
Christian Zajc, BSc

Design and Implementation
of an IoT-Security Demonstrator

based on Contiki-OS

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Institute for Technical Informatics

Advisor: Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger
Dipl.-Ing. Dr.techn. Rainer Matischek (Infineon Technologies Austria AG)

Graz, November 2017

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present masters thesis.

Date Signature

III

Abstract

In the last years, Internet of Things (IoT) became more and more popular. The main
idea behind this technology is to improve the quality of life with intelligent devices, which
provide smart behaviors, for all individuals. Diverse IoT environments, which are not
recognized at first glance, are already distributed in products for homes. New products
commonly provide a Wireless Fidelity (WiFi) interface for a typical home application in
order to be able to connect the device to the Internet. With this opportunity the device
can already be controlled with a smartphone inside the home or also from outside with
the support of cloud services. Due to the increasing amount of these smart devices in our
everyday life, an adequate security level has to be provided since they already collect and
measure very sensitive data.

The sense for security is an important point in the IoT infrastructure. The usability of
security features in products has to be as simple as possible so everyone will use it, however
internally it still has to be complex to provide a high security level. This master thesis
focuses on improving smart home applications with security features. These security fea-
tures include the usage of hardware secured elements, hardware accelerated cryptographic
functions and Near Field Communication (NFC) technology. Hardware secured elements
in IoT devices provide the small nodes with hardware accelerated cryptographic functions
and secured memory to envision an appropriate security level. NFC technology is used to
improve the exchange of cryptographic keys between several IoT devices in a secured way.
The only requirement for the usage of NFC technology is a typical smartphone, which is
equipped with this technology. In addition to that, an Android application is developed in
order to demonstrate the simple usability of exchanging cryptographic keys in a secured
way by using Elliptic Curve Cryptography (ECC). This application can further be used
for receiving status information of IoT nodes and for controlling these nodes by using NFC
technology. Furthermore, the “Contiki Operating System (OS)” is used as base software
component on the IoT devices, which is enhanced by several software modules.

The result of this master thesis is a demonstrator for a smart home application with
enhanced security improvements. The smart home application is envisioned for making
each home smart, meaning that the IoT nodes are designed to extend the original devices
with intelligence. The communication between the IoT nodes is established with a radio
unit and communicates in the Industrial, Scientific and Medical (ISM) frequency band of
868 MHz. In general, this wireless communication falls in the category of Wireless Sensor
Networks (WSNs). Two end-user software platforms to control the smart home either
with a website or an Android application are provided for each single user.

V

Kurzfassung

In den letzten Jahren etablierte sich Internet of Things (IoT) in den verschiedensten An-
wendungsbereichen und wurde somit immer bekannter. Der Grundgedanke hinter dieser
neuen Technologie ist, die Lebensqualität der Menschen mittels intelligenten Geräten zu
verbessern. Bereits jetzt sind schon vielzählige IoT-Funktionalitäten in diversen Produk-
ten im Haushalt integriert, die auf den ersten Blick nicht zu erkennen sind. Neue Produkte
in diesen Bereichen beinhalten meistens ein Wireless Fidelity (WiFi)-Modul, welches ei-
ne Verbindung zum Internet herstellen kann. Damit können diese Geräte mittels eines
Smartphones bedient werden. Durch die steigende Anzahl an IoT-Geräten im Alltag muss
darauf geachtet werden, dass adäquate Sicherheitsmaßnahmen sichergestellt werden, denn
bereits heute messen und speichern diese Geräte eine Vielzahl an sensiblen Daten.

In einer IoT-Infrastruktur ist es deshalb wichtig, ein besonderes Augenmerk auf Sicher-
heit zu legen. Die Verwendung von sicherheitsrelevanten Features in den Produkten sollte
so einfach wie möglich gestaltet sein, damit jede Benutzerin bzw. jeder Benutzer diese
verwenden kann, und dennoch intern so komplex, dass damit ein hoher Sicherheitsle-
vel erreicht werden kann. Diese Masterarbeit fokussiert sich auf die Verbesserung einer
Smart Home-Anwendung mit sicherheitsrelevanten Funktionen. Diese Funktionen umfas-
sen die Verwendung von Hardware geschützten Elementen, hardwarebeschleunigten kryp-
tographischen Algorithmen und Near Field Communication (NFC). Hardware geschützte
Elemente werden in den IoT-Geräten verwendet, um kleine IoT-Knoten mittels kryp-
tographischer Algorithmen und geschützten Speicherplatzes zu erweitern. NFC kommt
zum sicheren und einfachen Austausch von kryptographischen Informationen für die Ver-
schlüsselungen zum Einsatz. Damit der Benutzer diesen Schlüsselaustausch durchführen
kann, wird lediglich ein Smartphone mit NFC-Funktion benötigt. Des Weiteren wird eine
Android-Anwendung entwickelt, in der ein einfacher Schlüsselaustausch mittels Elliptic
Curve Cryptography (ECC) durchgeführt werden kann. Mit dieser Anwendung können
zusätzlich Funktionen ausgeführt werden, die den Erhalt von Statusinformation und die
Steuerung der IoT-Geräte mittels NFC zur Verfügung stellen. Des Weiteren wird

”
Conti-

ki Operating System (OS)“ als Softwarebasis für die IoT-Knoten eingesetzt, welches mit
mehreren Software-Modulen erweitert wurde.

Das Ergebnis dieser Masterarbeit besteht aus einem Demonstrator für eine Smart
Home-Anwendung, welche mit sicherheitsrelevanten Funktionen erweitert wurde. Die
Smart Home-Anwendung ist so aufgebaut, dass jedes bestehende Gerät mittels des Ein-
satzes der entwickelten IoT-Knoten für IoT erweitert werden kann. Die Kommunikation
zwischen den IoT-Knoten ist durch ein Funkmodul sichergestellt, welches im Industrial,
Scientific and Medical (ISM) Frequenzband von 868 MHz arbeitet und sich somit in
den Bereich von Wireless Sensor Network (WSN) einordnen lässt. Für den Endbenutzer
stehen zwei unterschiedliche Software-Plattformen zur Verfügung, eine Webseite und eine
Android Anwendung.

VII

Acknowledgments

This master thesis was carried out at the Institute for Technical Informatics at the Tech-
nical University Graz. The practical part was executed at Infineon Technologies Austria
in Graz. At first, I want to seize the chance to thank all people who supported me during
the creation of the thesis and during my overall academic studies.

Especially, I would like to express my sincere gratitude to my supervisor Ass.Prof. Dipl.-
Ing. Dr.techn. Christian Steger and to my advisor Dipl.-Ing. Dr.techn. Rainer Matischek
for their continuous and professional support during the creation of this master thesis.
Their contributed valuable feedback during this thesis sustainable improved the quality
of the work. In addition, I want to thank all my colleagues at the “Cooperative Research
and Exploration” department of the Infineon Development Center Graz for their great
support and working atmosphere.

I also want to thank all my new friends, who I made during my time at the university, for
making it such a gorgeous time and for the great experiences. I consider it as an honor
to work with such an impressive and strong team of friends on a vast of projects and the
team spirit at preparations of exams.

Finally, I want to express my very profound gratitude to my family for their support and
patience during my studies, especially during the master thesis. I am very grateful for the
unconditional support of my parents, Roman and Sabine Zajc, for their words of advice
in difficult situations and financial support during my academic studies. They always
supported me in all life situations to enable everything for me. In addition, I also want
to thank my girlfriend, Elena Reich, for her support and patience. She helped me during
difficult times with sustaining words. Thank you!

Graz, November 2017 Christian Zajc

IX

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Outline . 2

2 Related Work 3

2.1 IoT (Internet of Things) . 3

2.2 WSN (Wireless Sensor Network) . 4

2.2.1 Topologies . 5

2.2.2 Sensor/Actuator Node . 5

2.2.3 Security Requirements and Common Attacks 6

2.3 Established Protocols . 9

2.3.1 ZigBee . 9

2.3.2 Z-Wave . 11

2.3.3 6LoWPAN . 13

2.3.4 BLE (Bluetooth Low Energy) . 16

2.4 Key Management . 18

2.4.1 Distributed Key Management Schemes 19

2.4.2 Centralized Key Management Schemes 21

2.5 Exemplary Smart Home Applications and Devices 23

2.5.1 Samsung SmartThings . 23

2.5.2 Philips Hue . 24

2.5.3 Atmel Smart Plug . 24

2.5.4 Nest . 25

2.6 Embedded OS . 25

2.6.1 Tiny OS . 26

2.6.2 Contiki OS . 26

2.6.3 RIOT . 26

2.7 NFC (Near Field Communication) . 27

2.7.1 Established Standards and Types . 27

2.8 Java Card OS . 28

2.8.1 Application Protocol Data Unit (APDU) Commands 28

2.9 Hardware Security Controller . 30

XI

XII CONTENTS

3 Design and Concept 33

3.1 Requirements . 33

3.1.1 Detailed Requirements Analysis . 34

3.2 System Architecture . 35

3.2.1 Topology . 35

3.2.2 WSN Communication Protocol . 36

3.2.3 WSN Frequency Band . 37

3.3 Use Cases . 37

3.3.1 Detailed Description of Use Cases 37

3.4 System Hardware Components . 39

3.4.1 Gateway . 39

3.4.2 IoT Nodes . 42

3.5 System Security Architecture . 47

3.5.1 Composition . 47

3.5.2 Key Management . 52

3.6 System Software Components . 58

3.6.1 Smartphone . 58

3.6.2 Embedded OS and Enhancements 60

3.6.3 Security Controller . 66

4 Implementation 69

4.1 Development . 69

4.1.1 Workflow . 69

4.1.2 Used Firmware/Software Development Environments 70

4.2 Modified/Redesigned Hardware Components 71

4.2.1 Gateway PCBs . 71

4.2.2 IoT Node . 74

4.3 Modified/Redesigned Software Components 79

4.3.1 Contiki OS . 79

4.3.2 Designed Website for Dynamic Node and Security Management . . . 90

4.3.3 Security Controller - Applet Development 92

4.3.4 Designed Android Application . 100

5 Results 105

5.1 Evaluation of Interacting Components . 105

5.1.1 Assembled Smart Home Demonstrator 105

5.1.2 Gateway with Security-Enhancements 106

5.1.3 Redesigned IoT nodes . 108

5.2 Evaluation of New Security Concept . 109

5.2.1 Payload Overhead due to Security Enhancements 110

5.3 Android Application Evaluation - Smart Home Security 111

5.3.1 Graphical User Interface (GUI) Design 111

5.3.2 Usability Analysis . 113

5.4 Evaluation of Website for Dynamic Device Management 115

CONTENTS XIII

6 Conclusion and Future Work 117
6.1 Conclusion . 117
6.2 Future Work . 118

Appendix A Acronyms 121

Bibliography 125

List of Figures

2.1 Typical infrastructure structure of a WSN network. 4
2.2 Illustration of various network topologies: Star, cluster, and mesh. 5
2.3 Composition of a typical WSN node. 6
2.4 Resulting state of an executed sinkhole attack inside a WSN. 8
2.5 Demonstration of a Sybil attack inside a WSN environment. 8
2.6 Network architecture of the communication stack of ZigBee. 10
2.7 Network architecture of the communication stack of Z-Wave. 12
2.8 Network architecture of the communication stack of 6LoWPAN. 14

3.1 Overall structure of the designed IoT environment for a smart home. 34
3.2 Hierarchical network structure concept for a smart home. 35
3.3 Mesh network structure concept for a smart home. 36
3.4 Use cases for IoT nodes communication in a smart home application. 38
3.5 Hardware concept of the gateway for the IoT environment. 39
3.6 Internal system architecture of XMC4500 from Infineon. 40
3.7 Internal architecture of SmartLEWIS - TDA5340. 42
3.8 System architecture of main board of designed IoT node. 43
3.9 Internal architecture of XMC1100 from Infineon. 44
3.10 Architecture concept of the extension board for a smart outlet. 45
3.11 Architecture concept of the extension board for a smart switch. 47
3.12 Encryption process of a CBC mode with usage of AES cipher. 49
3.13 MAC generation in CBC mode with the usage of AES cipher. 50
3.14 Functional diagram of an authenticated encryption process with ECIES. . . 51
3.15 State diagram of a secured pairing process between a node and a gateway. . 56
3.16 State diagram of a secured pairing process between two nodes. 57
3.17 Android application concept for the smart home application. 59
3.18 Basic file structure of Contiki OS. 60
3.19 Basic state diagram of the workflows of the gateway. 62
3.20 Basic state diagram of the workflow for a standard IoT node. 63
3.21 Example JSON file format for an IoT device with three sensors. 65

4.1 Evaluation kit XMC4500 Relax Kit from Infineon. 72
4.2 Development board with TDA5340 for XMC4500 Relax Kit. 73
4.3 System architecture of add-on shield for security controller. 74
4.4 Implemented architecture of the basic board for an IoT node. 75
4.5 Implemented hardware architecture for a smart outlet extension board. . . 77

XV

XVI LIST OF FIGURES

4.6 Implemented hardware architecture for a smart switch extension board. . . 79
4.7 Network stack configuration in Contiki OS for IoT environment. 81
4.8 Flow chart of processed tasks of the UDP server process. 82
4.9 Flow chart of external interrupt process for NFC trigger signal. 83
4.10 Flow chart of the common process inside the gateway application. 84
4.11 Flow chart depicts the actions of the UDP send process. 85
4.12 Scheduling scheme for all established processes on the gateway. 86
4.13 Flow chart of the sensor process inside the gateway application. 88
4.14 Flow chart for operational task of the UDP client process. 89
4.15 Storage mapping for paired key information inside the security controller. . 100
4.16 State diagram of main activity in Android. 101
4.17 State diagram of verifying session keys in the Android application. 102
4.18 State diagram of processing and transmitting control commands. 102
4.19 State diagram of pairing process between a node and a gateway. 103
4.20 State diagram inside the Android application for pairing two IoT nodes. . . 104

5.1 Setup of the entire implemented secured smart home application. 106
5.2 Resulted hardware construction of the gateway for the IoT environment. . . 106
5.3 Misbehavior of the power management unit for the security controller. . . . 107
5.4 Implemented IoT node platform in form of a PCB. 108
5.5 Implemented security concept for the secured smart home application. . . . 110
5.6 Android application appearance in main activity view. 111
5.7 Android application appearance with different scanned IoT devices. 112
5.8 Android application appearance in pairing process view. 113
5.9 Android application appearance in sending a control command. 114
5.10 Illustration of the implemented website. 115

List of Tables

2.1 APDU command composition with all available header fields. 28
2.2 APDU command response composition. 30

3.1 Security comparison of various algorithm-key size combinations. 49
3.2 Detailed overview of distributed keys on various IoT devices. 55
3.3 Overview of the designed generic message header. 64
3.4 Payload header construction is conducted in two different versions. 64
3.5 Each sensor value is embedded in such a “sensorInfo” structure. 65

4.1 AJAX commands for enabling a dynamic exchange of content data. 91
4.2 Complete APDU command structure. 93
4.3 Additionally defined error codes beside the standard APDU ones. 100

5.1 Resulting payload length for one encrypted message block. 110

XVII

Chapter 1

Introduction

In recent years, Internet of Things (IoT) devices are becoming more and more popular in
different areas. Typical fields of application are smart homes, health care, wearable devices,
parking infrastructure, general public infrastructure and so on. A prediction of the amount
of IoT devices by 2030 is estimated at 125 billion of installed devices [1]. One of the typical
fields of application is smart homes or rather home automation, in order to introduce an
increased usage of IoT devices. Generally, IoT applications either measure, monitor, or
control multiplicity of parameters inside a smart home. These parameters cover in general
following areas: monitoring air quality including temperature and humidity, controlling
lights, managing door locks, controlling blinds, controlling diversity of electronic devices
and similar actions. The introduction of smart devices inside a home or other places should
increase the quality of life. In addition to the smartness, operational costs inside the field
of application can also be reduced because the interconnectivity of several devices enables
controlling procedures in smart and intelligent way.

1.1 Motivation

In consequence of increasing the number of deployed IoT devices in various fields of ap-
plication, it is necessary to protect the privacy of each human who interacts with these
devices. In the near future, each device inside a typical home will be connected to an
IoT infrastructure. Each device generates a wide variation of sensitive data. With all this
collected data, a central control unit can extract special features to control the connected
devices in an intelligent interconnection with the combination of several devices.

In most IoT devices the importance of security issues are underestimated. Either they
have a lightweight security architecture or they are not dealing with these topics. This
master thesis is intended to provide security features for protecting the communication
between exemplary IoT devices with an adequate security level. The security level and im-
plemented security mechanism should be evaluated on their complexity and the possibility
to implement the features on small embedded devices.

An additional perspective in the motivation of this work is to provide a simple way for
the end-user to use security features in an IoT environment without having a deep under-
standing for the security topic. The reason for simplifying this procedure is that end-users
only want to activate additional security features, when these steps are simple to proceed

1

2 CHAPTER 1. INTRODUCTION

and do not cost a lot of time. If the end-user struggles with the activation, then the
security features will most probably not be used. Therefore, the usability of the process of
activating security features should also kept in mind in the design process to be as simple
as possible.

1.2 Objectives

The focus is lead on the development and implementation of a secured smart home ap-
plication. The smart home application should be constructed with several IoT nodes,
which extends the functionality of typical devices in a home such as outlets and switches.
The process of extending typical devices introduces smartness to the objects. The main
objectives of this thesis are to introduce a secured environment, which implies the encryp-
tion of all communication channels between the devices. An important point of applying
security to the devices is the exchange of cryptographic keys in a deployed environment.
Therefore, focus should be on using hardware secured elements with the support of Near
Field Communication (NFC) technology to exchange the keys. The main activities and
outcomes can be categorized into following points:

• State-of-the-art research of current IoT environments and technologies

• Develop and extend a smart home application with security improvements

• Improve the usability of the process of pairing between devices through the support
of NFC technology

• Develop corresponding exemplary end-user software (website, Android application)

• Usage of hardware secured elements to secure the nodes also on low level

The outcome of this work is a demonstrator, which is demonstrating a typical smart
home application. The importance of this smart home application is to provide a secured
environment within the IoT devices. An additional key feature of this work should be to
use NFC technology to exchange the cryptographic keys before the devices operates inside
the IoT infrastructure.

1.3 Outline

Chapter 2 starts with a theoretical research of the master thesis and contains the investi-
gations of the state-of-the-art products of the IoT environment. In addition, this Chapter
also discusses topics of general Wireless Sensor Networks (WSNs), key management sys-
tems, typical network protocols for IoT environments and products on the market with
focus on security flaws. Next, Chapter 3 describes the concept and design process of a
secured smart home application. After the concept phase, Chapter 4 contains detailed
information of the implementation of the previously described concept. Chapter 5 focuses
on the resulted demonstrator for the smart home application with focus on a secured key
exchange between the IoT devices. This chapter describes the resulting applications and
the usability of providing a secured environment. At last, Chapter 6 summarizes the entire
master thesis and provides a future outlook of possible enhancements.

Chapter 2

Related Work

This chapter provides an overall overview of the literature for the main topics, IoT and
WSNs. At the beginning, the literature review focuses on the different environments
of IoT and WSNs. After these topics, the state-of-the-art communication protocols are
investigated in detail with their security flaws and possible attacks. Next, some basic key
management concepts are described for miscellaneous network architectures. Finally, this
chapter includes subjects about common products on the market, embedded Operating
Systems (OSs), NFC, Java Card, and hardware security controller.

2.1 IoT (Internet of Things)

Nowadays, the modern term of IoT is commonly not only used in the field of wireless
applications, but has a wide variation of definitions in the literature. The recap of these
various definitions leads to the conclusion that IoT is not only one big technology but rather
a combination of diverse technologies [2]. The process of combining various technologies
follows one main goal. This goal has the task to enhance each device with smartness,
inside a special environment, for example in a home, parking area, industry, or similar.
In this context, the smartness means to establish a communication between all devices
in order to process additional information and to make cross-device dependencies. With
this additional information it is possible to interact with other devices and to control
processes with services like IF-This-Then-That. Consequently with this service, an opened
window can deactivate, for example, an air conditioner. However, to cope with a lot of
various devices it is necessary to combine a wide spread of miscellaneous technologies like
NFC, WSN with sensor or actuator nodes, Wireless Fidelity (WiFi), Ethernet, Internet
connectivity, and similar technologies in an IoT environment.

An example for a smart integration, in a real life application, is to introduce smartness
in a typical home. Each device inside a home can be extended with intelligent modules,
which measures special variables of the environment. These variables can be parameters
like temperature, power consumption, and object status. Consequently, each light bulb or
outlet can be switched on and off by several other devices, which have the permission to
do so. Additional devices like fridge, washing machine, heating, air conditioner and much
more can be connected together to combine their added intelligence to reduce operational
cost through the usage of an IF-This-Then-That logic. The smart control of processes are

3

4 CHAPTER 2. RELATED WORK

possible through the additional knowledge of various parameters.

Typical fields of application for an IoT environment are currently located in transportation
and logistics, health care, smart environments, personal and social, and much more. A
literature review of Atzori, Iera, and Morabito [3] provides an overall overview of these
fields of application and focuses in detail on topics of security and privacy concerns.

As previously mentioned, IoT applications sometimes use WSNs to establish a wireless
interconnection between devices. Especially, a WSN is used for connecting several nodes
together inside a specified environment with advantage of low-power constraints. The
usage of WSNs inside an IoT architecture implies to translate the used WSN protocols
into an IoT preferred one. This translation is necessary to transmit data from a low-power
environment into the big world of the Internet.

2.2 WSN (Wireless Sensor Network)

A WSN consists of a large number of sensor nodes, which are interconnected via a wireless
radio protocol. These sensor nodes are densely deployed over a specified area of interest.
WSNs are typically used for monitoring physical or environmental conditions. The fields
of application are wide spread from home automation, environmental monitoring, over
health care up to military applications. In the scope of home automation is one target
to make life better and smarter. Another important field of application is health care
because in this field WSNs can make it possible to monitor patients in a less invasive way.
Most applications have the target to reduce costs, in relation to adopt dynamical system
artefacts to their present requirements. For example, street lights are only switched on and
off at the position where a passenger currently walks. The amount of fields of application
is very high, due to the fact that a wireless system can be easily deployed at many various
places with low operational costs.

Figure 2.1 illustrates a typical structure of a WSN with several sensor nodes, routers and
finally a gateway. The topology of some architectures requires the usage of routers, which
extends the communication range between nodes. The gateway works as translation unit
between the WSN and other networks.

Figure 2.1: Typical structure of a WSN with several sensor nodes, routers, and a gateway.

2.2. WSN (Wireless Sensor Network) 5

2.2.1 Topologies

A common WSN architecture consists of several sensor nodes and one central base station.
The base station is frequently named gateway and receives all data from the nodes in the
established network. Additionally, the gateway works as linking unit between computers
and the sensor world. The communication topology can be organized in three main types:
Star, Tree, and Mesh [4]. The star topology has one central gateway, which communicates
with all sensor nodes. In a cluster tree network each node communicates to his parent node,
until the message reaches the gateway. The most flexible and reliable network topology is
the mesh network because in this topology each sensor node can communicate with each
other for passing data through the network. Figure 2.2 depicts the three different network
topologies.

(a) Star (b) Cluster Tree (c) Mesh

Figure 2.2: This combination of figures demonstrates the three different network topolo-
gies for a common WSN. The round, orange objects visualizes nodes and the blue objects
are gateways.

2.2.2 Sensor/Actuator Node

A sensor/actuator node contains several technical components in order to perform in a
WSN. Such a node can operate as a measurement unit or also as a controlling unit.
Figure 2.3 depicts the most common components of a sensor/actuator node. These com-
ponents are a power management unit, a microcontroller, interfaces to sensors/actuators,
and a radio unit. The sensor interface measures or actuates in the physical environment,
and typically measurement units are humidity, temperature, pressure, and sound. A com-
mon use case for a sensor node is to operate during a long time with only one battery
charge. Due to this specification of low-power, the power management unit has to provide
several energy-saving possibilities. In order to reach a long operation, each component of
the node has to be improved to consume as little energy as needed. Another specializa-
tion of WSN nodes are the tiny building sizes of the complete architecture. The power
management unit can be designed in a way to operate only with a normal battery or by
using energy harvesting methods, which can extend dramatically the operating time [5].

6 CHAPTER 2. RELATED WORK

Figure 2.3: Main components of a typical sensor/actuator node in a WSN environment.

2.2.3 Security Requirements and Common Attacks

Security, in a WSN, is important to protect transmitted data over the wireless communica-
tion channel. The reason for this procedure is that in some applications, like in health care,
transmitted sensitive information of the monitored patient and only authorized individu-
als should have access to these data. Adding security functions to the system introduces
new cost factors like increasing execution time and memory storage. In connection with
these factors, power consumption of the overall architecture increases. The new resulting
energy consumption is in opposition to a long battery lifetime. As a result, it requires to
make compromises between security integration and sensor nodes specifications (energy
restrictions, processing power, ...) [6].

Security aware protocols should be designed to take care of different security attributes.
These security attributes are among other things: confidentiality, authenticity, integrity,
availability, non-repudiation, freshness, forward secrecy, and backward secrecy.

Confidentiality

Confidentiality is one of the fundamental security services, and keeps the privacy of trans-
mitted data packages among sensor nodes. A common way to support confidentiality
is to encrypt sensitive data before transmitting them to other nodes. Subsequently, the
receiving node has to decrypt the received message in order to get the plaintext.

Authenticity

Every node should be able to verify if the received message was send by a trusted sender or
not. The process of authentication usually involves several proofs of identity. This proof
could be established by knowing a secret information like a password.

Integrity

The integrity of security assures that the transmitted data was not manipulated during
transportation. For the detection of manipulated data packages is created a Cyclic Re-
dundancy Check (CRC) value, which is additionally encrypted with a cryptographic key.

2.2. WSN (Wireless Sensor Network) 7

After the creation, the data will be transmitted with the encrypted CRC value. The re-
ceiver decrypts the attached encrypted CRC value and compares it with the calculated
CRC value. If these two values are not equal, the transmission was manipulated.

Availability

A WSN should be available all the time under normal operation conditions. An attacker
could try to change this operation by compromising the network in order to reduce the
performance. The worst case of this attack would be a denial of service. This situation
occurs when the attacker interferes the radio or disturbs the network protocol.

Security Attacks

A normal WSN provides several channels, which can be used to attack the complete
network infrastructure. A WSN is more vulnerable to attacks than other architectures
because of the wireless communication unit and their restricted usage of resources. In
general, attacks can be classified as active or passive attacks [7]. Passive attacks are not
as harmful as active ones because they are only monitoring and listening to the commu-
nication channel. Active attacks are more dangerous to a WSN because the intention of
an attacker is also to modify messages or to harm the entire transportation.

Some of common active attacks are [8]:

a) Denial of Service (DoS) attack
A DoS attack is caused by disturbing the radio communication at the specified
frequency. During this attack a normal communication between the affected nodes is
not possible. One defense solution would be to use a spread-spectrum communication
[9]. This solution is usually restricted by the use of only simple radio units, due to
the limited resources of low-power and small construction size.

b) Battery Drainage
This attack attempts to keep the sensor nodes awake in order to waste their energy
storage. After some time of the attack, the sensor nodes exhaust their entire energy
reserves and the devices stop to work. This kind of attack belongs to the DoS group
and is called Denial of Sleep [10].

c) Collision Attack
Another way to disturb the communication of nodes is to perform signal collisions
in the network. This means that the attacker listens to the entire communication
and interferes the signal with it’s own. Only few changes, some bits of the message,
in the communication are enough to produce errors or completely damage the entire
message. This attack is better than a DoS attack because this attack affects the com-
munication immediately and not when the battery storages are empty. In addition,
this attack is hard to detect because to recognize the malicious device is a complex
mechanism. A countermeasure for this attack would be to use error-correcting codes
but these procedures add extra overhead to the transmission. Consequently, the
general power consumption increases [9].

8 CHAPTER 2. RELATED WORK

d) Sinkhole Attack
The attacker of a sinkhole attack attempts to attract all the traffic from the nearby
nodes in order to redirect the transmitted messages. The main idea of this attack is
that the compromised node listens for the request of route information from other
nodes and it responds to the request with false route information [11]. The outcome
of this attack is that the communication inside the WSN is not working properly any
more. Figure 2.4 shows the impact of this attack, which mainly exploits the routing
algorithm to harm the communication between the nodes.

Figure 2.4: This Figure shows the impact of a successfully executed sinkhole at-
tack with several nodes. The attacked node attracts all communications to itself.
Illustration based on [8].

e) Sybil Attack
In a Sybil attack the attacker owns multiple identities. These identities can be stolen
from other nodes or the attacker fabricates new identities [12]. A malicious node
with multiple identities is then called Sybil node. The consequence of this attack is
to harm significantly the routing protocol. Besides the changed routing information,
the routing tables are saturated in the nodes with incorrect information. The result
of such an attack is depicted in Figure 2.5.

Figure 2.5: This Figure demonstrates the result of a Sybil attack in a WSN. Node
C represents the attacked node and has stolen the identities of the nodes A and B.
Illustration based on [8].

2.3. ESTABLISHED PROTOCOLS 9

2.3 Established Protocols

For an IoT or WSN environment, it is essential to have a proper communication protocol,
which meets the required properties. These properties define in general the communication
topology, used addressing method, energy consumption, and security features. Due to the
large amount of various characteristics exists different protocol standards on the market.
The next section focuses on some commonly used protocol standards: ZigBee, Z-Wave,
IPv6 over Low Power Wireless Personal Area Network (6LoWPAN), and Bluetooth Low
Energy (BLE).

2.3.1 ZigBee

The first release of ZigBee was in the year 2004. The specification was developed by the
ZigBee-Alliance [13], which is an association of approximately 400 companies. There are
already several released versions of ZigBee. ZigBee is mostly used in the application field
of home entertainment and home automation. In addition, the standard is also popular in
the usage of industrial controlling applications, smoke detectors, in WSN solutions, and
much more.

List of available version:

• ZigBee2004 specification [14]

• ZigBee2006 specification (Cluster Library) [15]

• ZigBee2007 specification (ZigBee PRO) [16]

Properties

ZigBee is developed to contribute in a WSN with the characteristic to be a low-cost, low-
power, and a wireless network standard. ZigBee modules are typically a full integrated
chip with radio unit and microcontroller. ZigBee can be used on the Industrial, Scientific
and Medical (ISM) frequency band on the frequencies of 2.4 GHz and on the country
specified official ISM band. In China is the authorized frequency at 784 MHz, in Europe
at 868 MHz, and in the USA at 915 MHz.

Inside the network of ZigBee can be used three different network topologies for enabling
the network infrastructure. These topologies are: star, tree, and mesh networking. In-
side the network topologies is a coordinator device, which is responsible for controlling
and managing the complete network infrastructure. The final location of the coordinator
depends on the used topology. Each device can be chosen inside the network to be re-
sponsible for these tasks. The complete network stack is built on the top of the physical
layer and the Media Access Control (MAC) of IEEE 802.15.4 [17]. Figure 2.6 illustrates
the complete network stack construction of the ZigBee standard.

10 CHAPTER 2. RELATED WORK

Figure 2.6: Network architecture of the communication stack of ZigBee.

The protocol standard is additionally grouped in several profiles. Each profile is defined
for a special field of application. Some defined profiles are for example Home Automation,
Smart Energy, Health Care, Light Link, and etc. Profile of this list defines exactly the pro-
cess of usage and the set of available command structures. This standardization in profiles
makes it possible to communicate with miscellaneous ZigBee devices of different manufac-
turers because of the detailed specification of the available command set. Consequently,
a light switch of one manufacturer can control the light bulb of a different manufacturer
without translating the commands to another protocol.

At each new ZigBee specifications are added continuously more features to the standard-
ization and additionally improves the usability as well as the security.

Security

The security features are based on the security framework of IEEE 802.15.4. Therefore, it
provides a secured communication relaying on a symmetric cryptographic algorithms like
an Advanced Encryption Standard (AES) cipher with 128-bit.

The key distribution is one of the key procedures to provide an adequate security level. In
previous versions of ZigBee, new cryptographic keys encrypted with the global master key
or completely in plaintext were transmitted. This master key is stored in the hardware
module and protected from being changed because all devices inside a specific profile
require the same initial key. After some time, the master key was figured out by someone
and through the knowledge of the master key the security has been compromised.

The countermeasure for this procedure was the introduction of a new security architecture
for new versions of ZigBee. In the new security standard is requested a trusted center,
which coordinates the other nodes and guides the key exchange in a secured way. The
complete ZigBee architecture is split into several levels, which is secured by various crypto-
graphic keys: Master key, Link key, and network key. Further, the network is categorized
into two types, namely in a standard application and in a high security application. These
two categorizations are protected on the same way but are independently handled. A big
change in the process of pairing is the introduction of authentication of new ZigBee nodes
before they can be integrated into the existing network infrastructure. The overall security
architecture is described in [18].

2.3. ESTABLISHED PROTOCOLS 11

Recent Attacks

Recently some attacks are known to harm ZigBee, in order to disturb the communication
or send manipulated data messages. One attack is a DoS attack, where the attacker
sends data packets to the desired nodes periodically [19]. These data packets set the
frame counter value to the maximum number and the payload is randomly chosen, which
corresponds to an encrypted message. The node tries to encrypt the received message to a
meaningless plaintext and sets the internal frame counter reference value to the maximum
number. The result by accepting this message is that now all further received messages
are rejected from other nodes with a legitimate frame counter value because the included
frame counter will be lower than the internally reference value. Consequently, the network
infrastructure is disturbed and the battery level is as well drained, due to the amount of
retries in message transmission. This attack is only possible when the node does not verify
the encrypted payload with a Message Authentication Code (MAC) value.

In the scientific work two possible attacks on ZigBee devices are presented [19]. The first
attack is called ZigBee End-Device Sabotage attack. The main tasks of this attack are to
impersonate the ZigBee router or coordinator and send continuous broadcast messages to
the nodes. Due to the broadcast messages, the nodes will remain in the active state and
consume more energy than in sleeping mode. The consequence of this attack is that the
nodes run out of power and consequently produce power failures. In worst case, the node
provides unauthorized openings.

The second attack is discussed in [19] and performs sniffing attacks on the network key. In
older versions of ZigBee it is possible to transmit the network key unencrypted over-the-air
to the devices by using the standard security level. For the execution of this attack, only
a ZigBee enabled transceiver device is required, which can be listen to the entire network
communication. With the support of special software, it is able to visualize the sniffed
network stream and to display the messages in a human readable way. In the variety of
received messages, it is possible to extract the unencrypted network key.

2.3.2 Z-Wave

Z-Wave [20] is another wireless protocol for WSN applications. Z-Wave was evolved by
Zensys and was confirmed by the Z-Wave Alliance [21]. This protocol standard is de-
signed for home automation and commercial environments. For the application field of
home automation, there are already a lot of different products available on the market
which enable the functionality of controlling lights, air conditioner, oven, television, home
security, and much more.

Properties

The Z Wave network is comprised of a mesh network architecture. The mesh network
enables each node to communicate with other nodes on a shortest path. Before a new
Z-Wave device can operate in the network it has to be paired with a controller by pressing
a sequence of buttons.

Each established Z-Wave network has an own home IDentification (ID) and all included
devices inside the network are additionally identified by a node ID. The home ID consists

12 CHAPTER 2. RELATED WORK

of 4 bytes and the node ID consists of 1 byte. Some node IDs are reserved for internal
communication and special functions. Consequently, one home ID can operate a maximum
of 232 Z-Wave devices. Nodes with different home IDs are not able to communicate with
each other because different home IDs are isolated from each other.

Z-Wave devices operate in the unlicensed frequency bands of the ISM standardization.
The exact used frequency depends on the published country because in each country or
continent are defined different carrier frequencies. Z-Wave avoids particularly the crowded
2.4 GHz carrier frequency and is consequently more robust and reliable than a lot of other
communication participants with different technologies like WiFi and BLE.

A list of typical carrier frequencies are listed below:

• Europe: 868.42 / 869.85 MHz

• United States: 908.4 / 916 MHz

• China: 868.4 MHz

The communication protocol of Z-Wave is constructed on the top of the ITU-T G.9959
standardization [22]. The detailed network architecture is illustrated in Figure 2.7.

Figure 2.7: Network architecture of the communication stack of Z-Wave.

Security

The security model of the Z-Wave protocol provides several security levels. The first
versions of the protocol supported the security enhancements of enabling AES encryption
with 128 bits. In the current point of view, the key agreement process is obsolete due
to the reason that there already exists some common known security attacks, which are
described in the subsection “Attacks” of Section 2.3.2.

Due to the founded security flaws, Z-Wave Alliance developed a new standardization and
introduces a new S2 security solution [23]. The Z-Wave S2 Security introduces three differ-
ent security levels: S2 Access Control, S2 Authenticated, and S2 Unauthenticated. Each
security level has a unique network key. The highest security level exists in the S2 Access

2.3. ESTABLISHED PROTOCOLS 13

Control. For exchanging network keys, a temporary Elliptic Curve Diffie-Hellman (ECDH)
key is used for processing the key exchange. The S2 security combines authentication and
nonce scrambling to ensure a high security level. Another security feature in the pairing
process of devices is authentication, which means that each device has to be verified by its
local existence in the area of the network. In detail, a joining node needs to be verified by
a Device-Specific Key (DSK) string of decimal digits. This DSK can be read visually or
scanned as a Quick Response (QR) code. The DSK is the first part of the ECDH public
key of the joining node.

Recent Attacks

In the Z-Wave protocol, there exist attacks which exploit vulnerabilities of the protocol
standard and faults in firmware implementations. One approach is to use the Radio
Frequency (RF) channel to inject packages to an existing Z-Wave network. Fouladi and
Ghanoun [24] demonstrated one of the first public attacks on the Z-Wave protocol. They
attacked a door lock with Z-Wave protocol and discovered an implementation error that
allows one to reset the established network key. In the first stage, the packages have to be
captured to receive the Home ID of the controller and the desired Node ID. After this, the
network key can be reset to any known key. The result of this attack is that the attacker
is able to take over the door lock. Consequently, the attacker can open or close the door
lock whenever they want. This vulnerability is not directly related to the protocol because
the error was in the additional developed firmware of the Wave door lock. Nevertheless,
this attack illustrates that a wrong usage of the required key exchange can lead to a big
security gap.

Another vulnerability was discovered with the Scapy-Radio project [25]. The Scapy-Radio
project combines Scapy with the gnuRadio software on a Software-Defined Radio (SDR).
This software enables the possibility to capture the wireless network traffic and to replay
packets to the network. In the first stage of this project, the traffic of a Z-Wave enabled
alarm system is captured. During the process of analyzing the transmitted packets, the
ON and OFF command is not changed in the Z-Wave network. With this information, it
is possible to intercept the connection to an alarm device and subsequently inject an OFF
command to the alarm system. The consequence of this attack is that the alarm system
can be disabled by injecting previously captured data packets. The attack was possible
due to the usage of a low security level.

2.3.3 6LoWPAN

6LoWPAN is a developed standard from the Internet Engineering Task Force (IETF). The
fundamental idea of this standard is to bring the Internet Protocol Version 6 (IPv6) to
small and low-power sensor nodes, which are designed for WSNs, and to be able operate in
a large IoT environment. One benefit of this protocol standard is the process of addressing
connected devices because through the ported version of IPv6 it is possible to connect a
WSN to the standard IPv6 network inside an existing infrastructure [26]. In general,
this procedure simplifies the connectivity model of the the entire IoT infrastructure. In
some use cases, border routers are required, which are used for translating between diverse
physical communications layer without changing the process of addressing. Furthermore,

14 CHAPTER 2. RELATED WORK

6LoWPAN is an adapted standard of IPv6, in order to be able to transmit packets over
the IEEE 802.15.4 physical layer standard. In recent literature reviews are also attempt
to use other physical layers like BLE for the 6LoWPAN communication stack. Another
advantage of 6LoWPAN protocol is that the usage of the standardization is royalty-free.

Properties

In 6LoWPAN, two types of network topologies are supported: star, and mesh topology.
Inside of a star topology, all nodes require a communication channel to the coordinator
in order to forward messages to the final receiver. The advantage in the mesh topology
is that each node can send the messages directly to the other nodes by using low-power
routing protocols.

Figure 2.8 depicts the entire architecture of the communication stack of 6LoWPAN. As the
Figures illustrates, the application layer is not directly specified. This option leads to the
fact that for each node several applications can be implemented, which are tailored to their
requirements. The typical sockets provided in the transportation layer are as follows: User
Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Internet Control
Message Protocol (ICMP). In IoT applications UDP sockets are typically used, due to
performance reasons because UDP sockets have less overhead in comparison to TCP.
These layers correspond with the Open Systems Interconnection Model (OSI-Model) [27].

Figure 2.8: Network architecture of the communication stack of 6LoWPAN.

In the network layer, the process of routing messages to the available nodes is also defined.
Two approaches are specified: IPv6 neighbor discovery, and Routing Protocol for Low-
Power and Lossy Networks (RPL). The used routing protocol is not completely specified
for all networks, therefore to be able to connect into the existing IoT environment with
6LoWPAN, it is required to know the used routing protocol.

In order to be able to handle the big IPv6 headers in a low-power environment, several
features in the header construction are implemented. These headers are Dispatch Header,
Mesh Header, Fragmentation Header, and a header compression functionality. For each
activated functionality like mesh and fragmentation, there is a reduction in the maximum
transportable payload size by the additional size for the headers.

2.3. ESTABLISHED PROTOCOLS 15

Security

The communication has to be secured inside a 6LoWPAN network in order to exchange
data in a trusted way. The network standardization provides several techniques to ensure
a secured environment. These implemented techniques have the task to provide at least
the authentication of the sender, confidentiality of data, integrity of the frame, and the
network availability [28]. These properties can be archived by enhancing the various layers
of the network stack with security features. Convenient layers are the link layer, network
layer, or the application layer.

The first entry point of integrating security is to introduce a link layer encryption. IEEE
802.15.4 has already implemented security features, which provides data encryption and
authentication. For the encryption process several security architectures are provisioned.
One of them is AES in Cipher Block Chaining (CBC) mode including MAC authentication
with a key length of 128 bits. The procedure of exchanging cryptographic keys between
participants is not specified in the specification.

The network layer provides the possibility to enable the IPsec [29] protocol. The IPsec
protocol secures each Internet Protocol (IP) packet by encryption and authentication.
The advantage of IPsec is the provided functionality of establishing an end-to-end security
channel between various devices. For 6LoWPAN a compressed IPsec standardization is
designed, which is stated in [30]. Another benefit of the enhanced security in the network
layer is that the communication of each application is secured automatically. IPsec uses
two different modes for operation: transport and tunnel mode. In the transport mode, are
only encrypted and authenticated the IP packet [28]. In this mode the routing protocol is
not protected. In tunnel mode the entire IP packet is encrypted and authenticated, which
encapsulate the original IP packet into a new one.

In the application layer, several approaches are available to provide security enhancements
in the connection to other participants inside the network.

Recent Attacks

A pure 6LoWPAN protocol stack is vulnerable against several attacks. The literature
review of attacks in 6LoWPAN networks showed that attacks are possible in the process
of RPL, packet fragmentation, denial-of-services, and much more.

The work of Hummen, Hiller, Wirtz, et al. [31] describe an attack on the fragmentation
process in the 6LoWPAN network. The attack uses the fragmentation in combination
of routing mechanism to deny the correct processing of legitimate fragmented packets.
The attacker has several scenarios on how to exploit the usability of fragmented data
packets. In the first one, a transmitted fragment is duplicated inside the network by
sniffing and retransmitting the packet by the attacker. The receiver node receives both
data fragments: the original, and the duplicated one. At this moment it is not clear for
the receiver node to decide, which fragment is the correct one. Consequently, the entire
packet will be discarded. The second variant is to transmit several new fragmentation
packets to reserve the buffer in the receiver nodes; therefore, a normal data packet will
not fit into the memory and the packet will also be discarded. A countermeasure for this
attack is a secured 6LoWPAN fragmentation header structure.

16 CHAPTER 2. RELATED WORK

Another attack is cited in survey [32], which focuses on the usage of RPL. Without en-
abling security features inside the 6LoWPAN network, it is easy to attack the infrastruc-
ture on several levels. The stated researching work describes the different attack vectors
in the network when a RPL is used for routing data packets.

2.3.4 BLE (Bluetooth Low Energy)

BLE is classified to the group of wireless personal area network technology and is a sub
technology of Bluetooth. This technology is especially designed for low-power applications
like fitness trackers, home automation, security, health care, and much more. BLE is also
known under the market name of Bluetooth Smart. The difference between the low-power
BLE and the normal Bluetooth is the reduced power consumption and operational costs,
while the communication range is nearly the same.

Properties

BLE is a communication protocol for low-power devices which allows to communicate
with standard devices like smartphones and similar devices. Currently, this protocol only
supports a star network topology. In the center of the communication infrastructure is a
master node, which manages the surrounded slave nodes. Research projects have presented
first approaches to introduce a mesh topology to BLE with the name BLEmesh [33].

BLE also operates in the ISM frequency band in the frequency range of 2.4 GHz to 2.4835
GHz, such as the standard Bluetooth configuration. The differences between these two
specifications are that BLE uses a smaller set of channels, and have a reduced data rate.

Security

BLE in the version 4.2 [34] provides a new security manager for secured data transmissions.
The security manager module specifies the process of pairing, key distribution and the used
security.

In the work of Kwon, Kim, Noh, et al. [35] the detailed process of pairing between two de-
vices is described. The process is split into several steps, which are required to succeed the
pairing. In the first step, the authentication requirements and input/output capabilities
of the devices are exchanged, in order to determine the method of pairing. Three differ-
ent methods are available. “Just Works” is used when no input capability is possible for
example headsets. Another method would be a “Passkey entry”, which uses the keyboard
to enter six digits. The last method is the “Out of Band” method, where the devices use
an extra interface for transporting the keys to each other. In the final step of the pairing
process, the participating devices create new cryptographic keys under the instructions of
one of the above named methods. After these steps, the communication between the two
devices is secured.

The various versions of BLE differ in the selected input values for the pairing processes.
In version 4.2 a new secure connection pairing process is introduced, which extends the
previous processes with additional cryptographic functionalities.

2.3. ESTABLISHED PROTOCOLS 17

BLE in the versions 4.0, 4.1, and 4.2 (downward compatibility mode) use following work-
flow:

• Just Works
The used temporary key is set to zero. Due to this procedure, it is easy for an attacker
to brute force the new processed key. Consequently, it is possible to eavesdrop the
connection and has no protection against man-in-the-middle attacks.

• Passkey
In this method a six digit number is created on one device of the two participants.
After the creation of the six digit number, the user has to read the digits from one
device and has to enter it on the other one.

• Out of Band
The temporary key is exchanged by using different wireless communication technolo-
gies like NFC or similar. An advantage in this process is, that a large temporary key
can be transmitted in one step and the complete key transportation is decoupled
from the common communication channel.

In version 4.2 a new workflow is introduced, which is only compatible with devices of the
same Bluetooth version:

• Just Works
The renewal in this version for this method is that public key cryptography is used
to exchange the cryptographic keys. ECDH is used, which ensures a secured trans-
mission of the processed keys.

• Passkey
The entering process of six digits stays the same. The enhancement in this version
is the usage of public keys of Elliptic Curve Cryptography (ECC) to authenticate
the connection.

• Out of Band
In this process, all required information is exchanged for the pairing over an exter-
nal wireless communication channel. These are the public keys of ECC, processed
nonces, and confirmation values.

Recent Attacks

Up to the BLE version 4.2 exists a vulnerability in the pairing process in creating new keys.
These vulnerabilities are stated in work [35]. In the pairing processes are used input values,
which are transmitted through a temporary encrypted packet. The transmitted length of
the unknown temporary key is too short to provide a high security level. Consequently,
the transmitted cryptographic key can be predicted by an attacker through a simple brute
force attack.

Another vulnerability has been discovered in the “Just Works” method. In this method,
the predefined temporary key of zero is always used due to the restrictions of having
no input possibilities. Consequently, the generated cryptographic key is exchanged in
plaintext.

18 CHAPTER 2. RELATED WORK

Furthermore, in the “Passkey Entry” method, it is possible to brute force the six digits in
a short period of time. As countermeasure of this brute force attack, the number of digits
have to be increased.

2.4 Key Management

Good key management is necessary for a WSN to operate in a trustful environment.
Therefore, all key management schemes should fulfill the typical security requirements.
These security requirements are: confidentiality, authentication, freshness, integrity and
non-repudiation. Key management can be separated into two main groups: static, and
dynamic key management schemes. Dynamic key management schemes offer more advan-
tages in the aspect of security for WSNs. One reason for this argument is that the network
structure of a complete WSN can change dynamically over time, relating to connecting
new nodes or losing them. Consequently, the dynamic key management will be handled
in more detail in this section.

The main task of a dynamic key management procedure is to provide and manage crypto-
graphic keys in a secured way. Additionally, it is important to provide methods to revoke
the permission to operate in the current network from malicious nodes. Special systems
like intruder detection systems can detect compromised sensor nodes. If a compromised
sensor node is detected, then the key management should perform a new key distribution
process to all other nodes. A dynamic key management should achieve following properties
[36]:

a) Forward and Backward Secrecy
Forward secrecy is to protect the sensor node by using an old key to decrypt new
messages with it. The same is valid for the backward secrecy. With the new key it
should not be possible to decrypt the old data packages. Both secrecies are used to
prevent node capture attacks.

b) Node Revocation
Node revocation is a procedure to remove compromised sensor nodes promptly from
the current network structure. If a malicious node is detected in the network, then
the cryptographic keys should be updated at all nodes excluding the malicious one.
This procedure prevents the network from harming the network communication by
modified data packet and injected incorrect messages.

c) Collusion Resistance
The collusion resistance describes the type of method when an attacker tries to
compromise a portion of sensor nodes to receive all system keys. With these sys-
tem keys it would be possible to capture the entire network and eavesdrop on the
communication.

d) Resilience
Resilience is one indicator of the resistance against node capturing. In a WSN, low
resilience means that the captured data of one node leads to compromise the complete
network infrastructure. The opposite is a high resilience, where an attack only affects

2.4. KEY MANAGEMENT 19

one single node and not the entire network. Generally, an attacker captures a lot of
data packages and tries to recover secret information like cryptographic keys.

Dynamic key management systems can mainly be separated into two groups. One group
is specialized for distributed key management and the other one for a centralized one.

2.4.1 Distributed Key Management Schemes

A distributed key management has no central key controller, like a base station or a third
party, for establishing a rekeying process of nodes. Consequently, the rekeying process
is handled by multiple key controllers. This approach avoids single point of failure and
satisfies better network scalability.

EBS-based Key Management

Exclusive Basis System (EBS) is a group key management with a combinatorial formula-
tion for WSN [37]. In this scheme, a specified number of keys out of a pool are assigned
to a single node. The process of rekeying can be triggered periodically when the network
structure has been changed, or a sensor node is captured.

Some EBS based key managements are listed and described below [36]:

a) SHELL
A Scalable, Hierarchical, Efficient, Location-aware and Lightweight (SHELL) net-
work consists of one command node, cluster heads, gateways and sensor nodes. The
command node is assumed to have enough resources and cannot be compromised.
The sensor nodes are grouped into different clusters. A refreshing of keys can be
performed inside one cluster or among the connected cluster heads. In this key
management scheme, a collusion prevention heuristic key assignment is proposed, in
order to increase the number of colluding nodes for eavesdropping the whole network.
Therefore, the nodes with a short physical distance are assigned with keys with a
lower Hamming distance than those which are further away. The disadvantages of
SHELL are that it is a highly complex heterogeneous node operation, where multiple
types of keys are used, and the physical location of nodes is known.

b) LOCK
Localized Combinatorial Keying (LOCK) scheme consists of three different hierar-
chical levels. At the top of the hierarchy is the base station. The base station is
followed by several cluster leader nodes. Behind the cluster leader nodes are the
regular sensor nodes. During a rekeying process no location information can be used
for generating a new key. This scheme provides different rekeying scenarios for cap-
tured sensor nodes and cluster leaders. The advantage of this scheme is, that the
nodes are locally rekeyed, hence its reduces the time delay of generating new keys
and reduces the energy consumption.

20 CHAPTER 2. RELATED WORK

Polynomial Secret Sharing Based

In this scheme all nodes are randomly assigned to groups. Each group shares a unique
key between all node members. In the basic scheme one-hop neighbors are required to
protect their group polynomials collaboratively. If one sensor node and a certain amount
of numbers of its one-hop neighbors are compromised then the group key polynomial could
be revealed.

a) Cluster-based
A cluster-based group key management system was proposed in a work from Zhang
et al. [38]. This scheme generates and distributes a group key to the nodes within
a cluster, instead of the collaboration of neighboring nodes to acquire a group key.
The complete system is separated into several parts. The first part is to initial a sink
node, which decides the total number of groups. For each group, a unique 2t degree
bivariate polynomial g(x, y) in constructed over a prime finite field. Furthermore,
each node u gains its personal secret g(u, y). For the channel selection and cluster
formation an algorithm is used which uses a one-way hash function with the identifier
of its member nodes for each channel to construct hierarchical keys. The current
group key can only be derived with a broadcast request message to all included nodes
of the cluster. All included nodes will respond with the personal secret g(u, y), where
y is the group key. Afterwards, the channel unicast the current group key in a secured
way to its members by using the hierarchical key. This key management system also
includes mechanism to exclude compromised nodes from the cluster.

Deterministic Sequence-Number-Based

In deterministic sequence-number-based key management systems broadcasts, each node
choses randomly a number. This random number is used for establishing a pairwise key
between their neighbors. This basic structure exists in various schemes [39], which is
described below in more detail.

a) LEAP Scheme
Localized Encryption and Authentication Protocol (LEAP) is a key management
scheme, which provides multiple keying mechanism for providing confidentiality and
authentication in networks for sensors [40]. The base station in a sensor network
generates an initial key in a pre-deployment phase and inserts this key in all sensor
nodes. After the initial phase, each node can derive its master key with the identifier
and the pre-deployed key. In a rekeying process inside the group, the cluster head
updates pairwise the keys with the nodes. After all pairwise keys are updated, the
channel head randomly chooses a new group key and encrypts it with the pairwise
keys and send it to the nodes. This rekeying process has its flaws; the pairwise key
always uses the same algorithm and the initial key. If an attacker captures a sensor
node, then the attacker is able to reveal the initial key and consequently all pairwise
keys can be easily computed.

b) OTMK Scheme
Opaque Transitory Master Key (OTMK) [41] is a key management system, which
improves the LEAP scheme. In this scheme the nodes are pre-assigned with a master

2.4. KEY MANAGEMENT 21

key. If a node wants to establish a pairwise key to a neighbor node, then it has to
broadcast at first an encrypted join message by using the master key and a random
number. If both nodes receive the join message, then they use their ID and a
random number to compute their pairwise key. The rekeying process follows the
LEAP protocol. Consequently, if an intruder knows the pre-assigned master key it
is also possible to eavesdrop the complete network.

c) EDDK Scheme
The proposed scheme Energy-efficient Distributed Deterministic Keymanagement
(EDDK) [42] should handle the resource exhausting attacks and DoS attacks. In
EDDK each node is pre-assigned with a pseudo-random function, an initial key, and
a local group key. Each node creates a table of neighbors with the cryptographic keys
and the random numbers. The process of joining a new node to the network is closely
related to OTMK and the process of rekeying to LEAP scheme. EDDK is developed
to prevent reply attacks, Sybil attacks and node replication. The disadvantage of
this scheme is that it is not suitable for large WSNs, due to the large memory
consumption.

2.4.2 Centralized Key Management Schemes

The centralized key management scheme uses a single central key controller, which is
completely responsible for the key management. This key management can further be
separated according their network structures: A flat network, hierarchical, and heteroge-
neous.

Flat Network Based

In a flat network, all sensor nodes have the same functionality. The nodes are directly
connected with a base station and share a secret key.

a) KeyRev
A flat network based key management is the KeyRev [43], which is an efficient scheme
for removing compromised sensor nodes from WSNs. This scheme assumes that all
nodes can communicate directly with the base station. Each node has to maintain
several keys. These keys are a pairwise key, path key, encryption key, and a key for
MAC. The specialization of this scheme is that the lifetime of a WSN is divided into
sessions. The session key is provided by the base station. If a node wants to join
a network with KeyRev, then the node has to be pre-loaded with the different keys
and the personal secret. KeyRev security efficiency also depends on the accuracy of
the compromised nodes detection and the lifetime of a session.

b) EEKM
Energy-Efficient Key Management (EEKM) [44] is designed for large scalable WSNs.
In this scheme it is important that the base station can directly communicate with
the nodes through broadcast messages. All sensor nodes are separated into different
virtual and regional groups. Each node is pre-assigned with an initial master key.
This master key is used to generate a group key and pairwise keys. The rekeying
process is regional-group orientated.

22 CHAPTER 2. RELATED WORK

Hierarchical Network Based

The hierarchical network based key management is constructed in a tree structure. One
base station controls and manages the key exchanges and the process of rekeying.

a) Spanning Tree Key Management (STKM)
The nodes in a STKM are connected in a tree structure [45]. Each sensor node
contains three different keys. Two keys are used for encryption and decryption of
messages between the node and the base station. The third key is shared with
all nodes and is renewed periodically by the base station. The spanning tree is
constructed by broadcasting Hello messages to the nodes. The first Hello message
is initiated by the base station. If all reachable nodes have joined the network, then
these added nodes can broadcast Hello message. This procedure is repeated until all
nodes have successfully joined the network.

b) Location-Aware and Secret Share Based (LASSB)
Another dynamic key management is LASSB for grid based WSNs [46]. In this
scheme, the original cluster head selects two or more gateway nodes which have
a larger energy unit and enough memory for storing keys of the nodes from the
closest physical location. The basic idea is to transfer the important keys to different
locations in order to be protected towards a base station attack, which would reveal
many stored keys.

Heterogeneous Network Based

A heterogeneous network based sensor network consists of a large number of stationary or
moveable sensor nodes, and a central base station. The base station manages the network
and collects data from the distributed nodes. Sensor nodes can be separated into two
groups: nodes with high processing capabilities, also known as cluster heads, and nodes
with a low processing capabilities known as cluster members.

a) Genetic Algorithm Based Key Management
The Genetic Algorithm based key management scheme [47] uses, as the name already
suggests, genetic algorithms to design appropriate functions for the rekeying process.
The complete network consists of header nodes, sensor nodes and one sink node. The
sink node is responsible for the process of generating appropriate key generation
function and to transmit them to the header and sensor nodes. These functions are
sets of code slices. Each possible key function, which could be used for generation,
is encoded as chromosome.

b) CL-EKM Protocol
The Certificateless-Effective Key Management (CL-EKM) [48] supports the estab-
lishment of four types of keys. These keys are a certificateless public/private key
pair, an individual key, a pairwise key, and a cluster key. The certificateless pub-
lic/private key pair is used in the setup phase of the node to generate a mutually
authenticated pairwise key. The individual key is a unique key between the node
and the base station. The pairwise key is used for a secured and authenticated com-
munication with the neighbor nodes. The cluster key is used in the group of some

2.5. EXEMPLARY SMART HOME APPLICATIONS AND DEVICES 23

nodes for encrypting broadcast messages. The complete scheme consists of different
processes, which are managing the key generation, key updates, key revocation, and
node joining processes.

c) Public Key Infrastructure (PKI)
Key management schemes can be based on symmetric and asymmetric cryptographic
solutions. In a typically WSN is mostly used only symmetric cryptographic al-
gorithms, due to the limitations of energy consumption and performance reasons.
Asymmetric cryptography provides better resistance against node compromise at-
tacks. Nowadays, asymmetric cryptographic methods are also found inside WSNs
because of the energy efficient implementations of ECC. Solutions for asymmet-
ric key managements are Tiny Public Key (TinyPK) [49] and Tiny Elliptic Curve
Cryptosystem (TinyECC) [50]. These two systems are based on the standard pub-
lic/private cryptography infrastructure and are designed for tiny WSN nodes.

2.5 Exemplary Smart Home Applications and Devices

This section is focused on some common products for smart home applications. These
products are described by their functionality and general properties. If attacks are known
for the selected product, then they are briefly mentioned.

2.5.1 Samsung SmartThings

SmartThings is an open platform for IoT applications in home automation. This platform
provides a central gateway, or also called hub, and individually installable SmartApps.
SmartApps can be installed from an application store by using the smartphone. The
basic idea of this product is to connect a lot of different smart devices to one central unit
with an easy usability. The SmartThings gateway includes multiple radio communication
protocols like ZigBee, Z-Wave, and WiFi. These protocols are used for communicating
with the smart devices and is therefore well equipped to connect wide spread of devices.

Researchers analyzed this product on their software framework against security weaknesses
[51]. They focused on the framework because this part in the software cannot be updated
very quickly, due to the fact that there exists more than 200 external developed SmartApps.
In previous work [51], the researchers found two security-critical design flaws: One in the
SmartThings capability model and another one in the event subsystem. The SmartApps
are over privileged with capabilities, which they do not have been requested. The event
subsystem provides information about the events of any devices without having special
privileges. The following attacks occur due to these weaknesses:

• Pin code injection at door lock

• Snooping of door lock pin code

• Disabling Vacation Mode

• Enable fake alarm

24 CHAPTER 2. RELATED WORK

2.5.2 Philips Hue

Philips Hue light products are designed to revolutionize light control in smart homes. The
overall system consists of two separate devices: The light bulbs, and a gateway. The
gateway is used as interconnection between the smartphones and the light bulbs. The
reason for this procedure is that the light bulbs only uses ZigBee Light Link standard as
communication protocol.

Researchers found an attack in this product family to overtake the control of Philips
Hue light system [52]. The attack uses an implementation error in the ZigBee Light Link
protocol state machine. The total takeover attack is accomplished with a correlation power
analysis to encrypt and verify firmware updates. The correlation power analysis revealed
the cryptographic key for checking if the new firmware is an original one from Philips or
not.

The effectiveness of the attack has been demonstrated with a flying drone. This drone
takesover all Philips Hue lamps by updating the firmware through flying past a building.
The distance between the attacker and the Phillips Hue light bulbs were at the starting
point approximately 350 meters, where the first attacks already succeeded.

2.5.3 Atmel Smart Plug

Atmel developed a demonstrator for a smart home application. This demonstrator is
presented in detail with their used components and architecture in the application note
AT15735 [53]. The goal of this demonstrator is to demonstrate a showcase of an IoT
application by using Atmel components. The smart plug can be controlled with an Android
application on a smartphone.

The connectivity between the devices is established with WiFi and uses no low-power
communication protocols. WiFi is a common way to connect smart devices among each
other, but the power consumption is quite high. Therefore, it would be better to use
some low-power communication protocols, including other radio frequency units instead
of WiFi.

The transmitted messages between two devices are encrypted and also authenticated,
which ensures a high security level. The encryption is based on ECC cryptography. Ad-
ditionally, in the application note is described the implemented communication protocol
between two devices. The designed protocol shows, that the overhead for each message
is quite high due to the used cryptography algorithm. The pairing process is established
with a smartphone, which is also connected to the same WiFi network. All cryptographic
keys are stored on a hardware security controller.

The conclusion of this demonstrator is that the idea and construction is performed in a
good way, but the power consumption of the IoT devices should be considered. WiFi is a
good established communication channel in a typical home with high bandwidth. A public
cryptography requires much more payload data than in comparison to AES in CBC mode.
Nonetheless, it has to be analyzed if it can be processed for the same application, with a
lower payload size with a comparable security level.

2.6. EMBEDDED OS 25

2.5.4 Nest

Nest is another product group for home automation. The product range includes ther-
mostats, smoke detectors, security cameras, and further security system elements. The
communication in a Nest Labs network is ensured with WiFi and its own designed protocol
Weave. Nest combines products with self-learning algorithms for controlling homes in a
smart way.

Additionally, in some processes of pairing the devices inside a Nest environment a BLE for
transmitting confidential data between the pairing participants is used. This additional
communication channel has turned out to compromise Nest cameras. The BLE module is
always on and cannot be turned off, therefore it makes it possible for everyone within the
communication range to overwhelm the cameras. During the process of overtaking them,
it is possible to shut down the cameras and consequently turn off the protecting feature of
video capturing. The security researcher Jason Doyle described the security flaws in [54].

Another security issue was found in the Nest thermostat device. Previous research [55]
explains the process of installing malicious firmware on the device through the Universal
Serial Bus (USB) connection. Through this process, it is possible to change the entire
behavior of the thermostat and can be hazardous for the heating or air conditioner control
unit.

2.6 Embedded OS

For the IoT environment, various embedded OSs are developed, which are applicable for
miscellaneous applications. The usage of an OS is a big advantage, due to the integrated
functionality of network protocols and other modules. Commonly, the OS is developed in
a way that it can be configured in a modular concept.

The embedded OS acts in general as a resource manager for a complex platform of various
components. A typical platform consists of resources like a processor, network interfaces,
memory management, timers, and much more [56]. The fundamental tasks of such an OS
are to manage all attached resources and to execute developed applications.

An embedded OS is generally defined by parameters and functionalities, which describes
the footprint, scalability, probability, modularity and connectivity. For the usage of an
embedded OS in an IoT environment, it is important to receive a tiny footprint after com-
piling the source code and consequently fits into the small memory storages of IoT nodes.
The OS is among other things also responsible for providing energy saving mechanism.

Commonly used OSs for the IoT environment are: Contiki OS [57], Tiny OS [58], and
RIOT [59]. Of course there are a lot more on the market, but these ones are open source
products, which provides a good starting point to develop own IoT devices.

26 CHAPTER 2. RELATED WORK

2.6.1 Tiny OS

Tiny OS is especially designed for WSN to operate on low-power devices [60]. The OS is
written in a dialect of the C language, namely in nesC. The main target of the Tiny OS
is to be flexible to different hardware platforms and to has a small footprint in code size.
The OS consists of a list of components: libraries, network protocols, distributed services,
drivers and data acquisition tools.

The architecture of Tiny OS is build up with three interface abstraction layers: commands,
tasks, and events. For communications and data exchanges between components, the
command and events structure is used. Commands can request the OS to perform several
services. After the completion of a requested service, events to signal the completion are
used. Tasks describes the intra-component concurrency of implemented services.

Tiny OS provides multi threading support and includes system calls, which can create,
destroy, pause, resume, and join threads. The threads are scheduled by a First In First
Out (FIFO) algorithm.

2.6.2 Contiki OS

Contiki OS is another embedded OS for tiny nodes constructions. The system architecture
consists of several modules: A kernel, various libraries, a program loader, and a set of
processes [61]. This OS is organized in processes, therefore each application or service is
created and executed as process. Services are used for implementing shared functionalities
for more than one application process. A useful property of Contiki is that each process
can be separately started and stopped during run-time, therefore it can be used very
dynamically.

A process consists of two parts in Contiki: a process control block and a process thread [62].
The first part, the process control block, is stored in the Random-Access Memory (RAM)
and contains run-time information about the process itself. The process thread is the code
of the process and is stored consequently in Read-Only Memory (ROM). Additionally,
the usage of protothreads is implemented inside the processes. This functionality allows
processes to wait on incoming events. Protothreads are used for example for the TCP/IP
stack for processing the socket connections.

The resulting code size of Contiki OS is depending from the used modules, protocols, and
applications. However, the basic system of the OS is larger than in comparison to the
Tiny OS, due to the event triggered kernel services and the process scheduler. Tiny OS
only uses a FIFO event structure and Contiki uses a FIFO scheduler with the opportunity
to poll handlers with priorities.

Contiki OS supports the communication protocol 6LoWPAN and provides several config-
uration possibility to modify it to the requested behavior.

2.6.3 RIOT

RIOT is also an OS, which is conceptualized for the usage in IoT environments. The OS
is designed to fit on small hardware platforms, due to the minimal resource constraints of
IoT nodes. RIOT wants to go a step further than Contiki OS and Tiny OS and wants to

2.7. NFC (Near Field Communication) 27

close the gap between event driven OS and a modern full-fledged OS, like a native multi
threading, hardware abstraction, and dynamic memory management [63].

The central component of RIOT is the micro kernel architecture, which supports multi
threading with standard Application Program Interface (API) functionalities. This OS is
also real-time capable and uses therefore constant periods for kernel tasks. The constructed
scheduler works without the usage of periodic events, thus it is possible to go to idle or
sleep mode when no pending tasks are available.

2.7 NFC (Near Field Communication)

NFC is a sub technology of Radio-Frequency IDentification (RFID). In addition, NFC
is a communication protocol, which enables two devices to communicate over an electro-
magnetic field with each other. A new communication can only be performed when both
devices are within a close distance. Generally, this technology operates in the ISM fre-
quency band of 13.56 MHz. For the physical communication various types are specified,
which are defining the used encoding and signal type.

Nowadays, this technology is used in several applications. Some examples for the fields of
application are: contactless banking cards, in social networking (sharing contacts, photos,
or other data), ID cards, and so on. Since the technology was integrated in miscellaneous
smartphones, the usage of NFC technologies becomes popular. Over the years, the number
of NFC-enabled devices have increased, which make it possible to create concepts for new
fields of application.

In the field of IoT NFC can also be used to increase the usability of several IoT devices
and to design new applications. In a smart home application with NFC support, the
technology can be used in several use cases, which are discussed in detail in the work
[64]. One possible use case out of this work is to count or identify available products in
a fridge. Another one would be to monitor patients and their devices to support their
healing process.

2.7.1 Established Standards and Types

NFC is implemented in different variants, which are identified by their used signal type
and encoding. In the next paragraphs are described shortly the common used types.

NFC Type-A

Type-A is specified on ISO 14443A and has similar configurations as RFID type-A. In this
type a miller encoding technique is used with Amplitude Modulation (AM). The data is
transmitted with a rate of approximately 106 Kbps. The signal in type-A changes from
0% to 100% to distinguish the binary data, if it is binary a zero or a one.

NFC Type-B

This standard of NFC is based on the ISO 14443B and is shortly named type-B. Also
this standard is similar to the defined standard of RFID type-B. For this transmission, a

28 CHAPTER 2. RELATED WORK

Manchester encoding technique is used and an AM modulation of 10%. The detection of
binary data is focused on the change of 10%. This means that a binary data zero is 90%
amplitude and a one is represented as 100% amplitude.

NFC Type-F

Another NFC specification is from FeliCA, which has defined the signal specification type-
F. This specification is similar to the NFC technology, but it is a separated system tech-
nology. This technology is faster than the original NFC and is commonly used in Japan.
This technology is already wide spread into different applications in Japan.

2.8 Java Card OS

Java Card is a common used technology, which allows to run Java applets in a secured
environment. Java Card is implemented in several embedded devices like Subscriber Iden-
tity Module (SIM) cards, ATM cards, in security controllers, and so on. The advantage of
this technology is the flexibility in the field of application because due to the possibility
to program application specific applets.

The main target of this technology is to provide a secured environment for storing sensitive
data in an applet specific storage. The security on the Java Card is satisfied by methods of:
data encapsulation, applet firewall, cryptographic functions and the applet itself. Data
encapsulation means in this point of view that stored data inside the application are
executed in an isolated environment and it is not possible to get access to data from
another installed applet. The applet firewall manages the execution of several applications
inside of one Java Card virtual machine. The Java Card typically supports a variation
of cryptographic functionalities for providing a desired security level and to protect the
transmission of data with cryptographic functions. The applet itself is a state machine,
which receives Application Protocol Data Unit (APDU) commands from outside and has
then the possibility to respond on them.

The interface to the Java Card is specified by the standard ISO 7816 [65]. With this inter-
face it is possible to transmit commands to the Java Card environment. These commands
are specified as APDU commands.

2.8.1 APDU Commands

In this section, the construction of APDU commands and on their general usage is dis-
cussed. The typical construction of an APDU is stated in Table 2.1.

CLA INS P1 P2 Lc Data Le

Header Body

Table 2.1: APDU command composition with all available header fields.

2.8. JAVA CARD OS 29

The complete APDU command consists of two parts: Header and Body. The header
contains several property fields, which are for defining the command type and the appended
body. The meaning of each header property is discussed in the following section:

• CLA - 1 byte
Defines the instruction class of the command. This field indicates which class has to
be selected inside the Java Card for the command execution.

• INS - 1 byte
This property filed defines the instruction code of the command. For the Java Card,
the command that has to be executed inside the selected class will be specified.

• P1 & P2 - 2 bytes
P1 and P2 are additional instruction parameters. With these parameters it is pos-
sible to transmit two bytes of extra information to the Java Card.

• Lc - 0/1/3 bytes
The property field, Lc, defines the number of bytes of the followed attached command
data. The length of this field varies between 0, 1, or 3 bytes. If no data is attached
to the body, then the Lc field can be zero and can be removed during transmission.
One byte is only used when the length of the command data is between 1 and 255
bytes. If the data is longer than 255 bytes, then the property field has to be 3 bytes
long. The first byte must be zero and the other two represents the length of the
data field, which can be between 1 and 65535 bytes long. A special case occurs when
all three bytes are zero, then the Java Card OS assumes a command data length of
65536 bytes.

• Data - n bytes
The data field contains the data bytes. The length of the contained data is previously
defined in the Lc header field.

• Le - 0/1/2/3 bytes
With this property field it is possible to define the expected length of response data.
The encoding for this property field is similar to Lc. Zero bytes are used when no
response data is expected. One byte is used to define the response length of 1 to
255 bytes. If the transmitted value is zero, then the field represents a response data
length of 256 bytes. If the length of Le is 2 bytes, then a response data length can
be requested between 1 and 65535 bytes. Furthermore, two bytes of zeros means a
maximum length of 65536 bytes. If Lc was not present in the command, then the
Le length can also be three bytes long. Therefore, the first byte must be zero and
the ongoing two bytes following the same procedure like for two bytes.

The response of an APDU command is constructed with a body and a trailer. The
visualization of this packet is described in Table 2.2. The contained data inside the body
is the response of the Java Card from the ongoing APDU command. The trailer is a two
byte status field, which represents the return value of the executed function. The return
value provides the information, if the processed function was successful or stopped due to
an error.

30 CHAPTER 2. RELATED WORK

Data SW1 SW2

Body Trailer

Table 2.2: APDU command response composition.

2.9 Hardware Security Controller

A hardware security controller 1 is a separate hardware chip, which provides especially
cryptographic functions and secured storage spaces. Typical applications for a hardware
security controller are to provide an API for creating and storing cryptographic keys for
different algorithms. Additionally, it can provide a secured storage for confidential data.
The complete hardware controller should be protected against side channel attacks and
other attacks, which can hamper or reveal internal data.

Hardware secured elements are becoming more and more important in the field of IoT
[66]. The reason for this is the increasing request on security enhanced IoT devices.
Typical IoT devices inside a WSN are tiny and constructed as low-power and low-resources
platforms. These constraints are not suitable for security enhancements because security
cost additional power consumption. Therefore, to be able to satisfy the security inside
the products, it is suitable to use a dedicated hardware element. This element should
move the complexity of operation to hardware supported devices, instead of consuming
calculation power of the microcontrollers. This hardware secured element should finally be
responsible for providing tested and secured cryptographic algorithms with the possibility
to store keys internally. In an ideal way, the hardware secured element creates on request
new keys and do not leave the hardware security controller, like a private key part of the
public cryptographic methods.

The main security concerns for IoT devices are reasons to provide following security prop-
erties [67]:

• User Identification
For devices it is sometimes necessary to verify if the user has the permission to use
the system.

• Tamper Resistance
In the worst case when an attacker gets physical access to the device, it should
not be possible to reveal any data. Consequently, it has to be protected against
side-channel attacks.

• Secured Execution Environment
The runtime environment of the hardware security element should be able to execute
applications without providing internal access.

• Secured Storage
Sensitive data should be stored in a secured protected area. This secured storage
is protected especially towards side-channel attacks and can be used for storing
personal data or cryptographic keys.

1Available at www.infineon.com/security

2.9. HARDWARE SECURITY CONTROLLER 31

• Secured Data Communication
The meaning of secured data communication is to provide cryptographic function-
ality to be able to create point-to-point encryptions. This communication channel
should be encrypted and authenticated, which ensures confidentiality and integrity
of the communication.

• Identity Management
The identity management controls and identifies each component in a system. Ad-
ditionally, it also provides the function to control the access to resources within the
system.

Chapter 3

Design and Concept

This chapter focuses on the design and concept phase of an IoT network for an exemplary
smart home application with enhanced security features. The overall system architecture
is evaluated on their components. In addition, the used hardware components and used
protocol standards are outlined in detail.

3.1 Requirements

This master thesis has the goal to implement a secured environment inside an IoT net-
work, which can further be used for a smart home application. The overall environment
with all system components is illustrated in Figure 3.1. This illustration shows the main
components of the conceptualized smart home application: A central gateway, several IoT
nodes, smartphone, and Internet compatible devices. The gateway is the central point of
the overall IoT environment. Therefore, it is responsible to collect all data from the inde-
pendent distributed IoT nodes. Furthermore, the gateway is also responsible to visualize
the received information of the nodes on a website. The IoT nodes are constructed for
different fields of application and can be outlined as sensor platform, actuator platform,
or a mixture of both configurations. Some typical applications for a smart home environ-
ment are for example a smart outlet, a smart switch, a weather station, and so on. For the
process of establishing a secured IoT environment, it is required to combine the existing
network infrastructure with several cryptographic mechanisms. The design process also
has to be focused on the encryption of all communications between the gateway and the
nodes, in order to achieve an appropriate security level. One of the security-critical parts
is the first pairing of the devices inside the environment. A reason for this importance
is that the key exchange of the cryptographic keys must be ensured to be processed in
a secured way, in order that nobody can reveal or eavesdrop the keys. The concept of
exchanging the keys in a secured way has to be still simple for the user and should not be
complicated. If the secured key exchange is as simple to use as the unsecured one, then
the users are inclined to use also the secured one.

A prerequisite for this thesis is to be compatible to other demonstrators, which previously
have been developed by Infineon and its project partners. This master thesis is one part of
a larger project to establish a secured environment inside an existing network. For these
reasons and to stay compatible, it results into some constraints for the design process of the

33

34 CHAPTER 3. DESIGN AND CONCEPT

thesis. One constraint is to use the same wireless transceiver system and communication
protocols, which are also included in the other demonstrators. This ensures to be able to
receive and send data inside the same network infrastructure.

Figure 3.1: This illustration shows the overall IoT environment for a smart home appli-
cation.

3.1.1 Detailed Requirements Analysis

• Hardware Components
Miscellaneous hardware components have to be designed for the gateway and also
for the sensor/actuator nodes. The gateway should provide an interface to the
World Wide Web (WWW) and to the WSN. In the design process of the IoT nodes
should be considered a low consumption of resources like power and space. Gateway
and node-devices have to be equipped with a secured hardware element, which is
responsible to store node data and also the cryptographic keys.

• Contiki - OS
The Contiki - OS has to be adapted to fulfill the requirements like implementing
functionalities for encryption and decryption. The entire application layer has to be
defined and implemented. Some key facts of the application layer are the key man-
agement system, webserver functionalities, and management of the communication
protocol.

• Website
As previously discussed the website, which is hosted by the gateway, should be
responsible to visualize the received information of the sensor/actuator nodes of the
distributed WSN. Additionally, the user can also interact and control the IoT nodes
with the website.

• Security Enhancements
The new security enhancements for an IoT network should introduce the possibility
to configure nodes with the support of a smartphone before they are connected to

3.2. SYSTEM ARCHITECTURE 35

the IoT network. In detail should be used NFC technology from the smartphones
to proceed this possibility. One of several tasks, where NFC should be used as
transportation unit, is the initial key exchange for pairing nodes with the gateway.
These enhancements are important to secure the communication from the beginning
of the first usage. All security enhancements should be combined together in an
easy usable smartphone application for Android [68]. With the designed Android
application the user can configure and read out the status information of the scanned
IoT node. In addition, this application also performs the process of pairing new
devices.

3.2 System Architecture

3.2.1 Topology

The network topology is a central point of defining the entire architecture of the smart
home application. In a smart home application, it is important to distribute the nodes
at these locations in a home where they are needed. Therefore, to be able to ensure that
each IoT node has the opportunity to establish a connection with the gateway, different
approaches have to be analyzed.

The first approach is to implement a hierarchical network structure. The gateway is
located on top, which has a certain communication range. Inside this communication
range several IoT nodes can be located to establish a direct communication channel. If
a node is outside of this range, then it is not possible to establish a connection. For this
use case it is required to extend the communication range with an additional node, which
works as relay station. In this network topology, a relay station is responsible to forward
data packages to the desired recipient. In Figure 3.2 illustrates the discussed network
topology.

Figure 3.2: Hierarchical network structure with the top placed gateway (G) and its
different communication participants. The communication participants are routers (R)
and nodes (N).

The second approach is to construct a WSN with a mesh-network structure. A mesh-
network enables the nodes to communicate with each other devices in a direct way. The
advantage in this network structure is that each node can forward messages from other
nodes to the desired destination. Consequently, the messages are routed to the desired

36 CHAPTER 3. DESIGN AND CONCEPT

nodes over the shortest path. Another advantage of such a structure is that no further
devices with special functions are needed and have to be placed in the right communication
ranges to provide a full coverage. Some disadvantages exist for this network structure. One
of these disadvantages is that each node would consume a little bit more energy because
of the ability to receive all messages and for forwarding the message to the next devices.
Figure 3.3 depicts the network structure of a mesh-network.

Figure 3.3: Mesh-network topology of arbitrary distributed nodes inside a WSN. The
gateway is labeled with a “G” and the nodes with a “N”.

3.2.2 WSN Communication Protocol

The choice of an appropriate communication protocol for the WSN was already pre-
determined due to compatibility reasons to other existing projects. The ability to com-
municate with existing environments should be possible in this master thesis. The overall
project uses the 6LoWPAN protocol stack for the communication. Despite the fact of the
fixed protocol stack, it has several advantages in comparison to other ones. An advantage
of the 6LoWPAN stack is that the stack is a defined standard by the IETF working group
and is free to use without the request of any license agreement.

6LoWPAN is placed on the top of the IEEE 802.15.4 standard, such as the other standard
like ZigBee. The standard IEEE 802.15.4 defines the physical layer of the complete network
stack. An advantage of the physical specifications is the usage of the ISM frequency band.
From the ISM frequency band the typical frequencies that are used are 868/915MHz or
2.4GHz. These frequencies can be used without any admission or licenses, which make
it easy to develop new devices in this frequency bands. Some regulations hold for these
frequency bands, but they are only defining the maximum consumption of sending time
in a specified time frame and the signal itself.

The usage of 6LoWPAN enables each IoT node to be directly addressed by its IPv6
address. The translation between the IPv6 or Internet Protocol Version 4 (IPv4) standard
network to a 6LoWPAN wireless network is managed by a border router, which converts
one physical platform into another one. The direct addressing of each IoT node enables
several advantages like reducing the expense of supporting extra capabilities at each node.
Another advantage for the usage of this network stack is the direct accessibility of node
information and produced data, which can be requested directly from the nodes to use
it for further proceedings. Instead of sending the request to a coordinator, which has to
translate the request into the other addressing method, before sending it to the desired

3.3. USE CASES 37

destination. The reason for the described advantage is in the process of removing extra
translation steps between different network protocols.

3.2.3 WSN Frequency Band

In a home automation application several frequency bands are used for the communi-
cation between wireless devices. Typically are used frequencies of the ISM radio band.
These frequencies, which are not underlying a license, are: 433MHz (ISM-Band region 1),
868MHz (SRD-Band Europa), 915MHz (ISM-Band region 2) and 2.4GHz. Characteristic
applications in a home automation, which are communication on these frequency bands,
are for example wireless thermometers, alarm systems, wireless switchable outlets, and so
on.

Mostly of the listed devices commonly uses the frequency band of 433MHz and 2.4GHz.
Therefore, a reason for the decision to choose the frequency band between 863MHz and
870MHz was among other things the fact that this frequency band is not used so often.
Another advantage in opposite to the higher frequency of 2.4GHz is the resulting efficiency
in the usage of 868MHz for home automation because of the signal strength through the
walls. The performance of indoor propagation is compared in the literature reviews [69]
and [70].

3.3 Use Cases

The user has several entry points of using the designed smart home application. In this
section the role of the user inside the IoT environment is analyzed. Various workflows are
investigated, which are necessary for the application. For example, these workflows define
where and how the user can receive information of connected IoT devices, how control
commands can be sent to the devices, and the possibilities of interactions with the IoT
nodes especially in a smart home application.

Figure 3.4 illustrates standard use cases, which a user has for a smart home application.
This Figure additionally shows that the use cases can be grouped into three parts: devices
which are connected via the WWW with the IoT environment, smartphone with NFC
support, and the direct usage of implemented functions of the IoT devices.

3.3.1 Detailed Description of Use Cases

The uses cases, which are depicted in Figure 3.4, are explained in more detail in the next
section. The use cases provide a good overview of the functionality of the overall system.

Devices with Active Connection to WWW

This group of use cases combines the functionality to display information of each IoT device
on a website. An additional use case demonstrates that the user should be provided with
the usability to send control commands to the devices. Control commands for IoT devices
can be used to change the state of a relay, pushing a virtual button, or similar.

38 CHAPTER 3. DESIGN AND CONCEPT

User

Tablet / Computer
connected with WWW

Smartphone
with NFC support

WWW

NFC

Display information
of IoT environment

Send control
commands to devices

receive/get
status from device

Send control
commands to devices

Execute pairing
process

IoT devices
<push> Smart switch

direct interaction

Send control
commands to devices

Figure 3.4: Use cases of receiving and sending information of IoT nodes in a smart home
application.

Smartphone with NFC Support

The next group of uses cases relay on the support of NFC technology. The illustrated
use cases have to be performed with an NFC-enabled device. The enhanced usage of
this technology only receives the information of the scanned IoT device, which is in close
distance. With the usability of NFC support, the functionality to send control commands
should be provided to the devices, and to force the process of pairing nodes in connection
with the key management system.

Direct IoT Device Interaction

The third group of the use cases discusses the cases which are available through the direct
usage of functionalities of the IoT devices. Some IoT devices have external input channels
for triggering actions. These input trigger signals can be created by the users through
several actions, like a button press. One concrete example for this use case would be the
push action of an external attached button of a smart switch. The depicted use case in the
illustration shows exactly the described use case with the push action of a button. The
result of the button press leads to sending a control command to the desired destination.

3.4. SYSTEM HARDWARE COMPONENTS 39

3.4 System Hardware Components

This section focuses on the designing and specification process of the complete IoT hard-
ware environment. Each hardware component is analyzed on their requirements and the
scope of usability. The IoT environment consists of two main hardware components: A
central gateway and several IoT nodes with different functions.

3.4.1 Gateway

The gateway is the base station of the complete system and acts as router between the
WSN and the WWW. The basic task of the gateway is to collect all information from the
connected nodes and to prepare them for further processing. The received data is edited
on the gateway and will be visualized on the self-hosted website. This website combines
the received data with an interactive platform to be able to interact with the nodes. Some
nodes have functions, which can be controlled by the user like switching a relay or pushing
a button. Another essential task is the key management. The gateway is responsible to
fulfill the requirements on the security aspects. In a typical smart home application, the
gateway is located at a central and static location inside the home. Consequently, the
restrictions on small construction size and low-power consumption are not as important
as for the nodes in the WSN.

Components

The entire gateway device consists of different hardware elements to fulfill the specifica-
tions. Figure 3.5 depicts the main components of the gateway. The central element is
the microcontroller, which is responsible to control all external devices and to execute
the operations of the embedded OS. Furthermore, the construction includes a webserver,
components to establish a connection to the WSN, a security controller, and finally a
communications channel for supporting NFC technology.

Gateway

Microcontroller

Security

Controller

NFC

connectivity

WSN

connectivity

Webserver

Ethernet

SD Card

Transceiver

Figure 3.5: Hardware concept of the gateway with high level separation into main com-
ponents.

40 CHAPTER 3. DESIGN AND CONCEPT

Detailed description:

a) Microcontroller
The microcontroller is the central device of this hardware construction. Therefore,
it is important to choose a device, which can fulfill all defined specifications. One
possible device, which fits to the requirements, is the XMC4500 microcontroller
from Infineon [71]. This microcontroller is equipped with a core element of an ARM
Cortex-M4 Central Processing Unit (CPU) and provides many peripheral compo-
nents. A good overview of all available components in the XMC4500 is illustrated in
Figure 3.6. Essential components, which lead for choosing this microcontroller, are
the integrated IEEE 1588 compliant Ethernet MAC module, support of Secure Digi-
tal Card (SD Card), the amount of several Universal Serial Interface Channel (USIC)
modules, and large memory storage usability for the firmware.

Figure 3.6: Internal system architecture of the XMC4500 from Infineon with all
available components. Illustration taken from [71].

Key facts of XMC4500 [71]:

• 32-bit ARM Cortex-M4 CPU

• Maximum CPU frequency of 120 MHz

• 16 Kbyte on-chip boot ROM

• 1024 Kbyte on-chip Flash Memory

• 160 Kbytes Static Random Access Memory (SRAM)

• Floating Point unit

• Ethernet MAC module capable of 10/100 Mbits

• 6 USIC channels

3.4. SYSTEM HARDWARE COMPONENTS 41

b) Security Controller
Besides the microcontroller, the security controller is an essential part of the hard-
ware composition. The reason for this importance is to provide a secured environ-
ment in the IoT network. In order to fulfill all needs, it is required to use a dedicated
controller, which is especially designed for cryptographic tasks. In this thesis, the
security controller is responsible on one hand to store data in a secured Non-Volatile
Memory (NVM) and on the other hand to process cryptographic operations in a
trusted environment. Stored data are a combination of configuration parameters of
the gateway itself, cryptographic keys of paired IoT nodes, and specific device infor-
mational data. For the establishment of a trusted environment, some cryptographic
functions like encryption, decryption, creating of signatures are required, including
verifying signatures of transmitted data packets.

The selected security controller 1 provides a Universal Asynchronous Receiver Trans-
mitter (UART) interface for the communication with the microcontroller. The in-
terface itself uses the standardized ISO7816 standard. The security controller is
constructed with a Java Card environment, which is expendable by developing of
new Java applets. This characteristic of developing own applets for the security
controller makes it an interesting product for the IoT environment because the con-
figuration is consequently very flexible for different variations of nodes. The security
controller also enables the usage of cryptographic methods inside a protected envi-
ronment, allowing resistance against common side channel attacks.

c) NFC
The NFC connectivity is one of the essential extensions of the gateway. This exten-
sion allows to perform configuration operations even if the device is not connected
to a power supply. In addition, this functionality provides the usability to exchange
cryptographic keys in a secured and trusted environment. The technology for the
NFC functionality is supplied by the selected security controller. Therefore, all con-
figurations and data exchanges can be directly executed on the secured environment.
The advantage of the integrated NFC support of the security controller makes it pos-
sible to transfer data even if the complete hardware device is not powered because
the security controller can harvest the required energy out of the electromagnetic
field from the readers NFC module.

d) Ethernet
The Ethernet module is required for hosting the webserver. The gateway should be
connected with a network router to broadcast the website into the standard network
infrastructure of a typical home. This module is essential for enabling the access to
the distributed IoT network because it provides the connection between the WSN
and the WWW. This Ethernet module is sufficient to support IPv4.

1Slightly modified internal Infineon test-chip, based on variants described at www.infineon.com/security

42 CHAPTER 3. DESIGN AND CONCEPT

e) SD Card
On the SD Card storage should be placed the content files of the hosted websites for
the webserver. The usage of an external storage for the data is recommended to save
storage space in the more valuable ROM of the microcontroller. Another advantage
of this design is the easy updating process of the content of the website.

f) WSN Communication
The gateway requires a communication channel to the distributed IoT nodes, which
is provided through the usage of a dedicated transceiver module. Through the pre-
defined specification of the frequency band, the used network stack, and the compat-
ibility to other projects, it is suitable to use the SmartLEWIS transceiver with the
exact label TDA5340 [72] for the communication. This transceiver enables the hard-
ware platform to communicate with other desired IoT devices of the project. The
TDA5340 transceiver supports several frequency bands, which is a useful property to
operate in license free frequency bands. The interface to the microcontroller is estab-
lished by a standard 4-wire Serial Peripheral Interface (SPI) module. This interface
enables to control and access the buffers of the transceiver. Figure 3.7 illustrates
the internal architecture of the TDA5340 device. This transceiver is very suitable
for low-power devices because it supports different operating modes, which allows
to reduce the power consumption to a minimum of 0.9µA. Special functions of this
transceiver module are the possibility to configure various channels with several op-
erations modes, which can automatically listen in the frequency band for the desired
message in a low-power mode. If the transceiver recognizes an assigned message,
then the module wakes up and receives the complete message. This opportunity
enables a highly sense for reducing the power consumption.

Figure 3.7: Internal architecture of the SmartLEWIS - TDA5340. Illustration
taken from [73].

3.4.2 IoT Nodes

In a WSN exists several nodes, which can be carried out as a sensor or as an actuator
platform. The node is called IoT node in the thesis, due to the reason that it is specialized

3.4. SYSTEM HARDWARE COMPONENTS 43

for operating in a bigger environment including the integration of IPv6. In a smart home
application are distributed the nodes at the places where they are required to make a home
smarter. Due to this reason, the exact places for installing the IoT nodes depend on the
implemented functionality. Some useful products for a smart home application are: smart
outlet, smart switch, weather station, alarm system and so on. The IoT/WSN node is a
redesign based on an early prototype version developed at Infineon.

In the design process of this IoT node, the construction is separated into two parts:
main board and extension board. The main board should be equipped with all necessary
components, which are required to operate inside a typical WSN. The basic functions of a
node are to receive and transmit data inside the wireless network and to provide hardware
protected security features. The extension board specializes the IoT node with hardware
components of sensors and actuators. In the end, these additional hardware components
define the provided functionality of the IoT nodes. Furthermore, in the design process
should be considered the limitations of power consumption and construction size.

Basic System Components

Figure 3.8 illustrates the main components of a standard IoT node. With these main
components it is possible to communicate inside the WSN and to operate in the entire IoT
environment. In addition, the integration of a security controller enables the opportunity
to secure the communication between devices.

IoT node - main board

Microcontroller

Security

Controller

NFC

connectivity

WSN

connectivity

Extension

Board

Digital I/O

PWM

Serial
Interface

ADC

Transceiver

Figure 3.8: System architecture of the main board of the IoT node with all essential
components for a basic operation.

Detailed component description:

• Microcontroller
On this hardware platform the central hardware component is as well the micro-
controller. This microcontroller should provide all opportunities of interfaces for
the requested hardware components, in order to process all tasks. In the end the
interfaces of the microcontroller should be exploited in a high level. This fact is
important to provide all functionalities on a tiny footprint. Low power consump-
tion is also considered in the selection of a microcontroller. In general, a low-power
consumption is important among other things for an IoT device in order to increase

44 CHAPTER 3. DESIGN AND CONCEPT

the lifetime with only one battery charge. The common tasks for the microcon-
troller are to control the wireless communication channel, the security controller,
and all external hardware components of the extension board. One suitable micro-
controller for these requirements is the XMC1100 [74]. Some key facts of the internal
modules of this microcontroller are: two USIC channels, several Pulse-Width Mod-
ulation (PWM) generation outputs, Analog to Digital Converter (ADC), and an
Event Request Unit (ERU). All internal available modules of the XMC1100 are
depicted in Figure 3.9.

Figure 3.9: Internal architecture of the XMC1100 with its available modules. Il-
lustration taken from [74].

• Security Controller
The used security controller is the same as for the gateway (see Section 3.4.1). The
basic tasks of this security controller are to store used cryptographic keys, node
specific data, and configuration parameters in a secured NVM. Another necessary
task is to provide hardware supported cryptographic functionalities to the microcon-
troller. The used security controller is additionally equipped with NFC technology.
NFC is used by the platform as communication channel to force the process of pairing
and to exchange configuration data.

• WSN Communication
For wireless communication with the gateway, it is required to have a radio unit
to provide access to the WSN infrastructure. Consequently, the same transceiver
module is used as well as for the gateway, namely the TDA5340. This module
requires an external antenna to operate in a normal condition. In order to reduce
the construction size of the entire node, the focus is lead to use a printed antenna
design instead of attaching an external one, which requires a lot of space.

• Connectivity to the Extension Board
The main board has to provide a variation of different interfaces for the extension
board. Some useful interfaces for offering a wide spread opportunity to connect

3.4. SYSTEM HARDWARE COMPONENTS 45

various sensors and actuators, are for example SPI, Inter-Integrated Circuit (I2C),
digital input/output pins, ADC input pins, and PWM outputs. The wide diversity
of different interfaces ensures that the IoT nodes can be extended with a lot of
different functionalities.

Extension Boards for the Main Board of the IoT Nodes

The extension board, which is connected to the main board, defines the type and provided
functionalities of the IoT node. The established interface to the extension board contains
a variety of different connection opportunities, which are discussed previously in the basic
board definition. The first step in turning a typical home into a smart home is to extend
a normal outlet with an IoT node. The result of this extension is a smart outlet device,
which provides several functionalities. The same procedure is applied to a typical switch
for lights. With these two improvements of standard components, a general home turns
into a smart one, due to controlling the outlets by the IoT environment, and to collect
additional data for cross-platform controlling processes.

In the following section is focused on the design process of two extension board platforms
for a typical smart home application:

• Extension Board for a Smart Outlet Application
The device of a smart outlet extends a normal wall outlet with additional func-
tionality by adding an IoT node. This new developed node should be able to turn
on and off the power supply of the connected device. Furthermore, the node adds
special functionalities to the outlet like measuring the latest current consumption
and the attached voltage. With this information, the IoT node can provide useful
information about the connected device to the user. This information is useful to
understand the power behavior of connected devices at the smart outlet. In the
design process, it should be ensured that the resulting construction size is as tiny
as possible, in order to fit behind a typical wall outlet. The result of this extension
board is to extend each existing outlet in a home with smartness. Figure 3.10 depicts
the hardware elements, which are required for the realization of this IoT node.

Smart outlet - Extension

Current

Measurement

Voltage

Measurement
INPUT

Interface

to

Main board

230V AC
Phase wire

230V AC
Neutral wire

Relay

Figure 3.10: Architecture overview of the extension board for a smart outlet ap-
plication.

46 CHAPTER 3. DESIGN AND CONCEPT

Used components:

– Current Measurement
The current measurement unit has the task to sense the latest current, which
flows through the attached outlet. In a typical home with an electric installa-
tion, it is possible to flow a maximum of 16A through the outlet. The selected
sensor for this task is the TLI4970 [75], allowing to measure the current in a
galvanic isolated method. The sensor, TLI4970, supports a current measure-
ment range of +/- 25A. The accuracy of the measurement is correlated with
the precision of the integrated ADC, which has a resolution of 13 bits. For
the exchange of the measured data, this sensor uses a standard SPI interface.
In addition, this module also supports a fast over current detection, and pro-
vides an opportunity to update the internal configured filter settings for the
measurement process.

– Voltage Measurement
The process of measuring the voltage of the attached power supply is an essen-
tial point for the IoT node, in order to calculate reliable power consumption of
the connected device. Consequently, the supply voltage of the outlet should be
measured with an appropriate designed circuit. In the implementation process,
it should be analyzed if it is necessary to implement an isolated measurement,
or it is sufficient to measure it directly. In principle, this IoT node, which is
executed as smart outlet, has no physical connection to the outside materials.
Consequently, the circuit for the voltage measurement has not absolutely be
constructed in an isolated process.

– Relay
The power supply of the smart outlet should be able to be switched on and off in
order to control the attached device. For this task, it is required to use a relay.
Different variants are available, which directly affects the construction size of
the platform and the maximum switchable power consumption. The maximum
possible current which can flow through a typical outlet are 16A. This high
current value is not easy switchable in a small construction. Therefore, since
the node is currently only intended for basic demonstrator purposes, a small
form factor of the relay was desired. Consequently, for this thesis a solid state
relay is selected, which is the AQH3213A, which supports a maximum current
flow of 1.2A at 600V Alternating Current (AC). The advantage of using this
solid state relay is the small construction size and on the automatic function
of switching the contacts when in the AC supply voltage a zero crossing is
detected.

• Extension Board for a Smart Switch Application
This extension board enhances a normal light switch into a smart one. The smartness
of this switch leads to a free configurable pairing of switchable end devices. The main
function of this smart switch IoT node is to identify the press of the attached switch
in order to change the output of a paired IoT device. The analyzed input value is
transmitted as execution command to the gateway station or directly to the paired
device. A simple overview of the designed architecture of the smart switch extension

3.5. SYSTEM SECURITY ARCHITECTURE 47

board is illustrated in Figure 3.11.

Smart switch - Extension

Button

debouncing

INPUT

Interface

to

Main board

Button

Figure 3.11: Architecture overview of the extension board for a smart switch
application.

Used components:

– Button Input
The button is the only external input interface to this extension board and
should be tracked by the microcontroller. The input signal of the button should
be debounced in hardware or software. In addition, the microcontroller is sup-
posed to use as input an input pin with the support of an interrupt enabled
module. With the support of this interrupt module, the microcontroller does
not have to poll the status of the connected switch all the time, in order to
detect changes. Consequently, the microcontroller can be in a sleeping modus
until the switch is pressed and as side effect is reduced the energy consumption.

3.5 System Security Architecture

In a smart home application, it is important to implement an adequate security architec-
ture in order to ensure the privacy of every household. The privacy of a single household
can only be achieved by combining cryptographic methods, which are implemented at dif-
ferent parts of the entire structure of the IoT environment. Another focus of this work is
to focus on enhancing the security of the IoT environment, especially the communication
inside the WSN. The implemented security should be envisioned up to the gateway. In
the part of the WWW it would be necessary to implement a webserver with extended
security features like Transport Layer Security (TLS) or similar, but these features are
out of scope of this master thesis.

3.5.1 Composition

The overall network channel of the WSN should be encrypted with a separate network
key. This procedure is conducted to hamper the attacker from eavesdropping the entire
network traffic. The central communication station, which is the gateway, acts as a trusted
center in the IoT network. This means that for all IoT nodes, a secured communication
channel to the gateway must be established, resulting in each IoT node having a secured
point-to-point communication channel to the gateway. This point-to-point communication

48 CHAPTER 3. DESIGN AND CONCEPT

is essential for transferring critical or confidential information between two participants.
Confidential information could be for example updated cryptographic keys, node status
information and sensor values which are used as input for additional electronic devices.
All cryptographic mechanisms, which can be implemented in this architecture, have to be
analyzed regarding the generation of overhead for the communication and the execution
time on the microcontroller. One essential requirement of the complete IoT environment
is to still be energy efficient. Therefore, a trade off has to be considered between the key
length and the resulting encrypted payload length. A long resulting payload leads to a
longer transmission time between the IoT nodes. A longer transmission time also conducts
a higher energy consumption, which should be kept as low as possible.

Network Encryption

The network layer encryption should be light weight and fast for encryption. A com-
mon way for this encryption operation is to use AES with a key length of 128 bits. All
communication participants inside the IoT network share the same AES key, due to the
symmetric cryptographic algorithm. The network encryption is the first step of securing
the network infrastructure. The result of implementing a link layer encryption would make
it possible to transmit insensitive information in plaintext inside the protected network.
Nonetheless, for very sensitive data it is still important to only send encrypted data pack-
ets because it can happen anytime that a node is attacked and taken over by an attacker.
If the attacker has full control over the node, it would be possible to eavesdrop unprotected
communication inside the network infrastructure, resulting in a security breach.

Point-To-Point Encryption

The point-to-point encryption between the communication participants is required to en-
able privacy among them. If the network encryption is broken due to a malicious node in
the entire network, then the transmitted data is still protected by the point-to-point en-
cryption. Furthermore, this encryption process authenticates transmitted payloads. This
authentication verifies if the transmitted payload has been modified during transmission.
Therefore, it is required to have two independent cryptographic keys for one point-to-point
encryption: One for the payload encryption, and one for the authentication process. When
selecting a suitable cryptographic algorithm holds the same limitations of energy saving
mechanism than for the network encryption.

These requirements lead to the consideration of two different cryptographic techniques:
Symmetric and asymmetric cryptography. Symmetric cryptography shares the same key
between the paired devices. A common symmetric cryptographic algorithm is AES [76] in
combination with a block cipher. The other possibility is the usage of asymmetric algo-
rithms. For example, public cryptography belongs to the group of asymmetric algorithms.
For this group typical algorithms are Rivest-Shamir-Adleman (RSA) [77] and ECC [77].
The advantage of ECC is the shorter key length in comparison to RSA. In Table 3.1, the
different key lengths in bits are compared, which are required to reach the same security
level. The conclusion is that currently, ECC can satisfy with a shorter key length a higher
security level, than in comparison to RSA. A shorter key length also means to require less
storage space for the cryptographic keys in the secured NVM.

3.5. SYSTEM SECURITY ARCHITECTURE 49

Minimum size (bits) of public key
Security bits

Symmetric encryption
algorithm RSA ECC

112 3DES 2048 224

128 AES-128 3072 256

192 AES-192 7680 384

256 AES-256 15360 512

Table 3.1: Security comparison of various algorithm-key size combinations. Information
based on [78].

For point-to-point encryption, a security level higher or equal of 128 bits should be used.
Row two of Table 3.1 should be used as guideline for this master thesis. The next section
is focused on the two different combinations of cryptographic algorithms, which can be
used in the WSN for encrypting the transmitted messages. The cryptographic approaches
with AES and ECC will be discussed in the next section. Excluded in this analysis is
RSA, due to the long processing time of creating new RSA keys with hardware support
in the embedded world. Another disadvantage of RSA is the long resulting key length in
order to reach a similar security level. In the design process, it should be considered that
for each transmitted message the integrity of the message should also be ensured. For this
operation, MAC algorithms are usually used.

• Authenticated Encryption [79] with AES
Authenticated encryption with the usage of AES is separated into two parts. The
first part is to encrypt the plaintext, and the second part is to calculate the MAC.
Both use a CBC mode in combination with an AES cipher. Figure 3.12 depicts the
named CBC mode with the used AES encryption as cipher function. The AES cipher
is used with a block size of 128 bits. Therefore, the following parameters are required
for each encryption process: the cryptographic key for the AES modules, a randomly
chosen Initialization Vector (IV), and the plaintext. The plaintext is separated into
blocks of 128 bits before it can be used for the AES ciphers. After the finished
encryption process, the encrypted message blocks of 128 bits can be transmitted
to other paired participant. In the transmission is included the encrypted message,
includes the randomly chosen IV in plaintext.

Figure 3.12: Encryption process of a CBC mode with usage of AES cipher.

In the process of generating the MAC, the CBC mode can be used as well, which is
illustrated in Figure 3.13. The only difference in the usage is the fixed value of the

50 CHAPTER 3. DESIGN AND CONCEPT

IV. The IV can be set to zero, during the calculation of the MAC. Consequently,
the following parameters are required for this processing: a 128 bit AES key and the
input message blocks of 128 bits. The resulting MAC is the output value of the last
processed AES cipher block, which means that the value of the calculated MAC is
128 bits long.

Figure 3.13: MAC generation in CBC mode with the usage of AES cipher.

The processed output value of encrypting and authenticating a plaintext, consisting
of multiple blocks with a block size of 128 bits, results into a minimum total size of
384 bits.

Detailed breakdown of data length:

– 128 bits IV

– 128 bits * n (n = number of encrypted block messages)

– 128 bits (MAC)

• Authenticated Encryption with ECC
It is not possible to encrypt a plaintext directly with the support of ECC. Therefore,
special methods like Elliptic Curve Integrated Encryption Scheme (ECIES) for the
encryption process have to be used [80]. Figure 3.14 illustrates the functional dia-
gram of the ECIES concept for the encryption process of a plaintext. This procedure
is split into several activities and is described in detail in the next section.

The several processing steps in an ECIES encryption process are labeled in Fig-
ure 3.14:

1. In the first step of the process, the initiator creates new temporary keys out of
the private/public key pair of ECC. The new ephemeral private key is denoted
as u, and the temporary public key as U .

2. In step two, the initiator uses the Key Agreement (KA) function, in order to
process a shared secret. The shared secret is the product of the initiator’s
temporary private key and the recipient’s public key V .

3. Now, the initiator takes the shared secret as input data with optional parame-
ters for the Key Derivation Function (KDF). The output value of this function
is then the concatenation of the new encryption key and MAC key.

3.5. SYSTEM SECURITY ARCHITECTURE 51

4. In step four, the initiator can use the first part of the processed KDF output
keys, kENC , as input for the symmetric encryption algorithm. The encrypted
message is denoted in the Figure as c.

5. Next, the encrypted message is taken as input for calculating the MAC with
the second part of the processed key, kMAC .

6. After these steps, the initiator provides the encrypted message to the recipient
with the concatenated of these values: U ||c||tag.

Figure 3.14: Functional diagram of an authenticated encryption process with
ECIES. Illustration based on [81].

Due to the required key length of 256 bits for ECC, information taken from Table 3.1,
the public key U results in a total length of 512 bits because the public key of ECC
is represented as a point on the elliptic curve and consists of two parameters x and
y. Each parameter has a length of 256 bits. The resulting output of the encrypted
message is a composition of multiple blocks with a block size of 128 bits. The tag
size of the used MAC is also 128 bits long. Consequently, the minimum length of a
successful encrypted and authenticated message is 768 bits.

Detailed breakdown of data length:

– 512 bits ECC public key

– 128 bits * n (n = number of encrypted block messages)

– 128 bits (MAC)

The conclusion of the comparison between AES and ECC is that the entire packet of one
encrypted message is shorter with the usage of AES encryption instead of ECC. The

52 CHAPTER 3. DESIGN AND CONCEPT

reason for this is the created overhead of the ECC with a public key length of 512 bits. As
previously mentioned, a public key for ECC consists of two parameters with a length of
256 bits for each parameter. Therefore, in the point-to-point encryption process an AES
cipher in combination in a CBC mode is used.

3.5.2 Key Management

Another essential part in the security architecture of an IoT environment is the key man-
agement system. The support of transmitting encrypted messages inside the IoT network
is not enough to result in a secured environment because static keys could be figured out
sometimes and would lead to a broken encryption scheme. Hence, the responsibilities of
the key management are to provide features like node revocation, collusion resistance, and
resilience. Key management can additionally be combined with an intrusion detection
system, in order to detect malicious IoT nodes in the existing environment. This combi-
nation allows the key management to exclude attacked IoT nodes without disturbing the
complete network infrastructure. Another important point is to control the key freshness
of the distributed keys, in order to make it more difficult for the attacker to find out the
present distributed keys. Sensitive or critical information of the key management system,
such as all cryptographic keys, have to be stored in a secured NVM. In addition, the se-
cured NVM is protected against side channel attacks, which protects the keys from being
extracted out of the hardware device, even if the hardware device is in the hand of the
attacker.

In an IoT environment, it is essential to be supported by a dynamic key management
system, which can deal with adding and removing of different IoT nodes. One key part
of the key management system is also the process of pairing new devices with an accurate
security level. The complex process of pairing new nodes to the infrastructure can be split
into several tasks. Some parts of these tasks can be automated by the security controllers,
and some have to be processed outside with the interaction of the users.

Concepts

The selection of an appropriate key management system depends on various characteris-
tics. These characteristics relate to the following topics: the chosen network structure,
distributed security architecture, operational costs and others. The key management sys-
tem should be lightweight and energy-efficient. As previously discussed, the devices are
connected within a star-network topology in the WSN. A star-network architecture for a
key management system is easier to handle than for a mesh-network because each node
is directly connected to the gateway with an encrypted channel and the rekeying process
can proceed in a direct way. A new IoT node must be paired for the first usage in the
network. After a successful pairing, the node can communicate with the trusted center
over a secured channel. If the nodes want to exchange data with another node, then the
trusted center should provide methods to create a separate secured channel between these
two participants.

For the used network structure, it is suitable to use a centralized key management sys-
tem because the gateway should manage the complete network communication in the IoT

3.5. SYSTEM SECURITY ARCHITECTURE 53

environment and the gateway has no limitation in power consumption. Another advan-
tage in the design of this thesis is that all participants in the IoT environment have a
dedicated security controller. With the usage of the security controller on each node, new
cryptographic keys can be created directly on the controller with the support of hardware
accelerations. This means that each hardware platform has the possibility to create on
their own new keys and to directly store the keys in a secured environment, without a
bypass over unprotected paths.

A list of various suitable concepts of key management system for the described require-
ments are:

• Flat network based

• Hierarchical network based

• Heterogeneous network based

One of the targets of this master thesis is to demonstrate the advantage of the support of
NFC-enabled devices. With the support of NFC-enabled devices, it is possible to configure
and pair new IoT devices for an IoT environment. Due to this reason, a flat network based
key management system is convenient for this application. The reason for this is that each
IoT has to be previously configured with cryptographic keys to be able to communicate
inside the network. One key management system is KeyRev [43], which meets the basic
requirements. The other key management concepts, hierarchical and heterogeneous based
ones, are for the first implementation too complex for the desired management system.
One reason for it is the way of distributing the keys to new nodes, which in the hierarchical
based system is managed over the wireless communication channel. In a heterogeneous
based key management system, different types of nodes are used to distribute the indi-
vidual keys, which means that the IoT network would have to be extended with several
devices. These new devices are required for managing the key distribution system in a
heterogeneous based system. In conclusion, the designed key management system is based
on the KeyRev scheme (explained in Section 2.4.2) with slight modifications to fulfill the
needs of this thesis.

Major Functionalities

This section is focused on the requested needs to the key management system and to
point out the main functionalities. The key management is responsible to handle different
processes like: generating new cryptographic keys, storing of created cryptographic keys,
defining the process of pairing nodes, and renewing of paired information in relation to
security. On each IoT device, the basic functions of the key management system are
implemented with several extensions. The amount of distributed functionalities depends
on the type of the end device because the gateway as a trusted center requires more key
management functionalities than a simple client, like the distributed nodes.

54 CHAPTER 3. DESIGN AND CONCEPT

• Management of Cryptographic Keys
The key management system on each IoT device should be able to manage the
process of creating new cryptographic keys for the encryption processes. It is also
responsible for storing the created keys in a secured environment in order to hamper
the extraction of keys.

• Initialization Process when Integrating a New Device
The workflow of the initialization process of integrating a new IoT device has to
be established with the support of NFC technology. This procedure enables a new
perspective of the key management system, which focuses on generating a secured
environment from the beginning of the first usage. The detailed workflow of pairing
IoT devices with each other have to be defined and fixed in the process of the key
management system. In general, two different workflows are required to be defined,
in order to handle the pairings between the participant combinations of a gateway
to a node and between two nodes.

• Process of Updating Keys for the Network Layer Encryption
The network layer encryption key can be distributed to all participants in a secured
environment by sending the new key through the existing point-to-point encryption
channel, which has been established between each IoT device and the gateway. If
the gateway recognizes a malicious node by an intruder system, then it can be
easily excluded from the protected environment because the malicious node cannot
eavesdrop the new key of the network layer encryption. The event for renewing this
key has to be forced by the gateway. The new network layer key is created with the
support of the security controller on the gateway side and is afterwards distributed
through the secured channels.

• Process of Updating Keys for a Point-To-Point Encryption
The update process of this point-to-point encryption channel is constructed in an
easy way because the old encrypted channel is used to transfer the new created pair
of cryptographic keys. The updating process for this use case should be forced from
the node side to the gateway. This means that each IoT node is responsible for
creating their new cryptographic keys in a secured environment and will finally be
transmitted to the gateway to renew the updated key management information.

Distributed Keys Inside the WSN Environment

By the use of the desired cryptographic structure, each device is responsible to manage
a different amount of cryptographic keys. Table 3.2 describes the number of used keys
for each IoT device. As Table 3.2 demonstrates, the distributed IoT nodes have to store
a minimum of three different keys for a secured communication between the gateway.
Additionally the number of keys can be increased by the amount of two, when the node
is able to be paired to another IoT node. The gateway has to be designed in a way
that makes it possible to store many keys. The reason for this storage option is because
the gateway has to be able to communicate with each node in the IoT environment and
consequently requires two separated cryptographic keys for each communication channel.

3.5. SYSTEM SECURITY ARCHITECTURE 55

Device
Number of

keys
Cipher

algorithm
Direction Used keys

Node

1

AES-128

Network wide Network layer key
1

Gateway - Node
Encryption

1 HMAC
1 (optional)

Node - Node
Encryption

1 (optional) HMAC

1 Network wide Network layer key
of paired nodes EncryptionGateway
of paired nodes

AES-128
Gateway - Node

HMAC

Table 3.2: Detailed overview of distributed keys on various IoT devices. The IoT envi-
ronment only consists of two devices, namely a gateway and nodes.

Each device is responsible to manage and store the different cryptographic keys in a
secured way. This means that the keys should be stored in a special NVM, which is
resistant against side channel attacks and other security analysis.

Pairing Procedure for Integrating New IoT Devices

The pairing process in the key management system is an important point because this is
the point where the communication channel changes from an insecure state to a secured
one. In general, the process of pairing means to exchange cryptographic keys between
two participants. It should not be possible for an attacker to interfere in the process, or
steal the keys. Therefore, it is not recommended to transfer the keys over an unprotected
channel to the other participant.

In order to overcome the described problem, the procedure should be introduced where the
cryptographic keys can be exchanged over a protected channel. One possibility is to use the
NFC integrated option of the security controller to exchange the keys between the different
participants. A mobile NFC-enabled device, like a smartphone, can be used to proceed the
pairing with an easy workflow for the users to close the unprotected gap between the two
participants. The advantage of this procedure is that each device in the IoT environment
can be configured and pre-loaded with the cryptographic keys, before they are used for the
first time. This scenario is possible because NFC supports the powering of another device
by its electromagnetic field. With this opportunity it is possible to transfer the keys in a
secured and trusted environment.

In this thesis, two different workflows for pairing a new device to the IoT network are
defined. The workflow that is selected for the pairing process depends on the types of the
two pairing participants. For the pairing process between an IoT node and the gateways
exists a workflow and also an additional one for the process of pairing two IoT nodes.
These workflows only differ in the amount of exchanged cryptographic keys, and also in
their exchange process. The detailed information on the amount of keys which have to
be exchanged, was previously defined in section 3.5.2. Consequently, the communication
channel between the gateway and a node requires to transfer three different cryptographic
keys, in order to change the channel to a secured one. In order to complete the process of

56 CHAPTER 3. DESIGN AND CONCEPT

securing the communication channel between two nodes, only two different cryptographic
keys are required.

• Procedure of Pairing Between a Node and the Gateway
Figure 3.15 illustrates the basic steps for the first pairing of a node with a gateway
in the IoT environment. Following the steps, the user has to proceed with an NFC-
enabled device. At first the user has to request the link layer encryption key of the
gateway, therefore the user has to scan the gateway with the NFC-enabled device.
On the mobile device, the cryptographic key is temporarily stored. The next step for
the user is to scan the desired IoT node to transmit the link layer key and to receive
new cryptographic keys for the point-to-point encryption. The scanned IoT node
creates new cryptographic keys for each new pairing process inside of the dedicated
security controller using True Random Number Generator (TRNG). The third and
last step is used to transmit the previously received cryptographic keys from the
IoT node to the gateway. After these steps, the gateway is securely paired with the
IoT node and is ready for the common operations. The separate communication
channel between the smartphone and the IoT devices also has to be secured with
an adequate cryptographic algorithm. One suitable solution for this operation is the
usage of public cryptographic algorithms, like ECC.

Node
User

(NFC-enabled device) Gateway

request link layer key

link layer key

request keys for pairing

encrypted packet of keys
transfer encrypted keys

pairing completed

secured channel

establish secured channel

establish secured channel

insecured channel

Figure 3.15: State diagram of required steps for proceeding a secured pairing
process from a node to the gateway.

• Procedure of Pairing Between Two Nodes
The process of pairing two nodes with each other requires a separate workflow be-
cause the amount of exchanged cryptographic keys differs from the process of pairing
with a gateway. This pairing is required to obtain a point-to-point encryption be-
tween two desired IoT nodes. The extra encryption between two nodes is constructed

3.5. SYSTEM SECURITY ARCHITECTURE 57

to transmit very sensitive or critical data over several nodes. The advantages of a
direct encryption model are to save the amount of encryptions and the time of trans-
mission. These savings lead to a general reduction of power consumption.

This additional pairing can be implemented in different ways. One way would be
to use a similar pairing process than for the gateway with some revisions. The
detailed workflow of the pairing process is illustrated in Figure 3.16. The first step
in this process is to scan the first node. During this action the new node creates
new cryptographic keys for the new point-to-point encryption channel and responds
to the smartphone with the new keys as payload. In the second and last step, the
desired IoT node has to be scanned to transfer the temporary stored cryptographic
keys to the node. After these two steps, the two IoT nodes are successfully paired
with each other and the nodes can exchange information through the secured point-
to-point connection.

Node
User

(NFC-enabled device) Node

request keys for pairing

encrypted packet of keys

transfer encrypted keys

pairing completed

secured channel

establish secured channel

establish secured channel

insecured channel

Figure 3.16: State diagram of required steps in order to proceed a secured pairing
process between two nodes.

58 CHAPTER 3. DESIGN AND CONCEPT

3.6 System Software Components

3.6.1 Smartphone

The smartphone plays a central role for the pairing process of the devices in the IoT
environment. Nowadays, smartphones are increasingly equipped with the support of NFC
technology. Therefore, it is possible to simplify the procedure of pairing for the user with
the help of the NFC technology. The reason for the simplification is that the user only
has to make one movement, namely the action of scanning the selected device with their
smartphone. The own designed application on the smartphone coordinates the required
tasks for performing a correct pairing. These operations include the exchange of the
cryptographic keys for the encryption process or to update configuration settings. In
order to simplify the workflow for the user, an Android application should be developed
which follows the key exchange processes and guides the user with easy understanding
instructions.

From the perspective of the user, it is important to use the least number of steps for per-
forming a pairing process. The process of pairing should be as simple as possible because
when the activation of security enhancements costs too much time or is too complicated, a
wide range of users will not use it. A good implemented security architecture is not useful
when it is not activated in the normal operation. In addition, the smartphone should
display information of the IoT nodes, which are scanned with the support of NFC. With
this feature the user is able to request current status information of diverse nodes in a
directly way.

Requirements

For the pairing process and configuration routines, an application for smartphones with an
Android OS should be developed. The application should be easy to handle and offers the
user an assistance for the different task sequences. One of the important operations is the
execution of the pairing process of two devices in subscription to exchange cryptographic
keys. The pairing process, as previously defined, is split into two workflows: one for the
combination of a node with a gateway, and the second one is constructed for two nodes.

Key Requirements:

• Show status information of nodes and the gateway

• Pairing procedure between a node and the gateway

• Pairing procedure between two nodes

• Send control commands to nodes over NFC

Android Application

The application is structured into four different activities: Main activity, Pairing between
node and gateway, Pairing between node and node, and sending control commands to
the IoT devices. In Figure 3.17, the different activities with their rough calling flow are
depicted.

3.6. SYSTEM SOFTWARE COMPONENTS 59

Main activity

Send commands
Pairing

with Gateway
Pairing

with Node

Figure 3.17: Concept of Android application with the combination of different activities.

The depicted activities of Figure 3.17 are described below in more detail with their included
functionality:

• Main Activity
The main activity has the responsibility to receive and display the information of the
IoT devices. The information of the nodes contains basic data (address, type, and
security enabled flag) and sensor/actuator specific data. This information should be
received with the support of NFC technology by scanning a desired IoT device. After
the received type information of the scanned device, additional buttons are to be
displayed in the Graphical User Interface (GUI), with actions for sending specialized
control commands, and for starting the various pairing processes.

• Pairing Between Node and Gateway
In the pairing process between a node and the gateway, the user has to follow different
steps for a successful completion. These steps have the function to transmit different
cryptographic keys between the node and the gateway in a secured environment.
The amount of transmitted cryptographic keys and the detailed specification of the
keys are previously defined in the subsection “Pairing procedure for integrating new
IoT devices” in Section 3.5.2. The additional communication channel between the
devices and the smartphone, which is established with the support of NFC, should
be protected by cryptographic functions to provide a trusted environment.

• Pairing Between Node and Node
The process of pairing between two nodes is very similar to the gateway and only
differs in the amount of transmitted keys. Furthermore, one node can only be paired
with another node and do not support multiple pairings at the moment. Due to this
limitation, each execution of this pairing procedure overwrites old pairing informa-
tion.

60 CHAPTER 3. DESIGN AND CONCEPT

• Send Control Commands to Node
Each IoT node is defined with special functionalities. Consequently, each node type
has different implemented functions, which can be performed and triggered from
outside. With this Android activity, the user should be possible to execute these
functionalities on the node by scanning it with the smartphone. This feature allows
the user to directly control the IoT device by scanning it with the NFC-enabled
device.

Security

The NFC communication channel has to be protected with cryptographic methods in order
that an attacker cannot easily interfere the communication or eavesdrop the transmitted
sensitive information between the IoT device and the smartphone. A solution for this
problem is the usage of public key infrastructure with ECC. This infrastructure creates
session keys, which are only valid for a certain time. These session keys are created with
the ECIES method. The ECIES method has been explained in detail in Section 3.5.1.

3.6.2 Embedded OS and Enhancements

Contiki OS is an entire embedded OS, with the possibility to use it out of the box for
standard use cases. In the use case for this master thesis, it is necessary to adopt and
extend the structure of Contiki, in order that Contiki can operate with their own devel-
oped hardware platforms and software architectures. The base structure of Contiki OS is
depicted in Figure 3.18. Contiki OS is clearly structured into several folders. Each folder
groups files with the same functionality. The depicted structure has to be extended to the
needs at several components like CPU, platforms, and additional hardware devices. The
next section discusses the parts of the Contiki OS that have to be modified and extended.

Figure 3.18: Basic file structure of Contiki OS.

3.6. SYSTEM SOFTWARE COMPONENTS 61

Required Enhancements on Base Structure

The base structure of the Contiki OS only includes a small selection of implemented
platforms and CPUs. In this master thesis, official maintained microcontrollers are not
used and therefore they have to be added to the existing structure. New microcontrollers
are placed in the implementation process in a subfolder inside the “cpu” folder.

Due to the fact that new hardware platforms are designed for this thesis, they also have
to be added to the existing structure. The hardware platforms are added into the existing
folder “platform” of Contiki OS. The platform configuration contains all important infor-
mation about the each used hardware component, pin configuration of the microcontroller,
interconnectivity between the devices, and the general system configuration.

On the new designed hardware platforms, new hardware components like the current
sensor (TLI4970), relays, and the security controller are also used. Each of these hardware
components requires their own driver in the Contiki OS environment. Consequently, these
new drivers have to be added into the existing folder structure to “core/dev”.

IoT Device Specific OS Requirements

In the actual definition of this thesis, two different basic types of IoT devices exist: a gate-
way, and several IoT nodes. For each dedicated device is designed a high level application
for the Contiki OS. The high level application is responsible to coordinate all defined tasks
to operate correctly inside the complete IoT environment. However, the next section is
focused on the definitions on the high level applications for the gateway and also for the
IoT nodes. The high level application for the nodes is additionally separated into a variant
for the smart outlet and for the smart switch.

• High Level Application for the Gateway
The gateway is the central communication device inside the entire constructed IoT
environment and additionally acts as border router between the WSN and the WWW
technologies. The main tasks of the application are to run a webserver with the sup-
port of processing dynamical content, managing several UDP sockets, nodes manage-
ment, and key management. These applications have to be managed by the gateway
and lead to a functional device.

The implemented webserver should support the visualization of standard HyperText
Markup Language (HTML) websites, which can be extended with dynamic content.
The support of dynamic content inside the website allows the developer to create an
interactive website, where the user has the possibility to interact with the connected
IoT devices. One possible solution would be the usage of Asynchronous JavaScript
and XML (AJAX) enabled content in the webserver. The advantage of using this
feature is to reduce the transmitted data size between the devices and the gateway
because only these content data are requested by the devices, which are currently
required to be displayed.

Establishing a communication between the gateway and the IoT devices, two differ-
ent UDP sockets are required. One UDP socket is configured as a server to handle
all incoming connections and the other one as client. The server socket is necessary

62 CHAPTER 3. DESIGN AND CONCEPT

to be able to receive information from all other nodes, and the client socket is used
to send information back to the IoT nodes.

Figure 3.19 depicts the general state diagram of the various workflows of the gateway.
The workflows are separated into two main components: main and webserver. All
previously described applications are listed with their functionalities as well as a
rough overview of the sequence of called functions.

Main

UDP server
listening state

received UDP
data packet

analyze
data packet

add/update
IoT node information

New connection

No connection

Webserver

request

analyze AJAX
action

respond
data

(optional)
send data to IoT

nodes

AJAX HTML

respond
HTML webpage

Figure 3.19: General state diagram of the workflows of the gateway. The workflows
demonstrate the main process and the webserver.

• High Level Application for IoT Nodes
Each IoT node is basically structured in the same way from the perspective of the
application. Each node requires two UDP sockets for complete communication. One
UDP socket is used for managing the process of receiving data messages from other
devices, and the other socket connection is responsible for sending data back to
connected devices inside the IoT environment.

In the high level application of the node, a process runs for analyzing and controlling
the attached sensors and actuators. The responsibilities on the process are to manage
their status information and to handle new measured data. Another task of the
application is to handle the updating process of node information. The information
has to be updated on one hand to the gateway over the wireless communication
channel, and on the other hand to the storage of the security controller. The task
for sending the information to the gateway is necessary to display all available status
information of the devices on the hosted website. The data transmission to the
security controller is for updating the information for the NFC-enabled devices.

3.6. SYSTEM SOFTWARE COMPONENTS 63

Figure 3.20 illustrates the general workflow of the main process of the discussed
high level application. The workflow is nearly the same for both new developed IoT
devices and only varies in the amount of activated sensors or actuators.

Main

analyze
sensor/actuators

send device
information to

gateway

update device
information into

protected storage

Figure 3.20: State diagram of the basic workflow of a standard IoT node configu-
ration of the smart outlet and smart switch high level application.

Additional Extensions

The standard designed applications for the IoT devices have to be extended with several
additional components. These extensions include the definition of the format of the devel-
oped communication headers, definition of the file format for storing IoT device specific
information, and an API for the security controller.

• Header Structure for the Wireless Communication
In the IoT infrastructure, it is required to define message headers to identify the
transmitted data. Each transmitted message, which can either be a status message or
a control command, is integrated in the payload field of the general header structure.
Table 3.3 summarizes the designed general header message format. In the beginning
of the header, a magic number is used to identify the header format from other ones.
With the functionality of the magic number, it makes it possible to use different
header formats in the same network and to be compatible to older demonstrators.
The node type parameter field specifies the type of the implemented functionality
of the node, like if it is a gateway, a smart outlet, a smart switch, or something else.
The next header fields “sendID” and “receivedID” are used to identify the sender and
receivers address, which are used for the identification of used cryptographic keys and
for routing the packet to the right recipient. The property field “payloadIsSecured”
signals the header format if the included payload is encrypted or in plaintext. With
the next field it is possible to define the type of the payload content. Typical content
types are: informational messages, control commands, and infrastructure dependent
messages. The next property field in this header format describes the length of the
attached payload in bytes. Finally, the payload is appended directly after the general
message header definition.

64 CHAPTER 3. DESIGN AND CONCEPT

Data type Name Description

uint16 identity
Magic number to identify correct
header format

uint8 nodeType
Defines node type, especially the
functionality.

uint16 sendID
Senders ID - Unique address in
network.

uint16 receivedID
Receivers ID - Unique address in
network.

uint8 payloadIsSecured
Identifies if the attached payload is
encrypted.

uint8 payloadType
Defines the type of the payload:
information, command, and
infrastructure

uint8 payloadLength Length of attached payload.

— <payload > Attached payload buffer .

Table 3.3: Overview of the designed generic message header.

The attached payload has two different configurations plaintext or encrypted, which
is due to the variation of the type of included payload. The various versions are listed
in Table 3.4. One configuration is named “genericMsgPayload” and represents an
unencrypted payload content. This structure contains the number of included sensor
values and the measured sensor data. The second configuration of the payload
header is for the encrypted payloads. The encrypted payload configuration includes
the real payload length of the unencrypted “genericMsgPayload” size in bytes and
the general header format for unencrypted payload. This encrypted payload format
is then encrypted by the cryptographic algorithm and is attached to the generic
message header format as payload.

Data type Name Description

genericMsgPayload

uint8 numOfSensor Number of contained sensors.

sensorInfo [] sensorInfoPayload Array of sensor data values.

encryptedMsgPayload

uint8 payloadLength
Payload length of decrypted
message in bytes.

genericMsgPayload sensorMsgPayload Sensor data information payload.

Table 3.4: The payload header construction exists in two different versions. One
for the insecure transmission and the other one for encrypted payloads.

3.6. SYSTEM SOFTWARE COMPONENTS 65

An extra defined structure is available for the measured sensor and actuator data.
This format is named “sensorInfo”, and includes two property fields: type and value.
The “type” field defines the type of contained measured data. The “value” field
contains the present measured value of the sensor.

Data type Name Description

uint8 type
Type of sensor value (e.g. current,
voltage, power-consumption, etc.)

uint16 value Value of sensor data.

Table 3.5: Each sensor value is embedded in such a “sensorInfo” structure.

• Storage Format of IoT Device Specific Information
Each IoT device has the possibility to store device specific information on the security
controller. This opportunity enables the transfer of stored information of the IoT
device to NFC supported devices. The storage format should be kept very generic
to support different variations of IoT devices. A simple storage format for this
information is JavaScript Object Notation (JSON). JSON is a lightweight open-
standard file format, which is a human-readable text with the possibility to transmit
data objects. These data objects can be an attribute-value pair or an array of data
types.

As a consequence, the JSON format is used for storing information. Fixed content
information is the “info” field inside the JSON format. This container contains
typical information of the IoT device like: address, device type, and secured status.
If the IoT device is specified with sensors or actuators, then this information is stored
in the “sensors” field as an array. An example of a stored IoT device information in
JSON format is illustrated in Figure 3.21. This example includes the fixed content
information with three sensor values.

1 {
2 ” i n f o ” :
3 {
4 ” id ” : 62301 ,
5 ” type ” : 1 ,
6 ” secured ” : 1
7 } ,
8 ” s e n s o r s ” : [
9 {” type ” : 2 , ” value ” : 124} ,

10 {” type ” : 1 , ” value ” : 32} ,
11 {” type ” : 0 , ” value ” : 1}
12]
13 }
14

Figure 3.21: Example JSON file format for an IoT device with three sensors.

66 CHAPTER 3. DESIGN AND CONCEPT

• API for Security Controller
The provided functionalities of the security controller can only be accessed with a
special defined API. The API works as translation unit between the software compo-
nent and the hardware abstraction layer. Each designed method in the cryptographic
method has to be added separately to this interface definition. In general, the API
is a collection of all accessible functions from the security controller, which manages
the hardware components.

3.6.3 Security Controller

The security controller, selected in this master thesis 2, is equipped with a Java Card
operating system, which can be extended with self-programmed applets. This feature is
essential to build a secured IoT device because the special requirements and methods can
be directly programmed into the chip. The OS in the Java Card is designed in a way that
the executed operations cannot be revealed through different attacks like side channel
attacks or similar. Additionally, the security controller supports hardware acceleration
modules for different cryptographic algorithms like AES, ECC, and RSA.

From the security controller, different cryptographic functions are requested to enable
a secured environment for the distributed IoT devices. With the aid of the defined re-
quirements, a Java Card applet is designed, which provides an interface to the integrated
functions of the controller. The security controller has two different communication chan-
nels, NFC and UART, where the commands can be sent to the controller.

Secured Data Storage

The security controller includes an own NVM for storing applet specific information. The
developed applet should use the NVM for storing content information of the attached IoT
node. The content information contains detailed information about the node like address,
secure status, node type, and configured sensor data. The stored information is formatted
in the previously define JSON format (see Section 3.6.2)

In addition, all cryptographic keys should be stored in the secured NVM. The amount
of stored keys depends on the node type and mode of configuration. Consequently, the
storage of keys should be managed in a dynamic concept, in order to provide high flexibility
relating to expansion.

Provided Functionalities

The security controller has to perform different working processes for enabling a secured
IoT environment. Due to the fact that the used security controller has two communication
channels, the available functions have to be separated and classified into internal and ex-
ternal functions. Internal functions are only allowed to be executed for the communication
with the trusted microcontroller. This set of functions includes actions like transmitting
plaintext information to the security controller, forcing an encryption of provided data,
and setting node configurations. External functions have to deal with mobile devices with
NFC support and require a higher security level. Due to external usage, all exchanged

2Slightly modified internal Infineon test-chip, based on variants described at www.infineon.com/security

3.6. SYSTEM SOFTWARE COMPONENTS 67

information are protected by a secured communication channel between the external de-
vices and the security controller. The communication channel to the microcontroller is
also allowed to request the execution of external functions.

In the next section, a list of functions is provided which have to be available in the applet
for the designed IoT environment:

• External and Internal Available Functions

– Receive encrypted device content information

– Evaluate session data

– Create a new session

– Transfer pairing data from and to the device

– Get node type

• Only Internally Available Functions

– Get and set device ID

– Set device content information

– Set node type

– List all paired device IDs

Chapter 4

Implementation

This chapter focuses on the implementation of the overall IoT-Security demonstrator. The
development environment, including the software tools is described, followed by explaining
implementing the hardware components. Finally, each designed software component of the
thesis is presented by their functionality and realization.

4.1 Development

This section provides an overview of the applied workflow and the development envi-
ronments that were used. The development environments are shortly described in their
functionality in order to operate with the chosen hardware platforms and devices.

4.1.1 Workflow

The implementation of this master thesis requires a workflow which combines the devel-
oping processes of hardware and software components. In the first stage, it is necessary
to develop the hardware components for the various IoT devices inside the environment.
Consequently, the hardware components are constructed for the gateway and the various
IoT nodes, like smart outlet and smart switch. Next, the implemented hardware compo-
nents are verified and tested on their correct functionality. If these tests are positive, then
the software components can start to be developed.

The first software component, which should be customized, is the embedded OS for the
microcontrollers. In order to do this, the “Contiki OS” is enhanced by miscellaneous
drivers for the used hardware components. After a basic operative hardware platform with
the devices of a gateway and several nodes, the OS is extended by the network protocols
and the key management system. In the process of developing the key management system,
the implementation of an Android application is also included. This Android application
is used among other things for exchanging the cryptographic keys. For this intention, it
is necessary to develop a “Java Card OS” applet for the security controller as well.

After these steps, the implementation is focused on the front-end platforms for the user, in-
cluding a website on the gateways webserver and some additional operative functionalities
in the Android application.

69

70 CHAPTER 4. IMPLEMENTATION

The last step of the overall workflow is to test the entire constructed IoT environment on
their functionality and operational usability.

4.1.2 Used Firmware/Software Development Environments

The development process requires to use a different software tool for implementation.
The variation of miscellaneous tools is introduced by the different hardware components
and platforms. The microcontroller series from Infineon, namely XMC, provides an own
development platform, which is called DAVE. The security controller is deployed as a
Java Card environment, therefore it is required to use a special tool with additional API
functionalities to the Java Card OS. In the next section, all various environment tools,
which are used in this thesis, are described by their main functionality and their common
field of application.

DAVE (for XMC Microcontroller Development)

The development environment DAVE [82] includes an Eclipse [83] platform with useful ex-
tensions for graphically configuring the microcontrollers. The possibilities in configuration
include the internal hardware modules, pin mapping, pin definition, and also integrating
pre-developed applications. These pre-developed applications contain various software
modules and high level applications for a rapid developing process, like webserver and
API functionalities for SPI, UART, I2C, and so on.

In general, the DAVE environment is equipped with configuration tools, which support
the developer with important information of the used microcontroller. In addition, all
available hardware modules are listed for the selected microcontroller which provides a
good overview of all functionalities. The integrated source code of the hardware mod-
ules are tested and provide verified configurations. The advantage of the support in the
configuration process of internal modules of the microcontroller is that the configuration
can proceed easily in a GUI without operating deeply with the registers. The GUI also
checks the input values of the configurations on plausibility and informs the developer
in case of violations regarding configurations and interconnections of the internal mod-
ules. Currently, Infineon supports two different versions of Dave, namely 3 and 4. In the
implementation phase is commonly used Dave 3 with some extensions of Dave 4.

Java Card OS (for Security Controller Development)

Java Card Integrated Development Environment (IDE) is used for developing applets
for the security controller. This IDE is equipped with a full development environment,
which enables the developer to compile and upload the finished applet to the Java Card. In
addition, this platform can also be used for configuring the Java Card by several properties
to fulfill the requirements for a typical operation.

Eclipse (used for Contiki OS Development)

Eclipse [83] is a universal development platform, which supports nearly every program-
ming language. In this development process, Eclipse is used for the composition between
embedded OS and the generated configurations settings for the XMC microcontrollers.

4.2. MODIFIED/REDESIGNED HARDWARE COMPONENTS 71

Eclipse is used in the version Neon.3 (4.6.3) with standard extensions for a programming
environment for C and C++ language. The main development is concentrated in this
IDE.

Android Studio (for Smartphone Application Development)

Android Studio [84] is a development environment for constructing Android applications.
This environment enables the developer to construct applications for different Android
versions and also for miscellaneous devices easily. Android applications are programmed
in Java, and the applications are usually organized in activities. Android Studio is used
in the version 2.3.3 for the developing process.

4.2 Modified/Redesigned Hardware Components

Various hardware devices to establish a full workable IoT environment are required. A
basic IoT network consists of a gateway and several nodes. The following section is focused
on the hardware components used in order to create these individual IoT devices.

4.2.1 Gateway PCBs

The gateway, from the hardware device’s point of view, requires a lot of different hardware
components to meet the defined requirements. Due to the availability of various evaluation
boards and kits, it is not necessary for the gateway to develop everything from scratch.
The base element of the gateway is given by an evaluation kit from Infineon, which provides
a complete development platform with a microcontroller, debugging system, and several
hardware components. The functionality of this basic board can be extended by the usage
or new development of add-on shields.

Basic Board

The basic board of the gateway is an evaluation kit, which is named XMC4500 Relax
Kit. Detailed information about the evaluation kit can be found in the user manual
[85]. Figure 4.1 depicts the evaluation kit with a detailed description of its integrated
components. The XMC4500 Relax Kit is equipped with a XMC4500 microcontroller as a
main component, and is enhanced with several hardware components like micro SD Card,
Ethernet module, micro USB interface, and much more. The pin headers on both sides
of the board are essential to build add-on shields for extending the base system with
additional functionalities. The following add-on shields should extend the base board with
a communication system for the IoT environment and a security controller. This procedure
of adding additional add-on shields to this evaluation kit are a suitable workflow for the
gateway because the gateway does not have the limitations of a small construction area.
The reason for taking this approach is because the gateway is located at a static location
and has a fixed power supply.

72 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Evaluation kit XMC4500 Relax Kit with labels of all necessary components.
Illustration taken from [85].

The hardware components are:

• XMC4500
For this gateway, it is necessary that the microcontroller XMC4500 has enough cal-
culation power and flash memory. The XMC4500 microcontroller impresses with the
amount of integrated hardware modules, the existence of several input/output pins,
and large storage spaces for the developed firmware. These features are necessary in
order to fulfill all requested tasks.

• Ethernet RJ45 and PHY
The Ethernet socket (RJ45) and its physical hardware elements enable the connec-
tivity to the WWW with an IPv4 configuration. The maximum transfer rates for
this interface is defined by 10/100 Mbit/s.

• Micro SD Card
The purpose for using the micro SD Card is to save ROM storage on the microcon-
troller. Files of the webserver should be outsourced to the SD Card to be flexible to
update the content, and to save storage space on the microcontroller. This card is
directly connected to the microcontroller over a special defined bus system.

• Micro USB
The micro USB interface is used to provide a debugging interface for the embedded
OS. The integrated USB controller can emulate a Component Object Model (COM)
interface. The virtual COM interface is used in order to be able to redirect debugging
messages from the embedded OS to the terminal of a computer.

4.2. MODIFIED/REDESIGNED HARDWARE COMPONENTS 73

• Debugger
The on board debugger is a useful component to program the compiled software
to the microcontroller. Additionally, this component supports the functionality of
debugging the microcontroller in complex operating situations.

Add-on Board for IoT Communication

For the communication with the IoT nodes, an add-on shield for the XMC4500 Relax Kit
is used, which was developed by Infineon. On this add-on shield is placed the TDA5340
as transceiver module. This module is equipped with an antenna matching network for
868MHz. In addition to the standard operation unit, a flash storage on the add-on shield
is also installed, which will not be used in this thesis. Figure 4.2 illustrates the add-on
shield with the TDA5340 for the XMC4500 Relax Kit.

Figure 4.2: Development board for TDA5340 with pin compatibility to the XMC4500
Relax Kit.

Developed Add-on Board with Security Controller

The entire construction, including the evaluation kit with the extension of the TDA5340
add-on shield, is nearly completely constructed. The only functionality which is missed are
the components for improving security. Therefore, it is required to design an add-on shield
with the security controller and a printed NFC antenna. This add-on shield is developed
to fit on the top of the XMC4500 Relax Kit evaluation board and can operate in parallel
with the other add-on shields. Figure 4.3 outlines the basic components of the developed
extension shield with their used components. The essential parts of this shield are the
security controller, which can be switched off with an adequate circuit, and an on-board
printed NFC antenna with the possibility to connect an external one to the board.

74 CHAPTER 4. IMPLEMENTATION

Add-on shield - Security controller

N
FC

 f
ie

ld

Tr
ig

g
er

VOUT

Enable

+3.3V

+3.3V
E
n
ab

le

VOUT

N
FC

 T
ri
g
g
er

NFC field

Pin header (2x 40 pins)

Security
Controller

VDD

NFC

Antenna
+

Matching

UART

Trigger
extraction

of NFC field

I/0
Power
Control

Unit

Figure 4.3: System architecture of add-on shield for security controller with integrated
NFC antenna.

The power control unit on this board is used to control the power supply from the security
controller in order to switch the hardware component on and off. The security controller
can either be powered by the external power supply, or by the generated electromagnetic
field of a NFC-enabled device. This power control unit consists of one NPN- and one PNP-
Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) to build the required cir-
cuit. The security controller can be switched on with the power supply by pulling the
“Enable” pin to high state.

Additionally, a circuit for generating a trigger signal out of the NFC electromagnetic field
is also placed. This trigger signal is used as input for an interrupt control unit, in order
to become aware of the process if a NFC-enabled device leaves the communication area
of NFC antenna. This process is required because the security controller provides no
interrupt signal for the described activity. Therefore, the best way to detect the leaving
process is to generate the trigger signal with a diode and a capacitor, as it is depicted in
Figure 4.3. In addition, the interrupt input pin of the microcontroller is protected against
high voltages. The trigger signal is protected with two Schottky diodes to limit the voltage
between 0V and 3.3V plus the voltage drop of the Schottky diodes.

4.2.2 IoT Node

The nodes in the IoT environment face special limitations like small construction area
and low-power consumption. The implementation process of the IoT node construction is
divided into a basic board and multiple extension boards with different functionalities. The
next section focuses on the implementation process of creating the hardware components
for the IoT devices of smart outlets and smart switches.

4.2. MODIFIED/REDESIGNED HARDWARE COMPONENTS 75

Redesign of Basic IoT Node Board

The Printed Circuit Board (PCB) concept is in principle based on an earlier WSN demon-
stration, but is redesigned from scratch due to various required enhancements and re-
placements of both microcontrollers. The main components of a standard IoT node are
a microcontroller with the extensions of a transceiver, and a security controller. With
the construction of this basic IoT node board, the node should be able to communicate
within the IoT environment and to operate with cryptographic functionalities by the sup-
port of the hardware element. Figure 4.4 depicts the complete construction concept of
the basic IoT node board. In addition, Figure 4.4 illustrates the interconnectivity and
communication types among each hardware component. The central point of this board
is the microcontroller, which should be small, but powerful enough to fulfill all tasks in a
suitable time.

IoT node - main board

Extension

Board

Digital I/O

PWM

SPI

ADC

N
FC

 f
ie

ld

Tr
ig

g
er

+3.3V

N
FC

 T
ri
g
g
er

NFC field

Security
Controller

VDD

NFC

Antenna
+

Matching

UART

Trigger
extraction

of NFC field

I/0

Enable
(High Current)

TDA 5340

SPI

RF

PCB Antenna
+

Matching

XMC 1100

I/0 Int.

Figure 4.4: Implemented architecture of the basic board for an IoT node.

Detailed information of the interconnectivity between the hardware components are pro-
vided in the next paragraphs. All hardware components are discussed, which are illustrated
in Figure 4.4. The selection of the right components with their communication interfaces
are important in the implementation phase, thus the resources of the microcontroller are
used efficiently and results in a high utilization.

• XMC1100
The XMC1100 [74] is a small 4x4mm microcontroller. Nevertheless, the microcon-
troller provides enough interface possibilities to fulfill all requested tasks. Important
modules of the microcontroller are the USIC and ERU unit. The USIC module in-
cludes two channels, which can operate independently from each other. The current
basic configuration uses both USIC channels: one as UART configuration for the
security controller, and the other one is initialized for SPI mode. SPI is used by the
transceiver unit in order to communicate inside the IoT environment.

76 CHAPTER 4. IMPLEMENTATION

• TDA5340
As previously mentioned, the transceiver is connected to the microcontroller with a
SPI interface. In addition, some digital input pins are used at the microcontroller
for signaling special notifications. The TDA5340 also generates interruptions for
signaling if a new data packet is received by the radio unit.

• Security Controller
The security controller is connected with the microcontroller via an UART interface,
which is specified by the ISO7816 standard. After the detection of a NFC-enabled
device leaving out of the communication range, the microcontroller is informed by
the created trigger signal to check the buffer of the security controller if a new
command or parameters are available. The security controller has no dedicated
interrupt output pin, which can be used for signaling the leaving process or that
new data are available. Therefore, it is necessary to create an own trigger signal
out of the NFC field. The circuit for setting up a trigger signal is the same for the
gateway and has the same functionality.

• Extension Board Connectivity
The extension board connectivity is a combination of all free input and output pins
of the microcontroller. Additional hardware components which are required to use a
communication interface, can only use SPI because the XMC1100 does not have a free
channel to implement for example I2C. Among these connectivity options various
digital input/output pins, interrupt inputs, ADC channels, and PWM outputs are
available.

Extensions of Basic IoT Node

An IoT node with the basic board configuration can communicate inside the environment,
but cannot provide useful sensor information or actuator functionality because there are
no hardware components available. The purpose of the extension board is to provide
these functionalities to the basic board. In this master thesis, two different extensions
for a smart home application are constructed. These extensions should provide a good
starting point inside a connected home and can simply turn a general home into a smart
one.

These two extensions are comprised of a smart outlet and a smart switch. The design
process defines the functionality of these two extensions, and also the selection of used
hardware components. This next section discusses the process of creating the hardware
devices with their major implementation solutions.

• Smart Outlet
The smart outlet supports the basic board with the functionality of switching the
power supply inside a typical home. In addition, the node has the possibility to
measure the current flow and the attached voltage of the connected device. Conse-
quently, the node is able to calculate the power consumption of the attached device,
due to the measured parameters. A complete overview of used hardware components
and their interconnections are illustrated in Figure 4.5.

4.2. MODIFIED/REDESIGNED HARDWARE COMPONENTS 77

Smart Outlet - Extension

INPUT

Interface

to

Main board

AC
Phase wire

AC
Neutral wire

Relay

Phase wire (L)

Neutral wire (N)IN

TLI 4970

S
PI

IN
T

Voltage
Meas.

V
O
U
T

L
N

+3.3V

VOUT

Figure 4.5: Detailed illustration of the smart outlet extension board with the
communication interfaces and used components.

These hardware components use various communication interfaces for the interaction
with the microcontroller. Due to this fact, it is focused on each hardware element
to point out the information, which is necessary in the implementation process.

The designed platform includes following hardware components:

– Relay
For the relay component is used a solid state relay with a zero-cross detection
system. This relay is specified for voltages of up to 600V AC and can switch a
current of maximum 1.2A. The controlling interface is isolated by the switching
unit by a Light Emitting Diode (LED) unit. Consequently, the process of
controlling the device is very simple: by powering the LED unit. The used
relay has no safety functions, which are able to detect an over current or other
destroying factors.

– Current Sensor
For the task of measuring the current flow of the attached device, it is prefer-
able to use a hall element, ensuring an isolated measuring. The TLI4970 is
constructed for this use case, and also provides useful functionalities like over
current detection. The measurement values of this element can be received
over the integrated SPI interface. The TLI4970 is used with the extension la-
beling D025T4, which defines the maximum measurable current. In this case,
it corresponds to 25A in the positive and negative direction. Equation 4.1
demonstrates the calculation of the corresponding current with the received
value (out[LSBD]), which is measured by the TLI4970. The smallest current

78 CHAPTER 4. IMPLEMENTATION

change, which could be tracked, is approximately 6mA.

Iout[A] =
out[LSBD]− 4096[LSBD]

160[LSBD
A]

(4.1)

– Voltage Sensor
In order to precisely calculate the correct power consumption of the attached
device, it is also required to measure the voltage of the power supply. The
connected power supply is an AC voltage with a normally Root Mean Square
(RMS) value of 230V in Europe. This RMS value can varying through different
properties, therefore it is necessary to measure it with an adequate circuit.
On the hardware platform has to be knowingly activated this functionality by
connecting two hardware pins due to the non-isolated measurement method. In
the standard application is disabled this part in this thesis and is only prepared
for the usage, but if there is enough time then this feature will be activated.

The True-RMS value is calculated in Equation 4.2. This Equation calculates
the square root of the mean of the square of all measured voltages from the
voltage waveform during a specified period of time.

VRMS =

√∑n
i=0(V

2
n)

n
(4.2)

In order to get the voltage values of the attached power supply, it is necessary
to prepare the measured voltage for the ADC input pin for the microcontroller.
The input pin of a microcontroller can only measure values between zero and
the reference voltage, which corresponds with the power supply voltage of the
microcontroller. Due to the AC voltage supply, it is required to reduce the
power level to the input limitations, followed by increasing the input voltage
with a Direct Current (DC) offset value because the input AC waveform also
includes negative values. The new resulting output voltage after the added DC
offset, is always above zero volts. The created circuit for this task is depicted
in Figure 4.5 in the detailed illustration of the voltage measurement block.

• Smart Switch
The functionality of a smart switch is to react on pressing a button on the switch.
The IoT device tracks the push action and forwards the trigger event to the mi-
crocontroller, which subsequently sends specified commands to another paired IoT
node. The hardware construction of this extension board is very simple and only re-
quires one input pin. This input to the microcontroller is performed as digital input
pin with ideally an external interrupt support. The board construction is illustrated
in Figure 4.6 for a better visualization. A common way to debounce the button
switch is to use a combination of hardware and software based solutions.

4.3. MODIFIED/REDESIGNED SOFTWARE COMPONENTS 79

Smart Switch - Extension

INPUT

Interface

to

Main board

Button
+3.3V

B
u
tt
on

Tr
ig
g
er

Figure 4.6: Detailed overview of the used components and connectivity of the
smart switch extension board.

Trade-offs regarding PCB Form-Factor Variants

In the process of designing the hardware PCB of the IoT nodes, it became apparent that
the separation into a main board and several extension boards is not simple to solve, due
to the limitation of the minimal construction height. The restriction of the limited height
of the entire hardware structure is limited by the installation space, because behind a
standard wall outlet there is only a small place. This small area behind the outlet has
to be used in an economical way. In addition, the difference on hardware components on
a smart outlet and a smart switch is extremely low. The smart switch requires only an
extra button input. In conclusion, a hardware platform is designed on a tiny PCB, which
can be used for both device configurations.

4.3 Modified/Redesigned Software Components

A big part of the software components is the embedded OS for the various IoT devices.
Extra applications are required to be developed for miscellaneous parts of the project.
These parts are the applet for the security controller, a website for the gateway, and an
Android application to control and force the key exchanges.

4.3.1 Contiki OS

Contiki OS is an embedded OS with a 6LoWPAN stack for the communication inside the
WSN part of the entire IoT infrastructure. The base functionality of the embedded OS
provides the communication stack protocol and basic operational methods. Therefore,
this OS can be used for the developed hardware platforms as a base system, which has
to be modified with various functions. Some functionalities and basic configurations are
already developed by Infineon, which includes the driver components for the TDA5340,
network stack configuration, and basic process definition. The next section discusses the
processes of modification of the enhanced Contiki OS. The modification is necessary to
be able to operate with the designed hardware devices. In addition, the focus is lead on
the different available applications including the list of running process threads.

The workflow for the adoption of the Contiki OS is divided into several intermediate stages.
In the first step of adopting the OS, the new designed hardware platforms are required

80 CHAPTER 4. IMPLEMENTATION

to be added to the project structure of Contiki OS. After this step, the communication
platform including the protocol stack 6LoWPAN, can be configured and tested in their
functionality. Once this is implemented and runs successfully on the hardware platforms, it
should be possible to send simple data packages between the devices. After implementing
these configurations in the OS, different high level applications can be developed for the
IoT devices.

CPU Extension

The new designed hardware platforms use microcontrollers, which are not officially sup-
ported by Contiki OS. Consequently, the microcontrollers from these new hardware plat-
forms have to be added into the existing structure. The basic configuration and header
files of the microcontroller can be extracted directly from Infineon. The only additional
adaptation on these configuration files have to be processed for the integration into the
API compatible interface of the OS. The OS provides several API functionalities for ini-
tialization and using low level configurations of the microcontroller. Due to this reason,
the Infineon files have to be adapted in the integration process to the existing interface.
In the design process, two microcontrollers with a central core processing unit from ARM
are selected. The new microcontroller files are placed under the folder structure “cpu >
arm > xmcXXXX”. The configuration of the microcontroller includes the configuration of
the base system of the CPU. The base system consists of modules like the internal clock
generation, start-up scripts, and register definitions.

Platform Configurations

It is possible to define various platforms in the Contiki OS environment. A platform
configuration is defined as one hardware device with several external attached components.
Ideally, the platforms should be able to be independently exchanged to the applications.
Therefore, the hardware platform can be selected in the Makefile before the complete
project is compiled.

In this master thesis, two new hardware platforms are created, which have to be integrated
to the Contiki OS environment. These two hardware platforms are named in the Contiki
environment “xmc4500-SecureGateway” and “xmc1100-IoTNode”.

• xmc4500-SecureGateway
The platform of the secured gateway requires to define and to configure all external
used components, which are on the basic board and on the add-on shields. The
configuration of the entire platform is a little bit complex, due to the high amount
of various external components. In order to simplify this configuration process, the
Infineon development environment DAVE is used, to configure the internal modules
of the microcontroller. This tool enables the developer to configure the internal
modules of the microcontrollers in a simple way through the provided GUI. After
the complete configuration process in the DAVE IDE, the created configuration files
are integrated into the Contiki OS structure. In addition to the configured internal
modules, all pins of the microcontroller are configured with the requested function-
ality. In conclusion, the platform configuration of the secured gateway provides

4.3. MODIFIED/REDESIGNED SOFTWARE COMPONENTS 81

configurations information for following modules: Ethernet, SD Card, USB, UART,
SPI, PWM, and ERU.

• xmc1100-IoTNode
The platform “xmc1100-IoTNode” is designed for the IoT node configuration. In
this platform, all pins of the microcontroller are configured, which are used in the
environment. Furthermore, all internal modules of the microcontroller are configured
to operate with all external devices. These modules are the watchdog timer, ERU,
SPI, UART, and PWM. The process of configuration is also performed in the first
stage in the DAVE IDE and is subsequently added to the Contiki OS file structure.

Network Stack Configuration

The network stack has to be configured in the Contiki OS in a way to operate in the defined
IoT environment. The configuration is based on previous Contiki OS-based demonstrator
in order to stay compatible. The configuration process of the network stack includes
different layers, which starts at the top with the 6LoWPAN and ends with configuring the
hardware component of the transceiver module. Figure 4.7 depicts the network stack in
a clear overview structure with its basic configuration settings. In addition, this Figure
illustrates that some drivers have included the word “null” in the naming. This special
naming means that the protocol for this part of the network architecture is disabled. The
reason for the disabling of the additional protocol is due to the used transceiver module.
The transceiver module can transmit in the current configuration only 288 bits at one
time. In detail, this means if more protocols are enabled, then the length of the headers
are increased, and consequently the resulting payload is reduced with every additional
enabled protocol standard. Therefore, in this configuration only the essential protocols
are enabled. If there is enough time at the end of this thesis, then the driver for the
TDA5340 can be extended to be able to send bigger payloads by filling the buffer during
transmission. In the transportation layer are activated UDP and ICMP protocols, in
order to send information to other participants. An essential configuration for the IoT
architecture is the network layer, which uses 6LoWPAN as communication protocol.

Figure 4.7: Network stack configuration in Contiki OS for IoT environment.

82 CHAPTER 4. IMPLEMENTATION

Modified Gateway Application

In principle, the gateway works as border router between the WWW and the WSN. In
order to process the task as border router, the gateway requires the support of different
features, for example:

1. UDP connections to handle the communication inside the WSN

2. Stored node information for the webserver

3. Host webserver with support of dynamic content

4. Basic key management system

5. Some general features to fulfill all requirements (e.g.: Node management, interrupt
handling, neighbor discovering)

Several processes are required for these features which perform all described tasks. These
operations are split into several processes, which are scheduled by the OS. The following
list describes each process by their functionality and common responsibilities.

• udp server process
Figure 4.8 depicts the flow chart of the UDP server process, which is slightly modified
to the original based one. The UDP server process is responsible for managing the
communication between the IoT nodes and the gateway. For this task the gateway
establishes a UDP server socket as a listener, which waits for incoming connections.
After the connection is established, the gateway has the opportunity to receive in-
coming data packages by any IoT node. In general, input data packages contains
IoT node information, control commands, and similar.

udp_server_process

wait for event
(Process yield)

Triggered by event

setup UDP server socket

call receive_handler()

set flag to
reset watchdog counter

event?

tcpip_event

other

UDP server socket:
IP Address: NULL

Port: NULL

Watchdog timer:
Flag is checked in ``main‘‘ function

Reset timer flag = 0x1

Figure 4.8: Flow chart illustrates the processed tasks of the UDP server process.

4.3. MODIFIED/REDESIGNED SOFTWARE COMPONENTS 83

• extern interrupt process
The external generated trigger signal from the NFC field is observed with an inter-
rupt input of the microcontroller. The interrupt is activated, when a falling edge on
the input signal is detected. Due to physical and technical reasons, the input trigger
signal can be overlapped with different signals. Consequently, the input signal is
debounced to reduce false triggered interrupt signals. In the first step, the input
signal is debounced in software by checking at several time positions if the input
signal is still low. If the signal is low for the complete testing window, then the OS
fires an interrupt signal inside the OS, leading to execute defined handlers. These
bouncing effects on the NFC trigger signal are also generated by the NFC communi-
cation technology. The processing of the external interrupt process is illustrated in
Figure 4.9. In the interrupt routine of the debounced signal, the security controller
checks, if a new command or parameters are available in the input buffer. This input
buffer can be manipulated by the developed Android application.

external_interrupt_process

wait for event
(Process yield)

Triggered by event

interrupt detected

set flag to
reset watchdog counter

event?

event_poll

other

Watchdog timer:
Flag is checked in ``main‘‘ function

Reset timer flag = 0x1

debounce
NFC input trigger signal

Interrupt detected after
debouncing?

communicate with
security controller

true

false

Functions to check buffer:
New control command available?
New configuration parameters?
Start additional processes

Figure 4.9: The external interrupt process is responsible for the NFC trigger signal.
In this Figure is illustrated the workflow of all called tasks.

84 CHAPTER 4. IMPLEMENTATION

• common process
The “common process” is constructed to control general functionalities in the appli-
cation. Figure 4.10 depicts the various processed tasks of the common process. The
“common process” is scheduled by the Contiki OS every second. At each call of the
process, the output LED is toggled. This output LED indicates that the OS is still
in running mode. Furthermore, the process is responsible to write the present device
information to the storage of the security controller every 10 seconds. In addition,
at every process call the TCP stack is reconfigured for the integrated webserver.
The webserver acts as an interface for the border router and establishes an IPv4
connectivity to the WWW environment. In the beginning of the process, the status
of the gateway with several parameters is also initialized. The values for the timing
specifications can be modified in the header definition of the high level application.

common_process

wait 1s
(Process yield)

Called by scheduler

initial configuration

toggle LED output

update data at
security controller

call TCP configuration for
webserver

set flag to
reset watchdog counter

time_in_seconds % 10 == 0

true

false

Setup on security controller:
Set node type to ``Gateway‘‘

Set unique device ID

Watchdog timer:
Flag is checked in ``main‘‘ function

Reset timer flag = 0x1

Figure 4.10: The flow chart demonstrates the functionality of the common process.

• udp send process
The UDP send process is used at the gateway to respond or send messages to the IoT
nodes inside the WSN environment. This process is constructed with the possibility
to poll the process from other actions inside the OS. This functionality of polling is
required to be integrated inside the webserver, in order to send control commands

4.3. MODIFIED/REDESIGNED SOFTWARE COMPONENTS 85

to the nodes. The user should be provided with the functionality to control and
change the parameters of the selected nodes by pressing buttons on the website.
The function of sending packets to the receiver is only processed when a polling
request is set for this process. In general, this process is used to transmit control
commands and status messages over the established UDP channel inside the UDP
server process. In the “send handler” function, a packet is constructed in the defined
architecture with the provided payload, and is subsequently forwarded to the radio
unit to be processed for transmission.

udp_send_process

wait for event
(Process yield)

Triggered by event

call send_handler()

set flag to
reset watchdog counter

event?

event_poll

other

Watchdog timer:
Flag is checked in ``main‘‘ function

Reset timer flag = 0x1

Figure 4.11: Flow chart depicts the actions of the UDP send process.

The sequence of called processes is illustrated in Figure 4.12. In this figure, it is apparent
that two different fields of processes exist. The bottom area defines the processes, which
are constantly called upon in a pre-defined time schedule. In this definition, the “com-
mon process” is included. This process should be scheduled by the OS every second. The
second area in the illustration is the scheduling of the interrupt driven process. All three
listed processes are only called when an interrupt arrives at the OS. The external inter-
rupt process is triggered by an external interrupt pin from the microcontroller. The other
two interrupts are generated by the UDP connection, for example when a new packet is
received or when packets have to be transmitted over the WSN communication channel.

86 CHAPTER 4. IMPLEMENTATION

Figure 4.12: Scheduling scheme for all established processes on the gateway.

In addition to the discussed processes, the application is responsible for several sub ap-
plications like a webserver, node management, and key management. The next section is
focused on these sub application.

Implemented sub applications for the gateway are:

• Modified Webserver
The base application of the webserver is created and configured in the Infineon devel-
opment tool, DAVE. After the configuration of the webserver in the provided tool it
is exported and integrated into the Contiki OS environment. The general functional-
ity of the webserver is to provide opportunities to access and transmit contents of the
website. The content for the websites are stored on the SD Card. Consequently, the
webserver is also responsible to access the data on the SD Card storage space. The
webserver support website formats of “htm” and “stm”. Furthermore, the webserver
should allow to process dynamical content for the loaded websites. This operation
uses the functionality of “cgi” to respond to dynamical requests.

Three different interfaces are provided to request dynamical parts of the specified
content information inside the dynamical part of the webserver. These interfaces are
defined and described as follows:

1. mote info.cgi
The execution of this function provides a list of all available IoT nodes in the
complete IoT environment. The transmitted data is constructed as a string
with the node information of address, type, and security status. Each of these
parameters are separated by a “%” symbol. Furthermore, nodes are separated
in the string by a “$” symbol.

2. mote data.cgi
The mote data function returns, as dynamical content, the detailed information
of a selected IoT node. It is defined in the requested header which node infor-
mation has to respond by the address value. The node information is combined

4.3. MODIFIED/REDESIGNED SOFTWARE COMPONENTS 87

together to one string. Each parameter of the node is a structure of two values:
first value defines the type of value, and the second defines the corresponding
value. Each parameter structure is separated in the string by a “$” symbol.

3. mote action.cgi
With this functionality, it is possible for the website to send control commands
to the desired IoT nodes. Therefore, it is possible for the user to control the
status of different IoT nodes by pressing buttons on the website. The API for
the control commands is defined by an easy structure, which only defines the
type of command and the command value. After the processing of the control
command by the webserver, the command is subsequently transmitted to the
related IoT node.

• Modified Node Management
The node management is responsible to add and remove nodes to the internal struc-
ture of the gateway. If node data information is received by the gateway, then it will
be added to the management structure. If it is already available, then the parameter
fields are updated. The node structure contains a special field, which is called “up-
date”. This field is updated at every successful processed information data packet
from the nodes. If the information of the node is not updated for several minutes,
then the node will be removed from this structure.

• Developed Key Management
The key management system is responsible to manage all pairing information of all
integrated nodes. In the first version of the key management system, the sequence
of operations is kept, and is simple and supports the basic functionalities. It is
responsible for providing a mechanism to renew already distributed cryptographic
keys between two paired participants. The process of renewing the current keys can
be forced by several opportunities, for example: after some amount of transmitted
encrypted messages, after a specified time, or by the user itself. The key manage-
ment system is also supported by the developed Android application, which handles
the key exchange for the first time, and enables a secured initialization of the IoT
environment.

Application for Smart Switch and Smart Outlet Devices

The application for the IoT nodes, especially for the smart switch and the smart outlet,
is constructed to read the connected sensors and to transmit informational content of the
nodes to the gateway. Furthermore, the application is responsible to manage the basic
tasks and the basic key management operations. The application is split into several
processes in order to proceed with all requested operations. All processes are scheduled
by the Contiki OS when they are required.

88 CHAPTER 4. IMPLEMENTATION

An overview of the processes, including their functionality, is discussed below:

• udp server process
The UDP server process for the IoT nodes has the same workflow than for the gate-
way. This process establishes a UDP server socket, and manages receiving activities
of new packets. The server connection is requested to be able to receive messages
from the gateway side.

• extern interrupt process
The external interrupt process in Contiki OS is also constructed in the same way
as the gateway. If an interrupt is recognized after software debouncing, then the
security controller is checked if new control commands or parameters are available
in the buffer to be transmitted to the microcontroller.

• sensors process
Figure 4.13 illustrates the common workflow of the sensor process. The main tasks
of this process are to initialize the used sensors on the hardware platforms, and to
refresh the sensor values. If a sensor value changed, then a special flag is set in the
sensor structure, signaling to the OS that a new sensor value is available.

sensors_process

wait for event
(Process yield)

Triggered by event

setup all attached sensors

set flag ``FLAG_CHANGED''
and inform OS

event?

sensor changed

other

Sensors:
Button

TLI4970

Relay

ISO7816

Figure 4.13: Flow chart demonstrates the sequence of the sensor process for this
application.

• udp client process
The UDP client process is the main process of the constructed application. This
process is responsible for initializing the IoT nodes to their desired functionality
and to process the common operational tasks. In the first stage of this process,
a UDP socket connection to the gateway station is established. This connection

4.3. MODIFIED/REDESIGNED SOFTWARE COMPONENTS 89

is required to send node information to the gateway, and to also receive necessary
control commands. Furthermore, the node is initialized with its unique device ID
and node configuration data. After the initialization tasks are performed, the process
yields each time and is called by the scheduler approximately every second. If the
IoT node is constructed to operate as a smart switch, then the input button is
checked if an event is triggered. Otherwise, if it is a smart outlet, then the sensors
should be triggered to measure all available values. The next process is to update
the node information to the storage of the security controller after every 10 seconds.
After every 15 seconds, the node should send a status information message to the
gateway to show its availability, and to update the measured information on the
website. These timings are modified during runtime to save energy consumption
and to provide in the case of an active usage a faster updating process for the
website. Figure 4.14 depicts the described workflow of the UDP client process.

udp_client_process

wait 1s
(Process yield)

Called by scheduler

setup UDP socket
to the gateway

update data at
security controller

set flag to
reset watchdog counter

time_in_seconds % 10 == 0

true

time_in_seconds % 15 == 0

false

UDP server socket:
IP Address: IP address from gateway

Port: NULL

Watchdog timer:
Flag is checked in ``main‘‘ function

Reset timer flag = 0x1

node initialization
Setup on security controller:

Set node type to ``smart outlet‘‘ or ``smart switch‘‘

Set unique device ID

Node device?

force measurement
of sensors

check input
button

smart switch smart outlet

send node information
to gateway

true

false

Figure 4.14: This flow chart illustrates the operational tasks of the UDP client
process.

90 CHAPTER 4. IMPLEMENTATION

The defined processes are supported by two sub applications. These applications are
responsible for managing the sensors and the key management. Each of these applications
are described below:

• Sensor Management
The sensor management system controls the process of collecting all measurement
values of the connected sensors. Under the collection of sensors is the current sensor
(TLI4970), security controller, relay unit (AQH3213A), and the input button. The
button input is only required by the smart switch platform configuration.

• Basic Key Management
The basic key management system has the responsibility to manage the paired node
information inside the security controller and to keep them up to date. Most of
the key management system is placed directly inside the security controller. This
part of the application manages the storage for the cryptographic keys and protects
them against external attackers. The application on the node side covers the process
of managing the workflow of renewing and exchanging of additional cryptographic
information.

4.3.2 Designed Website for Dynamic Node and Security Management

One of the main front-end platforms of this thesis is the webserver with the provided
website. The website is used to visualize all received sensor data and node information
of the IoT environment. Other functionality besides the visualization is to send control
commands to the available IoT nodes. Each IoT node is equipped with different set of
control commands. These control commands include switching a relay or pushing a button.

The complete website consists of three sites: home, dashboard, and information. The sites,
home and dashboard, provides the visualization of the content information of connected
IoT nodes. In order to reduce the amount of transmission data between the gateway and
the end point participant, the website is constructed in a dynamic way for updating only
the content, which is required at this time. The webserver on the microcontroller only
provides support for a HyperText Transfer Protocol (HTTP) webserver with post request.
On the client side, AJAX is used for realizing the dynamic content transmission that is
established on post requests.

The next section describes the various sites which are available on the website, focusing
on the implemented functionality and on the design process.

• Home
The home site, which is also the starting site, provides the user with a general
overview of all connected IoT nodes in the defined environment. On this site, all
connected IoT nodes are in a list on the left side. The content information of the
selected node is placed on the right side of the site. If one node on the left side is
selected, then the website starts a process for periodically requesting the information
of the selected node. The dynamic content of the IoT node is requested and replayed
by AJAX functionality. The list of available IoT nodes is periodically requested by
the website every two seconds. The webserver responds with a list of nodes, which
contain the node address, configuration type, and if the communication is secured.

4.3. MODIFIED/REDESIGNED SOFTWARE COMPONENTS 91

The detailed node information content is only requested by the website when the
node is selected in the list. The content information is refreshed every five seconds.

• Dashboard
The dashboard visualizes the same content information than the home site but only
in another view. The design of the dashboard is kept simple in tiles. The main
difference between the home and the dashboard view is that on the dashboard the
user can see all node information at the same time. This site also provides the
possibility to control the nodes with their provided functionality. The content data
is requested as well with AJAX commands for the website.

• Information
The website, information, provides the user with a general overview of the IoT
environment and their used components. This site is only used to provide informative
information to the user.

Implemented AJAX Commands

The website is integrated with AJAX request commands, in order to receive dynamic
content from the webserver. Therefore, the webserver provides following API function-
alities, which are summarized in Table 4.1. On the website as previously discussed, the
list of nodes which is updated every two seconds, and uses the “mote info” functionality
to receive the requested content. If a node is selected on the website, then the corre-
sponding content information of the node is requested every five seconds with the function
“mote data”.

Request
address

Type Data Response

mote info GET List of nodes

mote data GET address=<nodeID> Node information

mote action GET id=<nodeID>&action=<action>&
value=<value>

No response

Table 4.1: AJAX commands for enabling a dynamic exchange of content data.

92 CHAPTER 4. IMPLEMENTATION

4.3.3 Security Controller - Applet Development

The security controller runs a standard Java Card environment with no pre-loaded applets.
The primary security element in this master thesis is the security controller, which provides
hardware accelerated calculations of various cryptographic methods for the platforms of
diverse devices. The aim for this IoT environment is to secure the connections between
the devices with a certain security level and to store private and sensitive information on
a secured NVM. Due to these requests, a new applet is developed to resolve all these
functions.

The Java Card environment uses as standard interface, the ISO7816, as a communication
channel and provides the possibility to use NFC technology. Considering the Java Card
environment and the provided interfaces, the commands including the payloads are trans-
mitted in the construction of APDU packets. The designed applet is responsible to receive
these APDU packets and to respond with the desired parameters.

As previously mentioned, the security controller is made up of two interfaces, which uses
the same communication protocol. During runtime, only one of those can be used, either
the UART or the NFC interface. With the process of controlling the power supply of the
security controller, it is possible to enable or disable the opportunity of using the NFC
interface. The implementation of a secured applet for the security controller requires dif-
ferent functions to enable security enhancements which have to be provided as interface
to the outside of the Java Card. These functions are separated into two security levels:
internal and external. If functions are declared to be classified as internal, then some-
times they send data in a decrypted state and also provide detailed information of the
IoT device. Internal functions should consequently only be available for the connected
microcontroller via the UART interface. The external functions, which are protected by
several cryptographic mechanisms, are available on both interfaces.

Overview of Implemented Functions

The implementation of the applet waits until an APDU command is received from the
communication interfaces, either from UART or NFC. In the first stage, the received
APDU command is analyzed by their supplied properties. After this step, the correct
function is selected by the state machine. All implemented functions with their required
parameters are summarized in Table 4.2. The detailed description of the transmitted data
value and return value are not included in this table; each implemented function with their
purposed and detailed transmitted content information will be separately described.

4.3. MODIFIED/REDESIGNED SOFTWARE COMPONENTS 93

Internal

Function Name INS P1 P2 LC Data
Return
value

GET RANDOM 0xA0 0x00 0x00
length of

data
yes

GET DEVICE ID 0xA1 0x00 0x00 0x00 yes

SET DEVICE ID 0xA2 0x00 0x00 0x02 yes

SET NODE TYPE 0xA3 0x00 0x00 0x01 yes

SET DEVICE DATA 0xA4 0x00 0x00
length of

data
yes

GET PAIRED IDS 0xA5 0x00 0x00 0x00 yes

IS ID PAIRED 0xA6
upper

byte ID
lower

byte ID
0x00

GET NEW CMD ACTION 0xA7 0x00 0x00 0x00 yes

AES DEC WITH AES VERIFY 0xA8
upper

byte ID
lower

byte ID
length of

data
yes yes

AES ENC WITH AES SIGN 0xA9
upper

byte ID
lower

byte ID
length of

data
yes yes

External

Function Name INS P1 P2 LC Data
Return
value

SET INTERNAL ACCESS 0xB0 0x00 0x00
length of

data
yes

EVAL SESSION 0xC0 0x00 0x00
length of

data
yes yes

CREATE NEW SESSION 0xC1 0x00 0x00
length of

data
yes yes

GET LINKLAYER KEY 0xC2 0x00 0x00 0x00 yes

GET NEW PAIRING DATA 0xC3
upper

byte ID
lower

byte ID
length of

data
yes/no yes

SET NEW PAIRING DATA 0xC4
upper

byte ID
lower

byte ID
length of

data
yes

GET ENC DEVICE DATA 0xC5 0x00 0x00 0x00 yes

SET NEW CMD ACTION 0xC6 0x00 0x00
length of

data
yes

GET NODE TYPE 0xC7 0x00 0x00 0x00 yes

Table 4.2: Complete APDU command structure.

Detailed Description of Internal Available Functions of the Applet

Internal functions are not secured in all perspectives, due to the performance reasons of
the microcontroller. In order to protect the internal functions of misuse from external
users, it requires to enable the internal function set by a secret information. The access to

94 CHAPTER 4. IMPLEMENTATION

the internal functions can be gained by the execution of the “SET INTERNAL ACCESS”
method, which requires as input value a shared secret. This method of gaining the access
to the internal functions is only very simple and should be improved to have a stronger
security level. This differentiation is required due to the fact that the two interfaces cannot
be separated in their accessibility.

• GET RANDOM
This function requests the security controller to return a specified amount of random
generated bytes. The amount of generated bytes is defined with the LC property
field of the APDU command. The random bytes are generated by a TRNG module.

Provided and returned data:

– Input data: no additional information

– Return value: generated random bytes

• GET DEVICE ID
This function requests the security controller to return the stored device ID. The
return value of a successful execution of this command is an array of two bytes,
which are responding to the stored device ID.

Provided and returned data:

– Input data: no additional information

– Return value: device ID (2 bytes)

• SET DEVICE ID
The SET DEVICE ID function is used to store the current device ID to the security
controller. In the APDU command, the new device ID has to be included. This
function is not returning any value except for the trailer.

Provided and returned data:

– Input data: new device ID (2 bytes)

– Return value: no return value

• SET NODE TYPE
The SET NODE TYPE function is necessary to define the device type. The mi-
crocontroller can define the behavior of the complete IoT device inside the security
controller with this function because the applet is slightly different for different node
types. Two different configuration types are defined: The value “1” represents a
gateway and “2” signals a sensor node.

Provided and returned data:

– Input data: node type value (0 = default, 1 = gateway, 2 = node)

– Return value: no return value

4.3. MODIFIED/REDESIGNED SOFTWARE COMPONENTS 95

• SET DEVICE DATA
The content of the node data can be updated or set with this function. This process
is required that the user has the possibility to request the node data with a NFC-
enabled device. The content data of an IoT node includes device specific information
and the current sensor values.

Provided and returned data:

– Input data: Information of the device in byte format

– Return value: no return value

• GET PAIRED IDS
This function returns a list of successfully paired devices. A paired device can
represent a node or a gateway where all cryptographic information is available to
establish a point-to-point encryption.

Provided and returned data:

– Input data: no additional information

– Return value: linked pairs of upper byte of ID and lower byte of ID

• IS ID PAIRED
With this function it is possible to request, if the transmitted device ID is paired or
not. The device ID is transmitted with the APDU parameter field of P1 and P2.
This method does not have a response value; instead, the attached trailer is used to
analyze the status of the request. If the trailer value correlates to the hexadecimal
value of 0x9000, then the device ID is successfully paired. The device ID is not
paired, when the attached trailer value represents an error code.

Provided and returned data:

– Input data: no additional information

– Return value: no return value (only trailer)

• GET NEW CMD ACTION
This function requests the security controller to respond with the information, if a
new control command is placed inside the buffer. If a new control command is stored
in the buffer, then the stored information is included into the response. The return
value is a concatenation of three byte values. The first byte represents the command
type and the other two bytes defines the associated stored value.

Provided and returned data:

– Input data: no additional information

– Return value: command type ‖ upper byte value ‖ lower byte value

• AES DEC WITH AES VERIFY
The microcontroller receives signed and encrypted messages over the radio frequency
module. In order to verify and to encrypt these messages, the security controller

96 CHAPTER 4. IMPLEMENTATION

provides this functionality. The microcontroller has to provide to the controller the
IV for the CBC mode of the AES encryption, the encrypted message, and the MAC
of the signed encrypted message. If the verification of the MAC is correct, then
the return value corresponds to the decrypted message. The information for the
selection of the correct cryptographic keys for the AES functions are provided by
the parameters P1 and P2 by the APDU command.

Provided and returned data:

– Input data: AES IV ‖ Encrypted message ‖ MAC

– Return value: Decrypted message

• AES ENC WITH AES SIGN
The microcontroller should provides the functionality to encrypt and sign new mes-
sages with the support of the security controller. This function only requests the
plaintext as input to perform the process, which is transmitted with the payload of
the APDU command. In addition, the security controller has to be provided with
cryptographic keys that are required for the process. This information is included
inside the APDU command in the parameter fields P1 and P2, and represents the
device ID. The return value is a concatenation of the new created IV, encrypted
message, and the MAC.

Provided and returned data:

– Input data: plaintext

– Return value: AES IV ‖ Encrypted message ‖ MAC

Detailed Description of External Functions of the Applet

External functions are available at the NFC interface and enable the user to communicate
with the security controller. The construction and transmission of data is protected by
several points of view. One important procedure is the usage of encryption with session
keys for a secured transmission of data between the security controller and the NFC-
enabled device. In addition, the transmitted data is authenticated by the session keys in
order to recognize if a message is modified during transmission.

• SET INTERNAL ACCESS
With this command the microcontroller can unlock the access to only internally
available functions with the knowledge of the shared secret. This command only
requires the shared secret as input value for the execution. If the shared secret
is valid, then the security controller enables the access to the previously explained
internal functions until the Java Card applet is deselected.

Provided and returned data:

– Input data: Shared secret

– Return value: no return value

4.3. MODIFIED/REDESIGNED SOFTWARE COMPONENTS 97

• EVAL SESSION
The NFC-enabled device can check if the stored session data is still valid or if it
has to be updated. This function requires an encrypted message as input. In this
encrypted message byte values are randomly generated, which are encrypted with
the currently available session keys. The security controller decrypts the message
with its stored session keys and increments each byte in the message by one. After
the incrementation process, the new message is encrypted with the same session key.
The updated message is sent to the sender. The sender has to decrypt it again and
check if the random generated byte values are correctly incremented by the value
of one. If all bytes are correct, the NFC-enabled device and the security controller
can be sure that the session keys are valid. The freshness of the session data is
also protected by an incremental counter, which only allows to execute a specified
number of commands. If this specified number of executed commands is reached,
then this method responds to the device that the current used session is invalid.

Provided and returned data:

– Input data: Encrypted message (content of randomly generated bytes)

– Return value: Encrypted message (received bytes are incremented by one)

• CREATE NEW SESSION
This method is necessary when the previously used session data is expired or is
not available any more. With this function, it is possible to generate new session
keys for a secured communication between the NFC-enabled devices and the security
controller. A successful execution requires the ECC public key of the requester as
input. With the input of the public key, the security controller calculates new session
data on the base of the defined process of ECIES. The method responds as return
value the current ECC public key of the ephemeral key pair of the security controller.
The public key of the controller is necessary to be able to recalculate the new session
data.

Provided and returned data:

– Input data: ECC public key of requester

– Return value: ECC public key of security controller

• GET LINKLAYER KEY
In order to receive the stored keys for the link layer encryption, this function has
to be executed. No input data is required for the execution of this function. In the
use case of this thesis, only the gateway responds the link layer key in an encrypted
message and all other IoT devices respond with an error message. The link layer key
is encrypted with the current session keys, so that the key cannot be eavesdropped
during the transfer.

Provided and returned data:

– Input data: no additional information

– Return value: IV ‖ Encrypted message ‖ MAC

98 CHAPTER 4. IMPLEMENTATION

• GET NEW PAIRING DATA
This function is used to create new keys for a new point-to-point encryption. This
function requires as input the new requesters device ID and optionally the link layer
encryption key. The requester’s device ID is transmitted with the parameter fields
P1 and P2 of the APDU command. The link layer key is transmitted as payload of
the APDU packet, which is marked as optional, and is only required for pairing a
node with the gateway. If the link layer key is transmitted in the payload, then this
payload is required to be encrypted with the session keys of the current session data.
The encrypted return value of this function contains the newly created point-to-
point encryption keys. In all cipher modes the present session keys for transmitted
encrypted messages are always used.

Provided and returned data:

– Input data: IV ‖ Encrypted message ‖ MAC (optional payload)

– Return value: IV ‖ Encrypted message ‖ MAC

• SET NEW PAIRING DATA
The newly created and stored point-to-point encryption keys at the NFC-enabled
device have to be transmitted to the requested device in order to finalize the pairing
process. This function is designed to fulfill these requirements. The function requires
an input value to the new point-to-point encryption keys in encrypted way. Two
contained keys are inside the payload, namely one AES key for the cipher encryption,
and one AES key for the authentication. At the beginning of the message, two bytes
for the device ID are additionally included, which are used for the identification of
the creators ID. All this information is encrypted with the session keys to protect
confidential information against attackers.

Provided and returned data:

– Input data: IV ‖ Encrypted message ‖ MAC

– Return value: no return value

• GET ENC DEVICE DATA
The stored information about the device can be requested by this method. The
stored information is encrypted and signed with the current session keys. A con-
catenation of a new IV for the AES cipher, encrypted content information about the
device, and the signed MAC is expected as a return value.

Provided and returned data:

– Input data: no additional information

– Return value: AES IV ‖ Encrypted message ‖ MAC

• SET NEW CMD ACTION
The security controller owns a dedicated buffer which is used to transmit control com-
mands or parameters. This functionality is designed to transfer control commands
from the NFC-enabled device to the security controller, which are later processed by

4.3. MODIFIED/REDESIGNED SOFTWARE COMPONENTS 99

the microcontroller. The payload for the buffer is also encrypted by the session keys.
The function call decrypts the payload data at first and is then stored inside the
buffer. The encrypted message includes the construction of the control command
which consists of three bytes. The first byte is defining the command type, and the
other two bytes are the related command value. The microcontroller can poll the
buffer to recognize if new data is inside the buffer or the external generated NFC
trigger signal can be used.

Provided and returned data:

– Input data: AES IV ‖ Encrypted message ‖ MAC

– Return value: no return value

• GET NODE TYPE
This function is the equivalent for setting the node type. The return value is the
current node type with the same device encoding as the “SET NODE TYPE” func-
tion.

Provided and returned data:

– Input data: no additional information

– Return value: node type value (0 = default, 1 = gateway, 2 = node)

Enhanced Error Codes

In the implementation of the above discussed functions, new error codes are added for
correct error handling. The new added error codes are listed and shortly described by their
meaning in Table 4.3. These error codes are constructed to be placed in the proprietary
area so they can be compatible with the other APDU errors.

Secured Storage Management

Another use case of the security controller is to store IoT device specific information in
a secured NVM. The advantage of this storage place is that the memory is protected
against side channel attacks and other cryptographic attacks. One part of the entire
available memory is reserved to store cryptographic keys of the paired devices, and the
second part is partitioned for the IoT device specific content data.

The device specific content can only be received from the security controller when a valid
session is created between the security controller and the participant. A memory storage
of 200 bytes is reserved for the content data. If this amount of data is not enough, it is
possible to extend it in the security controller with a simple definition.

The storage place for the paired cryptographic keys is organized in an array structure. The
positions of the array are mapped pairwise to a paired device ID. For this organization,
two arrays are used. One array holds all cryptographic keys, and the second one maps
the keys to the paired device ID. The point-to-point cryptographic keys for the gateway
are stored in the IoT devices always on the position 0 and 1. The first element of a
key pair is the AES cipher key, and the second position represents the AES key for the

100 CHAPTER 4. IMPLEMENTATION

Name Error code Description

AES ERROR 0x6510
In the cipher execution occurred an
error.

AES SIGN ERROR 0x6511
In the sign process occurred an
error.

CMD NOT FINISHED 0x6512
The control command has not
picked up.

CMD FINISHED 0x6513
No control command is stored in
the buffer.

NODE ID NOT FOUND 0x6514
Device ID has not been found in
the list of paired devices.

PAIRING NO FREE SLOT 0x6515
The buffer for storing the
information of paired devices is full.

PAIRING SAME ID 0x6516
Execution cannot be forced on the
same device.

ACCESS DENIED 0x6517
Access is denied to internally
functions.

Table 4.3: Additionally defined error codes beside the standard APDU ones.

authentication process. All other IoT device keys are stored after the gateway in the same
order. Figure 4.15 depicts the organizational memory structure of the stored keys inside
the array.

Device ID # 1

Device ID # 2

Device ID # 3

Device ID # 4

...

...

Device ID # n

AES Cipher key (ID # 1)

AES MAC key (ID # 1)

AES Cipher key (ID # 2)

AES MAC key (ID # 2)

...

...

AES Cipher key (ID # n)

AES MAC key (ID # n)

List of paired devices List of stored keys

Figure 4.15: Configuration of storage mapping for paired key information inside the
security controller.

4.3.4 Designed Android Application

The Android application with the name “Secure Smart Home” is the main part of the de-
fined secured pairing process between two communication participants. This application
has to meet the design requirements with the defined activities. The conclusion out of
the design process showed, it is necessary to implement four miscellaneous activities for
this application. In the implementation phase, state diagrams are created for each activ-

4.3. MODIFIED/REDESIGNED SOFTWARE COMPONENTS 101

ity, which are subsequently implemented into the Android application. The next section
describes each activity in detail based on their functionality and composition.

Main Activity

In the main activity, the user is able to scan any deployed IoT device for receiving all
essential information by the support of NFC. For receiving this information in a secured
environment, the Android device, which must be equipped with NFC, has to follow the
defined working process of the security controller to establish a new session. Figure 4.16
illustrates the state diagram of the main activity. In the beginning, the application has
to check if the session data is available. If the session keys are not present or not valid,
then the Android device has to force the process to create new session keys, which is
based on the concept of ECIES (described in Section 3.5.1). If all session keys exist and
are valid now, then the NFC-enabled device can trigger an event for receiving encrypted
content data from the scanned IoT device. The received data from the security controller
is encrypted with the current valid session data.

Running
(idle)

onCreate()

Start
Pairing

Node-Gateway

Start
Pairing

Node-Node

Send
Control

Command

Finished()

Check
&

establish
session keys

Display
JSON data

in
GUI

Request
IoT device

information

Figure 4.16: State diagram of main activity in Android.

Furthermore, the main activity provides several functionalities to the user, which are
visible after a successful scanning process of an IoT device. These functionalities for the
specified IoT device can be to send control commands to the security controller, force a
new pairing process between the gateway or another node, and to perform configurations.
The set of functionalities depends on the scanned node type.

Figure 4.16 depicts a green state with the label “Check & establish session keys”. This
state contains several sub states, which check and verify if the current stored session keys
are still valid. Figure 4.17 illustrates the previously described process of checking and
establishing new session keys.

102 CHAPTER 4. IMPLEMENTATION

Evaluate session
data

Check
&

establish
session keys

available?

Yes
Get stored

session data

valid?

No

No

Create new
session data

Session keys
are valid

(secured state)

yes

Figure 4.17: State diagram of verifying session keys in the Android application.

Send Control Command to IoT Device

This activity is designed for transmitting control commands to the IoT devices. This
process requires to follow a specific flow of actions to send the commands in a secured
way to the device. This activity is useful to force actions or to perform configurations on
a specified IoT device. Figure 4.18 depicts the state diagram of the described activity.
In the first step, it is required to check and validate the session data following the same
workflow as it is depicted in Figure 4.17. If the session data is correct, then the control
command is built up with the selected command type and value. The constructed message
is subsequently encrypted with the present session keys, and is transmitted to the IoT
device via the NFC communication channel.

Running
(idle)

onCreate()

Check
&

establish
session keys

Finished()

Transmit
packet

over NFC

back()abort()

Encrypt
command

packet

Build
command

packet

Figure 4.18: State diagram of processing and transmitting a control command to an IoT
device.

4.3. MODIFIED/REDESIGNED SOFTWARE COMPONENTS 103

Pairing Process Between Two IoT Devices

The pairing process between two IoT devices is necessary in the designed security concept
in order to exchange the cryptographic keys in a secured way. Two versions of the pairing
process are available, and the version selected depends on the participating device. One
workflow exists for the combination gateway and node, and an additional one exists for
two nodes. The main differences between these two workflows are in the amount and types
of exchanged cryptographic keys. The detailed processes of the various pairing scenarios
are described below in the following section.

• Pairing Between Node and Gateway
Figure 4.19 depicts the state diagram of the pairing process between a gateway and
a node. The first stage is to check if session data is available and valid, followed
by the process defined in Figure 4.17. If this process is followed, then the user
has to scan the gateway for receiving the link layer encryption key. This action is
summarized in part 1 of the state diagram in Figure 4.19. In part 2, the node, which
started the process, has to be scanned again with the NFC-enabled device in order
to transmit the received link layer key, and for requesting to create new key pairs
for the point-to-point encryption. The last step in the pairing process, part 3, is to
transmit the new created key pairs to the gateway with a rescan of the gateway via
NFC. After all these steps, the gateway is successfully paired with the node and the
communication is encrypted and authenticated.

Running
(idle)

onCreate()

Finished()

abort() back()
Check

&
establish

session keys

Pairing
process
part 3

Pairing
process
part 2

Pairing
process
part 1

Figure 4.19: State diagram of pairing process between a node and a gateway.

104 CHAPTER 4. IMPLEMENTATION

• Pairing Between Two Nodes
The process of pairing two nodes is nearly the same than the process for the gateway.
Figure 4.20 illustrates the detailed state diagram of the pairing process. The state
machine in the Android application has to manage the different states for a successful
pairing. In the first stage, new point-to-point encryption key pairs by the second
node are created, which want to be paired with the original node. The newly created
cryptographic keys are transmitted to the Android device, which is represented in
part 1. After the keys are received, the user has to scan the original node to transmit
the new key pairs of the new paired IoT device. The last described step is labeled in
the state diagram as part 2. After these two steps, the two nodes can communicate
in an isolated channel with each other. The channel is encrypted and authenticated.

Running
(idle)

onCreate()

Finished()

abort()
Check

&
establish

session keys

Process
pairing
part 2

back()

Process
pairing
part 1

Figure 4.20: Pairing process between two IoT nodes. State diagram demonstrates
the required steps inside the Android application.

Chapter 5

Results

In this chapter, the complete designed IoT environment for a secured smart home ap-
plication is presented. The first part of this chapter focuses on the construction of the
hardware devices and their interaction in the entire system environment. The security
concept of the network is recapped and all implemented security mechanisms are pointed
out. Lastly, the end-user platforms are described by their appearance and their usability.

5.1 Evaluation of Interacting Components

The entire IoT environment consists of several devices and components that construct a
secured smart home application. The two main devices inside the IoT construction are
the gateway and the distributed IoT nodes. In the demonstration setup of the secured
smart home application, one gateway, one smart switch, and several smart outlets are
used. The gateway, as border router, is connected to a standard home router to provide
the accessibility to the WWW. The home router is equipped with WiFi to enable to
connect the tablet and smartphone to the network.

5.1.1 Assembled Smart Home Demonstrator

Figure 5.1 depicts the constructed secured smart home application. On the left side
of the Figure, a smartphone and a tablet are connected to the gateway via the WiFi
communication channel of the home router. Those devices have the possibility to access
the webserver of the gateway and to display the hosted website with the network address
“http://192.168.1.1/index.htm”. In the middle of the Figure is the gateway with the
special assignment to translate the different physical communication environments to the
other ones, for example; from the WSN to the WWW network and vice versa. The IoT
nodes with typical functionalities for a smart home environment are on the right side.
Furthermore, this section focuses on each constructed IoT device, depicting their resulted
functionality and construction sizes.

105

106 CHAPTER 5. RESULTS

Router

Gateway

Smart switch

Smart outlet

Figure 5.1: Entire secured smart home application setup of the designed application.

5.1.2 Gateway with Security-Enhancements

Figure 5.2 illustrates the constructed gateway with all requested external hardware compo-
nents. At the base of the gateway is the board with the main components, the evaluation
kit XMC4500 Relax Kit, which provides the device with the base functionality. The base
functionality of this evaluation kit is the support of Ethernet, SD Card, microcontroller,
and debugging system. On the evaluation kit, two add-on shields are stacked to extend the
basic functionality. The first add-on shield, counting from the bottom to the top, provides
the base system with a transceiver module for the WSN environment. The second add-on
shield on the top enhances the complete gateway with the support of a security controller.
A NFC antenna is located on this add-on shield with the security controller, enabling a
direct communication interface to NFC-enabled devices.

Figure 5.2: Constructed gateway for the usage in the IoT environment of a secured smart
home application.

5.1. EVALUATION OF INTERACTING COMPONENTS 107

Challenges of the Add-on Shield - Security Controller

In the implementation phase of the add-on shield with the security controller, an issue
is detected with the power management unit in a common operation mode. The power
management unit is designed to switch the power supply of the security controller with a
high side MOSFET switching circuit. The issue with the designed circuit occurs in normal
operation when the microcontroller tries to switch off the power supply to the security
controller. The misbehavior appears in a way that power supply is not disconnected when
the enable pin of the power management unit is set to low. In a closer inspection of the
voltage values of the circuit, it appears that the output voltage of the power management
unit is approximately 2.7V instead of 0V. Consequently, the misbehavior is investigated
in more detail in the current operating mode to find the error.

At first, the current operation mode is analyzed and focuses on the circuit construction
and their input values. In the present mode, the values of the input pins on the security
controller are observed. The reset line (RST) is powered with 3.3V and the other inputs
are pushed to ground. The reset line is powered with 3.3V, because this input line is
Active-Low and is consequently initialized to be always in high state in idle mode. In the
first observation of the constructed circuit, no design mistakes are detected. Due to this
reason, the analysis has to be processed in more detail. Therefore, the answer is searched
in the input structure of the security controller due to the reset line with the powered
input. Figure 5.3 depicts the evaluated input circuit with the power management unit.
The reason for the connected MOSFET is that the MOSFET is not able to operate in a
defined cut off region. In addition, the Figure illustrates the use case of the propagated
voltage through the reset line over the Electrostatic Discharge (ESD) protection circuit to
the power supply (VDD) pin of the security controller. Consequently, the power supply
pin is driven by some volts through the reset line and the ESD protection circuit. The
consequence of this operation is that the MOSFET works in a linear mode, and the security
controller cannot be totally disconnected from the power supply.

Figure 5.3: Illustrated misbehavior of the power management unit for the security con-
troller.

108 CHAPTER 5. RESULTS

The solution for this issue is to switch all inputs of the security controller to ground before
the power management unit is able to switch off the power supply of the security controller.
In the power down mode, the input pins are not allowed to power with a defined high state
because this action would lead to an undefined operating mode of the security controller,
and the NFC communication interface would be disabled all the time.

5.1.3 Redesigned IoT nodes

The designed hardware platform for the IoT nodes is depicted in Figure 5.4. In the imple-
mentation phase, it is pointed out that the constructed PCB should either be usable for
the smart outlet or for the smart switch platform. Figure 5.4 shows the PCB board of the
IoT node from the top and bottom view. The total dimensions of the PCB are in length-
wise direction 31mm and in width 24mm. On this PCB, all required hardware components
for both platform versions are placed. The placed components enable the device to com-
municate with the WSN with the on-board placed antenna. Furthermore, the IoT node
is equipped with several sensors and actuators to perform the defined tasks. Some of the
sensors and actuators are the current sensor (TLI4970), relay, and voltage measurement
circuit. In Figure 5.4 is supplementary labeled the various hardware components.

Solid-State-RelayTDA5340

XMC1100

Security Controller

Antenna
Debug

+
5
V

(a) Top view

Antenna
matching

TLI4970

Voltage
meas.

+
5
V

(b) Bottom view

Figure 5.4: These two Figures show the constructed IoT node from the top and bottom
view. This IoT node is designed to be able to operate as smart outlet or as smart switch.

5.2. EVALUATION OF NEW SECURITY CONCEPT 109

5.2 Evaluation of New Security Concept

The security concept of the smart home application is constructed with several crypto-
graphic techniques. These techniques are distributed at miscellaneous entry points of the
entire IoT environment. Figure 5.5 demonstrates all implemented security features inside
the constructed architecture in order to gain a satisfied security level in relation to energy
consumption.

On the first view it is apparent that only the communication inside the WSN environment
is protected with several cryptographic mechanisms. The other part, exactly from the
gateway to the WWW, goes beyond the responsibility of this master thesis. The focus is
lead to the WSN part of the IoT environment. The WWW environment can be enhanced
with security through extending the webserver with a TLS encryption.

In the WSN environment, the following security enhancements are introduced. The num-
bering corresponds to Figure 5.5:

1. Link Layer Encryption
The entire WSN is protected by a link layer encryption, which is a part of the
6LoWPAN protocol stack inside the Contiki OS environment. The link layer pro-
tection uses AES cipher as cryptographic algorithm.

2. Communication Between IoT Devices
The communication between the IoT devices is encrypted with a point-to-point
encryption to ensure a secured transfer of data. A point-to-point encryption is
established between all nodes to the gateway and also between some nodes. The
channel is encrypted and authenticated; therefore, for this procedure, an AES cipher
in CBC mode is used. The key length for the cipher is defined to 128 bits.

3. IoT Node
The developed IoT nodes are equipped with a hardware secured element. This
hardware secured element provides the platform with a hardware acceleration for
cryptographic algorithms, and a protected NVM storage. Information and configu-
rations are stored on this memory storage of the IoT nodes. The secured element is
constructed to be resistant against side-channel attacks and consequently provides
a high security level for the nodes themselves.

4. NFC Communication
NFC technology is used for the first key exchange to force the pairing tasks in
a secured way. The workflow is implemented in an Android application, which
transfers the data to the IoT devices with the support of ECC. The ECC in ECIES
mode is used, and requires a public/private key pair with a key length of 256 bits.

110 CHAPTER 5. RESULTS

Figure 5.5: Illustrates the developed security concept for the secured smart home appli-
cation. Additional labels include the enhanced security features of the IoT environment.

5.2.1 Payload Overhead due to Security Enhancements

IoT nodes communicate over the WSN with the gateway to exchange information or other
required data. The communication channel is secured with an AES cipher in CBC mode.
Consequently, every data packet is separately encrypted, and produces additional overhead
in comparison to an unencrypted transmission. Table 5.1 demonstrates the structure of one
encrypted payload packet. The interpretation of this Table leads to a minimum payload
length for one encrypted message to 384 bits with an informative content transfer of a
maximum of 128 bits. Consequently, the resulting overhead is 254 bits, which leads to an
overhead consumption of 200% in comparison to a plaintext transmission.

Type AES IV Encrypted Payload MAC

of bits 128 n * 128 128

Table 5.1: Resulting payload length for one encrypted message block. In the encrypted
payload field “n” is the number of blocks of sizes of 128 bits.

In the design chapter in section 3.5.1, the process of using ECC cryptography for the
encryption is discussed. In the evaluated use case of using ECC in the encryption process
based on ECIES, this demonstrates that the generated overhead is increased as well in
comparison to the AES cipher.

Nevertheless, the overhead qualifies the process of transmitting the payload to the other
participants in an encrypted and authenticated way. The conclusion of the security en-
hanced implementation is that each activated security feature conducts more overhead,
but leads to a higher security level and protects the privacy of the users.

5.3. ANDROID APPLICATION EVALUATION - SMART HOME SECURITY 111

5.3 Android Application Evaluation - Smart Home Security

The application for Android devices is designed for several use cases. These use cases
are for visualizing IoT device information, to send control commands, and to proceed the
pairing between other devices. One of the main activities is the process of pairings. The
graphic design of the GUI is kept simple and user friendly. The usage of the application
should be self-explanatory that guide the user through the different activities.

5.3.1 GUI Design

This section focuses on the designed GUI for the secured smart home IoT environment.
The documentation describes the provided functionality of the various activities and the
visualization.

Main Activity

The main activity of the application provides the user with the possibility to scan each
IoT device inside the environment with NFC technology and to receive the stored device
information. Figure 5.6 depicts the different appearances of the main activity screen of the
application. The left Figure 5.6a demonstrates the appearance of the application directly
after the start. If a device is scanned with the support of NFC, then the application changes
the appearance by displaying the received device content. The described illustration is
depicted in Figure 5.6b. This Figure shows the separation of the application into two main
groups. The upper part of the screen displays the general information of the scanned IoT
device. The general information is followed by the available sensors including their current
measured values. In the last group, IoT device specific commands are located, controlling
the device via NFC with the functionalities of sending control commands, and to force
pairings between devices.

(a) Start screen (b) Scanned IoT device

Figure 5.6: Android application in main activity. Figure (a) depicts the appearance
after starting the application. Figure (b) shows the result of a scanned IoT device.

112 CHAPTER 5. RESULTS

Figure 5.7 depicts two different visualizations from the main activity when different IoT
devices are scanned. The difference between these two illustrations is in the amount of
attached sensors, and on the available set of action commands. Figure 5.7a shows the use
case when a smart outlet is scanned. This Figure illustrates the measured sensor values of
power and energy consumption. The set of action commands contain methods to force the
process of pairing and to change the output state (on, off, toggle) of the outlet. Figure 5.7b
demonstrates the use case of a smart switch. The smart switch contains less sensor values
than a smart outlet, and only provides an action command to virtually push the button
over the NFC communication channel.

(a) Smart outlet (b) Smart switch

Figure 5.7: Illustrates the two different appearances of the application, when different
IoT devices are scanned. The appearance of the application changes only in the amount
of sensor values and in the set of action commands.

Pairing Process

The process of pairing is separated into two different workflows. One workflow is for the
process of pairing one node with a gateway, and the other one for pairing two nodes. The
process of pairing two nodes allows the user to link two different IoT nodes with diverse
functionalities together. The result of this pairing process is that one node can control
the other node. For example, if a smart switch is paired with a smart outlet, then the
smart switch has the permission to send control commands over the WSN to the smart
outlet in order to change the output state. In addition, this pairing is used to secure
the connection between the two devices with an additional point-to-point encryption.
Figure 5.8 demonstrates the various visualizations of the workflows. In the middle of
the entire illustration, Figure 5.8b depicts and highlights the two essential buttons which
starts the process of pairing. Figure 5.8a illustrates the screenshot of the workflow for the
pairing between a gateway and a node. Figure 5.8c illustrates the workflow for the pairing
between two IoT nodes.

5.3. ANDROID APPLICATION EVALUATION - SMART HOME SECURITY 113

(a) Gateway/IoT node (b) Start screen (c) Two IoT nodes

Figure 5.8: Demonstrating the appearances of the Android application with the imple-
mented pairing processes.

NFC-based IoT Device Interaction

Figure 5.9 illustrates the process of sending a control command over NFC to a desired IoT
node. For this operation the desired IoT node has to be scanned in order to result in what
is illustrated in Figure 5.9a. Now, the user can choose from a list of action commands.
The set of commands depends on the type of the IoT node. Figure 5.9a illustrates the
information of a smart outlet with the basic functionality of switching the output of the
device on, off, or to toggle it. Figure 5.9b illustrates the appearance of the view of the
send control command activity of the application. The user is now able to scan the chosen
IoT node, which forces the execution of the chosen command. The Android application
automatically returns to the main view when the command is successfully transmitted to
the node.

5.3.2 Usability Analysis

The usability analysis focuses on the process of pairing new devices. As mentioned before,
two different pairing processes exist due to the different devices. The process of enabling
security in an IoT environment must be as simple as possible and should not provide
space for misuses. Most people do not have detailed information about security, and also
not about functionality. Consequently, the importance of activating the correct usage is
commonly underestimated. Nevertheless, the sense for the security topic slowly increases
at the user side and they understand the importance of usage of security features. If the
process of activating the security enhancements is too complex for the end user, then the
process is aborted after some steps or is completely skipped from the beginning.

These facts lead to the use of a smartphone with NFC technology to exchange the cryp-
tographic keys in an easy and protected way. The user is guided through all steps with
short descriptions of the tasks. The cryptographic keys are exchanged with the security

114 CHAPTER 5. RESULTS

(a) Main activity (b) Send action to node

Figure 5.9: Demonstration of the use case to transmit a control command to the desired
IoT node. Figure (a) depicts the main activity with the visualization of a scanned smart
outlet device. Figure (b) illustrates the screen of the device, when an “ON” command is
selected to transmit to the node.

concept of ECC methodology between the smartphone and the security controller. These
two workflows of the pairing process only vary in the amount of exchanged keys. The
pairing between a node and a gateway requires three steps of user interaction. In the
first step, the present link layer encryption key of the gateway is received. This link layer
key is checked each pairing on the gateway by the smartphone because the time between
pairing several devices, it may happen that the link layer encryption key is already up-
dated. Consequently, the new node would not be able to communicate inside the IoT
environment. In the second step in the pairing process, the link layer key to the desired
IoT node is transmitted, and the node subsequently creates new cryptographic keys for
the point-to-point encryption. In the last step, the smartphone transmits the processed
point-to-point keys to the gateway. All communication activities are performed over a
NFC communication channel.

The pairing process between two nodes requires only two steps because the exchange
process of the link layer key is excluded. The exclusion of this key is possible because the
IoT nodes are already paired inside the IoT environment with the gateway.

In short, the processes for activating the security enhancements only require the user
to perform a maximum of three operations. These operations are very simple by only
scanning the desired IoT device with the NFC-enabled device. The workflow, which is
illustrated in the Android application, guides the user through all steps and informs the
user for incorrectly performed operations.

5.4. EVALUATION OF WEBSITE FOR DYNAMIC DEVICE MANAGEMENT 115

5.4 Evaluation of Website for Dynamic Device Management

The website has the responsibility to provide up to date information of the current IoT
environment. Figure 5.10 illustrates the implemented website with a detailed view of the
“home” site. A list of all available IoT nodes is located on this site, which are in the
communication range of the gateway. The list of nodes provides additional information of
the connected nodes like if they are paired with the gateway or not. The main content area
of the website visualizes the received IoT node information. In this area of the website, it
is also possible to send control commands to the selected node.

Figure 5.10: Website in “home” view with two connected IoT nodes, one smart switch,
and one smart outlet. Left side shows the list of currently connected IoT nodes, and on
the right side the detailed information of the selected node is illustrated.

This website is able to dynamically interact with added or removed IoT devices. Fur-
thermore, this website handles and shows encrypted communication between the IoT de-
vices. In principle, this website is still backward compatible with earlier Contiki OS-based
demonstrators without the security features, which are developed in this master thesis.

Chapter 6

Conclusion and Future Work

This chapter summarizes this entire master thesis with the achieved results of security
enhancements of a smart home application. The outlook and potential future work of
the thesis is also discussed, based on the developed and implemented secured smart home
application.

6.1 Conclusion

The literature review of IoT, including WSN, showed that these subjects have already
a better understanding for security and also provides security features inside the used
network protocol standards. Nevertheless, the initial key exchange is an important point
in the establishment of a secured IoT environment. Presently available standards use
various techniques to transfer them in a secured way, including QR codes and button
presses to identify the devices.

In this master thesis, the security enhancements at several points in the IoT environ-
ment are implemented. An essential point of these enhancements is the introduction of a
point-to-point encryption between the involved network participants inside the WSN. The
important point of transmitting processed cryptographic keys between the participants is
done with the support of NFC technology. The standard configuration of NFC does not
provide a secured communication. In order to overcome this problem, the communication
is separately secured by ECC with the concept of ECIES. An advantage of this procedure
is that an encrypted message is directly transmitted over NFC to the Android application
and the application itself is responsible for decrypting the message. Consequently, the
communication cannot be interfered by someone, due to the protection in term of encryp-
tion. QR codes, in comparison to NFC, contain a fixed information which is transmitted
over the camera module to the application. On this way to the application it is possible
to manipulate the QR code, due to a plaintext transmission. An additional advantage
of the usage of NFC is that the IoT device can also be configured and integrated into
the IoT infrastructure before the device is powered for the first time. This opportunity is
only possible through the NFC feature to power devices inside the electromagnetic field.
Consequently, the devices can operate right away inside a secured environment.

In the implementation phase, the usage of Contiki OS as an embedded OS showed that
the usage of the included features are not running out of the box, and require a lot of

117

118 CHAPTER 6. CONCLUSION AND FUTURE WORK

work to be runnable for the requested needs. The development of the end-user software
components, such as the website and the Android application, provide the user an easy
entry to the world of IoT infrastructure and to use the provided features in an easy way.
The user has the option to use either the computer, tablet, or smartphone to control and
manage the IoT network with the implemented website or directly with a NFC-enabled
device. The website is directly hosted by the gateway and do not require a connection to a
cloud service. The advantage of this procedure is that all sensitive data is not transmitted
into the cloud, where nobody knows exactly where they are stored. In this smart home
application, all data is stored directly in the security controller on the gateway side.
Consequently, the privacy of the customer is secured from several perspectives.

In the design process, different methods of securing the communication between two IoT
devices are evaluated. The evaluation was focused on the total resulting length of a typical
payload packet. The resulting length of one payload packet is directly related to energy
consumption because of the longer time for transmission and cryptographic methods. For
the point-to-point encryption, an AES cipher in combination with a CBC mode is used.
The used key length is 128 bits. The communication between the participants is not only
encrypted but also authenticated by an encrypted MAC.

6.2 Future Work

With the presently developed secured smart home application, including the integration of
a security controller, an application is demonstrated which uses enhanced security features.
The entire IoT environment uses cryptographic methods to provide an adequate security
level. On the basis of the developed and constructed secured smart home application, it is
now possible to evaluate various approaches for a secured environment. The next section
summarizes future work in relation to general topics for the IoT environment, including
enhancing security. Interesting features for a smart home application are:

• Energy Efficiency
A necessary point in the IoT nodes would be to focus in detail on the energy efficiency
of the overall device level, especially in the implementation inside the embedded
OS. The OS provides functionality to directly save energy by deactivating various
hardware components during the time when they are not required for a normal
operation.

• NFC Technology Inside IoT
The present implementation uses a smartphone to exchange the cryptographic keys
and consequently handles the configuration of the devices. This procedure can fur-
ther be simplified by removing the smartphone as a transmission resource and uses
the gateway as communication participant. On the gateway, a NFC technology
can be implemented in reader mode in order to directly communicate with the IoT
node, which are constructed as simple tag devices. With this enhancement, a new
IoT device only has to be held inside the communication range of the NFC field
of the gateway, and the gateway would complete the workflow for integrating and
configuring a new device.

6.2. FUTURE WORK 119

• PKI (Public Key Infrastructure) Methods
In the presented approach, a PKI was not applicable for the communication inside
the WSN in a smart home application, due to the resulting long payload sizes for only
small data packets. Furthermore, the higher assumed energy consumption should be
verified with a direct comparison of different algorithms. The resulting overhead by
the usage of a PKI algorithm is at this point in time too high for the communication
inside a WSN. This subject was discussed in detail for ECC in Section 3.5.1.

• Additional Use Cases for the Security Controller
In the implementation process, additional use cases have been discovered for the
security controller. These use cases are to provide a secured environment for trans-
ferring secured firmware updates to the microcontrollers. With the support of the
security controller the firmware can be encrypted and verified in hardware. In ad-
dition, the firmware could be transferred using the WSN communication channel,
or with a NFC-enabled device. Having a defined process for updating firmware in
a secured way is important from the point of view of the customer to be able to
update all system components with the latest firmware to patch security issues in
the IoT devices.

Appendix A

Acronyms

6LoWPAN IPv6 over Low Power Wireless Personal Area Network

AC Alternating Current

ADC Analog to Digital Converter

AES Advanced Encryption Standard

AJAX Asynchronous JavaScript and XML

AM Amplitude Modulation

API Application Program Interface

APDU Application Protocol Data Unit

BLE Bluetooth Low Energy

CBC Cipher Block Chaining

CL-EKM Certificateless-Effective Key Management

CPU Central Processing Unit

CRC Cyclic Redundancy Check

COM Component Object Model

DC Direct Current

DoS Denial of Service

DSK Device-Specific Key

EBS Exclusive Basis System

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

121

122 APPENDIX A. ACRONYMS

ECIES Elliptic Curve Integrated Encryption Scheme

EDDK Energy-efficient Distributed Deterministic Keymanagement

EEKM Energy-Efficient Key Management

ERU Event Request Unit

ESD Electrostatic Discharge

FIFO First In First Out

GUI Graphical User Interface

HMAC Hash-based Message Authentication Code

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

I2C Inter-Integrated Circuit

ICMP Internet Control Message Protocol

ID IDentification

IDE Integrated Development Environment

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

ISM Industrial, Scientific and Medical

IV Initialization Vector

JSON JavaScript Object Notation

KA Key Agreement

KDF Key Derivation Function

LASSB Location-Aware and Secret Share Based

LEAP Localized Encryption and Authentication Protocol

LED Light Emitting Diode

LOCK Localized Combinatorial Keying

123

MAC Media Access Control

MAC Message Authentication Code

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

NFC Near Field Communication

NVM Non-Volatile Memory

OS Operating System

OSI-Model Open Systems Interconnection Model

OTMK Opaque Transitory Master Key

PCB Printed Circuit Board

PKI Public Key Infrastructure

PWM Pulse-Width Modulation

QR Quick Response

RAM Random-Access Memory

RF Radio Frequency

RFID Radio-Frequency IDentification

ROM Read-Only Memory

RPL Routing Protocol for Low-Power and Lossy Networks

RMS Root Mean Square

RSA Rivest-Shamir-Adleman

SD Card Secure Digital Card

SDR Software-Defined Radio

SHELL Scalable, Hierarchical, Efficient, Location-aware and Lightweight

SIM Subscriber Identity Module

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

STKM Spanning Tree Key Management

TCP Transmission Control Protocol

TLS Transport Layer Security

124 APPENDIX A. ACRONYMS

TRNG True Random Number Generator

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

USB Universal Serial Bus

USIC Universal Serial Interface Channel

WiFi Wireless Fidelity

WSN Wireless Sensor Network

WWW World Wide Web

Bibliography

[1] Number of Connected IoT Devices Will Surge to 125 Billion by 2030, IHS Markit
Says — IHS Online Newsroom. url: http : / / news . ihsmarkit . com / press -

release/number-connected-iot-devices-will-surge-125-billion-2030-

ihs-markit-says (visited on May 26, 2017).

[2] S. S. Solapure and H. Kenchannavar.
”
Internet of Things: A Survey Related to Var-

ious Recent Architectures and Platforms Available“. In: 2016 International Confer-
ence on Advances in Computing, Communications and Informatics (ICACCI). 2016
International Conference on Advances in Computing, Communications and Infor-
matics (ICACCI). Sept. 2016, pp. 2296–2301.

[3] Luigi Atzori, Antonio Iera, and Giacomo Morabito.
”
The Internet of Things: A

Survey“. In: Computer Networks 54.15 (Oct. 28, 2010), pp. 2787–2805. issn: 1389-
1286.

[4] Divya Sharma, Sandeep Verma, and Kanika Sharma.
”
Network Topologies in Wire-

less Sensor Networks: A Review“. In: International Journal of Electronics & Com-
munication Technology (IJECT) 4.3 (2013). issn: 2230-9543.

[5] Michal Kerndl.
”
Energy Harvesting Using Nanoegenerators in the Internet of

Things“. url: http://www.academia.edu/24956062 (visited on Oct. 29, 2017).

[6] S. Ahmad Salehi, M. A. Razzaque, P. Naraei, et al.
”
Security in Wireless Sensor

Networks: Issues and Challanges“. In: 2013 IEEE International Conference on Space
Science and Communication (IconSpace). 2013 IEEE International Conference on
Space Science and Communication (IconSpace). July 2013, pp. 356–360.

[7] Dr G. Padmavathi and Mrs D. Shanmugapriya.
”
A Survey of Attacks, Security

Mechanisms and Challenges in Wireless Sensor Networks“. In: International Journal
of Computer Science and Information Security (IJCSIS) 4.1 (Aug. 2009). issn: 1947
5500.

[8] S. Shanthi and E. G. Rajan.
”
Comprehensive Analysis of Security Attacks and In-

trusion Detection System in Wireless Sensor Networks“. In: 2016 2nd International
Conference on Next Generation Computing Technologies (NGCT). 2016 2nd Inter-
national Conference on Next Generation Computing Technologies (NGCT). Oct.
2016, pp. 426–431.

[9] D. R. Raymond and S. F. Midkiff.
”
Denial-of-Service in Wireless Sensor Networks:

Attacks and Defenses“. In: IEEE Pervasive Computing 7.1 (Jan. 2008), pp. 74–81.
issn: 1536-1268.

125

http://news.ihsmarkit.com/press-release/number-connected-iot-devices-will-surge-125-billion-2030-ihs-markit-says
http://news.ihsmarkit.com/press-release/number-connected-iot-devices-will-surge-125-billion-2030-ihs-markit-says
http://news.ihsmarkit.com/press-release/number-connected-iot-devices-will-surge-125-billion-2030-ihs-markit-says
http://www.academia.edu/24956062

126 BIBLIOGRAPHY

[10] M. Brownfield, Yatharth Gupta, and N. Davis.
”
Wireless Sensor Network Denial

of Sleep Attack“. In: Proceedings from the Sixth Annual IEEE SMC Information
Assurance Workshop. Proceedings from the Sixth Annual IEEE SMC Information
Assurance Workshop. June 2005, pp. 356–364.

[11] C. Karlof and D. Wagner.
”
Secure Routing in Wireless Sensor Networks: Attacks

and Countermeasures“. In: Proceedings of the First IEEE International Workshop
on Sensor Network Protocols and Applications, 2003. Proceedings of the First IEEE
International Workshop on Sensor Network Protocols and Applications, 2003. May
2003, pp. 113–127.

[12] J. Newsome, E. Shi, D. Song, et al.
”
The Sybil Attack in Sensor Networks: Analysis

Defenses“. In: Third International Symposium on Information Processing in Sen-
sor Networks, 2004. IPSN 2004. Third International Symposium on Information
Processing in Sensor Networks, 2004. IPSN 2004. Apr. 2004, pp. 259–268.

[13] Zigbee Alliance. url: http://www.zigbee.org/ (visited on Oct. 28, 2017).

[14] ZigBee Alliance. ZigBee Specification 2005. url: https://www3.nd.edu/~mhaenggi/
ee67011/zigbee.pdf (visited on June 5, 2017).

[15] ZigBee Alliance. ZigBee Specification 2006.

[16] ZigBee Alliance. ZigBee Specification 2007.

[17] Oliver Hersent, David Boswarthick, and Omar Elloumi. The Internet of Things:
Key Applications and Protocol. 2. Wiley Publishing, 2012. isbn: 1-119-99435-7. url:
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1119994357.html

(visited on Oct. 29, 2017).

[18] B. Fan.
”
Analysis on the Security Architecture of ZigBee Based on IEEE 802.15.4“.

In: 2017 IEEE 13th International Symposium on Autonomous Decentralized System
(ISADS). 2017 IEEE 13th International Symposium on Autonomous Decentralized
System (ISADS). Mar. 2017, pp. 241–246.

[19] N. Vidgren, K. Haataja, J. L. Patino-Andres, et al.
”
Security Threats in ZigBee-

Enabled Systems: Vulnerability Evaluation, Practical Experiments, Countermea-
sures, and Lessons Learned“. In: 2013 46th Hawaii International Conference on
System Sciences. 2013 46th Hawaii International Conference on System Sciences.
Jan. 2013, pp. 5132–5138.

[20] Z-Wave Alliance. Z-Wave - Smart Home IoT Development Platform. July 20, 2016.
url: http://z-wave.sigmadesigns.com/ (visited on May 21, 2017).

[21] M. B. Yassein, W. Mardini, and A. Khalil.
”
Smart Homes Automation Using Z-Wave

Protocol“. In: 2016 International Conference on Engineering MIS (ICEMIS). 2016
International Conference on Engineering MIS (ICEMIS). Sept. 2016, pp. 1–6.

[22] G.9959 : Short Range Narrow-Band Digital Radiocommunication Transceivers -
PHY, MAC, SAR and LLC Layer Specifications. url: https://www.itu.int/
rec/T-REC-G.9959-201501-I/en (visited on May 26, 2017).

[23] ABR. Introduction to the Z-Wave Security Ecosystem. url: http : / / z - wave .

sigmadesigns.com/wp-content/uploads/2016/08/Z-Wave-Security-White-

Paper.pdf (visited on Oct. 29, 2017).

http://www.zigbee.org/
https://www3.nd.edu/~mhaenggi/ee67011/zigbee.pdf
https://www3.nd.edu/~mhaenggi/ee67011/zigbee.pdf
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1119994357.html
http://z-wave.sigmadesigns.com/
https://www.itu.int/rec/T-REC-G.9959-201501-I/en
https://www.itu.int/rec/T-REC-G.9959-201501-I/en
http://z-wave.sigmadesigns.com/wp-content/uploads/2016/08/Z-Wave-Security-White-Paper.pdf
http://z-wave.sigmadesigns.com/wp-content/uploads/2016/08/Z-Wave-Security-White-Paper.pdf
http://z-wave.sigmadesigns.com/wp-content/uploads/2016/08/Z-Wave-Security-White-Paper.pdf

BIBLIOGRAPHY 127

[24] Behrang Fouladi and Sahand Ghanoun.
”
Security Evaluation of the Z-Wave Wireless

Protocol“. In: Black hat USA 24 (2013), pp. 1–2.

[25] J. Picod, Arnaud Lebrun, and J. Demay.
”
Bringing Software Defined Radio to the

Penetration Testing Community“. In: Black Hat USA (2014).

[26] Geoff Mulligan.
”
The 6LoWPAN Architecture“. In: Proceedings of the 4th Workshop

on Embedded Networked Sensors. EmNets ’07. New York, NY, USA: ACM, 2007,
pp. 78–82. isbn: 978-1-59593-694-3.

[27] P. Srivastava and Sandhya Tiwari.
”
An Overview of Open System Interconnection

(OSI): A Seven Layered Model“. In: Journal of Computer, Internet and Network
Security. 1.3 (Jan. 10, 2017).

[28] C. Hennebert and J. D. Santos.
”
Security Protocols and Privacy Issues into 6LoW-

PAN Stack: A Synthesis“. In: IEEE Internet of Things Journal 1.5 (Oct. 2014),
pp. 384–398. issn: 2327-4662.

[29] Shahid Raza, Thiemo Voigt, and Utz Roedig.
”
6LoWPAN Extension for IPsec“.

In: Proceedings of the IETF-IAB International Workshop on Interconnecting Smart
Objects with the Internet (Jan. 1, 2011).

[30] S. Raza, S. Duquennoy, T. Chung, et al.
”
Securing Communication in 6LoWPAN

with Compressed IPsec“. In: 2011 International Conference on Distributed Com-
puting in Sensor Systems and Workshops (DCOSS). 2011 International Conference
on Distributed Computing in Sensor Systems and Workshops (DCOSS). June 2011,
pp. 1–8.

[31] Rene Hummen, Jens Hiller, Hanno Wirtz, et al.
”
6LoWPAN Fragmentation Attacks

and Mitigation Mechanisms“. In: Proceedings of the Sixth ACM Conference on Se-
curity and Privacy in Wireless and Mobile Networks. WiSec ’13. New York, NY,
USA: ACM, 2013, pp. 55–66. isbn: 978-1-4503-1998-0.

[32] P. Pongle and G. Chavan.
”
A Survey: Attacks on RPL and 6LoWPAN in IoT“. In:

2015 International Conference on Pervasive Computing (ICPC). 2015 International
Conference on Pervasive Computing (ICPC). Jan. 2015, pp. 1–6.

[33] H. S. Kim, J. Lee, and J. W. Jang.
”
BLEmesh: A Wireless Mesh Network Protocol

for Bluetooth Low Energy Devices“. In: 2015 3rd International Conference on Future
Internet of Things and Cloud. 2015 3rd International Conference on Future Internet
of Things and Cloud. Aug. 2015, pp. 558–563.

[34] Specifications — Bluetooth Technology Website. url: https://www.bluetooth.
com/specifications (visited on Oct. 22, 2017).

[35] G. Kwon, J. Kim, J. Noh, et al.
”
Bluetooth Low Energy Security Vulnerability

and Improvement Method“. In: 2016 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia). 2016 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia). Oct. 2016, pp. 1–4.

[36] Xiaobing He, Michael Niedermeier, and Hermann de Meer.
”
Dynamic Key Manage-

ment in Wireless Sensor Networks: A Survey“. In: Journal of Network and Computer
Applications 36.2 (Mar. 1, 2013), pp. 611–622. issn: 1084-8045.

https://www.bluetooth.com/specifications
https://www.bluetooth.com/specifications

128 BIBLIOGRAPHY

[37] Mohamed Eltoweissy, M. Hossain Heydari, Linda Morales, et al.
”
Combinatorial

Optimization of Group Key Management“. In: Journal of Network and Systems
Management 12.1 (Mar. 1, 2004), pp. 33–50. issn: 1064-7570, 1573-7705.

[38] Y. Zhang, Y. Shen, and S. Lee.
”
A Cluster-Based Group Key Management Scheme

for Wireless Sensor Networks“. In: 2010 12th International Asia-Pacific Web Con-
ference. 2010 12th International Asia-Pacific Web Conference. Apr. 2010, pp. 386–
388.

[39] W.T. Li, C.-H Ling, and Min-Shiang Hwang.
”
Group Rekeying in Wireless Sensor

Networks: A Survey“. In: International Journal of Network Security 16 (Jan. 1,
2014), pp. 401–410.

[40] Sencun Zhu, Sanjeev Setia, and Sushil Jajodia.
”
LEAP: Efficient Security Mech-

anisms for Large-Scale Distributed Sensor Networks“. In: Proceedings of the 10th
ACM Conference on Computer and Communications Security. CCS ’03. New York,
NY, USA: ACM, 2003, pp. 62–72. isbn: 978-1-58113-738-5.

[41] Jing Deng, C. Hartung, R. Han, et al.
”
A Practical Study of Transitory Master

Key Establishment ForWireless Sensor Networks“. In: First International Confer-
ence on Security and Privacy for Emerging Areas in Communications Networks
(SECURECOMM’05). First International Conference on Security and Privacy for
Emerging Areas in Communications Networks (SECURECOMM’05). Sept. 2005,
pp. 289–302.

[42] Xing Zhang, Jingsha He, and Qian Wei.
”
EDDK: Energy-Efficient Distributed Deter-

ministic Key Management for Wireless Sensor Networks“. In: EURASIP Journal on
Wireless Communications and Networking 2011 (2011), pp. 1–11. issn: 1687-1472,
1687-1499.

[43] Y. Wang, B. Ramamurthy, and X. Zou.
”
KeyRev: An Efficient Key Revocation

Scheme for Wireless Sensor Networks“. In: 2007 IEEE International Conference on
Communications. 2007 IEEE International Conference on Communications. June
2007, pp. 1260–1265.

[44] Kwang-Jin Paek, Ui-Sung Song, Hye-Young Kim, et al.
”
Energy-Efficient Key-

Management (EEKM) Protocol for Large-Scale Distributed Sensor Networks.“ In:
Journal of Information Science & Engineering 24.6 (2008).

[45] M.-L. Messai, M. Aliouat, and H. Seba.
”
Tree Based Protocol for Key Management

in Wireless Sensor Networks“. In: EURASIP J. Wirel. Commun. Netw. 2010 (Apr.
2010), 59:1–59:13. issn: 1687-1472.

[46] C. Ma, G. Geng, H. Wang, et al.
”
Location-Aware and Secret Share Based Dynamic

Key Management Scheme for Wireless Sensor Networks“. In: 2009 International
Conference on Networks Security, Wireless Communications and Trusted Comput-
ing. 2009 International Conference on Networks Security, Wireless Communications
and Trusted Computing. Vol. 1. Apr. 2009, pp. 770–773.

[47] Chien-Lung Wang, Tzung-Pei Hong, Gwoboa Horng, et al.
”
A GA-Based Key-

Management Scheme in Hierarchical Wireless Sensor Networks“. In: International
Journal of Innovative Computing, Information and Control 5 (Dec. 1, 2009).

BIBLIOGRAPHY 129

[48] S. H. Seo, J. Won, S. Sultana, et al.
”
Effective Key Management in Dynamic Wireless

Sensor Networks“. In: IEEE Transactions on Information Forensics and Security
10.2 (Feb. 2015), pp. 371–383. issn: 1556-6013.

[49] Ronald Watro, Derrick Kong, Sue-fen Cuti, et al.
”
TinyPK: Securing Sensor Net-

works with Public Key Technology“. In: Proceedings of the 2Nd ACM Workshop on
Security of Ad Hoc and Sensor Networks. SASN ’04. New York, NY, USA: ACM,
2004, pp. 59–64. isbn: 978-1-58113-972-3.

[50] A. Liu and P. Ning.
”
TinyECC: A Configurable Library for Elliptic Curve Cryptog-

raphy in Wireless Sensor Networks“. In: 2008 International Conference on Informa-
tion Processing in Sensor Networks (Ipsn 2008). 2008 International Conference on
Information Processing in Sensor Networks (Ipsn 2008). Apr. 2008, pp. 245–256.

[51] E. Fernandes, J. Jung, and A. Prakash.
”
Security Analysis of Emerging Smart Home

Applications“. In: 2016 IEEE Symposium on Security and Privacy (SP). 2016 IEEE
Symposium on Security and Privacy (SP). May 2016, pp. 636–654.

[52] E. Ronen, A. Shamir, A. O. Weingarten, et al.
”
IoT Goes Nuclear: Creating a ZigBee

Chain Reaction“. In: 2017 IEEE Symposium on Security and Privacy (SP). 2017
IEEE Symposium on Security and Privacy (SP). May 2017, pp. 195–212.

[53] Atmel. AT15735: Atmel Smart Plug Firmware User Guide. url: http://ww1.

microchip.com/downloads/en/AppNotes/Atmel-42688-Atmel-Smart-Plug-

Firmware-User-Guide_AT15735_ApplicationNote.pdf (visited on Oct. 29, 2017).

[54] Jason Doyle. Contribute to Google-Nest-Cam-Bug-Disclosures Development by Cre-
ating an Account on GitHub. Sept. 6, 2017. url: https://github.com/jasondoyle/
Google-Nest-Cam-Bug-Disclosures (visited on Oct. 29, 2017).

[55] Grant Hernandez, Orlando Arias, Daniel Buentello, et al.
”
Smart Nest Thermostat:

A Smart Spy in Your Home“. In: Black Hat USA (2014).

[56] Muhammad Omer Farooq and Thomas Kunz.
”
Operating Systems for Wireless Sen-

sor Networks: A Survey“. In: Sensors (Basel, Switzerland) 11.6 (2011), pp. 5900–
5930. issn: 1424-8220.

[57] Contiki: The Open Source Operating System for the Internet of Things. url: http:
//www.contiki-os.org/ (visited on Oct. 29, 2017).

[58] Tinyos-Main: Main Development Repository for TinyOS (an OS for Embedded,
Wireless Devices). Oct. 27, 2017. url: https://github.com/tinyos/tinyos-main
(visited on Oct. 29, 2017).

[59] RIOT - The Friendly Operating System for the Internet of Things. url: http:

//riot-os.org/ (visited on Oct. 29, 2017).

[60] P. Levis, S. Madden, J. Polastre, et al.
”
TinyOS: An Operating System for Sensor

Networks“. In: Ambient Intelligence. Springer, Berlin, Heidelberg, 2005, pp. 115–
148. isbn: 978-3-540-23867-6.

[61] A. Dunkels, B. Gronvall, and T. Voigt.
”
Contiki - a Lightweight and Flexible Op-

erating System for Tiny Networked Sensors“. In: 29th Annual IEEE International
Conference on Local Computer Networks. 29th Annual IEEE International Confer-
ence on Local Computer Networks. Nov. 2004, pp. 455–462.

http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42688-Atmel-Smart-Plug-Firmware-User-Guide_AT15735_ApplicationNote.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42688-Atmel-Smart-Plug-Firmware-User-Guide_AT15735_ApplicationNote.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42688-Atmel-Smart-Plug-Firmware-User-Guide_AT15735_ApplicationNote.pdf
https://github.com/jasondoyle/Google-Nest-Cam-Bug-Disclosures
https://github.com/jasondoyle/Google-Nest-Cam-Bug-Disclosures
http://www.contiki-os.org/
http://www.contiki-os.org/
https://github.com/tinyos/tinyos-main
http://riot-os.org/
http://riot-os.org/

130 BIBLIOGRAPHY

[62] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, et al.
”
Protothreads: Simplifying

Event-Driven Programming of Memory-Constrained Embedded Systems“. In: Pro-
ceedings of the 4th International Conference on Embedded Networked Sensor Sys-
tems. SenSys ’06. New York, NY, USA: ACM, 2006, pp. 29–42. isbn: 978-1-59593-
343-0.

[63] E. Baccelli, O. Hahm, M. Gunes, et al.
”
RIOT OS: Towards an OS for the Internet of

Things“. In: 2013 IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS). 2013 IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS). Apr. 2013, pp. 79–80.

[64] M. Darianian and M. P. Michael.
”
Smart Home Mobile RFID-Based Internet-of-

Things Systems and Services“. In: 2008 International Conference on Advanced Com-
puter Theory and Engineering. 2008 International Conference on Advanced Com-
puter Theory and Engineering. Dec. 2008, pp. 116–120.

[65] ISO/IEC 7816-3:2006 - Identification Cards – Integrated Circuit Cards – Part 3:
Cards with Contacts – Electrical Interface and Transmission Protocols. url: https:
//www.iso.org/standard/38770.html (visited on Oct. 29, 2017).

[66] Martin Klimke and Josef Haid. Hardware-Based Secure Identities for Machines in
Smart Factories. Infineon Technologies AG, 2016.

[67] S. Babar, A. Stango, N. Prasad, et al.
”
Proposed Embedded Security Framework for

Internet of Things (IoT)“. In: 2011 2nd International Conference on Wireless Com-
munication, Vehicular Technology, Information Theory and Aerospace Electronic
Systems Technology (Wireless VITAE). 2011 2nd International Conference on Wire-
less Communication, Vehicular Technology, Information Theory and Aerospace Elec-
tronic Systems Technology (Wireless VITAE). Feb. 2011, pp. 1–5.

[68] Android. url: https://www.android.com/ (visited on Oct. 29, 2017).

[69] P. Ali-Rantala, L. Sydanheimo, M. Keskilammi, et al.
”
Indoor Propagation Compar-

ison between 2.45 GHz and 433 MHz Transmissions“. In: IEEE Antennas and Propa-
gation Society International Symposium (IEEE Cat. No.02CH37313). IEEE Anten-
nas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).
Vol. 1. 2002, 240–243 vol.1.

[70] P. Ali-Rantala, L. Ukkonen, L. Sydanheimo, et al.
”
Different Kinds of Walls and

Their Effect on the Attenuation of Radiowaves Indoors“. In: IEEE Antennas and
Propagation Society International Symposium. Digest. Held in Conjunction with:
USNC/CNC/URSI North American Radio Sci. Meeting. IEEE Antennas and Prop-
agation Society International Symposium. Digest. Held in Conjunction with: US-
NC/CNC/URSI North American Radio Sci. Meeting. Vol. 3. June 2003, 1020–1023
vol.3.

[71] Technologies AG Infineon. XMC4500 - Data Sheet. url: https://www.infineon.
com / dgdl / ?fileId = 5546d46254e133b40154e1b56cbe0123 (visited on Oct. 29,
2017).

[72] Technologies AG Infineon. TDA5340 - Data Sheet. url: https://www.infineon.
com / dgdl / ?fileId = db3a30433408410401340ea9a6a4300a (visited on Oct. 29,
2017).

https://www.iso.org/standard/38770.html
https://www.iso.org/standard/38770.html
https://www.android.com/
https://www.infineon.com/dgdl/?fileId=5546d46254e133b40154e1b56cbe0123
https://www.infineon.com/dgdl/?fileId=5546d46254e133b40154e1b56cbe0123
https://www.infineon.com/dgdl/?fileId=db3a30433408410401340ea9a6a4300a
https://www.infineon.com/dgdl/?fileId=db3a30433408410401340ea9a6a4300a

BIBLIOGRAPHY 131

[73] Technologies AG Infineon. SmartLEWIS TRX - TDA5340 - Product Brief. url:
https://www.infineon.com/dgdl/?fileId=db3a3043324cae8c01325d0b47b409d0

(visited on Oct. 29, 2017).

[74] Technologies AG Infineon. XMC1100 - Data Sheet. url: https://www.infineon.
com / dgdl / ?fileId = 5546d46255dd933d0155e31763e577dc (visited on Oct. 29,
2017).

[75] Technologies AG Infineon. TLI4970-D025T4 - Data Sheet. url: https://www.

infineon.com/dgdl/?fileId=5546d4625607bd1301562bdf09d8339f (visited on
Oct. 29, 2017).

[76] Joan Daemen and Vincent Rijmen. The Design of Rijndael - AES - The Advanced
Encryption Standard. 1. Springer-Verlag Berlin Heidelberg. 238 pp. isbn: 978-3-662-
04722-4.

[77] Wade Trappe and Lawrence C. Washington. Introduction to Cryptography with Cod-
ing Theory (2Nd Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2005.
isbn: 978-0-13-186239-5.

[78] Elaine Baker. Suite B Cryptography. March, 2006. url: https : / / csrc . nist .

gov/CSRC/media/Events/ISPAB-MARCH-2006-MEETING/documents/E_Barker-

March2006-ISPAB.pdf (visited on Aug. 22, 2017).

[79] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second
Edition. CRC Press, Nov. 6, 2014. 598 pp. isbn: 978-1-4665-7027-6.

[80] Daniel R. L Brown.
”
Elliptic Curve Cryptography“. In: Standards for Efficient Cryp-

tography 1 (SEC 1) 2.0 (May 2009).

[81] V. Gayoso Martinez, L. Hernandez Encinas, and C. Sanchez Avila.
”
A Java Im-

plementation of the Elliptic Curve Integrated Encryption Scheme“. In: The 2010
International Conference on Security and Management (SAM’10). 2010.

[82] Technologies AG Infineon. Infineon Technologies - DAVE Development Platform.
url: https://www.infineon.com/cms/en/product/microcontroller/32-bit-
industrial- microcontroller- based- on- arm- cortex- m/ (visited on Nov. 6,
2017).

[83] Eclipse Foundation Inc. Eclipse - The Eclipse Foundation Open Source Community
Website. url: https://www.eclipse.org/home/index.php (visited on Nov. 6,
2017).

[84] Android. Android Studio and SDK Tools. url: https://developer.android.com/
studio/index.html (visited on Nov. 2, 2017).

[85] Technologies AG Infineon. XMC4500 Relax Kit - Board User Manual. url: https://
www.infineon.com/dgdl/?fileId=db3a30433acf32c9013adf6b97b112f9 (visited
on Oct. 29, 2017).

https://www.infineon.com/dgdl/?fileId=db3a3043324cae8c01325d0b47b409d0
https://www.infineon.com/dgdl/?fileId=5546d46255dd933d0155e31763e577dc
https://www.infineon.com/dgdl/?fileId=5546d46255dd933d0155e31763e577dc
https://www.infineon.com/dgdl/?fileId=5546d4625607bd1301562bdf09d8339f
https://www.infineon.com/dgdl/?fileId=5546d4625607bd1301562bdf09d8339f
https://csrc.nist.gov/CSRC/media/Events/ISPAB-MARCH-2006-MEETING/documents/E_Barker-March2006-ISPAB.pdf
https://csrc.nist.gov/CSRC/media/Events/ISPAB-MARCH-2006-MEETING/documents/E_Barker-March2006-ISPAB.pdf
https://csrc.nist.gov/CSRC/media/Events/ISPAB-MARCH-2006-MEETING/documents/E_Barker-March2006-ISPAB.pdf
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/
https://www.eclipse.org/home/index.php
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://www.infineon.com/dgdl/?fileId=db3a30433acf32c9013adf6b97b112f9
https://www.infineon.com/dgdl/?fileId=db3a30433acf32c9013adf6b97b112f9

	Introduction
	Motivation
	Objectives
	Outline

	Related Work
	IoT (Internet of Things)
	WSN (Wireless Sensor Network)
	Topologies
	Sensor/Actuator Node
	Security Requirements and Common Attacks

	Established Protocols
	ZigBee
	Z-Wave
	6LoWPAN
	BLE (Bluetooth Low Energy)

	Key Management
	Distributed Key Management Schemes
	Centralized Key Management Schemes

	Exemplary Smart Home Applications and Devices
	Samsung SmartThings
	Philips Hue
	Atmel Smart Plug
	Nest

	Embedded OS
	Tiny OS
	Contiki OS
	RIOT

	NFC (Near Field Communication)
	Established Standards and Types

	Java Card OS
	APDU Commands

	Hardware Security Controller

	Design and Concept
	Requirements
	Detailed Requirements Analysis

	System Architecture
	Topology
	WSN Communication Protocol
	WSN Frequency Band

	Use Cases
	Detailed Description of Use Cases

	System Hardware Components
	Gateway
	IoT Nodes

	System Security Architecture
	Composition
	Key Management

	System Software Components
	Smartphone
	Embedded OS and Enhancements
	Security Controller

	Implementation
	Development
	Workflow
	Used Firmware/Software Development Environments

	Modified/Redesigned Hardware Components
	Gateway PCBs
	IoT Node

	Modified/Redesigned Software Components
	Contiki OS
	Designed Website for Dynamic Node and Security Management
	Security Controller - Applet Development
	Designed Android Application

	Results
	Evaluation of Interacting Components
	Assembled Smart Home Demonstrator
	Gateway with Security-Enhancements
	Redesigned IoT nodes

	Evaluation of New Security Concept
	Payload Overhead due to Security Enhancements

	Android Application Evaluation - Smart Home Security
	GUI Design
	Usability Analysis

	Evaluation of Website for Dynamic Device Management

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix Acronyms
	Bibliography

