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Abstract

More and more applications are using elliptic curve cryptography to exchange keys for
encryption. The complexity-theoretic security relies on the assumption that finding
the discrete logarithm is hard. This thesis is a comprehensive analysis of the most
prominent algorithms for computing the discrete logarithm in elliptic curve groups
including a quantum algorithm. The main emphases are the mathematical concepts
behind these algorithms not their implementation.
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1. Introduction

The theory of elliptic curves was at first developed with an analytic approach. Moti-
vation for this new theory came from geometric and physics problems. Since the nine-
teenth century arithmetic and number theoretic questions arose. It could be shown
that an elliptic curve can be seen as an abelian group. In the last years elliptic curves
got into the focus of mathematicians due to the role they play in the proof of Fermat’s
Last Theorem. In 1995 Andrew Wiles could show with the help of elliptic curve theory
that the theorem holds [33].

A practical purpose of elliptic curves is their usage in modern Public-key cryptography.
The idea is the same as in the Diffie–Hellman key exchange protocol but instead of the
multiplicative group of a prime field one takes the elliptic curve group as the underlying
group structure. This concept was introduced in the middle of the 1980’s independently
by Victor S. Miller [20] and Neal Koblitz [15].

It turned out that the Elliptic-curve cryptography (ECC) could provide the same level of
security afforded by the leading Public-key cryptosystem RSA (Rivest–Shamir–Adleman)
with shorter key length [1]. Mostly for this reason we saw a shift from RSA to ECC.
As a prominent example I want to mention the use of ECC in the National Security
Agency Suite B Cryptography [6]. This is a set of cryptographic algorithms to encrypt
classified information up to the level “Top Secret”. The wide spread use of ECC in
critical applications explains the extensive research undertaking in this field.

The security of ECC depends on the assumption that finding the discrete logarithm of
a random elliptic curve element with respect to a public known base point is infeasible.
More precise let P and Q be two given points on the same curve. Where Q is in 〈P 〉
the group generated by P . Further let k be a non-zero integer with

Q = kP.

Then the discrete logarithm of Q with respect to the base element P is the number k.

The original goal of this master thesis was to work out the mathematical details omit-
ted in the algorithms of the discrete logarithm presented in Annette Werner’s book
Elliptische Kurven in der Kryptographie [36]. Upon researching I came across the cur-
rent progress made in the field of quantum computing. Therefore I decided to include
Shor’s quantum algorithm for computing the discrete logarithm [28] in my master thesis.

At the beginning we start with an introduction to elliptic curves and their properties.
A special interest is taken in maps between curves. In particular the multiplication-by-
m map for an integer m plays an important role in the definition of the Weil-Pairing.
The computation of the Weil-Pairing is treated intensively in preparation of the MOV-
algorithm.

The first algorithms we introduce are applicable to every abelian group. In that section
we describe the algorithms only briefly compared with the following ones. Since these
algorithms do not need a deep mathematical theory one gets a good understanding
of them despite the rather compact description. Actually we look at one more attack
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against the discrete logarithm problem (DLP) which is not mentioned in Werner’s book.
The Index-Calculus algorithm is a sub-exponential algorithm, but it only works for the
multiplicative group of a finite field.

We need the Index-Calculus as a part of the MOV-algorithm, our first algorithm spe-
cially designed to attack the DLP in the elliptic curve group. More precisely, the
Weil-pairing helps us to transform our DLP in the elliptic curve group to a DLP in the
multiplicative group of a finite field. For this new problem we can apply the Index-
Calculus. We will see that in the case of supersingular elliptic curves the finite field and
therefore the multiplicative group is small enough so that the whole MOV-algorithm is
sub-exponential.

The second attack that exploits the properties of certain elliptic curves is the SSSA-
algorithm. For anomalous curves one can find an isomorphism from the elliptic curve
group to the additive group of the corresponding finite field. Then we only have to
solve the DLP in a trivial setting. In order to be able to construct the isomorphism
efficiently we use elliptic curves over the p-adic numbers. In the end this algorithm
runs in polynomial time.

Shor’s algorithm also runs in polynomial time but on a quantum computer. First we
will give a short introduction into the basics of quantum computing. Then we describe
the part where the speed up against conventional computers lies.
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2. Elliptic Curves

In this chapter let K always be a field, whose characteristic is different from 2 and 3.
Let K̄ denote the algebraic closure of K and for every ring R we define R∗ to be the
ring without the zero element.

There are a few ways to define elliptic curves. A rather abstract approach is to say that
an elliptic curve is a curve of genus one having a specified base point. Another way
is to define elliptic curves as the set of solutions of a so called Weierstrass equation.
This approach can be done in the affine plane, where we have to add a special point
with certain properties or in the projective plane. We choose the later one, because we
will need it in some computations, mainly in the section about the SSSA algorithm.
Additionally it is easier to go to the affine case from the projective case as vice versa.

2.1. Projective Coordinates

Let K be a field, then the two dimensional projective space P2(K̄) over K̄ is the set of
all one dimensional subspaces of K̄3. More explicitly, let (x1, y1, z1), (x2, y2, z2) ∈ K̄3,
then we define an equivalence relation on K̄3 as follows:

(x1, y1, z1) ∼ (x2, y2, z2) :⇔ ∃λ ∈ K̄× : (x1, y1, z1) = (λx2, λy2, λz2).

Then P2(K̄) is given by the equivalence classes (w.r.t ∼) of triplets (x, y, z) ∈ K̄3,
where at least one coordinate is not zero, i.e.

P2(K̄) :=
(
K̄3\{0}

)
/ ∼ .

For a point (x, y, z) ∈ K̄3, the equivalence class is denoted by (x : y : z). There is a
natural way to embed the affine plane K̄2 in the projective space. We have the inclusion
(x, y) 7→ (x : y : 1). Therefore we call every point (x : y : z) ∈ P2(K̄), with z 6= 0 finite
and all others, points at infinity.

Whether a projective point in P2(K̄) is a root of a given polynomial F (X,Y, Z) ∈
K[X,Y, Z] does depend on the representative chosen for this particular point. To fix
this issue we only look at homogeneous polynomials. A homogeneous polynomial of
degree n in K[X,Y, Z] is a polynomial, where each term cXjY kZ l, where c ∈ K,
satisfies j + k + l = n. Let F ∈ K[X,Y, Z] be a homogeneous polynomial of degree n
and let (x1, y1, z1) = (λx2, λy2, λz2) with λ ∈ K̄×. Then

F (x1, y1, z1) = F (λx2, λy2, λz2) = λnF (x2, y2, z2).

In particular if (x1, y1, z1) is a zero of F , (λx2, λy2, λz2) is a zero of F , i.e. whether or
not the coordinates of a projective point evaluate to zero in a homogeneous polynomial
does not depend on the representatives chosen.

Definiton 2.1. An elliptic curve E over the field K is the set of solutions of an equation
of the form

Y 2Z = X3 + aXZ2 + bZ3 (2.1)
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where a, b ∈ K, with the discriminant ∆. = −16(4a3 + 27b3) 6= 0, i.e.

E = {(x : y : z) ∈ P2(K̄) | y2z = x3 + axz2 + bz3}.

Equations of the type (2.1) are called Weierstrass equations.

We are now interested, which points on an elliptic curve do not lie in the affine plane,
i.e. are points at infinity. Let (x : y : z) ∈ P2(K̄) be a projective point. Remember a
point at infinity is one with z = 0. Then we have x3 = 0, implying x = 0. Since not
all three coordinates are allowed to be 0, the only condition for y is to be unequal to
0. Hence (0 : y : 0) = (0 : 1 : 0) = O is the only possible point at infinity on an elliptic
curve. Since plugging in (0 : 1 : 0) in the equation (2.1) yield 0 = 0, we see that O is
actually a point on the elliptic curve.

One defines a projective line as the set of solutions of a homogeneous polynomial of
degree 1 and a arbitrary projective curve Cg as the zero set of a reduced homogeneous
polynomial g. It can be shown that different projective lines intersect in exactly one
point and that the intersection of a projective line with an elliptic curve always consists
of 3 points (counted with multiplicity), see Bezout theorem [7, 5.3].

Often it is not necessary to compute in the projective plane, if this is the case we switch
to the affine plane where the corresponding Weierstrass equation has the form

E : y2 = x3 + ax+ b.

We just have to remember to add the point at infinity O to the set of solutions of this
equation. The rational points of E are all points with coordinates in K together with
the point O, i.e.

E(K) = {O} ∪ {(x, y) ∈ K ×K | y2 = x3 + ax+ b}.

Below we have two drawings of the real part of two elliptic curves:

Figure 1: E : y2 = x3 + 3 Figure 2: E : y2 = x3 − 7x+ 6
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Remark: The condition that the discriminate has to differ from zero is equivalent to
the condition that the curve E has no singular points [30, III.1.4.], i.e. for every point
P ∈ E\{0}

−3x2 − a
∂x

(P ) 6= 0 or
2y

∂y
(P ) 6= 0.

2.2. The Group Law

One reason why elliptic curves are interesting for cryptography is, that they can be
equipped with a group operation. Unfortunately the component-wise addition of points
is not closed under the set of points of a given elliptic curve, as the next example shows.

Example 2.2. Let E : y2 = x3−18x+ 8 be an elliptic curve over R. If we add the two
points P = (4, 0) and Q = (7, 15) component-wise, we obtain the point R = (11, 15).
Plugging R into the given Weierstrass equation gives us the contradiction 121 = 3113.
So, the point R is not on the elliptic curve E.

As it was the case with the definition of elliptic curves, there are again many ways to
describe the addition law on elliptic curves. We choose to give an intuitive geometric
definition, because it is sufficient for the algorithms we will present later. In this
definition we see the importance of the point O.

Definiton 2.3. Let P and Q be two points on the elliptic curve E. Further, let L be the
projective line connecting P and Q, provided that P and Q are distinct. Otherwise, let
L be the tangent line of E at P . The intersection of L and E, taken with multiplicities,
consists of exactly three points. This is due to Bezout theorem [7, 5.3]. P and Q are by
construction two of them. We take the third point of intersection of L and E to be R.
Set L′ to be the projective line through R and O. Then L′ intersects R, O and a third
point. We denote the third point by P ⊕Q (in the (x, y)-plane this is just the reflection
of R across the x-axis).

Figure 3: Case: P and Q distinct Figure 4: Doubling the point P
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Theorem 2.4. Let E be an elliptic curve over K. Then

(E,⊕) is an abelian group.

Proof. We will use the notation of definition 2.3.
First of all, the operation ⊕ is commutative, since the geometric construction is sym-
metric in P and Q.
The neutral element is O. Let P ∈ E. If we try to compute P ⊕O, we see that the lines
L and L′ coincide. Therefore the intersection point of L′, besides R and O is again P .
For O it is clear that O itself is the inverse element, because O is the neutral element.
The inverse element of an element P ∈ E\{O} is P ′ = R. To see this, we add these
two points. The projective line connecting P and R is L, which means the third point
is O. We look at the tangent of L′ of E at O. Let F be the homogeneous polynomial
corresponding to the Weierstrass equation (2.1). Then the partial derivatives of E at
O are

∂F

∂X
(0, 1, 0) =

∂F

∂Y
(0, 1, 0) = 0 and

∂F

∂Z
(0, 1, 0) = 1.

Hence the tangent is given through the equation Z = 0. Therefore the third intersection
point of L′ and E is O. This shows P ⊕ P ′ = O.
By far the most challenging point to prove is the associativity of ⊕. This can be done
directly with the formulas below, though one has to make several case distinctions and
go through tedious calculations [34, 2.4]. An algebraic proof using the Riemann-Roch
theorem can be found in [30, III.3.4.(e)].

Since we now know that ⊕ is a group operation on E, we write (E,+) instead of (E,⊕).
For adding points of an elliptic curve in the affine plane we can derive explicit formulas,
as shown in the next theorem.

Theorem 2.5. Let E : y2 = x3+ax+b be an elliptic curve over K, and let P1 = (x1, y1),
P2 = (x2, y2) ∈ E\{O} be finite points. Next, let (x3, y3) = P3 := P1 + P2. Then

P3 =

{
O if x1 = x2 and y1 = −y2

(λ2 − x1 − x2, λ(x1 − x3)− y1) otherwise,

where λ is defined by

λ =

{
y2−y1
x2−x1 if x1 6= x2
3x21+a

2y1
otherwise.

Proof. In the proof of theorem 2.4 we already saw that P2 is exactly the inverse of P1

in the case x1 = x2 and y1 = −y2.
If x1 6= x2, then λ is the slope of the line L through P1 and P2. The equation of the
line is L : y = λx+ y1 − λx1. Substituting this into the equation for E, gives us

(λx+ (y1 − λx1))2 = x3 + ax+ b.

Therefore,

0 = x3 − λ2x2 + (a− 2λ(y1 − λx1))x+ b+ λx1 − y1

= (x− x1)(x− x2)(x− x3).
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We see that −λ2 = −x1 − x2 − x3, so x3 = λ2 − x1 − x2.
To get the y-coordinate of the third intersection point of L and E we plug x3 into L,
and obtain λx3−λx1 + y1 = λ(x3−x1) + y1. By reflecting this point across the x-axis,
we have computed P3 = (λ2 − x1 − x2, λ(x1 − x3) − y1). The case x1 = x2 follows
along the same lines, one only has to consider that now x1 is a double root of the cubic
polynomial.

Example 2.6. Let E : y2 = x3 − 7x + 6 be an elliptic curve over R and let P1 =
(3, 2
√

3), P2 = (5, 4
√

6) ∈ E be two points on the curve. We want to compute P3 =
(x3, y3). To do this we use the formulas given in the last theorem.

x3 =

(
4
√

6− 2
√

3

5− 3

)2

− 3− 5 =
16 · 6− 16

√
18− 4 · 3

4
− 8

=
96− 48

√
2 + 12

4
− 8 = 24− 12

√
2 + 3− 8

= 19− 12
√

2

y3 =
4
√

6− 2
√

3

5− 3

(
3−

(
19− 12

√
2
))
− 2
√

3 =
(

2
√

6−
√

3
)(
−16 + 12

√
2
)
− 2
√

3

= −32
√

6 + 24
√

12 + 16
√

3− 12
√

6− 2
√

3

= 62
√

3− 44
√

6

So, (3, 2
√

3) + (5, 4
√

6) = (19− 12
√

2, 62
√

3− 44
√

6).

2.3. Torsion Points

The interesting thing about torsion point for us is, how the Weil-pairing acts on them
and how this can be used to attack the ECDLP, like in the MOV-algorithm.

Definiton 2.7. (a) Let E be an elliptic curve over K, and let m be an integer. The
multiplication-by-m map [m] : E → E is defined for P ∈ E as follows

[m]P :=



m terms︷ ︸︸ ︷
P + · · ·+ P m > 0

O m = 0

−P − · · · − P︸ ︷︷ ︸
−m terms

m < 0

.

(b) Let n ∈ N. The set of n-torsion points of the group E is denoted by

E[n] = {P ∈ E : [n]P = O}.

Note that this set is the kernel of the multiplication-by-n map.

Example 2.8. Let again E : y2 = x3− 7x+ 6 be an elliptic curve over R. We want to
determine the set of points of order two E[2].
Since O is the neutral element in E, it is in the set E[2]. So, let P ∈ E[2]\{O}
be arbitrary. From [2]P = O, we know that O lies on the tangent of E at P . Let
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aX + bY + cZ = 0 be the equation defining the tangent. Since O is on this projective
line, we get b = 0 and therefore the tangent is is vertical in the affine plane. This
implies that the y-coordinate of P must be 0. To get the remaining points in E[2], we
now have to solve the cubic equation 0 = x3 − 7x+ 6. By doing this we obtain

E[2] = {O, (−3, 0), (1, 0), (2, 0)}.

Actually the torsion points form more than just a set. Let P,Q ∈ E[n] for a given
elliptic curve and n ∈ N. Then the set of n-torsion points is closed under addition

[n](P+Q) = (P+Q)+· · ·+(P+Q) = P+· · ·+P+Q+· · ·+Q = [n]P+[n]Q = O+O = O,

and also contains the inverse elements

[n](−P ) = −P − · · · − P = [−1](P + · · ·+ P ) = [−1][n]P = [−1]O = −O = O.

Therefore E[n] is a subgroup of E, called the n-torsion group. In some cases we
know the structure of the group E[n]. Obviously the multiplication-by-n map plays an
important role in finding the structure of E[n]. The crucial fact is the following one.

Theorem 2.9. Let E be an elliptic curve over K, and let n ∈ N such that char(K) - n.
Then

# ker[n] = #E[n] = n2.

An elementary proof using division polynomials is given in [34, 3.2]. There is also a
proof using more theory, in [30, II.6.4.].

Theorem 2.10. Let E be an elliptic curve over K.

(a) Let n ∈ N, and suppose char(K) = 0 or char(K) - n. Then the torsion group is a
product of two cyclic groups

E[n] ∼= Z/nZ× Z/nZ.

(b) Let char(K) = p > 0, then

E[pe] ∼= {0}, for all e ≥ 1 or E[pe] ∼= Z/peZ, for all e ≥ 1.

Proof. (a) From theorem 2.9 we obtain

#E[n] = n2.

Further, for every integer d dividing n, we similarly have #E[d] = d2.
The structure theorem for finite abelian groups tells us that E[n] is isomorphic to

Z/n1Z× · · · × Z/nkZ for some integers n1, . . . , nk with ni | ni+1 for all i.

Let d be a prime dividing n1, then d divides all ni. This means that E[d] ⊂ E[n] has
order dk. But we know from above E[d] has order d2, so k = 2. Then it is easy to see
that the only possibility is E[n] = Z/nZ× Z/nZ.
(b) See [30, III.6.4.(c)].
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In the case (a), where E[n] ∼= Z/nZ×Z/nZ we can view E[n] as a module over the ring
Z/nZ. In particular, when n is prime, then E[n] has a structure as a 2-dimensional
vector space over the field Z/nZ. Even if n is not prime, we always can find a basis
existing of two elements; i.e. there exists P,Q ∈ E[n] such that every point R ∈ E[n]
in the torsion group can be written in the form R = cP +dQ for some integers c and d.

2.4. Divisors & Miller’s Algorithm

The at first rather abstract concept of a divisor of a curve turns out to be very practical
for the efficient computation of the Weil-pairing, which again is at the heart of the
MOV-attack. Before we can define a divisor associated to a function we have to have
a look at rational functions on a curve.

2.4.1. Rational Functions

Let E be an elliptic curve over the field K. Then we define K̄[E] := {u : E\{O} →
K̄ : ∃g ∈ K̄[x, y] : u(P ) = g(P ) ∀P ∈ E\{O}}. One can show that K̄[E] is an integral
domain. The field of rational functions, denoted by K̄(E), is the fraction field of this
integral domain. In [30, II.1.1.] it is shown that for every finite point on the curve
P ∈ E\{O} the ring

K̄(E)P = {f ∈ K̄(E) | ∃g1, g2 ∈ K̄[E] : f =
g1

g2
∧ g2(P ) 6= 0}

is a discrete valuation ring. If we take the embedding (x : z) 7→ (x : 1 : z), the point
O = (0 : 1 : 0) has the affine coordinate (0, 0). One can show that the field of rational
functions in this coordinate system is isomorphic to the one we already defined, via the
map x 7→ x/y, z 7→ 1/y. So every point of the curve has a discrete valuation ring. These
are all discrete valuation rings containing K̄ [9, 1.6]. Then we know from commutative
algebra that there exists an element u ∈ K̄(E)P such that for every rational function
f ∈ K̄(E)∗ there is an unique integer s ∈ Z, so that we can write f in the form f = usg
for some g ∈ K̄(E)×P . We call s the order of f at P and write ordP (f) = s. If s is
negative we say f has a pole at P and when s is positive we say f has a zero at P .

2.4.2. Divisors

Now we have all we need to define divisors of functions.

Definiton 2.11. Let E be an elliptic curve over K. A divisor D on the curve E is a
formal sum

D =
∑
P∈E

nP (P ), (2.2)

with nP ∈ Z and nP = 0, for all but finitely many points P ∈ E. We denote the abelian
group of all divisors on E by Div(E). The degree and the sum of the divisor D (2.2)
is defined by

deg(D) =
∑
P∈E

nP and sum(D) =
∑
P∈E

[nP ]P.
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Let f ∈ K̄(E) be a rational function, then the associated divisor of f , denoted by div(f),
is the divisor

div(f) =
∑
P∈E

ordP (f)(P ).

A divisor D is called principal if there exists a rational function f ∈ K̄(E) so that the
associated divisor of f is D, i.e. div(f) = D.

In order to be a divisor div(f) has to be a finite sum. This is actually the case and
is shown in [7, Ch.8,Prop.1]. When seeing these definitions one could wonder which
divisors on a curve are associated divisors of a rational function, or what it says for
two functions to have the same associated divisor. The answer of the latter question is
given in the next proposition.

Proposition 2.12. Let E be an elliptic curve over K and f ∈ K̄(E)∗. Then

(a)
div(f) = 0 ⇔ f is constant, i.e. f = c, for some c ∈ K̄∗. (2.3)

In particular, if div(f) = div(g), for some g ∈ K̄(E)∗, then f and g only differ by
a constant, i.e. f = gc, for some c ∈ K̄∗.

(b) Every principal divisor has degree 0, i.e.

deg(div(f)) = 0.

Proof. See [30, II.3.1.,II.3.7.].

To be able to answer the first question we need an immediate result, which will also be
helpful in the construction of Miller’s algorithm.

Lemma 2.13. Let P1, P2 6= O be two finite points on an elliptic curve E : y2 =
x3 + ax+ b over K. Further, let l be the equation of the line (in K̄(E)) connecting P1

and P2, and let v be the vertical equation of the line (in K̄(E)) through P3 = P1 + P2

(if P3 = O, then set v = 1). Then

(a)

div

(
l

v

)
= (P1) + (P2)− (P3)− (O).

(b)

sum

(
div

(
l

v

))
= O.

Proof. (a) Obviously P1, P2, and −P3 are zeros of the line. From Bézout we know
that the line l intersects E at exactly three points (counted with multiplicity), so there
can not be additional zeros. The only pole occurs at the point of infinity. Hence,
div(l) = (P1) + (P2) + (−P3)− n(O), for some n ∈ N. By 2.12(b) the degree of div(l)
must be 0. Therefore,

div(l) = (P1) + (P2) + (−P3)− 3(O).
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For the line v one argues in a similar way and obtains div(v) = P3 + (−P3)− 2(O).
Note, because of the definition of associated divisors through the order (which is a
valuation), the divisor of a quotient of two functions is the difference of the the divisors
of the functions. Therefore,

div

(
l

v

)
= div(l)− div(v) = (P1) + (P2) + (−P3)− 3(O)− ((P3) + (−P3)− 2(O))

= (P1) + (P2)− (P3)− (O),

where the right-hand side simplifies to (P1) + (P2)− 2(O), if v = 1.
(b) If v = 1 the statement is clear and in the general case the sum is

sum

(
div

(
l

v

))
= P1 + P2 − P3 = P1 + P2 − (P1 + P2) = O.

Theorem 2.14. Let E be an elliptic curve over K and D be a divisor on E of degree
0. Then

D is principal ⇔ sum(D) = O.

Proof. We can write D in the following form

D = (P1) + · · ·+ (Pr)− (Q1)− · · · − (Qs) +m(O),

for finite points P1, . . . , Pr, Q1, . . . , Qs,∈ E, r, s ∈ N and m ∈ Z. If we now inductively
use 2.13(a) on the positive terms P1, . . . , Pr, we obtain

D = (P )− (Q1)− · · · − (Qs) +m′(O) + div(g),

for some P ∈ E,m′ ∈ Z and sum(div(g)) = O. That sum(div(g)) = O is clear for r = 2,
by Lemma 2.13(b) and then it is just a induction argument. Basically the principal
divisors get added, which means the functions are multiplied. The sum of the product
of functions, whose sums are O is again O. We can do a similar thing with Q1, . . . Qs
and get D in the simple form

D = (P )− (Q) +m′′(O) + div(h),

for some Q ∈ E,m′′ ∈ Z and sum(div(h)) = O. From 2.12 we know that deg(div(h)) =
0. Hence deg(D) = 1 − 1 + m′′ and since D has degree 0 the only possibility is that
m′′ = 0.
We have sum(div(h)) = O. Therefore,

sum(D) = P −Q.

Now suppose sum(D) = O, then O = P − Q, hence P = Q and therefore D = div(h)
is a principal divisor.
On the other hand let D = div(f) for some f ∈ K̄(E) be a principal divisor, then
(P ) − (Q) = div(f/h). To show that this can only be the case when P = Q one can
use a consequence from the Riemann-Roch theorem, as in [30, III.3.3.]. An elementary
but long proof can be found in [34, 11.1].
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2.4.3. Miller’s Algorithm

When we want to efficiently compute the Weil-pairing it all comes down to finding a
function f such that

div(f) = n(P +R)− n(R), (2.4)

for points P ∈ E[n], R ∈ E, and then evaluating f(Q1)/f(Q2) for two points Q1 and
Q2. The proofs of the last two statements 2.13 and 2.14 were quite constructive. We
can use them to calculate the associated function to a principal divisor, as the next
example demonstrates.

Example 2.15. Let E : y2 = x3 + x be an elliptic curve over Z/7Z and let

D = ((0, 0)) + ((5, 5)) + ((1, 4)) + ((3, 4))− 4(O)

be a divisor on E. Obviously deg(D) = 0 and a look at the group structure (see
example 3.8) shows us that sum(D) = O. So there exists a rational function f such
that div(f) = D.
First we note that the line connecting the points (0, 0) and (5, 5) is given through the
equation 0 = y − x. The third intersection point of the curve with this line is (3, 3).
By lemma 2.13 we have

div

(
y − x
x− 3

)
= ((0, 0)) + ((5, 5))− ((0, 0) + (5, 5))− (O)

= ((0, 0)) + ((5, 5))− ((3, 4))− (O).

Therefore,

D = div

(
y − x
x− 3

)
+ ((3, 4)) + ((1, 4)) + ((3, 4))− 3(O). (2.5)

The line connecting (1, 4) and (3, 4) is given through 0 = y − 4. To apply 2.13(a) we
have to compute (1, 4) + (3, 4). By looking at the tangent to E at (3, 4) we see that
the line y = 4 intersects E at (3, 4) with multiplicity 2:

t(x, y) =
∂(x3 + x− y2)

∂x
(3, 4)(x− 3) +

∂(x3 + x− y2)

∂y
(3, 4)(y − 4)

= 28(x− 3)− 8(y − 4)

= 6(y − 4) = 6y − 24

= −y + 4 in Z/7Z.

Hence,

div

(
y − 4

x− 3

)
= ((1, 4)) + ((3, 4))− ((1, 4) + (3, 4))− (O)

= ((1, 4)) + ((3, 4))− ((3, 3))− (O).
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Inserting this identity to (2.5) gives us

D = div

(
y − x
x− 3

)
+ ((3, 4)) + div

(
y − 4

x− 3

)
+ ((3, 3))− 2(O)

= div

(
y − x
x− 3

)
+ div

(
y − 4

x− 3

)
+ div(x− 3) (2.13(a) with P3 = O)

= div

(
(y − x)(y − 4)

x− 3

)
.

We can rewrite the numerator by making use of the relation of y and x, given through
the equation defining the elliptic curve E, in the following way

(y − 4)(y − x) = y2 − xy − 4y + 4x

= x3 + x− xy − 4y + 4x

= x3 + 5x− xy − 4y

= (x− 3)(x2 + 3x− y).

Finally we get D = div(x2 + 3y − y).

This method works fine as long as the number of points in the divisor is relative small.
In our problem (2.4) we would have to do a lot of iterations, if n is a large number. To
speed up the computation Miller’s algorithm uses successive doubling. We now give a
description of this procedure based on [34, 11.4].

Miller’s Algorithm:
Input: n ∈ N, P ∈ E[n], R ∈ E,Q1, Q2 ∈ E\ ({O, (P +R), R} ∪ {[j]P | 1 ≤ j ≤ n}).
Output: f(Q1)/f(Q2) such that div(f) = n(P +R)− n(R).

(1) Define vj := fj(Q1)/fj(Q2),
where fj ∈ K̄(E) such that div(fj) = j(P +R)− j(R)− ([j]P ) + (O) := Dj .

(2) Set i = n, j = 0, k = 1, f0 = 1.
Compute f1, as in lemma 2.13 or in example 2.15, so that div(f1) = D1.

(3) As long as i 6= 0, do
Define l and v such that div(l/v) = ([j]P ) + ([k]P )− ([j + k]P )− (O).
(This can be done as in lemma 2.13)

(a) If i ≡ 0 (mod 2), then

compute v2k = vkvk
l(Q1)v(Q2)
l(Q2)v(Q1) , set k ← 2k and save (vj , vk).

i← i/2

(b) If i ≡ 1 (mod 2), then

compute vj+k = vjvk
l(Q1)v(Q2)
l(Q2)v(Q1) , set j ← j + k and save (vj , vk).

i← i− 1

(4) Output vk.

If the steps (1) to (3) are performed correctly, then it is clear that the output vk =
vn = fn(Q1)/fn(Q2) is the desired result. To check the correctness of the algorithm,
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we have a look at step (1) and (3). Since

deg(Dj) = j − j − 1 + 1 = 0 and sum(Dj) = [j](P +R)− [j]R− [j]P +O = O,

Dj is a principal divisor by 2.14 and therefore the function fj exists for every j ∈
{1, . . . , n}. Until now, it is not clear how we can do step (3) efficiently. Suppose we
can compute fj+k(Q1)/fj+k(Q2) directly from fj(Q1)/fj(Q2) and fk(Q1)/fk(Q2). This
would make the steps (3)(a) and (3)(b) efficient, since in case (a) we simply set j = k.
Assume now we already know the values fj(Q1)/fj(Q2) and fk(Q1)/fk(Q2). Then

div(fj+k) = Dj+k = (j + k)(P +R)− (j + k)(R)− ([j + k]P ) + (O)

= j(P +R)− j(R)− ([j]P ) + (O)︸ ︷︷ ︸
=Dj

+ k(P +R)− k(R)− ([k]P ) + (O)︸ ︷︷ ︸
=Dk

+ ([j]P ) + ([k]P )− ([j + k]P )− (O)︸ ︷︷ ︸
=div(l/v), with l and v as in lemma 2.13

= Dj +Dk + div(l/v)

= div

(
fjfk

l

v

)
.

Lemma 2.12(a) tells us that the functions fj+k and fjfk(l/v) only differ by a unit.
Therefore,

fj+k(Q1)

fj+k(Q2)
=
fj(Q1)fk(Q1)l(Q1)v(Q2)

fj(Q2)fk(Q2)l(Q2)v(Q1)
.

This result shows how step (3) is done efficiently.

Example 2.16. Let again E : y2 = x3 +x be an elliptic curve over (Z/7Z)×. We write
down Miller’s algorithm for the following input:
Input: n = 4, P = (1, 4) ∈ E[4], R = (5, 5) ∈ E
Q1 = (3, 3), Q2 = (3, 4) ∈ E\ ({O, (5, 2), (5, 5)} ∪ {(1, 4), (0, 0), (1, 3), O}).
Output: f(3, 3)/f(3, 4) such that div(f) = 4((5, 2))− 4((5, 5)).

(2) Set i = 4, j = 0, k = 1 and f0 = 1, then we compute f1 such that div(f1) =
((5, 2))− ((5, 5))− ((1, 4)) + (O) with 2.13(a)
P1 = (1, 4) and P2 = (5, 5) then P3 = (5, 2). The line l is given through the equation
y = 1 · 4−1x + 15 · 4−1 = 2x + 2 and the line v is given through the equation x − 5.
Then we get

div(f1) = div

(
x− 5

y − 2x− 2

)
.

Therefore

v1 =
3− 5

3− 6− 2

/
3− 5

4− 6− 2
=

5

2

/
5

3
= 6 · 2 = 12 = 5.

(3) div(l/v) is 1 since ([0](1, 4)) + (([1](1, 4))− ([0 + 1](1, 4))− (O) is the trivial divisor.
We are in case (a) because 4 ≡ 0 mod 2, then v2 = v1 · v1 = 5 · 5 = 25 = 4. Set k = 2
and i = 4/2 = 2. (3) div(l/v) is 1 since ([0](1, 4)) + (([2](1, 4))− ([0 + 2](1, 4))− (O) is
the trivial divisor.
We are in case (a) because 2 ≡ 0 mod 2, then v4 = v2 · v1 = 4 · 4 = 16 = 2. Set k = 2
and i = 2/2 = 1. (3) div(l/v) is 1 since ([0](1, 4)) + (([4](1, 4))− ([0 + 4](1, 4))− (O) is
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the trivial divisor.
We are in case (b) because 1 ≡ 1 mod 2, then v4 = v4 · v0 = 2 · 1 = 2. Set j = 4 and
i = 1− 1 = 0.
(4) Output 2.

2.5. Weil-Pairing

In the context of the Weil-pairing, let the characteristic of K never divide the integer
n. Let f be a rational function and D =

∑
P∈E nP (P ) a divisor on an elliptic curve E,

with div(f) and D having disjoint support. If we apply f to D, we actually mean

f(D) = f

(∑
P∈E

nP (P )

)
:=
∏
P∈E

f(P )nP .

Definiton 2.17. Let E be an elliptic curve over K. For two point P,Q ∈ E[n] let DP

and DQ be divisors of degree 0 such that

sum(DP ) = P and sum(DQ) = Q

and such that DP and DQ have disjoint support. Then the divisors nDP and nDQ

are principal. Hence, there exist functions fP and fQ such that div(fP ) = nDP and
div(fQ) = nDQ. The Weil-pairing en is defined as follows

en : E[n]× E[n] −→ K̄

(P,Q) 7−→ en(P,Q) =
fQ(DP )

fP (DQ)
.

The Weil-pairing has a few nice properties, as we see in the following proposition.

Proposition 2.18. Let E be an elliptic curve over K and let P, P1, P2, Q,Q1, Q2 ∈ E[n]
if not otherwise stated. Then the Weil en-pairing has the following properties:

(a) It is bilinear:

en (P1 + P2, Q) = en (P1, Q) en (P2, Q) ,

en (P,Q1 +Q2) = en (P,Q1) en (P,Q2) .

(b) It is alternating: en(Q,Q) = 1, so in particular en(P,Q) = en(Q,P )−1.

(c) It is nondegenerate: If en(P,Q) = 1 for all P ∈ E[n], then Q = O.

(d) It is Galois invariant: en(P,Q)σ = en(P σ, Qσ) for all σ ∈ GK̄/K .

(e) It is compatible: enn′′(P,Q) = en([n′]P,Q) for all P ∈ E[nn′] and Q ∈ E[n].

A proof can be found in every standard book about elliptic curves, as in [30, III.8.1.] or
[34, 11.7]. We want to mention that for these proofs one needs an alternative definition
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of the Weil-pairing. The image of the Weil-pairing in the alternative definition is
µn = {α ∈ K̄ | αn = 1} the group of nth roots of unity (important for the corollary
below). To show that these two definitions of the Weil-pairing are equal, we would need
a lot more theory about abelian varieties. It is proven in [10, Sec.1] with a reference to
[17, Sec.6.4].
From the properties of the Weil-pairing we can derive an important result for the
MOV-algorithm.

Corollary 2.19. Let E be an elliptic curve over a perfect field K and let P ∈ E be a
point of order n. Then there exists a point Q ∈ E[n] such that en(P,Q) is a primitive
nth root of unity. In particular, if E[n] ⊂ E(K), then µn ⊂ K.

Proof. Consider the map

en(P, ·) : E[n] −→ µn

Q 7−→ en(P,Q).

Suppose to the contrary that this map is not surjective, otherwise we would be done.
Since µn is a cyclic group, the image of the map must also be a cyclic group µd, with
d < n. But then, for every Q ∈ E[n]:

1 = en(P,Q)d
2.18(a)

= en([d]P,Q).

The non-degeneracy of the en-paring implies that [d]P = O, and it follows that n = d,
a contradiction to d < n.

Finally, if E[n] ⊂ E(K), then the Galois invariance of the en-pairing implies

ζ := en(P,Q) = en (P σ, Qσ) = (en(P,Q))σ = σ (ζ) .

Hence µn ⊂ K.

2.6. Elliptic Curves over Finite Fields

In cryptography one only uses elliptic curves over finite fields. Therefore we have
a closer look on these special curves. Let E be an elliptic curve over a finite field
Fq. When we are talking about finite fields, let q always be a prime power, unless
otherwise mentioned and let Fq has characteristic greater then 3. We wish to estimate
the number of points of E(Fq), or equivalently, one more than the number of solutions
to the equation

E : y2 = x3 + ax+ b with (x, y) ∈ Fq × Fq.

Since each value of x yields two values for y at most, a trivial upper bound is 2q + 1.
However, since a ”randomly chosen” quadratic equation has a 50% chance of being
solvable in Fq, we expect that the right order of magnitude should be q.
The next result was conjectured by E. Artin in his thesis and proven by Hasse in the
1930s. It shows that the heuristic reasoning from above is correct.
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Theorem 2.20 (Hasse). Let E be an elliptic curve over the finite field Fq, for some
prime power q. Then

|#E(Fq)− q − 1| ≤ 2
√
q.

Proof. See [30, V.1.1] or [34, 4.2].

2.6.1. Supersingular Curves

A special class of elliptic curves over finite fields are supersingular curves. From a
computational side of view they have interesting properties. In general we do know
much more about their group structure than about other elliptic curves.

Definiton 2.21. An elliptic curve E over a finite field Fq is called supersingular, if
char(Fq) divides t = q + 1−#E(Fq).

In particular, if we assume q ≥ 5 is a prime, then the condition above is equivalent to
saying t must be 0. This is a consequence of Hasse’s theorem 2.20. To see this, assume
to the contrary that E is supersingular but t 6= 0. From the definition of supersingular
curves we know that t is a multiple of q. So together we get that |t| ≥ q. But from
Hasse’s theorem we get the additional inequality |t| ≤ 2

√
q. These two inequalities only

hold for q < 5.

There is an even better way to characterize supersingular curves, but to see this we
have to do a short digression about finite field arithmetic. The generalization of the
Legendre symbol for finite fields is the following

(
x

Fq

)
=


1 if x = a2 for some a ∈ F×q
0 if x = 0

−1 otherwise

,

for every x in the finite field Fq. The values −1, 0, 1 are integers. The numbers of
solution of a quadratic equation can be very elegantly be represented through the
Legendre symbol. In our setting this translates to

#E(Fq) = q + 1 +
∑
x∈Fq

(
x3 + ax+ b

Fq

)
.

The next lemma lists three results about computations in finite fields, which we will
need for proving our characterization of supersingular curves.

Lemma 2.22. Let Fq be a finite field. Then

(a) (
x

Fq

)
= x

q−1
2 in Fq.

(b) Let n ∈ N. Then ∑
x∈Fq

xn =

{
0 if q − 1 - n
−1 otherwise

.
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(c) Let f(x) ∈ Fq[x] be a cubic polynomial (char(Fq) = p ≥ 5) and let apr be the
coefficient of xp

r−1 in f (pr−1)/2, for every r ∈ N. Then

apr = a1+p+···+pr−1

p .

Proof. The proofs of all three results do not involve advanced methods. Nevertheless
we do not show them here and refer for (a) and (b) to [36, 3.4.3] and for (c) to [34,
4.34].

This ends our digression about finite fields and we are able to prove the following
theorem from [34, 4.32].

Theorem 2.23. Let p ≥ 5 be a prime and let E be an elliptic curve given by y2 =
x(x− 1)(x− λ) with λ ∈ Fp. We define the polynomial

Hp(T ) =

(p−1)/2∑
i=0

(
(p− 1)/2

i

)2

T i.

Then
E supersingular ⇔ Hp(λ) = 0.

Proof. By an elementary fact of finite fields ([18]) λ ∈ Fq, where q is a prime power of
p. Hence, E is an elliptic curve defined over the finite field Fq. To use our definition of
supersingularity we have to compute the number of rational points on the curve #E(Fq).
We can formalize the heuristic reasoning, which we did before Hasse’s theorem. The
generalized Legendre symbol can be used to count how many solutions an quadratic
equation has in a given finite field. So,

#E(Fq) =
∑
x∈Fq

(
x(x− 1)(x− λ)

Fq

)
+ q + 1 in Fq

2.22(a)
=

∑
x∈Fq

(x(x− 1)(x− λ))
q−1
2 + q + 1 in Fq.

If we expand the polynomial, we see that the only term xn with q − 1 | n is xq−1. Let
aq be the coefficient of this term. By 2.22(b),

#E(Fq) = −aq + 1 in Fq.

Form 2.22(c), we see that aq is 0 if and only if ap is 0, and in this case the curve E is
supersingular. Now we calculate the coefficient ap of xp−1. To get ap we have a look
at each linear factor of the polynomial. Since the factor x always has coefficient 1, we
look for the coefficient of x(p−1)/2 in the rest of the factors:

(x− 1)
p−1
2 =

p−1
2∑

k=0

(p−1
2

k

)
xk(−1)

p−1
2
−k

(x− λ)
p−1
2 =

p−1
2∑
j=0

(p−1
2

j

)
x

p−1
2
−j(−λ)j .
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Putting together this information, we get

ap = (−1)
p−1
2

p−1
2∑

n=0

(p−1
2

n

)2

λn

= (−1)
p−1
2 Hp(λ).

So, E is supersingular ⇔ ap = 0 ⇔ Hp(λ) = 0.

Example 2.24. We now check whether our already known elliptic curve E : y2 = x3+x
over the finite field F7 is supersingular. Following the proof technique of 2.23 we
compute the coefficient a7 of x7−1 in (x3 +x)(7−1)/2. This is the same as the coefficient
of x3 in (x2 + 1)3. The term x3 does not appear in (x2 + 1)3, because all the exponents
are even. Hence, E is supersingular over F7.

The following theorem tells us that for supersingular curves the quantity t = q + 1 −
#E(Fq) can only take a few special values. A proof can be found in [35, 4.1].

Theorem 2.25. Let E be a supersingular curve over Fq, then t = q+1−#E(Fq) takes
one of the following values

0,±√q,±
√

2q,±
√

3q,±2
√
q.

Our assumption that the characteristic of Fq is greater than 3 excludes the cases
±
√

2q,±
√

3q, since theses values can not be integers. Note that if E is supersingu-
lar over Fq, then E is also a supersingular over Fql [36, 3.4.2].

Proposition 2.26. Let E be a supersingular elliptic curve over Fq and t = q + 1 −
#E(Fq). Then E[n] ⊂ E(Fql), if l is chosen according to the table below. The number
d to the corresponding l is the exponent of the group E(Fql), i.e. the smallest natural
number d such that [d]R = O for all R ∈ E(Fql).

t 0 ±√q ±
√

2q ±
√

3q ±2
√
q

l 2 3 4 6 1

d q + 1
√
q3 ± 1 q2 + 1 q3 + 1

√
q ∓ 1

Proof. See, [19, Table 1].
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3. Elliptic Curve Cryptography

3.1. Introduction into Cryptography

Since ancient times there has been a need to encrypt messages. For most of the time
only ambassadors and the military tried to hide the content of their communication.
The beginning of the information age let the number of users of cryptography rise dra-
matically. Nowadays nearly everybody, both consciously and unconsciously, encrypts
his or her messages. When we use online banking it is clear to us that the informa-
tion exchanged is somehow protected against fraud. On the other side the normal
user is not aware that in messaging applications, like “What’s App”, the end-to-end
encryption is always activated. In fact there is no possibility to turn off the end-to-end
encryption. “What’s App” is not using some lightweight cryptosystem. For instance
the key exchange is done with elliptic curve cryptography (ECC). Before we explain
how ECC works, we have to give some terminology, notations and definitions of the
field of cryptology, especially its sub field cryptography.

Cryptology is the science of keeping information secret. A part of cryptology is stenog-
raphy, where one tries to conceal the information. For example the Greek sometimes
wrote their messages on the shaved skull of slaves. Then they waited until the hair
was grown again and send the slaves to the receiver of the messages. If they would
have got caught by the enemy, they would have had no visible messages with them. In
this thesis we do not deal with this type of cryptology. Instead we are interested in
cryptography and cryptanalysis. The former is the science of encrypting texts so that
only the intended receiver is able to decrypt the text. Cryptanalysis is the develop-
ment and application of methods to break cryptosystems. It is also used as a tool to
scrutinize the security of existing systems. Mathematically speaking a cryptosystem is
a quintuple (P, C,K, E ,D) with the following properties:

1. P, C,K are non-empty finite sets, where P is the plaintext space, C is the cipher-
text space and K is the key space.

2. E = {ek : k ∈ K} is a family of functions such that each ek is a injective function
from the plaintext space P to the ciphertext space C. These maps are called
encryption functions.

3. D = {dk : k ∈ K} is a family of functions such that there exists a subset C′ ⊂ C
of the ciphertext space, where every function dk from C′ to the plaintext space P
is injective. These maps are called decryption functions.

4. The following relation between the encryption functions E and the decryption
functions D holds:

∀k ∈ K ∃k′ ∈ K : dk′ ◦ ek(p) = p ∧ ek ◦ dk′(c) = c,

for all p ∈ P and c ∈ C′.
A cryptosystem is called asymmetric if it is “computationally infeasible” to derive
k′ from k, otherwise it is called symmetric.
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Example 3.1. (Shift cipher)
First we identify the alphabet (only small letters) with the underlying set of the quotient
ring Z/26Z = {0̄, 1̄, . . . , 2̄5}. We take the plaintext space, the ciphertext space and the
key space to be equal to Z/26Z, so P, C,K = Z/26Z are non-empty finite sets. For a
key k ∈ K, the encryption function corresponds to a shift of k letters in the alphabet,
using modular arithmetic (i.e. the calculation is done in the ring Z/26Z)

ek(p) = p+ k ∀p ∈ P.

The decryption function for k corresponds to the negative shift

dk(c) = c− k ∀c ∈ C.

Obviously all functions E = {ek : k ∈ K} are injective. For the maps D = {dk : k ∈ K}
we can take C′ = C and all decryption functions are still one-to-one. To show that the
required relation between these two families of functions holds, let k′ = k and let c ∈ C
arbitrarily. Then

dk′ ◦ ek(p) = (p+ k)− k′ = p ∧ ek ◦ dk′(c) = (c− k′) + k = c.

So we have shown that the shift cipher is a cryptosystem. Since encryption and de-
cryption use the same key, it is symmetric. For example, Julius Caesar used the shift
cipher with the key k = 3 for his private correspondence.

There had also been many attempts to keep the cryptosystem itself secret. All such
attempts of hiding the system failed, because a cryptosystem is a big secret and every
party using it, has to know it. In 1883 Auguste Kerckhoffs wrote about principles for
military ciphers. Every modern cryptosystem is based on the Kerckhoffs’s principle.
The following short reformulation of the original french statement can be found in [23].

Kerckhoffs’s principle: The security of a cryptosystem must not depend on the
secrecy of the system used. Rather, the security of a cryptosystem may depend only on
the secrecy of the keys used.

The first goal of cryptography was to provide confidentiality, i.e. that only authorized
people are able to read the message. Modern day cryptography has three additional
goals:

• authentication,

• data-integrity and

• non-repudiation.

A comprehensive description of these terms can be found in [14]. It is not necessary
that one system accomplishes all four tasks. Often a cryptosystem is designed for a
single one of them and used with others to cover the desired goals.

Roughly speaking cryptography can be divided into three major epochs. At first the
encryption and decryption was done by hand (e.g. shift cipher). In the next epoch
one used (electro)-mechanical machines (e.g. Enigma machine) for this task and today
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we use a computer (e.g. ECC). What the first two epochs have in common is, that all
their cryptosystems are symmetric. To understand why there was a need for asymmetric
encryption in the computer era, we look at a popular illustration involving padlocks.

When talking about cryptosystems it is a convention to call the communicating entities
Alice and Bob and an eavesdropper Eve. Say Alice wants to send a package to Bob,
but she is afraid that Eve might intercept the package and opens it. In the symmetric
case Alice buys a padlock with the corresponding key. She meets with Bob in advance
and hands over the key to him. If she now wants to send Bob a package, she attaches
the padlock and nobody except Bob can open it. This concept is secure, but has one
drawback - the key delivery. As long as only a limited number of people secured their
communication this was fine. At the latest with the upcoming of the internet such a
key delivery system was logistically not doable any more.

To solve the key distribution problem asymmetric cryptography, also known as public-
key-cryptography, was developed in the 1970’s. Back in our setting with a package
and a padlock the concept works as follows. First Bob sends Alice an open padlock
(public-key) and keeps the key (private-key). Note he does not have to meet Alice,
because the padlock itself does not reveal any secret information. Alice then attaches
the padlock, which she received form Bob, to the package and sends it to Bob. He can
open the padlock with his key. Eve has no chance to open the package, because the
key always stayed with Bob.

All prominent examples of public-key-cryptography depend on a certain type of math-
ematical functions. We give an intuitive definition of one-way functions, a rigorous
definition is given in [23].

Definiton 3.2. Let X and Y be sets and let f : X → Y be a function. We say f is a
one-way function if it has the following properties:

• f(x) is easy to compute, for all x ∈ X.

• It is computationally infeasible to find any x ∈ X such that f(x) = y, for a y in
the image of f .

Until today it is only conjectured that one-way functions exist (would imply P 6=NP).
A good candidate is the multiplication of prime numbers. Computing p · q = n for two
prime numbers p and q is easy. But the inverse operation, finding p and q, given n,
called factorization, is believed to be hard (not computable in polynomial time).
If Alice would apply a one-way function to encrypt her message, nobody could decrypt
it in reasonable time. Therefore she must give Bob a hint, how he can invert the
function and thus read the message of Alice. This issue is resolved via trapdoor one-
way functions.

Definiton 3.3. Let f : X → Y be a one-way function. We call f a trapdoor one-
way function if it becomes computationally feasible to invert f with some additional
information.

Squaring modulo a positive integer is a candidate for a trapdoor one-way function. For
given integers x and n it is easy to compute y = x2 mod n. But again, the inverse
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operation (finding x, given y and n) is believed to be hard. The computation gets
feasible if we know the factorization n = p · q, for two prime numbers p and q, provided
y is co-prime to n. Because now we can compute x mod n by computing x mod p, x
mod q and combining the results with the Chinese Reminder Theorem (CRT).

3.2. Discrete Logarithm in Cryptography

We will describe the discrete logarithm for finite cyclic groups and how it is used to
secure information. Elliptic curve cryptography (ECC) is then a special case, where we
take the cyclic group to be a cyclic subgroup of a given elliptic curve group.

Definiton 3.4. Let G be a finite cyclic group. We write G in multiplicative notation
and let 1 be the identity element. Further let g ∈ G be a generator of G. Then we
define the following function for G and g

expG,g : Z −→ G

n 7−→ gn := g · · · g︸ ︷︷ ︸
n times

.

The discrete logarithm in G to the base g is defined as the inverse function of expG,g.

The function expG,g is supposed to be a one-way function. Whitfield Diffie and Martin
E. Hellman in 1976 published a scheme for key-agreement, today called the Diffie-
Hellman key agreement (DH), in the paper New Directions in Cryptography [3]. The
security of this scheme is based on the believed one-way function expG,g. The original
idea was developed for the multiplicative group of a finite field Fp, where p is a prime
number. This idea can easily be generalized for finite cyclic groups.

Diffie-Hellman Key Agreement (DH):

1. Alice and Bob agree on a finite cyclic group G and a generator g of G (both are
public).

2. Alice chooses a secret integer m, and Bob chooses a secret integer n.

3. Alice computes a := gm ∈ G. Bob computes b := gn ∈ G.

4. They exchange their newly computed group elements a and b.

5. Alice computes k1 := bm = (gn)m = gnm.
Bob computes k2 := an = (gm)n = gmn.

Since every cyclic group is abelian, we have k1 = k2 and therefore Alice and Bob have
the same key. We demonstrate the DH by an example in the multiplicative group of a
finite field.
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Example 3.5.

1. Alice and Bob agree on G = (Z/11Z, ·) and g = 2̄.

2. Alice chooses m = 3 and Bob chooses n = 7 as their secret integers.

3. a = 2̄3 = 8̄, b = 2̄7 = 7̄.

4. k =

{
7̄3 = 2̄

8̄7 = 2̄

The key-agreement is done on an insecure communication channel. So we have to
assume that Eve has all the information, which Alice and Bob exchanged. In this case
she saw the values a and b and knows G and g. To get the key on which Alice and Bob
agreed on, she has to compute gnm, given the values gm and gn. The only known way
to do this is to solve the following problem.

Discrete Logarithm Problem (DLP):
Given a finite cyclic group, g ∈ G a generator and a ∈ G arbitrarily, computing x ∈ Z
such that gx = a.

Example 3.6. For n a positive integer let G = (Z/nZ,+) be the residual classes
modulo n together with the addition, and ḡ a generator of the group. In this case the
DLP has the form xḡ = ā, for some ā ∈ Z/nZ. The gcd(n, g) is 1, because ḡ is a
generator. Applying Bézout’s identity we get

1 = x1g + yn, , for some x1, y ∈ Z.

Multiplying by x gives us x = xx1g + xyn, which is equivalent to x − (xx1)g = xyn,
i.e. x ≡ ag mod n, when we set a := xx1. Therefore calculating x1 is enough to solve
the DLP in this special group.

Since all cyclic groups of a given order are isomorphic, we see that the hardness of the
DLP problem does not depend as much on the structure of the group as it depends on
the way we can describe the group (and its operation). In practice certain elliptic curve
groups are used. They provide the same security level as other public-key systems (e.g.
RSA), but with a smaller key size [1]. Before we describe the DH and the DLP in the
context of elliptic curves, we explain a protocol for asymmetric encryption, which is
also based on the hardness of the DLP. It was described by Taher Elgamal in 1985 [5].

ElGamal Encryption

1. Bob chooses a secret integer d as his private key. His public key is (G, g, e), where
G is a finite cyclic group, g a generator of G and e = gd.

2. Alice chooses a secret integer r and computes c1 = gr.

3. Alice computes c2 = per, where p ∈ G is the plaintext.

4. Alice sends (c1, c2) to Bob.
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5. Bob decrypts the message by computing

c2c
−d
1 = per · g−rd = pgdrg−rd = p.

Next we do an example of the ElGamal encryption in the multiplicative group of a
finite field.

Example 3.7.

1. Bob chooses d = 5 as his private key. His public key is ((Z/11Z, ·), 2̄, 2̄5 = 1̄0).

2. Alice chooses r = 9 and computes c1 = 2̄9 = 6̄.

3. Alice computes c2 = 4̄ · 1̄09 = 7̄, where 4̄ is the plaintext.

4. Alice sends (6̄, 7̄) to Bob.

5. Bob decrypts the message by computing

7̄ · 6̄−5 = 7̄ · 2̄5 = 4̄.

3.3. Elliptic Curve Cryptography

The algorithms in this section are only special cases of the ones we saw in the last
section.

Elliptic Curve Diffie-Hellman Key Agreement (ECDH):

1. Alice and Bob agree on an elliptic curve E over a finite field Fq and a point
P ∈ E(Fq) (both are public).

2. Alice chooses a secret integer m, and Bob chooses a secret integer n.

3. Alice computes A := [m]P ∈ 〈P 〉. Bob computes B := [n]P ∈ 〈P 〉.

4. They exchange their newly computed group elements A and B.

5. Alice computes K1 := [m]B = [mn]P .
Bob computes K2 := [n]A = [nm]P .

Let E : y2 = x3 + x be an elliptic curve over Z/7Z. Just by brute force we get that the
elliptic curve group looks as follows

E(Z/7Z) = {(0, 0), (1, 3), (1, 4), (3, 3), (3, 4), (5, 2), (5, 5), O}.

With a little more calculating effort we get that P = (3, 3) is a generator of the group.
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n 0 1 2 3 4 5 6 7

nP O (3, 3) (1, 4) (5, 5) (0, 0) (5, 2) (1, 3) (3, 4)

This table will speed up our computation in the next two examples.

Example 3.8. (ECDH)

1. Alice and Bob agree on the elliptic curve defined by the Weierstrass equation
E : y2 = x3 + x over Z/7Z, with P = (3, 3) as a generator of the elliptic curve
group.

2. Alice chooses m = 5, and Bob chooses n = 3.

3. Alice computes A := [5](3, 3) = (5, 2). Bob computes B := [3](3, 3) = (5, 5).

4. They exchange their newly computed group elements A and B.

5. Alice computes K1 := [5](5, 5) = (3, 4).
Bob computes K2 := [3](5, 2) = (3, 4).

We now formulate the DLP for elliptic curves.

Elliptic Curve Discrte Logarithm Problem (ECDLP):
Given an elliptic curve E over Fq, P ∈ E(Fq) and Q ∈ 〈P 〉 arbitrarily, computing k ∈ Z
such that [k]P = Q.

As in the general case the asymmetric cryptosystem based on the hardness of the
ECDLP is always used together with a symmetric one (e.g. AES). This is necessary,
because public-key cryptosystems are in general much slower than symmetric ones. The
solution is a hybrid cryptosystem, where the symmetric key is exchanged or encrypted
via a asymmetric protocol and the message is encrypted by a symmetric protocol.

Elliptic Curve ElGamal Encryption

1. Bob chooses a secret integer d as his private key. His public key is (E(Fq), P, Pe),
where E(Fq) is an elliptic curve over Fq, P ∈ E(Fq) and Pe = [d]P .

2. Alice chooses a secret integer r and computes C1 = [r]P .

3. Alice computes C2 = M + [r]Pe, where M ∈ E(Fq) is the message.

4. Alice sends (C1, C2) to Bob.

5. Bob decrypts the message by computing

C2 − [d]C1 = M + [r]Pe − [dr]P = M + [rd]P − [dr]P = M.
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Example 3.9. (Elliptic Curve ElGamal Encryption)

1. Bob chooses d = 2 as his private key. His public key is (E(Z/7Z), (3, 3), [2](3, 3) =
(1, 4)), where the elliptic curve is again defined through the equation E : y2 =
x3 + x.

2. Alice chooses r = 3 and computes C1 = [3](3, 3) = (5, 5).

3. Alice computes C2 = (0, 0) + [3](1, 4) = [4](1, 3) + [3]([2](1, 3)) = (1, 4), where
(0, 0) is the message.

4. Bob decrypts the message by computing

(1, 4)− [2](5, 5) = [2](1, 3)− [2 · 3](1, 3) = (0, 0).
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4. General Attacks

Before we go to algorithms that use the special structure of elliptic curve groups, we
explain the most common algorithms to compute the discrete logarithm in finite cyclic
groups, except the last one, which only works for multiplicative groups of a finite field.
This algorithm will be useful in the MOV-algorithm.
For the next four algorithms we work in the setting of the DLP, with the additional
requirement that x should be the smallest positive integer satisfying

gx = a.

In this section n will always be the order of the group.

4.1. Babystep-Giantstep

Set m = d
√
n e, with the Euclidean algorithm we can write x = qm+ r, for some q ∈ Z

and r ∈ {0, . . . ,m− 1}. This implies a = gx = gqm+r which is equivalent to

ag−r = gqm.

Now the idea is to compute all possible values of the left hand side and save the results
in a list called the baby steps. In the next step we go through all values on the right
hand side (giant steps) until there is a match in the baby steps.
Assuming one can access the list in constant time (e.g. hash table) it is not difficult to
show that BGSG has running time and space complexity of O(

√
n) [2].

Example 4.1. Let G = (Z/31Z)×, then m = d
√

30 e = 6. We want to compute the
discrete logarithm of 14 to the base 3. The baby steps are:

r 0 1 2 3 4 5

14 · 3−r 14 15 5 12 4 22

Now we compute the giant steps and compare them to our list of baby steps.

q 0 1 2 3 4 5

3
6q

1 16 8 4 2 1

We have a match between the 4th giant step and the second last baby step. Therefore
the solution to the DLP is x = 3 · 6 + 4 = 22.

4.2. Pohlig-Hellman

Let n =
∏m
i=1 p

ei
i be the prime factorization of n. Instead of computing x modulo n

this algorithm computes x modulo each prime power of n. Once we know these values,
due to the Chinese Reminder Theorem, we are done.
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Given a prime power pe of n, we want to find z ∈ {0, . . . , pe − 1} such that z ≡ x mod
pe. To solve this congruence Pohlig-Hellman uses the p-adic expansion of z

z = z0 + z1p+ · · ·+ ze−1p
e−1

with zi ∈ {0, . . . , p − 1}. The algorithm computes the coefficients recursively. Each
coefficient zi is a solution of a DLP in a subgroup of G. More precisely we want to find
b ∈ G of order p and ai ∈ 〈b〉 such that ai = bzi . The DLP in 〈b〉 is solved with the
BSGS-algorithm (4.1).
The group element b := gn/p is clearly of order p. The initial value for the recursion
is a0 = a. From this we get an/p = gx(n/p) = bx = bz = bzo . Assume zi−1 has already
been computed, then

ai :=
(
ag−(

∑i−1
j=0 zjp

j)
) n

pi+1
.

Since z ≡ x mod pe, we have an/p
i+1

= g(nx)/pi+1
= g(nz)/pi+1

, which implies

ai =
(
gz−

∑i−1
j=0 zjp

j
) n

pi+1
= g

n

pi+1

∑e−1
j=i zjp

j

= bzi .

The complexity of this algorithm is O
(∑m

i=1

(
ei
(
log n+

√
pi
)))

, see [2, 11.5.4].

4.3. Pollard’s-ρ

To understand why Pollard’s-ρ algorithm is correct, one uses a standard result of con-
gruence relations. A proof of this statement can be found in nearly every introductory
book about number theory.

Let a and b be integers and let n be a positive integer. We set d := gcd(a, n). The
congruence relation

ax ≡ b (mod n) (4.1)

has a solution, if and only if d divides b. If s ∈ Z is a solution of the congruence relation
(4.1), then the set of solution is s+ n

dZ. We can now begin to describe the Pollard’s-ρ
algorithm.

Let f : G→ {1, . . . , s} be a function that partitions G into Gi := f−1 ({i})
for i = 1, . . . , s. At the beginning the algorithm randomly chooses integers
a1, . . . , as, b1, . . . , bs and computes elements ci := gaiabi . After that, it constructs a
sequence of elements

h0 = gx0ay0 , for some x0, y0 ∈ Z
hj+1 := hjcf(hj)

Note that each hi is of the form hj = gxjayj for some xj , yj ∈ Z.
Since G is a finite group we always find two different indexes j 6= l such that hj = hl, i.e.
gxj−xl = hyl−yj = gx(yl−yj), from which we can conclude xj −xl ≡ x (yl − yj) (mod n).
Therefore a solution of our given DLP is a solution of the congruence relation

(yl − yj)z ≡ xj − xl (mod n). (4.2)
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Set d := gcd(yl − yj , n). Then the result about congruence relations tells us that the
set of solutions is s + n

dZ, where s is the smallest positive integer solution. To find s,
we apply the Euclidean algorithm and get

a(yl − yj) + bn = d, for some a, b ∈ Z. (4.3)

Since the congruence relation (4.2) must have a solution, we know that d | xj − xl, i.e.
dr = xj − xl, for some integer r. If we now multiply the equation (4.3) by r, we have

ar(yl − yj) + rbn = dr = xj − xl.

So s = ar is a solution of (4.2). Therefore x is in the set s + n
dZ. More precisely, the

discrete logarithm x is one of the values s, s+ n
d , . . . , s+ (d− 1)nd , because x is smaller

than n. If d is small enough we try all possible values. Otherwise we start with a new
random starting point h0 and repeat the procedure.

If (h0, h1, . . . ) behaves like a random sequence one can show with probabilistic methods
that the first match for large n is expected after

√
π
2

√
n elements, see [32]. To save

space Pollard-ρ uses the algorithm of Floyd. It only stores hi and h2i. One can easily
check that there is also a collision within the sequence of these elements. In total
Pollard’s-ρ runs in O (

√
n) expected time [14, 3.2.2] and uses less memory than BSGS.

In addition it is parallelizable.

Example 4.2. Let G = (Z/11Z)×, g = 2 and a = 7. First we define the function
f : G −→ {1, 2, 3}, which partitions G in the following way

1, 4, 7, 10 7−→ 1,

2, 5, 8 7−→ 2,

3, 6, 9 7−→ 3.

Thus G1 = {1, 4, 7, 10}, G2 = {2, 5, 8} and G3 = {3, 6, 9}. We choose a1 = 2, a2 =
3, a3 = 5, b1 = 3, b2 = 4 and b3 = 6, and compute

c1 = 2
2 · 73

= 8, c2 = 2
3 · 74

= 2 and c3 = 2
5 · 76

= 7.

We construct the sequence (h0, h1, . . . ) until an element is repeated, as starting point

we choose h0 = 2
8 · 72

= 4.

h1 = 4 · 8 = 10 = 2
8 · 72 · 22 · 73

= 2
10 · 75

h2 = 10 · 4 = 7 = 2
10 · 75 · 28 · 72

= 2
18 · 77

h3 = 7 · 4 = 6 = 2
18 · 77 · 28 · 72

= 2
26 · 79

h4 = 6 · 7 = 9 = . . .

h5 = 9 · 7 = 8 = . . .

h6 = 8 · 2 = 5 = . . .

h7 = 5 · 2 = 10 = 2
39 · 725 · 23 · 74

= 2
42 · 729

We see that h1 = h7 and thus 2
10−42

= 7
29−5

= 2
x(29−5)

. To solve the DLP we compute
the set of solutions of the congruence relation

24x ≡ −32 (mod 10),

which simplifies to 4x ≡ 8 mod 10. In this form one directly sees that 2 is a solution
and since gcd(4, 10) = 2 the set of solutions is 2 + 5Z. Thus x is either 2 or 7, but

2
2

= 4 6= 7, so x = 7.
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4.4. Pollard’s-λ

This algorithm is similar to Pollard’s-ρ-method. As before we define elements c1, . . . , cs
and a function f : G → {1, . . . , s}. Pollard’s-λ starts with two elements h0 = gx0ay0

and h′0 = gx
′
0ay

′
0 , where x0, x

′
0, y0, y

′
0 are integers. Now we also recursively define two

sequences

hj+1 = hjcf(hj) and h′j+1 = h′jcf(h′j)

Each of these elements can be written as a product of powers of g and a. A match

hj = h′l between the sequences implies gxj−x
′
l = gx(y

′
l−yj). From this point on it is

exactly the same as before. Pollard’s-λ method is only better than the ρ-method if we
already know that the discrete logarithm is in a small enough interval.

4.5. Index-Calculus

This algorithm does not work on all groups. We will show it for G = (Z/pZ)×, where
p is a prime number. It even works for all multiplicative groups of a finite field. For
this algorithm g ∈ (Z/pZ)× is the residual class and g ∈ Z is the smallest positive
representative of this class. So the discrete logarithm problem in this special case looks
like

gx = a.

At first we need a definition. Let B ∈ N, then

F (B) := {q prime number : q ≤ B}

is called a factor basis. An integer b is B-smooth if all prime factors are ≤ B.
The algorithm has two major steps:

1. Compute the discrete logarithm for all elements q in the factor base F (B)

gxq = q (4.4)

2. Look for an exponent y ∈ {1, 2, . . . , p− 1} such that the integer agy modulo p is
B-smooth.

Assuming we have completed these two steps, why does this solve our original prob-
lem? The second step implies agy ≡

∏
q∈F (B) q

eq modulo p, with non-negative integer
exponent eg for q ∈ F (B).

(4.4)⇒ āḡy =
∏

q∈F (B)

gxqeq = g
∑

q∈F (B) xqeq .

If we compare the exponents, we see that x ≡
(∑

q∈F (B) xqeq − y
)

modulo p− 1.

Now we have a closer look on how the Index-Calculus-method solves these two ma-
jor steps. In order to compute the DLP of the elements in the factor basis, we choose
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z ∈ {1, . . . , p − 1} randomly and check whether the integer b := gz modulo p is B-
smooth. If yes, one calculates the factorization of b (mod p) =

∏
q∈F (B) q

f(q,z). Using
similar arguments as above we get z ≡

∑
q∈F (B) xqf(q, z) (mod p− 1). Each exponent

vector (f (q, z))q∈F (B) is called a relation. When we have found |F (B)| relations, the
algorithm tries to solve the DLP with Gauss elimination, modulo each prime divisor l
of p− 1. If some power of a prime divisor l divides p− 1, then it computes xq modulo
this power. After that one gets xq with the CRT.
For the second step choose y ∈ {1, . . . , p− 1} at random until agy mod p is B-smooth.
The Index-Calculus has running time exp((c + o(1))(log n)1/2(log log n)1/2, where c is
a positive constant depending on the implementation [2, 11.6.4].

Example 4.3. Let G = (Z/83Z)×, g = 2 and a = 11. We choose B = 5, thus the
factor basis is F (5) = {2, 3, 5}. To compute the discrete logarithm for the elements in
the factor basis, we check whether 2

z
modulo p is 5-smooth.

21 ≡ 2

27 ≡ 45 = 32 · 5
215 ≡ 15 = 3 · 5

These are the first three linear independent relations. We immediately see that x2 = 2,
with simple linear algebra we get x3 = 72 and x5 = 27. For the second step we first
choose y = 6, then 11 · 26

= 40 and 40 = 23 · 5 is 5-smooth. Thus we can compute x in
the following way x ≡ 3 · 1 + 1 · 27− 6 = 24 modulo 82.
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5. MOV-Algorithm

This algorithm was developed by Menezes, Okamoto and Vanstone [19]. It uses the
Weil-pairing to transfer a ECDLP in the elliptic curve group E(Fq) to a DLP in the
multiplicative group F×

ql
for a certain l ≥ 1. If l is small enough we can solve the DLP

in F×
ql

and hence the ECDLP in E(Fq) with the Index-Calculus 4.5.

The description of the algorithm is based on [36, 4.2.1]. In the book the reader is at
some points directed to further literature, we try to close these gaps. This is possible
mainly because we invested more time to develop a theory about computing the Weil-
pairing.

5.1. Algorithm

We are in the setting of the ECDLP. To be able to work with the Weil-pairing we have
to assume that n is coprime to p = char(Fq). But this assumption is not too restrictive,
because if n is not coprime to p, we write

n = n′pa

with n′ coprime to p and a ≥ 1. If we set P1 = [n′]P and P2 = [pa]P , we get two
new DLPs. In this case we solve the first one with Pohlig-Hellman combined with
Pollard-ρ. On the second one we apply the MOV-algorithm. As in the algorithm of
Pohlig-Hellman we then use CRT to get k modulo n.

From now on we can assume n coprime to p. The group E[n] is a finite subgroup of
E(Fq). For a finite point R = (x, y) ∈ E(Fq) both coordinates lie in Fq, then as seen
before they lie in Fql for some l ∈ N. Hence, every point R ∈ E(Fq) is in the set E(Fql)
for some l ∈ N. Since E[n] is finite, we have

E[n] ⊂ E(Fql)

for some sufficiently large l.

MOV-Algorithm:

(1) Determine a number l with E[n] ⊂ E(Fql).

(2) Compute a point R ∈ E[n] such that a = en(P,R) is a primitive n-th root of unity,
i.e. a has order n in µn(Fq).

(3) Compute b = en(Q,R).

(4) Solve the DLP: b = ak in F×
ql

.
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5.2. Correctness

By assumption the point P has order n. Corollary 2.19 implies that a point R as in
(2) exists. Again by corollary 2.19 the values en(P,R) and en(Q,R) lie in F×

ql
. Then

we have

b = en(Q,R) = en([k]P,R) = en(P,R)k = ak.

By solving this DLP in the subgroup 〈a〉 of F×
ql

we determine k modulo n. Therefore

the MOV-algorithm solves our original ECDLP in the elliptic curve group E(Fq).

5.3. MOV for Supersingular Curves

In this section we want to show that the MOV-algorithm is very efficient when the ellip-
tic curve is supersingular. This implies that supersingular curves are not a good choice
for the ECDH or the Elliptic Curve ElGamal Encryption. Obviously for supersingular
curves the first step in the MOV-algorithm is just a lookup in the table of proposition
2.26. The second step can be done by a slight modification of the original algorithm:

(1) Compute t = q + 1 − #E(Fq) and determine l such that E[n] ⊂ E(Fql) and the
corresponding exponent d of the group E(Fql) with the table above.

(2) Choose an arbitrary point R′ ∈ E(Fql) and set R =
[
d
n

]
R′.

(3) Compute a = en(P,R) and b = en(Q,R).

(4) Solve the DLP: b = ak
′

in F×
ql

.

(5) If [k′]P = Q, then k′ = k.
Otherwise go again to Step (2).

Since P is a point of order n and E(Fq) ⊂ E(Fql), n must divide the exponent d of
E(Fql). Therefore the point R in (2) is well defined. In addition R ∈ E[n], because
[n]R = [d]R′ = O, this ensures that we can plug R into the Weil-pairing.
If a = en(P,R) is a primitive n-th root of unity, then we have already seen that k′ ≡ k
modulo n. In the other case we still get

b = ak ∈ F×
ql

for our discrete logarithm k. But now we just solve the DL-problem in the subgroup
〈a〉 of F×

ql
. Let m be the order of the group generated by a. Then we get k modulo m

and not n. So it can of course happen that

[k′]P 6= Q.

Then we have to repeat the algorithm with a new R′. In order to have an efficient
algorithm we have to make sure that the number of repetitions is small enough. The
probability that a is a primitive n-th root of unity is φ(n)/n, where φ is the Euler’s
totient function. This means for the average we need n/φ(n) repetitions. This number
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decreases for infinitely many n very fast. A standard estimation gives us [22]

n

φ(n)
≤ 6 log log n,

for infinitely many n.

Example 5.1. Let E : y2 = x3 +x be an elliptic curve over F19. By the same argument
as in 2.24 we see that E is supersingular over F19. So we can apply the adapted
MOV algorithm. The computations in this example were done with the computer
algebra system SageMath. Before we perform the actual algorithm note that F192

∼=
F11[X]/(X2 + 18X + 2) and let α be a root of X2 + 18X + 2. We solve the following
ECDLP:

[k](3, 7) = (5, 4).

(1) Compute t = 19 + 1− 20 = 0. A look up in the table of proposition 2.26 gives us
l = 2 and d = 19 + 1 = 20, i.e. E[20] ⊂ E(F192).

(2) Choose R′ = (4α+ 1, 14) and compute R = [20
20 ]R′ = R′.

(3) Compute the values of a = e20((3, 7), (4α+ 1, 14)) = 9α+ 1
and b = e20((5, 4), (4α+ 1, 14)) = α+ 11 with Miller’s algorithm, as in the example
2.16.

(4) Solve the DLP: α+ 11 = (9α+ 1)k
′

in F×
192

.
We get k′ = 4

(5) Since [4](3, 7) = (5, 4) we are done.
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6. SSSA-Algorithm

For another type of elliptic curves, the ECDLP can be computed efficiently. We call an
elliptic curve Ẽ over the prime field Fp anomalous if #Ẽ(Fp) = p. For such curves, Satoh
and Araki, Smart as well as Semaev independently developed an effective algorithm for
solving the discrete logarithm (see [24], [31] and [26]). The algorithm is named after
its developers by the acronym SSSA. The central idea is to lift the curve Ẽ up to a
curve E over the p-adic field Qp. For the definition and some facts about Qp look
at the Appendix. With the help of this lifting we will see that we can construct an
isomorphism from E(Fp) to Fp. Then we only have to solve the corresponding DLP in
the additive group of Fp, which is trivial.

6.1. Reduction map

Let Ẽ : y2 = x2 + ãx + b̃ be an elliptic curve over the the prime field Fp. Since the
reduction map

π : Zp −→ Fp
x = (xn)n≥1 7−→ x̃ = x1,

is onto, we can choose a, b ∈ Zp such that π(a) = ã and π(b) = b̃. If we replace ã and b̃
with in our Weierstrass equation with a and b and homogenize the equation we get a
homogeneous polynomial g which defines a plane projective curve Cg over Qp.

We want to be able to define the reduction map on an arbitrary point in the projective
plane P = (α : β : γ) ∈ P2(Qp). For this reason we have to show that (α, β, γ)
can always be chosen such that α, β and γ are in Zp. Let vp be the valuation on
Qp defined in the Appendix. We define m := {−vp(α),−vp(β),−vp(γ)} ∈ Z ∪ {∞}.
Since by definition at least one coordinate is always not zero, m is an integer. Then
pmα, pmβ, pmγ ∈ Zp and at least one of them is in Z×p . Therefore,

P̃ = (π(pmα) : π(pmβ) : π(pmγ)) ∈ P2(Fp).

The only thing left to show is that P̃ is well-defined. Let P = (α : β : γ) = (α′ : β′ : γ′)
with α, β, γ, α′, β′, γ′ ∈ Zp and at least one coordinate in each point is a unit in Zp.
Since the two points are equal in the projective plane

α = λα′, β = λβ′, γ = λγ′

for some λ ∈ Q×p . Assume α ∈ Z×p and β′ ∈ Z×p . Then we have λ−1 = α−1α′ ∈ Zp and
λ = ββ′−1 ∈ Zp and therefore λ is a unit in Zp. Now we can use the fact that π is a
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ring homomorphism:

(α̃ : β̃ : γ̃) = (π(α) : π(β) : π(γ))

= (π(λα′) : π(λβ′) : π(λγ′))

= (π(λ)π(α′) : π(λ)π(β′) : π(λ)π(γ′))

= (α̃′ : β̃′ : γ̃′)

This shows how we can extend the definition of the reduction map π on the projective
plane.

The next step is to prove that Cg is an elliptic curve and that Cg(Qp) under π reduces

to Ẽ(Fp). The prove of the following lemma is taken from [36, Lem. 4.2.3].

Lemma 6.1. Let the setting be as above. Then the map

(i) π : P2(Qp)→ P2(Qp) induces a surjective map

π : Cg(Qp)→ Ẽ(Fp).

(ii) The curve Cg is non-singular, i.e. Cg is an elliptic curve.

Proof. (i) Let P = [α : β : γ] ∈ Cg(Qp) with coordinates α, β, γ ∈ Zp and at least one
is a unit in Zp. We again use that π is a ring homomorphism to get

0 = π(0) = π(g(α, β, γ)) = π(g)(α̃, β̃, γ̃).

From this follows that the point (α̃ : β̃ : γ̃) is a zero of the Weierstrass polynomial π(g),
i.e. (α̃ : β̃ : γ̃) ∈ Ẽ(Fp).
Left to show is the surjectivity of π. Let P̃ = (α̃ : β̃ : γ̃) ∈ Ẽ(Fp). Since Ẽ is non-

singular at least one of the derivatives ∂π(g)
∂X , ∂π(g)

∂Y or ∂π(g)
∂Z is not zero at the point

(α̃ : β̃ : γ̃). We assume ∂π(g)
∂X (α′, β′, γ′) 6= 0. Further let β and γ be elements in Zp such

that π(β) = β̃ and π(γ) = γ̃. Consider a new function

f(X) = g(X,β, γ)

as a polynomial in one variable. It is obvious that π(f)(X) has a zero at α̃ ∈ Fp and
that

∂π(f)

∂X
(α̃) =

∂π(g)

∂X
(α̃, β̃, γ̃) 6= 0.

If we apply Hensel’s Lemma A.5, we get the existence of an element α ∈ Zp such that
π(α) = α̃ and f(α) = 0. As a direct consequence, g(α, β, γ) = 0 and we have a point
P = [α : β : γ] ∈ Cg(Qp) with P̃ = (α̃ : β̃ : γ̃).

(ii) Let P = (α : β : γ) ∈ Cq(Qp) with coordinates α, β, γ ∈ Zp and at least one is a

unit in Zp. Since P̃ is a point on the non-singular curve Ẽ, at least one derivative of

π(g) is non-zero at the point (α̃ : β̃ : γ̃), assume as above ∂π(g)
∂X . But then

π

(
∂(g)

∂X
(α, β, γ)

)
=
∂π(g)

∂X
(α̃, β̃, γ̃),

and therefore also ∂(g)
∂X (α, β, γ) is non-zero.
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From now on we write E for the elliptic curve Cg. Note that the elliptic curve E over
Qp depends on the preimages a and b we have chosen at the beginning of this section.

Proposition 6.2. The induced reduction map

π : E(Qp)→ Ẽ(Fp)

is a group homomorphism.

Proof. To prove this fact we use proposition [30, VII.2.1]. Therefore, as in the book of
Silverman, we need the additional Lemma 6.3 found in [30, VII.2.1.1].
The group laws on E and Ẽ are defined by taking intersections with lines in P2. For
any line L defined over Qp, we can find an equation for L of the form

L : AX +BY + CZ = 0,

such that A,B,C ∈ Zp and at least one of A,B,C is in Z×p (by the same argument as
before). Then the reduction of L is given by the equation

L̃ : ÃX + B̃Y + C̃Z = 0

and it is clear that if P ∈ P2(Qp) is a point on the line L, then the reduced point P̃ is

on the reduced line L̃.

Let P1, P2, P3 ∈ E(Qp) be points satisfying P1+P2+P3 = O. Thus there is a line L that
intersects E at these three points P1, P2, P3, counted with appropriate multiplicities.
We are going to prove that L̃ intersects Ẽ at P̃1, P̃2, P̃3 with correct multiplicities, from
which follows that P̃1 + P̃2 + P̃3 = O. Suppose this is true. Let R ∈ E(Qp) arbitrary.
If we set P1 = R,P2 = −R and P3 = O the assumption that the three points sum to O
is satisfied. Hence, we have π(R) + π(−R) + π(O) = O, i.e. for any point R ∈ E(Qp)
the following holds −π(R) = π(R). For two points P,Q ∈ E(Qp) we choose the third
point to be −(P +Q). Since P +Q+ (−(P +Q)) = O, the assertion tells us

π(P ) + π(Q) + π(−(P +Q)) = O

⇔ π(P ) + π(Q) = −π(−(P +Q)) = π(P +Q).

So we are done once we can show the assertion. We will look at two interesting cases, the
others are proven similarly or are direct consequences of the two shown cases together
with the theory so far developed about the reduction π.

Let the reduced points P̃1, P̃2, P̃3 be distinct. Then L ∩ E = {P1, P2, P3}, which is our

desired result. Now let P1, P2, P3 be distinct points and P̃1 = P̃2 6= P̃3. We apply
Lemma 6.3 with P = P1 and Q = P2. This tells us that L̃ is tangent to Ẽ at P̃1, and
we also have P̃3 ∈ L̃, so we find that 2P̃1 + P̃3 = O. Since we assume that P̃1 = P̃2, we
are done.

Lemma 6.3. Let P,Q ∈ E(Qp) be distinct points who satisfy P̃ = Q̃ and let L be the

line through P and Q. Then the line L̃ is tangent to Ẽ at P̃ .
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Proof. We only show the general case P̃ 6= O. Write

P = (α, β) ∈ E(Qp) and Q = (α+ µ, β + λ) ∈ E(Qp).

The assumption P̃ = Q̃ 6= O implies that α, β ∈ Zp and µ, λ ∈ pZp. Further P̃ is a
non-singular point of Ẽ, so either

∂π(g)

∂X

(
P̃
)
6= 0 or

∂π(g)

∂Y

(
P̃
)
6= 0.

We do the case (∂π(g)/∂Y )(P̃ ) 6= 0. The fact that g(P ) = g(Q) = 0 allows us to
compute the first few terms of the Taylor expansion of g(X,Y ) around Q. Thus

0 = g(α+ µ, β + λ)

= g(α, β)︸ ︷︷ ︸
=0

+
∂g

∂X
(α, β)µ+

∂g

∂Y
(α, β)λ+ aµ2 + bµλ+ cλ2 for some a, b, c ∈ Zp

=
∂g

∂X
(α, β)µ+

∂g

∂Y
(α, β)λ+ aµ2 + bµλ+ cλ2.

(6.1)

Let v : Qp → Z be the valuation defined in the Appendix. The assumption that

(∂π(g)/∂Y )(P̃ ) 6= 0 is equivalent to (∂g/∂Y )(α, β) ∈ Z×p , so v((∂g/∂Y )(α, β)) = 0.
When using the calculation rules of valuations, we get

v(λ) = v

(
∂g

∂Y
(α, β)λ

)
(6.1)
= v

(
∂g

∂X
(α, β)µ+ aµ2 + bµλ+ cλ2

)
≥ min

(
v(
∂g

∂X
(α, β)) + v(µ), v(a) + 2v(µ), v(b) + v(µ) + v(λ), v(c) + 2v(λ)

)
≥ v(µ).

The last inequality holds because v(λ) ≥ 2v(λ) would be a contradiction (since v(λ) ≥ 1
by assumption). Thus λ/µ ∈ Zp, so dividing the Taylor expansion by µ and reducing
modulo π gives us

π

 ∂g

∂X
(α, β) +

∂g

∂Y
(α, β)

λ

µ
+ aµ+ bλ+

cλ2

µ︸ ︷︷ ︸
∈ pZp, because µ,λ∈Zp

 = π

(
∂g

∂X
(P ) +

∂g

∂Y
(P ) · λ

µ

)
= 0.

This tells us that the slope of the tangent line to Ẽ at the point P̃ is

−(∂π(g)/∂X)(P̃ )

(∂π(g)/∂Y )(P̃ )
= π

(
λ

µ

)
.

The line L through P and Q is given by the equation

L : Y − β =
λ

µ
(X − α).

We have shown λ/µ ∈ Zp, so the reduction of L is the line through P̃ having slope

π(λ/µ). This proves that L̃ is tangent to Ẽ at P̃ .
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6.2. From points on the curve to the maximal ideal of the p-adic integers

We want to show that there exist maps λ and ψ such that λ is an isomorphism from
Ẽ(Fp) to Fp:

E(Qp)
[p]−−−−−−−−−−−→ E1(Qp) := kerπ(E(Qp))

π

y
yψ

Ẽ(Fp)
λ−−−−−−−−−−−→ Fp

An important observation is that the points in the domain are of a special form. An
element (α : β : γ) ∈ E(Qp), with α, β, γ ∈ Zp and at least one of them not in pZp lies

in Ẽ1(Qp), if and only if (α̃ : β̃ : γ̃) = (0 : 1 : 0), i.e. β̃ 6= 0 and α̃ = γ̃ = 0.
Therefore,

E1(Qp) = {(x : 1 : z) | x, z ∈ pZp} ∩ E. (6.2)

Due to this observation we will look at a different embedding of the affine plane than
the normal one. Working with the embedding (x, z) 7→ (x : 1 : z) makes things a lot
easier. We start by defining ψ and showing that it is a homomorphism. Let

ψ : E1(Qp) −→ pZp/p2Zp
(α : β : γ) 7−→ α mod p2.

Lemma 6.4. Let the setting be as above. Then

ψ : E1(Qp) −→ pZp/p2Zp ∼= Fp

is a homomorphism.

Proof. A proof involving formal groups can be found in [30, IV]. We give here an
elementary proof for the case that the x-coordinate of two points are different.
So we have to show that for two points P1 = (x1, z1), P2 = (x2, z2) ∈ E1(Qp) the x-
coordinate of the sum of these two points is congruent to x1 + x2 mod p2Zp. Let us
assume x1 6= x2.

When we set y = 1 we get the following equation

E : z = x3 + axz2 + bz3. (6.3)

Unfortunately this equation has not the form of an Weierstrass equation. Hence, the
earlier developed arithmetic formulas do not apply. Instead we have to calculate with
the geometric group law. First thing to do is to build the line connecting (x1, z1) and
(x2, z2):

z = λx+ ν, where λ =
z2 − z1

x2 − x1
, ν = z1 − λx1.

To get the third intersection point of the line with the curve substitute z with the
right-hand side of the equation of the line.

0 = (λx+ ν)− x3 − ax(λx+ ν)2 − b(λx+ ν)3

= −x3
(
1 + aλ2 + bλ3

)
− (2aλν + 3bλ2ν)x2 + (λ− aν2 − 3bλν2)x+ ν − bν3
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By Vieta, we get
2aλν + 3bλ2ν

1 + aλ2 + bλ3
= −(x1 + x2 + x3). (6.4)

Assertion: λ ∈ pZp
Suppose this assertion holds. By (6.2) x1, z1 ∈ pZp and thus ν = z1−λx1 is an element
of pZp. Since the denominator is a unit the left-hand side of (6.4) is an element of p2Zp.
Therefore, x1 +x2 +x3 ∈ p2Zp, which implies x3 = −x1−x2 + c, for some c ∈ p2Zp. To
get the x-coordinate of P1 + P2 we have to find the third intersection point of the line
connecting O and (x3, z3) with the curve. In the x, z-plane O is represented by the point
(0, 0). In the equation of the line we get ν = 0. If we set ν = 0 in (6.4) we see that the
third root is just the negative of the sum of the first to. This means the x-coordinate
of the point P1 + P2 is −x3 = x1 + x2 + c. Therefore ψ(P1 + P2) = ψ(P1) + ψ(P2).

Proof of assertion:

λ =
z2 − z1

x2 − x1
=
x3

2 + ax2z
2
2 + bz3

2 − (x3
1 + ax1z

2
1 + bz3

1)

x2 − x1

=
1

x2 − x1
((x3

2 − x3
1 + x2

2x1 − x2
2x1 + x2x

2
1 − x2x

2
1)

+ b(z3
2 − z3

1 + z2
2z1 − z2

2z1 + z2z
2
1 − z2z

2
1)

+ a(x2z
2
2 − x2z

2
1 + x2z

2
1 − x1z

2
1))

=
1

x2 − x1
((x2

2 + x2
1 + x1x2)(x2 − x1)

+ b(z2
2 + z2

1 + z1z2)(z2 − z1)

+ ax2(z2
2 − z2

1) + az2
1(x2 − x1))

= x2
2 + x2

1 + x1x2 + b(z2
2 + z2

1 + z1z2)λ+ ax2(z2 + z1)λ+ az2
1

Therefore,

λ(1− b(z2
2 + z2

1 + z1z2)− ax2(z2 + z1)︸ ︷︷ ︸
∈pZp︸ ︷︷ ︸
∈Z×p

) = x2
2 + x2

1 + x1x2 + az2
1︸ ︷︷ ︸

∈pZp

.

Hence, λ ∈ pZp.

6.3. Algorithm

So far, we have not used that Ẽ is an anomalous curve. In this case, the multiplication-
by-p map on E has a special image. Let P ∈ E, then π([p]P ) = [p]P̃ = 0 because
#E(Fp) = p. Therefore we have

[p] : E(Qp) −→ E1(Qp).

We are now able to construct the isomorphism between the elliptic curve group and
the prime field. The theorem is due to Satoh and Araki [24, 3.2].
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Theorem 6.5. Let u be any lifting from Ẽ(Fp) to E(Qp), i.e. π ◦ u = idẼ(Fp). Let λE
be the composition of the following maps

λE : Ẽ(Fp)
u−→ E(Qp)

[p]−→ E1(Qp)
ψ−→ pZp/p2Zp ∼= Fp.

Then λE is a group homomorphism which is independent of choice of u. Moreover ,
λE is the zero map or an isomorphism.

Proof. First we will show that the map is a group homomorphism. Let α, β ∈ Ẽ(Fp)
and put d := u(α) + u(β)− u(α+ β). If we apply π on d we get

π(d) = π(u(α) + u(β)− u(α+ β))

= π(u(α)) + π(u(β))− π(u(α+ β)) π homomorphism

= α+ β − (α+ β) = O u lifting

i.e. d ∈ E1(Qp). Set F := ψ ◦ [p]. Then F (d) = ψ([p]d) = pψ(d) = 0. By 6.4 ψ is a
homomorphism and since π is also homomorphisms, the concatenation of these maps,
namely F , is also one. Therefore,

λE(α) + λE(β) = F (u(α)) + F (u(β)) = F (u(α) + u(β))

= F (d+ u(α+ β)) = F (d) + F (u(α+ β))

= F (u(α+ β)) = λE(α+ β),

i.e. λE is a homomorphism.

Let s be another lifting from Ẽ(Fp) to E(Qp). Then

π(u(α)− s(α)) = π(u(α))− π(s(α)) = 0 for any α ∈ Ẽ(Fp).

Hence we have u(α) − s(α) ∈ E1(Qp). By the same argument as above we see that
λEu = F (u(α)) = F (s(α)) = λEs and that λE is independent of choice of u.

To show the last statement, simply note that λE , as a group homomorphism between
two groups of size p, is either the zero map or an isomorphism.

Since the DLP in the additive group of Fp can be computed by solving a linear con-
gruence, we can compute this particular DLP in polynomial time with the Extended
Euclidean algorithm. If we combine 6.5 with our last observation we can solve the
ECDLP (here the notation is [k]P̃ = Q̃) in the following way:

SSSA-Algorithm:

(1) Chose preimages a, b ∈ Zp (under the reduction π) of the Weierstrass-coefficients

ã, b̃ of Ẽ(Fp) and with this define E(Qp).

(2) Compute λ(P̃ ) and λ(Q̃).

(3) If λ(P̃ ) 6= 0, then k ≡ λ(Q̃)

λ(P̃ )
mod p.

Otherwise start again with (1).
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Here, we reasonably assume that P̃ 6= O. Then λ(P̃ ) 6= 0 already implies that λ is not
the zero map. For our purpose of computing the discrete logarithm, the existence of
such an isomorphism is not enough, we also must be able to construct λE efficiently.

6.4. Time Analysis

The next theorem [24, 3.5] is the crucial part for analysing the time complexity of the
SSSA-algorithm.

Theorem 6.6. Let A ∈ Ẽ(Fp)\{O} be given. Then there exists a point P = (x1, y1) ∈
E(Zp) such that P̃ = A. Further, for every n ∈ N such that [n]P 6= O, put (xn, yn) :=
[n]P . If λE is a non-zero map, we have the following:

(i) [n]P ∈ E(Zp)\{O} for 1 ≤ n < p,

(ii) x̃n 6= x̃m, for 1 ≤ n < m < p with n+m 6= p,

(iii) yp−1 − y1 ∈ Z×p ,
xp−1−x1

p ∈ Z×p and

λE(P̃ ) =
xp−1 − x1

p(yp−1 − y1)
mod p.

Proof. First of all, we have to check that we always able to choose the coordinates
of P in Zp. Let (x : y : 1) ∈ E(Qp) such that (x̃ : ỹ : 1̃) 6= (0 : 1 : 0). Set
m = max{−vp(x),−vp(y),−vp(1)}, then (x : y : 1) = (pmx : pmy : pm). The fact that
p̃m 6= 0 implies that m = 0 and therefore vp(x), vp(y) ≥ 0, i.e. x, y ∈ Zp.

(i) Note that Ẽ(Fp) is a cyclic group of order p and P̃ is a generator. Therefore we

have that [n]P̃ = O if and only if p divides n. From this fact we immediately see that
[n]P = O implies [n]P̃ = O, which is a contradiction for 1 ≤ n < p. So we have only
to prove [n]P ∈ E(Zp). We use induction on n.

For n = 1, this holds by assumption. For n = 2, we assume ỹ1 = 0. Then we
obtain [2]P̃ = [2]π(A) = [2](x̃1, 0) = O, see [30, III.2.3], which contradicts to P̃ 6= O.
Therefore, we have

y1 ∈ Z×p . (6.5)

The addition formula on E for two points with the same x-coordinate yields:

x2 = c2
2 − 2x1, y2 = −c2x2 − d2,

where

c2 =
3x2

1 + a4

2y1
, d2 =

−x3
1 + a4x1 + 2a6

2y1
.

Since y1 ∈ Z×p , we see x2, y2 ∈ Zp and (i) hold also for n = 2.
For 3 ≤ n < p, suppose P, [n− 1]P ∈ E(Zp)\{O}. Note

P̃ = (x̃1, ỹ1)

[n− 1]P̃ = (x̃n−1, ỹn−1).
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Assuming x̃1 = x̃n−1, we obtain P̃ = ±[n−1]P̃ because they have the same x-coordinate
and lie on the same elliptic curve; i.e. [n]P̃ = O or [n − 2]P̃ = O (for that we needed
n = 2 separately). Again, this implies the contradiction P̃ = O. Therefore we obtain
x̃1 6= x̃n−1 and obviously x1 6= xn−1. Then, by the addition formula on E for two points
with different x-coordinates, we get

xn = c2
n − x1 − xn−1, yn = −c3

n + cn(x1 + xn−1)− dn, (6.6)

where

cn =
yn−1 − y1

xn−1 − x1
, dn =

y1xn−1 − yn−1x1

xn−1 − x1
. (6.7)

By x̃1 6= x̃n−1, we see xn−1 − x1 is no multiple of p and hence xn−1 − x1 ∈ Z×p . This
implies cn, dn ∈ Zp and therefore also xn, yn ∈ Zp.

(ii) The idea of the proof is similar to the proof above. Assume to the contrary x̃n = x̃m.
Then [n]P̃ = ±[m]P̃ , i.e., [m ± n]P̃ = O, which is true if and only if m ± n = p or
m− n = 0. Since exactly this case is ruled out by assumption, we have x̃n 6= x̃m.

(iii) Since, by assumption, λE is not the zero map, we see that λE(P̃ ) = ψ([p]P ) 6= 0,
i.e. [p]P 6= O. Note that (6.6) and (6.7) hold for n = p, because these are just the
addition formulas on E.
Let (xp, yp) := [p]P . Then (x̃p : ỹp : 1) = (0 : 1 : 0). Setm = max{−vp(xp),−vp(yp),−vp(1)}.
Then multiplying xp, yp and 1 by pm gives us (xp : yp : 1) = (pmxp : pmy : pm). That
means p̃m = 0, implying m > 0. Further from p̃mxp = 0 and p̃myp = 1 we deduce
vp(xp) > vp(yp) and vp(yp) < 0. By (ii), we have P, [p− 1]P ∈ E(Zp). Let s := vp(cp),
and assume s ≥ 0, i.e. cp ∈ Zp. When writing dp in the following form

dp =
y1xp−1 − yp−1x1

xp−1 − x1

=
y1xp−1 − y1x1 − yp−1x1 + y1x1

xp−1 − x1

=
y1(xp−1 − x1)− x1(yp−1 − y1)

xp−1 − x1

= y1 − x1cp,

(6.8)

it is clear that dp ∈ Zp, and hence yp ∈ Zp, a contradiction. So, s must be negative.

Now we compute the p-adic valuation of some elements and thereby extensively use A.2.
Recall, we have x1, xp−1 ∈ Zp, so vp(−x1−xp−1) = vp(x1+xp−1) ≥ min(vp(x1), vp(xp−1)) ≥
0. Then by (6.6), we see

vp(xp) = vp(c
2
p − x1 − xp−1) = min(vp(c

2
p), vp(−x1 − xp−1)) = 2s (6.9)

By (6.8), we also obtain
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vp(dp) ≥ min(vp(y1), vp(x1) + vp(cp))

(6.5)

≥ min(0, vp(cp))
vp(cp)<0

= vp(cp) = s.

Moreover vp(cp(x1 +xp−1)) = vp(cp) + vp(x1 +xp−1) ≥ s, while vp(c
3
p) = 3s < s. Hence

vp(yp) = vp(−c3
p + cp(x1 + xp−1)− dp)

= min(vp(c
3
p), vp(cp(x1 + xp−1)), vp(dp))

= 3s.

(6.10)

Therefore, vp(ψ([p]P )) = vp(xp/yp) = −s > 0. We see vp(ψ([p]P )) = −s. By assump-

tion λE(P̃ ) 6= 0. So vp(ψ([p]P )) = 1, because the image of ψ is pZp. Summing up, we

obtain s = −1,
xp
pyp
∈ Z×p and λE(P̃ ) =

xp
pyp

mod p.

By the anomality of Ẽ, we see [p − 1]P̃ = −P̃ and hence ỹp−1 = −ỹ1. Therefore,
ỹp−1 − ỹ1 = −2ỹ1 6= 0. So, we have proved yp−1 − y1 ∈ Z×p .
Since vp(cp) = −1 (and so vp(c

−1
p ) = 1), we obtain

yp−1 − y1

pcp
=
xp−1 − x1

p
∈ Z×p . (6.11)

Let x̂ := p2xp and ŷ := p3yp. By s = −1, together with (6.9) and (6.10), we see

vp(x̂) = vp(p
2) + vp(xp) = 2 − 2 = 0 and similar for ŷ, i.e. x̂, ŷ ∈ Z×p . Hence λE(P̃ ) =

xp
pyp

mod p =
p2xp
p3yp

mod p = x̂
ŷ mod p. Note pcp ∈ Z×p since vp(pcp) = −1 + 1 = 0.

Therefore
x̂ mod p = (p2c2

p − p2(x1 + xp−1︸ ︷︷ ︸
∈Zp

)) mod p = (pcp)
2 mod p

and

ŷ mod p = −p3c3
p + (pcp)p

2(x1 + xp−1)− p3dp mod p = −(pcp)
3 mod p.

Consequently,

λE(P̃ ) =
(pcp)

2 mod p

−(pcp)3 mod p
=

(
−1

p

xp−1 − x1

yp−1 − y1

)
mod p. (6.12)

This completes the proof.

The algorithm to compute λE and its time analysis can be found in [24, 3.6]. The
following procedure computes λE(P̃ ) for P̃ = (s, t) ∈ Ẽ(Fp)\{0} in O((log p)3) time.

(1) Find P := (X1, Y1) ∈ E with X1, Y1 ∈ Z/p2Z satisfying X̃1 = s Ỹ1 = t.

(2) Compute (Xp−1, Yp−1) := [p− 1]P ∈ E with X1, Y1 ∈ Z/p2Z.
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(3) If X̃p−1 6= X̃1, then

λE(P̃ ) =

(
X̃p−1 − X̃1

p

)((
Ỹp−1 − Ỹ1

))−1
.

Otherwise λE = 0.

Note that under the same notation as in 6.6, we have only to compute yp−1 − y1 mod
p and 1

p(xp−1 − x1) mod p. For (1), simply take any X1, y ∈ Z/p2Z satisfying X1 mod
p = s and y mod p = t. Then solve the following equation on w:

(y + pw)2 = X3
1 + aX1 + b mod p2

⇒ y2 + 2ypw + p2w2︸ ︷︷ ︸
≡0 mod p2

= X3
1 + aX1 + b mod p2

⇒ 2tw =
X3

1 + aX1 + b− y2

p
mod p.

Note that the right hand side is well defined. Since from (6.5) we get t 6= 0 (mod p)
and p 6= 2, we obtain w ∈ Fp. Then put Y1 := y + pw. We can pass from a solution
mod p to a true solution (i.e. with coefficients in Zp), see [27, Chap. 2, §2.2]. Since
6.6(ii) guarantees that the denominator in the recursion formula is not a multiple of p,
it is invertible modulo p2.
Remark: One can show that the computations in the proof of 6.6 can be done only
using operations over Z/p2Z.
By (6.11), we see Xp−1 6= X1 under the condition λE 6= 0. In this case, 6.6(iii) ensures

validity of Step (3). Otherwise λE must be the zero map. So, λE(P̃ ) = 0.

The number of arithmetic operations over Z/p2Z involved in Steps (1) and (3) are
indifferent to p or Ẽ. Step (2) requires at most 2 log2 p elliptic curve additions [30,
XI.1.1]. Summing up, O((log p)3) Steps are enough to compute λE(P̃ ).

With some additional technical details one can also show [24, 3.8] that there is no prob-
lem getting a non-zero λE . In total, this means the SSSA-algorithm runs in O((log p)3)
time.

46



7. Shor’s Algorithm for the Discrete Logarithm

In the last few years there was a lot of interest in the field of quantum computing,
even companies are trying to build their own quantum computer. IBM has currently
one operating with about 50 qubits [11]. Also the funding for quantum computing
by nations is stepping up. For example the European Union launches the Quantum
Flagship program in 2019 with a volume of one billion euros. Through this attention
from the industry as well as the academic sector the best known algorithm for quantum
computing got new attention. Peter Shor published in 1994 polynomial-time algorithms
for prime factorization and discrete logarithms on a quantum computer [28]. The great
importance for us is that the algorithm can be applied to the group of elliptic curves
as we will see. But first we have to introduce the basic theory and notation about
quantum computing from the perspective of a mathematician.

7.1. Mathematics of Quantum Computing

A rigorous and axiomatic introduction to the mathematics of quantum computing is
the book [25]. For our purpose the following short introduction of the main ideas of
quantum information and a solid understanding of linear algebra is enough.

In a quantum computer the data is stored in so called qubits instead of bits. A qubit is
a quantum mechanical state and is mathematically expressed as an orthonormal vector
of a two dimensional Hilbert space ¶H. The elements of a given orthonormal basis of
this space are denoted by |0〉 and |1〉. Every qubit |ψ〉 ∈ ¶H can be represented in the
following way

|ψ〉 = a|0〉+ b|1〉 with a, b ∈ C : |a|2 + |b|2 = 1.

If we measure the quantum state |ψ〉 it returns |0〉 with probability |a|2 and returns
|1〉 with probability |b|2. Once the qubit gets measured the values of a and b are lost.
The property that a qubit before it is measured is simultaneously |0〉 and |1〉 is called
superposition. Besides the superposition there is another property about qubits that
is fundamental different from the classical bits. A two qubit register is just the tensor
product of two qubits. If |ψ〉 = c0,0|0〉⊗|0〉+c0,1|0〉⊗|1〉+c1,0|1〉⊗|0〉+c1,1|1〉⊗|1〉 ∈ ¶H⊗2

is not of the form |ψ1〉 ⊗ |ψ2〉 we call the state |ψ〉 entangled. For example

|ψ〉 =
1√
2
|0〉 ⊗ |0〉+

1√
2
|1〉 ⊗ |1〉

is entangled. When we measure |ψ〉 we get with probability 1/2 the state |0〉 ⊗ |0〉 and
with probability 1/2 the state |1〉 ⊗ |1〉. If we just measure the first qubit and get |0〉
we automatically know that the second qubit is also |0〉.

To manipulate data in quantum computers we us quantum gates. Mathematically
spoken this are unitary operators on ¶H. Two simple quantum gates are:

Not :
IN OUT
|0〉 |1〉
|1〉 |0〉

Hardamard :

IN OUT
|0〉 1√

2
(|0〉+ |1〉)

|1〉 1√
2

(|0〉 − |1〉)
(7.1)
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We want to demonstrate the ability of a quantum computer to process data in parallel.
Let us have a look at the addition modulo 2 [21]. We work with a 3-qubit-register.
Therefore let the D-gate be a quantum gate that works as follows. The third qubit
is the sum of the first two qubits if the third qubit starts in the state |0〉. When the
third qubit starts in the state |1〉 we define the output such that the whole operations
is unitary. This can be visualized as below:

INPUT OUTPUT
|0〉 ⊗ |0〉 ⊗ |0〉 |0〉 ⊗ |0〉 ⊗ |0〉
|0〉 ⊗ |0〉 ⊗ |1〉 |0〉 ⊗ |0〉 ⊗ |1〉
|0〉 ⊗ |1〉 ⊗ |0〉 |0〉 ⊗ |1〉 ⊗ |1〉
|0〉 ⊗ |1〉 ⊗ |1〉 |0〉 ⊗ |1〉 ⊗ |0〉
|1〉 ⊗ |0〉 ⊗ |0〉 |1〉 ⊗ |0〉 ⊗ |1〉
|1〉 ⊗ |0〉 ⊗ |1〉 |1〉 ⊗ |0〉 ⊗ |0〉
|1〉 ⊗ |1〉 ⊗ |0〉 |1〉 ⊗ |1〉 ⊗ |0〉
|1〉 ⊗ |1〉 ⊗ |1〉 |1〉 ⊗ |1〉 ⊗ |1〉

We start with a 3-qubit-register in the state |0〉⊗|0〉⊗|0〉 and apply the Hadarmard-gate
on the first and second qubit. This puts the first two qubits in the state 1√

2
(|0〉+ |1〉),

and the register in the state

1

2
|0〉 ⊗ |0〉 ⊗ |0〉+

1

2
|0〉 ⊗ |1〉 ⊗ |0〉+

1

2
|1〉 ⊗ |0〉 ⊗ |0〉+

1

2
|1〉 ⊗ |1〉 ⊗ |0〉.

Applying the D-gate only to the third register leads to

1

2
|0〉 ⊗ |0〉 ⊗ |0〉+

1

2
|0〉 ⊗ |1〉 ⊗ |1〉+

1

2
|1〉 ⊗ |0〉 ⊗ |1〉+

1

2
|1〉 ⊗ |1〉 ⊗ |0〉.

The result of this operations is that the first and the second qubit are entangled with
its sum modulo 2, i.e. a measurement of the quantum state gives us random numbers
in the first two registers and their sum modulo 2 in the third register. Since we can
not control the sum we measure, this algorithm is not a speed up over the classical
computer. Algorithms for quantum computers have to be cleverly designed to get the
desired result with high probability.

As in the literature we will from now on omit the tensor product symbol ⊗, for reasons
of readability.

7.2. The Fourier Transform for Finite Abelian Groups

Shor’s algorithm for factoring integers as well as Shor’s algorithm for computing the
discrete logarithm are based on the Fourier transform. More precisely on the discrete
Fourier transform for abelian groups. An early description of this transform with
quantum computing methods can be found in [13]. This paper is also the foundation
for this subsection.

48



Let G be a finite abelian group. Then we know that there exists a Hilbert space H
with an orthonormal basis {|g〉 : g ∈ G}. Consider the map (shift)

h : |g〉 7→ |hg〉, h, g ∈ G. (7.2)

To be able to define the Fourier transform in the rather general case of finite abelian
groups we have to introduce a new basis in our Hilbert space generated by the group
elements. The basis elements |χi〉 should be invariant under the map (7.2), i.e.

g|χi〉 = φi(g)|χi〉 for all g ∈ G and i = 1, . . . , |G|,

where φi : G → C. The existence of such states is due to the fact that all operations
commute and are unitary.

Let χ : G → C× be a (multiplicative) character on the group G, i.e. χ is a group
homomorphism from G to the multiplicative group of the complex numbers. We have
the following standard results for characters.

Proposition 7.1. Let G be a finite abelian group and let χ, ρ : G → C× be two
characters on G. Then

(a)

1

|G|
∑
g∈G

χ(g)ρ(g) =

{
1 if χ = ρ

0 ohterwise
.

(b) There are |G| different characters on G.

Proof. For a proof we refer to [8].

Condition (a) ensures that the Fourier transform is unitary. This is very important
since every operation on qubits has to be unitary (because of physics).

For a character χ on G consider the state

|χ〉 =
1√
|G|

∑
g∈G

χ(g)|g〉.

When we look at 7.1(a) we see that the states {|χ1〉, . . . , |χ|G|〉} form an orthonormal
basis of H, called the Fourier basis. Furthermore these basis states are shift-invariant:

h|χ〉 = χ(h)|χ〉 h ∈ G. (7.3)
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Proof.

χ(h)|χ〉 = χ(h)

 1√
|G|

∑
g∈G

χ(g)|g〉


=

1√
|G|

∑
g∈G

χ(g) χ(h−1)|g〉

=
1√
|G|

∑
g∈G

χ(gh−1)|g〉

g̃=gh−1

=
1√
|G|

∑
g∈G

χ(g̃)|g̃h〉

= h

 1√
|G|

∑
g∈G

χ(g̃)|g̃〉


= h|χ〉

If we now choose an ordering g1, . . . , g|G| of the elements ofG and an ordering χ1, . . . , χ|G|
of the characters on G we can define the Fourier transform on the abelian group G. It
is the unitary transformation which maps |χi〉 to |gi〉, for 1 ≤ i ≤ |G|.

Example 7.2. For Shor’s algorithm the situation when G = Z/nZ is of special interest.
Then the n functions χk are defined by

χk(1) = e2πik/n k = 0, . . . , n− 1

and by the properties of χk:

χk(m) = χk(1)m = exp

(
2πikm

n

)
∀m ∈ Z/nZ. (7.4)

Definiton 7.3. Let n ∈ N and {|0〉, . . . , |n− 1〉} be an orthonormal basis for a Hilbert
space H. The Quantum Fourier Transform (QFT) is a map which is defined as follows

Fn : H −→ H
n−1∑
j=0

|j〉 7−→
n−1∑
j=0

1√
n

n−1∑
k=0

χk(j)|k〉.

Something interesting is happening if look what the QFT does to the input |0〉:

Fn|0〉 =
1√
n

n−1∑
k=0

χk(0)|k〉 =
1√
n

n−1∑
k=0

exp

(
2πi0k

n

)
)|k〉

=
1√
n

n−1∑
k=0

|k〉.

In other words we can transform the state |0〉 in uniform superposition of the states
|0〉, . . . , |n− 1〉 by applying the QFT Fn.
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7.2.1. Efficient Computation of the Quantum Fourier Transform

The classical fast Fourier transform (FFT) algorithm (applicable to certain groups) has
a runtime complexity ofO(|G| log |G|) but this, in itself, does not suffice for our quantum
algorithm since it is still exponential in log |G|. It may be seen that in a quantum
context the implementation of the FFT algorithm combined with extra non-classical
properties of entanglement provides an algorithm which runs in O(poly(log |G|)) time.
This feature has been elaborated in [12].

7.3. Shor’s Algorithm

Let p be a prime number and let ḡ be a generator of the multiplicative group (Z/pZ)× =
{1, . . . , p− 1}. Given x ∈ (Z/pZ)× we are trying to solve the DLP

gr = x, for 0 ≤ r ≤ p− 2.

The following algorithm, discovered by Peter Shor [29], shows how a quantum computer
finds discrete logarithms. First we give a high level description of the algorithm and
then look at each step more closely.

(1) Choose q ∈ N as a power of 2 with p ≤ q ≤ 2p.

(2) Initialize three registers each consisting of q qubits to 0.

(3) Apply the QFT to the first two registers.

(4) Compute gax−b modulo p and write the result in the third register, where a, b are
the values of the first two registers.

(5) Apply the Fourier-transform to the first two registers.

(6) Measure the quantum state.

(7) If possible compute r from the result of the measurement.
Otherwise start again with Step (2)

ad (1) The reason why we have to choose such a q in the first step is solely a issue of
an efficient implementation of the QTF, as it is with implementations on conventional
computers. In this description we will assume q = p, as found in [37].

ad (2) Let {|0〉, . . . , |p − 2〉} be an orthonormal basis for a Hilbert space H1 and
{|1〉, . . . , |p − 1〉} be an orthonormal basis for a Hilbert space H2. The three input
registers are represented by the following tensor product of Hilbert spaces

H1 ⊗H1 ⊗H2.

The two first registers are initialized to |0〉 and the third to |1〉.

51



ad (3) In the third step the QFT Fp−1 is applied to the first two registers, which leaves
them in a uniform superposition of all possible classical inputs |a〉 (mod (p− 1)). The
third register stays unchanged, i.e. the quantum computer is in the following state.

Fp−1|0〉⊗Fp−1|0〉⊗|0〉 =
1√
p− 1

p−2∑
a=0

|a〉⊗ 1√
p− 1

p−2∑
b=0

|b〉⊗|0〉 =
1

p− 1

p−2∑
a=0

p−2∑
b=0

|a〉|b〉|0〉.

ad (4) We then create a series of gates that receives the content of the first two registers
as input and compute gax−b mod p. The output is written into the third register. That
such quantum gates for modular arithmetic exists is shown in detail in [25, 5.4]. The
new state is:

1

p− 1

p−2∑
a=0

p−2∑
b=0

|a〉|b〉|gax−b mod p〉.

ad (5) As in step (3) we apply the QFT Fp−1 to the first two register resulting in the
entangled state

1

p−1

(
Fp−1

p−2∑
a=0

|a〉 ⊗ Fp−1

p−2∑
b=0

|b〉 ⊗ |gax−b mod p〉
)

=
1

p− 1

( p−2∑
a=0

1√
p− 1

p−2∑
c=0

exp

(
2πiac

p− 1

)
|c〉

⊗
p−2∑
b=0

1√
p− 1

p−2∑
d=0

exp

(
2πibd

p− 1

)
|d〉 ⊗ |gax−b mod p〉

)

=
1

(p− 1)2

p−2∑
a,b,c,d=0

exp

(
2πi

p− 1
(ac+ bd)

)
|c〉|d〉|gax−b mod p〉.

ad (6) We perform the measurement of the current state of our quantum computer.
Note that we have the following identity gax−b = ga(gr)−b = ga−rb. Then the proba-
bility that we get a particular state |c〉|d〉|gk mod p〉 is

P
[
|c〉|d〉|gk mod p〉

]
=

∣∣∣∣ 1

(p− 1)2

p−2∑
(a,b=0)
a−rb≡k

exp

(
2πi

p− 1
(ac+ bd)

) ∣∣∣∣2 (7.5)

=

∣∣∣∣ 1

(p− 1)2

p−2∑
b=0

exp

(
2πi

p− 1
((k + rb)c+ bd)

) ∣∣∣∣2 (7.6)

=

∣∣∣∣ 1

(p− 1)2

p−2∑
b=0

exp

(
2πi

p− 1
(kc+ rbc+ bd)

) ∣∣∣∣2. (7.7)

ad (7) If d+ rc = 0, then we can compute r by solving

r = −c−1d,

using the extended Euclidean algorithm provided that gcd(c, p − 1) = 1. This can be
done in polynomial time on a classical computer.
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In the case that d+ rc 6= 0 or gcd(c, p− 1) 6= 1 we start again with step (2) an set the
registers to their start value.

Analyses of (7):
Let us compute the probability of observing a state |c〉|d〉|gk mod p〉 where d+ rc 6= 0.
We factor out b in the nominator of (7.7)

P
[
|c〉|d〉|gk mod p〉 ∧ d+ rc 6= 0

]
=

∣∣∣∣ 1

(p− 1)2

p−2∑
b=0

exp

(
2πi

p− 1
(kc+ b(rc+ d))

) ∣∣∣∣2

=

∣∣∣∣ 1

(p− 1)2
exp

(
2πikc

p− 1

) p−2∑
b=0

exp

(
2πib(rc+ d)

p− 1

) ∣∣∣∣2
=

∣∣∣∣ 1

(p− 1)2
exp

(
2πikc

p− 1

)
· 0
∣∣∣∣2 = 0

So the first condition in (7) does not posse a problem. The only thing left to check is:
How high is the probability of getting a c such that gcd(1, p − 1) = 1 is? We already
answered a similar question in the analysis of the MOV algorithm for supersingular
curves. Note that

P[gcd(c, p− 1) = 1] =
φ(p− 1)

p− 1
>

1

log p
.

for infinitely many p. Hence, we are expecting only polynomial many rounds.

Application to Elliptic Curves
This algorithm does not use many properties of Z/pZ, so we can use the same algorithm
to find the discrete logarithm over other groups. All we need is that we know the order
of the generator and that the group operation and taking inverses can be done in
polynomial time. An identically algorithm as above in the notation of an elliptic curve
group can be found in [4].
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A. Appendix

A.1. Discrete Valuation

Definiton A.1. Let K be a field. A surjective map

v : K −→ Z ∪ {∞}

is called a discrete valuation on K if the following properties for every element a, b ∈ K
hold:

(a) v(ab) = v(a) + v(b).

(b) v(a+ b) ≥ min(v(a), v(b)).

(c) v(a) =∞⇔ a = 0.

Proposition A.2. Let K be a field and v : K → Z a discrete valuation on K. Then
the following statements hold for a, b ∈ K:

(a) v(−a) = v(a).

(b) v(a− b) ≥ min(v(a), v(b)).

(c) v(a) 6= v(b)⇒ v(a+ b) = min(v(a), v(b)).

(d) v(1) = 0.

(e) v(a−1) = −v(a).

A.2. p-adic numbers

Definiton A.3. Let p be a prime number and for every n ∈ N let

πn : Z/pn+1Z −→ Z/pnZ
x+ pn+1Z 7−→ x+ pnZ,

where x is an integer. Then the integral domain of p-adic integers is the set

Zp := {(xn)n≥1 : xn ∈ Z/pnZ | πn(xn+1) = xn ∀n ∈ N},

together with componentwise addition and multiplication.
If we take the quotient field of this ring, we get the field of the p-adic integers

Qp =
{a
b
| a ∈ Zp, b ∈ Zp\{0}

}
.

Proposition A.4. Let p be a prime number. Then

Z×p = Zp\pZp.
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Proof. See, [36, 6.9.1].

From this result we see that we can write every p-adic integer a ∈ Zp as a = pnu, where
n is an non-negative integer and u ∈ Z×p is a unit. This means we can write every
element x ∈ Qp in the form x = pmu, where m is an integer and u ∈ Z×p . Therefore we
have a valuation on Qp. For x ∈ Qp the valuation of x is vp(x), the largest integer v
such that x ∈ pvZp.
A simple fact that will often be helpful when we calculate the valuation of an element
is the following on

a ∈ Z×p ⇔ vp(a) = 0. (A.1)

Theorem A.5 ([36]). (Hensel’s lemma)
Let f(x) = anx

n+ · · ·+a1x+a0 ∈ Zp[x] be a polynomial with coefficients in Zp. Further
let π(f)(x) = π(an)xn + · · ·+ π(a1)x+ π(a0) ∈ Fp[x]. If π(f) has a zero α ∈ Fp with a
non-zero derivative at α, then f has a zero β ∈ Zp such that π(β) = α.

Proof. A proof (of a more general version) for example can be found in [16, p.46].

II


	Introduction
	Elliptic Curves
	Projective Coordinates
	The Group Law
	Torsion Points
	Divisors & Miller's Algorithm
	Weil-Pairing
	Elliptic Curves over Finite Fields

	Elliptic Curve Cryptography
	Introduction into Cryptography
	Discrete Logarithm in Cryptography
	Elliptic Curve Cryptography

	General Attacks
	Babystep-Giantstep
	Pohlig-Hellman
	Pollard's-
	Pollard's-
	Index-Calculus

	MOV-Algorithm
	Algorithm
	Correctness
	MOV for Supersingular Curves

	SSSA-Algorithm
	Reduction map
	From points on the curve to the maximal ideal of the p-adic integers
	Algorithm
	Time Analysis

	Shor's Algorithm for the Discrete Logarithm
	Mathematics of Quantum Computing
	The Fourier Transform for Finite Abelian Groups
	Shor's Algorithm

	Appendix
	Discrete Valuation
	p-adic numbers


