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Abstract

For Augmented Reality, 6 DOF pose estimation is an essential prerequisite. This work

focuses on the task of monocular optical tracking of known objects, based on the

technique of natural feature detection. An object’s shape, measures and texture are

being required as a priori knowledge. We compare two common approaches to retrieve

the pose: homographies, which let us retrieve a pose from 2D-2D point correspondences,

and Perspective-n-Point (PnP), which works on 2D-3D point correspondences. We

then investigate the most convenient ways to refine the pose: we compare the use of an

optimization library, Ceres Solver, with own implementations of Gauss-Newton method

and Levenberg-Marquardt method.

Even though homographies are not as versatile as PnP, they show better performance

in general and higher accuracy for coplanar scenes. While the Ceres Solver library func-

tions perform well, our own optimization functions turn out as 10 times more efficient for

our purpose while achieving the same accuracy.

Keywords: Pose Estimation, Homography, P3P, Pose Refinement
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Kurzfassung

Für Augmented Reality ist eine Lagebestimmung über sechs Freiheitsgrade eine

notwendige Voraussetzung. Diese Arbeit konzentriert sich auf die Aufgabe des

monokularen optischen Trackings bereits bekannter Objekte mittels Detektion

natürlicher Merkmale. Die Form eines Objekts, seine Maße und Textur müssen

vorher bekannt sein. Wir vergleichen zwei verbreitete Ansätze um die Lage zu

bestimmen: Homographien, durch welche wir die Lage via 2D-2D Punktkorrespondenzen

bestimmen können, und Perspective-n-Point (PnP), das 2D-3D Punktkorrespondenzen

erfordert. Wir untersuchen die günstigsten Methoden um die Lagebestimmung zu

verbessern: wir vergleichen die Verwendung der Ceres Solver Optimierungsbibliothek

mit eigenen Implementierungen des Gauss-Newton- und Levenberg-Marquardt-Verfahrens.

Obwohl Homographien nicht so vielfältig einsetzbar wie PnP sind, zeigen sie im All-

gemeinen eine bessere Laufzeit und höhere Genauigkeit für planare Szenen. Während

die Ceres Solver Programmbibliothek eine gute Laufzeit aufweist, stellen sich unsere eige-

nen Implementierungen bei gleicher Genauigkeit als zehnmal effizienter für unsere Zwecke

heraus.

Stichworte: Lagebestimmung, Homographie, P3P, Lageverbesserung
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1
Introduction

1.1 Tracking in AR

In the beginning of Augmented Reality (AR), tracking was done using mechanical

tracking or GPS, which suffered from limited practicability or accuracy. A major

breakthrough was done by the introduction of visual markers: this cleared the path for

vision-based tracking, which is now of more importance than ever since cameras are

cheap and available on almost any device. Vision-based tracking is an essential task in

robotics, Computer Vision and Computer Graphics, especially in Virtual Reality (VR)

and AR: it is used for inside out tracking (determining the camera/tracker’s position in a

static environment) as well as outside in tracking (determining the position of an object

in relation to the static camera/tracker). While markers are a convenient solution, it is

not always feasible to use them, as every environment would need to be prepared first,

their visibility is not wanted or it is simply not possible to prepare the environment, e.g .

when navigating through a city. Therefore, modern approaches focus on natural feature

tracking. Natural features include points, lines or texture, while the vast majority of

algorithms are based on point-based features due to their stability and repeatability.

A big new challenge arose with the popularity of mobile systems: although they have

limited performance, they became an attractive target for AR applications since they are

widely available, relatively inexpensive and offer a new small form factor. While many

mobile systems provide as well an Inertial Measurement Unit (IMU), inertial sensors have

several shortcomings: they cannot be used to track moving objects other than the device

itself, their measurements are often noisy and inaccurate, and they are prone to drift.

Although they can not be used for tracking on their own, they can still be useful to refine

or improve vision-based tracking in certain situations or overcome tracking loss for inside

out tracking. The combination is known as Sensor Fusion. The first ones to introduce a

purely vision-based real-time 6 Degrees of Freedom (DOF) natural feature tracking system

on mobile phones were Wagner et al.in 2008 [77], who used a stripped-down version of

1



2 Chapter 1. Introduction

Scale-Invariant Feature Transform (SIFT)[40] features and Ferns [55] to track planar

targets. While at this point they did not take into account the underlying geometry of ob-

jects, in 2009 they released a video where they are extending their method to cylinders [75].

1.2 Pose Estimation

For solving the tracking problem in general, the ultimate goal is to fully describe our

camera with respect to a local environment or a specific target over a sequence of frames.

Physical cameras are most often modelled by a pinhole camera model, which describes a

perspective projection between 3D points X ∈ IR3 and 2D image points x ∈ IR2 by casting

a ray from X towards the center of projection C (through which all projection rays go),

x is where the ray hits the image plane, as seen in Figure 1.1.

Optical Axis

X

x

C

Figure 1.1: A pinhole camera projects 3D point X onto image point x at the point where the
viewing ray of X hits the image plane.

The camera model can be described by a 3x4 matrix P, which projects homogeneous

3D world coordinates X = [x, y, z, 1]T ∈ IP3 onto homogeneous 2D image coordinates

x = [u, v, 1]T ∈ IP2:

Hereby the matrix P has 11 DOF and can be split into intrinsic camera parameters K

and extrinsic camera parameters R and t:

x = K · [R | t] ·X

The intrinsic camera matrix K follows the form

K =

px s u0
0 py v0
0 0 1


where (u0, v0, 1)T marks the principal point, where the z-axis of the camera intersects the

image plane, and px and py describe the ratio between the camera lens’ focal length (the
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distance between the camera center and the image plane) and the width and height of a

pixel. The skew parameter s is only used when the optical axes are not orthogonal and is

zero for most modern cameras.

Assuming the intrinsic parameters are already known (or calculated beforehand via cam-

era calibration), we are now interested in the extrinsic parameters: they consist of a 6

DOF camera pose, 3 DOF representing the camera’s position in world space and 3 DOF

representing its orientation (yaw, pitch, roll). They are represented by a rotation matrix

R and a translation vector t and express the coordinate transformation from 3D world

space to 2D projective space, as seen in Figure 1.2. Note hereby that the matrix [R | t]
can as well be split into a projection matrix Π and a quadratic transformation matrix T :

Π =

1 0 0 0

0 1 0 0

0 0 1 0



T =

(
R t

0 1

)

Figure 1.2: Geometric interpretation of a camera matrix P. While R and t are used to translate
world space coordinates to camera space coordinates, the perspective projection translates the
coordinates into projective space and the matrix K translates them into actual 2D coordinates
within a camera frame.

Prerequisites for Pose Calculus A lower bound of how many correspondences are

needed to calculate P is given by the number of DOF we want to solve for: while Di-

rect Linear Transformation (DLT) solves for all elements of the matrix and therefore

requires at least six correspondences (each correspondence contributing with two equa-

tions), Perspective-n-Point (PnP) solutions exist for as few as three 2D-3D point corre-

spondences, with a fourth correspondence being needed to resolve ambiguity issues1. The

1For the remainder of this thesis, we will deal with point correspondences only. For a more extended
list of line and plane-based constraints, the interested reader is referred to the work of Ramalingam et
al.[59]
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basic assumption in determining the pose of a camera with respect to the environment

given established 2D-3D correspondences is, that from the set of correspondences, only a

hand full are correct. Therefore, any pose estimation algorithm has to be wrapped into

a robust outlier detection technique, i.e. Random Sample Consensus (RANSAC)[18] or

similar algorithms. In order to deal with noise in the data, common approaches can be

separated into closed-form solutions that take into account all point correspondences at

once in order to minimize the error, and iterative solutions, where the error is reduced

with each iteration.

1.3 Thesis Goals

In this work we followed the approach of Wagner et al. [80] in determining the camera

pose with respect to a known target, but we additionally took into account the

underlying geometry of objects, as many real-life objects resemble primitive geometric

shapes. We specifically consider cuboids, cylinders and spheres to represent different

groups of shapes. Knowing the shape of an object, its 2D template and measurements

(e.g. length, height, width) in advance, we can map features found on the template into 3D.

In tracking by detection, pose estimation is done repeatedly for each camera frame

independently. This can become very difficult and computationally expensive on large

amounts of natural features, e.g . outdoors. In order to lower the computational costs,

this task can be split into initial pose detection and incremental tracking in subsequent

frames based on a previous pose [80]. Incremental tracking takes into account the

expected position or movement of the camera or object using the calculated camera pose

of a prior frame. We assume the incremental tracking to be easier to solve and to be

computationally less expensive than detection. Therefore, in this work we only focus on

the initial pose detection problem. Even this problem is typically split into two steps,

the calculation of an initial pose estimate followed by further pose refinement.

For the initial pose estimate, we use SIFT features on both the textured templates

of the geometric primitives and on the camera frames to receive 2D-3D point

correspondences. Depending on the (given) type of shape we then calculate the pose

either via homographies, if the geometric primitives consists of mostly planar sides (i.e.

cuboids), or via PnP methods if few to no planar sides are available (i.e. cylinders and

spheres). In practical applications we will have to deal with outliers and noise. In order

to deal with noise, the problem is formulated as a non-linear least squares problem.

Common approaches to solve them include the Gauss-Newton and Levenberg-Marquardt

method, Levenberg-Marquardt being a linear combination of the Gradient Descent

method and Gauss-Newton method. Since these methods cannot offer global convergence,

a good first pose estimation is already needed. So even though we can remove outliers to

a certain extent in the optimization, it is preferable to do so at the first pose estimate
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already. Both homographies and PnP methods therefore need to be wrapped into a

RANSAC scheme [18] to deal with the outliers.

For the pose refinement, powerful open source libraries are available: We used

Ceres solver, an open source C++ library for solving various optimization problems,

including non-linear least squares problems [1]. One of its many features is automatic

differentiation, which can be valuable for software prototyping. However, in doubt of

the capabilities of its automatic differentiation feature, we also calculate the derivatives

ourselves to use them in the analytic derivative feature of Ceres Solver, and further

implement a Gauss Newton function to compare it in terms of performance to the one

derived by the library. Finally, we also look into Lie groups hoping to take a ”shortcut”

on calculating the tedious actual derivatives.

As a result of our approach, we show that an own implementation of either Gauss-

Newton or Levenberg-Marquardt outperforms the Ceres Solver library functions by a factor

of 10, and that using textured templates of geometric primitives is reasonable. We give

several exemplary results of the developed system and provide proof of its plausibility. We

conclude by bringing our approach to mobile systems, namely to Android on a Samsung

Galaxy S7 mobile phone, in order to test its practicability.

1.4 Outline

In Chapter 2 we discuss common tracking methods, alternatives to monocular optical

tracking, their advantages and disadvantages, their practicability for tracking on mobile

devices and mention some approaches for each. We also go into more detail for some of

the underlying concepts. Chapter 3 first describes our prerequisites and how we generate

our templates. We then describe our method in detail, first how we get an initial pose

estimate in Section 3.2 and then how we further optimize it in Section 3.3. In Chapter

4 we are showing what test data we generated and used the results of our evaluations,

while in Chapter 5 we present our practical results on mobile systems. In Chapter 6 we

are drawing our conclusion of the former chapters.





2
Related Work

In the following, we give an overview about related work in field of camera pose estimation

and tracking. For brevity, we will mainly focus on the aspect of pose initialization, as this

is most relevant for our work.

2.1 Various Tracking Hardware

While in general there exist various types of tracking systems, most of them are only

feasible for active tracking and require either the signal emitter or the sensor to be mounted

on the target:

• Mechanical Tracking: It uses robotic armatures where the position can be calculated

from known lengths and angles at the joints. While its accuracy is rather high,

its working space is limited, the devices are usually expensive and encumber the

movement of the user [53]. An example device is shown in Figure 2.1a.

• Magnetic Tracking: Magnetic fields are used to determine the position. They do

not need a direct line of sight, have a high update rate and can track several targets

at once, but they are susceptible to environment noise: metallic objects in the sur-

rounding can cause interference and its working volume is rather small too. Figure

2.1b shows finger tracking using magnetic tracking.

• Ultrasonic Tracking: High frequency sound waves are used for either time-of-flight or

to measure the phase coherence. The time-of-flight method’s update rate is limited

by the low speed of sound and is affected by factors like temperature or pressure,

while the coherence based one can accumulate error over time.

• Global Positioning System (GPS): First used for an AR system in 1997 [15], GPS

tracking has since been used in many applications, especially for outdoor tracking

[35]. However, it still suffers from low accuracy and is therefore mostly used in

7
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hybrid tracking systems. More accurate GPS systems with an accuracy of 5 cm are

theoretically available, but are highly expensive.

• Inertial Tracking: While using gyroscopes and accelerometers offer a large working

space and do not require any line of sight, gyroscopes are sensitive to vibration [53]

and both suffer from drift in time. Inertial sensors cannot be used for initialization

of the pose as they only measure the differences, so they need to be combined with

other methods like optical trackers or ultrasonic trackers.

(a) Mechanical Tracking (b) Magnetic Tracking

Figure 2.1: A binocular omni-orientation monitor (BOOM) a and a magnetic finger tracker by
Polhemus [58].

aImage from http://www8.informatik.umu.se/ jwworth/2Techniques

Hybrid Tracking There have been various approaches of hybrid tracking, also known as

sensor fusion, which combine optical tracking with other tracking types: e.g. combinations

of optical tracking and GPS [61], which focus on outdoor tracking and help to overcome

signal loss of GPS in case of occlusions or being in buildings, or combinations with inertial

sensors [50] [84].

2.2 Optical Tracking

Not only is optical tracking with RGB cameras able to provide higher accuracy than other

approaches, but the required hardware is also considerably cheap. Since most AR devices

need visual video background, some camera is usually required already. For Augmented

Reality (AR) on mobile devices the most preferred approach is using a single camera,

which opens access to AR for almost every modern mobile device.
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Infrared Tracking Infrared (IR) tracking can either be done via retro-reflective mark-

ers, structured light [67] or by time-of-flight sensors [24]. IR cameras became quite af-

fordable in the past years, like the Microsoft Kinect [86], which uses structured light and

led to the KinectFusion tracking system [48]. The general downside of infrared cameras is

that they are strongly influenced by other sources of infrared light or other high intensity

lights, which drastically lowers their outdoor applicability.

Stereo Cameras Tracking with stereo cameras showed to improved robustness to noise

and occlusions over RGB cameras only [56], as they combine standard monocular optical

tracking with additional depth information from stereo clues. However, stereo cameras

are relatively rare in mobile devices.

Marker-based Tracking Early markers were circular with contrastic [29] or color-

coded rings [47], of which four distinctive matches were needed for a correct pose. Square

markers were introduced in 1997 [34], so each corner gave a point correspondence. Some

patterns like those of ARToolKit [30] have a pattern to distinguish between different

markers, so that one square marker is enough to estimate a pose. It became a very

popular technique for markers and spawned a lot of successors, e.g. ARToolKitPlus [79].

Markers are a computationally inexpensive way of tracking for AR that works even with

a low quality camera, which makes them especially interesting for AR on mobile devices.

It is independent of textures, repetitive patterns and specularity but comes at the cost of

having to prepare the environment first.

Natural Feature Tracking Since having to prepare the environment before tracking is

not feasible and often not even possible, a common approach is to track natural features

instead. While features can be corners, edges or blobs (i.e. regions of similar properties),

only point detectors (i.e. corners and blobs) are suitable for accurate tracking as their

position in an image can be measured exactly. Ideally feature detectors should be scale,

rotation and affine invariant, repeatable, robust to changes in illumination, robust to noise

or blur, distinctive and, of course, be efficient in both calculation time and storage space.

While corner features are typically calculated fast, they are often not very distinctive and

thus harder to match. Blob detectors on the other hand take more time to calculate but

are more distinctive. Popular corner feature detectors of the last years include FAST

[62] and Oriented FAST and Rotated BRIEF (ORB) [65], popular blob feature detectors

include Scale-Invariant Feature Transform (SIFT) [41] and Speeded Up Robust Features

(SURF) [2].

Conventional Neural Networks There have also been attempts to use Conventional

Neural Networks (CNNs) for object tracking. While Crivellaro et al. [7] received accu-

rate results and robustness to occlusions, it also showed that these approaches are rather

computationally intensive: they achieved 4 frames per second (fps) on a current desktop
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computer in 2015. However, with new generations of microprocessors in mobile phones

and a general increase in computational power, their practicability is growing quickly.

Model-free Tracking Trackers can be divided into model-based and model-free ones.

While model-based tracking refers to a priori knowledge of an object, which can consist

of its texture, a CAD-model or a representation of a scene by simple geometric shapes,

model-free tracking generates this information in run-time. Model-free tracking is closely

related to Simultaneous Localization and Mapping (SLAM), which describes the problem

of generating a map of an unknown environment while at the same time keeping track

of the device’s current location. Some well known approaches include PTAM [31] [32],

ORB-SLAM [46] and LSD-SLAM [14].

In order to track objects that a user can interact with, it is best to use model-based

approaches. Although using model-free approaches offer a lot of flexibility, it would be

necessary to decide in run-time which parts of a scene belong to the object to track and

which not (e.g. the user’s hand), which would, for example, make it harder for an algorithm

to keep tracking an object’s backside, thus making it less robust and reliable.

2.3 Model-based Optical Tracking

A priori knowledge of a rigid object can be represented in various ways:

• Point Features: As already mentioned earlier [refer to Natural Feature Tracking]...

• Edges: Edge-based approaches need a priori information of the outlines of an object

such as a CAD model of it. Edge filters can be used to find the outlines of objects

and match them to saved models [83], other approaches use additional knowledge of

the textures [60]. Edge-based approaches work best for man-made objects where an

exact 3D model is known, otherwise an accurate 3D scan is required.

• Keyframes: Another way to create save knowledge of a scene in an offline stage is

to save a number of keyframes. Vacchetti et al. [74] were able to overcome drastic

aspect changes that way.

2.4 Perspective-n-Point

Given correspondences between 3D world points and their 2D projections in an image

(of a calibrated camera), we want to calculate the 6 Degrees of Freedom (DOF) camera

pose from them. Since each point correspondence contributes 2 equations, the absolute

minimum of correspondences needed in order two get a finite number of solutions is 3.

This still results in up to 4 possible solutions. For coplanar points unique solutions can

be found for n ≥ 4, while in the general case n = 4 and n = 5 can still have multiple
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solutions [18], so n ≥ 6 is required for a unique solution.

When dealing with noisy data, which is usually the case with real world measurements, an

exact solution does not exist and an error function needs to be defined (and minimized).

There are two important error functions used in the literature, the image space error and

the object space error :

Image Space Error measures the difference between an observed 2D image point and

the 2D projection of the expected 3D point:

EIS =
∑
i

∣∣∣∣∣∣∣∣xi − K · [R t]Xi

(K · [R t]Xi)z

∣∣∣∣∣∣∣∣2
If the intrinsic camera parameter matrix K has been calculated beforehand, we can

measure the differences in the normalized image plane (at distance 1 from the camera

center) by replacing xi with x̄i = K−1xi:

EIS =
∑
i

∣∣∣∣∣∣∣∣x̄i − [R t]Xi

([R t]Xi)3

∣∣∣∣∣∣∣∣2

= (u− R11x+R12y +R13z + tx
R31x+R32y +R33z + tz

)2 + (v − R21x+R22y +R23z + ty
R31x+R32y +R33z + tz

)2.

The image space error is also used for bundle adjustment. While bundle adjustment

is closely related to the pose estimation problem, the main difference is that bundle

adjustment tries to optimize for both the pose and the 3D coordinates.

Object Space Error refers to the distance between a 3D point X in camera space and

the back-projected ray g of the corresponding 2D image point v. The function g(X)

returns the closest point on the ray g to the point X. Since g = λv, there exists λ̄

such that

g(X) = λ̄v.

Also, since the projection vector is orthogonal to v, it also has to hold that

(g(X)−X)Tv = 0.

Combining these two constraints we get

(λ̄v −X)Tv = 0

λ̄vTv −XTv = 0

λ̄vTv = XTv

λ̄ =
XTv

vTv
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g(X) =
XTv

vTv
v

= v
XTv

vTv

= v
vTX

vTv

=
vvT

vTv
X

= V X.

V is called a line-of-sight projection matrix and does an orthogonal projection of a

scene point onto the viewing ray of an image point v. If X lies on the ray, it holds

that

X = V X

and expressed in world space coordinates we get

[R t]XW = V [R t]XW

The object space error can therefore be expressed as

EOS =
∑
i

||(I − Vi)([R t]Xi)||2 .

The difference between image space and object space error is illustrated in Figure 2.2.

Hoewever, as shown by Schweighofer and Pinz [69], the magnitude and position of local

minima for image space error and object space error are very similar. While the object

space error is often used when calculating a closed form solution, the image space error is

usually preferred for iterative methods. We chose to minimize over the image space error,

as it assumes the noise to happen during image processing. Additionally, minimizing the

image space error results in a better visual alignment of virtual objects rendered onto real

objects [82].

Iterative Methods usually focus on minimizing an error function for an arbitrary num-

ber of points [42] [51] [69], which typically give more accurate results but can suffer from

poor initialization and convergence problems. It also comes at the price of higher com-

putational costs. DeMenthon and Davis presented PosIt [8], an iterative algorithm that

focuses on orthographic projections and which was later improved to handle coplanar

points [51], as they noticed that the cost function can have two local minima, with the

solutions being mirror images with respect to a plane that is parallel to the image plane.

Schweighofer and Pinz [69] analyzed these two minima for the perspective camera, and
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Figure 2.2: Illustration of image space error and object space error. [42]

proposed another method for it.

Closed form solutions want to solve the problem by solving for a linear system. Fis-

chler and Bolles [18] noted that there is at maximum 4 solutions to the P3P problem

and introduced a Random Sample Consensus (RANSAC)-based method (see Section 2.6)

over sets of three points where they checked for consistency. Solving the P3P problem

typically involves solving for the roots of a polynomial system [38] and can lead to up to

four solutions. While for four coplanar non-collinear points there is a unique solution [18],

for four non-coplanar it can still be ambiguous. Gao et al. [23] made a full analysis over

all solutions to the P3P problem, which will be used in our work. Lepetit et al. [38] were

the first ones to propose a non-iterative solution in linear runtime: their EPnP algorithm

handles arbitrary numbers of n ≥ 4 points by building the weighted sum of the null eigen-

vectors. Other approaches that focused on improving EPnP for the cases of n = 3, 4, 5

include Kneip et al. [33], Li et al.’s RPnP [39] and OPnP by Zheng et al. [87]. While

closed form solutions generally give good results and are of course faster than iterative

methods, the quantities they measure are not geometrically meaningful [27], they cannot

take into account all required constraints [28] and so their results are less accurate than

those of iterative methods. However, they are often used as an initialization for iterative

non-linear optimization methods.

Perspective-n-Line approaches are trying to calculate the pose from line correspon-

dences, with the motivation being that they would perform better on man-made structures

with repetitive patterns. Notable works include Pribyl et al. [57] and Zhang et al. [85],
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however, the accuracy was lower than that of the point based approaches.

Direct Linear Transformation The Direct Linear Transformation (DLT) method [71]

is a closed form solution and results in a unique solution. Since the matrix P has 11

DOF, the DLT focuses on solving for all of them by solving a linear system. Each point

correspondence will contribute with 2 equations, so DLT will require at least 6 point

correspondences. The solution to the linear system can be found by a Singular Value

Decomposition (SVD) of the matrix A. The DLT does not make use of the additional

orthogonality constraints of the rotation matrix R, has reduced stability and requires a

higher number of correspondences than necessary.

2.5 Outlier Removal

A standard method to remove outliers is RANSAC [18]: by repeatedly randomly picking

a subset of the set of correspondences, each time a pose is calculated and the number of

inliers for this pose counted, the highest amount of inliers ”wins”. The number of necessary

iterations N can easily be calculated from the proportion of outliers ε, the subset size s

and the requested probability of success:

N =
log(1− p)

log(1− (1− ε)s)

In practice N is usually multiplied by ten to increase robustness [21]. However, RANSAC

is non-deterministic, meaning that a reasonable result can only be achieved with a certain

probability. Since the number of necessary iterations grows exponentially with the number

of correspondences needed for a pose, using a minimal point set gives the best results

runtime-wise. On the other hand, if the data is very noisy, performance is shown to be

better if using more point correspondences than minimally required [64]. Over the years

several alternative approaches to RANSAC have been proposed: MLESAC [73] maximizes

the likelihood instead of the number of inliers, PROSAC [6] ranks the correspondences

before picking sets from them, preemptive RANSAC [49] uses preemptive scoring of the

motion hypothesis and has a fixed number of iterations, which makes it popular for real-

time applications.

2.6 Pose Refinement

For methods with lower accuracy it is reasonable to minimize the error function that is

based on the over-determined system of point correspondences. Common methods to solve

these non-linear least squares problems include Gauss-Newton method and Levenberg-

Marquardt method.



2.6. Pose Refinement 15

Gauss-Newton The Gauss-Newton method is used to solve non-linear least squares

problems and is based on the Newton method, which, starting at a given initial point,

approximates the function with a quadratic function, as its minimum is easy to calculate.

This step is repeated until the minimum or a stop criterion is reached. While the New-

ton method requires the Hessian matrix (and therefore costly second order derivatives),

the Gauss-Newton method avoids calculating the Hesse matrix by approximating it with

2JTJ , with J being the Jacobian matrix. For the conventional Gauss-Newton method

convergence is not guaranteed, with bad initialization it is even possible for it to diverge.

In classical Gauss-Newton, the step size towards direction δ is always 1, a good value can

however also be found by doing line search along this direction, which can be shown to

have guaranteed convergence [44]. Empiric results showed that the initial estimate should

not exceed 10 percent of object scale for translation and 15 degrees for each Euler angle

[42] [26].

Levenberg-Marquardt Levenberg-Marquardt is a combination of Gauss-Newton

method and gradient descent method: It uses the advantages of gradient descent

method to get into the vicinity of the minimum, even in cases where Gauss-Newton

would diverge, and then smoothly switches over to using Gauss-Newton. The original

Levenberg-Marquardt method has the form

(JTJ + λI)δ = JT r.

Hereby, λ is called a damping parameter and controls the influence of the gradient descent

direction, δ is the update parameter that we want to solve for. Because the matrix A =

(JTJ+λI) is dominated by its diagonal for large values of λ, Marquardt [45] later proposed

another version, where the problem is scaled before being solved, which is supposed to

lead to faster convergence. Over the years, several other versions have been created by

different authors, one of them was by Fletcher [19], who instead of the identity matrix

added a scaled version of the diagonal of the matrix JTJ :

(JTJ + λdiag(JTJ)δ = JT r.

Generally, the Levenberg-Marquardt method increases the chance of local convergence and

prohibits divergence.

Robust Estimation When dealing with outliers in an optimization problem, outliers

can heavily influence the outcome, especially when the error is only calculated as quadratic

error (also known as least-squares). A cost function ρ defines the contribution per residual

to the error function:

E =
∑
i

ρ(ei)
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Common cost functions include

Squared error Squared error assumes noise to be Gaussian distributed. It grows without

bound in case of outliers. It is defined as: ρ(e) = e2.

Huber The Huber cost function is a mix of least squares and L1 norm and is defined as

ρ(e) =

{
1
2e for |e|≤ k
k|e|−1

2k
2 for |e|> k

where the tuning constant k represents its resistance to outliers, with smaller values

of k producing more resistance. For normally distributed error a value of k = 1.345σ

produces an efficiency of 95 % [20] while still handling outliers. Instead of calculating

σ as the standard deviation of the residuals, another robust measure of spread is

σ = MAR/0.6745, with MAR referring to the median absolute residual [20]. In

general, smaller values of k gives more robustness to outliers, but can result in lower

efficiency for normally distributed errors. The Huber cost function grows without

bound too, but less rapidly than least squares.

Tukey’s biweight function The Tukey’s biweight (or bisquare) function levels off when

the error exceeds its tuning constant k:

ρ(e) =

{
k2

6 (1− (1− ( ek )2)3) for |e|≤ k
k2

6 for |e|> k

where k typically refers to 4.685 σ with σ being the standard deviation.

Tukey’s function is non-convex, while least-squares and Huber cost function increase

without limits with the size of the residual, Tukey’s function is cut off for |e|> k and

rejects outliers more strongly.

2.6.1 Pose Representation

For these iterative methods we will need the Jacobians for error minimization. The 3x3

rotation matrix has 9 elements but only 3 DOF. There are many ways to parameterize

rotations, some common ways include:

Rotation Matrices are the most intuitive representation of rotations. While they are

convenient for transforming a point, building the inverse or composing two rotations,

they are not well suited for calculating derivatives, as they have 9 elements but only

three DOF and the additional constraint R ·RT = I has to be ensured. Some works

that still used rotation matrices for their approach include Olsson and Eriksson

[52] or Briales and Gonzales-Jimenez [5]. The orthormality constraints are typically

added via Lagrange multipliers.
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Euler Angles split the rotation into three elemental rotations around the orthogonal

axes of the Cartesian coordinate system. It was proven by Leonhard Euler in 1775

that every orientation can be reached. The order of the angles is not fixed, so there

are twelve possible combinations. Even within a specific order of angles, the angles

leading to a result are not unique, as a negative angle can lead to the same result.

Euler angles representation suffers from singularities called ”gimbal locks”: a contin-

uous subspace that corresponds to the same rotation, so changes within this subspace

will not affect the rotation, while changes of two Euler angles will result in the same

rotation, thus losing one degree of freedom. Even though the Euler angle representa-

tion provides a convenient Jacobian (the matrix of partial derivatives), they usually

are not a good choice for optimization problems, as the discontinuity around these

singularities can lead to instabilities and jumps. A common workaround for the gim-

bal lock problem is to change the representation when coming close to singularities

[9].

Axis-angle representation describes the rotation by an axis by an angle θ. It can either

be stored as a unit vector and angle, or the angle can be multiplied onto the unit

vector, so it consists of three values on total. Like Euler angles, it is not a unique

representation as every multiple of 2π will lead to the same rotation.

Another synonym for axis-angle representation is exponential map, as rotation ma-

trices can be calculated as the matrix exponentials of skew symmetric matrices:

exp([ω]×) =
∞∑
n=0

1

n!
[ω]n×,

where [ω]× is a skew symmetric matrix, also known as cross product matrix.

[ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
As a closed-form solution this can be rewritten as the Rodrigues’ formula:

R = I +
sinθ

θ
[ω]× +

1− cosθ
θ2

[ω]2×

For small values of θ it is usually recommended to use the Taylor series expansions to

approximate sinθ and cosθ. The exponential map has singularities where ||ω|| = 2nπ

for n ≥ 1, then there is no rotation happening at all. In order to avoid them, one

can replace ω whenever coming close to a singularity by (1− 2π
||ω||ω to get the same

rotation [36]. When differentiating the rotation matrix with respect to the axis-

angle vector ω, the Jacobian becomes rather complicated with numerous uses of the

trigonometric functions. A more compact formula for the Jacobian was given by
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Gallego and Yezzi [22]:

∂R

∂ωi
=
ωi[ω]× + [ω× (I −R)ei]×

||ω||2
R

Quaternions are less intuitive than the former representations, but powerful and there-

fore popular: they do not suffer from discontinuities, they represent rotations unam-

biguously and their partial derivatives of the matrix R with respect to the quaternion

parameters do not involve trigonometric functions. A quaternion can be represented

as a 4-dimensional vector, consisting of a real element and three imaginary elements,

so given a 4-dimensional vector q = [q0, q1, q2, q3]
T , the general form of the quaternion

would be

q = q0 + iq1 + jq2 + kq3.

The product of two quaternions can be conveniently calculated by using a matrix

notation for the left one:

q · p =


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 −q1 q0



p0
p1
p2
p3


The partial derivatives of R with respect to the elements of q can be calculated like

this:

D0 =
∂R

∂q0
= 2

 q0 −q3 q2
q3 q0 −q1
−q2 q1 q0



D1 =
∂R

∂q0
= 2

q1 q2 q3
q2 −q1 −q0
q3 q0 −q1



D2 =
∂R

∂q0
= 2

−q2 q1 q0
q1 q2 q3
−q0 q3 −q2



D3 =
∂R

∂q0
= 2

−q3 −q0 q1
q0 −q3 q2
q1 q2 q2



Since quaternions still have 4 elements while we want to optimize over 3 DOF, we

would need to further reduce them. We can achieve this by using the axis-angle
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representation and converting them to quaternions when needed:

q = (cos
θ

2
, sin

θ

2
(ω1, ω2, ω3))

We can then calculate the derivatives of R with respect to ω the following way:

∂R

∂ωi
=

3∑
j=0

∂R

∂qj

∂qj
∂ωi

.

However, ∂qj/∂ωi will still include trigonometric functions and the calculations will

end up being as cumbersome as if using axis-angle representation directly.

2.6.2 Lie Groups

SO(3) Rotation matrices in 3D space fulfill the group axioms (closure, associativity,

identity element and inverse element). Since the group operations of multiplication and

inversion are smooth, they further are a Lie group, called SO(3) (special orthogonal group

of order three). The inverse of a rotation matrix is its transpose, the neutral element is

the identity matrix.

R ∈ SO(3)

R ·RT = I

Each Lie group has an associated Lie algebra and can locally be replaced by it. A

Lie algebra is a vector space that is isomorphic to the tangent space of the unity matrix.

The Lie algebra so(3) is the set of all 3x3 skew-symmetric matrices. Every element ωx
can be described as a linear combination of the Lie algebra’s basis elements, the so-called

generators, and can be seen as a tangent vector.

ω ∈ R3

ωx = ω1G1 + ω2G2 + ω3G3 ∈ so(3)

ωx =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


Hereby the group generators have the following form:

Gi :=
∂

∂ωi
exp(ωx)

∣∣∣∣
ω=0

= [ei]x

G1 =

0 0 0

0 0 −1

0 1 0

 , G2 =

 0 0 1

0 0 0

−1 0 0

 , G3 =

0 −1 0

1 0 0

0 0 0
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The advantage of using the tangent space is, that it has 6 dimensions, which is

exactly the DOF the group transformations (i.e. rotation matrices) have [13].

Instead of calculating the actual derivatives of the matrix R with respect to its axis-

angle parameters, we can instead define the updated R′ to be R′ = exp([ω]×) · R. The

initial value exp([ω]×) equals the identity matrix. If we consider the rotation of a vector

x by R as y = Rx, the partial derivatives with respect to R can be replaced the following

way:

∂y

∂R
=
∂R

∂R
x

=
∂

∂ω

∣∣∣∣
ω=0

(exp([ω]×) ·R) · x

=
∂

∂ω

∣∣∣∣
ω=0

exp([ω]×) · (R · x)

=
∂

∂ω

∣∣∣∣
ω=0

exp([ω]×) · y

= (G1y |G2y |G3y)

= −[y]×

Since this is not exactly the derivative with respect to R itself, we are actually not opti-

mizing over the rotation matrix R itself, but instead over a matrix that is modifying R.

One of the first ones to propose this method were Taylor and Kriegman in 1994 [72] and

later it became a popular practice [10] [11] [31].

SE(3) The SE(3) group is the group of rigid transformations in 3D space, which consist

of rotation and translation. The elements of the group look like the following:

C =

(
R t

0 1

)
∈ SE(3),

where R is an element of the SO(3) group and t a 3-dimensional translation vector. The

SE(3) group has 6 dimensions. The corresponding Lie algebra is called se(3) and its group

generators consist of the generators of the SO(3) group as well as the basis vectors of R3

for the translation vector.

G1 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , G2 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , G3 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0
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G4 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , G5 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , G6 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0


We define the elements of se(3) as δ = (υ ω)T , υ, ω ∈ R3, and further

exp(δ) = exp

(
ω× υ

0 0

)
=

(
exp(ω×) V υ

0 1

)
,

with

V =
∞∑
n=0

1

(n+ 1)!
ωn.

Obviously the neutral element of se(3) would be δ0 = (0, 0, 0, 0, 0, 0)T . For the rotation

and translation of a vector x, we want to ”ignore” the last line of a matrix C for convenience

reasons and define the multiplication as

y = f(C, x) = Rx+ t.

Like before with the SO(3) group, we again want to avoid calculating the actual deriva-

tives of the matrix C but instead take the derivatives of a perturbation matrix that gets

multiplied with C:

∂y

∂C
=

∂

∂δ

∣∣∣∣
δ=0

(
exp(δ)

(
R t

0 1

))
·

(
x

1

)
(2.1)

=
∂

∂δ

∣∣∣∣
δ=0

exp(δ) ·

((
R t

0 1

)(
x

1

))
(2.2)

=
∂

∂δ
· y (2.3)

= (G1y |G2y |G3y |G4y |G5y |G6y) (2.4)

=
(
I −[y]×)

)
(2.5)

2.7 Tracking on Mobile Devices

Due to lower computational power and a wider variety of scenarios, AR on mobile devices

is still challenging. At first there were only marker-based toolkits like ARToolkit, Studier-

stube [76], ARToolkitPlus or ARTag [17]. The goal of 6 DOF natural feature tracking in

real-time was first accomplished by Wagner et al. [77], who used heavily modified SIFT

features [41] and Ferns on planar targets. They later improved their approach further with
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a template-matching-based tracker [78], which looks for known features in predicted areas

of the frame according to the last known camera pose and thus reduce the computational

costs. Lepetit and Fua [37] used a decision tree instead of descriptor matching, Ozuysal

et al. [54] used random ferns instead, which were both faster than regular descriptor

matching but instead required more memory. Some approaches for mobile devices were

also based on inertial sensors [25] [81], but suffered from the typical drift problems.

While SIFT and SURF features provide some of the best results, as they are invariant to

rotation, scale and affine transformation (to viewpoint changes of up to 60 degrees), they

are also some of the most computationally expensive ones. By making use of the parallel

hardware of graphics processors, Schulz et al. [68] were able to increase their performance.

Some binary features like FAST [63] or ORB [66] (FAST features with BRIEF descriptors)

can be computed as much as two orders of magnitudes faster than SIFT, but are not affine

invariant. Affine invariance is important for pose detection as it improves matching results

in situations of bigger viewpoint changes - which occur a lot when matching a flattened

template model to an image of the object.



3
Methodology

In this chapter we want to explain the steps of our method in detail and the reason we

chose them. An overview over our method is given in Figure 3.1. As can be seen, the task

consists of three parts: first we need to represent the object with a template so we can do

feature detection and feature matching on it in order to receive 2D-3D correspondences

needed for Perspective-n-Point (PnP) methods. Next, a PnP method is used to retrieve a

pose estimation from the correspondences. Finally, the pose is refined using optimization

methods. Each step will be described in detail in the following subsections.

3.1 2D Templates and their Mapping

Our goal is to cover a wide variety of shapes, so we chose three specific ones to each repre-

sent a whole category of shapes: cuboids, to represent polyhedra, cylinders for developable

surfaces, and spheres for undevelopable surfaces (they will be explained in the upcoming

subsections). The required input information consists of a 2D template of the object and

the objects measurements (e.g. width, height, length). For each shape type we separately

built a function to bijectively map points from the 2D template to 3D coordinates.

3.1.1 Cuboids

We chose cuboids to represent polyhedra in general. Polyhedra are three-dimensional

objects with planar polygonal faces that are only connected along their edges. Polyhedra

are not necessarily edge-unfoldable, not even convex polyhedra [3][43]. Other examples

of polyhedra would be all pyramids and prisms. For cuboids we chose the well known

Latin cross template, as seen in Figure 3.2. Additionally, specification of width, height

and length of the cuboid is required.

23
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INPUT

feature detection feature detection

feature matching 

yes noplanar
sides? 

estimate
homography 
(RANSAC) 

estimate P3P Pose 
(RANSAC) retrieve pose  

from homography

optimize over
RANSAC inliers

optimize over
RANSAC inliers

optimize over  
all points

pose

template file input frame shape type,
measurements

pick side with  
most features

yes

no pose 
valid?

map template 
points to 3D

map template 
points to 3D

Figure 3.1: An overview over the method we use, either for polyhedra (i.e. cubes) or all others
(i.e. cylinders and spheres).
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Figure 3.2: 2D template of a cuboid.

3.1.2 Cylinders

Cylinders were chosen to represent developable surfaces in general. Developable surfaces

include all surfaces where curvature only occurs along at most one direction. Other exam-

ples of developable surfaces would be cones and truncated cones. The cylinder template

we used follows the intuitive pattern of splitting it into its lateral area, top and bottom,

as seen in Figure 3.3. The required measurements of a cylinder are height and radius.

(a)

(b) (c)

Figure 3.3: Cylinder template: The features are detected on the cylinder’s lateral area, top and
bottom and projected accordingly into 3D space.
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3.1.3 Spheres

Spheres are a special case, as they are an undevelopable surface. Undevelopable surfaces

have curvatures along more than one direction (non-zero Gaussian curvature) and therefore

cannot be mapped to a plane without distortion. While this will still work fine for noiseless

artificial data, distortion like stretching might affect our feature detection and feature

matching results for real world objects. A common example of sphere mapping would be

cylindrical projection. As seen in Figure 3.4 this can lead to enormous distortion: while

Antarctica has approximately 1.7 times the area of Australia, it becomes multiple times

its size if it is mapped to a plane via cylindrical projection. The closer we get to the poles,

the stronger the stretching.

(a) Size comparison of Antarctica and Aus-
tralia

(b) Equidistant cylindrical projection

Figure 3.4: Equidistant cylindrical projection: while Antarctica actually has roughly 1.7 times
the size of Australia, it gets stretched enormously if mapped to 2D.

We therefore want to choose a mapping with little stretching. While this could the-

oretically be achieved by using a polyhedron with a large number of faces, the increas-

ing number of cuts along the edges would at the same time reduce our chances to find

good features. There is only a limited number of semi-regular convex polyhedra (called

Archimedean solids, an example can be seen in Figure 3.5a and each net would require a

different mapping function. Our choice fell instead on a gore map consisting of 12 gores.

An example template can be seen in Figure 3.5b. Its advantage is that the number of

gores could easily be increased or decreased in order to make it fit even better to a sphere

or to reduce the number of cuts, and that its mapping function is intuitive.

In order to map points u, v from the 2D template onto their corresponding 3D position

(x, y, z), our function consists of the following steps:

1. Determine which (half-)gore the coordinates (u, v) are on.

2. Calculate

(a) the distance l between (u, v) and the equatorial line (line BC in Figure 3.6a)

(b) the distance d between (u, v) and the current gore’s center line
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(a) Net of a 32-sided Polyhedron (b) Gore Mapping

Figure 3.5: The net of a 32-sided polyhedron, known as truncated icosahedron” a, and a gore
model of 12 gores b.

aImage from Wikimedia Commons
bSource of world map: NASA

(a) One of the gores (b) Equatorial plane (c) The ellipse the gore cen-
ter line is following (exagger-
ated)

Figure 3.6: A sketch of what our sphere mapping looks like: The sphere is cut into gore sections
and from the 2D position within that gore we can map a point into 3D world space.

3. Given distance l from the equator, calculate its corresponding z-coordinate in world

space: We know that the center line of each gore follows a slight ellipse (Figure 3.6b),

the distance l corresponds to its arc length (Figure 3.6c). Since the arc length on the

ellipse is calculated by elliptic integrals which cannot be expressed by elementary

functions, we cannot easily solve for the corresponding z-coordinate. So we instead

calculated the arc length for various z-values and built a look-up table, with z-values
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picked more densely around the pole areas. For values in between, the result is

interpolated.

ε =
b

a
= cos

( π

#gores

)
l =

∫ z

0

√
1 + ε2

x2

a2 − x2
dx

4. Map the point of the gore’s center line which is of the same height into world space:

Given the z-coordinate, we can easily calculate the position of the gore’s outlines at

this height, which lie directly on the sphere and therefore follow a circle. The point

on the center line is calculated as the mean of the next two gore outline points of

this height.

5. Add distance d to the center line point along its interpolation. We now reached the

point P on the gore model in world space corresponding to template point (u, v).

6. Project P onto the actual sphere: since our origin lies in the center of the sphere,

it’s sufficient to scale P to the radius of our sphere.

As specifications for the mapping function, the radius and the number of gores are required.

3.2 Initial Pose Estimation

As mentioned in Section 2.4, iterative pose estimation methods typically require an initial

pose in order to step-wise improve it further. A convenient way for planar surfaces is

to use homographies. Unfortunately this only works for object that actually have planar

surfaces. A more general solution is P3P, which takes any 2D-3D point correspondences.

3.2.1 Homographies

While a homography typically only represents the projection of a plane in one image to

another one, we can as well use it to retrieve the camera pose: Consider the plane Z = 0

in 3D world space:

x̄ = K−1x = [R t]X
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 x′

y′

w′

 =

 r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

 ·

X

Y

0

1


=

 r11 r12 tx
r21 r22 ty
r31 r32 tz

 ·
 X

Y

1


= H ·

 X

Y

1


Therefore,

H = λK [r1r2t]

K−1H = λ [r1r2t].

Given the homography between a plane Z = 0 in world space and the image we can

reconstruct R and t: since the column vectors r1 and r2 are unit vectors, we retrieve λ

from the first two columns of K−1H (or their average in case they are not equal). The

third column of R can then be calculated as the cross product of the other two columns, as

rotation matrices are orthonormal. Even though the first two columns might not always be

truly orthogonal due to noisy point correspondences, this can be corrected by normalizing

them and re-positioning them to 45 degrees from their common bisector.

Since we can only use points of one side of the object, we obviously choose the side

with the most feature matches on it. In case we fail to retrieve a valid pose from that

side, we try again with the next best one. To decide if a pose can be considered valid, we

check if the rotation matrix R is orthogonal (RT ·R = I) and if the object would even be

in front of the camera (meaning the positive z-axis in camera space would have to point

towards the origin in world space).

For convenience, we use an OpenCV function to calculate homographies. OpenCV [4]

is an open source library for various computer vision applications. It offers a variety

of feature detection methods, that will come in handy for our practical application, so

we decide to also use its built-in Random Sample Consensus (RANSAC)-based function

findHomography, as RANSAC is an ideal way to deal with outliers.

Mat cv:: findHomography ( InputArray srcPoints ,

InputArray dstPoints ,

int method = 0,

double ransacReprojThreshold = 3,

OutputArray mask = noArray (),

const int maxIters = 2000,

const double confidence = 0.995

);
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Hereby we used the method parameter CV RANSAC. Various values for the reprojec-

tion threshold, number of iterations and confidence parameters were tested during our

evaluations and will be described in detail in the next chapter. We modified the original

OpenCV function by removing its last step, a Levenberg-Marquardt optimization over all

inliers, as we only needed the RANSAC and homography step itself. Since we can only

use a coplanar subset of the point correspondences to find a homography, other sides of an

object might be ignored. To add their information into our calculations, we will perform

two optimization steps after a homography was found: once over all RANSAC inliers and

once including points from other sides.

3.2.2 P3P Method

For all object shapes that contain few to none planar sides, e.g. cylinders or spheres, we

cannot use homographies and therefore had to fall back to PnP methods. We chose a

RANSAC-based OpenCV function, solvePnPRansac:

bool cv:: solvePnPRansac ( InputArray objectPoints ,

InputArray imagePoints ,

InputArray cameraMatrix ,

InputArray distCoeffs ,

OutputArray rvec ,

OutputArray tvec ,

bool useExtrinsicGuess = false ,

int iterationsCount = 100,

float reprojectionError = 8.0,

double confidence = 0.99,

OutputArray inliers = noArray (),

int flags = SOLVEPNP_ITERATIVE

)

This function uses the RANSAC algorithm over subsets of four point. For each subset the

function solvePnP is called, which is based on the paper of Gao et al. [23]. The approach

offers a complete solution classification for sets of three point correspondences, where each

set can have up to four possible solutions. The fourth point is then used to determine the

solution with the smallest reprojection error. The final step of RANSAC would be to re-

estimate the pose on all inliers. The OpenCV version 3.4.1 of solvePnPRansac does so by

applying EPnP on all inliers. Since we strictly wanted to compare P3P to homographies,

we removed that. The re-estimation will instead be done by our own pose refinement. As

parameters we used the flag SOLVEPNP P3P, no extrinsic guess and varying values for

iteration count, reprojection error and confidence, their evaluation will be shown in the

next chapter.

3.3 Pose Refinement

In practice, point correspondences are noisy and an exact solution usually does not exist.

We therefore want to minimize the error between the 2D observed points in a frame and



3.3. Pose Refinement 31

their 3D positions on the model.

EIS =
∑
i

∣∣∣∣∣∣∣∣x̄i − K · [R t]Xi

(K · [R t]Xi)z

∣∣∣∣∣∣∣∣2
For convenience we multiplied both sides with the inverse of the camera intrinsics K, so

we only need to apply it to the observed points ones.

E =
∑
i

∣∣∣∣∣∣∣∣xi − [R t]Xi

([R t]Xi)3

∣∣∣∣∣∣∣∣2
= (u− R11x+R12y +R13z + tx

R31x+R32y +R33z + tz
)2 + (v − R21x+R22y +R23z + ty

R31x+R32y +R33z + tz
)2

(3.1)

Robustness to outliers can additionally be achieved by choosing another cost function

than quadratic error in order to cut off the costs an outlier will give, as described earlier

in Section 2.6. Robust cost function will often resemble quadratic error around zero but

cut off the costs for higher distances. We expect the majority of outliers to already be

eliminated by RANSAC, but to be safe we decide to use Huber cost function for all

optimization methods we are going to use.

Parameterization A rule of thumb is to preferably choose a parameterization which

makes the error function as close as possible to being linear, as this will lead to fewer local

minima and faster convergence [27]. However, for calculating the partial derivatives of the

error function with respect to the elements of the rotation vector r and the translation

vector t, ur intuitive approach is to use the Rodrigues formula to express R by r:

θ = ||r||2

r̄ = r/θ

R = cosθI + (1− cosθ)r̄r̄T + sinθ

 0 −r̄3 r̄2
r̄3 0 −r̄1
−r̄2 r̄1 0


For the error function

E =
n∑
i=1

||K−1x− [R | t]

[
X

1

]
||2,

the partial derivatives are given by the Jacobian matrix

J = ∇r,t(RX + t)T .

Inserting one formula into another, the elements of the Jacobian quickly become very

big and we will therefore only include them in Appendix A. Considering that the vector
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(RX + t) is a homogeneous vector, we can normalize it by applying a matrix V(RX+t) to

the 3x6 Jacobian, with V being defined as

Vt =

[
1
tz

0 − tx
t2z

0 1
tz

ty
t2z

]
.

While this Jacobian leads to correct results, we also implement derivatives according

to Lie groups, as previously mentioned in Section 2.6.1. Not only are the formulas much

easier, they also do not need any trigonometric functions. Using Lie groups, the Jacobian

can be calculated as

J =

1 0 0

0 1 0

0 0 1

[RX + t]×


with

[v]× =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 .

Ceres Solver with Automatic Derivatives Our first approach was to use the Ceres

Solver library [1] and its automatic differentiation, where the derivatives are calculated by

expressing the function as a combination of simple functions (e.g. addition, multiplication,

logarithm, cosine), so that the derivative can be calculated by the library via the chain

rule. We defined the error function as shown in Equation 3.1. Of the solvers offered by

Ceres Solver, we picked Levenberg-Marquardt. As a cost function we chose least squares,

as we did not expect heavy outliers due to RANSAC.

Ceres Solver with Analytic Derivatives The next step was to use the same error

function but instead of using the automatic differentiation we wanted to hand the function

the derivatives ourselves. As with automatic derivatives, we picked Levenberg-Marquardt

as solver.

3.3.1 Gauss-Newton Method

As our next step we wanted to implement a straightforward optimization method in order

to compare it to the library methods. Our choice fell on Gauss-Newton method. Even

though Gauss-Newton method, compared to Levenberg-Marquardt method, has the dis-

advantage of potentially diverging if the starting point is far from the optimum, we assume

that this might not be an issue if our pose estimates are good enough. Gauss-Newton it-

eratively updates a pose parameterization x as follows: consider the error vectors between
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observed 2D points and their 3D model points and the residuals Ei as their norm.

vi = xi −
[R t]Xi

([R t]Xi)3

Ei = ||vi(x)||2 = vT v

Gauss-Newton approximates the error vectors vi as a function of the pose parameters x

and a perturbation vector δ by a first-order Taylor expansion:

vi(x⊕ δ) ≈ vi(x) +
∂vi(x)

∂x
δ

= vi(x)− Jiδ
(3.2)

with ⊕ referring to the addition of the preferred pose parameterization (e.g. vector addi-

tion for angle-axis representation, left multiplication for Lie groups). In order to minimize

the residuals, we then need to differentiate with respect to δ.

E =
∑
i

Ei

=
∑
i

(vi(x)− Jiδ)T (vi(x)− Jiδ)

= v(x)− Jδ)T (v(x)− Jδ)

(3.3)

∂E

∂δ
= −2(v − Jδ)T · J

vTJ − δTJTJ = 0

δTJTJ = vTJ

JTJδ = JT v

δ = (JTJ)−1JT v

This can then easily be solved via Cholesky decomposition. Since the features and their

observations are independent of each other, the matrix JTJ can be accumulated:

JTJ =
∑
i

JTi Ji

JT v =
∑
i

JTi vi

The Gauss-Newton method is not guaranteed to converge, so we need to either stop

when the update falls below a convergence threshold or when a maximum number of

iterations is reached.
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3.3.2 Levenberg-Marquardt method

To make sure we can later determine whether any differences between our implementation

of Gauss-Newton method and the Ceres Solver version of Levenberg-Marquardt method

arise from actually comparing the library to an own implementation, or from comparing

two different optimization methods, we decided to additionally implement Levenberg-

Marquardt method. Of the various versions existing of Levenberg-Marquardt, we chose

the version described by Ethan Eade [12] as Levenberg method. Similar to Gauss-Newton,

we set up the linear system

(JTJ + λI)δ = JT r.

Hereby, the damping parameter λ controls the influence of the gradient descent direction.

Starting with an initial damping parameter of value 1, we solve this linear system for δ

and update our parameter vector as

x′ = x⊕ δ.

Note that in the case of using Lie group representation, ⊕ refers to a multiplication of

group elements. After the update step, we test if the value of the error function has

actually been decreased. It it decreased, the update step is accepted and the damping

factor is decreased by a factor a, making the Levenberg-Marquardt method work more

similar to Gauss-Newton.

x← x′

λ← 1

a
λ.

If the proposed update step did not decrease the value of the error function, the update is

rejected and λ gets increased by a factor b, which increases the influence of the gradient

descent method.

λ← bλ.

For factors a and b, we chose a = 2 and b = 10. The method ends, when either a maximum

number of iterations is reached, the value of λ gets so high that it endangers the numerical

stability or the update steps become too small.

3.3.3 Robust Estimation

If we additionally want robustness against outliers, a cost function ρ needs to be added:

∂Erobust
∂x

=
∑
i

ρ(Ei)

=
∑
i

∂ρ(Ei)

∂Ei

∂Ei
∂x

(3.4)
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So in order to calculate the update δ, we need to add the derivative of the cost function

ρ as a weight function Wi. This leads to the update

δ = (
∑
i

WiJ
T
i Ji)

−1(
∑
i

WiJ
T
i vi)

For the least squares cost function the weight would be 1, for the Huber cost function

it is

ρ(E) =

{
1
2E

2 E ≤ k2

k
√
E − 1

2E
2 E > k2

WH(E) =

1 E < k2

k√
E

E ≥ k2





4
Experiments

In order to evaluate our method, we need test data. Ideally we would have a

database of images of primitive shapes with given textures/templates, size and

exact pose ground truth. Since we do not have that at hand, for optimal accuracy

we instead generate artificial test data. Another advantage of artificial data is,

that our results do not rely on our choice of feature detectors, feature description

and feature matching methods and we can control the amount of noise and outliers directly.

4.1 Test Data

First we need to generate poses to cover our object from all sides, so we generate a certain

number of points (n = 100) on the unit sphere. We choose a spherical Fibonacci lattice,

as can be seen in Figure 4.1a. Not only are the points somewhat evenly distributed

(mutually equidistant points on a sphere are not possible for most numbers n), they also

never have the same latitude or longitude, which makes the resulting poses more unique.

We use these 3D points as the camera positions in world space for our ground truth. We

further need to specify the camera’s orientation, so we set the camera’s z-axis facing

towards the object and the camera’s x-axis as its upward-pointing normal in world space,

as seen in Figure 4.1b.

We further need artificial feature positions and matches, so for each pose we select

random points on the template, map them onto the 3D model of the object, check if they

would even be visible from the current pose (and discard them if not), and apply the

projection matrix P to get their coordinates in the artificial image. This is displayed in

Figure 4.2.

In order to simulate outliers, a certain (varying) amount of the image coordinates

are chosen at random within the image (as features could in a real picture be

37
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(a) Camera positions
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(b) Camera orientations

Figure 4.1: Evenly distributed camera poses facing the object.

(a) Random template points (b) Mapped onto 3D model (c) Projected into camera
frame

Figure 4.2: Random points on the template get projected into 3D space and into the camera
image.

detected anywhere on the background as well). To simulate noise, Gaussian noise

is being added to the image feature coordinates. As the final result we have arti-

ficial matches of feature points on the template and in the frame, as pictured in Figure 4.3.
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(a) Features on template (b) Features in the frame

Figure 4.3: Matched feature points on the template and in the camera image.

Our artificial testdata now consists of:

• the object type (i.e. cuboid)

• the object parameters (i.e. length, width, height)

• n camera poses (as rotation matrix R and translation vector t)

• n · m feature points on the texture

• n · m feature points in the frame

We generate test data sets for the range of

• outlier level from 0 % to 50 %

• normally distributed noise with standard deviation from 0 to 1.6 (image size 640×
480)

• number of features from 10 to 100

• special case: only one side of the object visible

• special case: random points (= 100 % outliers)

4.2 Test Metrics

We decide for the following test metrics:

Translation Error: etrans = ||tGT−t||
||t|| · 100

As in [16], the translation error represents the difference in camera positions in world space

in relation to the distance to the object.

Rotation Error: max3
k=1{arccos(rTk,GT · rk)}

As in [16], the rotation error represents the maximum of the three Euler angles between

the two poses.
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Success Threshold: We empirically choose a translation error of up to 10 to still be

accepted as a solution and a rotation error of up to 5. For the first pose estimate we want

to be more generous, as the optimization step might still correct the result, so we choose

a multiple of it: translation error of up to 30 and rotation error of up to 10 are considered

a ’success’.

Specifications: We run our following tests on a computer with Intel Core i7-4771 @

3.50GHz CPU, running Ubuntu 16.04, with GCC version 5.4 and OpenCV 3.4.1.

4.3 Functionality Testing

Ground truth The very first step is to generate test data without noise or outliers to

test whether or not our method returns the correct ground truth and thus to verify that

it is working correctly.

We start by running the homography-based and the P3P method both without any op-

timization. With the number of Random Sample Consensus (RANSAC) iterations high

enough and the confidence value set to 0.995, the only parameter left to choose is the inlier

threshold. While in theory it should be close to zero, we get slightly better results for

the homography-based method when using more forgiving thresholds of 0.01 and above,

caused by numerical errors. For the P3P method small thresholds beneath 0.00001 works

best. Maximal, mean and median errors of both methods are listed in Table 4.1. This

covers both translation and rotation errors.

To verify that using any of the chosen optimization methods (i.e. Ceres Solver with

automatic derivatives, Ceres Solver with analytic derivatives, Gauss-Newton method,

Levenberg-Marquardt method, with either derivatives of the rotation matrix or using Lie

groups) can only reduce the error further, we re-run the same tests including them. For

simplicity, and as the results are very close to each other, Table 4.1 shows the maximal

error occurring with any of these six combinations.

Homographies Maximal Error Median Error Mean Error

Translation Error, no Opt. 0.0111 e−06 e−05

Translation Error, with Opt. e−06 e−12 e−09

Rotation Error, no Opt. 0.0098 e−05 e−05

Rotation Error, with Opt. e−06 e−07 e−06

P3P Maximal Error Median Error Mean Error

Translation Error, no Opt. e−05 e−06 e−06

Translation Error, with Opt. e−09 e−10 e−10

Rotation Error, no Opt. e−05 e−06 e−06

Rotation Error, with Opt. e−06 e−07 e−07

Table 4.1: Functionality tests on data with no noise and no outliers.
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Robustness to Noise In order to analyze the influence of noise we use test data with

various levels of Gaussian noise but with no outliers. As expected, the success rate drops

with the amount of noise while the error rate goes up. The P3P method shows better

results than homographies, which is not surprising considering it uses points of all sides.
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(b) Median Translation Error

Figure 4.4: The effect of different noise levels on the success rate and median translation error
on both the homography method and the P3P method.

Robustness to Outliers Outliers should obviously be handled by RANSAC, so a quick

test on various outlier levels without noise reveals that for k = 100 iterations the results

hold as expected until approximately 80 %, as shown in Figure 4.5, and drops according to

the formula: given 100 correspondences and 90 % outliers for the homography approach,

we would have 10 inliers in total, which would in the worst case be spread over the three

visible cube sides with only one of them containing 4 inliers. Thus it would take on average

3.9 million iterations to find the only correct solution in that scenario.

Correctness of Optimization We test the correctness of the various optimization

options by applying them on poses we receive from a first pose estimation on various noise

levels, at the absence of outliers. Figure 4.6 shows the success rate and median translation

error rate after a first pose estimate has been done via P3P method. As expected, all

versions of our optimization increase the success rate to almost 100 % and are almost

equal. The median translation error drops accordingly and is shown representative for one

of the methods (namely Gauss-Newton in combination with Lie groups) in more detail in

Figure 4.7, where we show the area between the lower and upper quartile of the median

translation error and median rotation error. This area corresponds to the middle 50 % of

the errors.
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Figure 4.5: The number of correct results for test data without noise. Given enough iteration
steps and at least 4 inliers, RANSAC will always find a correct solution. The homography method
reaches its limit earlier because it requires 4 inliers being on the same side of a cube, while for P3P
they may be spread over the whole cube.

4.4 Evaluation

Homographies vs. P3P: Accuracy and Robustness At first we are interested

to compare the success rate of homography and the P3P method without any additional

optimization. Using test data varying between 10 and 100 features, Gaussian noise between
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Figure 4.6: The different optimization functions work correctly on a first P3P pose estimation
over various outlier levels: the success rate goes up to almost 100 % while the error rate is reduced
significantly.
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(a) Translation Error for Homographies
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(b) Translation Error for P3P
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(c) Rotation Error for Homographies
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Figure 4.7: The influence of Gaussian noise on both homography and P3P approach. No out-
liers. The areas show the interval between the lower and upper quartile of the errors, making the
red/blue/yellow/green colored areas cover the middle 50 % of the results.

0.0 and 1.6 and outliers from 0 % to 50 %, we immediately notice that the homography

method fails to find any pose in 2.3 % of the cases. This is simply due to the fact, that

10 features spread across potentially 3 visible sides will worst case only leave 4 features

on one side to calculate a homography from - not enough if any of them happen to be

an outlier. So to make sure the homographies even get a chance to work, from now on

we only consider test data with at least 30 features. We choose the RANSAC parameters

generously in order to hopefully catch any acceptable pose: maximum iterations of 20000,

confidence of 0.999 and reprojection threshold of 5.0, which is about 3 times our maximum

standard deviation. The results can be seen in Figure 4.8. Comparing the success rate

and the median translation and rotation errors, P3P clearly shows superior performance:

its success rate is much better while the median errors are less sensitive to noise. We

are looking at median errors instead of average errors because the average error could be
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influenced heavily by even a single bad results.
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(f) Median Rotation Error P3P

Figure 4.8: Success rate, median translation error and median rotation error of both the homog-
raphy and P3P method. Without optimization.

However, this could be expected, as the P3P method gets a lot more features ’to work

with’ than homographies, which only receive features of one side to work with. But what
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if both had the same amount of features available? To simulate this, we run both methods

on a data set consisting of only poses, where just one side of the object was visible. The

results can be seen in Figure 4.9. It seems that here homographies do much better: the

influence of noise is a lot lower on them for both success rate and errors.

Homographies vs. P3P: Runtime For the runtime, we first want to check if the

run time of our pose estimation methods significantly depends on the amount of noise

and outliers. We therefore run a test with fixed RANSAC values over various amounts of

noise and outliers: As can be seen in Figure 4.10, both methods clearly depend on both

the amount of noise and outliers. On the first look it seems that homographies have a

lower run time than P3P and one might assume that that is again caused by the fact

that the homography method receives less point correspondences than the P3P method

if more than one side of the object is visible. To test that, we run the same test for

poses where only one side of the cube was visible and both methods therefore receive the

same amount of point correspondences. However, in Figure 4.11 it is shown that in fact

homographies clearly outperform P3P for coplanar points.

To get more details on the run time itself, we examine their worst case scenario: We

choose a set of random point (which simulates absence of the object) to have a closer

look at the RANSAC parameters. We expect the run time to be unaffected by RANSAC

confidence and reprojection threshold values, but to grow linearly with the number of

RANSAC iterations. As Figure 4.12a shows, the P3P method in fact grows linearly while

the homography method becomes constant at some point. This is a result of our test data

having a maximum of 100 features, which leads to on average 16.6 (random) points per

side. For each iteration of RANSAC, 4 of those points are chosen to calculate a pose,

resulting in 4/16.6 inliers. In the OpenCV implementation of RANSAC, the maximum

number of iterations is re-evaluated at each iteration via the RANSAC formula

k =
log(1− p)
log(1− wn)

,

with k being the number of iterations, p the confidence, w the number of inliers and n the

number of model points. So for 4 inliers out of 16.6 points, the new maximum number of

iterations would become about 2045. Therefore, the run time of homographies becomes

almost constant in Figure 4.12a. To simulate a bigger number of point correspondences,

we let both RANSAC methods run without recalculating the number of iterations. As

can be seen in Figure 4.12b, the run time then grows linearly for both. It also shows that

for random data, where the findHomography method has to be called for each side of the

cube, the total run time of the homography method is 3 times as high as for P3P. The

run time of one function call is approximately half of P3P.
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(a) Success Rate Hom.
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(d) Translation Error P3P
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(f) Rotation Error P3P

Figure 4.9: Success rate, median translation error and median rotation error of both the homog-
raphy and P3P method if only one side of the object is visible. Without optimization.

Optimization: Accuracy We already showed previously that all optimization meth-

ods are reducing the error significantly with the results being very similar to each other.

We now want to have a closer look into their accuracy. We run our test over all noise and



4.4. Evaluation 47

Outliers (%)
Noise (pixel)

0

0.2

0.4

0.6

R
u

n
 T

im
e

 (
m

s
)

0.8

1

1.2

1.4

10
20

30
40

50

0
0.5

1

1.5

0

(a) Homographies

Outliers (%)
Noise (pixel)

0

0.2

0.4

0.6

R
u

n
 T

im
e

 (
m

s
)

0.8

1

1.2

1.4

10
20

30
40

50

0 0

0.5

1

1.5

(b) P3P

Figure 4.10: We tested the influence of noise and outliers on the run time of homographies and
P3P.
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Figure 4.11: The influence of noise and outliers on the run time of homographies and P3P for
scenes where only one side of the object was visible to the camera.

outlier levels and build the sum of residuals, considering only RANSAC inliers. Like this,

we compare the result of the error function before and after optimization. The results

are shown in Table 4.2. The Ceres Solver functions as well as our Gauss-Newton imple-

mentation are close to their minimum after only two iterations. Levenberg-Marquardt is

known to potentially have slower convergence than Gauss-Newton, which might as well

be a result of us using a relatively simple implementation of it. While Gauss-Newton can

potentially even diverge if the starting point is far from the minimum, this does not seem

to be a problem in our case, the pose estimates seem to be a good starting point that is

close enough to the minimum already.
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Figure 4.12: The run time of homographies and P3P on random points. Once with OpenCV’s
RANSAC limiting the number of iterations, once not.

Optimization: Efficiency Now that we know, that optimization only requires very few

steps, we would like to compare their run time, so we run the same tests for two iteration

steps. It quickly becomes apparent, that the run time of the Ceres Solver functions is a

multiple of the self implemented ones, so the Ceres Solver’s run time is shown separately in

Figure 4.13 with a different scaling. Even though Ceres Solver is for sure highly efficient,

this happens most likely due to the fact that we only need very few iterations and the data

has to be converted to fit into the Ceres Solver functions, while our own implementations

are able to use data types that are very efficient for our tasks.

Apparently, the run time for the optimization step is lower, the higher the amount of

outliers is. This makes sense as RANSAC should by now already have removed all/most

outliers and the optimization step has fewer point correspondences to deal with. Overall,

# itera-
tions

CS
automatic

CS analytic GN GN + Lie LM

0 1.5374 1.5374 1.5374 1.5374 1.5374
1 0.7448 0.7448 0.7449 0.7441 0.8472
2 0.7426 0.7426 0.7426 0.7426 0.7698
3 0.7426 0.7425 0.7426 0.7426 0.7491
5 0.7426 0.7425 0.7426 0.7426 0.7428
10 0.7426 0.7425 0.7426 0.7426 0.7426
100 0.7426 0.7425 0.7426 0.7426 0.7426

Table 4.2: The sum over the residuals over 1000 poses for different optimization options: Ceres
Solver with automatic derivatives, Ceres Solver with analytic derivatives, Gauss-Newton with
derivatives of the R matrix, Gauss-Newton with Lie groups, Levenberg-Marquardt with Lie groups.
All but Levenberg-Marquardt come very close to their minimum in only one iteration step.
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(b) Analytic Derivatives

Figure 4.13: The run time of the Ceres Solver functions for a maximum of 2 iteration steps. The
blue lower values in the ”background” occur for noise-free test data.

the Ceres Solver function with analytic derivatives is slightly faster than Ceres Solver with

automatic derivatives.
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Figure 4.14: The run time of the optimization step for Gauss-Newton method with derivatives
of matrix R, Gauss-Newton method with Lie groups, and Levenberg-Marquardt with Lie groups.
The lower ”background” values occur for noise-free test data.

In Figure 4.14, we then compare the run time of Gauss-Newton method with derivatives

of matrix R, Gauss-Newton method with Lie groups, and Levenberg-Marquardt with Lie

groups. Again, they clearly depend on the number of outliers and therefore the number

of point correspondences. Although Levenberg-Marquardt has a similar performance to

Gauss-Newton, keeping in mind that it needed more iterations to receive the same residual,

its run time is unfavorable. Gauss-Newton on the other hand is doing well and clearly

profits from replacing the cumbersome derivatives of the rotation matrix R by Lie groups.





5
Practical Application

It turns out difficult to find ready-made well-textured spheres. So in order to test our code

on spheres, we use the mapping function described in Chapter 3 to convert any cylindrical

sphere mapping to 3D and then to gore mappings, which enables us to print them out

and craft them. This gives us access to a variety of spherical objects from regular 360

degree panoramic images (as seen in Figure 5.1) without interruptions along the gores, as

it would happen if we would just cut them from the images directly. Since they of course

cannot be perfectly round spheres, we accept some distortion: for our preferred number

of 12 gores, the distortion is at its maximum at 3.4 % of the radius (for a sphere diameter

of 10 cm, that would be 1.7 mm at its maximum).

(a) Input image (b) Output image

Figure 5.1: We use a tool to create sphere gores from cylindrical projections.

5.1 Desktop Computer

We test our code on real pictures using OpenCV’s Scale-Invariant Feature Transform

(SIFT) and Oriented FAST and Rotated BRIEF (ORB) features. As a rule of thumb,

Fraundorfer and Scaramuzza [21] suggest using 1000 features for 640 x 480-pixel images.

Although the resolution we use was 1920 x 1080 pixel, we as well found 1000 features to
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work best. In order to get more distinct features, we use a k-nearest neighbor (KNN)

matcher to get the two best matches and compare them by Lowe’s ratio test [41]: if the

best match is not significantly better than the second-best, reject it.

We run our code on a desktop computer with an Intel Core i7-4771 @3.50GHz processor

and 8 GB of RAM. As library versions we use OpenCV 3.4.1, Ceres Solver 1.13.0, Eigen

3.3.4, as well as Sophus library. As shown in Figure 5.2, feature detection and feature

matching take over the biggest shares of the total run time. While our improvements were

well visible on our artificial data, using OpenCV feature detection and feature matching

lets the effect vanish. In total, we achieve frame rates of 15 fps for ORB features and 6

fps for SIFT features. Examples of the results including feature matches can be seen in

Figures 5.3 and 5.4.

Figure 5.2: The shares of the total run time for both SIFT and ORB features: using SIFT
features the pose estimation share is almost vanishing (0.5 %), for SIFT features it is at less than
2 %.
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Figure 5.3: Results for a cube: red outlines show the pose achieved via homographies, blue
outlines show the refined pose using all Random Sample Consensus (RANSAC) inliers, green
outlines show the final result.

Figure 5.4: Results for a cylinder: blue lines show the initial pose calculated via P3P, green lines
show the refined pose.
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5.2 Mobile Device

Finally, we bring our code to mobile devices and present an Android application. We use

Android Studio 3.1 to develop it, and include OpenCV 3.4.1 library and its xfeatures2d

classes for SIFT and SURF features, Eigen library 3.3.4, as well as Sophus library [70].

We integrate our C++ code from the desktop version as native code using the Android

Native Development Kit (Android NDK).

Figure 5.5: Android application: start screen.

We use a minimalist start screen to handle saved templates, as can be seen in Figure

5.5 and add a settings menu (Figure 5.6) to easily change our parameters, e.g. the type

of features we want to use or whether or not to use homographies when tracking cuboids.

A screen shot of the tracking screen can be seen in Figure 5.7. In Figures 5.8 and 5.9

we show a section of a video, where we can see how the refined pose fits well while the

unrefined pose jumps from frame to frame.

For the optimization step we always use our implementation for Gauss-Newton in

combination with Lie groups, as this has proven to be the most efficient option. We

are testing our setup on a Samsung Galaxy S7, featuring a Samsung Exynos 8890 Octa

CPU and 4 GB of memory. Similar to what we observed on the Desktop computer, the

bottleneck for the run time is again the feature detection. Using ORB features, we achieve

6 fps, using SIFT features our frame rate goes down to around 1 fps.
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Figure 5.6: Android application: settings menu.

Figure 5.7: Android application: the tracking screen. The red lines indicate the pose before the
optimization step (we draw the equatorial line, the axis and a triangle for orientation), the green
lines indicate the pose including the optimization step.
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Frame 01 Frame 02 Frame 03 Frame 04

Frame 05 Frame 06 Frame 07 Frame 08

Frame 09 Frame 10 Frame 11 Frame 12

Figure 5.8: A series of frames taken from a video: the red bounding box indicates the pose before
the optimization step, the green bounding box after optimization step. (The images have been
trimmed for better visibility.)
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Frame 13 Frame 14 Frame 15 Frame 16

Frame 17 Frame 18 Frame 19 Frame 20

Frame 21 Frame 22 Frame 23 Frame 24

Figure 5.9: Continuation of the series of frames in Figure 5.8.





6
Conclusion and Future Work

6.1 Conclusion

Comparing the homography method with P3P, we saw that for coplanar 3D points,

homographies will be more accurate and much faster than P3P. P3P on the other hand

has its major strength of being able to use all point correspondences on an object at once.

P3P will hardly suffer from not having enough points to work with and therefore hardly

fail completely. Which one to pick highly depends on the model we want to track: if we

expect one side to be much more prominent than others or more uniquely structured than

the other sides (e.g. a book cover), homographies clearly are the way to go. If we expect

to only get a few good feature correspondences per side of an object, using P3P makes

the most sense. It is needless to say, that P3P is the best way for all non-polyhedral objects.

For the optimization our major interest was to determine if using a ready-made

library function is the best choice. While one might expect them to have highly

optimized code and therefore much better performance, it turned out that the

necessary data conversion to feed our problem into its functions is much more

expensive than the optimization step itself. Their run time was approximately 10

times higher than that of our own implementations. Even though library functions

definitely are convenient for a prototype, we conclude that in order to reduce the

run time it is highly recommendable to use own implementations. Not to mention,

that this makes porting the project to a mobile system a lot easier. While the

Levenberg-Marquardt method is usually considered a successor to the Gauss-Newton

method, we could not see any benefit in our case, as the Gauss-Newton method had

excellent results as well, converged after fewer iteration steps and had faster itera-

tion steps. We therefore do not see a need for more effort than Gauss-Newton optimization.

Looking at the distribution of run time in general however, we saw that the biggest

issues of pose estimation still are feature detection and feature matching. While a good
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choice for a first pose estimate and for optimization improves their step significantly, they

are still hardly changing the overall run time in general.

6.2 Future Work

The probably most important task for the future would be to find more efficient feature

detection and feature matching functions than those of OpenCV, as they clearly showed

to be the bottleneck in our implementation.

Another obvious step for the future would be to extend the tracking to incremental

tracking: while for now we only looked into initial pose estimation without any prior

knowledge of the scene, we could use a given pose of the last frame to look for features

only in the vicinity of their last position, which would reduce the workload on it

significantly.

Furthermore, it could be interesting to try optimization on the parameters of our

implementation. These parameters include Random Sample Consensus (RANSAC)

parameters (iteration count, reprojection error, confidence value), orthogonality

threshold, various cost functions and their tuning constants, the number of optimization

iterations or convergence thresholds. An easy way to do that would probably be evolution

strategies, where the parameter vector gets mutated by adding normally distributed

vectors to it and we check whether or not that improved our results.
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Here we show the Jacobian matrix of the error function
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A
List of Acronyms

AR Augmented Reality

DLT Direct Linear Transformation

DOF Degrees of Freedom

fps frames per second

IMU Inertial Measurement Unit

KNN k-nearest neighbor

ORB Oriented FAST and Rotated BRIEF

PnP Perspective-n-Point

RANSAC Random Sample Consensus

SIFT Scale-Invariant Feature Transform

SURF Speeded Up Robust Features

VR Virtual Reality
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B
List of Definitions

Cost Function A function that gives some sort of penalty to bigger error values. A

common example is least squares, where the error is squared. Some sources refer to

it as loss function.

Error Function An error function (or objective function) is the sum over all residuals

and cost functions applied to them:

F (x) =
1

2

∑
i

ρ(fi(x)),

with ρ being a cost function and fi(x) a residual.

Developable Surface Surfaces that can be mapped to 2D without any distortion are

called ”developable”. Examples would be cubes, cylinders or cones. A counterex-

ample would be a sphere.

Homography A projective transformation H from projective space P 2 to P 2.

Jacobian The partial derivatives of a multi-variate function. Needed to find minima for

our error function.

PnP A variety of methods to retrieve a pose from n point correspondences.

P3P Generally speaking, all methods to retrieve a pose from three points. However, we

specifically refer to the P3P method by Gao et al. [23].

Point Correspondence A set of a 2D point in an image and a 3D point on the model.

Pose A pose refers to the combination of calibration matrix K, a camera’s position in

world space and its orientation.

P = K[R | t]
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Since we assume the camera matrix K to be known, that leaves only R and t do

determine, which have 6 dof.

RANSAC A popular method to fit a data model to data points that contain a significant

amount of outliers.

Residual The image space error per point correspondence, i.e. the difference between a

predicted point and an observe point.
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[57] Přibyl, B., Zemč́ık, P., and Čad́ık, M. (2016). Camera Pose Estimation from Lines

using Pl$\backslash$” ucker Coordinates. arXiv preprint arXiv:1608.02824. (page 13)

[58] Raab, F. H., Blood, E. B., Steiner, T. O., and Jones, H. R. (1979). Magnetic posi-

tion and orientation tracking system. IEEE Transactions on Aerospace and Electronic

systems, (5):709–718. (page 8)

[59] Ramalingam, S. and Taguchi, Y. (2013). A theory of minimal 3d point to 3d plane

registration and its generalization. International journal of computer vision, 102(1-

3):73–90. (page 3)

[60] Reitmayr, G. and Drummond, T. (2006). Going out: robust model-based tracking

for outdoor augmented reality. In Proceedings of the 5th IEEE and ACM International

Symposium on Mixed and Augmented Reality, pages 109–118. IEEE Computer Society.

(page 10)

[61] Reitmayr, G. and Drummond, T. W. (2007). Initialisation for visual tracking in urban

environments. In Proceedings of the 2007 6th IEEE and ACM International Symposium

on Mixed and Augmented Reality, pages 1–9. IEEE Computer Society. (page 8)

[62] Rosten, E. and Drummond, T. (2006a). Machine learning for high-speed corner

detection. In European conference on computer vision, pages 430–443. Springer. (page 9)

[63] Rosten, E. and Drummond, T. (2006b). Machine learning for high-speed corner de-

tection. In European conference on computer vision, pages 430–443. Springer. (page 22)



74

[64] Rosten, E., Reitmayr, G., and Drummond, T. (2010). Improved ransac performance

using simple, iterative minimal-set solvers. arXiv preprint arXiv:1007.1432. (page 14)

[65] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011a). ORB: An efficient

alternative to SIFT or SURF. In Computer Vision (ICCV), 2011 IEEE international

conference on, pages 2564–2571. IEEE. (page 9)

[66] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011b). Orb: An efficient

alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE international con-

ference on, pages 2564–2571. IEEE. (page 22)

[67] Scharstein, D. and Szeliski, R. (2003). High-accuracy stereo depth maps using struc-

tured light. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE

Computer Society Conference on, volume 1, pages I–I. IEEE. (page 9)

[68] Schulz, A., Jung, F., Hartte, S., Trick, D., Wojek, C., Schindler, K., Ackermann, J.,

and Goesele, M. (2011). Cuda surf-a real-time implementation for surf. (page 22)

[69] Schweighofer, G. and Pinz, A. (2006). Robust pose estimation from a planar tar-

get. IEEE transactions on pattern analysis and machine intelligence, 28(12):2024–2030.

(page 12)

[70] Strasdat, H., Lovegrove, S., et al. (2011). Sophus: C++ implementation of lie groups

using eigen. (page 54)

[71] Sutherland, I. E. (1964). Sketch pad a man-machine graphical communication system.

In Proceedings of the SHARE design automation workshop, pages 6–329. ACM. (page 14)

[72] Taylor, C. J. and Kriegman, D. J. (1994). Minimization on the lie group so (3) and

related manifolds. (page 20)

[73] Torr, P. H. and Zisserman, A. (2000). Mlesac: A new robust estimator with ap-

plication to estimating image geometry. Computer vision and image understanding,

78(1):138–156. (page 14)

[74] Vacchetti, L., Lepetit, V., and Fua, P. (2003). Fusing online and offline informa-

tion for stable 3d tracking in real-time. In Computer Vision and Pattern Recognition,

2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 2, pages II–241.

IEEE. (page 10)

[75] Wagner, D. (2009). https://www.youtube.com/watch?v=eZ2-Z7nI6SM. [Online;

accessed 25-February-2019]. (page 2)

[76] Wagner, D., Langlotz, T., and Schmalstieg, D. (2008a). Robust and unobtrusive

marker tracking on mobile phones. In Proceedings of the 7th IEEE/ACM International

Symposium on Mixed and Augmented Reality, pages 121–124. IEEE Computer Society.

(page 21)

https://www.youtube.com/watch?v=eZ2-Z7nI6SM


BIBLIOGRAPHY 75

[77] Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., and Schmalstieg, D. (2008b).

Pose tracking from natural features on mobile phones. In Proceedings of the 7th

IEEE/ACM International Symposium on Mixed and Augmented Reality, pages 125–

134. IEEE Computer Society. (page 1, 21)

[78] Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., and Schmalstieg, D. (2010).

Real-time detection and tracking for augmented reality on mobile phones. IEEE trans-

actions on visualization and computer graphics, 16(3):355–368. (page 22)

[79] Wagner, D. and Schmalstieg, D. (2007). Artoolkitplus for pose tracking on mobile

devices. na. (page 9)

[80] Wagner, D., Schmalstieg, D., and Bischof, H. (2009). Multiple target detection and

tracking with guaranteed framerates on mobile phones. In Mixed and augmented reality,

2009. ISMAR 2009. 8th IEEE international symposium on, pages 57–64. IEEE. (page 4)

[81] White, S., Feiner, S., and Kopylec, J. (2006). Virtual vouchers: Prototyping a mo-

bile augmented reality user interface for botanical species identification. In 3D User

Interfaces, 2006. 3DUI 2006. IEEE Symposium on, pages 119–126. IEEE. (page 22)

[82] Wohlhart, P. (2008). Tracking on-line learned natural features for mobile augmented

reality. na. (page 12)

[83] Wuest, H., Vial, F., and Stricker, D. (2005). Adaptive line tracking with multiple

hypotheses for augmented reality. In Proceedings of the 4th IEEE/ACM International

Symposium on Mixed and Augmented Reality, pages 62–69. IEEE Computer Society.

(page 10)

[84] Yang, X., Guo, J., Xue, T., and Cheng, K.-T. T. (2018). Robust and real-time pose

tracking for augmented reality on mobile devices. Multimedia Tools and Applications,

77(6):6607–6628. (page 8)

[85] Zhang, L., Xu, C., Lee, K.-M., and Koch, R. (2012). Robust and efficient pose

estimation from line correspondences. In Asian Conference on Computer Vision, pages

217–230. Springer. (page 13)

[86] Zhang, Z. (2012). Microsoft kinect sensor and its effect. IEEE multimedia, 19(2):4–10.

(page 9)

[87] Zheng, Y., Kuang, Y., Sugimoto, S., Astrom, K., and Okutomi, M. (2013). Revisiting

the pnp problem: A fast, general and optimal solution. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2344–2351. (page 13)


	Introduction
	Tracking in AR
	Pose Estimation
	Thesis Goals
	Outline

	Related Work
	Various Tracking Hardware
	Optical Tracking
	Model-based Optical Tracking
	Perspective-n-Point
	Outlier Removal
	Pose Refinement
	Pose Representation
	Lie Groups

	Tracking on Mobile Devices

	Methodology
	2D Templates and their Mapping
	Cuboids
	Cylinders
	Spheres

	Initial Pose Estimation
	Homographies
	P3P Method

	Pose Refinement
	Gauss-Newton Method
	Levenberg-Marquardt method
	Robust Estimation


	Experiments
	Test Data
	Test Metrics
	Functionality Testing
	Evaluation

	Practical Application
	Desktop Computer
	Mobile Device

	Conclusion and Future Work
	Conclusion
	Future Work

	Derivatives of Rotation Matrix R
	List of Acronyms
	List of Definitions
	Bibliography

