
Herbert Fuchs, BSc

Mobile Interactive Recommender
Framework

Master’s Thesis
to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Assoc.Prof. Dipl.-Ing. Dr.techn. Denis Helic

Co-Supervisor

Dipl.Ing. Lukas Eberhard, Bsc

Institute of Interactive Systems and Data Science

Graz, February 2019



Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to tugrazonline is identical to the present
master‘s thesis.

Date Signature

ii



Abstract

Nowadays, a large amount of information is made available to everyone in a
wide variety of areas. In order to customize this information, recommendation
systems have been developed. rbz.io is such a system, which creates personalized
recommendation for movies, board games and video games by just telling the
system what things you like or dislike. This system is currently only available
through a bot on Reddit and must be addressed with a specific bot-language.

The aim of these Master thesis is to create a mobile application for the recom-
mender engines of rbz.io and to make these engines available for everybody
without knowing the specific bot-language. Additionally, the application should
reach many people, therefore, the operating systems Android and iOS should
be supported.

At the first part of the thesis, different technologies about mobile applications
are described. Additionally, basic knowledge about web technology is provided
and different frameworks for hybrid mobile development and API development
are illustrated. At the second part, requirements and use cases are collected,
which are decisive for the selection of the used technology. Afterwards, the
basic architecture of the system is explained and each individual component
is described. In particular, the API and the mobile application are shown in
more detail. To get an insight of the page design of the mobile application, each
page gets explained and illustrated separately. In the evaluation chapter, a case
study will be conducted to assess the usability and to identify strengths and
weaknesses of the mobile application. Finally, the result is analysed and the
different outcomes are discussed.

iii





Contents

Abstract iii

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Background and Related Work 5
2.1. Types of mobile applications . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Native Applications . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2. Web Applications . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3. Hybrid Applications . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4. Comparison between the different types . . . . . . . . . . 7

2.1.5. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1. Hypertext Markup Language - HTML . . . . . . . . . . . 15

2.2.2. Cascading Style Sheets - CSS . . . . . . . . . . . . . . . . . 16

2.2.3. JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. Hybrid Mobile Application Frameworks . . . . . . . . . . . . . . 18

2.3.1. Apache Cordova . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2. Ionic Framework . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3. Angular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4. REST APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1. REST API Frameworks . . . . . . . . . . . . . . . . . . . . . 23

2.4.2. Message Broker and Task Queues . . . . . . . . . . . . . . 24

2.4.3. Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3. Requirements and Use Cases 27
3.1. General description . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2. Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3. Functional requirements . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4. Non-functional requirements . . . . . . . . . . . . . . . . . . . . . 40

3.5. Relations between use cases and requirements . . . . . . . . . . . 41

v



Contents

4. Implementation 43
4.1. Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1. Web API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2. MySQL Database . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.3. Recommender Engine . . . . . . . . . . . . . . . . . . . . . 50

4.1.4. Notification Manager . . . . . . . . . . . . . . . . . . . . . 50

4.1.5. Mobile Application . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.6. Software Design . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2. Page Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1. Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2. Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.3. Movies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.4. Detailed Search . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.5. Recommendations . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.6. My Favourites . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.7. My Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.8. History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.9. Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.10. Introduction Tour . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.11. Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.12. About . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5. Evaluation 71
5.1. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1. Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.2. Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1. Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.2. SUS Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.3. Post-test Questions . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6. Conclusion and Future Work 83

A. Case Study 86

Bibliography 90

vi



List of Figures

1.1. Number of smartphone users worldwide . . . . . . . . . . . . . . 1

2.1. Architectural representation of the different application types . . 7

2.2. IMDb Mobile Application . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Movledge Mobile Application . . . . . . . . . . . . . . . . . . . . . 11

2.4. Itcher Mobile Application . . . . . . . . . . . . . . . . . . . . . . . 12

2.5. TasteDroid Mobile Application . . . . . . . . . . . . . . . . . . . . 14

2.6. Anatomy of an HTML element . . . . . . . . . . . . . . . . . . . . 15

2.7. New key features of HTML5 . . . . . . . . . . . . . . . . . . . . . 16

2.8. Anatomy of a CSS ruleset . . . . . . . . . . . . . . . . . . . . . . . 17

2.9. Architecture of Apache Cordova . . . . . . . . . . . . . . . . . . . 19

2.10. Architecture of Angular . . . . . . . . . . . . . . . . . . . . . . . . 21

2.11. Architecture Celery and RabbitMQ . . . . . . . . . . . . . . . . . . 25

3.1. Use Case Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1. Overall system architecture . . . . . . . . . . . . . . . . . . . . . . 44

4.2. Structure of API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3. Database schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4. Part of the mobile application class structure . . . . . . . . . . . . 53

4.5. API call from Application . . . . . . . . . . . . . . . . . . . . . . . 54

4.6. Page flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7. Home screen with side menu . . . . . . . . . . . . . . . . . . . . . 60

4.8. Movie search query . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.9. Detailed search screen . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.10. Recommendations screen . . . . . . . . . . . . . . . . . . . . . . . 63

4.11. My Favourites screen . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.12. My Ratings screen . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.13. History entries with filter functionality . . . . . . . . . . . . . . . 66

4.14. Expanded history entry . . . . . . . . . . . . . . . . . . . . . . . . 67

4.15. Setting page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.16. Introduction Tour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.17. Computation and About page . . . . . . . . . . . . . . . . . . . . . 70

vii



List of Figures

5.1. Likert Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2. SUS Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3. Case study participant evaluation . . . . . . . . . . . . . . . . . . 77

5.4. Average SUS Score . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5. Grading Scale of SUS Score . . . . . . . . . . . . . . . . . . . . . . 79

A.1. Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2. Questionnaire part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.3. Questionnaire part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 89

viii



1. Introduction

Nowadays, almost 2.71 billion people, which is almost 35.9% of the world’s
population, use a smartphone and this number will increase further in the
coming years as illustrated in Figure 1.1 [14]. 99.9% of these smartphones use
the operating system Android and iOS [18]. In order to reach as many users as
possible, it is important to be able to provide an application for both operating
systems. This can be achieved with different approaches. Either with a native
application for each operating system, or with a hybrid application, which
works for both operating systems.

Figure 1.1.: Number of smartphone users worldwide from [14]

Another industry that is constantly growing is the entertainment industry
[24]. Whether games or movies, the number of available products is steadily
increasing. This makes it very difficult to have an overview of the available

1



1. Introduction

products. A solution for this problem are recommender systems. These systems
recommend movies or games according to the personal preferences, and helps
the user not to lose sight of the big picture. The big players like Netflix1 and
Amazon2, have been using this technology for a while now to increase customer
satisfaction by offering personalized recommendations.

In this master’s thesis these two aspects are combined and a mobile application
for movie, board game and video game recommendations is developed. This
application uses the bot and the recommendation framework from a project of
the Institute of Interactive Systems and Data Science (ISDS)3 of the Graz University
of Technology Graz4 and is developed as a hybrid application with the Ionic
Framework5.

The implementation of the application and the associated systems are described
in Chapter 4. The mobile application, as well as the API are described in detail.
Chapter 2 provides the background for the used technologies. Furthermore,
some related work is presented in this chapter. To understand the user’s needs,
use cases are defined in Chapter 3 and requirements are extracted from them.
A case study was performed to evaluate the application. Details of this study
are shown in Chapter 5.

1.1. Motivation

Several mobile applications for movie recommendations are available on the
market. The main task of most applications is to provide an overview of movies
or to search for specific movies and get information about them. The recom-
mender function is usually only integrated as an additional feature. Many
applications require that you first rate some movies in order to get a recom-
mendation. This is often annoying, because you have to rate movies, which you
probably do not know, to get a result. In most cases, exact specifications for the
recommendations cannot be made. This leads to imprecise recommendations,
which makes the user unhappy and as a consequence the user may delete the
application.
For other domains like board games and video games, only a limited number

1https://netflix.com
2https://amazon.de
3https://isds.tugraz.at
4https://tugraz.at
5https://ionicframework.com

2



1. Introduction

of mobile applications are available, although for video games there are more
applications than for board games.

The ISDS provides recommendation engines called rbz.io6 for the three different
domains:

• Movies,
• Board Games,
• Video Games,

but they are only available through Reddit7, by calling it with a specific bot-
language8 as illustrated in Listing 1.1.

1 /u/rbzio **m:Rain Man ** ** green lantern ** ** Thriller **
2 **g: Action ** * comedy * **y :2005** *a: Cameron diaz*
3 ** <2016** **a:leo dicaprio **

Listing 1.1: Example of the recommender engine bot-language to get a recommendation. These
example includes 2 movies, 3 genres (two desired, one undesired), two actors (one
desired, one undesired), a lower and an upper bound

The aim of these Master thesis is to create a mobile application for the provided
recommender engines and to make them available for everybody without
knowing the specific bot-language. All three domains should be available
within one application and it should be easy to use.

6http://www.rbz.io
7https://reddit.com
8http://www.rbz.io/#botlanguage

3





2. Background and Related Work

This chapter describes basic technologies and different types of mobile appli-
cations. Especially web technologies and frameworks for hybrid application
development, as well as the definition of REST APIs and its underlying frame-
works are in focus. Furthermore, I show related work about mobile applications
for recommendations and I illustrate some Ionic applications.

2.1. Types of mobile applications

Nowadays, different types of mobile applications exists. The appropriate type
depends on how an application should work, how complex the development
is, on which operation system the application should run, how skilled the
developers are and much more.
In the following section I will give a description of the main types of mobile
applications: native, hybrid and web applications. Later on I present a brief
comparison between those types and related work.

2.1.1. Native Applications

Native applications are restricted to their platform. They are directly using the
provided platform API. Therefore, Android applications can only be imple-
mented with Java or Kotlin. iOS applications can only be created with Swift
and Objective-C. Other platforms can be dropped, because according to the
statistics of Gartner [18], almost all smartphones worldwide operate with An-
droid (88%) or iOS (11.9%). Also the respective native software development
kit (SDK) of these two systems are different. Android uses Android Studio as
its SDK, whereas iOS uses Xcode [22]. Because of the direct API access, native
applications are very powerful. GPS and other sensors, as well as the camera,
the address book and other features of the operating system can be accessed
and used with a high performance. Also computationally expensive advanced
graphics and high performance operations can be processed efficiently. A big

5



2. Background and Related Work

advantage of using native applications is the provided user interface of the
platform, which everybody can use. This supports the creation of user-friendly
applications, because the user usually already knows the interface element
and can interpret it correctly. The main disadvantage of native applications
occur if an application has to be developed for multiple platforms. Due to
the non-existent reusability of the code, the application has to be developed
multiple times. This causes longer development times, higher costs, and bigger
maintenance effort.

2.1.2. Web Applications

Web applications are hosted on web servers and are accessible via a URL1

in the web browser. They are developed in HTML5, CSS and Javascript. It is
not necessary to install these applications. This is the reason why they are
able to run on all different platforms. These applications try to act like a
native application, but that is only possible for the view. Expensive operations
and intensive graphical animations are not working as efficient as on native
applications. The reason is that the application has only as much access to the
resources as the used web browser. Besides, the application is only reachable
if the device is online. It is also not possible to distribute this applications via
an app store, since they are hosted and served like usual websites [25]. A big
advantage of web applications is the easy maintainability, since the application
can be updated on the server at any time and the user is obliged to use the
new version. This prevents that a faulty version is used over a longer period of
time.

2.1.3. Hybrid Applications

Hybrid applications combines the advantages of native- and web applications.
This means that this kind of application type is mostly platform independent.
The application uses the browser engine of the platform to render itself in a
webview [2]. It is able to access platform features like sensors, the storage and
device information. The complete set of native features is not available. One
of the biggest development platform for hybrid applications to access native
features is called Apache Cordova (See Section 2.3.1 for a detailed description)
[15]. The used programming languages are HTML5, CSS and Javascript. Lots
of different libraries are available and therefore the technology can be used

1Uniform Resource Locator

6



2. Background and Related Work

Figure 2.1.: Schematic architectural representation of the different types from [33]

in many different areas. As with web applications, computationally expensive
operations and complex user interface animations are not performed as quick
as on native applications. Applications of this type can be published in an app
store and an installation file can be provided for a installation without a store.

2.1.4. Comparison between the different types

The main difference between the types is how the application uses the device.
While native applications directly access the platform API, hybrid applications
use the provided web view and web applications work via the provided browser.
This architecture is schematically shown in Figure 2.1. For high performance
operations like games, native applications are definitely recommended. If only
data is displayed e.g. in newsreaders, web- or hybrid applications are sufficient.
It should be determined whether the app should be provided in an app store
or not. Another aspect is how often the application is used. If it is used more
often, a hybrid or native solution is preferable. If an application is rarely used,
the web approach is a better choice. A main factor of choosing a type is the cost.
Native development is much more costly as developing a hybrid application.
Table 2.1 shows the main differences according to the types. Based on these
differences, I have selected the appropriate technologies for the application in
this master thesis.

7



2. Background and Related Work

Aspects Native Application Hybrid Application Web Application

Programming
Language

Native only: Java or
Kotlin - Android,
Swift or Objective C-
iOS

Web technologies-
JavaScript HTML,
CSS

Web technologies-
JavaScript, HTML,
CSS

User Interface
(UX/UI Design)

Completely
platform-specific UI.
Native app design -
rich, customizable,
great visual effects
and animation
possible

Uses highly similar
design interface to a
native app.
Cross-platform app
design. Limited
customization
possibilities

Common for all
platforms. Limited
customization

Platforms Native Android,
Native iOS Multiple Multiple

App Stores
Distribution

Google Play Store,
Apple’s App Store,
Windows store

Google Play Store,
Apple’s App Store,
Windows store (if
guidelines met)

No stores

Performance

Faster based on
embedded
connection with OS
and the device

Moderate response Slower

App Ecosystem
SDKs and other tools
for any technical
implementation

Limited to the
framework and to
available 3rd party
services

Limited

Feature Set

Wide access. Any
device APIs used.
Offers solutions for
unique and specific
features (VR, AR, IoT,
etc.)

Moderate access.
Some APIs are closed
for hybrid mobile
apps (e.g. gyroscope
or accelerometer)

Limited. Some of the
device APIs can be
used (e.g.
geolocation)

Navigation
App has embedded
and intuitive
navigation

WebView connects
the web content with
native app
functioning

WebView connects
the web content with
native app
functioning

Hardware
Capabilities

Uses all capabilities
of the mobile device

Less access to the
device

Minimum access to
device hardware

Development
Costs

Higher than
development for
multiple platforms

Moderate Minimum due to
single code base

Development
Timeline Longer timeline Moderate Short

Expertise of
Developers

High expertise (learn
different languages) Moderate expertise Moderate expertise

Table 2.1.: Comparison between Native-, Hybrid- and Web Applications from [22]

8



2. Background and Related Work

2.1.5. Related Work

In this section I present mobile applications, which create personal recommen-
dations for movies, video games and board games. There exists a variety of
applications that provide personalized recommendations. A distinction must
be made between applications in which the recommender function is the main
task and those in which this is just a feature. The following applications show a
selection of the most popular applications and their advantages and disadvan-
tages.

IMDb

The mobile application of IMDb2 mainly provides information about movies,
actors and current news from the movie industry as shown in Figure 2.2. The
recommendation is only implemented as a feature and it refers to movies that
have already been rated. IMDb has over 100.000.000 downloads in the Google
Play Store3 and has a rating of 4,2. It is available for Android and iOS.

Advantages:
A major strength lies in the diversity of information about movies. Furthermore
the application is clearly designed, which makes it very comfortable to use. It
has a rich set of features, for example a rating list, a watchlist, a favourite cinema
list and it is able to provide recommendations. But for these functionalities a
user account is required.

Disadvantages:
As mentioned before, to use the functionalities, a user account is required. This
makes the quick use of this application infeasible. In addition, it is not possible
to create different movie requests, because the recommendations refers to the
movie ratings. Furthermore the application only covers the movie domain.

2https://imdb.com
3https://play.google.com/store

9



2. Background and Related Work

(a) Landing page, which
displays different information
about the movie industry

(b) Recommendation feature,
which is only accessible with a
user account.

Figure 2.2.: Screenshot of the mobile application of IMDb

Movledge

Movledge4 is a free application to create personal movie collections and to
browse through different movies as shown in Figure 2.3. It retrieves the data
from IMDb and TMDb5. A recommendation functionality is provided as a
feature which is based on the movie history of the user. Movledge has over
10.000 downloads in the Google Play Store and has a rating of 4,1. It is available
for Android and iOS.

Advantages:
It provides different personal lists to categorize the films according to the

4https://movledge.com
5https://themoviedb.org

10



2. Background and Related Work

preferences. In addition, the user can find other users, and share these lists with
them.

Disadvantages:
To use the application, a user account is required. Furthermore the recom-
mendations are imprecise, because only the history of the user is taken into
consideration. In addition only the film domain is supported.

(a) List of movies, which can be
discovered.

(b) Recommendation feature,
where the user can add the rec-
ommended movie to his per-
sonal list.

Figure 2.3.: Screenshot of the mobile application of Moveledge

Itcher

Itcher6 is a recommendation applications for movies, tv shows, books, music
and games. It creates recommendations after the user rated five entries of the
domain. The user interface is clearly designed and makes a very structured

6http://itcher.com/

11



2. Background and Related Work

appearance as shown in Figure 2.4. Itcher has over 50.000 downloads in the
Google Play Store and has a rating of 4,3. It is available for Android and iOS.

Advantages:
Each recommendation domain has its own filter to get a more personalized
recommendation list, e.g. the movie domain can filter the list by the release year,
genre and streaming provider. Each element in the recommendation list has a
large amount of information and additionally it shows entries which are similar
to it. This extends the recommendation list, but it is very well packaged and
the user does not lose the overview. Additionally, it is possible to create couple-
and group recommendations, which consider the ratings of each person.

Disadvantages:
The only disadvantage is that you have to create a user account in order to use
the application.

(a) Start page of itcher. At the
top of the page, the domain for
the recommendation can be se-
lected.

(b) Game recommendation with
the filter functionality.

Figure 2.4.: Screenshot of the mobile application of Itcher

12



2. Background and Related Work

TasteDroid

TasteDroid7 is a recommendation application for movies, music, books, authors
and games for Android devices. It is illustrated in Figure 2.5. It has only 1000+
installations, but a rating of 4,0.

Advantages:
It provides a variety of domains and it is usable without a user account. It has
a very simplistic user interface and it provides a mixed recommendation for
the given search parameter. Furthermore, the result can be separated into the
different domains, which is helpful to keep the overview.

Disadvantages:
It is only possible to specify one parameter for the computation of the rec-
ommendation. Therefore the recommendations are very general and not user
related. Additionally, the automatic suggestions does not work, which makes
the request creation quite hard.

7https://play.google.com/store/apps/details?id=com.muetzenflo.tastedroid

13



2. Background and Related Work

(a) Start page of TasteDroid,
which is very simplistic.

(b) Recommendation list, which
displayes the recommendation
for all domains.

Figure 2.5.: Screenshot of the mobile application of TasteDroid

14



2. Background and Related Work

2.2. Web Technologies

Web technologies are used to give web pages a structure and a design. In addi-
tion, they ensure that interactive elements are offered in order to increase the
usability. This section provides a short overview of the core web technologies.

2.2.1. Hypertext Markup Language - HTML

HTML is a standard markup language that defines the structure of web pages
and web applications. It describes how the content of a page should be in-
terpreted using HTML elements. These elements are designed as follows: as
Figure 2.6 shows, the element starts with an opening tag, which consists of the
element name (<p>). This tag can contain one or more attributes like id, class
or style.

Figure 2.6.: Anatomy of an HTML element from [27]

The element ends with a closing tag, which is the same as the start tag, except
that it includes a forward slash before the name (</p>). Between the tags, an
arbitrary content can be inserted [27]. HTML supports nesting, so the content
can be another HTML element.

The newest version of HTML is called HTML5. It reduces the need of external
plugins, provides more elements and it has a better error handling. Furthermore
the development has been simplified. As illustrated in Figure 2.7, data can now
be stored directly on the mobile device or the browser using a local storage. This
storage removes the need of Cookies and the security increases, because not
every server request includes data. Besides, videos can be directly embedded
and audio can be played in a web page without a plugin [30, 20].

15



2. Background and Related Work

Figure 2.7.: Illustrates new key features of HTML5 from [] which should make the development
easierUSC2019

2.2.2. Cascading Style Sheets - CSS

CSS is a style sheet language, which gives the possibility, to define code for
changing the presentation of HTML web pages. It works directly with HTML,
which means that the HTML-file must contain a reference to the used CSS file.
The structure of an CSS ruleset is shown in Figure 2.8. Every set starts with a
selector. There are different types of selectors, illustrated with an example in
Table 2.2. After the selector, the declaration is wrapped in curved braces. It is
specifying which of the element’s properties are getting styled. The properties
are depending on the HTML element. Each HTML element can have different
properties. The big advantage of CSS is that multiple HTML pages can be styled
centralized within one file [9].

16



2. Background and Related Work

Figure 2.8.: Anatomy of a CSS ruleset from [9]

Selector name What does it select Example
Selector Selected element

Element
selector

All HTML element(s) of
the specified type. p <p>

ID selector

The element on the page
with the specified ID. On a
given HTML page, you’re
only allowed one element
per ID (and of course one
ID per element).

#my-id <p id="my-id">
<a id="my-id">

Class selector

The element(s) on the page
with the specified class
(multiple class instances
can appear on a page).

.my-class <p class="my-class">
<a class="my-class">

Attribute
selector

The element(s) on the page
with the specified
attribute.

img[src] <img src="myimg.png">
but not <img>

Pseudo-class
selector

The specified element(s),
but only when in the
specified state (e.g. being
hovered over).

a:hover

<a>
only when the mouse
pointer is hovering over
the link.

Table 2.2.: Different types of selectors with an given example from [9]

2.2.3. JavaScript

JavaScript, abbreviated as JS, is a powerful, high level, interpreted programming
language which allows web pages and web applications to have interactive
elements. It is defined inside a script-tag in an HTML page. JS does not require
any special preparation or compilation before execution. That is a big difference

17



2. Background and Related Work

to other programming languages, for example JAVA. JavaScript is not only
runnable in browsers, it is also running on servers, if a JavaScript-engine is
installed. This gives the possibility to create powerful APIs with this language.
JavaScript has its strengths in making static websites dynamic. Some examples
for that are:

• Animations: rotating, fading and moving of elements.
• Interactive content: games, videos, audio.
• Validations: validate forms, for example checking syntax of an email

address.
• User tracking: analyse user behavior and sent it to the server to create

personalized adds

JavaScript has a rich portfolio of third-party libraries. This makes the language
usable in many fields. These libraries enables JS to easily create single page
applications, to manipulate the Domain Object Model (DOM), or to create a
simple asynchronous connection to a server [21].

2.3. Hybrid Mobile Application Frameworks

This section explains the Apache Cordova8 framework which enables hybrid
mobile applications to access native resources. Furthermore, I am discussing
the Ionic framework in more detail. Since Ionic integrates Angular to become
more powerful, I will give a brief overview of Angular the end of this section.

2.3.1. Apache Cordova

This open source framework is used for hybrid mobile application development.
It enables the usage of standard web technologies (HTML, CSS, JavaScript),
which makes it easier to develop applications for multiple platforms. With
this framework, web applications can access native resources over plugins and
the standard API. Figure 2.9 illustrates the architecture of a Apache Cordova
application. The web app is the place, where the code for the application, which
is mostly a web page, is located. In the WebView this application code gets
executed and it combines the web page with native application components.
These components are reached by the Cordova plugins. Cordova provides a
rich set of core plugins, which make access to the camera, contacts, battery

8https://cordova.apache.org

18



2. Background and Related Work

Figure 2.9.: Architecture of a hybrid mobile application with Apache Cordova from [15]

and more available. There exists several third-party plugins for specific native
components which are not available on all different platforms. This fact turns
Cordova into a universal framework for any kind of platform [15].

2.3.2. Ionic Framework

Ionic Framework is a user interface (UI) toolkit, which uses web technologies
to create performant, high-quality web- and mobile applications. It is an open
source project, released under the permissable MIT license. The newest version
is currently v4, which is still in the beta-phase. The goal of this framework is to
build applications on multiple platforms with one code base. Also it provides
the user a native user experience. Clean and simple user interfaces and a rich
set of different functionality are the main advantages of this framework. Ionic
uses Apache Cordova to access native resources. To get a more powerful set
of functions, Ionic is integrating Angular. The following listing shows the core
concepts of the framework:

• UI Components: Ionic provides a big set of predefined UI components,
which are reusable and highly customizable. Hence it is possible to create

19



2. Background and Related Work

an own and unique style in the application.
• Platform Continuity: Ionic allows the developer to use the same code for

multiple platforms. Each component looks different depending on the
platform, which means that the same components can look different on
various platforms. The reason for that is, that Ionic takes the theme of the
platform to generate a look which is as similar as the look of an native
application. For example for Android devices, Ionic takes the Google’s
design language Material Design. For iOS devices, Ionic uses Apple’s own
iOS design language.

• Navigation: Ionic provides parallel navigation histories. This allows the
user a better navigation through the app, because there is no static navi-
gation (back- and forward button) like on conventional web pages. It is
possible to create routes between each pages.

• Native Access: The same code base work on many platforms like desktop
computers, phones and tablets. Cordova enable the application to use
native resources,which enlarges the operating range.

• Theming: Ionic uses CSS to style the application. It centralizes the color-
theming in one file using CSS variables.

Ionic supports the mobile operating systems Android 4.4+ and iOS 10+, as well
as desktop browsers like Chrome, Safari, Edge and Firefox [16].

2.3.3. Angular

Angular9 is an open source front-end web application framework based on
TypeScript. The newest version of Angular was published in October 2018 under
version 7. It is used to create single-page applications. Figure 2.10 illustrates the
basic architecture of an Angular application. In the following list I show each
part of the architecture described by Malik [26]:

• Modules: Modules structure the application. They link its components
with related code, such as services. The root module provides the bootstrap
mechanism to launch the application.

• Components: A component is a class with some attached metadata and it
includes the application- and data logic. Every Angular application has
one component called root component. The metadata of a component
defines the view. It is usually an HTML template.

9https://angular.io

20



2. Background and Related Work

• Templates: A template combines HTML markups with Angular markups.
Angular markups are able to modify HTML elements before they are
getting displayed, for example hide or show a specific element.

• Metadata: By attaching a decorator, the metadata can configure the ex-
pected behaviour of a class.

• Data binding: Defines the communication between the application data
and the DOM. There are two different kinds of bindings:

– Event Binding: Application data gets updated by user input.
– Property Binding: HTML template gets updated with values com-

puted by the application.

• Directives: They provide logic for the templates. Before displaying the
view, Angular checks the directives (program data and logic) and modify
the DOM and HTML elements according to this.

• Services: These are classes, which provide data and functions that are
shared across components.

• Dependency Injection: It enables component classes to be efficient an
lean, by delegating tasks such as fetching data or validate user input to
services.

Another key concept of Angular is routing, which creates a navigation path
between many application states and view hierarchies. Furthermore routing
enables lazy loading. This allows the user to run through the application very
smoothly, by only loading the displayed resources [1].

Figure 2.10.: Architecture of Angular from [1]

21



2. Background and Related Work

2.3.4. Related Work

Ionic provides a showcase10 of the most beautiful applications in all differ-
ent areas. In the following list I will give a brief overview of the different
applications.

• JustWatch11: It is a movie guide, where the user can easily navigates
through his favourite movies. It can be filtered by platform, on which the
movies are available for viewing. Furthermore a personal watchlist can be
created.

• Pacifica12: It is a mental health application to prevent depressions and
stress. The daily mood can be monitored, voice records can be saved and
a conversion with the community can be started.

• MarketWatch13: It is the mobile news and data reader of the MarketWatch
website.

• Sworkit14: It is a fitness application, where different workouts and exer-
cises are provided.

• Untappd15: It is a social application, where the user can find other users,
with whom he can go for a beer. Furthermore, it shows the user the nearest
bars depending on his location and gives him information about beers
which are trending.

• Honeyfi16: This application can track a couple’s income and expenses and
help them manage their monthly budget

2.4. REST APIs

This section describes the concept of Representational State Transfer (REST)
APIs. Afterwards, I present different technologies and frameworks, which are
necessary to create a REST API.

Application programming interface, short API, describes a software, which
allows the communication between two applications. Web APIs provide this

10https://showcase.ionicframework.com
11https://justwatch.com
12https://thinkpacifica.com
13https://www.marketwatch.com
14https://sworkit.com
15https://untappd.com
16https://honeyfi.com

22



2. Background and Related Work

interface via the internet. There exist thousands of Web APIs for different
purposes like updating the social media status or for checking the weather.
The most established Web API type nowadays is the REST API. It is protocol
independent but if it is used for Web APIs, it typically takes the advantage of
the HTTP protocol. There are six key constraints that define a REST API [10,
32]:

• Client-Server: Client and server should be separated, which means that
the development of client and server can be done independently without
knowing about each other.

• Stateless: Requests can be sent and processed independently. The server,
as well as the client, does not need to know the state of the other part. Each
request contains all necessary data to create a successfully completion.
This constraint helps REST to achieve reliability, scalability and a good
performance.

• Cache: To handle the overhead of requests, which a stateless API caused,
the REST API should be designed to encourage the storage of cacheable
data.

• Uniform Interface: This is a key constraint to decouple client and server.
The uniform interface should allow the client to communicate with the
server using only one language, independently of the architectural back-
end of the systems.

• Layered System: Different functionalities should be divided into multi-
ple layers. With these layers, a hierarchy can be created to improve the
performance and to create a more scalable and modular application.

• Code on Demand: It is the only optional constraint. It allows, that code
or applets can be transmitted over the API, which are then usable for the
application.

REST APIs can be build in various languages with different frameworks. The
next section will focus on a Python17 framework called Flask.

2.4.1. REST API Frameworks

In this section I introduce the Flask framework, which is a microframework for
Python. Furthermore I describe an extension of Flask for quickly building REST
APIs called Flask-RESTPlus.

17https://python.org/

23



2. Background and Related Work

Flask

Flask is a microframework for Python, which provides tools, libraries and
technologies to build web applications. Because of its architecture, Flask has only
a few fixed dependencies, like Werkzeug18 and Jinja2

19. Other dependencies
must be added manually. This makes Flask very lightweight, but a lot of work is
needed to increase the functionality. Flask has a rich set on powerful extensions,
which can handle the most common web development tasks like HTTP request
parsing and response handling or session management and template rendering
with Jinja2 [34].

Flask RESTPlus

Flask RESTPlus gives the user the possibility to build REST APIs quick and
easy. It defines and documents endpoints, validates input and formats the
output as JSON20. Furthermore it turns Python exceptions into HTTP responses,
minimises boilderplate code and it is able to generate interactive documentation
using Swagger UI [19].

2.4.2. Message Broker and Task Queues

Message broker and task queues are used, if tasks have to run asynchronously
like expensive background calculations, notifications or thumbnails generation.
The following example takes RabbitMQ21 as the message broker and Celery22

for the task queues. As shown in Figure 2.11 the producer, which is a Celery
client, creates a task and send it to the broker. The broker then distributes the
tasks according to their routing rule to the different queues. Afterwords the
broker delivers the tasks from the queues to the workers of the consumer. The
consumer can have one or multiple Celery workers, which executes the tasks.
The result of these tasks is stored in the result backend, which can be a database.
Only via this backend, the result data is accessible [36].

18http://werkzeug.pocoo.org/
19http://jinja.pocoo.org
20JavaScript Object Notation
21https://rabbitmq.com
22http://celeryproject.org

24



2. Background and Related Work

Figure 2.11.: Architecture of Celery and RabbitMQ which schematically shows how a task is
handled from [36]

2.4.3. Docker

Docker is a software to isolate applications into small and lightweight execution
images called containers. A container packages the entire application with all
the libraries, configuration files and dependencies. Also the container shares
the operation system kernel, which makes it possible to run the container in
different operating systems. The big advantage of Docker is that due to this
technology it is simple to deploy a system on multiple machines without having
to fear drawbacks.[11]
To run and link multiple containers, Docker-compose can be used. This tool can
start several containers with only one command. The container start order can
be specified in a file [12].

25





3. Requirements and Use Cases

This chapter provides a detailed description of the application. Furthermore, I
define use cases and requirements for the application and link them.

The requirements are split into functional and non-functional requirements. A
functional requirement describes a behaviour that a system shows under certain
conditions. A non-functional requirement describes a property or characteristic
that a system must provide or a restriction that it must comply with [35].

3.1. General description

The main goal of the project is to provide recommendation lists of different
domains to the user via a mobile application. Multiple platforms have to be
supported and no special device permissions should be needed to use the
application. Available domains include movies, board games and video games.
These domains should be easily extensible in the future, which means, it should
be able to easily add a further domain. Furthermore, the application should
store personal data such as favourites, ratings and a search history. To get a
better overview about the quality of the recommendations, an evaluation system
should be provided for individual items in the list. These evaluations should
be stored in a database. To create the best possible user experience, the user
should receive a notification after a recommendation computation is finished.
This avoids long static waiting times during a computation, since other tasks
can be performed in the meantime. It should not be possible to send multiple
requests to one engine simultaneously. To create a request for one of the several
recommendation engines, a search functionality for the different parameters is
provided. The search functionality uses a provided dataset, e.g. a filtered and
sorted IMDb dataset is used for the movie domain. It is accessible through the
supplied API. An optional user login is available to backup and restore the
personal data. To create a user for the application, a user name, an email address

27



3. Requirements and Use Cases

and a password is needed. For managing the stored data, a functionality to
delete the different personal data is implemented.

Only movie specific details will be discussed, because only the movie recom-
mender engine is finished at the moment. In the future this project will be
adapted with other domains.

3.2. Use Cases

A use case describes the externally visible behaviour of a system from the user’s
point of view. This user interacts with the system to achieve a certain goal
or behaviour. A use case has a short description and a basic path, how the
goal can be achieved. Additionally, it can optionally has an alternative path,
which describes a behaviour of the system in case of an error or it describes an
alternative path to reach the goal. Use cases are written in a simple language
so that both parties, users and developers, get the same understanding of the
system.

In the following section I define certain use cases, describe them and draw an
use case diagram, to illustrate the connections between them.

UC1 Start application

The user starts the application for the first time.

Basic Path:

1. The user clicks on the rbz.io icon in the application list of the operating
system to open the application.

2. The application starts and an introduction tour is displayed.
3. The user goes through the tour and finishes it.
4. Afterwards, the home screen is displayed.

Alternate Path:

• Instead of step 3, the user presses the button "skip introduction tour".

28



3. Requirements and Use Cases

UC2 Create movie recommendation

A movie recommendation list is displayed after the user starts the computation
with some parameters. This use case begins with the start of the application by
the user.

Basic Path:

1. The user selects the movies domain on the home page.
2. Afterwards, he searches for different parameters like movies, actors or

genres. If he finds something he likes or dislikes, he adds this parameter
to the recommendation request. Also the result length and the preferred
year can be selected.

3. The user starts the computation of the recommendation list by pressing a
button.

4. The user has to wait until the recommendation engine provides the result.
5. After waiting a few seconds, the result page with the recommendation list

is displayed (UC3).

Alternate Path:

• Step 2 can be skipped and the user can start the computation without
searching and inserting some parameters.

• At any time during step 1-4, the user can cancel the request and start from
the beginning again.

UC3 Show result

This use case is preceded by UC2. After the computation of the recommendation
list, the result page with the recommendation list gets shown to the user.

Basic Path:

1. The user is waiting till the calculation has finished.
2. Afterwards, the recommendation list is displayed on the result page.

29



3. Requirements and Use Cases

Alternate Path:

• Step 1 can be extended. The user is able to browse through the application
while waiting. He receives a notification when the result is available.

• After step 2, it is possible to refine the request and start the computation
of a new recommendation list again (UC2)

UC4 Show history with details

A list with history entries is displayed. It includes older recommendation
requests with their results. This use case starts on the home page of the applica-
tion.

Basic Path:

1. The user opens the side menu and goes to History.
2. A list with history entries, sorted by date, is shown.
3. The user has to click on one entry to expand it.
4. All request parameters, as well as an overview about the recommendation

list is shown.

Alternate Path:

• Between step 2 and 3, an additional step can be added. The user is able to
filter the history entries. A predefined set of time periods is provided, but
the user can self-select the time period as well.

• After step 4, the user can go to the result- and request page of the history
entry.

• Instead of step 4, the user has the possibility to delete the entry.
• Step 2-4 can be omitted if no entries exist.

UC5 Show favourites and delete entry

The user sees the favourites list after navigating to it. He deletes one entry of
the list. This use case starts on the home page of the application.

30



3. Requirements and Use Cases

Basic Path:

1. The user opens the side menu and goes to My Favourites.
2. The favourite entries, containing the name, year, added-on date and addi-

tional data according to the domain, are displayed in a list.
3. The user swipes one entry to the left and presses the delete button.

Alternate Path:

• Instead of step 3, the user can delete a favourite entry via the ratings- or
result page by clicking on the favourites icon.

• Step 2-3 can be omitted if no entries exist. Instead a description, how to
add an entry to the favourite list, is displayed.

UC6 Show rating and change entry

The user navigates to the ratings section and sees the rating list, where the
entries are grouped according to their rating scores. Afterwards, he changes
one rating score of an entry. This use case starts on the home page of the
application.

Basic Path:

1. The user opens the side menu and goes to My Ratings.
2. The rating entries, grouped by their rating scores, are shown.
3. The user swipes one entry to the left and gets two possibilities:

a) delete entry,
b) change the rating score.

4. The user changes the rating score and the entry is moved to the correct
category.

Alternate Path:

• Instead of step 4, the user can change a rating of an entry via the favourites-
or result page by clicking on the ratings icon.

• Step 2-4 can be omitted if no entries exist. Instead, a description, how to
rate items, is displayed.

31



3. Requirements and Use Cases

UC7 Register and login

The user can register himself with a user name, an email address and a password.
After the registration, he is able to login successfully. This use case starts on the
home page.

Basic Path:

1. The user opens the side menu and goes to settings.
2. In the settings page, the user navigates to the account section.
3. The user presses the registration button and fills out the required fields.

Afterwards, he submits the data.
4. The user is now able to login with the created account.

Alternate Path:

• Step 4 can be omitted, if the user enters invalid data into the registration
form.

UC8 Backup and restore personal data

The user can backup and restore his favourite, rating and history entries. This
use case starts on the settings page, where the user is already logged in (UC5).

Basic Path:

1. The user navigates to the account section, where the different possibilities
to backup or restore the personal data is shown.

2. The user presses the button to backup or restore the data.
3. A message is shown to the user, that the backup or the restore process

was successful.

Alternate Path:

• Instead of step 3, an error message gets displayed if the process fails.

32



3. Requirements and Use Cases

UC9 Delete all personal data

The user can delete all entries of the favourite, rating or history list at once. This
use case starts on the settings page.

Basic Path:

1. The user navigates to the storage section, where the different possibilities
to delete the entries is shown.

2. The user presses the delete button.
3. Before the data is deleted, the user has to confirm his decision.
4. After confirming, the data gets deleted.

Alternate Path:

• Instead of step 4, the user cancels the procedure and the data is not
deleted.

UC10 Show more recommendations

This use case is preceded by UC3. After pressing the show-more button, five
more entries are listed.

Basic Path:

1. User pressed the "show-more" button on bottom of the page.
2. Five more entries are displayed after some loading time.

Alternate Path:

• Instead of step 2, an error message gets displayed, if the calculation of the
new entries fails.

• Step 2 can be extended. The user is able to browse through the application
while the "show-more" process is working. He receives a notification when
the result is available.

• Instead of step 2, the user cancels the process and no more entries are
displayed.

33



3. Requirements and Use Cases

UC11 Share recommendation list with social accounts

This use case is preceded by UC3. The user shares his recommendation list with
his preferred social account by clicking on the share button.

Basic Path:

1. The user navigates to the share button, which is located in the header, and
presses it.

2. A list of different options for sharing is shown.
3. The user chooses his preferred social account and shares the recommen-

dation list.

UC12 Feedback for recommendation list entry

This use case is preceded by UC3. The user provides feedback for an entry of
the recommendation list. He wants to tell the recommendation engine, if he is
satisfied with the result.

Basic Path:

1. The user navigates to the bottom of an entry in the recommendation list.
2. A button to provide feedback is shown.
3. The user presses the button and five icons with a different meaning appear.
4. After that, the user selects one of the provided options and evaluates the

entry.

Alternate Path:

• After step 4, the user is able to change his opinion and he can evaluates
the entry again.

UC13 Rate specific item of recommendation list

This use case is preceded by UC3. The user rates one entry of the recommenda-
tion list.

34



3. Requirements and Use Cases

Basic Path:

1. The user navigates to the upper left corner of an entry in the recommen-
dation list.

2. A rating icon is shown. By clicking on it, it is expanded to a five-star
rating.

3. The user selects the desired rating.
4. Afterwards, the entry is rated and also stored in the rating list.

Alternate Path:

• After step 4, the user is able to change his opinion and he can rate the
entry again.

UC14 Go to external link

This use case is preceded by UC3. The user enters a provided external link to
get more details about the recommendation list entry.

Basic Path:

1. The user navigates to an entry in the recommendation list. Different links
are provided for each entry.

2. The User clicks on one link and he is redirected to an external page.

UC15 Add recommendation item to favourites

This use case is preceded by UC3. The user adds an entry of the recommendation
list to the favourite list.

Basic Path:

1. The user navigates to the upper right corner of an entry in the recommen-
dation list.

2. An favourites icon is shown.
3. The user clicks on the icon.
4. Afterwards, the entry is stored in the favourite list.

35



3. Requirements and Use Cases

Alternate Path:

• After step 4, the user is able to delete the entry of the list by clicking on
the icon again.

Use Case Diagram

Figure 3.1 shows the relations between the different use cases. The two actors
are on the one hand the user, who runs the application, on the other hand
the recommender engine, which computes the recommendation list for each
domain.

36



3. Requirements and Use Cases

Figure 3.1.: Use case diagram of the predefined use cases. It shows the relations between each
use case.

3.3. Functional requirements

The following functional requirements are extracted from the predefined use
cases and the description. They should help to get an technical understanding of
the application and they should help to estimate the approximate workload.

F1 Start Page - On the start page it should be possible to choose between the

37



3. Requirements and Use Cases

different domains. If a recommendation is currently being calculated or
a result is already available, a notification should be displayed on the
screen.

F2 Movie Requests - The user should be able to create a request with given pa-
rameters. Table 3.1 represents the required parameters. Each parameter,
except of the length, should be assignable to a positive or a negative
alignment. A positive alignment represents items the user likes, a nega-
tive alignments points to an aversion.

Parameter Type Optional Description
Movie Array[string] yes List of selected movies
Actor Array[string] yes List of selected actors
Genre Array[string] yes List of selected genres
Keyword Array[string] yes List of selected keywords
Year Array[number] yes Time period
Length Number no Number of movies, which are

displayed on the result page

Table 3.1.: Parameter specification for a movie request

F2.1 Modify selected items - It should be possible to delete each item.
Furthermore, the alignment of each element should be changeable.

F2.2 Minimize items - To save space on the screen, it should be possible to
minimize the items in each section.

F3 Movie Detailed Search - The user should be able to search for movies, genres
and actors within one list. There should be automatic suggestions for
each entity after each key press. The suggested movies should include
the title, the year and the movie poster. There should also be a section
where you can enter keywords.

F4 Movie Recommendation Result - The recommendation result should be
displayed in a list. Each item should contain a title and the year, as well
as the movie poster. Furthermore, links to Youtube, IMDb and Amazon
should be provided.

F4.1 Show more - A "show more" functionality should be implemented. After
a call, five more movies should be displayed.

F4.2 Add to My Favourites - It should be possible to add each movie to My
Favourites.

38



3. Requirements and Use Cases

F4.3 Add to My Ratings - It should be possible to add each movie to My
Ratings. The rating scale should be between 1 and 5.

F4.4 Social share - It should be possible to share the entire recommendation
list with your social accounts.

F4.5 Refine request - The user should be able to refine the request after the
recommendation was computed.

F4.6 Evaluate recommendations - The user should be able to evaluate every
single recommendation in the list. This evaluation should indicate if the
calculation for the recommended movie was good or bad.

F4.7 External link - The user should be able to get information about the
entry of the recommendation list via an external link.

F5 Push Notifications - The user should receive a push notification after a
computation of a recommendation is finished. The notification should
contain the domain from which the result comes. The different domains
should contain different notification texts. In addition, it should be
differentiated whether the result comes from a new request or whether
the user has used the show-more functionality.

F6 History - A history of the requests should be provided. It should include the
timestamp, the request and the corresponding recommendation list.

F6.1 Filter - The history should be filterable by date. The user should be able
to filter by a self-selected timeperiod, also a predefined set of date (last
week, last month and last year) should be provided.

F7 My Favourite page - A page with a list of favourite entries should be
provided. Each entry should have an "added on" date. Every item
should be deletable.

F7.1 Movies - Each item in the My Favourite list, which belongs to the
movies domain, should include the title, the year, the genre, the poster
and the rating if it is available. Also the functionality to rate the movie
should be provided.

F8 My Ratings page - A page with the rated entries, should be provided. Each
entry should have an "added on" date and a function to add the item to
the favourites. The entries should be grouped by the rated scores. Every
entry should be deletable and a function, for adding it to the favourite
list, should be provided.

39



3. Requirements and Use Cases

F8.1 Movies - Each item in My Ratings, which belongs to the movies domain,
should include the title, the year, the genre, and the poster.

F9 Help tour - A tour, which leads the user through the app using a simple
example, should be displayed at startup. There should be the possibility
to disable the tour at startup. Furthermore, the tour should be accessable
within the app, that the user can walk through it whenever he wants.

F10 Optional user login to backup data - The user should have the possibility
to backup the history, favourite and rating entries. For that purpose an
optional user login has to be provided.

F10.1 User registration - For the registration, the user has to provide a user
name, an email address and a password.

F11 Delete data - The user should be able to delete all entries of a history,
favourite and rating list at once.

F12 Device detection - To see which user or device is sending a request and
how many users are using the app, the device UUID should be stored
in the database when the application starts.

3.4. Non-functional requirements

The following non-functional requirements are extracted out of the description.
They should give an overview of the needed behaviour of the application.
Furthermore, they are import for the architectural design and the technology
selection.

Extendibility - The application should be easily extendible for other domains.

Usability - The application should allow the user to use the application without
any prior knowledge or explanation.

Usage of different engines - It should be possible to make simultaneous
requests to different engines.

Usage of one engine - It should not be possible for a user to make another
request to one engine, if a computation is still running.

Connectivity - The application only has to work online.

Platforms - Android and iOS must be supported by the application.

Permissions - No special operating system permissions should be required.

40



3. Requirements and Use Cases

3.5. Relations between use cases and requirements

Table 3.2 and Table 3.3 shows the relations between use cases and requirements.
Only functional requirements are covered, because these are directly connected
to the use cases. Every use case has to cover one or more requirements.

Use Cases
Requirements UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8

F1

F2

F2.1
F2.2
F3

F4

F4.1
F4.2
F4.3
F4.4
F4.5
F4.6
F4.7
F5

F6

F6.1
F7

F7.1
F8

F8.1
F9

F10

F10.1
F11

F12

Table 3.2.: Part 1 of the use case coverage of functional requirements

41



3. Requirements and Use Cases

Use Cases
Requirements UC9 UC10 UC11 UC12 UC13 UC14 UC15

F1

F2

F2.1
F2.2
F3

F4

F4.1
F4.2
F4.3
F4.4
F4.5
F4.6
F4.7
F5

F6

F6.1
F7

F7.1
F8

F8.1
F9

F10

F10.1
F11

F12

Table 3.3.: Part 2 of the use case coverage of functional requirements

42



4. Implementation

This chapter describes the architecture and the design of the system. First, I
present the overall architecture, then I continue with the explanation of the
individual components and which technologies are used. At the end of this
chapter I discuss the page design and explain the structure and the functionality
of each page.

4.1. Software Architecture

Software architecture is a fundamental discipline in the software development
process. At the beginning of creating a software, it defines how the structure
looks like and how the individual components will be working together. These
decisions are very business critical, because it is expensive to change the ar-
chitecture during or after the implementation. Bass et al. [7] defines software
architecture as follows:

"The software architecture of a system is the set of structures needed to
reason about the system, which comprise software elements, relations among
them, and properties of both."

The set of structures of my system consists of five different parts as shown
in Figure 4.1. The Web API is the interface between the various components.
It handles requests from the application. The application provides different
possibilities to create requests. Also it supports the user to find parameters
which make the result more accurate. After the API receives a request, it checks
in the database, if such a request has been sent before. If this is the case and
the database entry is not older than seven days, the API can directly return a
result to the application. Otherwise the request will be stored in the database
and is forwarded to the recommender engine. The engine then computes a list
of recommendations with the given data and returns this list to the API. The
API stores the result in the database, and sends a message that the result is
available, to the notification manager. This message contains the database entry
ID and the notification device ID. The notification device ID is created at the

43



4. Implementation

start of the application and is transferred with the request. The notification
manager notifies the application that a result is available. After the application
receives the notification, it sends a request with the provided ID to the API,
which returns the result immediately. The application is then able to display
the computed recommendation list.

Figure 4.1.: Schematic representation of the overall system architecture

In the following sections, I am going to discuss each component in detail and
how they are implemented.

4.1.1. Web API

The Web API connects each component of the system. It provides data for the
search suggestions in the mobile application, as well as responses with the rec-
ommender engine results or with the corresponding database ID. The API has
its own internal logic to optimize the performance of recommender engine re-
sponses. There are three different cases how the API returns a recommendation
result list to the application:

44



4. Implementation

1. Immediate response via database: The API checks in the database if there
exists an identical request with a valid result, i.e., it is not older than seven
days. If this is the case, the API returns this result immediately to the
application. The request is stored as a new database entry with a link to
the identical request as its parent.

2. Immediate response via recommender engine: The API checks the database
and finds no entry with a request, which is identical to the new request.
Then the API creates a new database entry and forwards the request to the
correct domain queue. If there are other requests in the queue, it has to
wait until the others have been processed. If there are no other requesst in
the queue, it is forwarded to the Celery worker, which sends the request
to the recommender engine. The recommender engine computes a result
list. If the Celery worker receives a response with the result from the
recommender engine within three seconds, the database entry is updated
with the result list and the API returns this result immediately to the
application.

3. Response after defined timeout: This case works similar to case 2, but
the recommender engine does not provide the result within the defined
timeout. In that case, the API returns only the ID of the database entry
to the application. When the engine finishes the computation, the Celery
worker notifies the notification manager that a result is available. Also the
worker updates the database entry with the provided result list.

The database requests for the search suggestions are handled in a very simple
way. The application sends a request to the correct API endpoint and the API
returns the result of the database query to the application. I will discuss the
different endpoints and their meaning at the end of this section.

Structure

The API is implemented with five Docker containers as shown in Figure 4.2.
Docker is used to increase the portability on different systems. To link the
docker containers, the tool docker-combine is used. The NGINX1 web server
provides the communication between the mobile application and the API via
the internet. To make the communication secure, the web server works with
SSL. SSL stands for Secure Sockets Layer and it is a protocol to encrypt data for
a secure transport via the internet. The API is implemented with the Python
Flask framework. The connections between NGINX and Flask is made by

1https://nginx.com

45



4. Implementation

Gunicorn2. Gunicorn is a Web server Gateway Interface (WSGI) for Python.
It is an interface between web servers and web frameworks like Flask, to
increase the portability of web applications on different web servers. The API
supports multiple endpoints. To provide a good usability, the API generates
a documentation with Swagger UI for each endpoint. To store data, the API
works with an MySQL database (which is described in Section 4.1.2). Also the
provided data for the search suggestions is stored in this database. To handle
multiple requests in order to avoid overloading of the recommendation engine,
queues from RabbitMQ are used. For each domain there is a separate queue.
These queues process the request individually one after the other. They get the
data from the API’s Celery client and forward it to the Celery worker, which
manages the communication with the recommender engine, the notification
manager and also the database. Both, Celery and RabbitMQ, are implemented
separately in into different Docker containers.

2https://gunicorn.org

46



4. Implementation

Figure 4.2.: Detailed representation of the API structure

API Endpoints

An API endpoint defines the connection point to the API. If an endpoint is called,
the API knows which functions or resources are needed and what operations
have to be performed. To structure the endpoints, Flask Restplus namespaces
are used. Table 4.1 lists the different endpoints. The API supports the HTTP
methods GET and POST. The GET method is for retrieving data from the API
and the POST method is for sending data to the API. The data is sent through
the body of the request. To identify a valid request to the API, an API key is
used. This key must be included in the header of every request, otherwise the
request will be rejected. The structure of a request is as follows:

https://<host>:<port>/api/rbz/<namespace>/<endpoint>

47



4. Implementation

where host defines the ip address of the server and port defines, on which port
the API is available.

HTTP
Method Namespace Endpoint

POST

movies <string>/<int>
movie/vote

general

uuid/<string>
user
user/deviceId
backup

GET

movies

<int>
genre/<string>
movie/<string>
person/<string>
movie/details/<string>

general

user/<string>
password/<string>/<string>
backup/history/<int>
backup/favourite/<int>
backup/rating/<int>
backup/dates/<int>

Table 4.1.: List of all API endpoints

4.1.2. MySQL Database

A MySQL database is used to store API specific data and to provide datasets
for the search suggestions. It is an own Docker container in the API Docker
association. To cover all functionalities, nine tables are required as shown in
Figure 4.3. The connection between the API and the database is established via
the Python library SQLAlchemy. The following list gives a brief overview of
each table:

• user: This table is used for user specific data. The registration process
of the application uses this table to add a user to the system. The login
process verifies the user via this table.

• device: It stores the unique device id to enable user specific evaluations.
• rbz_api: This table includes API specific data, like the request from the

mobile application and the corresponding result list of the recommender
engine.

48



4. Implementation

• user_request: To link the request to a user or a device, this table is used.
The purpose of this table is to make a user evaluation possible.

• recommendation_votes: This table stores the voting score of a recommen-
dation list entry. It is used to check if the recommender engine delivers
satisfactory results to the user.

• movie: This table provides a list of movies extracted from IMDb.
• person: This table provides a list of persons, e.g. actors, extracted from

IMDb.
• genre: This table provides a list of genres extracted from IMDb.
• backup_data: This table is used to store personal data of a user, like the

history, the favourite list or the rating list. Also an added-on date is added
to the respective entry, to be able to provide information to the user.

Figure 4.3.: Database schema with relations

49



4. Implementation

4.1.3. Recommender Engine

The recommender engine is provided by the Institute of Interactive Systems
and Data Science of the Technical University of Graz. It creates narrative-driven
recommendations for different domains like movies, board games and video
games [13]. The mobile application can interact with the engine via the API. The
API can access the engine directly, because it is located on the same server.

4.1.4. Notification Manager

The notification manager is implemented with OneSignal3. This is an open
source software for push notification services. Push notifications are used to
inform the user about different activities of the mobile application. In our case,
it informs the user that a recommendation result list for the previous request is
available. It is easy to implement, because it provides a RESTful API and Ionic
offers a corresponding plugin. In our system, the mobile application registers
the device at OneSignal and OneSignal returns a unique push ID. This ID is
sent with every request to the API. The API stores this ID and informs the
notification manager when a result is available from the recommender engine.
This information message includes the push ID and additionally a notification
text. With this information, the manager knows to whom to send a notification.
If the manager sends the notification, two different cases exist on the mobile
device:

• Application is opened: In this case, the application shows only a prompt
with the given text.

• Applications is closed: In this case, a notification is displayed on the
screen. In addition, it can ring or vibrate depending on the device settings.
If the notification gets pressed, the application opens and the recommen-
dation result list is displayed.

4.1.5. Mobile Application

This section provides a detailed description of the mobile application. First, I
explain why I have chosen Ionic for the implementation.. Afterwards, I give
a brief description of the used Ionic plugins and I show the structure of the
application. A page flow diagram at the end of the section will introduce the
application page design of the following section.

3https://onesignal.com/

50



4. Implementation

Technology Selection

For the technology selection I compared the different application types accord-
ing to their characteristics that the application requires. Table 4.2 shows the
rating of each characteristic. If the type matches the characteristic completely. it
receives 2 points. If the type matches the characteristic partly, it receives 1 point
and otherwise 0 points. In addition, there is a weighting which indicates the
importance of the property. The total score is calculated from the sum of the
points multiplied by the their weight.

Aspects Native Hybrid Web Weight
Multiple Platforms 0 2 2 2

Easy Maintainability 0 1 2 2

Expertise Programming Language 1 2 2 1

Local Storage 2 2 0 1

Development Costs 0 1 2 1

Performance 2 1 0 1

Notifications 2 2 0 0.5
App Store Distribution 2 2 0 1

Device Information 2 1 0 0.5
Total Score 9 15.5 12

Table 4.2.: Evaluation of the different technologies

It can be seen that the hybrid solution achieves the highest score. For this
reason, I have chosen the Ionic Framework, which is a framework for hybrid
applications. Another reason for this framework was, that many user interface
elements are needed and Ionic provides a rich set of it. Furthermore, I have
already worked with it, which leads to a reduction of the development time.
At start of the master thesis, Ionic Framework provided a new beta version
called v4. I chose the beta version, because it seemed to be more efficient and
I wanted to use the latest technology. Another advantage is that it is an open
source framework with a big developer community. Furthermore, it provides a
good and clear documentation and for testing the application on a device, an
application for Android and iOS called Ionic DevApp is provided.

51



4. Implementation

Used Plugins

The following list shows the used Native Ionic plugins [17] and which function
they take over in the application.

• NativeStorage: Provides access to the native storage for Android and iOS
devices. This plugin is used for managing the complete data storage of
the application.

• HTTP: Provides the communication with HTTP servers for Android and
iOS devices. It is used for the API communication.

• Device: Provides information about the underlaying device. This plugin
is used to get the unique device ID, which are stored in the database and
used for user recognition.

• ScreenOrientation: Provides the functionality to set the orientation or
lock the screen. This is used to restrict the application to the portrait
orientation.

• OneSignal: Provides the connection to the OneSignal Service. It is used
to register the device at OneSignal and to receive notifications.

• Network: Provides access to the network information. It is used to check
the connectivity of the application.

• Keyboard: Provides access to the platform keyboard. It is used to close
the keyboard after typing in a search text.

Structure

The Ionic application is mainly split into page classes, service classes and
interfaces. Page classes provide the view with page specific logic, service classes
provide logic, which can be used in multiple classes. Interfaces define the
expected structure of objects and can also be used in multiple classes. The
application starts with the index.html on the platform’s web view. This file
initiates the application with calling the app-component, which provides the
structure and navigation of it. The application uses a sidemenu as navigation
to the different pages. Furthermore, this component prepares the application
for startup by setting the screen orientation, initializing the native storage and
loading data from the storage to service variables.

Figure 4.4 shows the connections between different page and service classes.
The service classes HelperService, ConstantsService and StorageService have
not been considered because the are associated with all page classes.

52



4. Implementation

Figure 4.4.: Part of the mobile application class structure

53



4. Implementation

Services
A service class provides functionalities and data, which can be used in multiple
classes. Each service-class should have a special purpose for example one
service class provides the API communication, another manages the network
functionalities. Service classes help to keep the page classes light and clean. In
the following list I describe all used service classes in detail.

• ApiService: This service class provides the connection to the API. It has
multiple functions, which send HTTP GET and HTTP POST calls to the
respective endpoint. Figure 4.5 shows a GET and a POST call to the API.
Both sends the API key via the header, the POST call also sends provided
data through the body.

Figure 4.5.: HTTP GET and POST call to the API. The setBackup function stores personal data in
the database. The getBackup function receives the personal data from the database
with a given user id.

• ConstantsService: It provides constants for the classes, to centralize the
error messages, button- or header texts. Also it provides setting specific
data, such as the API key, the OneSignal app id or the host address and
port of the recommender engine.

• HelperService: The main goal of this service is to provide data to all
classes. It provides flags for the view logic, as well as user specific and
personal data. Following flags are provided:

– movie_request_refine: indicates if a request was refined.
– is_user_logged_in: indicates if a user is logged in.
– movie_from_history: indicates if the result page is called from the

history.

54



4. Implementation

– waiting_for_movie_result: indicates that a movie recommendation
computation is currently in progress.

– result_computation_finished: indicates that a result is available.
– result_computation_failed: indicates that a computation failed.
– result_show_more: indicates that the "show more" function was

called and that the recommendation list computation is currently in
progress.

This service stores also the current request and the corresponding recom-
mendation result list. If a user is logged in, this is also recognized by the
HelperService. In addition, it provides the rating and favourite list.

• NetworkService: This service checks the connectivity of the application.
It recognizes if the application is online or offline. If it is offline, an alert
pops up, which tells the user that the application is only online usable.

• NotificationService: It connects the application with OneSignal. It is re-
sponsible for the initialization of the device. Furthermore, it defines what
happens, if a notification receives. If a notification is received while the
application is running, an alert is displayed, that the recommendation com-
putations has finished. After closing the alert, the user stays on the same
page and does not get redirected to the result. If a notification is received
while the application is closed and the user clicks on it, the application
starts and the user gets redirected to the result list automatically.

• ResultparserService: This service parses the recommendation engine re-
sult, which is in JSON format, to the corresponding objects. Furthermore,
it builds the request, such that the recommender engine can interpret it
and then it sends this request to the recommedation engine through the
ApiService.

• StorageService: This service administers the native storage, which means,
it initializes the storage, sets data and gets data from it. The storage is
structured with key-value pairs. The value can be an object, but also just a
boolean value. The application stores the favourite, rating and history list,
as well as the current request with the corresponding result, the logged-in
user, and some flags, which manage functionalities on the different pages.

Pages

Pages are primarily responsible for the user interface. Each page has multiple
files which provide the logic and the design of them. These are combined in one
folder per page. A folder includes an HTML template for the layout, a CSS file
for the style and a page component file for the specific logic. The component

55



4. Implementation

file uses the Angular @Component decorator, which defines how it should be
handled and processed during start and runtime. The template uses standard
HTML tags, which can be modified with Angular’s template syntax to make
it more powerful. An example for this syntax is ngFor, which loops over a tag
and displays it as often as defined. Also it is possible to use variables from
the component or call component functions. In following list I show the page
classes and I describe the functionality of their components.

• about: The about page states the author of the application and the licences
of third-party libraries.

• favourites: The component is responsible for the initialization of the page.
It calls the HelperService to get the data and then it calls the StorageService
to get the images for each entry. In addition, a delete function is provided,
as well as a function to change the rating of an entry.

• history: The history component gets the data from the StorageService.
It initializes the view with it and provides the filter functionality. The
component is responsible to change the view by expanding an entry.
Furthermore, it navigates the user to the request- and result page. Since
only 10 entries are displayed at the beginning, a "show more" function,
which calls the StorageService again, is provided by the component.

• home: It provides the navigation to the implemented pages with an
implemented side menu. Also, it forwards the user to search pages of the
different domains.

• movie-query: It collects the data for the search query and provides the
function to go the the search page and to process the data received from
it. Additionally, it is responsible for changing the alignment or deletion of
an entry. It also navigates to the "waiting for result" page with the query
data.

• movie-result: The component is responsible for displaying the result list
from the recommender engine. Furthermore, it provides functions to rate
a movie and to add a movie to the favourites list. The different views of
the evaluation of an result list entry is also managed by the component.

• movie-result-waiting: It only sends the request to the ResultParserService
and navigates the user to the result page, if a recommendation result list
is available

• movie-search: This component uses the ApiService to create search sug-
gestions with inserted search terms. It provides entries to the movie-query
page, that this page can build a request.

• ratings: The component is responsible to get data, which is displayed. This
happens in the initialization phase of the page. Also it provides a delete
function, a function to add the entry to the favourite list and a function to

56



4. Implementation

rate the entry again.
• settings: It manages the user registration, the login and logout process.

Furthermore it provides the functionality to backup or restore the personal
data and to delete the complete rating, favourite and history list.

• tour: This component is responsible for the functionality, that the intro-
duction tour does not get displayed at start of the application.

Interfaces
Interfaces define the expected structure of objects. With interfaces it is easy to
correctly handle objects, because they only accept those parameters that have
been defined before. Interface parameters can correspond to any data type, it
can also be another interface. Additionally, they can be defined as optional.
Listing 4.1.5 shows the interface for genres, which consists of three parameters,
Listing 4.1.5 shows the PartialMovieSearchRequest interface, which consists
of five parameter. This parameters are arrays with other interfaces and each
parameter is optional.

1 export interface Genre {
2 id: number ;
3 name: string ;
4 alignment : string ;
5 }

Listing 4.1: Structure of the Genre interface

1 export interface PartialMovieSearchRequest {
2 movies ?: Array <Movie >;
3 actors ?: Array <Actor >;
4 timeperiod ?: Array <Year >;
5 keywords ?: Array <Keyword >;
6 genres ?: Array <Genre >;
7 }

Listing 4.2: Structure of the PartialMovieSearchRequest interface

4.1.6. Software Design

Figure 4.6 shows the page flow of the application. It illustrates how the applica-
tion navigates through the different pages and which actions are required to
get there. A page is structured in a way that it allows intuitive access to other
pages. I will describe the design of each page in detail in the next section.

57



4. Implementation

Figure 4.6.: Page flow diagram to show the connections between each page.

58



4. Implementation

4.2. Page Design

The following section describes the design of each page. I will discuss the
important UI elements and explain the connections between them.

4.2.1. Home

The home page is used to select the domain. It is divided into tiles as shown in
Figure 4.7(a). This provides a good overview of the different domains. Also it
is easy to expand with another domain. A tile is able to show the user infor-
mation about the status of a recommendation computation. This information is
displayed as a banner in the upper left corner of a tile. Following banners are
available:

• Waiting for result!
• Waiting show more!
• Result available!
• Coming soon!

4.2.2. Menu

The menu is implemented as a side menu, which can be opened on mostly
every page with the burger button on the left side of the header. On top of
the side menu, the logo is provided. Underneath, the individual pages can be
accessed. To get a nice design, an icon on the left of the page text is displayed.
Furthermore, if an user is logged in, the name of the user is displayed on the
bottom of the menu. Figure 4.7(b) illustrated the side menu with a user, which
is logged in.

59



4. Implementation

(a) Home page with different domains and tiles with
an information banner

(b) Side menu with logged in user

Figure 4.7.: Home page with different domains and tiles with an information banner. Also the
side menu is opened.

4.2.3. Movies

This page is used to create a search query with different parameters for the
movie domain. This query is forwarded to the recommender engine. To give
the user an overview of the different parameters, each of these are displayed
as shown in Figure 4.8. If there is no entry for an parameter, an information is
provided. To insert entries, a search function on top of the page is implemented,
which leads to the detailed search page. Also a function to clear all entries is
provided in the settings section. Each parameter section can contain one or
multiple entries, which are displayed in a list. An entry is structured as follows:
on the left side, a picture with an alignment indicator is shown. If the alignment
indicator is green, the user likes the entry, otherwise it is red and the user

60



4. Implementation

dislikes it. Next to the picture, the name of the entry is shown. To change the
alignment or to delete the entry, the entry can be slid to the left, where these
two options are displayed. Each parameter section is sorted after the alignment,
which means, that the entries which the user likes are displayed before the
others. If the alignment changes, the list is re-sorted. In addition, there is the
possibility to collapse the list to a simple chips view to a get a better view of
the entries. In this view, the entries can only be deleted. A special case is the
year parameter. This parameter can be activated and deactivated by sliding it to
the left. After activation, the time period can be selected by using another slider.
On the bottom of the page there is the "start recommendation" button, which
leads to the computation page.

(a) Empty movie query (b) Movie query with some entries

Figure 4.8.: Movie search query with and without entries.

61



4. Implementation

4.2.4. Detailed Search

This page is for searching and adding parameters to the search query. The
search bar is on top of the page. Just below there is the toggle to choose the
alignment. Further down, suggestions for each individual parameter follow. A
maximum of five entries is displayed per parameter. If the desired entry is not
displayed, the search term has to be more specific. To select an entry, the user
has to tick the checkbox. The movies parameter shows the poster for each entry,
which should help to easily find the correct movie. The keyword parameter
reflects the search term. If the entry is selected, it is stored in the keyword list
and it is displayed permanently. At the bottom of the page, an add and a cancel
button is provided to get back to the search query view. The add button stores
the selected entries, the cancel button discards them.

Figure 4.9.: Detailed search screen with search term "ac" and descriptions

62



4. Implementation

4.2.5. Recommendations

On this page, the computed recommendation list is displayed. The header
includes a setting function, where different options, like to share the result
on social accounts and to refine the request, are available. This is shown in
Figure 4.10(b). Each entry in the list consists of different parts. As shown in
Figure 4.10(a), in the upper left corner of an entry there is the ratings function,
in the upper right corner there is the add to favourites function. Below the
poster, the title and year of the entry are displayed. Three different external links
are provided in the middle of the entry. The button for the entry evaluation is
at the bottom of an entry. Figure 4.10(b) shows the three possible designs of this
button, regarding of the state.

,
(a) Result entries with description (b) Possible settings options and flow of the entry

evaluation

Figure 4.10.: Recommendations screen displays list with results

63



4. Implementation

4.2.6. My Favourites

This page displayes all entries, which are added to the favourites list. If this list
is empty, a help information is displayed as shown in Figure 4.11(b). Otherwise
the entries are displayed as illustrated in Figure 4.11(a). Each entry consists
of the name, the year, an added-on date and additional data depending on
the domain. In the upper right corner of an entry, the ratings functionality is
provided. To delete an entry, it has to be slid to the left and the delete function
is displayed.

(a) Explanation of My Favourite list functions (b) Empty favourite list

Figure 4.11.: My favourite screen with and without entries

64



4. Implementation

4.2.7. My Ratings

The My Ratings page displays all rating list entries grouped by their rated score.
If this list is empty, a help information is displayed as shown in Figure 4.12(b).
Otherwise the entries are displayed as shown in Figure 4.12(a). Each entry
consists of the name, the year, an added-on date and additional data depending
on the domain. In the upper right corner, the icon for adding the entry to the
favourites list is provided. To delete the entry or make the rating again, the
entry has to be sled to the left and these options are shown.

(a) Rating entries with options (b) Empty ratings list

Figure 4.12.: My Ratings shows entries grouped by the rating score

65



4. Implementation

4.2.8. History

The history page displays old search requests with their result list. It is sorted
by date as shown in Figure 4.13(a). Each entry can be expanded to show the
details as shown in Figure 4.14. The details view provides all information
about the request. Additionally, a horizontal slider shows a preview of the
recommendation result list. This preview shows if an entry was added to the
favourite list and if an entry was already rated. Furthermore, it displays if an
entry was already evaluated. At the end of the details view two buttons are
provided. One forwards the user to the request, where he can refine it, whereas
the other one forwards the user to the recommendation result list. As additional
feature, the history page provides a filter functionality, where the entries can be
filtered by date. There, three predefined time periods are provided, also a user
defined time period can be chosen as illustrated in Figure 4.13(b).

(a) Collapsed history entries (b) Filter functionality

Figure 4.13.: History entries with filter functionality

66



4. Implementation

Figure 4.14.: Expanded history entry

4.2.9. Settings

The settings page is divided into two sections as illustrated in Figure 4.15(a).
The first section provides the account management. There, the user is able to
register himself (Figure 4.15(b)). Also he is able to login with existing user
data (Figure 4.15(c)). If incorrect data has been entered, error messages are
displayed. After the user is logged in, he is able to backup and synchronize his
personal data. History, My Favourites and My Ratings can be separately treated
(Figure 4.15(d)). At the end of this section, a log out button is provided, but
only if the user is logged in.
The second section provides the storage management. There, the user is able to
delete the entries in the storage separately or he can delete the complete storage.
To avoid accidental deletion, a pop-up warns the user of the consequences.

67



4. Implementation

(a) Settings page without
logged in user

(b) Register form (c) Login form

(d) Restore and synchronize section when
user is logged in.

Figure 4.15.: Different views of the settings page.
68



4. Implementation

4.2.10. Introduction Tour

The introduction tour is shown at the launch of the application. As illustrated
in Figure 4.16(a), it can be deactivated with the "Do not show again" checkbox
or it can be skipped to get to the home page immediately. The introduction
tour should help the user to easily understand how the applications works
and which features are available. It is implemented with a step by step path as
shown in Figure 4.16(b). This should guide the user to the simplest way to get a
result.

(a) Start page with "Do not
show again" function

(b) First page of the step by
step guide

Figure 4.16.: Part of the introduction tour to show the basic principle

4.2.11. Computation

This page is shown during the computation of a recommendation list. It should
inform the user with a spinner that the computation is in progress as illus-
trated in Figure 4.17(a). Also it is possible to stop the computation of the
recommendation.

69



4. Implementation

4.2.12. About

This page displays the author of the application as shown in Figure 4.17(b). Fur-
thermore, licenses of different third party libraries and plugins are displayed.

(a) The computation page shows a
spinner, to indicate that the recom-
mendation is currently being com-
puted.

(b) The about page displays infor-
mation about the creator.

Figure 4.17.: Computation page and about page.

70



5. Evaluation

This chapter explains the evaluation procedure of the application. A case study
with 10 participants was performed to evaluate the mobile application. They
performed several tasks and afterwards they had to answer a questionnaire.
This feedback has been elaborated and the result identified the scale of usability
of the application and potential weaknesses.

The structure and the experimental setup of the case study is described in
Section 5.1. The description of the tasks and the questionnaire is shown in
Section 5.1.1 and Section 5.1.2. At the end in Section 5.2, I provide the result of
the case study and discuss the outcomes of it.

5.1. Case Study

A case study is a procedure where participants have to perform pre-defined
tasks. It will be observed how the user completes a task. It is of interest,
whether the user completes the task according to the planned path or whether
he navigates with another route to the goal. Afterwards, he has to fill out a
questionnaire.

Our user study was performed on a Samsung S8 smartphone with Android 8.0.0
as its platform. The participants were not briefed before. They had to perform
nine tasks. The instruction sheet with the task can be found in Figure A.1.
Afterwards, they had to answer some personal questions, two open post-test
questions and 10 questions, which were evaluated with the System Usability
Scale (SUS). This questionnaire can be found in Figure A.2 and Figure A.3.

The aim of this study is to check if all developed features will be used as
intended and if the user thinks if this application is practical and useful. Ad-
ditionally, weaknesses in the system should be detected and it should provide
information whether the application is self-explanatory or not.

71



5. Evaluation

5.1.1. Tasks

The tasks should cover a large part of the provided features and it should be
possible to complete all tasks without help. For this reason, in the first task, the
participant has to start the application and he has to finish the introduction
tour. In the following tasks, the participant has to create and refine a movie
request with predefined parameters. With this tasks, the usability of the search
and query page gets evaluated.
Furthermore, the participant has to add movies to the favourites list and rate
different movies. Afterwards, he has to go to the home page. Then he has to
change the rating of a movie, which he has rated before. This task focuses on
the usability of navigation between the different features.
In the last three tasks, the participant has to backup the history, delete it
afterwards, and restore it. He has to perform all necessary tasks. These tasks
focus on the comprehensibility of the help texts in the application. In addition,
the time how long the user needs for the tasks is recorded. To ensure that the
participants solve the tasks carefully and do not feel any time pressure, the
participants are only informed after the study that the time has been recorded.

5.1.2. Questionnaire

The questionnaire should provide information about different areas. On the
one hand, it should provide a statement about the usability, on the other hand
it should find out the explicit strengths and weaknesses in the system. For
that purpose, different sets of questions are used. In order to be able to make
the statements about the participants, it includes personal questions about the
them.
The following sections provide an overview of the different questions. Also a
description what the System Usability Scale (SUS) is and how it can be applied,
is given.

Personal Questions

The personal questions should give an overview of the set of participants. The
standard questions such as the name, the age and the gender are included.
Furthermore, the questionnaire includes a question about the participant’s
computer knowledge level, which can range from "never used a computer"
to "expert". Additionally, the highest level of completed education can be
indicated.

72



5. Evaluation

SUS Questions

The System Usability Scale was developed in 1986 by Brooke [8] to create an
end-of-test subjective assessments of usability. It was created as a quick and
dirty solution for usability testing. It is based on the Likert Scale, which is
described in the next section. The SUS should be performed after completion
of the tasks and before the debriefing or other discussions [29]. The advantage
of SUS is that it is cheap and it can be performed quickly. Additionally, it is
possible to evaluate the user satisfaction. The disadvantage is, that it is not
possible to give precise indications of weaknesses. In addition, no differentiation
of the individual participants is possible.

Likert Scale
The Likert Scale was invented by Rensis Likert in 1932 [23]. It is a series of
statements, which should indicate the feeling about a system or a product. The
statements range from highly positive to highly negative, e.g from "strongly
aggree" to "strongly disagree" which is shown in Figure 5.1. It is quiet common
to use an 5- or 7- point scale. With the odd scale, the user has the possibility to
give a neutral answer [28].

Figure 5.1.: Five point Likert Scale

Implementation
The SUS uses ten statements, where five of these statements are positive (odd
numbers) and five are negative (even numbers). The alternating order was
invented, that the participant answers the statements correctly by reading them
carefully. Brooke [8] introduced following statements for the usability test:

1. I think that I would like to use the system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be able to

use this system.
5. I found the various functions in this system were well integrated.

73



5. Evaluation

6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very

quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

For answering the questions, a five point Likert Scale is used. Each statement
can be rated from "strongly disagree" to "strongly agree". The participants
should give immediate answers to the questions and should not think too long
about each answer. Furthermore, if an question can not be answered, the centre
point of the scale should be selected.

Calculation
The get the System Usability Score following calculations has to be done:

• For each of the odd statements, subtract 1 from the score.
• For each of the even statements, subtract their value from 5.
• Sum up previous calculated values to a total score.
• Multiply total score by 2.5.

This leads to an overall score in the range of 0 to 100, where 0 is the worst
possible and 100 the best possible result.

Interpretation
The SUS score is not the percentage of the reached usability, it is the percentile.
Sauro et al. [29] figured out with using 446 studies and 5000 individual re-
sponses, that the overall mean score of the SUS is 68. With this knowledge, he
created a table, where he converted the raw score to a percentile rank as shown
in Figure 5.2(a). The percentile rank indicates how usable the system is relative
to the other products. For example, a raw SUS Score of 60 has a percentile rank
of 29%, which means, that 71% of other products are more usable then the
tested one. Everything with a SUS more than 68 has a percentile rank of 50%,
which indicates that the usability is above average.

Furthermore, Sauro et al. [29] invented a grading scale, which differs from the
known scale of Bangor et al. [6]. The scale of Bangor et al. [6] is a traditional
school grade scale, where e.g. a SUS between 90 and 100 is an A and a score
below 60 is an F. Sauro et al. [29] states, that with this scale it is virtually
impossible to get an A, because in his study, less than 1% had a mean SUS

74



5. Evaluation

above 90. To provide a fairer grading assignment, he developed the curved
grading scale shown in Figure 5.2(b).

(a) Percentile Ranks for Raw SUS Scores

(b) Curved Grading Scale Interpretation of SUS
Scores

Figure 5.2.: System Usabilty Score evaluation tables from [29]

Post-test Questions

The open post-test questions are to find out explicit strengths and weaknesses
in the system. They should be asked at the end, as the user should think about
the whole application again. The two questions are:

75



5. Evaluation

• What are two things that you really liked?
• What are two things that you did not like?

The first question should bring the participant in a positive mood, by thinking
about things in the application, which worked well. The second question should
indicate serious errors. By asking only two things, the participant get forced to
prioritize his decision. This should lead to a better quality of the error report
[31].

5.2. Results

In this section I discuss the outcoming result of the case study. At the beginning,
I analyze and categorize the set of participants according to their characteristic.
Afterwards, I evaluate the SUS questionnaire and present the result. At the end
of the section, I discuss the open post-test questions and highlight the strengths
and weaknesses of the application.

5.2.1. Participants

A total of ten candidates took part in the study. The proportion of women was
30%, while that of men was 70% as shown in Figure 5.3(a). The participants were
aged between 24 and 29. All participants had at least the high school diploma
and even 70% had an university degree (Figure 5.3(b)). The participants had to
assess their computer knowledge themselves. 40% considered themselves to be
experts, 30% as competent users and 30% as beginners, which is illustrated in
Figure 5.3(c).

76



5. Evaluation

(a) Participants by gender (b) Participants by education

(c) Participants by computer knowledge

Figure 5.3.: Graphical evaluation of the participants by gender, education and computer knowl-
edge.

5.2.2. SUS Score

The average SUS score is 82,75 out of 100, which is in the grading scale of
Sauro et al. [29] an A. The minimal score given by a user is 75, which is a
B in the grading scale. The best score is 95, which is an A+. These different
scores are shown in Figure 5.5 and the overall evaluation of each question is
shown in Table 5.1. As illustrated in Figure 5.4, the average SUS score of 82,75

corresponds to a percentile rank of 94%. This means, that the application has a
higher usability than 94% of all tested products. Therefore, I conclude that the
participants considered the application as very usable.

77



5. Evaluation

Question 1 2 3 4 5
Average

SUS
Score

1. I think that I would like to
use the system frequently. 1 0 3 4 5 6,5

2. I found the system
unnecessarily complex. 4 4 1 1 0 7,75

3. I thought the system was easy
to use.. 0 1 3 4 2 6,75

4. I think that I would need the
support of a technical person to
be able to use this system.

7 2 1 0 0 9

5. I found the various functions
in this system were well
integrated.

0 0 0 5 5 8,75

6. I thought there was too much
inconsistency in this system. 6 2 2 0 0 8,5

7. I would imagine that most
people would learn to use this
system very quickly.

0 0 0 5 5 8,75

8. I found the system very
cumbersome to use. 8 1 1 0 0 9,25

9. I felt very confident using the
system. 0 0 1 7 2 7,75

10. I needed to learn a lot of
things before I could get going
with this system.

9 1 0 0 0 9,75

Total SUS Score 82,75

Table 5.1.: Evaluation of the SUS questionnaire. The table indicates which answers how many
participants gave to the questions. The average score is calculated with the rules from
Section 5.1.2.

78



5. Evaluation

Figure 5.4.: Graphical representation of the percentile ranks for the raw SUS Score. The blue
line shows the percentile ranks associate with the raw SUS score, the orange line
shows the intersection point with the average SUS score.

Figure 5.5.: Grading Scale of SUS score with minimal, average and maximal value.

79



5. Evaluation

5.2.3. Post-test Questions

All participants have answered the positive question completely. The negative
question was fully answered by four participants, five participants only raised
one critical point and only one user had no critical point.
50% of the participants stated that the design of the application was particularly
appealing. Especially the structure with the side-menu and the tiles on the home
screen were positively mentioned. Furthermore, the usability was emphasized.
The participants particularly liked the fact that the functions are additionally
described with icons and that an introduction tour is provided at the launch of
the application. The backup system was also reported as very helpful.
60% of the participants did not like the sliding function, which enables the user
to get access to entry based functions. Additionally, the "like-dislike" function
on the search page was criticized by two participants, because they were not
able to change the alignment after selecting an entry.
A non-unique result returns the general search page, where the user can search
for all parameters. Two participants would prefer a separate search page for
each parameter, whereas two other participants liked the functionality of a
general search page.

5.2.4. Discussion

Participants

For more representative results, the participants have to be more diversified,
which means that all different ages have to be included into the study and they
should be evenly distributed. In my study, only one age group was included.
Additionally, too few women were involved in the study. There should be an
even distribution between women and men to reflect the Austrian population1

[4, 3]. The participants were all highly educated, so people with lower education
should also be included, because only 32,5% of the Austrian population [5] has
such a high eduction as the participants (at least a high school diploma). All in
all, the case study already shows the trend of the result and it provided insights
about strengths and weaknesses of the application.

1The study took place in this country.

80



5. Evaluation

Tasks

The tasks were all successfully completed, but several smaller problems occurred
during the execution. All tasks were completed in 15 minutes on average. The
fastest participant needed 9 minutes, the slowest 19 minutes. The following
list shows a summary of the problems and the different solution paths of the
participants.

• Task 1: Sliding function of the introduction tour was not recognized.
• Task 2: To start the search function for a parameter, many participants

tried to click on the corresponding item card. Furthermore, the given
parameters were added individually, the multiple selection was not used.
Another problem within the search function was changing the alignment
from like to dislike. Here, the user first marked the parameter and after
that, he changed the alignment, which does not work. The sliding function
to activate the year parameter, was not found by any participant.

• Task 3: Occasionally, the rating icon was clicked first.
• Task 4: The functionality to refine the request was sometimes not found

without a help. Many participants tried to click on the label of the "refine
request" button, which closes the settings section and does not redirect
them to the correct page. On the request page, only one participant used
the slider to change the alignment, the others deleted the entry and added
them again with the changed alignment.

• Task 5: All participants found the rating and feedback section on the result
page.

• Task 6: Many participants tried to go to the movie request page again to
get the rated movies. But after recognizing that this is the wrong path,
they found the "My Ratings" page in the side-menu.

• Task 7: Most of the participants first went to the history page and clicked
on the filter function. After a little hint, they found the back up function.
The registration and login process worked well for everyone.

• Task 8 and 9: No problems occurred at these tasks.

Questions

All participants clearly understood the questions and answered these to the best
of their conscience. The open post-test questions reflect very well the problems
and the positive impressions that have occurred during the different tasks. These
questions fulfilled their purpose and helped finding strengths and weaknesses
of the application, which is not possible with the SUS questionnaire alone.

81



5. Evaluation

Result

The result of the case study shows that the mobile application is well structured
and user-friendly. The feedback of the participants was quite positive and
they would use the application frequently. The simple design, which is self-
evident, was highlighted. Another good feedback given was that many different
functions exist in the application to generate personal lists. In this case, the
users meant the "My Ratings" and "My Favourite" list. Furthermore, the backup
functions have convinced the participants and three participants explicitly stated
that they think that the function is very useful.

The sliding function was mostly criticized because such a functionality is not
available in other applications and therefore the participants did not find it.
Many participants tried to get the functions, which are only available in the
slider (delete, change entry), by a long- and a double press on the entry. But
some said after the study that these functions become more understandable
after repeated use. A further problem was how the participants tried to open
the search function. They tried to click on the respective card of the search
parameter to open it. An improvement of the application would be necessary
by making these cards clickable. One participant noted that the order of the
feedback smileys is twisted. According to him, the sequence should go from bad
to good and not as in the application vice versa. Additionally, it was criticized
that some functions are hard to find. However, this can often be traced back to
the fact that the user did not read the introduction tour exactly, as it describes
exactly those functions that he did not find.

82



6. Conclusion and Future Work

In this thesis a mobile application and a corresponding API for rbz.io was cre-
ated and afterwards, a case study was performed to evaluate the user interface
of the mobile application.
After implementing the mobile application, it can be stated that the appropriate
technology for the application has been selected, because all defined require-
ments have been fulfilled. Through the use of the Ionic framework, creating a
user interface which is structured and clean was very simple. In addition, it
was a good choice to implement push notifications with OneSignal, because it
was uncomplicated and this tool provides a powerful set of functions, which
can later on be used to analyze users. A minor disadvantage, however, was
that the Ionic framework was still in the beta phase. Therefore, some functions
were not fully developed and a workaround had to be used. For example, when
updating data in a pop-over window, the screen refresh had to be triggered by
the system itself.

In the case study, it turned out that the slider function has not yet been accepted
by the users. One reason for this could be, that the widely used Android and
iOS applications currently rely more on the long press than on a sliding function.
Furthermore, the study shows that when searching for functionalities, users
click through the application before reading all the help texts on the page.
Therefore, it is important during development to place functionalities clearly
and easily on the screen, otherwise users will not find them.

In conclusion, the used technologies, as well as the performed case study worked
well and only a few problems have occurred. Some usability improvements will
need to be made in the future to make the application ready for the market, but
for a first prototype, the outcoming result was successful.

Future work

The future work could include the improvement of the usability, in particular
the problems encountered in the case study could be addressed. The slider
of each entry could be replaced by a long press, the button labels and the

83



6. Conclusion and Future Work

parameter cards on the query page could be made clickable.
In order not to make too many changes, one idea would be to design the
introduction tour as an interactive tour. This forces the user to deal with the
functionalities when starting the application and it can contribute to the un-
derstanding of the different functions. Furthermore, the functionalities of the
domains "board games" and "video games" have to be designed and imple-
mented.
For future research, it would be interesting to do a case study with a larger
number of people, where each age group, gender and education is equally dis-
tributed. To get a representative result, each group should contain at least eight
to ten persons in order to be able to make a uniform statement per group.

84



Appendix

85



Appendix A.

Case Study

In this appendix, I present the tasks and the questionnaire of the case study,
which were used in the Chapter 5 to evaluate the mobile application.

86



Appendix A. Case Study

Figure A.1.: Tasks for case study

87



Appendix A. Case Study

Figure A.2.: Questionnaire for case study part 1

88



Appendix A. Case Study

Figure A.3.: Questionnaire for case study part 2

89



Bibliography

[1] Angular. Architecture overview. Jan. 2019. url: https://angular.io/
guide/architecture (visited on 01/21/2019) (cit. on p. 21).

[2] B.Sindhya Anmol Khandeparkar Rashmi Gupta. “Introduction to Mobile
Application Development Ecosystems.” In: International Journal of Computer
Applications (2015), pp. 31–33 (cit. on p. 6).

[3] Statistik Austria. Bevölkerung am 1.1.2018 nach Alter und Bundesland - Frauen.
Jan. 2019. url: https : / / www . statistik . at / web _ de / statistiken /
menschen_und_gesellschaft/bevoelkerung/bevoelkerungsstruktur/
bevoelkerung_nach_alter_geschlecht/023472.html (visited on 02/10/2019)
(cit. on p. 80).

[4] Statistik Austria. Bevölkerung am 1.1.2018 nach Alter und Bundesland - Män-
ner. Jan. 2019. url: https://www.statistik.at/web_de/statistiken/
menschen_und_gesellschaft/bevoelkerung/bevoelkerungsstruktur/
bevoelkerung_nach_alter_geschlecht/023471.html (visited on 02/10/2019)
(cit. on p. 80).

[5] Statistik Austria. Ergebnisse im Überblick: Bildungsstand. Jan. 2019. url:
https : / / www . statistik . at / web _ de / statistiken / menschen _ und _
gesellschaft/bildung_und_kultur/bildungsstand_der_bevoelkerung/
020912.html (visited on 02/10/2019) (cit. on p. 80).

[6] Aaron Bangor, Philip Kortum, and James Miller. “Determining What
Individual SUS Scores Mean: Adding an Adjective Rating Scale.” In: J.
Usability Studies (May 2009), pp. 114–123 (cit. on p. 74).

[7] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice:
Software Architect Practice_c3. SEI Series in Software Engineering. Pearson
Education, 2012. isbn: 9780132942782 (cit. on p. 43).

[8] John Brooke. SUS: A quick and dirty usability scale. 1996 (cit. on p. 73).

[9] Rachel Carmena. So what is CSS, really? Jan. 2019. url: https://developer.
mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/CSS_
basics (visited on 01/20/2019) (cit. on pp. 16, 17).

90

https://angular.io/guide/architecture
https://angular.io/guide/architecture
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/bevoelkerung/bevoelkerungsstruktur/bevoelkerung_nach_alter_geschlecht/023472.html
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/bevoelkerung/bevoelkerungsstruktur/bevoelkerung_nach_alter_geschlecht/023472.html
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/bevoelkerung/bevoelkerungsstruktur/bevoelkerung_nach_alter_geschlecht/023472.html
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/bevoelkerung/bevoelkerungsstruktur/bevoelkerung_nach_alter_geschlecht/023471.html
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/bevoelkerung/bevoelkerungsstruktur/bevoelkerung_nach_alter_geschlecht/023471.html
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/bevoelkerung/bevoelkerungsstruktur/bevoelkerung_nach_alter_geschlecht/023471.html
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/bildung_und_kultur/bildungsstand_der_bevoelkerung/020912.html
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/bildung_und_kultur/bildungsstand_der_bevoelkerung/020912.html
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/bildung_und_kultur/bildungsstand_der_bevoelkerung/020912.html
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/CSS_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/CSS_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/CSS_basics


Bibliography

[10] Codecadamy. What is REST? Jan. 2019. url: https://www.codecademy.
com/articles/what-is-rest (visited on 01/22/2019) (cit. on p. 23).

[11] Docker. Docker overview. Jan. 2019. url: https://docs.docker.com/
engine/docker-overview/ (visited on 01/22/2019) (cit. on p. 25).

[12] Docker. Overview of Docker Compose. Jan. 2019. url: https://docs.docker.
com/compose/overview/ (visited on 01/22/2019) (cit. on p. 25).

[13] Lukas Eberhard et al. “Evaluating Narrative-Driven Movie Recommenda-
tions on Reddit.” In: Marina del Ray, CA, USA: ACM, 2019. doi: 10.1145/
3301275.3302287. url: https://doi.org/10.1145/3301275.3302287
(cit. on p. 50).

[14] eMarketer. Number of smartphone users worldwide from 2014 to 2020 (in
billions). url: https://www.statista.com/statistics/330695/number-
of-smartphone-users-worldwide/ (visited on 02/02/2019) (cit. on p. 1).

[15] Apache Software Foundation. An Introduction to JavaScript. Jan. 2019.
url: https://cordova.apache.org/docs/en/latest/guide/overview/
(visited on 01/21/2019) (cit. on pp. 6, 19).

[16] Ionic Framework. Framework Docs. Jan. 2019. url: https://beta.ionicframework.
com/docs/ (visited on 01/21/2019) (cit. on p. 20).

[17] Ionic Framework. Ionic Native. Jan. 2019. url: https://beta.ionicframework.
com/docs/native (visited on 01/28/2019) (cit. on p. 52).

[18] Gartner. Global market share held by the leading smartphone operating systems
in sales to end users from 1st quarter 2009 to 2nd quarter 2018. url: https:
//www.statista.com/statistics/266136/global-market-share-held-
by - smartphone - operating - systems (visited on 01/19/2019) (cit. on
pp. 1, 5).

[19] Axel Haustant. Welcome to Flask-RESTPlus’s documentation! Jan. 2019. url:
https : / / flask - restplus . readthedocs . io / en / stable/ (visited on
01/22/2019) (cit. on p. 24).

[20] B.P. Hogan. HTML5 & CSS3 (Prags). Pragmatic programmers. O’Reilly
Verlag, 2011. isbn: 9783897213173 (cit. on p. 15).

[21] Ilya Kantor. An Introduction to JavaScript. Jan. 2019. url: https://javascript.
info/intro (visited on 01/21/2019) (cit. on p. 18).

[22] Anastasiia Lastovetska. Native App Development vs. Hybrid and Web App
Building. Nov. 2018. url: https://mlsdev.com/blog/167-native-app-
development (visited on 01/20/2019) (cit. on pp. 5, 8).

[23] R. Likert. A Technique for the Measurement of Attitudes. A Technique for the
Measurement of Attitudes Nr. 136-165. 1932 (cit. on p. 73).

91

https://www.codecademy.com/articles/what-is-rest
https://www.codecademy.com/articles/what-is-rest
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://doi.org/10.1145/3301275.3302287
https://doi.org/10.1145/3301275.3302287
https://doi.org/10.1145/3301275.3302287
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://cordova.apache.org/docs/en/latest/guide/overview/
https://beta.ionicframework.com/docs/
https://beta.ionicframework.com/docs/
https://beta.ionicframework.com/docs/native
https://beta.ionicframework.com/docs/native
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://flask-restplus.readthedocs.io/en/stable/
https://javascript.info/intro
https://javascript.info/intro
https://mlsdev.com/blog/167-native-app-development
https://mlsdev.com/blog/167-native-app-development


Bibliography

[24] IQ Magazine. Value of the global entertainment and media market from 2011
to 2021 (in trillion U.S. dollars). url: https : / / www . statista . com /
statistics/237749/value-of-the-global-entertainment-and-media-
market/ (visited on 02/03/2019) (cit. on p. 1).

[25] Ivano Malavolta. “Beyond Native Apps: Web Technologies to the Res-
cue! (Keynote).” In: Proceedings of the 1st International Workshop on Mobile
Development. Mobile! 2016. Amsterdam, Netherlands: ACM, 2016, pp. 1–
2. isbn: 978-1-4503-4643-6. doi: 10.1145/3001854.3001863. url: http:
//doi.acm.org/10.1145/3001854.3001863 (cit. on p. 6).

[26] Charo Malik. Angular Architecture: Overview and Concept. Nov. 2018. url:
https://dev.to/charumalikcs/angular-architecture-overview-and-
concept-n8f (visited on 01/21/2019) (cit. on p. 20).

[27] Chris David Mills. So what is HTML? Jan. 2019. url: https://developer.
mozilla.org/en- US/docs/Learn/Getting_started_with_the_web/
HTML_basics (visited on 01/20/2019) (cit. on p. 15).

[28] D.R. Monette, T.J. Sullivan, and C.R. DeJong. Applied Social Research: A
Tool for the Human Services. Cengage Learning, 2010. isbn: 9780840032058

(cit. on p. 73).

[29] J. Sauro and J.R. Lewis. Quantifying the User Experience: Practical Statistics
for User Research. Elsevier Science, 2012. isbn: 9780123849687 (cit. on
pp. 73–75, 77).

[30] University of Southern California. Web Technology and Trend: HTML5. Jan.
2019. url: http://www-scf.usc.edu/~chenemil/itp104/webtech.html
(visited on 01/20/2019) (cit. on p. 15).

[31] Jared Spool. Two Simple Post-Test Questions. Mar. 2006. url: https://
archive.uie.com/brainsparks/2006/03/23/two-simple-post-test-
questions/ (visited on 01/31/2019) (cit. on p. 76).

[32] Michael Stowe. Undisturbed REST. MuleSoft, 2015. isbn: 9781329116566

(cit. on p. 23).

[33] Max Summers. Everything You Need to Know About Mobile App Development
Architecture. Sept. 2018. url: https://magora-systems.com/mobile-app-
development-architecture/ (visited on 01/20/2019) (cit. on p. 7).

[34] Pallets team. Welcome to Flask. Jan. 2019. url: http://flask.pocoo.org/
docs/1.0/ (visited on 01/22/2019) (cit. on p. 24).

[35] Karl E Wiegers and Joy Beatty. Software Requirements 3. Redmond, WA,
USA: Microsoft Press, 2013. isbn: 0735679665, 9780735679665 (cit. on
p. 27).

92

https://www.statista.com/statistics/237749/value-of-the-global-entertainment-and-media-market/
https://www.statista.com/statistics/237749/value-of-the-global-entertainment-and-media-market/
https://www.statista.com/statistics/237749/value-of-the-global-entertainment-and-media-market/
https://doi.org/10.1145/3001854.3001863
http://doi.acm.org/10.1145/3001854.3001863
http://doi.acm.org/10.1145/3001854.3001863
https://dev.to/charumalikcs/angular-architecture-overview-and-concept-n8f
https://dev.to/charumalikcs/angular-architecture-overview-and-concept-n8f
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
http://www-scf.usc.edu/~chenemil/itp104/webtech.html
https://archive.uie.com/brainsparks/2006/03/23/two-simple-post-test-questions/
https://archive.uie.com/brainsparks/2006/03/23/two-simple-post-test-questions/
https://archive.uie.com/brainsparks/2006/03/23/two-simple-post-test-questions/
https://magora-systems.com/mobile-app-development-architecture/
https://magora-systems.com/mobile-app-development-architecture/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/


Bibliography

[36] Jia Zhang. Python Celery & RabbitMQ Tutorial. Apr. 2016. url: https:
//tests4geeks.com/python-celery-rabbitmq-tutorial/ (visited on
01/22/2019) (cit. on pp. 24, 25).

93

https://tests4geeks.com/python-celery-rabbitmq-tutorial/
https://tests4geeks.com/python-celery-rabbitmq-tutorial/

	Abstract
	Introduction
	Motivation

	Background and Related Work
	Types of mobile applications
	Native Applications
	Web Applications
	Hybrid Applications
	Comparison between the different types
	Related Work

	Web Technologies
	Hypertext Markup Language - HTML 
	Cascading Style Sheets - CSS
	JavaScript

	Hybrid Mobile Application Frameworks
	Apache Cordova
	Ionic Framework
	Angular
	Related Work

	REST APIs
	REST API Frameworks
	Message Broker and Task Queues
	Docker


	Requirements and Use Cases
	General description
	Use Cases
	Functional requirements
	Non-functional requirements
	Relations between use cases and requirements

	Implementation
	Software Architecture
	Web API
	MySQL Database
	Recommender Engine
	Notification Manager
	Mobile Application
	Software Design

	Page Design
	Home
	Menu
	Movies
	Detailed Search
	Recommendations
	My Favourites
	My Ratings
	History
	Settings
	Introduction Tour
	Computation
	About


	Evaluation
	Case Study
	Tasks
	Questionnaire

	Results
	Participants
	SUS Score
	Post-test Questions
	Discussion


	Conclusion and Future Work
	Case Study
	Bibliography

