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Machine Vision for Embedded Devices: from Synthetic Object
Detection to Pyramidal Stereo Matching

Daniele Evangelista1, Marco Imperoli2, Emanuele Menegatti1 and Alberto Pretto3

Abstract— In this work we present an embedded and all-
in-one system for machine vision in industrial settings. This
system enhances the capabilities of an industrial robot providing
vision and perception, e.g. deep learning based object detection
and 3D reconstruction by mean of efficient and highly scalable
stereo matching. To this purpose we implemented and tested
innovative solutions for object detection based on synthetically
trained deep networks and a novel approach for depth es-
timation that embeds traditional 3D stereo matching within
a pyramidal framework in order to reduce the computation
time. Both object detection and 3D stereo matching have been
efficiently implemented on the embedded device. Results and
performance of the implementations are given for publicly
available datasets, in particular the T-Less dataset for texture-
less object detection, Kitti Stereo and Middlebury Stereo
datasets for depth estimation.

I. INTRODUCTION

State-of-the-art industrial machine vision systems cur-
rently works with 3D sensors, sometimes coupled with a
color or a gray-level camera. Traditionally, the 3D infor-
mation has been acquired using passive stereo systems, i.e.
systems composed by two or more cameras. The depth
map is recovered by means of a correspondence problem:
matched points projections are triangulated between pairs of
sensors. Unfortunately, these systems often fail to provide an
accurate 3D reconstruction for large portions of the framed
scene, due to the absence of salient visual features. To
overcome this limitation, active stereo systems have been
introduced. Active vision sensors use light emitters that
project a specific pattern (Active Stereo and Structured Light
sensors) or a light with a specific wavelength (Time-of-
Flight sensors): all these sensors modify in some way the
surrounding environment (i.e., they illuminate the scene).
In the first cases, the correspondence problem is solved in
different ways: by performing a traditional stereo matching
algorithm using visual features synthetically created by the
light projector for the active stereo sensors; by searching
the known pattern in the camera image (so called pattern
decoding) for the structured light sensors.

In this work we propose an embedded and all-in-one
device that integrates both active and passive stereo matching
technologies. In particular, two high resolution color cameras
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Fig. 1: The proposed sensor: renders (left column) and
its realization with a really functioning prototype (right
column).

provide the system with passive stereo capabilities, and
a random pattern projector mounted at the center of the
cameras baseline provides active stereo capabilities by means
of structured illumination of the scene (see Fig.2 for more
details). The proposed sensor also integrates a CPU and
a powerful Graphical Processing Unit (GPU) specifically
designed to run expansive Machine Learning algorithms
(e.g. Deep Learning) and a complete Unix based Operating
System. This design enables the possibility to mount the
system directly on top of a robotic cell and being connected
bidirectionally with the robot system without the need of any
external unit. This high level of flexibility makes the system
appropriate for bin picking applications where a robotic
manipulator needs to be driven by a vision system to detect
and accurately manipulate highly cluttered objects.

To be able to perceive and accurately detect objects, vision
systems rely on 2D and 3D information at the same time. For
this reason we propose an efficient depth estimation method
that embeds traditional 3D stereo matching techniques within
a pyramidal framework in order to reduce the computation
time. Moreover, on the system, we also implemented deep
neural network based object detectors that were trained
using synthetically generated data. This process drastically
decreases the time needed for collecting data, and does not
require any human intervention for annotating the data. The
aforementioned perception pipeline has been tested on highly
challenging task, namely texture-less objects, a very common
situation in industrial settings where objects quite often do
not offer any, or very poor, texture detail.
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II. RELATED WORKS

A. Texture-less Object Detection
Object detection in images has been approached mainly in

two ways: methods based on sliding window as Deformable
Part Model from [1]; classification of region proposals pro-
duced with region proposal algorithms as the well known
Selective Search from [2]. Thanks to the enormous increase
in the research on Convolutional Neural Networks (CNNs),
methods on region proposals have become prominent. R-
CNN from [3] has been the first deep neural network
trained for extracting features from region proposals using
convolutional networks. This approach has been further im-
proved in Faster R-CNN from [4] where the selective search
region proposal algorithm is replaced with a Region Proposal
Network (RPN, first time introduced with [5] and [6]) and the
complete deep network is trained end-to-end for extracting
the proposals and performing classification on the object’s
bounding box extracted using regression.

In this work we used a object detector called Single
Shot Detector, from [7] that improve the quality and speed
of the detection w.r.t. Faster R-CNN object detector by
simultaneously producing a score for each object category
in each predicted box and then classifying them. In this way
the deep network is easier to train, faster, and ready to be
integrated into other tasks.

B. Stereo Matching
Depth estimation from stereo is one of the most active

topics in computer vision of the last 30 years. Given two
rectified images, the problem is to find for each pixel in the
reference image the corresponding point in the second image.
Rectification reduces the correspondences’ search along the
same scanline. As described in [8], the main steps of stereo
algorithms are: matching cost computation, cost aggregation,
disparity optimization followed by a disparity refinement
step. Methods can be categorized in local [9] [10] [11] [12],
global [13] [14] [15] [16] or semiglobal [17] [18], depending
on the techniques used to solve each step of the pipeline.

Recent works exploit the framework of PatchMatch Stereo
[11] [14]. These methods exploit alternatively a random
depth generation procedure and the propagation of depth,
resulting in a total runtime cost of O(W logL), where W
is the window size used to compute the matching cost
between patches and L the number of searched disparities.
The method proposed in [12], instead, strongly relies on
superpixels, removing the linear dependency on on both the
window size and label space. However, the superpixels’s
estimation requires a high computational time.

The active stereo problem has been recently addressed by
exploiting efficient learning-based solutions [19] [20] [21]
[22].

Recent deep learning based methods, among the others
[23] [24] [25], provide very accurate results. However, these
techniques usually don’t generalize well to different contexts
and require a fine-tuning of the CNN. Others [26] [27] [28]
try to predict depth from a single image, but in practice are
limited to very specific scenes.

Fig. 2: The proposed system embeds multiple types of stereo
vision technologies: 2 active stereo systems (C1+P and C2+
P) and 1 passive stereo system (C1 +C2).

III. PERCEPTION

The proposed system has been studied for industrial
robotics applications where perception capabilities have a
key role. Object detection and depth estimation are two of
the main important tasks in this field, in the following we
present more in detail the prototype we built and our custom
solutions for the two applications, namely texture-less object
detection based on deep transfer learning from synthetic data
and depth estimation by mean of 3D Stereo matching within
a pyramidal framework.

A. The Embedded Device

The proposed system (coded with the name FlexSight C1
and depicted in Fig.1) integrates both active and passive
stereo matching technologies. In particular, two high reso-
lution color cameras provide the system with passive stereo
capabilities, while a random pattern projector mounted at
the center of the cameras baseline provides active stereo
capabilities by means of structured illumination of the scene
(see Fig.2 for more details). It also integrates a CPU and
a powerful Graphical Processing Unit (GPU) specifically
designed to run expansive Machine Learning algorithms
(e.g. Deep Learning) and a complete Unix based Operating
System. This design enables the possibility to mount the
system directly on top of a robotic cell and being connected
bidirectionally with the robot system without the need of any
external unit. This high level of flexibility makes the system
appropriate for bin picking applications where a robotic
manipulator needs to be driven by a vision system to detect
and accurately manipulate highly cluttered objects.

B. Deep Learning Texture-less Object Detection

Data driven methods demonstrated to be very effective in
detecting common textured and complex objects [30] [31],
on the contrary, that is not the case with texture-less objects,
e.g. mechanical parts in industrial bin picking applications.
Texture-less objects do not expose so many features that a
deep neural network can learn, and most often, having no
texture highlights object symmetries and similarities making
difficult the generalization of the task, in this way both
classification and detection accuracy fall down rapidly.

The key aspect of every data driven task is the nature of
the data itself, how the information encoded in the data is
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Fig. 3: (a) Example object classes (b) and test scenes from
the T-Less dataset [29].

well exposed and how this can enhance the deep network
capability in detect and emphasize highly generalized and
heterogeneous features. Data collection is a fundamental
aspect within the entire learning process and most of the
time this task is done manually. Human intervention is often
needed in collecting and then labeling the huge amount
of data necessary for feeding the networks with enough
information in order to avoid problems such as overfitting the
input data. To limit, and somehow overcome, human inter-
vention in data preparation we used synthetic data. Synthetic
data is automatically generated by means of projection of
the 3D object models onto random and highly generalized
backgrounds. This process allows fast and accurate data
collection. Without the need of manual intervention the data
is generated directly ready to be used for the training of
the detection model. Moreover, given the potentially infinite
amount of data that can be generated, we are able to create
well generalized datasets making the texture-less object
detection training process more focused in learning more
general features such as object shape, edges, occlusions and
symmetries rather than color and appearance.

We exploited multiple CNNs architectures capable of
running in inference mode on our embedded system, from
accurate and efficient implementation of fully convolutional
neural networks with region-based detector [32], to more fast
and compact CNNs architectures such as [33] [34] [35] [7].
During training, for all our deep models, the layers responsi-
ble for feature extraction have been freezed to generic layers
pre-trained on real images, and only the remaining layers
are trained with our fully synthetic data. This process is
also called transfer learning and it demonstrated to be very
effective when training large and complex deep convolutional
networks with pure synthetic images [36].

The system has been tested with some of the objects
presented in the T-Less Dataset from [29]. Some examples
of objects from T-Less can be seen in Fig.3.

C. Pyramidal Stereo Matching

In local stereo matching, a support window is centered on
a pixel of the reference frame. In order to find the corre-
spondence, this support window is displaced in the second
image to find the point of lowest dissimilarity. Here is the
implicit assumption that the pixels within the support region
have a constant disparity. This does not apply to slanted

Fig. 4: Some examples from the synthetic generated dataset.
Upper raw shows full synthetic example images, lower row
shows semi-synthetic example images.

Fig. 5: Hierarchical architecture with propagation from top
to bottom.

surfaces, which are then reconstructed as compositions of
frontal-parallel surfaces. The PatchMatch Stereo algorithm
[11] overcomes this problem by estimating a 3D plane at
each pixel onto which the support window is projected.
As shown in [37], this technique provides very accurate
disparities but it is also very slow, i. e. it is not suitable
for real-time computing.

Inspired by [38] and [39], we propose to embed the
PatchMatch Stereo algorithm [11] in a pyramidal framework
(see Fig. 5) in order to reduce the matching time, while
sensibly increasing the accuracy of the estimated disparities.

The disparity estimation of the upper levels of the pyra-
mids (lower image resolution) is propagated on the lower
levels (higher image resolution), enabling i) a considerable
speed up of the random search step and ii) a reduction of
the size of the support window in the lower pyramid levels.

IV. EXPERIMENTS

A. Object Detection

As already anticipated, we overcome the problem of data
acquisition and manual labeling by mean of synthetic data
generation. In particular, starting from the 3D CAD model
representation of our object, we project it onto random
natural images as background, positioning the object in
completely random position and orientation in the camera
reference frame. Moreover, the objects are rendered using

Training Data Obj 5 Obj 8 Obj 9 Obj 10 Average
Full Synthetic 0.3732 0.288 0.3179 0.2725 0.3129
Semi-Synthetic 0.5283 0.468 0.4956 0.477 0.49225

TABLE I: Performance on 4 of the objects’ classes in the
T-Less test primesense data. Results are given in terms of
mAP@0.5 (mean Average Precision with 0.5 Intersection
Over Union threshold).
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random colors and illumination conditions (e.g. light inten-
sity and position). In Fig.4 some example of the synthetic
data are given. With this set of data we are able to train
very deep networks for object detection, e.g. [32] [33] [34]
[35] [7]. We will focus on Single Shot Detector (SSD) deep
network as it has been the fastest in training time while
achieving almost the same accuracy among all the tested
networks.

A set of 10000 samples have been generated using
the aforementioned procedure with random background ex-
tracted from the Microsoft Research Cambridge Object
Recognition Image Database1. The deep model has been
implemented with the TensorFlow Object Detection API2

and trained on a machine equipped with a Nvidia GTX 1060
GPU Board.

Table I shows some quantitative results obtained using the
synthetically generated data for 4 different classes of the
dataset. The poor performance of this model reflects how
it actually does not generalize well the task. An effective
increase of performance has been obtained by training the
model with semi-synthetic data: real images of real objects
(as the ones in Fig.3 (a)) have been used instead of CAD
renderings. This approach makes the transfer learning task
easier, because real object images actually have more visual
features, and make the network easily learn to detect and
accurately distinguish among different objects on the test
data.

Fig.6 shows some qualitative results obtained with the
semi-synthetic approach. In particular, Fig.6 (a, b) show good
detections in a dense scene, where the desired object is very
similar to some other in the scene. Class similarity still
remains a problem for the network, and it can be seen in the
detection examples given in Fig.6 (c, d) where the desired
object class is often confused with a similar one.

B. Stereo Matching

The proposed algorithm has been tested and evaluated
on two popular benchmark data: Middlebury Stereo 2014
[40] and Kitti Stereo 2012 [41]. The evaluation has been
performed on a i7-5700HQ CPU, 2.70GHz, and then imple-
mented also on the embedded device, which is equipped with
a ARM Cortex-A57 (quad-core), 1.73GHz, with an increase
of runtime of 20%. The results in Tab. II refer to down-
scaled (0.5Mpx) version of the Middlebury training images.
The evaluation on the Kitti dataset (see Tab. III), instead, has
been performed using the original resolution (1242x375px)
colored images. The state-of-the-art deep learning based
methods [23] and [25] have been tested on a Nvidia GTX
1060 GPU using the pretrained models on Kitti-Stereo 2012
training set. As reported in Tab. III, [23] and [25] show
superior performance when using fine-tuned models on the

1https://www.microsoft.com/en-us/download/
details.aspx?id=52644

2https://github.com/tensorflow/models/tree/
master/research/object_detection

Algorithm bad 0.5 bad 1.0 bad 2.0 bad 4.0 Runtime
PSMNet [23] 89.4% 76.5% 57.1% 35.9% 0.7 s (GPU)

MC-CNN [25] 67.9% 40.2% 26.7% 13.9% 101 s (GPU)
ELAS [42] 67.3% 38.6% 25.9% 13.5% 0.3 s

[11] 47.2% 27.5% 15.8% 6.2% 22.3 s
Pyramidal Matching 46.3% 25.8% 12.9% 5.5% 8.7 s

TABLE II: Average performance on Middlebury training
dataset [40].

Algorithm bad 2.0 bad 3.0 Runtime
PSMNet [23] 2.4% 1.5% 0.4 s (GPU)

MC-CNN [25] 3.9% 2.4% 67 s (GPU)
ELAS [42] 10.8% 8.2% 0.2 s

[11] 8.1% 5.3% 13.1 s
Pyramidal Matching 7.4% 4.5% 5.6 s

TABLE III: Average performance on Kitti-Stereo 2012
dataset [41].

specific benchmark3. However, the degraded results in Tab. II
show the difficulty of these techniques to generalize to com-
pletely different scenarios. The proposed method, instead,
is able to generalize (the same set of parameters has been
used in both evaluations), providing comparable results, in
terms of bad pixel rate4, in both benchmarks and outper-
forming other state-of-the-art algorithms. More specifically,
the proposed method, compared to [11], is able to decrease
the computational time up to 60%, while the accuracy of
the disparities is improved up to 20%, demonstrating the
effectiveness of the pyramidal framework.

V. CONCLUSIONS AND FUTURE WORKS

In this work we presented an embedded system developed
for industrial robots, where texture-less object detection and
stereo matching are two important tasks. The system is meant
for working without the need of any external computational
unit, moreover it embeds vision techniques that minimize,
and to some extent cancel, the human intervention in the
loop. In particular, synthetic data demonstrated to have a
huge potential in limiting the manual intervention in data
acquisition and data annotation. The proposed synthetic
pipeline is tested on a very challenging dataset, which con-
tains low variability among the different classes of objects,
most of them reflect high similarity and symmetries making
the learning process difficult to generalize to unknown test
data. Synthetic data may overcome the problem of generality
by introducing high variability, both in terms of visual
and geometric features. Further investigations must be done
in order to increase the performance of pure synthetically
generated data, so that to drive deep models to learn not
mainly relying on the visual features, e.g. object textures,
but focusing the learning process on more geometric features
such as object shape and edges, which are independent from

3Results for [23] and [25] in Tab. III are taken from the Kitti stereo
evaluation website (http://www.cvlibs.net/datasets/kitti/
eval_stereo_flow.php?benchmark=stereo).

4The “bad N” metric, used in Tab. II and III, refers to the percentage of
pixels whose disparity error is grater than N.
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(a) (b)

(c) (d)

Fig. 6: Qualitative results of the texture-less object detection system. Each couple of images report the network detection
(left) and the ground truth detection (right). (a) and (b) represents positive examples of detection, with high score in terms
of accuracy in the detection and IoU (Intersection over Union) between network detection and ground truth. On the contrary
(c) and (d) depict some examples of failures.

the visual aspect of an object and more suitable for texture-
less object detection tasks.

A possible solution is to include the depth information
in the learning process. In this direction, we proposed a
pyramidal stereo matching framework that provides accu-
rate depth estimation that could be used in the detection
pipeline. Although we showed an improvement of runtime
performance compared to [11], the proposed stereo matching
algorithm is still not suitable for real-time computing. In
future work, we will exploit the massive parallelization
capabilities of modern architectures by providing a GPU
implementation that might lead to real-time performance.
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