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Abstract

Rizoiu et al. (2018b) present a link between the stochastic sir model and a self
exciting point process which they call the HawkesN process. The intensity
of this variant of the Hawkes process features an exponential kernel. We
have found a connection between the seir model and the HawkesN process.
It leads to two new excitation functions and we show that one of them
generalizes the exponential kernel. Furthermore, we discuss how parameters
of an sir or seir model can be estimated using HawkesN processes. This
is useful when for example modeling information diffusion where we can
observe only one type of events. In contrast to Rizoiu et al. (2018b) we
present our results for several parameter combinations and also consider
the case where all parameters are unknown.

Kurzfassung

Rizoiu et al. (2018b) präsentieren eine Verbindung zwischen dem stochastis-
chen sir-Modell und dem HawkesN-Prozess – einem Hawkes-Prozess,
dessen Intensität durch einen zusätzlichen Faktor modifiziert wird. Die
Intensität des von Rizoiu et al. (2018b) gefundenen Prozesses weist einen
exponentiellen Kernel auf. Wir zeigen, dass auch eine Verbindung zwis-
chen dem HawkesN-Prozess und dem seir-Modell existiert. Diese führt
zu zwei neuen Kernels, wobei eine dieser beiden Funktionen eine Verallge-
meinerung des exponentiellen Kernels darstellt. Weiters zeigen wir in der
vorliegenden Arbeit, wie die Parameter des sir- und seir-Modells mit Hilfe
von Hawkes-Prozessen geschätzt werden können. Dies ist unter anderem
bei der Modellierung von Informationsausbreitungsprozessen hilfreich, da
hierbei nur eine Ereignisart beobachtbar ist. Im Gegensatz zu Rizoiu et al.
(2018b) präsentieren wir unsere Resultate für verschiedene Parameterkom-
binationen und betrachten auch den Fall, in dem sämtliche Parameter als
unbekannt angenommen werden.
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1. Introduction

Rizoiu et al. (2018b) present a connection between the stochastic sir model
and a variation of the Hawkes process which they call the HawkesN process.
This link between the two models requires the HawkesN process to have an
exponential kernel as excitation function. This is why Rizoiu et al. (2018b)
considered the kernel function as an area of future work. In this thesis we
introduce two new kernel functions for the HawkesN process establishing
the link to the seir model. Furthermore, we show that the exponential
kernel is a special case of our more general excitation function.

Using simulated sir data, Rizoiu et al. (2018b) show that parameter esti-
mation works better with likelihood maximization of the sir model than
with the corresponding approach related to the Hawkes process. However,
in the generation of the simulations they use only one set of parameters.
We investigate how the choice of different parameters affects the estimation
results. Furthermore, they assume that all but one of the parameters are
fixed when fitting the parameter they are most interested in. Since knowing
all but one parameter is not very realistic, we analyze the consequences of
estimating more than one parameter.

This thesis is divided into the following parts. In chapter 2 we deal with
some basics in probability theory. We define some distributions needed in
the rest of the thesis and we dive into the theory of stochastic processes with
an emphasis on point processes. In chapter 3 we introduce the sir as well as
the seir model and discuss a deterministic and a stochastic variant of each
model. Furthermore, we present how the final size of an epidemic can be
modeled. Chapter 4 is then devoted to Hawkes processes. In this chapter
we also introduce the HawkesN process as defined in Rizoiu et al. (2018b).
Following these authors we show that there is a close relation between the
sir model and the HawkesN process. This chapter contains our new kernel
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1. Introduction

function as well and we present the link between seir models and HawkesN
processes. Chapter 5 contains our conclusions.

In appendices B and C we demonstrate the differences between the R
program by Rizoiu et al. (2018a) and our software for working with epidemic
models as well as HawkesN processes. Since this part of the thesis contains
relatively many code snippets we provide instructions on how to read these
parts in appendix A.
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2. Probability Theory and

Stochastic Calculus

2.1. Introduction

In this chapter we first introduce distributions we use in later chapters.
After that we provide an introduction into the theory of stochastic processes.
Throughout the chapter we use the following notation.

We use Ω to denote a space of elementary events and we use A to denote a
σ-algebra on Ω. A probability measure on A is denoted by P. Thus, (Ω,A)
is a measurable space and (Ω,A, P) is a probability space.

2.2. Useful Distributions

In this section we introduce useful distributions. All definitions and state-
ments can also be found in Klenke (2013). The first distribution we introduce
is the exponential distribution.

Definition 2.1 (Exponential distribution). Let λ > 0 and let X be a nonneg-
ative random variable such that

P[X ≤ x] = P [X ∈ [0, x]] =
∫ x

0
λ e−λt dt for x ≥ 0.

Then we call X exponentially distributed with parameter λ. We denote the
distribution of X by expλ.

3



2. Probability Theory and Stochastic Calculus

We can calculate the integral in definition 2.1 and get

P[X ≤ x] =
∫ x

0
λ e−λt dt = λ

e−λt

−λ

∣∣∣∣x
0
= 1− e−λx .

This implies

FX(x) := P[X > x] = e−λx . (2.1)

For a random variable X we call FX the tail of the distribution of X.

For independent exponentially distributed random variables Xi for i =
1, 2, . . . , n we might be interested in the distribution of the random variable
min{X1, X2, . . . , Xn}. It turns out that this variable is again exponentially
distributed as shown in the following theorem.

Theorem 2.2. Let Xi
ind∼ expλi

for i = 1, . . . , n be independent exponentially
distributed random variables with parameters λ1, . . . , λn. Then the random variable
min{X1, . . . , Xn} is also exponentially distributed with parameter λ = ∑n

i=1 λi.

Proof. Using the definition of the minimum and the independence of the
random variables we get

P(min{X1, . . . , Xn} > x) = P(X1 > x, . . . , Xn > x) =
n

∏
i=1

P(Xi > x).

With equation (2.1) we get
n

∏
i=1

P(Xi > x) =
n

∏
i=1

e−λix .

Using the properties of the exponential function we obtain
n

∏
i=1

e−λix = e−∑n
i=1 λix = e−λx .

Thus we get

P(min{X1, . . . , Xn} ≤ x) = 1− e−λx (2.2)

which proves that min{X1, . . . , Xn} is exponentially distributed with param-
eter λ.

4



2.3. Stochastic Calculus

Now, we continue with the next distribution, the Poisson distribution.

Definition 2.3 (Poisson distribution). Let X ∈ N≥0 be a random variable
with P(X = n) = λn

n! e−λ ∀n ∈ N≥0. Then X has a Poisson distribution with
parameter λ (denoted by X ∼ Poi(λ)).

2.3. Stochastic Calculus

In this section we introduce some basics from stochastic calculus. The first
definitions of this chapter are taken from Klenke (2013).

Definition 2.4 (Stochastic process). Let I ⊂ R. A family of random variables
X = (Xt)t∈I (on (Ω,A, P)) with values in the measurable space (E, E) is
called a stochastic process with index set (or time set) I and range E.

All stochastic process we consider have E = R. Such processes are called real-
valued. Usually I is [0, ∞). Thus (Xt)t≥0 is an alternative way of expressing
X.

Note that other views on stochastic processes are possible. As mentioned in
Andersen et al. (1996) one can consider a stochastic process as a function
of two arguments t, ω ∈ I × Ω. With ω fixed we have a sample path of the
stochastic process.

Definition 2.5. Let X be a random vaiable (or a stochastic process). Then
we denote the distribution of X by L [X]. For a σ-algebra G ⊂ A we define
L [X|G] as the conditional distribution of X given G.

Definition 2.6 (Filtration). Let (Ω,A, P)be a probability space and let F =
(F t)t∈I be a family of σ-algebras with F t ⊂ A for all t ∈ I. F is called a
filtration if F s ⊂ F t for all s, t ∈ I with s ≤ t. The space (Ω,A, F, P)is a
filtrated probability space.

We can consider a filtration F as our history, i.e. the σ-algebra F t contains
all the information we have until time t. Since by definition a filtration’s
σ-algebras are increasing, we gain more and more information as time
passes.

5



2. Probability Theory and Stochastic Calculus

Definition 2.7. A stochastic process (Xt)t∈I is called adapted to the filtration
F = (F t)t∈I if Xt is F t-measurable for all t ∈ I. If F = (F t)t∈I and
F t = σ((Xs)s≤t) for all t ∈ I, then we call the filtration generated by X and
write F =: σ(X).

Viewing a filtration as our history allows us to give an intuitive explanation
of what definition 2.7 means. Aalen et al. (2008) point out that X being
adapted to the filtration F = (F t)t∈I means that our history F is generated
by the process X and maybe some additional external information. So all
information about X is contained in F. Thus, for example, we can construct
the conditional expectation E(Xt|F t) = Xt and still recover the original
random variable Xt without losing information about it. Since the σ-algebras
are increasing, this property even holds for all Xs where s ≤ t.

Definition 2.8. We call a filtration F = (F t)t≥0 P-complete, if F 0 contains
all subsets A ⊆ Ω with P(A) = 0. Note that this property means that all
σ-algebras Ft with t > 0 contain the null sets as well because a filtration’s
σ-algebras are increasing.

Definition 2.9. We define Ft+ := ∩s>tFs and call a filtration F = (F t)t≥0
right-continuous if Ft+ = Ft for all t ≥ 0.

Definition 2.10. A filtration F is said to satisfy the usual conditions if it
is P-complete and right-continuous. In this thesis we always assume this
property to hold.

Next, we define a counting process basing our definition on Rüschendorf
(2014). In the following we use the terms counting process and point process
interchangeably.

Definition 2.11 (Counting process). Let (Xn)n∈N be a sequence of random
variables Xn ∈ (0, ∞) with Xn > Xn−1 P-almost-surely. We define

Nt :=
∞

∑
n=1

I{Xn≤t}

and call N a counting process or point process.

6



2.3. Stochastic Calculus

Daley and Vere-Jones (2003) point out that there are also other ways to
define a point process. They introduce point processes using a counting
measure. This approach has also been chosen by Resnick (1992).

If the realizations of two consecutive points Xn and Xn+1 are tn and tn+1,
respectively, then we can see from definition 2.11 that the corresponding
counting process N is constant on [tn, tn+1). The occurrence of a new point
immediately causes a discontinuity in N, i.e. Ntn+1 = lims↑tn+1 Ns + 1 6=
lims↑tn+1 Ns. Note that the limit lims↑tn+1 Ns = Ntn exists and that N is
right-continuous because of lims↓tn+1 Ns = Ntn+1 . Such processes, i.e. right-
continuous with a limit on the left, are called càdlàg, an acronym of the
French continue à droite, limite à gauche.

Definition 2.12 (Waiting times). Let us again consider the sequence (Xn)n∈N

from definition 2.11. The random variables Tn := Xn − Xn−1 are called
waiting times.

According to Daley and Vere-Jones (2003) waiting times are an alternative
way of defining a point process.

When talking about a counting process N we always assume a filtrated
probability space (Ω,A, F, P)such that N is adapted to F. In order to in-
troduce the concept of the intensity of a counting process we first have to
discuss a few more fundamentals of stochastic calculus, as also shown in
Aalen et al. (2008).

Definition 2.13. Let X be a stochastic process.

1. X is called integrable if it is real-valued and ∀t ∈ I : E [|Xt|] < ∞.
2. X is called square integrable if it is real-valued and ∀t ∈ I : E

[
X2

t
]
< ∞.

Definition 2.14 (Martingale). Let (Ω,A, F, P)be a filtrated probability space.
A stochastic process X is called a martingale with respect to the filtration F

and the probability measure P if

1. X is integrable,
2. X is adapted to F, and
3. the martingale condition

E[Xt|Fs] = Xs (2.3)

holds P-almost surely for all s ∈ [0, t].

7



2. Probability Theory and Stochastic Calculus

If instead of (2.3) only

E[Xt|Fs] ≥ Xs (2.4)

holds P-almost surely for all s ∈ [0, t], then we call X a submartingale.

As indicated by the inequality sign in (2.4) submartingales tend to grow
over time. Note that the inequality (2.4) holds for counting processes since
they are monotonically increasing. This means that all counting processes
are submartingales.

We now introduce a feature of stochastic processes called predictability as
defined in Andersen et al. (1996).

Definition 2.15 (predictable). Let (Ω,A, F, P) be a filtered probability space.
A stochastic process is called predictable if, seen as a function of (t, ω) ∈
I × Ω, it is measurable with respect to the σ-algebra on I × Ω generated by
the left-continuous processes that are adapted to F.

A submartingale X can be split into two processes using the Doob-Meyer
decomposition. From it we obtain X = X∗ + M. In this equation X∗ is
nondecreasing and predictable and M is a martingale with E(Mt) = 0 for
all t ∈ I. Since a counting process N is a submartingale we may write

Nt = Λt + Mt (2.5)

where Λt is a predictable and nondecreasing.

Definition 2.16. We call Λ in equation (2.5) the cumulative intensity or com-
pensator of N.

From (2.5) we obtain Mt = Nt−Λt which means that a counting process can
be turned into a zero-mean martingale by subtracting Λt. For our purposes
we assume that Λt is absolutely continuous which means that there exists a
process λt (which is also predictable) such that

Λt =
∫ t

0
λs ds . (2.6)

8



2.3. Stochastic Calculus

Thus

Mt = Nt −
∫ t

0
λs ds (2.7)

is a martingale with E [Mt] = 0 for all t ∈ I.

Definition 2.17. We call λ in equation (2.6) the intensity process or intensity
of the counting process N.

Sometimes, the intensity λ is defined in a different way. For example, Laub
et al. (2015) as well as Bacry et al. (2015) use

λt = lim
∆t↓0

E[Nt+∆t − Nt|Ft]

∆t
(2.8)

as a definition. As argued above, the probability of multiple events between
t and t + ∆t converges to zero with ∆t→ 0. This is why Aalen et al. (2008)
write

λt = lim
∆t↓0

P[Nt+∆t = Nt + 1|Ft]

∆t
(2.9)

where the expectation in (2.8) is replaced by a probability. They also point
out that in equation (2.5) and its equivalent dNt = λtdt + dMt the left side
represents our observation whereas the right side is a sum of the signal and
noise.

Next, we define the integration with respect to a counting process. Often
in the literature, the more general integral with respect to a function with
locally finite variation is defined. As each path of a counting process is a
function of locally finite variation, such an approach is certainly correct.
However, we skip the theory on a function’s variation and just present the
important result.

Definition 2.18 (Integral w.r.t. a counting process). Let N be a counting
process and let tj be the time of the jth jump event of N. Let f : R≥0 → R

be a Lebesgue-integrable function. Then we define

t∫
0

f (s) dN(s) := ∑
tj<t

f (tj).

9



2. Probability Theory and Stochastic Calculus

This definition is intuitive in the sense that dN(tj) = 1 since the counting
process N experiences a jump of size 1 at time tj. If there is no jump at time
t, we have dN(t) = 0. Thus, f is only considered at the jump times of the
integrator N.

10



3. Compartmental Epidemic

Models

3.1. Introduction

In this chapter we discuss how the spread of contagious diseases can be
modeled using two compartmental epidemic models. One of the two is the
sir model where the population is divided into the three compartments S, I,
and R. Compartment S contains all the individuals that are not ill but are
susceptible to the disease. Compartment I contains those individuals that
are already infected, while those that have recovered from the disease are in
compartment R. Susceptible individuals can become infected by individuals
from compartment I. In this case they move from S to I. Infected individuals
may recover after some time has passed in which case they move from
I to R. Recovered individuals cannot infect anybody and they cannot be
infected anymore. Figure 3.1 summarizes the compartments and possible
transitions.

The second model we discuss in this chapter is the seir model. It is related to
the sir and extends it by a fourth compartment. This compartment, denoted
by E, comprises all the individuals that are exposed, meaning that these
individuals are infected but not are not able to transmit the disease yet.

S I R

Figure 3.1.: Compartments and possible transitions in an sir model.
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3. Compartmental Epidemic Models

S E I R

Figure 3.2.: Compartments and possible transitions in an seir model.

Only after the transition from E to I they become infectious or infective. So in
this model there is no direct transition from S to I but rather from S to E
and then to I. The seir model inherits the transition from I to R from the
sir model. Figure 3.2 gives an overview of the seir model.

For both epidemic models we distinguish a deterministic from a stochastic
model. In sections 3.2 and 3.3 we discuss the deterministic and the stochastic
sir model respectively. The deterministic seir model follows in section 3.4.
Section 3.5 about the stochastic seir model concludes this chapter.

3.2. The Deterministic SIR Model

In this section we introduce the deterministic sir model which is also known
as Kermack McKendrick epidemic model. Martcheva (2015) served as a
basis for this section.

In the following, we denote the number of individuals in compartments S,
I, and R at time t by S(t), I(t), and R(t) respectively. Starting with initial
values S(0), I(0), R(0) ≥ 0 the (deterministic) processes S(t), I(t), and R(t)
evolve over time following the differential equations

dS(t)
dt

= −β
S(t)
N

I(t), (3.1)

dI(t)
dt

=

(
β

S(t)
N
− γ

)
I(t), and (3.2)

dR(t)
dt

= γI(t). (3.3)

The total population at time t = 0 is N(0) = S(0) + I(0) + R(0). Since
births and deaths are not modeled and the population is considered to be
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closed (i.e. no individuals are allowed to enter or leave the population), the
population’s size does not change over time. This fact is also reflected by
the derivative

N′(t) = S′(t) + I′(t) + R′(t) = 0. (3.4)

Since N(t) is constant we may define N := N(t) for any t ≥ 0.

The constants β, γ ≥ 0 in (3.1), (3.2), and (3.3) denote the infection rate and
recovery rate, respectively. The spread of a disease is determined by these
two constants as well as the initial distribution. Changing one of these model
parameters results in a different pattern of the spread of the disease.

By equation (3.1) S(t) is monotonically decreasing. R(t), on the other hand,
is monotonically increasing because of (3.3). If β

S(t)
N − γ ≤ 0 holds at

the beginning of the process, then the number of infected individuals is
monotonically decreasing due to (3.2). Otherwise, the number of individuals
in I is increasing until β

S(t)
N − γ ≤ 0 holds. This will happen at some point

in time – let us call it u – since S(t) is monotonically decreasing. For t ≥ u
the number of infected individuals I(t) is monotonically decreasing.

These two cases are depicted in figures 3.3 and 3.4. In both situations we
have S(0) = 80, I(0) = 20, and R(0) = 0. In figure 3.3 the infection rate is 0.5
while the recovery rate amounts to 0.7. Thus, β

S(0)
N − γ = 0.5 ∗ 80

100 − 0.7 =
−0.3 < 0, which means that I is monotonically decreasing due to equation
(3.2).

In figure 3.4 we have β = 1 and γ = 0.3. Hence, β
S(0)

N − γ = 1 ∗ 80
100 − 0.3 =

0.5 > 0. This explains why in this figure I is increasing at first.

Often, one wants to know the final size of an epidemic, i.e. the total number
of individuals that have become sick over time. This amount is expressed
by the limit limt→∞ R(t) =: R(∞) because I(t) t→∞−→ 0 holds according
to theorem 2 in Allen (2008). It turns out that we can derive a relation
involving only R(∞), the starting values S(0) and I(0), as well as the
model parameters β and γ. To this end we use R(∞) = N − S(∞), where
S(∞) denotes the limit limt→∞ S(t) and derive the corresponding relation
involving S(∞) instead of R(∞). This procedure can also be seen in Brauer
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Figure 3.3.: A deterministic sir model with monotonically decreasing number of infected.
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Figure 3.4.: A deterministic sir model where the number of infected is increasing at first.
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(2008) and Martcheva (2015). We start by using the equations (3.1) and (3.2)
which leads us to

I′(t)
S′(t)

=
dI(t)

dt
dS(t)

dt

=

(
β

S(t)
N − γ

)
I(t)

−β
S(t)
N I(t)

= −1 +
γ

β
S(t)
N

= −1 +
γN

βS(t)
. (3.5)

Multiplying (3.5) by S′ we obtain

I′(t) = −S′(t) +
S′(t)γN

βS(t)

and integrating leads to

I(t)− I(0) =
t∫

0

I′(u)du

=

t∫
0

(
−S′(u) +

S′(u)γN
βS(u)

)
du

= −
t∫

0

S′(u)du +
γ

β
N

t∫
0

S′(u)
S(u)

du

= −S(t) + S(0) +
γ

β
N (log(S(t))− log(S(0))) . (3.6)

Since equation (3.6) holds for all t ≥ 0, it holds for the limit t→ ∞. Using
limt→∞ I(t) = 0 we get

−I(0) = −S(∞) + S(0) +
γ

β
N (log(S(∞))− log(S(0))) . (3.7)

We can rearrange equation (3.7) to obtain

S(∞) = I(0) + S(0) +
γ

β
N (log(S(∞))− log(S(0))) . (3.8)

(3.8) is an implicit equation for S(∞). On the left side we have S(∞) and on
the right side there is a function of it. So in order to determine the value of
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S(∞) we have to find a fixed point of the function on the right side of (3.8)
which is

f (x) = I(0) + S(0) +
γ

β
N (log(x)− log(S(0))) . (3.9)

With the fixed point S(∞) we also get the final size of the epidemic R(∞) =
N − S(∞).

For the example depicted in figure 3.3 we get a result of S(∞) ≈ 60.21.
This does not contradict the figure which indicates a value near 60. In the
example of figure 3.4 the corresponding result is around 3.17.

The code for generating the figures as well as for calculating S(∞) resides
in the Jupyter notebook for this section in Karakaš (2019).

3.3. The Stochastic SIR Model

3.3.1. Introduction

Now, we turn to a stochastic version of the sir model. Allen (2008) discusses
several models which introduce randomness to the sir model. Here we
only discuss the Continuous Time Markov Chain sir model (ctmc model).
By continuous time we mean that we model our three compartments for
each point in time t ∈ R≥0 (as opposed to the Discrete Time Markov Chain
Model where t ∈ N0). We discuss the implications of the Markov chain
assumptions after introducing the notation we use. Allen (2008) and Yan
(2008) served as the basis for this section.

So far the number of individuals in the respective compartments was de-
noted by S(t), I(t), and R(t). Note that these variables are deterministic
functions of the time. In the ctmc model these quantities are expressed as
stochastic processes. To stay in line with our discussion on stochastic pro-
cesses we use the notation St, It, and Rt now. Note that in the deterministic
case we had S(t), I(t), R(t) ∈ R whereas in the stochastic model we have
St, It, Rt ∈N0.

17



3. Compartmental Epidemic Models

Instead of modeling all three processes, we follow Yan (2008) focusing only
on Rt as well as

Ct := N − St. (3.10)

These two processes in connection with starting values allow the reconstruc-
tion of St and It using St = S0 − (Ct − C0) and It = Ct − Rt. This is why
modeling solely Rt and Ct suffices.

Let tC
j be the point in time at which the jth individual becomes infected. The

superscript C shall indicate that the process C increases at this point in time.
Using this notation we can write

Ct = C0 + ∑
0<tC

j ≤t

1. (3.11)

So Ct represents a counting process (adjusted by the constant C0 = N− S0 =
I0 + R0) and counts the number of infections that have occurred until time
t.

Let tR
j be the point in time at which the jth individual recovers. Then Rt can

be expressed as

Rt = R0 + ∑
0<tR

j ≤t

1,

making it a counting process (adjusted by the constant R0) as well. Thus the
tuple (Ct, Rt) constitutes a 2-dimensional counting process.

The processes representing the compartments of susceptible and infected
individuals, St and It, can be written as

St = S0 − ∑
0<tC

j ≤t

1 and (3.12)

It = I0 + ∑
0<tC

j ≤t

1− ∑
0<tR

j ≤t

1, (3.13)

respectively.
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We can use the variables tC
j and tR

j to express for how long individual j
suffers from the disease. This duration is denoted by

τj := tR
j − tC

j . (3.14)

So far we have only clarified our notation. We did not mention according
to which dynamics our process evolves. Given a state (Ct, Rt) the process
can change in different ways. Since the ctmc assumes a Markov process,
we have P((Ct+∆t, Rt+∆t) = (c, r)|Ft) = P((Ct+∆t, Rt+∆t) = (c, r)|(Ct, Rt))
for all states (c, r) ∈ N0

2. This means that the distribution of a new state
depends only on the last known state rather than the whole history of the
process.

Note that when the disease dies out, i.e. t with It = 0 is reached, the process
never changes again. In this case we have P((Ct+s, Rt+s) = (N − St, N −
St)|It = 0) = 1 for all s ≥ 0. We call such a state absorbing. An absorbing
state in our model is characterized by our two processes of interest, C and
R, being equal.

Unless we have reached an absorbing state (Ct, Rt) = (c, c), the state will
change eventually when time passes. The waiting times, that is the times
between two successive state changes are then exponentially distributed,
since the exponential distribution is the only memory-less continuous distri-
bution. A waiting time of zero thus has a probability of zero which implies
that there are almost surely no two events at the same time. We conclude
that the process has only three possibilities (with a positive probability) to
evolve over an infinitesimally small time interval.

The first possibility is that an infection takes place. This means that the
process changes from (Ct, Rt) = (c, r) to (Ct+∆t, Rt+∆t) = (c + 1, r). Alter-
natively, a recovery is possible, i.e. (Ct+∆t, Rt+∆t) = (c, r + 1). Of course, it
is also possible that nothing happens in the time interval [t, t + ∆t], that is
(Ct+∆t, Rt+∆t) = (c, r). We neglect the possibility of multiple events during
[t, t + ∆t] because we may choose ∆t arbitrarily small and – as argued above
– the probability of multiple events goes to 0 with ∆t→ 0.
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A more convenient notation for the probabilities of these three possibilities
is achieved by defining

p(c+j,r+k),(c,r)(∆t) := P((Ct+∆t, Rt+∆t) = (c + j, r + k)|(Ct, Rt) = (c, r)),
(3.15)

where (j, k) ∈ {(1, 0), (0, 1), (0, 0)}. According to Allen (2008) the equa-
tions

p(c+1,r),(c,r)(∆t) = β
St

N
It∆t + o(∆t), (3.16)

p(c,r+1),(c,r)(∆t) = γIt∆t + o(∆t), and (3.17)

p(c,r),(c,r)(∆t) = 1− β
St

N
It∆t− γIt∆t + o(∆t) (3.18)

hold.

Using the equations (2.9) and (3.16) we see that the intensity λC of the
counting process C is

λC
t = β

St

N
It. (3.19)

Combining (2.9) with (3.17) we see that

λR
t = γIt (3.20)

holds where λR denotes the intensity of the counting process R.

3.3.2. Simulation

A simulation algorithm can be derived from the exponential distribution
of the waiting times. Given a state of the three variables St, It, and Rt we
can compute the intensities λC

t and λR
t . As argued above, both, the infection

process C and the recovery process R have exponentially distributed waiting
times. As shown in theorem 2.2 the waiting time until either an infection or
a recovery occurs is again exponentially distributed with parameter

λt = λC
t + λR

t . (3.21)
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So we can simulate the waiting time until the next event. Note that λC
t

λC
t +λR

t
gives that probability that the next event is an infection (see e.g. Kingman
(1992)). Thus the probability of the alternative event (the next event is a

recovery) is 1 − λC
t

λC
t +λR

t
=

λR
t

λC
t +λR

t
. By simulating a uniformly distributed

random variable on [0, 1] we can decide of which type the next event is.
After updating the state accordingly we can go back to calculating the new
intensities of C and R. Algorithm 3.1 is intended to clarify this procedure.

Algorithm 3.1 Simulation of a stochastic sir process until time tmax.
Input: S0, I0, R0, β, γ ≥ 0 and tmax > 0
Output: A sample sir process for t ∈ [0, tmax]

1: N ← S0 + I0 + R0
2: t← 0
3: state← {S0, I0, R0, t}
4: states← [state, ] {states is a list with one entry after this assignment}
5: while t < tmax do
6: state← copy of last entry in states
7: Compute λC

t and λR
t using state, β, and γ.

8: λ← λC
t + λR

t
9: if λ > 0 then

10: u← realization of a uniform random variable in [0, 1]
11: t← t− log(u)

λ

12: The next event is an infection with prob. λC
t

λC
t +λR

t
, otherwise a recovery.

13: Update entries in state that represent S, I, and R accordingly.
14: else
15: t← tmax {absorbing state is reached}
16: end if
17: entry in state representing time← t
18: Append state to states.
19: end while
20: return states

Rizoiu et al. (2018b) provide a program for simulating stochastic sir pro-
cesses at Rizoiu et al. (2018a). It is written in the programming language
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R. We have developed a Python 3 program also capable of completing this
task. It can be found at gh-meins. This repository also contains a Jupyter
notebook related to this section about stochastic sir models. In this notebook
one can see how to use our Python program to calculate the results reported
here and how to generate the plots shown in this section.

Each of the figures 3.5 and 3.6 show one sample path of an sir process. Both
figures also serve as a comparison to the deterministic sir model since the
parameters used in the simulations equal those used in the figures 3.3 and
3.4, respectively.

In figure 3.5 we see that a disease-free state is reached before t = 5. Since
this is the absorbing state, the processes S, I, and R do not change after
the disease has died out. Note that I tends to decrease throughout the
simulation until it reaches zero. The tendency to decline in the process It is
in line with the monotonically decreasing (deterministic) I(t) in figure 3.3
where the same model parameters were used.

Instead of reaching a disease-free state quickly, the number of infected
individuals is even increasing at first in figure 3.6. Comparing figures 3.6
with 3.4 we can see again a similar behavior between the deterministic and
stochastic sir model when the same parameters are provided. To show
that this similarity is not only present in the sample path shown, we have
simulated 1000 paths in figure 3.7.

3.3.3. Fitting a Stochastic SIR Model

Next, we fit a stochastic sir model as defined in subsection 3.3.1 using the
Maximum Likelihood approach. To this end we first discuss the model’s
likelihood function.

In the ctmc model we have two observations attached to each event. The
first one is the time of the event and the second one is the event’s type. We
consider the former by using the exponential distribution of the waiting
times. We index the events chronologically, such that yi denotes the ith event
(i ∈ {1, . . . , n}). Event yi occurs at time ti and can either be an infection or
a recovery. Equations (3.19), (3.20), and (3.21) imply that the intensities λC,
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Figure 3.5.: A simulated stochastic sir process where the absorbing state is reached before
t = 10.
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Figure 3.6.: A simulated stochastic sir process where the absorbing state is not reached
before t = 10.
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Figure 3.7.: 1000 simulated stochastic sir processes with the same parameters as the sample
in figure 3.6.
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λR, and λ are constant between two events. We denote the intensities in
[ti, ti+1), i.e. those resulting from yi, by λC(ti), λR(ti), and λ(ti). With this
notation and ∆ti := ti − ti−1 as waiting time we get λ(ti−1) e−λ(ti−1)∆ti as the
the probability density function of ∆ti.

To compute the likelihood, we also have to incorporate the type of the
observation. As discussed in 3.3.2 the probability that the next event is an

infection is given by λC(ti−1)
λC(ti−1)+λR(ti−1)

and the probability of a recovery is
λR(ti−1)

λC(ti−1)+λR(ti−1)
.

The model’s event times and types of events are independent, so their
contributions to the likelihood function are multiplied. Since the events are
independent as well, each observation constitutes a factor. The product of
these factors represents the likelihood. With

1I(yi) :=

{
1 . . . yi is an infection
0 . . . yi is a recovery

and 1R(yi) := 1− 1I(yi) we obtain

n

∏
i=2

λ(ti−1) e−λ(ti−1∆ti)

(
λC(ti−1)

λC(ti−1) + λR(ti−1)
1I(yi)

+
λR(ti−1)

λC(ti−1) + λR(ti−1)
1R(yi)

)
(3.22)

as the likelihood function of the ctmc model. Note that the first observation
is neglected because it is assumed to be given. With (3.19) and (3.20) we can
rewrite (3.22) and get

L(β, γ, N) =
n

∏
i=2

λ(ti−1) e−λ(ti−1∆ti)

(
βS(ti−1)

βS(ti−1) + Nγ
1I(yi)

+
Nγ

βS(ti−1) + Nγ
1R(yi)

)
, (3.23)

where S(ti) denotes the number of susceptible individuals in the interval
[ti, ti+1). Note that the likelihood function’s parameters are β, γ, and N –
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in accordance with Rizoiu et al. (2018b). Note also that the formula for the
likelihood in Rizoiu et al. (2018b) is incorrect. Their equation (34) contains a
product of 1I(yi) and 1R(yi) which is always zero, regardless of the class yi
of the event because either 1I(yi) = 0 or 1R(yi) = 0 holds.

In Rizoiu et al. (2018b) N is fitted with the values of β and γ assumed to
be known and thus fixed. In this setting Rizoiu et al. (2018b) show that
the estimation of N works well with the medians of the estimated values
for N being close to the true value of N – even if the time horizons of the
simulations are limited (cf. figure 5 in Rizoiu et al. (2018b)).

We have conducted a similar analysis based on 20 simulations. To stay in
line with Rizoiu et al. (2018a) – which we consider in more detail later – we
used S0 = 1000, I0 = 300, and R0 = 0 as starting values and the parameters
β = 1 and γ = 0.2. The starting values imply that N = 1300. All of the 20

simulations were run until time tmax = 11. We fitted N for each simulation
and for different time horizons {1, 2, . . . , tmax} per simulation. For each time
horizon we calculated the median of the 20 estimations for N as well as
an upper and a lower quantile such that there are three estimations above
and below the upper and lower quantile, respectively. Our result is shown
in figure 3.8. As in figure 5 in Rizoiu et al. (2018b) we can see that the
median of our estimations is near the true value of N and that the difference
between the upper and lower plotted quantile tends to decrease with larger
time horizons, i.e. with more data.

The estimations in figure 3.8 as well as many other estimation results
presented in this thesis involve the application of the L-BFGS algorithm. In
our Python program we used the implementation by Zhu et al. (1997).

Although the estimation results in figure 3.8 might look promising, we have
to keep in mind that we assumed that β and γ are known, which often is not
realistic. This is why we now turn to the case in which all three parameters
of the likelihood function are unknown. Rizoiu et al. (2018a) present their
fitting procedure for this case in a Jupyter notebook. First they simulate 20

realizations of a stochastic sir model. Each simulation starts with S0 = 1000,
I0 = 300, and R0 = 0 and has the parameters β = 1, and γ = 0.2. Then they
estimate the parameters N, β, and γ. According to them this step is achieved
by maximizing the log-likelihood function. They present their estimates for
the parameters β, γ, and N by showing
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Figure 3.8.: Estimation results (median, and 15% & 85% quantiles) for N.
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1. the median values as well as
2. the sample standard deviation

of the 20 experiments for each parameter. Their results can be seen in
table 3.1. Note that they did not use a random seed, thus preventing the
reproduction of their experiments.

N β γ

theoretical 1300 1.000 0.200
median 1283.5 0.986 0.200

standard deviation 3.6 0.026 0.006

Table 3.1.: Estimation results presented by Rizoiu et al. (2018a).

While Rizoiu et al. (2018a) offer their implementation in the programming
language R, we aimed at providing the equivalent procedure in form of
Python 3 code. When provided with the same initial guesses as in Rizoiu
et al. (2018a), i.e. N = 1000, β = 0.1, and γ = 0.1, our fitting procedure
produces the results shown in table 3.2. Each row of this table shows the
estimation results of one simulation. The table’s first column represents the
index numbering the 20 simulations. The other three values in each row
show the estimation results for N, β, and γ in the simulation specified by
the index.

Table 3.3 summarizes the estimation results of table 3.2 with median values
as well as sample standard deviations. We see that our estimation results
for γ are close to the true value of 0.2. However, the estimation of β does
not work as desired. Instead of the true value 1 we get estimations around
0.775. And even worse, the estimation of the parameter N basically does not
differ from the starting value (1000) we provided although the true value
was 1300.

When we compare our results with those of Rizoiu et al. (2018a) in table
3.1 we can clearly see that our results are much worse. So why is this the
case? To answer this question we compared the R code to our Python code.
It turns out that the fitting procedure fit.stochastic.sir in R neglects the
starting value for N provided to it. The first three lines of this function are
the following.
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N beta gamma

0 1000.0 0.752 0.211
1 1000.0 0.753 0.198
2 1000.0 0.778 0.197
3 1000.0 0.810 0.194
4 1000.0 0.816 0.203
5 1000.0 0.744 0.191
6 1000.0 0.803 0.214
7 1000.0 0.771 0.198
8 1000.0 0.734 0.190
9 1000.0 0.762 0.198
10 1000.0 0.787 0.201
11 1000.0 0.808 0.199
12 1000.0 0.775 0.198
13 1000.0 0.787 0.195
14 1000.0 0.739 0.201
15 1000.0 0.811 0.204
16 1000.0 0.779 0.200
17 1000.0 0.738 0.199
18 1000.0 0.763 0.202
19 1000.0 0.776 0.195

Table 3.2.: Estimation results of our Python code.

N β γ

theoretical 1300 1.000 0.200
median 1000.00011 0.77536 0.19852

standard deviation 0.00002 0.02617 0.00577

Table 3.3.: Summary of estimation results of our Python code.
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if (params.start["N"] < max(mysim[, -1])) {

params.start["N"] <- max(mysim[, -1])

}

In these lines of code we have a data.frame called mysim which represents one
simulation. The first column of this data.frame consists of the event times.
Thus, mysim[, -1] is the data.frame without the time column. The remaining
columns represent St, It, Rt, and Ct. So the R code uses the maximum
value contained in these four columns if it is greater than the starting value
provided to the fitting procedure. Since in the example shown by Rizoiu et al.
(2018a) – which is also used here – most individuals are either infected or
recovered at the end of the observation time, the maximum value in mysim[,

-1] is the last entry in the column corresponding to Ct. In this example, this
value is already close to N and it is not changed by the L-BFGS algorithm.
So the estimations of N returned by the R code (which are much better than
our results in table 3.2) are not the result of the L-BFGS algorithm but rather
the result from setting the estimation to the largest observed value.

For experiments with a shorter time horizon, i.e. a smaller value for Tmax in
the R code, or with a smaller infection rate the R code would not produce
estimates of similar quality because in these two cases CTmax is smaller. This
is proven in appendix B.1.

Besides, Rizoiu et al. (2018b) state in their appendix (E.1) that they use
the number of events as lower bound for N. Such a bound could lead to
incorrect results since each individual can become infected and recover and
thus the number of events is not limited by N (but by 2N − 1 as discussed
in subsection 3.3.4). However, they do not use this bound in their code
in Rizoiu et al. (2018a). Rizoiu et al. (2018b) mention the incorrect lower
bound in connection with their equation (34) which gives a formula for the
likelihood of a stochastic sir model. As mentioned above, this formula is
also incorrect since it always yields zero.

For a time horizon of 11 and an infection rate of 1 – as used in Rizoiu et al.
(2018a) – tables 3.1 and 3.3 show that the R code produces better results than
our Python code. This not only applies to N but to β and γ as well. Hence,
we have also implemented a variation of the fitting procedure in our code
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which mimics the behavior of the R code by setting the lower bound for
the parameter N to the number of observed infections. The corresponding
estimation result is contained in table 3.4. Again we provide a summary of
this table. It can be found in table 3.5.

N beta gamma

0 1274.0 0.958 0.211
1 1283.0 0.966 0.198
2 1289.0 1.003 0.197
3 1285.0 1.040 0.194
4 1282.0 1.046 0.203
5 1282.0 0.953 0.191
6 1285.0 1.032 0.214
7 1275.0 0.983 0.198
8 1287.0 0.945 0.190
9 1281.0 0.976 0.198
10 1281.0 1.008 0.201
11 1289.0 1.042 0.199
12 1287.0 0.997 0.198
13 1290.0 1.015 0.195
14 1280.0 0.946 0.201
15 1288.0 1.045 0.204
16 1287.0 1.003 0.200
17 1278.0 0.943 0.199
18 1288.0 0.983 0.202
19 1282.0 0.995 0.195

Table 3.4.: Estimation results of our Python code using better starting values for N.

Comparing tables 3.1 and 3.5, we can see that now the results produced by
the R and the Python code do not differ considerably. The slight differences
probably result from the fact that the 20 simulations are not equal. Note
that using good starting values for N improved the estimation results not
only for N but also for β which was not well estimated previously (with a
starting value of N = 1000).

However, when we instruct our fit method to mimic the behavior of the
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N β γ

theoretical 1300.0 1.000 0.200
median 1284.0 0.99607 0.19852

standard deviation 4.637 0.03520 0.00577

Table 3.5.: Summary of estimation results of our Python code using better starting values
for N.

R code (via the argument n_start=None), our Python code also produces
worse results in case of shorter time horizons or lower infection rates – just
as the R code. Using t_max = 5 instead of t_max = 11 yields the results
shown in table 3.6. Table 3.7 shows the results if we again use a time horizon
of 11 for our simulations but reduce the infection rate to 0.5.

N β γ

theoretical 1300.0 1.000 0.200
median 1200.0 0.93977 0.19765

standard deviation 16.5 0.04746 0.00918

Table 3.6.: Summary of estimation results of our Python code with a shorter time horizon.

N β γ

theoretical 1300.0 0.500 0.200
median 1096.0 0.42071 0.20054

standard deviation 23.3 0.02672 0.00664

Table 3.7.: Summary of estimation results of our Python code with a reduced infection rate.

When we compare tables B.1 and B.2 with tables 3.6 and 3.7, respectively,
we see that our Python code again produces results that are similar to those
generated by the R code. The slight differences probably stem from the
simulations which differ between the two languages.

To see how several different sets of parameters affect the estimation result
for N we generated the heat map in figure 3.9. In the example of Rizoiu et al.
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(2018a) the ratio β
γ = 1

0.2 equals 5. This ratio allows the disease to spread
across a wide proportion of the population. In figure 3.9 we include the ratio
used in Rizoiu et al. (2018a) but also consider ratios of 4, 3, 2, 1, 1/2, 1/3, 1/4,
and 1/5. Furthermore, we decided to set the sum β + γ to 1.2 in order to
make β and γ unambiguous. This is in accordance with the example in
Rizoiu et al. (2018a) where β + γ = 1 + 0.2 = 1.2. The heat map includes
the estimation results for different β/γ combinations as well as for different
time horizons.
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Figure 3.9.: Estimated N for different sets of parameters. In bold we have the median of
estimations on 20 simulations. In parentheses above (below) we have the 85%
(15%) quantile.

The heat map clearly shows that estimations of N are near the true value of
1300 only for the largest β/γ ratios and time horizons considered in figure
3.9. Other parameter combinations yield estimation results that considerably
fall short of the true value. For example, β = γ = 0.6 and t_max = 5 lead
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to an estimation that is about half of the true N. In case of β = 0.3, γ = 0.9
the estimation is less than N

3 even if the observation comprises 11 units of
time.

Note that we have only used our Python program for the analysis involving
the heat map. Since in some simulations the disease dies out, the R program
would not be capable of calculating the heat map correctly. We prove this
statement in appendix B.2.

Before we move on with the next section we compare the bad estimation
results shown in the heat map in figure 3.9 with corresponding results for
the case where β and γ are assumed to be known. Figure 3.10 summarizes
the estimation results in this case.
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Figure 3.10.: Estimated N for different sets of parameters with known β and γ. In bold
we have the median of estimations on 20 simulations. In parentheses above
(below) we have the 85% (15%) quantile.
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We can see that the estimation medians are now much closer to the true
value of N. Now even for smaller β/γ combinations and time horizons
the estimation medians are near the true value. Furthermore, there is no
systematic underestimation of N when only this parameter is estimated.
Larger intervals between the upper and lower quantile represent the only
drawback.

3.3.4. The Final Distribution in an SIR Model

In this subsection, we express a state of the sir model as a pair (St, It) since
we do not use any properties of counting processes anymore. Let Σ be
the set of possible states (St, It). By possible we mean that St, It ≥ 0 and
St + It ≤ N hold. For N = 2 we have

Σ =

{(
0
0

)
,
(

0
1

)
,
(

0
2

)
,
(

1
0

)
,
(

1
1

)
,
(

2
0

)}
. (3.24)

As discussed before, there are several possibilities for the sir model to
evolve given a state (St, It) = (s, i). If the next event following time t is an
infection, the system moves to the state (s− 1, i + 1). If it is a recovery, the
next state is (s, i− 1). If i = 0 holds, we are in an absorbing state that will
not change after time t.

In the equations (3.16), (3.17), and (3.18) we have also looked at the prob-
abilities for the evolution of the sir model in a short time frame. In this
subsection, we neglect the time aspect and only focus on the type of change
in our variables St and It and the corresponding probabilities.

Let these probabilities be contained in a transition matrix U = (ukl)1≤k≤N
1≤l≤N

such that ukl is the probability that we move from state l to state k. If we
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choose β = 1, γ = 0.5 and stick to our example of N = 2 we have

U =


1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0.5 0
0 0 0 1 0.5 0
0 0 0 0 0 0
0 0 0 0 0 1

 (3.25)

as the transition matrix, where the rows and columns represent the states in
the same ordering as shown in (3.24). Let us go through each column of our
example U to gain an understanding for it.

In the first column we start in the state (St, It) = (0, 0). Since we are
in an absorbing state (It = 0) we stay in this state with probability 1,
hence the entry in the first row. In the second column we start in state
(St, It) = (0, 1). Since there are no susceptible individuals in this state, no
infection can take place. Thus, a recovery occurs next and we move to the
state (0, 0). This explains the entry of 1 in the first row. The third column
represents the state (St, It) = (0, 2) where again only a recovery can take
place. Thus we must move to (0, 1) which explains the 1 in the second row.
The fourth column means that we start from (St, It) = (1, 0). This state
is absorbing and thus we have a 1 in the fourth row. The fifth column is
different from the others. Here we start with (St, It) = (1, 1). So we can
either have a recovery (leading us to (1, 0) (fourth row) with probability

γIt

β
St
N It+γIt

= 0.5·1
1· 12 ·1+0.5·1 = 0.5) or an infection (leading us to (0, 2) (third row)

with probability β
St
N It

β
St
N It+γIt

=
1· 12 ·1

1· 12 ·1+0.5·1 = 0.5). The last column represents the

starting state (St, It) = (2, 0). It is absorbing, hence we have a 1 in the last
row.

The Jupyter notebook dedicated to this section in Karakaš (2019) shows how
to compute Σ and U using our code. Figure 3.11 serves as a visualization of
all possible states and the transition probabilities contained in the matrix U.
The former are represented as dots, whereas the arrows indicate possible
transitions. The number next to each arrow shows the probability of the
corresponding transition.
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Possible states and transition probabilities
when N = 2, β = 1, and γ = 0.5.

Figure 3.11.: Possible states and transitions with corresponding probabilities in an example
sir model.
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To see the relation between the transition matrix U and the distribution of
(St, It) after the last event has occurred, we also need a vector π ∈ N

|Σ|
0

which represents the current state σ ∈ Σ. The vector π has one entry equal
to one and all other entries are zero. The entry of 1 indicates the state we
are in. If we again use our example with N = 2 and assume an ordering of
states as in (3.24), then π = (0, 0, 0, 1, 0, 0)T means that we are in the state
(St, It) = (1, 0). The product Uπ then gives us a new vector which for each
state contains the probability that this state is reached after being in (1, 0).
Since Uπ = U · (0, 0, 0, 1, 0, 0)T = (0, 0, 0, 1, 0, 0)T = π we stay in the same
state with probability 1, which makes this state an absorbing state.

Starting with π = (0, 0, 0, 0, 1, 0)T – which is equivalent to the state (St, It) =
(1, 1) – is more interesting. Now the distribution for the next state is

Uπ =


1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0.5 0
0 0 0 1 0.5 0
0 0 0 0 0 0
0 0 0 0 0 1




0
0
0
0
1
0

 =


0
0

0.5
0.5
0
0

 .

So we have a 50 % chance to move to the third state which is (0, 2) and a 50

% chance to transition to the fourth state which is (1, 0). The distribution
for the processes S and I after one more event is U · (0, 0, 0.5, 0.5, 0, 0)T =
(0, 0.5, 0, 0.5, 0, 0)T. After one more transition we arrive at the distribution
U · (0, 0.5, 0, 0.5, 0, 0)T = (0.5, 0, 0, 0.5, 0, 0)T which means that we get to
the state (0, 0) with a probability of 0.5 and to (1, 0) with the same prob-
ability. Both states are absorbing and this is why the distribution does
not change after further multiplication by U, i.e. U · (0.5, 0, 0, 0.5, 0, 0)T =
(0.5, 0, 0, 0.5, 0, 0)T.

In both examples – the one with starting vector π = (0, 0, 0, 1, 0, 0)T and
the one with π = (0, 0, 0, 0, 1, 0)T – the sequence (Unπ)n∈N converged to a
stationary distribution after a few steps. The convergence will take place for
any sir model since there can only be S0 < N infections and N recoveries
at most. So only 2N − 1 events can occur at most and thus Unπ results in
the stationary distribution for all n ≥ 2N − 1.
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After the demonstration example with N = 2 we can again turn to the
example discussed above. There we had S0 = 1000, I0 = 300, and R0 = 0
which means that N = 1300. Multiplying the starting vector representing
our initial state with the transition matrix from the left until we reach
convergence, leads us to the stationary distribution depicted in figure 3.12.
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Figure 3.12.: A priori distribution of the final size of an epidemic.

The distribution shown in figure 3.12 reflects all the information available at
time 0. This is why it is also called the a priori distribution. After observing
several events we can update the vector π and recalculate the distribution
of the final size of the epidemic. This is called an a posteriori distribution.

We plot it for five simulations in figure 3.13 with the starting state being the
state reached after half of the corresponding simulation’s time. The figure
also contains the true final size of each simulation as a vertical line colored
in the same way as the corresponding a posteriori distribution. There we
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see how the updated information in π leads to distributions that are more
precise, i.e. show less variance. Despite the decrease in variance all of the
plotted a posteriori distributions assign positive probability mass to the
true value of the final size. Also note that for each of the five simulations
considered in figure 3.13 the a posteriori distribution places more probability
mass on the true value than the a priori distribution.
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Figure 3.13.: A posteriori distributions of the final size of an epidemic modeled by a
sir model. The blue line shows the a priori distribution. The vertical lines
represent the final size of the epidemic in the first five simulations. The
distributions in the corresponding colors are the a posteriori distributions of
the final size after observing a simulation until half of the simulation’s time.

In this section we have seen that knowing an sir model’s parameters N, β,
and γ as well as the iniatial number of infected individuals allows us to
generate the a priori distribution of the final size of an epidemic. Observing
the infection and recovery events yields further information which results in
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a posteriori distributions that are more precise than the a priori distribution,
thus allowing better predictions. In practice however we often lack the
knowledge on the model’s parameters and cannot observe recovery events.
In these cases we can resort to HawkesN processes which are introduced in
the next chapter.

3.4. The Deterministic SEIR model

As mentioned in the introduction the seir model extends the sir model by
one additional compartment. Susceptible individuals that become infected
move to the new compartment E which comprises all exposed individuals.
They are infected but are not able to infect others yet. After some time
individuals from compartment E move to compartment I which means they
become infectious or infective. Eventually, individuals recover, i.e. they move
from I to R. The model’s compartments as well as the possible transitions
are summarized in figure 3.2.

As in the case of the deterministic sir model, the transitions in the deter-
ministic seir model are governed by differential equations. The evolution of
the disease follows

dS(t)
dt

= −β
S(t)
N

I(t), (3.26)

dE(t)
dt

= β
S(t)
N

I(t)− σE(t), (3.27)

dI(t)
dt

= σE(t)− γI(t), and (3.28)

dR(t)
dt

= γI(t). (3.29)

There are further extensions to the model in the literature, e.g. Feng et al.
(2007) or Li et al. (1999).

As in De la Sen et al. (2011), we call the times an individual spends in
compartment E and I the latent and infective period, respectively. Li et al.
(1999) recognize that for σ → ∞ the mean latent period goes to zero, i.e.
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1/σ
σ→∞−−−→ 0. This is why they argue "the seir model becomes a sir model"

in this case.

Examples of epidemics modeled by the seir model are depicted in figures
3.14 and 3.15. The former shows the case where the size of compartment I
is monotonically decreasing – as in figure 3.3.
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Figure 3.14.: A deterministic seir model with monotonically decreasing number of infected.

When we compare figure 3.15 to figure 3.4 we can see that the additional
compartment in the seir model allows for more complicated functions
I(t). In the seir model in figure 3.15 I(t) first decreases and then increases
before it starts to decrease again. The code for generating the two mentioned
figures resides in the Jupyter notebook corresponding to this section (see
Karakaš (2019)).
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Figure 3.15.: A deterministic seir model where the number of infected is not monotonic.
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3.5. The Stochastic SEIR Model

3.5.1. Simulation

As in the case of the sir model we can formulate a stochastic version of
the seir model. In subsection 3.3.1 we argued that instead of modeling all
three compartments of an sir model it suffices to focus on the two counting
processes Ct and Rt. Analogously, we can focus on three counting processes
in an seir setting. These three counting processes are

Bt = Et + It + Rt, (3.30)
Ct = It + Rt, and
Rt.

Note that the latter two are the same as in our discussion of the sir model.
The three counting processes allow the reconstruction of St = N − Bt,
Et = Bt − Ct, and It = Ct − Rt.

Next, we formulate the transition probabilities. Since we now are considering
three transitions instead of two, there is one more transition probability to
compute than in the sir model. The three dimensional counting process
(Bt, Ct, Rt) = (b, c, r) can now move to (Bt+∆t, Ct+∆t, Rt+∆t) = (b + j, c +
k, r + l) with (j, k, l) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)} if we assume that∥∥(j, k, l)T

∥∥
1 = j + k + l ≤ 1. This assumption will be true for ∆t sufficiently

small. The first three entries in the set of possible (j, k, l) combinations
correspond to the transitions from S to E, from E to I, and from I to R,
respectively. The last entry, (0, 0, 0), corresponds to the possibility that the
state does not change in the interval (t, t + ∆t]. Analogously to equations
(3.16)–(3.18) we conclude from equations 3.26–3.29 that

p(b+1,c,r),(b,c,r)(∆t) = β
St

N
It∆t + o(∆t), (3.31)

p(b,c+1,r),(b,c,r)(∆t) = σEt∆t + o(∆t), (3.32)

p(b,c,r+1),(b,c,r)(∆t) = γIt∆t + o(∆t), and (3.33)

p(b,c,r),(b,c,r)(∆t) = 1−
(

β
St

N
It + σEt + γIt

)
∆t + o(∆t) (3.34)
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3. Compartmental Epidemic Models

holds. Here, p(b+j,c+k,r+l),(b,c,r)(∆t) is defined analogously to p(c+j,r+k),(c,r)(∆t)
in equation (3.15).

From the equations (3.31)–(3.34) we can obtain the intensities of the three
counting processes Bt, Ct, and Rt and analogously to the sir model we can
use these intensities to simulate an epidemic.

Each of the plots in figure 3.16 and 3.17 shows a simulation of the stochastic
seir model. These models have the same parameters as their deterministic
counterparts in the figures 3.14 and 3.15, respectively.

As in the sir model in figure 3.5, a disease-free state is reached before time
10 in figure 3.16, i.e. E(t) = I(t) = 0 for t >= 10.
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Figure 3.16.: A simulated stochastic seir process where the absorbing state is reached
before t = 10.
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In figure 3.17, on the other hand, the compartments E and I collectively still
comprise about one fifth of the whole population at time 10.
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Figure 3.17.: A simulated stochastic seir process where the absorbing state is not reached
before t = 10.

The code for generating the two plots can be found in the Github repository
Karakaš (2019) in the Jupyter notebook for this section.

3.5.2. The Final Distribution in an SEIR Model

As in the case of the sir model the calculation of the final distribution is
based on multiplying a state vector by a transition matrix until convergence
is reached. As in subsection 3.3.4 we denote the transition matrix and the
set of all possible states by U and Σ, respectively.
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3. Compartmental Epidemic Models

One difference to subsection 3.3.4 is that we now have to deal with one more
compartment, i.e. E, so we need one more variable to specify a state. Thus
we identify a state by (St, Et, It) instead of (St, It). This has a large impact
on the set of possible states. In order to be considered possible a state now
has to satisfy St + Et + It ≤ N. With the additional variable Et many more
combinations become possible. In the case of N = 2 we have

Σ =


0

0
0

 ,

0
0
1

 ,

0
0
2

 ,

0
1
0

 ,

0
1
1

 ,

0
2
0

 ,

1
0
0

 ,

1
0
1

 ,

1
1
0

 ,

2
0
0

 .

As U ∈ R|Σ|×|Σ| this means that the transition matrix is much larger in the
seir setting than in the context of sir models.

If the i-th column of U corresponds to an absorbing state, then its i-th entry
of this column is 1 and all the other entries are 0. This is the same as in the
case of the sir-related transition matrix.

Columns that do not correspond to an absorbing state can now have up to
three non-zero entries – one for each of the three transitions depicted in
figure 3.2. The entries can be calculated using the equations (3.31)–(3.33).
So given the non-absorbing state (s, e, i) the column of U corresponding to
(s, e, i) has the values β s

N i/D, σe/D, and γi/D in the rows corresponding
to (s − 1, e + 1, i), (s, e − 1, i + 1), and (s, e, i − 1), respectively, with D =
β s

N i + σe + γi. All other entries are 0.

Given a starting vector π we can obtain the stationary distribution by
multiplying the vector with the matrix U until the result does not change
anymore. This will be the case after 3N − 1 multiplications at the latest
since each individual can move to a new compartment up to three times
and at the beginning one individual already has to be either exposed or
infectious, otherwise the starting state would be absorbing. So Unπ is the
final distribution for n ≥ 3N − 1 irrespective of the state π.

If π reflects the state at time t = 0, then Unπ with n ≥ 3N − 1 is the a
priori distribution. If π corresponds to an observed state after some time
has passed, then Unπ is the a posteriori distribution for n ≥ 3N − 1.

We have generated a plot with the a priori distribution for the seir model
with S0 = 350, E0 = 0, I0 = 105, R0 = 0, β = 1, σ = 0.5, and γ = 0.3 in
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3.5. The Stochastic SEIR Model

figure 3.18. This figure also contains a posteriori distributions of five simu-
lations. These distributions are based on observing half of each simulation’s
time until it reaches convergence. Furthermore, for each simulation we have
highlighted the actual final size of the epidemic by a vertical line in the
corresponding color. We see that the a posteriori distribution tends to place
more probability mass on the actual outcome. Note that, compared to figure
3.13, we have reduced the initial population by 65 % in order to compensate
for the computational burden resulting from the larger set Σ in the seir

model.
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Figure 3.18.: A posteriori distributions of the final size of an epidemic modeled by a
seir model. The blue line shows the a priori distribution. The vertical lines
represent the final size of the epidemic in the first five simulations. The
distributions in the corresponding colors are the a posteriori distributions of
the final size after observing a simulation until half of the simulation’s time.
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4. The Hawkes Process

4.1. Introduction

The first goal of this chapter is the definition of the Hawkes process. To this
end, we first describe the more simple Poisson process in section 4.2 and then
move on to the Hawkes process in section 4.3. In section 4.4 we present the
HawkesN process – a generalization of the Hawkes process – as proposed by
Rizoiu et al. (2018b). Following these authors we then show the connection
between the stochastic sir and HawkesN processes in section 4.5. In section
4.6 we introduce the link between the seir model and the HawkesN process
and show how it implies two new kernel functions, one of which generalizes
the excitation function of the sir-related HawkesN process. In sections 4.7
and 4.8 we discuss an approach for fitting the parameters of a HawkesN
process. This procedure involves likelihood maximization.

4.2. The Poisson Process

The following introduction of the Poisson process is based on Klenke
(2013).

Definition 4.1 ((Stationary) Poisson process). A family (Nt, t ≥ 0) of N0-
valued random variables is called a (stationary) Poisson process with intensity
α ≥ 0 if N0 = 0 and if:

1. For any n ∈N and any choice of n+ 1 numbers 0 = t0 < t1 < . . . < tn,
the family (Nti − Nti−1 , i = 1, . . . , n) is independent.

2. For t > s ≥ 0, the difference Nt − Ns is Poisson-distributed with
parameter α(t− s); that is Nt − Ns ∼ Poi(α(t− s)).
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4. The Hawkes Process

The last condition in definition 4.1 states that

∀k ∈N0 : Pr[Nt − Ns = k] =
(λ(t− s))k

k!
e−λ(t−s)

which also ensures that the process is monotonically increasing. Taking into
account that also N0 = 0 holds, we see that Nt ∈ N0 for all t. It can be
shown that if there is a jump in the Poisson process, i.e. limu↑t Nu 6= Nt,
then limu↑t Nu = Nt − 1 holds almost surely, i.e. the size of the process’
jumps is 1. Daley and Vere-Jones (2003) call such processes orderly. This
property implies that Nt represents the total count of its jumps until time
t. This means that the Poisson process is a counting process as defined in
definition 2.11.

From the last condition in definition 2.3 we also obtain

P[Ns+t − Ns = 0] = e−αt . (4.1)

This resembles equation (2.1). Let us assume that at time s in (4.1) a jump
occurs. Let W be the waiting time starting from s. Equation (4.1) is then
equivalent to P[W > t] = e−αt, which means that the waiting times of a Pois-
son process are exponentially distributed with parameter α. Furthermore,
the waiting times are independent because of the independence condition in
definition 4.1. We can use this property to easily simulate a Poisson process.
Figure 4.1 shows a simulated Poisson process with intensity 0.5.

Since the Poisson process is a counting process we can transform it in order
to obtain a martingale. We replace λs in (2.7) by α to see if we get our desired
martingale. Because α is constant we get

Mt = Nt −
∫ t

0
α ds = Nt − αt

and thus

E[Mt|Fs] = E [Nt|Fs]−E [αt|Fs] = Ns + α(t− s)− αt = Ns − αs = Ms,

which is the martingale condition. This means that calling α the process’
intensity in definition 4.1 was in line with our discussion on counting
processes.
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Figure 4.1.: A simulated Poisson process with intensity α = 0.5.
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One possible extension of the Poisson process is the inhomogeneous (some-
times also called nonhomogeneous) Poisson process. Such a process also
starts with N(0) = 0 and it also features the independence condition of def-
inition 4.1. However, the intensity α(t) in this generalization is not constant
but varies deterministically over time. So instead of Nt − Ns ∼ Poi(α(t− s))
in definition 4.1 we have for the inhomogeneous Poisson process Nt − Ns ∼
Poi(

∫ t
s α(v)dv) for 0 ≤ s < t. Daley and Vere-Jones (2003) point out that

an inhomogeneous Poisson process N can be transformed into a Poisson
process Ñ using u(t) := Λt =

∫ t
0 α(v)dv and setting Ñt := Nu−1(t).

4.3. The Hawkes Process

In this section we introduce the Hawkes Process. There are several ways to
define this process. Our definition follows Laub et al. (2015).

Definition 4.2. Let (Nt)t≥0 be a counting process with intensity

λt = λ +

t∫
0

µ(t− u)dNu , (4.2)

where λ > 0 and µ : (0, ∞)→ [0, ∞) Then N is called a Hawkes process.

We assume that ∃t ∈ R≥0 : µ(t) 6= 0. Otherwise, we would have a Poisson
process with constant intensity λ. In the context of Hawkes processes we
call λ the background intensity.

In definition 4.2 we can rewrite the integral using definition 2.18. Denoting
the time of the jth jump event by tj, we get

t∫
0

µ(t− u)dNu = ∑
tj<t

µ(t− tj).

We see that whenever a jump event occurs, it increases the intensity (if
µ(0) > 0), making further jumps even more likely. This is why Hawkes pro-
cesses are also called self-exciting and µ is called excitation function. Another
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name for µ is kernel. Often an exponential excitation function is chosen, i.e.
µ(t) = κθ e−θt, where κ and θ are called the scaling and the decay parameter,
respectively. Both parameters are assumed to be positive such that the kernel
is always positive and decreasing. The intensity of a Hawkes process with
an exponential excitation function has the form of

λt = λ + ∑
tj<t

κθ e−θ(t−tj) .

Note that Hawkes processes are different from inhomogeneous Poisson pro-
cesses. While the intensity of the latter is a deterministic function, Hawkes
processes feature a random intensity since it is the result of an integration
with respect to a stochastic process.

4.4. The HawkesN Process

This section as well as the following ones in this chapter deal with the
HawkesN process. It was defined by Rizoiu et al. (2018b) which served
as the main source for the rest of this chapter. The HawkesN process was
introduced in order to model actions in a community where each participant
is able to act once at most. Retweet cascades on Twitter represent an example
of such phenomena. To this end Rizoiu et al. (2018b) have adjusted the
intensity of a Hawkes process by a factor which is intended to account for
the finite population N < ∞ in a community like Twitter. So N represents
an upper bound for the potential number of retweets. The HawkesN process
(Nt)t≥0 is defined as a counting process with intensity

λH
t =

(
1− Nt

N

)λ + ∑
tj<t

µ(t− tj)

 . (4.3)

We see that the intensity of a HawkesN process in equation (4.3) converges
to that of a Hawkes process (see equation (4.2)) for N → ∞.

When the process (Nt)t≥0 reaches the population size N, the intensity λH
t

becomes zero. From this point on, the probability of another jump in the
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HawkesN process is zero which is the desired behavior for processes that
count non-repeating actions of individuals.

4.5. The Relation between HawkesN and

Stochastic SIR

Rizoiu et al. (2018b) show that there is a close relationship between HawkesN
processes and the stochastic sir model (more precisely, the ctmc model)
discussed in section 3.3. This relationship can be explained intuitively by
using again the example of Twitter.

If a retweet cascade is seen as a HawkesN process (Nt)t≥0, then each retweet
increments the process. This event also affects the intensity λH. On the one
hand it has an increasing effect by adding a new addend in the sum in
equation (4.3), on the other hand it has a decreasing effect by reducing the
first factor,

(
1− Nt

N

)
, in the same equation. As time passes and more and

more events are registered, the new addends become smaller and smaller
because they are adjusted by the decreasing first factor. So even if the
increasing effect of a new event in the beginning of the observation period
outweighs the decreasing effect, the latter will prevail eventually, making
new retweets less likely.

Retweet cascades can also be modeled using a stochastic sir model, where
each infection represents a retweet. Given a state with St � It a new infec-
tion (retweet) increases the probability of another retweet due to equation
(3.16). As discussed in chapter 3, the infection process It declines after some
time because of recoveries and because new infections become rarer.

So in both models we have forces that cause a retweet to generate further
retweets and both models feature a mechanism that causes the retweet
cascade to decelerate and stop eventually. However, there is also a key
difference. While the infection in the sir model has an equivalent in the
HawkesN process, a recovery in the sir context lacks such an equivalent.
Recoveries are not observed in the HawkesN setting.
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Before we discuss how to bridge this gap between the two models we
need to specify the HawkesN process in more detail. Equation (4.3) does
not assume any particular form of the excitation function. To see the link
between our two models of interest this function has to be the exponential
kernel, thus we focus on the HawkesN process with intensity

λH
t =

(
1− Nt

N

)λ + ∑
tC
j <t

κθ e−θ(t−tC
j )

 . (4.4)

Note that in this equation and in the rest of this thesis tC
j denotes the jth

jump to underline the connection to the sir model.

Now we can present the relationship between the two models in a formal
way. It is the main result in Rizoiu et al. (2018b) and forms their theorem
3.1.

Theorem 4.3. Let (Ct)t≥0 be a counting process which counts the infection events
in a stochastic sir model and let the corresponding intensity be (λC

t )t≥0. The
parameters of the stochastic sir model are N, β, and γ. Let λ, κ, θ, and (again) N
be the parameters of a HawkesN process (Nt)t≥0 with an intensity (λH

t )t≥0 of the
same form as in equation (4.4). As in equation (3.14) we denote the duration the jth

individual’s infection by τj. Let T := {τ1, τ2, . . .} be the set of all individuals’ time
to recovery. If β = κθ, γ = θ, and the HawkesN process’ background intensity
λ = 0 then

ET
[
λC

t

]
= λH

t (4.5)

holds for all but finitely many points t.

Proof. Since there is no background intensity, i.e. λ = 0, the right side of
equation (4.5) is

λH
t =

(
1− Nt

N

)
∑

tC
j <t

κθ e−θ(t−tC
j ) . (4.6)

57



4. The Hawkes Process

Now we start with the left side of the equation and work our way towards
the right side. The left side is

ET
[
λC

t

]
= ET

[
β

St

N
It

]

= ET

β
St

N ∑
tC
j ≤t

1(t,∞)

(
tC

j + τj

)
= ∑

tC
j ≤t

ET

[
β

St

N
1(t,∞)

(
tC

j + τj

)]
.

For all but finitely many points in time we can replace the ≤ sign by < and
write

ET
[
λC

t

]
= ∑

tC
j ≤t

ET

[
β

St

N
1(t,∞)

(
tC

j + τj

)]

= ∑
tC
j <t

ET

[
β

St

N
1(t,∞)

(
tC

j + τj

)]
∀t ∈ R \ {tC

j |j ∈ {1, 2, . . . , N}}.

Due to equation (3.16) the waiting time τj is exponentially distributed with
parameter γ. Thus, the probability density function of τj is γ e−γτj , which
leads to

ET
[
λC

t

]
= ∑

tC
j <t

ET

[
β

St

N
1(t,∞)

(
tC

j + τj

)]

= ∑
tC
j <t

∫ ∞

0
β

St

N
1(t,∞)

(
tC

j + x
)

γ e−γx dx

= ∑
tC
j <t

β
St

N

∫ ∞

t−tC
j

γ e−γx dx ∀t ∈ R \ {tC
j |j ∈ {1, 2, . . . , N}}.
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The integral represents the tail of an exponential distribution. We have
derived its formula which can be seen in equation (2.1). Thus, we have

ET
[
λC

t

]
= ∑

tC
j <t

β
St

N

∫ ∞

t−tC
j

γ e−γx dx

= ∑
tC
j <t

β
St

N
e−γ(t−tC

j ) ∀t ∈ R \ {tC
j |j ∈ {1, 2, . . . , N}}.

Using equation (3.10) we get

ET
[
λC

t

]
= ∑

tC
j <t

β
St

N
e−γ(t−tC

j )

= ∑
tC
j <t

β
N − Ct

N
e−γ(t−tC

j )

=

(
1− Ct

N

)
∑

tC
j <t

β e−γ(t−tC
j ) ∀t ∈ R \ {tC

j |j ∈ {1, 2, . . . , N}}.

Translating this result into the notation of HawkesN processes (Ct of the sir

model corresponds to Nt) and using the theorem’s assumptions we obtain

ET
[
λC

t

]
=

(
1− Ct

N

)
∑

tC
j <t

β e−γ(t−tC
j )

=

(
1− Nt

N

)
∑

tC
j <t

β e−γ(t−tC
j )

=

(
1− Nt

N

)
∑

tC
j <t

κθ e−θ(t−tC
j ) = λH

t ∀t ∈ R \ {tC
j |j ∈ {1, 2, . . . , N}}

(4.7)
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which confirms that equation (4.5) holds.

Now that we have derived the intensity of the HawkesN process correspond-
ing to an sir model, we can visualize it. An example is shown in figure
4.2.
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Intensity of a HawkesN process with event history {0,1,2}
and parameters: scale=0.5, decay=0.5, N=100.

Figure 4.2.: Intensity of an example HawkesN Process calculated with our Python code.

4.6. The Relation between HawkesN and

Stochastic SEIR

The HawkesN processes and the connection to the sir model was developed
in order to model information diffusion in communities like Twitter. In
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this section, we are about to generalize this link to the seir model. Such a
framework could prove useful if one wants to model information diffusion
in moderated communities. In such communities a post by one user can
trigger reactions by other users that are not public immediately. These
other users are then considered exposed. In other words, they have a latent
infection. After the moderator has approved a reaction post and made it
public, the corresponding user moves from compartment E to I. Thus such a
model could be used to analyze e.g. moderated forums or citation networks
where papers are published after an approval process.

Rizoiu et al. (2018b) have formulated their HawkesN process using an
exponential kernel. They consider other kernels as future work. In this
thesis we derive a generalization of the exponential kernel. We show that a
HawkesN process with the generalized excitation function still corresponds
to an epidemic model – namely the seir model. For seir models where the
parameters σ and γ are unequal, theorem (4.4) shows the link to a HawkesN
process.

Theorem 4.4. Let (Bt)t≥0 be the number of individuals in the compartments
E, I, and R at time t – as defined in (3.30). This means that Bt is a counting
process which counts the transitions from S to E in a stochastic seir model. Let the
corresponding intensity be (λB

t )t≥0. The parameters of the stochastic seir model
are N, β, σ, and γ. We assume σ 6= γ. Let (Nt)t≥0 be a HawkesN process with
intensity in the form of

λH
t =

(
1− Nt

N

)
∑

tB
j <t

β
σ

γ− σ

(
e−σ(t−tB

j )− e−γ(t−tB
j )
)

. (4.8)

We denote the duration the jth individual’s status as exposed (infectious) by τE
j (τ I

j ).
Let T := {τE

1 , τ I
1 , τE

2 , τ I
2 , . . .} be the set of all individuals’ times in compartment E

and I. Then

ET
[
λB

t

]
= λH

t (4.9)

holds for all but finitely many points t.

Proof. As in the proof of theorem 4.3 we work our way from the left to the
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right side of the equation we want to prove. The equation

ET
[
λB

t

]
= ET

[
β

St

N
It

]
= ET

[
β

N − Bt

N
It

]
= ET

[
β

(
1− Bt

N

)
It

]

also holds in the seir model. Since Bt is observed we may write

ET
[
λB

t

]
= β

(
1− Bt

N

)
ET [It] , (4.10)

so again we are interested in the expectation of It. In contrast to the sir

model the transition observed in the HawkesN process corresponding to
the seir model is from S to E instead of S to I. This means that we observe
the times of this transition and we denote the transition time for the jth

individual by tB
j . This time together with the random variables τE

j and τ I
j

allows us to express It as ∑tB
j ≤t 1[0,t)

(
tB

j + τE
j

)
· 1(t,∞)

(
tB

j + τE
j + τ I

j

)
. Thus

we obtain

ET [It] = ET

∑
tB
j ≤t

1[0,t)

(
tB

j + τE
j

)
1(t,∞)

(
tB

j + τE
j + τ I

j

)
= ∑

tB
j ≤t

ET
[
1[0,t)

(
tB

j + τE
j

)
1(t,∞)

(
tB

j + τE
j + τ I

j

)]
.

Since τE
j and τ I

j are exponentially distributed with parameters σ and γ,
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respectively, we can rewrite the expectation as

ET [It] = ∑
tB
j ≤t

ET
[
1[0,t)

(
tB

j + τE
j

)
1(t,∞)

(
tB

j + τE
j + τ I

j

)]
= ∑

tB
j ≤t

∫ ∞

0

∫ ∞

0
1[0,t)

(
tB

j + x
)
1(t,∞)

(
tB

j + x + y
)

σ e−σx γ e−γy dy dx

= ∑
tB
j ≤t

∫ ∞

0
1[0,t)

(
tB

j + x
) ∫ ∞

0
1(t,∞)

(
tB

j + x + y
)

γ e−γy dy σ e−σx dx

(4.11)

We can calculate the inner integral which results in∫ ∞

0
1(t,∞)

(
tB

j + x + y
)

γ e−γy dy =
∫ ∞

t−tB
j −x

γ e−γy dy

= −
∫ −∞

−γ(t−tB
j −x)

eu du

=
∫ −γ(t−tB

j −x)

−∞
eu du

= e−γ(t−tB
j −x) .

Plugging this result into equation (4.11) yields

ET [It] = ∑
tB
j ≤t

∫ ∞

0
1[0,t)

(
tB

j + x
) ∫ ∞

0
1(t,∞)

(
tB

j + x + y
)

γ e−γy dy σ e−σx dx

= ∑
tB
j ≤t

∫ ∞

0
1[0,t)

(
tB

j + x
)

e−γ(t−tB
j −x)

σ e−σx dx

= ∑
tB
j ≤t

∫ t−tB
j

0
e−γ(t−tB

j −x)
σ e−σx dx

= σ ∑
tB
j ≤t

e−γ(t−tB
j )
∫ t−tB

j

0
e(γ−σ)x dx .
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The integral in this equation is∫ t−tB
j

0
e(γ−σ)x dx =

1
γ− σ

∫ (γ−σ)(t−tB
j )

0
eu du

=
1

γ− σ

(
e(γ−σ)(t−tB

j )−1
)

which gives us

ET [It] = σ ∑
tB
j ≤t

e−γ(t−tB
j )
∫ t−tB

j

0
e(γ−σ)x dx

= σ ∑
tB
j ≤t

e−γ(t−tB
j )

1
γ− σ

(
e(γ−σ)(t−tB

j )−1
)

=
σ

γ− σ ∑
tB
j ≤t

(
e−σ(t−tB

j )− e−γ(t−tB
j )
)

.

For all but finitely many points in time we get the relation

ET [It] =
σ

γ− σ ∑
tB
j ≤t

(
e−σ(t−tB

j )− e−γ(t−tB
j )
)

=
σ

γ− σ ∑
tB
j <t

(
e−σ(t−tB

j )− e−γ(t−tB
j )
)
∀t ∈ R \ {tB

j |j ∈ {1, 2, . . . , N}}.

This – in connection with (4.10) and the fact that Bt in the seir model
corresponds to Nt in the HawkesN process – concludes our proof.

Recall that according to Li et al. (1999) the deterministic seir model con-
verges to the sir model with σ→ ∞. This relation extends to the intensities
(4.7) and (4.8) of HawkesN processes. To show this we denote the HawkesN
intensities corresponding to the sir and the seir model by λH,SIR

t and
λH,SEIR

t , respectively. From equation (4.7) we know

λH,SIR
t =

(
1− Nt

N

)
∑

tC
j ≤t

β e−γ(t−tC
j ) .
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Since τE
j is exponentially distributed with parameter σ, we have E

[
τE

j

]
σ→∞−−−→

0. So in the limit we have τE
j = 0 almost surely which is equivalent to tB

j = tC
j

almost surely. In other words, the transition from E to I happens immedi-

ately. Furthermore, σ
γ−σ

σ→∞−−−→ −1 and e−σ(t−tB
j ) σ→∞−−−→ 0 for t > tB

j . Thus we
have

λH,SEIR
t =

(
1− Nt

N

)
∑

tB
j <t

β
σ

γ− σ

(
e−σ(t−tB

j )− e−γ(t−tB
j )
)

σ→∞−−−→
(

1− Nt

N

)
∑

tC
j ≤t

β e−γ(t−tC
j ) = λH,SIR

t .

which means that the relation between an sir and an seir model is translated
to the corresponding HawkesN processes.

Theorem 4.4 does not consider the case σ = γ. And in fact, the theorem’s
intensity in (4.8) is not defined in this case. It turns out that for seir models
with σ = γ we can also find a corresponding HawkesN process by defining
its kernel function accordingly. This is shown in the following theorem.

Theorem 4.5. Let (Bt)t≥0 be the number of individuals in the compartments E,
I, and R at time t. This means that Bt is a counting process which counts the
transitions from S to E in a stochastic seir model. Let the corresponding intensity
be (λB

t )t≥0. The parameters of the stochastic seir model are N, β, σ, and γ. We
assume σ = γ. Let (Nt)t≥0 be a HawkesN process with intensity in the form of

λH
t =

(
1− Nt

N

)
∑

tB
j <t

βγ(t− tB
j ) e−γ(t−tB

j ) . (4.12)

We denote the duration the jth individual’s status as exposed (infectious) by τE
j (τ I

j ).
Let T := {τE

1 , τ I
1 , τE

2 , τ I
2 , . . .} be the set of all individuals’ times in compartment E

and I. Then

ET
[
λB

t

]
= λH

t (4.13)

holds for all but finitely many points t.
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Proof. As in shown in the proof of theorem 4.4 we have

ET
[
λB

t

]
= β

(
1− Bt

N

)
ET [It] , (4.14)

and from (4.11) we know that

ET [It] = ∑
tB
j ≤t

∫ ∞

0
1[0,t)

(
tB

j + x
) ∫ ∞

0
1(t,∞)

(
tB

j + x + y
)

γ e−γy dy σ e−σx dx

holds. Since now our assumption is σ = γ we can rewrite this to

ET [It] = ∑
tB
j ≤t

∫ ∞

0
1[0,t)

(
tB

j + x
) ∫ ∞

0
1(t,∞)

(
tB

j + x + y
)

γ e−γy dy γ e−γx dx .

As shown in the proof of theorem 4.4 the inner integral equals e−γ(t−tB
j −x).

This implies

ET [It] = ∑
tB
j ≤t

∫ ∞

0
1[0,t)

(
tB

j + x
)

e−γ(t−tB
j −x)

γ e−γx dx

= ∑
tB
j ≤t

∫ t−tB
j

0
e−γ(t−tB

j −x)
γ e−γx dx

= γ ∑
tB
j ≤t

e−γ(t−tB
j )
∫ t−tB

j

0
dx

= γ ∑
tB
j ≤t

e−γ(t−tB
j )(t− tB

j ).

For points in time where no transition from S to E occurs we have

ET [It] = γ ∑
tB
j ≤t

e−γ(t−tB
j )(t− tB

j )

= γ ∑
tB
j <t

e−γ(t−tB
j )(t− tB

j ) ∀t ∈ R \ {tB
j |j ∈ {1, 2, . . . , N}}. (4.15)
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If we consider that Bt in the seir model corresponds to Nt in the HawkesN
process, then equations (4.15) and (4.14) prove that (4.13) holds.

Note that also the intensity in equation (4.12) can be written as a limit. To
this end, we write the intensity from (4.8) and (4.12) as λ

H,σ,γ
t and λ

H,γ
t ,

respectively. Starting from the case γ = σ + ∆ with ∆ 6= 0 and letting ∆→ 0
we see that

λ
H,γ+∆,γ
t =

(
1− Nt

N

)
∑

tB
j <t

β
γ + ∆

γ− (γ + ∆)

(
e−(γ+∆)(t−tB

j )− e−γ(t−tB
j )
)

= −
(

1− Nt

N

)
∑

tB
j <t

β(γ + ∆)
e−(γ+∆)(t−tB

j )− e−γ(t−tB
j )

∆

∆→0−−→ −
(

1− Nt

N

)
∑

tB
j <t

βγ
d e−γ(t−tB

j )

dγ

=

(
1− Nt

N

)
∑

tB
j <t

βγ(t− tB
j ) e−γ(t−tB

j ) = λ
H,γ
t

holds. So although difference in the kernels in λ
H,γ
t and λ

H,σ,γ
t might seem

large, the former is just the limit of the latter for σ→ γ.

In figure 4.3 we have plotted the intensity of a HawkesN process that
corresponds to an seir model. It differs considerably from the corresponding
plot in 4.2 which is related to the sir model. There are no more jumps when
a new event happens. If we neglect the factor (1− Nt/N), then an observed
event lets the intensity increase continuously. After some time the intensity
starts to decrease again.

This is the desired behavior in the seir model because an infection does not
immediately increase compartment I which triggers further infections, or
in other words, events. As time goes by, exposed individuals move from
compartment E to I, so the increase in intensity is delayed. Since we cannot
observe the transition from E to I in the HawkesN setting, the increase in
intensity is not abrupt but gradual.
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Figure 4.3.: Intensity of an seir-related HawkesN Process.

68



4.7. Fitting a HawkesN Process Related to an SIR Model

Note that for the intensity of the seir-related HawkesN process it does
not matter whether the summation index is tB

j < t or tB
j ≤ t because the

potential additional addend in the latter case is always zero. For σ 6= γ this

is the case because for t = tB
j we have e−σ(t−tB

j )− e−γ(t−tB
j ) = 0. In the case

σ = γ the factor t− tB
j in the intesity function makes it irrelevant if we sum

over tB
j < t or tB

j ≤ t. In the sir context, on the other hand, the distinction
between < and ≤ has implications for the intensity of the HawkesN process.
This is discussed in more detail in appendix C.1.

4.7. Fitting a HawkesN Process Related to an

SIR Model

4.7.1. Maximum Likelihood Estimation

In this subsection we discuss how the unknown parameters of a HawkesN
process can be estimated after having observed the event times tC

1 , tC
1 , . . . , tC

n .
We focus on the Maximum Likelihood approach, so the log-likelihood plays
a key role in this subsection.

In their proposition 7.2.III, Daley and Vere-Jones (2003) provide the formula
of the likelihood function. It is

L =

[
n

∏
i=1

λH
tC
i

]
exp

− tC
n∫

0

λH
u du

 .

Taking the logarithm of the likelihood L we arrive at the log-likelihood

`(κ, θ, N) =
n

∑
i=1

log
(

λH
tC
i

)
−

tC
n∫

0

λH
u du . (4.16)
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4. The Hawkes Process

Inserting the sir-related HawkesN intensity with our assumptions of no
background intensity and an exponential kernel, i.e. equation (4.6), we
obtain

`(κ, θ, N) =
n

∑
i=1

log

(1− i
N

)
∑

tC
j <tC

i

κθ e−θ(tC
i −tC

j )


−

tC
n∫

0

(
1− Nu

N

)
∑

tC
j <u

κθ e−θ(u−tC
j ) du . (4.17)

Let us consider the integral in (4.17). If we denote the time of the first event
by t1, then we see that the sum inside the integral is empty for u < t1. Using
this we get

tC
n∫

0

(
1− Nu

N

)
∑

tC
j <u

κθ e−θ(u−tC
j ) du =

tC
n∫

t1

(
1− Nu

N

)
∑

tC
j <u

κθ e−θ(u−tC
j ) du .

Similarly, we conclude that

tC
n∫

t1

(
1− Nu

N

)
∑

tC
j <u

κθ e−θ(u−tC
j ) du =

n−1

∑
j=1

tC
n∫

tC
j

(
1− Nu

N

)
κθ e−θ(u−tC

j ) du .

Taking advantage of the fact that Nu = l for u ∈
[
tC
l , tC

l+1

)
, we obtain

n−1

∑
j=1

tC
n∫

tC
j

(
1− Nu

N

)
κθ e−θ(u−tC

j ) du =
n−1

∑
j=1

n−1

∑
l=j

(
1− l

N

) tC
l+1∫

tC
l

κθ e−θ(u−tC
j ) du ,

where we can easily solve the integral. So the integral in equation (4.17)
equals

κ
n−1

∑
j=1

n−1

∑
l=j

(
1− l

N

)(
e−θ(tC

l −tC
j )− e−θ(tC

l+1−tC
j )
)

.

70



4.7. Fitting a HawkesN Process Related to an SIR Model

With this simplification equation (4.17) becomes

`(κ, θ, N) =
n

∑
i=1

log

(1− i
N

)
∑

tC
j <tC

i

κθ e−θ(tC
i −tC

j )


− κ

n−1

∑
j=1

n−1

∑
l=j

(
1− l

N

)(
e−θ(tC

l −tC
j )− e−θ(tC

l+1−tC
j )
)

. (4.18)

Even though there is no integral left in (4.18) anymore, we refer to the first
part on the right side as the sum part and to the second part as the integral
part.

We have implemented the likelihood formula in our Python program. Sec-
tion C.2.1 demonstrates its use and shows how it differs from the R program
written by Rizoiu et al. (2018a).

Now that we have a function for determining the log-likelihood, we are
interested in the function’s maximum. In analogy to Rizoiu et al. (2018b)
we utilize the L-BFGS algorithm to achieve this goal. In order to avoid
the numerical computation of the function’s gradient, we calculate the
partial derivatives of the log-likelihood symbolically with respect to all three
parameters κ, θ, and N as in Rizoiu et al. (2018b). The partial derivative
with respect to κ is

∂`(κ, θ, N)

∂κ
=

n

∑
i=1

(
1− i

N

)
∑

tC
j <tC

i

θ e−θ(tC
i −tC

j )

(
1− i

N

)
∑

tC
j <tC

i

κθ e−θ(tC
i −tC

j )

−
n−1

∑
j=1

n−1

∑
l=j

(
1− l

N

)(
e−θ(tC

l −tC
j )− e−θ(tC

l+1−tC
j )
)

Note, that the numerator and the denominator in the sum part largely cancel
out, leaving us with ∑n

i=1
1
κ = n

κ . So we get the derivative in the simplified
form as in

∂`(κ, θ, N)

∂κ
=

n
κ
−

n−1

∑
j=1

n−1

∑
l=j

(
1− l

N

)(
e−θ(tC

l −tC
j )− e−θ(tC

l+1−tC
j )
)

. (4.19)
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Taking the partial derivative of the log-likelihood with respect to θ we get

∂`

∂θ
=

n

∑
i=1

∂

(
(1− i

N )∑tCj <tCi
κθ e

−θ(tCi −tCj )
)

∂θ(
1− i

N

)(
∑tC

j <tC
i

κθ e−θ(tC
i −tC

j )
)

− κ
n−1

∑
j=1

n−1

∑
l=j

(
1− l

N

)(
−(tC

l − tC
j ) e−θ(tC

l −tC
j ) +(tC

l+1 − tC
j ) e−θ(tC

l+1−tC
j )
)

.

Also in this derivative we can simplify the sum part. Due to

n

∑
i=1

∂

(
(1− i

N )∑tCj <tCi
κθ e

−θ(tCi −tCj )
)

∂θ(
1− i

N

)(
∑tC

j <tC
i

κθ e−θ(tC
i −tC

j )
)

=
n

∑
i=1

∑tC
j <tC

i

(
e−θ(tC

i −tC
j )−θ(tC

i − tC
j ) e−θ(tC

i −tC
j )
)

∑tC
j <tC

i
θ e−θ(tC

i −tC
j )

=
n

∑
i=1

∑tC
j <tC

i

(
1− θ(tC

i − tC
j )
)

e−θ(tC
i −tC

j )

∑tC
j <tC

i
θ e−θ(tC

i −tC
j )

we obtain

∂`

∂θ
=

n

∑
i=1

∑tC
j <tC

i

(
1− θ(tC

i − tC
j )
)

e−θ(tC
i −tC

j )

∑tC
j <tC

i
θ e−θ(tC

i −tC
j )

− κ
n−1

∑
j=1

n−1

∑
l=j

(
1− l

N

)(
−(tC

l − tC
j ) e−θ(tC

l −tC
j ) +(tC

l+1 − tC
j ) e−θ(tC

l+1−tC
j )
)

.

(4.20)
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As partial derivative with respect to N we get

∂`(κ, θ, N)

∂N
=

n

∑
i=1

∂

(
(1− i

N )∑tCj <tCi
κθ e

−θ(tCi −tCj )
)

∂N(
1− i

N

)(
∑tC

j <tC
i

κθ e−θ(tC
i −tC

j )
)

− κ
n−1

∑
j=1

n−1

∑
l=j

l
N2

(
e−θ(tC

l −tC
j )− e−θ(tC

l+1−tC
j )
)

.

Again, we can simplify the first sum, reducing it to

n

∑
i=1

∂

(
(1− i

N ) ∑tCj <tCi
κθ e

−θ(tCi −tCj )
)

∂N(
1− i

N

)
∑tC

j <tC
i

κθ e−θ(tC
i −tC

j )

=
n

∑
i=1

i
N2 ∑tC

j <tC
i

κθ e−θ(tC
i −tC

j )

N−i
N ∑tC

j <tC
i

κθ e−θ(tC
i −tC

j )

=
n

∑
i=1

i
N(N − i)

. (4.21)

Thus, the partial derivative of the log-likelihood with respect to N is

∂`(κ, θ, N)

∂N
=

n

∑
i=1

i
N(N − i)

− κ

N2

n−1

∑
j=1

n−1

∑
l=j

l
(

e−θ(tC
l −tC

j )− e−θ(tC
l+1−tC

j )
)

.

(4.22)

Rizoiu et al. (2018b) recognize that there is a lower bound for this partial
derivative. Using N − i ≤ N for all i ≥ 1 and ∑n

i=1 i = n(n+1)
2 we obtain
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∂`(κ, θ, N)

∂N
≥ 1

N2

(
n(n + 1)

2
− κ

n−1

∑
j=1

n−1

∑
l=j

l
(

e−θ(tC
l −tC

j )− e−θ(tC
l+1−tC

j )
))

︸ ︷︷ ︸
S(κ,θ,T )

(4.23)

which serves as lower bound for the derivative of `(κ, θ, N) with respect to
N. We see that only the first factor in (4.23) contains N. We call the second
factor in this equation S(κ, θ, T ). It is independent of N and depends only on
κ, θ, and the event times T . As stated by Rizoiu et al. (2018b) S(κ, θ, T ) > 0
implies ∂`(κ,θ,N)

∂N > 0 which means that there is no maximum of `(κ, θ, N)
given (κ, θ, T ).
We have implemented the functions for calculating the gradient of the log-
likelihood function in our Python program. Subsection C.2.2 demonstrates
how to use these functions and highlights differences to the R program of
Rizoiu et al. (2018a).

4.7.2. Estimation Results

As with the sir model we first fit a HawkesN process assuming that two
of three model parameters are known. With κ and θ fixed, we estimate the
value of N. In figure 4.4 we see that after a few time units this approach
leads to estimations that are close to the true value of N.

To see that such an estimation procedure works reasonably well also for
other κ-θ-combinations we have generated the heat map in figure 4.5 .
Similar to its counterpart in the sir model (figure 3.10) it shows decent
estimations of N for the majority of parameter combinations.

Of course, it is often unrealistic to assume that the parameters κ and θ
are known. If we have to maximize the model’s likelihood with respect to
all three parameters we get much worse results. They are summarized in
figure 4.6. This heat map shows that for many combinations of κ and θ the
estimations of N are prone to an exploding behavior. The rightmost cell at
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Figure 4.4.: Fitting N of the HawkesN process with known β and γ.
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Figure 4.5.: Heat map with estimations of N with known scale and decay parameter.
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the bottom of the heat map, for example, shows an estimation median for
N of 102124 which is far from the true value of 1300.
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Figure 4.6.: Heat map with estimations of N when maximizing the HawkesN likelihood in
all three parameters simultaneously.

In section 4.7.1 we have seen an explanation for the exploding behavior we
observed when trying to estimate N. This explanation was based on the
lower bound for the partial derivative of the log-likelihood with respect to
N in (4.23).
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4.8. Fitting a HawkesN Process Related to an

SEIR Model

4.8.1. Fitting in the Case σ 6= γ

In this section we discuss the parameter estimation of a HawkesN process
related to an seir model. As in subsection 4.7 we focus on the Maximum
Likelihood approach. Note that the intensity of the HawkesN process plays
a pivotal role and we have two of them depending on whether σ 6= γ or
σ = γ holds. We treat the former case in this subsection and the latter in
the following subsection.

In theorem 4.4 we have shown that the intensity of a HawkesN process
corresponding to a seir model with σ 6= γ equals

(
1− Nt

N

)
∑

tB
j <t

β
σ

γ− σ

(
e−σ(t−tB

j )− e−γ(t−tB
j )
)

.

Using equation (4.16) we obtain

`(β, σ, γ, N) =
n

∑
i=1

log

(1− i
N

)
∑

tB
j <tB

i

β
σ

γ− σ

(
e−σ(tB

i −tB
j )− e−γ(tB

i −tB
j )
)

−
tB
n∫

0

(
1− Nu

N

)
∑

tB
j <u

β
σ

γ− σ

(
e−σ(u−tB

j )− e−γ(u−tB
j )
)

du .

(4.24)

as log-likelihood. The integral in this equation can be simplified. First we

78



4.8. Fitting a HawkesN Process Related to an SEIR Model

rearrange terms via

tB
n∫

0

(
1− Nu

N

)
∑

tB
j <u

β
σ

γ− σ

(
e−σ(u−tB

j )− e−γ(u−tB
j )
)

du

=
n−1

∑
j=1

∫ tB
n

tB
j

(
1− Nu

N

)
β

σ

γ− σ

(
e−σ(u−tB

j )− e−γ(u−tB
j )
)

du

=
n−1

∑
j=1

n−1

∑
l=j

(
1− l

N

)
β

σ

γ− σ

∫ tB
l+1

tB
l

(
e−σ(u−tB

j )− e−γ(u−tB
j )
)

du . (4.25)

In equation (4.25) we can identify the two integrals

∫ tB
l+1

tB
l

e−σ(u−tB
j ) du =

−1
σ

(
e−σ

(
tB
l+1−tB

j

)
− e−σ

(
tB
l −tB

j

))
and ∫ tB

l+1

tB
l

e−γ(u−tB
j ) du =

−1
γ

(
e−γ

(
tB
l+1−tB

j

)
− e−γ

(
tB
l −tB

j

))
.

Substituting the integral in equation (4.24) by the simplified expression
leads to

`(β, σ, γ, N) =
n

∑
i=1

log

(1− i
N

)
∑

tB
j <tB

i

β
σ

γ− σ

(
e−σ(tB

i −tB
j )− e−γ(tB

i −tB
j )
)

−
n−1

∑
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n−1

∑
l=j

(
1− l

N

)
β

σ

γ− σ

(
1
σ

(
e−σ

(
tB
l −tB

j

)
− e−σ

(
tB
l+1−tB

j

))
− 1

γ

(
e−γ

(
tB
l −tB

j

)
− e−γ

(
tB
l+1−tB

j

)))
as the log-likelihood of the HawkesN process.

In order to maximize the log-likelihood, we calculate the partial derivatives
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with respect to its parameters. The partial derivative w.r.t. β is

∂`(β, σ, γ, N)

∂β
=

n

∑
i=1

(
1− i

N

)
∑tB

j <tB
i

σ
γ−σ

(
e−σ(tB

i −tB
j )− e−γ(tB

i −tB
j )
)

(
1− i

N

)
∑tB

j <tB
i

β σ
γ−σ

(
e−σ(tB

i −tB
j )− e−γ(tB

i −tB
j )
)

−
n−1

∑
j=1

n−1

∑
l=j

(
1− l

N

)
σ

γ− σ

(
1
σ

(
e−σ

(
tB
l −tB

j

)
− e−σ

(
tB
l+1−tB

j

))
− 1

γ

(
e−γ

(
tB
l −tB

j

)
− e−γ

(
tB
l+1−tB

j

)))
,

where the sum part is ∑n
i=1

1
β = n

β . So

∂`(β, σ, γ, N)

∂β
=

n
β

−
n−1

∑
j=1

n−1

∑
l=j

(
1− l

N

)
σ

γ− σ

(
1
σ

(
e−σ

(
tB
l −tB

j

)
− e−σ

(
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j

))
− 1

γ

(
e−γ

(
tB
l −tB

j

)
− e−γ

(
tB
l+1−tB

j

)))
(4.26)

holds.

Due to space restrictions we split the derivative with respect to σ into
multiple parts. First we analyze the sum part of the log-likelihood denoted
by `sum. The outer derivative of the logarithm in the sum part is 1 divided
by the logarithm’s argument. The inner derivative is

(
1− i

N

)
β

 γ

(γ− σ)2 ∑
tB
j <tB

i

(
e−σ(tB

i −tB
j )− e−γ(tB

i −tB
j )
)

+
σ

γ− σ ∑
tB
j <tB

i

(
−(tB

i − tB
j )
)

e−σ(tB
i −tB

j )


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where the product rule was used. Note that the factor
(

1− i
N

)
β appears in

both the inner and the outer derivative of the logarithm, so it cancels out.
After removing further terms which occur on both sides of the fraction bar
we obtain

∂`sum(β, σ, γ, N)

∂σ
=

n

∑
i=1

 γ
(γ−σ)

σ
+

∑tB
j <tB

i

(
−(tB

i − tB
j )
)

e−σ(tB
i −tB

j )

∑tB
j <tB

i

(
e−σ(tB

i −tB
j )− e−γ(tB

i −tB
j )
)


=
nγ

σ(γ− σ)
+

n

∑
i=1

∑tB
j <tB

i

(
−(tB

i − tB
j )
)

e−σ(tB
i −tB

j )

∑tB
j <tB

i

(
e−σ(tB

i −tB
j )− e−γ(tB

i −tB
j )
)

as the derivative of the log-likelihood’s sum part w.r.t. σ. To calculate the
corresponding derivative of the integral part – denoted by `int – we write it
as

`int(β, σ, γ, N) =
n−1

∑
j=1

n−1

∑
l=j

(
1− l

N

)
β

[
1

γ− σ

(
e−σ

(
tB
l −tB

j

)
− e−σ

(
tB
l+1−tB

j

))
− σ

γ(γ− σ)

(
e−γ

(
tB
l −tB

j

)
− e−γ

(
tB
l+1−tB

j

))]
,

(4.27)

where the terms outside the squared brackets do not depend on σ. Using
the product rule the partial derivative of

1
γ− σ

(
e−σ

(
tB
l −tB

j

)
− e−σ

(
tB
l+1−tB

j

))
(4.28)

w.r.t. σ is
1

(γ− σ)2

(
e−σ

(
tB
l −tB

j

)
− e−σ

(
tB
l+1−tB

j

))
+

1
γ− σ

((
−
(

tB
l − tB

j

))
e−σ

(
tB
l −tB

j

)
−
(
−
(

tB
l+1 − tB

j

))
e−σ

(
tB
l+1−tB

j

))
.

The corresponding derivative of

σ

γ(γ− σ)

(
e−γ

(
tB
l −tB

j

)
− e−γ

(
tB
l+1−tB

j

))
(4.29)
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is

1
(γ− σ)2

(
e−γ

(
tB
l −tB

j

)
− e−γ

(
tB
l+1−tB

j

))
.

Now that we have formed the partial derivative w.r.t. σ for all parts of the
log-likelihood, we turn to the partial derivative w.r.t. γ. Again, we first look
at the sum part with the outer derivative of the logarithm therein being 1
divided by the logarithm’s argument. The inner derivative of the logarithm
is

(
1− i

N

)
β

 −σ

(γ− σ)2 ∑
tB
j <tB

i

(
e−σ(tB

i −tB
j )− e−γ(tB

i −tB
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)

+
σ

γ− σ ∑
tB
j <tB

i

(
−(tB

i − tB
j )
)

e−γ(tB
i −tB

j )


and thus we get

∂`sum(β, σ, γ, N)

∂γ
=

n

∑
i=1

 −1
(γ− σ)

+
∑tB
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i
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i − tB
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)
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

=
−n

γ− σ
+

n

∑
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∑tB
j <tB

i

(
−(tB

i − tB
j )
)

e−γ(tB
i −tB

j )

∑tB
j <tB

i

(
e−σ(tB

i −tB
j )− e−γ(tB

i −tB
j )
) .

For the derivative of the log-likelihood’s integral part we start from equation
(4.27). Only the expression inside the squared brackets depends on γ, so
we only consider this part when forming the derivative. We also calculate
the derivative separately for the first and the second half of the expression
inside the squared brackets.

The partial derivatives of (4.28) and (4.29) w.r.t. γ are

−1
(γ− σ)2

(
e−σ

(
tB
l −tB

j

)
− e−σ

(
tB
l+1−tB

j

))
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and

σ(σ− 2γ)

γ2(γ− σ)2

(
e−γ

(
tB
l −tB

j

)
− e−γ

(
tB
l+1−tB

j

))
+

σ

γ(γ− σ)

((
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(
tB
l+1−tB

j

)
−
(

tB
l − tB

j

)
e−γ

(
tB
l −tB

j

))
,

respectively.

The fourth parameter of the log-likelihood is N. The partial derivative of the
log-likelihood’s sum part w.r.t. N is the same as in (4.21). For the integral
part we obtain

n−1

∑
j=1

n−1

∑
l=j

l
N2

βσ

γ− σ

(
1
σ
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− 1

γ

(
e−γ

(
tB
l −tB

j

)
− e−γ
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j
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as the derivative. Thus,

∂`
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=
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−
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∑
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(
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j

)))
(4.30)

holds true. With the same reasoning as in the step from eqution (4.22) to
(4.23) we get the lower bound

∂`

∂N
≥ 1

N2

[
n(n + 1)

2
−
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∑
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∑
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)
− e−σ
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j

))
− 1

γ

(
e−γ

(
tB
l −tB

j

)
− e−γ

(
tB
l+1−tB

j

))) ]
.

(4.31)

So if the expression inside the square bracket in (4.31) is positive, we can –
ceteris paribus – increase N in order to increase the likelihood.
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4.8.2. Fitting in the Case σ = γ

In case of an seir model with σ = γ the intensity of the corresponding
HawkesN process equals(

1− Nt

N

)
∑

tB
j <t

βγ(t− tB
j ) e−γ(t−tB

j )

according to theorem 4.5. Using this intensity in (4.16) leads to

`(β, γ, N) =
n

∑
i=1

log

(1− i
N

)
∑

tB
j <tB

i

βγ
(

tB
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j

)
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i −tB
j )


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tB
n∫

0

(
1− Nu

N

)
∑

tB
j <u

βγ
(

u− tB
j

)
e−γ(u−tB

j ) du (4.32)

as log-likelihood. As in the case σ 6= γ we can simplify the integral. First
we rearrange terms according to

tB
n∫

0

(
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N

)
∑
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j <u

βγ
(

u− tB
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)
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n
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)
β
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l+1
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l

γ
(
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Applying integration by parts to the remaining integral yields

∫ tB
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tB
l

γ
(
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j ) du =
1
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.
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With this simpler form of the integral equation (4.32) reads

`(β, γ, N) =
n

∑
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Next, we calculate the partial derivatives of the log-likelihood in (4.33). The
partial derivative of the sum part w.r.t. β is n

β as in (4.26). Hence we have
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The derivatives of the log-likelihood’s sum and integral part w.r.t. γ are
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and
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∑
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,

respectively. For both results the product rule was used. Additionally, we
made use of the quotient rule for the latter result.

Next, we calculate the partial derivative w.r.t. the parameter N. For the sum
part the derivative is the same as in (4.21), hence we obtain
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(4.34)

as partial derivative w.r.t. N. A lower bound for (4.34) can be constructed in
the same way as shown above for equations (4.22) and (4.30). In this case
the lower bound is
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)] ]
.

4.8.3. Estimation Results

As in the sir context we have tried to fit the seir-related HawkesN process
to simulated data. Again, we have estimated the parameters for two cases.
In the first case we assumed that all parameters except from N are known.
In the second case all parameters were assumed to be unknown. For these
two cases we have generated the figures 4.7 and 4.8, respectively.
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For these plots the same β/γ combinations as in figures 4.5 and 4.6 were
used. The simulations were started with only two populated compartments
(S0 = 1000 and I0 = 300) and we set σ to 5. Although this value might seem
high, it slows down the spread of the epidemic compared to the sir model.
Thus, we have fewer events in the seir simulations. We think that this could
be the reason why most of the estimations of N in the two plots 4.7 and 4.8
are far from the true value.
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Figure 4.7.: Heat map with estimations of N with known β, σ, and γ.

If one, however, obtains good estimations for the HawkesN process, then
the estimated parameters can also be used in the seir model. Using this
model allows for the prediction of the final size of the epidemic as discussed
in subsection 3.5.2.
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Figure 4.8.: Heat map with estimations of N when maximizing the HawkesN likelihood in
all four parameters simultaneously.
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5. Conclusion

Rizoiu et al. (2018b) present a link between the sir model and a variant of
the Hawkes process which they call HawkesN process. This link is based
on the intensities of the infection processes in the sir model and that of the
HawkesN process. We have extended this link to the seir model and show
that the corresponding kernel in the intensity of the HawkesN process is a
generalization to the one found by Rizoiu et al. (2018b).

For the seir related version of the HawkesN we have calculated the likeli-
hood formula as well as its partial derivatives with respect to all parameters,
which can be used for likelihood maximization.We have shown that estimat-
ing the HawkesN parameters based on an seir model rather than an sir

model with the same parameters β and γ leads to worse results. We assume
that this is a consequence of the slower spread of the epidemic in the seir

model and the additional parameter which has to be estimated.

If the data permits HawkesN estimates that are close to the true values,
one can use these parameters in the seir model. We have shown how this
model can generate predictions of the final size of the epidemic. Rizoiu
et al. (2018b) argue that the link between the sir model and the HawkesN
process can be utilized to predict information diffusion in social networks
like Twitter. With the additional latent period in the seir model we expect
the corresponding HawkesN process to be more suitable for analyzing
moderated communities.
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Appendix A.

Code Examples in this Thesis

Rizoiu et al. (2018a) offers R code that can be viewed as the implementation
of several of the procedures Rizoiu et al. (2018b) describe in their work. In
Karakaš (2019) we provide our own implementation written in Python 3. In
the following appendices we have a closer look at the two programs. Hence,
we often refer to code snippets in both the R and Python 3 language.

Most of the times when we demonstrate Python 3 code, our presentation of
the code mimics a notebook environment as the one offered by the Jupyter
project. So we show code inputs and the results produced by them. Code
inputs are shown in input cells which are labeled by In [x]: where x is a
number that is incremented by one from one input cell to the next. Results
of the code are shown in output cells which are labeled by Out[x]: where x

is the same number as in the corresponding input cell. Example input and
output are shown in [1].

In [1]: 1 + 1

Out[1]: 2

We assume the code examples are input in the order presented in this thesis.
This makes sure that all variables used in one input cell are defined either
in the input cell or in one that precedes it.

As mentioned above, we also refer to R code written by Rizoiu et al. (2018a)
and we present its usage in interactive mode. To this end the input will be
prefixed by a prompt (>) whereas the output lacks a prompt. The following
is an example of R used interactively.
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> 1 + 1

[1] 2

Here, 1 + 1 is the input and 2 is the result. Whenever an R input statement
spreads over multiple lines, the first line starts with the prompt > and the
following lines have a + at the beginning. The next example shall clarify
this.

> 5 *

+ 5

[1] 25

Here, we multiply 5 by 5 and get 25 as result.
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Appendix B.

Working with Epidemic Models

Using Software

B.1. Estimation Results with Shorter Time

Horizons or Lower Infection Rates

In subsection 3.3.3 we claimed that the R code’s results heavily depend on
the number of observed infections and that shorter observation periods as
well as lower infection rates will thus lead to worse estimation results. To
prove this statement we run the code in the Jupyter notebook in Rizoiu et al.
(2018a) in this section and compare the results for different values of t_max

and beta. But first, we set a seed to make our results reproducible.

> set.seed (0)

Next, we load a required library and the scripts of Rizoiu et al. (2018a).

> library(parallel)

> source('scripts/functions -SIR -HawkesN.R')

> source('scripts/functions -size -distribution.R')

Now we generate 20 simulations.
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> params.S <- c(N = 1300, I.0 = 300, gamma = 0.2, beta = 1)

> nsim <- 20

> simdat <- replicate(

+ n = nsim ,

+ generate.stochastic.sir(params = params.S, Tmax = 11,

+ hide.output = T)

+ )

Next, we estimate the parameters N, β, and γ.

> # initial fitting point for each execution

> params.fit.start <- c(N = 0.1, I.0 = 0.1, gamma = 0.1,

+ beta = 0.1)

>

> .cl <- makeCluster(spec = min(nsim , detectCores ()),

+ type = 'FORK')

> results <- parSapply(cl = .cl , X = 1:nsim ,

+ FUN = function(i) {

+ mysim <- as.data.frame(simdat[, i])

+ return(fit.stochastic.sir(mysim , params.fit.start))

+ })

> stopCluster (.cl)

>

> # reconstruct result data format

> res <- as.data.frame(results [1,])

> names(res) <- 1:nsim

> res <- as.data.frame(t(res))

>

> complete_res <- res

The summary of the estimation results can be shown also follows.

# let 's see how well parameters were retreived

> prnt <- rbind(params.S[c('N', 'I.0', 'gamma ', 'beta')],

+ apply(X = complete_res[,

+ c('N', 'I.0', 'gamma ', 'beta')],

+ MARGIN = 2, FUN = median),

+ apply(X = complete_res[,

+ c('N', 'I.0', 'gamma ', 'beta')],

+ MARGIN = 2, FUN = sd))
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> rownames(prnt) <- c('theoretical ', 'median ', 'sd')

> print(prnt[, c('N', 'I.0', 'gamma ', 'beta')], digits = 2)

N I.0 gamma beta

theoretical 1300.0 300 0.2000 1.000

median 1282.5 300 0.1986 0.993

sd 5.7 0 0.0063 0.033

With an estimate of 1282.5 for N we are near the true value of 1300. It is only
slightly worse than the results presented by Rizoiu et al. (2018a) which we
also show in table 3.1. The only difference between this table and the results
below the last code input is the seed that we set but which was absent in
Rizoiu et al. (2018a).

If we run all the R inputs again (starting from set.seed(0)) but change Tmax =

11 to Tmax = 5 as the argument to the function generate.stochastic.sir, then
we get the results in table B.1.

N β γ

theoretical 1300 1.000 0.200
median 1197 0.928 0.2003

standard deviation 13 0.037 0.0091

Table B.1.: Summary of estimation results of the R code with a shorter time horizon.

With Tmax = 11 again but β = 0.5 instead of β = 1 the R code yields the
results shown in table B.2.

N β γ

theoretical 1300 0.500 0.200
median 1096 0.420 0.203

standard deviation 25 0.025 0.007

Table B.2.: Summary of estimation results of the R code with a reduced infection rate.

In a nutshell, the estimation of N deteriorated remarkably when either the
simulations’ time horizon was shortened or when the infection rate was
decreased. This is the behavior that we projected in subsection 3.3.3.
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B.2. Likelihood with R when Disease Dies out

In subsection 3.3.3 we maintained that the R code written by Rizoiu et al.
(2018a) would not be capable of producing the heat map in figure 3.9. This
is because the code cannot compute the likelihood correctly if the disease
in the provided observation has died out. This can easily be seen by trying
to calculate the log-likelihood of such a simulation. To this end we save a
simulation where the disease dies out in [2] using the feather serialization
library. The last line in input cell [2] only serves demonstration purposes.
It produces the output which shows that there are no infected individuals
left at the end of the observation.

In [2]: from py_hawkesn_sir.py_hawkesn_sir.sir_stochastic \

import StochasticSIR

s_0 = 80

i_0 = 20

r_0 = 0

t_max = 11

n_simulations = 20

random_state = 0

model_tmp = StochasticSIR(s_0=s_0 ,

i_0=i_0 ,

r_0=r_0 ,

beta=1,

gamma =.2)

model_tmp.simulate(t_max=t_max ,

n_simulations=n_simulations ,

random_state=random_state)

model_tmp.data_ [0]. to_feather("obs_disease_dies_out")

model_tmp.data_ [0]. tail()

Out[2]: i r s t

416 4 356 940 5.403488

417 3 357 940 5.526455

418 2 358 940 5.976188

419 1 359 940 6.064920

420 0 360 940 6.973503

We can then load the data frame in R. The following interactive use of R
shows that the calculation of the log-likelihood fails, making it impossible
to fit parameters for such an observation.
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> library(feather)

> observation <- read_feather('../obs_disease_dies_out')

> colnames(observation) <- c("I", "R", "S", "time")

> stochastic.sir.complete.neg.log.likelihood(

+ c(1000, 300, 0.2, 0.1),

+ observation

+ )

neg.ll

Inf

However, using only one part of the observation such that at least one
individual remains infected at the end leads to a finite result. This can be
seen in the following lines of code.

> observation.short <- observation [1:400 , ]

> stochastic.sir.complete.neg.log.likelihood(

+ c(1000, 300, 0.2, 0.1),

+ observation.short

+ )

neg.ll

-1134.18

If the log-likelihood is −∞ for an observation irrespective of the parameters,
then it is impossible to fit the parameters. Only if there are parameter
combinations for which the log-likelihood function produces finite results,
an optimization is possible.
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Appendix C.

Working with HawkesN

Processes Using Software

C.1. The Intensity of a HawkesN Process Using

Software

C.1.1. Calculation of the Intensity

In this section we demonstrate how our Python program can be used to
calculate the intensity of a HawkesN process in the form of (4.6). We also
verify the correctness of the calculations using a small example and contrast
the results with those produced by the R program of Rizoiu et al. (2018a).

We start by the calculation of the intensity using our Python program. To
this end we first instantiate the HawkesN class and assign the created object
to the variable hn.

In [3]: import numpy as np

from py_hawkesn_sir.py_hawkesn_sir import hawkesn

hn = hawkesn.HawkesN ()

Next, we define our example data. We will assume that the scale and decay
parameters equal 0.5 and that the population size is 100. To make our
example results easy to verify we choose a short history containing only the
three event times 0, 1, and 2.
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In [4]: his = np.array([0, 1, 2])

scale = decay = 0.5

n = 100

To obtain a function for calculating the exponential intensity with our
parameters from [4], we can pass these parameters to the exp_intensity

method. After obtaining the function in [5] we evaluate it at time 2. This
roughly results in 0.48.

In [5]: int_fun = hn.exp_intensity(scale=scale ,

decay=decay ,

n=n,

history=his)

int_fun (2)

Out[5]: array ([ 0.47879445])

Now let us verify that this result is correct. Following equation (4.6) and
inserting the parameters from [4] we obtain

λH
2 =

(
1− 3

N

)
κθ
(

e−θ·2 + e−θ·1
)

= 0.97 · 0.5 · 0.5 ·
(

e−1 + e−0.5
)
≈ 0.236. (C.1)

This result differs from the 0.48 our program calculated. That is, because
the Python code mimics the R program of Rizoiu et al. (2018a) by default.
As a consequence, exp_intensity by default calculates the intensity with
a tC

j ≤ t as sum index instead of tC
j < t as in equation (4.6). To get the

latter behavior we need to pass an additional argument to exp_intensity

as shown in [6].

In [6]: int_fun_less = hn.exp_intensity(scale=scale ,

decay=decay ,

n=n,

history=his ,

sum_less_equal=False)

int_fun_less (2)

Out[6]: array ([ 0.23629445])
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Now we get the same result as in our calculation by hand in equation
(C.1).

To calculate the intensity using the R program written by Rizoiu et al.
(2018a), we can do the following.

> source('scripts/functions -SIR -HawkesN.R')

> make.history.compatible.to.HawkesN <- function(his){

+ df <- as.data.frame(list(rep("dummy", length(his)), his))

+ colnames(df) <- c("dummy_col", "time")

+ return(df)

+ }

>

> his <- make.history.compatible.to.HawkesN(c(0,1,2))

> t <- 2

> lambda(t, his , c(K=0.5, c=0.001 , theta =0.5, N=100))

[1] 0.4787944

As mentioned above, this is the same result as the one produced by our
Python program without the sum_less_equal argument set to False. Note
that for the R function to work we needed to supply it with a data.frame

consisting of two columns with the event times being in the second col-
umn. We defined the function make.history.compatible.to.HawkesN to
encapsulate the construction of this data.frame.

C.1.2. Plotting the Intensity

Both the Python and the R program can be used to plot a process’ intensity.
The Python input in [7] creates the plot shown in figure C.1.

In [7]: t_max = 10

hn.plot_exp_intensity(t_max , scale=scale , decay=decay ,

n=n, history=his)

If we want to suppress the default behavior which mimics the R program
and we are rather interested in the intensities according to equation (4.6),
we can again supply sum_less_equal=False as argument. This is shown in
[8].
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Intensity of a HawkesN process with event history {0,1,2}
and parameters: scale=0.5, decay=0.5, N=100.

Figure C.1.: Intensity of an example HawkesN Process calculated with our Python code
mimicking the R code.

102



C.2. Calculating the Log-Likelihood of a HawkesN Process using Software

In [8]: hn.plot_exp_intensity(t_max , scale=scale , decay=decay ,

n=n, history=his ,

sum_less_equal=False)

This creates figure 4.2 which differs from figure C.1 only in the event
times.

In the following we also offer the R code for generating an intensity plot.
Figure C.2 shows the result.

> library(ggplot2)

> intensity <- function(t){

+ return(lambda(t, his , c(K=0.5, theta =0.5, N=100)))

+ }

> ggplot(data.frame(x=c(0, 10)), aes(x=x)) +

+ theme(text=element_text(family="Palatino")) +

+ stat_function(fun=intensity) +

+ xlab('t') + ylab("Intensity") +

+ scale_x_continuous(breaks=seq(0, 10, 2)) +

+ ggtitle("Intensity using the R code")

C.2. Calculating the Log-Likelihood of a

HawkesN Process using Software

C.2.1. Calculation of the Log-Likelihood

In this section we continue our Python and R sessions from section C.1.
Now we calculate the log-likelihood of our example HawkesN process with
the parameters κ = θ = 0.5, N = 100 and the event history {0, 1, 2}.

The R code by Rizoiu et al. (2018a) calculates the log-likelihood times −1.
The following code shows the use of the corresponding function. Note that
the parameters K, theta, and N correspond to κ, θ, and N, respectively. The
parameter c which we set to zero is not used by the function.

103



Appendix C. Working with HawkesN Processes Using Software

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10
t

In
te

ns
it

y

Intensity using the R code

Figure C.2.: Intensity of an example HawkesN Process calculated with the R code of Rizoiu
et al. (2018a).
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> neg.log.likelihood(c(K=0.5, c=0, theta =0.5, N=100) ,

+ history = his)

[1] 2.17341

We can replicate the result of 2.17341 using our Python program. Since it
calculates the log-likelihood without the additional factor of −1 we would
expect a result of −2.17341. Output cell [9] shows that the two programs
indeed produce equivalent results.

In [9]: hn.llf(scale=scale , decay=decay , n=n , history=his)

Out[9]: -2.1734103794884079

We recall from section C.1 that the R code and thus our Python code use a
slight variation of the intensity formula in their calculations. This adaption
causes differences to the true intensity only when the function argument
is an event time. Since in the calculation of the log-likelihood the intensity
is evaluated in the event times, this leads to a miscalculation. To get the
true log-likelihood, we pass sum_less_equal=False as keyword argument
to our Python method as shown in [10].

In [10]: hn.llf(scale=scale , decay=decay , n=n , history=his ,

sum_less_equal=False)

Out[10]: -3.8536800501301425

Note that the difference in results stems from only one of the two parts of
the likelihood formula. We referred to this part as the sum part in section
4.7. The integral part is not affected because the integrand is only changed
on a finite set of points in time.

C.2.2. Calculation of the Gradient

Both the Python and the R program use the L-BFGS algorithm in their
fitting procedures and both provide the algorithm with the gradient of
the objective function (i.e. the log-likelihood times −1). In doing so both
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programs avoid the numerical calculation of the gradient. In this section we
review the results for the gradient. Again, we start with the R program by
Rizoiu et al. (2018a).

> closedGradient(c(K=0.5, c=1, theta =0.5, N=100) ,

+ history = his)

K c theta N

-2.9909872055 0.0000000000 -0.9617048023 -0.0002222062

Calculating the derivative of the log-likelihood function with respect to κ
in our Python program gives around 2.99 as [11] shows. Note that the R
program calculates the gradient of the log-likelihood function times −1, so
the two results are equivalent.

In [11]: hn.dllf_dscale(scale=scale , decay=decay , n=n,

history=his)

Out[11]: 2.9909872054635205

Next, let us compute the derivate of the log-likelihood function with respect
to θ. In the R program the result was roughly −0.96. [12] shows our
implementation.

In [12]: hn.dllf_ddecay(scale=scale , decay=decay , n=n,

history=his)

Out[12]: 2.2818614701258939

Here we have a clear difference in results. This is also the case for the deriva-
tive with respect to N. As we see in [13] our program yields approximately
0.00053, whereas the R program computes a result of around 0.00022.

In [13]: hn.dllf_dn(scale=scale , decay=decay , n=n,

history=his)

Out[13]: 0.00043047446027130102

To determine which of the two programs is right, we developed a second
implementation of the HawkesN class which uses sympy. Starting from a
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log-likelihood method that produces the same results as the R and the first
Python implementation, we can use sympy to calculate the derivative. [14]
demonstrates that this second implementation produces the same results
for the log-likelihood.

In [14]: from py_hawkesn_sir.py_hawkesn_sir import hawkesn_sympy

from sympy import Array

params = [("scale", scale), ("decay", decay), ("n", n)]

hn_sym = hawkesn_sympy.HawkesN(Array(his))

hn_sym.llf().subs(params)

Out[14]: -2.17341037948841

In [15] we see that the gradient calculated symbolically by sympy equals
the one produced by our first implementation which does not make use
of sympy for performance reasons. This underlines the correctness of the
derivatives computed by our first implementation.

In [15]: hn_sym.llf_gradient ().subs(params)

Out[15]: [2.99098720546352 , 2.28186147012589 ,

0.000430474460271301]

So far we have dealt with the gradient of the log-likelihood as calculated by
R program. In C.1 and C.2.1 we claimed that the intensity function used in
these calculation is not accurate. In order to use the correct intensity function,
we will again pass sum_less_equal=False as keyword argument.

In [16]: hn.dllf_dscale(scale=scale , decay=decay , n=n,

history=his , sum_less_equal=False)

Out[16]: 2.99098720546

In [17]: hn.dllf_ddecay(scale=scale , decay=decay , n=n,

history=his , sum_less_equal=False)

Out[17]: 0.961704802296
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In [18]: hn.dllf_dn(scale=scale , decay=decay , n=n,

history=his , sum_less_equal=False)

Out[18]: 0.000430474460271

Comparing [16] with [11] and [18] with [13] we see that the derivatives
with respect to κ and to N were not affected by changing the calculation
of the intensity. That is because the sum contained in the formula for the
intensity was canceled out in equations 4.19 and 4.22.

In equation 4.20, however, this sum still exists which means that the result
will be affected by the choice of whether to sum over tC

j < t or tC
j ≤ t. That

is why [17] holds a different result than [12]. We can verify that the results
in [16]–[18] are correct by using our sympy-powered implementation. [19]
serves as confirmation.

In [19]: hn_sym.llf_gradient(sum_less_equal=False).subs(params)

Out[19]: [2.99098720546352 0.961704802296088

0.000430474460271301]

As a final remark we want to point out that the value of approximately
0.96 obtained with sum_less_equal set to False equals the result in R. That
shows that the R code is calculating a derivative which does not belong to
the intended function.
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