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Chapter 1

Preface

All the results of this thesis are primarily based in the mathematical field of Metric Number
Theory. This field of mathematics builds a connection between analytical number theory
and probabilistic methods. The main interest is to metrically characterise certain sets of
numbers. In other words, one looks for the size of the set of numbers which fulfil a certain
condition, whereas this size is usually considered with respect to the Lebesgue measure. For
the whole thesis the Lebesgue measure will be denoted by λ. Deep results of Metric Number
Theory are in the areas of Diophantine approximation, the theory of uniform distribution
of sequences, as well as continued fractions. These topics together with a so far less known
notion — the pair correlations of sequences — are unified in this thesis. While techniques
of all the aforementioned areas play a crucial role, the main part of this work is centred
around pair correlations. We will start with basic definitions and some results which will be
helpful later on. Moreover we summarise the most important results of each chapter. For
more precise introductions we refer to the single chapters.

1.1 Equidistribution and Pair Correlations

The consideration of sequences of real numbers in terms of the distribution of their fractional
parts can be said to have its genesis as fully acknowledged branch of mathematics with the
seminal paper Über die Gleichverteilung von Zahlen mod. Eins by HermannWeyl in 1916 [46].

Let (xn)n≥1 be a sequence of real numbers and 〈x〉 denotes the fractional part of x. If
for all a, b ∈ [0, 1], a ≤ b, it holds that

lim
N→∞

1

N
#
{

1 ≤ n ≤ N : 〈xn〉 ∈ [a, b]
}

= b− a,

the sequence is said to be equidistributed or uniformly distributed modulo one (“Gleichverteilt
mod. Eins”).

As we will see later this notion is closely related to a sequence having Poissonian pair
correlations (PPC for short). The pair correlation function of the aforementioned sequence
(xn)n≥1 up to the N -th member is defined by

R2(s, (xn)n , N) =
1

N
#
{

1 ≤ m,n ≤ N, m 6= n : ‖xm − xn‖ ≤
s

N

}
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whereas we shorten this notation to

R (s,N) := R2(s, (xn)n , N)

if it is clear which sequence is considered. The sequence is said to have Poissonian pair
correlations if

R(s) := lim
N→∞

R(s,N) = lim
N→∞

R2(s, (xn)n , N)

exists for every s ≥ 0 and it holds that

R (s) = 2s.

Then, it can also be said that the distribution of its pair correlation statistics is asymptoti-
cally Poissonian.

The concept of equidistribution will only appear in Chapter 2 where we show that the
property of having Poissonian pair correlations is stronger than being equidistributed:

Theorem 2.1. Let (xn)n≥1 be a sequence of real numbers in [0, 1], and assume that the
distribution of its pair correlation statistic is asymptotically Poissonian. Then the sequence
is equidistributed.

1.2 Additive Energy

In Chapter 3 and Chapter 4 we will discuss, given a sequence (αan)n, with α ∈ [0, 1] and
an ∈ N strictly increasing, the dependence of having Poissonian pair correlations on the
additive energy of the sequence (an)n. We will also be interested in the set of α such that
(αan)n has no PPC and call this set NPPC ((an)n). If λ (NPPC ((an)n)) = 0, we say that
(an)n has metric PPC.

For a finite set I the additive energy E (I) is defined as

E (I) := #
{

(a, b, c, d) ∈ I4 : a+ b = c+ d
}

=
∑

a+b=c+d
a,b,c,d∈I

1.

Trivial bounds for the additive energy of I are given by

|I|2 ≤ E (I) ≤ |I|3 .

Let AN := {an}1≤n≤N be the set of the first N ∈ N members of the sequence (an)n, then
the additive energy of AN can be written as

E (AN ) = # {n1, n2, n3, n4 ≤ N : an1 + an2 = an3 + an4} .

In Chapter 3 we show the following two results.

Theorem 3.1. If E(AN ) = Ω
(
N3
)
, then NPPC ((an)n) has full Lebesgue measure.
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Theorem 3.2. Let f : R>0 → R>2 be a function increasing monotonically to ∞, and
satisfying f (x) = O

(
x1/3 (log x)−

7/3). Then, there is a strictly increasing sequence (an)n of
positive integers with E(AN ) = Θ

(
N3/f (N)

)
such that if∑

n≥1

1

nf(n)

diverges, then for Lebesgue almost all α ∈ [0, 1]

lim sup
N→∞

R (s, α,N) =∞

holds for any s > 0.

As one will see in the chapter, the second theorem also yields information about the
Hausdorff dimension of NPPC ((an)n), but we do not write it here in its full form since it is
not part of the original motivation to consider this problem.

Investigation of such problems is motivated by questions asked after a result of Aistleitner,
Larcher, and Lewko in [4]. They show:

Theorem (Aistleitner, Larcher, Lewko, [4]). If for a sequence (an)n we have

E (An) = O
(
N3−ε) ,

for some ε > 0, then (an)n has metric PPC.

The natural questions that arose after this result are the following.

Question 1. Is it possible for (an)n with E (AN ) = Ω
(
N3
)
to have metric PPC?

Question 2. Do all (an)n with E (AN ) = o
(
N3
)
have metric PPC?

Both these questions are answered in the negative by Jean Bourgain whose results are
in [4] as well. The aforementioned theorems 3.1 and 3.2 are improving his answers in a
quantitative way. A certain time after Theorem 3.1 was originally proved, Larcher was able
to show, under the same assumption, that NPPC ((an)n) is the whole interval, i.e. there is
no α such that (αan)n has PPC (see [29]).

Theorem 3.2 has been proven by constructing a sequence built up of arithmetic and
geometric progressions while making sure that the desired properties stay intact. Sticking
with the same idea of combining arithmetic and geometric progression but modifying their
lengths and the used moduli of the arithmetic progressions, we are able to prove:

Theorem 4.1. For every ε > 0 there exists a strictly increasing sequence (an)n of positive
integers which has the metric pair correlation property, and whose additive energy satisfies

E (AN )� N3

(logN)3/4+ε
.

Together with Theorem 3.2 this gives a negative answer to a fundamental question posed
by Bloom, Chow, Gafni, and Walker in [9]. They ask if there is a “switching” threshold.
This means in terms of additive energy, for a sequence to always having PPC below and
never having it above that threshold. In this range the conjectured threshold would have
been essentially the one given by Theorem 3.2. These results show that there is a sort of
continuum where it cannot only be based on the order of the additive energy.
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1.3 Diophantine Approximation and Continued Fractions

Diophantine approximation was first studied in the 18th century. One is interested in how
good any real number could be approximated by rationals in a certain sense. Dirichlet’s well-
known result about upper bounds for these approximation was one of the starting points
for a later popular field of studies in a lot of different branches of math, asking questions of
a similar type, such as in analytic and algebraic number theory, fractal geometry, ergodic
theory as well as having practical applications.

Dirichlet’s approximation theorem. For any α ∈ [0, 1] \ Q and N ∈ N there exists a
pair (p, q) ∈ Z2 with 1 ≤ q ≤ N such that

|qα− p| < 1

N
.

Dirichlet proved this as an easy consequence of the pigeonhole principle which also became
quite popular thanks to this result.

A result that follows immediately by Dirichlet’s theorem is that there are infinitely many
coprime p, q ∈ N such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

About a century later, it was shown in a breakthrough paper that the 2 in the exponent is op-
timal for algebraic α and cannot be bigger if one wants to find infinitely many solutions. The
corresponding theorem is called Roth’s theorem, sometimes also Thue-Siegel-Roth theorem.

In the first half of the 20th century Khintchine proved a generalization of Dirichlet’s
approximation theorem which shows a certain similarity to Theorem 3.2.

Khintchine’s theorem. Let ψ : N → R be a non-negative, non-increasing function. Then
for almost all α ∈ [0, 1] there are infinitely many p, q ∈ N such that∣∣∣∣α− p

q

∣∣∣∣ < ψ (q)

q

if and only if ∑
n≥1

ψ (n)

diverges.

Choosing ψ (q) = 1
q we obtain Dirichlet’s approximation theorem again.

It is noteworthy to mention that it is important that ψ is non-increasing and not just
converging to 0 as n → ∞. Otherwise there is a counterexample, which can be found in
[21]. There were a lot of attempts to loosen the condition of ψ being non-increasing. These
attempts led to a very famous conjecture. Let ϕ be Euler’s totient function.

Duffin–Schaeffer conjecture. Let ψ : N→ R be a non-negative function. Then for almost
all α ∈ [0, 1] there are infinitely many coprime p, q ∈ N such that∣∣∣∣α− p

q

∣∣∣∣ < ψ (q)

q
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if and only if ∑
n≥1

ψ (n)
ϕ (n)

n

diverges.

This problem remains unsolved until today. The main result of Chapter 5 is a slightly
weaker version of the Duffin–Schaeffer conjecture.

Theorem 5.1. Let ψ : N → R non-negative function. Then for almost all α ∈ [0, 1] there
are infinitely many coprime p, q ∈ N such that∣∣∣∣α− p

q

∣∣∣∣ < ψ (q)

q

if there is some ε > 0 such that ∑
n≥1

ψ(n)
ϕ(n)

n(log n)ε

diverges.

For proving this theorem a result due to Gallagher is utterly important:

Gallagher’s zero-one law. Let ψ : N → R non-negative function. Then for either almost
all α ∈ [0, 1] or almost no α ∈ [0, 1] there are infinitely many coprime p, q ∈ N such that∣∣∣∣α− p

q

∣∣∣∣ < ψ (q) .

On the other hand it is well-known that good approximations of any real number α can
be obtained by studying the convergents in its continued fraction expansion. Every α ∈ [0, 1]
can be written as a continued fraction, namely

α =
1

α1 + 1
α2+ 1

...

,

with (αn)n ⊆ N, whereas (αn)n can be either finite or infinite. This fraction is finite if and
only if α ∈ Q. Usually, the continued fraction for α ∈ R \Q is denoted by

α = [α1, α2, . . .]

and for α ∈ Q by
α = [α1, α2, . . . , αn] .

For α = [α1, α2, . . .] and n ∈ N we call [α1, α2, . . . , αn] = pn
qn

the n-th convergent with
pn, qn ∈ N. These convergents are good approximations to α. The following results on
continued fractions will be important in Chapter 4.
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Legendre’s theorem. If a/b is a fraction with∣∣∣α− a

b

∣∣∣ < 1

2b2
,

then a/b is a convergent to α.

Borel–Bernstein theorem. Let B := (bn)n be a sequence of (strictly) positive real numbers,
and consider the series ∑

n≥1

1

bn
. (?)

If VB ⊂ [0, 1] denotes the set of numbers α = [α1, α2, . . .] satisfying αn ≤ bn for all sufficiently
large n ≥ 1, then

λ (VB) =

{
1 if (?) converges,
0 if (?) diverges.

1.4 Results from Probability Theory and Number Theory

An often used result in probability theory is the Borel–Cantelli lemma. We want to state it
in a version in terms of Lebesgue measurable sets.

Borel–Cantelli lemma. Let (An)n be a sequence of Lebesgue measurable sets in [0, 1] sat-
isfying ∑

n≥1

λ (An) =∞.

Then
λ

(
lim sup
n→∞

An

)
= 1.

We will need a version of this lemma due to Erdős, and Rényi which will play a crucial
role in proofs of Chapter 3 and Chapter 5.

Lemma 3.4, Lemma 5.1 (Erdős–Rényi, [21]). Let (An)n be a sequence of Lebesgue mea-
surable sets in [0, 1] satisfying ∑

n≥1

λ (An) =∞.

Then,

λ

(
lim sup
n→∞

An

)
≥ lim sup

N→∞

(∑
n≤N λ (An)

)2∑
m,n≤N λ (An ∩Am)

.

Furthermore we need one of Mertens’ theorems giving information on the distribution of
primes. More precisely, Mertens’ second theorem will be applied in Chapter 5 several times.

10



Mertens’ second theorem. It holds

lim
n→∞

∑
p≤n

1

p
− log log n−M

 = 0,

where p ≤ n means all primes smaller than n and M is the Meissel-Mertens constant. In
particular it holds that ∑

p≤n

1

p
� log logn.

The above list of results used is not exhaustive and mentions only the most important
results used in the field of metric number theory and this work. For example in Chapter 2
some knowledge about quadratic forms, basic linear algebra, the Dirchlet and Fejér Kernel as
well as in Chapter 3 and Chapter 5 some knowledge about GCD sums and Fourier analysis
will be used.

To complete the preface it follows a summary of all the original papers containing the
results presented.

• Chapter 2: Published in Journal of Number Theory ([3]), joint work with Christoph
Aistleitner, and Florian Pausinger.

• Chapter 3: Published in Monatshefte für Mathematik ([28]), joint work with Niclas
Technau.

• Chapter 4: Submitted, joint work with Christoph Aistleitner, and Niclas Technau.
Available at arXiv:1802.02659.

• Chapter 5: Submitted, joint work with Christoph Aistleitner, Marc Munsch, Niclas
Technau, and Agamemnon Zafeiropoulos. Available at arXiv:1803.05703.
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Chapter 2

Pair Correlations and
Equidistribution

Let (xn)n be a sequence of real numbers. We say that this sequence is equidistributed or
uniformly distributed modulo one if asymptotically the relative number of fractional parts
of elements of the sequence falling into a certain subinterval is proportional to the length of
this subinterval. More precisely, we require that

lim
N→∞

1

N
#
{

1 ≤ n ≤ N : 〈xn〉 ∈ [a, b]
}

= b− a

for all 0 ≤ a ≤ b ≤ 1, where 〈·〉 denotes the fractional part. This notion was introduced in the
early twentieth century, and received widespread attention after the publication of Hermann
Weyl’s seminal paper Über die Gleichverteilung von Zahlen mod. Eins in 1916 [46]. Among
the most prominent results in the field are the facts that the sequences (nα)n and (n2α)n
are equidistributed whenever α 6∈ Q, and the fact that for any distinct integers n1, n2, . . .
the sequence (nkα)k≥1 is equidistributed for almost all α. All of these results were already
known to Weyl, and can be established relatively easily using the famous Weyl criterion,
which links equidistribution theory with the theory of exponential sums. For more back-
ground on uniform distribution theory, see the monographs [15, 25]. We note that when
(Xn)n is a sequence of independent, identically distributed (i.i.d.) random variables having
uniform distribution on [0, 1], then by the strong law of large numbers this sequence is almost
surely equidistributed. Consequently, in a very vague sense equidistribution can be seen as
an indication of “pseudorandom” behaviour of a deterministic sequence.

The investigation of pair correlations can also be traced back to the beginning of the
twentieth century, when such quantities appeared in the context of statistical mechanics. In
our setting, when (xn)n are real numbers in the unit interval, we define a function R : R≥0×
N 7→ R≥0 ∪ {∞} by

R(s,N) =
1

N
#
{

1 ≤ m,n ≤ N, m 6= n : ‖xm − xn‖ ≤
s

N

}
, (2.1)

and set
R(s) = lim

N→∞
R(s,N),
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provided that such a limit exists; here s ≥ 0 is a real number, and ‖·‖ denotes the distance to
the nearest integer. The function R(s,N) counts the number of pairs (xm, xn), 1 ≤ m,n ≤
N, m 6= n, of points which are within distance at most s/N of each other (in the sense of
the distance on the torus). If R(s) = 2s for all s ≥ 0, then we say that the asymptotic
distribution of the pair correlations of the sequence is Poissonian. Again, one can show that
an i.i.d. random sequence (sampled from the uniform distribution on [0, 1]) has this property,
almost surely. Questions concerning the distribution of pair correlations of sequences such
as (〈nα〉)n or (

〈
n2α

〉
)n are linked with statistical properties of the distribution of the energy

spectra of certain quantum systems, and thus play a role for the Berry–Tabor conjecture [8].
See [32, 37] for more information on this connection. It turns out that unlike the situation
in the case of equidistribution, there is no value of α for which the sequence (〈nα〉)n has
Poissonian pair correlations, and the question whether the pair correlations of the sequence
(
〈
n2α

〉
)n are Poissonian or not depends on delicate number-theoretic properties of α, in

particular on properties concerning Diophantine approximation and the continued fraction
expansion of α. Here many problems are still open, see [24, 38]. Furthermore, for (nk)k≥1

being distinct integers the question whether (〈nkα〉)k≥1 has Poissonian pair correlations for
almost all α or not depends on certain number-theoretic properties of (nk)k≥1, in particular
on the number of possible ways to represent integers as a difference of elements of this se-
quence; see [4].

It is remarkable that (to the best of our knowledge) the relation between these two notions
(being equidistributed, and having Poissonian pair correlations) has never been clarified, a
fact which came to our attention by a question asked by Arias de Reyna [5] in a slightly
different, but related context (we will repeat this question at the end of the present section).
As a starting observation, we note that in a probabilistic sense Poissonian pair correlations
actually require uniform distribution. More precisely, assume that (Xn)n are i.i.d. random
variables, which for simplicity we assume to have a density g on [0, 1]. Then we have

E
(

1

N
#
{

1 ≤ m,n ≤ N, m 6= n : ‖Xm −Xn‖ ≤
s

N

})
≈ 1

N
N2

∫ 1

0
g(x)

∫ x+ s
N

x− s
N

g(y) dy︸ ︷︷ ︸
≈ 2s
N
g(x)

dx

≈ 2s

∫ 1

0
g(x)2 dx,

which can be turned into a rigorous argument to show that almost surely

R(s) = 2s

∫ 1

0
g(x)2 dx, s > 0, (2.2)

in this case (and R(s) =∞ for all s > 0, almost surely, in the case when the distribution of
the Xn is not absolutely continuous with respect to the Lebesgue measure). Now we clearly
have

∫ 1
0 g(x)2 dx = 1 if and only if g ≡ 1, which means that g is the density of the uniform

distribution. Thus Poissonian pair correlations require uniform distribution in a probabilistic
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sense; however, it is a priori by no means clear that a similar relation also holds for the case
of deterministic sequences (xn)n. Our Theorem 2.1 below shows that this actually is the
case.

Theorem 2.1. Let (xn)n be a sequence of real numbers in [0, 1], and assume that the dis-
tribution of its pair correlation statistic is asymptotically Poissonian. Then the sequence is
equidistributed.

There also is a quantitative “density” version of the theorem, which has a resemblance
of (2.2), and which we state as Theorem 2.2 below.

Theorem 2.2. Let (xn)n be a sequence of real numbers in [0, 1]. Assume that it has an
asymptotic distribution function G on [0, 1], i.e., that there is a function G such that

G(x) = lim
N→∞

1

N
#
{

1 ≤ n ≤ N : xn ∈ [0, x]
}
, x ∈ [0, 1].

Assume also that there is a function F : [0,∞) 7→ [0,∞] such that

R(s) = lim
N→∞

1

N
#
{

1 ≤ m,n ≤ N, m 6= n : ‖xm − xn‖ ≤
s

N

}
, s > 0.

Then the following hold.

• If G is not absolutely continuous, then R(s) =∞ for all s > 0.

• If G is absolutely continuous, then, writing g for the density function of the correspond-
ing measure, we have

lim sup
s→∞

R(s)

2s
≥
∫ 1

0
g(x)2 dx. (2.3)

We believe that Theorem 2.1 is quite remarkable; actually, we initially set out to prove
its opposite, namely that a sequence which has Poissonian pair correlations does not have
to be equidistributed. This seemed natural to us since equidistribution is controlled by
the “large-scale” behaviour, while pair correlations are determined by “fine-scale” behaviour.
Only after some time we realised why it is not possible to construct a non-equidistributed
sequence which has Poissonian pair correlations; roughly speaking, the reason is that regions
where too many points are situated contribute to the pair correlation function proportional
to the square of the local density, and regions with fewer elements cannot compensate this
larger contribution — this is exactly what (2.2) and (2.3) also tell us.

As noted above, there is a characterisation of equidistribution in terms of exponential
sums called Weyl’s criterion. In a similar way one could characterise the asymptotic pair
correlation function by exponential sums, and then assuming Poissonian pair correlations
one could try to control the exponential sums in Weyl’s criterion. However, we have not
been able to do this; the problem is of course that the pair correlations are determined by
“fine” properties at the scale of 1/N , while equidistribution is a “global” property on full scale
— in other words, the trigonometric functions which determine the distribution of the pair
correlations have frequencies of order N , while equidistribution is determined by trigono-
metric functions with constant frequencies. Instead of following such an approach, our proof
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of Theorem 2.1 is based on estimating the pair correlation function by a certain quadratic
form, which is attached to a so-called circulant matrix. We can calculate the eigenvalues and
eigenvectors of this matrix, and after averaging over different values of s reduce the problem
to the fact that the Fejér kernel is a non-negative kernel.

Finally we return to the question of Arias de Reyna, which was mentioned above. Elliott
and Hlawka independently proved that the imaginary parts (γn)n of the non-trivial zeros of
the Riemann zeta function are equidistributed. However, the proof of this result is simplified
by the fact that the zeros of the zeta function are relatively dense; more precisely, the num-
ber of zeros up to height T is roughly T

2π log
(
T
2π

)
− T

2π . Thus to get a statement about the
pseudorandomness of these zeros it is more interesting to consider the sequence of imaginary
parts of zeros after normalising them to have average distance 1; that is, instead of investi-
gating the equidistribution of the sequence (γn)n itself one asks for the equidistribution of
the normalised sequence (xn)n =

(γn
2π log

( γn
2πe

))
n
. This seems to be a very difficult problem;

see [5] for the current state of research in this direction. On the other hand, the famous
Montgomery pair correlations conjecture predicts a certain asymptotic distribution R for the
pair correlations between elements of this normalised sequence (xn)n. For the statement of
this conjecture see [34]; we only mention that the distribution is not the same as in the case
of a random sequence, but coincides with a distribution that also appears as the correla-
tion function of eigenvalues of random Hermitian matrices and shows a certain “repulsion”
phenomenon. Arias de Reyna asked whether Montgomery’s pair correlation conjecture is
compatible with equidistribution of the normalised zeros.

Note that the setting of this question is different from our setting; while in our setting
the whole sequence is contained in [0, 1] and the average spacing of the first N points is 1/N ,
in the setting of Arias de Reyna’s question the equidistribution property is requested for
the reduction of the sequence (xn)n modulo one, while the pair correlations are calculated
for the increasing sequence (xn)n itself, for which the average spacing between consecutive
elements is 1 in the limit. Thus the results from the present paper cannot be applied to
this setting. A general form of Arias de Reyna’s question is: Let (xn) be an increasing
sequence with average spacing 1, that is, xn/n→ 1. Assume that (xn)n asymptotically has
the pair correlation distribution R from Montgomery’s conjecture. Is it possible that (xn)n
is equidistributed? Is it possible that (xn)n is not equidistributed? It is known that there
exists a random process whose pair correlation function is R (see [26, 27]), and one should be
able to show that such a random process (or a further randomization of it) is equidistributed
almost surely. So the answer to the first question is “yes”. The answer to the second question
should be “yes” as well, but we have not been able to construct an example.

Remark added during the revision stage: Simultaneously and independently, Grepstad
and Larcher [20] also gave a proof of the result stated as Theorem 2.1 in this paper. They used
a more elementary argument, and also obtained quantitative results which relate the speed
of convergence of the distribution of pair correlations to the limit function, and the speed
of convergence towards equidistribution of the empirical distribution of the point set (the
so-called discrepancy). Shortly after, Steinerberger [41] provided a more general framework
for these results, and established a class of tests which allow to deduce equidistribution from
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the convergence of normalised sums
∑

m,n f(xm − xn), where f are for example Jacobi θ-
functions or Gaussians. His results also apply to sequences on general compact manifolds,
where the role of the test functions f is played by the corresponding heat kernel.

2.1 Preliminaries

Throughout this section, we will use the following notation. Assume that x1, . . . , xN are
given. LetR(s,N) be defined as in (2.1). We partition the unit interval [0, 1) into subintervals
I1, . . . , IM , where Im = [m/M, (m+ 1)/M), and we set

ym = #
{

1 ≤ n ≤ N : xn ∈ Im
}
.

Then trivially we have
M∑
m=1

ym = N.

For notational convenience, we assume that the sequence (ym)1≤m≤M and the partition
I1, . . . , IM are extended periodically; in other words, we set

ym = y(m mod M), and Im = I(m mod M), m ∈ Z.

Let s ≥ 1 be an integer. We set

HN,M (s) =
M∑
m=1

∑
−s+1≤`≤s−1

ymym+`.

Then by construction we have

HN,M (s) =

M∑
m=1

∑
n∈{1,...,N}: xn∈Im

#

{
1 ≤ k ≤ N : xk ∈

s−1⋃
`=−s+1

Im+`

}

≤
N∑
n=1

#
{

1 ≤ k ≤ N : ‖xk − xn‖ ≤
s

M

}
=

(
N∑
n=1

#
{

1 ≤ k ≤ N, n 6= k : ‖xk − xn‖ ≤
s

M

})
+N

= NR(s,N)

(
sN

M

)
+N. (2.4)

Thus a lower bound for HN,M implies a lower bound for R(s,N).

We have the following lemma.

Lemma 2.1. Let y1, . . . , yM be non-negative real numbers whose sum is N , assume that
(ym)1≤m≤M is extended periodically as above, and let HN,M be defined as above. Let S ≥ 1
be an integer for which 2S < M . Then

1

S

S∑
s=1

HN,M (s) ≥ SN2

M
.
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Proof. The sum
M∑
m=1

∑
−s+1≤`≤s−1

ymym+`

in the definition of HN,M is a quadratic form which is attached to the matrix

A(s) =
(
a

(s)
ij

)
1≤i,j≤M

=

{
1 if dist(i− j) ≤ s− 1,
0 otherwise,

where dist is the periodic distance such that dist(i− j) ≤ s− 1 whenever

i− j ∈ (−∞,−M + s− 1] ∪ [−s+ 1, s− 1] ∪ [M − s+ 1,∞).

Thus A(s) is a band matrix which also has non-zero entries in its right upper and left lower
corner. This matrix A(s) is symmetric, and it is of a form which is called circulant. Generally,
a circulant matrix is a matrix of the form

c0 c1 c2 . . . cM−1

cM−1 c0 c1 . . . cM−2

cM−2 cM−1 c0
. . . cM−3

...
. . . . . .

...
c1 . . . cM−1 c0

 ,

where each row is obtained by a cyclic shift of the previous row. We recall some properties
of such matrices; for a reference see for example [19, Chapter 3]. The eigenvectors of such a
matrix are

vm =
(

1, ωm, ω2m, . . . , ω(M−1)m
)
, m = 0, . . . ,M − 1, (2.5)

where ω = e
2πi
M . Note that these eigenvectors are pairwise orthogonal, and that they are

independent of the coefficients of the matrix (they just depend on the fact that the matrix
is circulant). The eigenvalue λm to the eigenvector vm is given by

λm =

M−1∑
`=0

c`ω
m. (2.6)

We have already noted that our matrix A(s) is symmetric, which implies that all its
eigenvalues are real. Furthermore, if we use the formula (2.6) to calculate the eigenvalues of
A(s), we obtain

λ(s)
m =

s−1∑
`=−s+1

ωm =
sin
(

(2s−1)πm
M

)
sin
(
πm
M

) , m 6= 0,

which is the (s−1)-th order Dirichlet kernel Ds−1 (with period 1 rather than the more com-
mon period 2π), evaluated at positionm/M . Note that the largest eigenvalue is λ(s)

0 = 2s−1.
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Since the eigenvectors of A(s) form an orthogonal basis, we can express our vector
(y1, . . . , yM ) in this basis. We write

(y1, . . . , yM ) =

M−1∑
m=0

εmvm

for appropriate coefficients (εm)1≤m≤M . Note that we have y1 + · · · + yM = N , which can
be rewritten as (y1, . . . , yM )v0 = N ; thus we must have ε0 = N/M (since the eigenvectors
are orthogonal). Furthermore, we have

HN,M (s) =

(
M−1∑
m=0

εmvm

)T
A(s)

(
M−1∑
m=0

εmvm

)

=
M−1∑
m=0

λ(s)
m ε2

m‖vm‖22

= M
M−1∑
m=0

λ(s)
m ε2

m, (2.7)

again by orthogonality. However, from this we cannot deduce that HN,M (s) ≥ Mλ
(s)
0 ε2

0 =
(2s−1)N2/M , since (in general) some of the eigenvalues are negative.1 To solve this problem
we will make a transition from the Dirichlet kernel to the Fejér kernel, which is non-negative.

Figure 2.1: Fifth order Dirichlet kernel D5 (gray line), evaluated at positions m/40, 0 ≤
m ≤ 39 (black dots). The m-th eigenvalue λ(6)

m of A(6) equals D5(m/40); note that some of
the eigenvalues are negative.

We repeat that the eigenvectors of A(s) depend on M , but not on s. Let S ≥ 1 be an
integer and consider

A(Σ) =
1

S

S∑
s=1

A(s),

1However, if s = 1 then the matrix A(s) is the unit matrix, all eigenvalues are 1, and we have HN,M (s) ≥
N2/M ; this fact will be used in the proof of Theorem 2.2.
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where we assume that 2S < M (to retain the structure of the matrix). Then clearly the
eigenvectors of this matrix are also given by v0, . . . , vM−1, and the corresponding eigenvalues
are

λ(Σ)
m =

1

S

S∑
s=1

λ(s)
m =

1

S

S∑
s=1

s−1∑
`=−s+1

ωm, 0 ≤ m ≤M − 1.

Now λ
(Σ)
m can be identified as the Fejér kernel of order S − 1 (with period 1 instead of 2π),

evaluated at position m/M . It is well-known that the Fejér kernel is non-negative, so we
have

λ(Σ)
m ≥ 0, m = 0, . . . ,M − 1, (2.8)

and we also have

λ
(Σ)
0 =

1

S

S∑
s=1

(2s− 1) = S.

Now using again the considerations which led to (2.7) we can show that

1

S

S∑
s=1

HN,M (s) ≥M
M−1∑
m=0

λ(Σ)
m ε2

m ≥Mλ
(Σ)
0 ε2

0 = SN2/M,

where (2.8) played a crucial role. This proves the lemma.

Figure 2.2: Fifth order Fejér kernel σ5 (gray line), evaluated at positions m/40, 0 ≤ m ≤
39 (black dots). The m-th eigenvalue of A(Σ) for S = 6 equals σ5(m/40); note that all
eigenvalues are non-negative.

2.2 Proof of Theorem 2.1

Let (xn)n be a sequence of real numbers in [0, 1], and assume that it is not equidistributed.
Thus there exists an a ∈ (0, 1) for which

1

N

N∑
n=1

1[0,a)(xn) 6→ a as N →∞
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(here, and in the sequel, 1B denotes the indicator function of a set B). However, for this
value of a by the Bolzano–Weierstraß theorem there exists a subsequence (Nr)r≥1 of N for
which a limit exists; that is, there exists a number b 6= a such that

lim
r→∞

1

Nr

Nr∑
n=1

1[0,a)(xn) = b. (2.9)

Let ε > 0 be given, and assume that ε is “small”. Choose an integer S (which is “large”).
Let r ≥ 1 be given, let Nr be from the subsequence in the previous paragraph, and consider
the points x1, . . . , xNr . Let E denote the union of the sets[

0,
2S

Nr

]
∪
[
a− 2S

Nr
, a+

2S

Nr

]
∪
[
1− 2S

Nr
, 1

]
.

Furthermore, we set B1 = [0, a]\E and B2 = [a, 1]\E .

First consider the case that # {1 ≤ n ≤ Nr : xn ∈ E} ≥ εNr. Then by the pigeon hole
principle there exists an interval of length at most 1/Nr in E which contains at least εNr/(8S)
elements of {x1, . . . , xNr}. All of these points are within distance 1/Nr of each other, which
implies that

NrFNr(1) ≥
(
εNr

8S

)2

−Nr.

If this inequality holds for infinitely many r, then

lim sup
r→∞

FNr(1) =∞,

which implies that the pair correlations distribution cannot be asymptotically Poissonian.

Thus we may assume that # {1 ≤ n ≤ N : xn ∈ E} < εNr for all elements of the subse-
quence (Nr)r≥1. Then [0, 1]\E = B1∪B2 contains at least (1−ε)Nr elements of {x1, . . . , xNr}.
Consequently, if r is sufficiently large, by (2.9) we have

#{1 ≤ n ≤ Nr : xn ∈ B1} ≥ (b− 2ε)Nr,

and
#{1 ≤ n ≤ Nr : xn ∈ B2} ≥ ((1− b)− 2ε)Nr.

We assume that r is so large that we can find positive integers M1,M2 for which a/M1 ≈
(1− a)/M2 ≈ 1

Nr
; more precisely, we demand that

a

M1
∈
[

1− ε
Nr

,
1

Nr

]
,

1− a
M2

∈
[

1− ε
Nr

,
1

Nr

]
. (2.10)

We partition [0, a) and [a, 1) into M1 and M2 disjoint subintervals of equal length, respec-
tively, and write y1, . . . , yM1 and z1, . . . , zM2 , respectively, for the number of elements of
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{x1, . . . , xNr} ∩ ([0, 1]\E) contained in each of these subintervals (we assume that the subin-
tervals are sorted in the “natural” order from left to right). Next, for s ∈ {1, . . . , S} we
define

H∗M1
(s) =

M1∑
m=1

∑
−s+1≤`≤s−1

ymym+`

and

H∗M2
(s) =

M2∑
m=1

∑
−s+1≤`≤s−1

zmzm+`.

By construction,
∑M1

m=1 ym ≥ (b − 2ε)Nr and
∑M2

m=1 zm ≥ ((1 − b) − 2ε)Nr. Also by con-
struction the cyclic extension is not necessary here, provided that r is sufficiently large; by
excluding all the points in E we have y1 = · · · = yS = 0 and yM1−S+1 = · · · = yM1 = 0, and
the same holds for the zm’s.

Then by Lemma 2.1 and by our choice of M1,M2 we have

1

S

S∑
s=1

H∗M1
(s) ≥ S((b− 2ε)Nr)

2

M1
≥ S(b− 2ε)2Nr(1− ε)

a
, (2.11)

and
1

S

S∑
s=1

H∗M2
(s) ≥ S((1− b− 2ε)Nr)

2

M2
≥ S(1− b− 2ε)2Nr(1− ε)

1− a
. (2.12)

As in the calculation leading to (2.4) we can obtain a lower bound for the pair correlation
function FNr from the lower bounds for H∗M1

and H∗M2
. More precisely, we obtain

NrFNr (s) +Nr ≥ H∗M1
(s) +H∗M2

(s),

and accordingly, by (2.11) and (2.12), we have

1

S

S∑
s=1

(NrFNr(s) +Nr)

≥ (1− ε)SNr

(
(b− ε)2

a
+

(1− b− ε)2

1− a

)
. (2.13)

Now note that for 0 ≤ a, b ≤ 1 we can only have b2/a+(1−b)2/(1−a) = 1 if a = b; however,
this is ruled out by assumption. For all other pairs (a, b) we have b2/a+(1− b)2/(1−a) > 1,
and thus (2.13) implies that

1

S

S∑
s=1

NrFNr(s) ≥ Nr (S(1 + 2cε)− 1)

for a positive constant cε depending only on ε, provided that ε is sufficiently small. This
implies

1

S

S∑
s=1

FNr(s) ≥ S(1 + 2cε)− 1 ≥ S(1 + cε)

(
1 +

1

S

)
, (2.14)
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where the last inequality holds under the assumption that S is sufficiently large. Conse-
quently there exists an s ∈ {1, . . . , S} such that

FNr(s) ≥ (1 + cε)2s, (2.15)

since otherwise (2.14) is impossible.

For every sufficiently large Nr in the subsequence in (2.9) such an s ∈ {1, . . . , S} exists;
accordingly, there is an s such that for infinitely many r we have (2.15). Thus for this s we
have

lim sup
r→∞

FNr(s)

2s
≥ (1 + cε) > 1,

which proves the theorem.

2.3 Proof of Theorem 2.2

First assume that the measure µG defined by the asymptotic distribution function G is
not absolutely continuous with respect to the Lebesgue measure. A function which is not
absolutely continuous is not Lipschitz continuous as well. Thus there is an ε > 0 such that
for every (small) δ > 0 there exists an interval I = [a, b] ⊂ [0, 1] such that

λ(I) ≤ δ, but µG(I) ≥ ε,

where λ denotes the Lebesgue measure (that is, the length) of I. The interval I1 = [a −
δ/2, b+ δ/2] must contain at least εN/2 elements of (xn)1≤n≤N for sufficiently large N . Set
I2 = [a− δ, b+ δ], and set M = dλ(I)Nδ−1/2e, split I2 into M subintervals, and denote the
number of elements of the set {x1, . . . , xN} ∩ I1 contained in each of these subintervals by
y1, . . . , yM , respectively. The sets I1 and I2 are constructed in a way to remove the influence
of the cyclic “overlap” in Lemma 2.1; in fact, by construction ym = 0 for all m being close
to either 0 or M . Let N̂ = y1 + · · · + yM , and define HN̂,M (1) = y2

1 + · · · + y2
M . Note

that λ(I2) ≤ 2δ and that N̂ ≥ {x1, . . . , xN} ∩ I1 ≥ εN/2 for sufficiently large N . Applying
Lemma 2.1 and using a rescaled version of (2.4) we have

NR(s,N)
(

4δ1/2
)

+N ≥ NR(s,N)

(
2Nλ(I2)

M

)
+N

≥ HN̂,M (1)

≥ (εN/2)2

M

≥ ε2N

5δ1/2
(2.16)

for sufficiently large N . Recall that by definition R(s,N) is monotonic increasing as a
function of s, and thus by (2.16) we have

R(s,N) (s) ≥ ε2

5δ1/2
− 1 for all s ≥ 4δ1/2,
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for all sufficiently large N . Since ε is fixed and δ can be chosen arbitrarily small, this proves
the theorem when µG is not absolutely continuous.

Now assume that the measure µG defined by G is absolutely continuous with respect to
the Lebesgue measure, and thus has a density g. In the upcoming sequel we will think of
([0, 1],B([0, 1]), λ) as a probability space, and write E for the expected value (of a measurable
real function) with respect to this space. Let R ≥ 1 be an integer. We split the unit
interval into 2R intervals of equal lengths. Let FR denote the σ-field generated by these
intervals. Assume for simplicity that g is bounded on [0, 1]. Then for any of the intervals
I which generate FR the number of elements of (xn)1≤n≤N which are contained in I is
asymptotically proportional to µG(I)N , and we can use arguments similar to those in the
proof of Theorem 2.1 to prove that for given ε > 0 there exist infinitely many values of s
such that for each of these values we have

F (s)

2s
≥

∑
intervals I generating FR

(µG(I))2

2R
− ε

= E
((

E
(
g|FR

))2)− ε,
where E (g|Fk) denotes the conditional expectation of g under the σ-field FR.2 Note that a
direct generalization of the proof of Theorem 2.1 only guarantees the existence of one such
integer s; however, we can use the fact that F is monotonically increasing to show that there
actually must be infinitely many such values of s. The family (FR)R≥1 forms a filtration
whose limit is B([0, 1]), in the sense that B([0, 1]) is the sigma-field generated by

⋃
R≥1FR.

Thus by the convergence theorem for conditional expectations (also known as Lévy’s zero-one
law) we have

lim
R→∞

E
((

E
(
g|FR

))2)
= E

(
g2
)

=

∫ 1

0
g(x)2 dx,

which proves the theorem in the case when g is bounded. Finally, if g is not bounded then
we can apply the argument above to a truncated version gtrunc of g and show that in this
case

lim sup
s→∞

R(s)

2s
≥
∫ 1

0
gtrunc(x)2 dx.

By raising the level where g is truncated this square-integral can be made arbitrarily close to∫ 1
0 g(x)2 dx, or arbitrarily large in case we have

∫ 1
0 g(x)2 dx =∞. This proves the theorem.

2In the proof of Theorem 2.1, the role of the second moment of the conditional expectation function is
played by the expression b2/a+ (1− b)2/(1− a), which appears in line (2.13). Instead of splitting [0, 1] into
two subintervals and applying Lemma 2.1 to these two pieces, as in the proof of Theorem 2.1, we now split
[0, 1] into 2R subintervals and apply the lemma 2R times. For each of these subintervals I the number of
points contained is roughly µG(I)N , and the number M which appears in Lemma 2.1 is chosen as 2−RN .
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Chapter 3

On Exceptional Sets in the Metric
Poissonian Pair Correlations Problem

3.1 Introduction

The theory of uniform distribution modulo 1 dates back, at least, to the seminal paper [46] of
Weyl who showed that for any fixed α ∈ R\Q and integer d ≥ 1 the sequences

(〈
αnd

〉)
n
are

uniformly distributed modulo 1 where 〈x〉 denotes the fractional part of x ∈ R. However, in
recent years various authors [4, 9, 11, 24, 31, 33, 35, 37, 38, 39, 43, 45] have been investigating
a more subtle distribution property of such sequences — namely, whether the asymptotic
distribution of the pair correlations has a property which is called Poissonian, and defined
as follows:

Definition. Let ‖·‖ denote the distance to the nearest integer. A sequence (θn)n in [0, 1]
is said to have (asymptotically) Poissonian pair correlations, for shorthand notation PPC, if
for each s ≥ 0 the pair correlation function1

R2 (s, (θn)n , N) :=
1

N
#
{

1 ≤ i 6= j ≤ N : ‖θi − θj‖ ≤
s

N

}
(3.1)

tends to 2s as N →∞. Moreover, let (an)n denote a strictly increasing sequence of positive
integers. If no confusion can arise, we write

R (s, α,N) := R2 (s, (αan)n , N)

and say that a sequence (an)n has metric Poissonian pair correlations if (αan)n has PPC
for almost all α ∈ [0, 1] where almost all throughout this article is meant with respect to the
Lebesgue measure.

As seen in Chapter 2 seen that if a sequence (θn)n has PPC, then it is uniformly dis-
tributed modulo 1. Yet, the sequences

(〈
αnd

〉)
n
do not have PPC for any α ∈ R if d = 1.

For d ≥ 2, Rudnick and Sarnak [37] proved that
(
nd
)
n
has metric Poissonian pair correlations

(metric PPC). A result of Aistleitner, Larcher, and Lewko [4], who used a Fourier analytic
1The subscript 2 in R2 indicates that relations of second order, i.e. pair correlations, are counted.

24



approach combined with a bound on GCD sums of Bondarenko and Seip [12], uncovered
the connection of the metric PPC property of (an)n with its combinatoric properties. For
stating it, we introduce some notation. Let (an)n denote throughout this article a strictly
increasing sequence of positive integers, and abbreviate the set of the first N elements of
(an)n by AN . Moreover, define the additive energy E (I) of a finite set of integers I via

E (I) := #
{

(a, b, c, d) ∈ I4 : a+ b = c+ d
}
,

and note that (#I)2 ≤ E (I) ≤ (#I)3 where #S denotes the cardinality of a set S. In the
following, let O and o denote the Landau symbols/O-notation, and � or � the Vinogradov
symbols. The dependence of an implied constant in one of these symbols will be indicated
by mentioning this parameter in a subscript.
Now, a main finding of [4] can be stated as the implication that if the truncations AN satisfy

E (AN ) = O
(
N3−ε) (3.2)

for some fixed ε > 0, then (an)n has metric PPC. Roughly speaking, a set I has large
additive energy if and only if it contains a “large” arithmetic progression like structure. In-
deed, if (an)n is a geometric progression or of the form

(
nd
)
n
for d ≥ 2, then (3.2) is satisfied.

Recently, Bloom, Chow, Gafni, Walker relaxed — provided that, roughly speaking, the
density of the sequence does not decay faster than 1/(logN)2 — the power saving bound
(3.2) for detecting the metric PPC property of (an)n significantly:

Theorem A (Bloom, Chow, Gafni, Walker [9]). If there exists an ε > 0 such that

E (AN )�ε
N3

(logN)2+ε and
1

N
# (AN ∩ {1, . . . , N})�ε

1

(logN)2+2ε

hold, then (an)n has metric PPC.

In accordance with probabilistic considerations, cf. [9, Thm. 1.5], the above result could
be seen as a sign of Khintchine-type law underpinning the characterization of the metric PPC
property of (an)n. Indeed, the following basic question about the nature of the connection
between additive energy and the metric PPC property was raised in [9]:

Fundamental Question (Bloom, Chow, Gafni, Walker [9]). Is it true that if E (AN ) ∼
N3ψ (N) for some weakly decreasing function ψ : N → [0, 1], then (an)n has metric PPC if
and only if

∑
N≥1 ψ (N) /N converges?

Remark. This question will be answered in the negative in the following chapter.

Regarding the optimal bound for E (AN ) to ensure the metric PPC property of (an)n,
the following two questions were raised in [4]. For stating those, we use the convention that
f = Ω (g) means for f, g : N → R there is a constant c > 0 such that g (n) > cf (n) holds
for infinitely many n.

Question 1. Is it possible for (an)n with E (AN ) = Ω
(
N3
)
to have metric PPC?

Question 2. Do all (an)n with E (AN ) = o
(
N3
)
have metric PPC?
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Both questions were answered in the negative by Bourgain whose proofs can be found in [4]
as an appendix, without giving an estimate on the measure of the set that was used to
answer Question 1, and without a quantitative bound on E (AN ) appearing in the negation
of Question 2. However, a quantitative analysis, as noted in [45], shows that the sequence
Bourgain constructed for Question 2 satisfies

E (AN ) = Oε

(
N3

(log logN)
1
4

+ε

)
(3.3)

for any fixed ε > 0. Moreover, Nair posed the problem2 whether the sequence of prime
numbers (pn)n, ordered by increasing value, has metric PPC. Recently, Walker [45] answered
this question in the negative by showing that there is a constant c > 0 satisfying that for
almost every α ∈ [0, 1] the inequality R (s, α,N) > c holds for infinitely many N . Thereby
he gave a significantly better bound than (3.3) for the additive energy E (An) for a sequence
(an)n not having metric PPC — since the additive energy of the truncations of (pn)n is
in Θ

(
(logN)−1N3

)
where f = Θ (g), for functions f, g, means that both f = O (g) and

g = O (f) holds.
For a given sequence (an)n, we denote by NPPC ((an)n) the “exceptional” set of all

α ∈ (0, 1) such that (〈αan〉)n does not have PPC.

Theorem B (Bourgain, [4]). Assume E(AN ) = Ω
(
N3
)
, then NPPC ((an)n) has positive

Lebesgue measure.

We prove the following sharpening.

Theorem 3.1. If E(AN ) = Ω
(
N3
)
, then NPPC ((an)n) has full Lebesgue measure.

Some remarks are in order.

Remark. (a) (an)n is called quasi-arithmetic of degree one, cf. [1, Def. 1], if infinitely often
at least a constant proportion of elements of AN is contained in some arithmetic progression
of length � N . Any such sequence obviously satisfies E (AN ) = Ω

(
N3
)
. Theorem 3.1

improves upon a recent result of Aichinger, Aistleitner, and Larcher [1, Thm. 3] who showed
that NPPC ((an)n) has full Lebesgue measure, if (an)n is quasi-arithmetic of degree one.
(b) Recently, Larcher [29, Thm. 1] sharpened this result to NPPC ((an)n) = (0, 1), and sub-
sequently Larcher and Stockinger [30, Thm. 1] extended this to quasi-arithmetic sequences
of any degree d ≥ 1 — which due to Freiman’s theorem (cf. [29, text above Def. 2]) implies
that if E(AN ) = Ω

(
N3
)
, then NPPC ((an)n) = (0, 1).

For stating our second main theorem, we denote by R>x the set of real numbers exceeding
a given x ∈ R.

Theorem 3.2. Let f : R>0 → R>2 be a function increasing monotonically to ∞, and
satisfying f (x) = O

(
x1/3 (log x)−

7/3). Then, there is a strictly increasing sequence (an)n of
positive integers with E(AN ) = Θ

(
N3/f (N)

)
such that if∑

n≥1

1

nf(n)
(3.4)

2This problem was posed at the problem session of the ELAZ conference in 2016.
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diverges, then for Lebesgue almost all α ∈ [0, 1]

lim sup
N→∞

R (s, α,N) =∞ (3.5)

holds for any s > 0; additionally, if (3.4) converges and sup {f (2x) /f (x) : x ≥ x0} is
strictly less than 2 for some x0 > 0, then NPPC ((an)n) has Hausdorff dimension at least
(1 + λ (f))−1 where

λ (f) := lim inf
x→∞

log f (x)

log x

denotes the lower order of infinity of f .

We record an immediate consequence of Theorem 3.2 by using the convention that the
r-folded iterated logarithm is denoted by logr (x), i.e.

logr (x) := logr−1 (log (x))

and log1 (x) := log (x).

Corollary 3.1. Let r be a positive integer. Then, there is a strictly increasing sequence
(an)n of positive integers with

E (AN ) = Θ

(
N3

log (N) log2 (N) . . . logr (N)

)
such that NPPC ((an)n) has full Lebesgue measure. Moreover, for any ε > 0 there is a strictly
increasing sequence (an)n of positive integers with

E (AN ) = Θ

(
(logr (N))−εN3

log (N) log2 (N) . . . logr (N)

)
such that NPPC ((an)n) has full Hausdorff dimension.

The proof of Theorem 3.2 connects the metric PPC property to the notion of optimal
regular systems from Diophantine approximation. It uses, among other things, a Khintchine-
type theorem due to Beresnevich. Furthermore, despite leading to better bounds, the na-
ture of the sequences underpinning Theorem 3.2 is much simpler than the nature of those
sequences previously constructed by Bourgain [4] (who used, inter alia, large deviations in-
equalities from probability theory), or the sequence of prime numbers studied by Walker [45]
(who relied on estimates, derived by the circle-method, on the exceptional set in Goldbach-
like problems).

3.2 First Main Theorem

Let us give an outline of the proof of Theorem 3.1. For doing so, we begin by sketching the
reasoning of Theorem B: As it turns out, except for a set of negligible measure, the counting
function in (3.1) can be written as a function (of α) that admits a non-trivial estimate for
its L1-mean value. The mean value is infinitely often too small on sets whose measure is
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uniformly bounded from below. Thus, there exists a sequence of sets (Ωr)r of α ∈ [0, 1] such
that R (s, α,N) is too small for every α ∈ Ωr for having PPC and Theorem B follows.

Our reasoning for proving Theorem 3.1 is building upon this argument of Bourgain
while we introduce new ideas to construct a sequence of sets (Ωr)r that are “pairwise quasi
independent” - meaning that for every fixed t the relation

λ(Ωr ∩ Ωt) ≤ λ(Ωr)λ(Ωt) + o (1)

holds as r → ∞ where λ is the Lebesgue measure. Roughly speaking, applying a suitable
version of the Borel–Cantelli lemma, combined with a sufficiently careful treatment of the
o (1) term, will then yield Theorem 3.1. However, before proceeding with the details of
the proof we collect in the next paragraph some tools from additive combinatorics that are
needed.

3.2.1 Preliminaries

We start with a well-know result relating, in a quantitative manner, the additive energy of
a set of integers with the existence of a (relatively) dense subset with small difference set
where the difference set B −B := {b− b′ : b, b′ ∈ B} for a set B ⊆ R.

Lemma 3.1 (Balog–Szeméredi–Gowers lemma, [42, Thm 2.29]). Let A ⊆ Z be a finite set
of integers. For any c > 0 there exist c1, c2 > 0 depending only on c such that the following
holds. If E(A) ≥ c (#A)3, then there is a subset B ⊆ A such that

1. #B ≥ c1#A,

2. # (B −B) ≤ c2#A.

Moreover, we recall that for δ > 0 and d ∈ Z the set

B (d, δ) := {α ∈ [0, 1] : ‖dα‖ ≤ δ}

is called Bohr set. The following two simple observations will be useful.

Lemma 3.2. Let B ⊆ Z be a finite set of integers. Then,

λ

({
α ∈ [0, 1] : min

d∈(B−B)\{0}
‖dα‖ < ε

# (B −B)

})
≤ 2ε

for every ε ∈ (0, 1).

Proof. By observing that the set under consideration is contained in⋃
m,n∈B
m 6=n

B

(
m− n, ε

# (B −B)

)
,

and
λ

(
B

(
m− n, ε

# (B −B)

))
=

2ε

# (B −B)
,

the claim follows at once.
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Lemma 3.3. Suppose A is a finite intersection of Bohr sets, and B is a finite union of Bohr
sets. Then, A \B is the union of finitely many intervals.

Furthermore, we shall use the Borel–Cantelli lemma in a version due to Erdős, and Rényi.

Lemma 3.4 (Erdős–Rényi, cf. [21, Lem. 2.3]). Let (An)n be a sequence of Lebesgue mea-
surable sets in [0, 1] satisfying ∑

n≥1

λ (An) =∞.

Then,

λ

(
lim sup
n→∞

An

)
≥ lim sup

N→∞

(∑
n≤N λ (An)

)2∑
m,n≤N λ (An ∩Am)

.

Moreover, let us explain the main steps in the proof of Theorem 3.1. Let

ε := ε (j) :=
1

10j
c2

1

where c1 > 0 is a constant to be specified later-on, and j denotes a positive integer. In the
first part of the argument, we show how a sequence — that is constructed in the second
part of the argument — can be used to deduce Theorem 3.1. For every fixed j, we find a
corresponding s = s(j) and construct inductively a sequence (Ωr)r of exceptional values α
with the following properties:

(i) For all α ∈ Ωr, the pair correlation function admits the upper bound

R (s, α,N) ≤ 2c̃s (3.6)

for some absolute constant c̃ ∈ (0, 1), depending on (an)n only.

(ii) For all integers r > t ≥ 1, the relation

λ (Ωr ∩ Ωt) ≤ λ (Ωr)λ (Ωt) + 2ελ (Ωt) +O
(
r−2
)

(3.7)

holds.

(iii) Each Ωr is the union of finitely many intervals (hence measurable).

(iv) For all r ≥ 1, the measure λ (Ωr) is uniformly bounded from below by

λ (Ωr) ≥
c2

1

8
. (3.8)
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3.2.2 Proof of Theorem 3.1

1. Suppose there is (Ωr)r satisfying (i)–(iv). Then, by using (3.7), we get∑
r,t≤N

λ (Ωr ∩ Ωt) ≤ 2
∑

2≤t≤N

∑
1≤r<t

(λ (Ωr)λ (Ωt)) + 2εN2 +O (N)

≤

∑
t≤N

λ (Ωt)

2

+ 2εN2 +O (N) .

By recalling that Ωr = Ωr (ε) = Ωr (j), we let

Ω(j) := lim sup
r→∞

Ωr.

By using the inequality above in combination with Lemma 3.4 and the bound (3.8), we
obtain that the set Ω(j) has measure at least

lim sup
N→∞

(∑
r≤N λ (Ωr)

)2∑
r,t≤N λ (Ωr ∩ Ωt)

≥ lim sup
N→∞

1

1 + 4εN2

(
∑
r≤N λ(Ωr))

2

≥ lim sup
N→∞

1

1 + 256
c41
ε

=
1

1 + 256
c41
ε
.

Note that due to (3.6), for every α ∈ Ω (j) the sequence (αan)n does not have PPC. Now,
letting j →∞ proves the assertion.

2. For constructing (Ωr)r with the required properties, let c > 0 such that E (AN ) > cN3

for infinitely many integers N . By choosing an appropriate subsequence (Ni)i and omitting
the subscript i for ease of notation, we may suppose that E (AN ) > cN3 holds for every N
occurring in this proof. Moreover, let c1, c2 and BN be as in Lemma 3.1, corresponding to
the c just mentioned. Let

s =
ε

2c2
.

Arguing inductively, while postponing the base step,3 we may assume that there are sets
(Ωr)1≤r<R given that satisfy the properties (i)–(iv) for all distinct integers 1 ≤ r, t < R. Let
N ≥ R. Since, due to Lemma 3.1,

s

N
≤ ε

# (B −B)
,

Lemma 3.2 implies that the set Ωε,N of all α ∈ [0, 1] satisfying ‖(r − t)α‖ < N−1s for some
distinct r, t ∈ BN has measure at most 2ε. Setting

DN := {(r, t) ∈ (AN ×AN ) \ (BN ×BN ) : r 6= t} ,

we get for α /∈ Ωε,N that

R (s, α,N) =
1

N
#
{

(r, t) ∈ DN : ‖(r − t)α‖ < N−1s
}
.

3The base step uses simplified versions of the arguments exploited in the induction step, and will therefore
be postponed.
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Let `R denote the length of the smallest subinterval of Ωr for 1 ≤ r < R, and define C (Ωr)
to be the set of subintervals of Ωr. Note that `R > 0, and max1≤r<R #C (Ωr) < ∞. We
divide [0, 1) into

P :=

⌊
1 + 2`−1

R R2 max
1≤r<R

#C (Ωr)

⌋
parts Pi of equal lengths (where bxc is the integer part of x), i.e.

Pi :=

[
i

P
,
i+ 1

P

)
where i = 0, . . . , P − 1. Let 1X denote the characteristic function of a Borel set X ⊆ [0, 1].
After writing

1

N

∫
Pi

#
{

(r, t) ∈ DN : ‖(r − t)α‖ ≤ N−1s
}
dα =

1

N

∑
(r,t)∈DN

∫
Pi

1[− s
N
, s
N ] (‖(r − t)α‖) dα,

(3.9)

we split the sum into two parts: one part containing differences |r − t| > RkP , and a second
part containing differences |r − t| ≤ RkP where

k :=

⌊
1

log 2
log

8 (4s+ 1)(
c2

1 − 2−1c4
1

)
s

⌋
+ 1.

The Cauchy–Schwarz inequality implies∫
Pi

1[0, sN ] (‖(r − t)α‖) dα ≤
√

1

P

2s

N
.

Since for any x > 0 there are at most 2xN choices of (r, t) ∈ DN such that |r − t| ≤ x, we
obtain

1

N

∑
(r,t)∈DN
|r−t|≤PRk

∫
Pi

1[0, sN ] (‖(r − t)α‖) dα ≤ 2PRk
√

1

P

2s

N

which is ≤ P−1R−k if N is sufficiently large. Moreover, for any |r − t| > PRk we observe
that∫
Pi

1[0, sN ] (‖(r − t)α‖) dα ≤ 2s

N |r − t|
(
#
{
j ≤ |r − t| : j/ |r − t| ∈ Pi

}
+ 1
)
≤ 2s

PN
+

4s

PRkN
.

Also note that #DN ≤ N2 −
(
#BN

)2 ≤ c̃N2 where c̃ := 1− c2
1. Therefore, the mean value

(3.9) of the modified pair correlation counting function on the interval Pi admits the upper
bound

1

N
(#DN )

(
2s

PN
+

4s

PRkN

)
+

1

PRk
≤ 2c̃s

P
+

4s+ 1

PRk
.
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Hence, it follows that the measure of the set ∆N (i) of α ∈ Pi with

1

N
#
{

(r, t) ∈ DN : ‖(r − t)α‖ ≤ N−1s
}
≤ 2

(
1− c2

1

2

)
s (3.10)

admits, by the choice of k, the lower bound

λ (∆N (i)) ≥ 1

P
− 1

P

2c̃s+ (4s+ 1)R−k

2
(

1− c21
2

)
s

≥ 1

P

(
c2

1

2
− c2

1

8

)
. (3.11)

Note that ∆N (i) is the union of finitely many intervals, due to Lemma 3.3. So, we may
take ∆′N (i) ⊂ ∆N (i) being a finite union of intervals such that λ (∆′N (i)) equals the lower
bound in (3.11). Let

ΩR := ΩR (N) := ∆N \ Ωε,N where ∆N :=

P−1⋃
i=0

∆′N (i) .

We are going to show now that ΩR satisfies the properties (i)–(iv). Now, ΩR satisfies property
(iv) with r = R since

λ (ΩR) ≥ λ (∆N )− λ (Ωε,N ) =
c2

1

2
− c2

1

8
− 2ε ≥ c2

1

8
.

Furthermore, ΩR satisfies property (i) by construction and also property (iii) since all sets
involved in the construction of ΩR were a finite union of intervals. Let 1 ≤ r < R, and I be
a subinterval of Ωr. Then,

λ (I ∩∆N ) =
∑

i:Pi∩I 6=∅

λ (Pi ∩ I ∩∆N ) ≤ 2

P
+
∑
i:Pi(I

λ (Pi ∩∆N ) ≤ 2

P
+
∑
i:Pi(I

λ
(
∆′N (i)

)
.

By summing over all subintervals I ∈ C (Ωr), we obtain that

λ (Ωr ∩∆N ) ≤
∑

I∈C(Ωr)

 2

P
+
∑
i:Pi(I

λ
(
∆′N (i)

) ≤ 1

R2
+

∑
I∈C(Ωr)

Pλ (I)
λ (∆N )

P

= λ (Ωr)λ (∆N ) +
1

R2
.

We deduce property (ii) from this estimate and Lemma 3.2 via

λ (Ωr ∩ ΩR) ≤ λ (Ωr ∩∆N )

≤ λ (Ωr) (λ (∆N )− λ (Ωε,N )) +R−2 + λ (Ωr)λ (Ωε,N )

≤ λ (Ωr)λ (ΩR) + 2ελ (Ωr) +R−2.

This concludes the induction step. The only part missing now is the base step of the induc-
tion. For realizing it, let N denote the smallest integer m with E (Am) > cm3. We replace
Pi in (3.9) by [0, 1] to directly derive∫ 1

0

1

N
#
{

(r, t) ∈ DN : ‖(r − t)α‖ ≤ N−1s
}

dα ≤ 2c̃s,
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and conclude that the set Ω′1 of α ∈ [0, 1] satisfying (3.10) has a measure of at least c2
1/2.

Thus, Ω1 := Ω′1 \ ΩN,ε has measure at least as large as the right hand side of (3.8). For
property (3.7), there is nothing to check and that Ω1 is a finite union of intervals follows
from Lemma 3.3 by observing that

Ω′1 =
⋂

d1,...,dbN2c̃sc

(
B
(
d1, N

−1s
)C ∪ . . . ∪B (dbN2c̃sc, N

−1s
)C)

where the intersection runs through any set of bN2c̃sc-tuples of differences di = ri − ti 6= 0
of components of (ri, ti) ∈ DN for i = 1, . . . , bN2c̃sc.

Thus, the proof is complete.

3.3 Second Main Theorem

The sequences (an)n enunciated in Theorem 3.2 are constructed in two steps. In the first step,
we concatenate (finite) blocks, with suitable lengths, of arithmetic progressions to form a set
PA. In the second step, we concatenate (finite) blocks, with suitable lengths, of geometric
progressions to form a set PG and then define an to be the n-th smallest element of PA∪PG.
On the one hand, the arithmetic progression like part PA serves to ensure, due to consider-
ations from metric Diophantine approximation, the divergence property (3.5) on a set with
full measure or controllable Hausdorff dimension; on the other hand, the geometric progres-
sion like part PG lowers the additive energy, as much as it can. For doing so, a geometric
block will appear exactly before and after an arithmetic block, and have much more elements.

For writing the construction precisely down, we introduce some notation. Suppose through-
out this section that f is as in Theorem 3.2. We set P (1)

A to be the empty set while P (1)
G :=

{1, 2}. Suppose P (j−1)
A , P

(j−1)
G for j ≥ 2 are already constructed. Let Cj = 2 max

{
P

(j−1)
G

}
.

Then
P

(j)
A :=

{
Cj + h : 1 ≤ h ≤

⌊(
f(2j)

)−β
2j
⌋}

,

and P (j)
G is defined via

P
(j)
G :=

{
2Cj + 2i : 1 ≤ i ≤

⌊(
f(2j)

)−γ
2j
(
1−

(
f(2j)

)γ−β)⌋}
where 0 < γ < β < 3/4 are parameters4 to be chosen later-on. Letting

PA :=
⋃
j≥1

P
(j)
A , PG :=

⋃
j≥1

P
(j)
G ,

we denote by an the n-th smallest element in PA ∪ PG. For d ∈ Z and finite sets of integers
X,Y , we abbreviate the number of representations of d as a difference of an x ∈ X and a
y ∈ Y by

repX,Y (d) := #{(x, y) ∈ X × Y : x− y = d};
4No particular importance should be attached to requiring β < 3/4, or using “dyadic steps lengths 2j”.

Doing so is for simplifying the technical details only - eventually, it will turn out that β = 2/3 = 2γ is the
optimal choice of parameters in this approach. For proving this to the reader, we leave γ, β undetermined
till the end of this section.
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for later reference, we record here that the additive energy of a set X and the pair correlation
counting function can be written as

E (X) =
∑
d∈Z

(
repX,X (d)

)2
, (3.12)

and
R (s, α,N) =

1

N

∑
d∈Z\{0}

repAN ,AN (d)1[0, sN ] (‖αd‖) . (3.13)

3.3.1 Preliminaries

For determining the order of magnitude of E (AN ), the following considerations are useful.
Since the cardinality P (j)

G ∪ P (j)
A has about exponential growth, it is reasonable to expect

E (AN ) to be of the same order of magnitude as the additive energy of the last block P (J)
G ∪

P
(J)
A that is fully contained in AN — note that J = J (N); i.e. to expect the magnitude of
E
(
P

(J)
G ∪ P (J)

A

)
which is roughly E

(
P

(J)
A

)
. The next proposition verifies this heuristic.

Proposition 3.1. Let (an)n be as in the beginning of Section 3, and f be as in one of the
two assertions in Theorem 3.2. Then, E (AN ) = Θ

(
N3
(
f
(
N
))−3(β−γ)

)
.

For the proof of Proposition 3.1, we need the following technical lemma.

Lemma 3.5. Let Fj := 2j
(
f
(
2j
))−δ, for j ≥ 1 and fixed δ ∈ (0, 1), where f is as in

Proposition 3.1. Then,
∑

i≤j Fi = O
(
Fj
)
and∑

d∈Z

(∑
j,i≤J

rep
P

(j)
G ,P

(i)
A

(d)

)2

= O
(
J622J

)
.

Proof. Suppose that f (x) = O
(
x1/3 (log x)−

7/3) is such that (3.4) diverges. Because∑
j≤J+1

1

f
(
2j
) ≥ ∑

k≤2J

1

kf (k)

diverges as J →∞ and
(
f
(
2j
)
/f
(
2j+1

))
j
is non-decreasing, we conclude that

lim
j→∞

(
f
(
2j
)
/f
(
2j+1

))
= 1.

Therefore, there is an i0 such that the estimate(
f
(
2i
))−1

f
(
2i+h

)
<
(

3/2
)h
δ

holds for any i ≥ i0 and h ∈ N. Hence,

1

Fj

∑
i≤j

Fi ≤ o (1) +
∑

i0≤i≤j
2i−j

(
3

2

)j−i
= O

(
1
)
.

If f is such that (3.4) converges and f (2x) ≤ (2− ε) f (x) for x large enough, then we obtain
by a similar argument that

∑
i≤j Fi is in O

(
Fj
)
. Furthermore, rep

P
(j)
G ,P

(i)
A

(d) = O (i), for

every j ≥ 1, and non-vanishing for O
(
22j
)
values of d which implies the last claim.
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We can now prove the proposition.

Proof of Proposition 3.1. Let N ≥ 1 be large and denote by J = J (N) ≥ 0 the greatest
integer j such that P (j−1)

G ⊆ AN . By exploiting (3.12),

E
(
AN
)
≥ E

(
P

(J−1)
A

)
�
(
#P

(J−1)
A

)3
which is seen to be � f

(
N
))−3(β−γ)N3. Hence, it remains to show that

E
(
AN
)

= O
((
f
(
N
))−3(β−γ)N3

)
.

Note that

E
(
AN
)
≤
∑
d∈Z

(
repATJ ,ATJ

(d)
)2 where TJ := #

⋃
j≤J

(
P

(j)
A ∪ P

(j)
G

)
.

Moreover, repATJ ,ATJ
(d) = S1 (d) + S2 (d) where S2 (d) denotes the mixed sum∑

i,j≤J

(
rep

P
(j)
A ,P

(i)
G

(d) + rep
P

(i)
G ,P

(j)
A

(d)
)
,

and S1 (d) abbreviates ∑
i,j≤J

(
rep

P
(i)
G ,P

(j)
G

(d) + rep
P

(i)
A ,P

(j)
A

(d)
)
.

Using that for any a, b ∈ R the inequality (a+ b)2 ≤ 2
(
a2 + b2

)
holds, we obtain

E
(
AN
)

= O
(∑
d∈Z

(
S1 (d)

)2
+
∑
d∈Z

(
S2 (d)

)2)
.

Lemma 3.5 implies that
∑

d∈Z
(
S2 (d)

)2
= O

(
(logN)6N2

)
due to J = O (logN). Further-

more letting Fj = 2j
(
f
(
2j
))−β , we observe that rep

P
(i)
A ,P

(j)
A

(d) is non-vanishing for at most
4FJ values of d as i, j ≤ J . Since rep

P
(i)
A ,P

(j)
A

(d) ≤ Fmin(i,j) holds, we deduce that

∑
i,j≤J

rep
P

(i)
A ,P

(j)
A

(d) = O
(∑
j≤J

∑
i≤j

Fi

)
= O

(
FJ
)
.

Since rep
P

(i)
G ,P

(j)
G

(d) ≤ 1, as i, j ≤ J , is non-zero for at most O
(
T 2
J

)
= O

(
N2
)
values of d,

we obtain that∑
d∈Z

(
S1 (d)

)2
= O

(
F 3
J + (logN)6N2

)
= O

(
N3
(
f
(
N
))−3(β−γ)

)
Hence, E

(
AN
)

= O
(
N3
(
f
(
N
))−3(β−γ)

)
.

For estimating the measure or the Hausdorff dimension of NPPC ((an)n) from below,
we recall the notion of an optimal regular system. This notion, roughly speaking, describes
sequences of real numbers that are exceptionally well distributed in any subinterval, in a
uniform sense, of a fixed interval.
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Definition. Let J be a bounded real interval, and S = (αi)i a sequence of distinct real
numbers. S is called an optimal regular system in J if there exist constants c1, c2, c3 > 0
— depending on S and J only — such that for any interval I ⊆ J there is an index
Q0 = Q0 (S, I) such that for any Q ≥ Q0 there are indices

c1Q ≤ i1 < i2 < . . . < it ≤ Q (3.14)

satisfying αih ∈ I for h = 1, . . . , t, and

|αih − αi` | ≥
c2

Q
(3.15)

for 1 ≤ h 6= ` ≤ t, and
c3λ (I)Q ≤ t ≤ λ (I)Q. (3.16)

Moreover, we need the following result(s) due to Beresnevich which may be thought of as
a far reaching generalization of the classical Khintchine theorem, and the Jarník–Besicovitch
theorem in Diophantine approximation.

Theorem 3.3 ([13, Thm. 6.1, Thm. 6.2]). Suppose ψ : R>0 → R>0 is a continuous, non-
increasing function, and S =

(
αi
)
i
an optimal regular system in (0, 1). Let KS (ψ) denote

the set of ξ in (0, 1) such that |ξ − αi| < ψ (i) holds for infinitely many i. If∑
n≥1

ψ (n) (3.17)

diverges, then KS (ψ) has full measure.
Conversely, if (3.17) converges, then KS (ψ) has measure zero and the Hausdorff dimension
equals the reciprocal of the lower order of 1

ψ at infinity.

For a rational α = p
q , where p, q ∈ Z, q 6= 0, we denote by H (α) its (naive) height, i.e.

H (α) := max {|p| , |q|}. It is well-known that the set of rational numbers in (0, 1) — first
running through all rationals of height 1 ordered by increasing numerical value, then through
all rationals with height 2 ordered by increasing numerical value, and so on — gives rise to
an optimal regular system in (0, 1). The following lemma says, roughly speaking, that this
assertion remains true for the set of rationals in (0, 1) whose denominators are members of
a special sequence that is not too sparse in the natural numbers, and hand-tailored for our
purposes. The proof can be given by modifying the proof of the classical case, compare [13,
Prop. 5.3]; however, we shall give the details for making this article more self-contained.

Lemma 3.6. Let ϑ : R>0 → R>1 be monotonically increasing to infinity with ϑ (x) = O
(
x1/4
)

and ϑ
(
2j+1

)
/ϑ
(
2j
)
→ 1 as j →∞. For each j ∈ N, we let

Bj :=
2j

f (2j)
√
ϑ (2j)

, bj :=
2

3
Bj .

Let S =
(
αi
)
i
denote a sequence running through all rationals in (0, 1) whose denominators

are in M :=
⋃
j≥1

{
n ∈ N : bj ≤ n ≤ Bj

}
such that i 7→ H

(
αi
)
is non-decreasing. Then, S

is an optimal regular system in (0, 1).
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Proof. Let X ≥ 2. There are strictly less than 2X2 rational numbers in (0, 1) with height
bounded by X. We take J = J (X) to be the largest integer j ≥ 1 such that Bj ≤ X. Then,
for X large enough, there are at least, due to a basic property of Euler’s totient function,

∑
j≤J

∑
bj≤q≤Bj

ϕ (q) ≥
∑
j≤J

(
1

3π2
B2
j +O (Bj logBj)

)
≥ 1

6π2

22J

f2 (2J)ϑ (2J)
+O

(
J2J

)
>

(
X

5π

)2

distinct such rationals in (0, 1) with height not exceeding X. Hence, we obtain
√
i

2
≤ H (αi) ≤

√
25π2 (i+ 1) + 1

for i sufficiently large. Let Q ∈ N, I ⊆ [0, 1] be a non-empty interval, and let F denote the
set of ξ ∈ I satisfying the inequality ‖qξ‖ < Q−1 with some 1 ≤ q ≤ 1

1000Q. Note that F
has measure at most∑

q≤ 1
1000

Q

(
2

qQ
qλ (I) +

2

qQ

)
=

1

500
λ (I) +O

(
logQ

Q

)
<

1

400
λ (I)

for Q ≥ Q0 where Q0 = Q0 (S, I) is sufficiently large. Let
{
pj/qj

}
1≤j≤t be the set of all

rationals pj/qj ∈ (0, 1) with qj ∈M , 1
1000Q < qj < Q that satisfy∣∣∣∣pjqj − pj′

qj′

∣∣∣∣ > 2000

Q2

whenever 1 ≤ j 6= j′ ≤ t. Observe that for J as above with X = Q sufficiently large, it
follows that

{q ∈M : bJ ≤ q ≤ BJ} ⊆
{⌊

Q

1000

⌋
,

⌊
Q

1000

⌋
+ 1, . . . , Q

}
holds and hence, there are at least

1

3π2
B2
J +O (BJ logBJ) >

1

400
Q2

choices of pj/qj ∈ (0, 1) with qj ∈ M and 1
1000Q < qj < Q. Due to λ (I \ F ) > 399

400λ (I), we
conclude

t ≥ 400
Q2

4000

399

400
λ (I) .

Thus, taking c1 := 1/1000, c2 := 2000, and c3 := 399
4000 in (3.14), (3.15) and (3.16), respectively,

S is shown to be an optimal regular system.

Now we can proceed to the proof of Theorem 3.2.
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3.3.2 Proof of Theorem 3.2

We argue in two steps depending on whether or not the series (3.4) converges. Proposition
3.1 implies the announced Θ-bounds on the additive energy of AN , in both cases.

(i) Suppose (3.4) diverges, and fix s > 0. Let ϑ : R>0 → R>1 be monotonically increas-
ing to infinity with ϑ (x) = O

(
x1/4
)
such that

ψ (n) :=
1

nf (n)ϑ (n)
(3.18)

satisfies the divergence condition (3.17). Thus, ϑ
(
2j
)
/ϑ
(
2j−1

)
→ 1 as j →∞, and S = (αi)i

from Lemma 3.6 is an optimal regular system. Furthermore, if bJ ≤ n ≤ BJ , for some integer
J , then, by the properties of ϑ from Lemma 3.6 and the relation

∑
j≤J Fj = O (FJ) from

Lemma 3.5, we conclude that ∑
j≤J−1

∑
bj≤m≤Bj

ϕ (m) = Θ
(
B2
J

)
implies that αi = m/n entails i ≥ cn2 where c = c (f, ϑ) > 0 is a constant. Therefore,
ψ (i) ≤ c−1n−2

(
f
(
cn2
)
ϑ
(
cn2
))−1. The growth assumption on f and ϑ (x) = O

(
x1/4
)
yields

that if j is large enough, then bj ≤ n ≤ Bj implies cn2 > 2j and hence we obtain ψ (i) ≤
c−1n−2

(
f
(
2j
)
ϑ
(
2j
))−1. Combining these considerations, we infer that

nψ (i) = O
(
2−j

(
ϑ
(
2j
))−1/2)

.

Applying Theorem 3.3 with ψ as in (3.18), implies that KS (ψ) has full Lebesgue measure.
Therefore, for any α ∈ KS (ψ) we get

‖nα‖ ≤ n |α− αi| = O
(

2−j
(
ϑ
(
2j
))−1/2

)
(3.19)

for infinitely many i and j = j (i). Now if bj ≤ n ≤ Bj for j sufficiently large and n, α as
in (3.19), then it follows that by taking any integer m ≤

(
f
(
2j
))γ (

ϑ
(
2j
))1/3 that also the

multiples
nm ≤ 2j

(
f
(
2j
))γ−1 (

ϑ
(
2j
))−1/6

satisfy that 1[0,s/Tj ] (‖α(mn)‖) = 1 where Tj = O
(
2j
(
f
(
2j
))−γ) is as in the proof of Propo-

sition 3.1. If additionally γ − 1 ≤ −β holds, then we obtain that

repATj ,ATj (mn) ≥ 2j−1
(
f
(
2j
))−β

holds for j sufficiently large. By (3.13), we obtain

R
(
s, α, Tj

)
≥ C

(
f
(
2j
))2γ−β (

ϑ
(
2j
))1/3

for infinitely many j where C > 0 is some constant. For the optimal choice of the parameters
β, γ > 0, we are therefore led to maximise β − γ where 2γ − β ≥ 0 and γ − 1 ≤ −β have to
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be satisfied. The solution is given if equality in the first inequality occurs, leading to β = 2/3

and γ = 1/3. Hence, (3.5) follows for α ∈ KS (ψ).

(ii) Suppose the series (3.4) converges. We keep the same sequence as in step (i) while
taking ϑ (x) = 1 + log (x), as we may. The arguments of step (i) show that any α ∈ KS (ψ)
satisfies (3.5); now the conclusion is that KS (ψ) has Hausdorff dimension at least equal to
the reciprocal of

lim inf
x→∞

− log (ψ (x))

log x
= 1 + lim inf

x→∞

log f (x)

log x
.

Thus, the proof is complete.

Concluding remarks It should be possible to relax the growth restriction

f (x) = O
(
x

1/3 (log (x))−
7/3)

in Theorem 3.2 on the expense of some additional technical work; as the main objective
in this section was to get as close as possible to the Khintchine-type threshold for making
progress on the Fundamental Question, we have not expended much effort in possible relax-
ations.

We would like to mention an open problem related to this article. It asks about how much
the PPC property is violated for a sequence that has not metric PPC.

Problem. Under which conditions on (an)n is it true that NPPC ((an)n) having full Lebesgue
measure implies that the set of α ∈ [0, 1] such that for all s > 0

lim sup
N→∞

R (s, α,N) =∞

holds also has full Lebesgue measure?
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Chapter 4

There is no Khintchine Threshold for
Metric Pair Correlations

4.1 Introduction

Let x1, . . . , xN be numbers in the unit interval. The distribution of the pair correlations of
these numbers is described by the function

R(s,N) =
1

N
{1 ≤ i 6= j ≤ N : ‖xi − xj‖ ≤ s/N} , s ≥ 0, (4.1)

where ‖ · ‖ denotes the distance to the nearest integer. If for an infinite sequence (xn)n we
have

R(s,N)→ 2s (4.2)

for all s ≥ 0, then we say that the distribution of pair correlations is (asymptotically) Pois-
sonian. Note that a sequence of independent, identically distributed (i.i.d.) random points,
picked from a uniform distribution on [0, 1], almost surely has Poissonian pair correlations.
The term “Poissonian” comes from a similarity with the distribution of the spacings between
points in a Poisson process, which, however, only becomes really meaningful when also con-
sidering higher correlations (triple, quadruple etc.) or so-called level spacings (which are in
general much more difficult to handle than pair correlations).

The interest in such problems goes back to a paper of Berry and Tabor [8], where they gave
a conjectural framework for the distribution of energy spectra of integrable quantum systems
(see [32] for a survey). Their model led to strong mathematical interest in distributional
properties of spacing of sequences such as (nα)n mod 1 (corresponding to the “harmonic
oscillator”) and (n2α)n mod 1 (corresponding to the “boxed oscillator”). The case of (nα)n
is easier to analyse; one can use considerations based on continued fractions to show that
the pair correlations of this sequence cannot be Poissonian for any α, since for some N the
initial segment (α, 2α, . . . , Nα) mod 1 is too regularly spaced. The case of (n2α)n is much
harder and is far from being well-understood. It is conjectured that the pair correlations for
this sequence should be Poissonian, unless α is very well approximable by rationals; however,
there exist only some partial results in this direction (see for example [24, 38, 43]). From the
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metric perspective, the situation is easier: it is known that the pair correlations of (n2α)n
mod 1 are Poissonian for almost all α, in the sense of Lebesgue measure. The same is true if
(n2)n is replaced by (nd)n for some integer d ≥ 3, or by an exponentially growing sequence
(an)n of integers, see [37, 40]. We denote this property by saying that these sequences have
the metric pair correlation property. In a recent paper [4], a connection was established
between the question whether a sequence has the metric pair correlation property, and the
asymptotic order of its so-called additive energy. Let (an)n be a sequence of distinct positive
integers, let AN denote its initial segment a1, . . . , aN , and denote by E(AN ) the additive
energy of AN , which is defined as

E(AN ) = #{n1, n2, n3, n4 ≤ N : an1 + an2 = an3 + an4}. (4.3)

Trivially, the additive energy is always between N2 and N3. Throughout this chapter we
will use the formulation “the order of the additive energy of a sequence”, when more pre-
cisely speaking we mean the order (as a function of N) of the additive energy of the N first
elements of the sequence.

The main results of [4] say that a sequence has the metric pair correlation property if its
additive energy is of order at most N3−ε for some ε > 0, while it does not have the metric
pair correlation property if the additive energy exceeds cN3 for infinitely many N for some
constant c > 0. This fits together very well with the examples from above, since sequences
of the form (nd)n for d ≥ 2 and lacunary sequences are known to have very small additive
energy, while the additive energy of the sequence an = n, n ≥ 1, is of the maximal possible
order.

So the general philosophy is that a sequence has the metric pair correlation property as
soon as its additive energy is slightly below the maximal possible order. However, a precise
threshold is not known. Some results in this direction are:

• The primes do not have the metric pair correlation property, as shown by Walker [45].
The additive energy of the sequence of primes is roughly of order N3

logN .

• There exists a sequence having additive energy of order N3

logN log logN which does not
have the metric pair correlation property, as seen in Chapter 3.

• For every ε > 0 there exists a sequence having additive energy of order N3

logN(log logN)1+ε

which has the metric pair correlation property (unpublished, but not difficult to con-
struct using methods from Chapter 3 or [9]).

These results indicate that there is a sort of transitional behaviour when the additive
energy lies around the “critical” order of roughly N3

logN log logN . The methods used in Chapter
3 and [9] indicate a close connection between this sort of question and problems from metric
Diophantine approximation, where the classical theorem of Khintchine gives a zero-one law
in terms of the convergence/divergence of the series of measures of the target intervals (see
for example [21]). It is tempting to speculate that a similar convergence/divergence criterion
might also exist for the metric theory of pair correlations, where the crucial quantity is
the additive energy of (an)n. This idea was discussed in a recent paper of Bloom, Chow,
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Gafni, and Walker [9], where they noted that there “appears to be reasonable evidence to
speculate a sharp Khintchine-type threshold, that is, to speculate that the metric Poissonian
property should be completely determined by whether or not a certain sum of additive
energies is convergent or divergent”. They raise the following problem, which they call the
“Fundamental Question”:

Is it true that if E (AN ) ∼ N3ψ (N), for some weakly decreasing function ψ :
Z≥1 → [0, 1], then (an)n is metric Poissonian if and only if∑

N≥1

ψ (N) /N (4.4)

converges?

In the present chapter, we show that the answer to the question above is negative, and
that the metric pair correlation property cannot be fully characterised in terms of the additive
energy alone. For this purpose, we construct a sequence (an)n whose additive energy is of
order roughly N3/(logN)3/4, and which does have the metric pair correlation property. More
precisely, we prove the following theorem.

Theorem 4.1. For every ε > 0 there exists a strictly increasing sequence (an)n of positive
integers which has the metric pair correlation property, and whose additive energy satisfies

E (AN )� N3

(logN)3/4+ε
. (4.5)

Note that the additive energy of the sequence from the conclusion of Theorem 4.1 is
significantly larger than the putative threshold, which is rather around N3/ logN . Further-
more, as the examples above showed, the additive energy of a sequence which does not have
the metric pair correlation property can be of asymptotic order N3, but it can also be of
asymptotic order roughly N3/ logN . Thus the metric theory of pair correlations cannot sim-
ply be reduced to a convergence/divergence criterion in terms of the additive energy alone.
Instead, the picture is more complicated and looks as follows:

• If the additive energy is below a certain threshold, then the sequence does have the
metric pair correlation property.

• If the additive energy is above a certain threshold (for infinitely many N), then the
sequence cannot have the metric pair correlation property. (This threshold is different
from the one in the point above.)

• Between these upper and lower thresholds there is a transition zone, where knowing
the additive energy alone is not sufficient to determine the metric pair correlation
behaviour of the sequence. Thus, in this range the metric pair correlation property is
determined by some additional arithmetic properties of the sequence.

We note that while our result says that the metric pair correlation property cannot be
characterised in terms of the additive energy alone, it leaves the problem of finding some
other way of characterising the metric pair correlation property in terms of some arithmetic
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properties of (an)n. It is likely that there is a zero-one law in the metric theory of pair
correlations, but actually even this is not known. Also, our result still leaves questions
concerning the quantitative connection between additive energy and the metric theory of
pair correlations. For example, is it possible that a sequence having additive energy of
order N3/(log logN) also has the metric pair correlation property? In the other direction,
is it possible that the additive energy is of order N3/(logN)2 and the sequence does not
have the metric pair correlation property?1 Closing the gaps in our knowledge in this field
would be very desirable, as phenomena from both additive combinatorics and Diophantine
approximation seem to be at work here.

4.2 Preliminaries

4.2.1 Construction of the Sequence

We will construct our sequence (an)n as the concatenation of successive “blocks”. All these
blocks are either finite arithmetic or finite geometric progressions. The geometric blocks will
contain the majority of the numbers which constitute the final sequence, but they will not be
responsible for making the additive energy of the final sequence large, since geometric pro-
gressions always have small additive energy. The contribution of the geometric blocks to the
distribution of pair correlations will be “random”, in accordance with the well-known heuris-
tics that lacunary systems exhibit properties which are also shown by independent random
systems (see for example [40] for this phenomenon in connection with pair correlations, and
[2] for the wider context). In our context “random” behaviour means Poissonian behaviour of
the pair correlations, so the geometric blocks are responsible that the final sequence is metric
Poissonian. The arithmetic blocks contain only a minority of all the elements of the final
sequence, while being responsible for making the additive energy large. The main task will
be to show that while these arithmetic blocks boost the additive energy, their contribution to
the distribution of pair correlations is asymptotically negligible. To control the contribution
of arithmetic blocks we will use tools from metric Diophantine approximation.

The key point of the construction lies in the fact that the arithmetic blocks which are
used in the construction have different prime numbers as their step sizes.2 The fact that the
step sizes of the arithmetic blocks are prime numbers will play a key role in two parts of the
proof. On the one hand, using the theory of continued fractions at some point we will be led
to counting the number of solutions of a certain equation; the assumption that the step size
is a (large) prime will imply that we only have to count solutions which are a multiple of
that prime, thus effectively reducing the number of solutions. This will allow us to control
the contribution which comes from elements contained within one and the same arithmetic
block. On the other hand, to control the contribution of the interaction of elements from
two different arithmetic blocks, we will use a variance estimate which boils down to counting

1While the present chapter was being refereed as submitted paper, a paper of Bloom andWalker addressing
this question appeared on the arXiv. They proved that there exists an (unspecified) constant C > 1 such
that a sequence has the metric pair correlations property whenever its additive energy is of asymptotic order
at most N3/(logN)C , see [10].

2We will need to use a “recycling process” for the prime moduli, since there are not enough different
primes of the appropriate size available to have a different step size for each arithmetic block.
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the maximal number of solutions of a simple Diophantine equation. Again, the fact that the
moduli are (different) primes will reduce the maximal number of solutions of the equation.
We will add some further comments on the heuristic reasoning behind the proof after first
formulating precisely the way in which our sequence is constructed.

Notation. We fix some ε > 0. Throughout the rest of this chapter we assume w.l.o.g. that
ε is “small”, say ε < 1/100. We will use Landau notation o, O, and Vinogradov symbols
�,�, with their usual meaning in analytic number theory (i.e. f � g meaning that |f |
is bounded by a constant times |g|, for all possible arguments). The symbol f � g means
that f � g as well as f � g. If the implied constant depends on some parameter, we will
indicate the dependence by a corresponding subscript. However, we will not indicate any
dependence on ε, since throughout the proof ε is assumed to be fixed. We write λ for the
Lebesgue measure on R. Finally, we write b·c for the integer part of a real number.

In Lemma 4.1 below we construct the moduli of the arithmetic blocks.

Lemma 4.1. There exist an index j0 ≥ 1 and a sequence (mj)j≥j0 of primes such that

mj � j
1/4, (4.6)

and such that mj 6= mi whenever j − 3 log j < i < j, for all i, j ≥ j0.

Before proving the lemma, we briefly explain its meaning. The numbers mj will be the
moduli of the arithmetic progressions in our construction. The first condition in the lemma
says that these moduli are of asymptotic order roughly j1/4. The second condition guarantees
that the step size of the j-th arithmetic progression is different from the step size of the i-th
arithmetic progression, whenever i is “close” to j. So arithmetic blocks whose indices are
close by can never have the same step size, which will guarantee that there is no undesired
interaction between such blocks (this will play a crucial role in the proof of Lemma 4.7
below). On the other hand, if i and j are not close to each other, then the corresponding
arithmetic blocks are allowed to have the same step size — this is the “recycling process”,
which was mentioned in the preceding footnote, and which is necessary since the step sizes
of the blocks grow more slowly than the indices of the blocks themselves. However, this
will not cause any problems since the block sizes increase very quickly and any interaction
between a block and some other block of much smaller cardinality will always be negligible.

Proof of Lemma 4.1. To define the value ofmj for all indices j in the range 16d ≤ j < 16d+1,
d ≥ 0, we note that the number of primes in the range(

2d, 2d+1
)

(4.7)

is certainly at least d2 for all sufficiently large d, by the prime number theorem. So assume
that d is “large”, and let pd,1 < . . . < pd,d2 denote the first d2 primes in the interval (4.7).
We set

mj := pd,r(j), 16d ≤ j < 16d+1, (4.8)
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where r (j) is the unique remainder when reducing j mod d2. Then (4.6) holds since 2d =

(16d)1/4 � j
1
4 . Furthermore, it can easily be seen that the second assertion of the lemma

holds as well for sufficiently large d, since (4.8) guarantees thatmj cannot equalmi whenever
|i− j| is small. Observe here that d2 is of order roughly (log j)2, and thus much larger than
3 log j for all sufficiently large j and d.

Let j0 be as in Lemma 4.1. For j ≥ j0 we recursively define sets PG (j) and PA(j) by
setting

PG (j) :=
{

2(maxPA(j−1)) + 3j
h

: h = 0, . . . , 2j − 1
}
, (4.9)

PA (j) :=
{

2(maxPG(j)) +mjh : h = 0, . . . ,
⌊
2j/j

1/4+ε/3
⌋}
. (4.10)

To make the construction well-defined we need to specify the initial value maxPA(j0 − 1),
which is necessary for (4.9) in the case j = j0; it does not matter what we choose, but let us
agree that this quantity should be read as 1, and that accordingly PG (j0) :=

{
2 + 3j

h
0 : h =

0, . . . , 2j0 − 1
}
.

The set PG(j) is a (shifted) geometric progression for each j, while the set PA(j) is
a (shifted) arithmetic progression for each j. The sets PG(j) and PA(j) are arranged in
increasing order; more precisely, we have

PG(j) < PA(j) < PG(j + 1) (4.11)

for all j ≥ j0, where the symbol “<” means that every element of the set on the right side
exceeds every element of the set on the left side.

The exponential factors 2(... ) which appear in the definitions of all the sets PG and PA
are quite arbitrary; what matters is only that the smallest element of PA(j) is much larger
than the largest elements of PG(j), and so on. Thus the respective sets in our construction
are not only ordered as shown by (4.11), but there actually are huge gaps separating one
item in this chain of inequalities from the next.

Finally, we specify the sequence (an)n by defining an = an (ε) as the n-th (smallest)
element of ⋃

j≥j0

(
PG (j) ∪ PA (j)

)
,

for all n ≥ 1. So (an)n contains all the numbers which are contained in PG(j) or PA(j) for
some j, sorted in increasing order. We claim that the additive energy of this sequence is as
large as specified in (4.5), and that the pair correlations of (anα)n mod 1 are Poissonian for
almost all α.

4.2.2 The Heuristic behind the Construction

Before turning to the proof of Theorem 4.1, we want to explain the heuristic behind the
construction of the sequence (an)n. In particular, we want to show why our construction
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allows to go beyond the alleged “Khintchine threshold”. Note that the distribution of the
pair correlations of (anα)n mod 1 depends not so much on the sequence (an)n itself, but
rather on the set of differences {an − am}m,n (as does the additive energy). Thus it is this
difference set that has to be controlled.

Obviously the difference set of a finite arithmetic progression has a very special structure;
it is essentially an arithmetic progression itself, and the cardinality of the difference set of
an arithmetic progression is small while the additive energy is large. More precisely, the
positive part of the difference set of an arithmetic progression with step size d and length
M is itself an arithmetic progression with step size d, and length M − 1, and each of the
elements of the difference sets has at least 1 and at mostM−1 representations as a difference
of elements of the original set. In our construction we combine arithmetic progressions with
different prime moduli mj . The number of such arithmetic progressions and their respective
length is so large that they boost the additive energy of the total sequence; in contrast, we
have to show that their contribution to the distribution of pair correlations is asymptotically
negligible. In our setting, at the j-th building block we have constructed roughly N ≈ 2j

elements of our sequence (an)n. Each arithmetic progression at this level consists of roughly
≈ N/(logN)1/4+ε/3 elements. One can easily check that this leads to the required lower
bound for the additive energy. The size of the prime moduli mj is roughly (logN)1/4.

To make sure that the contribution which one of these arithmetic progressions makes to
the pair correlations is asymptotically negligible, we have to show (roughly speaking) that

N

(logN)1/4+ε/3
·#
{
q ≤ N/(logN)

1/4+ε/3 : ‖mjqα‖ ≤
1

N

}
= o(N) (4.12)

for “typical” α in the sense of Lebesgue measure (where for simplicity we took 1/N rather
than s/N for the length of the test interval). Here the factor N/(logN)1/4+ε/3 on the very
left arises as the maximal number of representations which the number mjq has as a differ-
ence of two elements of the arithmetic progression with step size mj , and the upper bound
q ≤ N/(logN)1/4+ε/3 which restricts the maximal size of q comes from the length of the
arithmetic blocks. The estimate (4.12) is true as long as the cardinality of the set on the left
is asymptotically negligible in comparison to (logN)1/4+ε/3.

Essentially, the cardinality of this set only exceeds (logN)1/4+ε/3 when there is a

q ∈ {1, . . . , N/(logN)
1/2+2ε/3}

such that ‖mjqα‖ is less than 1/(N(logN)1/4+ε/3), so that for the next (logN)1/4+ε/3 multiples
of q we also have ‖mjqα‖ ≤ 1/N , and so that all these multiples are still smaller than
N/(logN)1/4+ε. Accordingly, one has to check if for typical α one should expect that there
is a q such that

‖mjqα‖ ≤
1

N(logN)1/4+ε/3
, 1 ≤ q ≤ N/(logN)

1/2+2ε/3.

Writing N/(logN)1/2+2ε/3 =: Q, the inequality above essentially becomes

‖mjqα‖ ≤
1

Q(logQ)3/4+ε
, 1 ≤ q ≤ Q. (4.13)
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By Khintchine’s convergence/divergence criterion this inequality looks like it should have
infinitely many solutions for “typical” alpha, since the expression on the right-hand side is
not summable as a function of Q. However, one major aspect is missing. The right-hand
side of (4.13) is so small that the solutions of this inequality can be explicitly characterised
by continued fraction theory; all solutions necessarily come from best approximations to
α. We will show that (for typical alpha) we may assume that the denominators of best
approximations to alpha are not divisible by the prime mj ; thus the number mjq cannot be
a best approximation denominator itself. Rather, it must be the multiple of mj and of a
best approximation denominator, and accordingly for q itself to satisfy (4.13) we must have

‖qα‖ =
‖mjqα‖
mj

≤ 1

mjQ(logQ)3/4+ε
≈ 1

Q(logQ)1+ε
, 1 ≤ q ≤ Q. (4.14)

The right-hand side of (4.14) is summable as a function of Q, and thus by Khintchine’s
criterion we should only expect finitely many solutions for typical alpha. It turns out that
this heuristic reasoning can be turned into an actual proof.

We emphasise again that the fact that mj always is a prime played a crucial role in this
reasoning, together with the fact that we may assume that the denominators of best ap-
proximations are not divisible by mj (we will prove this fact in Lemma 4.2 below). Another
crucial aspect is to show that two different arithmetic blocks do not “interact” in an undesired
way; that is, we have to show that the difference sets of these respective progressions do not
overlap too much. For this it will again be important that all the moduli are (different)
primes, since then a fixed integer can only show up in the difference set of two arithmetic
progressions if it is a product of the two primes which constitute the respective step sizes.
This will be proved in the form of a variance bound in Lemma 4.7.

Finally, let us remark why it is not possible to obtain even larger additive energy with
such a construction. Obviously, the additive energy is increased when the length of the
arithmetic blocks is increased, so we might try to do that. Furthermore, as (4.14) shows,
increasing the size of the prime moduli mj would also improve the argument, so we might try
to do that as well. So let us assume that the length of the arithmetic blocks is changed from
roughly N/(logN)1/4+ε/3 to N/(logN)β for some β, and that the size of the prime moduli
mj is changed from roughly (logN)1/4 to (logN)γ for some γ. If we do so, then instead of
(4.12) we will have to show that

N

(logN)β
#
{
q ≤ N/(logN)β : ‖mjqα‖ ≤

1

N

}
= o(N) (4.15)

for “typical” alpha, with mj of size roughly mj ≈ (logN)γ . Now recall that Legendre’s
theorem from continued fraction theory allows us to characterise the solutions (a, b) to |bα−
a| < 1/(2b). We want to use this for b = mjq, and thus in our application b might be
as large as N(logN)γ−β . The term 1/N in (4.15) is preassigned, since it comes from the
definition of pair correlations. So in order to apply Legendre’s theorem we have to make sure
that N(logN)γ−β � N , which implies γ ≤ β. This restricts the size of the prime moduli
(in terms of the length of the arithmetic progressions). When we carry out the heuristic
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reasoning above with general parameters (β, γ) instead of (1/4 + ε/3, 1/4), then instead of
(4.14) we will arrive at

‖qα‖ ≤ 1

Q(logQ)3β+γ
, 1 ≤ q ≤ Q. (4.16)

The right-hand side is summable if 3β + γ > 1. Since the additive energy is maximised
by taking β as small as possible, and since we already know that we need to take γ ≤ β,
the minimal permissible value for β is restricted by the requirement β > 1/4. This is the
choice of parameters which is made in our construction. One can also show that our choice
of parameters is optimal with respect to the conditions imposed by the variance bound in
Lemma 4.7, which also requires that 3β + γ > 1. Thus some significant new ideas would be
necessary to further increase the additive energy while preserving the metric pair correlation
property.

4.2.3 A Useful Partition, and Organisation of the Chapter

The following partitioning underpins the remaining part of this chapter. For doing so, we
need some notation from additive combinatorics: We write X − Y for the difference set

X − Y := {x− y : x ∈ X, y ∈ Y }

of two sets X,Y ⊆ Z. By #X we denote the cardinality of X. Furthermore, we write rX−Y
for the number of ways in which d ∈ Z can be represented as a difference of elements of
X,Y ⊆ Z, that is,

rX−Y (d) := # {(x, y) ∈ X × Y : d = x− y} . (4.17)

If no confusion can arise, we will simply write r (d) for rX−Y (d). Recall that trivially

rX−Y (d) ≤ min {#X,#Y } .

Moreover, let X+ := X ∩ Z≥1 denote the set of positive elements of a set X ⊆ Z. Since
AN −AN is symmetric around the origin, we can confine attention to its positive part.

Assume that d ≥ 0 is the difference of two elements of AN , that is, d = x − y. We
will classify these differences, according to the origin of x and y. More precisely, we will
distinguish between the following cases.

• Case (GG): x and y both come from geometric blocks, that is, x, y ∈
⋃
j PG(j).

• Case (AG): x comes from an arithmetic, and y comes from a geometric block, that is,
x ∈

⋃
j PA(j) and y ∈

⋃
j PG(j). Or, reciprocally, x comes from a geometric block and

y comes from an arithmetic block.

• Case (AAdiff): x and y come from different arithmetic blocks, that is, x ∈ PA(j1) for
some j1 and y ∈ PA(j2) for some j2, such that j1 6= j2.

• Case (AAsame): x and y come from the same arithmetic block, that is, x, y ∈ PA(j)
for some j.
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We write DN (GG) for the set of those d in the difference set (AN − AN )+ which
can be represented as Case (GG). In a similar way, we define DN (AG) ,DN (AAdiff), and
DN (AAsame).

The function R which was defined in (4.1) can be decomposed in a similar way in the
form

R = R (GG) +R (AG) +R (AAdiff) +R (AAdiff) . (4.18)

For this decomposition, we set

R (GG) := R (GG,α, s,N) :=
2

N

∑
d∈DN (GG)

r (d) Is,N (dα) , Is,N (x) :=

{
1 ‖x‖ ≤ s/N
0 otherwise,

(4.19)
where r(d) counts only the number of Case (GG) representations which d ≥ 1 has in the form
d = x−y such that x, y ∈ AN . Note that the factor 2 in (4.19), which is not present in (4.1),
comes from the fact that we restricted ourselves to the positive part of the difference set
AN −AN . Similarly, we define R (AG) , R (AAdiff) and R (AAsame), where the function r(d)
is instead restricted to representations of d as Case (AG), Case (AAdiff), and Case (AAsame),
respectively.

By using the same methods as in [4], one can easily conclude that

R (GG,α, s,N)→ 2s (4.20)

as N →∞, for almost all α ∈ [0, 1] and each s > 0. This follows from the fact that geometric
progressions have small additive energy, and the fact that the cardinality of the geometric
blocks is dominant over the total cardinality of the arithmetic blocks which implies that 1/N
really is the correct normalisation factor such that R (GG) converges as desired for N →∞.

Thus it remains to show that all the remaining terms R (AG) , R (AAdiff) and R (AAsame)
vanish in the limit N →∞, for almost all α.

The outline of the next sections is as follows. First, in Section 4.3, we analyse the
contribution of R (AAsame). Here Diophantine approximation determines the counting.3

Then, in Section 4.4, we prove variance estimates to control R (AG) and R (AAdiff). Once
these steps are completed, in Section 4.5 we use the Borel–Cantelli lemma with a sandwiching
argument to finish the proof of Theorem 4.1.

3The mechanism furnishing these estimates is of a somewhat combinatorial nature, and related to so-
called Bohr sets. The combinatorial nature of these sets also plays a key role in a recent paper of Chow, cf.
[14].
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4.3 Analysing the Contribution of the Small Differences

Before proceeding further, we need to recall some notions and results about continued frac-
tions. For a (possibly finite) sequence (αi)i of strictly positive integers, we denote by

α := [α1, α2, . . .] =
1

α1 + 1
α2+ 1

...

the associated (possibly finite) continued fraction in the unit interval [0, 1]. Moreover, let
pn/qn denote the n-th convergent to α. Then, the following are well-known facts, cf. for
instance [13, Ch.1].

1. Legendre’s theorem: If a/b is a fraction with∣∣∣α− a

b

∣∣∣ < 1

2b2
,

then a/b is a convergent to α.

2. We have ∣∣∣∣α− pn
qn

∣∣∣∣ � 1

αnq2
n

, (4.21)

where the implied constants are independent of α.

3. Borel–Bernstein theorem: Let B := (bn)n be a sequence of (strictly) positive real
numbers, and consider the series ∑

n≥1

1

bn
. (4.22)

If VB ⊂ [0, 1] denotes the set of numbers α = [α1, α2, . . .] satisfying αn ≤ bn for all
sufficiently large n ≥ 1, then

λ (VB) =

{
1 if (4.22) converges,
0 if (4.22) diverges.

Lemma 4.2. Let (mj)j≥1 be the sequence of primes from Lemma 4.1, which was used in
(4.10) for the construction of our sequence. Then for almost all α ∈ [0, 1] there exist only
finitely many pairs of indices (j, n) such that the prime mj divides qn, and such that addi-
tionally qn/mj ∈ [2j/j2, 2j ], where qn is the denominator of a convergent to α.

Proof. Assume that the denominator qn of a convergent is divisible by a prime mj , i.e. there
is a k such that qn = kmj . When qn is a convergent to α then ‖qnα‖ ≤ 1/qn, and thus
‖kmjα‖ ≤ 1/(kmj). Thus to prove the lemma we have to show that almost all α ∈ [0, 1] are
contained in at most finitely many sets of the form

Sj,k :=

{
x ∈ [0, 1] : ‖kmjx‖ ≤

1

kmj

}
, j = 1, 2, . . . , 2j/j2 ≤ k ≤ 2j .
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We have
λ(Sj,k) =

2

kmj
.

Furthermore, we have
∞∑
j=1

∑
2j/j2≤k≤2j

2

kmj
�

∞∑
j=1

log j

mj
.

Recall that to construct our sequence (mj)j≥1 in Lemma 4.1 we selected d2 primes from the
range

(
2d, 2d+1

)
, for each (sufficiently large) d. Thus

∞∑
j=1

log j

mj
�
∑
d

(log log d)d2

2d
<∞.

Thus, by the Borel–Cantelli lemma, almost all α are contained in only finitely many sets
Sj,k.

Lemma 4.3. Let
Mj :=

{
q ≤ 2j/j

1/4+ε/3 :
∥∥mjqα

∥∥ ≤ s/2j}.
Then for almost all α ∈ [0, 1] we have

#Mj �s j
1/4.

Proof. During this proof we suppress the potential dependence of the symbols “�” and “�”
on s.

Let B denote the sequence (n1+ε/3)n, and suppose that α ∈ VB is an irrational number
(recall that the set VB was defined in the statement of the Borel–Bernstein theorem, before
the statement of Lemma 4.2). By the Borel–Bernstein theorem, VB has full Lebesgue mea-
sure. In the sequel we will assume that α ∈ [0, 1] is a fixed number which is contained in
VB, and for which the conclusion of Lemma 4.2 holds. Note that the set of such α’s has full
Lebesgue measure.

Let us note the following. Let qm be the denominator of a convergent to α. Assume that

‖qmα‖ ≤
s

2j
. (4.23)

Then, as noted above, we have

‖qmα‖ �
1

αmqm
.

Since qm grows at least exponentially in m, and since α ∈ VB implies that αm � m1+ε/3 �
(log qm)1+ε/3, we thus see that (4.23) is only possible if

1

(log qm)1+ε/3qm
� 1

2j
,

which in turn is only possible if

qm �
2j

j1+ε/3
.
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Now we argue in two steps.
(i) We first claim the following. If j is large enough, and if Mj is non-empty, then there
exists a unique value of n such that qn is the denominator of a convergent to α, such that
qn ≥ 2j/j2, and such that

Mj ⊆ qnZ. (4.24)

Indeed, if some q is contained in Mj , then for this q we have ‖mjqα‖ ≤ s/2j < 1/(2mjq), if
j is sufficiently large. This is a consequence of our construction, where we have mj � j1/4

and q ≤ 2j/j1/4+ε/3. Let p ∈ Z be such that ‖mjqα‖ = |mjqα− p|. Then Legendre’s theorem
implies that there is some n ≥ 1 with

p

mjq
=
pn
qn
. (4.25)

As a consequence, since pn and qn are coprime, there is some integer g ≥ 1 such that
mjq = gqn and p = gpn. Then we have ‖mjqα‖ = |gqnα− gpn| = g|qnα− pn|, and from the
reasoning following equation (4.23) we can deduce that qn � 2j/j1+ε/3. Thus, provided that
j is sufficiently large, qn/mj lies in the range [2j/j2, 2j ], and then, by Lemma 4.2, we can
assume that qn is not divisible by mj .

Since we have now figured out that we may assume that mj does not divide qn, we
conclude that p and q can actually both be written in the form p = hmjpn and q = hmjqn
for some integer h ≥ 1. Observe that (4.21) implies

mjh

αnqn
�
∥∥mjqα

∥∥ ≤ s

2j
, (4.26)

and thus
αnqn � mjh2j � j1/42j .

Thus the well-known recursion qn+1 = αnqn + qn−1 yields qn+1 ≥ αnqn � j1/42j for suf-
ficiently large j. However, Mj by definition is a subset of {1, . . . , 2j/j1/4+ε/3}. This shows
that qn+1 is already too large to be contained in Mj , and consequently Mj consists only of
integer multiples of qn.

(ii) Now we give an upper bound for the largest possible value of h ≥ 1 such that hmjqn ∈Mj .
From (4.26) and the definition of Mj we deduce that

h ≤ 2j

qnj
1/4+ε/3

as well as h� αnqn
mj2j

.

As noted above we have 2j/j1+ε/3 � qn � 2j/j1/4+ε/3. Thus

h� max
2j

j1+
ε/3
�x≤ 2j

j
1/4+ε/3

min

{
2j

xj1/4+ε/3
,
αnx

mj2j

}

where the x ∈ R maximising the right hand side, under the given constraints, is determined
via

2j

xj1/4+ε/3
=

αnx

mj2j
⇔ x2 =

mj2
2j

j1/4+ε/3αn
.
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Thus, using αn � (log qn)1+ε/3 � j1+ε/3, we finally obtain

h2 � αn

j1/4+ε/3mj
� j1/2.

Thus #Mj � j1/4, which proves the lemma.

4.4 Analysing the Contribution of the Large Differences

The Fourier series expansion of the indicator functions Is,N (α) is given by

Is,N (α) ∼
∑
n∈Z

cne (nα) where cn :=

{
sin (2πns/N) / (πn) if n 6= 0,

2s/N if n = 0,
(4.27)

where we write e (α) for exp (2πiα). The next lemma is of a technical nature, and is used in
a decoupling argument for the variance bounds, which are derived in Section 4.4.1.

Lemma 4.4. Define for integers u, v > 0 the quantity

C (u, v) :=
∑

n1,n2∈Z\{0},
n1u=n2v

cn1cn2 . (4.28)

Then
C (u, v)� gcd (u, v)

max {u, v}
. (4.29)

Moreover, for u 6= 0 we have
C (u, u)�s N

−1. (4.30)

Proof. Note that n1u = n2v holds if and only if there is an integer h 6= 0 satisfying n1 =
hu/gcd (u, v) and n2 = hv/gcd (u, v). Moreover, we observe that |cn| ≤ min {2s/N, 1/ |n|}
for n 6= 0. Combining these estimates with the Cauchy–Schwarz inequality yields

|C (u, v)|2 ≤
∑

h∈Z\{0}

c2
h u

gcd(u,v)

∑
h∈Z\{0}

c2
h v

gcd(u,v)

≤
∑

h∈Z\{0}

(gcd (u, v))2

(uh)2

∑
h∈Z\{0}

(gcd (u, v))2

(vh)2 ,

which implies (4.29).

Furthermore,

C (u, u)�
∑
n≤N

2s

4s2

N2
+
∑
n>N

2s

1

n2
,

which implies (4.30).
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From orthogonality relations, combined with (4.27), we obtain

N2 Var
(
R (AG, ·, s,N)

)
=

∫ 1

0

( ∑
d∈DN (AG)

r (d)
∑

n∈Z\{0}

cne (dnα)

)2

dα

=
∑

u,v∈DN (AG)

r (u) r (v)C (u, v) , (4.31)

where r(·) is the representation function which counts representations as Case (AG). A per-
fect analogue holds when (AG) is replaced by (AAdiff) everywhere in the formula (including
in the definition of the representation function r).

The main term on the right hand side, as we shall see, is the sum over the diagonal
(r (u))2C (u, u). To prove this, the next lemma shows that the contribution from the off-
diagonal terms is small. More precisely, C(u, v) is extremely small for two elements u 6= v
of DN (AG) or DN (AAdiff).

Lemma 4.5. We have ∑
u,v∈DN (AG),

u6=v

r (u) r (v)C (u, v)� 1, (4.32)

where the representation function r counts representations from Case (AG). The same esti-
mate holds if (AG) is replaced by (AAdiff).

Proof. This is not a critical part in the whole argument, and it is sufficient to use very rough
estimates. We only give a brief outline of the proof. Let u and v be elements of the difference
set DN (AG) such that 0 < u < v. Recall that different building blocks of our sequence are
separated by huge constants. For u and v this leaves only two possibilities:

• Either u is of much smaller order than v, say u� v1/2. By (4.29) we have C(u, v)�
gcd(u, v)/max{u, v}. Since gcd(u, v) ≤ u, we have C(u, v)� u/v � v−1/2.

• The second possibility is that u and v are of very similar size, and that consequently
v−u is very small in comparison with v. In this case we may assume for example that
v − u � v1/2. Again using C(u, v) � gcd(u, v)/max{u, v}, and now observing that
gcd(u, v) ≤ v − u� v1/2, we obtain C(u, v)� v−1/2.

So in both cases C(u, v) is small in comparison with v. By construction the difference set
DN (AG) is an extremely sparse set, due to the very fast growth of our sequence. Thus after
summing over u and v we can obtain (4.32). A similar argument works when instead of
DN (AG) we consider DN (AAdiff).

4.4.1 Variance Bounds

Now we have the tools at hand to derive the variance bounds for the auxiliary functions
R (AG, ·, s,N) and R (AAdiff, ·, s,N) which were defined in (4.19).
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Lemma 4.6. For every fixed s > 0, we have

Var
(
R (AG, ·, s,N)

)
�s N

−1/2. (4.33)

Proof. Again this is not a crucial lemma, and it is sufficient to use very rough estimates.
Note that trivially #DN (AG) ≤ N2. Let u ∈ DN (AG). Then, using again the fact that
our sequence increases very quickly, we can easily show that the number of Case (AG)
representations r(u) which u has as the difference of two elements from AN is very small. To
give a quantitative statement, we could easily show that r(u) � N1/4, uniformly in u (this
is just a very rough estimate). Hence (4.30) implies∑

u∈DN (AG)

r (u)2 |C (u, u)| �s (#DN (AG))N1/2N−1 �s N
3/2.

Together with (4.31) and (4.32) this implies (4.33).

The contribution coming from numbers which arise as the difference between two num-
bers from different arithmetic blocks is a bit more difficult to control. To see this, note that
when there are two arithmetic progressions with different step sizes mj1 and mj2 , then there
are certain numbers which have many representations as a number from the first arithmetic
progression, minus a number from the second arithmetic progression. To control the contri-
bution from such numbers, we will make crucial use of the fact that in our construction the
step sizes mj1 and mj2 are prime numbers.

Lemma 4.7. For every fixed s > 0, we have

Var
(
R (AAdiff, ·, s,N)

)
�s

1

(logN)1+ε/2
. (4.34)

Proof. Let N be given. There is some J such that aN ∈ PA(J)∪PG(J), and by construction
for this value of J we have J � logN . By (4.31) and Lemma 4.5 we have

Var
(
R (AAdiff, ·, s,N)

)
≤ 1

N2

∑
u,v∈DN(AAdiff)

r(u)r(v)|C(u, v)|

� 1

N2

1 +
∑

1≤j1<j2≤J

∑
u∈PA(j2)−PA(j1)

r (u)2 |C (u, u)|

 ,

where r(u) counts the number of representation of u as the difference between an element
of PA (j2) and an element of PA (j1). Here we used the fact that due to the huge constants
which separate different blocks in our construction, for given u there is only one pair (j1, j2)
such that u ∈ PA (j2)− PA (j1), except maybe for finitely many (small) values of u.
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Let j1 < j2 be fixed. First assume that j1 < J − 2 log J . We note that the cardinality of
the set PA (j2)− PA (j1) is bounded by

#{PA (j2)− PA (j1)} � max{PA (j2)− PA(j1)} −min{PA (j2)− PA(j1)}

� mj2

N

(logN)1/4+ε/3

� N

(logN)ε/3
. (4.35)

Then by the trivial estimate r (u) � #PA (j1) � N/(logN)2 log 2+1/4, and since 2 log 2 +
1/4 > 16/10, we have

1

N2

∑
j1,j2,

j1<J−2 log J

∑
u∈PA(j2)−PA(j1)

r (u)2 |C (u, u)| �s
J2

N2

N3

(logN)16/5

1

N

� 1

(logN)6/5
. (4.36)

It remains to control the contribution from the range J − 2 log J ≤ j1 < j2 ≤ J . Here
it plays a crucial role that for j1, j2 in this range, by construction there are two different
primes mj1 and mj2 which form the step sizes of the arithmetic progression PA(j1) and
PA(j2), respectively (cf. Lemma 4.1). Therefore, in such a situation r (u) is bounded by the
number of solutions (x, y) ∈ Z2 to the linear Diophantine equation

ũ = mj2x−mj1y where ũ := u−min{PA(j2)}+ min{PA(j1)},

and (x, y) satisfies the additional restriction that 1 ≤ x, y ≤ N/(logN)1/4+ε/3. Since mj1 and
mj2 are prime numbers, the set of integer solutions to this equation admits the form

(x0 + hmj1 , y0 − hmj2),

where h ∈ Z and (x0, y0) is some solution to the above equation. Moreover, the size of j1
and j2, together with (4.6), ensures that mj1 � mj2 � (logN)1/4. Hence,

r (u)� N

(logN)
1/2+ε/3

. (4.37)

Thus using (4.30), (4.35) and (4.37), and noting that log J � log logN � (logN)ε/2, we
obtain that

1

N2

∑
j1,j2,

J−2 log J≤j1<j2≤J

∑
u∈PA(j2)−PA(j1)

r (u)2 |C (u, u)| �s
1

N2

∑
j1,j2,

J−2 log J≤j1<j2≤J

N3

(logN)1+ε

1

N

� 1

(logN)1+ε/2
.

Combining this with (4.36) yields (4.34).
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4.5 Proof of Theorem 4.1

Let N be given. There is a number J such that aN ∈ PA(J) ∪ PG(J), and for this value of
J we have J � logN and 2J � N . Then

E
(
AN
)
≥ E

(
PA (J − 1)

)
� N3

(logN)3/4+ε
,

where we used that the additive energy of an arithmetic progression is proportional to
the third power of its cardinality, and that by construction #PA (J − 1) � 2J/J1/4+ε/3 �
N/(logN)1/4+ε/3. Thus the additive energy of the sequence constructed in our example is
indeed as large as claimed in the statement of the theorem.

It remains to show that (an)n has the metric pair correlation property. Recall that for
almost all α the contribution coming from the geometric blocks gives the desired convergence
R (GG,α, s,N)→ 2s, for every fixed s > 0, cf. (4.20). It is a standard procedure to use the
variance estimates and the results from the previous section to conclude that the contribution
of the parts R (AG) and R (AAdiff) tends to zero in the limit; thus we will only give a brief
outline. Fix a rational s > 0. Define the sequence

Nm =
⌊
exp
(
m

1
1+ε/2

)⌋
and note that Nm+1/Nm → 1. If N is such that Nm ≤ N < Nm+1, then

NR
(
AG,α, s,N

)
≤ Nm+1R

(
AG,α,Nm+1/Nms,Nm+1

)
.

Denote by EAG,s (Nm) the “exceptional” set{
α ∈ [0, 1] :

∣∣R(AG,α,Nm/Nm+1s,N
)
− µAG,s (Nm)

∣∣ ≥ 1/ log logNm

}
where µAG,s (Nm) is the expected value of R

(
AG,α,Nm/Nm+1s,N

)
. Now, observe that

µAG,s (Nm)→ 0 as m→∞, since the indices of those elements of (an)n which come from an
arithmetic block are contained in a set of zero density within the total index set. Combining
Chebyshev’s inequality with the variance estimates from Lemma 4.6 and Lemma 4.7, and
applying the Borel–Cantelli lemma, we obtain

R
(
AG,α, s,N

)
−→
N→∞

0, (4.38)

for all rational s and for Lebesgue almost all α ∈ [0, 1]. Exactly the same argument works if
(AG) is replaced by (AAdiff).

Finally we have to show that R (AAsame) → 0 for almost all α. Let s > 0 be fixed,
and assume that s is rational. By the Borel–Bernstein theorem, almost no α ∈ [0, 1] has
infinitely many d ≥ N/(logN)3/2 such that Is,N (dα) = 1. Hence it is sufficient to estimate
the contribution of those differences d which are contained in (PA(j)− PA(j))+ for a value
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of j which is close to J . More precisely, we can restrict j to the range J − 2 log J ≤ j ≤ J .
By Lemma 4.3, for almost all α ∈ [0, 1] we have

R
(
AAsame, α, s,N

)
� 1

N

∑
J−2 log J≤j≤J

2j

j1/4+ε/3
·#
{
d ∈ (PA(j)− PA(j))+ : ‖dα‖ ≤ s

N

}
�s

1

N

∑
J−2 log J≤j≤J

2j

jε/3

� (logN)−
ε/6, (4.39)

where we estimated log J � log logN � (logN)ε/6.

Thus we have R(GG) → 2s, and R(AG) → 0, R(AAdiff) → 0, R(AAsame) → 0, for all
rational s > 0, for almost all α. However, if this convergence holds for all rational s > 0 and
almost all α, then by monotonicity it must also hold for all real s > 0 and almost all α. In
view of the decomposition (4.18) this concludes the proof of the theorem.
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Chapter 5

The Duffin–Schaeffer Conjecture with
Extra Divergence

5.1 Introduction and Statement of Results

Let ψ : N → R be a non-negative function. For every non-negative integer n define a set
En ⊂ R/Z by

En :=
⋃

1≤a≤n,
(a,n)=1

(
a− ψ(n)

n
,
a+ ψ(n)

n

)
. (5.1)

The Lebesgue measure of En is at most 2ψ(n)ϕ(n)/n, where ϕ denotes Euler’s totient func-
tion. Thus, writingW (ψ) for the set of those x ∈ [0, 1] which are contained in infinitely many
sets En, it follows directly from the first Borel–Cantelli lemma that λ(W (ψ)) = 0 whenever

∞∑
n=1

ψ(n)ϕ(n)

n
<∞. (5.2)

Here λ denotes the Lebesgue measure. The corresponding divergence statement, which
asserts that λ(W (ψ)) = 1 whenever the series in (5.2) is divergent, is known as the Duffin–
Schaeffer conjecture [16] and is one of the most important open problems in metric number
theory. It remains unsolved since 1941.

The Duffin–Schaeffer conjecture is known to be true under some additional arithmetic
conditions or regularity conditions on the function ψ. See for example [22, 44]. In [23]
Haynes, Pollington and Velani initiated a program to establish the Duffin–Schaeffer condition
without assuming any regularity or number-theoretic properties of ψ, but instead assuming
a slightly stronger divergence condition. In [23] they proved that there is a constant c such
that λ(W (ψ)) = 1, provided that

∞∑
n=1

ψ(n)ϕ(n)

n e

(
c logn

log logn

) =∞

(throughout this chapter we will understand log x as max(1, log x), so that all appearing
logarithms are positive and well-defined). In [6] Beresnevich, Harman, Haynes and Velani
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used a beautiful averaging argument, which is also at the core of the argument in the present
chapter, to show that it is sufficient to assume

∞∑
n=1

ψ(n)ϕ(n)

n(log n)ε log log logn
=∞

for some ε > 0. In the present chapter we prove that the extra divergence factor can be
reduced to (log n)ε for a fixed ε > 0. In particular this solves Problem 2 posed in [23], where
it was asked whether the extra divergence factor log n is sufficient.

Theorem 5.1. Let ψ : N → R non-negative function. Then for almost all α there are
infinitely many coprime p, q ∈ N such that∣∣∣∣α− p

q

∣∣∣∣ < ψ (q)

q

if there is some ε > 0 such that ∑
n≥1

ψ(n)
ϕ(n)

n(log n)ε
(5.3)

diverges.

We note that by the mass transference principle of Beresnevich and Velani [7] it is possible
to deduce Hausdorff measure statements from results for Lebesgue measure, in the context
of the Duffin–Schaeffer conjecture. Roughly speaking, the quantitative “extra divergence”
result in Theorem 5.1 translates into a corresponding condition on the dimension function
of a Hausdorff measure for the set where the Duffin–Schaeffer conjecture is true. For details
we refer the reader to Section 4 of [23], where this connection is explained in detail.

5.2 Proof of Theorem 5.1

Throughout the proof, we assume that ε > 0 is fixed. We use Vinogradov notation “�”,
where the implied constant may depend on ε, but not on m,n, h or anything else.

As noted in [6], we may assume without loss of generality that for all n either 1/n ≤
ψ(n) ≤ 1/2 or ψ(n) = 0. Furthermore, by Gallagher’s zero-one law [17] the measure ofW (ψ)
can only be either 0 or 1. Thus λ(W (ψ)) > 0 implies λ(W (ψ)) = 1.

We will use the following version of the second Borel–Cantelli lemma (see for example
[21, Lemma 2.3]).

Lemma 5.1. Let (An)n be a sequence of Lebesgue measurable sets in [0, 1] satisfying∑
n≥1

λ (An) =∞.

Then,
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λ

(
lim sup
n→∞

An

)
≥ lim sup

N→∞

(∑
n≤N λ (An)

)2∑
m,n≤N λ (An ∩Am)

.

The following lemma of Pollington and Vaughan [36] allows to estimate the ratio between
the measure of the overlap Em ∩ En and the product of the measures of Em and En, and is a
key ingredient in [6]. In the statement of the lemma and in the sequel, we write (m,n) for
the greatest common divisor of two positive integers m,n.

Lemma 5.2. For m 6= n, assume that λ(Em)λ(En) 6= 0. Define

P (m,n) =
λ(Em ∩ En)

λ(Em)λ(En)
. (5.4)

Then

P (m,n)�
∏

p| mn
(m,n)2

,

p>D(m,n)

(
1− 1

p

)−1

, (5.5)

where the product is taken over all primes p in the specified range, and where

D(m,n) =
max(nψ(m),mψ(n))

(m,n)
. (5.6)

In view of Lemma 5.1 it is clear that controlling P (m,n) is the key to proving λ(W (ψ)) >
0. Following [6], we divide the set of positive integers into blocks

24h ≤ n < 24h+1
, h ≥ 1, (5.7)

and we may assume without loss of generality that the divergence condition (5.3) still holds
when the summation is restricted to those n which are contained in a block with h being
even. As noted in [6], when m and n are contained in different blocks, then automatically
P (m,n) � 1. Thus the real problem is that of controlling P (m,n) when m and n are con-
tained in the same block (5.7) for some h.

In the sequel, let m,n be fixed, and assume that

24h ≤ m < n < 24h+1

for some h. As in [6], we will average the factors P (m,n) over a range of downscaled versions
of the sets Em and En. More precisely, for k = 1, 2, . . . , let E(k)

n be defined as En, but with
ψ(n)/ek in place of ψ(n). Correspondingly, we define

Pk(m,n) =
λ
(
E(k)
m ∩ E(k)

n

)
λ
(
E(k)
m

)
λ
(
E(k)
n

)
and

Dk(m,n) =
max(nψ(m),mψ(n))

ek(m,n)
,
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and note that for Pk we have the same estimate as in (5.5), only with D replaced by Dk. At
the core of the argument in [6] is the observation that

K∑
k=1

Pk(m,n) �
K∑
k=1

∏
p| mn

(m,n)2
,

p>ek

(
1− 1

p

)−1

�
K∑
k=1

log logn

k

� (logK)(log log n), (5.8)

where the product in the first line is estimated using Mertens’ second theorem. Thus when
K � (log log n)(log log log n) we have

∑K
k=1 Pk(m,n)� K, and accordingly there is at least

one value of k in this range for which Pk(m,n) � 1. This argument can be extended over
a range of pairs (m,n) instead of assuming that m,n are fixed. Together with Lemma 5.1
and Gallagher’s zero-one law this allows to deduce the desired result, provided that we are
allowed to divide ψ(n) by eK ≤ eε(log logn)(log log logn) for all n and still keep the divergence
of the sum of measures.

In our proof we will roughly follow the same plan. However, instead of taking (5.5) for
granted and then averaging over different reduction factors ek, we will take the averaging
procedure into the proof of the overlap estimate which leads to Lemma 5.2. To see where a
possible improvement could come from, we note that to obtain the estimate in Lemma 5.2
it is necessary to give upper bounds for sums∑

1≤b≤θ,
(b,t)=1

1,

where we can think of θ � log t as being the number D from (5.6), and of t as being the
number mn

(m,n)2
which appears in (5.5). It is necessary to relate this sum to θϕ(t)/t. To obtain

Lemma 5.2 one applies the classical sieve bound

∑
1≤b≤θ,
(b,t)=1

1� θ
∏
p|t,
p≤θ

(
1− 1

p

)
= θ

ϕ(t)

t

∏
p|t,
p>θ

(
1− 1

p

)−1

, (5.9)

and the product on the very right is the one which also appears in (5.5). This sieve bound
gives optimal results for some constellations of parameters, but we can use the fact that we
are averaging over different values of k (which determine θ) to save some factors. We exhibit
two extremal cases showing this phenomenon. The factor P (m,n) can only be large when
the product on the right of (5.9) is large. However, this product can only be large if a very
large proportion of small primes divides t. Assume on the contrary that no small prime di-
vides t. Then the sieve inequality in (5.9) is actually an equality, since on both sides we have
exactly θ, but the product on the very right is extremely small and cannot cause problems.
As a second extremal case, assume that all small primes divide t. Then the product on the
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very right is very large, but the sieve bound is not sharp, since in the sum on the left the
only number we count is the number 1 (no other small number is coprime to t). So there is
a trade-off between the way how a large proportion of primes dividing t is able to increase
the value of the product on the right of (5.9), but at the same time reduces the quality of
the sieve bound. It seems that this should be a very subtle relationship, and in general this
is indeed the case (cf. [18, Proposition 2.6], where this phenomenon is addressed). However,
quite surprisingly, it turns out that in our particular situation it is possible to exploit this
phenomenon using only some simple calculations.

Following [36, Paragraph 3], we write m and n in their prime factorization

m =
∏
p

pup , n =
∏
p

pvp ,

and define

r =
∏
p,

up=vp

pup , s =
∏
p,

up 6=vp

pmin(up,vp), t =
∏
p,

up 6=vp

pmax(up,vp).

Furthermore, we set

δ = min

(
ψ(m)

m
,
ψ(n)

n

)
, ∆ = max

(
ψ(m)

m
,
ψ(n)

n

)
.

Then for every k from the first displayed formula on page 196 of [36] we have the estimate

λ
(
E(k)
m ∩ E(k)

n

)
� δ

ek
ϕ(s)

ϕ(r)2

r

∫ 4∆rte−k

1
St(θ) dθ,

where we write
St(θ) =

∑
1≤b≤θ,
(b,t)=1

1

θ

and where we used that changing ψ(m) 7→ ψ(m)/ek and ψ(n) 7→ ψ(n)/ek also changes
δ 7→ δ/ek and ∆ 7→ ∆/ek. Since

λ
(
E(k)
m

)
λ
(
E(k)
n

)
=
ϕ(m)ϕ(n)δ∆

e2k

this implies

Pk(m,n) �
ekϕ(s)ϕ(r)2

∫ 4∆rte−k

1 St(θ) dθ

∆rϕ(m)ϕ(n)

=
ϕ(t)t

ϕ(t)t

ϕ(s)ϕ(r)2

ϕ(m)ϕ(n)

∫ 4∆rte−k

1 St(θ) dθ

∆re−k

=
t

ϕ(t)

∫ 4∆rte−k

1 St(θ) dθ

∆rte−k
,
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where the last line follows from ϕ(s)ϕ(r)2ϕ(t) = ϕ(m)ϕ(n). We set K = K(h) = bεh log 4c.
Note that with this choice of K we have

eK � (logm)ε, (log n)ε � eK . (5.10)

Summing over k, we deduce that

K∑
k=1

Pk(m,n)�
K∑
k=1

t

ϕ(t)

∫ 4∆rte−k

1 St(θ) dθ

∆rte−k
. (5.11)

As noted in [36] and [6], if 2∆rte−k ≤ 1 then Pk(m,n) = 0, since in this case E(k)
m and E(k)

n

are disjoint (see the fourth displayed formula from below on p. 195 of [36]). Furthermore,
again as noted in [36] and [6], if 4∆rte−k ≥ eK � (log n)ε then Pk(m,n)� 1, which follows
from Lemma 5.2 and Mertens’ second theorem. Accordingly, for the contribution to (5.11)
of those k for which 4∆rte−k 6∈ [1, eK) we have∑

1≤k≤K,
4∆rte−k 6∈[1,eK)

Pk(m,n)� K. (5.12)

To estimate the contribution of the other values of k, we note that there exists a number
c ∈ [1, e) such that({

4∆rte−k, k = 1, . . . ,K
}
∩ [1, eK)

)
⊂ {cej , j = 0, . . . ,K − 1}.

Thus for the contribution of these k to (5.11) we have

∑
1≤k≤K,

4∆rte−k∈[1,eK)

Pk(m,n) � t

ϕ(t)

K−1∑
j=0

1

ej

∫ cej

1
St(θ) dθ. (5.13)
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For the term on the right-hand side of (5.13) we have

K−1∑
j=0

1

ej

∫ cej

1
St(θ) dθ �

K∑
j=1

1

ej

∫ ej

1
St(θ) dθ

=

K∑
j=1

1

ej

∑
1≤b≤ej ,
(b,t)=1

∫ ej

b

dθ

θ

=
K∑
j=1

∑
1≤b≤ej ,
(b,t)=1

j − log b

ej

=
∑

1≤b≤eK ,
(b,t)=1

K∑
j=dlog be

j − log b

ej

�
∑

1≤b≤eK ,
(b,t)=1

1

b

∞∑
i=1

i

ei︸ ︷︷ ︸
�1

�
∑

1≤b≤eK ,
(b,t)=1

1

b
. (5.14)

The sum in (5.14) can be estimated using a sieve with logarithmic weights. Following the
lines of [18, Lemma 2.1], we have∑

1≤b≤eK ,
(b,t)=1

1

b
=

∑
1≤b≤eK ,
p|b =⇒ p-t

1

b

≤
∏
p≤eK ,
p-t

(
1− 1

p

)−1

=

 ∏
p≤eK

(
1− 1

p

)−1

 ∏
p≤eK ,
p|t

(
1− 1

p

) . (5.15)

For the first product in (5.15) by Mertens’ theorem we have

∏
p≤eK

(
1− 1

p

)−1

� K.

65



For the second product we have

∏
p≤eK ,
p|t

(
1− 1

p

)
=

ϕ(t)

t

∏
p>eK ,
p|t

(
1− 1

p

)−1

︸ ︷︷ ︸
�1

,

where Mertens’ theorem and (5.10) were used to estimate the last product. Inserting these
bounds into (5.14), and combining this with (5.12) and (5.13) we finally obtain

K∑
k=1

Pk(m,n)� K. (5.16)

By the definition of Pk(m,n) we have

K∑
k=1

Pk(m,n) =
K∑
k=1

λ
(
E(k)
m ∩ E(k)

n

)
λ
(
E(k)
m

)
λ
(
E(k)
n

)
=

K∑
k=1

e2kλ
(
E(k)
m ∩ E(k)

n

)
λ
(
Em
)
λ
(
En
) ,

and consequently (5.16) implies that

K∑
k=1

e2kλ
(
E(k)
m ∩ E(k)

n

)
� Kλ

(
Em
)
λ
(
En
)
.

Note that the implied constant is independent of m and n. Thus, summing over m and n
yields

K∑
k=1

∑
24h≤m<n<24h+1

e2kλ
(
E(k)
m ∩ E(k)

n

)
� K

∑
24h≤m<n<24h+1

λ
(
Em
)
λ
(
En
)
.

Accordingly, there is at least one choice of k = k(h) in the range {1, . . . ,K} such that∑
24h≤m<n<24h+1

e2kλ
(
E(k)
m ∩ E(k)

n

)
�

∑
24h≤m<n<24h+1

λ
(
Em
)
λ
(
En
)
,

or, equivalently, such that∑
24h≤m<n<24h+1

λ
(
E(k)
m ∩ E(k)

n

)
�

∑
24h≤m<n<24h+1

λ
(
E(k)
m

)
λ
(
E(k)
n

)
, (5.17)

where the implied constant does not depend on h. We replace the original function ψ(n) by
a function ψ∗(n), where

ψ∗(n) =

{
0 when n is not in

[
24h , 24h+1) for some even h,

ψ(n)e−k(h) when n is in
[
24h , 24h+1) for some even h,
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and write E∗n, n ≥ 1, for the corresponding sets, which are defined like (5.1) but with ψ∗ in
place of ψ. By (5.10) we have

ψ∗(n)� ψ(n)

(log n)ε
.

Thus the extra divergence condition in the assumptions of Theorem 5.1 guarantees that

∞∑
n=1

λ(E∗n) =∞,

while (5.17) guarantees that∑
1≤m,n≤N

λ
(
E∗m ∩ E∗n

)
�

∑
1≤m,n≤N

λ(E∗m)λ(E∗n)

(recall that λ(E∗m ∩ E∗n)� λ(E∗m)λ(E∗n) holds automatically when m and n are not contained
in the same block for some h). Thus by Lemma 5.1 we have λ(W (ψ∗)) > 0, and since
E∗n ⊂ En we also have λ(W (ψ)) > 0. By Gallagher’s zero-one law, positive measure of W (ψ)
implies full measure. Thus λ(W (ψ)) = 1, which proves the theorem.
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