatrix<TType> pointer to the calculated result.

1 GPUMatrix<TType>∗ get us mat ( )

• Returns a reference to the image matrix with the stored absolute values.

1 GPUMatrix<typename a g i l e : : t o r e a l t y p e <TType> : : type>∗
get image ( )

Protected methods

• Calculates the centered fast Fourier transform of the input matrix with
defined size.

1 void CenterdFFT ( const GPUMatrix<TType>∗ in mat ,
2 GPUMatrix<TType>∗ out mat ,
3 unsigned i n t num z )

• Calculates the centered inverse fast Fourier transform of the input matrix
with defined size.

1 void CenterdIFFT ( const GPUMatrix<TType>∗ in mat ,
2 GPUMatrix<TType>∗ out mat ,
3 unsigned i n t num z )

• Calculates the centered fast Fourier transform of the input matrix with
defined size and pattern.

1 void CenterdFFTpattern ( const GPUMatrix<TType>∗ in mat ,
2 GPUMatrix<TType>∗ out mat ,
3 unsigned i n t num z )

• Calculates the centered inverse fast Fourier transform of the input matrix
with defined size and pattern.

46



2.3 IRGN-L2/T(G)V implementation

1 void CenterdIFFTpattern ( const GPUMatrix<TType>∗ in mat ,
2 GPUMatrix<TType>∗ out mat ,
3 unsigned i n t num z )

• Applies the calculated high frequency penalty (see section 1.1.4) to the
input matrix (equation 1.32).

1 o id ApplyW( const GPUMatrix<TType>∗ in mat ,
2 GPUMatrix<TType>∗ out mat ,
3 unsigned i n t num z )

• Applies the calculated high frequency penalty (see section 1.1.4) to the
input matrix (equation 1.33).

1 void ApplyWH( const GPUMatrix<TType>∗ in mat ,
2 GPUMatrix<TType>∗ out mat ,
3 unsigned i n t num z )

• Calculates the differential operater DFH described in equation 1.35.

1 void ApplyDFH(GPUMatrix<TType>∗ rhs mat ,
2 const GPUMatrix<TType>∗ dx )

• Calculates the differential operater DFHDF described in equation 1.34
and 1.35.

1 void ApplyM(GPUMatrix<TType>∗ gu ,
2 GPUMatrix<TType>∗ gc ,
3 const GPUMatrix<TType>∗ du ,
4 const GPUMatrix<TType>∗ dc )

• Copy the defined number of matrices numz from matrix in mat to out mat
1 void CopyMatrixZ ( const GPUMatrix<TType>∗ in mat ,
2 GPUMatrix<TType>∗ out mat ,
3 unsigned i n t num z )

• Calculates the fixed Lipschitz constant as shown in section 1.1.9 and
returns the value.

1 TType2 c a l c L i p s c h i t z ( )

• Pure virtual declaration of the method Solve.
1 v i r t u a l void Solve ( const GPUMatrix<TType>∗ u ,
2 const GPUMatrix<TType>∗ c ,
3 const GPUMatrix<TType>∗ rhs ,
4 const GPUMatrix<TType>∗ u0 ,
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5 unsigned maxits , TType2 alpha ,
6 TType2 beta ,
7 GPUMatrix<TType>∗ du ,
8 GPUMatrix<TType>∗ dc ) = 0 ;

Private methods

• Initializes the class member variables.

1 void I n i t ( )

• randomcalc returns a random value between 0 and 1 with the defined
value type TType.
The argument ’i’ is the defined seed value.

1 typename TType : : va lue type randomcalc ( i n t i )

• Test method to verify the given IRGN parameters.
The return value is true if the configuration is valid.

1 bool i rgn param tes t ( IRGN Params &param )
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2.3 IRGN-L2/T(G)V implementation

2.3.4 L2Solve class

Figure 2.10 and 2.11 show the declaration structure of the L2Solve class.

L2Solve

public

constructor / destructor

L2Solve()

L2Solve(GPUMatrix<TType>*, unsigned int, IRGN Params)

L2Solve(GPUMatrix<TType>*, unsigned int)

L2Solve()

methods

void Solve( const GPUMatrix<TType>*,
const GPUMatrix<TType>*,
const GPUMatrix<TType>*,
const GPUMatrix<TType>*,
unsigned int,
typename TType::value type,
typename TType::value type,
GPUMatrix<TType>*,
GPUMatrix<TType>*)

Figure 2.10: L2Solve public Class structure
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2 Methods

L2Solve

private

methods

void Init();

variable declarations

GPUMatrix<TType>

GPUMatrix<TType>*

typename agile::to real type<TType>::type

Figure 2.11: L2Solve private Class structure

Description of methods

The L2Solve class implements the algorithm with L2-regularization by overriding
the pure virtual solve-method located in IRGN basis class.

• The default constructor creates an empty L2Solve object.

1 L2Solve ( )

• This constructor initializes an L2Solve object with defined data and
configuration parameters.

1 L2Solve ( GPUMatrix<TType>∗ c o i l ,
2 unsigned i n t num coi ls ,
3 IRGN Params param )

• Constructor to initialize an L2Solve object with defined data.

1 L2Solve ( GPUMatrix<TType>∗ c o i l ,
2 unsigned i n t num coi l s )

• Destructor frees used resources.

1 ˜ L2Solve ( )

• The Solve method calculates the update values per IRGN step with L2
regularization.
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2.3 IRGN-L2/T(G)V implementation

1 void void Solve ( const GPUMatrix<TType>∗ u ,
2 const GPUMatrix<TType>∗ c ,
3 const GPUMatrix<TType>∗ rhs ,
4 const GPUMatrix<TType>∗ u0 ,
5 unsigned maxits ,
6 typename TType : : va lue \ type alpha ,
7 typename TType : : va lue \ type beta ,
8 GPUMatrix<TType>∗ du ,
9 GPUMatrix<TType>∗ dc ) ;

• Initializes the class member variables.

1 void I n i t ( )

2.3.5 TVSolve class

Figure 2.12 and 2.13 show the declaration structure of the TVSolve class.

TVSolve

public

constructor / destructor

TVSolve()

TVSolve(GPUMatrix<TType>*, unsigned int, IRGN Params)

TVSolve(GPUMatrix<TType>*, unsigned int)

TVSolve()

methods

void Solve( const GPUMatrix<TType>*,
const GPUMatrix<TType>*,
const GPUMatrix<TType>*,
const GPUMatrix<TType>*,
unsigned int,
typename TType::value type,
typename TType::value type,
GPUMatrix<TType>*,
GPUMatrix<TType>*)

Figure 2.12: TVSolve public Class structure
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TVSolve

private

methods

void Init();

variable declarations

GPUMatrix<TType>

GPUMatrix<TType>*

typename agile::to real type<TType>::type;

std::complex<typename agile::to real type<TType>::type>

Figure 2.13: TVSolve private Class structure

Description of methods

The TVSolve class implements the algorithm with TV-regularization by over-
riding the pure virtual solve-method located in IRGN basis class.

• The default constructor creates an empty TVSolve object.

1 TVSolve ( )

• This constructor initializes an TVSolve object with defined data and
configuration parameters.

1 TVSolve ( GPUMatrix<TType>∗ c o i l ,
2 unsigned i n t num coi ls ,
3 IRGN Params param )

• Constructor to initialize an TVSolve object with defined data.

1 TVSolve ( GPUMatrix<TType>∗ c o i l ,
2 unsigned i n t num coi l s )

• Destructor frees used resources.

1 ˜TVSolve ( )
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2.3 IRGN-L2/T(G)V implementation

• The Solve method calculates the update values per IRGN step with TV
regularization.

1 void void Solve ( const GPUMatrix<TType>∗ u ,
2 const GPUMatrix<TType>∗ c ,
3 const GPUMatrix<TType>∗ rhs ,
4 const GPUMatrix<TType>∗ u0 ,
5 unsigned maxits ,
6 typename TType : : va lue \ type alpha ,
7 typename TType : : va lue \ type beta ,
8 GPUMatrix<TType>∗ du ,
9 GPUMatrix<TType>∗ dc ) ;

• Initializes the class member variables.

1 void I n i t ( ) ;

2.3.6 TGVSolve class

Figure 2.14 and 2.15 show the declaration structure of the TVSolve class.
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TGVSolve

public

constructor / destructor

TGVSolve()

TGVSolve(GPUMatrix<TType>*, unsigned int, IRGN Params)

TGVSolve(GPUMatrix<TType>*, unsigned int)

TGVSolve()

methods

void Solve( const GPUMatrix<TType>*,
const GPUMatrix<TType>*,
const GPUMatrix<TType>*,
const GPUMatrix<TType>*,
unsigned int,
typename TType::value type,
typename TType::value type,
GPUMatrix<TType>*,
GPUMatrix<TType>*)

Figure 2.14: TGVSolve public Class structure

TGVSolve

private

methods

void Init();

variable declarations

GPUMatrix<TType>

GPUMatrix<TType>*

typename agile::to real type<TType>::type norm ;

Figure 2.15: TGVSolve private Class structure
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Description of methods

The TGVSolve class implements the algorithm with TV-regularization by
overriding the pure virtual solve-method located in IRGN basis class.

• The default constructor creates an empty TGVSolve object.

1 TGVSolve ( )

• This constructor initializes an TGVSolve object with defined data and
configuration parameters.

1 TGVSolve ( GPUMatrix<TType>∗ c o i l ,
2 unsigned i n t num coi ls ,
3 IRGN Params param )

• Constructor to initialize an TGVSolve object with defined data.

1 TGVSolve ( GPUMatrix<TType>∗ c o i l ,
2 unsigned i n t num coi l s )

• Destructor frees used resources.

1 ˜TGVSolve ( )

• The Solve method calculates the update values per IRGN step with TGV
regularization.

1 void void Solve ( const GPUMatrix<TType>∗ u ,
2 const GPUMatrix<TType>∗ c ,
3 const GPUMatrix<TType>∗ rhs ,
4 const GPUMatrix<TType>∗ u0 ,
5 unsigned maxits ,
6 typename TType : : va lue \ type alpha ,
7 typename TType : : va lue \ type beta ,
8 GPUMatrix<TType>∗ du ,
9 GPUMatrix<TType>∗ dc ) ;

• Initializes the class member variables.

1 void I n i t ( ) ;
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2.4 Useful functions

2.4.1 GPU timer

The GPUTimer Class is integrated within the Agile library.
The public method stop() returns the elapsed time computed by the wrapped
CUDA function cudaEventElapsedTime.
The resulting value is in milliseconds with a resolution of approximately 0.5
microseconds.

• Possible method call structure.

1 a g i l e : : GPUTimer gpuTimer ;
2 gpuTimer . s t a r t ( ) ;
3 double t imerValueInS = gpuTimer . stop ( ) ∗ 0 . 0 0 1 ;

2.4.2 matrixhelper.h - Logger

The matrixhelper.h file includes global console output helper functions for
logging purposes.
The functionality can be divided into the categories console logger and file
logger.

Console logger

• Prints a vector ’x’ to the console with a description string ’string’.

1 template <typename TType>
2 void output ( const char ∗ s t r i ng ,
3 const std : : vector<TType>& x )

• Prints a matrix ’data’ with defined number of rows and columns to the
console with a description string ’string’.

1 template <typename TType>
2 void output ( const char ∗ s t r i ng ,
3 unsigned num rows ,
4 unsigned num columns ,
5 const std : : vector<TType>& data )
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File logger

• Initializer for the matrix logger with defined filename.

1 void i n i t m a t r i x l o g ( std : : f s t ream &myf i l e ,
2 const char ∗ f i l e name ) ;

• End the matrix logger to close the file-stream and provide the logged file.

1 void c l o s e m a t r i x l o g ( std : : f s t ream &myf i l e ) ;

• Matrix-logger for a vector or matrix according to the given number of
rows and columns.

1 template <typename TType>
2 void matr ix log ( std : : f s t ream &myf i l e ,
3 const char ∗ s t r i ng ,
4 unsigned num rows ,
5 unsigned num columns ,
6 const std : : vector<TType>& data ) ;

• Matrix-logger for single value.

1 template <typename TType>
2 void matr ix log ( std : : f s t ream &myf i l e ,
3 const char ∗ s t r i ng ,
4 const TType data ) ;

• Matrix-Logger for string. A reference to the log-file and the description
string ’string’ need to be provided.

1 void matr ix log ( std : : f s t ream &myf i l e ,
2 const char ∗ s t r i n g ) ;

The following example shows a possible function call structure:

1 std : : f s t ream myf i l e ;
2 i n i t m a t r i x l o g ( myf i l e , ” matr ix log . txt ”)
3 matr ix log ( myf i l e , ” Matrix 1 ”) ; // ”Matrix 1 ” in to matr ix log . txt
4 c l o s e m a t r i x l o g ( my f i l e ) ;

2.4.3 File input / output functions for Matlab

The Agile library also provides read and write functions for C++ and MATLAB R©
located at include/agile/io. The file file.hpp implements the extern functions
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readMatrixFile3D and writeMatrixFile3D, which can handle multi-coil image
raw data.

• Reads the 3d matrix data and dimensions from a given file.

1 bool readMatrixFi le3D ( const char ∗ f i l e name ,
2 unsigned& num rows ,
3 unsigned& num columns ,
4 unsigned& num coi ls ,
5 std : : vector<std : : complex<TValueType> >&

data ) ;

• Writes the 3d matrix data with given dimensions into a file.

1 bool wr iteMatr ixFi le3D ( const char ∗ f i l e name ,
2 unsigned num rows ,
3 unsigned num columns ,
4 unsigned num coi ls ,
5 std : : vector<std : : complex<Type> >& data )

Matlab

The files writeMatlab2Bin3D.m and readMatlab2Bin3D.m (include/agile/io)
can read and write the defined file structure (see section 2.4.3 File structure)
for mulit-coil raw data within the MATLAB R© framework.

• Writes the 3d matrix data into a file.

1 f unc t i on writeMatlab2Bin3D ( matrix , f i l ename )

• Reads the 3d matrix data and dimensions from a given file.

1 f unc t i on matrix = readBin2Matlab3D ( f i l ename ,
2 numRows ,
3 numColumns ,
4 numCoils ,
5 numBytesPerEntry )
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2.5 DCMTK library

File structure

The binary written or read file has the following data structure:

declaration info
unsigned num rows number of matrix rows
unsigned num columns number of matrix columns
unsigned num coils number of matrix coils
unsigned num bytes per entry number of matrix rows
bool is complex true if the stored entries are complex values
List<Type> data stored matrix data with template defined type

Table 2.1: Declaration of the matrix file format

num rows, num columns and num coils define the size of the matrix.

2.5 DCMTK library

DCMTK is a collection of libraries and applications implementing large parts
of the Digital Imaging and Communications in Medicine (DICOM) standard.
It includes software for examination, construction and conversion of DICOM
image files, handling offline media, sending and receiving images over a net-
work connection, as well as demonstrative image storage and worklist servers.
DCMTK is written in a mixture of ANSI C and C++.
The Dicom Toolkit (DCMTK) Library can be downloaded from their official
homepage located at http://dicom.offis.de/dcmtk.php.en, but it is also
available in the package manager. If the library is downloaded and installed
manually, one can choose the installation-paths freely.
By using the YaST package manager the standard-paths (/usr/local/bin and
/usr/local/include) for installation are used. The used version is 3.6.0.
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2 Methods

2.6 CMake

The CMake package can be downloaded from their homepage https://cmake.

org or installed via the package manager. The used version is 2.8.10.2.

2.6.1 ccmake

ccmake is a commandline editor to configure the cmake project environment.
It is part of the cmake package.

2.6.2 CMakeLists.txt

CMakeLists.txt file contains a set of definitions and instructions describing the
project’s source files and targets (executable, library or both).
The IRGN project CMakeLists configuration is located in the AGILE library
(AGILE/apps/imt irgn/CMakeLists.txt).

• Add include directories to the build.

1 # source d e f i n i t i o n s
2 INCLUDE DIRECTORIES( ${CMAKE SOURCE DIR}
3 ”${IMT IRGN SOURCE DIR}/ gui ”
4 ”${IMT IRGN BINARY DIR}/ gui ”
5 ”${IMT IRGN SOURCE DIR}”
6 ”${IMT IRGN BINARY DIR}”)
7

8 # inc lude d e f i n i t i o n s
9 INCLUDE DIRECTORIES( ”${AGILE SOURCE DIR}/ inc lude ”

10 ”${AGILE BINARY DIR}/ inc lude ”
11 )

• Link instruction for the agile library.

1 l i n k l i b r a r i e s ( a g i l e )

• Define the source files used in the project.

60

https://cmake.org
https://cmake.org


2.7 gcc-C++

1 SET(IMT IRGN SRCS CXX
2 imt mrcmd . cpp
3 main . cpp
4 qt−source− f i l e s )

• Add the source definitions to the executable.

1 ADD EXECUTABLE(IMT IRGN ${IMT IRGN SRCS CXX})

• To link the application following command is needed.

1 TARGET LINK LIBRARIES(IMT IRGN ${QT LIBRARIES})

• To add the cuda and cufft library to the IMT IRGN build the following
call needs to be added.

1 c u d a a d d c u f f t t o t a r g e t (IMT IRGN)

• As an additional post-build step, the resulting executable is copied to a
defined path.

1 add custom command (TARGET IMT IRGN
2 POST BUILD
3 COMMAND ${CMAKECOMMAND} −E copy $<

TARGET FILE: IMT IRGN> ”${AGILE SOURCE DIR}/ bin ”)

2.7 gcc-C++

For developing with Qt and the CUDA toolchain the gcc-c++ library is needed.
If not already installed it can be be added via a package manager. The used
version is 4.7.2.
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3 Results

3.1 Calculation and precision analysis

To evaluate the IRGN algorithm calculation results, the reconstructed image is
calculated with equation 3.5, which represents the magnitude of the calculated
spin densities.
The pseudorandom brain data set included in the Matlab implementation pack-
age of the IRGN algorithm was used to calculate the results (Clason, Bredies
2011). It consists of a 12 channel brain data acquisition compressed to 6 virtual
channels with a pseudorandom sampling pattern (Knoll, 2011).

All calculations in Matlab are performed with double precision (Double-precision
floating-point format 2018). The results gained from the CUDA implementa-
tions are calculated in single and double precision and compared to the Matlab
implementation results.
A comparison between the single (float) and double precision floating point
format is shown in table 3.1.

type minimum maximum epsilon
float 1.17549e-38 3.40282e+38 1.19209e-07

double 2.22507e-308 1.79769e+308 2.22045e-16

Table 3.1: Minimum, maximum and epsilon value comparison between float and double
precision

Table 3.2 shows the calculation differences between the CUDA and Matlab
implementation.
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3.1 Calculation and precision analysis

Irel Iabs Matlabmax CUDAmax Matlabmin CUDAmin
Inv 1.82e-08 3.66e-14 3,12e-06 3,12e-06 6,60e-07 6,60e-07
L2 1.09e-03 2.20e+02 3,70e+05 3,71e+05 3,71e+04 3,70e+04
TV 7.09e-03 1.45e+03 3,40e+05 3,40e+05 6,33e+04 6,70e+04

TGV 6.00e-03 1.23e+03 3,44e+05 3,43e+05 6,33e+04 6,23e+04

Table 3.2: Matlab and CUDA-powered IRGN calculated image differences
Irel: Mean of the relative pixel-intensity differences
Iabs: Mean of the absolute pixel-intensity differences
Matlabmax: Maximum Matlab calculated intensity value
GPUmax: Maximum GPU calculated intensity value
Matlabmin: Minimum Matlab calculated intensity value
GPUmin: Minimum GPU calculated intensity value

The mean of the relative pixel-intensity differences Irel between the CUDA and
Matlab reconstruction results is calculated with equation 3.1.
Equation 3.2 calculates the mean of the absolute error Iabs.

The presented results for the relative and absolute errors are calculated within
the region of interest (ROI) in the image, which is the region of the object
without the skull structure.

Irel = mean(
| ICUDA − IMatlab |

IMatlab
) (3.1)

Iabs = mean(| ICUDA − IMatlab |) (3.2)

Figure 3.1 shows the error maps, in percent, for the different reconstruction
results. To calculate the error maps, the relative error per pixel is calculated
with equation 3.3.

Irel[%] = 100 ∗ | ICUDA − IMatlab |
IMatlab

(3.3)
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3 Results

(a) F−1 - error map [%] (b) L2 - error map [%]

(c) TV - error map [%] (d) TGV - error map [%]

Figure 3.1: Idi f f [%] error maps for the defined reconstruction method (F−1, L2-,TV-,TGV-
regularization)

To analyze the resulting differences (equation 3.4) between CUDA and Matlab
the defined methods and calculation-parts are unit-tested with random gener-
ated moc-data.
The results for a calculation precision in double and single, are shown in table
3.3.
The unit-tests for L2Solve, TVSolve and TGVSolve do not include the calcula-
tion of the differential of the function F(x) (method call ApplyM ). The Results
are are shown for different numbers of subgradient steps.
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3.1 Calculation and precision analysis

di f f = mean(||resultCUDA| − |resultMatlab||) (3.4)

di f fdouble di f f f loat
Scale 0 0

ApplyM 1.3e-11 1.2e-11
ApplyDFH 1.7e-11 1.7e-11
Normalize 4.9e-09 4.9e-09
ApplyWH 6.1e-11 6.1e-11
ApplyW 3.4e-10 3.3e-10
Residual 1.3e-11 2.0e-11

L2Solve2iter 1.1e-18 1.1e-18
TVSolve2iter 4.2e-17 4.2e-17

TGVSolve2iter 4.3e-17 4.3e-17
L2Solve100iter 0 0
TVSolve100iter 2.1e-14 1.6e-14

TGVSolve100iter 1.0e-13 4.7e-14
L2Solve640iter 0 0
TVSolve640iter 1.5e-13 4.2e-13

TGVSolve640iter 5.1e-13 6.9e-13
Postprocess 1.5e-09 1.5e-09

Table 3.3: The mean differences (equation 3.1) between the CUDA and Matlab defined
methods and calculation-parts.

Table 3.4 shows the achieved GPU and CPU reconstruction times.
The CPU Matlab calculations are performed on a Intel Xeon E7-4830 v4
2.00GHz.
The Nvidia Tesla K40c is used for all CUDA calculations.

The GPU utilization factor in % for single precision is approximately 45%
for IRGN-L2, TV and TGV.
For double precision the utilization factor for IRGN-L2 and TV is 50% and for
IRGN-TGV 75%.

The GPU memory usage for single precision calculation is approximately
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3 Results

180MB.
For double precision the global memory usage rises up to 230MB.

method CPU [s] GPUdouble [s] GPU f loat [s] speedupdouble speedup f loat
L2 43 14 12 3 3.3
TV 46 14 12 3.3 3.8
TGV 51 15 5 3.4 10

Table 3.4: Comparison of the reconstruction times between CPU and GPU for the different
regularization methods (L2, TV, TGV) and precision

Table 3.5 shows the configuration of the IRGN algorithm used for all recon-
struction results.

parameter value info
maxit 5 maximum number of IRGN iterations
βmin 0 final value of beta: 0: no TGV effect, >0 effect
α0 1 initial penalty α0 (L2, sensitivites)
β0 1 initial penalty β0 (image)

αmin 0 final value of α
αq 1/10 reduction factor for α
βq 1/5 reduction factor for β

tvits 20 initial number of gradient steps
tvmax 1000 upper bound on number of gradient steps

ρ0 0 initial values of the proton density

Table 3.5: Configuration of the IRGN algorithm

The tables 3.6, 3.7 and 3.8 show the difference between the CUDA and Matlab
residual-norm rnorm (equation 1.12) per IRGN step n.
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3.1 Calculation and precision analysis

n gradient steps α β CUDA rnorm Matlab rnorm
1 20 1 1 100 100
2 40 0.1 0.2 99.79 99.79
3 80 0.01 0.04 92.67 92.59
4 160 0.001 8e-3 51.33 53.05
5 320 1e-4 16e-4 5.76 5.70

Table 3.6: Residual norm and regularization factors per gauss-newton step for IRGN-L2
calculation

n gradient steps α β CUDA rnorm Matlab rnorm
1 20 1 1 100 100
2 40 0.1 0.2 65.96 64.378
3 80 0.01 0.04 33.14 33.167
4 160 0.001 8e-3 16.45 16.59
5 320 1e-4 16e-4 8.62 8.675

Table 3.7: Residual norm and regularization factors per gauss-newton step for IRGN-TV
calculation

n gradient steps α β CUDA rnorm Matlab rnorm
1 20 1 1 100 100
2 40 0.1 0.2 64.93 64.93
3 80 0.01 0.04 29.25 29.24
4 160 0.001 8e-3 16.83 15.06
5 320 1e-4 16e-4 8.43 8.58

Table 3.8: Residual norm and regularization factors per gauss-newton step for IRGN-TGV
calculation
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3 Results

3.2 IRGN reconstruction results

Using equation 3.5 to reconstruct the under-sampled rawdata y, without using
the IRGN algorithm, results in figure 3.2.

IF−1 =

√√√√ N

∑
i=1
|F−1(yi)|2 (3.5)

Image reconstruction results, calculated with the IRGN algorithm, are computed
with equation 3.6.

Iirgn = |ρirgn| (3.6)

(a) CUDA F−1 (b) Matlab F−1

Figure 3.2: Inverse Fourier transformed reconstruction for the random sampled brain data

Figure 3.3 shows the reconstructed image with different regularization terms
for the CUDA and Matlab implementation.
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3.2 IRGN reconstruction results

(a) CUDA IRGN-L2 (b) Matlab IRGN-L2

(c) CUDA IRGN-TV (d) Matlab IRGN-TV

(e) CUDA IRGN-TGV (f) Matlab IRGN-TGV

Figure 3.3: IRGN reconstruction results with different regularizations for the CUDA and
Matlab implementation

69



3 Results

(a) CUDA IRGN-L2 (b) Matlab IRGN-L2

(c) CUDA IRGN-TV (d) Matlab IRGN-TV

(e) CUDA IRGN-TGV (f) Matlab IRGN-TGV

Figure 3.4: Close-up view of the IRGN reconstruction results with different regularizations
for the CUDA and Matlab implementation
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3.2 IRGN reconstruction results

For a more pronounced TV and TGV regularization effect, the configuration
parameter betamin is changed to a larger value of 1e-2 for TV and 5e-3 for TGV
regularization.
The resulting images for IRGN-TV and IRGN-TGV are shown in figure 3.5
and 3.6.

(a) CUDA IRGN-TV (b) Matlab IRGN-TV

(c) CUDA IRGN-TV (d) Matlab IRGN-TV

Figure 3.5: IRGN reconstruction results with TV regularization and a betamin value equal to
1e-2
Closeup-views are shown in figure 3.5c and 3.5d
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3 Results

(a) CUDA IRGN-TGV (b) Matlab IRGN-TGV

(c) CUDA IRGN-TGV (d) Matlab IRGN-TGV

Figure 3.6: IRGN reconstruction results with TGV regularization and a betamin value equal
to 5e-3
Closeup-views are shown in figure 3.6c and 3.6d
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4 Discussion

The CUDA powered IRGN algorithm performs up to a factor of 10 times faster
than the Matlab implementation, which is performed on the CPU (table 3.4).
The different utilization factors are reported by the nvidia-smi commandline
tool.
For a given time period, the utilization factor represents what percentage of
time one or more GPU kernels are active.
During an inactive state, between every kernel execution the GPU handles the
memory management and the instruction calls.
To gain a high utilization factor, the whole IRGN execution takes place on
the GPU without any device to host and vice versa communication during the
calculation process.
Accoring to Amdahl’s Law (figure 1.7) a speedup factor of 10 means that the
IRGN CUDA implementation is 90% parallelized.
Because of the consistent implementation of the IRGN regularization methods,
the origin for the different speedup factors lies on the compiler and architecture
optimization depending on code complexity and precision-type.

Values of 230MB for double precision and 180MB for single precision, re-
veal a low global memory usage by the CUDA powered IRGN application.

The calculated differences of the image intensity values Irel and Iabs shown in
table 3.2, indicate that the error increases with the complexity of the calculation.
Table 3.6 also shows different calculated residual norm rnorm values between
the CUDA and Matlab implementation.
Because of the error propagation per iteration step, which for example comes
from the calculation of different finite differences, the reconstruction results
between CUDA and Matlab slightly differ.
The error maps shown in figure (3.1) indicate that there are no systematical
errors but differences primarily at the tissue edges.
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4 Discussion

In addition to the analyzed pixel values, all methods and calculation-parts of
the IRGN algorithm are unit-tested for double and single precision (see table
3.3).
Due to floating-point rounding errors, the mean differences in the results be-
tween CUDA and Matlab occur (table 3.3), but lie in a range lower than the
epsilon value of 1.19e-07 for single precision.

The images (with a bit-depth of 8bit) in figure 3.3 and the close-up views
in figure 3.4 show visually an identical result for the CUDA and Matlab recon-
structions.
It is also shown that the IRGN algorithm with TV and TGV regularization
clearly outperforms the approach with L2 regularization.
A higher regularization factor β for the variational approaches, leads to a better
denoised reconstruction result (see figure 3.5 and 3.6).
Due to the good signal to noise ratio (SNR) of the test data, only a low amount
of TV regularization is applied and therefore the reconstruction results do not
show any staircasing artifacts.
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5 Conclusion

Executing the algorithm with the CUDA powered IRGN implementation gives
slightly different numerical results compared with the Matlab implementation.
Next steps to find the origin of the calculation differences between GPU and
CPU would be an extended unit-testing, PTX debugging, software and hard-
ware updates.

In general it can be said, that the achieved acceleration of the computation
times can benefit the processing of large data-sets in daily clinical practice.
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