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Abstract

Adding many lights to a scene enhances the visual fidelity and motivates the usage of light

assignment. Light assignment is a non-trivial problem and the question is: Which method

is fast and achieves efficient shading?

In order to examine this, we compare the screen space methods: tile-based, dense

cluster-based, and sparse cluster-based light assignment. Additionally, for each of these

methods, two variants with implicit and explicit bounds are investigated. Furthermore,

two new methods are introduced: firstly the grid-based light assignment, which is a world

space method and secondly the model-based light assignment, an object space method.

In this work, we first optimize the group size parameter and the intersection test. Then

the methods are analyzed by regarding their view dependency, and performance.

For all methods, the frame time grows linearly with the light count and can be described

by slope and the y-intercept, which we call offset. Sparse cluster-based light assignment

with explicit bounds has the lowest slope, the highest offset, the lowest standard devi-

ation of the frame time and a low dependency of the light count distribution on depth

complexity. Dense cluster-based light assignment with implicit bounds and grid-based

light assignment have similar characteristics: high slope, low offset, and medium standard

deviation. Model-based light assignment has a highly diverse frame time across the tested

scenes and a high to very high slope.

For 1 000 or more lights, the best method is sparse cluster-based light assignment with

explicit bound. For less than 1 000 lights, dense cluster-based with implicit bounds or

grid-based light assignment performs better. For the tested scenes, model-based light

assignment has a too high slope to be of practical use. The bad performance is caused

by large models which cover a large portion of the scene. However, in our opinion, the

performance could be significantly improved by adapting the model subdivision. Grid-

based light assignment and model-based light assignment have the advantage that the

light assignment can be precomputed for static lights. Moreover, the global scope of the

light assignment enables the usage for object space shading.
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Kurzfassung

Die Verwendung einer großen Anzahl von Lichtern in einer 3D Szene kann die visuelle

Wiedergabetreue steigern und motiviert somit zur Verwendung von Light Assignment.

Light Assignment ist kein einfach zu lösendes Problem. Es stellt sich die Frage: Welche

Methode ist schnell und erreicht gleichzeitig effizientes Shading?

Um dies zu untersuchen, vergleichen wir mehrere Screen Space Methoden: Tile-Based,

Dense Cluster-Based und Sparse Cluster-Based Light Assignment. Darüber hinaus unter-

suchen wir für jede Methode jeweils zwei Varianten. Eine mit impliziten und die andere

mit expliziten Begrenzungen. Zudem werden zwei neue Methoden vorgestellt: Grid-Based

Light Assignment, eine World Space Methode, und Model-Based Light Assignment, eine

Object Space Methode. In dieser Arbeit optimieren wir als Erstes den Parameter für

die Gruppengröße und den Überschneidungstest. Dann werden die Methoden nach ihrer

Blickabhängingkeit und ihrer Geschwindigkeit analysiert.

Für alle Methoden wächst die Bildberechnungszeit linear mit der Anzahl der Lichter.

Dieses Wachstum kann mit einer Steigung und dem y-Achsenabschnitt, welchen wir hier

als Basis bezeichnen, beschrieben werden. Sparse Cluster-Based Light Assignment mit

expliziten Begrenzungen hat die niedrigste Steigung, die höchste Basis, die geringste Stan-

dardabweichung der Bildberechnungszeit und die niedrigste Abhängigkeit der Verteilung

der Lichtanzahl von der Tiefenkomplexität. Dense Cluster-Based mit impliziten Begren-

zungen und Grid-Based Light Assignment haben ähnliche Charakteristika. Beide haben

eine hohe Steigung, eine niedrige Basis und eine mittelgroße Standardabweichung. Model-

Based Light Assignment hat eine höchst unterschiedliche durchschnittliche Bildberech-

nungszeit in den getesteten Szenen und eine hohe bis sehr hohe Steigung.

Für 1 000 oder mehr Lichter ist die beste Methode Sparse Cluster-Based Light Assign-

ment mit expliziten Begrenzungen. Für weniger als 1 000 Lichter sind Dense Cluster-Based

Light Assignment mit impliziten Begrenzungen oder Gird-Based Light Assignment besser

geeignet. Für die getesteten Szenen hat Model-Based Light Assignment eine zu hohe Stei-
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gung um einen praktischen Nutzen zu liefern. Die niedrige Geschwindigkeit wird durch

die großen Modelle verursacht, welche einen großen Bereich der Szene abdecken. Allerd-

ings könnte unserer Meinung nach die Geschwindigkeit durch Anpassung der Szenenun-

terteilung der Modelle signifikant verbessert werden. Grid-Based und Model-Based Light

Assignment haben den Vorteil, dass das Light Assignment für statische Lichter vorberech-

net werden kann. Zudem ermöglicht der globale Gültigkeitsbereich des Light Assignment

eine Nutzung in Object Space Shading.
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1.1 Motivation

Real-time 3D computer graphic applications, especially games, require visually pleasing

render output. Various features like indirect illumination, shadows, depth of field or

reflection can add more realism to a scene. Adding many lights to a scene can also

increase the visual fidelity and pleasure of a scene. Thus, it is important to find an efficient

way to handle many lights. The main performance problem caused by this is redundant

light computations of unlit or hidden view samples. Additionally, implementations like

traditional deferred shading suffer from a bandwidth problem.

Redundant Light Computations The naive approach of handling many lights is to

simply iterate for each view sample over all lights. This results in many redundant light

computations, where the view sample is not lit by the light. Another cause of redundant

light computations are hidden view samples. For example, the traditional forward shading

technique suffers from this so-called overdraw problem.

Bandwidth Problem The traditional deferred shading technique solves the overdraw

problem by executing the computations of lighting only for the visible view samples. The

stencil buffer optimization reduces the light computations to an absolute minimum. This

is achieved by executing the light computations only for the view samples which are within

the rasterized light volume [5]. However, the disadvantage of this approach is the high

bandwidth requirement resulting from accessing the G-Buffer individually for every light.
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2 Chapter 1. Introduction

Thus, this approach is not suitable for current Graphics Processing Unit (GPU)s due to

their relatively slow bandwidth compared to their computation speed.

Light Assignment can be used to address the problems mentioned above. It is a

general concept which performs a step before shading in order to assign lights to a group

of view samples. The most common shading techniques used in combinations with light

assignment are forward or deferred shading. There are different light assignment methods

and the most significant difference is the way how view samples are grouped. For example,

tiled shading [17] subdivides the screen in tiles, clustered shading [18] subdivides the view

frustum into 3D clusters and hashed shading [21] groups the view samples into cells of

a world space octree. The redundant light computations are reduced by looking up the

light assignment result and only computing the lighting for the visible lights within the

group. The bandwidth requirement is much lower than for traditional deferred shading.

This is because for the forward variant there are no G-Buffers used and for the deferred

variant the G-Buffer is only looked up once for each view sample. The overdraw problem

is implicitly solved in the deferred variant and can also be solved for the forward variant

by adding a depth pre-pass.

1.2 Goals

Speaking very generally, the inputs for rendering are the 3D scene and the set of lights

for each frame. The problem is now to efficiently compute the rendering which requires

a fast light assignment and shading. The scope of this work is to compare different ways

of grouping view samples together for light assignment. The contributions of this work

are the introduced new light assignment methods, the optimization of the best group

size parameter and intersection test, the comparison regarding the view dependency and

performance and the selection of the best methods fitting for many lights and the best

methods for few lights.

Methods The methods which are compared are categorized by the space in which the

subdivision is based on. The screen space methods are the tile-based and dense cluster-

based and sparse cluster-based light assignment method. For each of these screen space

methods two variants are investigated. The first variant uses implicit bounds and the other

variant uses explicit bounds for light assignment. We introduce two new light assignment

methods for world space and object space. The first is called grid-based light assignment

and uses a world space grid to perform the light assignment per call. Although using a

world space grid in computer graphics is not new, we think we are the first to introduce

it in the context of light assignment. Furthermore, to our knowledge, we are the first to

introduce model-based light assignment, which performs light assignment per model.
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Optimization Before analyzing the methods in depth, we optimize the group size pa-

rameter and the intersection test of each light assignment methods. The goal of the opti-

mization of the group size parameter is to select the value of the group size parameter for

each method which minimizes the average frame time of the different scenes. The second

part of optimization deals with the intersection tests. The goal is to find a combination of

intersection tests which minimizes the number of false positives and the computing time

for the intersection test. We do this in a similar manner as optimizing the group size

parameter by selecting the combination of intersection tests which minimizes the average

frame time over different scenes.

Analysis The analysis consists of investigating the view dependency and performance

of the light assignment methods. The view dependency time is measured by the Stan-

dard Deviation (SD) and Relative Standard Deviation (RSD) of the frame time, and the

dependency on the light count distribution of the light assignment group on the depth dis-

continuity. The performance is measured by the average frame time for various numbers

of lights. For each method, a line is fitted on the measurements to show the linearity and

enable comparison. We determine for which light count range a method is suitable and

which method performs best for a certain light count range.





2
Related Work

Contents

2.1 Tiled Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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2.1 Tiled Shading

Olsson and Assarsson [17] introduced the simple screen space light assignment method tiled

shading. The screen is subdivided in tiles with a fixed pixel size. Examples of such tile

sizes are 16 × 16 [3, 14] or 32 × 32 [17] pixels. The method consists of the two steps light

assignment and shading. In the light assignment step, the visible lights are determined for

each tile. In the shading step, the lighting is computed for each view sample by using only

the lights within the tile. Consequently, the number of light computations are reduced and

the performance of shading is highly improved compared to a brute force approach, which

takes all lights into account for shading. In this section, the advantages, the disadvantages,

and some variations of tiled shading are presented.

Advantages The important advantages of tiled shading are the low bandwidth and the

possibility to solve the overdraw problem. Furthermore, it offers a coherent access pattern

of lights within a tile during shading, the flexibility to switch between deferred and forward

version, and the support of transparency and Multisample Anti-Aliasing (MSAA). One

big benefit of tiled shading is the highly reduced bandwidth requirement compared to

traditional deferred shading. Traditional deferred shading reads for each lit view sample for

5



6 Chapter 2. Related Work

each light from the corresponding entry in the G-Buffer and writes the result of the lighting

computations to the A-Buffer. This results in a bandwidth problem, because the read and

write operations are performed for each light individually. In tiled shading, the loop order

for lights and view samples is switched. Thus, looking up the G-Buffer is performed

only once for each view sample which results in a much lower bandwidth requirement.

The separation of light assignment and shading enables the flexibility to switch between

forward and deferred shading. It is also possible to combine the approaches to support

transparency. The opaque geometry is first rendered using deferred tiled shading and then

the transparent geometry is rendered using forward tiled shading. The overdraw problem

is trivially solved for the deferred version. Adding an extra depth pre-pass can also solve

the overdraw problem for the forward version.

Disadvantages The disadvantages of tiled shading are the high view dependency and

that shadow maps cannot be reused. During shading, all lights of a tile are used at once,

so all the shadow maps of these lights must be available at the same time. Consequently,

the shadow maps cannot be reused across these lights, which results in increased memory

consumption. The main disadvantage is a high view dependency caused by the unfavorable

combination of 2D light assignment and 3D geometry. Depending on the scene, the frame

time might be unpredictable, which is highly undesirable for real-time applications.

MinMax By using only implicit bounds for tiled shading, the depth of a tile reaches

from the near to the far plane. This is undesirable because the tile is very long in the

z-direction and, as a result, light assignment results contain a lot of false positives, i.e.

lights which do not influence any actual view sample within the tile. MinMax determines

for each tile the depth range from the depth buffer [17, 23], which can highly reduce the

number of false positives. According to Thomas [23], the tile depth can be faster computed

using parallel reduction instead of atomic min/max operations. The problem is that the

performance depends on the degree of depth discontinuity. If the geometry within the tile

have low depth discontinuity the number of false positives will also be low. However, if

the geometry has low depth discontinuity the number of false positives will be higher, and

hence shading will be slower.

HalfZ (also called bimodal clusters [15]) takes the depth range computed from the depth

buffer and splits the range into two halves [23]. Then a list of visible lights is computed

for each half. This approach speeds up the shading because the number of visible lights

per tile is reduced. However, this approach increases the light assignment work and is still

highly influenced by depth discontinuities.

Modified HalfZ takes the two halves produced by HalfZ and further shrinks the depth

ranges of the halves [23]. The shrinking is accomplished by looking at all depth values

within the tile and computing for each half the minimum and maximum depth value. This
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can further decrease the influence of depth discontinuities. However, if there is more than

one depth discontinuity at least one half contains one or more depth discontinuities, which

leads again to a high number of false positives, and therefore, a high shading time.

2.5D Culling is a more sophisticated technique [11]. Like MinMax this approach first

determines the depth range of the view samples for each tile. It subdivides the depth

range into divisions and computes a so-called geometry mask, where one bit indicates if

the corresponding division contains any geometry. Also for each light, a light mask is

computed, where each bit indicates if the light intersects with the corresponding division

of the tile depth range. If the bit-wise and of these two masks is non-zero, the light is

added to the list of visible lights of the tile. The view dependency is much lower compared

to the other variants. However, the usage of implicit bounds for each division results in

false positives.

2.2 Clustered Shading

Clustered shading is a screen space light assignment method, which groups view samples

with similar attributes into clusters. Olsson et al. [18] proposed two variations on which

attributes to chose. In the first variant, the clusters are based only on the quantized 3D

position within the view frustum and in the second variant the clusters are additionally

based on the quantized surface normal. 3D clusters are more common in the literature

[20, 23], and thus we will only focus on the first variant. In this variant, the screen is

subdivided by two dimensions, like tiled shading, and the depth is exponentially subdivided

in view space. The subdivision can, for example, consist of a tile size of 64 × 64 with 16

[2] or 32 depth slices [20, 23].

Advantages The main problem of tiled shading is the high view dependency. Even by

using a variation like MinMax, it is possible that due to depth discontinuities, tiles can

cover a large portion of the view frustum’s depth range. 3D clusters, however, are restricted

to their local, much smaller bounds, which results in much lower view dependency. The

number of lights per cluster is stronger connected to light density, consequently the per-

formance is more predictable. Like tiled shading, clustered shading has a low bandwidth

requirement, the flexibility to switch between forward and deferred shading, the possibility

to solve the overdraw problem and the easy support of transparency and MSAA.

Disadvantages Minor drawbacks of clustered shading are that it is more complicated

and requires an increased effort to find good parameter configurations. The most impor-

tant drawback is the inefficient light assignment caused by the highly different sizes of the

clusters in world space resulting from the 3D subdivision. More specifically the problems

are the thin near clusters and the same subdivision in x- and y-direction for all depth
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values. These problems are addressed by the practical clustered shading and cascaded

clustering.

Implicit vs. Explicit Cluster Bounds The implicit cluster bounds are the full bounds

of the cell within the view frustum grid without taking any actual view sample into account.

The light assignment can be computed based on these implicit bounds. However, this

might produce a lot of false positives. Another approach is to use the positions of the

view samples and compute the explicit bounds for each cluster. This highly reduces the

number of false positives due to the reduced cluster sizes. Furthermore, it is also possible

to skip the light assignment of empty clusters.

Dense vs. Sparse Cluster Grid Using a dense cluster grid means that for all clusters

in the grid, light culling is executed and memory for the visible lights is reserved. This

is a quite simple approach and results in an easy light look up for shading. The disad-

vantage is that this approach is wasteful, because empty clausters cause unnecessary light

culling executions and reservation of unused memory. For a sparse cluster grid, the light

assignment is only executed for the visible clusters. Additionally, memory for the visible

lights is only reserved for the visible clusters. The cost of finding the visible lights for each

cluster becomes lower. Note that the shading time cost stays the same. The downsides of

this approach are that the implementation is more difficult and the overhead of finding the

clusters is added. For the forward version, a depth pre-pass becomes mandatory because

the depth values are needed to identify the visible clusters.

Practical Clustered Shading modifies the clustered shading approach by handling

the near and the far clusters differently [20]. In the normal clustered shading, a lot of

clusters reside next to the near plane, which results in inefficient light assignment. This

approach increases the depth range of the first cluster to decrease the light assignment

cost. Additionally, light assignment is not performed for the full view frustum but the

maximum depth is restricted to some value below the far plane. Far lights are handled in

a different, approximate and more efficient way.

Cascaded Clustering The problem of small clusters in the near plane can also be mit-

igated by simply reducing the resolution of light assignment grid in x- and y-direction

However, due to the uniform x and y subdivision of the whole view frustum clusters will

become bigger. Thus, they might contain more false positives and the shading cost in-

creases. Cascaded clustering [8] subdivides the frustum along the depth axis into cascades,

where each cascade has its individual resolution in x-, y- and z-direction. Consequently,

each cascade can be seen as a separate frustum with a limited depth range. This approach

now provides a far better view frustum subdivision and results in a more efficient light

assignment. The downside is that it is more complicated and choosing good subdivision
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parameters, which are the number of cascaded and the resolution for each cascade, gets

harder due to the increased possibilities.

2.3 Light Assignment in World Space

Performing light assignment in world space means that the view samples are grouped

based on the 3D world space position. It has the advantage that light assignment itself

is view-independent, which enables the precomputation of the light assignment for static

lights. Compared to screen space methods it is easier to take advantage of frame-to-

frame coherency of dynamic lights. It is also possible to use it for object space shading,

which needs light assignment results outside the view frustum. A downside is that it

might be wasteful and inefficient if used in combination with forward or deferred shading,

where shading samples only exist within the view frustum. In this case, world space

light assignment will result in unnecessary light assignment outside the view frustum.

Also, because the subdivision is applied to the whole scene, the resolution might be too

coarse within the actual view frustum, which results in inefficient shading. In the next

paragraphs, we describe related work, which uses world space subdivision in a regular grid

and octree.

Regular Grid To our knowledge, there is no work about a grid-based world space

method used for light assignment. However, there are other approaches in the context

of ray tracing or occlusion culling, which take advantage of a 3D grid to accelerate com-

putations. Garanzha and Loop [10] use a virtual 3D world space grid to implement ray

sorting, which they need for their ray tracing algorithm. For ray sorting the ray origin

and the ray direction is quantized and combined to a hash value. Sorted rays will be more

coherent and produce a better memory access pattern. Batagelo and Wu [7] use a 3D

grid as acceleration structure for occlusion culling. Each voxel within the grid identifies

local features like opacity, occlusion and spanned objects of the scene. For each frame,

the grid is traversed in an approximate front-to-back order to compute a conservative set

of visible object. The overall goal of this approach is to accelerate the visualization of

complex dynamic scenes.

Hashed Shading is a shading technique, where the light assignment is performed as

a precomputation step in a linkless octree in world space [21]. The advantage of this

approach is the view independency and the frame-to-frame reuse of the light assignment

result. The octree enables the adaption of cell sizes which results in more efficient shading.

A big disadvantage is that hashed shading does not support dynamic lights and has a very

high memory consumption. Consequently, this approach might need some more research

to provide a practical solution for many dynamic lights.
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2.4 Data Structures

The light assignment receives the lights as an input and stores the assigned lights of the

groups as an output. The choice of the data structure of the input and the output highly

influences the performance of the light assignment or shading. In this section examples

for input and output data structures will be presented.

2.4.1 Light Assignment Input

The input of the light assignment consists of the lights needed for light assignment. The

underlying data structure can highly affect the speed of the light assignment and can be

categorized into linear and hierarchical types. In this section, we will present one example

for each type. The first is the simple linear list and the other is the Bounding Volume

Hierarchy (BVH).

Linear List The most simple way is to use a linear list of lights. This has the advantage

that no additional step is required to build the data structure. The linear list can be

used by different light assignment algorithms. For example, for analytical testing [12, 17]

or rasterization of light volumes [19]. The problem of this simple data structure is that

at the beginning of light assignment nothing is known about at the lights itself or the

relationship between them. Thus, it is necessary to iterate over all elements of the linear

list.

Bounding Volume Hierarchy Olsson et al. [18] perform light assignment using a

BVH of all lights in the scene. The leaves represent the lights with a light sphere and each

parent represents the union of its child nodes by a Axis-Aligned Bounding Box (AABB).

The advantage of this data structure is that due to the hierarchy more lights can be

eliminated with a single intersection test. Thus, the light assignment speed is increased.

As a consequence of the additional overhead added by constructing the BVH and the cost

of traversing the tree it is not suitable for using a scene with a small number of lights.

2.4.2 Light Assignment Output

The light assignment stores the visible lights of each group as an output. The data

structure of the output determines the speed of shading and can be categorized into linear

and hierarchical types. We will present three examples. The first example deals with the

linear list and the other two examples deal with tiled light trees.

Linear List The most straightforward way is to simply store the light assignment result

in a linear list. Each group occupies a consecutive range within the linear list, where its

visible lights are stored. This enables an easy construction and shading process. The

disadvantage is that, because no additional information of the lights is known, a view
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sample within has to iterate over all visible lights within the group. It is possible to either

store the light data directly [4] in the linear list or just store an index [12, 17, 18]. The

indirect index version uses less memory but more bandwidth is required for shading due

to the indirect lookup. For the direct version, it is the other way round.

Tiled Light Trees for Tiled Shading O’Donnell and Chajdas [16] introduced the

so-called Tiled Light Trees with two variants. The first variant uses the light trees in

combination with tiled shading. For each tile, a binary tree is computed, which is sorted

by the center along the z-direction in view space. During shading, each pixel traverses

the corresponding tree to compute the lighting. Due to the tree traverse potentially not

all lights of a tile are used for computing the lighting. The shallow trees which are also

sorted in depth-first order are well suited for the Graphics Processing Unit (GPU). One

drawback is the more complicated construction. Moreover, tiled light trees are slower than

conventional clustered shading under some view conditions, where the traverse of the tree

creates too much overhead.

Tiled Light Trees for Clustered Shading Another variant of tiled light trees com-

bines the light trees with clustered shading [16]. The view frustum is subdivided into cells

just like clustered shading. First, for each cell, the list of visible lights are computed and

stored in a linear list. A heuristic decides if a light tree should be computed for a cell.

This variant does not suffer from slow down due to the additional overhead of the tree

traverse under certain view conditions like the first variant does. The disadvantage is that

the implementation gets more involved. For example, threads within a tile might create

divergence by executing a cell with a linear list and a light tree at the same time. The

implementation must handle that case in an efficient way.

2.5 Construction Algorithms

The core of the light assignment algorithm is the construction algorithm. This is the

step where the visible lights are determined and stored. There are different ways on how

to classify the construction algorithm. It is possible to distinguish if the construction is

performed on the Central Processing Unit (CPU), on the GPU or on both. The methods

could also be classified if they are gathering and scattering algorithms. A gathering algo-

rithm gathers the visible lights for each group and a scattering does exactly the opposite

by scattering each light to the affected groups. We decided to choose a more practical

classification, which is used by Archer et al. [4]. In the following, we distinguish between

analytical, rasterization and hybrid, which combines the two.

Analytical The most obvious way of constructing the visible lights is by iterating over

the light assignment input data structure and analytical test [11, 12, 16, 17] the lights

for an intersection. Analytical testing means that an intersection test of a light and a
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light assignment group is explicitly done in code. For example, if it should be determined

whether a finite point light intersects with a tile in tiled shading, the sphere of the light

and frustum of the tile are tested with an analytical intersection test.

Rasterization The idea of determining the visible lights by rasterization is to rasterize

the light volumes in a conservative way to find the affected groups. Örtegren [19] uses

rasterization in combination with clustered shading. Arbitrary light volumes are supported

by this approach. The only requirement is that the light volume can be represented as

a convex mesh. The approach consists of the shell pass followed by the fill pass. Firstly,

in the shell pass, the shell of the light volume is rasterized to the cluster grid. Thus, for

a certain screen space tile, only the first cluster and the last cluster along the z-axis are

hit. Secondly, the fill pass makes sure that the clusters in between are also affected by the

light.

Hybrid Hybrid lighting [4] is a hybrid between an analytical approach and rasterization

and is applied to clustered shading. Billboard quads of the lights are rasterized to find

the tile intersections of the light. Then the depth range is computed of the light volume

within the tile in an analytical way. The depth range is used to add the lights to the

affected clusters within the depth range. The performance can be improved by adding a

depth pre-pass. It is determined which cells actually contain geometry and add lights only

to non-empty cells.

2.6 Intersection Tests

Intersection tests determine if two given objects intersect or not. Note that these two

objects can be of different type. Common examples for a type of an object are ray,

plane, sphere, cylinder, cone, triangle, AABB , Oriented Bounding Box (OBB), frustum

or polyhedron [1, ch. 22]. For light assignment, the intersection tests can be used to test

whether or not a light intersects with a light assignment group. We will discuss the tests

which we need for our light assignment methods, namely sphere vs. AABB , sphere vs.

OBB and sphere vs. frustum.

Sphere vs. AABB and Sphere vs. OBB can be performed by the same underlying

method because the latter can be transformed into the former. Testing sphere vs. AABB

for intersection is equal to check if the distance of the nearest point in or on the AABB

to the sphere center is smaller or equal to the sphere radius [6]. The nearest point can

be simply found by clamping the sphere center to the AABB . The sphere vs. OBB

intersection test is very similar because an OBB can be seen as a rotated AABB . By

applying the inverse rotation of the OBB to the OBB and the sphere the result is an

AABB and a sphere. Therefore, this problem can be reduced to sphere vs. AABB [1, p.

977].
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Sphere vs. Frustum can be tested with different approaches. We show two approaches

using half spaces and the Separating Axis Theorem (SAT). For the half space method,

we simply use the half spaces defined by the frustum planes to decide whether or not the

sphere potentially intersects or not. For the SAT method a set of candidate axes is used

to test if any of the axes separates the sphere and the frustum. Thatcher [22] uses the

following candidate axes: frustum edges, plane normals, vertices to sphere center, nearest

vertex to sphere center. Taking into account that we have the half space method and the

SAT method with four different candidate axes we end up with five different tests. The

problem is that each of these tests might produce false positives. The idea is to combine

the intersection tests in such a way that light assignment is fast and the number of false

positives is low. According to Thatcher [22], the half spaces method combined with SAT

method using the nearest vertex is the best combination.
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This chapter presents the different light assignment methods and the used intersection

tests. Before the methods are explained the basic assumptions are discussed, which are the

finite lights volume and the dynamic geometry of lights. The assumption of a finite light

volume is not physically correct but still results in plausible results and enables efficient

light assignment. Furthermore, it is assumed that the lights are dynamic. That means

that the geometry of lights can be totally different from one frame to another. Thus, no

precomputation of the light assignment is performed.

Each of the light assignment methods consists of the light assignment step and the

shading step. Both steps are completely implemented on the Graphics Processing Unit

(GPU). This work only focuses on the light assignment methods and, thus only one shad-

ing technique, namely forward shading, is implemented. The most significant difference

between the methods is how the view samples are grouped together to a light assignment

group. The presented methods are screen space, world space grid, and object space meth-

ods. The screen space methods either perform light assignment per 2D tile or 3D cluster.

The world space method performs light assignment per cell in a world space grid and the

object space method performs light assignment per model. Figure 3.1 gives an overview

of the different methods. Table 3.1 summarizes their properties, which are discussed in

the corresponding section of each method.
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Figure 3.1: Light assignment methods. The leaves represent the acronyms of the methods.

Method T-I T-E DC-I DC-E SC-I SC-E G M

Space Screen Space
World
Space

Object
Space

Intersection
Test

Sphere vs. Frustum
Sphere
vs.

AABB

Sphere
vs.

OBB

Group Tile Cluster Visible Cluster Cell Model

Parameters Tile Size Tile Size, Z Count
Cell
Count

-

Scope
View
Frus-
tum

Sam-
ples

View
Frus-
tum

Sam-
ples

Sam-
ples

Sam-
ples

Scene
Models

(≈ Scene)

Explicit
Bounds

✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

Depth
Pre-Pass

✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗

Visibility
and
Explicit
Bounds
Stage

✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗

Table 3.1: Properties of the light assignment methods.
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3.1 Tile-Based Light Assignment

We introduce the term tile-based light assignment as the light assignment process which

assigns lights to screen space tiles of fixed pixel size. It is equal to tiled shading presented

in Section 2.1, however, the name emphasizes the light assignment step instead of the

shading step. Two variants are implemented. The first variant uses an implicit depth

range, and the other uses an explicit depth range. By implicit depth range, we mean the

full depth range from the near to the far plane. The explicit depth range covers only the

depth range of the view samples within the corresponding tile. This explicit variant is the

same as the MinMax optimization for tiled shading. The different stages of this method

are the depth pre-pass, the explicit tile depth range stage, the light culling stage and the

shading stage. Note that the first two stages are only executed for the explicit version. In

the following, the data structures and the stages will be presented.

Data Structures All the data structures are linear lists. The light buffer is the input

of the light culling stage and is a linear list of the light data of all lights. The light data

consist of color and the geometry description of the light. For example, for a point light,

the geometry description consists of position and radius. The visible light index buffer

is the output of the light culling stage and is a linear list of light indices. For each tile,

a fixed amount of entries is reserved at a fixed offset in the buffer. Additionally, for the

explicit version, there are also the depth buffer and the tile depth range buffer. The depth

buffer is the output of the depth pre-pass and stores the depth value for every pixel. The

tile depth range buffer is the output of the tile depth range stage and stores the explicit

tile depth range for every tile.

Tile Depth Range Stage The tile depth range stage computes the explicit tile depth

range in Normalized Device Coordinates (NDC) for each tile using the depth buffer and

stores it in the tile depth range buffer. Therefore, this stage requires a depth pre-pass and

is only used for the explicit version. Each work group of the shader works on one tile.

Note that the work group size is not equal to the tile size, because the work group size

is restricted and we want to support arbitrary tile sizes. Each thread works on a disjoint

subset of fragments within the tile. First, each thread computes the depth range of a

subset of pixels by looking up the depth buffer and performing min and max operations.

Then the shared variable depth range is initialized to [∞,−∞]. The variable is used by

the threads within a work group to compute the depth range using atomic min and max

operations. The result is then stored in the tile depth range buffer. Note that a tile is

considered empty if its tile depth range is equal to the initialization value.

Light Culling Stage The task of the light culling stage is to compute the visible light

indices of each tile and store them in the visible light index buffer. The found visible

light indices are stored as consecutive entries. The end is marked with the invalid light
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index −1. Note that instead of marking the end with −1, it would also be possible to

explicitly store the number of visible lights of each tile in a buffer. Each work group works

on one title. Now, the steps are discussed. For the explicit version, the tile depth range

is retrieved. If the tile is empty the intersection tests are not performed and the visible

light index buffer is marked empty. For the implicit version, the full tile depth range from

the near to the far plane is used. The world space frustum is computed. After that, the

threads iterate in parallel over all lights and use the sphere vs. frustum intersection test

to decide if the light should be added in the visible light index buffer or not.

Shading Stage The shading stage computes the color for each view sample. For each

view sample, the following steps are performed. The tile is computed by simply subdividing

the screen space coordinates by the tile size. Then the lighting is computed by iterating

over all visible lights of the tile and accumulating the lighting of a single light on the view

sample. In the end, the color is computed by applying the texture of the model to the

accumulated lighting.

3.2 Cluster-Based Light Assignment

Cluster-based light assignment is a screen space light assignment method which performs

the light assignment in view-frustum aligned 3D grid. Hence, it is equal to clustered

shading [18] with 3D clusters. The screen space is subdivided in tiles of fixed size like

in tile-based light assignment. Additionally, the depth is exponentially subdivided in the

view space. We provide two different base variants, which differ in used data structures of

the grid. The first variant uses a dense grid, where light culling is executed for all clusters.

The second variant uses a sparse grid, where light culling is only executed for the visible

clusters. In the following sections, the derivation of the depth index and the two variants

for dense and sparse grid is shown.

3.2.1 Depth Index

The formula we use for computing the depth index from the depth value differs from the

one presented by Olsson et al. [18]. In the following, the formula for the depth index k

for the given depth value in view space zvs is derived. k also depends on the number of

subdivisions in z-direction sz and the view space depth value n of the near plane and the

view space depth value of f of the far plane.

For exponential subdivision, the recursion formula of the minimum depth value nk of

the k-th slice is

n0 = n

nk = bnk−1, k ≥ 1,
(3.1)
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where b is the base factor. Resolving this recursion formula results in

nk = bkn. (3.2)

Using f = nsz = bszn, the formula for the base factor b is

b =
sz

√

f

n
. (3.3)

For the depth value zvs within the k-th slice,

nk ≤ zvs < nk+1 (3.4)

holds. Further, we know that f > n holds. Therefore, by using Equation 3.3, b > 1

holds. This implies that logb v is monotonic increasing for an arbitrary v with v > 0. This

property and n > 0 further implies

logb
nk

n
≤ logb

zvs

n
< logb

nk+1

n
. (3.5)

By substituting nk and nk+1 using the Equation 3.3, we get

logb
bkn

n
≤ logb

zvs

n
< logb

bk+1n

n
. (3.6)

This can be reduced to

k ≤ logb
zvs

n
< k + 1. (3.7)

This implies

k =
⌊

logb
zvs

n

⌋

. (3.8)

Thus, we derived a formula for the depth index k.

3.2.2 Dense Cluster-Based Light Assignment

The first base variant of cluster-based light assignment uses a dense grid. This means that

the light culling stage is executed for all clusters and also that in the light assignment

output, entries are reserved for all clusters. Like for tiled shading, there is also an implicit

and an explicit version. The implicit version uses the full clusters for the intersection test.

The explicit version uses the explicit Axis-Aligned Bounding Box (AABB) in NDC of the

clusters for the intersection test. The stages are the depth pre-pass, the cluster bounds

stage, the light culling stage and the shading stage. Note that the first two stages are only

used for the explicit version. In the next paragraphs, the data structures and the stages

are presented.
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Data Structures The data structures are similar to those of tile-based light assignment.

There is the light buffer, which stores the linear list of lights, and the visible light index

buffer where for each cluster, a fixed range is reserved. For the explicit version, there is

also the depth buffer and the cluster bounds buffer, which stores an AABB in NDC for

every cluster.

Cluster Bounds Stage The task of the cluster bounds stage is to use the depth values

to compute the explicit AABB in NDC for every cluster. Thus, this step requires a depth

pre-pass and is only used for the explicit version. Before the shader is executed, every

AABB of the cluster bounds buffer is initialized to [∞,−∞]3. Each thread works on one

fragment. First, the cluster index is computed using the depth value of the fragment. The

fragment AABB is computed and is applied to the cluster AABB in the cluster bounds

buffer using atomic min and max operations. Note that if the cluster AABB is equal to

the initialization value after executing this stage, the cluster is considered empty.

Light Culling Stage The light culling stage computes the list of visible lights for each

cluster and stores them in the visible light index buffer. Each work group operates on

one cluster. For the explicit version, the explicit bounds are retrieved and if the cluster is

not visible the light culling stage is aborted. For the implicit version, the implicit cluster

bounds are computed. The cluster frustum in world space is constructed. All threads check

in parallel for intersection using sphere vs. frustum intersection testing. If an intersection

test returns true the thread atomically increases the visible light count. The old value is

used as a relative index into the visible light index buffer to store the index of the light.

Shading Stage The shading stages compute the output color for each view sample.

First, the cluster index of the view sample is computed. Then the list of visible lights of

the cluster is iterated over to compute the lighting, which is a simple Phong lighting. The

texture is applied to the lighting and the output color is written to the framebuffer.

3.2.3 Sparse Cluster-Based Light Assignment

Sparse cluster-based light assignment is a variant of cluster-based light assignment where

the grid storing the visible light indices is sparse. Compared to the dense version the light

culling stage is only executed for the visible cluster. Furthermore, memory in the light

assignment output is only reserved for the visible clusters. Like for the dense version, there

is also one version with implicit cluster and one with explicit cluster bounds. The stages

are the depth pre-pass, the cluster bounds and cluster visibility stage, the light culling

stage and the shading stage. Note that the first two stages are used for both versions

because the list of visible clusters is determined before light culling. This section shows

the data structures and stages of sparse cluster-based light assignment.
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Data Structures The used data structures are similar to the dense version. There is

the light buffer, the depth buffer and the visible light index buffer. The visible light index

buffer, however, stores only entries for visible clusters. The visible cluster count buffer

stores the number of visible clusters. It is set to 0 before the stages are executed. The

visible cluster indices buffer is a linear list which stores the cluster indices of the visible

clusters. There is no distinct buffer for the cluster bounding boxes, but they are stored

in the cluster information buffer. The cluster information buffer stores attributes for each

cluster. These attributes are the visibility flag, which indicates if a cluster is visible, the

cluster bounding box, which is based on the view samples, and the slot within the visible

cluster indices, which is also used as an offset in visible light index buffer. The visibility

flag is set to 0 and the cluster bounding box is set to [∞,−∞]3 before executing the stages.

Cluster Bounds and Cluster Visibility Stage The cluster bounds and cluster visi-

bility stage consists of two steps. In the first step, the cluster bounds are computed. The

first step is only performed for the explicit version and is performed the same way as for

the dense version. The only difference is that the bounding boxes are stored in the cluster

information buffer. The second step is mandatory for both the explicit and implicit ver-

sion. Each thread works on one fragment. First, the cluster index is computed using the

depth value in the depth buffer. Then an atomic exchange operation on the visibility flag

in the cluster information buffer is performed. The new value of the visibility flag is 1. If

the old value is 1, then another thread has already set the visibility flag and no further

operations have to be performed. If the old value is 0, then the current thread has to

perform further operations. The visible light count is atomically increased by 1 and the

old value is stored as slot index in the cluster information buffer.

Light Culling Stage The light culling stage computes the visible lights for each visible

cluster. The difference to the dense version is that the light culling stage is executed

only for the visible clusters and the additional level of indirection in order to look up the

cluster index. Each work group works on one visible cluster. Note that each visible cluster

is identified by its slot index. First, the cluster index is looked up in the visible cluster

indices using the slot index. The next steps are the same as for the dense version. The

lights are tested in parallel and the visible lights are added to the visible light indices

buffer.

Shading Stage The shading step computes the color for each view sample. Again, this

step is very similar to the dense version. The difference is the indirect lookup of the slot

index. Each thread computes the cluster index. Then the slot index is looked up in the

cluster information buffer. The next steps are basically the same as for the dense version.

The lighting is computed, using the visible lights of the visible clusters. The color is

computed using the accumulated lighting and the texture color of the model.
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3.3 Grid-Based Light Assignment

We introduce the new world space method grid-based light assignment. The whole scene

is subdivided in a regular world space grid and light assignment is performed for each

cell. Although the concept of using a world space grid as acceleration structure is not

new [7, 10], to our knowledge, we are the first to introduce it in the context of light

assignment. We employ a pure world space approach. Thus, we do not use a depth pre-

pass to compute the implicit cell size. Therefore, we present only the implicit version and

no explicit version. The data structures used are the light buffer and the visible light index

buffer, which stores the visible light indices for each cell. The method consists of the light

culling stage and the shading stage, which are discussed in the following.

Light Culling Stage The task of the light culling stage is to compute the list of visible

lights for every cell. Each work group works on one cell. First, the cell AABB in world

space is computed. Then all threads check in parallel the lights using sphere vs. AABB

intersection test, which is discussed in Section 3.5.1. The result is then added to the visible

light index buffer.

Shading Stage The goal of the shading stage is to compute the color of every view

sample. First, the cell index is determined. Then the lighting is computed by iterating

over the visible lights of the cell. The output color is the combination of the accumulated

lighting and the texture color of the model.

3.4 Model-Based Light Assignment

We present the novel object-space method named model-based light assignment. The

model bounds defined by the scene data are used to perform a per-model light assignment.

A pure object space approach is employed, and thus no explicit bounds are computed.

The stages are the light culling stage and the shading stage. They are similar to the other

methods and are presented below.

Data Structures The data structures consist of the light buffer, the visible light index

buffer, the model matrix buffer and the model bounds buffer. The visible light index

buffer contains the visible lights of each model. The model matrix buffer contains the

model matrices of each model. We assume that each model matrix M has the form

M = T · R · S, where S is a scale matrix, R is a rotation matrix and T is a translation

matrix. This enables a faster sphere vs. Oriented Bounding Box (OBB) intersection test,

which is described in Section 3.5.1. The model bounds buffer stores the model AABB in

object space for each model.
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Light Culling Stage The light culling stage determines the visible lights for every

model. Each work group operates on exactly one model. First, the model matrix and

object space AABB of the model are retrieved. The threads check in parallel the lights for

intersection using sphere vs. OBB intersection test. Note that the intersection test takes

the light sphere, the model matrix and the model AABB as input. The result is stored in

the visible light index buffer.

Shading Stage The shading stage computes the color of each pixel based on the light

culling result from the previous stage. For each model, an independent rasterization run is

executed and the model index is passed as uniform to the shader. The lighting is computed

by iterating over the visible lights of the model. The texture of the model is applied to

the accumulated lighting and the result is written to the framebuffer.

3.5 Intersection Tests

An intersection test decides if two given object intersect or not. For light assignment,

intersection tests are used to decide whether or not a light intersects with a light assign-

ment group. Furthermore, using intersection tests for light assignment implies that the

objects must be solid. This means that we consider the boundary and the interior for the

intersection test. Our implementation only supports point lights, which are represented

by spheres. The light groups are either frustums for screen space, AABBs for world space

or OBBs for object space light assignment methods. Thus, the intersection tests we need

are sphere vs. frustum, sphere vs. AABB and sphere vs. OBB . This chapter will explain

these intersection tests in more detail. Figure 3.2 shows an overview of the intersection

tests and Table 3.2 provides a short description of the intersection tests.

Intersection Test

Screen Space

Sphere vs. Frustum

Half Space

HS

Separating Axis Theorem

Edges

SAT-E

Nearest
Vertex

SAT-N

Plane
Normals

SAT-P

Vertices

SAT-V

World Space

Sphere vs. AABB

Nearest Point

NP

Object Space

Sphere vs. OBB

Nearest Point
with

Transformation

NPT

Figure 3.2: Intersection tests. Each leaf represents the acronym of the corresponding
method.
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Type Method Description

Sphere
vs.

AABB
NP

The nearest point in or on the AABB to
the sphere center is used to test for intersection.

Sphere
vs.

OBB
NPT Nearest point method with transformation.

Sphere
vs.

Frustum

HS
The half spaces defined by the planes of frustum are used
to test if the sphere is potentially partially inside the frustum.

SAT-E
Checks if at least one
of the following axes
is a separating axis:

frustum edges.
SAT-N center of sphere to nearest vertex.
SAT-P normals of frustum planes.
SAT-V center of sphere to vertices.

Table 3.2: Short descriptions of the intersection tests. Note that the sphere vs. frustum
intersection tests can be combined to reduce the number of false positives.

3.5.1 Sphere vs. AABB and Sphere vs. OBB

The methods to test sphere vs. AABB and sphere vs. OBB are very similar. They

produce no false positives and no false negatives. Initially it will show how to solve sphere

vs. AABB using the simple nearest point method. Then it will be explained how sphere

vs. OBB can be transformed to sphere vs. AABB .

Sphere vs. AABB with Nearest Point Method To test sphere vs. AABB the

nearest point method is used. At first we find the point P which is in or on the AABB

and is nearest to the sphere center. This can easily be achieved by clamping the sphere

center to the AABB . Then we compute the distance of P to the sphere center. If this

distance is smaller or equal to the radius there is an intersection, otherwise not [6].

Sphere vs. OBB with Nearest Point with Transformation Method The inter-

section test for sphere vs. OBB can be transformed to sphere vs. AABB . An OBB can be

defined as an AABB which was transformed using a matrix M . We restrict the matrix M

is to the from M = T ·R ·S, where S is the scale matrix, R the rotation matrix and T the

translation matrix. This is an adaption for the use case for model-based light assignment.

Note that it is still possible to perform every sphere vs. OBB test because every OBB

can be expressed as an AABB with a matrix of the form above. First, we decompose the

given matrix into the translation matrix T , the rotation matrix R and the scale matrix

S. The transformation (R · T )−1 is applied to the sphere which results again in a sphere.

The radius stays unchanged and it is sufficient that the sphere center is transformed by

(R · T )−1. The transformation S is applied to the AABB of the OBB which results in a

scaled AABB . The translated and rotated sphere and the scaled AABB can now be used
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as input for the sphere vs. AABB intersection test. Therefore, it was shown how to test

sphere vs. OBB using sphere vs AABB and transformation.

3.5.2 Sphere vs. Frustum

The sphere vs. frustum intersection tests are more involved as the tests before. In this

section, the half space method, the Separating Axis Theorem (SAT) method and the

combination of these methods are presented.

Half Space Method The first method of testing sphere vs. frustum is called the half

space method. We assume that the normals of the planes of the frustum point outwards.

If the sphere is at least partially inside all negative half spaces of the frustum planes, then

the intersection test reports true, otherwise false. Note that this method can result in

false positives.

Separating Axis Theorem Method The hyperplane separation theorem states that

for any two non-empty disjoint convex sets in n-dimensional Euclidean space there exists

a separating hyperplane [9]. This means that there exists a separating axis which is

orthogonal to the hyperplane to which the convex sets can be projected and the projected

intervals of the convex sets do not overlap. We can use this SAT to decide the intersection

of two convex sets. We test a set of finite candidate axes until we find a separating axis.

If we do not find a separating axis we assume that the convex sets overlap. The test

might produce false positives because it is possible that none of the candidate axes is a

separating axis, although there exists a separating axis. Note that in our example the two

convex sets are the sphere and the frustum. There are multiple possibilities for candidate

axes. We use the axes sets proposed by Thatcher [22]. These are the edges, the axes from

vertices to the sphere center, the axis from the nearest vertex to the sphere center and the

plane normals.

Combination The half space method and all four methods of the SAT potentially

produce false positives. False positives do not change the rendered output itself, but they

cause unnecessary light computations. This increases the shading costs. Simply combining

all tests will result in the least amount of false positives but the time cost for the light

assignment will also significantly increase. Thus, we try out different combinations and

evaluate which performs the best in terms of minimizing the light assignment and shading

time.
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In this chapter, we provide the results of this work. The most important parts are

the optimization and analysis of the methods. In the beginning, the test system, the

scenes, and the camera paths are described. We define a distribution for the light which

will be used for all scenes. Next, the best values for group size parameters and the best

combinations of intersection tests are empirically selected. The methods are analyzed by

view dependency and performance. In the end limitations of our work are discussed. Note

that acronyms for the light assignment methods, which are introduced in Figure 3.1 and

for intersection tests, which are introduced in Figure 3.2 are used in this chapter.

4.1 Setup

First, the setup of the evaluation is described. The configuration of the test system is

shown in Table 4.1. The scenes were rendered using a resolution of 1920 × 1080 (Full

HD). Moreover, the methods were implemented on the Graphics Processing Unit (GPU)

using the Vulkan® Application Programming Interface (API). In the following section,

the properties of the scenes and the models are presented. Additionally, the properties of

the camera path and the bounding box of the light position are discussed.

Scene and Models The characteristics of the scenes with their models are presented

in Table 4.2. The properties of the model subdivision are indicated by the model count

27
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Operating System
Linux® 64 Bit
(Kernel Version: 4.14.92-1-MANJARO)

CPU Intel® Core™i5-4670K CPU @ 3.40GHz

GPU NVidia® GeForce® GTX 780

NVidia® Driver Version 415.25

Vulkan® API Version 1.1.84

Table 4.1: Setup of the test system.

as well as the average and variance of the bounding box size of the models. It can be

observed that for certain axis and scenes there is a very high variance, which indicates

highly diverse model sizes. Note that the model sizes have a high impact on model-based

light assignment.

Camera Path and Light Position Table 4.2 also lists properties of the camera path

and the bounding box of the light position. Each scene has its own camera path. This

is rendered and the frame time is measured for the evaluation. Furthermore, there is the

bounding box of the camera path and the lights. The bounding box of the camera path

is computed from camera positions. The bounding box of the lights defines the bounds

in which the lights are placed. Note that the relation between these two bounding boxes

gives an indication of the performance of grid-based light assignment. The bigger the light

bounding box is compared to the camera path bounding box the higher the chances that

unnecessary and too coarse light assignment is performed by grid-based light assignment.

For the scenes Robot Lab and Sponza we choose the light bounding box to be equal to

the scene bounding box. The scene bounding box of Viking Village is relatively large

compared to the bounding box of the camera path. Hence, we choose the light bounding

box of that scene in a different way. We scale each side of the camera position bounding

box by the arbitrary value 1.5 to get the light position bounding box.

4.2 Light Distribution

This section focuses on the selection of the light distribution. The only supported light

types are point lights, which light sphere is fully defined by the position and the radius.

For positions, we simply choose to uniformly distribute them in the light position AABB .

The selection of the distribution of the radii is more involved and will be discussed in this

section. First, we talk about what we expect from a radius distribution. A proper light

distribution is picked, namely the gamma distribution. Then we choose the mode and

mean and derive formulas to compute the distribution parameters based on the mode and

mean.
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Robot Lab Sponza Viking Village
S
ce
n
e #Triangles 470 781 262 249 4 260 750

#Vertices 382 101 184 366 2 874 121
AABB Size (33.2, 15.7, 48.8) (37.2, 15.6, 22.9) (1 089.0, 132.9, 866.4)

M
o
d
el
s

#Models 645 392 1 215
AABB Size
Average

(2.9, 1.9, 3.0) (2.1, 0.8, 1.0) (4.8, 2.5, 4.6)

AABB Size
Variance

(29.9, 5.5, 48.0) (35.3, 1.7, 7.0) (642.2, 31.2, 610.5)

C
am

er
a

P
at
h

Position
AABB Size

(7.9, 1.7, 19.4) (15.9, 5.8, 9.7) (57.8, 5.1, 46.4)

#Frames 1200 1200 1200

L
ig
h
t

P
os
it
io
n AABB Size Scene AABB

(33.2, 15.7, 48.8)
Scene AABB
(37.2, 15.6, 22.9)

1.53× Camera AABB
(86.7, 7.6, 69.5)

Table 4.2: Properties of scenes, models, camera paths and light positions. The focus of
the properties lies on the Axis-Aligned Bounding Box (AABB) sizes of the different parts.

Expectations Before a distribution of the light radii can be selected, it is necessary to

discuss what is expected of the radii. We expect a lot of small lights, a medium amount of

medium-sized lights and a very low amount of large lights. Very large lights which affect

the whole scene should not be handled by light assignment but by a different system.

Chosen Solution: Gamma Distribution Based on the expectations we choose the

gamma distribution for the light radii. The probability density function of the gamma

distribution is defined as

p(x|α, β) =
1

Γ (α)βα
xα−1e

−x
β [13]. (4.1)

We choose mode = 0.25 and mean = 1.0 to get the distribution shown in Figure 4.1. Thus,

the selection matches our expectations. The values around mode show the small lights

and the probability of large and medium-size lights can be influenced by moving mean.

Note that the values are not relative but absolute values.

Derive Distribution Parameters For the sake of completeness, we will derive formu-

las of the distribution parameters α and β based on mode and mean. mode and mean of

the gamma Probability Density Function (PDF) given in Equation 4.1 can be expressed

depending on α and β by

mode = (α− 1)β and

mean = αβ [13].
(4.2)
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Figure 4.1: Probability density function of the light radius with mode = 0.25 and mean =
1.0. The distribution is a gamma distribution with the parameters α = 1.3 and β = 0.75.

This can be used to derive the formulas for the parameters α and β:

α =
mean

mean−mode
and

β = mean−mode.
(4.3)

By applying the equations to the given mode = 0.25 and mean = 1.0 we get α = 1.3 and

β = 0.75.

4.3 Optimization

The goal of the optimization is to find the best configurations for all methods. First, the

group size is optimized and based on this the best tile-based and cluster-based method is

selected. These methods are then used to search for the best combination of intersection

tests.

4.3.1 Group Size Parameter

The goal of the group size parameter optimization is to select the parameter value which

performs the best across all scenes. The group size parameter of each light assignment

method defines the geometric size of the light assignment group, and this is why they
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highly influence the performance. The specific group size parameter of the methods is the

tile size for the tile-based method, the combination of tile size and cluster z-count for the

cluster-based methods and the grid size for the world-space method. Note that the model-

based light assignment has no group size parameter, and hence we will not optimize this

method. In the following, we explain the plots, which show the average frame times of the

different methods and scenes. We discuss the different cases of the measured values, which

require different selection strategies. Then, the best value of the group size parameter is

selected for each method. In the end, the results are summarized and the best tile-based

and cluster-based methods are selected.

Plots The plots shown in Figures 4.2-4.5 are set up to enable the selection of the best

parameter for each method. Each plot is specific to one method and one scene and

compares the average frame time of the camera path for different parameter values. The

average frame time is used as characteristic because it provides a good indication of the

performance. As light count 10k is chosen, because the light assignment method should

be optimized for many lights. For the intersection test HS+SAT-N (Half Space Method

Combined with Separating Axis Theorem (SAT) Nearest Vertex), which is recommended

by Thatcher [22] is used. The plots compare a fixed set of parameter values. Different

values were chosen beforehand and the values are narrowed down to the presented ones.

Cases The methods can be divided into three cases, depending on how many scenes

possess the same best parameter value for that method. Note that by best parameter

value we understand the one that has the lowest average frame time. For each of these

cases, selecting the best parameter has a different level of difficulty and needs a different

strategy. For example, if at least two out of the three scenes have the same best parameter,

we could simply select a parameter by a majority decision. The cases and the methods

which are of this case will be discussed in the following paragraphs.

Case 1: All Scenes Have The Same Best Parameter Value If all three scenes

have the same best parameter value, the decision is quite easy and the selected value is

equal to this best parameter value. The only method which falls into this case is T-I (see

Figure 4.2), where the parameter value (28, 28) is the fastest for all scenes.

Case 2: Two Scenes Have The Same Best Parameter Value The second case is

when two of the three scenes have the same best parameter value. By using a majority

decision, the best parameter value of the method is easily selected as the parameter value

which is the best for two of the three scenes. However, it might be the case that for the

third scene this parameter value performs significantly worse than the other parameter

values for this scene. In this instance, the majority decision might be malfunctioning.

Note that this is not the case for the evaluations we performed. For T-E (see Figure 4.2),

DC-I (see Figure 4.3), and DC-E (see Figure 4.4), there is a parameter value which is best
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for two scenes. As for the third scene it is second best with a very similar average frame

time. The selected values are (28, 28) for T-E , (128, 128, 64) for DC-I and (64, 64, 40) for

DC-E . For SC-E (see Figure 4.4) and SC-I (see Figure 4.4), there is also very familiar

situation. For two scenes the best parameter value is the same. For the third, it is the

fourth best and has a very similar average frame time. The selected values are (48, 48, 40)

for SC-I and (48, 48, 40) for SC-E .

Case 3: All Scenes Have a Different Best Parameter Value In the third case,

there is no parameter value which is the best for two or more scenes. If every scene has a

different best parameter then the majority decision cannot be applied. The only method

which falls into case 3 is the method G (see Figure 4.5). For Robot Lab the best parameter

value is (18, 18, 18), for Sponza it is (22, 22, 22) and for Viking Village it is (20, 20, 20). We

select (20, 20, 20), which performs well for all scenes.

Summary At the end of the group size parameter optimization, the findings are collected

and used to select the best tile-based and cluster-based method. The selected values of

the three different cases can be seen in Table 4.3. This table also shows the average frame

time of the selected parameter value. The best method of the tile-based methods is T-E

because it has the lowest average frame time. We select SC-E as the best cluster-based

method. Note that SC-E is the only second best cluster-based method in terms of the

average frame time. However, numbers are very similar to the fastest method DC-E . The

advantage of the sparse version is that for normal scenarios it needs far less memory for

storing the visible lights per cluster, and thus it can support more lights then its dense

counterpart.

Avg. Frame Time of
Selected Configuration [ms]

Method Parameter Name
Selected
Configuration

Robot Lab Sponza Viking Village

T-I
Tile Size

(28, 28) 43.66 73.44 66.76
T-E (28, 28) 16.00 18.82 23.05

DC-I

Tile Size, Z Count

(128, 128, 64) 25.82 31.64 27.05
DC-E (64, 64, 40) 9.14 8.87 9.50

SC-I (48, 48, 40) 12.93 12.27 12.07
SC-E (48, 48, 40) 9.75 9.75 9.90

G Cell Count (20, 20, 20) 26.93 43.18 30.20

Table 4.3: Selected best group size parameters of each method with the corresponding
average frame time of the three scenes. The lowest average frame time in each scene is in
bold and the second lowest is in italic. The selections are based on Figures 4.2-4.5.



4.3. Optimization 33

(1
6,

 1
6)

(2
0,

 2
0)

(2
4,

 2
4)

(2
8,

 2
8)

(3
2,

 3
2)

(3
6,

 3
6)

(4
0,

 4
0)

(4
8,

 4
8)

(5
6,

 5
6)

(6
4,

 6
4)

Tile Size

0

10

20

30

40

50

Av
g.

 F
ra

m
e 

Ti
m

e 
[m

s]

(a) Scene: Robot Lab
Method: T-I
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(b) Scene: Robot Lab
Method: T-E
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(c) Scene: Sponza
Method: T-I
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(d) Scene: Sponza
Method: T-E
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(e) Scene: Viking Village
Method: T-I
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(f) Scene: Viking Village
Method: T-E

Depth Pre-Pass Visibility + Bounds Light Culling Shading

Figure 4.2: Average frame time of different tile sizes for the tile-based light assignment
methods and a light count of 10k.
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(a) Scene: Robot Lab
Method: DC-I
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(b) Scene: Robot Lab
Method: DC-E
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(f) Scene: Viking Village
Method: DC-E

Depth Pre-Pass Visibility + Bounds Light Culling Shading

Figure 4.3: Average frame time of different tile sizes and cluster z counts for the dense
cluster-based light assignment methods and a light count of 10k.
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(a) Scene: Robot Lab
Method: SC-I
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(b) Scene: Robot Lab
Method: SC-E
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(c) Scene: Sponza
Method: SC-I
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(d) Scene: Sponza
Method: SC-E
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(e) Scene: Viking Village
Method: SC-I
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(f) Scene: Viking Village
Method: SC-E

Depth Pre-Pass Visibility + Bounds Light Culling Shading

Figure 4.4: Average frame time of different tile sizes and cluster z counts for the sparse
cluster-based light assignment methods and a light count of 10k.
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(a) Scene: Robot Lab
Method: G
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(b) Scene: Sponza
Method: G
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(c) Scene: Viking Village
Method: G

Light Culling Shading

Figure 4.5: Average frame time of different grid sizes for the grid-based light assignment
method and a light count of 10k.
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4.3.2 Intersection Test

The goal of optimizing the intersection tests is to find the combination of sphere vs.

frustum intersection tests which minimize the average frame time. Thus, the objective

is to minimize the false positives but still perform efficient light assignment. Note that

this optimization is only necessary for screen space methods because they all need to test

sphere vs. frustum, for which there are multiple methods where each single one might

produce false positives. For each, the object space method and the world space method,

there is only one simple method which does not produce false positives regarding the given

geometric shapes. Furthermore, we will only perform this optimization for the best tile-

based T-E and the best cluster-based method SC-E . In this section, first the plots will be

explained and then the best combination of intersection test for T-E and SC-E is selected.

Plots The plots for T-E can be seen in Figure 4.6 and for SC-E in Figure 4.7. They

show the average frame time for different intersection test combinations. The light count

is 10k and the group size parameters are the ones found in Section 4.3.1. Note that we

do not test all possible combinations of intersection tests. It does not makes sense to

test combinations where for the SAT method both, the nearest vertex and all vertices

are tested. Specifically for the tile-based light assignment, not to take the frustum planes

into account, results in a high number of false positive. Consequently, we do not test

combinations where both, the half space method and also the SAT method with plane

normals are not used.

Best Intersection Test Selecting the best combination of intersection tests is very

similar to the selection of the group size parameter. For T-E HS+SAT-N is the best for

all three scenes. For SC-E HS+SAT-N is the best for two scenes and is also among the

best for the third scene. Consequently, we choose HS+SAT-N as the best intersection test

for both methods. Furthermore, because these two methods are very similar to the other

screen space methods, we expect that HS+SAT-N is also the best for those methods. Note

that the shading result of the full combination HS+SAT-EPV is very similar to that of

HS+SAT-N . This indicates that HS+SAT-N does not contain that many false positives.

The advantage of HS+SAT-N compared to HS+SAT-EPV is that the light assignment

is faster, and hence the frame time is lower. Note that our findings match with the results

of Thatcher [22], who also reported HS+SAT-N as the best performing intersection test.

4.4 Analysis

The goal of the analysis is to investigate the view dependency and the performance of

each method. The evaluation uses the optimized group size parameter and intersection

test, which were determined in the previous section. In this section, initially the view

dependency and then the performance will be studied.
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(a) Scene: Robot Lab
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(b) Scene: Sponza
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(c) Scene: Viking Village

Depth Pre-Pass Visibility + Bounds Light Culling Shading

Figure 4.6: Average frame time of different combinations of sphere vs. frustum intersection
tests for the method T-E . The light count is 10k and the tile size is (28, 28).
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(a) Scene: Robot Lab
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(b) Scene: Sponza
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(c) Scene: Viking Village
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Figure 4.7: Average frame time of different combinations of sphere vs. frustum intersec-
tion tests for the method SC-E . The light count is 10k and the group size parameter is
(48, 48, 40).



40 Chapter 4. Results

4.4.1 View Dependency

View dependency of the frame time is an important aspect of a light assignment method.

It determines how predictable the frame time is. Note that predictable frame times are an

important requirement of real-time applications. In the following, the Standard Deviation

(SD) and the Relative Standard Deviation (RSD) of the frame time are investigated. Then

the impact of depth discontinuities on the light count distribution of the light assignment

groups are analyzed.

4.4.1.1 Variability of Frame Time

The view dependency of the frame time can be seen as the variability of the frame time.

The variability can be measured, for example by the SD or the RSD . For the evaluation,

the camera paths of the scenes are rendered for different methods and many lights (light

count = 10k). This measured frame time is used to compute the values of SD and RSD .

In the following, we group the light assignment methods by the magnitude of SD and

RSD and compare them.

Standard Deviation The SD of the different methods and scenes are shown in Fig-

ure 4.8. The SD and RSD of this Figure are grouped by the magnitude and can be seen in

Table 4.4. M and T-I show a very high SD . M shows an extremely high SD , which is not

meaningful due to the high mean. G , DC-I and T-E have medium SD . Interestingly, G

and DC-I have similar values among the scenes. Also note, the reduction of the SD from

T-E to T-I . The sparse cluster methods SC-I and SC-E have the lowest SDs. Again, the

explicit version has a lower SD .

Relative Standard Deviation Figure 4.8 shows, beside the SD , also the RSD , which

is the SD divided by the mean value. In other words, the RSD gives a measure for

the variability relative to the mean value. Compared to the SD there is not such a big

diversity among the values of the methods. However, we still categorize the values into

high, medium and low RSD . T-I and T-E have the highest RSD , where the explicit version

has a lower value. DC-I and SC-I have medium values. The methods with the lowest

values in declining order are SC-E , G and M . Remarkably, M has the lowest relative and

at the same time the highest SD . However, this is due to the enormous mean value of M

which results in the low RSD . Additionally, it can be observed that the explicit versions

have lower RSD then the implicit versions. Also, SC-E has a low RSD and at the same

time the lowest SD .

Summary The basic conclusion is that every method shows a variability of frame time

regarding different views. In other words, all presented methods are view-dependent.

From the high difference of SD and modest difference of RSD values between implicit and

explicit versions, we conclude that the explicit version has lower view dependency. DC-I
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and G have similar SD values. Hence, they have a similar degree of view dependency.

There is a modest difference in the RSD values, which can be explained by the higher

mean value of G . An important observation is that SC-I and SC-E show the lowest view

dependency. SC-E is the best method regarding the view dependency and has low SD

and low RSD . Also interesting is that M has extremely high SD , and thus it has a very

high view dependency. M has the lowest RSD but still a very high SD , which we consider

the more important value. Consequently, we conclude, that M is highly view-dependent.

SD RSD

Low SC-E , SC-I G , M , SC-E , SC-I

Medium T-E , DC-I , G DC-I

High T-I , M a T-E , T-I

aVery High

Table 4.4: Light assignment methods grouped by the magnitude of Standard Deviation
(SD) or Relative Standard Deviation (RSD) of the frame time. Each cell is sorted in
ascending order. The grouping is based on Figure 4.8.

4.4.1.2 Depth Discontinuity

In this section, we investigate the influence of the depth discontinuity on the light count

distribution of the light assignment groups. The light count distribution is important

because it is an indicator of how good the light assignment is and of how fast the shading

is. We only study the following methods: T-E , SC-E ,G andM . For each of these methods,

we examine views with low depth discontinuity and a view with high depth discontinuity.

This views can be seen in Figure 4.9. For each of the two views and the four methods, we

created a heat map and a histogram of the light group count. In the following text, the

different methods are analyzed, compared and in the end, the results are summarized.

Tile-Based Light Assignment with Explicit Bounds Figure 4.10 shows the heat

maps and histograms for the methods T-E and SC-E . For T-E and low depth discontinuity,

the most groups are in the light count range of 0 to 25. For high depth discontinuity, a

lot of groups are still in the range 0 to 25. However, a lot of groups are in the range 25 to

75. Some groups are even be above 75. The heat map indicates that a lot of groups with

a high light count are accessed , and as a result the frame time is high.

Sparse Cluster-Based Light Assignment with Explicit Bounds The method SC-

E shows different behavior to T-E . For both methods, the histogram for low discontinuity

is similar, i.e. the most groups are in the range 0 to 25. For the view with high discontinu-

ity, there are still a lot in the range 0 to 25 and only a few in the range 25 to 50. It looks

as if the light count distribution has moved a little bit to the right. The heat map reveals
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Figure 4.8: Frame time and the corresponding mean, SD and RSD of the different scenes.
(For the method M the values of mean, SD and RSD are 2 259.77 ms, 84.43 ms and 0.04
for Sponza, and 1 700.07 ms, 403.30 ms and 0.24 for Viking Village.)
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that groups of the shaded pixels have a much lower light count then for T-E . According

to that, SC-E is less dependent on the depth complexity than T-E .

Grid-Based Light Assignment The heat map and histogram of the light assignment

methods G and M are shown in Figure 4.11. For the G we marked all groups with light

count 0 into a distinct bin. There are a lot of groups with light count 0 because the

method uses a dense grid. For both views of G , a lot of groups have light counts 1 to 25

and also 25 to 75. Note that both views have the same light count distribution because

the method operates on the whole scene and the light assignment itself is independent of

the view. The heat map reveals that a lot of groups with a medium amount of lights are

accessed. As a consequence, the performance is not as good as SC-E .

Model-Based Light Assignment For the other method M the two histograms are

also equal. Again for the same reason, that M performs light assignment globally per

scene. The light count distribution, however, is quite different compared to G . There

are a lot of groups with the light count 0 to 50. This alone might result in at least

moderate performance. However, the problem is that this method produces groups with

an extremely high amount of lights. The heat maps of M show that this group with the

extremely high amount of lights are accessed. This translates into a very high frame time.

Summary In the end, we summarize the finding of the light count distributions. Both,

T-E and SC-E have a view-dependent light count distribution. However, SC-E has only

a low dependency and T-E has a high dependency. Because the light count distribution

mostly contains a small number of lights, SC-E has the best shading performance of the

four methods. The light count distribution of G and M is view-independent, because

their light assignment is view-independent. Due to the wide light count distribution, G

performs worse than the screen space methods. For the method M , the outliers with the

high light count have a very negative impact on the frame time.

(a) View with low depth discontinuity.
(Frame: 125)

(b) View with high depth discontinuity.
(Frame: 1 161)

Figure 4.9: Two views extracted from the camera path of the Sponza, which differ in the
degree of depth discontinuity.
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(a) Depth Discontinuity: Low, Method: T-E
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(b) Depth Discontinuity: High, Method: T-E
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(c) Depth Discontinuity: Low, Method: SC-E
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(d) Depth Discontinuity: High, Method: SC-E

Figure 4.10: Left: Heat map of the light count blended with the textures of the models.
The light counts are interpolated from 0 to 150 with the colors blue to red and light counts
above 150 are shown in green. Right: Histogram of the light count of the groups.
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(c) Depth Discontinuity: Low, Method: M
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(d) Depth Discontinuity: High, Method: M

Figure 4.11: Left: Heat map of the light count blended with the textures of the models.
The light counts are interpolated from 0 to 150 with the colors blue to red and light counts
above 150 are shown in green. Right: Histogram of the light count of the groups.
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4.4.2 Performance

In general, the average frame time of a light assignment method depends on the number

of lights. We are interested in how well a method performs for different light counts.

Furthermore, we want to know how intensive the average frame time of a method increases

with the light count. In the first part, the average frame time is analyzed for three scenarios

with a low, a medium and a high light count. In the second part, a linear polynomial is

fitted on the sampled average frame time of the different numbers of lights. The resulting

slope and offset of this linear polynomial are further investigated.

4.4.2.1 Low, Medium and High Light Count

The average frame time of the different methods is computed for a low (100), a medium (1k)

and a high (10k) number of lights. Figure 4.12 shows these computations. For each light

count, the methods are categorized into four categories by their speed. A single method

is categorized by its worst behavior among the three scenes. For example, M behaves

much worse for Sponza and Viking Village then for Robot Lab. Thus, we consider the

performance of Sponza or Viking Village where the method is very slow. The result of this

categorization can be seen in Table 4.5. The results are used to decide for each method

for which light count it is suitable and also which method is best for a given light count.

In the end, we summarize the results.

Suitable Light Count for Method Based on Table 4.5 we can decide for which light

counts a method is suitable. We consider a light count suitable for a method is in the

category fast of that specific light count. T-I is only fast for a low number of lights.

Hence, it is only usable for that light count. The explicit version T-E is not suitable for a

low number of lights, due to the overhead of the depth pre-pass and the tile depth range

stage. However, it is fit for a medium number of lights. DC-I and G are both suitable

for low and medium light counts. Note that they both have again a similar behavior.

SC-I and SC-E are suitable for a medium and a high number of lights, where the explicit

version is faster. They are too slow for a low number of lights because the overhead due

to the depth pre-pass and the cluster bound stage is too high. M is extremely slow for

Sponza and Viking Village except for Robot Lab where it has a medium performance. In

brief, it is considered not suitable for any light count.

Best Method for Light Count Table 4.5 can also be used to find the best method

for each light count. For a low number of lights, the best method is DC-I . But also G or

T-I are suitable. For a high number of lights, the best method is SC-E but also SC-I is

suitable. For a medium number of lights, the best method is T-E .

Summary Summarizing, there is no single best method for all light counts. DC-I is

best for a low number, T-E is best for a medium and SC-E is best for a high number of
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lights. Every method, except M , is suitable for at least one of the tested light counts M

performs bad for Robot Lab and catastrophically for Sponza and Viking Villiage. It was

shown that the explicit versions are faster for a higher number compared to the implicit

version. Also, DC-I and G have similar characteristics among different light counts.
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(c) Light Count: 10k
Scene: Robot Lab
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(d) Light Count: 100
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(g) Light Count: 100
Scene: Viking Village
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(h) Light Count: 1k
Scene: Viking Village
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(i) Light Count: 10k
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Figure 4.12: Average frame time of the light counts of 100, 1k and 10k for different methods
and scenes. (The average frame times of M for the light counts 100, 1k and 10k are 23.01
ms, 222.48 ms and 2 259.77 ms for Sponza, and 17.49 ms, 170.46 ms and 1 700.07 ms for
Viking Village.)



48 Chapter 4. Results

Light Count
Low
(100)

Medium
(1k)

High
(10k)

S
p
ee
d

Fast DC-I , G , T-I
T-E , SC-I , SC-E ,
DC-I , G

SC-E , SC-I

Medium T-E T-I T-E
Slow SC-I , SC-E DC-I , G
Very Slow M M T-I , M

Table 4.5: Light assignment methods grouped by the speed for different light counts. Each
cell is sorted by decreasing speed. The grouping is based on Figure 4.12.

4.4.2.2 Frame Time Depending on Light Count

We show that the frame time is a linear function of the light count for every method.

First, methods are executed for different light counts in the range of 100 to 10k lights.

The average frame time of these executions is fitted on a linear polynomial using the least

mean square method. Both, the measured average frame time and the linear fit can be

seen in Figure 4.13. The linear function can be fully defined with slope and offset. They

are used to compare the methods and to conclude form slope and offset for which light

range the methods are best.

Comparing Methods Based on Figure 4.13 we compare the methods T-I vs. T-E ,

SC-I vs. SC-E , DC-I vs. G and M vs. the others. By comparing T-I and T-E it can be

seen that both have similar slopes for light assignment. Note that T-I is a little bit better.

However, the slope for shading is much lower for T-I . Because shading is the dominating

factor, T-E is much slower than T-I for a high number of lights. The comparison of SC-I

and SC-E shows similarities to the previous comparison. The slope of both methods is

also similar for the light assignment and the slope for shading is lower for the explicit

version. Note that the difference between the shading slope is not as big as between T-I

and T-E . Also, for many lights the average frame time of SC-I and SC-E is much lower

than for T-I and T-E . The slope and offset of DC-I and G are quite similar. They have

a high slope for light assignment, a medium slope for shading and a medium slope for all

stages. M has some interesting properties. It has the lowest slope for light assignment

and the lowest offset for light assignment and shading. Nevertheless, the performance is

very bad due to the very high slope for shading.

Slope Table 4.6 lists the slope and offset of each method grouped in low, medium and

high magnitude. In the following, the slope is analyzed. It can be observed that values of

the slope of shading are much higher than the slope for light assignment. As a consequence,

the slope of all stages is dominated by the shading stage. Comparing the methods, it can

be seen that M and T-I have a high slope. Hence, these methods are not fit for many
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lights. SC-E and SC-I have the lowest slope, and therefore these methods are fit for many

lights.

Offset Table 4.6 is used to draw conclusions based on the offset of the frame time. SC-I

and SC-E have a high offset. Therefore, they are not suitable for a low number of lights.

M has the lowest offset. Nevertheless, its slope is extremely high. and hence it is not even

fit for a low number of lights. The other methods, T-I , G and DC-I which have also a

low offset do not have such a high slope as M . Consequently, those methods are suitable

for a low number of lights.

Summary Generally speaking, for all methods, it holds that they have a linear growth

and the overall performance is dominated by shading. The extremely high slope of M

results in a very bad performance. SC-I and SC-E are best fit for many lights and bad

for just a few lights. T-I , G and DC-I are suitable for a low number of lights. DC-I

and G have a very similar slope and offset. The explicit versions have a lower slope than

their implicit counterpart. As a consequence, the explicit versions are more suitable for a

higher number of lights than the implicit versions.

Slope Offset
Light
Assignment

Shading/
All

Light
Assignment

Shading All

Low
M ,
SC-E , SC-I

SC-E , SC-I
DC-I , T-I ,
G , M

M , T-I ,
G

M , T-I ,
G , DC-I

Medium T-E , T-I T-E T-E T-E , DC-I T-E

High G , DC-I
DC-I , G ,
T-I a, M b SC-I , SC-E SC-I , SC-E SC-I , SC-E

aVery High
bExtremely High

Table 4.6: Light assignment methods grouped by the magnitude of slope or offset for the
stages. Each cell is sorted in ascending order. The grouping is based on Figure 4.13.

4.5 Limitations

There are limitations regarding the light assignment methods, the shading, the setup

including the light distribution and also the way we performed the optimization and the

analysis. These limitations are listed in the following paragraphs and are ordered form

the less important to the most important.

Light Types The only light types which were implemented are point lights. For ex-

ample, other types like spotlights are not supported. However, our system allows the
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Figure 4.13: Top: Average frame time depending on the light count. Bottom: Slope and
offset of the fitted linear polynomial. (For the shading stage, M has for scenes Robot Lab,
Sponza and Viking Village the slopes 9.23 µs/Light, 226.07 µs/Light and 169.57 µs/Light,
and the offsets 0.55 ms, −1.76 ms and 0.35 ms. For all stages, M has for the scenes Robot
Lab, Sponza and Viking Village the slopes 9.32 µs/Light, 226.13 µs/Light and 169.73
µs/Light, and the offsets 0.56 ms, −1.74 ms and 0.37 ms.)
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extension with other types. The hardest part will be adding new intersection tests.

Analysis There are more aspects of the light assignment methods which could also be

analyzed. For example, it would be interesting to test the light assignment methods for

lights higher than 10k. Or to test view dependency not only for one single light count -

we used 10k lights - but for different light counts. Furthermore, it would be possible to

investigate how the SD depends on the light count.

Procedure of Optimization For the optimization, we first selected the group size

parameter and then the intersection test. Besides the fact that we already used the best

intersection test for the group size parameter optimization this procedure could be seen

as incomplete. For complete optimization, it would be necessary to test all combinations

of intersection test group size parameters. However, this might result in other problems

due to the combinatorial explosion. Furthermore, we believe that the best intersection

test will still be HS+SAT-N and thus the optimization might still yield the same best

configurations.

Group Size Candidates of Optimization We did not investigate the full possibilities

of the group size parameter for optimization. For example, we only tested quadratic tile

sizes and cubic grid sizes. Also, we did not investigate tile sizes with the same ratio as the

render target. It also seems more likely that grid sizes which have a similar ratio as the

light bounding box perform better. Depending on the selected scenes the best grid size

might be totally different for different scenes. Thus, optimizing the world space grid light

assignment method which performs on a global level over multiple scenes might not be a

good idea.

Model Subdivision The model-based light assignment methods showed very bad per-

formance for the used scenes. The model subdivision was not adapted to the needs of

this method and we think that changing the model subdivision can highly improve the

performance. We think that the model-based approach could be at least as fast as the

grid-based method, because the scene can be exactly subdivided like the grid method.

Furthermore, it would be interesting to compare the performance of the same scene with

different model subdivisions.

Different Validity Scopes of Light Assignment Methods The methods which were

compared have a highly diverse validity scope. The screen space methods only operate

within the view frustum and world space and object space work methods operate on the

whole scene. Thus, comparing the performance between these methods could be considered

unfair. The world space and object space methods could be adapted to only apply their

method within the view frustum. Also, the explicit screen space methods have access to

more information, namely the depth buffer, to further reduce the visible lights within a
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group. A fair comparison could be done if the world space and object space methods

would only be applied to the view frustum and by taking the depth buffer into account to

provide explicit bounds.

Light Distribution The optimization and the analysis are based only on one specific

distribution of the radius. It is very likely that the optimal group size parameter is different

for other distributions. It would be interesting to compare the consequences of different

distributions on the optimal group size parameter and performance.

Overdraw Problem There are multiple methods which use a depth pre-pass. They

only use the depth pre-pass to compute the explicit bounds of the light assignment groups.

However, the depth buffer could also be used to solve the overdraw problem, by providing

the depth buffer to the shading stage. We decided not to use the depth buffer because we

are only interested in improvement caused by the reduced number of lights. However, this

has the disadvantage that the methods are slower and do not use their full potential.

Shading The implementation only supports forward shading, because we focus more on

the light assignment methods itself. However, other approaches like deferred shading or

even object space shading would be interesting. The methods can be easily extended with

deferred shading because only a subset of the view samples of forward shading is used.

Nevertheless, not all methods are fit for the usage of object space shading. The screen

space methods operate in the view frustum. Hence, they are not suitable for object space

shading. The proposed world space and object space methods work on a global level and

are fit for object space shading.
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5.1 Summary

The fundamental property of a light assignment method is how the view samples are

grouped together. Each light assignment method consists of the light assignment step and

the shading step. Firstly, in the light assignment step, the visible lights of every group are

determined. Then, in the shading step, the lighting is computed by looking up the visible

lights of the group of the view sample. In this work, different methods were compared.

Methods Among the methods which were compared are tile-based and cluster-based

screen space light assignment. We introduced grid-based and model-based light assign-

ment, which, as far as we know, are novel methods. Grid-based light assignment subdivides

the scene into a regular world space grid. Model-based light assignment performs light

assignment per model.

Optimization The group size parameter and the intersection test were optimized. In the

first step of the optimization, different values for the group size parameters were tested

for each method. Then for each method, the value of the group size parameter which

performs best among different scenes was selected. It was revealed that tile-based light

assignment with explicit bounds is the tile-based method with the lowest average frame

time. Furthermore, it was shown that the best cluster-based method in terms of speed

and memory is sparse cluster-based light assignment with explicit bounds. In the second

step of the optimization, different combinations of intersection tests were evaluated for
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the best tile-based and cluster-based method. This demonstrated that the combination of

half space method with frustum planes test and Separating Axis Theorem (SAT) with the

nearest vertex to sphere center as the candidate axis is the best performing intersection

test.

Analysis of View Dependency The analysis indicated that the frame time of every

method is view-dependent. It was shown that the explicit bounds and clustering reduces

the Standard Deviation (SD) and the Relative Standard Deviation (RSD) of the frame

time. Regarding the SD , the sparse cluster-based method has the lowest value. Tile-based

light assignment with explicit bounds, dense cluster-based light assignment with implicit

bounds and grid-based light assignment have medium SD . Tile-based light assignment

with implicit bounds and model-based light assignment have a high SD . The light count

distribution of sparse cluster-based light assignment with explicit bounds shows that it

is far less dependent on depth complexity than tile-based light assignment with explicit

bounds. The model-based and grid-based light assignment work on a global level, and

therefore their light assignment output is independent of the view.

Analysis of Performance We investigated the dependency of the average frame on the

light count. It was shown that the frame time grows linear with the light count for every

method. Using explicit bounds results in a reduction of the slope but an increase of the

offset. Thus, methods with explicit bounds perform better for a higher number of lights

but worse for a smaller number of lights. Similar characteristics of dense cluster-based

with implicit bounds and grid-based light assignment were observed. The reason for that

might be that both methods compute the light assignment on a dense grid. There is no

single method which performs well for all light count ranges. For a low number of lights,

we recommend dense cluster-based with implicit bounds or grid-based light assignment

because they both have a low offset. For a medium number of lights, tile-based light

assignment with explicit bounds could be used because it has a medium offset and a

medium slope. For a high number of lights, sparse cluster-based with explicit bounds

should be used because it has the lowest slope. It was shown that model-based light

assignment is very slow for all light counts. The reason for that is the big models which

span a big portion of the scene, and hence they intersect with many lights.

Takeaway Messages Finding a good group size parameter for multiple scenes can be

cumbersome. Speaking generally there is no best group size parameter for all scenes,

views or light distributions. We confirmed the work of Thatcher [22] that half space of

plane normals in combination with SAT method with the nearest vertex to sphere center

is indeed the best intersection test in terms of the lowest average frame time. The best

method for many lights is sparse cluster-based light assignment with explicit bounds. It

has a low slope, low view dependency of frame time and low dependency of the light count

distribution on the depth complexity and can be implemented using less memory due to
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the sparse grid. The downside is that it is slow for a few lights due to the high offset.

The new methods grid-based light assignment and model-based light assignment have

the benefit that the light assignment could be precomputed for static lights and that it

could be used for object space shading. However, grid-based light assignment has shown

bad performance for many lights. Model-based light assignment has shown extremely

high shading time due to the large models intersecting with a lot of lights. We believe,

however, that the performance can be significantly improved by adapting the subdivision

of the models in the scene.

5.2 Future Work

Many aspects of the presented light assignment methods could be improved. The light

assignment can be improved by using a hierarchy of lights, by computing the visible

lights by rasterization or by reusing light assignment results across frames. Furthermore,

extensions are presented which are specific to screen space, world space or object space

methods. In the end, we will discuss using light assignment in combination with object

space shading.

Hierarchical Light Assignment A hierarchical data structure can be used to improve

either the time spend for light assignment or shading. For example, a Bounding Volume

Hierarchy (BVH) could be computed at runtime from the list of lights [12]. The BVH

can then be used as the input for the light assignment. A speedup is achieved because

it is no longer necessary to iterate over all lights but only to visit a subset of lights by

traversing the hierarchy. Moreover, it is possible to store the result of the light assignment

step in a hierarchy. For example, for each light assignment group, a tree of visible lights

[16] could be computed. Then during shading, for each view sample, the tree is traversed

to visit the necessary lights. Thus, the lighting is not computed for all visible lights in

the group but only for the traversed ones. A possible problem of this approach is that the

overhead added by the hierarchy might in some cases be higher than the benefit. Also,

the implementation is harder and must employ an efficient access pattern.

Rasterized Light Assignment Instead of purely relying on analytical testing, the

light assignment could be implemented by using rasterization. For example, Örtegren [19]

uses rasterization in combination with clustered shading. The light volumes are rasterized

and the clusters are filled with the intersecting lights. [4] presented a hybrid solution of

rasterization and analytical testing. We believe it is also possible to use rasterization for

a world space grid method by rendering the lights using an orthogonal projection.

Reuse Light Assignment Across Frames The current implementation computes the

complete light assignment for each frame independently. This makes sense if lights totally

change from frame to frame. However, in practical use cases, it is more likely that the
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lights only slightly change the position or the radius from one frame to the next frame.

Therefore, it makes sense to take advantage of this fact. For example, we could compute

the light assignment only for the lights which moved or which got visible in the view

frustum and additionally reuse the light assignment from the lights which are not moved.

Another approach of reusing light assignment would be to compute the light assignment

in a conservative way and use it for more than one frame. This effectively decouples

shading and light assignment and enables asynchronous light assignment. For example,

the asynchronous light assignment could be performed on the Central Processing Unit

(CPU), while the shading is executed at the same time on the Graphics Processing Unit

(GPU).

Extending Screen Space Light Assignment There are a lot of variants of screen

space light assignment methods, which we did not implement. Variants of tile shading

which we could implement in the future are HalfZ, modified HalfZ [23] or 2.5D Culling

[11]. However, more promising in terms of performance are the variants of clustered

shading. For example, practical clustered shading [20] and cascaded clustering [8] address

the problematic subdivision scheme of clustered shading, which causes redundant light

assignment due to the small sizes of some clusters.

Extending World Space and Object Space Light Assignment There are exten-

sions to the world space and object space light assignment which can improve performance.

For example, such extensions are view frustum culling or explicit bounds based on a depth

pre-pass. It would also be interesting to create a hybrid method, where the models are

subdivided into a grid and light assignment is performed for each cell of each model. The

grid-based light assignment could also be changed in such a way that the grid is not ap-

plied on the whole scene but only on a world space AABB containing the view frustum or

the view samples. Furthermore, it would be possible to subdivide the scene into a world

space octree like hashed shading [21].

Light Assignment for Object Space Shading The light assignment methods pre-

sented in this thesis all use forward shading. However, it would be interesting to use

an object space shading approach. First, we discuss which of the presented light assign-

ment methods are suitable for object space shading. The methods can be categorized

into the scope which is taken into account for light assignment. The model-based and

the grid-based method take the whole scene into account. Hence, they are fit for object

space shading, which might access any sample within a scene. The implicit screen space

methods take only the view frustum into account. By extending the view frustum by a

small factor and taking a bigger space into account it might be usable for some variants

of object space shading. However, in general, this is insufficient, and, thus, these methods

are not suitable. The explicit screen space methods take only view samples into account.

This is insufficient for object space shading because hidden geometry might be shaded.
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Summarizing, only the grid-based and the model-based light assignment method produce

correct results for object space shading. However, they are quite slow. Another idea is

to develop a light assignment method specifically designed for object space shading. One

possibility would be to take the world space positions of the shading samples into account.

First, the world Axis-Aligned Bounding Box (AABB) of all shading samples is computed.

Then the AABB is subdivided into a grid and light assignment is performed for each cell.

This could be further improved by computing the explicit bounds of the cells.





A
List of Acronyms

AABB Axis-Aligned Bounding Box

API Application Programming Interface

BVH Bounding Volume Hierarchy

CPU Central Processing Unit

DC-E Dense Cluster-Based Light Assignment with

Explicit Bounds

DC-I Dense Cluster-Based Light Assignment with

Implicit Bounds

G Grid-Based Light Assignment

GPU Graphics Processing Unit

HS Half Space Intersection Test

M Model-Based Light Assignment

MSAA Multisample Anti-Aliasing

NDC Normalized Device Coordinates

NP Nearest Point Method Intersection Test

NPT Nearest Point Method with Transformation

Intersection Test

OBB Oriented Bounding Box

PDF Probability Density Function

RSD Relative Standard Deviation

SAT Separating Axis Theorem

SAT-E Separating Axis Theorem with Edges Inter-

section Test

SAT-N Separating Axis Theorem with Nearest Ver-

tex to Sphere Center Intersection Test

SAT-P Separating Axis Theorem with Plane Normals

Intersection Test
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SAT-V Separating Axis Theorem with Vertices to

Sphere Center Intersection Test

SC-E Sparse Cluster-Based Light Assignment with

Explicit Bounds

SC-I Sparse Cluster-Based Light Assignment with

Implicit Bounds

SD Standard Deviation

T-E Tile-Based Light Assignment with Explicit

Bounds

T-I Tile-Based Light Assignment with Implicit

Bounds
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