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Abstract

Image-based 3D reconstruction algorithms are established procedures for creating realis-

tic 3D geometry from real-world environments. However, real-world scene elements with

poorly textured surfaces can lead to missing geometry in the 3D reconstruction. Thus,

completing geometry in image-based 3D reconstructions in a consistent way has the po-

tential to be applied in many different tasks, such as filling in the missing geometry in

reconstructions created for augmented reality or virtual reality applications. Over the

course of this thesis, we introduce a convolutional neural network based on a state of the

art scene completion method. In addition to an incomplete reconstruction of the scene as

input, the proposed architecture uses three dimensional semantic input generated from 2D

semantically segmented images. The network utilizes the additionally provided semantic

context to improve on the geometric completion. Furthermore, we make use of dilated con-

volutions, which have been proposed in recent years by researches in the machine learning

field, in order to achieve better results without the need for inferring on multiple resolu-

tion levels. Experiments were also performed with an alternative encoding for the used

input semantic information. We show results of the proposed method and evaluated it

quantitatively and qualitatively on synthetic data and on real-world data originating from

image-based reconstructions. We show that the proposed method improves the results in

terms of geometric completion and semantic prediction on synthetic datasets and in terms

of completion in real-world scenarios.

Keywords. scene completion, neural networks, computer vision, image-based 3D recon-

struction
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Kurzfassung

Algorithmen zur Erstellung von bildbasierten 3D Rekonstruktionen sind eine bereits sehr

ausgereifte Methodik, um 3D Rekonstruktionen aus Echtweltumgebungen zu generieren.

Allerdings stellen schlecht textuerierte Oberflächen noch immer ein Problem dar, welches

zu Löchern in der Geometrie führen kann. Das bedeutet, dass die Vervollständigung

von bildbasierten 3D Rekonstruktionen zahlreiche Anwendungsgebiete aufweist, wie zum

Beispiel die Vervollständigung fehlender Geometrie in realistischen 3D Modellen für Aug-

mented Reality oder Virtual Reality Anwendungen. In dieser Arbeit präsentieren wir

ein neuronales Netz basierend auf einer aktuellen Methode zur Vervollständigung von 3D

Szenen. Die präsentierte Architektur nutzt semantische 3D Informationen generiert aus

semantisch segmentierten Bildern als Eingabeinformation, zusätzlich zur unvollständigen

3D Rekonstruktion, welche ebenfalls als Eingabeinformation genutzt wird. Die Architek-

tur macht sich auch geweitete Faltungen zu nutzen, um einen größeren globalen Kontext

der Szene einzufangen, ohne auf mehreren Auflösungen zu rechnen. Darüber hinaus, wurde

auch mit einer alternativen Codierung für die semantische Eingabeinformation experimen-

tiert. In der Arbeit wurde die Methode auf synthetischen Szenen und Echtweltumgebun-

gen, sowohl quantitativ als auch qualitativ evaluiert. Es wird gezeigt, dass die Methode

in synthetischen Szenen, sowohl die geometrische Vervollständigung verbessert, als auch

die semantische Information der vervollständigten Szene besser schätzt. In Echtweltumge-

bungen kann gezeigt werden, dass sich die Vervollständigung verbessert.

Schlagwörter Szenen Vervollständigung, neuronale Netze, maschinelles Sehen, bild-

basierte 3D Rekonstruktion
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1.1 Motivation

The reconstruction of three dimensional geometry from real-world scenes has received a

lot of focus from researches in recent years, due to its many use cases like virtual- and

augmented reality applications. There are many techniques involving dedicated sensors

capturing depth information, however it is also possible to use overlapping images captured

on a camera to reconstruct the 3D geometry of the scene captured on the imagery. This

process is known as Structure from Motion (SFM ) and it estimates the camera poses

along with a sparse representation of the geometry. In order to refine this result, it is

possible to create a dense point cloud or subsequently a mesh by integrating dense depth

maps acquired through a Multi-View Stereo (MVS ) system. Over the years, the methods

utilized in SFM such as pose estimation and feature detection have evolved significantly,

however poorly textured surfaces and occlusions are still challenging problems.

On the other hand, one of the main advantages of image-based 3D reconstructions,

when compared to highly accurate laser scans, is that the input data is easily acquired

without the need of expensive equipment such as light detection and ranging (LIDAR)

scanners. Using images for reconstructing scenery also means that one is able use a large

repository of already existing data, such as images captured by a large magnitude of

other users on the Internet [24]. However, using images for densely reconstructing entire

scenes is prone to create models which are incomplete, in the sense that some of the

geometry has only been partially reconstructed. This can be the result of certain parts of

1



2 Chapter 1. Introduction

the scene obstructing the cameras view. Furthermore dense multi-view stereo algorithms

do not produce perfect depth-maps, instead they are incomplete and can contain noise.

This problem is more severe when trying to reconstruct poorly textured surfaces. Using

active depth sensors for generating depth-maps can also lead to noisy results, as reflective

surfaces and infrared interference caused by sunlight in outdoor environments disturb the

measurement process.

Sometimes complete and visually consistent reconstructions are demanded, while accu-

racy might not be the highest priority. Examples for this use case would be virtual reality

and augmented reality applications, where the experience of the user can be disturbed

when geometry is missing from the displayed models. The possibility to create complete

models from real-world image-based reconstructions would make it easier to create user

generated content for virtual and augmented reality applications, as well as computer

games incorporating 3D graphics. Another application would be generating complete and

appealing models from indoor environments of houses or apartments, in order to give po-

tential buyers a more interactive way of looking at the room architecture. Furthermore,

users would have the possibility to create image-based 3D reconstructions of their homes

to be used in virtual reality chat applications, such that a realistic representation of their

environment is shown.

In order to create more complete 3D reconstructions it is necessary to either intro-

duce additional information to the algorithm during the reconstruction process such as

geometric priors, or to improve the geometry generated during the reconstruction via

additional post processing steps. In recent years, researchers have published several meth-

ods with the goal of inferring missing geometry from given incomplete 3D models. For

completing objects from sparse measurements traditional approaches have been using a

database lookup mechanism, which replaced incomplete models entirely with models from

a predefined database [32]. However, this cannot be used for completing general scenes

as the performance is limited by the amount of objects contained in the database. With

the increasing popularity of neural network based end-to-end learning there have been

several methods which leverage the inference capabilities of neural networks [13]. These

approaches are promising, as detecting patterns in existing data and inferring hypotheses

for missing data is a problem where neural networks have shown to achieve good results,

for instance in the field of 2D image in-painting [3]. In this regard, the problem of inferring

missing geometry in 3D can be seen as adding another dimension to extend the 2D image

in-painting problem.
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Recent publications using neural networks have shown great promise for achieving

results which are more complete and visually pleasing than geometry created by traditional

approaches [47]. Furthermore providing the networks with additional information such as

semantic data to provide more context, has also shown to improve performance during

inference [18]. To this end, we propose a method based on a recently published neural

network architecture for completing large reconstructed scenes called ScanComplete [13],

where we provide additional semantic information and evaluate further network changes,

in order to improve performance during inference.

1.2 Contributions

In this thesis, we want to improve the completion of missing geometry in image-based

3D reconstructions of indoor environments. The input data from these reconstructions

contains missing geometry as a result of poorly textured scene elements or occlusions. In

order to achieve a better completion rate on image-based reconstructions of indoor envi-

ronments, we extend the ScanComplete [13] CNN architecture for scene completion to use

an additional input channel containing semantic information. This modification should

lead to an improvement with regards to the completion performance of the network, as

this data provides additional context for the network. When inferring missing geometry

the network can now make use of semantic data to decide on how to best complete a

given scene component. For instance, if the semantic class surrounding missing geometry

is wall, the network can use this context to fill in the missing geometry with a planar sur-

face. Furthermore we modify the network architecture in several other ways and quantify

performance changes in our experiments. These changes are:

• dilated convolutions within a single network-hierarchy

• different encoding for the semantic information

• flipped truncated signed distance function

Moreover, we have also created a framework for creating training data, which gener-

ates 3D semantic input volumes. This is done by utilizing semantic labels from synthetic

ground truth images, in order to create 3D semantic volumes. For evaluating perfor-

mance we test on both synthetic and real-world scenes generated from image-based recon-

structions. Creating semantic labels for real-world scenes is done using the DeepLabv3

network architecture [7] (with parameters/weights from an already trained network us-

ing ade20k [62] [63]), which infers semantic labels from RGB images. To conduct our

real-world data evaluation, we make use of the ETH 3D multi-view high-resolution dense

reconstruction benchmark [45], which provides ground truth data to measure quantita-

tive changes in the reconstructed result and subsequently completion performance. For

evaluating performance on synthetic scenes we use the SUNCG dataset [47].
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1.3 Outline

In this work, we will first elaborate on the core concepts utilized in this thesis over the

course of the theoretical background chapter. Initially we will introduce the fundamentals

of multi-view geometry followed by elaborations on the dense 3D reconstruction process.

Furthermore we will describe the concepts used in standard neural networks as well as

convolutional neural networks. In the next chapter, we present related works in the field

of 3D scene and shape completion. We will provide an overview for both traditional and

machine-learning based approaches and describe prominent methods in more detail. In

the methodology chapter we discuss the used convolutional neural network architecture

and training procedure. Finally, we will present our training data generation strategy and

our obtained results in the experiments chapter and infer conclusions using the obtained

results.
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In this chapter, we introduce various techniques and methodologies, which serve as

the basis for the components of the system proposed in this thesis. We will start with

an overview of fundamentals of multi-view geometry in the first section. Next we will

elaborate on the process of dense 3D reconstruction. The last two sections in this chapter

focus on deep neural networks and convolutional neural networks.

2.1 Fundamentals of Multi-View Geometry

In this section we will discuss the fundamental geometric principles [22] used in order to

compute 3D reconstructions from images. This includes the pinhole camera model, the

parameterization of this model and computer vision principles such as epipolar geometry

and triangulation. The section is concluded with a description of the Structure from

Motion (SFM ) technique.

2.1.1 Pinhole Camera Model

The pinhole camera model is used to describe the basic principles behind projecting a

given scene into the viewpoint of a camera. It is modeled after the concept of the camera

obscura. The camera obscura describes the process of directing incoming light rays with a

small opening, sometimes referred to as a pinhole, onto a plane of light-sensitive material

5
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behind it. This process will create a mirrored projection of the object in front of the

pinhole on the light-sensitive material. For the purpose of simplifying the mathematical

model, the plane of light-sensitive material, also called the image plane, is positioned in

front of the pinhole. However, this mathematical model is equivalent to the physical model

in terms of its geometric properties.

The mathematical model describes the process of intersecting a light-ray generated

by point X in world coordinates, with the principal point behind the image plane of the

camera and subsequently intersecting at a point x on the image plane. The focal length f

describes the z-component of normal-distance of the principal point from the image plane.

Typically the principal point is positioned in the origin of the camera coordinate system,

thus the x- and y-components are zero. The parameter D describes the z-component of

the normal-distance of the world point from the principal point. In this setting, one can

use the concept of similar triangles to formulate a relationship between the y-coordinate

components of X, D and x, which allows for the calculation of xy given Xy:

bC
f

b
X

b
x

D

Figure 2.1: Graphical representation of the pinhole camera model: The world pointX is projected
onto the point x on the image plane through the principal point C. The normal distance from the
principal point to the image plane is denoted as the focal length f , while the normal-distance of
the principal point and the world point is represented by D.

xy
f

=
Xy

D

xy = f · Xy

D

(2.1)
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This can also be done in an analogous way for the x-coordinate component:

xx
f

=
Xx

D

xx = f · Xx

D

(2.2)

2.1.2 Camera Calibration Matrix

One can also convert the coordinates on the image plane derived above, which are typically

measured in millimeters to coordinates measured in pixels using scaling factors sx and sy
and multiply these factors with the focal length:

xy [px] = sy · f︸ ︷︷ ︸
fy

·Xy

D

xx [px] = sx · f︸ ︷︷ ︸
fx

·Xx

D

(2.3)

The scaling factors can be computed using the resolution in x-and y-direction of the

camera and dividing it by the respective dimensions of the camera sensor in millimeters.

However, the reference point for image coordinates using this model would be the point

of intersection between the optical axis and the image plane. In order to move this

reference point to the top-left of the image for the calculated coordinates, one can add

the intersection point of the optical axis with the image plane c =

[
cx
cy

]
measured in pixel

coordinates to the coordinates. Following the previous explanation, in order to retrieve

the pixel coordinates of projected world points the following relation is used:

xy [px] = fy ·
Xy

D
+ cy

xx [px] = fx ·
Xx

D
+ cx

(2.4)

The parameters f =

[
fx
fy

]
and c =

[
cx
cy

]
are referred to as the intrinsic camera param-

eters. This can also be formulated as a matrix multiplication, in this case the 3×3 camera

calibration matrix K will be constructed from the aforementioned intrinsic parameters

and multiplied with the world-coordinate vector:
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x = K ·X =

fx 0 cx
0 fy cy
0 0 1

 ·
Xx

Xy

D

 (2.5)

Note that this multiplication yields the following result:

fx 0 cx
0 fy cy
0 0 1

 ·
Xx

Xy

D

 =

fx ·Xx + cx ·D
fy ·Xy + cy ·D

D

 (2.6)

Because it is assumed that all of the coordinates on the image plane are located on the

z-coordinate component Xz = 1, one can convert the resulting coordinates to coordinates

on the image plane by dividing all coordinates with the z-component. The result of this

division is again the original relation, which has been derived above:

(fy ·Xy + cy ·D) · 1

D
= fy ·

Xy

D
+ cy

(fx ·Xx + cx ·D) · 1

D
= fx ·

Xx

D
+ cx

(2.7)

This is possible because when working in projective space, equivalence up to scale is

attained when multiplying all coordinate components with the same scalar factor.

2.1.3 Extrinsic Camera Parameters

When calculating pixel coordinates on the image plane, the relationship derived in the

previous section assumes that the camera and subsequently the image plane were not

rotated or translated with respect to the world coordinate system. However, it would be

advantageous to construct a relation that allows for position and orientation changes of the

camera in 3D space as well. These changes are formulated as 3× 1 translation vectors T

and 3×3 rotation matrices R. In order to model these transformations of the camera, one

has to first apply the translation and rotation to the 3D world point, so that its coordinates

are transformed from the world coordinate system to the local camera coordinate system

and then project the point into the view of the camera, as explained in the previous

section. This relation is also shown in Figure 2.2. Applying these transformations to the

3D point X can be formulated as a matrix multiplication as well:

Xt = R ·X + t =
[
R t

]
X (2.8)
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In the equation above
[
R t

]
is the column-wise concatenation of the rotation matrix

R and the translation vector t. This transformation can be inserted into the original

projection equation to account for changes in camera position and orientation:

x = K
[
R t

]
︸ ︷︷ ︸

P

X = PX
(2.9)

The combination of the camera calibration matrix and the matrix describing the ex-

trinsic parameters is referred to as the projection matrix P . The extrinsic parameters can

also be denoted as the camera pose.

R,t
Camera

Objects in world coordinates

Figure 2.2: Coordinates in the world coordinate system are transformed into coordinates within
the local camera coordinate system via rotation R and translation t.

2.1.4 Camera Calibration

The aforementioned intrinsic calibration parameters of a camera can be obtained by solv-

ing an optimization problem which uses 2D-3D point correspondences to minimize the

re-projection error using a given set of camera parameters [60]. As shown in Figure 2.3,

the 2D-3D point correspondences can be acquired by detecting points on a checkerboard

pattern, where the dimensions in world coordinates are known. Furthermore it is impor-

tant that the pattern is printed on a planar surface, as it is assumed that all detected points

lie on the same plane. Using a checkerboard pattern, corners can easily be detected and

used for generating the 2D-3D correspondences. The 3D correspondences are computed

by using a point on the checkerboard pattern as a reference point for the world coordinate

system and then generating the coordinates of all other world points in reference to this

point. The other points can be generated as it is known that the surface is planar and thus
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the points all have the same z-coordinate component. Using these assumptions, matches

from the 2D images can be created by first matching the 3D reference point with a 2D cor-

respondence and then subsequently all other points. Various images capturing the pattern

from different viewpoints are then acquired, each generating multiple 2D-3D point cor-

respondences. In the following optimization C correspondence pairs (mi,c,Mc) are used,

where mi,c represents a 2D coordinate in image i and Mc represents the corresponding

3D point. With these C correspondences found in I images, the following optimization

problem is then minimized:

min
K,Ri,ti

I∑
i=0

C∑
c=0

∣∣∣∣∣∣mi,c −K
[
Ri ti

]
Mc

∣∣∣∣∣∣2 (2.10)

The formulation above aims to minimize the re-projection error by modifying the

intrinsic calibration matrixK, which is identical for all images and the extrinsic parameters

Ri, ti, which are different for varying captured viewpoints. This means that one must

optimize a 3 × 3 matrix K representing the camera calibration, 3 × 3 rotation matrices

Ri, ∀i ∈ {1, ..., I} and 3× 1 translation vectors ti, ∀i ∈ {1, ..., I} representing the camera

poses for I images. Furthermore radial and tangential lens distortion parameters can

additionally be estimated in a more complex procedure.

Figure 2.3: Visualization of 2D correspondences detected on a checkerboard calibration pattern.
Imagery taken from [60].

2.1.5 Image Features

Corresponding point sets in two different images are used for many geometric algorithms

and thus there exist many Computer Vision algorithms performing these correspondence
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searches. In order to achieve this task, one needs to first find unique points, also referred

to as salient points in each individual image and then find corresponding points by com-

paring them using a description of the locations. An algorithm, which detects salient

points in an image is referred to as a feature detector, while the description of the key-

point is known as a feature descriptor or descriptor vector. There are many established

feature detectors, which also define a way on how to compute the respective descriptors

such as Scale Invariant Feature Transform (SIFT ) [34] and Speeded Up Robust Features

(SURF ) [2]. However there are also dedicated feature detectors such as Features from

Accelerated Segment Test (FAST ) [42] and dedicated feature descriptors such as Binary

Robust Independent Elementary Features (BRIEF ) [6].

2.1.6 Epipolar Geometry

The search for correspondences in two neighboring images can be simplified by taking

into account the geometric constraints defined by the epipolar geometry. A valid point

correspondence between two image coordinates can be generated by a 3D world point seen

in both images. This world point and the two principle points of the cameras form a plane

Πe denoted as the epipolar plane. Consequently, this plane is differently parameterized for

different 3D points observed by the two cameras. The intersection of this plane with the

two image planes forms the respective epipolar lines in both images. The intersection of

the line formed by the two principle points with the respective camera planes is denoted

as the epipoles e. The relationship between Πe and e is also visualized in Figure 2.4. As

explained above, different 3D world points yield epipolar planes with differing parameters

and thus also different epipolar lines. However all of these epipolar lines intersect with

the epipole. The epipolar lines allow for a simplified correspondence search, because the

matching image location for an image point created from a given 3D world point in an

image has to lie on the epipolar line created by this world point in the other image. This

relation is encoded by the relative translation and rotation between the camera poses and

can be represented via the fundamental matrix F . For image coordinate l in the left image

and r in the right image the fundamental matrix fulfills the following constraint:

lFr = 0 (2.11)

2.1.7 Triangulation

Once point correspondences have been found in two individual images and the calibrated

cameras extrinsic parameters have been estimated through fundamental matrix estimation,

it is possible to generate 3D geometry from point correspondences through a process

called triangulation. The main principle of triangulation is also depicted in Figure 2.5.

During triangulation, a linear equation system is formed from two point correspondences
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b
X

u

Camera 1 Camera 2

Πe

b

e1 e2
b bb b

C1 C2

b
v

Figure 2.4: Visualization of the epipolar plane Πe between two images spanned by the world
coordinate X and its projections u and v into camera 1 and camera 2 respectively. The intersection
of the line spanned by the principal points C1 and C2 of the two cameras with the image planes
of the cameras is denoted as the epipoles e1 and e2.

u = P1X and v = P2X with the goal of recovering world point X. In this case u, v are 2D

image coordinates projected from the same 3D point X using the respective projection

matrices P1 and P2 of the two cameras. The linear equation system can be formed by

constraining the problem with regards to the viewing rays generated by projecting X into

the camera. After solving this problem, the world-point X is recovered from two camera

correspondences.

2.1.8 Structure from Motion

Structuring from Motion is a technique which uses the aforementioned point correspon-

dences and triangulation to generate a sparse 3D representation of a scene from images

captured on a calibrated camera. After setting the pose of the first camera to be at the

world coordinate origin (no rotation and translation), the pose of the second camera to be

added to the global structure can be computed via fundamental matrix estimation [36].

Given these two poses and the intrinsic calibration of the camera recovered beforehand,

one can triangulate 3D geometry by using point correspondences generated by feature

matching executed on the two images. Further camera poses can be estimated using ex-

isting 3D points and newly generated 2D feature matches via an algorithm to solve the

perspective n-point problem [31]. Using the new pose and feature matches, one can then

generate additional 3D points. This process is repeated for every image to be added to
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b
X

b b

u v

Camera 1 Camera 2

P1 P2

Figure 2.5: The world point X is projected onto the 2D image points u and v via the respective
projection matrices P1 and P2.

the structure. After adding new camera views an optimization procedure called bundle

adjustment [53] estimates corrected camera poses and 3D geometry by minimizing the

re-projection error for all images in the global structure.

2.2 Dense 3D Reconstruction

Over the course of this section we will talk about the fundamental concepts involved in

dense 3D reconstruction techniques.

2.2.1 Dense Matching

In order to create a dense point cloud as an output, dense reconstruction pipelines compute

dense depth maps from input images, which are then combined to create a dense 3D repre-

sentation of the reconstructed geometry. The process of creating these dense depth maps

from input images is called dense stereo matching. There are techniques that compute

dense depth maps using two images which is typically denoted by two view stereo. Ap-

proaches which generate depth maps using multiple input images including their respective

camera poses are called Multi-View Stereo (MVS ) techniques. During stereo matching,

one wants to find image locations within either two images for two view stereo, or within

multiple images in the MVS case, which are projections of the same 3D point. In order to

find correspondences within 2D image points a cost measure is computed which describes
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how likely the two points resulted from the same 3D projection. These cost measures are

described in more detail in the next section. There are also methods to further refine this

solution, such as the belief propagation algorithm [50].

In order to simplify the matching process the images in the two view stereo case are

rectified such that their epipolar lines are parallel to the image x-axis, which is denoted as

the stereo normal case. Once two matching locations have been found, the depth compo-

nent Z in the stereo normal case for two-view stereo, with baseline B and focal length f ,

can be found from the difference in the x coordinate component of the correspondences,

denoted as disparity D, as follows:

Z

B
=
f

D

Z = B · f
D

(2.12)

It can be seen here that depth and coordinate difference are in an inverse relationship.

Thus a higher disparity value means that the resulting depth will be lower and vice versa.

For the multi-view case one can either extend the stereo normal case using additional

cameras with varying baselines [37] or use an extension of the disparity to depth relation

derived by searching along the epipolar lines of multiple views [49]. We will also describe

additional methods in the techniques section below.

2.2.2 Cost Measures

A core concept of dense matching techniques are matching costs. Matching costs define

a similarity measure between two locations in different images, where a higher cost value

means less similarity and a lower cost value implies higher similarity. These costs usually

take into account a window around the two given locations to compute the similarity. The

way the costs are then computed, depends on the respective cost measure i.e. sum of

squared distances (SSD) at location (y, x) between image L and image R using a W ×W
window around location (y, x) is computed as follows:

SSD(y, x) =
∑

i,j ∈ W×W
(L(i, j)−R(i, j))2

(2.13)

Another measure is the normalized cross correlation (NCC):

NCC(y, x) =

∑
i,j ∈ W×W L(i, j)√∑
i,j ∈ W×W L(i, j)2

·
∑

i,j ∈ W×W R(i, j)√∑
i,j ∈ W×W R(i, j)2

(2.14)
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2.2.3 Techniques

The basic principle behind both two-view and multi view dense stereo matching algorithms

is to constrain the amount of locations for which the matching costs have to be computed.

In the case of two-view stereo one utilizes the fact that in the stereo normal case all of the

possible matches for location (x, y) in one image have the same y component in the other

image, because they lie on the epipolar line in the corresponding image, which is parallel

to the y axis for the stereo normal case. However, it is necessary to rectify the images

beforehand. It is then possible to compute the costs for each location in an image by

searching along the same y coordinate in the other image in the direction of the disparity.

For MVS it is also possible to restrict the amount of locations for which to compute

matches. If one wants to compute a dense depth map for a reference camera incorporat-

ing additional camera poses viewing the same scene, it is possible to use multiple three

dimensional planes [17] created from the reference camera, to restrict possible matches in

other cameras. To achieve this, points on the plane created in the view of the reference

camera are projected onto the image planes of the other cameras by using their respective

pose and calibration matrices. It is then possible to use the plane yielding the best costs

between a pixel in the reference view and all other views in order to compute the depth

of this pixel in the reference view. Another approach utilizes properties of local image

patches for MVS [4]. Although these algorithms work better than two-view approaches

due to an increase of viewpoint information, they also do not generate complete results in

every scenario as seen in Figure 2.6.

2.2.4 Fusion of Depth Data

In order to be able to combine the measurements of all depth maps, a frequently used

approach is to incorporate all of the measurements into a regular grid of non overlapping

cubes called voxel grid. Each voxel within the grid then holds a value of a truncated

signed distance function (TSDF ). This means that in each voxel the distance to the nearest

surface is stored. The sign depends on the viewpoint of the camera that produced the

input depth map as visualized in Figure 2.7.

Voxels which are in view of the camera are assigned a positive sign, while information

behind a surface is represented via a negative sign. The function values can also be

truncated in a certain range i.e. between -1 and 1, which means that distance larger

than 1 will be set to 1 and distances smaller than -1 will be set to -1. The process of

integrating the depth maps generated from different input camera views is typically done

via a weighted updating scheme [11]. Starting from an initialization of the TSDF values

TSDF (X) = 0 and weights S(X) = 0 at all possible locations X inside the voxel grid the

algorithm applies the following update rule for adding a new depth map m with depth

measurements dm(X) and weights wm(X) into the TSDF :
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Figure 2.6: Depth map result from multi-view stereo using a patch match based approach [44].
It can be seen that for surfaces which are very homogeneous and do not contain a lot of texture
it is hard to find matches and thus produce depth results. Furthermore reflections inside windows
also introduce artifacts and are labeled with high depth values in this case.

TSDF (X)m+1 =
Sm(X) · TSDF (X)m + wm(X) · dm(X)

Sm(X) + wm(X)

Sm+1(X) = Sm(X) + wm(X)

(2.15)

The weights can be chosen to have identical values i.e. 1 for all depth measurements

or they can be computed based on additional information [64].

After the (truncated) signed distance function has been generated from the depth

maps it is possible to create an output mesh from an iso-surface via the marching cubes

algorithm [33]. Such a mesh is visualized in Figure 2.8.

2.3 Deep Neural Networks

In the following sections we will present the core concepts of neural networks in terms of

learning and inference [20].
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Figure 2.7: Depiction of TSDF values around a surface from a specified camera viewpoint in a
regular 2D grid. Each of the values encodes the distance to the nearest surface from the viewpoint
of the camera.

2.3.1 Base Principles

The essential principle behind neural networks is to create a learning process using a

network of many interconnected layers of neurons. The connections between neurons are

weighted. Adapting the weights changes the output of the network, when given a specific

set of input values. Additionally the output of each neuron depends on its usually non-

linear activation function, which introduces the possibility of creating complex output

functions depending on the input. The output of the entire network is controlled via the

activation function of the final layer, which can be adapted for a specific machine learning

task, such as regression or classification. During the learning or training process the

network is presented with several input and target pairs, which represent the outputs the

network should ideally create, after receiving the given inputs. The network then adapts

its weights while training on these samples, to produce the target outputs for the given

inputs. The challenge during this process is to provide the network with a diverse selection

of possible inputs. Furthermore the network weights should not be fine-tuned specifically

to the training samples, as this will drastically reduce inference performance for general

datasets, which is also known as over-fitting to a specific dataset. In the following chapters

we will provide more detailed description for each of the aforementioned elements present
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Figure 2.8: Output mesh from depth data fusion generated via marching cubes, which was created
using the Open3D library [65].

in neural networks.

2.3.2 Neurons

A single synthetic neuron in an artificial neural network consists of one or multiple weighted

inputs from other neurons, an activation function and one or more outgoing connections

to other neurons in the network. A bias parameter is also present for each neuron and can

be thought of as an incoming connection from a neuron which always outputs the value

one. The output yj of the neuron is computed from the incoming weights wi,j of I neurons

with outputs yi, the bias bj and the activation function g(x) as follows:

yj = g
( I∑
i=0

wi,jyi + bj
)

(2.16)

The individual components of a single neuron are also depicted in Figure 2.9.

2.3.3 Multi-Layer Networks

When expanding the network view to take into account multiple layers of different amounts

of neurons, it is advantageous to extend the notation to include individual layers l and

the overall number of layers L. To be able to further simplify the model for explaining

multi-layer networks, we focus on fully connected networks in further examples. In a fully
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Figure 2.9: Parameters describing a single neuron in a neural network: The neuron receives
weighted inputs yi ∀i with weights wi ∀i from the other (previous). The output yj is computed
using the weighted inputs and an additional bias bj .

connected network every neuron from the previous layer is connected to all neurons from

the next layer adjacent to it. We are also only considering feed-forward networks so there

is only one direction where updates for neuron outputs are carried out and subsequently

there are no loops. When looking at the general structure of a multi-layer network, one

can find an input layer of one or more neurons which directly output the data of the input

vector as the initial layer. Next are one or multiple layers which are denoted as hidden

layers which contain varying numbers of neurons. The last layer acts as the output layer

which yields the final network output and as such, the activation function and number of

neurons in the output layer highly depend on the task the network is aiming to achieve.

An example for the network architecture is visualized in Figure 2.10.

Because we are working in a fully connected setting, it is easy to formulate the neuron

updates using a weight matrix W (l) ∈ RN×M for all connections between layers l and l+ 1

containing M and N neurons respectively. Rows of this matrix will be indexed with j and

columns with i. In each row of this matrix the weights for incoming connections to node j

from nodes i are stored. One can the also define a vector y(l) ∈ RN containing all outputs

from neurons in layer l. Additionally one can define a bias vector b(l+1) ∈ RM for the

neurons in layer l+ 1. This bias can also be integrated into the weight matrix directly, by

adding the bias vector as the last column of W (l) and inserting an additional element with

the value 1 at the end of the vector y(l). The vector y(l+1) ∈ RN can then be computed

as follows:

y(l+1) = g
(
W (l)y(l) + b(l+1)

)
= g
(
z(l)
)

(2.17)

The activation function g(...) in this case is applied element wise to the vector z(l)

resulting from z(l) = W (l)y(l) + b(l+1).
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Input Layer Hidden Layers Output Layer

y(0) y(1) y(2) y(3)
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Figure 2.10: Visualization of a neural network with two hidden layers: The output vector y(1)

of the first hidden layer is computed as y(1) = g(W (0)y(0)) (in this case the bias is included in
the weight matrix and an addition value of 1 was added to y(0)). Subsequent outputs are also
computed using this formulation.

2.3.4 Activation Functions

There are a multitude of non-linear activation functions which can be used in neural

networks, however the used function has to be chosen with care, as it has a large impact

on the learning process of the network. A popular choice is the rectified linear unit (RELU )

activation function [20], which is defined as follows:

g(x) = max(0, x) (2.18)

Another possibility is the logistic sigmoid function:

g(x) =
1

1 + e−x
(2.19)

However, the latter function suffers from the vanishing gradient problem: Due to the

fact that the gradient of this function is limited in magnitude, the accumulated values for
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the overall gradient during the training phase will start to get very small, effectively only

changing the network parameters during training by a very small margin.

Activation functions for output neurons are chosen depending on the task of the neural

network. For regression tasks, one usually does not want to modify the value the neuron

produces, given the weights and outputs of the previous layer, as a floating point value

should be estimated directly. The function that is used in this case is defined as g(x) = x.

For classifying whether an input vector belongs to C > 1 classes, it is preferable that

the network yields a probability of the input belonging to either class. This can be achieved

with the softmax function which is defined for the vector of all outputs X =
[
x1, ..., xC

]
as follows:

g(xc) =
exc∑C
i=0 e

xi
(2.20)

2.3.5 Learning and Loss Functions

The back-propagation algorithm is used to update the weights of the neural network dur-

ing training [20]. It updates the network parameters based on the difference between the

current prediction and the desired result. In order to achieve this the network first com-

putes a prediction which is compared to a target and subsequently the network parameters

are updated. The loss function is a central component of defining how the gradient is com-

puted for back-propagating the weight updates through the network. For regression tasks,

it is common to use the mean squared error function. This means that the error from

difference between the network output y(L) of the last layer and a target vector t will be

computed as follows:

E(y(L), t) =
1

2
· (y(L) − t)2 (2.21)

When repeating this procedure for n input/target pairs, all individual errors are aver-

aged:

E(y(L), t) =
1

2n
·
n∑
i=0

(y
(L)
i − ti)2 (2.22)

A loss function used for classification is the cross-entropy error function:

E(y(L), t) =
1

2n
·
n∑
i=0

C∑
c=0

−tic log y
(L)
ic

(2.23)
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2.3.6 Computing Parameter Updates

In order to update the parameters of the neural network, one needs to compute the deriva-

tive of the error function with respect to the weight matrix W (l) and bias vector b(l) of each

layer l. These derivatives can be computed for each input/target pair individually and

then summed up and averaged afterwards, because of the structure of the mean squared

error function used in this case. When computing the derivatives for the weights one can

make use of the chain rule:

∂E

∂W (0)
=

∂E

∂y(L)
· ∂y

(L)

∂z(L)︸ ︷︷ ︸
δ(L)

· ∂z
(L)

∂y(L−1)
· ∂y

(L−1)

∂z(L−1)

︸ ︷︷ ︸
δ(L−1)

· · · · ∂y
(1)

W (0)

(2.24)

The derivative of W (1) is computed in an analogous way except for taking the partial

derivative of y(2) with respect to W (1) at the end of the chain. The same holds for the

bias parameter as well:

∂E

∂b(0)
=

∂E

∂y(L)
· ∂y

(L)

∂z(L)
· ∂z(L)

∂y(L−1)
· ∂y

(l−1)

∂z(l−1)
· · · ·∂y

(1)

b(0)
(2.25)

When looking at the relations above one can see that ∂E
∂W (0) = δ(1) · ∂z(1)

∂W (0) . The second

differential can be solved in the following way: ∂z(1)

∂W (0) = ∂W (0)y(0)+b(0)

∂W (0) = y0T . From this

reformulation the gradient of the weight matrix can be calculated as ∂E
∂W (0) = δ(1) · y(0)T .

The gradient of the bias term resolves to ∂E
∂b(0)

= δ(1), because ∂z(1)

∂b(0)
= 1. The gradients for

general terms W (l) and b(l) are calculated as follows:

∂E

∂W (l)
= δ(l+1) · y(l)T

∂E

∂b(l)
= δ(l+1)

(2.26)

In order to compute the gradient updates it is necessary to compute the network

output y(L) beforehand. This relation describes one of the two main components of the

back-propagation algorithm, which is used to train neural networks:

• compute the network output y(L) using the input sample and given paramter settings

• compute the gradients ∂E
∂W (l) and ∂E

∂b(l)
from y(L) and the target t.

Once all of the gradients have been computed they are accumulated and depending on

the error function, an average of the summed gradients is then used in a gradient descent
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step to update the parameters. In this step the accumulated gradients are subtracted

from their respective parameters after being multiplied with the learning rate η. The

initial parameters are typically set from a normal distribution. Executing the algorithm

for I iterations on N training samples s using a learning rate of η is further elaborated on

in Algorithm 1:

Algorithm 1: Back-propagation using the mean squared error loss.

W (l), b(l) = N (µ, σ), ∀l ∈ {0, ..., L− 1}
while i < I do

∇W (l) = 0, ∀l ∈ {0, ..., L− 1}
∇b(l) = 0, ∀l ∈ {0, ..., L− 1}
while s < N do

compute y(L)

∇W (l) = ∇W (l) + ∂E(y(L),t)

∂W (l) , ∀ ∈ {0, ..., L− 1}
∇b(l) = ∇b(l) + ∂E(y(L),t)

∂b(l)
, ∀ ∈ {0, ..., L− 1}

W (l) = W (l) − η · ∇W (l), ∀l ∈ {0, ..., L− 1}
b(l) = b(l) − η · ∇b(l), ∀l ∈ {0, ..., L− 1}

The learning rate parameter η has a large influence on the training process depending

on the chosen value. Learning rates which are too small in magnitude have the disadvan-

tage of having to train for many more iterations. On the other hand choosing a learning

rate too large in magnitude could result in jumps around the local minimum of the error

function and not consistently reaching an end result close to the minimum.

Another method of training is stochastic gradient descent [41]. When using this method

one does not iterate over all input/target pairs in every iteration, instead one iterates over

B samples, where B is the batch-size parameter. In this case B samples of a batch are

random choices from the entire training set. This yields better results for training and also

reduces the computational effort in each iteration. In this setting a measure denoted as

epochs is used to define how many times the entire training set is given to the algorithm

via batches.

2.4 Convolutional Neural Networks

In this chapter we will elaborate on the central ideas behind convolutional neural net-

works, which can be categorized as standard neural networks with additional caveats and

constraints.

2.4.1 Core Concepts

As opposed to standard multi-layer neural networks, convolutional neural networks use

the concept of convolutional filters to compute the outputs of neurons. When working

with images, all of the neurons in the input layer are organized in a two dimensional grid.
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In this case, it is common to either use an input array containing one channel of neurons

(e.g. for gray-scale images) or three channels (RGB-images).

The hidden layers in convolutional neural networks consist of differing amounts of

channels, with each channel holding neurons in a two dimensional grid. Each of these

neurons has connections to a local patch with size W ×W in the two dimensional grid in

the previous layer. If the previous layer is the input layer and has three channels the size

of the window is W ×W ×3. To limit the amount of parameters to estimate while training

the network, each channel of a hidden layer uses the same set of weights for connecting

its neurons with local patches in the previous layer. This means that each channel in a

hidden layer computes its output depending on W ·W parameters, a concept that is also

shown in Figure 2.11. This relation yields one of the core components of convolutional

neural networks which are denoted as filters. Each channel of a hidden layer represents

such a filter. Two dimensional inputs coming from hidden layers or the two dimensional

network input can be convolved with a filter, which is defined using a filter kernel with a

given size (either W ×W or possibly W ×W × 3 for the input layer) .

Formally, a convolution in discrete space of a two dimensional MxN image I with a

two dimensional kernel K of size W ×W is defined as follows:

R(y, x) =

M∑
m=0

N∑
n=0

I(m,n) ·K(y −m,x− n) (2.27)

When accessing locations outside of the kernel or image, a padding strategy i.e. using

zeros, has to be defined. When convolving the input with the filter, the filter moves over

the input along each of the two dimensions and computes a weighted sum using the values

inside the filter window as weights, which again yields a two dimensional output.

Analogous to a standard neural network, the number of neurons in the last layer, which

are connected to every neuron from the second-to-last layer, depends on the number of

outputs that should be generated by the network.

2.4.2 Additional Hyper Parameters of Convolutional Architectures

Each of the neurons in the hidden layer represents an output which has been computed by

convolving with a kernel on a certain spatial location of the input. The number of neurons

within each of the filters in the hidden channel depends on a stride parameter. The stride

parameter controls by how many neurons the filter is shifted in each dimension when

moving the kernel window. A larger stride means less neurons are needed for representing

the output. Furthermore pooling layers can be used to increase the receptive field of the

network further, however applying them results in a reduction of output neurons compared

to the input of the layer. Pooling layers apply an average or maximum operation to

compute the result from values inside a filter window moved across the input dimensions

with a specified stride. This is used to widen the receptive field of the network, which
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Figure 2.11: Figure depicting the basic principles of using multiple convolutional filters in a
CNN . It can be seen that each filter uses a different set of input weights for all convolutions with
the input. In this case the filter dimensions are 3× 3, which means that each of these filters have
9 parameters which will be estimated during the training procedure.

means global contexts of the input can be taken into account. Another method to widen

the receptive field are dilated convolutions [56] where a dilation parameter defines spacing

between the weights inside the filter window.

The concept of two dimensional convolutional networks can also be extended to be

used for three dimensional input data by not only convolving with a kernel volume over

the height and width dimension but also along the depth dimension.

2.5 Summary

In this chapter, we first introduced the fundamental principles of multi-view geometry

by elaborating on the pinhole camera model and epipolar geometry. Furthermore, we

introduced the image-based 3D reconstruction process via SFM and dense reconstruc-

tion techniques. We have also introduced basic concepts of neural networks, as well as

convolutional neural networks.
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There exist a variety of approaches in the field of 3D scene completion, which focus on

different use case scenarios in terms of scope and scalability, but also in terms of the format

used for the input data. However, when comparing the techniques on a very high level, one

can distinguish between machine learning based approaches and traditional algorithmic

approaches. In the following chapters we will discuss various works which can be classified

using either of the aforementioned categories.

3.1 Traditional Approaches

In recent years, many methods for scene completion have been proposed, which do not

rely on learning based techniques to reconstruct missing geometry. There are approaches

that rely on solving optimization problems, which describe the process of completing the

geometry in a rigorous mathematical way, such as Poisson surface reconstruction [26]. This

method reconstructs a mesh from an oriented point-cloud by solving a Poisson optimization

problem. Poisson based reconstruction can also be used as a post-processing step for

algorithmically filling holes in meshes which is utilized by Zhao et. al.[61]. Their system

first creates a rough result using the advancing front mesh algorithm [19] and further

processes the result by solving a Poisson optimization problem. Least squares meshes [48]

reconstruct a surface from control points which are used as an input to the algorithm.

This is done by setting up an equation system, which is linear in nature and obtaining the

solution using a least squares method. However, this method cannot directly infer new

triangles in the mesh but rather computes the spatial location of already existing triangles

27
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within the mesh. Additionally there are also methods, which use a database of complete

models in order to replace objects with missing geometry. Such a method, which uses a

feature based approach to match models from a database with incomplete models, has

been developed by Li et. al. [32]. Similarly Kim et. al. [28] learn common shapes from

given 3D scenes and use these to complete missing geometry. Furthermore, approaches

have been proposed that use specific properties of objects, such as symmetry, to add more

information to partially reconstructed geometry by continuing the geometry according to

its symmetric properties [52]. Related are methods which try to find such symmetries

in 3D space by detecting feasible symmetries via correspondences [35] or by generating

points of interest for detecting symmetries via a diffusion equation [46]. Furthermore, an

algorithm that checks for patterns by repeatedly transforming parts of the geometry and

then utilizes the detected patterns for geometric completion was developed by Pauly et.

al. [38]. There are also approaches that use additional geometric scene assumptions, i.e.

Holzmann et. al. [25] propose a method where planes extracted from the scene are used

to improve the reconstruction result for planar surfaces. Related to this method is an

online system developed by Dzitsiuk et. al. [15], which is designed to complete holes on

planar surfaces, decrease noise in the reconstructed geometry and provide a segmentation

of objects present in the scene. This is done by detecting planes for each object in the

scene via a clustering approach. The planes can then be used during the reconstruction

process to reduce noise, fill holes in planar regions and segment objects by utilizing the

results of the clustering. In the following chapters we will elaborate on a selection of the

methods described above in more detail.

3.1.1 Poisson Surface Reconstruction

One of the more prominent traditional approaches for 3D scene completion is Poisson

Surface Reconstruction [26], which generates a mesh given an oriented point cloud. In

general, the goal of this technique is not to infer larger chunks of missing geometry, but

rather construct a surface mesh that spans the missing geometry between points in the

input point cloud. The name Poisson surface reconstruction stems from the fact that this

technique formulates the reconstruction problem as a Poisson problem. This is done by

representing the output of the reconstruction as a three dimensional indicator function

I. For a given 3D point the function returns the value 1 if the point is located inside

a mesh and 0 if it is located outside a mesh. It follows that the gradient ∇I of this

function is non-zero only at points that lie on the surface of the mesh itself. The points

from the given oriented input point cloud P also lie on the surface of the mesh that needs

to be reconstructed. Thus, one wants to find a 3D indicator function that minimizes

the difference between the given oriented input points and the gradient of the indicator

function. This can be expressed as follows:
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Figure 3.1: Relation of input point cloud, indicator function and surface to be reconstructed. It
can be seen that the gradient of the indicator function is zero except on the surface of the mesh
itself. The indicator function yields values of 1 inside the surface and values of 0 outside. Figure
taken from [26].

min
I
F (I) = min

I
||∇I − P || (3.1)

A Poisson problem is of the following form: ∇2φ = f . One wants to find the function

φ, whose Laplacian denoted by ∇2 is equal to the function f . The problem described in

Equation 3.1 can be reformulated into a Poisson problem using the divergence operator

∇. Applying this operator yields minI
∣∣∣∣∇2I −∇P

∣∣∣∣, so effectively one wants to find I
such that ∇2I = ∇P . It can be seen that is equivalent to a Poisson problem with φ = I
and f = ∇P . The aforementioned relations of the indicator function, input point cloud

and the surface to be reconstructed are also visualized in Figure 3.1.

The solution to this problem, after rewriting it into a linear optimization problem, can

be obtained using a linear solver. One of the advantages of this technique is, that it is

robust to noise in the point cloud measurements. As this method only uses the oriented

point cloud as an input, reconstructing the surface via solving the optimization problem

can lead to artifacts in the reconstructions. There is also no way for the algorithm to infer

geometry from unknown or empty space, as there will be no point cloud data there.

3.1.2 Completion using Database

One can also use a database of predefined shapes or even entire objects to complete

missing scene geometry. Li et. al. [32] developed a system using a similarity measure,

which utilizes descriptors for reconstructed and database geometry to replace missing

geometry. The main steps of the algorithm are depicted in Figure 3.2. The technique

was designed to be used during real time 3D reconstruction. Furthermore, this approach

can be seen as an extension to traditional image inpainting [3] techniques where similar

patches from the input image are used to fill the missing intensity values in the image. To

achieve this, keypoints are computed for complete shapes stored in the database, as well
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as for incomplete reconstructed shapes. These keypoints are computed by applying a 3D

corner detection algorithm to the point cloud representation of the respective geometry.

Additionally, descriptors are computed using a distance function. The descriptors encode

local distance function information from their respective keypoints in addition to global

information based on planes from the entire shape. This global information is used to align

the database shape with the reconstructed shape during the descriptor matching phase.

This approach works well, if the original scene geometry can be accurately represented by

the models retrieved from the database. As the entire model is swapped out, this approach

avoids producing artifacts while completing the geometry, if the alignment within the

original model is correct. However, the main limitation of this approach is the similarity

of the database models to the real reconstructed geometry. Another potential problem is

that the amount of keypoints and subsequently models detected within the scene might

not match the actual amount of models contained in the space.

3.1.3 Shape from Symmetry

The basic idea of Shape from Symmetry [52], is to exploit the symmetric properties of

many objects in 3D in order to complete missing geometry. After a specific type of

symmetry that the shape of the object adheres to is inferred from an incomplete object,

this knowledge can be used to complete the object geometry. To achieve this symmetries

are classified via a two measures. The first is an anchor for the symmetry which binds

it to a specific location e.g. either a plane or point. In addition the type of symmetry,

for instance reflective or spherical defines how the symmetry is used to create geometry.

Examples for different anchors for reflective symmetries are visualized in Figure 3.3.

These symmetric properties can also be combined as well to create more complex

symmetries. One can also define a hierarchy, where symmetries that are more general

versions of their respective sub-symmetries are positioned at a higher level. The basic idea

of how to detect the type of symmetry in the incomplete geometry, is to define a score for

the various symmetry types and pick the symmetry which yields the highest score for the

given geometry. The score is computed from a probabilistic model, which also accounts

for noise. The main metric of the model is determined by computing the complete model

under the assumption that the type of symmetry to be scored is the correct one and then

check if the points added to the model lie within occluded space or not. If a lot of them

are positioned in non-occluded space they should have been visible in the first place and it

is less probable that the type of symmetry used to generate these points is the correct one.

This approach has the advantage that it creates very good results for objects, where the

symmetry assumptions hold and the correct symmetries have been detected. However, for

objects which are made up of a lot of different types of symmetry, these become harder

to detect and hence the completion result will be negatively impacted. Furthermore more

complex non-symmetric geometry will not be completed in a geometrically sound way by

this approach.
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Figure 3.2: Flow chart showing the main steps for database assisted scene completion. First
descriptors and computed for the database models and the reconstruction, these are then matched
and subsequently the reconstructed results are replaced with matched models from the database.
Figure taken from [32].

3.1.4 Semantically Aware Urban 3D Reconstruction with Plane-Based

Regularization

Holzmann et. al. [25] propose a method where semantic information is used during the

reconstruction of 3D geometry, to create a more complete output mesh as seen in Fig-

ure 3.4. In this approach planes are detected and used in a reconstruction pipeline which

utilizes tetrahedra. Semantic information is then used to regularize the reconstruction

in a way that yields planar geometry for walls and smooth geometry for objects around

buildings. To achieve this, a line-based 3D reconstruction is performed. A dense point

cloud is then generated from dense depth maps using a multi-view stereo approach. The

incorporated semantic information is computed from input images using a CNN . This
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Figure 3.3: Different anchor points for reflective symmetry i.e. planes, lines and points. Image
taken from [52].

information is then projected into 3D space using the extrinsic and intrinsic parameters

of the respective camera poses. If different semantic information from several images is

projected to the same point, a majority vote is used to determine the most probable label.

The line-based 3D reconstruction allows for improved performance when detecting planes

in the reconstructed geometry. Additionally, the detected planes can also be filtered using

the semantic labels of the lines which have been used to reconstruct them. The detected

planes and semantic information are then used in a tetrahedral surface reconstruction

algorithm. The completion metric of planar surfaces like building walls is improved sig-

nificantly. This is the case, because custom energy terms depending on the semantic class

can be included while solving for labels which determine whether a tetrahedron is inside

or outside a 3D surface.

Figure 3.4: Outputs of the reconstruction with plane based regularization. It can be seen that
the planar surfaces on the buildings have been densely reconstructed. Figure taken from [25].

3.2 Learning-Based Approaches

Due to the increase in popularity of neural networks in many areas of computer vision

research, a wide variety of learning based methods for scene completion has emerged

in recent years. Recently generative adversarial neural networks [21] have received an

increased amount of focus from researchers. These networks consist of a generator network

that generates data and a discriminator network, which infers the viability of the generated
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data. This generative adversarial model is utilized in a system proposed by Wu et. al.

[55], that was designed to complete the geometry of an object contained in a depth image.

In case a depth image is not given it is estimated via an additional neural network. Then

the network estimates the complete geometry from the depth map using a neural network.

The discriminator network of a generative adversarial network is subsequently used to

check if the completed result is viable, which improves the result of the previous network

by introducing an additional loss term. This method is limited by the fact that it is

only able to complete a single object contained in a depth image. There exist methods

relying on random forests to fill in missing geometry caused by occlusions [16] in an

entire depth image. However, similar to the work by Dai. et. al. [12] based on CNN ,

this approach is also more focused on completing single objects contained within the

depth images and not entire scenes. Furthermore, the method is not able to predict

semantic information for objects contained within the scene. In order to achieve this task,

approaches have been developed that specifically focus on completing the geometry and

semantics contained within a single depth image using a CNN [47] [18] or voxel based

Conditional Random Field (CRF ) [27]. A disadvantage of the aforementioned methods is

that they focus specifically on the information contained within a single depth map, which

can lead to problems in overlapping regions where different predictions have been made.

A neural network based technique called ScanComplete [13], which relies on a hierarchical

approach, aims to solve this problem and is able to reconstruct larger scenes and estimate

the semantic labels of the scene. This method works with a TSDF encoded in a voxel

grid, similarly to a method developed by Cherabier et. al. [8], which makes use of an

encoder and decoder architecture combined with a regularized optimization procedure to

complete an input TSDF and additionally outputs semantic labels as well. Zeng et. al.

[57] developed another neural network based system, which is able to complete and refine

larger scenes and takes as an input an initial point cloud reconstruction. It then infers

a procedurally generated complete model that encodes the same geometry as the input

point cloud. One of the main limitations of using CNN based architectures in 3D are

the high memory requirements. Hence, Riegler et. al [40] proposed a more efficient data

structure than regular voxel grids for 3D deep learning. Moreover, Zhang et. al. introduce

spatial group convolutions [58], which allow for more performant inference times. As done

in the previous section with traditional approaches, we will elaborate on a selection of the

learning based methods mentioned above in greater detail.

3.2.1 ScanComplete

In Dai et. al. [13], a method named ScanComplete was presented, which consists of a

fully convolutional, hierarchical and auto-regressive neural network architecture can be

utilized to complete missing scene geometry and predict the semantic information linked

to this geometry, as exemplified by a result in Figure 3.5. The network is trained on data

acquired using the synthetic SUNCG dataset [47], with the following properties: The given
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incomplete input scene is represented as a regular voxel grid. Geometric information is

encoded within this voxel grid using a truncated signed distance function. The complete

ground truth counterpart to a given input scene is represented by a non-signed distance

function. In this case, the sign is not used, as all of the space within the ground truth

geometry is known. For the input scene the negative sign represents voxels which lie behind

a given surface, hence parts of the geometry which might not have been reconstructed

properly. Additionally semantic ground truth information which assigns a semantic label

to each voxel is provided, in order to train the network to predict voxel semantics from

the given input signed distance volume. During inference the network processes the input

data using 3D convolutions with filter kernels, which have previously been learned during

the training phase. Furthermore due to the autoregressive architecture of the network, the

data is split up into 8 equally sized voxel groups. The output of all previously processed

voxel groups is used as an additional input for processing further groups. The network

features three distinct hierarchies that process voxel grids of different resolutions (coarse

to fine). This allows the network to take into account a wider global context, while taking

advantage of higher resolution input needed for reconstructing fine details. One of the main

advantages of this approach is that it is able to infer new geometry i.e. the base and arm

rests of a chair when only given incomplete parts of the supports at the bottom. This can

however lead to objects having different geometry than in the actual scene. Furthermore

the level of detail which can be reconstructed is limited by the number and encoded voxel

sizes of the hierarchy layers. The representation of the encoded truncated signed distance

function is also a regular voxel grid, which can lead to memory issues.

Figure 3.5: Sample result and semantic prediction from ScanComplete [13]. Imagery taken from
[13].

3.2.2 Semantic Scene Completion from a Single Depth Image

In this section, we will describe the approach by Song et. al. [47] in detail. The method

infers occupancy information and semantic labels from a single depth image using a CNN

(SSCNet). A result is visualized in Figure 3.6. The input geometry for the network

is encoded as a truncated signed distance function stored in a voxel grid. Furthermore

the distance function is reversed, such that the gradient of the function points towards
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the direction of the surface, which has been shown to improve results. The network

then predicts a semantic label for each voxel if it is occupied, otherwise the label will be

”empty”. In terms of architecture, the network makes use of dilated convolutions to widen

its receptive field. Furthermore it is a deep residual network utilizing skip connections.

The training data was generated from the synthetic SUNCG dataset [47] and encodes the

surfaces as a reversed truncated signed distance function. One of the disadvantages of

this approach is, that it only completes geometry for single depth images. If one wanted

to complete an entire scene, the completed geometry from single-views would have to be

concatenated which can lead to problems on reconstruction boundaries. Furthermore, the

context of the surrounding geometry cannot be taken into account. During their evaluation

Song et. al. found that implicitly performing occupancy information completion while

predicting semantic labels improves the scene completion performance.

Figure 3.6: Input and predicted result for SSCNet [47]. Figure taken from [47].

3.2.3 Two Stream Semantic Scene Completion

Garbade et. al. [18] use semantic information obtained through RGB images as an addi-

tional input for their single depth image occupancy and semantic labeling framework. The

used network architecture is built upon from Song et. al. [47] and takes both a reversed

truncated signed distance function in voxel grid form and semantic labels for each voxel

encoded in three dimensions as an input. The semantic information is inferred from the

RGB input images using a CNN and then projected into 3D space using the corresponding

depth map. Encoding the semantic class labels in three dimensions avoids the memory

limitations of a one hot-encoding approach. Furthermore encoding the labels using just

their values in one dimension limits the expressiveness of the input. The proposed ap-
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proach yields better results in terms of scene completion than SSCNet [47], however, as

it still only performs scene completion on a single depth image, the same limitations as

mentioned above apply when completing larger scenes.

3.2.4 Shape Completion using 3D-Encoder-Predictor CNNs and Shape

Synthesis

This method from Dai et. al. [12] focuses on completing single objects using a CNN and

then refines the result using a database driven shape synthesis algorithm as visualized

in Figure 3.7. This is done by matching the coarsely completed result produced by the

neural network with a higher resolution model obtained from a database and then using

this model to refine the coarse result. The neural network inferring the coarse result uses

an encoder-predictor architecture. One of the novelties of this approach, is that this neural

network also takes semantic predictions regarding the shape of the object as an additional

input. Overall, the method surpasses the state of the art in terms of performance, however

this approach is focused on completing a single object and not an entire scene. Moreover,

it is limited by the amount of data available in the database.

Figure 3.7: Flow charts depicting the main steps of the algorithm proposed by Dai et. al. [12].
The neural network prediction is refined using a model obtained from a database. Imagery taken
from [12].

3.3 Summary

Using the works presented above as a point of reference, one can see that completing 3D

geometry is a highly complicated task, which either requires (assumed) prior knowledge of

the geometry, or powerful learning based techniques to achieve acceptable results. With

regards to completing image based reconstructions, learning based approaches are prefer-

able, as using the discussed traditional approaches would introduce severe limitations to

the general completion capability of the system. For instance, Poisson surface reconstruc-

tion [26] is not able to infer geometry when no measurements are available, which is a

key component when trying to fill in missing geometry in image-based reconstructions.

Furthermore methods supported by a database [32], would not be able to complete shapes

not already known to the system. This is another advantage of learning based methods
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as they are able to infer entirely new geometry based on the existing scene. Symmetry

based algorithms [52] might work well for some elements of the scene, however their per-

formance is limited by the complexity of the given objects. When utilizing learning based

approaches, methods taking the entire scene into account such as ScanComplete are likely

to achieve good results. This is not the case when completing single depth maps [47], as

one would have to merge the depth maps on the boundaries and introduce overlapping

depth measurements in these locations. Moreover, the system would not be able to utilize

information outside of the viewpoint of a single depth map, which oftentimes provides a

significant amount of additional context. For the aforementioned reasons, we chose the

ScanComplete architecture to use as a basis for our work.
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In this chapter, we first give a high level overview of the proposed method, as well as

the format of the input and output data. Then we will elaborate in more detail on the pro-

posed network architecture, which takes semantic information and geometric information

encoded as a TSDF as an input and produces a completed model and estimated semantic

labels as the output.

4.1 Overview

The main purpose of the proposed method is to fill in missing geometry of incomplete

3D reconstructions in a consistent way with respect to the existing geometry. There are

many potential use cases for this work and we want evaluate how our approach performs

for completing 3D reconstruction generated from synthetic scenes and also investigate the

methods performance on image based reconstructions of real world scenes. This method

could also be integrated as a post processing step in a dense 3D reconstruction pipeline,

in order to improve the quality of the output mesh. In order to achieve this task the

method uses geometric data and additional semantic data, which labels the corresponding

geometric input using a defined amount of semantic classes. The semantic input provides

the network with more context in regards to the physical structure of the geometry that

should be completed. For instance, if geometry associated to the semantic classes wall,

ceiling or floor surrounds missing structure, the network can infer that the structure of

the missing geometry should be planar. The completion itself is performed using a CNN
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which takes as an input an incomplete geometric reconstruction encoded as a TSDF in

a regular voxel grid. The voxel grid is obtained by integrating depth information from

multiple input depth maps. Additionally semantic labels for each voxel are provided as

an input. A high level overview of the work-flow is provided in Figure 4.1. A quantitative

analysis of how this modification improves inference performance, when compared to only

using truncated signed distance function input, is provided in chapter 6.

Input Geometry

Completed GeometryNeural Network

Input Semantic

(incomplete)

(incomplete)

Figure 4.1: The main processing steps of the proposed pipeline. Geometric and semantic data is
used as an input for the neural network, which outputs the completed geometry.

4.2 Input Data

In the following section we further elaborate on the used input data formats and on the

concept of generating 3D semantic information from given semantic segmentation images

and camera poses.

4.2.1 Conventions

The proposed pipeline expects geometric and semantic input data. The format of the

geometric data is specified as a truncated signed distance function (TSDF ) encoded in a

regular voxel grid. The TSDF encodes the distance to the nearest surface for each voxel,

while the sign relates to the spatial position of the voxel in relation to the surface. The

metric in which this distance is measured are voxels, in our case a value of one encodes a

distance of three voxels. The truncation clips values above a defined threshold and for the

input data of the proposed method the threshold is set to one. We obtain values for the

TSDF by combining depth data from multiple input depth maps. Further details with

regards to this combination and TSDF are provided in Section 2.2.4.

The semantic input information is encoded via class labels and stored in a regular voxel

grid with equal dimenions as the grid storing the geometric input. In order to acquire the

semantic information in the form of a voxel grid, we project labels from semantically
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segmented images into 3D space using the respective camera poses the images were taken

with as described in Section 4.2.1.1. The semantic classes used in this additional semantic

input were adopted from ScanComplete [13] and have been extended by an additional

clutter class. The chosen labels provide separate classes for common items available in

indoor environments. Moreover three classes, namely furniture, object and clutter, are

used to label a variety of other objects that do not fit the geometry of the rest of the

classes. The semantic labels are defined as follows: wall, ceiling, floor, bed, chair, furniture,

objects, clutter, sofa, desk, TV, window, unknown space, empty space.

The dimensions of both input voxel grids are not restricted to a specific value, as

the network architecture does not contain convolutions using a stride higher than one or

pooling layers, hence it is a fully convolutional architecture and as such it can handle

arbitrary input sizes.

4.2.1.1 Integrating Semantic Information into Voxel Grid

For creating three dimensional semantic information, we leverage generated depth maps

and their respective camera poses. Each of the depth maps is integrated into a dynamically

allocated voxel grid using the weighted updating scheme described in Section 2.2.4. In this

case, the weights are chosen as follows: wm(X) = 1, ∀X, where X are all possible voxel

locations within the voxel grid. In order to also be able to create a voxel grid containing

semantic class information, we introduce a per voxel array containing class votes that

adheres to the following update scheme:

H(X, c,m+ 1) = H(X, c,m) + l(X, c), ∀c ∈ C (4.1)

In Equation 4.1 the parameter C denotes all of the possible classes, while H(X, c,m)

represents the per voxel array containing class votes for class c after integrating depth

map m. In this case l(X, c) represents the class information obtained from the semantic

segmentation image projected into 3D space using the depth information obtained from

the depth image at a given pixel location:

l(X, c) =

{
1 if proj(X,m) = c

0 else
∀c ∈ C (4.2)

The function returns a value of one for a given c, if the semantic class of this voxel

is c according to the projected information from the segmentation image denoted by

proj(X,m), otherwise it returns zero. This means that if the projected class label from the

semantically segmented image, which projects to voxel X matches c, the function returns

1.

The set C represents all possible class labels C = {0, ..., 13}. Class labels with the
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highest score obtained from Equation 4.1 are chosen as the result in a final post processing

step:

L(X) = argmax
c

H(X, c) (4.3)

As mentioned above, the voxel grid is dynamically allocated as specified in the Open3D

implementation [65] [64]. This means that the grid is constructed from smaller sub-grids of

a defined size. To generate these sub-grids, a point cloud is first created from the currently

processed depth image and camera pose. The sub-grids are then created, if necessary, in

order to be able to integrate the information within a distance of three voxels from each

point in the point cloud.

4.3 Network Architecture

In this chapter, we discuss the main features and the convolutional architecture used in

ScanComplete [13] in more detail, as well as on the extensions that were performed to

take advantage of semantic input information.

4.3.1 Network Modalities

The network architecture we use in our work, is designed to process TSDF data encoding

up to three different levels of granularity, as originally proposed in ScanComplete [13].

These levels are defined by the size of individual voxels in the regular input voxel grid.

The network is able to complete missing information in the TSDF and at the same time

predict the semantic labels of every voxel in the grid. This is done via two network branches

using different loss functions for the respective tasks, which are described in more detail

in Section 4.3.3.

Subsequently the different levels are trained on data with different voxel sizes, while

the network architecture for each of the hierarchy levels is identical. Furthermore, the

inference results of the coarser hierarchy levels are used as an additional input channel in

the finer hierarchy level directly succeeding it.

Another feature of the network architecture is an autoregressive training procedure.

The main idea behind an autoregressive model is to split up the estimation of a probability

distribution into multiple conditional distributions which are then multiplied. This means

that one has to split the input data of the network into smaller sub volumes and then

use the predictions of previous sub volumes when inferring on the current sub volume, as

its prediction depends on the output of the previous predictions because of the aforemen-

tioned underlying conditional dependence. Such a training procedure has already been

investigated for the 2D image case [54] and performant implementations exist [39].

For the autoregressive approach of the ScanComplete [13] architecture, the input voxel
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grid is split into equally large groups of voxels. The groups are computed by enumerating

all possible sub grids with a stride of two from the input grid. This needs to be done

because the voxels contained in a sub volume must be independent of each other in order

for the assumptions of the autoregressive model to work, hence a stride of two is introduced.

Because the grid is three dimensional and the stride is two there are eight possible sub-

grids with a stride of two that can be extracted from the input. In this case each of these

sub-grids marks a group of voxels. The weights of the network are then determined for

each of the groups separately, however the ground truth truncated distance values for all

groups on which the current group depends, are used as additional inputs. Moreover, as

already mentioned above the inference result of the coarse hierarchy level is also added as

an input channel for training all of the groups. When training the network, one can either

use the inference result or the ground truth data for the inputs of the coarser hierarchy

levels as an additional input for each of the groups. Thus, the dimensions of the coarser

result have to be half the dimensions of the current result in order to be concatenated

with the voxel group data, which has been generated with a stride of two from the current

input volume.

4.3.2 Convolutional Architecture

The initial geometric and semantic input data contained in each voxel group is first con-

volved with three dimensional convolutional kernels with size 3×3×3, which are activated

using RELU . In the network architecture there is a sequence of convolutions which is re-

peatedly used, which we denote as the basic element of the network. The resulting filter

channels from the intial convolution of the input data are then convolved with this basic

element of the network. This element is structured as follows: An initial convolution with

a 1× 1× 1 kernel activated by RELU , followed by a convolution with a 3× 3× 3 kernel

activated by RELU and a final convolution with a 1× 1× 1 kernel. The original input of

the basic element is then directly added to the non activated output of the last 1× 1× 1

convolution. A RELU activation function is then applied to the result of this addition.

This follows the structure of deep residual networks [23], which utilize these connections

to be able to train neural networks with a large amount of layers.

The data from the coarse hierarchy level is first convolved with 3× 3× 3 filter kernels.

Then this data is also convolved using the basic element described above. What follows

in the network architecture is the combination of the filter channels which are the results

from applying the above described convolutions to all of the input data. Next, two of the

basic convolutional elements are applied to this combination of filter channels.

The network then splits into two separate branches, one for predicting the semantic

labels of each voxel group and one for predicting the TSDF function. Within each branch,

the incoming data is convolved with a basic element first, before a final convolution with

a 1 × 1 × 1 kernel is conducted. The number of filters for this final kernel depends on

the number of network outputs. It follows, that for the semantic branch the number of
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filters is the number of semantic classes used and for the TSDF branch there is only one

output filter, which directly predicts the function value. During inference, the class label

with the maximum probability for each voxel is chosen as the final label assignment in

the semantic prediction branch. Furthermore, each of these branches is trained using a

different loss function, a concept which is elaborated on in more detail in Section 4.3.3.

The architecture of the network is further visualized in Figure 4.2.

There also exists an additional option for encoding the input and output values of the

TSDF prediction branch. In this alternative encoding, all of the TSDF values are binned

into a specified number of possible values. This means that also the number of filters of

the final convolutional kernel has to be equal to the number of possible values. Hence,

the loss function needs to be modified as well, which is described in Section 4.3.3. The

predicted TSDF values for each voxel during inference are drawn from the probability

distribution defined by the probabilities in the prediction result from all possible values.

TSDF

Semantic

3x3x3
RELU

3x3x3
RELU

Coarser Level 3x3x3
RELU

1x1x1 3x3x3 1x1x1
RELURELU RELU

+ = ELEMENT

ELEMENT

ELEMENT

ELEMENT

ELEMENT

ELEMENT

ELEMENT Semantic Loss

TSDF Loss

Figure 4.2: Visualization of the network architecture, which is extended from ScanComplete [13].
It can be seen that the network splits into two branches for with separate TSDF and semantic
prediction loss functions. The basic element of the network is used repeatedly after the initial
input data is convolved using a 3× 3× 3 kernel. Furthermore semantic information is used as an
input to the network as well as TSDF input and inputs of the coarser hierarchy level.

4.3.3 Loss Functions

The branching structure of the network architecture, which was proposed in ScanCom-

plete [13], allows for filling in missing values in the TSDF function, as well as predicting

semantic labels for all voxels present in the voxel grid. In order to achieve both tasks,

there are two different branches with separate loss functions as explained in Section 4.3.2.

Because of the autoregressive nature of the architecture, the loss functions are applied for
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each of the voxel groups extracted from the input voxel grid.

The loss function for the TSDF prediction branch is an absolute error function which

is defined as follows:

Etsdf =
1

G

G∑
g

V∑
v

|TSDFpred(v)− TSDFgt(v)| (4.4)

In the equation above, the number of voxel groups is represented by G and the number

of voxels within that group is denoted by V . The network output for a voxel v is obtained

through the function TSDFpred(v), while the value of the ground truth is obtained in an

analogous way via TSDFgt(v).

For the semantic prediction branch, a cross entropy error function is used after applying

a softmax activation function to the convolutional result of this branch. In order to be

able to apply the cross entropy error, a one hot encoding is performed on the ground truth

semantic labels for each voxel within a group. This means that for a given ground truth

label, a vector of C zeros is created and a single value of 1 is set for the vector on the

position that corresponds to the numerical value of the assigned label. The cross entropy

error function is defined as follows:

Esemantic =
1

G

G∑
g

V∑
v

C∑
c

−SEMgt(v, c) · log(SEMpred(v, c)) (4.5)

where SEMpred(v, c) provides the semantic prediction for a given voxel v and class c

and SEMgt(v, c) provides the ground truth label for a given voxel v and class c acquired

via one hot encoding. In order to balance the effect of both loss functions on the parts of

the network where the two branches have converged, the overall semantic loss is multiplied

with a scalar factor i.e. 0.1 · Esemantic.

Furthermore, in case the alternative encoding for the predicted output TSDF values

is used, the loss function for the TSDF branch is the cross entropy error as well, with the

number of classes replaced by the number of possible values.

4.3.4 Training Procedure

Within the training procedure, the ADAM optimizer was used to update the weights,

which has been proposed by Kingma and Ba [29]. This optimizer utilizes adaptive gradient

descent [14], where all of the parameters, in this case weights and biases, are updated

using separate learning rates. Furthermore, it incorporates RMSProp [43] [30], which

scales the learning rates using the magnitude of previously computed gradients. The

ADAM optimizer also incorporates an input learning rate into the parameter update for

a given parameter θ, which is formulated as follows for training step n, according to the
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conventions in the Tensorflow [1] implementation:

g(n) =
∂E(θ(n− 1))

∂θ

l(n) = η(n) ·
√

1− βn2
1− βn1

m(n) = β1 ·m(n− 1) + (1− β1) · g(n)

v(n) = β2 · v(n− 1) + (1− β2) · g(n) · g(n)

θ(n) = θ(n− 1)− l(n) · m(n)√
v(n) + ε

(4.6)

During training the parameters are set to the following values: β1 = 0.9, β2 = 0.999,

ε = 1 · 10−9. The used input learning rate η(n) is updated using an exponential decay

which is performed every S steps, as specified in Tensorflow [1]. This update is effective

until a specified minimum rate is reached. The learning rate for a given training step n is

computed from an initial learning rate η0 as follows:

η(n) = η0 · λ
n
S (4.7)

where λ parameterizes the rate of the decay. The parameters are set as follows:

η0 = 0.001, λ = 0.92 and S = 5000, which is equal to the settings suggested by ScanCom-

plete [13].

Training is performed using batches of eight input/target pairs. In order to provide

some randomization with regards to the input batches used they are continuously shuffled

in a queue during training.

4.3.5 Extensions

In this section we will discuss further modifications and additions to the network, which

will be evaluated quantitatively in Chapter 6.

4.3.5.1 Alternative Encoding of Semantic Input Information

As already described in Section 4.3, we use semantic information originating from 2D

semantic labels as input information. The semantic input information is first transformed

from class labels C ∈ {0, .., 13} to values c ∈ [−1, 1] using c = C
|C| · 2− 1. This means that

the semantic information is encoded in the range [−1, 1] within a single channel. This is

also done for the semantic input of the coarser hierarchy level. After this encoding the

semantic information is convolved with 3 × 3 × 3 kernels and subsequently with a basic

convolutional element of the network, the structure of which is described in Section 4.3.2.
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An alternative encoding for the semantic input has also been explored. For this variant

the semantic information is encoded in four channels comparable to [18]. The encoding is

the binary representation of the decimal class label for each voxel. Because there are 14

classes a binary representation using 4 bits is sufficient. This alternative encoding should

give the network more implicit differentiation between class data. Note that we provide

this alternative encoding as additional channels to the channel containing values in range

[−1, 1].

4.3.5.2 Flipped TSDF Function Values

Before being processed by the network, the values of the truncated signed distance function

for the input data and the distance function for the ground truth data are first transformed

as follows based on the original proposal of ScanComplete [13]. The distance function for

the ground truth data does not include a sign as elaborated on in Section 5.2.4.

TSDFinput(v) = 2 · |TSDFraw input(v)| − 1

TSDFgt(v) = 2 · |TSDFraw gt(v)| − 1
(4.8)

The value ranges after the conversion has been applied are shown in Figure 4.3.

In general, the values for TSDFraw(v) are clipped to be in range [−1, 1] and [0, 1] for the

signed distance function and ground truth distance function respectively. The truncation

is performed in such a way that the range (0, 1) is encoded within a maximum of three

voxels. This means that the transformed TSDF function will be symmetrical with negative

values near the surface which become larger and are eventually truncated to the value one

farther away from the surface.

We experimented with another encoding of the input TSDF values, where the original

distance function is flipped. As a result the inference performance of the network should be

improved according to [47] [18]. This means that for voxels close to the actual surfaces of

the given geometry, values for the distance function will be close to 1 and −1 respectively,

while values farther away from surfaces will be close to 0 and eventually truncated to 0.

The flipped TSDF is computed from standard TSDFraw(v) values as follows:

TSDFflipped(v) = −(TSDFraw(v)− 1 · sgn(TSDFraw(v))) (4.9)

In Equation 4.9 the sgn operator returns the sign of a given value. The value ranges

after the TSDF has been flipped are shown in Figure 4.4.

4.3.5.3 Dilated Convolutions

In order to test the effects of a larger receptive field during network processing dilated

convolutions [56] with a dilation of 3 across all dimensions are used in the two basic
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Figure 4.3: Visualization of the TSDFinput(v) value ranges. The raw TSDF values are close
to zero at the surface and then either increase to a maximum of 1 or decrease to a maximum of
-1. This is converted to an internal representation in ScanComplete [13] where the values at the
surface are close to -1 and then increase up to a value of 1 the further away the voxel is from the
surface.

convolutional elements, which are applied after convolving the input data. The main idea

behind dilated convolutions [56] is to introduce a spacing between the elements of the filter

kernel (dilate them). This increases the receptive field and as such, it makes it possible for

the network to take more of the global context into account, while not having to perform

a sub sampling of the data, as the convolution is changed.

4.3.5.4 Synthetic Noise in Training Set

We use semantic segmentation images for generating additional semantic input informa-

tion, which can be noisy when generated with DeepLabV3 [7] (with parameters/weights

from an already trained network using ade20k [62] [63]). In order to deal with noisy se-

mantic segmentation images, when evaluating on real world data, we inject synthetic noise

into our input semantic data during training. This gives the network the ability to deal

with misclassified voxels in the input data. The noise is injected by replacing input voxel

semantic labels at random locations with random new labels. For each voxel in the grid

there is a 5 percent chance to be replaced. The actual voxels are determined by drawing
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Figure 4.4: Visualization of the TSDFflipped(v) value ranges. The raw TSDF values are close to
zero at the surface and then either increase to a maximum of 1 or decrease to a maximum of -1.
The flipped TSDF values are inverted such that the values are close to zero further away from the
surface and close to -1 and 1 near the surface.

from a uniform distribution. Once a voxel has been chosen the respective class label is

replaced with a random new label, which is also drawn from a uniform distribution.

4.4 Summary

In this chapter, we introduced the neural network architecture of the proposed approach,

which is extended from ScanComplete [13]. The architecture makes use of additional

3D semantic input, while having the option to use dilated convolutions on one hierarchy

level as well as an alternative semantic encoding. Furthermore, we provided the option

to augment the training data with synthetic noise or use a flipped representation of the

input TSDF . In addition to the training procedure, we have also elaborated on the L1

error function for geometric prediction and the cross entropy error function for semantic

prediction.
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In this chapter, we first give a general overview of the proposed data generation

pipeline. We then focus on the generation of the training data used to estimate the

network parameters during the training procedure. Furthermore we elaborate on the data

used to quantitatively evaluate the proposed system.

5.1 Data Generation Pipeline

In this section we give a high level overview of the performed processing steps of the

proposed pipeline and elaborate on software frameworks used to for generating the training

and testing data.

5.1.1 Pipeline Overview

In the following sections we will describe the base procedure of acquiring semantic infor-

mation and encoding the TSDF values in a voxel grid, for both real world and synthetic

scenes and elaborate on further processing performed on the input data once it has been

converted into voxel grid form.

5.1.1.1 Synthetic Data

We decided to train on synthetic data, because ground truth information which is com-

plete is hard to acquire from real-world environments. An option would be to use a laser
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scanner, however occlusions still result in an incomplete model in some scenarios. More-

over acquiring semantic ground truth information from real-world environments represents

another challenge.

For synthetic data, images containing semantic segmentations are acquired from mul-

tiple camera poses in a virtual scene provided by the SUNCG dataset [47]. This dataset

consists mostly of indoor environments with small scale outdoor areas present in some

scenarios. The dataset contains semantic information for each of the objects present in

a given scene and thus allows for the generation of semantically segmented images. In

addition to semantically segmented images, images containing depth information are ac-

quired. After being loaded using OpenCV [5], these two input image sets, combined with

the camera poses from which the images have been captured, are then used by a modi-

fied version of Open3D [65] to generate a truncated signed distance function of the scene

encoded in a voxel grid as well as semantic labels encoded in a voxel grid as described

in Section 4.2.1.1. In addition to semantically segmented images and depth images, RGB

images of the synthetic scene can also be generated as visualized in Figure 5.2. This data

is used as an input for the CNN implemented in Tensorflow [1], which has been trained

to complete the given TSDF values and returns the completed data in voxel grid form as

well. One can also enable the option to infer semantic labels for each of the voxels in the

grid. This process is also shown in Figure 5.1.

Generate camera poses

Semantic segmentations

Depth images TSDF voxel grid

Semantic voxel grid

CNN Completed TSDF

Open3D

Open3D

Figure 5.1: Visualization of the core pipeline for synthetic data.
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(a) RGB image (b) Depth image

(c) Semantically segmented image

Figure 5.2: Visualization of different image types for synthetic data. The color coding for the
semantic classes is also visualized in Section 6.3.

5.1.1.2 Real-World Data

When working on real world data from the ETH3D Benchmark [45], we use the given

camera poses included in the training datasets of the benchmark in a dense MVS step

performed with COLMAP [44]. For evaluation on non-benchmark data the poses would

first have to be computed using an SFM pipeline, however, in order to achieve parity

during our evaluation we use the provided poses. This step yields depth maps for each
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individual reference view. The DeepLabv3 [7] CNN (with parameters/weights from an

already trained network using ade20k [62] [63]) is used to acquire semantic segmentation

images from the RGB image input sequence. The different image types are visualized in

Figure 5.3. Analogous to synthetic data, the images are loaded for further processing using

OpenCV [5]. Open3D [65] is used to generate voxel grid representations of the semantic

information, as well as the geometric information. This process is described in more

detail in Section 4.2.1.1 The source of input for these tasks are the semantic segmentation

images and depth maps acquired earlier. This data is then processed using the CNN

implementation in Tensorflow [1], which yields a voxel grid with completed TSDF values

and optionally semantic labels for each of the voxels in the grid. We have also visualized

the pipeline for real world data in Figure 5.4.

(a) RGB image (b) Depth image

(c) Semantically segmented image

Figure 5.3: Visualization of different image types for real-world data. The color coding for the
semantic classes is also visualized in Section 6.3.
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Semantic segmentations

Depth images TSDF voxel grid

Semantic voxel grid
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Open3D

Figure 5.4: Visualization of the core pipeline for real-world data.

5.2 Training Data Generation

This section is dedicated to the procedure of generating training data from the syn-

thetic SUNCG dataset [47]. The process of generating training data using the SUNCG

dataset [47] involves three core steps:

• Generating virtual camera poses and extracting images

• Integrating the acquired information into a voxel grid

• Generating ground truth data

In the following sections we will focus on each of these steps individually.

5.2.1 SUNCG Dataset

In general, the SUNCG [47] dataset is organized in a hierarchical manner. The data is

organized via a multitude of N = 45622 different house scenarios, which largely focus on

indoor environments, however there are also outdoor areas and objects present in some

scenes. Each of these houses is defined through a .json-File. This file splits the house into

several basic structural elements:

• levels

• rooms

• objects

The structure is also shown in Figure 5.5. Additionally, it is possible to retrieve the

semantic classes for each object through a defined mapping. In this mapping objects are

individually assigned to one of the 90 semantic classes, that are translated into one of the

14 labels described in Section 4.1.
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Figure 5.5: Structure of the SUNCG dataset [47].

5.2.2 Generating Virtual Camera Poses and Extracting Images

The virtual camera poses were generated using the SUNCG toolbox [47], which is provided

alongside the dataset. Utilizing the functionality implemented in the SUNCG toolbox [47],

these poses can be generated using different organizational elements of the dataset as an

anchor point. We choose to create poses on a per room and a per object basis. We now

elaborate on how the poses are generated using the toolbox [47].

Room based poses are created by iterating through a defined number of camera angles

inside the room bounding box. For each of the camera angles, multiple positions are

sampled. A score is computed for poses created with these positions, which defines how

well the current angle and position capture all of the objects present in the room. This

score is calculated by counting the number of pixels each object contained within the

image occupies, in relation to the total number of pixels displayed on the image. It is

defined that more than one percent of the overall pixels in the image have to be assigned

to an object before the score is computed for this specific object and the object is seen as

part of the current camera view. If this is the case the score for this object is computed

as:

S(o) = log
( P (o)

0.01 ·W ·H

)
(5.1)

where P (o) is the number of pixels assigned to object o and W , H are the image
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width and height respectively. The score is then accumulated over all objects visible in

the image. If there are less than 4 objects part of the current camera view the score is

set to zero. It can thus be concluded that the overall score for image I is computed as

follows: Aroom(I) =
∑

o S(o), ∀o ∈ I. The camera pose creating the image with the best

score I∗ is then stored for each angle:

I∗ = argmax
I

Aroom(I) (5.2)

Object based cameras are created from a camera position near the center of the bound-

ing box of the object. Once again multiple camera angles are sampled and a score for each

angle is computed. In this case the score is computed by first creating N points on the

object surface in 3D space. The score is the fraction of points visible from the camera

perspective compared to the overall number of points on the object N . Thus, the score

for a camera I created using a specific angle is computed as Aobject(I) = V
N . Analogous

to the case for entire rooms, the pose for image I∗ which yields the highest score with

respect to all angles is saved:

I∗ = argmax
I

Aobject(I) (5.3)

Using the previously generated camera poses, depth images are then captured with the

toolbox [47]. The depth data is stored as floating point numbers in a binary file format.

Images capturing semantic segmentations are also stored, where the semantic labels are

computed from the previously established mapping elaborated on in Section 5.2.1.

In order to increase sparsity when integrating the depth and semantic data into a voxel

grid in the next processing step, object cameras are randomly dropped with a probability

of 50 percent. Furthermore, there is a 50 percent chance that a camera angled towards

the ceiling is created per object camera, because evaluations showed that these areas

were often not covered in the reconstructions and the network would not be able to infer

meaningful results in these regions.

5.2.3 Integrating Information into Voxel Grid for Training

The previously acquired camera poses, depth and semantic segmentation images are now

used as an input for an extended version of Open3D [65], which allows for integrating

semantic information into a three dimensional voxel grid as elaborated on in Section 4.2.1.1.

5.2.4 Generating Ground Truth Data

For generating ground truth TSDF and semantic data encoded in a voxel grid, we first use

the SUNCG toolbox [47] to convert the scene described by a .json-File into an .obj -File.
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During this process we additionally save the semantic class information for each of the

stored triangles. As a next step, we extract a signed distance function from the given

.obj -File using the SDFGen Tool by Christopher Batty [9]. This tool creates a signed

distance function encoded in a voxel grid with a defined voxel size. To achieve this task,

it calculates the normal distance to all voxels within a defined range for each triangle and

stores it in the voxel grid. If subsequent triangles yield a smaller distance for a given

voxel, the current distance stored in the voxel grid for this voxel is replaced by the smaller

distance. Because per triangle semantic information is also saved, a second voxel grid

can be created where the semantic class of the triangle with the closest distance is stored

for each voxel. In order to align the ground truth data with the voxel data from the

reconstruction, the origin of the voxel grid created by SDFGen [9] is chosen such that it

coincides with the origin of the voxel grid created by Open3D. The size of the ground

truth voxel grid is also defined such that it matches with the grid from the reconstruction.

5.2.5 Extracting Training Sub-Volumes

After having acquired an input and ground truth voxel grid of the same size, we extract

smaller sub-grids out of the complete grids for training. The sizes for the sub-grids are

chosen depending on the sizes of the individual voxels within the grid. In terms of voxel

sizes and sub-grid sizes for the different hierarchy levels, we have used the same conventions

defined in ScanComplete [13]. The coarsest level uses a voxel size of 0.18 and a sub-volume

size of 16, the next level uses 0.09 and 32, while the final level uses 0.045 and 64. It should

be noted that the SUNCG dataset [47] defines distances on a metric scale. Furthermore,

we check how many voxels of a given extracted ground truth and input sub-volume contain

non-truncated signed distance function values. This percentage needs to be higher than

one percent for both the ground truth and input data, in order for it to be included in the

training set.

5.3 Evaluation Data Generation

In this section we will focus on the process of generating data needed to quantitatively

evaluate the implemented network modifications on real world and synthetic scenes.

5.3.1 Synthetic Scenes

For synthetic scenes the process of generating the evaluation data is identical to the steps

elaborated on in Section 5.2 excluding the last step of extracting the sub-volumes. In this

step the entire voxel grid is extracted when generating evaluation data. The evaluation

dataset consists of 40 house scenarios from SUNCG [47]. They contain indoor enviroments

of different sizes, which contain typical objects found inside homes such as tables, chairs

and sofas. They also contain different room scenarios such as living rooms, kitchens and

bathrooms as visualized in Figure 5.6.
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Figure 5.6: Sample RGB images for synthetic scene environments.

5.3.2 Real World Scenes

The scenes used for evaluating on real-world image-based reconstructions from the ETH3D

benchmark [45] are four indoor environments. These are denoted as pipes, which consists

of an underground hallway with pipe-like structures, where the walls do not contain a lot

of texture, such that it is difficult to generate complete depth maps using image-based

algorithms. The office dataset contains a small office room also with white walls which do

not contain a lot of texture, while the relief dataset offers a bigger hall like structure with

columns. The terrains dataset consists of a hallway with a reflective floor, which is also

difficult to reconstruct. We have visualized a few sample RGB input images in Figure 5.7.
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Figure 5.7: Sample RGB images for real-world scene environments.

5.4 Summary

In this chapter, we introduced our pipelines for generating training data for synthetic

scenes, as well as evaluation data for synthetic and real world scenes. We elaborated on the

process of creating incomplete 3D representations of scenes from the SUNCG [47] dataset

and how we generated 3D semantic information from 2D semantically segmented images.

Furthermore, we discussed the used evaluation sets for both real world and synthetic

data, which we used to quantitatively and qualitatively evaluate the proposed approach

in Chapter 6.
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In this chapter, we first elaborate on our evaluation parameters and metrics and sub-

sequently present the results of the experiments performed on the data generated with

the conventions described in Chapter 5. Furthermore, we discuss the implications of the

presented results in addition to possible improvements for future work.

6.1 Evaluation Parameters and Metrics

In the next sections we give an overview of the used evaluation metrics and parameters.

We first present the used metrics and then elaborate on the evaluation dataset as well

as the parameters used when training the network. Furthermore we provide additional

explanations for the included visualizations.

6.1.1 L1 Error

The evaluation metric used for evaluating on synthetic data is an error metric measuring

the absolute difference between the resulting distance function values and the ground

truth, which we denote L1 error:

L1 =
1

|X|

X∑
x

|TSDFgt(x)− TSDFprediction(x)| (6.1)

61
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In the above equation X represents the set of all voxels in the grid and |X| is the

number of voxels all present in the grid. The variable x enumerates all voxel locations in

the set X, while TSDFgt(x) and TSDFprediction(x) yield the ground truth TSDF values

and predicted output TSDF values from the network for voxel x. Note that while the

distance function values here will always have a positive sign, we still refer to the values

as TSDF values. This error is also evaluated on a different set of voxels within the grid

which, represents a different underlying geometric context. This set O is the occupied set,

which denotes all voxels in the ground truth voxel grid which contain a non truncated

distance function value:

L1occupied =
1

|O|

O∑
o

|TSDFgt(o)− TSDFprediction(o)| , o ∈ O ⊆ X : TSDFgt(o) < 1

(6.2)

The value |O| represents the number of voxels in the set O and o enumerates all voxels

in this set. The functions TSDFgt(o) and TSDFprediction(o) yield the respective ground

truth and predicted values for voxel location o.

6.1.2 Semantic Accuracy

We also provide a semantic accuracy measure, which yields the fraction of correctly pre-

dicted semantic classes for each voxel present in the completed voxel grid, when compared

to the ground truth:

Acc =
|C|
|X|

, C ⊆ X : classpred(c) = classgt(c), ∀c ∈ C (6.3)

In the equation above the set C represents all voxels where the predicted label is equal

to the ground truth label, while |C| represents the number of voxels in C and |X| represents

the number of voxels in X, which is the set of all voxels. The functions classpred(c) and

classgt(c) yield the predicted and ground truth classes for voxel location c respectively.

Furthermore, similar to the L1 error, we also provide this measure for occupied voxels O,

which are non truncated voxels in the ground truth:

Accoccupied =
|C|
|O|

, C ⊆ O : classpred(c) = classgt(c),∀c ∈ C, o ∈ O ⊆ X : TSDFgt(o) < 1

(6.4)
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6.1.3 F1 Score

The error metric, which we use to measure performance on real world data is an F1

score [45] calculated as follows from an accuracy measure A and a completeness measure

C:

F1 =
2 ·A · C
A+ C

(6.5)

The score itself is computed using the provided tool included in the ETH 3D bench-

mark [45]. It provides an overall relation between the accuracy measure, which defines

how many points of the point cloud computed from the completed voxel grid, lie within

a defined distance from a points of the ground point cloud, when taking the laser scan

accuracy into account as proposed by Schöps et.al. [45]. The completeness measure on the

other hand, defines how many points of the ground truth point cloud, lie within a defined

distance from a given point of the point cloud computed from the completed voxel grid.

The distance used for both measures is set to 0.09.

The F1 score metric is evaluated on a ground laser scan point cloud from the ETH 3D

benchmark [45] and the completed point cloud, which is generated by creating a point for

every voxel location which contains a distance function value less than or equal to 0.15.

Because a distance function value of 1 represents three voxels, a distance of 0.15 equates

to 0.45 voxels, which is 4.05cm in world coordinates. This means that a tolerance value

of 9cm covers voxels on both sides of a surface.

6.1.4 Evaluation Set and Parameters

The evaluation data itself has been generated as described in Section 5.3. During our

evaluation, we enable semantic prediction, which results in improved results when using

additional input semantics, as we give the network an initialization for the semantics as

an input. Thus, we are also able to benefit from improved input data for the fine grained

hierarchy level due to an improved semantic prediction. Furthermore, it is noteworthy,

that the scaling factor for semantic prediction has been set to 0.1 for all experiments.

We also enable semantic prediction for the ScanComplete [13] approach, however, because

we use the small semantic loss scaling of 0.1, the impact on geometric completion when

using semantic prediction, which has been described by Dai. et. al [13], is minimized,

which we also show in our first experiment on one hierarchy level in Section 6.4.2.1. When

experimenting with this parameter for the proposed approach and increasing the factor

to 0.5, the results showed no significant impact, hence we did not perform additional

experiments with further changes to this parameter.

The computed error metrics are averaged over the 40 evaluation sets for synthetic data,

however we also provide graphs showing the detailed results for each of the tested data

sets. For all of the sets we remove the extra voxels below the ground level generated by
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the volumetric integration before inferencing and add truncated distance function values

back after inference, as also performed in [13]. As also done for synthetic data, we remove

additionally added voxels below the ground level for the real world evaluation datasets as

well.

6.2 Training Parameters

All of the networks were trained using 80000 iterations on an Nvidia RTX 2080 Ti

graphics card. The training parameters were set as described in Section 4.3.4. The training

set was generated according to Section 5.2 and contains data from 806 ScanComplete

scenes yielding 43800 input/target pairs in total.

6.3 Explanation for Visualizations

All visualizations were generated using MeshLab [10] after creating a mesh via the iso-

surface library function implemented in MATLAB [51]. The color for each of the faces

relates to the L1 error of the underlying voxels using the color scheme shown in Fig-

ure 6.1. In the completeness visualizations for the ETH3D benchmark [45], green points

represent complete points, while red points represent incomplete points. In the accuracy

visualization blue points are unobserved (outside of laser scan range), while red points

are inaccurate and green points are accurate. The semantic classes are visualized as point

clouds generated for voxels which are occupied. The specific colors assigned to each class

are visualized in Figure 6.2.

Figure 6.1: Visualization of how the color in the presented geometric outputs relates to the
underlying L1 error.
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Figure 6.2: Colors assigned to specific classes in visualizations for semantic predictions

6.4 Experimental Results

In the following section, we present our experimental results and provide explanations

as well as conclusions for our qualitative findings. We provide a detailed evaluation on

synthetic data when using only one hierarchy level and show the benefits of our extensions.

Subsequently we provide quantitative results when using two hierarchy levels on synthetic

data. Furthermore, we show the effect of our contributions on real world image based

reconstructions.

6.4.1 Results on Synthetic Data

The purpose of this section is to provide detailed evaluations on synthetic data from the

SUNCG [47] dataset. We will provide detailed results evaluating our contributions to the

network architecture.

6.4.2 Detailed Evaluation for One Hierarchy Level

This section is dedicated to providing a detailed analysis of the effects the modifications

of our proposed network architecture have by comparing the results on the synthetic

evaluation set with results from the original architecture proposed in ScanComplete [13]

on one hierarchy level. To achieve parity, we have trained the original ScanComplete [13]

architecture on the training set we have created according to Section 6.2. In this evaluation,

we use one of the two hierarchy levels, namely the one using a voxel size of 0.09m, which

provides a middle ground between the other more coarse (voxel size 0.18m) and fine grained

(voxel size 0.045m) hierarchy levels.



66 Chapter 6. Experiments

6.4.2.1 Influence of Additional Input Semantics

In this section we evaluate the effect of providing the network with additional input seman-

tics. This extension will be denoted as input sem. in the performed experiments. From

the evaluation of the L1 error in Table 6.1, when comparing input sem. (middle left) and

ScanComplete [13] (middle right), it can be seen that input sem. achieves a lower overall

L1 error as well as a lower L1 error on occupied voxels. These are likely the effects of giving

the network additional context via input semantics. The differences are also observable in

Figure 6.3, where we can see a decrease in error for input sem. on most datasets. Further-

more, it can be observed that the overall semantic accuracy increases, as seen in Table 6.1

and Figure 6.4, when comparing lines input sem. and ScanComplete [13], which means

that the semantic initialization the network has been given was incorporated to provide

better semantic predictions. An exemplified result for an improvement in the L1 error

metric is shown in Figure 6.5, which depicts the geometric results for dataset 35. It can

be observed, when comparing the results for input sem. and ScanComplete [13], that the

reconstruction is more complete on the ceiling and partially on the walls. Furthermore,

semantic accuracy was also improved as shown in Figure 6.7, when comparing the results

for input sem. (middle left) and ScanComplete [13] (middle right). In the semantic pre-

diction for the ScanComplete [13], approach voxels on the ceiling (red) were misclassified

as floor (green) and the prediction contains a lot of noise. When looking at the result were

input semantics were provided, this is not the case as the semantic initialization given to

the network was expanded. From these observations made in Figure 6.5 and Figure 6.7,

it can be seen that the additional semantic input provides useful context to the network.

As a frame of reference, we have also provided the input and ground truth geometric and

semantic data in Figure 6.5 (top part) and Figure 6.7 (top part), respectively.

An example, which shows a degradation in performance when using input semantics is

dataset 20. When looking at the geometric prediction when using input semantics, which

is visualized in Figure 6.9 as input sem. (bottom left), it can be seen that a lot of clutter

was predicted around the couch object, which is also evident in the semantic prediction

in Figure 6.10 (bottom left). This is likely because the network which was initialized with

semantic information, knows that these objects belong to the furniture class. The network

seems to think that the furniture extends to the surrounding area, which is not correct in

this case. The result here is likely influenced by the lack of geometry around the couch,

which is placed as a separate object outside of the building for this particular scenario.

When using no input semantics the network does not use this context as also seen in the

noisy semantic prediction of the ScanComplete [13] result (bottom right) in Figure 6.10.

As an additional point of reference, the geometric and semantic input data and ground

truth are provided in Figure 6.9 (top part) and Figure 6.10 (top part). Furthermore, we

have also evaluated ScanComplete [13] when not using semantic prediction, however as the

scaling factor for the semantic loss is set to 0.1 the results for ScanComplete [13] are not

negatively impacted as seen in Table 6.1, when comparing ScanComplete [13] with Scan-
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Complete [13] no sem. pred. and so we continue to compare with the ScanComplete [13]

result using semantic prediction.

Overall L1 error metrics.

L1 error metrics on occupied voxels.

Figure 6.3: L1 error metrics for all 40 evaluation sets. It is observable that the input sem.
approach, which is using additional input semantics yields lower L1 errors compared to ScanCom-
plete [13] for most datasets.
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6.4.2.2 Dilated Convolutions

In this section we evaluate the effects of using dilated convolutions [56] and additional

input semantics, as described in Section 4.3.5.3. We denote this adaption as input sem.

+ dilation in our experiments. In Table 6.1, when comparing input sem. + dilation with

input sem., it can be seen that both of the L1 errors and both the semantic accuracy

measures are improved. This is the result of extending the receptive field of the network,

such that the filters are able to take into account information from a larger region. When

looking at the results for dataset 38 shown in Figure 6.5 and comparing results for input

sem. + dilation (bottom left) with results for input sem. (middle left), it is observable

that even more of the ceiling has been completed. Furthermore, the semantic accuracy

visualized for input sem. + dilation (bottom left) in Figure 6.7 has also improved, as there

is less noise present compared to input sem. (middle left), which is evident on the front

wall of the building.

6.4.2.3 Flipped TSDF

This section is dedicated to the evaluation of the flipped TSDF function, which is de-

scribed in Section 4.3.5.2. We denote this method as input sem. + flipped TSDF in our

experiments. As seen in Table 6.1, when comparing line input sem. + flipped TSDF with

line input sem., the effects of using a flipped TSDF input function in addition to seman-

tic input provide no significant benefit compared the other tested methods using input

semantics. Both the L1 error and semantic accuracy are on the same level as the input

sem. method, which just uses additional semantic input. When comparing geometric

results on dataset 38, denoted as input sem. + flipped TSDF (bottom right) and input

sem. (middle left), in Figure 6.5, there are no significant differences visible. However, the

semantic prediction contains a little more noise, specifically in the ceiling area, as seen in

Figure 6.7 when comparing results for input sem. + flipped TSDF (bottom right) with

input sem. (middle left).

6.4.2.4 Alternative Encoding for Semantic Input

In this section we evaluate the effects of using an alternative encoding for our semantic

input as described in Section 4.3.5.1. It can be seen in Table 6.1, when comparing row

input sem. + encoding with row input sem., that using an alternative encoding for input

semantics increases overall semantic accuracy, compared to just using input semantics.

However, both the semantic accuracy metrics still fall slightly behind the variant which

uses dilated convolutions. The L1 error does not significantly deviate from the results

when using input semantics as well, however it becomes slightly worse. It can be seen in

Figure 6.6, when comparing results for input sem. + encoding (middle right) and input

sem. (middle left), that the geometric results for input sem. + encoding are more complete

on the right side of the ceiling, however there is a small hole on the left side. Furthermore
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there are some incorrect predictions for the semantics of the ceiling on the edges of the

completed ceiling as seen in Figure 6.8, when looking at results for input sem. + encoding

(middle right) and input sem. (middle left). On the other hand the noise in front of the

wall present in input sem. is removed when using input sem. + encoding.

6.4.2.5 Augmenting Training Data with Synthetic Noise

This section is dedicated to evaluating the effect of augmenting the semantic training

data with synthetic noise, while using additional semantic input data, as elaborated on in

Section 4.3.5.4. It can be seen in Table 6.1, when comparing line input sem. + noise with

line input sem., that the overall evaluation metrics show minor improvements, however the

metrics on occupied voxels are slightly worse compared to just using input semantics. This

is the result of preventing wrong predictions, but being less correct on occupied voxels,

which is also evident when looking at the semantic prediction results for input sem. +

noise (bottom left) and input sem. (middle left) in Figure 6.8, as the noise in front of

the building was removed for input sem. + noise, however the predictions on the ceiling

are less correct. In terms of geometric completion, the approach also falls slightly behind

as there is a hole present on the ceiling as seen in Figure 6.6 for input sem. + noise

(bottom left), when comparing the result with input sem. (middle left). This means that

the synthetic noise added during training prevents minor wrong predictions from being

made, which results in only a slight overall improvement on synthetic data, however we

will be further investigating the effects of this modification in our evaluation on real world

data.

6.4.2.6 Augmenting Training Data with Synthetic Noise in addition to using

Dilated Convolutions and the Alternative Semantic Encoding

In this section we evaluate the effects of combining dilated convolutions and the alternative

encoding for input semantics, with augmenting the semantic input training data using

synthetic noise. Although the alternative encoding yielded slightly worse results in terms

of the L1 error metrics, the difference was not significant enough to outweigh the potential

benefits of improved semantic predictions when using multiple hierarchy levels. The results

for input sem. + noise + dilation + encoding in Table 6.1 show an improvement for the

semantic accuracy metrics, when compared with any of the other methods. The L1 error

on occupied voxels also improves, while the overall L1 error is not improved compared

to input sem. + dilation. However, it does not deviate significantly from the input sem.

+ dilation result. These improvements could be the effects of a wider receptive field

combined with the other two methods, which yielded more minor improvements. The

semantic prediction for input sem. + noise + dilation + encoding (bottom right) seen

Figure 6.8 contains less noise overall compared to input sem. (middle left), however it

shows some incorrect classifications for floor (green) on the ceiling (red). This shows, that

the network is able to prevent small amounts of noise from being propagated further in
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the network. In terms of geometric completion, the results are improved as well, which

can be seen in Figure 6.6, when comparing input sem. + noise + dilation + encoding

(bottom right) with input sem. (middle left).

Furthermore these improvements also lead to an increase in geometric completion

for objects contained in the synthetic scenes compared to ScanComplete [13], as seen

with the chair in Figure 6.11, when comparing the input sem. + noise + dilation +

encoding (bottom left) with the ScanComplete [13] (bottom right) result. This is also

likely the result of an increase in overall semantic prediction accuracy, due to the provided

semantic input for input sem. + noise + dilation + encoding (bottom left), as observed

in Figure 6.12.

6.4.2.7 Conclusion

When looking at the overall results in Table 6.1, it can be observed that the input sem. +

noise + dilation + encoding approach, considering there are only insignificant differences

in terms of overall L1 error compared to input sem. + dilation, achieves better results than

the other methods. This means that we will continue to evaluate the effects of the alter-

native encoding, dilated convolutions and synthetic noise in our subsequent experiments

using two hierarchy levels and real world data.

Method ∅ L1 ∅ L1 occ. ∅ Sem. acc. ∅ Sem. acc. occ.

input sem. + noise
+ dilation +

encoding
0.0674 0.1721 0.8611 0.6965

input sem. + noise 0.0762 0.2021 0.8445 0.6246

input sem. + encoding 0.0774 0.2048 0.8529 0.6536

input sem. + flipped TSDF 0.0759 0.1982 0.8419 0.6467

input sem. + dilation 0.0668 0.1752 0.8600 0.6684

input sem. 0.0767 0.1974 0.8429 0.6498

ScanComplete [13] 0.0821 0.2202 0.7727 0.4134

ScanComplete [13]
no sem. prediction

0.0841 0.2205 - -

Table 6.1: L1 error: lower means better. Semantic accuracy: higher means better. Overview
of evaluation metrics for experiments performed on 1 level with synthetic data. In general, the
proposed methods outperform both of the ScanComplete [13] approaches. It can be seen that input
sem. + noise + dilation + encoding yields the best performance for every metric except overall
L1 error. However the result for this metric does not significantly deviate from the best result
with input sem. + dilation. Furthermore input sem. + encoding and input sem. + noise yields
improvements for the semantic accuracy metrics. The input sem. + flipped TSDF result does
not provide a significant advantage compared to input sem. The input sem. + encoding method
improves on the semantic accuracy metrics compared to input sem.
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Overall semantic accuracy metrics.

Semantic accuracy metrics on occupied voxels.

Figure 6.4: Semantic accuracy metrics for all 40 evaluation sets. It can be seen that using a
semantic initialization in the input sem. approach, improves semantic accuracy as the network can
extend this semantic prediction.



72 Chapter 6. Experiments

input used ground truth

input sem. ScanComplete [13]

input sem. + dilation input sem. + flipped TSDF

Figure 6.5: Geometric network output for various methods on dataset 38. The geometric input
used contains holes on the left and right side of the ceiling as well as the front wall. It can be
observed, when comparing the ScanComplete [13] result with input sem., that more of the geometry
is completed, specifically in the ceiling area on the left side as well as the front wall. Using the
input sem. + dilation. method, it can be seen that even more of the missing building structure is
filled as the network can take more of the global context into account. The input sem. + flipped
TSDF variant does not provide significant benefits over the input sem. method.
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input used ground truth

input sem. input sem. + encoding

input sem. + noise input sem. + noise + dilation + encoding

Figure 6.6: Geometric network output for various methods on dataset 38. It can be seen that out
of the presented methods input sem. + noise + dilation + encoding provides the most complete
results, as more of the missing geometry in the ceiling and the hole remaining in other results on
the left side of the front wall area of the building is filled compared to input sem. + encoding and
input sem. + noise.
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input used ground truth

input sem. ScanComplete [13]

input sem. + dilation input sem. + flipped TSDF

Figure 6.7: Semantic predictions for various methods on dataset 38. Providing an initialization
for the semantic prediction for the network to expand upon with the input sem. approach provides
a better overall result than the original ScanComplete [13]. Furthermore, the method input sem.
+ dilation provides better results which contain less noise, than input sem. and input sem. +
flipped TSDF.
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input used ground truth

input sem. input sem. + encoding

input sem. + noise input sem. + noise + dilation + encoding

Figure 6.8: Semantic predictions for various methods on dataset 38. It can be seen that the
input sem. + encoding and input sem. + noise methods, while reducing smaller amounts of
noise, specifically on the right side of the front wall of the building, overall also add some wrong
predictions, specifically in the ceiling area. However in general these modifications still provide
improvements in semantic prediction as seen in Table 6.1. When adapting the network architecture
to combine these smaller improvements with a larger receptive field with input sem. + noise +
dilation + encoding, the noise is further reduced and the overall prediction accuracy is increased.
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input used ground truth

input sem ScanComplete [13]

Figure 6.9: Example for an increase in L1 error when using input sem. for dataset 20. The scene
includes a building with missing geometry and a couch area. It can be seen that a lot of clutter
is predicted around the couch area. This is likely due to missing geometry in the ground truth
around the couch area, which is separated from the building structure.
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input used ground truth

input sem. ScanComplete [13]

Figure 6.10: Example results for semantic accuracy for dataset 20. It can be observed that the
couch area is extended outside of its original bounds when using input sem, in this case likely due
to missing geometry in the ground truth in this area.
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input used ground truth

input sem. + noise + dilation + encoding ScanComplete [13]

Figure 6.11: Example in dataset 2, for an increase in geometric prediction quality for objects
when using input sem. + noise + dilation + encoding compared to ScanComplete [13], which can
be seen on the chairs in this case. It can be observed that more of the chairs has been filled up
using the input sem. + noise + dilation + encoding approach.
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input used ground truth

input sem. + noise + dilation + encoding ScanComplete [13]

Figure 6.12: Example in dataset 2, for an increase in semantic prediction quality for objects
when using input sem. + noise + dilation + encoding compared to ScanComplete [13], which can
be seen on the chairs. It can be observed that for the proposed input sem. + noise + dilation +
encoding approach, the semantic input provides an initialization for the semantic prediction which
is expanded by the network.
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6.4.3 Detailed Evaluation for Two Hierarchy Levels

In this section we will evaluate different training methods and the use of dilated convolu-

tions, when using two of the hierarchy levels. Due to memory constraints on the graphics

card, it was only possible to train 2 levels of the hierarchy for our proposed method with-

out having to reduce the number of convolutional filters significantly. When using dilated

convolutions on 2 levels we only apply them on the second level as initial results showed

that this could lead to artifacts being present in the scene, which have a negative influence

on the result of the more fine grained hierarchy level.

There are two types of training procedures for multiple hierarchy levels suggested in

ScanComplete [13]. The first is to use the ground truth data from the coarser level, when

training the hierarchy level directly below it. However, the inputs from the coarser level

are highly unlikely to always be perfect when inferencing on evaluation data. This is why

it was suggested by Dai. et. al. [13] to first infer the needed geometric and semantic input

for the training data on the coarse level and then train the level directly below it using this

input. This section is dedicated to investigating the effects of this training procedure on

our approach. The inferred training data from the coarser level for ScanComplete [13] is

generated using 1 level with semantic prediction enabled, while the data for our methods is

generated using additional semantic input with semantic prediction enabled. It can be seen

in Table 6.2, when comparing line 2 levels + ScanComplete [13] + inferred train and line

2 levels + ScanComplete [13], that training on inferred data from the coarser level leads

to a reduction in L1 error and an increase in semantic accuracy for ScanComplete [13], as

already established by Dai. et. al [13].

When applying this approach to our 2 levels + input sem. + inferred train method,

we also see a decrease in L1 error and an increase in semantic accuracy for occupied voxels

in Table 6.2. The overall semantic accuracy decreases very slightly, likely as a result of

wrong predictions being made outside of occupied voxels. When comparing the 2 levels

+ ScanComplete [13] + inferred train (middle right) and the 2 levels + input sem. +

inferred train (middle left) method, which are both trained using inferred predictions

from the coarser level, it can be seen that the geometric results shown in Figure 6.13 are

improved when using the 2 levels + input sem. + inferred train method, which provided

additional input semantics. This is evident on the roof of the left building and the front

wall of the right building. Furthermore, there are less incorrect completions performed for

the door on the left building for 2 levels + input sem. + inferred train when compared

with 2 levels + ScanComplete [13] + inferred train. An interesting effect is that the side

wall of the left building is closed for both methods, however as seen in the ground truth

this should be kept empty. This is the case, as there are no structures in the input data

to suggest this and the network was not aware of this. Moreover, the wall on the right

building is extended beyond the building itself. The additional input semantics used in

the 2 levels + input sem. + inferred train approach (middle left) cannot prevent this

effect, as there are no voxels from any intersecting walls close by as seen in Figure 6.14.
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As a result the network thinks the wall extends beyond the building. Analogous to using

1 level, the semantic prediction is also improved upon when using the 2 levels + input

sem. + inferred train approach and contains less noise and incorrect predictions than the

2 levels + ScanComplete [13] + inferred train method.

Another interesting result observable in Table 6.2, is that the 1 level + input sem. +

noise + dilation + encoding approach, outperforms the approach using input semantics

and two hierarchy levels trained on inferred results from the coarse level denoted as 2

levels + input sem. + inferred train. As a result, one could complete scenes using only a

single level, which means inferring on only one network and save inference time. This is

however not entirely the case when comparing the 1 level + input sem. + noise + dilation

+ encoding method with 2 levels + input sem. + inferred train + encoding + dilation +

noise. It can be seen in Table 6.2, that while the overall L1 and semantic performance

metrics for 2 levels + input sem. + inferred train + encoding + dilation + noise are worse

compared to 1 level + input sem. + noise + dilation + encoding, the results on occupied

voxels are improved. This means that the network made a lot of incorrect predictions in

non-occupied space, however the predictions on occupied voxels. where data should be

predicted are better. The geometric structures the network predicts are natural exten-

sions of the already existing building geometry and are potentially meaningful, however

in this case they are not present in the ground truth. An example for this is shown in

Figure 6.13 and Figure 6.14 with the 1 level + input sem. + noise + dilation + encoding

(bottom) result, where the building walls have been almost completely restored, however

the geometry on the floor has also been extended, which is not present in the ground truth.

6.4.3.1 Conclusion

In our evaluation procedure using two hierarchy levels, it was observable that both Scan-

Complete [13] and the input sem. approach improved when training on inferred data from

the coarser level. However, in terms of overall performance the 1 level + input sem. +

noise + dilation + encoding approach, which utilizes 1 level in combination with dilated

convolutions, semantic input, the alternative encoding and noise for the semantic input

during training, yields better results when comparing the overall L1 error. This is due

to a lot of additional predictions being made when using the 2 levels + input sem. +

inferred train + encoding + dilation + noise method. On the other hand, the L1 error

on occupied voxels is lower when using 2 levels + input sem. + inferred train + encoding

+ dilation + noise, which means that the geometry that should have been predicted by

the network is more correct. This concludes that using 1 level + input sem. + noise +

dilation + encoding offers good performance, while not having to train two networks and

infer on two networks.
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Method ∅ L1 ∅ L1 occ. ∅ Sem. acc. ∅ Sem. acc. occ.

2 levels +
input sem. + inferred train

+ encoding +
dilation + noise

0.0803 0.1593 0.8195 0.7166

2 levels +
input sem. + inferred train

0.0758 0.1737 0.8189 0.6456

2 levels +
input sem.

0.0962 0.2400 0.8219 0.5950

1 level +
input sem. + noise

+ dilation + encoding
0.0674 0.1721 0.8611 0.6965

2 levels +
ScanComplete [13]

+ inferred train
0.0781 0.2012 0.7661 0.4310

2 levels +
ScanComplete [13]

0.1019 0.2622 0.7651 0.4217

Table 6.2: L1 error: lower means better. Semantic accuracy: higher means better. Average error
metrics using different training procedures for two hierarchy levels. It can be seen that the 1 level
+ input sem. + noise + dilation + encoding approach using all improvements outperforms all of
the other methods in overall error metrics. However, on occupied voxels the 2 levels + input sem.
+ inferred train + encoding + dilation + noise approach yields better results, but infers a lot of
wrong predictions for non occupied voxels.
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input used ground truth

2 levels + input sem. + inferred train 2 levels + ScanComplete [13] + inferred train

2 levels + input sem. + inferred train + encod-
ing + dilation + noise

Figure 6.13: Geometric results on dataset 39 for various methods using 2 levels. An initial
comparison can be made when looking at 2 levels + input sem. + inferred train and 2 levels +
ScanComplete [13] + inferred train. It is observable that, when using 2 levels + input sem. +
inferred train, the building is more complete, especially on the ceiling of the left building and that
there are less prediction errors on the door of the left building. Furthermore a result for 2 levels +
input sem. + inferred train + encoding + dilation + noise is included, where it is observable that
while the reconstruction is more complete overall, some prediction errors have been made, where
the network has inferred geometry which is not present in the ground truth, such as the added
floor in front of the building. It is noteworthy however, that this is not arbitrary clutter, but a
natural extension of the building.



84 Chapter 6. Experiments

input used ground truth

2 levels + input sem. + inferred train 2 levels + ScanComplete [13] + inferred train

2 levels + input sem. + inferred train + encod-
ing + dilation + noise

Figure 6.14: Semantic prediction results on dataset 39 for various methods using 2 levels. When
comparing 2 levels + input sem. + inferred train with 2 levels + ScanComplete [13] + inferred
train, it can be seen that the semantic prediction contains less noise and is overall more correct
when using additional input semantics. Moreover, a result for 2 levels + input sem. + inferred
train + encoding + dilation + noise is provided, where it is observable that additional semantic
information not present in the ground truth has been predicted on the floor of the left building
and on the wall of the right building.
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6.4.4 Comparison with other Methods on Synthetic Data

In this section, we will compare the proposed method with two other approaches, namely

SSCNet [47] and Poisson-Surface Reconstruction [26] as implemented in MeshLab [10].

These methods have been chosen as SSCNet [47] is a another neural network based method

and Poisson-Surface Reconstruction [26] represents a more traditional algorithmic ap-

proach. This allows us to compare performance with two different underlying approaches.

We compare the proposed method with the original ScanComplete [13] architecture trained

on our training set and with the two other methods using the L1 error metric.

6.4.4.1 Evaluation Procedure for SSCNet

In this section we elaborate on generating comparable results for evaluation using SSC-

Net [47]. Because SSCNet [47] is restricted to completing data from single depth images,

we apply the pre-trained network, which was trained on SUNCG [47] data to the syn-

thetically generated input depth maps. We then integrate all of the voxel grid outputs

generated by the network into a single voxel grid. This is done on a resolution of 8cm as

SSCNet [47] works with input data on a resolution of 2cm and then outputs a grid with

8cm resolution due to an included pooling layer.

6.4.4.2 Evaluation Procedure for Poisson Surface Reconstruction

In order to generate results used for evaluation with Poisson Surface Reconstruction [26],

we first apply a MeshLab [10] filter script to the input reconstruction, which was generated

using Open3D [65] for each evaluation set. The filter applies a Poisson Surface Reconstruc-

tion [26] using the vertices from the input mesh as points. The normals are calculated

from the faces of the mesh as Poisson Surface Reconstruction [26] requires points and

corresponding normals as an input. We then use SDFGen [9] to generate the respective

distance function representation, using a voxel size of 0.09m for evaluation on the L1 error

metric.

6.4.4.3 Results

In this section we compare results generated using SSCNet [47] and Poisson Surface Re-

construction [26] with our own methods and ScanComplete [13]. When looking at the

results in Table 6.3, it can be seen that SSCNet [47] is the worst performing method over-

all, in terms of overall L1 error and L1 error on occupied voxels. This is also evident when

looking at the plots in Figure 6.17, where the method yields a higher overall L1 error for

all datasets, except for one and a higher error on occupied voxels for all datasets. Because

this method is only able to work on single depth images, it is not able to complete large

missing patches where no depth images were available, as seen by the missing geometry

on the back side of the left building in Figure 6.15 for the SSCNet [47] (bottom left) result

and thus it performs worse in general.
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Poisson Surface Reconstruction [26] still achieves quite good results on the overall L1

error, as it is on the same level as 2 levels + ScanComplete [13] + inferred train. This

is likely because most of the generated surface is very close to points of the input data.

This means that completely wrong inferences such as the extended wall seen for 1 level +

input sem. + noise + dilation + encoding (bottom) in Figure 6.13, are not an issue with

this method. Moreover, the results using Poisson Surface Reconstruction [26] are very

smooth, such that the general building shapes become very round. On the other hand this

method does not take general geometric properties of the input data into account and as

such the buildings and objects contained in them are reconstructed very coarsely, which

increases the error on occupied voxels significantly. This is also evident, when comparing

error metrics in Figure 6.17. It can be seen that the L1 error on occupied voxels is higher

for every dataset, while the overall L1 error is even lower than our proposed 1 level +

input sem. + noise + dilation + encoding approach and 2 levels + ScanComplete [13] +

inferred train for some evaluated scenes. As mentioned above, this is a result of wrong

inferences made by the neural network based methods. This is especially evident on

smaller scenes such as the room shown in Figure 6.16 when comparing the Poisson Surface

Reconstruction [26] result (bottom right) with the other methods shown.

Method ∅ L1 ∅ L1 occupied

SSCNet [47] 0.1568 0.4828

Poisson Surface Reconstruction [26] 0.1019 0.3743

2 levels +
input sem. + inferred train

+ encoding + dilation + noise
0.0803 0.1593

2 levels +
input sem. + inferred train

0.0758 0.1737

2 levels +
input sem.

0.0962 0.2400

1 level +
input sem. + noise

+ dilation + encoding
0.0674 0.1721

2 levels +
ScanComplete [13] + inferred train

0.0781 0.2012

2 levels +
ScanComplete [13]

0.1019 0.2622

Table 6.3: L1 error: lower means better. Error metrics comparison with SSCNet [47] and Poisson
Surface Reconstruction [26]. It can be seen that our 1 level + input sem. + noise + dilation +
encoding approach outperforms all other listed methods in terms of overall L1 error. However it
falls behind the 2 levels + input sem. + inferred train + encoding + dilation + noise method in
terms of L1 error on occupied voxels. Furthermore, Poisson Surface Reconstruction [26] performs
better than SSCNet [47].
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6.4.4.4 Conclusion

During our comparison with the two selected methods, Poisson Surface Reconstruction [26]

achieved a lower L1 error on occupied voxels compared to SSCNet [47], as it was able to

take more of the global context into account. Furthermore the results for Poisson Surface

Reconstruction [26] do not deviate a lot from the original input point cloud and as such

the overall L1 error is lower as well. However, compared to 2 levels + ScanComplete [13] +

inferred train , as well as the proposed 1 level + input sem. + noise + dilation + encoding

method, Poisson Surface Reconstruction [26] yields worse results due to not being able to

incorporate the semantic or geometric context of the input geometry.
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input used ground truth

1 level + input sem. + noise + dilation + en-
coding

2 levels + ScanComplete [13] + inferred train

SSCNet [47] Poisson Surface Reconstruction [26]

Figure 6.15: Comparison of geometric results of 2 levels + ScanComplete [13] + inferred train
and 1 level + input sem. + noise + dilation + encoding with Poisson Surface Reconstruction [26]
and SSCNet [47] on dataset 39. It can be seen in the SSCNet [47] result, that larger parts of
the building on the left are missing. In general Poisson Surface Reconstruction [26] yields a very
smooth and round result, which does not really fill the wall and floor correctly. Overall 1 level +
input sem. + noise + dilation + encoding outperforms the other methods shown as it fills more
of the geometry on the ceiling and walls.
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input used ground truth

1 level + input sem. + noise + dilation + en-
coding

2 levels + ScanComplete [13] + inferred train

SSCNet [47] Poisson Surface Reconstruction [26]

Figure 6.16: Comparison of geometric results of 2 levels + ScanComplete [13] + inferred train
and 1 level + input sem. + noise + dilation + encoding with Poisson Surface Reconstruction [26]
and SSCNet [47] on dataset 29. It can be seen that Poisson Surface Reconstruction [26] yields a
surface which closely follows the shape of the original building, while the 1 level + input sem. +
noise + dilation + encoding approach and 2 levels + ScanComplete [13] + inferred train introduce
some artifacts which deviate from the ground truth. Note that the 1 level + input sem. + noise
+ dilation + encoding shows the other side of the result as more artifacts are visible there. The
SSCNet [47] result also shows that the walls extend beyond the original ground truth boundaries.
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Overall L1 error metrics.

L1 error metrics on occupied voxels.

Figure 6.17: L1 error metrics for all 40 evaluation sets evaluated using Poisson Surface Recon-
struction [26] and SSCNet [47] compared with 2 levels + ScanComplete [13] + inferred train and
1 level + input sem. + noise + dilation + encoding. It can be seen that, while Poisson Surface
Reconstruction [26] manages to outperform the other methods on some datasets, 1 level + input
sem. + noise + dilation + encoding yields better results in general.
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6.4.5 Experimental Results on Real-World Image-Based Reconstruc-

tions

In this section we evaluate our proposed approach on datasets from the ETH3D [45]

benchmark. As described in Section 6.1.3, we evaluate using the F1 score metric and use

the input poses provided by the benchmark to perform a dense image-based reconstruction

using COLMAP [44] and Open3D [65]. Note that we also had to limit the maximum

depth values used during integration in order to keep the reconstructed scenes small in

terms of voxel grid dimensions, such that we do not exceed the memory limits of our

test system. Moreover, we have also changed the truncation value for visualizing occupied

voxels of semantic predictions to 0.15 for these datasets, which yields more comprehensible

visualizations as there is a lot of clutter present for some scenes. In the following sections we

present results for the datasets office, pipes, relief and terrains. We compare our approach

with the best performing methods evaluated in Section 6.4.4, which are ScanComplete [13]

and Poisson Surface Reconstruction [26].

6.4.5.1 Experimental Results

In this section we perform a detailed analysis in terms of F1-score with the best

performing methods from the evaluation on synthetic data. Furthermore, we also

evaluate the influence of applying synthetic noise to the semantic input during training.

It can be seen in Table 6.4, that the F1 score on the pipes and office datasets is improved

for our proposed 1 level + input sem. + noise + dilation + encoding and input sem.

approaches compared to 1 level + ScanComplete [13] and 2 levels + ScanComplete [13] +

inferred train, however on the relief and terrains datsets the F1 score of our approaches

falls behind 1 level + ScanComplete [13]. As seen in Table 6.5, this is due to a decrease

in accuracy for the proposed methods on these datasets. The completeness on the other

hand is universally improved for our approaches as seen in Table 6.6. It is also noteworthy

that the decrease in accuracy is stronger for methods which in infer more geometry

and thus also make more wrong predictions, such as the methods which use dilated

convolutions like 1 level + input sem. + noise + dilation + encoding. Moreover the

synthetic noise inserted into the semantic input data during training seems to increase the

accuracy in some cases, for instance when comparing the results for 1 level + input sem.

+ noise with input sem. on the relief and terrains datasets in Table 6.5. An example

for this decrease in clutter due to noise is also visualized in Figure 6.25 when com-

paring 1 level + input sem. + noise (bottom left) with1 level + input sem. (bottom right).

A significant increase in completeness is achieved using our 2 levels + input sem.

+ inferred train + encoding + dilation + noise approach, which uses 2 levels and all

improvements combined. This is also visualized in Figure 6.18 (middle left) and the

completeness visualization in Figure 6.24 (bottom left). Furthermore the quality of the

semantic prediction is improved visually as seen in Figure 6.19 (top right), Figure 6.23 (top
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right) and Figure 6.21 (top right), when comparing the 2 levels + input sem. + inferred

train + encoding + dilation + noise approach with the 2 levels + ScanComplete [13] +

inferred train (bottom left) method and the 1 level + ScanComplete [13] (bottom left)

approach. Because there is no semantic ground truth evaluation data included in the

ETH3D [45] benchmark, we are only able to compare these results visually.

Overall, we can conclude that the approaches using additional semantic input, com-

bined with other improvements are able to use the provided context to their advantage, by

completing more scene geometry which has been labeled correctly. However, the increased

completeness in this case results in worse accuracy metrics by potentially wrong additional

predictions.

The decrease in accuracy for our proposed approaches can be visualized in Figure 6.24,

by comparing results from the 2 levels + input sem. + inferred train + encoding +

dilation + noise (top left) approach and 1 level + ScanComplete [13] (top right). It can

be seen that, while our 2 levels + input sem. + inferred train + encoding + dilation +

noise approach predicts significantly more surface area, especially on the floor, the overall

accuracy is decreased, as more wrong predictions are introduced, which is evident in the

ceiling area of the dataset. The completeness measure however is increased, which can

also be seen in Figure 6.20 when comparing the 2 levels + input sem. + inferred train +

encoding + dilation + noise result (middle left) with the other presented results.

In general Poisson Surface Reconstruction [26] achieves worse overall results compared

to the proposed methods and ScanComplete [13] approaches, in terms of completion. How-

ever, in terms of accuracy the results are even better than the two neural network based

methods on the terrains dataset as seen in Table 6.5. This is an analogous development to

the evaluation on synthetic data, as the surface generated by Poisson Surface Reconstruc-

tion [26] is always close to the input reconstruction and thus yields better accuracy values

in some scenarios. The terrains dataset represents an ideal case for this as it is a long hall-

way where the Poisson surface can wrap around, which is visualized in Figure 6.22 (bottom

right). The additional clutter generated by the neural network based approaches decreases

the accuracy and thus they fall slightly behind Poisson Surface Reconstruction [26].

In general, it can be seen that additional input semantics provide benefits in areas

where the semantic input predictions are mostly correct such as the floor and wall. In these

areas the network can use the additional context to provide more complete reconstructions.

More complex objects with noisy semantic predictions on the other hand can lead to a

decrease in accuracy when being completed by the network.
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F1 score evaluation Office Pipes Relief Terrains

2 levels +
input sem. + inferred train + encoding +

dilation + noise
0.8272 0.4608 0.6014 0.5885

1 level +
input sem. + encoding +

dilation + noise
0.8334 0.5064 0.6245 0.6146

2 levels +
input sem. + inferred train + noise

0.7961 0.5140 0.6781 0.6261

2 levels +
input sem. + inferred train

0.8061 0.4867 0.6550 0.6430

1 level +
input sem. + noise

0.7929 0.4861 0.6786 0.6550

1 level +
input sem.

0.7978 0.5156 0.6793 0.6623

2 levels +
ScanComplete [13] + inferred train

0.7619 0.4785 0.6866 0.6727

1 level +
ScanComplete [13]

0.7591 0.4750 0.7127 0.6901

Poisson Surface Reconstruction [26] 0.4717 0.2212 0.1566 0.3359

Table 6.4: F1 score: higher means better. F1 score results for different methods and datasets.
It can be seen that our proposed 1 level + input sem. + noise + dilation + encoding and input
sem. approaches achieve higher scores on office and pipes, but the results are worse than 1 level +
ScanComplete [13] on relief and terrains. This is due to a decrease in accuracy for these datasets
when using our proposed approaches, while the completeness is still superior.
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Accuracy Evaluation Office Pipes Relief Terrains

2 levels +
input sem. + inferred train + encoding +

dilation + noise
0.7417 0.4022 0.5189 0.4752

1 level +
input sem. + encoding +

dilation + noise
0.7346 0.5720 0.5602 0.5485

2 levels +
input sem. + inferred train + noise

0.7126 0.6098 0.6455 0.5572

2 levels +
input sem. + inferred train

0.7250 0.5745 0.6022 0.5917

1 level +
input sem. + noise

0.7292 0.6148 0.6635 0.6394

1 level +
input sem.

0.7118 0.6334 0.6520 0.6391

2 levels +
ScanComplete [13] + inferred train

0.7252 0.6400 0.6899 0.6763

1 level
ScanComplete [13]

0.7144 0.6642 0.7379 0.7009

Poisson Surface Reconstruction [26] 0.6742 0.5593 0.4956 0.7114

Table 6.5: Accuracy: higher means better. Accuracy results for different methods and datasets.
It is observable that the proposed approaches achieve a high accuracy only on the office dataset,
while the other results are comparable to 1 level + ScanComlete [13], but worse in general. This is
due to the fact that by completing additional scene geometry, clutter is introduced by the proposed
methods, which reduces the accuracy.
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Completeness Evaluation Office Pipes Relief Terrains

2 levels +
input sem. + inferred train + encoding +

dilation + noise
0.9349 0.5393 0.7150 0.7729

1 level +
input sem. + encoding +

dilation + noise
0.9628 0.4543 0.7055 0.6989

2 levels +
input sem. + inferred train + noise

0.9019 0.4442 0.7141 0.7145

2 levels +
input sem. + inferred train

0.9077 0.4222 0.7178 0.7041

1 level +
input sem. + noise

0.8687 0.4019 0.6944 0.6714

1 level +
input sem.

0.9074 0.4347 0.7090 0.6873

2 levels +
ScanComplete [13] + inferred train

0.8025 0.3820 0.6833 0.6692

1 level
ScanComplete [13]

0.8099 0.3698 0.6892 0.6796

Poisson Surface Reconstruction [26] 0.3628 0.1379 0.0930 0.2199

Table 6.6: Completeness: higher means better. Completeness results for different methods and
datasets. Overall the completeness metric is superior for our proposed methods on every dataset
evaluated. It can be seen that proposed method utilizing dilated convolutions and 2 levels, denoted
as 2 levels + input sem. + inferred train + encoding + dilation + noise achieves the best on pipes
and terrains. For office 1 level + input sem. + noise + dilation + encoding performs better,
however there are only minor differences to 2 levels + input sem. + inferred train on relief.
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Average Evaluation ∅ F1 ∅ Accuracy ∅ Completeness

2 levels +
input sem. + inferred train + encoding +

dilation + noise
0.6195 0.5345 0.7405

1 level +
input sem. + encoding +

dilation + noise
0.6447 0.6038 0.7053

2 levels +
input sem. + inferred train + noise

0.6536 0.6313 0.6937

2 levels +
input sem. + inferred train

0.6477 0.6234 0.6879

1 level +
input sem. + noise

0.6531 0.6617 0.6591

1 level +
input sem.

0.6637 0.6591 0.6846

2 levels +
ScanComplete [13] + inferred train

0.6499 0.6828 0.6343

1 level
ScanComplete [13]

0.6593 0.7043 0.6371

Poisson Surface Reconstruction [26] 0.2964 0.6101 0.2034

Table 6.7: Averaged results for different methods and all datasets. In terms of average F1 score
our input sem. method performs best, as it provides a good balance between completion and
accuracy. However, in terms of overall accuracy 1 level + ScanComplete [13] yields better results.
The highest completeness metric is achieved with our 2 levels + input sem. + inferred train +
encoding + dilation + noise approach, which uses 2 levels and all improvements.
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input used ground truth

2 levels + input sem. + inferred train + encod-
ing + dilation + noise

2 levels + ScanComplete [13] + inferred train

1 level + input sem. Poisson Surface Reconstruction [26]

Figure 6.18: Geometric result comparison for the pipes dataset. It is observable that the 2 levels
+ input sem. + inferred train + encoding + dilation + noise method yields the most complete
result, while also introducing additional clutter in the ceiling area and on the outer right side of
the wall. The one level + input sem. approach yields a more complete result compared to the 2
levels + ScanComplete [13] + inferred train method, which can be seen on the floor and the wall to
the left, while not introducing a large amount of additional clutter. The result for Poisson Surface
Reconstruction [26] completes most of the wall and ceiling, but does not respect the geometry of the
original input and produces very round and smoothed results. Note that for the Poisson Surface
Reconstruction [26] the camera view is from inside the model to show the same environment as in
the other results.
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input used 2 levels + input sem. + inferred train + encod-
ing + dilation + noise

2 levels + ScanComplete [13] + inferred train 1 level + input sem.

Figure 6.19: Semantic prediction comparison for pipes dataset. It can be seen that the 2 levels
+ input sem. + inferred train + encoding + dilation + noise method yields the most complete
semantic prediction with predictions for wall (blue), floor (green) and ceiling (red), which do not
contain a lot of noise. The 2 levels + ScanComplete [13] + inferred train approach was not able
to identify walls, floor and ceiling correctly consistently. This is likely due to not being provided
additional semantic input. The level + input sem. method yields a result where floor, ceiling
and wall have been predicted correctly in large areas, however there is still some noise present
specifically in the ceiling area.
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input used ground truth

2 levels + input sem. + inferred train + encod-
ing + dilation + noise

1 level + ScanComplete [13]

1 level + input sem. + noise Poisson Surface Reconstruction [26]

Figure 6.20: Geometric result comparison for the relief dataset. It can be seen that the 2 levels
+ input sem. + inferred train + encoding + dilation + noise approach yields the most complete
result compared to others, while also introducing a lot of clutter, specifically in the area of the
ceiling. The result for Poisson Surface Reconstruction [26] does not respect most of the more fine
grained geometric structures present in the input reconstruction.
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input used 2 levels + input sem. + inferred train + encod-
ing + dilation + noise

1 level + ScanComplete [13] 1 level + input sem. + noise

Figure 6.21: Semantic prediction comparison for relief dataset. It is observable that the 2 levels
+ input sem. + inferred train + encoding + dilation + noise method yields the best overall result,
but still includes some wrong predictions and noise in the areas of the walls and floor.
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input used ground truth

2 levels + input sem. + inferred train + encod-
ing + dilation + noise

1 level + ScanComplete [13]

1 level + input sem. + noise Poisson Surface Reconstruction [26].

Figure 6.22: Geometric results for the terrains dataset. It can be seen that for the Poisson Surface
Reconstruction [26] result, the surface fits the outer walls and not a lot of clutter is present. Note
that for the Poisson Surface Reconstruction [26] the camera view is from inside the model to show
the same environment as in the other results. The 2 levels + input sem. + inferred train +
encoding + dilation + noise result is more complete than 1 level + input sem. + noise and 1
level + ScanComplete [13] results, however a lot of additional predictions are also introduced in
the ceiling area.
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input used 2 levels + input sem. + inferred train + encod-
ing + dilation + noise

1 level + ScanComplete [13] 1 level + input sem. + noise

Figure 6.23: Semantic prediction results for the terrains dataset. It can be seen that the 2 levels
+ input sem. + inferred train + encoding + dilation + noise result contains less noise than the
1 level + input sem. + noise result and was able to make a more correct prediction of the floor
(green) than 1 level + input sem. + noise and 1 level + ScanComplete [13].
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Accuracy visualization for 2 levels + input sem.
+ inferred train + encoding + dilation + noise

Accuracy visualization for 1 level + ScanCom-
plete [13]

Completeness visualization for 2 levels + input
sem. + inferred train + encoding + dilation +
noise

Completeness visualization for 2 levels + Scan-
Complete [13] + inferred train

Figure 6.24: Accuracy comparison for the relief dataset and completeness comparison on the pipes
dataset. For the accuracy visualization, it can be seen that the additional clutter and completed
data added in the ceiling area for 2 levels + input sem. + inferred train + encoding + dilation +
noise leads to more inaccurate points (red) in contrast to accurate points (green), when comparing
the result with 1 level + ScanComplete [13]. The blue points represent points outside of the laser
scanner range. The completeness visualization shows an increase in completeness for the 2 levels
+ input sem. + inferred train + encoding + dilation + noise approach compared to 2 levels +
ScanComplete [13] + inferred train, which can be seen by the increased amount of green points
(complete), in contrast to red points (incomplete).
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Example for an RGB image for which a
depth map and semantically segmented
image have been created in the terrains
dataset.

Example for an input depth map used for ter-
rains.

Example for a semantically segmented image
used for terrains.

1 level + input sem. + noise 1 level + input sem.

Figure 6.25: Comparison for geometric results when adding noise to the input semantics during
training. It can be seen that the result which was trained on data containing noise reduces some of
the clutter outside of the wall introduced by incorrect input depth maps. The color in the depth
image is chosen such that larger depth values yield a color which has a red tone, while a blue tone
encodes a smaller depth value. It is observable that a lot of the wall contains large depth values,
which are not valid in this case and lead to noise when combining the depth maps in Open3D [65].
It can also be seen that incorrect values appear in areas where there is almost no texture, such as
the wall.
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6.4.5.2 Conclusion

While evaluating on real world image based reconstructions, we have seen that giving the

network additional context via input semantics leads to more complete results. However,

as the network tries to infer more of the geometry, additional clutter is added which

decreases accuracy. This effect is amplified when using 2 levels. Furthermore, adding

synthetic noise to the semantic input data during training improved on the accuracy, as it

removed some of the clutter present due to imperfect input depth maps and input semantic

information.

6.5 Conclusions

In this section we will summarize the results from the performed experiments and draw

conclusions about strengths, weaknesses and potential improvements of our approaches.

In Section 6.4.2, we showed that providing additional input semantics results in a

performance increase, both in terms of L1 error and semantic accuracy. We also showed

that using dilated convolutions yields the largest further improvement of our approach,

while combining it with synthetic noise inserted into input semantic during training and

an alternative semantic encoding lead to even further improvement.

When evaluating on 2 levels in Section 6.4.3, we discovered that using 1 level with

dilated convolutions yields comparable results for prediction on occupied voxels and better

overall error results, than when using our best performing approach with two hierarchy

levels. This means it is possible to save time by training only one network and inferring

on only one network and still generate good results.

The evaluation with other methods performed in Section 6.4.4, showed that in general

our proposed approach yields the best overall results compared to SSCNet [47] and Poisson

Surface Reconstruction [26], while ScanComplete [13] improves significantly over the other

two methods as well.

Our experiments on real world image based reconstructions, showed a general increase

in completeness for our proposed approach compared to ScanComplete [13] and Poisson

Surface Reconstruction [26]. However this also meant a decrease in accuracy on some

datasets as the network made wrong predictions. In general, it could be seen that providing

additional semantic information provides benefits, especially for wall and floor regions.

Furthermore we can conclude that the method which provides a good trade off between

completion and accuracy is the 1 level + input sem. + encoding + dilation + noise

approach.
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In this chapter, we summarize the main implications of this thesis, draw conclusions

and elaborate on limitations of our method, as well as possible future work which could

solve these problems.

7.1 Summary and Conclusions

In this work, we explored a CNN based technique to recover the oftentimes incomplete

geometry of image-based reconstructions, which are a commonly used technique of gener-

ating 3D data from real world environments. Because acquiring large amounts of ground

truth data from real world scenes presents a lot of difficulties, we trained the network on

synthetic data generated from the SUNCG dataset [47]. As the basis for our work we use

the neural network architecture proposed in ScanComplete [13], which takes as an input a

regular voxel grid encoding geometric information as a TSDF and outputs distance func-

tion values in a regular voxel grid, which encode the completed geometry. We presented

an architecture, which extends the approach proposed in ScanComplete [13] in multiple

ways, with the goal of increasing the performance of the network in terms of completion.

In order to measure the impact of our changes, we first evaluated these modifications on a

synthetic evaluation set, before applying them to real-world image-based reconstructions.

As elaborated on in Section 4.3, we provide the network with additional input semantic

information, which gives the network more context when completing the geometry of a

scene. Our experiments on synthetic data in Section 6.4.2.1 showed, that this additional

input leads to improved performance in terms of how much structure and geometry was

completed. This extension also resulted in an improvement for semantic prediction, as the

107
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network was given an initialization for semantic labels, which it could expand upon.

Furthermore, we used dilated convolutions when inferring on one hierarchy level, which

also yields improvements both in terms of geometric and semantic prediction on synthetic

data as described in Section 6.4.2.2. We observed that providing the network with more

global context using dilated convolutions, which increases the receptive field of the network,

leads to a more substantial increase in overall performance metrics than using an additional

coarser hierarchy level and no dilated convolutions. This implies that one can reduce the

amount of time used for training and inference, by using only a single hierarchy level.

However, it is possible to improve the results on occupied voxels with two hierarchy levels,

by adding dilated convolutions to the second level and using the alternative semantic

encoding and noise during training.

We also evaluated an alternative encoding for the additional semantic input provided

to the network, similar to the encoding proposed by Garbade et. al. [18], on synthetic

data, which is elaborated on in detail in Section 4.3.5.1. The quantitative results obtained

in our performed experiments in Section 6.4.2.4, showed an increase in the accuracy of the

semantic predictions, however no improvements could be observed in terms of geometric

prediction. When augmenting the training data, such that synthetic noise is included in the

input semantic information, a slight improvement could be observed in preventing wrong

semantic predictions from being made outside the bounds of the ground truth. However,

the semantic prediction accuracy on the ground truth model was more inaccurate, as seen

in our evaluation on synthetic data in Section 6.4.2.5.

The combination of all proposed modifications on one hierarchy level also lead to a

further performance increase on synthetic data, as leveraging more of the global context

was combined with the other less substantial improvements. This was explored in Sec-

tion 6.4.2.6. The approach using two hierarchy levels yields better results in some aspects,

however it is prone to make more wrong predictions outside the bounds of the ground

truth and as such, we recommend using one level which represents a good middle ground

between performance and inference time.

Over the course of our evaluation, we also compared the proposed method with two

other techniques for completing 3D geometry. For this evaluation, we chose a traditional

approach with Poisson Surface Reconstruction [26] and another CNN based approach

with SSCNet [47]. The comparisons showed that these two approaches performed worse

in comparison to the proposed approach and ScanComplete [13].

Applying the proposed extensions on real world image based reconstructions of the

ETH3D benchmark [45] showed that while improvements were made in terms of how much

of the missing geometry was recovered, the results became less accurate with respect to the

ground truth than the results generated by the architecture proposed in ScanComplete [13].

It cloud be observed that a lot of additional clutter was generated as well, which could be

slightly reduced by incorporating synthetic noise into the semantic input data used during

training. This means that there was a trade off between completing more of the scene and

being more accurate with respect to the original ground truth. Although this shows that
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the method has the potential to improve image based reconstructions and create more

complete reconstructions for applications such as virtual reality and augmented reality,

there are still additional steps which would need to be taken, to make this a more viable

method for these use cases.

7.2 Future Work

In this section we explore the limitations of the proposed approach and discuss potential

ways of solving or reducing the impact of these issues. A big restriction of the proposed

approach is that the large amount of memory consumed when inferencing and training,

limits the method in terms of the maximum possible underlying resolution of the geometry

encoded in the voxel grid for scenes with larger dimensions. The issue here is, that the

approach uses a regular voxel grid, which stores the truncated values of the distance

function as well as the non truncated ones. However, the number of voxels containing

truncated values has a larger magnitude than the voxels containing non-truncated values

for most of the encoded scenes. Thus, all of these voxels could be represented by a single

large voxel, which also stores the truncated value. This concept was proposed by Riegler

et. al. [40] for neural networks working on 3D data. The incorporation of this more

memory efficient method with our approach would yield further improvements in terms of

recovering finer detail and being able to work on larger scenes in general.

Another area, where the proposed method could be improved, is to create training

data which resembles real world image-based reconstructions more closely. One of the

main problems for image based reconstructions are walls, floors and ceiling areas which

are poorly textured. It would be possible to use the 2D semantic information of the

synthetic dataset to generate noise on the depth maps in these areas specifically.

Another way to improve on this aspect would be to execute a MVS algorithm on

images taken from photo-realistic synthetic scenes. These scenes could simulate difficult

conditions for image-based reconstructions, for instance brightness differences or poorly

textured surfaces. Such photo-realistic images from synthetic scenes can also be generated

with the SUNCG dataset [47] by using physically based rendering [59]. However, it is

unclear how viable this approach is, in the sense how close the results are to real world

MVS results. Furthermore, these photo-realistic images could also be used to generate

semantic predictions which are closer to real world data, by applying the DeepLabV3 [7]

(with parameters/weights from an already trained network using ade20k [62] [63]) network

on this data. In this case, it would also be possible to train the network on the used

synthetic dataset beforehand.





A
List of Acronyms

BRIEF Binary Robust Independent Elementary Fea-

tures

CNN Convolutional Neural Network

CRF Conditional Random Field

FAST Features from Accelerated Segment Test

LIDAR light detection and ranging

MVS Multi-View Stereo

RELU rectified linear unit

SFM Structure from Motion

SIFT Scale Invariant Feature Transform

SURF Speeded Up Robust Features

TSDF truncated signed distance function
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