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Quantile Filters for Multivariate Images

Martin Welk1

Abstract— Median filtering is known as a simple and robust
procedure for denoising and aggregation of data. Its generalisa-
tion to arbitrary quantiles is straightforward, yielding a class
of robust (rank-order) filters for univariate data. Motivated
by earlier work from image processing on generalisations
of median filtering to multivariate images, we study in this
paper possible quantile filtering procedures for multivariate
images. Discussions of multivariate quantile generalisations in
the statistics literature suggest that the position parameter
of a multivariate quantile should not be chosen from an
interval as in the univariate case but from a unit ball in data
space. This allows to derive multivariate quantile definitions
from multivariate median concepts. We investigate quantile
counterparts of several multivariate medians and explore their
properties under the aspect of possible use as robust image
filters.

I. INTRODUCTION

Filters for multivariate (such as colour) images are often
designed as generalisations of well-known filters for scalar
images. When following this approach, it is important to
thoroughly analyse the essential properties of the underlying
univariate concepts and to choose an appropriate generali-
sation that retains those properties which are crucial for the
application to images. This work is part of a theoretical effort
to devise adequate multivariate generalisations of robust and
efficient image filters based on statistical measures.

In this paper, we will first recall multivariate median
concepts in Rn, with emphasis on R2. We will then discuss
the principal idea of a multivariate quantile and, on this
basis, quantile concepts associated to some multivariate
median concepts. We will compare basic properties of these
quantile filters with the possible application for the filtering
of multivariate images as goal.

This work presented here is driven by the motivation to
systematically explore possible filters for multivariate images
and to close gaps in the toolbox of fundamental image filters.
At the current stage, this is therefore a mainly theoretical
contribution, the practical application potential of which is
to be investigated further by future efforts.

II. UNIVARIATE RANK-ORDER FILTERS

In this section, we recall basic concepts about rank-order
filters for univariate (grey-value) signals and images. The
median filter has been introduced for the processing of
univariate signals by Tukey [17]. For an image, median
filtering proceeds by shifting a sliding window (e.g. a 3×3
square patch) across the image. At each pixel position,
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Fig. 1. Univariate rank-order filtering. (a) Test image cameraman degraded
by impulse noise: 20% of the pixels have been replaced with random
values uniformly distributed in [0,255]. – (b) Median filtering of (a), 1
iteration. – (c) Morphological dilation of the original cameraman image. –
(d) Morphological dilation of the noisy image (a). – (e) 0.75-quantile filter
applied to the original cameraman image. – (f) Same quantile filter applied
to the noisy image (a).

the median of the given grey-values within the window
is computed, and it becomes the grey-value of the central
pixel in the filtered image. This filter can be iterated. De-
spite its simplicity, the iterated median filter has remarkable
properties: It is capable of denoising images degraded by
certain types of heavy-tailed noise (e.g. salt-and-pepper noise
or impulse noise with uniform distribution of noise values
within some interval). At the same time, it preserves sharp
edges. Edges can be dislocated, however; on one hand, their
exact localisation in the filtered image may be influenced by
noise details of the original image; on the other hand, edges
tend to be straightened after several iterations of median
filtering. Provided that the filtering window is large enough,
a characteristic rounding of corners is observed as a result
of iterative median filtering.

The edge-preserving denoising and corner-rounding effect
of median filtering is demonstrated in Figure 1 (a) and (b).
For the median filter, we have used a disc-shaped sliding
window which includes all pixels with Euclidean distance
less or equal to 5 from the central pixel. We will use the same
sliding window in all further image filtering experiments in
this paper.

Due to its simplicity, its favourable denoising capabilities
and edge-preserving behaviour, the median filter continues
to be an indispensable tool in signal and image processing
to date.

Whereas the median filter is initially designed in the dis-
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crete domain, it is straightforward to define median filtering
of continuous signals or images: The finite collection of
discrete values within a window is then replaced by the
density of values within a continuous window, i.e. a compact
neighbourhood of the location to be filtered. The median of
a density is a well-defined quantity. We will, however, not
discuss the continuous setting further in this paper.

As the median of univariate data is their 1/2-quantile,
an obvious generalisation of the median filter is an α-
quantile filter in which the filtered value is the α-quantile of
the values selected by the sliding window, with prescribed
α ∈ (0,1). One can also link the fundamental morphological
operations [13] of dilation (taking the maximum of values)
and erosion (taking the minimum of values within the
window) to this concept by considering the limit cases α→ 1
and α → 0.

At first glance, an α-quantile filter with α 6= 1/2 can
be understood as a somewhat biased modification of the
median filter. One should, however, be aware that an iter-
ated quantile filter for any α > 1/2 will in the long run
converge (pointwise) to a homogeneous image with the
maximum intensity of the original image; for α < 1/2 it
will converge to the minimum intensity instead. From a
practical image filtering perspective, α-quantile filters for
α 6= 1/2 are therefore robust alternatives to morphological
operators as they combine denoising properties with dilation
or erosion behaviour, compare e.g. the application in [2].
We illustrate the robust dilation-like effect of a 0.75-quantile
filter in Fig. 1 (c)–(f). Note that morphological dilation reacts
very sensitively to noise whereas the quantile filter achieves
similar structural filtering of the image while being much
more robust towards noise.

III. MULTIVARIATE MEDIAN FILTERING

Attempts to generalise the median concept to multivariate
data can be traced back to Hayford’s 1902 work [9]. In 1909
Weber [19] introduced what is now known as the L1 median,
which became popular in the statistics literature since the
1920s–1930s [7], [8]. The univariate median is known [10]
to minimise the sum of absolute differences to the given
numbers a1, . . . ,aN ∈ R,

m((a)N) = argmin
x∈R

1
N

N

∑
i=1
|x−ai| , (1)

where we have used the abbreviation (a)N
1 for the sequence

(a1, . . . ,aN) of numbers. Analogously, we will write (aaa)N
1 for

a sequence of data points aaa1, . . . ,aaaN ∈ Rn.
We remark that the minimiser in (1) is non-unique if N is

even. This is generally the case for all argmin formulations of
medians and quantiles discussed in the following. Formally
one can consider the minimisers as set-valued, or use some
additional heuristics to enforce uniqueness. We will not
discuss this issue any further here because in the multivariate
case the problem is restricted mostly to non-generic data
configurations and parameters.

A. L1 Median

The L1 median generalises (1) by defining the median of
points from Rn as the point with minimal sum of Euclidean
distances to the given points aaa1, . . . ,aaaN ∈ Rn,

mmmL1((aaa)N
1 ) := argmin

xxx∈Rn

1
N

N

∑
i=1
‖xxx−aaai‖ . (2)

The L1 median is now well-understood, and efficient al-
gorithms for its computation in arbitrary dimension are
available [18]. Unlike the univariate median, the L1 median
will often attain values that are not among the input values
(but still in their convex hull). The same is true for the other
multivariate median concepts discussed in the following.

B. Oja Median

The L1 median is equivariant only w.r.t. similarity trans-
forms of the data space (i.e. if the input data undergo a
similarity transform, their L1 median changes by the same
transform), unlike the univariate median that is equivariant
under arbitrary strictly monotone mappings of R. To over-
come this limitation, alternatives to the L1 median have been
discussed in literature since the 1970s, with the interest to
achieve at least affine equivariance, see the overview [15].

An interesting concept is Oja’s simplex median [14] which
generalises (1) in a different way: Interpreting |b− a| for
a,b ∈R, a < b as the length of the interval [a,b], i.e. a one-
dimensional simplex, one can define a median in Rn as the
minimiser of the sum of volumes of n-dimensional simplices
with the median and n of the data points as vertices,

mmmOja((aaa)N
1 ) := argmin

xxx∈Rn

1(N
n

) ∑
1≤i1<...<in≤N

∣∣[xxx,aaai1 , . . . ,aaain ]
∣∣ . (3)

Albeit theoretically elegant, and obviously affine equivariant,
the Oja median suffers from its computational complexity
that increases with dimension.

C. Half-Space Median

Further affine equivariant median concepts in literature
are motivated by geometric combinatorial ideas. We mention
here the half-space median [12] which defines the half-space
depth of a point ppp ∈Rn w.r.t. data points aaa1, . . . ,aaaN ∈Rn as
the minimal number of data points that can lie on one side
of a hyperplane through ppp. By a slight reformulation, we can
define the half-space potential

VHS;(aaa)N
1
(ppp) := max

vvv∈Sn−1
VHS;(aaa)N

1
(ppp,vvv) (4)

where the maximisation over n-dimensional unit vectors, i.e.
the unit sphere Sn−1, is applied to directional half-space
potentials

VHS;(aaa)N
1
(ppp,vvv) :=

N−−N+

N−+N+
, (5)

N+ := #{i ∈ {1, . . . ,N} | 〈aaai− ppp,vvv〉> 0} , (6)
N− := #{i ∈ {1, . . . ,N} | 〈aaai− ppp,vvv〉 ≤ 0} . (7)
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Eventually the half-space median can be stated as

mmmHS((aaa)N
1 ) := argmin

xxx∈Rn
VHS;(aaa)N

1
(xxx) . (8)

Despite the formal similarity of (2), (3) and (8) as minimi-
sations of certain potentials it should be noticed that the
objective functions of the L1 and Oja medians are convex
(that of the L1 median even strictly convex if the data are
not degenerated, i.e. they span Rn), whereas the objective
function of the half-space median is a piecewise constant
jump function. It is, however, unimodal, and its sub-level
sets Ls(VHS;(aaa)N

1
) := {ppp ∈ Rn | VHS;(aaa)N

1
(ppp) ≤ s} are convex

by construction.
In the processing of multivariate images, early attempts

to establish median filters were directed at median concepts
that would always select among the given data values [1],
[5]. Later on mainly the L1 median was adopted e.g. for
colour images [16], for matrix-valued images [22] and for
colour images using a transform between a colour space and
symmetric matrices [11]. More recently, also the Oja median
has been proposed for image filtering [20], however, due to
its complexity practical problems remain.

IV. MULTIVARIATE QUANTILES

An attempt to establish also multivariate quantile filters in
image processing has been made in [22] in the context of
matrix-valued images.

For α ∈ (0,1), univariate α-quantiles qα can be described
by a modification of the minimisation property (1) of the uni-
variate median. Weighting positive and negative differences
differently, one has

qα((a)N
1 ) = argmin

x∈R

2−2α
N

N

∑
i=1
ai<x

|x−ai|+
2α
N

N

∑
i=1
ai>x

|x−ai| (9)

(the boundary cases α = 0, minimum, and α = 1, maximum,
can be included by taking limits). For the following, it
is interesting that this characterisation of the α-quantile
can be rewritten in terms of the objective function V (x) =
1
N ∑N

i=1|x−ai| from the median characterisation (1) as

qqqα((a)
N
1 ) = argmin

x∈R

(
V (x)− (2α−1)x

)

=
(
∂V
)−1

(2α−1) (10)

where ∂V is the subgradient of V .

A. Multivariate Quantile Parameter

In order to transfer (9) to multivariate data, the crucial
question is how the differences xxx−aaai are to be distributed to
the “positive” and “negative” part. Such a separation of sums
will generally have to be based on some preferred direction.
In the context of matrix-valued images such an attempt was
made in [22] (later transferred to colour images in [21])
where the asymmetric weights were applied to positive and
negative eigenvalues of symmetric matrices. Clearly, this
choice relies on a directional preference for eigenvalues,
which made sense in this particular case.

In more general multivariate data, however, there is not
always a natural preferred direction; all directions should be
treated equally. It has therefore been proposed in [3], [4], [6]
that the quantile parameter itself should have a magnitude
and a direction. Rescaling the parameter α ∈ [0,1] of real-
valued quantiles to r := 2α−1 ∈ [−1,1], one sees that this
range is the unit ball in R. Analogously, the appropriate
parameter range for quantiles in Rn is the unit ball Bn, such
that one aims at defining rrr-quantiles with

rrr ∈ Bn :=
{

xxx ∈ Rn | |xxx≤ 1
}
. (11)

In this parametrisation, rrr = 0 always refers to the median.

B. L1 Quantiles

Extending (10), it is further proposed in [3], [4], [6] to use
the derivative (or subdifferential, depending on the precise
setting) of the function minimised by some multivariate me-
dian as quantile parameter. For the L1 median this amounts
to the L1 rrr-quantile

qqqL1

rrr ((aaa)N
1 ) := argminxxx∈Rn

1
N

N

∑
i=1

(
‖xxx−aaai‖−〈rrr,xxx−aaai〉

)

= argminxxx∈Rn
1
N

N

∑
i=1
‖xxx−aaai‖−〈rrr,xxx〉 (12)

as worked out in [6]. It should be noted that for non-
degenerate input data aaa1, . . . ,aaaN (spanning Rn) the gradient
of M(xxx) approaches unit norm only asymptotically when xxx
goes to infinity. L1-quantiles even of bounded input data
therefore extend infinitely.

C. Oja Quantiles

Quantiles associated to the Oja median have been dis-
cussed in [3], [4]. We restrict ourselves for the time being
to the bivariate case (n = 2) with xxx = (x,y)T, aaai = (ai,bi)

T.
Translating from the terminology used in [3] (in which the
roles of quantile parameter and quantile are interchanged,
such that rrr is called quantile of qqqrrr), one considers derivatives
of the objective function

VOja(xxx) =
2

N(N−1) ∑
1≤i< j≤N

1
6

∣∣D(xxx,aaai,aaa j)
∣∣ , (13)

D(xxx,aaai,aaa j) := det
(

1 1 1
xxx aaai aaa j

)
(14)

of the bivariate Oja median. However, the gradient

∇∇∇VOja(xxx) =
∑

1≤i< j≤N
sgn
(
D(xxx,aaai,aaa j)

)
·
(

bi−b j
a j−ai

)

3N(N−1)
(15)

is not normalised to the admissible range B2; depending
on the input data, they might cover a substantially larger
or smaller range. This range is always bounded, since ob-
viously |dVOja/dx| ≤ Bx := ∑1≤i< j≤N |b j − bi|/(3N(N− 1)),
|dVOja/dy| ≤ By := ∑1≤i< j≤N |a j−ai|/(3N(N−1)). An addi-
tional normalisation uuu(xxx) :=C∇∇∇VOja(xxx) with a suitable factor
C should therefore ensure that rrr := uuu(xxx) =

(
u(xxx),v(xxx)

)T
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Fig. 2. Quantile parameter maps. (a) Colour assignment for the unit disc B2, the parameter range of bivariate quantiles. – (b) Data set of 100 points
arranged on a half-circle. – (c) Quantile parameter map for bivariate L1 quantiles of the data set (b). – (d) Quantile parameters of Oja quantiles of (b). –
(e) Quantile parameters of half-space quantiles of (b). – (f) Data set of 716 points. – (g) Quantile parameter map for bivariate L1 quantiles of the data set
(f). – (h) Quantile parameters of Oja quantiles of (f). – (i) Quantile parameters of half-space quantiles of (f).

takes values in B2. The desired Oja quantiles could then
be obtained by inverting the function xxx 7→ uuu(xxx) as

qqqOja
rrr ((aaa)N

1 ) := uuu−1(rrr) . (16)

One possible choice for the normalisation, which we will use
in the experimental section, is C = 1/

√
B2

x +B2
y . With this

choice, uuu takes values in a subset of B2.
A severe disadvantage of the so normalised Oja quantiles

is that in general substantial regions of B2 are missing in the
range of quantile parameters. This problem is mitigated but
not eliminated with C = 1/maxxxx∈R2‖∇∇∇VOja(xxx)‖.
D. Half-Space Quantiles

Unlike the objective functions of L1 and Oja median, the
half-space potential V := VHS;(aaa)N

1
of a sequence of input

values as defined in (4) is not differentiable. It is not
even continuous; instead it is piecewise constant with jumps
along a network of straight line segments. The previous
definitions of rrr-quantiles can therefore not be translated
straightforwardly. However, the convexity of sub-level sets
of VHS, and the fact that V takes its values in [0,1], open
another option: We define as the half-space rrr-quantile of
aaa1, . . . ,aaaN ∈Rn the extreme point of the convex sub-level set
Ls(V ) with s = |rrr| in the direction of rrr. Since the minimum
of V is greater than 0 in some configurations, we define the
quantile to be the median if Ls(V ) is empty. Summarising,
we have

qqqHS
rrr ((aaa)N

1 ) :=





argmax
xxx∈L|rrr|(V )

〈xxx,rrr〉 , |rrr|> min
xxx∈Rn

V (xxx) ,

mmmHS((aaa)N
1 ) otherwise.

(17)

In contrast to the L1 and Oja quantiles, half-space quantiles
are always located in the convex hull of the input data.

Quantiles with |rrr| = 1 are located on the boundary of the
convex hull. This is an advantageous property for image
filtering because it guarantees that a so-defined filter does
not extend the intensity range of images being filtered.

V. EVALUATION

A. Quantile Parameter Maps

In a first series of experiments, see Figure 2, we visualise
the quantile parameters for bivariate quantiles of the three
types discussed. In Fig. 2 (a), we show a colour encoding
for the unit disc B2, i.e. the parameter range of bivariate
quantiles. Here, hue represents the orientation of parameter
vectors rrr, whereas the intensity is increased from zero to
maximum in each of ten concentric zones to indicate |rrr|. In
the top row, Fig. 2 (b) shows an exemplary data set of 100
points equally spaced along a half-circle. In Fig. 2 (c)–(e)
the distribution of quantile parameters rrr in the same planar
region as represented in frame (b) is shown for the L1, Oja
and half-space quantiles, respectively. Each point xxx ∈ R2 of
the plane is coloured with the colour representing the rrr for
which the respective quantile qqqrrr equals xxx. Although the data
set is bounded, L1 quantiles for rrr cover the entire plane R2,
and the mapping between rrr and xxx is continuous.

Regarding the Oja quantile, we notice first that some
quantile parameters (like rrr = (r,0)T for |r| & 0.5) do not
occur at all (the 0.5-level line of rrr depicted by the margin of
the fifth colour zone decomposes to two branches extending
to infinity), so the corresponding quantiles do not exist.
Remarkably, in the case of the Oja quantile some sub-level
sets for |rrr| are non-convex.

In contrast, half-space quantiles are strictly constrained to
the convex hull of the data set; the outer region shown in
black does not contain quantiles. However, it can be seen that
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Fig. 3. Quantile filtering of a bivariate test image. (a) RGB colour image
peppers, 512×512 pixels. – (b) Bivariate test image obtained from (a) by
using only the red and green channels. – (c) Result of L1-quantile filtering
of (b), rrr = (0.9,0)T, 1 iteration. – (d) Result of halfspace-quantile filtering
of (b), rrr = (0.9,0)T, 1 iteration.

there are kinks in the level lines of |rrr|. At these locations,
the mapping xxx 7→ rrr jumps; it is set-valued, and multiple
quantile parameters rrr yield the same quantile. However,
the parameters yielding the same quantile value form a
connected region.

The bottom row, Fig. 2 (f)–(i) shows another data set with
the corresponding quantile parameters. To obtain the data
points (x,y) of this data set, 716 points (ξ ,η) were sampled
from a regular grid within B2 and transformed via (ξ ,η) 7→
(ξ + 0.2η2,η). This kind of data set is representative for
data selected from a smooth bivariate image within a disc-
shaped window, as it occurs within image filtering (see next
subsection). The general properties of the quantile maps are
similar as for the previous data set. Discontinuities in the
half-space quantile map are less prominent here, however.
Sub-level sets of the Oja quantile parameter are not concave
in this case but it is evident that already quantiles with |rrr| ≈
0.7 lie far outside the convex hull of the data, and quantile
parameters of larger magnitude cannot be realised at all.

B. Quantile Filtering of Bivariate Images

Our second series of experiments, see Figures 3 and
4, is targeted at the application of quantiles for image
filtering. Whereas L1 quantiles can be computed efficiently
in arbitrary dimension using a straightforward modification
of the algorithm from [18], efficient algorithmics for the
half-space quantiles, especially in dimensions greater than
2, is still a topic of ongoing research. For this reason, we
restrict ourselves here to the filtering of two-channel images
and defer an extension to RGB images for future work.

a b

c d

e f

Fig. 4. Quantile filtering of a bivariate test image, continued from Fig. 3. (a)
Result of L1-quantile filtering of Fig. 3 (b), rrr = (0,0.25)T, 5 iterations. – (b)
Halfspace-quantile filter, rrr = (0,0.25)T, 5 iterations. – (c) L1-quantile filter,
rrr = (0.25,0)T, 5 iterations. – (d) Halfspace-quantile filter, rrr = (0.25,0)T, 5
iterations. – (e) L1-quantile filter, rrr = (0.177,−0.177)T, 5 iterations. – (f)
Halfspace-quantile filter, rrr = (0.177,−0.177)T, 5 iterations.

Moreover, from the previous theoretical and experimental
findings it must be concluded that Oja quantiles as defined
in Section IV-C are unsuitable for establishing an image filter.
This leads us to comparing L1 and half-space quantile filters.

Fig. 3 (a) shows the peppers test image which, by the
dominance of red and green colours, is chosen as a suitable
candidate to demonstrate two-channel image filtering. In
Fig. 3 (b) we show its two-channel version consisting only of
the red and green colour channels. For all quantile filters in
the following, we use the same disc-shaped sliding window
of radius 5 as mentioned in the Introduction.

Fig. 3 (c) and (d) show the results of single iterations of L1

and halfspace quantile filtering, respectively, with a quantile
parameter rrr of magnitude 0.9, thus close to the boundary
of the admissible range B2. Visually the filtering effect of
the halfspace quantile is more pronounced and resembles a
morphological dilation, in agreement with our comment on
univariate quantile filtering at the end of Section II. However,
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the L1 filter exceeds the intensity range of the input image:
Whereas the maximal value of the red channel in the original
image is 231, it is 255 in the filtered image (cut off by the
image file format with 1 byte per channel). This is not the
case for the half-space quantile result, thus confirming our
previous findings. For the practical application of quantiles
this implies that in L1 quantile filtering results artificial
colours are to be expected, which is generally an undesired
effect in colour image processing.

In the following, we choose quantile parameters with
smaller magnitude for which both quantile filters do not
exceed the input intensity range. As the effect of a single
filter iteration is hard to notice with the smaller quantile
parameters, we increase the iteration count to 5 from now
on. In Fig. 4 (a) and (b) we use a quantile parameter directed
to bright green values. We can indeed observe a dilation-like
behaviour for green structures, i.e. the green structures grow
in size at the cost of darker and red regions; note particularly
the stems of peppers.

Surprising at first glance, just using a filter parameter
in positive red direction, Fig. 4 (c) and (d), dilates only
some of the red structures. The reason is that less saturated
green structures in this image are often overall brighter
than adjacent red structures, such that even their red-channel
values are greater. A more pronounced filtering in favour
of red structures can be obtained by specifying a quantile
parameter with positive red and negative green component,
see Fig. 4 (e) and (f).

VI. CONCLUSIONS

In this contribution, we have explored image filters for
multivariate images based on multivariate quantiles. Building
on previous work from the statistics community, which
suggested that multivariate quantiles should have multidi-
mensional quantile parameters within the unit ball in data
space, and provided definitions for quantiles derived from the
L1 and Oja medians, we extended the concept to a quantile
derived from the half-space median.

In a theoretical discussion supported by numerical exper-
iments, we demonstrated that these quantile concepts differ
substantially regarding properties that are highly relevant
for image filtering. In particular, Oja quantiles for given
parameters may not exist for certain data configurations
which makes them unusable for image filtering at the present
stage of investigation. Algorithmically efficient L1 quantiles
yield values exceeding the intensity range of the input image.
Half-space quantiles are theoretically appealing and yield
values within the convex hull of the input data.

In an experiment on a bivariate (red–green) test image we
have demonstrated that quantile filters with suitable choice
of parameters can be employed for a colour-selective dilation
of image structures.

There are several topics and open questions for ongoing
research. For space limitation, equivariance properties of
quantiles have not been discussed here; however, none of

the quantiles discussed here is affine equivariant. Devising
theoretically well-founded affine equivariant quantiles will
be an interesting goal. Moreover, it remains an open question
whether the shortcomings of Oja quantiles can be overcome
by modifying the concept.

Regarding numerics, it will be important to design effi-
cient algorithms for halfspace quantile filtering, especially
in higher dimensions. On the practical side, it will be
interesting to study the usability of multivariate quantile
filters for colour-selective structure enhancement in relevant
application problems.
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