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1 Introduction

The word partition has several meanings in Mathematics and most likely it will pop up
any time one deals with division of some object into sub-objects. The theory of partitions
has an interesting history. Some problems date back to the Middle Ages.

Leibniz was among the first mathematicians who paid attention to the developing stages
in this area of mathematics. In his correspondence with Bernoulli, he asked about the
number of “divulsions” of integers, in other words about the number of partitions of
integers. He observed that the number 3 has three partitions, the number 4 has five
partitions, the number 5 has seven partitions and the number 6 has eleven partitions.
Having noticed this trend, he assumed that the number of partitions of any integer n
might always be a prime number, but his assumption was quickly disproved once he
computed that the number 7 has fifteen partitions. His tentative exploration of partitions
though raised a lot of interesting questions.

The first discoveries of any depth were made in the eighteenth century when Euler proved
several partition theorems that laid the foundations of the theory of partitions. Over the
centuries a great number of mathematicians had devoted their time in a search for new
identities in partition theory. The goal of Chapter 2 is to provide a brief overview of the
basics regarding foundations and partition theory identities.

Let p(n) denote the number of partitions of the integer n. For many years one of the
most intriguing and difficult questions about partitions was to determine the asymptotic
properties of p(n) as n gets large. This question was finally answered by Hardy and
Ramanujan in 1917, and later on by Rademacher in 1936. The details of the work of
the latter are explained in Chapter 3 of this text. However, many other interesting
problems in the theory of partitions remain unsolved today. One example is to find a
simple criterion for deciding whether p(n) is even or odd despite the good deal of effort
having been expended on it. Though values of p(n) have been computed for n into the
billions, no pattern has been discovered to date.

For each nonnegative integer n, we can consider the uniform probability distribution on
the set of partitions of n, namely to assign to each partition of n a probability of 1/p(n).
Using this uniform distribution, one can also talk about random variables on the set

1



of partitions and their distributions. We will merely focus on those whose values are
nonnegative integers and simply call them partition statistics. We introduce in Chapter
4 some of partition statistics and important discoveries related to them.

There are several examples of pairs of partitions statistics which are identically distributed.
To name a few, consider the number of even part sizes and the number of repeated part
sizes; the number of consecutive even part sizes and the number of consecutive repeated
part sizes; the number of part sizes that are perfect squares and the number of part sizes
i whose multiplicity is greater or equal than i.

In Chapter 5, which presents the main results of the thesis, we find one more interesting
example of an identically distributed pair of partition statistics. Let Xo,n and Xe,n denote
the sums of odd and even indexed parts of a partition of n, respectively. On the other
hand, let Zo,n and Ze,n denote the number of odd and even indexed parts, respectively.
We prove that Xo,n −Xe,n and Zo,n are identically distributed. We use this fact to find
asymptotic expressions for E(Zo,n) and E(Ze,n). An open problem to continue the work
of this thesis would be to find the limiting distributions for these statistics.
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2 Introduction to Partition Theory

2.1 Basics

For the purpose of this thesis, we will be using the following definition.

Definition 1. A partition λ of the positive integer n is a way of writing it as a sum of
positive integers without regard to order. Without loss of generality, one can assume that
the summands are arranged in non-increasing order. We have

λ : n = λ1 + λ2 + ...+ λk, λ1 > λ2 > . . . > λk. (2.1)

Definition 2. The summands λj in (2.1) are called parts of the partition λ.

Example 1. We will bring as an example 15 partitions of number 7 as this was the
counterexample of the first conjecture of Leibniz about partitions.

7 = 7

= 6 + 1 = 5 + 2 = 4 + 3

= 5 + 1 + 1 = 4 + 2 + 1 = 3 + 3 + 1 = 3 + 2 + 2

= 4 + 1 + 1 + 1 = 3 + 2 + 1 + 1 = 2 + 2 + 2 + 1

= 3 + 1 + 1 + 1 + 1 = 2 + 2 + 1 + 1 + 1

= 2 + 1 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 1 + 1.

Example 2. One way of partitioning n = 50 is

λ : 50 = 9 + 6 + 6 + 5 + 5 + 5 + 3 + 3 + 3 + 2 + 1 + 1 + 1. (2.2)

So, the parts of this partition are

λ1 = 9, λ2 = λ3 = 6, λ4 = λ5 = λ6 = 5, λ7 = λ8 = λ9 = 3, λ10 = 2, λ11 = λ12 = λ13 = 1,

and the number of the parts of this partition is k = 13.
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2.1. BASICS

Definition 3. The partition λ
′

such that

λ′ : n = λ′1 + λ′2 + ...+ λ′` (2.3)

is the conjugate partition of λ if λ′j equals the number of parts that are ≥ j in λ.

Example 3. If λ is the partition of n = 50 in (2.2), the conjugate of λ would be

λ
′
: 50 = 13 + 10 + 9 + 6 + 6 + 3 + 1 + 1 + 1. (2.4)

The parts of λ
′

are

λ
′

1 = 13,

λ
′

2 = 10,

λ
′

3 = 9,

λ
′

4 = λ
′

5 = 6,

λ
′

6 = 3,

λ
′

7 = λ
′

8 = λ
′

9 = 1,

and the number of parts in the conjugate partition is ` = 9.

Each partition λ has a unique graphical representation called its Ferrers Diagram. It
illustrates λ by a two-dimensional array of squares composed by λi squares in the i−th
row for each 1 ≤ i ≤ k. The partition of n = 50 in (2.2) is represented in the Figure 2.1.

Figure 2.1: Ferrers Diagram of the partition for n = 50 (Example 2)

Suppose that we fix a positive integer n and λ a partition of n. It is easy to see that the
Ferrers Diagram of the conjugate partition λ

′
of λ is obtained by reflecting λ with respect

4



2.1. BASICS

to its main diagonal. Thus conjugation defines a a one-to-one correspondence from the
set of partitions of n to itself. An illustration of the previous example is given in Figure
2.2

Figure 2.2: Ferrers Diagram of the conjugate partition for n = 50 (Example 3)

Another way to view the definition of a partition λ is through the identity

λ : n =
n∑
j=1

jmj, (2.5)

where the integer mj > 0 is called multiplicity of part j.

In Example 2 given above, we have

mj = 0 for 10 6 j 6 50,

m9 = 1, m8 = m7 = 0, m6 = 2, m5 = 3,

m4 = 0, m3 = 3, m2 = 1, m1 = 3.

Similarly, for λ
′

in the Example 3, we write

λ
′
: n =

n∑
j=1

jm
′

j, m
′

j > 0. (2.6)

In the same manner,
m
′

j = 0 for 14 6 j 6 50,

m
′

13 = 1, m
′

12 = m
′

11 = 0, m
′

10 = m
′

9 = 1,

m
′

8 = m
′

7 = 0, m
′

6 = 2, m
′

5 = m
′

4 = 0,

m
′

3 = 1, m
′

2 = 0, m
′

1 = 3.
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2.1. BASICS

Definition 4. Let Pn be the set of all partitions for n ≥ 1. Then

p(n) := |Pn|

Remark. By convention p(0) = 1 and p(n) = 0 for n negative.

In other words, the partition function p(n) counts the number of unique partitions of the
positive integer n. Recall that there were 7 unique partitions of 5. Thus p(5) = 7. Values
of p(n) may be found in The Online Encyclopedia of Integer Sequences: Confessions of a
Sequence Addict by Neil J.A. Sloane [18].

n p(n)

0 1
10 42
20 627
30 5604
40 37338
50 204226
60 966467
70 4087968
80 15796476
90 56634173

100 190569292
110 607163746
120 1844349560
130 5371315400
140 15065878135
150 40853235313
160 107437159466
170 274768617130
180 684957390936
190 1667727404093
200 3972999029388

Table 2.1: Growth of the number of partitions p(n) for n = 1, . . . , 200

Lemma 1. The partition function p(n) is strictly increasing.

Proof. We want to show that the following holds

p(n) > p(n− 1) for all n ≥ 2.

We notice that for every partition of n− 1, one can obtain a partition of n by adding a
single square in a new bottom row. Conversely, every partition of n with a single square
in the bottom row gives a partition of n − 1 after we remove that square. These two
procedures revert each other.

As an illustration of the above statement, we compare the partitions of the number 3
with the partitions of the number 4:
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2.2. GENERATING FUNCTIONS ASSOCIATED TO PARTITIONS

Therefore, if q(n) denotes the number of partitions of n whose last part equals to 1, then

p(n− 1) = q(n)

But clearly q(n) < p(n) for n ≥ 2, therefore the conclusion follows.

2.2 Generating Functions Associated to Partitions

We know that p(n) counts the number of ways n can be partitioned, but how can we
actually find p(n)? A naive way would be to simply list all the partitions, but as we will
see in Chapter 3, p(n) has a subexponential, but nevertheless a superpolynomial growth,
making this method ineffective.

Instead, let p(n,m) denote the number of partitions of n into m parts. Then clearly

p(n) =
n∑

m=0

p(n,m).

Therefore, we can compute the numbers p(n,m) instead. We distinguish two different
kinds of partitions of n into m parts: partitions whose last part λm equals to 1 and
partitions whose last part λm does not equal to 1.

In the first case, removing the last part from the partition, we get a partition of n− 1 in
m− 1 parts. It is easy to see that this gives a bijection between the set of partitions of n
into m parts whose last part equals to 1 and the set of partitions of n − 1 into m − 1
parts (the inverse map being adding one square in a new last row of its Ferrers diagram
if we had started with a partition of n− 1 into m− 1 parts).

In the second case, removing a square from each row of the partition, we obtain a partition
of n−m into m parts. Again, this gives a bijection between the set of partitions of n
into m parts whose last part does not equal to 1 and the set of partitions of n−m into
m parts (the inverse map being adding one square in each row if we had started with a
partition of n−m into m parts). Therefore, we have that

p(n,m) = p(n− 1,m− 1) + p(n−m,m)

7



2.2. GENERATING FUNCTIONS ASSOCIATED TO PARTITIONS

This identity allows for recursive computation of the numbers p(n,m) and thus of p(n)
as well.

Euler also introduced generating functions, that provides with a more efficient way of
computing p(n). In the later chapters, they will also help us compute the partition
function asymptotically.

The generating function of the partition function is the series

F (x) =
∞∑
n=0

p(n)xn,

where for now we simply view F (x) as an element of the power series ring C[[x]]. Then
we have the following identity:

Proposition 1. In the formal power series ring C[[x]], the following equality

F (x) =
∞∏
j=1

1

1− xj
(2.7)

holds.

Proof. First, we should show that the right hand side actually makes sense as an element
of C[[x]]. Notice that at least individually, each factor of the right hand side makes sense,

as 1− xj is a unit in C[[x]] with inverse equal to
∞∑
k=0

xjk.

In other words, we need to show that the infinite product

∞∏
j=1

(
∞∑
k=0

xjk

)

makes sense as an element of C[[x]]. If we consider the partial products

Pn :=
n∏
j=1

(
∞∑
k=0

xjk

)

we notice that for each n ∈ N, Pn1 − Pn2 is a multiple of xn for all n1, n2 ≥ n. Therefore
(Pn)n∈N is a Cauchy sequence in C[[x]] with respect to the x-adic topology on C[[x]].
Since C[[x]] is x-adically complete, i.e.

C[[x]] ∼= lim←−C[[x]]/xrC[[x]],

we obtain that the infinite product is a well defined element of C[[x]] as well.

8



2.2. GENERATING FUNCTIONS ASSOCIATED TO PARTITIONS

To show that the desired equality holds, we simply need to show that the coefficients of
both sides agree. For that notice that the coefficient of xn in right hand side agrees with
the coefficient of xn in Pn. Computing

Pn =
n∏
j=1

(1 + xj + x2j + x3j + . . .)

=
n∏
j=1

(1 + xj + xj+j + xj+j+j + . . .)

the multiplication yields a sum of monomials of the form x
∑
jmj . The repetitions of the

monomial xn is equal to the number of solutions of the equation∑
j>1

jmj = n.

By (2.5), this number equals p(n), as desired.

It will also be useful in the later chapters to know about the convergence properties of
F (x) when regarded as a function on the complex numbers.

Proposition 2. For every z ∈ D = {a ∈ C : |a| < 1}, F (z) converges absolutely and the
following equality

F (z) =
∞∏
j=1

1

1− zj
(2.8)

holds.

Proof. First we need to show that both sides of the asserted equation converge. We start
with the right hand side.

For that we use a fact from complex analysis which states that if (an)n≥1 is a sequence of

complex numbers such that
∞∑
n=1

|an|2 converges, then
∞∏
n=1

(1 + an) converges to a non-zero

limit when
∞∑
n=1

an does (see [16]).

Applying the fact for an = zn, since
∞∑
n=0

z2n converges absolutely for |z| < 1, it follows

that
∞∏
j=1

(1− zj) converges to a non-zero value, hence
∞∏
j=1

1

1− zj
converges when |z| < 1.
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2.2. GENERATING FUNCTIONS ASSOCIATED TO PARTITIONS

For the left hand side, notice that for z < |1| we have that

n∑
i=0

p(i)|z|i ≤
n∏
i=1

1

1− |z|i

because if we compare the sides just formally, the left one covers all the partitions of
numbers less or equal than n, while the right one covers all the partitions with parts less
or equal than n. Since the right hand side converges by the above, so will the left hand
side.

It remains to show that the two sides are equal. But since both of them are absolutely
convergent, that means when can choose any arrangement of terms in the right hand side.
Since by Proposition 1 the two sides are equal if z is replaced by a formal variable, the
conclusion follows.

Note that in this section we use x to denote a formal variable, while z is a complex
number. In the subsequent sections we do not use a distinguished notation anymore and
the meaning will be clear from the context.

We are also ready to prove the following theorem of Euler, which allows us to compute
recursively the values of p(n) directly from smaller values of the partition function.

Theorem 1 (Euler Pentagonal Theorem). In the power series ring C[[x]]

∞∏
j=1

(1− xj) =
∞∑
k∈Z

(−1)kx
k(3k−1)

2 .

Proof. One can use a similar argument as in the beginning of the proof of Proposition 1
to show that the left hand side of the asserted identity is well defined.

Consider the generating function in two variables

Q(x, y) =
∞∏
j=1

(1 + xjy) =
∑
n,k

qn,kx
nyk,

where the variable x tracks the size of a part, while the variable y tracks the number
of parts. Therefore, overall Q(x, y) is the 2-variable generating function tracking the
partitions into distinct parts and qn,k is the number of partitions of n into k distinct
parts.

Note that in fact not only Q(x, y) ∈ C[[x, y]], but in fact Q(x, y) ∈ (C[y])[[x]]. Recall
from basic commutative algebra that if ϕ : R → S is a ring homomorphism between

10



2.2. GENERATING FUNCTIONS ASSOCIATED TO PARTITIONS

commutative rings R and S, then ϕ extends to a ring homomorphism

ϕ̃ : R[[x]] −→ S[[x]]
∞∑
n=0

rnx
n 7−→

∞∑
n=0

ϕ(rn)xn

of formal power series rings. Applying this construction for R = C[y], S = C and
ϕ = ev−1, where ev−1 : C[y]→ C is the evaluation at −1, we obtain a well defined ring
homomorphism (which we also call ev−1)

ev−1 : C[y][[x]] −→ C[[x]]

f(x, y) 7−→ f(x,−1)

In particular, it is well defined to evaluate Q(x, y) at −1. Let now En be the set of
partitions of n into an even number of distinct parts, On be the set of partitions of n
into an odd number of distinct parts. We then obtain that

∞∏
j=1

(1− xj) = Q(x,−1) =
∑
n,k≥0

qn,kx
n(−1)k =

∞∑
n=0

(
∞∑

k-even

qn,k −
∞∑

k-odd

qn,k

)
xn

=
∞∑
n=0

(|En| − |On|)xn.

We are left to show that if tn := |En| − |On|, then

tn =

(−1)k, if n =
k(3k − 1)

2
for k ∈ Z

0, otherwise.

We will do so by a combinatorial bijection method.

Let λ = λ1 + . . . λ2t be a partition in En. Then we have that λ1 > λ2 > . . . > λ2t. Let s
be the largest integer such that λs = λ1 − s+ 1. If λ2t ≤ s, remove the last part λ2t and
add a unit to each λ1, . . . , λs. If λ2t > s, then remove 1 unit from each λ1, . . . , λs and
add a part with s units after λ2t. Perform an analogous process on On. This yields a
bijection between En and On, except for the following cases:

1. λ2t = s+ 1 and s = 2t. Then Then |En| − |On| = 1.

n =
2t∑
i=1

(2t+ i) = 6t2 + t.

11



2.2. GENERATING FUNCTIONS ASSOCIATED TO PARTITIONS

Then n =
k(3k − 1)

2
for k = −2t (the other possibility for k, namely

6t− 1

3
is not

an integer). Indeed |En| − |On| = 1 = (−1)−2t = (−1)k in this case. An analogous
case occurs on the On side.

2. λ2t = s and s = 2t. Then |En| − |On| = 1 and

n =
2t−1∑
i=0

(2t+ i) = 6t2 − t.

Hence n =
k(3k − 1)

2
for k = 2t. and indeed |En| − |On| = 1 = (−1)2t = (−1)k in

this case. An analogous case occurs on the On side again.

Corollary 1. If n ≥ 1, and defining p(n) to be zero for n ≤ 0, then

p(n) =
∑

k∈Z\{0}

(−1)k+1p

(
n− k(3k − 1)

2

)
. (2.9)

Proof. The method of proof in Proposition 1 also shows that in the power series ring
C[[x]] it does not actually matter with respect to which order we are taking the factors

in the product
∞∏
j=1

(1− xj) Therefore, indeed

F (x)
∞∏
j=1

(1− xj) = 1.

Expanding this, we obtain

1 =

(
∞∑
n=0

p(n)xn

)(∑
k∈Z

(−1)kx
k(3k−1)

2

)

=
∑
k∈Z

(∑
n≥0

(−1)kx
k(3k−1)

2 p(n)xn

)
=

∑
k∈Z,n≥0

(−1)kp(n)xn+
k(3k−1)

2

12



2.3. GENERATING FUNCTIONS ASSOCIATED TO COMBINATORIAL CLASSES

Let n′ = n+
k(3k − 1)

2
. Then

1 =
∑

k∈Z,n≥0

(−1)kp(n)xn
′

=
∑
n′≥0

(∑
k∈Z

(−1)kp

(
n′ − k(3k − 1)

2

))
xn
′
.

Compare the coefficients of xn, n ≥ 1.∑
k∈Z

(−1)kp

(
n− k(3k − 1)

2

)
= 0.

Then

p(n) +
∑

k∈Z\{0}

(−1)kp

(
n− k(3k − 1)

2

)
= 0.

In other words,

p(n) =
∑

k∈Z\{0}

(−1)kp

(
n− k(3k − 1)

2

)
,

as desired.

2.3 Generating Functions Associated to Combinato-

rial Classes

In this section we define generating in the broader sense of combinatorial classes. We
will explore some basic constructions which help us compute more complicate generating
functions from the knowledge of simpler ones. Generating functions can allow us to easily
prove identities involving partition numbers which are difficult to prove if one uses the
combinatorial bijection method from before.

Definition 5. A combinatorial class is a pair (C, | · |C), where C is a finite or countably
infinite set and | · |C is a function from C into the nonnegative integers, called a size
function, such that for every n ∈ N≥0, we have that | · |−1C (n) is finite or in other words,
the number of elements of any given size is finite.

Throughout the section, we will denote a combinatorial class (C, | · |C) simply by C and
we also let Cn denote the set of elements in C that are of size n.

Definition 6. The counting sequence of a combinatorial class C is the sequence of
integers (cn)n≥0 where for every n ∈ N≥0, cn is the cardinality of Cn or in other words,
the number of objects in the class C that have size n.

13



2.3. GENERATING FUNCTIONS ASSOCIATED TO COMBINATORIAL CLASSES

Definition 7. An isomorphism between two combinatorial classes A and B is a bijection
f from A to B such that

|a|A = |f(a)|B
for every a ∈ A. In this case, one says that A and B are isomorphic and write A ∼= B.

It is easy then to show that two combinatorial classes are isomorphic precisely when the
two classes have identical counting sequences.

Definition 8. The generating function of a sequence (cn) is the formal power series

C(x) =
∞∑
n=0

cnx
n.

The generating function of a combinatorial class C is the generating function of its counting
sequence.

Equivalently, one can think of the generating function of the class C as the sum

C(x) =
∑
α∈C

x|α|C .

We then see that the variable x keeps track of the size function of the respective
combinatorial class.

Following the notations and terminology of [7], here are some basic constructions gener-
ating functions associated to combinatorial classes:

• Let E denote the neutral class. The underlying set of this class consists of a single
element which we define to have size 0. The generating function of E is simply
E(x) = 1.

• Let Z denote the atomic class. The underlying set of this class consists of a single
element whose size we define to be 1. The generating function associated to Z is
Z(x) = x.

• Let A and B be two combinatorial classes whose underlying sets are assumed to
be disjoint. Their combinatorial sum A+ B is defined to be the combinatorial
class C whose underlying set is AqB and whose size function | · |C is defined in the
following way. For c ∈ Aq B

|c|C =

{
|c|A, if c ∈ A
|c|B, if c ∈ B.

As the notation would suggest, the generating function of A+ B indeed equals the
sum of the generating functions of A and B:

C(x) =
∑
c∈AqB

x|c| =
∑
α∈A

x|α| +
∑
β∈B

x|β| = A(x) +B(x).
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2.3. GENERATING FUNCTIONS ASSOCIATED TO COMBINATORIAL CLASSES

• For arbitrary combinatorial classes A and B we denote by A× B their Cartesian
product. Its underlying set is the set theoretic Cartesian product

A× B = {(α, β)|α ∈ A, β ∈ B}.

We define the size of a pair (α, β) to be |α|A + |β|B. Again, as the name would
suggest, the generating function of A×B indeed equals the product of the generating
functions of A and B since

∑
(α,β)∈A×B

x|(α,β)| =
∑

(α,β)∈A×B

x|α|+|β| =

(∑
α∈A

x|α|

)(∑
β∈B

x|β|

)
= A(x)B(x).

• For a combinatorial class A with no elements of size 0, we let SEQ(A) denote
the combinatorial class whose underlying set is the set of all finite sequences with
elements from A. The size of such a finite sequence is defined to be the sum of the
sizes of the elements of the sequence. Using our previous constructions, we see that

SEQ(A) = E +A+ (A×A) + (A×A×A) + . . . .

Therefore its generating function equals

C(x) = 1 + A(x) + A2(x) + A3(x) + . . . =
1

1− A(x)
.

• For a combinatorial class A with no elements of size 0, consider instead the multiset
version MSET(A), as opposed to the previous construction SEQ(A). In other
words, the underlying set will be instead the collection of all multisets with finitely
many elements from A.

Given any finite multiset from A, we can list its elements in a way such that it is a
concatenation of finitely many sequences in each of which one element is repeated
an arbitrary finite number of times. Therefore, we have the following equality in
terms of combinatorial classes:

MSET(A) =
∏
α∈A

SEQ({α}).

Therefore, the generating function of MSET(A) is equal to

C(x) =
∏
α∈A

1

1− x|α|
=
∏
n≥1

(
1

1− xn

)an
,

since a0 was assumed to be 0.

15



2.3. GENERATING FUNCTIONS ASSOCIATED TO COMBINATORIAL CLASSES

Example 4 (Integer partitions). Let I denote the combinatorial class whose underlying
set is the of all positive integers and the size function |n|I = n for all n ≥ 1. The
generating function of I is then

I(x) =
∑
n≥1

xn =
x

1− x
.

Comparing with Definition 1, we note that integer partitions can be regarded as as
multisets of nonnegative integers, which means that

P = MSET(I).

Its generating function then equals

F (x) =
∞∏
n=1

(1− xn)−In

In = 1 for n ≥ 1 because is exactly on object in I for each size n ≥ 1 (namely, n itself),
we have

F (x) =
∞∏
n=1

1

1− xn
.

which agrees with the product expansion from before.
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3 Rademacher’s Series

Using the generating function F (x) of the partition numbers defined in Chapter 2, Hardy
and Ramanujan [10] also managed to find an asymptotic formula for p(n). It is of the
form

p(n) =
∑

k<α
√
n

Pk(n) +O(n−1/4).

for a constant α. The dominant term of the sum is P1(n), for which

P1(n) ∼ e
√

2n
3
π

4n
√

3
, as n→∞

holds. The other terms Pi(n) are asymptotic to similar expressions, but whose constants
in the exponential are smaller. Nevertheless, this represents just an approximation for
the partition numbers and is not an exact formula because of the error term O(n−1/4).

Instead, Hans Rademacher was able to obtain an exact formula for p(n) at the expense
of allowing infinitely many terms. He obtained an expansion

p(n) =
∞∑
k=1

Rk(n).

which is also known under the name of Rademacher’s series. Since Rademacher’s approach
was an adjustment of the approach of Hardy and Ramanujan, it is of no surprise that
the terms Rk(n) are only slightly different from the terms Pk(n). The main goal of
this chapter is to prove Rademacher’s exact formula, to compute the exact forms of
these terms Rk(n) (which are also called Rademacher terms) and to find what are they
asymptotically equivalent to.
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3.1. OUTLINE OF THE PROOF

3.1 Outline of the Proof

In this section, we present an outline of our steps. Using the notations of Proposition 1,
we know that

F (x)

xn+1
=
∞∑
k=0

p(k)xk

xn+1
,

for each n ≥ 0 and every x in the punctured open unit disk in the complex plane.
Therefore, as a function on the complex plane F (x)

xn+1 is meromorphic and has a pole of
order n+ 1 at the origin with residue p(n). Using Cauchy’s residue theorem we obtain
that

p(n) =
1

2πi

∫
C

F (x)

xn+1
dx

for any positively oriented simple closed curve C lying inside the open unit disk enclosing
0. The main idea, which goes under the name of the circle method in literature, is to
choose a special contour C which lies near the roots of unity. These roots of unity are
singularities of F (x), since we showed in Chapter 2 that the latter is the infinite product
of the reciprocals of the polynomials xi − 1, for all i ≥ 1.

It turns that the contours CN we are interested in are obtained as a byproduct of the
theory of Farey fractions and Ford circles. For a fixed N ∈ N, the contour CN is a glueing
of circular arcs Ch,k, one for each pair (h, k) such that 0 ≤ h < k ≤ N and h, k are

coprime. This arc Ch,k lies near the point e
2πih
k , which is a root of unity. We explore the

behaviour of the integral over this contour as N →∞. Also, clearly the integral over CN
can be decomposed as a sum of integrals over the Ch,k’s:∫

C

=
N∑
k=1

k−1∑
0≤h<k
(h,k)=1

∫
Ch,k

.

Using the Dedekind eta function and its relation to F (x) we show that for each such pair
(h, k) there exists an elementary function Ψh,k(x) which behaves in the same way as the

integrand around the singularity e
2πih
k . The sum of the integrals of Ψh,k where k is fixed

and h varies equals the desired Rademacher term Rk(n).

3.2 The Modular Group

As we already mentioned in our outline, we require some basics of the theory of modular
forms and modular functions for obtaining our asymptotic formula for p(n). In the
following we explore the basic properties of Möbius transformations and define the
modular group.
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3.2. THE MODULAR GROUP

Consider a transformation f on the complex plane which has the form

f(z) =
az + b

cz + d
,

where a, b, c, d are complex numbers. We want to encode the set of these transformations
as an algebraic object. Note that if w 6= z ∈ C, then

f(w)− f(z) =
(ad− bc)(w − z)

(cw + d)(cz + d)
,

therefore f is a constant function precisely when ad− bc = 0. We are not interested in
such transformations, so from now on we assume that ad 6= bc. We call these functions
Möbius transformations. Clearly then in this case, when c 6= 0 f , is a meromorphic

function on the complex plane with a simple pole at z = −d
c

, otherwise it is holomorphic

on C.

A natural way to encode these transformations is by means of matrices, where the matrix
associated to f in this case would be

A =

(
a b
c d

)
.

However, note that different matrices may describe the same transformation. For example
if a, b, c, d ∈ R with ad− bc = k 6= 0, we can also write our f as

f(z) =

a√
|k|
z + b√

|k|
c√
|k|
z + d√

|k|

and if a′ = a√
|k|
, b′ = b√

|k|
, c′ = v√

|k|
and d′ = d√

|k|
, then a′, b′, c′ and d′ satisfy a′d′− b′c′ =

1.

We will require from now that ad − bc = 1 and that our coefficients a, b, c and d are
integers. We will call the set of corresponding Möbius transformations the modular group.
We will also denote the modular group by Γ.

To see that the set of such Möbius transformations do actually form a group, note
again that each transformation can be written as a 2× 2 matrix with integer entries of
determinant 1.

Then two different matrices of this kind describe the same transformation on the complex
plane if and only one matrix is the negative of the other. In other words, on the level of
sets

Γ ' SL2(Z)/ ∼
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3.3. FAREY FRACTIONS

where A ∼ B in SL2(Z) iff A = −B.

It is clear that the matrices in SL2(Z) do form a group and H := {I2,−I2} is a normal
subgroup of SL2(Z). Therefore

Γ ' SL2(Z)/H

is also a group.

3.3 Farey Fractions

As we mentioned in the outline there are two main ingredients that were used by
Rademacher in order to define the desired the desired contour of integration. One of
them is the theory of Farey fractions. In the following, by a reduced fraction we mean a
fraction in which the numerator and denominator are coprime.

Definition 9. Let n ∈ N. A fraction
h

k
is called a Farey fraction of order n if

h

k
is

reduced and

0 ≤ h

k
≤ 1, 0 ≤ h ≤ k ≤ n.

We will denote the set of Farey fractions of order n by Fn. In other words

Fn =

{
h

k
: 0 ≤ h ≤ k ≤ n; (h, k) = 1

}
.

Furthermore, we will always assume that the elements of Fn are listed in an increasing
order, which allows to talk about consecutive Farey fractions of a given order for example.

Example 5. The following are the sets of Farey fractions of order n for 1 ≤ n ≤ 5:

F1 =

{
0

1
,
1

1

}
F2 =

{
0

1
,
1

2
,
1

1

}
F3 =

{
0

1
,
1

3
,
1

2
,
2

3
,
1

1

}
F4 =

{
0

1
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1

}
F5 =

{
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1

}
.
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3.3. FAREY FRACTIONS

It is easy to see then that by definition, we have that Fn ⊂ Fn+1, for all n ∈ N.

Throughout the section we will always assume that a, b, c, d are nonnegative integers.

Definition 10. If a
b

and c
d

are two reduced fractions, then their mediant is defined to be
the fraction a+c

b+d
.

However, note that the definitions that we encounter in this section depend on the specific
choice of the fraction representation. In other words, these terms are not well-defined, if
we would consider them as definitions on Q. Also, note that the mediant of two reduced
fractions need not be reduced as well. We will later see though that in some specific case
it is.

Lemma 2. If a
b

and c
d

are two distinct reduced fractions, then their mediant a+c
b+d

lies
between them.

Proof. Assume without loss of generality that

a

b
<
c

d

Then we have that ad < bc. By direct computation

a+ c

b+ d
− a

b
=
bc− ad
b(b+ d)

> 0

since bc− ad > 0. Also
c

d
− a+ c

b+ d
=

bc− ad
d(b+ d)

> 0

and we are done

Lemma 3. Suppose that a
b

and c
d

are fractions such that 0 ≤ a
b
< c

d
≤ 1 and let n ∈ N.

Suppose that bc− ad = 1 and that

max(b, d) ≤ n ≤ b+ d− 1.

Then a
b

and c
d

are consecutive elements in Fn.

Proof. Since bc− ad = 1, the fractions a
b

and c
d

are reduced.

Since max(b, d) ≤ n, it means that both of them are frac in Fn. We are left to prove that
they are consecutive in Fn. Assume by absurd that there is another reduced fraction
h
k
∈ Fn between them. In other words assume

a

b
<
h

k
<
c

d
.
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3.3. FAREY FRACTIONS

where (h, k) = 1 and 0 ≤ h ≤ k ≤ n. We have that bc− ad = 1, therefore

k = (bc− ad)k = b(ck)− d(ak) + (d(bh)− b(dh))

= b(ck − dh) + d(bh− ak).
(3.1)

Since a
b
< h

k
< c

d
, we obtain that ck−dh ≥ 1 and bh−ak ≥ 1, which shows that k ≥ b+d.

In other words, any fraction h
k

between a
b

and c
d

has denominator at least equal to b+ d.

Since in our case, n ≤ b+d−1, it follows that k ≥ n+1, which contradicts the assumption
that h

k
∈ Fn.

What is remarkable is that the converse of this lemma holds as well.

Theorem 2. Suppose that a
b

and c
d

are two consecutive terms of Fn, with

a

b
<
c

d
.

Then

(i) bc− ad = 1

(ii) n ≤ b+ d− 1.

Proof. (i) We induct on n. The theorem clearly holds true for n = 1, so we are left to
prove the induction step. We assume it is true for Fn and prove it for Fn+1. Suppose that
a
b

and c
d

are consecutive in Fn. If they are still consecutive in Fn+1, then there is nothing
to show about them because they satisfy ad− bc = 1 from the induction hypothesis.

Suppose that they are not consecutive anymore in Fn+1 and assume e
f

is a fraction such
that

a

b
<
e

f
<
c

d

in Fn+1, if such a fraction even exists at all. Then denote the differences of cross
multiplications by eb − fa = s > 0 and fc − ed = t > 0. By the induction hypothesis
we know that bc− ad = 1, which allows us to solve the above system in integers for the
unknowns e and f . By basic linear algebra, we obtain:

e = at+ cs and f = bt+ ds.

Also then s and t must be coprime since e and f are.

Consider the set

S :=

{
µa+ λc

µb+ λd
: λ, µ ≥ 1, gcd(λ, µ) = 1

}
.
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3.3. FAREY FRACTIONS

So far we showed that every reduced fraction between a
b

and c
d

must come from S.
Moreover, every fraction in S is reduced, because a common divisor of µa + λc and
µb+ λd would be a common divisor of

−d(µa+ λc) + c(µb+ λd) = (bc− ad)µ = µ

and
b(µa+ λc)− a(µb+ λd) = (bc− ad)λ = λ

which is 1. Since every fraction in S is reduced and strictly between a
c

and b
d
, and since

none of them was in Fn by the consecutivity assumption, it means every denominator of
a fraction in Fn is strictly greater than n.

Since we also proved that one of these fractions does lie in Fn+1, it follows that one of
these fractions must have denominator exactly n+ 1. Moreover, this must then be true
for the fraction with the smallest denominator possible in S, since all of them exceed n
anyway.

But the fraction with the smallest possible denominator is clearly the one for which
µ = λ = 1, in other words

a+ c

b+ d
.

But then since b+ d = n+ 1 it follows that no other fractions in S can lie in Fn+1. But
then

a

b
<
a+ c

b+ d
<
c

d

must be consecutive in Fn+1 and clearly for these the successive cross differences are 1,
because

(a+ c)b− a(b+ d) = bc− ad = 1 and c(b+ d)− d(a+ c) = bc− ad = 1

and we are done.

(ii) Assume the contrary and suppose that n ≥ b+ d. We claim then that the mediant
a+c
b+d

is also a fraction in Fn. Since by Lemma 2 this mediant lies between a
b

and c
d
, this

would contradict the consecutivity assumption of these two fractions.

We already assumed that n ≥ b+d. So it suffices to check that the fraction a+c
b+d

is reduced.
By part (i) we know that

c(b+ d)− (a+ c)d = bc− ad = 1

Therefore (a+ c, b+ d) = 1 and the fraction is reduced.
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3.4. FORD CIRCLES

3.4 Ford Circles

The other ingredient necessary for defining our desired contours is the theory of Ford
circles, which in fact was missing from the initial approach of Rademacher, but rather
appeared in a later refinement of it. There is an element interplay between Ford circles
and the theory of Farey, as we will see later in the chapter.

Definition 11. Let h
k

be a reduced fraction. The Ford circle of h
k

is the circle in the
complex plane whose center is h

k
+ i 1

2k2
and radius 1

2k2
. We denote this Ford circle by

C(h, k).

Figure 3.1: The Ford circle C(h, k)

Lemma 4. Let a
b

and c
d

be two distinct reduced fractions. The Ford circles C(a, b) and
C(c, d) are either tangent to each other or they do not intersect at all. Moreover, C(a, b)
and C(c, d) are tangent if and only if bc− ad = ±1.

Proof. Let D denote the distance between the centers of C(a, b) and C(c, d). Then using
the coordinate expressions of these centers we find that

D2 =
(a
b
− c

d

)2
+

(
1

2b2
− 1

2d2

)2

.

On the other hand, the square of the sum of their radii is(
1

2b2
+

1

2d2

)2

.

Subtracting this out of D2, we obtain that

D2 −
(

1

2b2
+

1

2d2

)2

=

(
ad− bc
bd

)2

+

(
1

2b2
− 1

2d2

)2

−
(

1

2b2
+

1

2d2

)2

=
(ad− bc)2 − 1

b2d2
.
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3.4. FORD CIRCLES

Because a
b

and c
d

are distince, ad − bc 6= 0, thus the above difference is nonnegative.
Furthermore, it vanishes if and only if |ad− bc| = 1. These is equivalent to our geometric
formulation of the lemma.

Corollary 3. Let h
k

and h′

k′
be consecutive Farey fractions in FN for a fixed N ∈ N. Then

their Ford circles C(h, k) and C(h′, k′) are tangent.

Proof. This follows immediately from Theorem 2 and Lemma 4.

Figure 3.2: Ford Circles C(h, k) and C(h1, k1) tangent at α1

Now we further compute the coordinate expressions of these points of tangency for Ford
circles associated to Farey fractions.

Theorem 4. Let
h1
k1

<
h

k
<
h2
k2

be consecutive Farey fractions in FN for a fixed N ∈ N.

The points of tangency of C(h, k) with C(h1, k1) and C(h2, k2) are

α1 =
h

k
− k1
k(k2 + k21)

+
i

k2 + k21

and

α2 =
h

k
− k2
k(k2 + k22)

+
i

k2 + k22
,

respectively. In fact, α1 lies on the circle whose diameter is the segment joining
h1
k1

and

h

k
in the complex plane.
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3.4. FORD CIRCLES

Proof. We will focus on finding the coordinate expression for the point of intersection
between C(h, k) with C(h1, k1), the other one being entirely similar. For the proof we
will refer to the picture in Figure 3.2, for which we will assume without loss of generality
that k1 ≥ k, the other case being completely analogous.

We will make use of similarity of two triangles from the figure. The first one is the large
right triangle whose hypotenuse is the segment joining the two centers. The other one is
the smaller right triangle whose hypotenuse is the segment joining the center of C(h, k)
with α1.

In the large triangle all the side lengths are known. The hypotenuse has length 1
2k21

+ 1
2k2

,

the vertical side length is 1
2k21
− 1

2k2
, while the horizontal side length is h

k
− h1

k1
.

For the smaller triangle, we only know so far that the hypotenuse has length 1
2k2

. We
assume that the horizontal and vertical side lengths of it are a and b, respectively.

Using their similarity, we find that

a
h
k
− h1

k1

=
1

2k2

1
2k21

+ 1
2k2

=
1

2k2
· 2k21k

2

k2 + k21
=

k21
k2 + k21

By Theorem 2 we know that hk1 − h1k = 1. This allows us to finally compute that

a =
k21

k2 + k21
· hk1 − h1k

kk1

=
k1

k(k2 + k21)

For the vertical side length b, from the triangle similarity we know that

b
1

2k21
− 1

2k2

=
k21

k2 + k21
,

Therefore

b =
k21

k2 + k21
· k

2 − k21
2k2k21

=
k2 − k21

2k2(k2 + k21)
.

It is immediate from Figure 3.2 that

α1 =

(
h

k
− a
)

+ i

(
1

2k2
+ b

)
(3.2)
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3.5. RADEMACHER’S SERIES

Using our computations for a and b, we then find that

α1 =

(
h

k
− k1
k(k2 + k21)

)
+ i

(
1

2k2
+

k2 − k21
2k2(k2 + k21)

)
=
h

k
− k1
k(k2 + k21)

+ i
2k2

2k2(k2 + k21)

=
h

k
− k1
k(k2 + k21)

+
i

k2 + k21
.

For the last statement, it simply to show that the angle formed by h
k
, α1 and h1

k1
is a right

angle. This follows from a simple angle chase.

3.5 Rademacher’s Series

Recall from Chapter 2 that we showed that the generating function of p(n) satisfied the
identity

F (x) =
∞∏
m=1

1

1− xm
=
∞∑
n=0

p(n)xn (3.3)

Moreover, we showed that for each x in the open unit disk in the complex plane, F (x)
converges absolutely and that the above equation holds not only in the power series ring
C[[x]], but also whenever we plug in any complex number in the open unit disk.

As a matter of fact, the series F (x) has radius of convergence 1. In other words, we also
claim that F (x) diverges for x ∈ C with |x| > 1. This holds true because by Lemma 1 of
Chapter 2, p(n) is unbounded and thus p(n)|x|n is unbounded for |x| > 1.

Recall from the outlined strategy, when dividing F (x) by xn+1 we obtain

F (x)

xn+1
=
∞∑
k=0

p(k)xk

xn+1
, for n ≥ 0.

which is a Laurent power series expansion at the origin. The origin is pole of order
n+ 1 and the residue of this expansion or in other words, the coefficient of x−1 is p(n).
Therefore, applying Cauchy’s residue theorem , one finds that

p(n) =
1

2πi

∫
C

F (x)

xn+1
dx. (3.4)

for any contour C enclosing the origin. In the following, we will explore an intelligent
choice for a contour C, derived from the theory of Farey fractions and Ford circles. Of
fundamental importance, is also the behaviour of F (x) near the complex roots of unity.
These roots of unity are singularities of F (x) by the equation 3.3.
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3.5. RADEMACHER’S SERIES

3.5.1 The Rademacher path P (N)

Fix N ∈ N. We start by defining a path P (N) in the complex plane rather than the unit
disk. Later after applying an appropriate transformation this will become a closed path
in the open unit disk which will enclose the origin.

Consider FN , the set of Farey fractions of order N . For each of these fractions, consider
their respective Ford circles. Recall that these circles are tangent, whenever they corre-
spond to consecutive fractions. Note that all of these Ford circles, with the exception of
C(0, 1) and C(1, 1) lie within the vertical strip

V = {τ : 0 ≤ Re(τ) < 1, Im(τ) > 0}

inside the upper half plane H = {τ : Im(τ) > 0}. For C(0, 1) and C(1, 1), consider only
their portions which lie inside V .

For a Farey fraction h
k

in FN , different from 0
1

and 1
1
, assume that its neighbours in FN

are h1
k1

and h2
k2

, in other words that

h1
k1

<
h

k
<
h2
k2

are consecutive Farey fractions in FN . As before, let α1 denote the intersection of C(h, k)
with C(h1, k1) and α2 denote the intersection of C(h, k) with C(h2, k2). Since α1 and
α2 are specific to the circle C(h, k), we will also denote them by α1(h, k) and α2(h, k),
respectively. We let γ(h, k) denote the arc on C(h, k) between α1 and α2 which does not
touch the real axis, in other words, choose the upper arc.

We let then P (N) denote the path obtain by joining all these arcs together with the arcs
obtained from following C(0, 1) starting from i inside V until the arc of the Ford circle of
the first non-zero Farey fraction, while we end with arc starting at the second endpoint
of the arc of the penultimate Farey fraction following the arc of C(1, 1) until the point
1 + i. We will call this contour the Rademacher path P (N). For a visualization of P (N),
one can check the right hand side of the Figure 3.3.

However, to apply this in the equation 3.4, we rather need a path in the open unit disk
enclosing 0 and not a path in V. For that we need a map which relates the upper half
plane with the open unit disk. The needed transformation will be

x = e2πiτ

which maps an element τ ∈ V into an element x inside the punctured unit disk. Indeed,
if we consider a point τ = a+ bi in H, for a, b ∈ R and b > 0, then

x = e2πi(a+bi) = e2aπi−2bπ
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Figure 3.3: The Rademacher path P (N) for the case when N = 10.

whose absolute value is e−2bπ.

We let P̃ (N) denote the image of the path P (N) in the x−plane. In the following, at
times we will refer to both of them as P (N) with the meaning being clear from the
context. In Figure 3.4 we display our transformation, while in Figure 3.3 on both sides,
we see the Rademacher path P (N) in both planes.

Figure 3.4: The transformation between the x-plane and the τ -plane

It is clear by definition that since P (N) does not touch the real axis and avoids the points
h
k

for (h, k) = 1, 0 ≤ h ≤ k, then ˜P (N) avoids any k−th complex root of unity, whenever
k < N . From now on, let n be a fixed number. In determining the value of p(n), we will
let N approach infinity.
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By the above, we know that

p(n) =
1

2πi

∫
P̃ (N)

F (x)

xn+1
dτ

Applying our change of variables x = e2πiτ , since

dx = 2πie2πiτdτ,

our identity becomes

p(n) =
1

2πi

∫
P (N)

F (e2πiτ )e−2πi(n+1)τ2πie2πiτdτ

=

∫
P (N)

F (e2πiτ )e−2πinτdτ.

We now split P (N) into the aforementioned arcs γ(h, k), we get that

p(n) =
∑

0≤h≤k≤N
(h,k)=1

∫
γ(h,k)

F (e2πiτ )e−2πinτdτ

For each such pair (h, k), we apply one more transformation which will be useful from a
computational point of view later. Let

z = −ik2
(
τ − h

k

)
,

be our transformation. Reverting the transformation, it follows that

τ =
h

k
+
iz

k2
.

This transformation is linear, so it can be thought of as a composition of a translation,
scaling and a rotation. To see what effect it has on the arc γ(h, k), let us see first what it
does on the Ford circle C(h, k).

Subtracting h
k

is a shift by h
k

to left, therefore the image so far is a circle whose center is
the origin. Multiplying by k2, makes the radius of the new circle equal to

k2 · 1

2k2
=

1

2
.

Finally, the multiplication by −i rotates the figure counterclockwise by an angle π
2
.

Therefore, the image of C(h, k) in the τ -plane is a circle K in the z-plane whose center is
1

2
and radius

1

2
.
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Figure 3.5: The image circle K in the z-plane

To find the image of α1(h, k) (call it z1(h, k)) , we just compute directly

z1(h, k) = −ik2
(
α1(h, k)− h

k

)
= −ik2

(
i

k2 + k21
− k1
k(k2 + k2! )

)
=

k2

k2 + k21
+ i

kk1
k2 + k21

(3.5)

while the image of α2(h, k) can be similarly computed to be

z2(h, k) =
k2

k2 + k22
− i kk2

k2 + k22
. (3.6)

Therefore the image of γ(h, k) must one of the two arcs between z1(h, k) and z2(h, k) on
the circle K. Since for γ(h, k) we chose the arc strictly the real axis in the τ -plane, in
the z-plane we must choose the arc from z1(h, k) to z2(h, k) which does not touch the
imaginary axis. Let γ̃(h, k) denote this arc. Note that for this change of variables, we
have that

dτ =
i

k2
dz,
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therefore we obtain that:

p(n) =
∑

0≤h≤k≤N
(h,k)=1

∫
γ(h,k)

F (e2πiτ )e−2πinτdτ

=
∑

0≤h≤k≤N
(h,k)=1

∫
γ̃(h,k)

F

(
exp

(
2πih

k
− 2πz

k2

))
i

k2
e−2πinh/ke2πnz/k

2

dz

=
∑

0≤h≤k≤N
(h,k)=1

i

k2
e−2πinh/k

∫
γ̃(h,k)

e2πnz/k
2

F

(
exp

(
2πih

k
− 2πz

k2

))
dz.

Now we are left to compute these integrals.

3.5.2 Dedekind’s Functional Equation for F

The function F also possesses modularity properties, which we will try to explain and
exploit in order to deduce certain functional equations satisfied by F , which are useful in
the computation of the above integrals. We start with a

Definition 12. The eta function η is a complex valued function defined on the upper
half-plane H = {τ ∈ C : Im(τ) > 0} whose values are

η(τ) = eπiτ/12
∞∏
m=1

(1− e2πimτ ). (3.7)

The importance of this function, which was introduced by Dedekind in the 19th century
is that it satisfies the following important functional equation whose proof we omit and
let the reader refer to ([2], page 52)

Theorem 5 (Dedekind’s functional equation). Let

(
a b
c d

)
be one of the two possible

possible representatives of an element in the modular group Γ such that c > 0, or in other
words an element of SL2(Z) with c > 0. If τ ∈ H, then

η

(
aτ + b

cτ + d

)
= ε(a, b, c, d)[−i(cτ + d)]

1
2η(τ), (3.8)

where

ε(a, b, c, d) = exp

(
πi

(
a+ d

12c
+ s(−d, c)

))
and

s(h, k) =
k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
.
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In order to see how to apply this theorem for F , we note that in fact F and eta share a
link by means of the following identities (where we use that x = e2πiτ , as well as (3.3)
and (3.7))

η(τ) = eπiτ/12
∞∏
m=1

(1− e2πimτ ) =
eπiτ/12

F (e2πiτ )
.

The functional equation (3.8) from the previous theorem can now be transformed into a
functional equation for F .

Let

(
a b
c d

)
∈ Γ and τ ′ = aτ+b

cτ+d
, with c > 0, then by (3.8) we have that

η(τ ′) = η(τ)[−i(cτ + d)]
1
2 exp

[
πi

(
a+ d

12c
+ s(−d, c)

)]
Plug in the equalities

η(τ) =
eπiτ/12

F (e2πiτ )
and η(τ ′) =

eπiτ
′/12

F (e2πiτ ′)

to obtain that

eπiτ
′/12

F (e2πiτ ′)
=

eπiτ/12

F (e2πiτ )
[−i(cτ + d)]

1
2 exp

[
πi

(
a+ d

12c
+ s(−d, c)

)]
Therefore, in the τ plane F satisfies the following functional equation

F (e2πiτ ) = F (e2πiτ
′
) exp

(
πi(τ − τ ′)

12

)
[−i(cτ+d)]

1
2 exp

[
πi

(
a+ d

12c
+ s(−d, c)

)]
. (3.9)

Recall now the transformation rule between the variables x, τ and z, for a fixed coprime
pair (h, k):

x = e2πiτ = exp

(
2πih

k
− 2πz

k2

)
.

Then we have that

x′ = e2πiτ
′
= exp

(
2πiH

k
− 2π

z

)
,

where H is any integer such that hH ≡ −1 (mod k).

Turns out, one can always choose an appropriate matrix

(
a b
c d

)
, for which (3.9) becomes

instead

F

(
exp

(
2πih

k
− 2πz

k2

))
= ω(h, k)

(z
k

) 1
2
F

(
exp

(
2πiH

k
− 2π

z

))
exp

( π

12z
− πz

12k2

)
33



3.5. RADEMACHER’S SERIES

where ω(h, k) = eπis(h,k). By definition s(h, k) ∈ Q, therefore ω(h, k) is a complex root of
unity. Note the latter expression is expressed completely in terms of z and furthermore,
no more reference to the integers a, b, c, d is made. The details of the choice of the matrix
are discussed in the Appendix A.

Using again the conversion between x and z, we can also express this functional equation
in the following compact form

F (x) = ω(h, k)
(z
k

) 1
2

exp
( π

12z
− π

12k2

)
F (x′) (3.10)

Now we are able to make some quantitative observations of the behaviour of F (x) when
is x is approaching the unit circle, more precisely a root of unity. Since

x = exp

(
2πih

k
− 2πz

k2

)
.

we have that x approaches e2πih/k when |z| tends to zero. But when z tends to zero, the

absolute value of
2π

z
goes to infinity, and therefore

x′ = exp

(
2πiH

k
− 2π

z

)
goes to zero. Therefore, when x approaches a root of unity, F (x′) tends to F (0) = 1.

In regards to (3.10), this means that deleting the last factor in right hand side gives a
good approximation to F (x).

In other words

ω(h, k)
(z
k

) 1
2

exp
( π

12z
− πz

12k2

)
should be regarded as a good approximation of F (x). This differs by a constant from the
expression which we call

Ψk(z) = z
1
2 exp

( π

12z
− πz

12k2

)
Applying Dedekind’s functional equation for F into our identity for p(n),

p(n) =
∑

0≤h≤k≤N
(h,k)=1

ik−2e−2πinh/k
∫
γ̃(h,k)

e2πnz/k
2

F

(
exp

(
2πih

k
− 2πz

k2

))
dz,

we obtain that

p(n) =
∑

0≤h≤k≤N
(h,k)=1

ik−5/2ω(h, k)e−2πinh/k
∫
γ̃(h,k)

e2πnz/k
2

z
1
2 exp

( π

12z
− πz

12k2

)
F (x′)dz.
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Our quantitative observations about approximating F (x) motivates writing F (x′) as
1 + (F (x′)− 1) in the sum

p(n) =
∑

0≤h≤k≤N
(h,k)=1

ik−5/2ω(h, k)e−2πinh/k
∫
γ̃(h,k)

e2πnz/k
2

Ψk(z)[1 + (F (x′)− 1)]dz,

and splitting our integral in two terms

I1(h, k) =

∫
γ̃(h,k)

Ψk(z)e2πnz/k
2

dz (3.11)

and

I2(h, k) =

∫
γ̃(h,k)

Ψk(z)e2πnz/k
2

[
F

(
exp

(
2πiH

k
− 2π

z

))
− 1

]
dz. (3.12)

In short, our new expression for p(n) can be written as

p(n) =
∑

0≤h≤k≤N
(h,k)=1

ik−5/2ω(h, k)e−2πinh/k(I1(h, k) + I2(h, k)), (3.13)

where I1(h, k) should be regarded as leading term and I2(h, k) should be regarded as the
error term. In what follows we will study both of these terms separately.

3.5.3 The Error Term I2(h, k)

We start with an analysis of the error term, with our goal being to show that I2(h, k) is
O(N−1/2). Therefore, the term is small and we will be able to neglect it later when will let
N go to infinity and allow infinite sums. Note that the integrand is indeed holomorphic
in a small neighbourhood of the disk centered at 1

2
of radius 1

2
punctured at the origin.

Therefore we are also able to compute I2(h, k) by integrating along a different path,
namely the chord between z1(h, k) and z2(h, k). We denote the integral along this cord

by
∫ z2(h,k)
z1(h,k)

. Therefore, we have that

I2(h, k) =

∫ z2(h,k)

z1(h,k)

Ψk(z)e2πnz/k
2

[
F

(
exp

(
2πiH

k
− 2π

z

))
− 1

]
dz.

Let us bound this integral having in mind that z varies along the aforementioned chord.
We start by bounding the integrand. We use that for every complex number z we have
the identity

|ez| =
∣∣eRe(z)

∣∣ .
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Using this and the power series expansion of F , and denoting the integrand by Φ(z) we
obtain

|Φ(z)| =
∣∣∣∣Ψk(z)e2πnz/k

2

[
F

(
exp

(
2πiH

k
− 2π

z

))
− 1

]∣∣∣∣
=

∣∣∣∣∣z 1
2 exp

( π

12z
− πz

12k2

)
exp

(
2πnz

k2

)[ ∞∑
m=0

p(m) exp

(
2πimH

k
− 2πm

z

)
− 1

]∣∣∣∣∣
=

∣∣∣∣∣z 1
2 exp

( π

12z
− πz

12k2

)
exp

(
2πnz

k2

)[ ∞∑
m=1

p(m) exp

(
2πimH

k
− 2πm

z

)]∣∣∣∣∣
≤ |z|

1
2 exp

(
πRe(1/z)

12
− πRe(z)

12k2

)
exp

(
2πnRe(z)

k2

)( ∞∑
m=1

p(m)
∣∣e2πiHm/k∣∣ e−2πmRe(1/z)

)
.

= |z|
1
2 exp

(
πRe(1/z)

12
− πRe(z)

12k2

)
exp

(
2πnRe(z)

k2

)( ∞∑
m=1

p(m)e−2πmRe(1/z)

)
.

where in the last equality we used that
∣∣e2πiHm/k∣∣ = 1. We will bound every factor in

the last product besides the first one. Because z varies for values in the chord, which
in particular lies inside the disk whose boundary is K, we have that 0 ≤ Re(z) ≤ 1.
Therefore

exp

(
πRe(z)

12k2

)
≤ 1 (3.14)

and

exp

(
2πnRe(z)

k2

)
≤ exp

(
2πn

k2

)
≤ exp (2πn) (3.15)

For the other factors, let us switch our focus on 1/z instead. Assume that z = a+ bi is
inside the closed disk whose boundary is K. Since z is within distance 1

2
from the center

of K, we obtain (
a− 1

2

)2

+ b2 ≤ 1

4

which rewritten means that a2 + b2 ≤ a. Therefore, from the equality

1

z
=

a

a2 + b2
− b

a2 + b2
i

we conclude that

Re

(
1

z

)
=

a

a2 + b2
≥ 1.
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It is also useful to keep in mind that if z lies on the circle K, then the equality case
Re(1/z) = 1 occurs. Using (3.14) and (3.15) as well, this gives

|Φ(z| ≤ |z|
1
2 exp

(
πRe(1/z)

12

)
e2πn

[
∞∑
m=1

p(m) exp

(
−2πmRe

(
1

z

))]

= |z|
1
2 e2πn

[
∞∑
m=1

p(m) exp

(
−2π

(
m− 1

24

)
Re

(
1

z

))]

≤ |z|
1
2 e2πn

[
∞∑
m=1

p(m) exp

(
−2π

(
m− 1

24

))]

< |z|
1
2 e2πn

(
∞∑
m=1

p(24m− 1)e−π(24m−1)/12

)
.

< |z|
1
2 e2πn

(
∞∑
j=0

p(j)e−πj/12

)
= c|z|

1
2

where c = e2πnF
(

exp
(
− π

12

))
, the latter factor being well defined because

0 < exp
(
− π

12

)
< 1.

Note that c is a constant whose expression whose expression depends on our fixed n and
is independent of N and z, which means it can be applied universally.

To bound the integrand, now it suffices to bound |z|
1
2 and the length of the chord between

z1(h, k) and z2(h, k).

Recalling our formulas for the coordinate expressions for z1(h, k) and z2(h, k), we obtain

|z1(h, k)|2 =

∣∣∣∣ k2

k2 + k21

∣∣∣∣2 +

∣∣∣∣ kk1
k2 + k21

∣∣∣∣2
=
k4 + k2k21
(k2 + k21)2

=
k2

k2 + k21
.

After performing an analogous computation for z2(h, k), our results are summarized by
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the equalities

|z1(h, k)| = k√
k2 + k21

|z2(h, k)| = k√
k2 + k22

Using the second part of Theorem 2 of Chapter 2, we know that k + k1 ≥ N + 1, because
h
k

and h1
k1

are consecutive Farey fractions. Combining this with the basic inequalities

0 ≤ (k − k1)2 = 2(k2 + k21)− (k + k1)
2

we obtain that:

|z1(h, k)| = k√
k2 + k21

≤
√

2k

k + k1
≤
√

2k

N + 1
≤
√

2k

N
(3.16)

In a similar way we also obtain that

|z2(h, k)| <
√

2k

N
(3.17)

As z varies through the chord between these 2 points, using the unit interval parametriza-
tion

|z| = |tz1(h, k) + (1− t)z2(h, k)| ≤ t|z1(h, k)|+ (1− t)|z2(h, k)|

≤ max(|z1(h, k)|, |z2(h, k)|) <
√

2k

N
.

where t varies in the unit interval. Thus

c|z|
1
2 ≤ c2

1
4

(
k

N

) 1
2

.

Also, using the triangle inequality, the length of the chord is bounded by

|z1(h, k)|+ |z2(h, k)| = 2
√

2k

N
.

Now that every component of the integral is bounded, we can finally conclude that

|I2(h, k)| < C

(
k

N

) 3
2
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where C is a constant that depends solely on n. Therefore, the sum of the error terms is
bounded by∣∣∣∣∣∣∣∣

∑
0≤h≤k≤N
(h,k)=1

(
ik−5/2ω(h, k)e−2πinh/kI2(h, k)

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

0≤h≤k≤N
(h,k)=1

(
k−5/2I2(h, k)

)∣∣∣∣∣∣∣∣
≤

∑
0≤h≤k≤N
(h,k)=1

(
k−5/2|I2(h, k)|

)

<

N∑
k=1

 ∑
0≤h<k
(h,k)=1

C

kN3/2



=
C

N3/2

 N∑
k=1

1

k

∑
0≤h<k
(h,k)=1

1




≤ C

N3/2

(
N∑
k=1

1

k
k

)

=
C√
N
.

where in the first equality we used that i, ω(h, k) and e−2πinh/k have absolute value 1.
Therefore the equation (3.13) for p(n) becomes

p(n) =
∑

0≤h≤k≤N
(h,k)=1

ik−5/2ω(h, k)e−2πinh/kI1(h, k) +O(N−1/2) (3.18)

3.5.4 The Term I1(h, k)

Turns out that the term I1(h, k) can be modified in a way that the difference of I1(h, k) to
its modification is of small order. In fact, just like in the case of the error I2(h, k), when
considered in the sum, this order of the difference is O(1/

√
N). This change consists in

modifying the path of integration.

Having in mind the path independence discussed in the previous subsection, we can omit
mentioning γ̃(h, k) and simply write

I1(h, k) =

∫ z2(h,k)

z1(h,k)

Ψk(z)e2πnz/k
2

dz.

39



3.5. RADEMACHER’S SERIES

If K− denotes the path which goes along the circle K in clockwise direction. Since our
previous choice of the arc meant it was also clockwise, we have that

I1(h, k) =

∫
K−
−
∫ 0

z2(h,k)

−
∫ z1(h,k)

0

.

the reason for splitting the integral at the origin being the singularity of the integrand
there. Let

J1 := J1(h, k) =

∫ 0

z2(h,k)

Ψk(z)e2πnz/k
2

and J2 := J2(h, k) =

∫ z1(h,k)

0

Ψk(z)e2πnz/k
2

We will that both the error term created by summing up over all J1 and J2 is of order
O(N−1/2).

Refer from now to the figure 3.6. Let us bound the length of the arc on K from the
origin to z1(h, k). From the figure it is clear that this length is smaller than the length of
the arc between the same points, in the situation when these two points determine the
diameter of the circle.

Figure 3.6: The arc on K from 0 to z1

But for the latter arc, we know that its length is half of the circumference, namely
π|z1(h, k)|/2. Using (3.16) we know thus the length our arc on K from 0 z1(h, k) is
bounded by

√
2πk/N .

Similarly, the length of the arc from the origin to z2(h, k) is bounded by the same constant.

It is also clear by geometric considerations, that the absolute value of any z on these two
arcs is bounded by max(|z1|, |z2|), thus |z| <

√
2k/N there by (3.16) and (3.17).

Recall that the transformation Re(1/z) = 1 for points z on the circle K, We are ready to
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bound the integrand:∣∣∣Ψk(z)e2πnz/k
2
∣∣∣ =

∣∣∣z 1
2 exp

( π

12z
− πz

12k2

)
e2πnz/k

2
∣∣∣

= |z|
1
2 exp

(
πRe(1/z)

12
− πRe(z)

12k2

)
e2πnRe(z)/k2

≤ |z|
1
2 eπ/12e2πn

< c1

(
k

N

) 1
2

,

where c1 which depends only on our fixed n. In the first inequality we used that
Re(1/z) = 1 together with (3.14) and (3.15), while in the second one we used the bound
for |z| above. Combine this with the bound on the length of the arcs from before, we
find that both

|J1| < C1

(
k

N

) 3
2

and |J2| < C1

(
k

N

) 3
2

,

where C1 is constant.

Therefore the total error when using the curve K− instead of the arcs is bounded by∣∣∣∣∣∑
h,k

ik−5/2ω(h, k)e−2πinh/k(J1 + J2)

∣∣∣∣∣ ≤∑
h,k

k−5/2|J1 + J2|

<
N∑
k=1

∑
0≤h<k
(h,k)=1

2C1

kN−3/2

=
2C1

N−3/2

N∑
k=1

1

k

∑
0≤h<k
(h,k)=1

1

≤ 2C1√
N
.

which is indeed of the claimed order. Applying to our expansion of p(n), we obtain

p(n) =
∑
h,k

ik−5/2ω(h, k)e−2πinh/k
∫
K−

Ψk(z)e2πnz/k
2

dz +O(N−1/2)
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3.5. RADEMACHER’S SERIES

3.5.5 The Rademacher Terms

Since n was fixed and N could vary, we allow now N →∞ and our our equation for p(n)
becomes

p(n) =
∞∑
k=1

∑
0≤h<k
(h,k)=1

ik−5/2ω(h, k)e−2πinh/k
∫
K−

Ψk(z)e2πnz/k
2

dz

Let Ak(n) =
∑

0≤h<k
(h,k)=1

ω(h, k)e−2πinh/k. Then our expression for p(n) becomes

p(n) =
∞∑
k=1

ik−5/2Ak(n)

∫
K−

z
1
2 exp

( π

12z
− πz

12k2

)
e2πnz/k

2

dz

=
∞∑
k=1

ik−5/2Ak(n)

∫
K−

z
1
2 exp

{
π

12z
− 2πz

k2

(
n− 1

24

)}
dz,

We perform one more change of variables

z =
π

12t
with change of differentials dz = − π

12t2
dt,

This is just a scaled version of the reverse transform 1
z
. Using our analysis of the latter,

we conclude thus that the circle K is onto the line Re(z) =
π

12
.

Our sum expansion of p(n) can be rewritten as

p(n) =
∞∑
k=1

−ik−5/2Ak(n)

∫ π/12+∞i

π/12−∞i

( π

12t

) 1
2

exp

{
t+

π2

6k2t

(
n− 1

24

)}
π

12t2
dt

=
∞∑
k=1

−ik−5/2Ak(n)
( π

12

) 3
2

∫ π/12+∞i

π/12−∞i
t−5/2 exp

{
t+

π2

6k2t

(
n− 1

24

)}
dt

= 2π
( π

12

) 3
2

∞∑
k=1

k−5/2Ak(n)

∫ π/12+∞i

π/12−∞i
t−5/2 exp

{
t+

π2

6k2t

(
n− 1

24

)}
dt.

This is an integral which can be evaluated by means of the theory of Bessel functions,
about which we provide details in the Appendix B. Using (B.1), we know that(

1
2
z
)ν

2πi

∫ π/12+∞i

π/12−∞i
t−ν−1 exp

(
t+

z2

4t

)
dt = Iν(z),
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3.5. RADEMACHER’S SERIES

and if we plug in the values

z =
1

2

[
π2

6k2

(
n− 1

24

)] 1
2

and ν =
3

2
,

we find that the integration term can be rewritten as

1

2πi

∫ π/12+∞i

π/12−∞i
t−5/2 exp

{
t+

π2

6k2t

(
n− 1

24

)}
dt

=

{
π2

6k2

(
n− 1

24

)}− 3
4

I 3
2

(
π

k

√
2

3

(
n− 1

24

))
.

This gives us the following form of the equation of p(n)

p(n) =
2π(n− 1

24
)−

3
4

(24)
3
4

∞∑
k=1

k−1Ak(n)I 3
2

(
π

k

√
2

3

(
n− 1

24

))

I 3
2
(z) is a Bessel function whose order is a half integer, for which we computed in (B.3)

that

I 3
2

(
π

k

√
2

3

(
n− 1

24

))
=

6
3
4k

3
2

π2

(
n− 1

24

) 3
4 d

dn

sinh

{
π
k

√
2
3

(
n− 1

24

)}
√
n− 1

24

 .

Once again simplifying our equation for p(n), we arrive at our infinite series representation:

p(n) =
2π
(
n− 1

24

)− 3
4

24
3
4

6
3
4

(
n− 1

24

) 3
4

π2

∞∑
k=1

k−1k
3
2Ak(n)

d

dn

sinh

{
π
k

√
2
3

(
n− 1

24

)}
√(

n− 1
24

)


=
1

π
√

2

∞∑
k=1

k
1
2Ak(n)

d

dn

sinh

{
π
k

√
2
3

(
n− 1

24

)}
√(

n− 1
24

)
 . (3.19)

This realizes our main goal for this chapter, which was a convergent series expansion for
p(n). We also denote by

Rk(n) = k
1
2Ak(n)

d

dn

sinh

{
π
k

√
2
3

(
n− 1

24

)}
√
n− 1

24

 ,

and call it the kth Rademacher term.
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3.6. ASYMPTOTICS OF P (N)

3.6 Asymptotics of p(n)

We can now also deduce the asymptotic formula for p(n) found by Hardy and Ramanujan.
For this, turns out, it is enough to consider only the first term of the Rademacher series.

We will show that this term dominates the remaining sum and that it has the desired
asymptotics. Let us compute the Rademacher term for the case when k = 1.

A1(n) =
∑

0≤h<k
(h,k)=1

eπis(h,k)e−2πinh/k = eπi·0e−2πn·0 = 1,

Therefore, differentiating, we obtain

R1(n) =
d

dn

sinh
(√

2
3

(
n− 1

24

))√
n− 1

24


=

1

4

(
e
π
√

2
3(n− 1

24) + e
−π

√
2
3(n− 1

24)
)
π

√
2

3

(
n− 1

24

)−1
− 1

4

(
e
π
√

2
3(n− 1

24) − e−π
√

2
3(n− 1

24)
)(

n− 1

24

)− 3
2

Using the binomial series for the exponent
1

2
, we compute√

n− 1

24
=
√
n

(
1− 1

24n

) 1
2

=
√
n
∞∑
m=0

(
1
2

m

)
(−1)k

(
1

24n

)m
=
√
n

(
1− 1

2 · 24n
− 1

8 · (24n)2
− . . .

)
=
√
n

(
1 +O

(
1

n

))
=
√
n+O

(
1√
n

)
,

and using in turn the exponential series, we obtain

e
π
√

2
3(n− 1

24) = eπ
√

2n
3

(
1 +O

(
1√
n

))
.

Since the other terms will not affect this exponential term, we obtain an asymptotic
expression of the first Rademacher term.

R1(n) =
π

4n

√
2

3
eπ
√

2n
3

(
1 +O

(
1√
n

))
.
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3.6. ASYMPTOTICS OF P (N)

We are left to explore the size of the other terms in the Rademacher series. Consider the
change of variables

t =
π

k

√
2

3

(
n− 1

24

)
, so that n− 1

24
=

3

2

(
kt

π

)2

,

we find that

d

dn

 sinht√
n− 1

24

 =
π

2k

√
2

3

cosht(
n− 1

24

) − 1

2

sinht(
n− 1

24

) 3
2

=
π

2k

(
2

3

) 3
2 ( π

kt

)2
cosht− 1

2

(
2

3

) 3
2 ( π

kt

)3
sinht

=
2

3
√

6

π3

k3
cosht

t2
−
√

2

3
√

3

π3

k3
sinht

t3

=
2

3
√

6

π3

k3

(
cosht

t2
− sinht

t3

)
.

(3.20)

Let

f(t) =

(
cosh t

t2
− sinh t

t3

)
Its Taylor series equals to

f(t) =

(
1

t2
+

t2

2!t2
+

t4

4!t2
+ . . .

)
−
(
t

t3
+

t3

3!t3
+

t5

5!t3
+ . . .

)
=

(
1

2!
− 1

3!

)
+ t2

(
1

4!
− 1

5!

)
+ t4

(
1

6!
− 1

7!

)
+ . . . ,

therefore it is increasing and its limit at t = 0 exists and is finite.

Now we can bound the remaining Rademacher terms. Note Ak(n) is a sum of roots of
unity with at most k summands. Thus |Ak(n)| ≤ k. It follows that, for a constant C:∣∣∣∣∣∑

k≥2

k
1
2Ak(n)

2

3
√

6

π3

k3
f

(
π

k

√
2

3

(
n− 1

24

))∣∣∣∣∣ ≤ C
∑
k≥2

k−
3
2f

(
π

k

√
2

3

(
n− 1

24

))

≤ Cf

(
π

2

√
2

3

(
n− 1

24

))(∑
k≥2

k−
3
2

)
,

because as k increases, t then decreases and f then also must decrease. Furthermore,
the argument of f approaches ∞ for which we showed the limit is finite. The last factor
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converges sum is a p-series with p = 3/2 > 1. In summary∣∣∣∣∣∑
k≥2

Rk(n)

∣∣∣∣∣ = O

{
f

(
π

2

√
2

3

(
n− 1

24

))}
= O(R2(n)).

Performing now an analogous computation for R2(n) as in the case of R1(n) we will find
that its dominating term is again an exponential function, with a similar but nevertheless
smaller constant part. Therefore R2(n) = O(R1(n)) and

p(n) ∼ 1

π
√

2
R1(n)

=
1

π
√

2

π

4n

√
2

3
eπ
√

2n
3

(
1 +O

(
1√
n

))
∼ eπ

√
2n
3

4n
√

3
as n→∞.

(3.21)
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4 Statistics of a Random Partition

Assume that n ≥ 1 is a fixed number. We can assign to the set of partitions Pn a
probability measure in the simplest way, by means of the uniform probability measure.
This means that we assume that every individual outcome, in other words any partition
in Pn, has a probability of 1/p(n).

This allows us to talk about random variables on the sets of partitions. More precisely,
we will interested in those which are integer valued and simply call them them partition
statistics. We analyze a few partition statistics and results known about them.

4.1 Partition Length and the Number of Parts

Two of the most basic partition statistics are the partition length and the number of
parts. As we will see these two are closely related.

Definition 13. The length of a partition λ ∈ Pn, denoted by Ln(λ), is the size of the
largest part of λ. Let Ln denote the corresponding partition statistic on Pn.

Example 6. Consider the following partition for n = 34:

µ : 34 = 15 + 8 + 6 + 3 + 1 + 1.

The size of the largest part of this partition is 15, therefore L34(µ) = 15.

Definition 14. Let Zn(λ) denote the number of parts in λ ∈ Pn. Let Zn be the corre-
sponding partition statistic on Pn.

Example 7. On the above partition µ of 34, Z34(µ) = 6.

The two statistics are related by the following lemma.

Lemma 5. If P is the uniform probability measure on Pn , then

P(Ln = k) = P(Zn = k), k = 1, 2, . . . , n. (4.1)
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4.2. NUMBER OF DISTINCT PARTS

Proof. For each partition λ ∈ Pn such that Ln(λ) = k consider its conjugate partition λ
′
.

Then Zn(λ
′
) = k.

Since conjugation is a set bijection from Pn onto itself, with reverse the conjugation, it
follows that there are equally many partitions of order n whose length is k and partitions
of order n whose number of parts is k. Since the probability measure is uniform, we are
done.

Corollary 6. For n ≥ 1, we have that E(Ln) = E(Zn).

If we allow n to vary, recall that one could generating functions to encode quantitative
information about partitions of several orders in one stroke.

In the one variable case, as we considered before, we could usually keep track of only one
size measure, but if one needs more, one can add extra variables.

If we want a generating function which keeps track of size of the partitions and their
lengths one can consider the following two variable generating function

P (x, y) =
∞∏
j=1

(1− xjy)−1,

where the variable x keep track of the order of the partition and y keeps track of the
length. This can be proven either directly, or by the above lemma.

This generating functions allows in theory the computation of the expected value E(Ln) =
E(Zn). In order to obtain a generating function whose nth coefficient describes the total
length summed over all partitions of order n, one simply computes the nth coefficient in

∂

∂u
P (x, y)

∣∣∣∣
y=1

=
∞∏
j=1

(1− xj)−1 ·
∞∑
j=1

xj

1− xj
.

If we divide the coefficient of xn by p(n) of partitions of n, we will have computed the
expected value E(Ln). In Chapter 5, we will see what E(Ln) = E(Zn) equal to. The main
goal there will be compute expectations for their refined counterparts after a finding a
more sophisticated, but easily proven analog of Lemma 5.

4.2 Number of Distinct Parts

Definition 15. Let Dn(λ) be the number of distinct parts of the given partition λ ∈ Pn
and let Dn denote the corresponding partition statistic.
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4.3. MOMENTS OF A PARTITION

For the computing the expect value, one can repeat the method in the case of case finding
the average length. One can instead compute the total value when we consider all the
partitions by means of the following two variable generating function:

∞∏
j=1

(
1 +

xjy

1− xjy

)
.

where x keeps track of the order of the partition and y keeps track of the number of
distinct parts. Differentiating with respect to y and plugging in y = 1 yields

∞∏
j=1

(1− xj)−1 · x

1− x
.

Dividing the nth coefficient by p(n) yields the desired expected value. For the distribution,
the research by Goh and Schmutz [8] shows that Dn follows a normal distribution in the
limit.

One can introduce several generalisations of this statistic too. One of them is Dn,m, the
sum of the m-th powers of all distinct parts of a partition of order n. The two variable
generating function corresponding to it is

∞∏
j=1

(1− xj)−1 ·
∞∑
j=1

jmxj.

A study of this statistic can be found in [12].

4.3 Moments of a Partition

Definition 16. Let n ≥ 1 and λ ∈ Pn. Suppose λ = λ1 + λ2 + . . ., then the k-th moment
of λ is defined to be

Mk,n(λ) = λk1 + λk2 + . . .

Clearly for k = 0, we have that M0,n = Ln recovers the length of a partition. Also M1,n

equals the constant function n. Its corresponding two variable generating function is
∞∏
j=1

(1− xjyjk)−1

for which if we do the above trick by differentiating at y and setting y = 1 we obtain the
one variable generating function

∞∏
j=1

(1− xj)−1 ·
∞∑
j=1

jkxj

1− xj
.

which allows for direct computation of the mean E(Mk,n) for example.
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4.4. NUMBER OF PARTS OF A GIVEN SIZE

4.4 Number of Parts of a Given Size

Consider the statistic which counts the number of parts of size d in partitions of order n.
Its multivariable generating function is given by

1− xd

1− xdy
·
∞∏
j=1

(1− xj)−1.

For the studying its mean, which counts the average number of occurences of the number
d as a part in a partition of order n. one repeats the procedure for the other statistics
and computes the one variable counterpart

xd

1− xd
·
∞∏
j=1

(1− xj)−1.

4.5 Number of Parts with Given Multiplicity

A natural counterpart of the statistic in the previous section is the statistic counting the
number of a given multiplicity d. Again if we allow a second variable y to keep track of
these of the given multiplicity, we analyze the bivariable generating function

∞∏
j=1

(
1

1− xj
+ (y − 1)xdj

)
,

Differentiating y and evaluating at 1, we obtain the generating function

∞∏
j=1

(1− xj)−1 ·
∞∑
j=1

xdj(1− xj) =
∞∏
j=1

(1− xj)−1 · (1− x)xd

(1− xd)(1− xd+1)
.

whose nth coefficient is the total number of parts of the given multiplicity d.

The study in [5] shows that asymptotically the value of the average number of parts of
multiplicity d is equivalent to 6n

πd(d+1)
.

It turns out that the above statistic is closely related to the number of d-successions,
which counts the number of times when the difference between two subsequent parts is
d. The two statistic have almost the exact same distribution. A recent paper studying
successions is [14]. For related research see also [3] and [15].
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4.6. THE LARGEST REPEATED PART AND THE LONGEST RUN

4.6 The Largest Repeated Part and the Longest Run

Consider the statistic with counts what is the size of the largest repeated part in a
partition, which we define to be zero in the case when there is no repeated part size.
Following the account in [9], it turns that the one variable generating function whose
coefficients sum up the largest repeated part sizes accounting for all partitions of n equals

∞∏
j=1

(1− xj)−1 ·
∞∑
j=1

x2j

1− x2j
,

This can be generalized further if instead we are considering the statistic that instead
counts the largest part that is repeated d or more times. Again, if no part is repeated
enough times, we assign a value of 0 to out statistic. Analogously, the generating function
for sum of this statistic over all partitions equals to

∞∏
j=1

(1− xj)−1 ·
∞∑
j=1

xdj

1− xdj
.

For the case when d = 1 we recover the statistic Ln. In [20] one can find further results
concerning the distribution of these statistics.

We call the longest run of a partition the maximum multiplicity of a number in the
partition.

It can be easily shown that the generating function whose nth coefficient is the number
of partitions of order n whose longest run is less than k equals

∞∏
j=1

1− xjk

1− xj
= P (x)P (xk)−1,

Therefore generating function whose nth coefficient is the number of partitions of order
n whose longest run is exactly k equals

P (x)(P (xk+1)−1 − P (xk)−1).

Thus if we want to study, we are interested in the generating function

P (x) ·
∞∑
k=1

k(P (xk+1)−1 − P (xk)−1).

Two useful references on the topic are [17] and [19], according to which the limit of
this statistic is rather unusual. The expected value of this statistic was found to be

asymptotically equivalent to
(

4
√

2− 6
√
6

π

)√
n.
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5 Main Results

We arrive at the main part of this thesis, in which we compute expectations of generalized
versions of some of the statistics considered in the previous chapters. Let us define the
statistics of interest to us.

Definition 17. The sums of odd and even indexed parts are defined by

Xo,n(λ) = Xo,n = λ1 + λ3 + . . . ,

and
Xe,n(λ) = Xe,n = λ2 + λ4 + . . . ,

respectively.

Obviously, for each λ ∈ Pn,

Xo,n +Xe,n = n and Xo,n > Xe,n.

The last inequality is easily established since in the sum

(λ1 − λ2) + (λ3 − λ4) + . . . = Xo,n −Xe,n

each summand is non-negative.

Canfield, Savage, and Wilf [4] showed that Xe,n might not contribute very much less than
n/2 and asymptotically, as n→∞, the expected values E(Xo,n) and E(Xe,n) have the
same leading term n/2. The difference in the second leading terms is, however, of order
c×
√
n.

Canfield et al. [4] consider the more general statistics Xm,i(λ), the sum of those parts in
partition λ whose index j is congruent to i mod m:

Xm,i = Xm,i(λ) =
∑

j≡i (mod m)

λj, m > 1, 1 6 i 6 m.

They proved the following result.
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Theorem 7. For fixed integers m ≥ 1 and i, there exists a constant cm,i such that

E(Xm,i)−
n

m
=
m+ 1− 2i

2Cm

√
n log n+ cm,i

√
n+O(log n). (5.1)

The constants cm,i are given by

cm,i =
(γ + log (2/C))(m+ 1− 2i)

Cm
+

2

Cm

m−1∑
`=1

ω−`(i−1)

1− ω`
log (1− ω`),

where C = π
√

2/3, ω = e2π
√
−1/m, and γ is the Euler constant.

We can use this result to describe the asymptotics of the expectations of Xo,n and Xe,n.

Lemma 6. For large enough n, we have:

E(Xo,n) =
n

2
+

√
6n

8π
log n+

√
6n log 2

4π
+O(log n),

E(Xe,n) =
n

2
−
√

6n

8π
log n−

√
6n log 2

4π
+O(log n).

Proof. To prove this Lemma, we apply the formula (5.1) in the Theorem 7 with m = 2
and i = 1. We obtain

E(Xo,n) =
n

2
+

3− 2

22π
√

2
3

√
n log n+

1

π
√

2
3

ω0

1− ω
(log (1− ω))

√
n+O(log n).

For m = 2 we have ω = e2πi/2 = eπi = cos π = −1. Substituting this in the above result
we get

E(Xo,n) =
n

2
+

3− 2

4π
√

2
3

√
n log n+

√
3 log 2

2
√

2π

√
n+O(log n)

=
n

2
+

√
6n

8π
log n+

√
6n log 2

4π
+O(log n).

We proceed in the same way with E(Xe,n). In this case we set m = 2 and i = 2. So, we
have

E(Xe,n) =
n

2
+

3− 4

22π
√

2
3

√
n log n+

1

π
√

2
3

ω−1

1− ω
(log (1− ω))

√
n+O(log n).
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For m = 2 and i = 2, we have the same value of ω = −1 and

E(Xe,n) =
n

2
− 1

4π
√

2
3

√
n log n−

√
3 log 2

2
√

2π

√
n+O(log n)

=
n

2
−
√

6n

8π
log n−

√
6n log 2

4π
+O(log n).

The novel results of this work focus on the study of other generalized versions of previously
statistics considered, namely the number of odd and even indexed parts.

Definition 18. Let
Zo,n(λ) = Zo,n = m1 +m3 + . . . ,

and
Ze,n(λ) = Ze,n = m2 +m4 + . . . ,

denote the number of odd and even indexed parts of the partition λ ∈ Pn, respectively.

Recall that mj is the multiplicity of part j, see (2.5). Obviously,

Zo,n + Ze,n = Zn.

For the simpler statistic Zn, the expected value E(Zn) was first studied in terms of
statistical physics by Husimi [11], and later on by Kessler and Livingston [13]. We present
these results in the following lemma:

Lemma 7. For large enough n, the following holds:

E(Zn) = E(Ln) =

√
6n

2π

(
log n+ 2γ − log

π2

6

)
+O(log n),

where γ = limn→∞

(
1 +

1

2
+ . . .+

1

n
− log n

)
≈ 0.5772156 is the Euler constant.

Erdös and Lehner were apparently the first who studied limiting distributions of random

partition statistics. In particular, they showed in [6] that
πZn√

6n
− log

√
6n

π
converges in

distribution (weakly), as n → ∞, to a random variable whose distribution function is
e−e

−x
, −∞ < x <∞.

The main goal of this work is to find asymptotic expressions for E(Zo,n) and E(Ze,n) as
n→∞.
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In order to do that, we use the following clever trick, which will bring us in the position
to apply the results of Canfield et al. [4] in order to compute the expectations of Zo,n
and Ze,n.

Lemma 8. The random variables Xo,n −Xe,n and Zo,n have coinciding probability distri-
butions with respect to probability measure P.

Proof. Consider
λ = (λ1, . . . , λk) ∈ Pn

and its conjugate partition
λ
′
= (λ

′

1, . . . , λ
′

l) ∈ Pn.

Recall that λ
′
j in fact equals to the number of parts in λ that are greater or equal than j.

Because λ is also the conjugate of λ
′

this also implies that λj equals the number of parts
in λ

′
that are greater or equal than j, and λj+1 is the number of parts in λ

′
that are

greater or equal than j + 1.

Hence, λj − λj+1 is the number of parts in λ
′

that are equal to j, or in other words m
′
j,

where m
′
j is the multiplicity of part j in λ

′
. Conversely, from the point of view of λ

′
we

have that
λ
′

j − λ
′

j+1 = mj

for all j ≥ 1. It then follows that

Xo,n(λ
′
)−Xe,n(λ

′
) = (λ

′

1 − λ
′

2) + (λ
′

3 − λ
′

4) + . . .

= m1 +m3 + . . .

=
∞∑
i=0

m2i+1

= Zo,n(λ)

Since conjugation is a bijection on the set of partitions of n onto itself, then it follows
that for each s ∈ N, there are equally many partitions λ ∈ Pn whose statistics Xo,n−Xe,n

and Zo,n equal to s simultaneously.
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Figure 5.1: Ferrers Diagram of the partition and the conjugate partition for n = 50
(Examples 2 and 3)

Example 8. Going back to the partition of n = 50 in Example 2 and 3, we can see that
λ
′
3 = 9, which means that there are 9 parts in λ that are > 3. This is also confirmed by

Figure 5.1. This implies that there are λ3 = 6 parts in λ
′

that are > 3 and there are
λ4 = 5 parts in λ

′
that are > 4. When we take the difference λ3− λ4, we have just 1 part

in λ
′

that is 3. This also yields the multiplicity m
′
3 = 1.

Theorem 8. If n→∞, then

E(Zo,n) = c0
√
n log n+ c1

√
n+O(log n)

and
E(Ze,n) = c0

√
n log n− c2

√
n+O(log n),

where

c0 =

√
6

4π
= 0.1949242 . . .

c1 =

√
6

2π
log 2 = 0.27022319 . . .

c2 =

√
6

2π

(
2γ − log

π2

3

)
= 0.460467898 . . .

Proof. From Lemma 8, which attributes to the random variables Xo,n −Xe,n and Zo,n
coinciding probability distributions it follows that

E(Zo,n) = E(Xo,n)− E(Xe,n).
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Replacing E(Xo,n) and E(Xe,n) by the asymptotic expressions given in Lemma 6, we
obtain

E(Zo,n) =

(
n

2
+

√
6n

8π
log n+

√
6n log 2

4π
+O(log n)

)

−

(
n

2
−
√

6n

8π
log n−

√
6n log 2

4π
+O(log n)

)

=

√
6n

4π
log n+

√
6n

2π
log 2 +O(log n).

In the same way, using the result of Lemmas 6 and 7, we have

E(Ze,n) = E(Xe,n −Xo,n + Ln) = −E(Xo,n −Xe,n) + E(Ln) = −E(Zo,n) + E(Ln)

= −

(√
6n

4π
log n+

√
6n

2π
log 2 +O(log n)

)
+

√
6n

2π

(
log n+ 2γ − log

π2

6

)
+O(log n)

=

√
6n

4π
log n−

√
6n

2π

(
2γ − log

π2

3

)
+O(log n).

Intuitively, it seems that Zo,n and Ze,n should not essentially differ. This is true for the
first term asymptotics, however, the coefficients of

√
n in the second terms are essentially

different as n→∞.
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A Dedekind’s Functional Equation in
Terms of F

We will assume the notations of Chapter 3 throughout this appendix. The purpose of
this chapter is to ptove the following

Claim 1. The function F satisfies the following functional equation

F

(
exp

(
2πih

k
− 2πz

k2

))
= ω(h, k)

(z
k

) 1
2
F

(
exp

(
2πiH

k
− 2π

z

))
exp

( π

12z
− πz

12k2

)

where ω(h, k) = eπis(h,k).

We recall that from the functional equation satisfied by the Dedekind eta and its relation

F we deduced that if

(
a b
c d

)
∈ Γ, c > 0 and if we denoted τ ′ = aτ+b

cτ+d
, then

F (e2πiτ ) = F (e2πiτ
′
) exp

(
πi(τ − τ ′)

12

)
[−i(cτ + d)]

1
2 exp

[
πi

(
a+ d

12c
+ s(−d, c)

)]
.

It suffices to make the appropriate choice of the matrix. We will show that a = H,

b = −hH + 1

k
c = k and d = −h works. Note that the determinant of the matrix with

these entries is indeed 1. Also, because of the choice of H, it follows that b ∈ Z and
clearly c > 0 is satisfied as well.

Note that automatically we have then that s(−d, c) = s(h, k). using that τ =
iz + hk

k2
,

we compute

aτ + b =
Hiz + hHk

k2
− hHk + k

k2
=
Hiz − k

k2
,

cτ + d =
iz + hk

k
− h =

iz

k
,
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hence their ratio equals

τ ′ =
Hiz − k
kiz

=
iz−1k +H

k
.

Finally, set this into our functional equation and compute

F

(
exp

(
2πihk

k2
− 2πz

k2

))
= F

(
exp

(
2πiH

k
− 2πk

zk

))[
−i
(
iz

k

)] 1
2

× exp

(
πi

12

(
iz − iz−1k2 + hk −Hk

k2

))
exp

[
πi

(
H − h

12k
+ s(h, k)

)]
= F

(
exp

(
2πiH

k
− 2π

z

))(z
k

) 1
2

exp

(
πi

12

(
h−H
k

+
H − h
k

+
iz

k2
− i

z

))
exp(πis(h, k))

= F

(
exp

(
2πiH

k
− 2π

z

))(z
k

) 1
2

exp
( π

12z
− πz

12k2
+ πis(h, k)

)
,

which is the desired identity.
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B Bessel Functions and Their Eval-
uation

The goal of this chapter is to provide a brief of the properties of Bessel functions that
are needed in obtaining an expression for the Rademacher series. For a more thorough
resource on Bessel functions the reader is invited to refer to [21].

Bessel functions arrive as solutions of differential equations, which are also named after
Bessel, and their are defined by means of a power series

Jν(z) =
∞∑
m=0

(−1)m
(
z
2

)ν+2m

m!Γ(ν +m+ 1)
.

In the following we will though work a modified version of the Bessel functions which we
define as

Iν(z) = e−
1
2
νπiJν(iz)

=
∞∑
m=0

(
z
2

)ν+2m

m!Γ(ν +m+ 1)
.

One of our points of interest is to describe this by means of an integral equation. The
first is to use an integral equation of the Gamma function

1

Γ(z)
=

1

2πi

∫ c+∞i

c−∞i
t−zetdt,

to obtain that

Iν(z) =

(
z
2

)ν
2πi

∞∑
m=0

∫ c+∞i

c−∞i

(
z
2

)2m
m!

t−ν−m−1etdt.
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Using that summation and integration commute, we refine this to

Iν(z) =

(
z
2

)ν
2πi

∫ c+∞i

c−∞i

∞∑
m=0

((
z
2

)2
t−1
)m

m!
t−ν−1etdt

=

(
z
2

)ν
2πi

∫ c+∞i

c−∞i
exp

{(z
2

)2 1

t

}
t−ν−1etdt.

Summarizing, the above, we obtain the desired integral equation for Iν(z)

Iν(z) =

(
1
2
z
)ν

2πi

∫ c+∞i

c−∞i
t−ν−1 exp

(
t+

z2

4t

)
dt. (B.1)

assuming that c > 0 and Re(ν) > 0.

Of this special interest to us are the Bessel functions whose orders are half integers, in

other words for which ν = n+
1

2
, where n ∈ Z. Turns, these admit expressions in terms

of certain trigonometric and algebraic functions on z. We only need the case n = 1, for
which we have that

Lemma 9. For ν =
3

2

I 3
2
(z) =

√
2z

π

d

dz

(
sinh z

z

)
. (B.2)

Proof. We will show that both sides equal a certain expression. Start with the right hand
side√

2z

π

d

dz

(
sinh z

z

)
=

√
2z

π

(
cosh z

z
− sinh z

z

)
=

√
2z

π

{(
1

2!
− 1

3!

)
z +

(
1

4!
− 1

5!

)
z3 +

(
1

6!
− 1

7!

)
z5 + . . .

}
=

√
2z

π

∞∑
m=0

{
1

(2m+ 2)!
− 1

(2m+ 3)!

}
z2m+1

=

√
2z

π

∞∑
m=0

{
2m+ 2

(2m+ 3)!

}
z2m+1

=

√
2z

π

∞∑
m=0

z2m+1

(2m)!(2m+ 1)(2m+ 3)
.

For the left hand side, we will make use of the following identities involving the Gamma
function

Γ(z + 1) = zΓ(z) and Γ

(
n+

1

2

)
=

(2n− 1)!!

2n
√
π,
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B.1. EVALUATION OF BESSEL FUNCTIONS OF HALF ORDER

and the following elementary identity on factorials

2mm!(2m− 1)!! = (2m)!!(2m− 1)!! = (2m)!.

Therefore, we compute

I 3
2
(z) =

(z
2

) 3
2

∞∑
m=0

(
z
2

)2m
m!Γ

(
m+ 5

2

)
=
(z

2

) 3
2

∞∑
m=0

(
z
2

)2m
m!Γ

(
m+ 1

2

)
Γ
(
m+ 3

2

)
Γ
(
m+ 1

2

)
=

1√
π

(z
2

) 3
2

∞∑
m=0

(
z
2

)2m
2m

m!(2m− 1)!!
(
m+ 1

2

) (
m+ 3

2

)
=

1

4

2z

π

∞∑
m=0

z2m+1

2mm!(2m− 1)!!
(
m+ 1

2

) (
m+ 3

2

)
=

2z

π

∞∑
m=0

z2m+1

(2m)!(2m+ 1)(2m+ 3)
,

and obtain the desired result.

B.1 Evaluation of Bessel Functions of Half Order

Here we compute the evaluation of I 3
2
(z) at the point

π

k

√
2

3

(
n− 1

24

)
Plug-in this value in equation (B.2), we obtain

I 3
2

(
π

k

√
2

3

(
n− 1

24

))
=

2
1
2

π
1
2

π
1
2

k
1
2

2
1
4

3
1
4

(
n− 1

24

) 1
4 d

dz

sinh

{
π
k

√
2
3

(
n− 1

24

)}
π
k

√
2
3

(
n− 1

24

)
 .

Making the conversion between dz and dn, we obtain

dz =
π

2k

(
2

3

(
n− 1

24

))− 1
2 2

3
dn,
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B.1. EVALUATION OF BESSEL FUNCTIONS OF HALF ORDER

therefore

I 3
2

(
π

k

√
2

3

(
n− 1

24

))
=

2
1
2

k
1
2

2
1
4

3
1
4

(
n− 1

24

) 1
4 2k

π

2
1
2

3
1
2

(
n− 1

24

) 1
2 3

2

k

π

2
1
2

3
1
2

d

dn

sinh

{
π
k

√
2
3

(
n− 1

24

)}
√(

n− 1
24

)


=
6

3
4k

3
2

π2

(
n− 1

24

) 3
4 d

dn

sinh

{
π
k

√
2
3

(
n− 1

24

)}
√(

n− 1
24

)
 (B.3)
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