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Abstract

As Bitcoin, and cryptocurrencies in general, are gaining in popularity it becomes
more viable to use them for various purposes. The rise in adoption, however, impacts
the computational load on the cryptocurrency network and therefore the time it
takes until transactions are processed. This makes it difficult to deploy them in
scenarios, where a customer expects to instantly receive purchased goods. In this
work a payment protocol is presented, which makes fast and secure offline payments
with cryptocurrencies possible. In order to enable offline transactions, the protocol is
built around a double authentication preventing signature (DAPS) scheme, with which
fraudulent behavior can be disincentivized. An other approach for faster payments is
to use a payment network on top of the cryptocurrency. Payment networks allow for
bidirectional transactions within a channel of two participants and to route payments
through an arbitrary amount of channels. However, they require an online connection
to function properly. Even though the presented protocol only supports unidirectional
transactions, they can be performed completely offline in a fast and secure manner.
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Kurzfassung

Bitcoin und generell Kryptowährungen gewinnen immer mehr an Popularität. Dies
ermöglicht es verschiedenste Anwendungen dafür umzusetzen. Der vermehrte Einsatz
von Kryptowährung führt jedoch dazu, dass das Netzwerk der jeweiligen Währung
stärker ausgelastet wird, was wiederum die Zeit beeinträchtigt, die eine Transaktion
braucht um durchgeführt zu werden. Das macht es schwierig Kryptowährungen in
Bereichen einzusetzen, in denen ein Kunde erwartet seine bezahlten Güter sofort zu
erhalten. In dieser Arbeit wird ein Bezahlprotokoll vorgestellt, mit welchem man
schnelle und sichere Offline-Transaktionen in Kryptowährungen ausführen kann. Um
Transaktionen offline zu ermöglichen, ist das Protokoll um ein so gennantes Double
Authentication Preventing Signature (DAPS) Schema aufgebaut, mit dem es möglich
ist Betrugsversuche zu entmutigen. Ein anderer Ansatz um schnelle Transaktionen
in Kryptowährungen zu ermöglichen ist es, ein Bezahlnetzwerk aufbauend auf der
Kryptowährung zu verwenden. In einem Bezahlnetzwerk wird ein Kanal zwischen
zwei Teilnehmern hergestellt und Transaktionen können bidirektional zwischen ihnen
durchgeführt werden. Des weiteren kann eine Zahlung auch durch eine beliebige
Anzahl von Kanälen geführt werden. Diese Netzwerke haben jedoch den Nachteil,
dass für ihre Funktion eine Online-Verbindung benötigt wird. Das in dieser Arbeit
vorgestellte Protokoll ermöglicht nur unidirektionale Transaktionen, diese können
jedoch schnell und sicher offline durchgeführt werden.
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1 Introduction

In the digital realm it is easy to exactly replicate or modify any kind of data. This has
on one side the obvious advantages, that it is easy to distribute and work on the data.
On the other side, however, these properties make it difficult to verify, if the data was
altered by some party or if their exist different versions of it. To solve this issue, the
data can be signed with a digital signature scheme. Whenever signed data is altered,
the verification process of the signature will fail and the tampering can be detected.
Therefore, the origin and integrity of the data can be validated with a signature
scheme. This is sufficient for most use cases, like the public key infrastructure (PKI)
of the web or code signing for software. However, a digital signature scheme cannot
hinder a party to publish an arbitrary amount of distinct versions of some data. This
might not sound as a problem at first, but there are several use cases for which it is
desirable that a party cannot make contradicting statements or publish contradicting
data.
One area where contradiction is inherently a problem is digital currencies or cryp-
tocurrencies. Here a party should not be able to spend a digital coin multiple times,
which is also called double spending. In other words, in a cryptocurrency it should
not be possible to make the contradicting statement, that some coin belongs to party
A and simultaneously party B. Modern cryptocurrencies, like Bitcoin [Nak09], solve
this problem by using a blockchain as a ledger for the transactions. Every transaction
made is stored on the blockchain and it is publicly visible for everyone. Doing so
makes a consensus finding process possible, where everybody can participate in deter-
mining, which transactions are valid and should be incorporated into the blockchain.
This stands in stark contrast to conventional payment methods, where a central au-
thority, like a bank, has to be trusted to take care of each transaction. Following the
approach with the blockchain, however, comes with the downside, that the time a
transaction takes to be executed is limited by the duration of the consensus finding
process. In Bitcoin for example, this process takes about 10 minutes on average1.

1https://en.bitcoin.it/wiki/Confirmation#Confirmation_Times
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1 Introduction

Because it is not guaranteed, that a transaction will be included in the next round of
the consensus finding, it can take longer than these 10 minutes until a transaction is
added to the blockchain.
In recent years cryptocurrencies are gaining more and more in public awareness
and find wider adoption. For example Bitcoin has become an officially recognized
payment method in Japan2, and Venezuela3 and Iran4 are launching their own national
cryptocurrency. This rise in popularity further increases the computational load on
the network of the cryptocurrency and therefore the time it takes until a transaction
is processed and added to the blockchain. This high transaction times may not be
a problem for use-cases like online stores, where the ordered goods still have to be
shipped to the costumer, but there are several scenarios, for which a fast payment
process is desirable. These scenarios include on-demand and streaming services,
digital goods, which can be downloaded right away and buying goods at a store in
person.
In this thesis a payment protocol is presented, with which it is possible to make fast
transactions in a cryptocurrency. The confirmation time is basically only bound by the
time it takes to sign and verify a transaction. In this protocol an interaction with the
blockchain is only needed to establish and close a channel. Therefore, no transaction in
this channel is added to the blockchain, which removes the delay from the consensus
finding process. Besides being off-chain, the transactions can also be performed
completely offline within certain constraints. The payment protocol is based on
the application presented in [RKS15] and is built around a double authentication
preventing signature (DAPS) scheme. A DAPS scheme acts like a conventional digital
signature scheme, as long as only one statement is signed per context. If two distinct
statements are ever signed for the same context, it is possible to extract the secret
signing key from the signatures. Thus, a DAPS does not directly prevent publishing
two contradicting statements, but it acts as a disincentive. It can, however, only do
so, if the signing key itself possesses some value for its owner. A cryptocurrency has
a monetary value and its funds are usually bound to a cryptographic key. Therefore,
if the DAPS key used to sign a transaction is additionally related to a deposit of
a cryptocurrency, this can suffice as an disincentive. By using a DAPS scheme,
the presented protocol achieves fast transactions for cryptocurrencies and, even so

2https://www.cnbc.com/2017/04/12/bitcoin-price-rises-japan-russia-regulation.html
3https://www.nytimes.com/2017/12/03/world/americas/venezuela-cryptocurrency-maduro.html
4https://www.aljazeera.com/news/2019/01/iran-inches-closer-unveiling-state-backed-

cryptocurrency-190127060320571.html
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it can be executed completely offline, it still provides a protection against double
spending.
Other solutions to the problem of increasing transaction times are to use a faster
consensus finding process, like for example Ripple [SYB14] or payment networks
on top of the cryptocurrency. The consensus finding process of Ripple is fast enough
for the aforementioned scenarios, but its throughput might not be high enough for
a widespread adoption. Payment networks, like Lightning [PD16] for Bitcoin, also
operate on an off-chain channel, similar to the one in the presented protocol. In
payment networks, a bidirectional channel is established between two parties and an
arbitrary amount of transactions can be exchanged between them, until the channel
is closed. To be able to make payments to anyone on the cryptocurrency network, a
path is routed through several channels from payer to payee. In contrast, the presented
protocol only allows for unidirectional transactions to partners of a provider. However,
transactions can be made completely offline, whereas in payment networks an online
connection is required to find a payment path.
The remainder of this thesis starts with an overview of all relevant cryptographic
building blocks in Chapter 2. Thereafter the basic functionality of a cryptocurrency
will be described, followed by a comparison of the three cryptocurrencies Bitcoin,
Ethereum and Ripple as well as a more in-depth description of Bitcoin in Chapter
3. Then Chapter 4 gives a description of DAPS schemes, a comparison with other
self-enforcing signatures, an overview of all currently known DAPS and the concrete
scheme utilized in this thesis. In Chapter 5 applications for DAPS are presented,
including a more detailed description of the payment protocol for Bitcoin and a
comparison with other payment methods for cryptocurrencies. Implementation details
of this payment protocol are then given in Chapter 6, where additionally the execution
of the implemented Bitcoin scripts will be presented. After that a conclusion of the
work is given in Chapter 7.
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2 Cryptographic Building
Blocks

In the following an overview on the cryptographic primitives used in this thesis is
presented. Cryptocurrencies make use of several of them to enable a secure operation
in the digital world. They utilize hash functions, to provide integrity and digital
signatures, to provide authenticity for their data. The double authentication preventing
signature (DAPS) scheme, which was focused on in this thesis, employs an encryption
scheme, secret sharing and zero-knowledge proofs, which will also be covered here.
Additionally, in Section 2.4 an overview of the discrete logarithm setting and its
use in cryptography is presented, including a description of two concrete schemes,
namely ECDSA and elliptic curve ElGamal. The descriptions in this chapter follow
mostly the work from [Kat10], [KL14] and [Sma15].

A definition used throughout this work is, that the probability Pr that a certain event
E occurs, is negligible. This means that the probability is smaller than a negligible
function "(�), where � is the security parameter and thus,

Pr[E] ≤ "(�). (2.1)

A function is negligible, if it approaches zero faster than the inverse of any polynomial.
In other words, it is negligible if there is an integer �c so that

"(�) ≤ �−c , (2.2)

for every � > �c and every c ∈ ℕ.
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2 Cryptographic Building Blocks

2.1 Hash Functions

A hash function is a one-way function, which compresses its input. Therefore, it takes
an input of various length and produces an output of fixed length. Hash functions
have various applications either on their own, as for example modification detection
codes (MDC) and password hashes or as part of other schemes, like digital signature
schemes or message authentication code schemes (MAC). A hash functionH with
an output length of l, an input x ∈ {0, 1}∗ and an output y ∈ {0, 1}l can be described
as follows,

H(x) = y. (2.3)
The output or hash y should be unique for its input x, but hence data of an arbitrary
length is mapped to data of fixed length, there are inevitably multiple sets of input
data, that produce the same output. The event, that two different inputs x and x′
produce the same hash is called a collision. Because it is impossible by its definition
to have no collisions, a cryptographic hash function has to be designed in a way, that a
collision only occurs with negligible probability. The probability, that a probabilistic
polynomial time (PPT) adversary is able to produce a collision is

Pr
[

(x, x′)← (1�) ∶ x ≠ x′ ∧H(x) = H(x′)
]

, (2.4)
and should be negligible. The straight forward way to find a collision is to try out
2n + 1 different inputs for a hash function with an n-bit output. This will guarantee
to find a collision. However, when the input is chosen randomly, a collision can be
found with a probability of more than 50% with only about 2n∕2 inputs, due to the
birthday paradox. Therefore, the upper boundary of the collision resistance of a hash
function is about the square root of the number of all possible outputs, or 2n∕2 for
an output size of n-bit. The actual collision resistance does not necessarily comply
to this number, because there might be a more efficient way to find a collision, due
to the design of the function. Either way, for cryptographic hash functions, like the
SHA2-family [01a] or SHA3 [15], which are considered secure at the moment, there
is no other, efficient method known yet. For example, SHA-256 has an output size of
256-bit and therefore a collision resistance of 2128. That means, if every person on
earth would cooperatively calculate hashes with a computing power of 109 hashes∕s
each, it would take more than 1012 years to find a collision.
Another important property of hash functions, which is similar to collision resistance,
is called 2nd pre-image resistance or universal one-way. A hash function is 2nd pre-
image resistant, if the probability, that a PPT adversary can find an input x′, which
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2.1 Hash Functions

produces a collision for an given input x, is negligible. In other words, given x it
should be hard to find x′, so thatH(x) = H(x′). Formally, the following probability
has to be negligible,

Pr
[

x ← D, x′ ← (1� , x) ∶ x ≠ x′ ∧H(x) = H(x′)
]

, (2.5)
where D is the input domain ofH and x is sampled uniformly at random from D.
2nd pre-image resistance is therefore a weaker property than collision resistance and
accordingly a hash function, which is collision resistant, is implicitly 2nd pre-image
resistant. When building a construction utilizing a hash function, it is advantageous
to rely, if possible, only on the weaker 2nd pre-image resistance, because it makes it
harder for an adversary to attack the construction. For example there are no efficient
attacks against the 2nd pre-image resistance of the hash function MD5 [Riv92]
known yet, even though attacks against its collision resistance were discovered in
2005 [WY05] and have been improved since then. Therefore, constructions, which
only rely on its 2nd pre-image resistance, are still secure. However, it is not advisable
to use MD5 anymore and instead hash functions like the SHA2-family or SHA3
should be used.
A cryptographic hash function should also be pre-image resistant, which means that it
is hard to get knowledge or make conclusions about the input, by only seeing the hash
or output. This property is useful, when storing the hashes of passwords or making
commitments, without revealing to what one has committed to. A hash function is
pre-image resistant, if a PPT adversary has only a negligible chance to find an input
x for a given output y. Formally the probability

Pr
[

x← D, y ∶= H(x), x′ ← (1� , y) ∶ H(x′) = y
]

, (2.6)
has to be negligible. If a hash function is 2nd pre-image resistant, it is also pre-image
resistant, because if it were possible to find a pre-image, it is also possible to compute
a 2nd pre-image with high probability.
Besides the commonly required properties of collision and (2nd) pre-image resistance,
a property especially interesting for an application in cryptocurrencies is the puzzle
friendliness. The puzzle is usually to find an x, that produces a desired output y, when
x is concatenated with a random number r and fed into a hash function.

H(r||x) = y, (2.7)
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where || denotes concatenation. The output y might not only be valid for a single
value, but also for a set of values. The smaller this set is, the more difficult the puzzle.
For example, if y has to have three leading zeros, the puzzle would be relatively easy
and if y has to consist of all zeros, it would be maximum hard. A hash function is
considered puzzle friendly if the probability to produce the correct output is the same
for all possible inputs. Thus, no one can gain an advantage in solving the puzzle, by
knowing that one input will be more likely the correct one.

2.2 Digital Signatures

Digital signatures should act like handwritten signatures in the digital world and
provide additionally stronger security guarantees. Accordingly the signature should
be bound to the signed data, everyone should be able to verify the correctness of
the signature and no one, except oneself should be able to create one. Therefore,
a valid signature ensures, that the signed data has not been modified, the data was
sent by the signer and the signer cannot deny, that she did sent the data. To be able
to create a signature, the signer has to generate a public-private keypair first. The
signer can then sign data with her private key. The public key can be made public, so
that every potential verifier is able to verify the signatures of the signer. A signature
scheme for a message spaceMk can be described formally with the following three
algorithms:
(sk, pk) ← KGen(1�): The key generation algorithm takes the security parameter �

as input and outputs a private key sk to sign messages and a public key pk to
verify signatures.

� ← Sign(sk,m): This method takes a messagem and a private key sk as input and
outputs a signature � ifm ∈Mk and ⊥ otherwise.

{0, 1} ← Verify(pk,m, �): This algorithm takes a public key pk, a messagem and
a signature � as input and outputs 0 if the verification failed or if the message
m ∉Mk and 1 otherwise.

Simply put, signatures can be created with a private key and verified with the corre-
sponding public key. A digital signature scheme is generally required to be correct. It
is correct, when

Verify(pk,m, Sign(sk,m)) = 1, (2.8)
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2.2 Digital Signatures

for all possible keypairs generated from KGen, for all messages in the message space
and all signatures outputted from Sign. To define the security of a digital signature
scheme, there are several different notions. Existential Unforgeability under Chosen
Message Attack (EUF-CMA) is a common one, which is also required for the DAPS
scheme used in this thesis. A scheme is EUF-CMA secure, when an adversary has only
a negligible chance to win the game shown in Figure 2.1 with an honest challenger.
In short, even if an adversary knows the public key and a reasonable amount of valid
message - signature pairs, she is only able to create herself a valid signature for a
new message with a negligible probability. There is also a stronger version of this
security notion titled Strong Existential Unforgeability under Chosen Message Attack
(SUF-CMA). For a signature scheme to be SUF-CMA secure, an adversary is only
allowed to win the game in Figure 2.2 with negligible probability. The difference to
EUF-CMA is, that in SUF-CMA an adversary wins the game, when she is able to
forge a signature for any message, new or old, as long as she does not reuse an old
signature.

ExpEUF−CMA
 (�) ∶

(sk, pk)← KGen(1�)
 ← ∅

(m∗, �∗)← Sign′(sk,⋅)(pk)
where oracle Sign′ on inputm ∶

let � ← Sign(sk,m)
set  ←  ∪ {m}
return �

return 1, if Verify(pk,m∗, �∗) = 1 ∧m∗ ∉ 
return 0

Figure 2.1: EUF-CMA security

In practical applications a signature is usually not created from the message itself, but
form the hash of the message. The reason for this is, that on one hand hashing large
messages is usually faster than signing them and on the other hand most signature
schemes have a limited message space. The output space of the hash function, of
course, has to match the message space of the signature scheme. If the employed hash
function is collision resistant, it can be shown, that the influence of the hash function
on the security of the signature scheme is negligible. Signature schemes used in
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2 Cryptographic Building Blocks

ExpSUF−CMA
 (�) ∶

(sk, pk)← KGen(1�)
 ← ∅

(m∗, �∗)← Sign′(sk,⋅)(pk)
where oracle Sign′ on inputm ∶

let � ← Sign(sk,m)
set  ←  ∪ {(m, �)}
return �

return 1, if Verify(pk,m∗, �∗) = 1 ∧ (m∗, �∗) ∉ 
return 0

Figure 2.2: SUF-CMA security

practice usually rely on a mathematical hard problem to achieve their security. Two
of the most popular types utilized at the moment are RSA-based signature schemes,
which rely on the difficulty to factor large prime numbers and discrete logarithm
based signature schemes, which rely on the difficulty to find the discrete logarithm.
Commonly used schemes include RSA-PSS [BR96] for the RSA-based ones and
the Elliptic Curve Digital Signature Algorithm (ECDSA) [JMV01] or Edwards-
curve Digital Signature Algorithm (EdDSA) [Ber+12] for the discrete logarithm
ones. Discrete logarithm based schemes are gradually replacing RSA-based schemes,
because the former provide smaller signatures and a lower computational cost for the
same security level.

2.3 Encryption Schemes

An encryption scheme transforms its input, also referred to as plaintext, into a so
called ciphertext with the help of a key. The plaintext can be retrieved from the ci-
phertext by applying the reverse function, which again involves a key. The ciphertext
should show no correlation with the input data and it should only be possible to re-
trieve the input data from the ciphertext with the knowledge of the correct decryption
key. An encryption scheme can be described with the following three algorithms:

10



2.3 Encryption Schemes

(pk, sk) ← KGen(1�): The key generation algorithm takes the security parameter �
as input and outputs a public key pk used to encrypt messages and a private key
sk used to decrypt ciphertexts.

ct ← Enc(pk,m): This method takes a messagem and a public key pk as input and
outputs a ciphertext ct, which is dependent on the key.

m← Dec(sk, ct): This algorithm takes a private key sk and a ciphertext ct as input
and outputs the decrypted ciphertext.

The above algorithms actually describe an asymmetric encryption scheme. Asym-
metric means, that there is a separate key for encryption (pk) and decryption (sk). A
symmetric encryption scheme can be described with these three algorithms as well,
except that the encryption and decryption keys are the same. Accordingly, in the case
of a symmetric scheme, party A uses a secret key sk to encrypt data and sends it to
party B. Party B then uses the same key sk to decrypt the data. The fact that A and B
have to use the same key makes it harder to share the key, because they have to find
an other, secure way to exchange it. In an asymmetric scheme on the other hand each
party has its own private and public key. Therefore, B publishes its public key, A
encrypts the data with B’s public key and sends it to B. B can now decrypt the data
with its private key. This makes the key exchanging process easier, as the key needed
for encryption is public knowledge. Either way, there is still a mechanism needed to
prevent an adversary from tempering with the key during transport. An encryption
scheme is generally required to be correct, and it is correct if

Dec(sk,Enc(pk,m)) =m, (2.9)
for all messages in the message space, all keys, which can be generated by the
key generation algorithm KGen and all ciphertexts produced by Enc. An important
security notion to define the security for encryption schemes is the Indistinguishability
under Chosen Plaintext Attack (IND-CPA). The security game for IND-CPA is
depicted in Figure 2.3 and for an IND-CPA secure encryption scheme an adversary
can only do better than random guessing in this game with negligible probability.
In essence, the adversary selects two messages, one of them is encrypted by the
challenger and the adversary has to find out which one was encrypted. This is hard,
if the ciphertext reveals nothing about the plaintext.
Some popular symmetric encryption schemes used in practice include AES [01b] and
ChaCha [Ber08]. As the encryption schemes used in this thesis are asymmetric, the
remainder of this section will focus on these schemes. Like digital signatures, most
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2 Cryptographic Building Blocks

ExpIND−CPA,Ω (�) ∶

(sk, pk)← KGen(1�)
b ← {0, 1}
(m0,m1, state)← (pk)
ifm0 ∉ ∨m1 ∉, let C ← ⊥
else, let C∗ ← Enc(pk,mb)
b∗ ← (C∗, state)
return 1, if b∗ = b

return 0
Figure 2.3: IND-CPA security

asymmetric encryption schemes rely on a mathematical hard problem to achieve their
security. Again there are two popular groups among them, namely schemes based
on the RSA and schemes based on the discrete logarithm problem. RSA [RSA78]
would be an example for former ones and ElGamal [Elg85] an example for the
latter ones. A useful property, which some asymmetric encryption schemes hold is
homomorphism. With homomorphic encryption schemes it is possible to operate
directly on encrypted data. For example multiplying two ciphertexts results in the
product of the two corresponding plaintexts upon decryption. However, the number of
possible operations is usually limited. The aforementioned schemes RSA and ElGamal
are multiplicative homomorphic, as long as they are not padded. Homomorphic
encryption, in the form of the ElGamal cryptosystem, is also leveraged in the DAPS
scheme covered in Section 4.4.

2.4 Discrete Logarithm Based Cryptography

Many cryptographic algorithms are based on a mathematical hard problem to assure
their security. The discrete logarithm problem (DLP) is one of these problems. The
hardness of calculating the discrete logarithm in certain groups is utilized in schemes,
like for example the signature algorithms (EC)DSA [98] [JMV01] and EdDSA
[Ber+12], the encryption scheme ElGamal [Elg85] and the Diffie-Hellman key
exchange [DH76]. The DLP can be described as follows: given a finite abelian group
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2.4 Discrete Logarithm Based Cryptography

G with a generator g and of prime order q ∈ ℙ, find an integer x to satisfy the
equation

gx = y, (2.10)
where y is a random group element of G. Therefore, solve x = dlogg(y). For certaingroups this problem is believed to be hard. Groups used in cryptographic schemes
include multiplicative groups of a finite field or elliptic curve groups. A popular
signature scheme in the discrete logarithm setting, which uses an elliptic curve group
is ECDSA (Elliptic Curve Digital Signature Algorithm). It finds various applications,
which include cryptocurrencies and will therefore be discussed here. The three
algorithms describing ECDSA are depicted in Figure 2.4, where Px represents the

{sk, pk} ← KGenECDSA(1�) ∶

Let G be an elliptic curve group of prime order q and with generator g ∶
x

R
←←←←←←←← ℤ∗q

sk = x
pk = gx

� ← SignECDSA(sk, m) ∶ parse sk as x
1 ∶ k

R
←←←←←←←← ℤ∗q

2 ∶ R← gk

3 ∶ r← Rx mod q, if r = 0 goto step 1
4 ∶ s← k−1(H(m) + rx) mod q and if s = 0 goto step 1
5 ∶ � ← (r, s)
{0, 1}← VerifyECDSA(pk, m, �) ∶ parse � as (r, s)
1 ∶ if r = 0 ∨ s = 0 return 0
2 ∶ z← H(m) mod q

3 ∶ w← s−1 mod q
4 ∶ u1 ← zw mod q
5 ∶ u2 ← rw mod q
6 ∶ R← gu1 ⋅ pku2

7 ∶ if Rx = r mod q return 1 and return 0 otherwise
Figure 2.4: ECDSA scheme
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x-coordinate of a curve point P andH is a hash function, which maps exactly to the
order of the group. For the group operations a multiplicative notion has been used and
will be used henceforth in this thesis. It is believed that ECDSA is EUF-CMA secure,
but its security cannot be proved in the standard or random oracle model. However,
EUF-CMA security can be proved in the generic group model due to [Bro05] and
through recent work from Fersch et al. [FKP16] in the bijective random oracle model
as well.
In addition to the DLP there are two other problems related to it, which are also
important for cryptographic schemes. These are the Computational and the Decision
Diffie-Hellman problem (CDH and DDH). The CDH is to find a group element ℎ,
such that ℎ = gxy for a given a = gx and b = gy as well as a finite abelian group
G with a generator g and of prime order q. Formally, the game to solve the CDH
is depicted in Figure 2.5. It can be shown that the CDH is not harder than the DLP

ExpCDH ∶
g ← G

x, y
R
←←←←←←←← ℤ∗q

ℎ← (g, a← gx, b← gy)
return 1, if ℎ = gxy
return 0

Figure 2.5: Computational Diffie-Hellman problem

and indeed, if the discrete logarithm can be solved for either x or y, the CDH can be
solved trivially. For the DDH again a finite abelian group G with a generator g and
of prime order q is given with three elements a = gx, b = gy and c = gz. The goal is
to find out if either z was chosen uniform at random or set to z = x ⋅ y. The game
for the DDH is presented in Figure 2.6. The DDH can be reduced to the CDH and
thus if it is possible to solve the CDH, the decision in the DDH is trivial. Therefore,
the DDH is not harder than the CDH, however there are groups in which solving the
DDH takes polynomial time, but solving the CDH takes sub-exponential time.
An asymmetric encryption scheme in the discrete logarithm setting is the ElGamal
encryption [Elg85] and its algorithms are shown in Figure 2.7. The security of
the scheme relies on the hardness of the DDH in the group it is instantiated in. In
other words, ElGamal encryption is IND-CPA secure in any group, where the DDH
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ExpDDH ∶
d ← {0, 1}
g ← G

x, y
R
←←←←←←←← ℤ∗q

if d = 1 then z R
←←←←←←←← ℤ∗q

if d = 0 then z← x ⋅ y
d′ ← (g, a← gx, b← gy, c ← gz)
return 1, if d′ = d
return 0

Figure 2.6: Decision Diffie-Hellman problem

assumption holds and can therefore also be instantiated in for example elliptic curve
groups. The DDH, however, is for example easy in symmetric pairing based groups.
Pairings find on one hand use in cryptanalysis to reduce hard problems, but on the
other hand they are also used in cryptographic schemes and in particular in identity
and attribute based encryption. Following the work from [MJ16] a pairing or bilinear
map for groups G1, G2 and G3 of order q can be defined as

G1 ×G2 → G3. (2.11)
Additionally a pairing has to be bilinear, non-degenerate and efficiently computable.
It is bilinear, if for u ∈ G1, v ∈ G2 and a, b ∈ ℤ

e(ua, vb) = e(u, v)ab. (2.12)
It is non-degenerate if e(g1, g2) ≠ 1, where g1 and g2 are generators of G1 and G2respectively. If it is the case that G1 = G2, then the DDH is easy, because e(ga, gb) =
e(g, gab) and thus it can be verified if e(gx, gy) = e(g, c) or not (see Figure 2.6).
Even though ElGamal is not IND-CPA secure in groups in which the DDH is easy, it
may also be instantiated in groups in which the Decision Linear Problem (DLIN) is
hard. In this case a modified version of ElGamal, titled Linear encryption [BBS04],
has to be used. The DLIN problem is hard, if the probability to do better than
random guessing in the game depicted in Figure 2.8 is negligible. In other words,
given u, v, ℎ, ua, ub and uc , it is hard to distinguish if c was sampled uniform at
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{sk, pk} ← KGenElGamal(1�) ∶

Let G be a group of prime order q, where DDH is hard and with generator g ∶
x

R
←←←←←←←← ℤ∗q

sk = x
pk = gx

ct← EncElGamal(pk, m) ∶

1 ∶ r
R
←←←←←←←← ℤ∗q

2 ∶ C1 = gr mod q
3 ∶ C2 = m ⋅ pk

r mod q
4 ∶ ct = (C1, C2)
pt← DecElGamal(sk, ct) ∶ parse ct as (C1, C2)

pt = C2 ⋅C−sk1

Figure 2.7: ElGamal encryption scheme

ExpDLIN ∶
d ← {0, 1}
u, v, ℎ ← G

a, b
R
←←←←←←←← ℤ∗q

if d = 1 then c R
←←←←←←←← ℤ∗q

if d = 0 then c ← a+ b
d′ ← (u, v, ℎ, ua, vb, ℎc)
return 1, if d′ = d
return 0

Figure 2.8: Decision Linear problem
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random or c = a+ b. The DLIN assumption is believed to hold in groups, where the
DDH assumption does not hold. Therefore, it is possible to use linear ElGamal in
conjunction with some pairing-based elliptic curve or Schnorr groups. The traditional
ElGamal is multiplicative and linear ElGamal additive homomorphic.

2.5 Zero-Knowledge Proofs

With a zero-knowledge proof (ZKP), first introduced by [GMR85], a prover can
convince a verifier with a certain probability that a fact is true. The fact might be
the solution to an NP-hard problem. A ZKP protocol has to be complete, sound
and zero-knowledge. It is complete, if a prover, that knows the fact and follows the
protocol, can convince the verifier with probability 1. It is sound, if a prover, that
does not know the fact, can only convince the verifier with negligible probability.
The zero-knowledge property can be described by the similarity between the set of
all valid transcripts of protocol runs  and the set of all simulations  . If the sets
are equal, the ZKP is perfect zero-knowledge and if they are indistinguishable by
a computationally bound adversary, it is said to be computational zero-knowledge.
However, these ZKP are in general not efficient enough for a practical use. Instead
proofs of knowledge, with weaker requirements, like Σ-protocols are used.
A Σ-protocol is a three move protocol, where the prover starts with a commitment T ,
then the verifier sends a challenge c and the prover answers with a response r. In Σ-
protocols the verifier has to be honest and must follow the protocol correctly and thus
they are honest verifier zero-knowledge protocols. The protocol is usually executed
with an language  and the prover has to prove, that he knows the witnessw for
a statementX ∈ . Σ-protocols are required to be complete, special sound and honest
verifier zero-knowledge. A protocol is complete, if like above the verifier always
accepts, if the prover and verifier follow the protocol correctly. It is special sound,
if there exists a PPT extractor for two accepting transcripts (T , c, r) and (T , c′, r′),
which will always compute the witness w from these transcripts. It is honest verifier
zero-knowledge, if again, like above the sets  and  are indistinguishable, but the
verifier has to act honestly.
Schnorr’s identification protocol [Sch90] as shown in Figure 2.9 is such a Σ-protocol.
In a finite abelian group of prime order q and with generator g, the prover knows the
discrete logarithm x of a A = gx and wants to convince the verifier accordingly.
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Prover Verifier

t
R
←←←←←←←← ℤ∗q
T ← gt

T

c
R
←←←←←←←← ℤ∗q

c
r← t+ x ⋅ c mod q

r

gr
?
= TAc

Figure 2.9: Schnorr’s identification protocol

Therefore, the prover samples t uniform at random from ℤq and sends T = gt as the
commitment to the verifier. The verifier samples c, again uniform at random from ℤq,as the challenge and sends it to the prover. Then, the prover calculates r = t+ x ⋅ c
mod q and sends r as the response to the verifier. The verifier calculates gr and
T ⋅Ac and, if both values are equal, the verifier can be sure, with a high probability,
that the prover knows the discrete logarithm of A. This protocol can be extended,
so that it guarantees, that the prover knows x and given A = gx and B = ℎx, that
(g, ℎ, A, B) form a DDH-tuple. This can be achieved by using a commitment value
for each publicly known value (here A and B). The extended version of this protocol
is depicted in Figure 2.10.
Additionally, a Σ-protocol can be turned into a non-interactive zero-knowledge proof
(NIZK), by applying for example the Fiat-Shamir transform [FS87]. Here the chal-
lenge c of the verifier is basically replaced by a hash function, modeled as a random
oracle. This bypasses the requirement for an honest verifier and additionally everyone
is able to verify the proof. A NIZK proof system can be described with the following
three algorithms:
crs ← Setup(1�): The setup takes a security parameter � as input and generates a

common reference string crs.

18



2.5 Zero-Knowledge Proofs

Prover Verifier

t
R
←←←←←←←← ℤ∗q
T1 ← gt

T2 ← ℎt

T1, T2

c
R
←←←←←←←← ℤ∗q

c
r← t+ x ⋅ c mod q

r

gr
?
= T1Ac

ℎr
?
= T2Bc

Figure 2.10: Σ-protocol to show that (g, ℎ, A, B) forms a DDH-tuple

� ← Proof(crs, S,w): This algorithm takes a common reference string crs, a state-
ment S and a witness w as input and outputs a proof �.

{0, 1} ← Verify(crs, S, �): This algorithm takes a common reference string crs, a
statement S and a proof � as input and outputs 1 if the proof was correct and 0
otherwise.

Applying the Fiat-Shamir transform to Schnorr’s identification protocol from Figure
2.9 leads to the NIZK proof system in Figure 2.11. Like before, in a finite abelian
group G of prime order q and with generator g, the prover wants to prove, that she
knows the witness w = x for a statement S, where S is ∃x ∶ A = gx. For the prove,
at first the commitment T is calculated and then hashed with the statementA to create
the challenge. Thereafter the response r is calculated and the proof � is outputted
as a tuple consisting of the commitment and the response. To verify the proof, the
challenge is again created by hashing the commitment and the statement and it has to
be checked if gr ?

= T ⋅Ac .
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crs ← Setup(1�) ∶

fix a hash functionH,
which maps exactly to ℤ∗q
crs ← (�,H)

� ← Proof(crs, A, x) ∶

1 ∶ t
R
←←←←←←←← ℤ∗q

2 ∶ T ← gt

3 ∶ c ← H(T , g, A)
4 ∶ r← t+ x ⋅ c
5 ∶ � ← (r, T )

{0, 1}← Verify(crs, A, �) ∶ Parse � as (r, T )
1 ∶ c ← H(T , g, A)
2 ∶ if gr = T ⋅Ac return 1 and return 0 otherwise

Figure 2.11: NIZK proof system for the Fiat-Shamir transform of Schnorr’s identification protocol

2.6 Secret Sharing

Secret sharing is used to share a secret s with a set  of n participants. All qualifying
subsets of  , which should be able to recover s, are contained within the monotone
access structureΓ. Therefore, the participants in each subset ofΓ are able to recombine
their shares and retrieve the secret. However, all other sets, not contained in Γ, should
not be able to do so and ideally learn nothing about the secret. A secret sharing
scheme can be described with the following two algorithms
Share(s,Γ): This algorithm takes the secret s and an access structure Γ as input and

outputs a share sA for each participant A ∈  .
Recombine(HB): This algorithm takes a set of sharesHB as input, where B ⊂  . It

outputs the secret if B ∈ Γ or ⊥ otherwise.
Desirable properties of a secret sharing scheme are perfect and ideal. A secret sharing
scheme is perfect, if each subset of participants B ∉ Γ, has no additional information
about the secret in comparison to someone who has no shares at all and therefore
they cannot do better than guessing all possible values for the secret. A secret sharing
scheme is ideal, if it is perfect and the size of the shares equals the size of the secret.
A well known ideal secret sharing scheme is Shamir’s secret sharing [Sha79]. It is a
(k, n)-threshold secret sharing scheme, which means that at least k out of n shares
are needed to reconstruct the secret. To create the shares a random polynomial f (X)
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of degree k− 1 is chosen over a prime field ℤq and the secret s is set as the constant
term of this polynomial

f (X) = s+ f1 ⋅X +⋯+ fk−1 ⋅Xk−1. (2.13)
A share sA is then an evaluation of this polynomial for an arbitrary, but distinct
xA ∈ ℤq∖{0} for every participant A. To recombine the shares of a qualifying set of
participants B ∈ Γ, Lagrange interpolation can be used as

s←
∑

xi∈HB

⎛

⎜

⎜

⎝

si ⋅
∏

xj∈HB ,xj≠xi

−xj
xi − xj

⎞

⎟

⎟

⎠

. (2.14)

In instances, where a participant cannot be trusted to output a valid share of the
secret, a verifiable secret sharing scheme can be used. In particular Shamir’s secret
sharing scheme can be made verifiable due to a technique from [Fel87]. This comes
at the cost of an reduced security from information-theoretic to computational, which
is however still secure against any PPT adversaries. To achieve verifiability a one-
way homomorphism is used. Therefore, the sequence (gs, gf1 ,… , gfk−1) has to be
published for a group G of prime order q and with generator g and where s is the
secret and f1… fk−1 are the coefficients of the polynomial in Equation 2.13. A share
sA can then be verified by checking

gsA
?
=

k−1
∏

j=0

(

gfj
)xjA , (2.15)

where gf0 = gs.
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3 Cryptocurrencies

In this chapter an overview on cryptocurrencies is presented, starting with the ba-
sic working principles of a cryptocurrency, and followed by a brief overview and
comparison of three of the most popular ones and the differences between them. The
cryptocurrency mainly used in this thesis, Bitcoin, will be explained in more detail at
the end of this chapter. The explanations follow mostly the work from [Nar+16].

3.1 Cryptocurrency Basics

In this section a brief explanation on how a cryptocurrency works is presented. This
basic functionality is roughly the same for all cryptocurrencies, but there are slight
deviations. As the name implies a cryptocurrency relies on cryptography to ensure
its functionality and security.
A user or identity is usually represented by the public key of the underlying digital
signature scheme as shown in Figure 3.1. Therefore, all signed data, which verifies
under a certain public key, can be associated with an identity.

Figure 3.1: The public key of a signature scheme serves usually as an identity in a cryptocurrency

This makes a decentralized management of the participants possible and thus provides
some degree of anonymity for them, because there is no central authority, where one
might have to register. However, when using the same public key several times, all
transactions made by this key or identity can be tracked and this might ultimately
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reveal the user behind it. Either way, it is easy to create a new identity and one can
even use a new one for each transaction. Specifically a private-public keypair has to
be used only twice, once to receive a transaction and once to spend it. Doing so is also
encouraged from a security perspective, because it mitigates potential attacks, with
which the private key can be recovered from one or multiple signatures. Furthermore,
the public key might be transformed into a so called address with the help of a hash
function as indicated in Figure 3.2. This allows the public key to stay hidden and
secure, even when a weakness in the digital signature scheme is discovered.

Figure 3.2: Derivation of an address from a public key

To transfer the coins of the cryptocurrency from one address to an other one, a
so called transaction is created. The transaction basically states from and to which
address the coins are transferred, as well as the amount of coins and some metadata. A
simplified version of such a transaction is shown in Figure 3.3. In this example Alice
transfers 100 of her coins from her address to Bob’s. To ensure that the transaction
cannot be altered and that Alice agrees to it, the whole transaction is signed with
Alice’s private key.

Figure 3.3: A simplified version of a transaction to transfer cryptographic coins from Alice to Bob

Coins, which are transferred from an address increase the balance within the trans-
action and are called transaction inputs. Coins, which are transferred to an address
decrease the balance within the transaction and are called transaction outputs. A
transaction might have one or multiple inputs and one or multiple outputs, as long
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as the balance remains zero. In Figure 3.4 such a transaction with multiple in- and
outputs is shown. Because Alice does not have enough funds in one of here addresses,
she combines three of them to be able to pay Bob and she transfers the surplus of
coins back to one of her addresses. Each of her inputs has to be signed with the
corresponding private key. The signature usually covers the transaction metadata and
all outputs, but only the one input, the signature belongs to.

Figure 3.4: A transaction from Alice to Bob with an explicit display of the inputs and outputs.

To be able to verify the origin of the inputs, every input has to use a transaction output
from a previous transaction. Thus, all coins, which one might own in a cryptocurrency
are actually unspent transaction outputs. An unspent transaction output can only be
used in an input, if a signature is provided, which verifies under the public key of the
address specified in this output. Most cryptocurrencies additionally support other
ways to make an output spendable and therefore each transaction output actually
contains a locking script. To be able to spend these outputs, data has to be provided
in the input, which makes this script evaluate to true. In the most basic use case the
script in the output contains the address and an operand to verify the signature of the
transaction with the public key from which the address is derived. Thus, the input
has to provide the signature and a public key, which verifies the signature and which
can be transformed into the address. A more detailed explanation of the scripting
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system in Bitcoin will be provided in Section 3.3. A transaction similar to the one in
Figure 3.5 is usually used in current cryptocurrencies. Here the inputs only contain
a reference to the output of a previous transaction as well as the data to fulfill the
locking script. Data, like the amount of coins and the locking script are fetched from
the reference.

Figure 3.5: An example transaction, which references old outputs as inputs and creates new outputs

A transaction output can be referenced by the transaction id and the position within
all outputs of this transaction. The transaction id is simply the hash of the whole
transaction. This has the advantage, that each transaction has a unique id and that this
id can be derived in a straightforward manner. Additionally, all related transactions
are forming a linked list with hash pointers. A hash pointer makes it possible to
detect changes in all previous elements in the linked list or transactions in the case of
cryptocurrencies. Therefore, it is sufficient to add only the id of the last preceding
transaction in the input of a new transaction to cover all related transactions.
So far users or identities can be identified by an address, where a user might control
multiple addresses and coins can be transferred with transactions between these
addresses. The flow of the coins can be traced back to the very first transaction,
as each input in a transaction is an output of a previous transaction. Additionally,
the signature in each input ensures that the input and the transaction as a whole
cannot be altered afterwards and that the signer approves it. However, there is still a
mechanism needed to store and manage transactions in a way, that no one can tamper
with it. In a conventional payment system there is a trusted third party, like a bank,
that takes care, that everything is save and sound. In decentralized cryptocurrencies,
however, it is not possible to trust or even know every participant in the network.
Therefore, a mechanism is needed to find consensus on which transactions are valid
and which are not. To allow everyone to participate in the consensus finding, all
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transactions are stored publicly visible and everyone can verify their correctness.
Additionally, everyone can maintain a copy of this chains of transactions. When a new
transaction should be added to the chain, it has to be broadcasted to the network and
the participants of the network have to find consensus on, if the transaction should
be added or not. This consensus finding process has to take care of that no faulty
transactions can be added, every valid transaction will be added, no one can spend
the same transaction output multiple times (double spending) and the process has to
terminate in finite time. In the overview of the next section the consensus finding
algorithms used in Bitcoin, Ehereum and Ripple will be discussed.

To make the consensus finding simpler, multiple transactions are usually grouped
in so called blocks. All blocks are connected in a linked list with hash pointers,
called blockchain. The blockchain acts as a public ledger, which stores all blocks
and therefore transactions in chronological order. A block will only be added to the
blockchain, if all transactions within that block are valid and if the participants of
the network consent, that it will be the next block. During the consensus finding a
branching path may occur in the blockchain, due to, for instance, latency issues, but
only the longest path will be considered as the valid one.

In Figure 3.6 an example for a part of a blockchain is shown. Each block contains
the hash of the previous block, which serves simultaneously as the ID. Like for the
transactions, when hash pointers are used, any changes in any of the previous blocks
can be detected. A new block contains all transactions, which should be added to the
blockchain and a hash of these transactions, to ensure their integrity. Furthermore the
block contains a timestamp, data for consensus finding and other metadata, which
enables an efficient management of the blockchain.

Figure 3.6: Example block within a blockchain
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3.2 Overview

In this section a short overview of the cryptocurrencies Bitcoin [Nak09], Ethereum
[But14] and Ripple [SYB14] is given and the differences between them are pointed
out. These cryptocurrencies have been chosen, because they are among the most
popular ones and additionally offer an option for a fast processing of payments.
The main differences between cryptocurrencies are usually the used cryptographic
algorithms, the scripting language and the consensus finding process. In Bitcoin,
Ethereum and Ripple the same digital signature scheme, ECDSA [JMV01], is used
and Ripple has additionally an option to use EdDSA [Ber+12]. In contrast, the
employed hash function differs between all of them. SHA-256 [01a] is mainly used
in Bitcoin, Keccak-256 [Ber+11] in Ethereum and SHA-512Half, which is similar
to SHA-512/256, in Ripple. Either way, the choice of primitives used in these three
cryptocurrencies is deemed secure at the moment.
As for the scripting language, both, Ethereum and Bitcoin have a stack-based language.
Ethereum offers a more extensive one, which is Turing complete [But14]. In essence,
a language is Turing complete, if it can be used to solve any computational problem.
The Turing completeness, however, comes with the downside, that scripts with an
infinite run time can be build and the execution of such scripts would impact the
availability of the network. To limit the amount of time and size of a script, Ethereum
uses a unit called Gas, which has to be used for every executed operation in a script.
The fee payed for the transaction then covers the Gas cost. The amount of Gas needed
for a script is always the same, but the fee, which needs to be payed, varies according
to the current value of the cryptocurrency. This system makes various applications
on the Ethereum blockchain possible and even games have been developed for it. The
scripting in Bitcoin on the other hand is not Turing complete as loop-instructions
are not supported. This narrows down the number of possible scripts, but it keeps
them simple and eliminates the occurrence of infinite loops. Nevertheless, it is still
possible to use conditional statements for branching execution paths. Ripple does
not directly support scripting, but there are several transaction types, with different
predefined scripts.
The consensus finding process is quite similar for Bitcoin and Ethereum, but Ripple
uses a different approach here. To recapitulate, when Alice wants to send coins to
Bob, she creates a transaction, signs it and then broadcasts it to the network of the
cryptocurrency. The transactions are gathered in blocks and the consensus process
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decides whether the block will be added to the blockchain or not. In Bitcoin and
Ethereum a Proof of Work (PoW) system is employed. In this system, so called
miners are the ones who collect transactions and put them into blocks. To be able to
append a block to the blockchain, a miner has to solve a computationally difficult
puzzle. Despite being difficult to solve, the solution of the puzzle is easily verifiable
by everyone. Once the miner has solved the puzzle, she can broadcast the block to
the network and the block will get added to the blockchain, if everything is sound.
To reward the miners for the computational work, each new block generates new
coins, which the miner can transfer to her address. Because everyone can participate
in the mining process, the computational power and therefore the rate at which the
blocks are created can fluctuate over time. To keep this rate constant, the difficulty
of the puzzle is adjusted every time a specific amount of blocks has been mined
and appended to the blockchain. Due to latency issues across the internet, different
parts of the network may append a different block to the last common blockchain. In
the long term however, the network will only consider the branch with the highest
overall difficulty as valid. Consequently, one would need more than 50 % of the
computational power of the whole network to gain control over the blockchain. This
would make it possible to, for example deny specific transactions or launch a double
spending attack. However, because a cryptocurrency inherently posses a value in
itself, the participants are incentivized to act honestly. Otherwise, the value of the
cryptocurrency would diminish with the trust in its security. Additionally, because
of the high computational and therefore monetary cost to achieve a majority of the
computational power in a network, acting fraudulent might not be profitable.
Ripple on the other hand does not rely on computationally hard puzzles for consensus
finding, but instead utilizes the self-titled Ripple Protocol, which is a Byzantine
consensus protocol. In this protocol every node in the network can vote on the trans-
actions, which should be added to the blockchain next. The current state of the
blockchain is called last-closed ledger and is the same for all nodes in the network.
Each node individually has an open ledger to which all new and valid transactions
are applied. Additionally, each node maintains a unique node list (UNL), which is
different for every node. When executing the consensus algorithm, the candidates for
the new transactions, which should be applied to the last closed ledger are exchanged
with each node in the UNL. Then, the nodes vote on the veracity of all new trans-
actions. Transactions with at least 80% of "yes" votes proceed, while the others are
discarded or added to the candidate set of the next open ledger. For this algorithm to
succeed, there have to be less than 20% of faulty nodes in the network and cliques
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(set of nodes, in which each node is connected to every other node in the set) have
to have a connection to other nodes, which consist of at least 20 % of the whole
network. This system enables Ripple to be one of the fastest cryptocurrencies in
terms of transaction speed at the moment, but because of the necessary management
of the UNLs, it is arguably less decentralized.

To improve the transaction speed for Bitcoin and Ethereum so called payment channels
[PD16] can be used on top of the respective network. A payment channel is established
between two participants and enables them to exchange coins between each other,
without an interaction with the blockchain. During the lifetime of a channel only
two transaction have to be added to the blockchain, one to open it and and one to
close it and settle the balance. When opening a channel, both parties place funds in
it and are then able to use these funds, once the initial transaction is added to the
blockchain. Within the channel an arbitrary amount of transactions can be performed,
but the participants cannot spend more coins as they have transferred to the channel
in the initial transaction. Even so the transactions within a payment channel happen
off-chain, the participants do not have to trust each other, because both participants
can close the channel at any given time, without the involvement of the other one.
Payment channels can also be expanded to a network of channels, so that the problem
can be avoided, that every participant has to create a separate channel with everyone
else on the blockchain. When each participant has at least one open payment channel
a path can be routed through several intermediaries to make a payment to almost
every other participant in the network. Again, this can be achieved in a way, that no
trust has to be placed in any of the participants.

3.3 Bitcoin

In this chapter a brief overview of Bitcoin will be presented, with some details, which
are relevant for the application shown in Chapter 5, including the scripting language
used in Bitcoin. Besides the work from [Nak09] and [Nar+16], additional information
can be found in the Developer Guide1 and the Bitcoin Wiki2.

1https://bitcoin.org/en/developer-guide/
2https://en.bitcoin.it/
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The digital signature scheme used in Bitcoin is ECDSA. Therefore, the address of a
user or identity is derived from the public key of an ECDSA keypair. The process
of deriving such an address is depicted in Figure 3.7. To obtain the address the
uncompressed public key is first hashed with SHA-256 and the resulting output is
hashed again with RIPEMD-160 [DBP96]. The RIPEMD-160 hash is then extended
with a network ID, which specifies if the address belongs to themainnet, the testnet and
so on. This extended hash is then hashed twice with SHA-256 to produce a checksum
and the first 4 bytes of this checksum are appended to the extended RIPEMD-160
hash to form the address. This address can then be used to receive and make payments.
To increase the readability, the address is usually displayed as a base58 encoded
string.
The structure of a transaction in Bitcoin is shown in Figure 3.8. Its version number
specifies, which rules apply to the transaction or in other words, how to handle the
transaction. The flag is an optional field, which signals if witness data is present or
not. The In- and Out- counter are positive integer representing the number of inputs
and outputs respectively. Witness is an optional field and if it is present, a witness
has to be provided for each input. They are required for a protocol extension, called
Segregated Witness (SegWit), which counters transaction malleability and is itself
a requirement for the Lightning payment channel network. The locktime restricts a
transaction to be added to the blockchain, if it is non-zero. It is either represented
as an Unix time timestamp or a block height and a transaction might only be added
to the blockchain once the respective block or point in time has passed. There are
one or multiple outputs in a transaction, starting with Output0. An output contains a
value and a locking script. The value represents the number of Satoshis hold by the
output, where 108 Satoshi equate to 1 Bitcoin. The locking script makes the output
only spendable, if a valid signature script is provided.
A transaction contains one or multiple inputs, starting with Input0. An input contains
a reference to an unspent output, a signature script and a sequence number. The
reference consists of the hash of a previous transaction (TX) and the index of the
output in that transaction. The signature script has to make the locking script of the
referenced output evaluate to true, to be able to redeem the output. The sequence
number, in combination with the locktime, makes it possible to replace a transaction,
as long as the locktime has not been expired. Therefore, once the point in time
specified by locktime has passed, the transaction with the highest sequence number
is added to the blockchain. When the sequence number is set to the highest possible
value, the locktime is ignored, since no other transaction can supersede.
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Figure 3.7: This figure shows the conversion steps from an ECDSA public key to a Bitcoin address.
Source: https://en.bitcoin.it/w/images/en/9/9b/PubKeyToAddr.png
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Figure 3.8: Transaction in Bitcoin

The scripting system used for the transactions supports basically two different script
types. The most common one is a Pay-To-Public-Key-Hash (P2PKH) script. Here
a signature of the transaction, as well as a public key has to be provided to make
the script evaluate to true. The other type of scripts are Pay-To-Script-Hash (P2SH)
scripts, where an arbitrary script can be used to lock an output and the correct input
as well as the script itself has to be provided to unlock it. To evaluate a script the
locking script from the transaction output is combined with the signature script from
the transaction input and then all commands are executed in order. An example
for a P2PKH script evaluation is shown in Figure 3.9. First all constants (signature
and public key) are pushed on the stack. Then the top element on the stack, here
the public key, is duplicated and the address is created from the public key with
the OP_HASH160 instruction. Thereafter the address (or public key hash) of the
output is pushed on the stack and the two topmost elements are compared. The whole
evaluation process will fail, if the two elements are not equal. Finally the signature is
verified and true is pushed on the stack, if the verification is successful. The evaluation
of an P2SH script is similar, but first the script provided in the input is hashed and
compared with the script hash in the output. Afterwards only the data provided in
the input is evaluated.
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Figure 3.9: Evaluation of an Pay-To-Public-Key-Hash script. The order of the executed commands
equals to the signature script, followed by the locking script from left to right. Data is
enclosed by angled brackets and is only pushed on the stack. Opcodes are preceded by OP.

A block in Bitcoin, as depicted in Figure 3.10, consists of a magic number, the
blockheader and one or multiple transactions. The magic number has always the
same value, which is 0xD9B4BEF9 for blocks in the mainnet and 0xDAB5BFFA
for the blocks in the testnet. The blockheader itself contains a version number, a
reference (hash) to the previous block, a Merkle root, a timestamp, Bits and a nonce.
The version number specifies again, which set of rules apply to the block, but it is
independent of the version number of the transactions. The Merkle root serves as a
checksum and is calculated by creating a Merkle tree [Mer89], where all transactions
in the block are used as the leaves of the tree. Therefore, it is sufficient to store only
the Merkle root, to verify the integrity of all transactions. Additionally, due to the
properties of a Merkle tree, it is possible to efficiently evaluate if some transaction is
part of the block or not. The Bits field in the blockheader is a packed representation of
the target, which defines the difficulty of mining the block. The nonce is the solution
of the proof of work puzzle provided by a miner and has to comply with the target.

To add a transaction to the block chain, it has to be broadcasted to the Bitcoin network.
Each peer in the network, who receives the transaction will check for its validity
and valid transactions are then broadcasted to other peers. If the transaction was
received by a miner, the miner can attempt to include the transaction into a block.
Completed blocks are then broadcasted to the network and the block chain is updated
accordingly, if the block is valid. A block is only valid, if all transactions within
it are valid and if the miner is able to solve a computational puzzle. In the case of
Bitcoin the miner has to find a value for the nonce of the block, so that two iterations
of SHA-256, with the whole block as input, produce an output, which is smaller
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Figure 3.10: Block in Bitcoin

than the target value. The target value is included in the Bits field of the block in
packed form. Once a miner has found the solution, she can broadcast the block to the
network and peers will add the block to the blockchain, if no other block has been
added yet. As a reward the miner can transfer the bitcoin, which are created with
each new block, to an address under her control. The amount of bitcoin created is
halved every 210,000 blocks and therefore, the number of bitcoin, which will ever
exist is finite. Additionally, the miner receives a transaction fee, that is every bitcoin
from the input, that is not consumed by an output. This mining process is part of the
proof-of-work system and therefore the consensus finding in Bitcoin.
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4 Double Authentication
Preventing Signatures

In this chapter the functionality of Double Authentication Preventing Signature
schemes or short DAPS is presented. Additionally, the differences to schemes similar
to DAPS will be pointed out and a brief overview on the currently known schemes
and instantiations of DAPS will be given. Afterwards the DAPS scheme used for the
implementation of the presented payment protocol is detailed.

4.1 Definition

ADAPS scheme is similar to a conventional digital signature scheme in that, messages
can be signed with a private key and verified with a public key. In a DAPS scheme
however, a message consists of a payload and an address. Whenever two messages
are signed with the same address, but different payloads, the private signing key
can be extracted from the signatures. Therefore, a DAPS scheme disincentivizes
signing under the same address twice, by exposing the signing key, when doing so.
This makes it possible to bind data or statements to a specific context. So, when for
example, Alice states ’Yes’ in a survey with the address ’X’, she can’t state ’No’
afterwards in the same survey, without revealing her private key.
When discussing DAPS a term frequently used throughout this work is colliding
messages. A pair of messages {m1, m2}, with m1 = (a1, p1) and m2 = (a2, p2), iscolliding, if a1 = a2 and p1 ≠ p2, where a is the address and p is the payload of themessage.
DAPS were first introduced by [PS14; PS17] and accordingly a DAPS scheme with a
message spaceM can be described with the following four algorithms
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(sk, pk) ← KGen(1�): The key generation algorithm takes the security parameter �
as input and outputs a private key sk to sign messages and a public key pk to
verify signatures.

� ← Sign(sk, m): This method takes a message m and a private key sk as input and
outputs a signature �, if m ∈M and ⊥ otherwise.

{0, 1} ← Verify(pk, m, �): This algorithm takes a public key pk, a message m and a
signature � as input and outputs 0, if the verification fails or if m ∉M and 1
otherwise.

sk ← Ex(pk, m1, m2, �1, �2): The extraction algorithm takes the public key pk, a
colliding message pair m1 - m2 and the signatures �1, �2 to the correspondingmessages as inputs and outputs the private key sk.

The algorithm definitions of KGen, Sign and Verify are exactly the same as for digital
signature schemes, but a DAPS scheme requires additionally an extraction algorithm,
which makes it possible to extract the private key, if two messages are signed under
the same address. A DAPS scheme is required to be correct and it is correct when

Verify(pk,m, Sign(sk,m)) = 1, (4.1)
for all possible keypairs generated from KGen, for all m ∈ M and all signatures
outputted from Sign. In a DAPS scheme the EUF-CMA security notion cannot
be applied, as it would be, by design, trivial to forge a signature. Thus, a slightly
restricted variant, due to [PS14] can be applied, as depicted in Figure 4.1. In this
variant the adversary is only allowed to query signatures for messages with a distinct
address. Otherwise the security game is exactly the same as for EUF-CMA and a
PPT adversary should only have a negligible chance to win the game.
Another notion particularly important for DAPS is Double-Signature Extractability
(DSE) defined by [PS14]. The DSE game is shown in Figure 4.2 and the chance, that
an adversary can win the game should be negligible in the security parameter. DSE
ensures, that if the DAPS keypair was generated honestly, the private key can always
be extracted, when two messages are signed under the same address. In other words,
an adversary should not be able to create valid signatures for two colliding messages,
from which the private key cannot be extracted. There is also a stronger version of
double-signature extractability denoted as DSE∗, where the adversary is allowed
to generate the DAPS keypair. Thus, DSE∗ guaranties, that even for maliciously
generated keys, the signing key can be extracted. However, there is no efficient DAPS
scheme known yet, which can achieve this notion.

38



4.1 Definition

ExpEUF−CMA
,DAPS (�) ∶

(skD, pkD)← KGenD(1�)
 ← ∅, ← ∅

(m∗, �∗)← Sign′D(skD,⋅)(pkD)
where oracle Sign′D on inputm ∶
(a,p)←m

if a ∈ , return ⊥
� ← SignD(skD,m)
 ←  ∪ {m}, ←  ∪ {a}
return �

return 1, if VerifyD(pkD,m∗, �∗) = 1 ∧m∗ ∉ 
return 0

Figure 4.1: EUF-CMA security for Double Authentication Preventing Signature schemes

ExpDSE,DAPS(�) ∶

(skD, pkD)← KGenD(1�)
(m1, m2, �1, �2)← (skD, pkD)
return 0, if m1 and m2 are not colliding
vi ← VerifyD(pkD, mi, �i) for i ∈ [2]
return 0, if v1 = 0 or v2 = 0
sk′D ← ExD(pkD, m1, m2, �1, �2)
return 1, if sk′D ≠ skD
return 0

Figure 4.2: DSE security for Double Authentication Preventing Signature schemes
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DAPS schemes cannot only be build as an ad-hoc construction, but conventional
digital signature schemes might also be extended to a DAPS scheme. Making only
black box-use of a conventional scheme has the advantage, that the integration in
existing applications is easier and different schemes may be used as a basis. For such
DAPS schemes an additional notion of extractability, namely weak Double-Signature
Extraction (wDSE), can be defined, due to [DRS18b]. Again there is a variant for
honestly and maliciously generated keys denoted as wDSE and wDSE∗ respectively.
For wDSE(∗) a DAPS scheme is not required to extract the full DAPS private key
from two colliding, signed messages, but only the private key of the underlying
conventional signature scheme. The security game for wDSE∗ is given in Figure 4.3,
where the DAPS private key is denoted as pkD and the private key of the signature
scheme as pkΣ. A PPT adversary should only be able to win this game with negligible
probability.

ExpwDSE
∗

,DAPS(�) ∶

(pkD, m1, m2, �1, �2)← (1�) where pkD = (pkΣ,…)
return 0, if m1 and m2 are not colliding
vi ← VerifyD(pkD, mi, �i) for i ∈ [2]
return 0, if v1 = 0 or v2 = 0
sk′D ← ExD(pkD, m1, m2, �1, �2) where sk′D = (sk′Σ,…)
return 1, if sk′Σ is not the private key corresponding to pkΣ
return 0

Figure 4.3: wDSE∗ security for Double Authentication Preventing Signature schemes

4.2 Self-enforcing Signatures

DAPS are a type of self-enforcing signatures and thus there are other schemes akin
to DAPS, as enlisted by [PS14]. In the electronic cash system from [CFN90], double
spending a token is penalized by revealing the identity of the misbehaving party. This
is similar to DAPS, as in a DAPS scheme signing two colliding messages reveals the
signing key.
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In Lamport signatures [Lam79] signing more than once reduces the security of the
scheme, because each additional signature enables an adversary to create new valid
signatures. Several of these signatures can be combined using a Merkle tree [Mer89],
which results in a more compact public key.
With Fail-stop signatures [WP89] and Forgery-resilient signatures [MO12] it is pos-
sible to prove that a forgery has occurred. When a forgery occurs, the security of
Fail-stop signatures diminishes. Forgery-resilient signatures on the other hand remain
secure. Fail-stop as well as forgery-resilient signatures enable an honest signer to
prove, that an adversary was able to produce a forgery. In contrast, a DAPS scheme
makes it possible to penalize a dishonest signer and therefore disincentivizes to act
dishonest.
Chameleon hash functions [Tal00] are trapdoor one-way functions, with which a
collision can be found efficiently, if a message-randomness pair of a specific hash and
a trapdoor is known. This would make it possible to extract the private parameters,
like in DAPS schemes and indeed [RKS15] were able to build a DAPS scheme from
a chameleon hash function.
Accountable assertions, as introduced in [RKS15] have the same properties as DAPS,
but they are not required to be unforgeable. In other words, they do not have to have
DAPS EUF-CMA security as shown in Figure 4.1. The DAPS scheme presented in
[RKS15] is in fact a modified version of an accountable assertion scheme.
Predicate authentication preventing signatures (PAPS) [BKN17] provide extractabil-
ity for some secret information, if k signed messages fulfill a k-ary predicate. There-
fore, DAPS are a special PAPS, where k = 2 and the secret information is the private
signing key.

4.3 Overview of available DAPS Schemes

There are DAPS in several different settings and with differently large address spaces.
Currently DAPS are known in the factoring-based [PS14; PS17; BPS17], discrete
logarithm [RKS15; DRS18b; Poe18] and lattice-based [BKN17] setting, as well as
DAPS from symmetric key primitives [DRS18a]. The DAPS constructions from
[DRS18b; Poe18] have only a small address space, because the key size is growing
linearly with the number of addresses. All other DAPS schemes offer an exponentially
large address space.
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The very first DAPS construction, which was introduced by [PS14; PS17], can be
build from any extractable 2:1 trapdoor function. They presented an instantiation of
this DAPS with a factoring-based 2:1 trapdoor function utilizing quadratic residues
in Blum integer groups. In [BPS17] DAPS based on trapdoor identification schemes
were introduced. For the instantiation the trapdoored version of the identification
scheme from [GQ90] and the trapdoor identification scheme from [MR02] were used,
which are both factoring-based. Instead of the Fiat-Shamir transform [FS87], which
is usually used to create a signature scheme out of an identification scheme, they
utilized the double-hash (H2) and double-id (ID2) dubbed transforms. This made a
tighter security reduction possible in comparison to Fiat-Shamir and led to the three
DAPS schemes H2[GQ], ID2[GQ] and H2[MR].
DAPS as a subset of predicate authentication preventing signatures (PAPS) were
presented by [BKN17]. Their DAPS is based on a lattice trapdoor function and is
therefore believed to be post-quantum secure. Additionally, it can be extended to
either a PAPS or a multi-authority DAPS (MADAPS). With MADAPS the secret
information can be extracted from the signatures of different signers, if their signed
messages fulfill a predicate.
Ruffing et al. [RKS15] introduced a primitive dubbed accountable assertions (AS),
which can be extended to a DAPS scheme. Their AS-based DAPS is the first DAPS in
the discrete logarithm setting and uses chameleon hash functions in conjunction with
a Merkle tree. This leads to a more efficient construction than the factoring-based
DAPS from [PS14; PS17]. However, the DAPS from [BPS17] are faster and have
significantly smaller signatures, even so their public key size is larger. In [DRS18b]
a DAPS was introduced, which makes only a black box use of conventional digital
signature schemes. Their DAPS utilizes secret sharing and a NIZK proof to ensure
that a share of the private key is included in each signature. This enables the DAPS
constructions to be instantiated with any signature scheme in the discrete logarithm
setting and again improves in efficiency in comparison to previous schemes. However,
the private and public key size is growing linearly with the size of the address space
and therefore the construction is only practical for a small address space. Their
construction additionally makes it possible to build n-times authentication preventing
signatures (NAPS), which is denoted as k-way DAPS in [BKN17]. With NAPS
the private key can be extracted for n colliding messages and thus DAPS can be
seen as a NAPS for n = 2. Another DAPS for small address spaces was introduced
by [Poe18], which is the most efficient DAPS known at the moment. Their DAPS
have a probably optimum signature size for DAPS of 256-bit for a 128-bit security
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level and a constant sized private key. They showed how to construct DAPS from
strictly one-time (SOT) signatures and presented an instantiation with SOT signatures
from identification schemes using a modified version of the Fiat-Shamir transform.
However, their construction does not make a black box reduction of the underlying
signature scheme.
Recently a DAPS, which relies on symmetric primitives was presented in [DRS18a].
In their work, they build upon the approach from [DRS18b] and resolved the problem
of the small address space. Because their DAPS utilizes solely symmetric key primi-
tives, it is a candidate for a post-quantum secure DAPS. Additionally, they introduced
a compiler to build a DAPS from any combination of conventional signature and
DAPS schemes. This might be particularly useful for a wider adoption of DAPS, since
the most efficient DAPS with an exponential address space known at the moment is
ad-hoc and therefore does not make black box use of a conventional digital signature
scheme.

4.4 DAPS in the Discrete Logarithm Setting

In this section the DAPS scheme used for the instantiation of the application, pre-
sented in Chapter 5, is detailed. The application requires a DAPS scheme, where
the private key or a part of the private key can be simultaneously used in Bitcoin.
Therefore, schemes which make a black box use of ECDSA are from advantage.
Even so every DAPS scheme can extend a conventional signature scheme with the
compiler presented in [DRS18a], only the DAPS from [DRS18b] are wDSE∗ secure
and therefore allow the ECDSA secret key to be extracted, even under maliciously
generated keys. The DAPS from [RKS15] have a similar property to wDSE∗, where
the private key of the chameleon hash function (not the whole DAPS private key) can
be extracted from colliding messages, even when the adversary generates the DAPS
keypair. However, when this private key is additionally used for a Bitcoin deposit and
therefore in ECDSA, it might not be possible to prove EUF-CMA security. Therefore,
in the application from [RKS15] the weaker accountable assertions were used, which
increase the efficiency, but do not provide EUF-CMA security in the first place. To
conclude, the DAPS from [DRS18b] seem to be the best choice for the application,
because they make only a black box use of ECDSA, provide wDSE∗ security and are
among the most efficient DAPS. Therefore, they will be detailed in the next paragraph.
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Even so the DAPS construction only allows for a small address space, this is not a
problem for this particular application, because the number of transactions a client is
going to make during the period of time the deposit is valid, is only limited.
The DAPS uses verifiable secret sharing and zero-knowledge proofs to ensure that a
share of the private key is included in each signature. This provides the extractability
required for DAPS schemes. The four algorithms of the scheme are shown in Figure
4.4. In the key generation algorithm, besides the keypair of the digital signature
scheme, a keypair for the ElGamal encryption scheme is created. The number of
addresses is determined by the input n of KGenD and for each address a �i is chosenuniformly at random fromℤq and an encryption of each �i is included in the public key.All �i and the ri used for the encryption are additionally included in the private key.The signing algorithm creates an ECDSA signature of the whole message m = (i, p)
and extends it with a share of the private key, as well as a non-interactive zero-
knowledge proof (NIZK). The share is calculated with fi(X) = skΣ + �i ⋅X, where
the function is evaluated for X = p. The NIZK proof is a proof that (g, pkE , Ci,1, C ′2)form a DDH-tuple, whereCi,1 = gr andC ′2 = pkrE . Thus, it is a proof for the verifiablesecret sharing and ensures, that the share is really a share of the private key. The
extraction algorithm allows to extract the private key of the underlying ECDSA
signature scheme, but not the whole DAPS private key. Therefore, the DAPS scheme
does not provide DSE security. However, it achieves the weaker wDSE∗ notion under
malicious keys, because if a DAPS signature verifies correctly, it is ensured with high
probability, that a share of the private key is included in the signature.
As apparent from the construction, the key size is growing linearly with the number
of addresses and thus the practically usable address space is limited. To solve this
issue, attempts have been made to reduce the dependency of the key size from linear
to logarithmic or even keep the key size constant. The pursued approach was to use a
verifiable random function (VRF) to replace the randomness in the secret key and
the encryption of this randomness in the public key with respectively a constant
parameter. As shown in [BG89] a tuple consisting of a documentD, a PRF evaluation
R of D for some secret key s and a NIZK proof are verifiable, if the NIZK proof is
conducted for the  statement

∃s,∃r ∶ ct = Enc(r, s) ∧R = PRFs(D), (4.2)
where Enc is an encryption algorithm and ct is public knowledge. In context of this
DAPS scheme, this means that given an address, a PRF evaluation of this address,
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an encryption of the secret PRF key and a NIZK proof, it can be verified if the PRF
was evaluated for the given address. Accordingly, the key size of the DAPS would be
constant and the secret key would only consist of the signature and PRF secret key
and the public key of the signature, PRF and encryption public key. This construction
was instantiated with the VRF from [DY05] in conjunction with the elliptic curve
ElGamal encryption scheme. However, it was not possible to come up with a security
proof for it.
These issues were resolved in [DRS18a], where a DAPS with a constant key size and
therefore an exponentially large address space was presented. This DAPS scheme also
builds upon the secret sharing approach, but all building blocks, including the PRF,
solely consist of symmetric key primitives. To use their construction in combination
with a signature scheme relying on structured hardness assumptions would require
a PRF, which maps from ℤq to ℤq. However, most PRFs in the discrete logarithm
setting, like the VRF from [DY05] map from ℤq to G. It is possible to transform the
output of the PRF back to ℤq, by for example using a random oracle, but this would
make it hard to conduct a proof. Furthermore it is difficult to find an efficient proof
system, which proofs simultaneously a statement in ℤq and G. Development in this
area has been made by [AGM18], but building such a DAPS in the discrete logarithm
setting still remains an open topic.
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{sk, pk}← KGenD(1� , n) ∶

Let G be an elliptic curve group of prime order q and with generator g and
H ∶ {0, 1}∗ → ℤq be a hash function mapping exactly to the order of the group ∶

1 ∶ skΣ
R
←←←←←←←←← ℤ∗q and xE

R
←←←←←←←←← ℤ∗q

2 ∶ pkΣ = gskΣ and pkE = gxE

3 ∶ (�i)i∈[n]
R
←←←←←←←←← (ℤ∗q)

n and (ri)i∈[n]
R
←←←←←←←←← (ℤ∗q)

n

4 ∶ (Ci)i∈[n] ← (gri , pkriE ⋅ g
�i )i∈[n] and crs ← SetupDDH(1�)

5 ∶ sk ← (skΣ, (ri, �i)i∈[n])
6 ∶ pk ← (pkΣ, pkE , (Ci)i∈[n], crs)
� ← SignD(sk, m) ∶ parse sk as (skΣ, (ri, �i)i∈[n]). Parse m as (i, p) with i ≤ n and p ∈ ℤ∗q

1 ∶ k
R
←←←←←←←←← ℤ∗q

2 ∶ R← gk

3 ∶ r← Rx mod q, if r = 0 goto step 1
4 ∶ s← k−1(H(m) + r ⋅ skΣ) mod q and if s = 0 goto step 1
5 ∶ z← �i ⋅ p+ skΣ

6 ∶ C ′2 ← Ci,2 ⋅ (pkΣ ⋅ g−z)
1
p

7 ∶ � ← ProofDDH(crs, (g, pkE , Ci,1, C ′2), ri)
8 ∶ � ← (r, s, z, �)
{0, 1} ← VerifyD(pk, m, �) ∶ parse pk as (pkΣ, pkE , (Ci)i∈[n], crs, ⋅). Parse � as (r, s, z, �).
Parse m as (i, p) with i ≤ n and p ∈ ℤ∗q
1 ∶ if r = 0 ∨ s = 0 return 0
2 ∶ z← H(m) mod q and w ← s−1 mod q
3 ∶ u1 ← zw mod q and u2 ← rw mod q
4 ∶ R← gu1 ⋅ pku2Σ
5 ∶ if Rx ≠ r mod q return 0
6 ∶ C ′2 ← Ci,2 ⋅ (pkΣ ⋅ g−z)

1
p

7 ∶ return VerifyDDH(crs, (g, pkE , Ci,1, C ′2), �)
skΣ ← ExD(pk, m1, m2, �1, �2) ∶ parse �i as (⋅, ⋅, zi, ⋅). Parse mi as (ai, pi)
1 ∶ if m1 and m2 are not colliding, return ⊥
2 ∶ if VerifyD(pk, mi, �i) = 0 for any i, return ⊥
3 ∶ skΣ ← z1 ⋅

p2
p2 − p1

+ z2 ⋅
p1

p1 − p2

Figure 4.4: DAPS from ECDSA
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5 Applications

At first an overview of possible applications for DAPS is presented, followed by the
application focused on in this thesis, an analysis of this application and a comparison
to similar ones. In all DAPS application a signer has to take additional care, that she
does not accidentally sign two conflicting messages and thus the signer might want to
maintain a list of signed addresses or employ other mechanisms, that prohibit doing
so.

5.1 Overview

In [PS14; PS17] Poettering and Stebila showed two use-cases for DAPS, one in the
public key infrastructure (PKI) of the web and one in time-stamping. In the context
of PKI, a certificate authority (CA) is trusted to sign only unique certificates for a
subject. It might, however occur, that a CA signs multiple certificates for the same
subject, due to for example security breaches, poor management practices or coercion
through third-parties. When using a DAPS scheme for signing certificates, a CA is
discouraged to ever sign multiple certificates of the same subject, as this would leak
the signing key and compromise their security.
Time-stamping authorities provide proof that certain data was available at a certain
point in time, by signing the hash of the data together with a timestamp. Such
authorities can additionally be disincentivized to act dishonestly by using a DAPS
scheme and only publishing a signature at maximum once per increment of the
timestamp.
Ruffing et al. [RKS15] proposed to use DAPS in combination with digital currencies
so that the private key, which can be extracted from colliding messages, locks at
the same time funds in the corresponding address of a cryptocurrency. Therefore,
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equivocation can be monetarily penalized for any non-equivocating contract. Addi-
tionally, they showed a payment protocol for cryptocurrencies, where a payee is able
to receive payments from unsynchronized points of sale.
In [BKN17] it was suggested, that DAPS can be used to prohibit selling the rights to
a patent to multiple parties. If the patent number is used for the address of a DAPS
message and for example "owned by Party A" as the payload, party A can have some
confidence, that the patent will not be sold to other parties.
Another application, proposed by [DRS18b], is to use DAPS for code signing. When
the version number of an application is used as a DAPS address, the signing key
can be extracted, whenever a normal and a backdoored variant for the same version
number is released. With the signing key everyone can publish new versions or even
updates of the application. This can also be applied for an app store, where every
offered application is signed by the store owner with a DAPS. Here however, the
address has to consist of an application ID and the version number, to allow for
multiple applications. If the owner of the store signs a normal and a backdoored
version of an application, the signing key can be extracted and everyone might publish
applications on the store.
An additional use case for DAPS is to disincentivize publishing a censored version
of digital goods. This can be achieved, by using an identifier, like the ISBN1 for
(e-)books, as the address of a DAPS message and the content as payload. Therefore,
when a normal and a censored version of a digital good is published, the signing key
can be extracted. If this does not suffice as a disincentive alone, the key might addi-
tionally be coupled with the deposit of a cryptocurrency, as proposed in [RKS15].

5.2 Off-chain Payments

The application presented in the following, is based on the payment protocol from
[RKS15]. It enables a customer to make off-chain payments at independent points of
sale with Bitcoin, where all points of sale have to trust a common provider. The points
of sale are partners of the provider, but they may belong to different, independent
companies. The provider may for example be a bank, which can generally be trusted.

1https://www.isbn-international.org/
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Reasons why the provider has to be trusted and in what way will be shown in Section
5.3, but the amount of trust might be arguably minimal.
An example execution of the payment protocol is presented in Figure 5.1. If Alice
wants tomake payments at partners of Bob, she sets up a Bitcoin deposit and sends it to
Bob. A simplified version of such a deposit is shown in Figure 5.2. It basically contains
the maximum amount of bitcoin Alice is able to spend to Bob and a locktime, which
specifies when the deposit expires. If the payment protocol executes successfully,
Bob will receive (a part of) the funds from the deposit and Alice can reclaim the
remainder. If Bob never closes the deposit, Alice can retrieve all funds after the
locktime has expired. If Alice cheats by double spending, Bob can retrieve all funds.
A more detailed description of the deposit transaction is given in Chapter 6.

Alice Point of Sale
D = createDeposit( )
s = receiveStateFromBob(D)

start payment

r
R
←←←←←←←← ℤ∗q

r

t = createTransaction(D, s, r)

s, t

b = verifyTransaction(s, t, r)
abort if b = 0
s′ = createUpdatedState(s)

s′

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

receivePayoutFromBob( t[] )

Figure 5.1: Example for an execution of the payment protocol, where Alice pays at a partner from Bob
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Figure 5.2: Simplified deposit of the client, to establish the payment channel

Once the deposit has enough confirmations on the blockchain, Bob sends Alice a state
corresponding to the deposit. As shown in Figure 5.3 the state contains a reference
to the deposit, the validity period of the transaction channel, the amount of bitcoins
Alice is allowed to spend, the amount she has already spent, a revision number and a
signature of Bob.

Figure 5.3: Signed state, which keeps track of the spent bitcoin

With this state Alice can now make payments to any partner of Bob. When she wants
to do so, she queries a random number from the point of sale and then creates a
transaction, which contains this number. Such a transaction is depicted in Figure 5.4
and it contains a bitcoin transaction, which spends from the deposit Alice has created
in the beginning, a revision number, the random number from the point of sale and
a DAPS, with the revision number as address. The point of sale has to take care,
that each time a new random number is handed over and that the number is really
included in the received transaction. Otherwise the payload of the DAPS will be the
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same for each transaction with the same revision number and Bitcoin transaction and
therefore the secret key will not be extractable upon double spending.

Figure 5.4: Signed transaction for a certain revision of the state

After Alice has created the transaction she sends it with the corresponding state to
the point of sale. The point of sale verifies if:

• the ECDSA signature of the state is valid. It is valid, if it was created by Bob
or if it verifies under a public key, which was signed by Bob.

• the random number handed out to Alice is really included in the transaction.
• the DAPS of Alice is valid.
• the revision number of the state RS matches the revision number of the trans-

action RT .• the Bitcoin transaction is a valid spend from the deposit.
• the amount of bitcoin spend in the transaction do not exceed the limit XL of

the state
• the amount of bitcoin spend by the transaction subtracted by the amount of

bitcoin already spent XS in the state is (greater or) equal to the amount Alice
has to pay.

• the expire time texp of the state has not been passed yet.• a transaction with the revision number RT has not been received yet in any of
the previous transactions from Alice at this particular point of sale.

If everything is sound, the point of sale returns a new state, with an updated value
for the revision number and the amount of bitcoin Alice has spent. The point of sale
additionally includes its public key and Bob’s signature of the key in the state, so that
other points of sale can verify its validity. The point of sale stores all transactions
received from Alice, but Alice only has to keep the latest state. Alice may now make
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payments at other points of sale with the new state. Before Alice’s deposit expires,
Bob collects all transactions from all points of sale, spends the most recent one and
pays his partners accordingly. Bob may claim some fees for his participation as an
intermediary.

5.3 Security Analysis

For this application either of the parties, namely the client, the point of sale or the
provider or each possible pair of them might act dishonestly. Therefore, it will be
analyzed, what each combination of misbehaving parties can achieve by altering the
data they can control, retaining data or reusing old data.

A dishonest client can attempt to double spent the deposit transaction on the
Bitcoin network, retrieve the funds of the deposit after the locktime has expired or
reuse an old state and create a new transaction for that state. The client cannot alter a
state or produce a faulty transaction, if the point of sale follows the protocol correctly.
To prevent the client from double spending the deposit transaction, the provider
has to wait until the transaction has an sufficient amount of confirmations on the
blockchain2 before the provider can hand out the state.
The client might attempt to transfer coins to an address under her control as soon as
the locktime of the deposit transaction is expired. Thus, the provider has to set an
appropriate value for the expire time of the state, which has to be earlier by some
safety margin than the locktime of the deposit. The provider has to have enough time
to spend the transaction, which pays him and closes the payment channel.
The client is able to reuse any old state at any point of sale, which has not received a
more recent version of the state yet and it is not possible to hinder the client doing so.
Therefore, a client can use the state s1 and a corresponding transaction at the pointof sale PS1 and thereafter reuse s1 at a distinct point of sale PS2 and double spendcoins. The client is able to continue doing so at any other point of sale, which did
not receive this state or any state with a higher revision number. However, because
the client is signing the transactions with a DAPS, the signing key can be extracted,
whenever the client sings two transactions with the same revision number. Therefore,
when the provider has collected all transactions and a double spend has occurred,

2https://en.bitcoin.it/wiki/Confirmation#How_Many_Confirmations_Is_Enough
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the private key of the DAPS can be extracted and all funds from the deposit can be
transferred to the provider. Additionally, the provider can set the limit in the state
(how many coins the client is able to spend) to a value, which is lower than the actual
funds in the deposit, to create a penalty for misbehaving.

A dishonest point of sale can hand out a faulty state to the client or refuse to
transfer the collected transactions to the provider.
A point of sale can transmit a faulty state to the client and for example trick the client
into double spending. Thus, the point of sale can return a state with an old revision
number to the client. To counter this, the client should verify the state upon receiving
it and should stop making any further transactions, if the state is incorrect. Once the
locktime of the deposit has passed or the provider has closed the payment channel,
the client can access his funds again. Additionally, the point of sale might falsify any
other data in the state, but this can be countered in the same way.
The point of sale can also withhold the transactions received from the client and
not transfer them to the provider. However, the point of sale is discouraged to do
so, because it will consequently not receive a payout. Furthermore, this would not
affect other points of sale, because their payout is covered in their own collected
transactions.

A dishonest provider can, like a point of sale, hand over a faulty state to the
client and the client can like before wait until the locktime has passed to retrieve the
funds of the deposit.
In addition, a provider may refuse to pay the points of sale after the provider has
received the collected transactions from them. If a provider cannot be trusted to
pay its partners, a point of sale can require the client to include a hash of a secret,
which only the point of sale knows, in the Bitcoin transaction. Furthermore, the
reference of the Bitcoin transaction has to be included in the state and when making
a new transaction the client has to send the signed old Bitcoin transaction along the
normal transaction and the state. The point of sale can then validate if the old Bitcoin
transaction matches with the reference in the state and therefore if all outputs with
the hashes of the secret are still in the current transaction. When the provider collects
all transactions, the points of sale may only reveal their secret if at first the provider
hands them over a transaction, which spends from the output containing the hash of
the secret. The provider may still include a fee in this transaction.
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A dishonest client together with a point of sale can trick other points of
sale in accepting false states. Therefore, the dishonest point of sale may hand out a
state with a prolonged expire time, higher spending limit and reset spent value to the
client. To counter this, the state can be split into two parts. One part, including the
reference to the deposit, the expire time and the spending limit, which is signed by
the provider and should not change and one part, including the amount of spent coins
and the revision number, which can be changed and is signed by the points of sale.
Now the client and the point of sale together can do not better than the client alone
by reusing an old state.

A dishonest client together with a provider can trick the points of sale in
accepting any transaction. This cannot be countered in a scenario, where the points of
sale are completely offline. However, if they have a connection to the Bitcoin network,
they can verify the reference to the deposit, which is included in each state. If the
state does not match the deposit, they can simply refuse the transaction. Furthermore,
the provider is discouraged to act dishonest to its points of sale, because on one hand
this would be easily discovered as soon as the points of sale claim their payouts and
on the other hand the provider would loose its trust and business.

A dishonest point of sale together with a provider has no additional way
to cheat the client than each of them alone, because they have only control over the
state.
To conclude, a point of sale cannot perform meaningful malicious actions, if the
protocol is slightly enhanced and the provider is discouraged to misbehave and the
misbehaving can be countered, if the points of sale have a connection to the Bitcoin
network. A client however, can double spend at different points of sale, by reusing
an old state. This can be detected by the provider, when all transactions are collected
from the points of sale. The provider can then extract the DAPS signing key and
transfer all funds of the deposit to an address of the provider. It remains still a difficult
problem to set an according penalty for the client, because the client can double
spend multiple times. A solution would be to apply this application in a constraint
environment. Ruffing et al. [RKS15] suggested to use their application for public
transport, where the penalty would be, for example the price of a day ticket and the
deposit would have a validity period of one day. The application presented in this
thesis can additionally be used at different transportation companies simultaneously
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and for example one could pay for a long distance train and thereafter use the local
city transport. The penalty could then be a sum of day tickets for all participating
companies. Another use case would be flights and especially flights with a connecting
flight, where the client is able to pay on all airplains, even if they are owned by
different companies. A different solution to the problem would be to synchronize a
minimal amount of data between the points of sale at regular intervals. It would be
sufficient to synchronize only a client ID or the reference to the deposit in combination
with the latest revision number over a secure channel. This would for example amount
per client to 256-bit for the reference (or 32-bit to 64-bit for the client ID) and 8-bit
for the revision number.

5.4 Comparison with Alternatives

In this section a comparison with other fast (off-chain) payment methods for cryp-
tocurrencies will be given. In cryptocurrencies like Bitcoin and Ethereum, which
are proof of work based, it can take more than 30 minutes until a transaction gets a
confirmation on the blockchain. This makes them impractical for real-life application,
where for example one wants to pay for groceries at a supermarket and has to wait 1
hour until the transaction has enough confirmations. Cryptocurrencies like Ripple
utilize a different consensus algorithm, which allows for fast payments and makes
it possible to use them in a real-life scenario at the moment. However, if such a
cryptocurrency would find a broad adaption the current transaction throughput might
still not be enough. Furthermore, the heavy use of a cryptocurrency will cause storage
problems, as every transaction increases the size of the blockchain. Payment proto-
cols, like the one presented or payment networks, like Lightning and Raiden, build a
payment channel on top of the cryptocurrency. This allows for a fast processing of
transactions and a reduced amount of interactions with the blockchain. Therefore,
with payment networks even cryptocurrencies with a low transaction throughput can
be used for real-life applications and additionally less transactions have to be stored
on the blockchain.
Payment channels only require two transactions broadcasted to the blockchain, one
transaction to establish the channel and one to close it. No transaction within a
channel requires an interaction with the blockchain. In a real-life scenario, like the
supermarket example above, it would be inefficient, if each supermarket had to have a
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payment channel with each of their costumers. Thus, the channels have to be extended
into a payment network. If enough participants of the cryptocurrency network have a
payment channel in addition to the supermarket and the customer, a path can be routed
from the costumer to the supermarket through a network of channels. Therefore, as
long as there is a connection to the cryptocurrency network and a path can be found,
the customer is able to pay. Any other participant in the route may charge a fee
for acting as an intermediary. No intermediary has to trust the others, because an
intermediary only has to make payments, if she received her pay first and it is possible
to close out of the channel at any time. However, for payment channels it is important,
that the participants regularly check on the blockchain, if their counterparty has
closed the channel. Otherwise, they may end up making payments, even though the
balance cannot be updated anymore.
The payment protocol presented also only requires two interactionswith the blockchain
per channel. However, in contrast to payment channels, it is only unidirectional. There-
fore, only payments from a client to a provider can be made, but not the other way
around. The presented protocol requires a certain amount of trust from the points of
sale in the provider, but it can be executed completely offline in a constraint envi-
ronment once the channel has been established. Furthermore, the provider has an
incentive to not close the channel early, because the provider will potentially miss
payments upon doing so and the client cannot close the channel before the locktime
has passed. Therefore, there is no need to regularly check the blockchain for the
status of the channel. Payment channels on the other hand cannot be used completely
offline, because a connection to the network of the cryptocurrency is needed to find a
path from payer to payee and to verify that the channel is still open. Additionally, it
may occur that no path can be found at all.
A summary of this comparison is given in Table 5.1 and to conclude, even though
a cryptocurrency might be fast enough to use in a real-life application, it is still
beneficial to use a payment protocol on top of it. In payment protocols transactions
are decoupled from the blockchain and are therefore faster and have no memory
footprint on the blockchain in comparison to on-chain transactions. In payment
channels, like Lightning and Raiden, transactions are bidirectional and off-chain,
but require that a path of channels can be routed from payer to payee and that the
participants regularly check if the channel is still open. In these payment channels
none of the participants has to be trusted. The presented payment protocol only
allows for unidirectional transactions, but this is sufficient for most of the every day
use cases, where a customer wants to buy some kind of goods. While some trust
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is required in the provider, transactions can be performed completely offline in a
constraint environment.

Payment Method Advantages Disadvantages Constraints
Cryptocurrency ∙ funds are always

accessible
∙ transactions from
everyone to every-
one

∙ requires a net-
work connection
∙ scalability for a
widespread adop-
tion

Payment Channel ∙ trustless
∙ bidirectional
transactions

∙ requires a net-
work connection

∙ a path from payer
to payee must exist

Presented Protocol ∙ can be used com-
pletely offline

∙ some trust has
to be put into the
provider
∙ unidirectional
transactions

∙ penalty has to be
clearly definable

Table 5.1: Overview of payment methods with a cryptocurrency
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In this chapter details on the implementation1 of the application presented in Chapter 5
will be given. The DAPS functionality was implemented using the OpenSSL2 library
in C and the Bitcoin related functions and interactions with the Bitcoin network was
implemented using the Libbitcoin3 library in C++.

6.1 DAPS

For the DAPS scheme all four algorithms described in Section 4.4 were implemented.
In the default configuration the key generation algorithm uses the elliptic curve
secp256k1 to be compatible with the ECDSA keys of Bitcoin. Optionally an external
ECDSA secret key can be provided to generate a DAPS key from it. The keypair
for ECDSA as well as the one for elliptic curve ElGamal are generated with the
"EC_KEY" functions of OpenSSL. All other random numbers in the key generation
process are obtained from the "BN_rand_range" function according to the order of
the elliptic curve group.
In the signature generation algorithm SHA256 is used in conjunction with ECDSA
to create the ECDSA signature. For the secret sharing, the payload of the message
is hashed with SHA256 and then used in the calculation of the share. This makes it
possible to use payloads of arbitrary length for the share. In the NIZK proof again
SHA256 is used to create the challenge of the proof. In the verification and extraction
algorithms equivalent choices have been made.

1The implementation is available at https://github.com/dosc919/bitcoin_payment_protocol
2https://www.openssl.org/
3https://libbitcoin.org/
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6.2 Protocol

For the application the whole functionality of the protocol described in Chapter 5.2
was implemented. During the course of executing the payment protocol there are
basically three interesting execution paths:

• The protocol ends normally: The provider collects all transactions from the
client and spends the latest one.

• The client double spends: The provider collects all transactions, detects the
double spend and retrieves all funds of the deposit.

• The client does not make a transaction or detects a fraud: The client waits until
the locktime expires and retrieves the funds of the deposit.

At the beginning of all three paths the client and the provider are generating the
ECDSA keys for Bitcoin from a hierarchical deterministic wallet4 (HDW).

New Provider:
Mnemonic:
equip address calm seed priority garden fade thing axis used couch abuse
Address: miv8cV8pwU9CagsW7yMpqvHcUeh47YTM4W

New Client (id = 0):
Mnemonic:
shop convince absorb invite black myself harsh mother skin subject supply prefer
Address: mpZfrRvDxSct69T77AgkRAF4LeJqQ5nyQ6

In short, a HDW makes it easier to manage keys and for example use a different key
for each deposit. Furthermore, the seed for the HDW is stored as a mnemonic, which
is simply a string of words. It is sufficient to store the mnemonic alone, because all
keys of the HDW can be derived from it. After the keys have been generated, the
balance of the client is queried from the Bitcoin network for the address displayed
(here: mpZfrRvDxSct69T77AgkRAF4LeJqQ5nyQ6).

client balance: 106860000 Satoshis

4https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
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The client can then choose one out of four options on how to proceed.
Please choose an option:
1) create a deposit only
2) create a deposit and make payments
3) make payments with an existing deposit
4) exit

In this case, the client creates a deposit andmakes payments afterwards. The following
data has to be supplied
please enter the hash of a transaction with an unspend transaction output (utxo) to create
the deposit:
c0426769a9327da01e0a9bdbb3dfb64b4f3e163cab4870178409452fd61dded2
please enter the output index of the utxo: 1
please enter the amount of Satoshi (1 Bitcoin = 100,000,000 Satoshi) to spent: 1000000
please enter the lock time for the deposit in days: 1
the deposit is locked until 1520420871 unix time. Please note down the time or otherwise
the deposit will become unspendable once the application has exited.

If everything is correct the deposit transaction is created and broadcasted to the
Bitcoin network. The deposit transaction is a Pay-To-Script-Hash (P2SH) transaction.
Therefore, only the hash of the script is stored in the transaction output and the
script (including the lock time) has to be provided to be able to spent it. When the
transaction was accepted by the Bitcoin network a success message will be displayed

transaction broadcast: success

followed by a summary of the deposit.
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New Deposit (client id = 0):
transaction hash:
0c6e6654b94ff2a0d5ab7c59baaf567e052add3b2a69c934995b79114cde28a2
input transaction:
c0426769a9327da01e0a9bdbb3dfb64b4f3e163cab4870178409452fd61dded2
output adresses:
2NBzYA3xF1Kgw9ET9F1xRkKaQKb19fqaaif : 1000000 Satoshis
mpZfrRvDxSct69T77AgkRAF4LeJqQ5nyQ6 : 105850000 Satoshis

The first output address of the deposit (2NBz… ) contains all locked funds. The
second output (mpZf… ) returns the remaining Satoshis back to the client and is not
used in the protocol. Now the client sends the deposit to the provider and the provider
verifies the deposit and hands out the initial state.

New initial state (provider):
expire time : 1520420871
satoshis limit: 500000
satoshis spent: 0
revision nr. : 0
client id : 0
deposit transaction hash:
0c6e6654b94ff2a0d5ab7c59baaf567e052add3b2a69c934995b79114cde28a2

Here the provider has set the spending limit to 500,000 Satoshis, which means that
half of the funds in the deposit are used as a penalty for misbehaving. Thereafter the
client can decide on what to do next and chooses to make a transaction.

Please choose an option:
1) make transactions
2) double-spent
3) close deposit
4) reclaim deposit
5) exit
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The client chooses a point of sale and the amount of Satoshis he wants to pay and
please choose a point of sale (0 - 4): 1
please enter Satoshi (1 Bitcoin = 100,000,000 Satoshi) to spent: 100000

a new transaction is created accordingly and a summary printed.
New Transaction (client id = 0):
revision nr.: 0
random nr. :
3cffb4a986dc04fba006e922354e7a4a6adc6b7b4d0c3b91a335970092943706
input transaction:
0c6e6654b94ff2a0d5ab7c59baaf567e052add3b2a69c934995b79114cde28a2
output adresses:
miv8cV8pwU9CagsW7yMpqvHcUeh47YTM4W : 100000 Satoshis
mpZfrRvDxSct69T77AgkRAF4LeJqQ5nyQ6 : 890000 Satoshis

The first output address of the transaction (miv8… ) is the address of the provider
and the second one (mpZf… ) of the client. The sum of these two outputs does not
equate to the 1,000,000 Satoshis put into the deposit, because 10,000 Satoshis are
paid to the miner as a transaction fee and are not included. The point of sale validates
this transaction with the initial state of the provider and hands out a new state.
New State (point of sale id = 1):
expire time : 1520420871
satoshis limit: 500000
satoshis spent: 100000
revision nr. : 1
client id : 0
deposit transaction hash:
0c6e6654b94ff2a0d5ab7c59baaf567e052add3b2a69c934995b79114cde28a2

The client can now make transactions at other points of sale and at some point in time
the provider will collect all transactions from the points of sale. If the client did not
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misbehave the provider takes the latest transaction, signs it and broadcasts it to the
Bitcoin network. This transaction, like all transactions of this example, can be found
on the blockchain of the Bitcoin testnet. The transaction of this particular example
can be found here5, where the client has spend additionally 100,000 Satoshis at other
points of sale and the provider receives a total of 200,000 Satoshis. In the case the
client double spends, the provider can extract the client’s signing key and retrieve all
funds of the deposit6. If the client does not make any transactions, all funds in the
deposit can be transferred back to the client as shown here7.

6.3 Transactions

In this section all Bitcoin transactions used in the application will be presented. There
are three different types, which deviate from the standard Pay-To-Public-Key-Hash
transaction, namely the transaction creating the deposit, the transaction paying the
provider and the transaction, where the client retrieves the funds after the locktime has
expired. The locking script of the output in the deposit transaction looks as follows

OP_IF
OP_DUP OP_HASH160
<provider_address>
OP_EQUALVERIFY OP_CHECKSIGVERIFY

OP_ELSE
<lock_time>
OP_CHECKLOCKTIMEVERIFY
OP_DROP

OP_ENDIF
OP_DUP OP_HASH160
<client_address>
OP_EQUALVERIFY OP_CHECKSIG

5https://live.blockcypher.com/btc-testnet/address/2NBzYA3xF1Kgw9ET9F1xRkKaQKb19fqaaif/
6https://live.blockcypher.com/btc-testnet/address/2NEbZRoe6GVFbqr3HRgLWWpC8J1QsCDAQms/
7https://live.blockcypher.com/btc-testnet/address/2Mu3GNYAd4JuyCieKhYTT6UubmkJQypj3jK/
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This script requires either a signature of the provider and the client or the locktime
to be expired and the signature of the client to evaluate successfully and thus make
the output spendable. If the provider wants to receive funds, the provider takes a
transaction signed be the client or extracts the client’s secret key from a double spend
and creates the following signature script

<client_signature>
<client_pubKey>
<provider_signature>
<provider_pubKey>
OP_1

Combined with the locking script, this is evaluated as shown in Figure 6.1. Like in the
example from Chapter 3.3, data is put into angled brackets and is only pushed on the
stack and operators are preceded by "OP". In the following only operators, which are
not already covered in Chapter 3.3, will be described. The "OP_IF" operator checks
if the top element of the stack is non-zero and if so, all operations of the if-branch are
executed. "OP_0" and "OP_1" push zero respectively one on the stack. Therefore, it
can be specified which branch shall be executed by adding either "OP_0" or "OP_1"
to the signature script. Because the preceding "OP_IF"-branch was executed in this
example, all operators from "OP_ELSE" to "OP_ENDIF" are skipped.
If the client wants to reclaim the funds of the deposit, the client waits until the
locktime is expired and uses the signature script

<client_signature>
<client_pubKey>
OP_0

The processing of the signature in combination with the locking script is depicted in
Figure 6.2. Here the operators in the if-branch are skipped and only the else-branch
is executed. The "OP_CHECKLOCKTIMEVERIFY" operator compares the value
on the top element of the stack with the actual locktime of the transaction. The whole
validation process of the script will fail, if the locktime value of the transaction is
smaller than the value of the top stack element. Because the top stack element is not
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removed from the stack by "OP_CHECKLOCKTIMEVERIFY", "OP_DROP" is
used to do so.

Figure 6.1: Evaluation of the script, where the signature of the provider and the client is used
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6.3 Transactions

Figure 6.2: Evaluation of the script, where only the signature of the client is used, after the specified
lock_time has expired
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7 Conclusion

Cryptocurrencies see a gradual increase in public awareness and will most likely
see a broader adoption in the future. One of the biggest problems a cryptocurrency
has to solve is to prohibit the act of double spending. The most common solution
to this problem is to use a public ledger, where everyone can verify the validity of
all transactions made. A public ledger, however, requires some kind of consensus
finding process, which largely impacts the time a transaction takes to be executed and
confirmed. Therefore, payment channels have emerged, which reduce the amount
of interaction with the public ledger to a minimum and allow for a fast payment
processing. Additionally, they reduce the memory footprint on the public ledger as
well as the load on the network of the cryptocurrency.
Very recently a new cryptographic primitive, called DAPS, has been developed,
which makes it possible to penalize the act of making contradicting statements in a
certain a context. Since the first publication [PS14; PS17] new DAPS constructions
and designs have been made [RKS15; BPS17; BKN17; DRS18b; Poe18; DRS18a],
which improve in signature and key sizes as well as computational cost. Additionally,
several applications for DAPS have been proposed, which also include the use of
cryptocurrencies. Double spending in a cryptocurrency can be seen as an act of
making a contradicting statement and it seems only natural to use a DAPS to solve
this issue. However, the key extracted from contradicting DAPS messages has to be
compatible with the signing keys of the cryptocurrency. Thus, not all DAPS schemes
can inherently be used to disincentivize double spending. Either way, it is possible to
build an application with DAPS, to make offline transactions with a cryptocurrency
possible. This can only be achieved in a constrained environment, because it is in fact
not possible to prohibit someone to send the same digital data to an arbitrary amount
of independent parties. Therefore, in an unconstrained environment, the parties would
need some kind of synchronization to detect fraudulent behavior and to avoid using
an absurdly high penalty.
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7 Conclusion

The payment protocol presented in this thesis offers different trade-offs than the
conventional payment channels of cryptocurrencies. The payment channels are bidi-
rectional and completely trustless, but require a connection to the cryptocurrency
network to function properly. The presented protocol only allows for unidirectional
payments and some trust has to be put into the provider, but transactions can be
performed completely offline. Interesting future work on this topic includes the de-
velopment of a cryptocurrency with DAPS in mind, to for example create a hybrid
consensus finding process with a combination of on-chain and off-chain/offline trans-
actions or to further improve DAPS schemes, like for example finding a way to use
signatures based on structured hardness assumptions in the DAPS construction from
[DRS18a].
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