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Abstract— Due to the trend away from mass production
to highly customized goods, there is a great demand for
versatile robots in the manufacturing industry. Classic fixed-
programmed industrial robots and rail-bound transport vehi-
cles, which are restricted to transporting standardized boxes,
do not offer enough flexibility for modern factories. Ma-
chine learning methods and 3D vision can give manipulators
the ability to perceive and understand the environment and
therefore enable them to perform object manipulation tasks.
State of the art grasp-detection methods rely on data with
cumbersome annotated grasp-poses, while labelled data for
object recognition only is easier to gather.

This work describes the development of an automatic trans-
port robot using a sensitive manipulator and 3D vision for
autonomous transport of objects. This mobile manipulator is
able to drive flexible paths, localize predefined objects and
grasp them using an out-of-the-box neural network for object
detection and hand-crafted methods for extracting grasp-points
from depth images to avoid cumbersome grasp-point-annotated
training data. Furthermore, this paper discusses problems
occurring when a neural network trained on human-captured
photos is applied to robot-view images.

I. INTRODUCTION

Since the beginning of the 1960s, traditional fixed-base
robots have been used in factories [40]. Classic industrial
robots are unable to deal with the uncertainties in the real
world, due to a lack of sensing capabilities. Therefore,
stationary manipulators have mainly been deployed in mass
production, where a constant environment can be assumed
and thus highly engineered programs can work efficiently
[33], [35]. Giving manipulators the ability to perceive the
environment and using these perceptions for machine learn-
ing, flexible part recognition in unstructured environments is
possible [8]. Due to the trend away from mass production
to highly customized goods, there is a great demand for
versatile robots in the manufacturing industry [17], [16].
Over the last few years e.g. the production of cars has been
highly individualized. As Pavlichenko et al. [27] describe,
this has made ”kitting” necessary, where all parts of a car
are collected in a warehouse and brought to the assembly line
just in time as a ”kit”. This task is frequently performed by
warehouseman due to the high flexibility needed to find, col-
lect and transport specific components [27]. Therefore, part
handling during assembly is the only task in the automotive
industry with an automation level below 30% [17].

For such intra-logistical transport tasks, mobile manipula-
tors have been developed. They consist of sensitive manipu-
lators which are associated with mobile transport vehicles to
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combine the advantages of both types of robots: Working
together with humans and grasping individual objects, as
well as changing the location autonomously to extend the
workspace of the manipulator [16], [7]. A mobile manip-
ulator should be able to drive autonomously through a
shop floor, detect parts with sensors, grasp them with its
manipulator and transport them to production facilities [27].

While there already exist well established methods for
path planning and safe navigation of mobile robots, grasping
objects flexibly remains a challenging task [25], [4]. Since a
large amount of grasp-pose-annotated training data is needed
for automatic grasp-detection in machine learning, training
new objects is complex and expensive [28].

Therefore, this paper describes the development of a
mobile manipulator using an out-of-the-box object recog-
nition framework and handcrafted grasp-point calculation
algorithms to allow grasping of standard objects with pre-
trained algorithms and not requiring cumbersome annotated
grasp-data. It describes a software concept for a mobile
platform extended with a sensitive manipulator, a gripper and
a 3D sensor. This system enables path planning, searching
for predefined objects using an image stream and machine
learning, as well as grasping and transporting them. Since
the mobile robot’s integrated path planner is being used,
this part is not considered in more detail. Furthermore, this
paper discusses problems occurring when a neural network
for object detection trained on human-captured photos is used
with robot-view images.

The following chapters are structured as follows: Section
II presents the state of the art of 3D-vision-systems, grasp
detection and object detection in machine learning with a
focus on deep convolutional neural networks. In section III,
the software representation of the robot and the implemented
software are described, as well as the hardware and structure
of the mobile manipulator. Section IV explains the abilities of
the robot and verifies and discusses them using experiments,
followed by summary and future work in section V.

II. STATE OF THE ART

In the following section, the state of the art of 3D-vision-
systems, grasp detection and machine learning is discussed.

A. 3D Vision Systems for Robotic Manipulation

Visual sensors play an important role in object detection
and manipulation. 3D vision systems, which map the 2D
image pixels to 3D world coordinates, are most suitable for
this task, if they are mounted to the arm of a robot [42], [2].

According to Giancola et al. [13], there are three main 3D
vision technologies on the market which are suitable for such
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an application: Time-of-Flight (TOF), structured-light and
active stereoscopy, whereby the last two use a triangulation
process to estimate the depth. TOF-systems measure depth-
distance directly from the time a light beam needs until
it is reflected back [13]. Active stereoscopy devices have
the advantage over classical stereoscopic depth systems, that
they project an infrared pattern and are therefore able to
find matching points for the triangulation also on texture-
less surfaces [19]. 3D cameras often include an RGB-sensor
and therefore provide RGB-D images [13].

B. Machine Learning for Object Detection

To extract information such as object types and posi-
tions from image data, neural networks are used [6], [1].
Deep neural networks [15] consist of numerous layers with
artificial neurons, which allow them to handle big data
effectively. A convolutional neural network (CNN) [20] is
a special type of deep network, which is designed to work
with data with a grid-like topology, such as images [1],
[15]. An example CNN is presented in Fig. 1. It consists
of a series of convolutional and pooling layers which act
as feature extractors or filters and fully connected layers for
classification or regression [1], [15].

To predict besides class probabilities also bounding boxes
for objects in a single-shot, Redmon et al. have presented the
CNN YOLOnet [31]. Classic approaches [1], [15] work with
a sliding window where a classifier is run over the complete
image. More recent R-CNN methods first propose regions
where objects may be and then run a classifier on these
bounding boxes [14], [9], but due to the high number of
individual components, these networks are slower and hard
to optimize [31]. YOLOv3 [32] can process images at up to
45 fps to allow fast reaction to changes in the environment
which is particularly important for object manipulation [30].

C. Grasp Detection

The goal of robotic grasp detection is to detect and
calculate graspable regions in images of objects and compute
a trajectory to them [21], [41], [5]. Due to challenging
variations of the objects and light conditions, as well as
occlusions and clutter, grasp-detection systems lag far behind
human performance levels [4].

Some grasp-detection methods focus on the object pose
estimation and lookup of the corresponding grasp points
or gripper pose in a database [41], [24], [5]. At other
approaches, neural networks are trained to provide the full
grasp configuration [30], [39] or the success-probability for a
grasp in a given gripper pose [28], [22]. Due to the creation
of an appropriate training dataset being currently a big

Fig. 1. Typical structure of a CNN: Blue - Convolutional Layer, Green -
Pooling Layer, Red - Fully-Connected Layer

obstacle, numerous approaches generate data automatically
using robots or simulations [28], [24], [39]. Labeling data
manually is a challenging and time-consuming task due to
objects being graspable in multiple ways and the necessary
label being of a high dimension and gripper-dependent [28].

Therefore, in this work grasp points are estimated using
an out-of-the-box object detection network and hand-crafted,
object dependent methods which extract features from depth-
data. This approach does only require training data for object
detection, which is available in large number [10].

III. METHODS AND IMPLEMENTATION

In this section, the representation of the mobile manipula-
tor and its environment with coordinate frames is discussed
and the structure of the robot as well as all components are
introduced. Furthermore, the implementation of the robot’s
software is explained.

A. Robot Representation

The presented mobile manipulator consist of a MiR100
mobile platform [26] and an UR5 articulated robot [37],
as well as a gripper and a depth camera (see III-C). All
components are represented using coordinate frames which
are connected with each other and with the world-frame via
geometrical relations (see Fig. 2).

The map-frame represents the robot’s world coordinate
system and functions thereby as fixed origin. As the robot
moves, the odometry-frame is moved according to the wheel-
odometry and signals from the inertial measurement unit
continuously in the map-frame. The base-frame is rigidly
attached to the mobile platform and moved in the map-frame
according to sensor observations, such as the localization
in the map using laser-scanner signals [23]. The base-UR-
frame is attached to the base-frame statically and serves as
reference for the frames in the joints of the manipulator. At
the end of the kinematic chain, a frame for the tool center
point of the gripper – in which planning of arm trajectories
takes place – as well as a frame for the camera – in which
the pose of the object is calculated – are connected statically
to the EEF-frame (end-effector-frame).

If an object is detected by the robot, its xyz-position
relatively to the camera is calculated. With the knowledge
of the transformations between all the other frames, the
pose of the object in the robot’s world is computable. The
transformations between the object-frame and the EEF-frame
are determined by calibrating the camera.

Fig. 2. Positions and connections of the robot’s frames. Orientations are
exemplary. To reduce complexity, unimportant frames are not shown or
labeled. The dashed lines illustrate the mutual dependencies of the frames.

39



D
ra

ft

B. Implementation of the Software

The software of the mobile manipulator is based on ROS
(Robot operating system) [29]. The structure of the basic
ROS-nodes, which provide communication to the hardware
and the ROS-Core, is presented in Fig. 3. When the task-
execution is started, the connections to the basic nodes are
established as illustrated. The program flow of the task-
execution is presented in Fig. 4 and explained in III-B.2.
The basic nodes are described in the following section:

1) Basic Nodes: The basic nodes are responsible for
providing communication with the hardware and elementary
information of the robot, such as its kinematic structure.
Therefore, a robot model including its structure and the coor-
dinate frames is sent to the core by the Model-Uploader. The
ROS-Core provides it to all nodes to enable visualizations
and calculation of trajectories.

Using this robot-description, tf [12] builds a tree as
illustrated in Fig. 2. The module TF-Transformer serves as
interface between the Task-Execution-Software and tf-tree,
providing necessary transformations for robot movements.
A TCP-IP connection to the UR5 is established using UR-
Driver [3]. This node provides the actual robot pose and
is able to send trajectories to the robot. The ROS-package
MoveIt! [36] communicates with the UR-Driver and serves
as motion planner and kinematics solver for the UR-robot.
It offers a programming interface to get the robot’s joint
states and arm pose. Given a target pose it solves the inverse
kinematics and calculates a trajectory.

The communication between the industrial PC and the
MiR’s controller is established using MiR-Driver [11]. Since
the MiR launches its own ROS-Core, this bridge establishes a
connection to it, reads all topics and provides the same topics
in the local ROS-environment on the industrial computer. It
reads all messages of the MiR and publishes them to the local
ROS-Core – e.g. the actual pose. If e.g. a goal pose is sent to
a MiR-topic, it is forwarded to the MiR and published to its

Fig. 3. Structure of the basic nodes of the software, which provide topics
to communicate with the hardware. Green nodes have been developed. Blue
nodes symbolize provided ROS-Packages.

Fig. 4. Program flow of the robot’s task-execution-software. Controls all
components to grasp an object of given type at given pick-up-position and to
transport it to given put-down-position. User inputs are marked red. Green
nodes have been developed. Blue nodes symbolize provided ROS-Packages.

ROS-Core. Path planning and safe movement is implemented
by the manufacturer and therefore not discussed further.

In addition to driving and moving the robotic arm, per-
ceiving the environment is necessary to enable the mobile
manipulator to grasp objects. Therefore, Camera-Wrapper
connects to the RGB-D-camera and publishes color and
depth images. The CNN YOLOnet subscribes to the color-
image-stream and publishes the object-types and -positions
in the image frames as bounding boxes [32].

With the discussed basic services and communications,
the actual task execution of driving, searching, locating and
grasping the object is possible, which is explained in the
following section:

2) Task execution: The program which is necessary for
executing the task itself is started by user-input and calls
different modules with special purposes. This enables to
change modules and implement e.g. a different grasping
algorithm with no effect to other program parts. In Fig. 4,
the general procedure for grasping an object is presented
abstractly and following the parts are described in detail.

A complete task-execution consist of driving to a goal,
searching for the object and calculating the grasp point, as
well as moving the robotic arm and grasping the object at the
calculated point. Then the robot can move to a goal position
and put the object down. For sending the robot to a target
pose, the module MiR-Control builds a ROS-Message from
a given PickUp-Pose, that is forwarded to the robot. The
MiR-robot calculates its path and drives to the goal without
further intervention, as it is able to perform localization, path
planning and obstacle detection autonomously [25].

When the MiR is at the goal, the pose of the object has
to be determined. The camera’s RGB-image is analyzed by
YOLOnet, which offers the object-types and positions of the
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bounding boxes for each recognized object in the image
[32]. Together with the depth-image and the camera intrinsic
parameters, the image-processing-module calculates the co-
ordinates of the demanded object in 3D-coordinates relatively
to the camera. As the pose estimation is not precisely when
analyzing a single shot, the UR is moved multiple times
and different image processing steps are performed: First
the UR is moved to search positions where the camera has
a good overview of the scene to search for the object. If
it is detected, the robot moves about 35 cm over the item
with the camera parallel to the plane under the object for
grasp detection. It is not possible to only scan the table from
this planar position, since object detection does not work for
certain poses, as described in IV-B.

Grasp detection is performed for each object individually
and the processes are designed manually. To detect grasping
points, objects are separated from background using the
depth-image and circle detection is performed (see Fig. 5).
Bottles can be grasped using the estimated circle’s center.
The grasp point of cups is calculated using the center of
the circle and the end of the handle, which is the furthest
point from the center. Using the positions of these points with
regard to the camera, the necessary grasp angle is calculable.
These grasp points are provided to the tf-tree to calculate
the grasp point relatively to the robot’s frame. Using this
transformation, UR5-Control calculates the goal pose of the
UR5 to grasp the object.

After the UR has reached the aimed grasping pose,
Gripper-Control sends a command to the robot to close
the gripper. The gripper is connected to the UR to make
it controllable with the robot’s teach pendant. Therefore,
commands have to be sent to the gripper via the UR’s LAN-
connection. If the object has successfully been grasped by
the robot, the MiR is sent to the PutDown-Pose where the
UR5 can lie down the object.

Fig. 5. Detection of grasp point (blue). Top: Depth-images separated from
background. Left: Grasp-Point located at the handle of a cup. Right: Grasp-
Point at the center of a bottle.

C. Components & Structure of the Robot

The mobile platform which serves as base for all com-
ponents is a MiR100 [26]. It is able to calculate and travel
the path to a given goal autonomously and is thereby aware
of safety issues [25]. On top of an aluminum structure, a
collaborative articulated UR5 robot [37] is installed. This
manipulator weights about 20 kg at a payload of 5 kg and a
maximum grasp-distance of 850 mm. It is connected to the
MiR’s ethernet-switch via LAN.

A 3D-printed fixture with an Intel Realsense D435 RGB-
D-camera [18] is mounted onto the flange of the manipula-
tor. This active stereoscopy based camera provides RGB-
D-images between 0.2 and 4.5 meters in depth at up to
90 frames per second. It is connected via USB-C to the
industrial computer. The parallel-jaw gripper 2F-85 [34] is
mounted onto the camera fixture at the end of the kinematic
chain of the robot. With its payload of 5 kg at an opening
width of 85 mm it is suitable to grasp small objects. It is
connected to the control unit of the UR5 via USB.

To control all subcomponents of the mobile manipula-
tor, the industrial computer ECS-9100-GTX1050T [38] is
installed on the mobile robot. With its NVIDIA GeForce
GTX 1050 Ti graphics processor it is suitable for image
processing tasks. The industrial computer runs on Ubuntu
16.04 and hosts a ROS-Kinetic-Core. It is connected to the
ethernet-switch of the MiR and thereby able to access and
control all components.

IV. RESULTS & DISCUSSION

In the following section, the abilities of the robot are
described and verified using experiments, focusing on the
quality of object detection. Furthermore, reasons for prob-
lems of the object recognition are presented and discussed.

A. Abilities of the Robot & Success Rate

The presented mobile manipulator is able to localize and
classify predefined objects, to perform a path and movement
planning, to drive to the object, and to grasp and transport it
as well as put it down. The current supported objects are cups
and bowls, whereby a software platform has been created
which can be extended to manipulate other objects.

A qualitative experiment has been performed to evaluate
the robot’s success rate: the mobile manipulator is sent to
the same goal multiple times, where one of the objects
is randomly placed. The robot is able to grasp the object
successfully in each of 30 repetitions, although the robot’s
pose varies up to approximately 25 cm and 20◦.

Separation of object detection and grasp-point calculation
enables simple and fast implementation of grasp-control for
standard objects using a pre-trained network without the need
of cumbersome training-data generation and annotation. It
has to be noted that new methods must be hand-crafted for
additional objects and grasp-point estimation from depth-data
as presented is error-prone if multiple objects are visible.
Therefore, if to some extend constant ambient conditions can
not be ensured, switching to an integrated solution with more
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Fig. 6. Quality of object detection: Cup (left), Standard water bottle (center), Unconventional smoothie bottle (right). Camera has been oriented 40◦ (top)
and 90◦ (bottom). Images show the merged pictures of all positions. Colored fields illustrate the calculated probability of the object being of the correct
class. Black fields indicate wrong detections.

complex training data such as PoseCNN [41] or Silhonet [5]
might be preferable.

B. Object Recognition

An object can only be grasped if it is recognized cor-
rectly first. Since the hand-crafted methods for grasp-point
calculations need a planar view onto the object, scanning a
surface for objects with the camera parallel to it would be
most appropriate. This could save time since only one pose
before grasping the object would be possible. The quality of
the object detection, depending on the angle of the camera
and the position of the object in the captured image has
therefore been evaluated practically using experiments. For
this, the robot has been located in front of a table showing
a 4x3 grid under constant lighting conditions. The camera
has been oriented by manipulating the robot’s arm to show
the whole grid at a specific angle. Afterwards, an object has
been presented to the camera at the different positions of the
grid under constant orientation. It has been evaluated if the
object is recognized in the captured image and the quality
of this detection has been analyzed using the mean class-
probabilities provided by the neural network. This procedure
has been performed at camera angles of 40◦ and 90◦ at a
distance of 750 and 600 mm to the grid’s center respectively,
using three different objects: A cup with great contrast, a
standard water bottle and a particular smoothie bottle. The
objects have been oriented with the cup’s handle pointing
90◦ to the right and the bottle’s labels pointing to the robot.

The results of these experiments are presented in Fig. 6.
The color of the fields indicate the probability of an object
being of the correct class, whereby red marks positions where
no class could be determined and black illustrates detections
of a wrong class. The detection rate of cups and standard
water bottles from a side view are very high, as Fig. 6 (A, B)
shows. Unusual bottles as captured in (C) are less likely to be
recognized correctly. The experiments show significant lower
success rates of the object recognition for top view images.
Cups are detected less accurate at all locations, whereby
especially the lowest positions cause problems. Detecting
cups incorrectly as bowls is also a common mistake (D). The
detection rate of water bottles from the top view (E) is also
smaller than from the side, whereby no correct detection of

bottles shown from exactly above at the center positions are
observable. This is visible for the smoothie bottles too (F). It
is also interesting to note that bottles in the top view images
(E, F) at a specific location have always been identified as
clocks with a probability of 50%.

These experiments show clear weaknesses of the used
training data for a robotic application. The ImageNet dataset
[10] which has been used to train YOLOnet is using images
found on the Internet. Therefore most of the objects are
captured in their natural position as humans see them –
e.g. most of the images of cups show medium-sized ceramic
mugs with the handle clearly visible from an angle of about
45◦. There are only few images showing cups in aerial
perspective, from a flat angle or upside-down. The neural
network learns from this insufficient dataset and thereby
struggles to generalize to objects in new or unusual poses
or configurations.

The results demonstrate the importance of an accurate and
application specific training-dataset for neural networks. To
enable high detection rates, images of concrete objects to be
recognized from real-life perspectives have to be included in
sufficient number.

V. SUMMARY AND FUTURE WORK

In this paper, an automatic transport robot using a sensitive
manipulator and 3D vision sensors for autonomous object-
transport has been presented. This mobile manipulator is
able to drive autonomously, localize predefined objects and
grasp them using an out-of-the-box neural network for object
detection and hand-crafted methods for extracting grasp-
points from depth images. A modular software based on
ROS has been developed, which has the advantage of the
basic nodes and hardware communication being decoupled
from the actual task execution software.

Experiments have shown that despite inaccuracies of the
mobile robot’s goal, objects can be grasped successfully if
the scene is captured from different perspectives. The main
weakness is detecting objects reliable from exactly above,
which is the necessary pose for the hand-crafted grasp-point
detection to work, due to insufficient training of the neural
network.
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Therefore, in future work the neural network should be
trained using a different dataset which shows objects as the
robot’s camera captures them. Using a neural network which
performs object pose estimation would make detection of
grasp points independent of image processing and therefore
raise robustness. To enable an easy extendability to detect
and grasp new objects, automatic generation of training data
using a robot or rendering of objects should be considered.
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