
Fabian Golser

Framework for Automated
Cryptanalysis

Master’s Thesis

Graz University of Technology

Institute of Applied Information Processing and Communications

Advisor: Eichlseder, Maria
Advisor: Dobraunig, Christoph Erwin

Advisor: Mendel, Florian

Graz, February 27, 2019

ii

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master‘s thesis.

Graz,
Signature

iv

Abstract

Cryptography in general is an important field. With the rise
of computers it is more and more determining our lives. Cryp-
tography is about protecting information, but with its manifold
features also other meaningful goals, such as electronic commerce,
digital currencies and secure authentication, can be achieved.

Research in this topic is indispensable to be able to provide
state-of-the-art cryptographic algorithms, which ensure its de-
fined attributes. Therefore, comprehensive competitions around
the world are organized to find the best new cryptographic algo-
rithms.

Every single new algorithm has to be evaluated and reviewed
carefully to guarantee its quality. This is a demanding task, which
needs various tools to fulfil it satisfactorily. Every tool needs as
an input a specific version of the algorithm to be tested.

In this work, an existing framework is extended to analyse and
translate a variety of cryptographic algorithms for cryptanalysis
tools. The generated translations can be used as input for further
analysis tools. Cryptanalysis deals with the analysis of crypto-
graphic systems. Its goal is to get insight into their security, find
weaknesses, or even break them.

This approach aims to accelerate the analysis of new algorithms.
Especially the error susceptibility of human translation will be
reduced because the whole translation process, which was done
manually before, is automated.

Results show that it is possible to automatically translate reference-
implementations of various cryptographic algorithms for further
use with cryptanalysis tools. Although the resulting translations
are not as efficient as manual translations could be, they serve as
a good starting point for cryptologists.

Keywords: cryptography, differential cryptanalysis, analysis frame-
work, hash algorithm, SAT solver

v

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 4
1.3 Current Work . 5
1.4 Contributions and Results . 6
1.5 Outline . 6

2 Cryptography 9
2.1 Overview . 9
2.2 Terminology . 9
2.3 History of Cryptography . 10
2.4 Alice and Bob . 11
2.5 Encryption in General . 12
2.6 Symmetric Cryptography . 13
2.7 Asymmetric Cryptography . 13
2.8 Hash Functions . 14

2.8.1 Overview . 14
2.8.2 Usage of a Hash Function 15

2.9 Authenticated Encryption . 16
2.9.1 Overview . 16
2.9.2 Generic Composition 17
2.9.3 CAESAR: Competition for Authenticated Encryption:

Security, Applicability, and Robustness 19
2.9.4 Ascon . 20

2.10 Electronic Signatures . 20

3 Cryptographic Hash Functions 23
3.1 Overview . 23
3.2 General Functionality of a Cryptographic Hash Function . . . 23
3.3 Usage of a Cryptographic Hash Function 24
3.4 Security Properties . 24

vii

3.4.1 Preimage Resistance 25
3.4.2 Second Preimage Resistance 25
3.4.3 Collision Resistance . 25
3.4.4 Stronger Security Properties 25

3.5 Basic Building Blocks . 26
3.5.1 Permutations . 26

3.5.1.1 Substitution-Box 26
3.5.1.2 Linear Mixing Layer 26

3.5.2 Compression Functions 27
3.5.3 Modes of Operation . 27

3.5.3.1 Merkle-Damg̊ard Design 27
3.5.3.2 Sponge Construction 27

3.6 Algorithms . 28
3.6.1 MD4 . 28
3.6.2 SHA-2 . 29
3.6.3 SHA-3 Final Round Candidates 30

3.6.3.1 Keccak (SHA-3 Winner) 31
3.6.3.2 BLAKE . 31
3.6.3.3 Skein . 31
3.6.3.4 JH . 32
3.6.3.5 Grøstl . 32

4 Cryptanalysis 33
4.1 Overview . 33
4.2 Brute-Force Attack . 34
4.3 Linear Cryptanalysis . 34
4.4 Differential Cryptanalysis . 35

4.4.1 Difference . 35
4.4.2 Differential Cryptanalysis of Block Ciphers 36
4.4.3 Differential Cryptanalysis of Hash Functions 37
4.4.4 Impossible Differential Cryptanalysis 37
4.4.5 Differential Characteristic 37

5 Automated Cryptanalysis Framework 39
5.1 Overview . 39
5.2 ROSE Compiler Framework and Libraries 40
5.3 Plug-ins . 40

5.3.1 NL Tool . 40
5.3.2 CryptoSMT Tool . 41

5.4 Preparations . 41
5.4.1 Annotations . 41

viii

5.4.2 Generate a Template Characteristic 43
5.5 Transformations . 45

5.5.1 Inlining . 45
5.5.2 Loop Unrolling . 47
5.5.3 Remove IF Statements 47
5.5.4 Global Constants . 48
5.5.5 Generate a CNF out of a Truth Table 48
5.5.6 Compound Statements 48
5.5.7 Rotations . 48
5.5.8 Splitting . 49
5.5.9 Single Variable Assignment 49
5.5.10 Integer Cleanup . 49
5.5.11 Standard Form . 49

5.6 Translations . 49
5.6.1 SAT Solver . 50

5.6.1.1 Boolean Operations 50
5.6.1.2 Arithmetic Operations 52

5.6.2 NL Tool . 53
5.7 Command Line Parameters 53

6 Results 55
6.1 Overview . 55
6.2 Preparations . 55
6.3 Characteristic . 58
6.4 NL Tool . 62

6.4.1 Original Implementation 62
6.4.2 Template Files . 64
6.4.3 Translation . 66
6.4.4 Search . 68
6.4.5 Solution . 68

6.5 CryptoSMT Tool . 68
6.5.1 Template Files . 68
6.5.2 Translation . 70
6.5.3 Search . 73
6.5.4 Solution . 73

6.6 Implemented Operations . 74
6.7 Performance Evaluation . 74
6.8 Challenges and Limitations 77

6.8.1 Overview . 77
6.8.2 General . 77
6.8.3 NL Tool . 78

ix

6.8.4 CryptoSMT Tool . 79

7 Conclusion and Future Work 81
7.1 Conclusion . 81
7.2 Future Work . 82

References 85

x

List of Figures

1.1 Schematic of the automated analysis framework 4

2.1 Alice, Bob and Eve . 11
2.2 Example of a cryptographic protocol 12
2.3 Symmetric encryption . 13
2.4 Asymmetric encryption . 14
2.5 Hash function . 15
2.6 Authenticated encryption . 16
2.7 Encrypt-then-MAC (EtM) . 17
2.8 Encrypt-then-MAC (E&M) 18
2.9 Encrypt-then-MAC (MtE) . 19
2.10 Ascon encryption . 20
2.11 Bitsliced implementation of the 5-bit Ascon S-Box 20
2.12 Electronic signature scheme 21

3.1 Schematic of the Merkle-Damg̊ard design 27
3.2 Schematic of a sponge construction 28
3.3 Schematic of the MD4 algorithm 29
3.4 Schematic of the SHA-2 algorithm 30

5.1 Schematic of the automated analysis framework 40
5.2 Transformations . 46

6.1 Computation time NL Tool 76

xi

List of Tables

4.1 Differential notation . 35

5.1 Template characteristic of the MD4 algorithm 44
5.2 Truth Table AND-operation 50
5.3 Truth Table OR-operation . 51
5.4 Truth Table XOR-operation 51
5.5 Truth Table ADD-operation 52

6.1 Differential template characteristic of the MD4 algorithm . . . 59
6.2 Manually modified characteristic of the MD4 algorithm 60
6.3 Another manually modified characteristic of the MD4 algorithm 61
6.4 Differential characteristic of the MD4 algorithm 69
6.5 Implemented operations . 75

xii

List of Code Examples

1.1 Example of a round function with annotations 5
5.1 Annotations example of the MD4 algorithm 43
5.2 Inlining example: raw . 45
5.3 Inlining example: inlined . 47
5.4 Loop unrolling example: loop 47
5.5 Loop unrolling example: unrolled loop 47
5.6 ASSERT . 50
5.7 AND-operation . 50
5.8 OR-operation . 51
5.9 XOR-operation . 51
5.10 Left-Shift-operation . 51
5.11 Right-Shift-operation . 51
5.12 Left-Rotation-operation . 52
5.13 Right-Rotation-operation . 52
5.14 ADD-operation . 52
5.15 Command line parameters of the framework 54
6.1 MD4 reference implementation: round function 56
6.2 MD4 reference implementation: preprocessor defines 57
6.3 Bash command to create template characterisitc 58
6.4 Manually modified characteristic of the MD4 algorithm: search

configuration prefix . 58
6.5 Manually modified characteristic of the MD4 algorithm: search

configuration suffix . 62
6.6 MD4 header file for the NL Tool 62
6.7 MD4 implementation for the NL Tool 63
6.8 NL Tool ConditionWord signature 64
6.9 NL Tool ConditionWordImpl signature 64
6.10 Header template for the automatic translation process 65
6.11 Implementation template for the automatic translation process 65
6.12 Bash command to create NL Tool output 66
6.13 MD4 header file for the NL Tool 66

xiii

6.14 MD4 implementation for the NL Tool 66
6.15 Bash command to run the NL Tool 68
6.16 Implementation template for the automatic translation process 70
6.17 Bash command to create CryptoSMT Tool output 70
6.18 Automatically generated code for the CryptoSMT Tool 70
6.19 Bash command to search the collision 73
6.20 Bash command to extract the collision 73
6.21 Collision . 73
6.22 Bash command to extract the state 74
6.23 State . 74

xiv

List of Symbols

⊕ Bitwise XOR operation

� Left shift operation

� Right shift operation

≪ Left rotation operation

≫ Right rotation operation

∧ Logical AND operation

∨ Logical OR operation

¬ Logical NOT operation (negation)

xv

xvi

Chapter 1

Introduction

1.1 Motivation

In this more and more computer-dependent society it is an important task
to keep information protected. Cryptography is the field of study, which
is concerned to achieve that goal. There are several ways to keep digital
information secret. Since cryptography originated about 4000 years ago,
many new cryptographic methods evolved [28]. Some methods experienced
substantial adoption and are widely used nowadays.

It is not satisfactory for the reliable and useful exchange of information, to
only protect the transmission by encryption. There are also other possibilities
to corrupt information or its usefulness, such as an attacker who can modify
the transmitted information without the senders’ and receivers’ knowledge.
Encryption alone does not prevent this scenario.

Several properties need to hold to make the exchange of information re-
liable. The following four properties of digital information [38, p. 4], which
can be achieved with cryptography, are the most important ones:

• Confidentiality: The information needs to be confidential, so that no
third party can read it during transmission over an insecure channel.
This property can be enforced by encryption, which will be explained
in Section 2.6.

• Authenticity: The origin of information needs to be assured. Infor-
mation can be worthless if the composer is not trustworthy or even
verified. What is the value of information when there is no trust in its
origin? This property can be enforced by electronic signatures, which
will be explained in Section 2.10.

1

• Integrity: The information cannot be altered during its transmission.
At first view, encrypting information before sending it is enough, but
on further investigation it becomes obvious that this is not sufficient.
Encrypted information can still be modified by an attacker, although
it depends on the technique and effort taken, to make it look realistic.
Therefore, it requires the strong need to make every modification of
the transmitted information at least detectable for the receiver. This
property can be enforced by authenticated encryption, which will be
explained in Section 2.9.

• Non-repudiation: Non-repudiation prevents an entity from denying
previous cryptographic actions or commitments. It is a property which
can not be implemented with symmetric cryptography, since more en-
tities would share the same key. Therefore asymmetric cryptography
(Section 2.7) is needed. This property can be enforced by electronic sig-
natures (Section 2.10) in combination with a Public Key Infrastructure
(PKI), because a trusted third party is needed to resolve any dispute.

Specific cryptographic primitives need to be developed to achieve these
properties. A cryptographic primitive is an algorithm implementing ba-
sic cryptographic properties such as one-way functions or pseudo-random
functions. These primitives provide fundamental cryptographic properties
to build up more complex constructs referred to as cryptosystems or cryp-
tographic protocols. Cryptographic algorithms considered as cryptosystems
provide more elaborate functionality such as key agreement or key exchange.
The distinction between primitive and cryptosystem is not definitive. Never-
theless, the terms are used throughout this thesis as they have been defined
above.

Various strategies have been examined over the years for the develop-
ment process of these cryptographic primitives. One of them was to keep
the algorithm secret and assure with this approach its security. It is called
security-by-obscurity.

It turned out that this process is not a very good one in terms of security,
because there are no possibilities to review the algorithm [26]. For example,
if there is a weakness or in the worst case an error in the algorithm, no one
has the possibility to identify it, because it is kept secret.

Security should rely exclusively on Kerkckhoffs’ principles [29], stated by
Auguste Kerckhoffs already in 1883. He proposed, among other things that
“the system must be substantially, if not mathematically, undecipherable”
and “the system must not require secrecy and can be stolen by the enemy
without causing trouble”.

2

Therefore, another process got popular, which is still used today to find
new algorithms or cryptographic schemes. This process involves a public
competition [42, 12] to find the best new algorithm for a specific purpose.
The competition defines the rules and everyone can submit an own proposal
of an algorithm. All participating algorithms are made available publicly and
therefore, the possibility of reviewing them is given to everyone, no matter if
participating in the competition or not. This is an enormous benefit, coming
from the security-by-obscurity approach to the public competition-approach,
in terms of security and efficiency for several reasons:

• The algorithm is better examined for errors when more people inves-
tigate it. Therefore, less errors or weaknesses remain in the chosen
algorithm.

• There is limited possibility for an “evil” entity to knowingly design
a weak algorithm, or to infiltrate weaknesses. Independent observers
control each other.

• It can be faster to review the algorithms, because more helping hands
are available. A company or institution cannot hire as much working
capacities as the public can provide.

• The quality of the algorithm increases in general, because of the boost
of available new ideas and different concepts from which the best can
be chosen.

On the other hand, having more algorithms leads to some new challenges.
One of these challenges is the problem that all the submitted algorithms have
to be investigated carefully. Without a proper reviewing process there is no
real gain in providing the possibility to do it.

This reviewing process takes some effort for sure and needs a lot of time for
cryptanalysts to perform. The more new algorithm-proposals get submitted,
the more analysis-work has to be done. It would be a beneficial issue to
automate this process. On one side, it would speed up the reviewing process
and on the other side the quality would remain equally distributed over all
algorithms.

Unfortunately, it is not possible to automate the whole process. An al-
gorithm can always be designed to fulfil the automated reviewing process
requirements, but still be weak, no matter if intended or not. It seems to be
infeasible to design a reviewing algorithm which can recognise every weak-
ness reliably. Fortunately, at least some aspects of the reviewing process can
be automated very well, which this work focuses on.

3

Since most cryptographic protocols rely on cryptographic primitives, it
is important to keep them strong and secure. One of the primitives which
is widely used in cryptographic protocols are cryptographic hash functions
portrayed in Chapter 3.

A hash function is a special version of a one-way function designed to
map input data of arbitrary size to output data of fixed size. The resulting
output is called hash. Another important property of a hash function is its
infeasibility to find two different input strings which map to the same output
string. This is called collision resistance.

Although the mentioned framework is developed with a general approach
to analyse a broad range of round-based algorithms, its main focus still refers
on hash algorithms. This work focuses on hash algorithms and their auto-
mated review.

1.2 Goals

The goal of this project is to develop a framework for automated cryptanalysis
like shown in Figure 1.1. There exists already a framework developed by
Hechenblaikner [25] designed as a proof of concept, which is used as a basis
for the current project. The framework uses an input file, processes it and
generates an output file.

Framework

Input File
(C -reference)

Output File
(for cryptanalysis)

Figure 1.1: Schematic of the automated analysis framework: The input file is read
by the framework. The framework analyses it and computes an output file for a
specific analysis tool from it.

A special representation of a cryptographic algorithm has to be used as
an input file. It is called C -reference implementation. A reference implemen-
tation has the intention to show the main concepts of the algorithm rather
than being optimized for some criteria, like for example hardware optimiza-
tions. The typical procedure to submit an algorithm to a cryptographic
competition is a C -reference implementation. Therefore, it is also used by
this framework.

4

The reference implementation has to be annotated before it can be anal-
ysed by the framework. The annotation is done in standard C -comments,
seen in Code Example 1.1.

1 // @roundfunction

2 // @statevariable = state

3 // @statesize = 4

4 // @messagevariable = x

5 // @messagesize = 16

6 // @statewidth = 32

7 void roundFct(int state[4], int x[16])

8 {

9 /*

10 ...

11 this is an example round function

12 ...

13 */

14 }

Code Example 1.1: Example of a round function with annotations: The
annotations have to be made within standard C -comments, starting with
a @-character. Some possible annotations are able to be seen in the code
example. Some of them are obligatory, like @roundfunction and some of them
are optional, like @messagevariable.

The input file, and if required also the differential characteristic-file (Sec-
tion 4.4.5), can be processed by the framework. It reads both files and
translates the cryptographic algorithm into an intermediate language. This
language is the ROSE Intermediate Representation (ROSE IR) internally
based upon SAGE III, a language defined by the ROSE-compiler framework
[45, 34]. This framework, developed at Lawrence Livermore National Lab-
oratory (LLNL), is presented in Section 5.2. In this representation several
transformations, described in Section 5.5, are performed.

With the final processing step the algorithm gets translated into language
for a desired output format, such as a boolean logic language called CVC to
be processed by a Satisfiability Modulo Theories (SMT) solver like the Simple
Theorem Prover (STP) [22]. The algorithm can be translated into many
different languages or formats serving different tools for further processing.

1.3 Current Work

In this Section the current state of research is summarized. At the moment,
every single algorithm which needs to be tested, has to be translated manually
for all the cryptanalysis tools. Therefore, this project tries to improve the
current situation and replace the error-prone manual translation. Also, a
speed-up of the cryptographic analysis process could be achieved.

5

There exists a proof of concept to design such a framework [25]. This
project is a follow-up to the existing project, with the goal to expand its
functionality and make it more general. Furthermore, it should be possible
to process some real-world problems like the final round candidate algorithms
from the last hash-competition [42]. Additionally, it should allow the pro-
cessing of their differential descriptions to also have the possibility to perform
differential cryptanalysis.

1.4 Contributions and Results

The framework developed along with this thesis can be used to automati-
cally read and parse cryptographic algorithms for further analysis tools. As
concrete example the MD4 hash algorithm reference implementation form
the Request for Comments (RFC1) was parsed into the CVC language. The
generated output file can be used with a SMT solver like STP to look for
differential characteristics. The results from this example and also some
other results can be found in Chapter 6. In the following a list of the most
important contributions of this thesis is shown:

• A new translator plug-in for the CryptoSMT Tool was developed.

• The framework was extended to read characteristic files and create
template characteristics for different algorithms.

• A differential description can be created for selected operations.

• The framework can now handle some real world cryptographic exam-
ples, not only dummy code.

• The cryptographic algorithms MD4 and Ascon can be translated suc-
cessfully for two different cryptanalysis tools, the NL Tool and the
CryptoSMT Tool.

1.5 Outline

All relevant topics will be described in more detail in the following Chapters.
This current part gives an outline for the main part of the thesis. In the be-
ginning the basics will be discussed and the reader will be introduced into the
terminology of the topic. Gradually, the reader can go more into specifics,

1https://www.rfc-editor.org/rfc-index.html

6

https://www.rfc-editor.org/rfc-index.html

regarding selected parts until the main Chapter of the thesis is reached. In
this Chapter, the reader will get familiar with the framework built along with
this thesis.

Chapter 2 is about cryptography in general, so relevant cryptographic
concepts, some examples and important aspects will be explained with the
intention that more detailed concepts in further Chapters can be understood.

The main aspect of this work focusses on cryptographic hash func-
tions. Therefore, cryptographic hash functions will be defined in more detail
in Chapter 3. It includes the questions what they are and for what they are
needed. Some cryptographic hash functions are selected as examples to show
the reader their need.

In Chapter 4 the topic of cryptanalysis will be discussed. It is about
how cryptographic algorithms can be analysed, manually and automatically.
There, the basic methods used for further analysis within external tools will
be explained. Especially differential cryptanalysis is discussed, which is one
of the most powerful analysis-methods for cryptographic algorithms, so it is
a major topic of this thesis. It will be explained in general and also with a
specific example, so the reader can follow its principles.

In Chapter 5 the automated cryptanalysis framework will be intro-
duced. Among other things, implementation-specific details about it will be
discussed. First of all an overview of the whole framework will be given and
afterwards, special parts will be described in more detail.

Some results of the project are shown in Chapter 6. This includes dif-
ferential characteristics generated by the framework, found hash-collisions
and output files for further computations. These output files can be used
as input files for the subsequent analysis programs. Some of the problems
arising during the project are elaborated and their solutions discussed. For
the progressing development of the framework this part is of special rele-
vance, because the main problems occurring during the implementation of
the framework should be a lesson for further development.

Chapter 7 will draw a conclusion about the project. Possibilities and
limitations of the framework and the used processing method in general are
shown. We provide some proposals for future work. In supplementation,
ideas for additional features and improvements for the implementation are
collected here.

Finally, the references list all the papers and projects which influenced
this project, so it is a good starting point for further reading.

7

8

Chapter 2

Cryptography

2.1 Overview

In this chapter, the reader will be introduced to the topic of cryptography.
First, important terms relating to cryptography are defined in Section 2.2.
The history of cryptography will be reviewed shortly in Section 2.3, where
some conclusions will be drawn out of the historic evolution. Examples on
how to plot cryptographic schemes and interactions within cryptographic
protocols will be given in Section 2.4, with the entities Alice and Bob typically
used in cryptographic contexts, shown in Figure 2.1.

Afterwards, different encryption types and other cryptography related
concepts will be explained, which are needed in the following to understand
this work. Therefore, examples of specific algorithms and their encryption
schemes in the Sections 2.6, 2.7 and 2.9 are given.

Hash algorithms (Section 2.8) are shortly introduced but explained in
more detail later in a separate Chapter 3. In the end, some special topics
are treated, like cryptographic competitions in Section 2.9.3 and electronic
signatures in Section 2.10.

2.2 Terminology

Some terminology has to be defined, before we can move on to further sec-
tions, to have a common language:

Cryptography is about hiding information. The word cryptography comes
from the greek words κρυπτός kryptós hidden, secret, and γράφειν graphein,
to write. When we talk about cryptography, the term encryption can not be
left aside. Encryption means the process of encoding information, so that
it is not possible to read it without permission. Usually, an algorithm is

9

provided with the message to be encrypted and a secret key, which is used to
protect the information. This secret key, which is normally talked about in a
cryptographic context, is a secret word or phrase protecting the information.
An encryption algorithm encrypts information with a secret key and only the
entities possessing the key can access the information.

Encrypted information can be decrypted to gain access to the secret in-
formation again. Usually the same algorithm and sometimes also the same
key is used to recover the information. Nevertheless, there also exist circum-
stances where a different key is used to encrypt and to decrypt information.
The same applies for the algorithm involved in the encryption and decryption
process.

Information, which is not encrypted yet, is called plaintext. After the
encryption process, when it can not be read any more, it is called ciphertext.
A cryptographic algorithm can also be called cipher in some settings.

2.3 History of Cryptography

Information for this section was taken from [28]. Cryptography has a long
history. Records go back to around 1900 B.C. in ancient Egypt, where cryp-
tography was used first, as far as we know. It can not quite be compared
with modern cryptography as it is used nowadays, but it incorporated a de-
liberate transformation of the writing, which is one of the essential elements
of cryptography. It is the oldest text known to do so [28, p. 64ff].

Also the Greeks and Romans have used cryptography, but mostly for
military purposes. The Spartans for example developed the first system of
military cryptography as early as 500 B.C. It included a cryptographic device
called skytale, which is a cylinder with a strip of parchment wound around
(transposition cipher).

The Romans developed the Caesar cipher, which is a shift cipher, a type
of substitution cipher, where all letters are shifted by three letters. Also
many other peoples and cultures developed variations of these cryptographic
concepts.

For thousands of years cryptography was more like what might be called
classic cryptography, which is based on simple mathematical constructions.
Only in the last decades, since the 20th century, more sophisticated me-
chanical and electronic machines were developed which made it possible to
increase the cryptographic complexity. The increase of computational power
with the raise of computers has continuously allowed schemes of still greater
complexity, which are not suited to pen and paper any more.

Both world wars were under a big influence of cryptography and crypt-

10

analysis. Battles were decided in favour of the code-breaking party and
history was written depending on it.

In modern times cryptography is based on mathematical theory and com-
puter science. In theory ciphers are breakable, but designed around the
computational hardness assumption and therefore still infeasible to break in
reasonable time.

2.4 Alice and Bob

If it comes to cryptography, we usually talk about two parties that try to
communicate with each other and an adversary. Alice and Bob are the two
communicating parties and Eve tries to intercept the communication. An
exemplary situation can be seen in Figure 2.1. In the following Alice is
replaced by A, Bob is replaced by B and Eve is replaced by E for convenience.

Alice Bob

Insecure Channel

Eve (Eavesdropper)

Hi, I’m Alice! Hi, I’m Bob!

Hi, I’m Eve!

Figure 2.1: Alice, Bob and Eve: The typical diagram explaining entities and their
connection in a cryptographic setting. In this example Eve is intercepting the
private communication between Alice and Bob without them knowing.

If A and B communicate over an insecure channel, E can listen on the
whole communication between the two without them knowing. E can also
for example capture a message from A, modify it and forward the modified
message to B. So E would be able to control the communication between
them completely.

11

Encryption is one measure to prevent other entities listening on an in-
secure channel. If all messages A sends to B are encrypted, E is not able
to listen to their communication. Still, E is able to intercept messages and
delete or modify them, but without the possibility to read the information
inside the messages. To protect the communication between A and B from
other attacks than just reading the communication, more advanced crypto-
graphic methods must be applied. Some of these are treated in this chapter.

In Figure 2.2 an example of a cryptographic protocol is shown. A and B
are the two communicating entities. Their communication is shown over time
in a chronological order. The two arrows from their names down respectively
represent the time axis. The arrows which are drawn horizontally represent
the messages sent from A to B and back.

A B
Message a

Message b

Message c

Message d

Figure 2.2: Example of a cryptographic protocol: A and B communicate with each
other, the messages they send are shown in chronological order.

2.5 Encryption in General

Modern cryptography relies on computational hardness of publicly available
algorithms instead of secret algorithms like in past times. Some algorithms
also include provable security, meaning it is shown that an attacker has to
solve the underlying hard problem in order to break its security. This aspect
makes the algorithms trustworthy to the public. No single organisation is
able to tamper with the encryption if the algorithm is applied correctly.

12

2.6 Symmetric Cryptography

E D
C

P

K

P

K

Figure 2.3: Symmetric encryption.

Symmetric encryption (Figure 2.3), also called secret key encryption, is one
of the basic forms of encryption. The word symmetric is related to the
encryption key K. It means that for encryption and decryption the same
key K is used. Therefore, the key has to remain secret in order to keep the
encrypted plaintext P protected.

Encryption: The plaintext P gets encrypted with the encryption op-
eration EK(·) using the key K. As a result, it returns the encrypted
plaintext as ciphertext

C = EK(P). (2.1)

Decryption: The decryption operation DK(·) with the same key K is
the inverse operation to the encryption operation. It takes the cipher-
text C as input and returns the original plaintext

P = DK(C) = DK(EK(P)). (2.2)

2.7 Asymmetric Cryptography

Asymmetric encryption (Figure 2.4), also called public key encryption, is
one of the basic forms of encryption. The word asymmetric is related to the
asymmetry of the encryption and decryption operation. It means that for
encryption and decryption, different keys Kpu and Kpr are used. The public
key Kpu, which is available to the public, is used for the encryption operation
and the private key Kpr, which is kept secret, is used for the decryption
operation. This setting enables every entity to encrypt messages for a desired

13

entity, but only the desired entity can decrypt and read them. This is an
advantage in comparison to symmetric encryption, but it comes with the
drawback that its cryptographic operations are slower.

E D
C

P

Kpu

P

Kpr

Figure 2.4: Asymmetric encryption.

Encryption: The plaintext P gets encrypted by the encryption op-
eration EKpu(·) using the public key Kpu. As a result, it returns the
encrypted plaintext as ciphertext

C = EKpu(P). (2.3)

Decryption: The decryption operation DKpr(·) with the private key
Kpr is the inverse operation to the encryption operation. It takes the
ciphertext C as input and returns the original plaintext

P = DKpr(C) = DKpr(EKpu(P)). (2.4)

2.8 Hash Functions

2.8.1 Overview

A hash function is a function that maps input data of arbitrary size to output
data of fixed size. It takes an input message M of arbitrary length and
scrambles it. A fix sized output value y, called hash, is generated. Internally
it works like a “one-way” function, because it is easy to compute the hash
but hard to invert it. A schematic picture of a hash function is shown in
Figure 2.5.

14

x

h(·)

y

Figure 2.5: Hash function: The input message x ∈ X can be of arbitrary length.
The hash function h(·) generates the hash value y ∈ Y of fixed length out of x.

The focus of this thesis will be on cryptographic hash functions, which
are a subclass of general hash functions. They differ from each other in their
properties. Therefore, hash functions will only be introduced briefly here.
More details on cryptographic hash functions will be given in Chapter 3.

2.8.2 Usage of a Hash Function

Hash functions have many different use-cases. Some of them are in cryp-
tographic applications of course, but there are also use cases outside of the
cryptographic field. Only a few are described here for illustrative purposes.

• Checksums: Hash values can be used as a checksum for digital in-
formation. For example, when downloading a file from the Internet,
sometimes a checksum can be found on the web-page to verify if the
download was correct.

• Hash Map: A hash map is a data-structure, which is used in several
programming languages such as in C++. This structure allows the pro-
grammer to store data in the format HashMap < Key, V alue > with
an average access time complexity of O(1).

• Git commit IDs: A GIT commit id is a SHA-1 hash over all the
important data of a commit. It is used to make the verification process

15

of a GIT repository faster by just comparing the commit ids instead of
its corresponding data.

2.9 Authenticated Encryption

2.9.1 Overview

Authenticated encryption, shown in Figure 2.6, is a special form of sym-
metric encryption. The word authenticated is related to the fact that the
encrypted message can be verified after the decryption operation. An authen-
tication tag is generated e.g. with a hash function along with the encryption
operation. This tag is used within the decryption operation to verify the
authenticity of the message. Not like electronic signatures, which provide
integrity and non-repudiation, authenticated encryption implements confi-
dentiality and integrity.

E D

C

T

N

A

P

K

N

A

{P,⊥}

K

Figure 2.6: Authenticated encryption.

Encryption: The plaintext P gets encrypted by the encryption oper-
ation EK(·, ·, ·) using the key K, a nonce N and some associated data
A. As a result, it returns the encrypted plaintext as ciphertext C and
an authentication tag T

C, T = EK(N,A, P). (2.5)

Decryption: The decryption operation DK(·, ·, ·, ·) with the key K is
the inverse operation to the encryption operation. It takes a nonce N ,
some associated data A, the ciphertext C and the authentication tag
T as input and returns the original plaintext

{P,⊥} 3 DK(N,A,C, T) = DK(N,A,EK(N,A, P)) (2.6)

16

if the verification process of the tag is correct or ⊥ if the verification
fails.

2.9.2 Generic Composition

There are three commonly used approaches to authenticated encryption.
Encrypt-then-MAC (EtM), Encrypt-and-MAC (E&M), and MAC-then-Encrypt
(MtE). They will be described in the following.

Encrypt-then-MAC (EtM)

Plaintext

Encryption

Ciphertext

Key

MAC

Keyed Hash Function

Figure 2.7: Encrypt-then-MAC (EtM).

This approach, shown in Figure 2.7, is the standard method according to
ISO/IEC 19772:2009 1. It is the only method which can reach the high-
est definition of security in authenticated encryption, but this can only be
achieved when the MAC used is “strongly unforgeable” [4]. Therefore, it is
used e.g. in Internet Protocol Security (IPsec), a secure network protocol to
encrypt and authenticate packages, or in Transport Layer Security (TLS), a
cryptographic protocol to provide communications security.

1https://www.iso.org/standard/46345.html

17

https://www.iso.org/standard/46345.html

Encrypt-and-MAC (E&M)

Plaintext

Encryption

Ciphertext

Key Keyed Hash Function

MAC

Figure 2.8: Encrypt-and-MAC (E&M).

This approach, shown in Figure 2.8, is used e.g. in Secure Shell (SSH2),
although the scheme has not been proved to be strongly unforgeable in itself
[4].

2https://tools.ietf.org/html/rfc4251

18

https://tools.ietf.org/html/rfc4251

MAC-then-Encrypt (MtE)

Plaintext

Plaintext

Key

MAC

Keyed Hash Function

Encryption

Ciphertext

Figure 2.9: MAC-then-Encrypt (MtE).

Also this approach, shown in Figure 2.9, has not been proved to be strongly
unforgeable. It is used in Secure Sockets Layer (SSL/TLS)3 where in the
recent past a padding error led to a successful padding oracle attack, called
Lucky Thirteen [1] against it.

2.9.3 CAESAR: Competition for Authenticated En-
cryption: Security, Applicability, and Robust-
ness

The CAESAR-competition [12] is a cryptographic competition trying to find
a portfolio of authenticated ciphers. On February 20, 2019 the final portfolio
was announced by the CAESAR selection committee. One of the candidates
is Ascon, which is described in Section 2.9.4. Ascon was selected as first
choice for use case 1: “Lightweight applications (resource constrained envi-
ronments) ”.

3deprecated, predecessor version of TLS

19

2.9.4 Ascon

Ascon [17] is an authenticated encryption algorithm. Its encryption oper-
ation can be seen in Figure 2.10 and the bitsliced implementation of the
S-Box can be seen in Figure 2.11. There are many more algorithms, but
here only one is listed exemplary for the whole class of authenticated encryp-
tion algorithms. The reason why this one is listed here, is because it is the
only authenticated encryption algorithm which C -reference implementation
is processed by the framework within this thesis. All the other processed
algorithms are hash algorithms.

IV‖K‖N 320 pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c

pb

⊕

0∗‖1

c

⊕r

P1C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k

T

Initialization Associated Data Plaintext Finalization

Figure 2.10: Ascon encryption. Figure from [27].

x0

x1

x2

x3

x4

⊕

⊕

⊕

5
5

5
5

5

�

�

�

�

�

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

5

x0

x1

x2

x3

x4

Figure 2.11: Bitsliced implementation of the 5-bit Ascon S-Box. Figure from [27].

2.10 Electronic Signatures

Electronic signatures are a useful tool for modern society. According to [52]
they are an important component for various e-government solutions.

Since the European Parliament defined the Directive 1999/93/EC, which
defines the properties and requirements of electronic signatures, their impor-
tance increased significantly [24]. With this directive, electronic signatures
gained the legal equivalence to handwritten signatures. To ensure the same

20

properties of handwritten signatures in the digital world, electronic signa-
tures combine many cryptographic primitives to a bigger cryptosystem.

The properties authenticity, integrity and non-repudiation of origin have
to be fulfilled to compete with handwritten signatures. These properties are
already described in Section 1.1.

First, a hash algorithm is used to compute a cryptographic checksum over
a document (information/data). Second, the hash value is signed (authen-
ticated with a public key algorithm) with the private key belonging to the
signer’s certificate.

Message

h(·)

Message Digest

Signing
Algorithm

Private Key

Signed Message

Verification
Algorithm

Public Key

Message

h(·)

valid / invalid

Figure 2.12: Electronic signature scheme: The message gets signed with the
sender’s private key, transmitted and verified with the sender’s public key. If
the original message digest and the new message digest are equal, the message’s
signature is valid. Otherwise the signature is invalid.

In Figure 2.12 the process of signing a message, transmitting it and veri-
fying it on the receiver’s side can be seen.

21

22

Chapter 3

Cryptographic Hash Functions

3.1 Overview

This chapter is about cryptographic hash functions, their composition and
application. At first, an overview of the chapter will be given. Thereafter, the
general functionality will be explained. As soon as it is made clear how cryp-
tographic hash functions work, their usage and application in practice will
be examined. For this purpose, some examples with common cryptographic
hash function use-cases will be given. The security properties are elaborated
carefully, because this is one of the main contents of this thesis. At last, some
chosen algorithms are reviewed in more detail. This information is needed
in the following to understand the assumptions made in Chapter 4 about
cryptanalysis.

There are many different cryptographic hash functions in the field. Some
of them are widely used, others not. The most important ones are discussed
in Section 3.6. Starting from this point, only cryptographic hash functions are
discussed. If at some point only the word “hash” or “hash function” occurs,
it is always about cryptographic hash functions if not stated differently.

3.2 General Functionality of a Cryptographic

Hash Function

A cryptographic hash function is a function that maps input data of arbitrary
size to output data of fixed size. In this regard, they work the same as
general hash functions described in Section 2.8. The main difference is that
a cryptographic hash function has additional properties related to its security,
which are described in Section 3.4.

23

A cryptographic hash function is designed to be a “one-way” function, this
means it should be “infeasible” to invert the function. More accurately, it is
fast to compute a hash of input data and “infeasible” to compute the original
data from the hash value. What exactly “infeasible” means is described in
Section 3.4. An ideal hash algorithm should not be able to be inverted faster
than to brute-force it. Therefore, the computational effort should be as high
as about 2n, where n is the length of the hash value in bits.

Another property hash functions implement is the avalanche effect. This
property states that if the input value changes slightly, the output value
changes significantly. Even a single bit-flip in the input should generate a
significantly different output.

3.3 Usage of a Cryptographic Hash Function

Cryptographic hash functions have many different use-cases. Some of them
are described here for illustrative purposes. Use-cases of general hash func-
tions are described in Section 2.8.2.

• Digital Signatures: Hash algorithms are a critical part in the process
of creating digital signatures. A hash value over the data to be signed
is computed. This value is signed with the key hold by the owner of
the corresponding certificate.

• Bitcoin Blocks: Bitcoin B1 is a cryptographic currency, or cryp-
tocurrency, which is built upon the one-way property of cryptographic
hash functions [40]. A peer-to-peer network timestamps transactions
by hashing them into an ongoing chain of blocks.

• Protecting data: A hash value can be used to uniquely identify secret
information. This requires that the hash function is collision-resistant,
which means that it is very hard to find data that will result in the same
hash value. Collision resistance is accomplished in part by generating
very large hash values. For example, SHA-1, still one of the most widely
used cryptographic hash functions, generates 160-bit values.

3.4 Security Properties

A cryptographic hash algorithms’ security can be measured along with its
three important security properties pre-image resistance 3.4.1, second pre-
image resistance 3.4.2 and collision resistance 3.4.3. If all three properties

1https://bitcoin.org/

24

https://bitcoin.org/

are fulfilled, the algorithm is treated as secure. Nevertheless, also other
properties, even stronger ones which can be seen in Section 3.4.4 can be
defined for an algorithm. To understand the explained security properties,
hash algorithms have to be described first. The mathematical description of
a hash algorithm is defined by [41] as followed. A hash function is a mapping

h : X → Y, (3.1)

with X = {0, 1}∗ and Y = {0, 1}n for some fixed n ∈ N+. Let x ∈ X and
y ∈ Y , then it is defined as h(x) = y. x is called preimage of y, where x
corresponds to the input message and y to the output value called hash value
or digest of the length n.

The security properties described in the following are taken from [38,
p. 323f].

3.4.1 Preimage Resistance

For a given output value y of a hash function h(·) it is infeasible to find any
message x with h(x) = y. Infeasible means, the complexity is as high as
applying a brute-force attack, which is O(2n).

3.4.2 Second Preimage Resistance

For a given message x1 it is infeasible to find any second message x2 6= x1

with h(x1) = h(x2). Infeasible means, the complexity is as high as applying
a brute-force attack, which is O(2n).

3.4.3 Collision Resistance

It is infeasible to find any pair of messages x1 6= x2 with h(x1) = h(x2).
Infeasible means, the complexity is as high as applying a brute-force attack
with on average 2n/2 possible tries, corresponding to O(2n/2). The attack
targeting collision resistance is also called birthday attack.

3.4.4 Stronger Security Properties

Some hash functions, which rely on a sponge construction, try to state their
security not through the previous three properties, but are referring to a
different property to avoid the need to fulfil these. The approach states that
the hash function should behave like a random oracle, which is a theoretical
black-box with ideal behaviour. This random oracle responds to each unique

25

query with a true random answer. Because of its ideality no conclusion
can be drawn, which input message was used. Therefore, it is suited for
cryptographic applications.

3.5 Basic Building Blocks

Hash algorithms, like most other algorithms are built from basic building
blocks. Some of these basic blocks, which are used later when writing about
specific algorithms in Section 3.6 are explained here. The most important
building blocks from which hash functions are built are permutations 3.5.1
and compression functions 3.5.2. Additionally, for hash functions there are
different modes of operation described in Section 3.5.3.

3.5.1 Permutations

A permutation is a function σ : X → X that maps a finite set X onto itself,
in such way that for each y ∈ X there exists exactly one x ∈ X such that
σ(x) = y. Permutations are operations like substitution-boxes 3.5.1.1 or a
linear mixing layer 3.5.1.2.

3.5.1.1 Substitution-Box

A substitution-box, short S-Box, is used as a basic building block in cryptog-
raphy. It takes a number of input bits m and transforms them into a number
of output bits n. In general it is a non-linear substitution operation. There
are static S-Boxes like in DES and AES, which can be efficiently imple-
mented with a lookup table, or dynamically generated S-Boxes derived from
the secret key, which, in return, make cryptanalysis more difficult. Also for
modern hash algorithms S-Boxes are often used, like e.g. in Grøstl (Section
3.6.3.5).

3.5.1.2 Linear Mixing Layer

A linear mixing layer can be a part of a hash function or an other crypto-
graphic primitive with the purpose of scrambling bits. It works similar to
an S-Box with the main difference that an S-Box is a non linear operation
and a linear mixing layer is a linear operation. The linear mixing layer has
a larger input space and consists only of linear bit-operations like ⊕, �, �
and ≪, ≫.

26

3.5.2 Compression Functions

The compression function is the part of a hash function which reduces the
number of bits. Because of the integral property that a hash function maps
an arbitrary number of bits to a defined number of bits, every hash function
needs to compress.

3.5.3 Modes of Operation

There are different modes of operation like the Merkle-Damg̊ard design (Sec-
tion 3.5.3.1) or the sponge construction (Section 3.5.3.2). Also others exist,
but are not treated within this work e.g. the HAIFA construction [9].

3.5.3.1 Merkle-Damg̊ard Design

The Merkle-Damg̊ard design shown in Figure 3.1 is a specific design con-
cept for hash functions which provides collision resistance inheritance. This
means a hash function in Merkle-Damg̊ard design is collision resistant if its
compression function is collision resistant [39]. With this approach the secu-
rity analysis can be focused on the smaller compression function, where the
main focus lies on. The Merkle-Damg̊ard structure was therefore applied to
many popular hash algorithms like MD4, MD5 and the SHA-2 family.

In general it works in three steps. First, the input is padded and gets
split into blocks mi of equal length. Second, the compression function f is
applied iteratively with the output hi−1 of the previous iteration and a new
block mi as inputs to produce the new intermediate state hi as shown in
Figure 3.1. And third, an optional post-processing step is applied.

pad(m) = m1 m2 m3 m4

fh0 = IV f
h1

f
h2

f
h3

· · ·

Figure 3.1: Schematic of the Merkle-Damg̊ard design: The blocks get combined
iteratively. Figure from [27].

3.5.3.2 Sponge Construction

The sponge construction is one of the modes of operation used for hash
algorithms, but also for other cryptographic constructions like the stream
cipher Ketje [7] or Keyak [8].

27

Absorbing phase Squeezing phase

m0

c bits

r bits

f

m1

f

m2

f

m3

f

h0

f

h1

f

h2

Figure 3.2: Schematic of a sponge construction. Figure from [27].

A sponge construction, also called sponge function, seen in Figure 3.2,
uses its internal transformation f to map input of arbitrary length to output
of arbitrary length. It is similar to the Merkle-Damg̊ard design with the
difference that its transformation function f does not compress but the bit-
operation combining internal state and message block does.

The sponge function consists of an absorbing phase and a squeezing phase.
During the whole processing the input and output state of f is divided into
the c-bit inner state and the r-bit outer part. The absorbing phase reads the
input message m divided into equally sized blocks m0 . . .mi and XORes them
into the outer state r. In the squeezing phase the outer state is appended to
the hash output h0 . . . hn until the desired length is reached.

3.6 Algorithms

There are many different hash algorithms in the field. Over the years several
new ones evolved. This chapter tries just to name some of the most important
ones, like MD4 3.6.1, MD5 [48], SHA-1 [44], SHA-2 3.6.2, and the SHA-
3 -finalists 3.6.3. The MD4 algorithm is explained in more detail in this
work. It stands also as an example for the MD5 and the SHA-1 algorithm,
because they are constructed in a similar way. Also the SHA-2 and the
SHA-3 algorithms are explained more precisely in the following

3.6.1 MD4

MD4 [46] is one of the oldest widely used cryptographic hash algorithms.
Ronald Rivest developed it in 1990 and it got standardized by RFC later in
1992 [47].

28

The prefix MD stands for “Message Digest” and the following number
is increased with every new algorithm of its category. They are similar, but
increasingly complicated. It has a digest length of 128 bits.

MD4 is already broken [13, 14], nevertheless it still has its applications.
It is used for example as a fast checksum generating algorithm.

Ai Bi Ci Di

≪
s

Fi

Ai+1 Bi+1 Ci+1 Di+1

Mi

Ki

Figure 3.3: Schematic of the MD4 slgorithm: One of the algorithm’s 48 operations.
The four internal states A, B, C, and D are initialized and processed in every
operation. Figure from [27].

In Figure 3.3 one operation of its 48 is shown. The operations are grouped
in three rounds with 16 operations each. Mi is a 32-bit block of the input
message and Ki is a 32-bit constant, which differs for each of the 48 opera-
tions. Fi is the non linear function of the hash function.

3.6.2 SHA-2

The SHA-2 family consists of a set of hash algorithms. The most widely
used ones are the 256-bit SHA256 and the 512-bit SHA512 algorithms.

29

Ai Bi Ci Di Ei Fi Gi Hi

If

Σ1

Maj

Σ0

Hi+1Gi+1Fi+1Ei+1Di+1Ci+1Bi+1Ai+1

Wt

Kt

Figure 3.4: Schematic of the SHA-2 algorithm: One of the algorithm’s 64 rounds.
The 8 internal states A, B, C, D, E, F, G, and H are initialized and processed
in every round. The green boxes correspond to different operations. Figure from
[27].

In Figure 3.4 one of the 64 rounds of the SHA256 algorithm is shown.
The addition operations are performed mod 232 for SHA256 and mod 264

for SHA512. The If(·, ·, ·) operation denotes to

If(E,F,G) = (E ∧ F)⊕ (¬E ∧G), (3.2)

the Σ1(·) operation denotes to

Σ1(E) = (E ≫ 6)⊕ (E ≫ 11)⊕ (E ≫ 25), (3.3)

the Maj(·, ·, ·) operation denotes to

Maj(A,B,C) = (A ∧B)⊕ (A ∧ C)⊕ (B ∧ C) (3.4)

and the Σ0(· · ·) operation denotes to

Σ0(A) = (A≫ 2)⊕ (A≫ 13)⊕ (A≫ 22). (3.5)

3.6.3 SHA-3 Final Round Candidates

For the SHA-3 algorithm there was made a cryptographic competition called
the SHA-3 Competition. It was held during the time from February 11,

30

2007 to February 10, 2012. In March 2012 the final round candidates were
announced [43]. This candidate algorithms are described in the next Sections.
The winner of the competition, the algorithm which got standardized by
National Institute of Standards and Technology (NIST)2 in the end, was
Keccak, described in Section 3.6.3.1.

Nevertheless, also the other four “final round candidates” are important
and some have established their own field of application. Therefore, they are
described in the following sections.

3.6.3.1 Keccak (SHA-3 Winner)

Keccak is the winner of the SHA-3 competition. It is released under Creative
Commons “No Rights Reserved” (CC0) license3. Although the old SHA-2
algorithms are not broken and therefore not obsolete yet, NIST started a
new competition with the goal of constructing a new hash algorithm.

Keccak follows a novel approach with its main functionality relying on
the sponge construction, based on a wide random permutation [6]. It got
standardized by NIST in 2015 [18].

3.6.3.2 BLAKE

The BLAKE algorithm [2] is based on the ChaCha stream cipher [5]. Several
versions exist: BLAKE-256 and BLAKE-224, which use 32-bit words and
BLAKE-512 and BLAKE-384 which use 64-bit words. They produce a 256-
bit, 224-bit, 512-bit and 384-bit digest respectively. It consists of 14 rounds
for the 32-bit version and 16 rounds for the 64-bit version. There exists also
an improved version called BLAKE2 [3], which was released under CC0 in
2012.

3.6.3.3 Skein

The Skein algorithm [21] is based on the Threefish tweakable block cipher. It
consists of 72 rounds for the 256-bit and 512-bit versions and of 80 rounds
for the 1024-bit version. The algorithm and a reference implementation are
given to public domain.

An interesting property about Skein is that it does not use any S-Boxes.
Only addition +, rotation ≪,≫ and XOR ⊕ operations are used. Accord-
ing to [21] it is also possible to use Skein as randomized hashing, parallelizable
tree hashing, a stream cipher, personalization, and a key derivation function.

2https://www.nist.gov
3https://creativecommons.org/share-your-work/public-domain/cc0/

31

https://www.nist.gov
https://creativecommons.org/share-your-work/public-domain/cc0/

An attack on Threefish-256 and Threefish-512 was published in 2010
[30], which successfully breaks 39 and 42 rounds respectively. The Skein
algorithm is also affected by this attack, although the Skein-team claims
that their algorithm is still secure4.

3.6.3.4 JH

The JH hash algorithm [51] processes 512-bit input blocks with an internal
state of 1024 bits in three steps: First, the input gets XORed into the left
halve of the state, than, a 42 round permutation is applied and in the end it
is XORed into the right halve of the state. The 1024-bit final state can be
truncated to 224 bits, 256 bits, 384 bits or 512 bits depending on the desired
digest length.

3.6.3.5 Grøstl

The Grøstl hash algorithm [23] is constructed with the same S-Boxes as used
in Advanced Encryption Standard (AES)5. It divides the input into blocks
and iteratively computes hi = f(hi−1,mi). The internal state kept by Grøstl
is at least two times the size of its final output, which is truncated in the last
round. The compression function

f(h,m) = P (h⊕m)⊕Q(m)⊕ h (3.6)

consists of two permutation functions P (·) and Q(·), which themselves are
based on the AES algorithm but operate on more bytes. The algorithm
consists of 10 rounds, each of them contains the same four operations:

• AddRoundConstant: The round constants are fixed, but differ be-
tween P (·) and Q(·). “Add” means XOR ⊕ in this context.

• SubBytes: Each byte in the state matrix is replaced by another one.
This operation uses the same S-Box as the AES implementations do.

• ShiftBytes: Each byte from the state matrix gets rotated to the left
≪ similar to AES. The rotation differs between P (·) and Q(·), and
512-bit and 1024-bit versions.

• MixBytes: Multiplies each column of the state matrix by a constant
8× 8 matrix in the finite field F256, which is the same as in AES.

4http://www.skein-hash.info/sites/default/files/skein1.3.pdf
5https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

32

http://www.skein-hash.info/sites/default/files/skein1.3.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

Chapter 4

Cryptanalysis

4.1 Overview

Cryptanalysis is concerned with the study of analysing information systems
regarding their hidden aspects. The goal is to breach their security by target-
ing weaknesses in the cryptographic algorithms, but also exploit weaknesses
in their implementation. Some approaches for performing cryptanalysis are:

• Ciphertext-only analysis: Only the ciphertext is known and not the
plaintext, nor any other information.

• Known-plaintext analysis: In this scenario the attacker has the
knowledge of a plaintext-ciphertext pair. With this information it is
tried to deduce the key used to encrypt the plaintext to get the corre-
sponding ciphertext.

• Chosen-plaintext analysis: The attacker has the possibility to have
any desired plaintext encrypted with a key and obtain the resulting
ciphertext. The secret key is not known to the attacker. In this setting,
differential cryptanalysis can be used.

• Timing/differential power analysis: It measures the time or power
needed for specific cryptographic operations and tries to reconstruct
the secret key from it. With this approach the implementation of an
algorithm is attacked, rather than its implementation.

Different cryptanalytic attack-methods exist and are explained in the next
sections. In this work we use differential cryptanalysis, described in Section
4.4.

33

4.2 Brute-Force Attack

The brute-force attack is a “trial and error” method of cryptanalysis. The
attacker tries all possibilities for the secret key, until the correct one is found.
Some variations try more frequent possibilities first, other use random com-
binations, and other use a systematic approach.

In general the probability p of guessing the correct key is indirect propor-
tional to the number of possibilities for the secret key, like in

p =
1

2n
. (4.1)

This means the probability p decreases exponentially with the number of
bits n of the secret key. For example an AES256 encryption has 2256 possible
keys. This is about 1.157920892× 1077, which is an incredibly large number.
The probability to guess the key is therefore p = 1

2256
per try. In practice a

key with such a large number of possibilities, or such a small probability, is
infeasible to guess within reasonable time.

4.3 Linear Cryptanalysis

In linear cryptanalysis first linear equations are constructed. These equa-
tions should have a probability of holding, as close to either 0 or 1 as pos-
sible. Afterwards the linear equations are used in combination with known
plaintext-ciphertext pairs. It should be possible to derive key bits with this.
In

P1 ⊕ P3 ⊕ C1 = K2, (4.2)

an example for a linear equation can be seen. The first plaintext bit P1

is XORed ⊕ with the third plaintext bit P3 and afterwards with the first
ciphertext bit C1. This equals the second key bit K2. More of these equa-
tions combined together form conditions from which the secret key K can be
derived.

Any linear equation connecting plaintext, ciphertext, and key bits can
be used. In an ideal cipher any equation holds with a probability close to
1
2
. Therefore equations are needed which differ from this probability. The

closer the probability is to 0 or to 1, the more information about the secret
key can be gained from it. More accurately the equations are called linear
approximations.

After deriving a linear approximation of the form

Pi1 ⊕ Pi2 ⊕ · · · ⊕ Cj1 ⊕ Cj2 ⊕ · · · = Kk1 ⊕Kk2 ⊕ · · · , (4.3)

34

the known plaintext-ciphertext pairs can be used to guess the values of the
key bits involved in the approximations. For that, an algorithm called Mat-
sui’s Algorithm 2 [35], can be used.

4.4 Differential Cryptanalysis

Differential cryptanalysis [10] is concerned with the propagation of differ-
ential properties within a cipher (Section 4.4.2) or hash function (Section
4.4.3). It is a special type of “chosen plaintext attack”.

To test an algorithms’ differential properties, an attacker has to choose
two different input messages x and x′ and computing their difference δ. This
difference is then tracked through the entire algorithm.

4.4.1 Difference

In cryptography a difference is an inequality of specific bits within two mes-
sages x and x′. There exist several kinds of differences which can be used
for cryptanalysis purposes.

In this work the focus lies on generalized differences [11]. Similar to
XOR-differences

∆xi = xi ⊕ x′i (4.4)

they describe the difference between two messages in a bitwise manner, but
more fine-grained with 16 different cases. In Table 4.1 the differential nota-
tions for such inequalities are shown.

(x, x′) (0, 0) (1, 0) (0, 1) (1, 1)
? X X X X
- X X
x X X
0 X
u X
n X
1 X
#

Table 4.1: Differential notation for differences between two messages x and x′.

The used symbols within this notation are explained more accurately in the
following:

35

- : The bit in characteristic A is equal to the bit in characteristic B. This
means there is no difference between A and B at this position, although
it is not defined if the bit is 0 or 1.

x : The bit in characteristic A is not equal to the bit in characteristic B.
This means there is a difference between A and B at this position, al-
though it is not defined if the bit is 0 or 1.

u : The bit in characteristic A is set to 0 and the bit in characteristic B
is set to 1. This means there is a difference between A and B at this
position.

n : The bit in characteristic A is set to 1 and the bit in characteristic B
is set to 0. This means there is a difference between A and B at this
position.

1 : The bit in characteristic A and the bit in characteristic B are both set
to 1. This means there is no difference between A and B at this position.

0 : The bit in characteristic A and the bit in characteristic B are both set
to 0. This means there is no difference between A and B at this position.

? : The bit in characteristic A nor the bit in characteristic B is known.
This means it is also not known if there is a difference between A and
B at this position.

: There is a contradiction in the characteristic at this position. It is not
used when defining a characteristic, but during collision-finding with a
characteristic.

4.4.2 Differential Cryptanalysis of Block Ciphers

Differential cryptanalysis of block ciphers has mainly the goal to recover the
cipher’s key. The attacker has to have the possibility to encrypt diverse cho-
sen plaintexts with the same key and also retrieve the corresponding cipher-
texts. Without this possibility the cryptanalysis task can not be performed.

36

4.4.3 Differential Cryptanalysis of Hash Functions

Differential cryptanalysis of hash functions is very similar to its application
on block ciphers. The main contrast is the opposed goal, namely to find
collisions in the algorithm. A collision means two diverse input messages x
and x′ result in the same hash value h.

4.4.4 Impossible Differential Cryptanalysis

Impossible differential cryptanalysis is a special form of differential crypt-
analysis. Both forms distinguish in the expected probability with which
differences propagate through a cipher. Differential cryptanalysis tracks
low-probability differences [31] and impossible differential cryptanalysis high-
probability differences.

4.4.5 Differential Characteristic

An example characteristic can be seen in Table 5.1 on page 44. This one is
a template characteristic which was automatically generated by this frame-
work. In Table 6.4 on page 69 another characteristic is shown, which can be
used in practice.

37

38

Chapter 5

Automated Cryptanalysis
Framework

We first describe the general structure of the framework in Section 5.1. The
compiler framework and the used libraries on which this project is built are
described in Section 5.2.

In Section 5.3 the plug-ins available in this framework are described,
where the NL Tool plug-in (Section 5.3.1) was improved and its functional-
ity extended to be able to process real-world cryptographic algorithms. The
CryptoSMT plug-in described in Section 5.3.2 was introduced and imple-
mented within this thesis.

In Section 5.4 needed preparations to be able to use this framework are
explained. Some of the transformations described in Section 5.5 already
existed and some of them are new.

Finally in Section 5.6 the translations applied by the framework are ex-
plained in more detail. This part existed partly for the NL Tool but not for
the CryptoSMT Tool.

5.1 Overview

The automated cryptanalysis framework developed in this project is written
in C++. Despite the aim to reduce it to a minimum, still some third party
projects were used in order to develop the underlying framework. The most
important one is the ROSE Compiler Framework, which is treated in Section
5.2. It is the base of the whole project. The framework is designed like a
plug-in system, describing the defined plug-ins in Section 5.3.

39

Framework

Input File Output File

Figure 5.1: Schematic of the automated analysis framework: The input file is read
by the framework. The framework analyses it and computes an output file for a
specific analysis tool from it.

Figure 5.1 shows a schematic of the framework. It can read an input
files, process them and write output files. Depending on the algorithm and
purpose, several input and output files are needed. The transformations and
other processing, done within the framework, are described in the following.

5.2 ROSE Compiler Framework and Libraries

In order to develop this automated cryptanalysis framework, another, already
existing framework is used. The used framework is called ROSE [45] compiler
framework. It is a cross-compiler framework, written in C++.

Additionally, the Boost library is used. Boost is a collection of C++
libraries for many tasks and structures. In this work it is used for text
processing and file operations, because these tasks are needed many times.

5.3 Plug-ins

The framework is designed like a plug-in system. This means, functionality
can be extended if needed. There is a common base class for the plug-in
design called ToolTranslator, which can be subclassed for each new plug-
in.

Two plug-ins are already developed, the NL Tool plug-in (Section 5.3.1)
and the CryptoSMT Tool plug-in (Section 5.3.2). The possibility to add
functionality for other tools is given.

5.3.1 NL Tool

The NL Tool is an analysis tool developed by the Institute of Applied In-
formation Processing and Communications (IAIK). This tool can be used
to search differential characteristics for cryptographic algorithms. It was

40

not released to the public so far, but is described in a series of parers
[36, 11, 37, 19, 20, 15].

The NL Tool plug-in was the first plug-in of the framework. It already
existed and was adapted to further changes within the current work.

5.3.2 CryptoSMT Tool

The CryptoSMT Tool [32] uses a SAT solver to validate boolean logic ex-
pressions. This SAT solver is a specific version to verify satisfiability modulo
theories (SMT). It can be used to check cryptographic algorithms with spe-
cific input and output conditions if they are defined in boolean logic.

The CryptoSMT Tool plug-in was developed as a new plug-in. Its goal is
to generate an output file in a valid format for the tool in CVC language1.

5.4 Preparations

There are some preparations which need to be done before the actual trans-
formation of the C -reference implementation of the algorithm. One of these
preparations is to annotate the algorithm, which can be seen in Section 5.4.1.
Another preparation is generating a template characteristic, shown in Section
5.4.2.

5.4.1 Annotations

Before the actual transformation, the algorithm has to be annotated. This
means, some hints have to be given to the translator by hand. Otherwise
it is not possible to transform it correctly. Like in Code Example 5.1, the
annotations are comments, starting with an @ character:

@roundfunction

Annotates the roundfunction, which is the C++ method associated with
the round function of the cryptographic algorithm, regardless of its pur-
pose (hashing, encryption, RNG, etc.).

@statevariable

Annotates the name of the variable used as parameter for the initial-
ization vector or starting values of the algorithm.

1https://stp.readthedocs.io/en/latest/cvc-input-language.html

41

https://stp.readthedocs.io/en/latest/cvc-input-language.html

@state_variables

Annotates the comma-separated list of names of the variables used as
internal state variables, which are defined by the used characteristic (if
a characteristic is used in the first place).

@state_variables_mapping

Annotates the comma-separated list of names of the variables used as
a mapping between the internal state variables and the order of the
assingnment-variable used by the NL Tool.

@iv_state_offset

Annotates the comma-separated list of offsets of the IV regarding the
state variable. Can only be used for a Feistel network and is used ex-
clusively by the NL Tool.

@statesize

Annotates the number of internal states that are predefined by the
characteristic (or input parameter of the algorithm).

@messagevariable

Annotates the name of the variable used as parameter for the initial-
ization vector or starting values of the algorithm.

@messagesize

Annotates the number of variables of the input message predefined by
the characteristic (or input parameter of the algorithm).

@statewidth

Annotates the bitsize of all the variables used in the algorithm (usually
32 bits or 64 bits).

@roundsvariable

Annotates the number of rounds. If the framework is used to generate
a template characteristic this number defines the number of internal
template-states generated for the template characteristic. If the frame-
work is used to transform the algorithm it defines the number of rounds

42

processed by the framework.

1 // @roundfunction

2 // @statevariable = state

3 // @state_variables = a

4 // @state_variables_mapping = , a

5 // @iv_state_offset = 1

6 // @statesize = 4

7 // @messagevariable = x

8 // @messagesize = 16

9 // @statewidth = 32

10 // @roundsvariable = round

11 void roundFct(UINT4 state [4], UINT4 x[16])

12 {

13
14 }

Code Example 5.1: Annotations example of the MD4 algorithm.

In Code Example 5.1, annotations of an example round function are
shown. This example was taken from the round function of the MD4 algo-
rithm with the additional, but for this algorithm irrelevant @roundsvariable
annotation.

The framework reads the code and tries to retrieve all the available an-
notations before doing any transformations. Depending on the available an-
notations and their values, different transformations are performed. For ex-
ample the @statewidth annotation defines the bitsize of all the variables in
the transformation, which influences e.g. the rotation operations ≪ and ≫
dramatically.

5.4.2 Generate a Template Characteristic

The framework can also be used to automatically generate a template char-
acteristic out of the C -reference implementation of an algorithm and its an-
notations. Therefore it has to be started with the corresponding command
line parameter. In Table 5.1, an example of an automatically generated tem-
plate characteristic can be seen. This template characteristic was generated
from the MD4 algorithm with the annotations seen in Section 5.4.1.

There exists a specific LATEX-export method to write a LATEX-table out
of the generated template characteristic. This method was used to generate
the output for all the characteristic tables within this work.

43

-4 a: --------------------------------

-3 a: --------------------------------

-2 a: --------------------------------

-1 a: --------------------------------

0 a: -------------------------------- x: --------------------------------

1 a: -------------------------------- x: --------------------------------

2 a: -------------------------------- x: --------------------------------

3 a: -------------------------------- x: --------------------------------

4 a: -------------------------------- x: --------------------------------

5 a: -------------------------------- x: --------------------------------

6 a: -------------------------------- x: --------------------------------

7 a: -------------------------------- x: --------------------------------

8 a: -------------------------------- x: --------------------------------

9 a: -------------------------------- x: --------------------------------

10 a: -------------------------------- x: --------------------------------

11 a: -------------------------------- x: --------------------------------

12 a: -------------------------------- x: --------------------------------

13 a: -------------------------------- x: --------------------------------

14 a: -------------------------------- x: --------------------------------

15 a: -------------------------------- x: --------------------------------

16 a: --------------------------------

17 a: --------------------------------

18 a: --------------------------------

19 a: --------------------------------

20 a: --------------------------------

21 a: --------------------------------

22 a: --------------------------------

23 a: --------------------------------

24 a: --------------------------------

25 a: --------------------------------

26 a: --------------------------------

27 a: --------------------------------

28 a: --------------------------------

29 a: --------------------------------

30 a: --------------------------------

31 a: --------------------------------

32 a: --------------------------------

33 a: --------------------------------

34 a: --------------------------------

35 a: --------------------------------

36 a: --------------------------------

37 a: --------------------------------

38 a: --------------------------------

39 a: --------------------------------

40 a: --------------------------------

41 a: --------------------------------

42 a: --------------------------------

43 a: --------------------------------

44 a: --------------------------------

45 a: --------------------------------

46 a: --------------------------------

47 a: --------------------------------

Table 5.1: Template characteristic of the MD4 algorithm: a−4 . . . a−1 is the IV,
a0 . . . a47 are the internal states and x0 . . . x15 is the input message.

44

The MD4 characteristic from Table 5.1 has to be modified in order to
use it as a useful input characteristic for the tool. Therefore the Initializa-
tion Vector (IV) of the algorithm has to be inserted. To help the collision-
searching tool finding a collision, several additional values can be inserted
into the differential characteristic. Typical additional value would be differ-
ential descriptions of some parts of the message or the internal states like in
Table 6.4 on page 69.

5.5 Transformations

The cryptanalysis tools described in this work do not handle control logic.
Therefore, this parts of the cryptographic algorithms have to be removed and
transformed into basic operations, which can be handled with the analysis
tools.

An algorithm of this form is called straight-line program (SLP) [50]. It is a
sequence of basic operations without branches, loops, conditional statements
and comparisons.

The input code has to be transformed several times before it gets trans-
lated into its final representation. The transformation steps can be seen in
Figure 5.2. One of this transformations for example is the transformation to
the standard form described in Section 5.5.11.

5.5.1 Inlining

Inlining means removing function calls within the round function. Every
function call gets replaced by its function’s underlying code. In Code Exam-
ple 5.2 the function to be inlined can be seen. After the transformation step
the resulting code can be seen in Code Example 5.3.
For example the code:

1 int addition(int a, int b)

2 {

3 int r;

4 r = a + b;

5 return r;

6 }

7
8 int main()

9 {

10 int x = 5, y = 3, z;

11 z = addition(x,y);

12 }

Code Example 5.2: Inlining example: raw.

gets translated to:

45

Inlining

Loop Unrolling

Remove IF Statements

Global Constants

CNF

Compound Statements

Rotations

Splitting

Single Variable Assignment

Integer Cleanup

Standard Form

Input File Output File

Framework

Figure 5.2: Transformations the framework applies to the input file.

46

1 int main()

2 {

3 int x=5, y=3, z;

4
5 int a = x;

6 int b = y;

7 int r;

8 r = a + b;

9
10 z = r;

11 }

Code Example 5.3: Inlining example: inlined.

5.5.2 Loop Unrolling

Loop unrolling means that all the loops in a method get unrolled. For ex-
ample if a loop iterates three time over a piece of code (Code Example 5.4),
the loop gets removed and the code inside the loop gets repeated three times
instead (Code Example 5.5).
For example the code:

1 for(int i = 0; i < 3; i++)

2 {

3 printf(i);

4 }

Code Example 5.4: Loop unrolling example: loop.

gets translated to:

1 printf (0);

2 printf (1);

3 printf (2);

Code Example 5.5: Loop unrolling example: unrolled loop.

5.5.3 Remove IF Statements

IF statements can not be handled by some analysis tools. Therefore it is
tried to resolve the IF statements during translation. Most can be removed
automatically just by evaluating the statement and remove either one or
the other remaining branch, which gets not executed anyway. If this is not
possible the algorithm has to be transformed manually into a version without
the need of an IF statement. This can be quite cumbersome.

47

5.5.4 Global Constants

The framework tries to find all globally defined variables, regardless if they
are const or not. All found constants are translated in HEX -values and
defined for the output representation.

5.5.5 Generate a CNF out of a Truth Table

In some cases it is not possible to use the const array extracted like described
in Section 5.5.4. One example where it is not possible would be if the indices
of the array are generated dynamically during the execution of the algorithm
dependent on the input. This means the index of the array could not be
translated to a value, but would remain a variable until the execution of the
SAT solver. It is not possible to use dynamic indices because the CVC -code
is code generated for parallel execution.

In such a case, one possible solution is to compute a truth table out of the
array. This truth table can be used to generate a Conjunctive Normal Form
(CNF). The precomputed CNF -generation function can be inserted into the
CVC -code. During the execution of the SAT solver, this precomputed CNF
defines a condition for the array index.

The CNF generation is important when it comes to transforming global
constants described in Section 5.5.4, which are accessed by indices dependent
on input data.

5.5.6 Compound Statements

Compound statements are not allowed in many languages, therefore they are
split. In some special cases they can be translated into a single operation in
the output language and are annotated therefore. They get annotated start-
ing with /* @compoundOperation */ and ending with
/* @compoundOperation_end */. One of this cases is the rotation oper-
ation in CVC -language.

5.5.7 Rotations

Rotations are for example annotated with /* @ROTL(a, 3) */, defining a
rotation of the variable a 3 bits to the left. This rotation-annotation re-
sides within a compound -annotation, to protect it from splitting, described
in Section 5.5.6.

48

5.5.8 Splitting

All compound operations which do not get annotated so far, are split in single
operations. Splitting continues until no further splitting can be performed.

The purpose is to obtain code which consists of single variable assign-
ments (Section 5.5.9) only. This means, every variable is only assigned once
during the entire runtime of the program. It serves the purpose to make the
generated code invariant to its order.

5.5.9 Single Variable Assignment

Single variable assignment means that every variable is only assigned once
within its lifetime. If another assignment would be needed, a new variable is
declared and all further occurrences of the old one get replaced by the new
one. The new one gets assigned once before use and never again.

5.5.10 Integer Cleanup

Integer cleanup denotes the simplification of integer operations. Simple arith-
metic operations like additions, subtractions, multiplication, divisions, mod-
ulo operations and also some binary operations like AND, OR, XOR and
shift-operations get solved and replaced by their result instead. This reduces
complexity and code size.

5.5.11 Standard Form

Transforming into standard form defines the combination of all the previous
transformations and rewriting C -code from them. The output is an exe-
cutable version of the algorithm (round function) which returns the same
output as the original C -reference implementation.

5.6 Translations

The framework aims to translate the C -reference implementation into dif-
ferent output formats. One of these formats is the CVC -format used by the
Simple Theorem Prover (STP2) described in Section 5.6.1. Another output
format is for the NL Tool described in Section 5.6.2.

2https://stp.github.io

49

https://stp.github.io

5.6.1 SAT Solver

All operations are split and defined as a single statement. Each statement is
further surrounded by its own ASSERT as seen in Code Example 5.6 which is
omitted in the following operation-explanations.

1 ASSERT (...);

Code Example 5.6: ASSERT.

For boolean operations discussed in Section 5.6.1.1, we introduce the
space of binary numbers which is described by the set

Σ := {0, 1}.

Additionally, the space

Σ∗ = {x : x ∈ Σn, ∀n ∈ N+}

is introduced for binary information of arbitrary length.

5.6.1.1 Boolean Operations

Definition 1 (AND-Operation) We denote the mapping ∧ : Σ× Σ→ Σ
as AND-operation, where x, y, z ∈ Σ are the variables declared before their
usage. Since every variable can only be assigned once, z cannot be used before.

x y z
0 0 0
0 1 0
1 0 0
1 1 1

Table 5.2: Truth Table AND-operation ∧.

In CVC -language this operation reads as in Code Example 5.7. The corre-
sponding Truth Table can be seen in Table 5.2.

1 (x & y) = z

Code Example 5.7: AND-operation.

Definition 2 (OR-Operation) We denote the mapping ∨ : Σ×Σ→ Σ as
OR-operation, where x, y, z ∈ Σ are the variables declared before their usage.
Since every variable can only be assigned once, z cannot be used before.

50

x y z
0 0 0
0 1 1
1 0 1
1 1 1

Table 5.3: Truth Table OR-operation ∨.

In CVC -language this operation reads as in Code Example 5.8. The corre-
sponding Truth Table can be seen in Table 5.3.

1 (x | y) = z

Code Example 5.8: OR-operation.

Definition 3 (XOR-Operation) We denote the mapping ⊕ : Σ× Σ→ Σ
as XOR-operation, where x, y, z ∈ Σ are the variables declared before their
usage. Since every variable can only be assigned once, z cannot be used before.

x y z
0 0 0
0 1 1
1 0 1
1 1 0

Table 5.4: Truth Table XOR-operation ⊕.

In CVC -language this operation reads as in Code Example 5.9. The corre-
sponding Truth Table can be seen in Table 5.4.

1 BVXOR(x, y) = z

Code Example 5.9: XOR-operation.

Definition 4 (Shift-Operation) We denote � : Σn × Σn → Σn as Left-
Shift-operation and � : Σn × Σn → Σn as Right-Shift-operation, where
x, y, z ∈ Σ are the variables declared before their usage. Since every vari-
able can only assigned once, z cannot be used before.

In CVC -language this operations read as in Code Example 5.10 and 5.11.
1 (x << y) = z

Code Example 5.10: Left-Shift-
operation.

1 (x >> y) = z

Code Example 5.11: Right-Shift-
operation.

51

Definition 5 (Rotation-Operation) We denote ≪ : Σn × Σn → Σn as
Left-Rotation-operation and ≫ : Σn×Σn → Σn as Right-Rotation-operation,
where x, y, z ∈ Σ are the variables declared before their usage. Since every
variable can only assigned once, z cannot be used before.

The @ character is used to concatenate two binary represented numbers in
CVC -language, where this operations read as in Code Example 5.12 and
5.13.

1 (x[25:0] @x [31:26]) = z

Code Example 5.12: Left-Rotation-
operation: rotation by 5 bits: x ≪
5 = z, where n = 32.

1 (x[4:0]@x [31:5]) = z

Code Example 5.13: Right-Rotation-
operation: rotation by 5 bits: x ≫
5 = z, where n = 32.

5.6.1.2 Arithmetic Operations

Definition 6 (ADD-Operation) We denote the mapping + : Σ × Σ →
Σ as +-operation (integer addition mod 2n), where x, y, z ∈ Σ are the
variables declared before their usage. Since every variable can only be assigned
once, z cannot be used before.

x y z
0 0 00
0 1 01
1 0 01
1 1 10

Table 5.5: Truth Table ADD-operation +.

In CVC -language this operation reads as in Code Example 5.14. The corre-
sponding Truth Table can be seen in Table 5.5.

1 BVPLUS(n, x, y) = z

Code Example 5.14: ADD-operation.

Definition 7 (differential ADD-Operation) We define the XOR-operation
from Definition 3 for three input values xor3(·, ·, ·) : Σ× Σ× Σ→ Σ as

xor3(x, y, z) := x⊕ y ⊕ z, (5.1)

for x, y, z ∈ Σ. Furthermore, we define the operation eq(·, ·, ·) : Σ×Σ×Σ→ Σ
for three input values as

52

eq(x, y, z) := (¬x⊕ y) ∧ (¬x⊕ z), (5.2)

for x, y, z ∈ Σ. Then, the ADD-operation δ : Σn × Σn → Σn+1 is defined as

δ : (x, y) 7→ z, (5.3)

for x, y ∈ Σn, z ∈ Σn+1. The operation δ is called “good” if the property

eq(x� 1, y � 1, z � 1) ∧ (xor3(x, y, z)⊕ (x� 1)) = 0, (5.4)

holds for all x, y ∈ Σn and z ∈ δ(Σn × Σn). Expression (5.1), (5.2), (5.3)
and (5.4) are taken from [33].

5.6.2 NL Tool

For the NL Tool all operations are split and defined as a single statement.
The code examples vary from the examples provided for the CryptoSMT Tool.
Because of its similarity to the CryptoSMT Tool examples and the lacking
relevance for this work, the detailed explanations of the corresponding NL
Tool -operations are not shown within this thesis. Still, an example of a final
translation including some explanation of the NL Tool can be found in the
results Section 6.4.

5.7 Command Line Parameters

The framework can be started over the command line with various parame-
ters. Where cipherTranslator is the name of the program and -h can be
used to display the help message shown in Code Example 5.15.

Other important parameters are -f to define the input file containing the
C -reference implementation of a cryptographic algorithm and -c to define
the differential characteristic file used to translate it. If no characteristic is
available yet, the framework can be started with the -f and the -dc param-
eter defining the C -reference implementation of the algorithm and creating
a template characteristic for it.

53

1 Usage:

2 cipherTranslator -f <input file > -dc <characteristic > [-r <# of

rounds >]

3 cipherTranslator -f <input file > [-c <characteristic > [-t <(0|1) >][-r

<# of rounds >]]

4 cipherTranslator -h

5
6 Options:

7 -h --help Show help message.

8 -f Input file: C reference implementation of algorithm.

9 -c Characterisitc file.

10 -dc Create template differential characteristic.

11 -t Target tool (0|1) [default: 0] 0: CryptoSMT Tool 1:NL Tool.

12 -r Number of rounds [default: 0].

Code Example 5.15: Command line parameters of the framework.

54

Chapter 6

Results

6.1 Overview

In this chapter the results of the thesis are discussed. A typical work flow
analysing the MD4 algorithm, described in Section 3.6.1, is shown. First, in
Section 6.2 the preparations needed for both tools are made. Then, in Section
6.3 the differential characteristic is shown. In Section 6.4, the specific input
and output files and the processing steps for the NL Tool are shown. Next, in
Section 6.3 the same is done for the CryptoSMT Tool. At last, the problems
and limitations are discussed in Section 6.8.

6.2 Preparations

The first step is to annotate the C -reference implementation of the algo-
rithm’s round function like done in Code Example 6.1. The used annotations
are explained in Section 5.4.1.

An alternative description with just one updated state word per round
instead of all four states is used here, because of MD4 using a Feistel network
in its round function. Therefore, the @state_variables = a annotation has
only one state variable assigned, but with the corresponding @statesize = 4

annotation it matches the four states.
The @state_variable_mapping = , a annotation tells the framework

to map every second assignment statement within the round function to the
next output state. With this mapping the start of a new round is marked.

55

1 // @roundfunction

2 // @statevariable = state

3 // @state_variables = a

4 // @state_variables_mapping = , a

5 // @iv_state_offset = 1

6 // @statesize = 4

7 // @messagevariable = x

8 // @messagesize = 16

9 // @statewidth = 32

10 void roundFct(UINT4 state [4], UINT4 x[16])

11 {

12 UINT4 a = state[0], b = state[1], c = state[2], d = state [3];

13
14 /* Round 1 */

15 FF (a, b, c, d, x[0], S11); /* 1 */

16 FF (d, a, b, c, x[1], S12); /* 2 */

17 FF (c, d, a, b, x[2], S13); /* 3 */

18 FF (b, c, d, a, x[3], S14); /* 4 */

19 FF (a, b, c, d, x[4], S11); /* 5 */

20 FF (d, a, b, c, x[5], S12); /* 6 */

21 FF (c, d, a, b, x[6], S13); /* 7 */

22 FF (b, c, d, a, x[7], S14); /* 8 */

23 FF (a, b, c, d, x[8], S11); /* 9 */

24 FF (d, a, b, c, x[9], S12); /* 10 */

25 FF (c, d, a, b, x[10], S13); /* 11 */

26 FF (b, c, d, a, x[11], S14); /* 12 */

27 FF (a, b, c, d, x[12], S11); /* 13 */

28 FF (d, a, b, c, x[13], S12); /* 14 */

29 FF (c, d, a, b, x[14], S13); /* 15 */

30 FF (b, c, d, a, x[15], S14); /* 16 */

31
32 /* Round 2 */

33 GG (a, b, c, d, x[0], S21); /* 17 */

34 GG (d, a, b, c, x[4], S22); /* 18 */

35 GG (c, d, a, b, x[8], S23); /* 19 */

36 GG (b, c, d, a, x[12], S24); /* 20 */

37 GG (a, b, c, d, x[1], S21); /* 21 */

38 GG (d, a, b, c, x[5], S22); /* 22 */

39 GG (c, d, a, b, x[9], S23); /* 23 */

40 GG (b, c, d, a, x[13], S24); /* 24 */

41 GG (a, b, c, d, x[2], S21); /* 25 */

42 GG (d, a, b, c, x[6], S22); /* 26 */

43 GG (c, d, a, b, x[10], S23); /* 27 */

44 GG (b, c, d, a, x[14], S24); /* 28 */

45 GG (a, b, c, d, x[3], S21); /* 29 */

46 GG (d, a, b, c, x[7], S22); /* 30 */

47 GG (c, d, a, b, x[11], S23); /* 31 */

48 GG (b, c, d, a, x[15], S24); /* 32 */

49
50 /* Round 3 */

51 HH (a, b, c, d, x[0], S31); /* 33 */

52 HH (d, a, b, c, x[8], S32); /* 34 */

53 HH (c, d, a, b, x[4], S33); /* 35 */

54 HH (b, c, d, a, x[12], S34); /* 36 */

55 HH (a, b, c, d, x[2], S31); /* 37 */

56 HH (d, a, b, c, x[10], S32); /* 38 */

57 HH (c, d, a, b, x[6], S33); /* 39 */

58 HH (b, c, d, a, x[14], S34); /* 40 */

59 HH (a, b, c, d, x[1], S31); /* 41 */

60 HH (d, a, b, c, x[9], S32); /* 42 */

61 HH (c, d, a, b, x[5], S33); /* 43 */

56

62 HH (b, c, d, a, x[13], S34); /* 44 */

63 HH (a, b, c, d, x[3], S31); /* 45 */

64 HH (d, a, b, c, x[11], S32); /* 46 */

65 HH (c, d, a, b, x[7], S33); /* 47 */

66 HH (b, c, d, a, x[15], S34); /* 48 */

67
68 state [0] += a;

69 state [1] += b;

70 state [2] += c;

71 state [3] += d;

72
73 }

Code Example 6.1: MD4 reference implementation: round function with
annotations.

In Code Example 6.2 the corresponding preprocessor defines and global
variables of the algorithm can be seen.

1 /* Constants for MD4Transform routine. */

2 #define S11 3

3 #define S12 7

4 #define S13 11

5 #define S14 19

6 #define S21 3

7 #define S22 5

8 #define S23 9

9 #define S24 13

10 #define S31 3

11 #define S32 9

12 #define S33 11

13 #define S34 15

14
15 /* F, G and H are basic MD4 functions. */

16 #define F(x, y, z) (((x) & (y)) | ((~x) & (z)))

17 #define G(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))

18 #define H(x, y, z) ((x) ^ (y) ^ (z))

19
20 /* ROTATE_LEFT rotates x left n bits. */

21 #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

22
23 /* FF , GG and HH are transformations for rounds 1, 2 and 3 */

24 /* Rotation is separate from addition to prevent recomputation */

25 #define FF(a, b, c, d, x, s) {(a) += F ((b), (c), (d)) + (x); (a) =

ROTATE_LEFT ((a), (s));}

26
27 #define GG(a, b, c, d, x, s) {(a) += G ((b), (c), (d)) + (x) + (UINT4)0

x5a827999; (a) = ROTATE_LEFT ((a), (s));}

28
29 #define HH(a, b, c, d, x, s) {(a) += H ((b), (c), (d)) + (x) + (UINT4)0

x6ed9eba1; (a) = ROTATE_LEFT ((a), (s));}

Code Example 6.2: MD4 reference implementation: preprocessor defines for
the round function.

57

6.3 Characteristic

With the bash command from Code Example 6.3, a template characteristic
is created. The command line parameters of the framework are explained in
Section 5.7. This characteristic can be filled manually and afterwards used
again along with the C -reference implementation to create output files for
the NL Tool or the CryptoSMT Tool.

1 $./ cipherTranslator -f md4.c -dc template_characteristic.xml -r 48

Code Example 6.3: Bash command to create template characterisitc.

This command reads the C -reference implementation from the file “md4.c”
and produces an xml -file called “template characteristic.xml” and a corre-
sponding tex -file. The xml -file can be used later and with other tools and
the tex -file is used as a table within LATEX. The generated template charac-
teristic can be seen in Table 6.1. Information needed to create the template
characteristic is coming from the annotations of the C -reference implemen-
tation and the command line parameters of the framework.

The annotations @state_variables = a and @statesize = 4 define the
4 IV s corresponding -4: a to -1: a in the characteristic file in Table 6.1.
The command line parameter -r 48 defines that the algorithm has 48 rounds
resulting in lines 0: a to 47: a. The annotations @messagevariable = x

and @messagesize = 16 define the 16 words corresponding 0: x to 16: x

in the characteristic file. The template characteristic consists of dashes (-),
so there is no difference and it is up to the user to fill it with useful values.

In Table 6.2 the manually modified characteristic inspired by [49] is
shown. For a successful search, the cryptologist has to fill in some data.
For the MD4 algorithm the IV a, ranging from −4 to −1, has to be set like
defined for this algorithm. At least a difference has to be set in the input x,
ranging from 0 to 16, or in the intermediate states a, ranging from 0 to 47.
Otherwise the characteristic is not differential.

In Code Example 6.4 the prefix of the real input file for the NL Tool is
shown and in Code Example 6.5 the suffix of the real input file for the NL
Tool is shown.

1 <config >

2 <parameters >

3 <parameter name="f" value="md4"/>

4 <parameter name="s" value="48"/>

5 <parameter name="w" value="32"/>

6 <parameter name="z" value="main"/>

7 </parameters >

8 <char value="

Code Example 6.4: Manually modified characteristic of the MD4 algorithm:
search configuration prefix.

58

-4 a: --------------------------------

-3 a: --------------------------------

-2 a: --------------------------------

-1 a: --------------------------------

0 a: -------------------------------- x: --------------------------------

1 a: -------------------------------- x: --------------------------------

2 a: -------------------------------- x: --------------------------------

3 a: -------------------------------- x: --------------------------------

4 a: -------------------------------- x: --------------------------------

5 a: -------------------------------- x: --------------------------------

6 a: -------------------------------- x: --------------------------------

7 a: -------------------------------- x: --------------------------------

8 a: -------------------------------- x: --------------------------------

9 a: -------------------------------- x: --------------------------------

10 a: -------------------------------- x: --------------------------------

11 a: -------------------------------- x: --------------------------------

12 a: -------------------------------- x: --------------------------------

13 a: -------------------------------- x: --------------------------------

14 a: -------------------------------- x: --------------------------------

15 a: -------------------------------- x: --------------------------------

16 a: --------------------------------

17 a: --------------------------------

18 a: --------------------------------

19 a: --------------------------------

20 a: --------------------------------

21 a: --------------------------------

22 a: --------------------------------

23 a: --------------------------------

24 a: --------------------------------

25 a: --------------------------------

26 a: --------------------------------

27 a: --------------------------------

28 a: --------------------------------

29 a: --------------------------------

30 a: --------------------------------

31 a: --------------------------------

32 a: --------------------------------

33 a: --------------------------------

34 a: --------------------------------

35 a: --------------------------------

36 a: --------------------------------

37 a: --------------------------------

38 a: --------------------------------

39 a: --------------------------------

40 a: --------------------------------

41 a: --------------------------------

42 a: --------------------------------

43 a: --------------------------------

44 a: --------------------------------

45 a: --------------------------------

46 a: --------------------------------

47 a: --------------------------------

Table 6.1: Differential template characteristic of the MD4 algorithm: automati-
cally generated.

59

-4 a: 01100111010001010010001100000001

-3 a: 00010000001100100101010001110110

-2 a: 10011000101110101101110011111110

-1 a: 11101111110011011010101110001001

0 a: ???????????????????????????????? x: ---x-----10001000001001010000101

1 a: ???????????????????????????????? x: 00101011101010100101001110011001

2 a: ???????????????????????????????? x: x1011000010001010110011010001000

3 a: ???????????????????????????????? x: 10110110001110011111000100010100

4 a: ???????????????????????????????? x: x1101111100011000101101110001000

5 a: ???????????????????????????????? x: 10111001111001001001100101100011

6 a: ???????????????????????????????? x: 00101001100110101001011000000110

7 a: ???????????????????????????????? x: 11101010100001001111111111000000

8 a: ???????????????????????????????? x: x0111001010010010111010101100101

9 a: ???????????????????????????????? x: 01010110100000111001110000001000

10 a: ???????????????????????????????? x: 01011010011111100101100001011011

11 a: ???????????????????????????????? x: 01111111011001111111101111100011

12 a: ???????????????????????????????? x: x1110110111010001001101100011100

13 a: ???????????????????????????????? x: 01000110010100111001101101101100

14 a: ???????????????????????????????? x: 01011101001100110110010110011110

15 a: ???????????????????????????????? x: 11100110110111001101001100000001

16 a: ????????????????????????????????

17 a: ????????????????????????????????

18 a: ????????????????????????????????

19 a: ????????????????????????????????

20 a: ????????????????????????????????

21 a: --------------------------------

22 a: --------------------------------

23 a: --------------------------------

24 a: --------------------------------

25 a: --------------------------------

26 a: --------------------------------

27 a: --------------------------------

28 a: --------------------------------

29 a: --------------------------------

30 a: --------------------------------

31 a: --------------------------------

32 a: x???????????????????????????????

33 a: --------------------------------

34 a: --------------------------------

35 a: --------------------------------

36 a: --------------------------------

37 a: --------------------------------

38 a: --------------------------------

39 a: --------------------------------

40 a: --------------------------------

41 a: --------------------------------

42 a: --------------------------------

43 a: --------------------------------

44 a: --------------------------------

45 a: --------------------------------

46 a: --------------------------------

47 a: --------------------------------

Table 6.2: Manually modified characteristic of the MD4 algorithm.

60

-4 a: 01100111010001010010001100000001

-3 a: 00010000001100100101010001110110

-2 a: 10011000101110101101110011111110

-1 a: 11101111110011011010101110001001

0 a: ???????????????????????????????? x: 100x1000010001000001001010000101

1 a: ???????????????????????????????? x: 00101011101010100101001110011001

2 a: ???????????????????????????????? x: x1011000010001010110011010001000

3 a: ???????????????????????????????? x: 10110110001110011111000100010100

4 a: ???????????????????????????????? x: x1101111100011000101101110001000

5 a: ???????????????????????????????? x: 10111001111001001001100101100011

6 a: ???????????????????????????????? x: 00101001100110101001011000000110

7 a: ???????????????????????????????? x: 11101010100001001111111111000000

8 a: ???????????????????????????????? x: x0111001010010010111010101100101

9 a: ???????????????????????????????? x: 01010110100000111001110000001000

10 a: ???????????????????????????????? x: 01011010011111100101100001011011

11 a: ???????????????????????????????? x: 01111111011001111111101111100011

12 a: ???????????????????????????????? x: x1110110111010001001101100011100

13 a: ???????????????????????????????? x: ------10010100111001101101101100

14 a: ???????????????????????????????? x: --------------------------------

15 a: ???????????????????????????????? x: --------------------------------

16 a: ????????????????????????????????

17 a: ????????????????????????????????

18 a: ????????????????????????????????

19 a: ????????????????????????????????

20 a: ????????????????????????????????

21 a: --------------------------------

22 a: --------------------------------

23 a: --------------------------------

24 a: --------------------------------

25 a: --------------------------------

26 a: --------------------------------

27 a: --------------------------------

28 a: --------------------------------

29 a: --------------------------------

30 a: --------------------------------

31 a: --------------------------------

32 a: x???????????????????????????????

33 a: --------------------------------

34 a: --------------------------------

35 a: --------------------------------

36 a: --------------------------------

37 a: --------------------------------

38 a: --------------------------------

39 a: --------------------------------

40 a: --------------------------------

41 a: --------------------------------

42 a: --------------------------------

43 a: --------------------------------

44 a: --------------------------------

45 a: --------------------------------

46 a: --------------------------------

47 a: --------------------------------

Table 6.3: Another manually modified characteristic of the MD4 algorithm.

61

1 "/>

2 <search reseed="-1" credits="1000">

3 <phase twobit_complete="1">

4 <setting prob="1">

5 <mask word="a" steps="32-47"/>

6 <guess condition="?" choice_prob="1"/>

7 <guess condition="x" choice_prob="0.000001"/>

8 </setting >

9 </phase >

10 <phase twobit_complete="1">

11 <setting prob="1">

12 <mask word="a"/>

13 <guess condition="?" choice_prob="1"/>

14 <guess condition="x" choice_prob="0.000001"/>

15 </setting >

16 </phase >

17 <phase twobit_complete="1">

18 <setting prob="1" ordered_guesses="1">

19 <mask word="a"/>

20 <mask word="x"/>

21 <guess condition="-" choice_prob="0.5"/>

22 </setting >

23 </phase >

24 </search >

25 </config >

Code Example 6.5: Manually modified characteristic of the MD4 algorithm:
search configuration suffix.

6.4 NL Tool

6.4.1 Original Implementation

The NL Tool already comes with an implementation of the MD4 algorithm.
This original implementation can be seen in the following to give an example
of the NL Tool syntax. The header file (.h) is shown in Code Example 6.6
and the implementation file (.cpp) in Code Example 6.7.

1 #ifndef MD4_H_

2 #define MD4_H_

3
4 #include "hash.h"

5
6 /*! \class Md4

7 * \brief Implementation of the MD4 hash function.

8 *

9 * https :// tools.ietf.org/html/rfc1320

10 */

11 class Md4: public Hash

12 {

13 public:

14 static const uint32 K[3];

15 static const int S[12];

16 static const int P[48];

17

62

18 Md4(int steps , int N = 32);

19
20 protected:

21 int md4_steps_;

22 ConditionWord W[16];

23 ConditionWord tA[48 + 4];

24 ConditionWord* A = &tA[4];

25 ConditionWord F[48];

26 };

27
28 #endif // MD4_H_

Code Example 6.6: MD4 header file for the NL Tool.

1 #include "md4/includes/md4.h"

2
3 #include "functions.h"

4 #include "bitslicestep.h"

5
6 const uint32 Md4::K[3] = {

7 0x00000000 ,

8 0x5a827999 ,

9 0x6ed9eba1

10 };

11
12 const int Md4::S[12] = {

13 3,7,11,19,

14 3,5,9,13,

15 3,9,11,15

16 };

17
18 const int Md4::P[48] = {

19 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

20 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15,

21 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15,

22 };

23
24 Md4::Md4(int steps , int N) :

25 Hash(N), md4_steps_(steps) {

26
27 Step* step = 0;

28
29 for (int i = -4; i < 0; i++)

30 A[i] = AddConditionWord("A", i, 4 + i, 0);

31 for (int i = 0; i < std::min(16, md4_steps_); i++)

32 W[i] = AddConditionWord("W", i, 4 + i * 2 + 1, 1);

33
34 for (int i = 0; i < md4_steps_; i++) {

35 F[i] = AddConditionWord("F", i, 4 + i * 2 + 0, 1, SUBWORD);

36 A[i] = AddConditionWord("A", i, 4 + i * 2 + 1, 0);

37
38 if (i < 16)

39 step = Add(new BitsliceStep <IF >(N, A[i - 1], A[i - 2], A[i - 3], F[

i]));

40 else if (i < 32)

41 step = Add(new BitsliceStep <MAJ >(N, A[i - 1], A[i - 2], A[i - 3], F

[i]));

42 else

43 step = Add(new BitsliceStep <XOR3 >(N, A[i - 1], A[i - 2], A[i - 3],

F[i]));

44 F[i]->SetStepToComputeProbability(step);

63

45
46 int m = P[i];

47 ConditionWord k(new ConditionWordImpl(K[i / 16]));

48 step = Add(new CarryStep <ADD4 >(N, A[i - 4], F[i], W[m], k, A[i]->Rotr

(S[(i / 16) * 4 + i % 4])));

49 step ->SetProbabilityMethod(CYCLICGRAPH);

50 A[i]->SetStepToComputeProbability(step);

51 }

52 }

Code Example 6.7: MD4 implementation for the NL Tool.

The NL Tool is a C++ program which has to be compiled with dedicated
code for each cryptographic algorithm. This requires a predefined structure
of the code explained in the following:

A new class derived from the Hash class has to be implemented. This class
has to have a public constructor of the form MD4(int steps, int N), where
steps are the number of steps processed and N is the bitsize of the algorithm.
Each word used in the algorithm has to be defined as AddConditionWord()

with 4 or 5 parameters like shown in Code Example 6.8. The first parameter
defines the name of the variable read from the characteristic file and the
second defines the step number. The words for IV, state and message are
defined as an array because there are many of the same type. The class does
not contain any functions but the constructor, where the whole algorithm is
implemented.

Every mathematical operation performed on a variable is defined as
BitsliceStep<operation>(), where operation marks the performed oper-
ation. New operations can be added in the “functions.h” file shipped with
the NL Tool. Constants are defined as ConditionWordImpl() like shown in
Code Example 6.9.

1 ConditionWord AddConditionWord(std:: string name , int step_number , int row

, int col , int type = MAINWORD , int num_bits = 1);

Code Example 6.8: NL Tool ConditionWord() signature.

1 ConditionWordImpl(uint64 constant , int word_size = 32, std:: string name =

"");

Code Example 6.9: NL Tool ConditionWordImpl() signature.

6.4.2 Template Files

For the automatic code generation template files are used to match a given
structure. The positions marked with %#% where # is a number between
1 and 10 are place holders for the automatically generated code pieces. In

64

Code Example 6.10 the template for the header file can be seen. Here, for
example %1% is the place holder for the class name.

In Code Example 6.11 the implementation file can be seen. Here, for
example %10% is the place holder for the translated round function.

1 /*

2 * auto generated cipher representation

3 */

4 #ifndef %1%_H_

5 #define %1%_H_

6
7 #include "hash.h"

8
9 class %1% : public Hash

10 {

11 public:

12 %1%(int steps , int N = %4%);

13 %2%

14
15 protected:

16 %3%

17 };

18
19 #endif // %1%_H_

Code Example 6.10: Header template for the automatic translation process.

1 #include "%1%/ includes /%1%.h"

2 #include "linearstep.h"

3 #include "bitslicestep.h"

4 #include "functions.h"

5
6 // //////////////////////////// class %2% //////////////////////////////

7
8 // constants

9 %9%

10
11 %2%::%2%(int steps , int N) :

12 Hash(N)

13 {

14 for(int i = -%6%; i < 0; i++)

15 {

16 %3%

17 }

18 for(int i = 0; i < std::min(%7%, %8%); i++)

19 {

20 %4%

21 }

22 for(int i = 0; i < %8%; i++)

23 {

24 %5%

25 }

26
27 // algorithm

28 %10%

29 }

Code Example 6.11: Implementation template for the automatic translation
process.

65

6.4.3 Translation

With the bash command from Code Example 6.12, an implementation of the
MD4 algorithm for the NL Tool is created automatically. The output files
called “md4.h” and “md4.cpp” can be seen in Code Example 6.13 and 6.14
respectively. Only the first two rounds of 48 are shown here as an example.
These two files need to replace the original files in the hash directory of the
NL Tool, which afterwards needs to be compiled again.

1 $./ cipherTranslator -f md4.c -c

template_characteristic_modified_manually.xml -r 48 -t 1

Code Example 6.12: Bash command to create NL Tool output.

1 /*

2 * auto generated cipher representation

3 */

4 #ifndef Md4_H_

5 #define Md4_H_

6
7 #include "hash.h"

8
9 class Md4 : public Hash

10 {

11 public:

12 Md4(int steps , int N = 32);

13 static const uint32_t K[2];

14
15 protected:

16 int steps;

17 ConditionWord x[16];

18 ConditionWord ta [52];

19 ConditionWord* a = &ta[4];

20
21 };

22
23 #endif // Md4_H_

Code Example 6.13: MD4 header file for the NL Tool : generated automatically.
2 out of 48 rounds.

1 #include "md4/includes/md4.h"

2 #include "linearstep.h"

3 #include "bitslicestep.h"

4 #include "functions.h"

5
6 // //////////////////////////// class Md4 //////////////////////////////

7
8 // constants

9 const uint32 Md4::K[2] = {

10 0x5a827999 ,

11 0x6ed9eba1

12 };

13
14 Md4::Md4(int steps , int N) :

15 Hash(N)

16 {

66

17 for (int i = -4; i < 0; i++)

18 {

19 a[i] = AddConditionWord("a", i, 4 + i, 0);

20 }

21 for (int i = 0; i < std::min(16, 48); i++)

22 {

23 x[i] = AddConditionWord("x", i, 4 + i * 2 + 1, 1);

24 }

25 for (int i = 0; i < 48; i++)

26 {

27 a[i] = AddConditionWord("a", i, 4 + i * 2 + 1, 0);

28 }

29
30 // algorithm

31 ConditionWord k0(new ConditionWordImpl(Md4::K[0]));

32 ConditionWord k1(new ConditionWordImpl(Md4::K[1]));

33
34 //% ANCHOR PREFIX

35 ConditionWord binaryOpTemp01 = AddConditionWord("binaryOpTemp01", 0, 4,

2, SUBWORD);

36 Add(new BitsliceStep <AND2 >(N, a[-1], a[-2], binaryOpTemp01));

37 ConditionWord unaryOpTemp01 = AddConditionWord("unaryOpTemp01", 0, 4, 3,

SUBWORD);

38 Add(new BitsliceStep <COMPL >(N, a[-1], unaryOpTemp01));

39 ConditionWord binaryOpTemp11 = AddConditionWord("binaryOpTemp11", 0, 4,

4, SUBWORD);

40 Add(new BitsliceStep <AND2 >(N, unaryOpTemp01 , a[-3], binaryOpTemp11));

41 ConditionWord binaryOpTemp22 = AddConditionWord("binaryOpTemp22", 0, 4,

5, SUBWORD);

42 Add(new BitsliceStep <OR >(N, binaryOpTemp01 , binaryOpTemp11 ,

binaryOpTemp22));

43 ConditionWord binaryOpTemp21 = AddConditionWord("binaryOpTemp21", 0, 4,

6, SUBWORD);

44 Add(new CarryStep <ADD2 >(N, binaryOpTemp22 , x[0], binaryOpTemp21));

45 ConditionWord singleAssiTemp1 = AddConditionWord("singleAssiTemp1", 0, 4,

7, SUBWORD);

46 Add(new CarryStep <ADD2 >(N, a[-4], binaryOpTemp21 , singleAssiTemp1));

47 ConditionWord singleAssiTemp2 = AddConditionWord("singleAssiTemp2", 0, 4,

8, SUBWORD);

48 Add(new BitsliceStep <ID >(N, singleAssiTemp1 ->Rotl (3), a[0]));

49
50 ConditionWord binaryOpTemp02 = AddConditionWord("binaryOpTemp02", 1, 6,

2, SUBWORD);

51 Add(new BitsliceStep <AND2 >(N, a[0], b, binaryOpTemp02));

52 ConditionWord unaryOpTemp02 = AddConditionWord("unaryOpTemp02", 1, 6, 3,

SUBWORD);

53 Add(new BitsliceStep <COMPL >(N, a[0], unaryOpTemp02));

54 ConditionWord binaryOpTemp12 = AddConditionWord("binaryOpTemp12", 1, 6,

4, SUBWORD);

55 Add(new BitsliceStep <AND2 >(N, unaryOpTemp02 , c, binaryOpTemp12));

56 ConditionWord binaryOpTemp24 = AddConditionWord("binaryOpTemp24", 1, 6,

5, SUBWORD);

57 Add(new BitsliceStep <OR >(N, binaryOpTemp02 , binaryOpTemp12 ,

binaryOpTemp24));

58 ConditionWord binaryOpTemp23 = AddConditionWord("binaryOpTemp23", 1, 6,

6, SUBWORD);

59 Add(new CarryStep <ADD2 >(N, binaryOpTemp24 , x[1], binaryOpTemp23));

60 ConditionWord singleAssiTemp3 = AddConditionWord("singleAssiTemp3", 1, 6,

7, SUBWORD);

61 Add(new CarryStep <ADD2 >(N, d, binaryOpTemp23 , singleAssiTemp3));

62 ConditionWord singleAssiTemp4 = AddConditionWord("singleAssiTemp4", 1, 6,

8, SUBWORD);

67

63 Add(new BitsliceStep <ID >(N, singleAssiTemp3 ->Rotl (7), a[1]));

64 // ...

65 int anchor;

66 }

Code Example 6.14: MD4 implementation for the NL Tool : generated
automatically. 2 out of 48 rounds.

Line 8 to 12 of Code Example 6.14 define the needed constants. In line
14 the implementation of the constructor starts. Line 17 to 20 initialises the
IV, line 21 to 24 initialises the message and line 25 to 28 initialises the state
variables. In line 31 and 32 the constants are initialised and in line 35 the
round function starts.

For readability reasons only 2 out of 48 rounds are shown in the code
example. The first round is located form line 35 to 48 and the second round
from line 50 to line 63. In total the file has 747 lines of code.

6.4.4 Search

With the command from Code Example 6.15, the NL Tool can be started.
First, it is compiled with the original MD4 algorithm from Code Example 6.7
and started afterwards. Then, it is compiled with the new MD4 algorithm
from Code Example 6.14 and started again.

1 $./ nltool hash/md4/chars/template_characteristic_modified_manually.xml

Code Example 6.15: Bash command to run the NL Tool.

6.4.5 Solution

The resulting characteristic file is shown in Table 6.4.

6.5 CryptoSMT Tool

The CryptoSMT Tool does not come with implementations of any crypto-
graphic algorithms. Therefore, no original implementation can be used as a
template to automatically generate a new implementation of the MD4 algo-
rithm.

6.5.1 Template Files

In Code Example 6.16 the template file for generating the algorithm is shown.
The %2% label marks the place holder for the round function. The algorithm

68

-4 a: 01100111010001010010001100000001

-3 a: 00010000001100100101010001110110

-2 a: 10011000101110101101110011111110

-1 a: 11101111110011011010101110001001

0 a: x------------------------------- x: ---x----------------------------

1 a: -------------------------------- x: --------------------------------

2 a: ---------------------x---------- x: x-------------------------------

3 a: -------------x------------------ x: --------------------------------

4 a: ---------xx--------------------- x: x-------------------------------

5 a: ---x---------xx----------------- x: --------------------------------

6 a: xx-x------x--------------------- x: --------------------------------

7 a: ---------------------xx--------- x: --------------------------------

8 a: x----------------xxx------------ x: x-------------------------------

9 a: --xx-xx-xxx--------------------- x: --------------------------------

10 a: -------------------------------- x: --------------------------------

11 a: ---x---------------x------------ x: --------------------------------

12 a: ------x------------------------- x: x-------------------------------

13 a: x--x---------------------------- x: --------------------------------

14 a: -------------------------------- x: --------------------------------

15 a: x------------------------------- x: --------------------------------

16 a: ---x----------------------------

17 a: --------------------------------

18 a: --------------------------------

19 a: --------------------------------

20 a: x-------------------------------

21 a: --------------------------------

22 a: --------------------------------

23 a: --------------------------------

24 a: --------------------------------

25 a: --------------------------------

26 a: --------------------------------

27 a: --------------------------------

28 a: --------------------------------

29 a: --------------------------------

30 a: --------------------------------

31 a: --------------------------------

32 a: x-------------------------------

33 a: --------------------------------

34 a: --------------------------------

35 a: --------------------------------

36 a: --------------------------------

37 a: --------------------------------

38 a: --------------------------------

39 a: --------------------------------

40 a: --------------------------------

41 a: --------------------------------

42 a: --------------------------------

43 a: --------------------------------

44 a: --------------------------------

45 a: --------------------------------

46 a: --------------------------------

47 a: --------------------------------

Table 6.4: Differential characteristic of the MD4 algorithm: MD4 collision called
“test.xml”.

69

in CVC language finishes with QUERY FALSE; and COUNTEREXAMPLE; to force
the CryptoSMT Tool to generate a concrete example for its decision.

1 %2%

2 QUERY FALSE;

3 COUNTEREXAMPLE;

Code Example 6.16: Implementation template for the automatic translation
process.

6.5.2 Translation

With the bash command from Code Example 6.17, an implementation of
the MD4 algorithm for the CryptoSMT Tool is created automatically. The
generated output file called “md4.cvc” is shown in Code Example 6.18. Only
the first two rounds of 48 are shown here as an example. In total the file has
1788 lines of code.

1 $./ cipherTranslator -f md4.c -c test.xml -t 0

Code Example 6.17: Bash command to create CryptoSMT Tool output.

The generated characteristic with the NL Tool, shown in Table 6.4, is
used along with the C -reference implementation from Code Example 6.1 to
create the code for the CryptoSMT Tool. This automatically generated code
written in CVC -language is shown in Code Example 6.18.

1 % ...

2 state : ARRAY BITVECTOR (32) OF BITVECTOR (32);

3 state_b : ARRAY BITVECTOR (32) OF BITVECTOR (32);

4 state_out : ARRAY BITVECTOR (32) OF BITVECTOR (32);

5 state_out_b : ARRAY BITVECTOR (32) OF BITVECTOR (32);

6 x : ARRAY BITVECTOR (32) OF BITVECTOR (32);

7 x_b : ARRAY BITVECTOR (32) OF BITVECTOR (32);

8 ASSERT(state[0 hex00000000] = 0hex67452301);

9 ASSERT(state[0 hex00000001] = 0hexefcdab89);

10 ASSERT(state[0 hex00000002] = 0hex98badcfe);

11 ASSERT(state[0 hex00000003] = 0hex10325476);

12 ASSERT(state_b [0 hex00000000] = 0hex67452301);

13 ASSERT(state_b [0 hex00000001] = 0hexefcdab89);

14 ASSERT(state_b [0 hex00000002] = 0hex98badcfe);

15 ASSERT(state_b [0 hex00000003] = 0hex10325476);

16 ASSERT(x[0 hex00000001] = 0hex2baa5399);

17 ASSERT(x[0 hex00000003] = 0hexb639f114);

18 ASSERT(x[0 hex00000005] = 0hexb9e49963);

19 ASSERT(x[0 hex00000006] = 0hex299a9606);

20 ASSERT(x[0 hex00000007] = 0hexea84ffc0);

21 ASSERT(x[0 hex00000009] = 0hex56839c08);

22 ASSERT(x[0 hex0000000a] = 0hex5a7e585b);

23 ASSERT(x[0 hex0000000b] = 0hex7f67fbe3);

24 ASSERT(x[0 hex0000000d] = 0hex46539b6c);

25 ASSERT(x[0 hex0000000e] = 0hex5d33659e);

26 ASSERT(x[0 hex0000000f] = 0hexe6dcd301);

27 ASSERT(x_b[0 hex00000001] = 0hex2baa5399);

70

28 ASSERT(x_b[0 hex00000003] = 0hexb639f114);

29 ASSERT(x_b[0 hex00000005] = 0hexb9e49963);

30 ASSERT(x_b[0 hex00000006] = 0hex299a9606);

31 ASSERT(x_b[0 hex00000007] = 0hexea84ffc0);

32 ASSERT(x_b[0 hex00000009] = 0hex56839c08);

33 ASSERT(x_b[0 hex0000000a] = 0hex5a7e585b);

34 ASSERT(x_b[0 hex0000000b] = 0hex7f67fbe3);

35 ASSERT(x_b[0 hex0000000d] = 0hex46539b6c);

36 ASSERT(x_b[0 hex0000000e] = 0hex5d33659e);

37 ASSERT(x_b[0 hex0000000f] = 0hexe6dcd301);

38 ASSERT ((x[0 hex00000000] & 0hex88441285) = 0hex88441285);

39 ASSERT ((x[0 hex00000000] & 0hex67bbed7a) = 0hex00000000);

40 ASSERT ((x[0 hex00000002] & 0hex58456688) = 0hex58456688);

41 ASSERT ((x[0 hex00000002] & 0hex27ba9977) = 0hex00000000);

42 ASSERT ((x[0 hex00000004] & 0hex6f8c5b88) = 0hex6f8c5b88);

43 ASSERT ((x[0 hex00000004] & 0hex1073a477) = 0hex00000000);

44 ASSERT ((x[0 hex00000008] & 0hex39497565) = 0hex39497565);

45 ASSERT ((x[0 hex00000008] & 0hex46b68a9a) = 0hex00000000);

46 ASSERT ((x[0 hex0000000c] & 0hex76e89b1c) = 0hex76e89b1c);

47 ASSERT ((x[0 hex0000000c] & 0hex091764e3) = 0hex00000000);

48 ASSERT ((x_b[0 hex00000000] & 0hex88441285) = 0hex88441285);

49 ASSERT ((x_b[0 hex00000000] & 0hex67bbed7a) = 0hex00000000);

50 ASSERT ((x_b[0 hex00000002] & 0hex58456688) = 0hex58456688);

51 ASSERT ((x_b[0 hex00000002] & 0hex27ba9977) = 0hex00000000);

52 ASSERT ((x_b[0 hex00000004] & 0hex6f8c5b88) = 0hex6f8c5b88);

53 ASSERT ((x_b[0 hex00000004] & 0hex1073a477) = 0hex00000000);

54 ASSERT ((x_b[0 hex00000008] & 0hex39497565) = 0hex39497565);

55 ASSERT ((x_b[0 hex00000008] & 0hex46b68a9a) = 0hex00000000);

56 ASSERT ((x_b[0 hex0000000c] & 0hex76e89b1c) = 0hex76e89b1c);

57 ASSERT ((x_b[0 hex0000000c] & 0hex091764e3) = 0hex00000000);

58 ASSERT(BVXOR(x[0 hex00000000],x_b[0 hex00000000]) = 0hex10000000);

59 ASSERT(BVXOR(x[0 hex00000002],x_b[0 hex00000002]) = 0hex80000000);

60 ASSERT(BVXOR(x[0 hex00000004],x_b[0 hex00000004]) = 0hex80000000);

61 ASSERT(BVXOR(x[0 hex00000008],x_b[0 hex00000008]) = 0hex80000000);

62 ASSERT(BVXOR(x[0 hex0000000c],x_b[0 hex0000000c]) = 0hex80000000);

63 % ANCHOR PREFIX

64 a : BITVECTOR (32);

65 a_b : BITVECTOR (32);

66 ASSERT(a = state [0 hex00000000]);

67 ASSERT(a_b = state_b [0 hex00000000]);

68 b : BITVECTOR (32);

69 b_b : BITVECTOR (32);

70 ASSERT(b = state [0 hex00000001]);

71 ASSERT(b_b = state_b [0 hex00000001]);

72 c : BITVECTOR (32);

73 c_b : BITVECTOR (32);

74 ASSERT(c = state [0 hex00000002]);

75 ASSERT(c_b = state_b [0 hex00000002]);

76 d : BITVECTOR (32);

77 d_b : BITVECTOR (32);

78 ASSERT(d = state [0 hex00000003]);

79 ASSERT(d_b = state_b [0 hex00000003]);

80 binaryOpTemp01 : BITVECTOR (32);

81 binaryOpTemp01_b : BITVECTOR (32);

82 ASSERT ((b & c) = binaryOpTemp01);

83 ASSERT ((b_b & c_b) = binaryOpTemp01_b);

84 unaryOpTemp01 : BITVECTOR (32);

85 unaryOpTemp01_b : BITVECTOR (32);

86 ASSERT ((~b) = unaryOpTemp01);

87 ASSERT ((~b_b) = unaryOpTemp01_b);

88 binaryOpTemp11 : BITVECTOR (32);

89 binaryOpTemp11_b : BITVECTOR (32);

71

90 ASSERT ((unaryOpTemp01 & d) = binaryOpTemp11);

91 ASSERT ((unaryOpTemp01_b & d_b) = binaryOpTemp11_b);

92 binaryOpTemp22 : BITVECTOR (32);

93 binaryOpTemp22_b : BITVECTOR (32);

94 ASSERT ((binaryOpTemp01 | binaryOpTemp11) = binaryOpTemp22);

95 ASSERT ((binaryOpTemp01_b | binaryOpTemp11_b) = binaryOpTemp22_b);

96 binaryOpTemp21 : BITVECTOR (32);

97 binaryOpTemp21_b : BITVECTOR (32);

98 ASSERT(BVPLUS (32, binaryOpTemp22 ,x[0 hex00000000]) = binaryOpTemp21);

99 ASSERT(BVPLUS (32, binaryOpTemp22_b ,x_b[0 hex00000000]) = binaryOpTemp21_b);

100 singleAssiTemp1 : BITVECTOR (32);

101 singleAssiTemp1_b : BITVECTOR (32);

102 ASSERT(BVPLUS (32,a,binaryOpTemp21) = singleAssiTemp1);

103 ASSERT(BVPLUS (32,a_b ,binaryOpTemp21_b) = singleAssiTemp1_b);

104 singleAssiTemp2 : BITVECTOR (32);

105 singleAssiTemp2_b : BITVECTOR (32);

106 ASSERT ((singleAssiTemp1 [28:0] @singleAssiTemp1 [31:29]) = singleAssiTemp2);

107 ASSERT ((singleAssiTemp1_b [28:0] @singleAssiTemp1_b [31:29]) =

singleAssiTemp2_b);

108 binaryOpTemp02 : BITVECTOR (32);

109 binaryOpTemp02_b : BITVECTOR (32);

110 ASSERT ((singleAssiTemp2 & b) = binaryOpTemp02);

111 ASSERT ((singleAssiTemp2_b & b_b) = binaryOpTemp02_b);

112 unaryOpTemp02 : BITVECTOR (32);

113 unaryOpTemp02_b : BITVECTOR (32);

114 ASSERT ((~ singleAssiTemp2) = unaryOpTemp02);

115 ASSERT ((~ singleAssiTemp2_b) = unaryOpTemp02_b);

116 binaryOpTemp12 : BITVECTOR (32);

117 binaryOpTemp12_b : BITVECTOR (32);

118 ASSERT ((unaryOpTemp02 & c) = binaryOpTemp12);

119 ASSERT ((unaryOpTemp02_b & c_b) = binaryOpTemp12_b);

120 binaryOpTemp24 : BITVECTOR (32);

121 binaryOpTemp24_b : BITVECTOR (32);

122 ASSERT ((binaryOpTemp02 | binaryOpTemp12) = binaryOpTemp24);

123 ASSERT ((binaryOpTemp02_b | binaryOpTemp12_b) = binaryOpTemp24_b);

124 binaryOpTemp23 : BITVECTOR (32);

125 binaryOpTemp23_b : BITVECTOR (32);

126 ASSERT(BVPLUS (32, binaryOpTemp24 ,x[0 hex00000001]) = binaryOpTemp23);

127 ASSERT(BVPLUS (32, binaryOpTemp24_b ,x_b[0 hex00000001]) = binaryOpTemp23_b);

128 singleAssiTemp3 : BITVECTOR (32);

129 singleAssiTemp3_b : BITVECTOR (32);

130 ASSERT(BVPLUS (32,d,binaryOpTemp23) = singleAssiTemp3);

131 ASSERT(BVPLUS (32,d_b ,binaryOpTemp23_b) = singleAssiTemp3_b);

132 singleAssiTemp4 : BITVECTOR (32);

133 singleAssiTemp4_b : BITVECTOR (32);

134 ASSERT ((singleAssiTemp3 [24:0] @singleAssiTemp3 [31:25]) = singleAssiTemp4);

135 ASSERT ((singleAssiTemp3_b [24:0] @singleAssiTemp3_b [31:25]) =

singleAssiTemp4_b);

136 binaryOpTemp03 : BITVECTOR (32);

137 binaryOpTemp03_b : BITVECTOR (32);

138 ASSERT ((singleAssiTemp4 & singleAssiTemp2) = binaryOpTemp03);

139 ASSERT ((singleAssiTemp4_b & singleAssiTemp2_b) = binaryOpTemp03_b);

140 unaryOpTemp03 : BITVECTOR (32);

141 unaryOpTemp03_b : BITVECTOR (32);

142 ASSERT ((~ singleAssiTemp4) = unaryOpTemp03);

143 ASSERT ((~ singleAssiTemp4_b) = unaryOpTemp03_b);

144 % ...

145 ASSERT(singleAssiTemp4 = 0hex3bb8748b);

146 ASSERT(singleAssiTemp4_b = 0hex3bb8748b);

147 ASSERT ((singleAssiTemp2 & 0hex42209424) = 0hex42209424);

148 ASSERT ((singleAssiTemp2 & 0hex3ddf6bdb) = 0hex00000000);

149 ASSERT ((singleAssiTemp2_b & 0hex42209424) = 0hex42209424);

72

150 ASSERT ((singleAssiTemp2_b & 0hex3ddf6bdb) = 0hex00000000);

151 ASSERT(BVXOR(singleAssiTemp2 ,singleAssiTemp2_b) = 0hex80000000);

152
153 QUERY FALSE;

154 COUNTEREXAMPLE;

Code Example 6.18: Automatically generated code for the CryptoSMT Tool.
2 out of 48 rounds.

6.5.3 Search

The CryptoSMT Tool starts searching for a collision just by supplying the
generated CVC -file from Code Example 6.18 With the bash command from
Code Example 6.19 the tool starts searching.

1 $ stp_simple md4.cvc

Code Example 6.19: Bash command to search the collision.

6.5.4 Solution

With the bash command from Code Example 6.20 the differential input mes-
sage to the algorithm can be seen in Code Example 6.21.

1 $ stp_simple md4.cvc | sort | grep ’ x’

Code Example 6.20: Bash command to extract the collision.

1 ASSERT(x[0 x00000000] = 0x88441285);

2 ASSERT(x[0 x00000001] = 0x2BAA5399);

3 ASSERT(x[0 x00000002] = 0x58456688);

4 ASSERT(x[0 x00000003] = 0xB639F114);

5 ASSERT(x[0 x00000004] = 0xEF8C5B88);

6 ASSERT(x[0 x00000005] = 0xB9E49963);

7 ASSERT(x[0 x00000006] = 0x299A9606);

8 ASSERT(x[0 x00000007] = 0xEA84FFC0);

9 ASSERT(x[0 x00000008] = 0xB9497565);

10 ASSERT(x[0 x00000009] = 0x56839C08);

11 ASSERT(x[0 x0000000A] = 0x5A7E585B);

12 ASSERT(x[0 x0000000B] = 0x7F67FBE3);

13 ASSERT(x[0 x0000000C] = 0xF6E89B1C);

14 ASSERT(x[0 x0000000D] = 0x46539B6C);

15 ASSERT(x[0 x0000000E] = 0x5D33659E);

16 ASSERT(x[0 x0000000F] = 0xE6DCD301);

17 ASSERT(x_b[0 x00000000] = 0x98441285);

18 ASSERT(x_b[0 x00000001] = 0x2BAA5399);

19 ASSERT(x_b[0 x00000002] = 0xD8456688);

20 ASSERT(x_b[0 x00000003] = 0xB639F114);

21 ASSERT(x_b[0 x00000004] = 0x6F8C5B88);

22 ASSERT(x_b[0 x00000005] = 0xB9E49963);

23 ASSERT(x_b[0 x00000006] = 0x299A9606);

24 ASSERT(x_b[0 x00000007] = 0xEA84FFC0);

25 ASSERT(x_b[0 x00000008] = 0x39497565);

73

26 ASSERT(x_b[0 x00000009] = 0x56839C08);

27 ASSERT(x_b[0 x0000000A] = 0x5A7E585B);

28 ASSERT(x_b[0 x0000000B] = 0x7F67FBE3);

29 ASSERT(x_b[0 x0000000C] = 0x76E89B1C);

30 ASSERT(x_b[0 x0000000D] = 0x46539B6C);

31 ASSERT(x_b[0 x0000000E] = 0x5D33659E);

32 ASSERT(x_b[0 x0000000F] = 0xE6DCD301);

Code Example 6.21: Collision.

With the bash command from Code Example 6.22 the differential output
message to the algorithm can be seen in Code Example 6.23.

1 $ stp_simple md4.cvc | sort | grep out

Code Example 6.22: Bash command to extract the state.

1 ASSERT(state_out [0 x00000000] = 0x7E663C7E);

2 ASSERT(state_out [0 x00000001] = 0xB78F3B6D);

3 ASSERT(state_out [0 x00000002] = 0x114AE04A);

4 ASSERT(state_out [0 x00000003] = 0x09B8AC68);

5 ASSERT(state_out_b [0 x00000000] = 0x7E663C7E);

6 ASSERT(state_out_b [0 x00000001] = 0xB78F3B6D);

7 ASSERT(state_out_b [0 x00000002] = 0x114AE04A);

8 ASSERT(state_out_b [0 x00000003] = 0x09B8AC68);

Code Example 6.23: State.

Since there are differences in the input message x and x b from Code
Example 6.21 and no differences in the output state out and state out b from
Code Example 6.23 any more, the collision found with the NL Tool is verified
with the CryptoSMT Tool correctly.

6.6 Implemented Operations

Table 6.5 shows some functionality added to the framework. The table lists
general functionality, operations on state words implemented for the NL Tool
and the CryptoSMT Tool and integer operations performed during integer
cleanup. Still this list is not exhaustive.

6.7 Performance Evaluation

Figure 6.1 shows a performance evaluation comparing the various tools in
two different experiments. Both experiments compare the computation time
of the MD4 algorithm between the original NL Tool implementation, the
automated translation for the NL Tool and the automated translation for
the CryptoSMT Tool.

74

working before working now
tool NL Tool CryptoSMT NL Tool CryptoSMT

general functionality
single variable assignment * - X X

CNF - - - X
Feistel ciphers - - X X
differential ADD - - - X
loop unrolling * - X X

remove IF statements - - X X
global constants - - X X
integer cleanup - - X X

state word operation
OR X - X X
XOR X - X X
AND X - X X
¬ X - X X
�, � X - X X
≪, ≫ X - X X

integer operations
+ - - X X
− - - X X
∗ - - X X
/ - - X X

mod - - X X
∨ - - X X
∧ - - X X

Table 6.5: Implemented operations of the tools. (-) meaning it does not work, (*)
meaning it works partly, (X) meaning it works.

75

NL Tool (original) NL Tool (new) CryptoSMT Tool

100

101

T
im

e
[s

]

Figure 6.1: Computation time NL Tool : original vs. automatically generated
version. The red circles () mark the experiment with the characteristic file from
Table 6.2, the blue circles () mark the experiment described in Section 6.7 and
the green circles () mark the experiment with the original characteristic file from
[49]. The black cross () marks the corresponding mean value.

In the first experiment, marked with the red circles (), the differential
characteristic file from Table 6.2 was used. In the second experiment, marked
with the blue circles (), the differential characteristic file from Table 6.3 was
used. In all experiments the mean value is marked with a black cross ().

The green circles () mark another experiment, only performed with the
original NL Tool implementation and with the characteristic file from [49]. It
was not possible to perform this experiment with the automatically generated
translations due to performance reasons.

The original implementation of the NL Tool is the fastest one, because it
is optimised in terms of speed.

One reason for the reduced performance of the automatically translated
algorithms is the temporary variables created during the translation process.
Maintain the automated translation process as general as possible, naturally
implies unpacking and simplifying of compound or specialized statements.
Disassemble these statements results in creating temporary variables which
further results in less efficient code.

There are countermeasures against this kind of performance decrease.
One, which was implemented is the handling of rotations. They are not
disassembled and split into their building blocks, but automatically anno-
tated and translated directly into a rotation operation for the desired output
language.

76

6.8 Challenges and Limitations

6.8.1 Overview

Several challenges occurred during the work on this project. Some of them
are listed here followed by their solution, if there was found any. For a couple
of them no solution was found. Therefore, they are treated as limitations and
will be discussed further as future work in Section 7.2.

The challenges are grouped in three categories. General challenges re-
garding the processing of the C -reference implementations are discussed in
Section 6.8.2. Challenges regarding the translation process are discussed in
Section 6.8.3 for the NL Tool and Section 6.8.4 for the CryptoSMT Tool.

6.8.2 General

Single Variable Assignment

Single variable assignment did not work for arrays. A new method to remem-
ber array entries and reassign them to new variables had to be developed.
Since an array has the same name no matter which index is accessed, the
new method had to keep track of the corresponding index.

Runtime Performance of the Code Transformations

Previously, a list with all appearing variables and their name to be replaced
was maintained during the translation process. With every variable in the
algorithm, the framework iterated over the whole list and replaced all occur-
ring variables in the remaining part of the algorithm with the corresponding
temporary variable name. With this approach, the same variable could be
renamed many times, before it got its final name.

Therefore, a new internal data structure to represent the algorithms’
statements before the final translation was developed. This data structure
allows data access of O(log(n)) compared to the old data structure with an
O(n2) performance, where n is the number of statements describing the en-
tire algorithm. This affects mainly the performance of the single variable
assignment procedure, which was the most time consuming transformation
before.

Needed Adaptations for new Algorithms

The framework has to be adapted for almost every new algorithm, because
they vary in implementation details very much. Many features are already

77

covered by the framework, but not everything. For example loops with mul-
tiple conditions are not handled yet. Therefore, the probability is high that
a new algorithm contains some by now not handled code pieces. The frame-
work was built with this knowledge and has many points to hook in easily.
For most of the missing features it should be little effort to add them to the
framework. Hard is to still preserve its general approach.

Coding Standard

The biggest problem is the variability of different implementation styles.
Different developers use different C code constructs, where some of them are
hard to handle. In general the great diversity of possible implementations is
hard to cover e.g. defines, arrays of arrays, method-inlining, pointer usage,
global arrays as truth tables, if, . . .

One solution to the problem could be to force user of the framework to
adapt the C -reference implementations. Some code could be replaced by
parts which are easier to process automatically. For example, references to
structs could be replaced by arrays.

6.8.3 NL Tool

The framework was used to translate the algorithms MD4 and Ascon for the
NL Tool. Additionally we experimented with MD5 and SHA256.

Performance

For the NL Tool the biggest problem is the bad performance. Unfortunately
this issue could not be resolved so far. Therefore, it is one of the limitations
of the framework. It is possible to generate correctly working code for the
tool, although compared to the original implementations it has too many
temporary variables needed for the automatic translation process. Especially
the single variable assignment causes this problem.

In Figure 6.1 the runtime of the automatically generated code compared
to the original code for the MD4 algorithm is shown.

Characteristic Processing

The characteristic file provided to the framework for mapping the input val-
ues of the characteristic to the NL Tool output is sometimes hard to interpret.
One example of such a case are ciphers consisting of a Feistel network. They
allow a compressed notation of the characteristic file, where not all states
of the algorithm have to be fully expressed. For these specific ciphers, the

78

additional annotation @iv_state_offset was introduced. This annotation
holds a comma separated list of numbers indicating an offset of the presented
state from the first state for each represented state in the characteristic file.
This approach allows correct mapping of the characteristics IV to the states
of the NL Tool.

6.8.4 CryptoSMT Tool

The framework was used to translate several algorithms like MD4, MD5,
SHA256, Ascon, Skein, and JH for the CryptoSMT Tool. Additionally we
experimented with SHA-1, Grøstl, BLAKE and Keccak.

Array Indices Computation

If an index of an array is dependent from the input of the algorithm it is hard
to represent this structure within the CVC language. All statements have
to be defined on compile time, also the indices of the arrays. Considering
that the input can be a difference, or unknown at compile time, because it
is searched by the tool, this can be a problem.

Therefore, a truth table is generated, which computes the index of an
array and stores it in a variable on compile time. A CNF is generated to
represent the index. This approach is working, but takes a lot of processing
time and code size.

Runtime Performance of SAT-Solver

For the CryptoSMT Tool it is hard to represent differential propagations,
therefore additional constraints can be set to help the tool. For the ADD-
operation explained in Definition 7 it is implemented already. Constraints
for other operations mentioned in Section 5.6.1 could be added.

79

80

Chapter 7

Conclusion and Future Work

In this thesis an extended framework for automated cryptanalysis was pre-
sented. It can be used to perform a preliminary analysis of arbitrary C -code,
although it is best suited for cryptographic algorithms containing a round
function.

In Section 7.1 a final conclusion is drawn and in Section 7.2 future work
is discussed.

7.1 Conclusion

The framework can successfully read C -reference implementations of vari-
ous cryptographic algorithms, analyse them and translate them into diverse
output formats for distinct analysis tools. The C -reference implementations
used as input files for the framework are the same typically submitted to
cryptographic competitions. Therefore, a wide application range is given.

This work focuses specifically on the NL Tool and the CryptoSMT Tool.
The framework leaves the possibility to be easily extended by another plug-in
for a different cryptanalytic tool.

The transformations needed to convert the C -reference implementation
into a standard form can be automated for most C -code constructs since
the ROSE framework used for that purpose is a cross-compiler framework,
which understands the whole C -language. Although, it is a lot of work
to implement every single feature to generate a standard form which can be
generally used for the various translator plug-ins. Therefore, the focus was on
the most commonly used once, especially the compositions needed to process
the MD4 algorithm. More exotic compositions still have to be implemented
and are therefore not available.

For the NL Tool, the automatic code generation process works, but re-

81

mains impracticable because of its poor runtime.

Automatic code generation for the CryptoSMT Tool on the other hand
works as expected. Once a differential characteristic is available, the frame-
work can be used to generate a boolean description of the algorithm including
the characteristic and test against it.

In conclusion it can be said, that automatic code generation of cryp-
tographic algorithms from their C -reference implementation is possible, al-
though more complex as expected in the first place. Depending on the origi-
nal implementation of an algorithm it can be a fairly straight forward process.
The two plug-ins currently available show that automatic code generation
works in general, but depends strongly on the tool if it is usable in practice.

7.2 Future Work

Of course, there are many improvements and additional features which can
be implemented to enhance the analysis process. Some of them which are
considered as promising are listed here:

More efficient implementation of CNF generation

At the moment, the CNF generation, described in Section 5.5.5, for input-
dependent global const arrays works on a “bit-by-bit basis”. This approach
results in an extreme amount of generated code, which grows exponentially
with the bit size of the constants.

One possible solution to that problem would be the modification of the
CNF generation algorithm to use a method based on a binary tree. This
approach would result in a logarithmic growth according to the bit size of
the constants.

Write additional Tool Plug-ins

The framework consists of plug-ins for two tools. Namely the NL Tool plug-
in and the CryptoSMT Tool plug-in. In general, a plug-in for any desired
tool can be developed. The more tools this framework supports, the wider
its application reaches. For example a plug-in for the lineartrails Tool [16],
a heuristic tool for linear cryptanalysis, could be added in the future.

To develop a new plug-in, the ToolTranslator class of the framework
has to be subclassed, which defines the tool’s translations. There, translation
instructions for each statement can be defined.

82

Save/load intermediate representation

At the current development state, for each tool, the framework needs to
start a separate translation process. This includes all the transformations
described in Section 5.5, where one pass for all tools should suffice. This
behaviour needs a lot of unnecessary processing time and resources.

One solution to the problem would be to implement a method to store the
ROSE IR of the processed input file right after the transformation process
described in Section 5.5. This configuration could than be loaded for each
new translation.

83

84

References

[1] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Break-
ing the TLS and DTLS record protocols. In IEEE Symposium on Secu-
rity and Privacy, pages 526–540. IEEE Computer Society, 2013.

[2] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C-W
Phan. SHA-3 proposal BLAKE. Submission to NIST, 2008.

[3] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and
Christian Winnerlein. BLAKE2: simpler, smaller, fast as MD5. In
ACNS, volume 7954 of Lecture Notes in Computer Science, pages 119–
135. Springer, 2013.

[4] Mihir Bellare and Chanathip Namprempre. Authenticated encryp-
tion: Relations among notions and analysis of the generic composition
paradigm. In ASIACRYPT, volume 1976 of Lecture Notes in Computer
Science, pages 531–545. Springer, 2000.

[5] Daniel J Bernstein. ChaCha, a variant of Salsa20. In Workshop Record
of SASC, volume 8, pages 3–5, 2008.

[6] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak sponge function family main document. Submission to NIST
(round 2), 3(30):320–337, 2009.

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. CAESAR submission: Ketje v2. http://

competitions.cr.yp.to/round3/ketjev2.pdf, 9 2016.

[8] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. CAESAR submission: Keyak v2. http:

//competitions.cr.yp.to/round3/keyakv22.pdf, 9 2016.

[9] Eli Biham and Orr Dunkelman. A framework for iterative hash functions
- HAIFA. IACR Cryptology ePrint Archive, 2007:278, 2007.

85

http://competitions.cr.yp.to/round3/ketjev2.pdf
http://competitions.cr.yp.to/round3/ketjev2.pdf
http://competitions.cr.yp.to/round3/keyakv22.pdf
http://competitions.cr.yp.to/round3/keyakv22.pdf

[10] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data En-
cryption Standard. Springer, 1993.

[11] Christophe De Cannière and Christian Rechberger. Finding SHA-1 char-
acteristics: General results and applications. In ASIACRYPT, volume
4284 of Lecture Notes in Computer Science, pages 1–20. Springer, 2006.

[12] CAESAR committee. CAESAR - Competition for Authenticated
Encryption: Security, Applicability, and Robustness. https://

competitions.cr.yp.to/caesar.html. Accessed February 27, 2019.

[13] Bert den Boer and Antoon Bosselaers. An attack on the last two rounds
of MD4. In CRYPTO, volume 576 of Lecture Notes in Computer Science,
pages 194–203. Springer, 1991.

[14] Hans Dobbertin. Cryptanalysis of MD4. In FSE, volume 1039 of Lecture
Notes in Computer Science, pages 53–69. Springer, 1996.

[15] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Analysis
of SHA-512/224 and SHA-512/256. In ASIACRYPT (2), volume 9453
of Lecture Notes in Computer Science, pages 612–630. Springer, 2015.

[16] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Heuristic
tool for linear cryptanalysis with applications to CAESAR candidates.
In ASIACRYPT (2), volume 9453 of Lecture Notes in Computer Science,
pages 490–509. Springer, 2015.

[17] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon v1.2. Submission to the CAESAR competition: http:
//competitions.cr.yp.to/round3/asconv12.pdf, 2016.

[18] Morris J Dworkin. SHA-3 standard: Permutation-based hash and
extendable-output functions. Technical report, 2015.

[19] Maria Eichlseder, Florian Mendel, Tomislav Nad, Vincent Rijmen, and
Martin Schläffer. Linear propagation in efficient guess-and-determine
attacks. In WCC, pages 142–149, 2013.

[20] Maria Eichlseder, Florian Mendel, and Martin Schläffer. Branching
heuristics in differential collision search with applications to SHA-512.
In FSE, volume 8540 of Lecture Notes in Computer Science, pages 473–
488. Springer, 2014.

86

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/round3/asconv12.pdf
http://competitions.cr.yp.to/round3/asconv12.pdf

[21] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bel-
lare, Tadayoshi Kohno, Jon Callas, and Jesse Walker. The Skein hash
function family. Submission to NIST (round 3), 7(7.5):3, 2010.

[22] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors
and arrays. In CAV, volume 4590 of Lecture Notes in Computer Science,
pages 519–531. Springer, 2007.

[23] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
Grøstl - a SHA-3 candidate. Submission to NIST (round 3), 2011.

[24] Fabian Golser. Verification of electronic signatures on Android. Bache-
lor’s thesis, University of Technology, Graz, 2014.

[25] Christoph Hechenblaikner. Automated cryptanalysis of new au-
thenticated ciphers. Master’s thesis, University of Technology,
Graz, 2014. http://diglib.tugraz.at/automated-cryptanalysis-

of-new-authenticated-ciphers-2014.

[26] Jaap-Henk Hoepman and Bart Jacobs. Increased security through open
source. Commun. ACM, 50(1):79–83, 2007.

[27] Jérémy Jean. TikZ for cryptographers. https://www.iacr.org/

authors/tikz, 2016. A collection of tikz figures for important cryp-
tographic algorithms.

[28] David Kahn. The Codebreakers: The comprehensive history of secret
communication from ancient times to the Internet. Simon and Schuster,
1996.

[29] Auguste Kerckhoffs. La cryptographic militaire. Journal des sciences
militaires, 9:5–38, 1883. Kerckhoffs’ principles.

[30] Dmitry Khovratovich and Ivica Nikolic. Rotational cryptanalysis of
ARX. In FSE, volume 6147 of Lecture Notes in Computer Science,
pages 333–346. Springer, 2010.

[31] Lars Knudsen. DEAL - a 128-bit block cipher. complexity, 258(2):216,
1998.

[32] Stefan Kölbl. CryptoSMT: An easy to use tool for cryptanalysis of
symmetric primitives. https://github.com/kste/cryptosmt.

87

http://diglib.tugraz.at/automated-cryptanalysis-of-new-authenticated-ciphers-2014
http://diglib.tugraz.at/automated-cryptanalysis-of-new-authenticated-ciphers-2014
https://www.iacr.org/authors/tikz
https://www.iacr.org/authors/tikz
https://github.com/kste/cryptosmt

[33] Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing
differential properties of addition. In FSE, volume 2355 of Lecture Notes
in Computer Science, pages 336–350. Springer, 2001.

[34] Lawrence Livermore National Laboratory (LLNL). ROSE compiler
framework, open source compiler infrastructure to build source-to-source
program transformation and analysis tools for large-scale applications.
http://rosecompiler.org. Accessed February 27, 2019.

[35] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In EU-
ROCRYPT, volume 765 of Lecture Notes in Computer Science, pages
386–397. Springer, 1993.

[36] Florian Mendel, Tomislav Nad, and Martin Schläffer. Finding SHA-
2 characteristics: Searching through a minefield of contradictions. In
ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages
288–307. Springer, 2011.

[37] Florian Mendel, Tomislav Nad, and Martin Schläffer. Improving local
collisions: New attacks on reduced SHA-256. In EUROCRYPT, volume
7881 of Lecture Notes in Computer Science, pages 262–278. Springer,
2013.

[38] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1996.

[39] Ralph Merkle. Secrecy, authentication, and public key systems. PhD
thesis, Stanford University, Stanford, 1979.

[40] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[41] Koji Nuida, Takuro Abe, Shizuo Kaji, Toshiaki Maeno, and Yasuhide
Numata. A mathematical problem for security analysis of hash functions
and pseudorandom generators. Int. J. Found. Comput. Sci., 26(2):169–
194, 2015.

[42] National Institute of Standards and Technology (NIST). Cryptographic
hash algorithm (SHA-3) competition. http://csrc.nist.gov/groups/
ST/hash/sha-3/index.html, 2007. Accessed February 27, 2019.

[43] National Institute of Standards and Technology (NIST). Crypto-
graphic hash algorithm (SHA-3) competition on cr.yp.to. https:

//competitions.cr.yp.to/sha3.html, 2012. Accessed February 27,
2019.

88

http://rosecompiler.org
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
https://competitions.cr.yp.to/sha3.html
https://competitions.cr.yp.to/sha3.html

[44] National Institute of Standards and Technology. The SHA-1 algo-
rithm. https://archive.org/stream/federalinformati1801nati, 4
1995. Federal Information Processing Standards Publication FIPS 180-
1.

[45] Daniel J. Quinlan. ROSE: compiler support for object-oriented frame-
works. Parallel Processing Letters, 10(2/3):215–226, 2000.

[46] Ronald L. Rivest. The MD4 message digest algorithm. In CRYPTO, vol-
ume 537 of Lecture Notes in Computer Science, pages 303–311. Springer,
1990.

[47] Ronald L. Rivest. The MD4 message-digest algorithm. RFC, 1320:1–20,
1992.

[48] Ronald L. Rivest. The MD5 message-digest algorithm. RFC, 1321:1–21,
1992.

[49] Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro. New message
difference for MD4. In FSE, volume 4593 of Lecture Notes in Computer
Science, pages 329–348. Springer, 2007.

[50] Ákos Seress. Permutation group algorithms, volume 152. Cambridge
University Press, 2003.

[51] Hongjun Wu. The hash function JH. Submission to NIST (round 3), 6,
2011.

[52] Thomas Zefferer, Fabian Golser, and Thomas Lenz. Towards mobile
government: Verification of electronic signatures on smartphones. In
EGOVIS/EDEM, volume 8061 of Lecture Notes in Computer Science,
pages 140–151. Springer, 2013.

89

https://archive.org/stream/federalinformati1801nati

	Cover
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Code Examples
	List of Symbols

	Introduction
	Motivation
	Goals
	Current Work
	Contributions and Results
	Outline

	Cryptography
	Overview
	Terminology
	History of Cryptography
	Alice and Bob
	Encryption in General
	Symmetric Cryptography
	Asymmetric Cryptography
	Hash Functions
	Overview
	Usage of a Hash Function

	Authenticated Encryption
	Overview
	Generic Composition
	CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness
	Ascon

	Electronic Signatures

	Cryptographic Hash Functions
	Overview
	General Functionality of a Cryptographic Hash Function
	Usage of a Cryptographic Hash Function
	Security Properties
	Preimage Resistance
	Second Preimage Resistance
	Collision Resistance
	Stronger Security Properties

	Basic Building Blocks
	Permutations
	Substitution-Box
	Linear Mixing Layer

	Compression Functions
	Modes of Operation
	Merkle-Damgård Design
	Sponge Construction

	Algorithms
	MD4
	SHA-2
	SHA-3 Final Round Candidates
	Keccak (SHA-3 Winner)
	BLAKE
	Skein
	JH
	Grøstl

	Cryptanalysis
	Overview
	Brute-Force Attack
	Linear Cryptanalysis
	Differential Cryptanalysis
	Difference
	Differential Cryptanalysis of Block Ciphers
	Differential Cryptanalysis of Hash Functions
	Impossible Differential Cryptanalysis
	Differential Characteristic

	Automated Cryptanalysis Framework
	Overview
	ROSE Compiler Framework and Libraries
	Plug-ins
	NL Tool
	CryptoSMT Tool

	Preparations
	Annotations
	Generate a Template Characteristic

	Transformations
	Inlining
	Loop Unrolling
	Remove IF Statements
	Global Constants
	Generate a CNF out of a Truth Table
	Compound Statements
	Rotations
	Splitting
	Single Variable Assignment
	Integer Cleanup
	Standard Form

	Translations
	SAT Solver
	Boolean Operations
	Arithmetic Operations

	NL Tool

	Command Line Parameters

	Results
	Overview
	Preparations
	Characteristic
	NL Tool
	Original Implementation
	Template Files
	Translation
	Search
	Solution

	CryptoSMT Tool
	Template Files
	Translation
	Search
	Solution

	Implemented Operations
	Performance Evaluation
	Challenges and Limitations
	Overview
	General
	NL Tool
	CryptoSMT Tool

	Conclusion and Future Work
	Conclusion
	Future Work

	References

