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Action Selection for Interactive Object Segmentation in Clutter

Timothy Patten, Michael Zillich and Markus Vincze

Abstract— Robots operating in human environments are
often required to recognise, grasp and manipulate objects.
Identifying the locations of objects amongst their complex
surroundings is therefore an important capability. However,
when environments are unstructured and cluttered, as is typical
for indoor human environments, reliable and accurate object
segmentation is not always possible because the scene repre-
sentation is often incomplete or ambiguous. We overcome the
limitations of static object segmentation by enabling a robot
to directly interact with the scene with non-prehensile actions.
Our method does not rely on object models to infer object
existence. Rather, interaction induces scene motion and this
provides an additional clue for associating observed parts to the
same object. We use a probabilistic segmentation framework
in order to identify segmentation uncertainty. This uncertainty
is then used to guide a robot while it manipulates the scene.
Our probabilistic segmentation approach recursively updates
the segmentation given the motion cues and the segmentation
is monitored during interaction, thus providing online feedback.
Experiments performed with RGB-D data show that the addi-
tional source of information from motion enables more certain
object segmentation that was otherwise ambiguous. We then
show that our interaction approach based on segmentation un-
certainty maintains higher quality segmentation than competing
methods with increasing clutter.

I. INTRODUCTION

Robots are becoming important for a diverse range of
household applications, such as cleaning, tidying, gardening
and personal care. These tasks require a robot to recognise,
grasp and place items in their correct locations or use items
appropriately. Distinguishing individual objects from other
objects and the background is a first step for achieving these
high-level actions. Making this distinction is a challenging
problem, especially in human environments, because of the
high variability of structure and the presence of clutter or
occlusion. In these scenarios, it is difficult to accurately
identify the portions of the data that belong to individual
objects in a scene. Often the perceived environment is
incomplete and this leads to an ambiguous interpretation.
Typical segmentation approaches address these challenges by
fine tuning parameters and exploiting structure (e.g., planar
surfaces) or complex features. However, tuned parameters,
structure and features for specific scenarios do not necessar-
ily transfer to other scenarios. Consequently, the generality
of these approaches is limited. For arbitrarily shaped objects
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Fig. 1: Segmenting a cluttered scene with interaction. Left:
Robot observing the scene. Middle: Robot inducing object
motion. Right: Segmentation after interaction. Moved object
(top left in blue) is correctly segmented.

or scenes with heavy occlusion, it is non-trivial to combine
separated segments that in fact belong to a single object.

In this paper we enable a robot to directly interact with the
objects in a scene in order to resolve object ambiguity. The
object motion induced by the robot is an additional source
of information that is used in the segmentation process.
Previous work on interactive segmentation apply only fixed
motions; focus on segmenting an object from the back-
ground; or do not segment during interaction, only after each
action is complete. Our work addresses these issues to enable
interactive segmentation in real-world scenarios. First, we
make use of a probabilistic segmentation approach to provide
cues for where and how the robot should interact given
the full state space of the manipulator, which might require
complex motion plans. The scene is analysed and directly
exposes the most uncertain regions where interaction is likely
to improve object segmentation. Second, a combination of
dense optical flow and sparse feature tracking is applied to
monitor objects during interaction and to recover the motion
of occluded objects (e.g., by the manipulator itself). This en-
ables the identification of the individual motions of multiple
objects with respect to each other and the background. Lastly,
statistics about the pushed region of the scene are maintained
during the interaction. The robot receives online feedback
and updates its actions according to the segmentation quality
at each time instance.

Experiments are performed with RGB-D data of cluttered
scenes to first demonstrate the probabilistic segmentation
process with moving objects. We benchmark against ex-
isting work of [22] and show that not only does inter-
action singulate objects and simplify object segmentation,
but incorporating motion cues into the segmentation process
leads to a significant performance boost. The second set of
experiments compare the proposed active interaction strategy
with competing methods. The results show that our approach
maintains higher quality segmentation in comparison to the
other methods as the amount of clutter increases.
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The remainder of this paper is organised as follows. Sec. II
reviews related work. Sec. III provides an overview of the
system. Sec. IV describes the probabilistic segmentation
algorithm and Sec. V develops the active interactive seg-
mentation approach. Sec. VI presents results for experiments
with RGB-D data. Finally, the paper is concluded in Sec. VII
with an outlook of future work.

II. RELATED WORK

Interactive perception is the problem of interacting with
the environment to improve perception quality and has been
applied to many tasks such as recognition, modelling and
pose estimation [2]. Interactive segmentation focuses on
applying non-prehensile actions with a mobile manipulator to
improve the separation of visual data into individual entities,
i.e., segments. Pioneering work demonstrated the principle
of interactive segmentation [10], [20], [16], which has been
extended through numerous innovations. Many methods,
however, are passive with respect to the segmentation task
as actions are pre-planned according to expected object kine-
matics [15], [19] or any action expected to move an object
hypothesis is chosen [17], [25], [23], [5], [11]. Accordingly,
segmentation is only improved as a coincidence and actions
are not chosen to directly segment objects in clutter.

Active approaches to interactive segmentation, on the
other hand, specifically select actions that are expected to
disambiguate a scene. A common technique is to apply
actions that physically separate or “singulate” objects from
a cluttered pile. This has been addressed with heuristics
based on avoiding other local object clusters [4], spreading
objects through orthogonal motions [12], the splitting plane
between object hypotheses [14] or observed corners with
local concavities [1], [13]. An alternative approach is pre-
sented by Eitel at al. [7], who use a neural network to learn
favourable push actions. In contrast to these methods, we
select push actions based on local segmentation uncertainty
to most quickly resolve ambiguity. Resultingly, our method
is driven by the observed data and does not rely on hand-
crafted heuristics or training data.

Our approach to interactive segmentation exploits a prob-
abilistic representation and an information-theoretic measure
for action selection. This is similar in principle to the method
of van Hoof et al. [26], who maintain a probability distribu-
tion over segmentation and select actions based on expected
information gain. The main difference of our method is that
we continuously monitor the interaction online and use the
motion sequence instead of comparing the scene immediately
before and after a push. An advantage of continuous tracking
is that information about the trajectory information can
be used to update the segmentation. Xu et al. [27] use
information theory to select actions and also track segment
hypotheses during interaction. However, this information
directly fuses local regions into objects where as we apply
Bayesian updates to the probabilistic edges of the graph.
We maintain patch-wise relations over multiple interactions,
which allows the system to recover from ambiguous observed
motion that can sometimes result in over-segmentation.
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Fig. 2: System overview.

Fig. 3: Data structures for segmentation. Left: RGB-D input.
Middle: Points binned in octree (coloured voxels). Right:
Neighbourhood graph with edges connecting adjacent voxels.

III. SYSTEM OVERVIEW

An overview of our system is illustrated in Fig. 2. The
input point clouds are generated from an RGB-D sensor.
The point clouds are stored in an octree, which is used to
construct a neighbourhood graph. The edges in the graph
represent the similarity between components of the scene and
probability values are determined based on the similarity of
geometric features. The edge probabilities are updated when
objects are moved by exploiting dense optical flow and sparse
feature tracking as well as geometric change detection as
outlined in Sec. IV. The movement of objects is induced by
the robot by selecting actions to best resolve segmentation
ambiguity that is determined from the uncertainty in the
neighbourhood graph as described in Sec. V. Online, during
the action, the robot arm is identified and tracked to remove
it from the segmentation and to account for occlusion.
The scene, represented as clusters of nodes in the graph,
is also monitored. The observed motion provides feedback
that determines when the action is terminated. Finally, the
process repeats by planning the next action with the updated
neighbourhood graph.

IV. PROBABILISTIC OBJECT SEGMENTATION

This section outlines the probabilistic object segmenta-
tion framework. Point clouds are stored in an octree and
a neighbourhood graph is constructed. The probability of
nodes belonging to the same object are computed according
to the similarity of geometric features. When the scene is
observed to move, optical flow and change detection are used
to update edge probabilities.

A. Neighbourhood Graph

Each RGB-D input zt at time t is stored in an octree as
shown in Fig. 3 (middle). The neighbourhood graph G =
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(V ,E ) is initialised by generating graph nodes i ∈ V for
every voxel. Edges e(i, j)∈ E are generated between adjacent
nodes i and j. An example of a neighbourhood graph is
shown in Fig. 3 (right).

Each node i stores a collection of points as well as
the centroid pi ⊆ R3, average normal vector ni ⊆ R3 and
curvature ci ⊆ R from the most recent RGB-D input. Edges
in the graph encode the similarity between connected parts.
The existence of an edge encodes the fact that the two parts
are adjacent. In addition, a weight is assigned to each edge
that measures their geometric similarity according to

gi j
t = fp(pi

t ,p
j
t ) fn(ni

t ,n
j
t ) fc(ci

t ,c
j
t ). (1)

The weight is the product of the independent probabilities
given by the geometric properties of the nodes. We model
the probabilities with the exponential functions
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t )

2

2σ2
c

)
, (4)

for the Euclidean distance between point centroids (2),
angular difference between normals (3) and scalar difference
between curvatures (4). These features capture spatial com-
pactness and smoothness. The constants σp, σn and σc scale
the values. In our experiments, we set σp to 0.85 times the
voxel resolution, σn to 0.45π and σc to 0.5.

Edge relations between small patches cannot comprehen-
sively identify similarity, especially for objects with sharp
edges or irregular shape. Therefore, we combine learned
features to overcome problems of locality. To achieve this,
the method of [22] is performed on the original input. This
procedure generates a list of geometrically consistent patches
P from a pre-segmentation stage and computes pairwise
relations based on their features. Patches are grouped by
performing a graph cut. This information is mapped to the
neighbourhood graph G to compute the final edge weight

wi j
t = αgi j

t +(1−α)li j
t , (5)

where li j
t = 0.9 if i and j belong to the same patch in P or

0.1 otherwise. In our experiments, we set α = 0.5.
Single input methods generate the most likely segmen-

tation from the observed scene. We instead improve upon
the initial segmentation by accumulating more data overtime.
The graph is preserved and the edge weights are updated by
inducing and observing motion.

B. Dense Optical Flow and Sparse Feature Tracking

The motion of the scene is monitored using a combination
of dense optical flow and sparse feature tracking. Dense
optical flow is determined for an RGB image by tracking

pixel gradients using the method of Farnebäck et al. [8]. This
assigns a flow vector to each pixel that is then projected
back to the point cloud. Regions occluded by the arm are
tracked by computing a Lucas Kanade (LK) [18] feature
for the corresponding pixels. When interaction is terminated
and the manipulator is removed from the scene, the sparse
features are matched to pixels in the final RGB image using
the pyramidal implementation of the LK feature tracker [3].
Additionally, if dense optical flow fails at any point during
interaction, LK features are computed from the previous
frame and added to the set of sparse features. These are also
matched to the scene when interaction stops. This addition
of tracking sparse points assists the overall flow estimation
because it is more robust to occlusions. It enables flow to be
computed for portions of the scene that become temporarily
occluded, for example, by the manipulator or other objects.
An example of dense optical flow for an intermediate frame
during interaction is shown in Fig. 4 (bottom row, third
from left). In Fig. 4 (bottom row, right) the image pixels
are coloured to distinguish the type of motion detection.
Red indicates dense optical flow, yellow indicates tracked
LK features and blue indicates the static scene (flow with
magnitude less than the octree resolution).

After interaction, the octree is updated with the final point
cloud and graph nodes are regenerated. All pixels that are
tracked during motion are used to estimate the flow for the
graph nodes. For each voxel represented by a graph node, the
voxel motion vector mi

t ⊆ R3 is computed by averaging the
flow vectors from each point that belonged to the voxel prior
to interaction. The new location of the voxel is computed
according to

pi
new = pi

t−1 +mi
t . (6)

The identity i at time t is determined as the voxel in V
nearest to pi

new.
In some cases, flow may have been corrupted and the

previous identity of a voxel cannot be found. These voxels
initialise nodes with no history.

C. Change Detection

Further robustness is achieved by detecting change in the
scene. In most cases, optical flow suffices to estimate object
motion. However, under strong occlusion, where pixels never
reappear, no history can be determined. Therefore, we also
compute the change for voxels (and neighbours of these
voxels) that do not have a valid flow vector assigned. Change
detection is performed at the end of interaction by comparing
the new values for the point centroid, normal and curvature
with the previous values. The magnitude of change for node
i at time t is given by

∆(i,zt) = 1− fp(pi
t ,p

i
t−1) fn(ni

t ,n
i
t−1) fc(ci

t ,c
i
t−1), (7)

where 0≤ ∆(i,zt)≤ 1 ∀i, t.
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Fig. 4: Example of motion analysis. Top: Initial scene, introduction of arm, snapshot of arm moving an object and arm
removed before next interaction. Bottom: Occluded regions on objects that initialise the set of LK features, arm identified
with spatial change detection, dense optical flow field and motion detection (successful dense optical flow in red, static in
blue, tracked LK features in yellow, invalid flow in white and background/ground unmodified).

D. Recursive Object Segmentation

The flow vectors computed in Sec. IV-B determine the
previous identity of each graph node at the previous time
instance (i.e., before the interaction). Correspondingly, neigh-
bouring nodes that were also neighbours before the interac-
tion will maintain their edge. This probability is updated
by Bayes’ rule where the new similarity probability is the
likelihood and the previous probability is the prior.

Consider an edge e(i, j) between two nodes i and j at time
t. Let the continuous random variable xi j denote the state
between two nodes in the graph i and j. The probability
of two nodes belonging to the same object given the RGB-
D measurements is expressed by the conditional probability
p(xi j|z0:t) where z0:t = {z0, . . . ,zt} is the history of measure-
ments. If these nodes have valid motion vectors and if the
edge exists at time t−1, then the nodes were also neighbours.
In this case, p(xi j|z0:t−1) is known, otherwise, the nodes were
not neighbours and the similarity probability is unknown,
therefore a uniform prior is assigned, i.e., p(xi j|z0:t−1) = 0.5.
The probability of any edge e(i, j) between nodes i and j at
time t given the history of measurements can be computed
according to Bayes’ rule

p(xi j|z0:t) =
p(xi j|z0:t−1)p(zt |xi j)

p(zt |z0:t−1)
, (8)

where p(xi j|z0:t−1) is the prior, p(zt |xi j) = wi j
t is the mea-

surement likelihood and the denominator is given by

p(zt |z0:t−1) =
∫

p(zt |xi j)p(xi j|z0:t−1)dx. (9)

The posterior maintains the total probability after many
point cloud inputs. Consequently, neighbouring nodes that
move along similar trajectories will recursively update their
similarity probability. On the other hand, nodes that become
neighbours but have no history are initialised with the
similarity probability of the most recent observation due to
the uniform prior.

The Bayesian updates require the integral in (9) to be
computed. To keep the updates tractable, we compute the
denominator with

p(zt |z0:t−1) ≈ p(zt |xi j)p(xi j|z0:t−1) +

p(zt |¬xi j)p(¬xi j|z0:t−1), (10)

where p(zt |¬xi j) = 1− p(zt |xi j) and p(¬xi j|z0:t−1) = 1−
p(xi j|z0:t−1). This approximates the random variable to a
discrete domain with two possible states xi j and ¬xi j.

Edges between nodes without a valid flow vector are
updated using the change detection. The prior probability
is computed as

p(xi j|z0:t−1) = min(0.5,min(∆(i,zt),∆( j,zt))) . (11)

When the magnitude of the change for both nodes is greater
than 0.5, the prior is set to the minimum change value and
the resulting posterior p(xi j|z0:t)> p(zt |xi j). The increase of
the posterior from the likelihood captures the fact that the
nodes likely moved but the optical flow failed. If neither or
both change magnitudes are less than 0.5, the prior is set to
a uniform probability, p(xi j|z0:t−1) = 0.5. Applying (8) gives
p(xi j|z0:t) = p(zt |xi j). Here, the magnitude of the change is
not sufficient to increase the similarity probability.

V. ACTIVE INTERACTIVE OBJECT SEGMENTATION

This section describes the active interaction approach for
improving object segmentation. The uncertainty from the
probabilistic segmentation is exploited to generate contact
points and directions where interaction is considered to be
most useful. During interaction the scene is monitored. The
robot gathers evidence in real time to determine if the con-
sequence of the planned action can assist the segmentation.
When sufficient data is collected, the action is terminated so
that the process can repeat.
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A. Action Determination

Determining the best push action first generates a set of
candidate pushes, then evaluates the quality of each push
and finally selects the push with the highest quality. Unlike
other methods that sample the action space, e.g., [26], our
set of candidate push actions is generated by the geometry
of the scene and it captures all possible stable actions.
Evaluating the actions exploits the uncertainty from the
probabilistic segmentation. The uncertainty provides very
informative cues about which regions of the scene are most
ambiguous and therefore which regions would most benefit
from interaction.

1) Action Candidate Generation: Neighbouring nodes are
clustered if their edges have high similarity probability as
well as if the nodes have similar normal vectors. Merging
nodes with high similarity attempts to group nodes into
reasonable object hypotheses. Enforcing nodes to have sim-
ilar normal vectors results in clusters with smooth surfaces,
which are more easily pushed than irregular surfaces.

The contact point for each cluster is computed as the
median of all points belonging to the nodes in the cluster.
Each candidate generates two potential push vectors in the
orthogonal directions to the normal of the surface represented
by the cluster. The initial set of push candidates is refined by
removing pushes that are perpendicular to the support plane
(e.g., floor or table). These push directions imply pushing
into or away from the fixed surface. Furthermore, candidates
are removed if they are not accessible by the manipulator.
This occurs if a collision free path to the contact point cannot
be found or if the contact point is beyond the reach of the
manipulator. The set of candidate push actions is denoted A .

2) Action Evaluation: Every candidate action a ∈ A is
evaluated by computing a score

s(a) =
H̄

dc +dθ +dm +Nc
. (12)

This assigns a high score to candidates with high entropy
(uncertainty) H̄ and divides the values by the distance to
the circumference of the clutter pile (dc), the length of the
chord from the contact point to the clutter pile circumference
(dθ ), the distance to the end effector (dm) and the number
of points in the point cloud in the immediate vicinity of
the cluster along the push direction (Nc). The entropy H̄
represents the uncertainty of the surrounding segmentation
of the cluster and it is computed by averaging the entropy
of the edges from every node within the cluster to every
node not in the cluster. The distance from the push contact
point to the circumference of the clutter pile dc and the
length of the chord from the contact point to the clutter
pile circumference dθ favour actions that are more likely
to singulate an object. Intuitively, an object is pushed further
away from other objects if it is near to the circumference
of the clutter pile and the push direction is short, i.e.,
towards the circumference and away from the centre of the
clutter. The distance to the end effector dm favours clusters
that are nearer for manipulation and therefore require less

motion. The number of points Nc represents the likelihood
of colliding the cluster into another object. This would be
counter productive for segmentation because objects should
ideally be pushed individually.

3) Action Selection: The best action is selected as the
push with the highest score. Formally, the selected action is
given by

a∗ = argmax
a∈A

s(a). (13)

B. Action Termination

During interaction the robot monitors the selected cluster.
The robot reasons about the impact the induced motion will
have on the subsequent segmentation quality and decides
to terminate the action if there is sufficient information to
confidently separate or merge parts of the scene.

Denote the set of neighbours to cluster c as N (c). During
the push, optical flow is computed for every pixel of c and
N (c). The optical flow is projected back to the point cloud
to generate a motion vector for each point in 3D and the
distance moved by each point is calculated. At each time
t, the average distance from the start location for every
point in the cluster is computed, denoted d̄c

t . Then for each
neighbouring node n ∈N (c) we compute the following

σn
t =

√
∑Nn

k=1(d
nk
t − d̄c

t )
2

Nn−1
, (14)

where dnk
t is the distance traveled by point k of neighbour n

that has total Nn points. Intuitively, this quantity is similar
to the standard deviation, but it is computed with the mean
value of the cluster. For this case, σn

t quantifies the amount
of variation with respect to the cluster. A low value means
that the distance travelled by neighbouring points is close to
the mean distance of the cluster. Consequently, the neighbour
has moved in a similar way as the cluster that was pushed
and the neighbour is likely to belong to the cluster. On the
other hand, a high value means that the distance travelled by
neighbouring points is spread over a wide range of values and
differ greatly to the average distance travelled by the cluster.
In this case, a significant portion of the neighbour has moved
differently to the pushed cluster and the components of the
neighbour likely belong to different objects.

Furthermore, the pushed cluster is monitored and the
variation of the distance of its points is measured with

σ c
t =

√
∑Nc

k=1(d
ck
t − d̄c

t )
2

Nc−1
, (15)

where dck
t is the travelled distance of point k with Nc points in

total. This is precisely the standard deviation: High variation
suggests that some parts of the cluster moved differently,
therefore, the parts may belong to different objects.

This gives rise to three termination criteria

∀n ∈N (c) d̄t
c > δ1∧σn

t < δ2, (16)
∃n ∈N (c) s.t. σn

t > δ3, (17)
σ c

t > δ4. (18)
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The first criterion (16) means that the cluster has moved
a significant distance δ1 and all neighbours have moved a
similar distance determined by the threshold δ2. The second
criterion (17) means that there is at least one neighbour that
has moved in a different manner to the cluster as determined
by the threshold δ3. The third criterion (18) means that the
cluster itself has accumulated a high amount of variation as
determined by the threshold δ4. In our experiments, we set
the values to δ1 to four times the voxel resolution and d2,d3,
and d4 are set to 0.5.

C. Arm Tracking

A major limitation of previous interactive segmentation
work is the confinement of studying pairs of RGB-D frames
or RGB images, where an observation is made before and
after individual fixed-length pushes. The reason is because
of the degradation of feature tracking algorithms caused by
occlusion created by the tool that moves the objects.

To increase robustness to the occlusion, the manipulator
of the robot is explicitly tracked during interaction. Before
objects are pushed, the manipulator is expected to be the only
moving object in the scene. The manipulator is identified by
using spatial change detection in 3D. Euclidean clustering is
then performed and the points belonging to the largest cluster
are considered the manipulator, smaller clusters are consid-
ered noise. Each point of the manipulator is continuously
tracked with dense optical flow and removed from the input
to avoid association of the arm to the scene. Furthermore, the
region of the scene occluded by the manipulator is identified.
The corresponding nodes initialise the set of sparse features
that are matched to the scene at the end of interaction once
the manipulator moves to a new position. Details of dense
and sparse tracking follows the procedure in Sec. IV-B.

An example of identifying the manipulator and tracking
occluded points is shown in Fig. 4. The manipulator is
detected (bottom row, second from left) and the occluded
voxels are determined in the initial frame (bottom row, left)
then matched to points in the final frame (bottom row, right).

Complex or fast motion may cause tracking failure. How-
ever, this method is sufficient for relatively short and slow
push actions. More sophisticated manipulator tracking and
removal, e.g., [6], could be implemented if necessary.

VI. EXPERIMENTS

This section presents results from experiments with clut-
tered scenes of objects. The first set of experiments demon-
strates the recursive probabilistic segmentation method to
correctly identify the ambiguous regions and compares the
segmentation accuracy against a static single input method.
The second set of experiments showcases the interaction
planning strategy by comparing performance against com-
peting methods.

A. Metrics and Ground Truth Generation

In order to evaluate our interactive segmentation approach,
the most likely segmentation is generated by performing

a graph cut on the neighbourhood graph [9]. For all ex-
periments, we set the cut threshold to 0.5. Segmentation
performance is measured by adapting the method in [21]
for point clouds. Each object from the segmented point
cloud is compared to the ground truth labelled objects. The
largest overlapping object is assigned to each ground truth
object. The precision is computed as the fraction of points
assigned to the ground truth object and the recall is the
fraction of points from the ground truth assigned to the
object. Precision and recall are combined to compute the F1
score, F1 = 2×precision× recall/(precision+ recall), which
is the harmonic mean between the two quantities.

Ground truth labelling is computed at the beginning and
end of each trial, no ground truth can be acquired for the
intermediate stages when multiple interactions are applied.
Ground truth segmentation is generated using the method
of [24]. We place (or remove, for the end scene) one object
at a time and record a point cloud. Scene differencing on
the depth data is run at each stage of the sequence to detect
the introduction (or loss) of an object. These points are
assigned a unique label. The final scene has one label for
the background and a unique label for each object.

B. Recursive Segmentation

The first set of experiments analyses our interactive seg-
mentation approach in comparison to single frame segmenta-
tion. As a benchmark, we choose the method of [22], which
will be referred to as static segmentation. A total of 10
cluttered scenes with two to eight objects were randomly
generated. Our interactive segmentation approach applied a
random number of pushes for each scene before terminating.

The precision, recall and F1 score for all object instances
are shown in Fig. 5. For interactive segmentation, the result
is computed from the graph cut output on the neighbourhood
graph after the final interaction. For static segmentation,
the results are generated by directly segmenting either the
final or initial point clouds. Fig. 5 shows that interactive
segmentation achieves a higher accuracy than static segmen-
tation and that the final scene is segmented more accurately
than the initial scene on average. This outcome highlights
two important aspects about interactive segmentation. Firstly,
intelligent induced motion improves accuracy for static
segmentation approaches. This is often due to the clutter
being dispersed and objects becoming singulated after being
pushed. Secondly, although the final scene is more easily
segmented, accumulating the information during a sequence
of interactions leads to an even further boost in performance.

In Fig. 6 we plot the difference in F1 score between
interactive and static segmentation on the final scene for
each trial. The F1 scores are computed by averaging the
scores of each object in the scene. This shows that most trials
(8/10) are segmented better when motion information is
incorporated. In two trials, interactive segmentation performs
worse than the benchmark. This can occur sometimes when
multiple large portions of the scene move together and
objects become under-segmented.

12



D
ra

ft

0 0.5 1
Recall

0

0.5

1

P
re

ci
si

on

F1 = 0.8043

Interaction

0 0.5 1
Recall

0

0.5

1

P
re

ci
si

on

F1 = 0.7606

Static (final)

0 0.5 1
Recall

0

0.5

1

P
re

ci
si

on

F1 = 0.7061

Static (initial)

Fig. 5: Precision and recall of all objects for 10 sets of randomly cluttered scenes of varying number of objects and applied
interactions. F1 score shown in bottom left corner. Left: Interactive segmentation. Middle: Static segmentation performed
on the final scene (after all interactions). Right: Static segmentation performed on the initial scene (before any interaction).

1 2 3 4 5 6 7 8 9 10
Trial

−0.05

0.00

0.05

0.10

0.15

0.20

D
iff

er
en

ce
in

av
er

ag
e

F1
sc

or
e

Fig. 6: Difference between segmentation accuracy for recur-
sive over static method for 10 trials (sorted highest to lowest).
Results for each trial is computed by averaging the F1 scores
of the individual objects in the scene. Average improvement
over all trials shown in red.

C. Action Selection

The second set of experiments evaluates the action selec-
tion strategy in comparison to other methods. In particular,
comparisons are made with our implementations of pushing
into concave corners [13], pushing along splitting planes [14]
and random action selection. In these experiments, three in-
teractions are made for each trial. Three trials are performed
for each approach with sets of objects increasing in number
from two to five. The segmentation accuracy for all trials is
summarised in Fig. 7.

The results show that segmentation accuracy declines
for all methods as clutter is increased (more objects are
introduced). However, the segmentation accuracy using un-
certainty to select actions declines at a slower rate. Segmen-
tation accuracy when applying actions that attempt to split
planes also remains almost constant but with lower accuracy
than using uncertainty. Pushing into concavities performs
well with few objects but suffers a significant performance
decrease when the number of objects increases. The random
strategy performs worst overall.

Intuitively, the methods of using uncertainty or splitting
planes tend to push flatter surfaces and therefore often push
a single object. Pushing into concavities does not consider
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Fig. 7: Segmentation accuracy for different action selection
strategies with increasing number of objects (clutter). Each
bar represents F1 score by averaging three separate trials.

the object hypotheses in the scene, consequently pushes
tend to slip between objects. This often leads to singulation
when the number of objects is small, but often leads to
subsequent collisions when the number of objects is large.
The collisions lead to difficult motions that result in incorrect
segmentation decisions, hence the decrease in performance
with five objects.

An example of action selection by each method is shown
in Fig. 8. The push proposed by disambiguating uncertainty
(white) targets a corner of a box. Corners can often be
ambiguous because the local structure lacks smoothness.
This is confirmed in the right of Fig. 8, which shows
the corresponding segmentation uncertainty, computed by
averaging the entropy of the edges for each node in the
neighbourhood graph. Pushing into concave corners (cyan)
often separates touching objects but this can sometimes be a
wasteful action when objects are already easily segmented.
Pushing along splitting planes (magenta) tries to confirm
if object hypotheses on the opposite side of a visual edge
belong together without considering the underlying segmen-
tation algorithm. Our method, on the other hand, directly
probes the scene where it is most ambiguous.
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Fig. 8: Left: Example of the push actions chosen by the dif-
ferent interactive segmentation strategies. Uncertainty shown
in white, splitting planes shown in magenta and concavities
shown in cyan. Right: Heat map (green to red) of entropy in
the neighbourhood graph, computed by averaging the entropy
of the edges extending from each node.

VII. CONCLUSION

We have presented a method for improving object segmen-
tation in clutter by directly interacting with the scene. Our
approach identifies the uncertainty of object segmentation
and selects actions that directly probe these regions in
order to resolve the ambiguity. Using our proposed active
approach, we are able to improve segmentation accuracy
in comparison to a static segmentation method as well as
maintain higher quality segmentation in cluttered scenes in
comparison to competing action selection strategies.

One limitation of our work is that the camera must remain
fixed. We intend to address this by incorporating SLAM or
visual odometry to allow the robot to move with its base. This
will permit a larger range of actions to be applied as well
as more information to be gathered from new view points.
We also plan to extend this to the problem of clearing piles
of clutter, whereby confident object segmentation from inter-
action will be an important behaviour to enable successful
recognition, pose estimation and grasping.
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