
D
ra

ft

Towards a flexible industrial robot system architecture

Raimund Edlinger1, Lydia Leimer2, Michael Zauner3 and Roman Froschauer4

Abstract— The present work deals with the recording, trans-
mission and presentation of sensor data, which is transmitted
by different sensors mounted on or in mobile robots. Complex,
heterogeneous, modular robot systems require manufacturer-
and user-independent standardized interfaces based on open
communication standards and information models to enable
interoperability and integration. Cross-system communication
and data retrieval from different devices of different manufac-
turers is complicated by proprietary application programming
interfaces (APIs). It is virtually impossible to exchange modules
with devices from alternative manufacturers, which makes it
difficult to integrate devices that meet the requirements. The
OPC-UA communication interface is a platform-independent
standard and is widely used in robotics and automation tech-
nology to connect compatible devices with different interfaces.
In this paper we present the concept and implementation of a
standardized communication interface for data exchange and
visualization with ROS-based robot systems.

I. INTRODUCTION
Modern robotic systems often comprise several compo-

nents from different vendors to accomplish specific tasks.
Resulting from this heterogeneous interfaces, communica-
tion protocols etc. prevent exchange of components (either
hardware or software). Furthermore any kind of reconfigu-
ration or reuse of components is virtually impossible. On a
higher level of abstraction ROS (Robot Operating System)
has been established as flexible middle-ware dealing with
this problem. Unfortunately industrial robots and peripheral
devices have no support for ROS and therefore limit the
modular software ecosystem provided by ROS. Within the
domain of industrial automation systems in the last years
OPC-UA has been established as vendor-independent com-
munication protocol. Recent developments such as OPC-UA
Publish/Subscribe are dealing with loosely coupled devices
at the shop floor level of automation and robot system. There-
fore this paper proposes an overall system architecture for
implementing flexible and intelligent robot systems featuring
ROS on programming or behavioural layer and OPC-UA as
core communication layer (see also [8]).

The flexibility of production that will become necessary
in the future requires a high degree of cognition and in-
dependence from the automation solutions used. Within the
framework of Industry 4.0, systems that integrate sensors,
actuators and cognition are referred to as cyber-physical
systems (CPS), which are regarded as key technologies

*This work was supported by the Austrian Research Promotion Agency
within the program ”Strategy Innovative Upper Austria 2020” under grant
agreement NR. 862013

1Raimund Edlinger, 2Lydia Leimer, 3Michael Zauner and 4Roman
Froschauer are with the Upper Austrian University of Applied Sciences,
4600 Wels, Austria {raimund.edlinger, lydia.leimer,
michael.zauner, roman.froschauer}@fh-wels.at

for the production of the future [7]. The communication
at CPS is not only based on pure data exchange between
machines, but on the exchange between many functional
units from machines to planning software to the integration
of human decision makers. The specific implementations
of a production system by end users require a simple and
adaptable, flexible solution that enables interoperability in
the overall system. Exemplary aspects to be considered in
an inter-operable production system:

• Consistency of information flows
• Application of suitable methods for modelling, calcula-

tion, simulation and optimisation
• Involving people as creative actors in the global value

stream
• Design of the man-machine interface
Systems currently on the market that pursue an integrated

process chain strategy only consider very specific application
areas and/or proprietary product or system technologies.
ROS is one of the most popular frameworks for robotics
researchers and manufacturers, but it does not provide the
necessary security against possible cyber attacks and data
theft. [1] present a secure communication channel for ROS
which handles the communication between two nodes in a
secure manner. [10] et al. introduce a new research tool to
facilitate cyber-physical security research.

In the first chapters a short introduction to the topics OPC-
UA and ROS [3] is given. Furthermore, an overview of the
architecture ”from sensor to user interface” and the structure
of the ROS topics of a mobile recovery robot is presented.
Finally, the research results will be presented.

II. STATE OF THE ART

A. ROS and ROS-Bridge v2.0

Robot Operating System (ROS) has been developed as
part of the STAIR project at Stanford University. ROS is an
open source software package that can be used for a variety
of different applications within robotics. Currently ROS only
runs on Unix based platforms. A port to Windows is basically
possible, but is in the experimental stage [4]. The following
objectives have been set for the development of ROS:

• ROS is designed as a peer-to-peer system: ROS makes
it possible to combine several devices into one system.
Instead of a central server, a peer-to-peer structure was
used. The reason for this is that the entire system
can be used in the general consists of devices on a
mobile platform and further external computing units.
Thus, computation intensive tasks can be transferred
to more powerful computers. Since the majority of

Proceedings of the ARW & OAGM Workshop 2019 DOI: 10.3217/978-3-85125-663-5-09

60



D
ra

ft

the mobile robot system is only wirelessly connected
to the external computers, unnecessary traffic over the
already inefficient connection should be avoided. If the
system was set up as/with a the form of a central server,
communication between the robot modules would also
have to be handled via the possibly external server. The
result would be a heavy load on the wireless connection.

• ROS is open to all languages: ROS supports the pro-
gramming languages C++, Python, LISP and Octave.
In order to be able to use ROS on a par with other
programming languages, data within ROS is represented
in a neutral format.

• ROS is an open source project: All ROS source code
is freely available under the BSD license. This also
allows the development of commercial products with
ROS without the obligation to make the developed code
freely available.

• ROS has a modular structure: The functionalities of
ROS are strictly packed into individual modules. This
may lead to a loss of efficiency, but the stability of
the system is improved. In case of faulty software
fragments, the affected modules can be identified and
deactivated if necessary.

• Encourage the generation of reusable code: Too strong
system-specific dependencies make it difficult to extract
and reuse code that has already been written. Through
the implemented build system, ROS tries to encourage
the reuse of existing code packages. ROS itself uses
code from other open source projects [12].

• The rosbridge v2.0 server implementation makes it easy
to add and modify protocol operations and decouples
JSON-handling from the websockets server [2]. This al-
lows users to arbitrarily change the specific websockets
server implementation they are using.

B. OPC Unified Architecture (UA)

Based on OPC, one of the first standards established
for inter-device communication in the 90s, OPC-UA was
developed in order to provide platform independent func-
tionality, supporting more complex data and systems than its
predecessor [9]. The new standard, which promotes reliable,
scalable and flexible communication across systems, can be
used in automation as well as other areas for data transport.
Using a self descriptive, extendable abstract base model,
OPC-UA supports object orientation and provides security
features [9]. The service oriented architecture is based on
TCP/IP and covers layers 5, 6 and 7 of the OSI-Model. For
use in non time-critical systems across internet and firewalls,
XML-based variants have been specified. In order to support
easy access for developers, the OPC Foundation provides
the basic implementation as an OPC-UA Stack for different
platforms, currently supporting C, C# and Java. Toolkits for
C, C++, C# and Java are provided by independent vendors
[5]. This makes OPC-UA particularly attractive for use in
robot systems.

C. Other Communication Protocols

To support connectivity for various communication proto-
cols and standards common interfaces should include inter-
face implementations of a WebSocket API, OPC-UA Server
and Client and an MQTT broker. Schel et.al. developed the
concept and implementation of Manufacturing Service Bus
(MSB) [13]. Another communication protocol is DDS (Data
Distribution Service), which has its applications mainly in
government and military uses. Like OPC-UA’s server-client
architecture, it provides data transport on a publish-subscribe
basis. Due to its similar transport style, the ROS community
uses DDS as communication standard for ROS 2. Unlike
OPC-UA, DDS has been implemented over UDP, although
some vendors provide support for TCP as well [11]. Also
designed for machine to machine transport of telemetric data
is MQTT (Message Queuing Telemetry Transport)1. It is
aimed at usage scenarios with distant and/or mobile devices,
where an efficient use of bandwidth is a requirement. Wire-
less Sensor Networks (WSNs) have been gaining increasing
attention, where MQTT is used as an extension of the open
publish/subscribe protocol [6].

III. APPROACH ROS - OPC-UA STACK

Fig. 1. ROS networks using OPC-UA Pub/Sub

Heterogeneous robot systems are robot systems that either
combine several robots of the same or a different design or
robots with complex machines, such as injection molding
machines. Typically if mobile robots are equiped with exter-
nal sensors, measuring systems, a connection to higher-level
control systems and a control system are also used.

The appropriate equipment and safety systems are needed
to implement the desired functions. With an increasing
number of system components and possible actions, higher
demands are required on the control of the overall system.
Robot and component manufacturers often integrate UGV,
robot arm systems, safety devices and peripherals into pro-
prietary overall solutions. By using OPC-UA as a uniform
communication standard between the system components, it
is possible to make hardware and manufacturer independent
components easier to integrate, exchange and thus more

1http://mqtt.org/

61



D
ra

ft

flexible in their application, in order to be able to engineer
heterogeneous robot systems more quickly.

A. Data transmission from sensor to user interface

Fig. 2. ROS topics of a mobile rescue robot

In ROS operated robot systems, sensor data is forwarded
from the operating system to ROS, where they can be
made accessible to other applications. Sensor data can be
read, visualized for users or processed, for example to
create maps of the robot surroundings. Utilizing appropriate
extensions like the ros opcua communication package, data
can be provided to other applications and computers across
the network. In this approach it is not the sensor itself
which publishes its data and meta-data via OPC-UA, but
ROS which publishes the information independently as ROS
topics. These ROS topics include attributes common to all
OPC-UA nodes as well as those only applicable to variable
type nodes. Depending on its size and structure, data from
several sensors can be merged before publishing. This is as
much part of the freedom in implementation design as the
naming of topics and variables. Fig. 2 shows an example
of ROS topics of a mobile rescue robot. The separation into
control, robot and sensors is content related and not reflected
by the interface. ROS also publishes several topics required
for the communication and by the software, such as for
logfiles. Based on the existing ROS OPC-UA communication

stack, the package was extended by a parameterization,
where it is then possible to publish selected ROS topics and
ROS services. This enables a robot-specific adaptation of the
data to be published in relation to the wireless connection and
limited bandwidth to mobile robot systems. Due to flexibility
and the need for information in today’s industrial world is
constantly increasing and more and more process data must
be processed and visualized. At the process control level,
dashboards are required to give a quick overview of the
most important indicators of a process. This is particularly
important in order to react quickly to changes in a process.

B. Data visualization

Software for the visualization of robot data is available
especially for the field of automation technology in industry.
In most cases, the hardware manufacturers also develop
and/or distribute the appropriate software. For service robots
the offer is clearly smaller. In the following, visualization
possibilities with the open source software ROS are pre-
sented. By using the OPC-UA technology, CERTEC EDV
GmbH offers a universally applicable solution. Fig. 5 shows
an example for a visualization of live stream, sensor and
robot data. The interfaces created with Atvise2 are made
available via a web server, so that they can be accessed from
any end device via a web browser. This approach also makes
the interfaces useful for displaying sensor data on mobile
devices.

IV. SHOW CASE

For demonstrating the approach the architecture of an
existing mobile robot system has been adopted as shown
in 3.

The architecture for the mobile robot documented in Fig.
3 utilizes CAN bus, USB and Ethernet for the transmission
of sensor data. The sensor data of the motor controllers are
transmitted to ROS via a main controller. Sensors that detect
the robot’s environment are often connected via USB or RJ45
to the onboard PC. Video data can also be transmitted to
a ROS based system via Ethernet, which makes the live
stream available via HTTP. For simple and versatile user
interaction a web-based visualization tool-kit featuring OPC-
UA communication has been used.

A ROS-controlled robot, see fig. 4 provides the sensor data
via OPC-UA and is therefore suitable for OPC-UA capable
visualization software. With the help of the visualization
software Atvise, the data can be grouped and formatted
on graphical user interfaces. Depending on the application
and user, interfaces can be designed for different terminal
devices and screen sizes. Figure 5 shows a graphical user
interface which has been designed for different terminal
devices and screen sizes and is designed for any browser-
enabled devices such as desktop, laptop or tablet computers,
PDAs or smartphones.

2https://www.atvise.com/en/

62



D
ra

ft
Fig. 3. Architecture: from sensor to user interface

Fig. 4. Rescue Robot

V. CONCLUSION

The basic research focuses on OPC-UA, a platform-
independent and object-oriented standard for communication
between machines that has been developed [3]. OPC-UA
covers the upper three layers of the OSI model. An overview
graphic was created for the data transmission in which it
is schematically shown that the sensors on the robot can
be connected via different systems, the data is passed on
via servers and prepared for the end application. The rough
structure of the controller, robot and sensor data is also
graphically documented, the fine structure of the so-called

Fig. 5. Graphical user interface for prototype

nodes is recorded in the OPC-UA fundamentals. In order to
provide an overview of the possible approach to visualiza-
tion, three visualization tools are presented: the open source
framework ROS for mobile robots, the universally applicable
Atvise, and Visual Components for industrial automation.
Sensor data can be visualized in different ways, there are
hardly any limits to creativity. For example, distances can
be plotted directly in camera images, physical quantities
displayed using slide controls or dial gauges, or camera
images are distorted/corrected, and can be superimposed.
The good overview of the components and technologies used
the graphics and explanations provided are suitable for the
training of future Employees. The documentation can also
be used as a basis for further developments.

REFERENCES

[1] B. Breiling, B. Dieber, and P. Schartner, “Secure communication
for the robot operating system,” in 2017 Annual IEEE International
Systems Conference (SysCon). IEEE, 2017, pp. 1–6.

[2] C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins, “Ros-
bridge: Ros for non-ros users,” in Robotics Research. Springer, 2017,
pp. 493–504.

[3] O. Foundation. (Accessed: 2015-11-25) Opc foundation. opc
ua in the reference architecture model rami 4.0. [Online].
Available: https://opcconnect.opcfoundation.org/2015/06/opc-ua-in-
the-reference-architecture-model-rami-4-0/

[4] O. S. R. Foundation. (Accessed: 2017-04-03) Ros introduction.
[Online]. Available: http://wiki.ros.org/ros/Introduction

[5] A. GmbH. (Accessed: 2018-07-18) Opc unified architecture. [Online].
Available: http://www.ascolab.com/de/unified-architecture/

[6] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-sa pub-
lish/subscribe protocol for wireless sensor networks,” in 2008 3rd
International Conference on Communication Systems Software and
Middleware and Workshops (COMSWARE’08). IEEE, 2008, pp. 791–
798.

[7] N. Jazdi, “Cyber physical systems in the context of industry 4.0,”
in 2014 IEEE international conference on automation, quality and
testing, robotics. IEEE, 2014, pp. 1–4.

[8] C. Lalancette. (Accessed: 2017-04-24) Robot operating system
tutorial. [Online]. Available: http://wiki.ros.org/ROS/Tutorials/
ExaminingPublisherSubscriber

[9] W. Mahnke, S.-H. Leitner, and M. Damm, OPC unified architecture.
Springer Science & Business Media, 2009.

[10] J. McClean, C. Stull, C. Farrar, and D. Mascareñas, “A preliminary
cyber-physical security assessment of the robot operating system
(ros),” in Unmanned Systems Technology XV, vol. 8741. International
Society for Optics and Photonics, 2013, p. 874110.

63



D
ra

ft

[11] G. Pardo-Castellote, “Omg data-distribution service: Architectural
overview,” in 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings. IEEE, 2003, pp. 200–206.

[12] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[13] D. Schel, C. Henkel, D. Stock, O. Meyer, G. Rauhöft, P. Einberger,
M. Stöhr, M. A. Daxer, and J. Seidelmann, “Manufacturing service
bus: an implementation,” in 11th CIRP Conf. Intell. Comput. Manuf.
Eng., vol. 67, 2017, p. 6.

64


