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Abstract

The noise and vibration characteristics of newly developed products become increasingly
important due to restrictive governmental regulations and customers’ demand for acous-
tical comfort. A detailed knowledge about the product’s structural behaviour is required
in the early design phases to allow for an efficient optimization of the sound and vibration
properties. Nowadays, virtual simulation tools are applied to get this information in a
time- and cost-efficient way.

The flexural vibrations of plates are considered to be one of the most important sources
of sound. Therefore, an accurate but simple mathematical model of the plate is required
and efficient numerical techniques to solve the resulting governing equations have to be
developed. This dissertation addresses the modeling of the structural vibrations of plates
and the improvement and extension of an efficient numerical technique called Wave Based
Method.

The most common mathematical models of plates are the Kirchhoff plate theory and the
Mindlin plate theory. While the simpler Kirchhoff plate theory is generally applicable for
thin plates and low frequencies, the more complicated Mindlin plate theory can be used
for thick plates and higher frequencies. In this work, both models are analysed and their
range of validity concerning the plate thickness and excitation frequency is thoroughly
examined.

The Finite Element Method (FEM) is generally applied to predict the harmonic response
of a plate in the low frequency range. Since the computational load of the FEM strongly in-
creases with rising frequencies, alternative calculation methods are needed to get accurate
results for plate vibration problems in the so-called mid-frequency range. A deterministic
method called Wave Based Method (WBM) is able to tackle problems in the mid-frequency
range due to an increased computational efficiency. This dissertation considers the devel-
opment of the WBM for thick plate vibration problems governed by the Mindlin plate
theory.

The general methodology of the WBM is specialized for the governing equations of the
Mindlin plate theory and a different approach to select the basis functions in the WBM
is proposed. Furthermore, new particular solution functions, which are closed-form an-
alytical solutions of an infinite plate under certain excitation types, are presented. The
computational performance of the WBM compared to the FEM is investigated through a
variety of validation examples and the advantages of the new wave function selection is
shown.

v





Acknowledgement

First of all, I would like to express my deep gratitude to my research supervisor Univ.-Prof.
Dr.-Ing. habil. Katrin Ellermann for giving me the great opportunity to conduct research
in the very interesting field of structural mechanics. I thank Katrin for her valuable and
constructive suggestions and patient guidance during the past years, which made this
thesis possible.

I would also like to thank the University of Technology Graz for allowing me to become
a researcher at this great institution and getting a deep insight in the scientific world for
engineers.

Furthermore, I want to specially thank all my colleagues at the Institute of Mechanics
for the great discussions, which gave me new perspectives at my own research, and the
awesome time I had and still have working with them.

Especially I want to thank my family for their incredible support during my research and
helping me through all steps of my education, which finally made all of this possible.

Finally, I want to thank my dear Liesa for constantly motivating me and the support and
patience during the last several years. I am very grateful that you bring out the best of
me.

vii





Table of Contents

Abstract v

Acknowledgement vii

Table of Contents ix

List of Figures xiii

List of Tables xxvii

List of Symbols xxix

I Introduction to the simulation of steady-state structural vibrations 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Scope and objectives of the dissertation . . . . . . . . . . . . . . . . . . 5
1.3 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 State-of-the-art mathematical models for structural vibrations 9
2.1 Vibrations of linear elastic solids . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Simplified models for thin structures: Plate theories . . . . . . . . . . . 13

2.2.1 Mindlin plate theory . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Kirchhoff plate theory . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Higher order plate theories . . . . . . . . . . . . . . . . . . . . . 27

2.3 Useful ranges of validity for the Kirchhoff and Mindlin plate theory . . . 28
2.3.1 Free vibrations of an infinite plate . . . . . . . . . . . . . . . . . 29
2.3.2 Influence of boundary conditions and other effects . . . . . . . . 32
2.3.3 Further error sources and final remarks on the plate model validity 58

3 Numerical techniques for the calculation of steady-state plate vibrations 59
3.1 Element based techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Conventional Finite Element Method . . . . . . . . . . . . . . . . 59
3.1.2 Advances in the Finite Element Method . . . . . . . . . . . . . . 66

3.2 Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.1 Statistical Energy Analysis . . . . . . . . . . . . . . . . . . . . . 68
3.2.2 Improvements and extensions of the SEA . . . . . . . . . . . . . 70

3.3 Trefftz based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.1 Source Simulation Techniques . . . . . . . . . . . . . . . . . . . . 71
3.3.2 Indirectly coupled methods . . . . . . . . . . . . . . . . . . . . . 72

ix



Table of Contents

3.3.3 Directly coupled methods . . . . . . . . . . . . . . . . . . . . . . 72

4 The Wave Based Method 75
4.1 Methodology for a generalized Helmholtz problem . . . . . . . . . . . . 75

4.1.1 Generalized Helmholtz problem . . . . . . . . . . . . . . . . . . . 75
4.1.2 The modeling procedure of the WBM . . . . . . . . . . . . . . . 77

4.2 Properties of a wave based model . . . . . . . . . . . . . . . . . . . . . . 81
4.3 State-of-the-art developments . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Physical problems tackled by the WBM . . . . . . . . . . . . . . 83
4.3.2 Current improvements and extensions of the WBM . . . . . . . . 87
4.3.3 Applications of the WBM to engineering problems . . . . . . . . 91

II Extensions and improvements of the Wave Based Method for
structural vibrations 93

5 Particular solution functions for plate bending vibrations 95
5.1 Basic mathematical principles . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 The Hankel transform . . . . . . . . . . . . . . . . . . . . . . . . 96
5.1.2 The residue theorem and Jordan’s lemma . . . . . . . . . . . . . 96

5.2 Particular solutions for the Mindlin plate theory . . . . . . . . . . . . . 97
5.2.1 Point load excitation . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.2 Other axisymmetric load cases . . . . . . . . . . . . . . . . . . . 103
5.2.3 Non-axisymmetric loading . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Particular solutions for the Kirchhoff plate theory . . . . . . . . . . . . . 116

6 Extension of the Wave Based Method to thick plate vibrations 119
6.1 Stress singularities in the Mindlin plate theory . . . . . . . . . . . . . . 119

6.1.1 Vibrations of an infinite wedge domain . . . . . . . . . . . . . . . 120
6.1.2 Static solution for an infinite wedge domain . . . . . . . . . . . . 127
6.1.3 Comparison of the singularities in the static and dynamic solution 131

6.2 Application of the Wave Based Method . . . . . . . . . . . . . . . . . . 132
6.2.1 Field variable expansion . . . . . . . . . . . . . . . . . . . . . . . 133
6.2.2 Construction of the system matrices . . . . . . . . . . . . . . . . 142

6.3 Modified selection of the wave functions . . . . . . . . . . . . . . . . . . 145
6.4 Validation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4.1 Single domain problems . . . . . . . . . . . . . . . . . . . . . . . 150
6.4.2 Multi domain problem . . . . . . . . . . . . . . . . . . . . . . . . 181

III Conclusion and final remarks 191

7 Conclusion 193
7.1 Validity ranges of the Kirchhoff and Mindlin plate . . . . . . . . . . . . 193
7.2 Development of the WBM for thick plate vibrations . . . . . . . . . . . 194
7.3 New particular solution functions for plate vibrations . . . . . . . . . . . 195
7.4 Improvement of the WBM - A new wave function selection . . . . . . . 196

x



Table of Contents

8 Future research topics 197

IV Addenda 199

A The sub-region three-field generalized mixed variational principle for elas-
todynamics 201

B The sub-region three-field generalized mixed variational principle for thick
plates 205

C The sub-region three-field generalized mixed variational principle for thin
plates 211

D Regularity conditions for integer eigenvalues in an infinite wedge domain 215

E Additional results for the validation examples 217

Bibliography 295

Curriculum Vitae 317

List of Publications 319

xi





List of Figures

2.1 Normal and shear stress on an infinitesimal element . . . . . . . . . . . 10
2.2 Boundary conditions and coordinate systems of a subdivided elastic solid 13
2.3 Kinematic assumptions of the Mindlin plate theory . . . . . . . . . . . . 15
2.4 Infinitesimal plate element . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Boundary conditions and coordinate systems of a subdivided plate . . . 19
2.6 Infinitesimal element at a plate boundary . . . . . . . . . . . . . . . . . 22
2.7 Frequency spectrum of an infinite isotropic plate (ν = 0.3) . . . . . . . . 30
2.8 Dimensions and boundary conditions of the rectangular plate configu-

rations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.9 Expected and actual total error of a rectangular Mindlin plate (a/b = 0.66̇) 36
2.10 Expected and actual total error of a rectangular Mindlin plate (a/b = 1) 37
2.11 Expected and actual total error of a rectangular Mindlin plate (a/b = 1.5) 38
2.12 Additional error of a SCSC rectangular Kirchhoff plate (a/b = 0.66̇) . . 40
2.13 Additional error of a SCSF rectangular Kirchhoff plate (a/b = 0.66̇) . . 40
2.14 Additional error of a SFSF rectangular Kirchhoff plate (a/b = 0.66̇) . . . 40
2.15 Additional error of a SCSC rectangular Kirchhoff plate (a/b = 1) . . . . 41
2.16 Additional error of a SCSF rectangular Kirchhoff plate (a/b = 1) . . . . 41
2.17 Additional error of a SFSF rectangular Kirchhoff plate (a/b = 1) . . . . 41
2.18 Additional error of a SCSC rectangular Kirchhoff plate (a/b = 1.5) . . . 42
2.19 Additional error of a SCSF rectangular Kirchhoff plate (a/b = 1.5) . . . 42
2.20 Additional error of a SFSF rectangular Kirchhoff plate (a/b = 1.5) . . . 42
2.21 Dimensions and boundary conditions of the circular plate configurations 43
2.22 Expected and actual total error of a circular Mindlin plate . . . . . . . . 45
2.23 Additional error of a clamped circular Kirchhoff plate . . . . . . . . . . 46
2.24 Additional error of a simply-supported circular Kirchhoff plate . . . . . 46
2.25 Additional error of a free circular Kirchhoff plate . . . . . . . . . . . . . 46
2.26 Dimensions and boundary conditions of the sector plate configurations . 47
2.27 Expected and actual total error of a sectorial Mindlin plate (α = 30◦) . 49
2.28 Expected and actual total error of a sectorial Mindlin plate (α = 165◦) . 50
2.29 Expected and actual total error of a sectorial Mindlin plate (α = 195◦) . 51
2.30 Expected and actual total error of a sectorial Mindlin plate (α = 330◦) . 52
2.31 Additional error of a SCS sectorial Kirchhoff plate (α = 30◦) . . . . . . 54
2.32 Additional error of a SSS sectorial Kirchhoff plate (α = 30◦) . . . . . . . 54
2.33 Additional error of a SFS sectorial Kirchhoff plate (α = 30◦) . . . . . . . 54
2.34 Additional error of a SCS sectorial Kirchhoff plate (α = 165◦) . . . . . . 55
2.35 Additional error of a SSS sectorial Kirchhoff plate (α = 165◦) . . . . . . 55
2.36 Additional error of a SFS sectorial Kirchhoff plate (α = 165◦) . . . . . . 55
2.37 Additional error of a SCS sectorial Kirchhoff plate (α = 195◦) . . . . . . 56
2.38 Additional error of a SSS sectorial Kirchhoff plate (α = 195◦) . . . . . . 56

xiii



List of Figures

2.39 Additional error of a SFS sectorial Kirchhoff plate (α = 195◦) . . . . . . 56
2.40 Additional error of a SCS sectorial Kirchhoff plate (α = 330◦) . . . . . . 57
2.41 Additional error of a SSS sectorial Kirchhoff plate (α = 330◦) . . . . . . 57
2.42 Additional error of a SFS sectorial Kirchhoff plate (α = 330◦) . . . . . . 57

3.1 FE mesh of a 2D domain with ten quadrilateral elements and 45 nodes . 60
3.2 Typical SEA system with two subsystems . . . . . . . . . . . . . . . . . 68

4.1 General two-dimensional bounded problem with two domains Ω(α) and
Ω(β), different boundary conditions Γ(α)

j and Γ(β)
j and the common in-

terface Γ(α, β) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Smallest rectangular bounding box, circumscribing a convex 2D sub-

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Out-of-plane displacement wpoint and rotation about the ϕ-axis ψr, point
of an infinite Mindlin plate excited by a harmonic point load at r = 0 . 101

5.2 Point load at an arbitrary position (x̌, y̌) . . . . . . . . . . . . . . . . . 102
5.3 Other axisymmetric load cases . . . . . . . . . . . . . . . . . . . . . . . 103
5.4 Out-of-plane displacement wring and rotation about the ϕ-axis ψr, ring

of an infinite Mindlin plate excited by a harmonic ring load with r0 = 0.8 107
5.5 Out-of-plane displacement wcirc and rotation about the ϕ-axis ψr, circ of

an infinite Mindlin plate excited by a harmonic circular load with r0 = 0.8 111
5.6 Alternating circular load . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.7 Out-of-plane displacement wac and rotations ψr, ac and ψϕ, ac of an infi-

nite Mindlin plate excited by a harmonic alternating circular load with
r0 = 0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 Infinite wedge domain without external loading . . . . . . . . . . . . . . 120
6.2 Static eigenvalues of an infinite wedge domain with various radial bound-

ary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3 WBM sub-domains and domain coordinate systems of a general Mindlin

plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4 Rectangular domains with arbitrary boundary conditions . . . . . . . . 135
6.5 Corner coordinate systems for special purpose functions within a WBM

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.6 Boundary coordinate systems for the modified selection of the wave func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.7 Evanescent wave function defined by the smallest rectangular bounding

box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.8 Evanescent wave function defined through the boundary coordinate system 146
6.9 Geometry of the single domain problems . . . . . . . . . . . . . . . . . . 150
6.10 Boundary conditions and harmonic loading of the clamped plates . . . . 153
6.11 Out-of-plane displacement and rotations about the x- and y-axis of a

clamped plate (h = 0.005 m) excited by an alternating circular load at
2610 Hz calculated with the original WBM using only the function set 1
and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . 154

xiv



List of Figures

6.12 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.005 m) excited by an alternating circular load at
2610 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 155

6.13 Picard conditions for the original and modified wave function selection
(clamped plate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.14 Frequency response functions of a clamped plate (h = 0.025 m) excited
by an alternating circular load calculated with the FEM (reference mesh)
and the modified WBM (function set 1 and set 2, T = 2) . . . . . . . . 158

6.15 Convergence curves of the out-of-plane displacement (clamped plate
with h = 0.01 m) for the original WBM (set1 ( ), set1a2 ( )) and
the modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . 159

6.16 Convergence curves of the rotation about the x-axis (clamped plate with
h = 0.01 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 159

6.17 Convergence curves of the rotation about the y-axis (clamped plate with
h = 0.01 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 159

6.18 Convergence curves (clamped plate with h = 0.01 m excited at 8000 Hz)
for the original WBM in double precision (set1 ( ), set1a2 ( )) and
quadruple precision (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . 160

6.19 Convergence curves of the out-of-plane displacement (clamped plate
with h = 0.01) for the FEM ( ) and the modified WBM (set1 ( ),
set1a2 ( )) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.20 Boundary conditions and harmonic loading of the free plates . . . . . . 162
6.21 Out-of-plane displacement and rotations about the x- and y-axis of a

free plate (h = 0.005 m) excited by a constant ring load at 1310 Hz
calculated with the original WBM using only the function set 1 and a
truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.22 Out-of-plane displacement and rotations about the x- and y-axis of a
free plate (h = 0.005 m) excited by a constant ring load at 1310 Hz
calculated with the modified WBM using only the function set 1 and a
truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.23 Picard conditions for the original and modified wave function selection
(free plate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.24 Frequency response functions of a free plate (h = 0.025 m) excited by
a constant ring load calculated with the FEM (reference mesh) and the
modified WBM (function set 1 and set 2, T = 2) . . . . . . . . . . . . . 166

6.25 Convergence curves of the out-of-plane displacement (free plate with
h = 0.01 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 168

6.26 Convergence curves of the rotation about the x-axis (free plate with
h = 0.01 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 168

6.27 Convergence curves of the rotation about the y-axis (free plate with
h = 0.01 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 168

xv



List of Figures

6.28 Convergence curves of the out-of-plane displacement (free plate with
h = 0.01) for the FEM ( ) and the modified WBM (set1 ( ),
set1a2 ( )) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.29 Boundary conditions and harmonic loading of the cantilever plates . . . 169
6.30 Out-of-plane displacement and rotations about the x- and y-axis of a

cantilever plate (h = 0.005 m) excited by a constant circular load at
1780 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 170

6.31 Frequency response functions of a cantilever plate (h = 0.025 m) excited
by a constant circular load calculated with the FEM (reference mesh)
and the modified WBM (function set 1 and set 2, T = 2) . . . . . . . . 172

6.32 Convergence curves of the out-of-plane displacement (cantilever plate
with h = 0.01 m) for the modified WBM solved with the LU (set1 ( ),
set1a2 ( )) and the SVD (set1 ( ), set1a2 ( )) . . . . . . . . . . 173

6.33 Convergence curves of the rotation about the x-axis (cantilever plate
with h = 0.01 m) for the modified WBM solved with the LU (set1 ( ),
set1a2 ( )) and the SVD (set1 ( ), set1a2 ( )) . . . . . . . . . . 173

6.34 Convergence curves of the rotation about the y-axis (cantilever plate
with h = 0.01 m) for the modified WBM solved with the LU (set1 ( ),
set1a2 ( )) and the SVD (set1 ( ), set1a2 ( )) . . . . . . . . . . 173

6.35 Convergence curves of the out-of-plane displacement (cantilever plate
with h = 0.01) for the FEM ( ) and the modified WBM (set1 ( ),
set1a2 ( )) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.36 Boundary conditions and harmonic loading of the hard SS plates . . . . 175
6.37 Out-of-plane displacement and rotations about the x- and y-axis of a

hard simply-supported plate (h = 0.005 m) excited by a point load at
2300 Hz calculated with the modified WBM using the function set 1,
corner functions and a truncation factor T = 2 . . . . . . . . . . . . . . 176

6.38 Picard conditions for the modified wave function selection with and with-
out corner functions (hard simply-supported plate) . . . . . . . . . . . . 177

6.39 Frequency response functions of a hard simply-supported plate (h =
0.025 m) excited by a point load calculated with the FEM (reference
mesh) and the modified WBM (function set 1 and set 2, corner functions,
T = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.40 Convergence curves of the out-of-plane displacement (hard SS plate with
h = 0.01 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.41 Convergence curves of the rotation about the x-axis (hard SS plate with
h = 0.01 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.42 Convergence curves of the rotation about the y-axis (hard SS plate with
h = 0.01 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.43 Convergence curves of the out-of-plane displacement (hard SS plate with
h = 0.01) for the FEM ( ) and the modified WBM (set1 ( ), set1a2
( ), set1CF ( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . 181

6.44 Geometry and loading of the multi domain clamped plate . . . . . . . . 182

xvi



List of Figures

6.45 Out-of-plane displacement and rotations about the x- and y-axis of a
multi domain clamped plate (h = 0.005 m) excited by a constant circular
load at 1043 Hz calculated with the modified WBM using both function
sets, corner functions and a truncation factor T = 4 . . . . . . . . . . . 185

6.46 Frequency response functions of a multi domain clamped plate (h =
0.025 m) excited by a constant circular load calculated with the FEM
(reference mesh) and the modified WBM (function set 1 and set 2, corner
functions, T = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.47 Convergence curves of the out-of-plane displacement (multi domain cla-
mped plate with h = 0.01 m) for the modified WBM (set1 ( ), set1a2
( ), set1CF ( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . 188

6.48 Convergence curves of the rotation about the x-axis (multi domain cla-
mped plate with h = 0.01 m) for the modified WBM (set1 ( ), set1a2
( ), set1CF ( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . 188

6.49 Convergence curves of the rotation about the y-axis (multi domain cla-
mped plate with h = 0.01 m) for the modified WBM (set1 ( ), set1a2
( ), set1CF ( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . 188

6.50 Convergence curves of the out-of-plane displacement (multi domain cla-
mped plate with h = 0.005) for the FEM ( ) and the modified WBM
(set1CF ( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . . . . 190

6.51 Convergence curves of the out-of-plane displacement (multi domain cla-
mped plate with h = 0.01) for the FEM ( ) and the modified WBM
(set1CF ( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . . . . 190

6.52 Convergence curves of the out-of-plane displacement (multi domain cla-
mped plate with h = 0.025) for the FEM ( ) and the modified WBM
(set1CF ( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . . . . 190

E.1 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.005 m) excited by an alternating circular load at
850 Hz calculated with the original WBM using only the function set 1
and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . 218

E.2 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.005 m) excited by an alternating circular load at
4195 Hz calculated with the original WBM using only the function set 1
and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . 219

E.3 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.005 m) excited by an alternating circular load at
850 Hz calculated with the modified WBM using only the function set 1
and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . 220

E.4 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.005 m) excited by an alternating circular load at
4195 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 221

E.5 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.01 m) excited by an alternating circular load at
1650 Hz calculated with the original WBM using only the function set 1
and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . 222

xvii



List of Figures

E.6 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.01 m) excited by an alternating circular load at
5080 Hz calculated with the original WBM using only the function set 1
and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . 223

E.7 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.01 m) excited by an alternating circular load at
8000 Hz calculated with the original WBM using only the function set 1
and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . 224

E.8 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.01 m) excited by an alternating circular load at
1650 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 225

E.9 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.01 m) excited by an alternating circular load at
5080 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 226

E.10 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.01 m) excited by an alternating circular load at
8000 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 227

E.11 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.025 m) excited by an alternating circular load at
3850 Hz calculated with the original WBM using only the function set 1
and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . 228

E.12 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.025 m) excited by an alternating circular load at
10700 Hz calculated with the original WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 229

E.13 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.025 m) excited by an alternating circular load at
15870 Hz calculated with the original WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 230

E.14 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.025 m) excited by an alternating circular load at
3850 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 231

E.15 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.025 m) excited by an alternating circular load at
10700 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 232

E.16 Out-of-plane displacement and rotations about the x- and y-axis of a
clamped plate (h = 0.025 m) excited by an alternating circular load at
15870 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 233

E.17 Frequency response functions of a clamped plate (h = 0.005 m) excited
by an alternating circular load calculated with the FEM (reference mesh)
and the modified WBM (function set 1 and set 2, T = 2) . . . . . . . . 234

xviii



List of Figures

E.18 Frequency response functions of a clamped plate (h = 0.01 m) excited by
an alternating circular load calculated with the FEM (reference mesh)
and the modified WBM (function set 1 and set 2, T = 2) . . . . . . . . 235

E.19 Convergence curves of the out-of-plane displacement (clamped plate
with h = 0.005 m) for the original WBM (set1 ( ), set1a2 ( ))
and the modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . 236

E.20 Convergence curves of the rotation about the x-axis (clamped plate with
h = 0.005 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 236

E.21 Convergence curves of the rotation about the y-axis (clamped plate with
h = 0.005 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 236

E.22 Convergence curves of the out-of-plane displacement (clamped plate
with h = 0.025 m) for the original WBM (set1 ( ), set1a2 ( ))
and the modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . 237

E.23 Convergence curves of the rotation about the x-axis (clamped plate with
h = 0.025 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 237

E.24 Convergence curves of the rotation about the y-axis (clamped plate with
h = 0.025 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 237

E.25 Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.005 m) excited by a constant ring load at 220 Hz calculated
with the original WBM using only the function set 1 and a truncation
factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

E.26 Out-of-plane displacement and rotations about the x- and y-axis of a
free plate (h = 0.005 m) excited by a constant ring load at 2550 Hz
calculated with the original WBM using only the function set 1 and a
truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

E.27 Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.005 m) excited by a constant ring load at 220 Hz calculated
with the modified WBM using only the function set 1 and a truncation
factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

E.28 Out-of-plane displacement and rotations about the x- and y-axis of a
free plate (h = 0.005 m) excited by a constant ring load at 2550 Hz
calculated with the modified WBM using only the function set 1 and a
truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

E.29 Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.01 m) excited by a constant ring load at 440 Hz calculated
with the original WBM using only the function set 1 and a truncation
factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

E.30 Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.01 m) excited by a constant ring load at 2580 Hz calculated
with the original WBM using only the function set 1 and a truncation
factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

xix



List of Figures

E.31 Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.01 m) excited by a constant ring load at 4970 Hz calculated
with the original WBM using only the function set 1 and a truncation
factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

E.32 Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.01 m) excited by a constant ring load at 440 Hz calculated
with the modified WBM using only the function set 1 and a truncation
factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

E.33 Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.01 m) excited by a constant ring load at 2580 Hz calculated
with the modified WBM using only the function set 1 and a truncation
factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

E.34 Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.01 m) excited by a constant ring load at 4970 Hz calculated
with the modified WBM using only the function set 1 and a truncation
factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

E.35 Out-of-plane displacement and rotations about the x- and y-axis of a
free plate (h = 0.025 m) excited by a constant ring load at 1050 Hz
calculated with the original WBM using only the function set 1 and a
truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

E.36 Out-of-plane displacement and rotations about the x- and y-axis of a
free plate (h = 0.025 m) excited by a constant ring load at 5900 Hz
calculated with the original WBM using only the function set 1 and a
truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

E.37 Out-of-plane displacement and rotations about the x- and y-axis of a
free plate (h = 0.025 m) excited by a constant ring load at 10700 Hz
calculated with the original WBM using only the function set 1 and a
truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

E.38 Out-of-plane displacement and rotations about the x- and y-axis of a
free plate (h = 0.025 m) excited by a constant ring load at 1050 Hz
calculated with the modified WBM using only the function set 1 and a
truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

E.39 Out-of-plane displacement and rotations about the x- and y-axis of a
free plate (h = 0.025 m) excited by a constant ring load at 5900 Hz
calculated with the modified WBM using only the function set 1 and a
truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

E.40 Out-of-plane displacement and rotations about the x- and y-axis of a
free plate (h = 0.025 m) excited by a constant ring load at 10700 Hz
calculated with the modified WBM using only the function set 1 and a
truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

E.41 Frequency response functions of a free plate (h = 0.005 m) excited by
a constant ring load calculated with the FEM (reference mesh) and the
modified WBM (function set 1 and set 2, T = 2) . . . . . . . . . . . . . 254

E.42 Frequency response functions of a free plate (h = 0.01 m) excited by a
constant ring load calculated with the FEM (reference mesh) and the
modified WBM (function set 1 and set 2, T = 2) . . . . . . . . . . . . . 255

xx



List of Figures

E.43 Convergence curves of the out-of-plane displacement (free plate with
h = 0.005 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 256

E.44 Convergence curves of the rotation about the x-axis (free plate with
h = 0.005 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 256

E.45 Convergence curves of the rotation about the y-axis (free plate with
h = 0.005 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 256

E.46 Convergence curves of the out-of-plane displacement (free plate with
h = 0.025 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 257

E.47 Convergence curves of the rotation about the x-axis (free plate with
h = 0.025 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 257

E.48 Convergence curves of the rotation about the y-axis (free plate with
h = 0.025 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( )) . . . . . . . . . . . . . . . . . 257

E.49 Out-of-plane displacement and rotations about the x- and y-axis of a
cantilever plate (h = 0.005 m) excited by a constant circular load at
420 Hz calculated with the modified WBM using only the function set 1
and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . 258

E.50 Out-of-plane displacement and rotations about the x- and y-axis of a
cantilever plate (h = 0.005 m) excited by a constant circular load at
3170 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 259

E.51 Out-of-plane displacement and rotations about the x- and y-axis of a
cantilever plate (h = 0.01 m) excited by a constant circular load at
840 Hz calculated with the modified WBM using only the function set 1
and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . . 260

E.52 Out-of-plane displacement and rotations about the x- and y-axis of a
cantilever plate (h = 0.01 m) excited by a constant circular load at
3500 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 261

E.53 Out-of-plane displacement and rotations about the x- and y-axis of a
cantilever plate (h = 0.01 m) excited by a constant circular load at
6120 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 262

E.54 Out-of-plane displacement and rotations about the x- and y-axis of a
cantilever plate (h = 0.025 m) excited by a constant circular load at
2000 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 263

E.55 Out-of-plane displacement and rotations about the x- and y-axis of a
cantilever plate (h = 0.025 m) excited by a constant circular load at
7750 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 264

xxi



List of Figures

E.56 Out-of-plane displacement and rotations about the x- and y-axis of a
cantilever plate (h = 0.025 m) excited by a constant circular load at
12770 Hz calculated with the modified WBM using only the function set
1 and a truncation factor T = 2 . . . . . . . . . . . . . . . . . . . . . . . 265

E.57 Frequency response functions of a cantilever plate (h = 0.005 m) excited
by a constant circular load calculated with the FEM (reference mesh)
and the modified WBM (function set 1 and set 2, T = 2) . . . . . . . . 266

E.58 Frequency response functions of a cantilever plate (h = 0.01 m) excited
by a constant circular load calculated with the FEM (reference mesh)
and the modified WBM (function set 1 and set 2, T = 2) . . . . . . . . 267

E.59 Convergence curves of the out-of-plane displacement (cantilever plate
with h = 0.005 m) for the modified WBM solved with the LU (set1
( ), set1a2 ( )) and the SVD (set1 ( ), set1a2 ( )) . . . . . . 268

E.60 Convergence curves of the rotation about the x-axis (cantilever plate
with h = 0.005 m) for the modified WBM solved with the LU (set1
( ), set1a2 ( )) and the SVD (set1 ( ), set1a2 ( )) . . . . . . 268

E.61 Convergence curves of the rotation about the y-axis (cantilever plate
with h = 0.005 m) for the modified WBM solved with the LU (set1
( ), set1a2 ( )) and the SVD (set1 ( ), set1a2 ( )) . . . . . . 268

E.62 Convergence curves of the out-of-plane displacement (cantilever plate
with h = 0.025 m) for the modified WBM solved with the LU (set1
( ), set1a2 ( )) and the SVD (set1 ( ), set1a2 ( )) . . . . . . 269

E.63 Convergence curves of the rotation about the x-axis (cantilever plate
with h = 0.025 m) for the modified WBM solved with the LU (set1
( ), set1a2 ( )) and the SVD (set1 ( ), set1a2 ( )) . . . . . . 269

E.64 Convergence curves of the rotation about the y-axis (cantilever plate
with h = 0.025 m) for the modified WBM solved with the LU (set1
( ), set1a2 ( )) and the SVD (set1 ( ), set1a2 ( )) . . . . . . 269

E.65 Out-of-plane displacement and rotations about the x- and y-axis of a
hard simply-supported plate (h = 0.005 m) excited by a point load at
670 Hz calculated with the modified WBM using the function set 1,
corner functions and a truncation factor T = 2 . . . . . . . . . . . . . . 270

E.66 Out-of-plane displacement and rotations about the x- and y-axis of a
hard simply-supported plate (h = 0.005 m) excited by a point load at
3800 Hz calculated with the modified WBM using the function set 1,
corner functions and a truncation factor T = 2 . . . . . . . . . . . . . . 271

E.67 Out-of-plane displacement and rotations about the x- and y-axis of a
hard simply-supported plate (h = 0.01 m) excited by a point load at
1300 Hz calculated with the modified WBM using the function set 1,
corner functions and a truncation factor T = 2 . . . . . . . . . . . . . . 272

E.68 Out-of-plane displacement and rotations about the x- and y-axis of a
hard simply-supported plate (h = 0.01 m) excited by a point load at
4600 Hz calculated with the modified WBM using the function set 1,
corner functions and a truncation factor T = 2 . . . . . . . . . . . . . . 273

xxii



List of Figures

E.69 Out-of-plane displacement and rotations about the x- and y-axis of a
hard simply-supported plate (h = 0.01 m) excited by a point load at
7310 Hz calculated with the modified WBM using the function set 1,
corner functions and a truncation factor T = 2 . . . . . . . . . . . . . . 274

E.70 Out-of-plane displacement and rotations about the x- and y-axis of a
hard simply-supported plate (h = 0.025 m) excited by a point load at
3150 Hz calculated with the modified WBM using the function set 1,
corner functions and a truncation factor T = 2 . . . . . . . . . . . . . . 275

E.71 Out-of-plane displacement and rotations about the x- and y-axis of a
hard simply-supported plate (h = 0.025 m) excited by a point load at
9800 Hz calculated with the modified WBM using the function set 1,
corner functions and a truncation factor T = 2 . . . . . . . . . . . . . . 276

E.72 Out-of-plane displacement and rotations about the x- and y-axis of a
hard simply-supported plate (h = 0.025 m) excited by a point load at
15060 Hz calculated with the modified WBM using the function set 1,
corner functions and a truncation factor T = 2 . . . . . . . . . . . . . . 277

E.73 Frequency response functions of a hard simply-supported plate (h =
0.005 m) excited by a point load calculated with the FEM (reference
mesh) and the modified WBM (function set 1 and set 2, corner functions,
T = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

E.74 Frequency response functions of a hard simply-supported plate (h =
0.01 m) excited by a point load calculated with the FEM (reference
mesh) and the modified WBM (function set 1 and set 2, corner functions,
T = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

E.75 Convergence curves of the out-of-plane displacement (hard SS plate with
h = 0.005 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

E.76 Convergence curves of the rotation about the x-axis (hard SS plate with
h = 0.005 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

E.77 Convergence curves of the rotation about the y-axis (hard SS plate with
h = 0.005 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

E.78 Convergence curves of the out-of-plane displacement (hard SS plate with
h = 0.025 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

E.79 Convergence curves of the rotation about the x-axis (hard SS plate with
h = 0.025 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

E.80 Convergence curves of the rotation about the y-axis (hard SS plate with
h = 0.025 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

E.81 Out-of-plane displacement and rotations about the x- and y-axis of a
multi domain clamped plate (h = 0.005 m) excited by a constant circular
load at 350 Hz calculated with the modified WBM using both function
sets, corner functions and a truncation factor T = 4 . . . . . . . . . . . 282

xxiii



List of Figures

E.82 Out-of-plane displacement and rotations about the x- and y-axis of a
multi domain clamped plate (h = 0.005 m) excited by a constant circular
load at 1650 Hz calculated with the modified WBM using both function
sets, corner functions and a truncation factor T = 4 . . . . . . . . . . . 283

E.83 Out-of-plane displacement and rotations about the x- and y-axis of a
multi domain clamped plate (h = 0.01 m) excited by a constant circular
load at 680 Hz calculated with the modified WBM using both function
sets, corner functions and a truncation factor T = 4 . . . . . . . . . . . 284

E.84 Out-of-plane displacement and rotations about the x- and y-axis of a
multi domain clamped plate (h = 0.01 m) excited by a constant circular
load at 2060 Hz calculated with the modified WBM using both function
sets, corner functions and a truncation factor T = 4 . . . . . . . . . . . 285

E.85 Out-of-plane displacement and rotations about the x- and y-axis of a
multi domain clamped plate (h = 0.01 m) excited by a constant circular
load at 3240 Hz calculated with the modified WBM using both function
sets, corner functions and a truncation factor T = 4 . . . . . . . . . . . 286

E.86 Out-of-plane displacement and rotations about the x- and y-axis of a
multi domain clamped plate (h = 0.025 m) excited by a constant circular
load at 1650 Hz calculated with the modified WBM using both function
sets, corner functions and a truncation factor T = 4 . . . . . . . . . . . 287

E.87 Out-of-plane displacement and rotations about the x- and y-axis of a
multi domain clamped plate (h = 0.025 m) excited by a constant circular
load at 4740 Hz calculated with the modified WBM using both function
sets, corner functions and a truncation factor T = 4 . . . . . . . . . . . 288

E.88 Out-of-plane displacement and rotations about the x- and y-axis of a
multi domain clamped plate (h = 0.025 m) excited by a constant circular
load at 7200 Hz calculated with the modified WBM using both function
sets, corner functions and a truncation factor T = 4 . . . . . . . . . . . 289

E.89 Frequency response functions of a multi domain clamped plate (h =
0.005 m) excited by a constant circular load calculated with the FEM
(reference mesh) and the modified WBM (function set 1 and set 2, corner
functions, T = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

E.90 Frequency response functions of a multi domain clamped plate (h =
0.01 m) excited by a constant circular load calculated with the FEM
(reference mesh) and the modified WBM (function set 1 and set 2, corner
functions, T = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

E.91 Convergence curves of the out-of-plane displacement (multi domain cla-
mped plate with h = 0.005 m) for the modified WBM (set1 ( ), set1a2
( ), set1CF ( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . 292

E.92 Convergence curves of the rotation about the x-axis (multi domain cla-
mped plate with h = 0.005 m) for the modified WBM (set1 ( ), set1a2
( ), set1CF ( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . 292

E.93 Convergence curves of the rotation about the y-axis (multi domain cla-
mped plate with h = 0.005 m) for the modified WBM (set1 ( ), set1a2
( ), set1CF ( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . 292

xxiv



List of Figures

E.94 Convergence curves of the out-of-plane displacement (multi domain cla-
mped plate with h = 0.025 m) for the modified WBM (set1 ( ), set1a2
( ), set1CF ( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . 293

E.95 Convergence curves of the rotation about the x-axis (multi domain cla-
mped plate with h = 0.025 m) for the modified WBM (set1 ( ), set1a2
( ), set1CF ( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . 293

E.96 Convergence curves of the rotation about the y-axis (multi domain cla-
mped plate with h = 0.025 m) for the modified WBM (set1 ( ), set1a2
( ), set1CF ( ), set1a2CF ( )) . . . . . . . . . . . . . . . . . . . 293

xxv





List of Tables

2.1 Relative error εf1 of the Kirchhoff and Mindlin plate theory (ν = 0.3) . 31
2.2 3D FEM models for the analysis of the rectangular plate configurations 35
2.3 3D FEM models for the analysis of the circular plate configurations . . 43
2.4 3D FEM models for the analysis of the sector plate configurations . . . 48

6.1 Characteristic equations for the static eigenvalues of an infinite wedge
domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Comparison of the static and dynamic eigenvalues causing singularities . 131
6.3 Wave function sets for the Mindlin plate problem . . . . . . . . . . . . . 134
6.4 Thicknesses of the convex plate configurations and Kirchhoff limits . . . 151
6.5 Modal analysis of the convex plate configurations . . . . . . . . . . . . . 151
6.6 FEM reference models for the convergence analysis . . . . . . . . . . . . 152
6.7 FEM reference models for the FRF . . . . . . . . . . . . . . . . . . . . . 152
6.8 Special purpose functions for the hard simply-supported plate examples 175
6.9 Thicknesses of the multi domain clamped plates and Kirchhoff limits . . 182
6.10 Modal analysis of the multi domain clamped plates . . . . . . . . . . . . 183
6.11 FEM reference models for the convergence analysis and the FRF . . . . 183
6.12 Special purpose functions for the multi domain clamped plate examples 184

xxvii





List of Symbols

Abbreviations
1D One-dimensional
2D Two-dimensional
3D Three-dimensional
bcd Boundary condition
BEM Boundary Element Method
BE-WBM Hybrid Boundary Element-Wave Based Method
BKM Boundary Knot Method
C Clamped
DDM Domain Decomposition Method
DEM Discontinues Enrichment Method
DGM Discontinuous Galerkin Method
dofs Degrees of freedom
EDA Energy Distribution Analysis
ESM Equivalent Source Method
F Free
FE Finite Element
FEM Finite Element Method
FE-WBM Hybrid Finite Element-Wave Based Method
FFS Fast Frequency Sweep
FRF Frequency Response Funtion
GB Gigabyte
GGLS-FEM Galerkin Generalized Least Squares FEM
GHz Gigahertz
GLS-FEM Galerkin Least-Squares FEM
G∇LS-FEM Galerkin Gradient Least-Squares FEM
HT-FEM Hybrid-Trefftz Finite Element Method
LU Lower-upper
MFS Method of Fundamental Solutions
PUFEM Partition of Unity Finite Element Method
RAM Random-Access Memory
S, SS Simply-supported
SEA Statistical Energy Analysis
SmEdA Statistical modal Energy distribution Analysis
SS1 Hard simply-supported
SS2 Soft simply-supported
SVD Singular value decomposition
TMM Transfer Matrix Method
UWVF Ultra Weak Variational Formulation

xxix



List of Symbols

VTCR Variational Theory of Complex Rays
WBM Wave Based Method
WBM-SEA Hybrid Wave Based Method-Statistical Energy Analysis
WBM-TMM Hybrid Wave Based-Transfer Matrix Model
WIA Wave Intensity Analysis

Arabic symbols

A WBM system matrix
A• System matrix of the sub-domain •
a Length of a rectangular plate [m]
b Width of a rectangular plate [m]
b Right-hand side vector of the WBM linear system
b• Right-hand side vector of the WBM sub-system •
B• Externally prescribed boundary field
C Extensional rigidity of a plate [N/m]
C(•,?) Coupling matrix between WBM sub-domains • and ?

cL Propagation velocity of dilatational plane waves [m/s]
cS Propagation velocity of rotational plane waves [m/s]
D Flexural rigidity of a plate [Nm]
E Young’s modulus [N/m2]
Ei Total dynamical energy of a SEA subsystem i [J]
e Potential function to decouple the membrane equations [−]
f Frequency [Hz]
f Force vector acting on a 3D infinitesimal element [N/m3]
f• Right-hand side vector in a FE model
fi components of the 3D force vector with i = {x, y, z} [N/m3]
fm External source of the mth Helmholtz equation
G Shear modulus [N/m2]
H Potential function to decouple the Mindlin equations [m]
H(•) Heaviside step function

Hi
Potential functions to decouple the Navier-Cauchy
equations with i = {1, 2, 3} [m2]

H(1)
n (•) nth-order Hankel functions of the first kind

H(2)
n (•) nth-order Hankel functions of the second kind

Hpc Mixed energy at an interface [J]
h Plate thickness [m]
hfe Greatest element size in a FE mesh [m]
hij Power transfer coefficient [−]
In(•) nth-order modified Bessel function of the first kind
Jn(•) nth-order Bessel function of the first kind
j Imaginary unit

√
−1 [−]

K• Stiffness matrix in a FE model
Kn(•) nth-order modified Bessel function of the second kind
k Shear correction factor [−]

or wavenumber [m−1]
k• Wavenumber used in the basis function Φ• [m−1]

xxx



kb Plate bending wavenumber [m−1]
kf1 Bending dominant flexural wavenumber [m−1]
kf2 Shear dominant flexural wavenumber [m−1]
kl In-plane longitudinal wavenumber [m−1]
kM Shear correction factor defined by Mindlin [−]
km Wavenumber of the mth Helmholtz equation [m−1]
kr Parameter of the Hankel transform
ks Out-of-plane shear wavenumber [m−1]
kt In-plane shear wavenumber [m−1]
kW Shear correction factor defined by Wittrick [−]
L Characteristic length of a problem domain [m]

or the Lagrangian function [Js]
Lb Length of a boundary [m]
Lx, Ly Dimensions of the smallest rectangular bounding box [m]
M• Mass matrix in a FE model
Mi Modal overlap [−]
Mn, Mns Bending and twisting moments at a plate boundary [N]
Mn, Mns, Prescribed bending and twisting moments at a boundary [N]
Mr, Mϕ, Mrϕ Bending and twisting moments in a plate (polar) [N]
Mx, My, Mxy Bending and twisting moments in a plate (Cartesian) [N]
mx, my External moments acting on a plate [N/m]
N

(e)
• Polynomial shape function to approximate the quantity • [−]

Ni Total number of modes in a SEA subsystem i [−]
Nn, Nns In-plane force at a plate boundary [N/m]
Nn, Nns, Prescribed in-plane force at a plate boundary [N/m]
Nx, Ny Normal forces in a plate [N/m]
Nxy In-plane shear force in a plate [N/m]
n(•) Normal unit vector of sub-domain Ω(•) [−]
n• Total number of basis functions Φ• [−]
n

(e)
a Number of nodes per element [−]
nα Total number of sub-domains in a WBM model [−]
ne Number of elements [−]
nfe Total number of nodes in a FE model [−]
nG Number of Gauss points [−]
nH Number of Helmholtz equations [−]
ni Modal density [s]
nm Number of WBM basis functions [−]
nrp Number of response points for the error calculation [−]
o Potential function to decouple the membrane equations [−]
p Order of the polynomial shape function [−]
pk Poles on the real axis
Qn Shear force at a plate boundary [N/m]
Qn Prescribed shear force at a plate boundary [N/m]
Qr, Qϕ Out-of-plane shear forces in a plate (polar) [N/m]
Qx, Qy Out-of-plane shear forces in a plate (Cartesian) [N/m]
q External normal load acting on a plate [N/m2]
q0 Magnitude of the external normal load acting on a plate

xxxi



List of Symbols

R Radius [m]
or rotatory inertia of an infinitesimal plate element [m2]

R∗ Smallest characteristic length of a sector plate [m]

R
(•)
�

Boundary residuals of sub-domain Ω(•) associated with
quantity �

R
(•,?)
�

Interface residuals of sub-domains Ω(•) and Ω(?) associated
with quantity �

r Spatial coordinate vector [m]
r0 Radius of a ring or circular load [m]
S Constant in the Mindlin plate theory associated with shear [m2]
S

(e)
N

Set of node numbers associated with the element e [−]
s(•) Tangential unit vector of sub-domain Ω(•) [−]
T Truncation factor [−]

Kinetic energy density function [J/m3]
t Time [s]
t(•) Tangential unit vector of sub-domain Ω(•) [−]
U Strain energy density function [N/m2]
U b Bending energy density [N/m]
Um Membrane energy density [N/m]
U s Shear strain energy density [N/m]
u 3D displacement vector in Cartesian coordinates [m]

or in-plane displacement vector in Cartesian coordinates [m]
u Displacement in x-direction [m]
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µ Lamé’s second parameter [N/m2]
µ1, µ2 Constants in the Mindlin plate theory [−]
ν Poisson’s ratio [−]
ξ Wavenumber along the x-axis in an infinite plate [m−1]
Π• Potential energy [J]

xxxiii



List of Symbols

Π• Averaged power flows in a SEA subsystem [J/s]
ρ Volumetric mass density [kg/m3]
σ Cauchy stress tensor in Cartesian coordinates [N/m2]
σi Singular values of a matrix
σij Normal stresses (i = j) and [N/m2]

Shear stresses (i , j) with (i, j) = {x, y, z} [N/m2]
σn, σs, σt Boundary traction in boundary coordinates [N/m2]
σn, σs, σt Prescribed boundary traction [N/m2]
Υ• Special purpose functions in the WBM [−]
Φ Potential function to decouple the Navier-Cauchy equations [m2]
Φ• WBM basis functions for quantity • [−]
ψ Rotation vector in Cartesian coordinates [rad]
ψ0(•) Digamma function [−]
ψn, ψs Rotation about the positive s-axis and negative n-axis [rad]
ψn, ψs Prescribed rotations at the boundary [rad]
ψr, ψϕ Rotation about the positive ϕ-axis and negative r-axis [rad]
ψx, ψy Rotation about the positive y-axis and negative x-axis [rad]
ψ̂

(e)
x• , ψ̂(e)

y• , Value of the rotations at FE node • [rad]
Ω Problem domain [−]
Ω(•) Problem sub-domain • [−]
ω Angular frequency [rad/s]

ω3D, ω3Df1, ω3Df2
Angular frequencies in an infinite plate given by the 3D
elasticity theory (asymmetric) [rad/s]

ω3Ds
Angular frequency of the first asymmetric thickness-shear
mode in an infinite plate given by the 3D elasticity theory [rad/s]

ωc Center angular frequency in a SEA model [rad/s]
or cut-off angular frequency [rad/s]

ωk
Angular frequency in an infinite plate given by the
Kirchhoff plate theory [rad/s]

ωmf1, ωmf2, ωms
Angular frequencies in an infinite plate given by the
Mindlin plate theory [rad/s]

ωs Angular frequency of the lowest, thickness-shear mode [rad/s]

Miscellaneous symbols

∞ Infinity
B• General boundary differential operator
∇ Del operator
∇2 Laplace operator
∇2
a 2D Laplace operator for axisymmetric problems (polar)
∪ Union operator
∩ Intersection operator
∀• For all •
∂•
∂? Partial derivative
•̈ Second derivative with respect to time
•T Transpose of •
•H Complex conjugate transpose of •
•,? Partial derivative in index notation

xxxiv



•! Factorial
•(?) Quantity • associated with sub-domain ?

#• Number of quantity •
H0[•], •̃ Zero-order Hankel transform of •
H −1

0 [•] Inverse zero-order Hankel transform of •
H1[•], ˜̃• First-order Hankel transform of •
H −1

1 [•] Inverse first-order Hankel transform of •
Re[•] Real part of the complex number •
Im[•] Imaginary part of the complex number •
Abs[•], |•| Absolute value of •
arg[•] Argument of the complex number •
avg(| • |) Averaged absolute value
cond(•) Conditioning of the matrix •
Res[•] Residue at a pole
〈δ〉 Averaged relative error
|ε| Absolute error compared to the reference
∅ Empty set
N0 Set of positive integers including 0
Z Set of integers
T• Specific Partial differential operator

xxxv





Part I

Introduction to the simulation of
steady-state structural vibrations

1





1 Introduction

This chapter deals with the general context of vibrational analysis. A brief introduction
concerning the importance of numerical simulation techniques for structural vibrations of
plates is given in Section 1.1. In Section 1.2 the scope and objectives of the dissertation
are outlined and finally an overview of the main topics covered by the dissertation is shown
in Section 1.3.

1.1 Motivation

In the global and dynamic market of today, companies are constantly competing against
each other to increase their market share. One important point in winning this competition
is the fast development of new products [1]. Therefore, the development cycles and the
time-to-market should be as short as possible to respond quickly to the changing customer
demands [1]. Other important factors in the product development process, besides the
customer demands and time-to-market, are the costs and quality of the product, but
also environmental factors like noise, air and water pollution emitted by the products [2].
Due to restrictive government regulations [3] and growing political and public awareness
of negative consequences resulting from pollution [2], the environmental factors become
increasingly relevant and have to be taken into account in the early design phases of a
product.

Especially the noise and vibration characteristics of newly developed products are of high
interest, since not only the governing legislation has to be fulfilled, but also the customer’s
sensitiveness for the acoustical comfort steadily increases [4]. A major source of noise is
the vibration of solid structures, which can lead to a radiation of sound in the surrounding
fluid. Whether sound radiation occurs, depends on the type of deformation, since only
motion perpendicular to a surface can cause radiation [5]. Therefore, having a detailed
knowledge of the vibration characteristics of a product in the early design stage is crucial
to efficiently optimize the sound properties and to avoid undesired noise.

Virtual simulation tools are a possibility to gain this knowledge in a more time and cost
efficient way compared to physical experimentation methods [6]. Furthermore, virtual
models allow for a more profound insight into complex processes, which is not readily
possible with a physical prototype and parameter variations are easily realized with a
minimum of additional costs. In order to get a valid virtual prototype to analyze vibra-
tion characteristics, an accurate structural model of the investigated product is required
and efficient computational methods are needed to predict the structural vibrations and
radiated noise of the structure.

One of the most investigated structure as a sound source is the flat plate [7], since the
flexural vibrations of thin structures are strongly related to sound radiation [8] and are by
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far the most important deformation type for the radiation of sound [5]. Several different
models exist, which describe the structural behaviour of a plate [9]. The accuracy of
these models depends on a variety of parameters, especially the plate thickness and the
excitation frequency. Two very common theories are applied to investigate the vibration
characteristics of plate structures: the Kirchhoff plate theory [10] and the Mindlin plate
theory [11]. The main advantage of these two theories is the simplicity compared to more
detailed models, e.g. a three-dimensional elasticity model, but certain restrictions have to
be fulfilled to get accurate results.

Generally, these models lead to systems of partial differential equations, which have to be
solved for certain initial and boundary conditions. An analytical solution of these prob-
lems is only feasible for very simple geometries and boundary conditions, which hardly
occur in real life applications. Therefore, different numerical methods have been devel-
oped to predict approximate solutions of more complicated cases. By far the most used
numerical method in structural dynamics is the Finite Element Method (FEM) [12], which
enables solutions for nearly every possible problem configuration. The problem domain is
decomposed into small elements and simple functions within each element approximate the
exact solution. Even though nearly every kind of problem can be solved accurately with
the FEM, the computational load increases very fast if, for example, higher frequencies
are considered.

The complete frequency range can be divided into three regions, the low-, the mid- and
high-frequency range [13, 12]. These three frequency ranges are generally defined by the
ratio of the free wavelength λ to a characteristic length L of the problem domain and not
by absolute frequency values. The three frequency ranges are characterized as follows:

• Low-frequency range

In the low-frequency range, the response of a component either only depends on the
boundary conditions and does not involve wave propagation (λ/L� 1) or only a small
number of local modes contribute to the total response (λ/L ≈ 1) [12]. Furthermore,
small changes in the model properties or geometry have only a minor influence on
the component’s response and therefore, a deterministic calculation of the response
at certain points or the spatial response field in the domain is usually of interest [13].

• High-frequency range

In the high-frequency range, a huge number of local modes contribute to the total
response of a component (λ/L � 1) [12]. The response becomes very sensitive to
small perturbations in the model properties and geometry and therefore, averaged
values like the space and frequency averaged energy values are calculated instead of
the deterministic values at certain points [13].

• Mid-frequency range

The mid-frequency range is situated between the low- and high-frequency range
(λ/L < 1, but λ/L3 1), where an intermediate number of local modes contribute to
the total response of the component. It is also possible that some components of an
assembly are still vibrating in the low-frequency range, while others are already in the
high-frequency range. This state of vibration is also called a mid-frequency problem
[12].
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1.2 Scope and objectives of the dissertation

In the low-frequency range, element-based numerical methods, e.g. the FEM, are very well
suited to analyze the vibrations of a structure, while statistical methods like the Statistical
Energy Analysis (SEA) are efficiently applicable in the high frequency range. The mid-
frequency range leaves a gap regarding the computational methods (the so-called mid-
frequency gap), since the element-based methods become too computationally demanding
and the requirements for the statistical methods are not yet met [13]. Therefore, it is
an important task to develop new computational methods, which can predict sufficiently
accurate results for plate vibration problems in the mid-frequency range with an acceptable
computational load.

1.2 Scope and objectives of the dissertation

In the past two decades, a great effort has been put into the development of new compu-
tational methods or improving the established ones to close the mid-frequency gap. While
some approaches try to improve the computational efficiency of low-frequency methods
to extend their applicability to the mid-frequency range, others aim to relax some of the
required assumptions of the statistical methods, which allows for their use at low frequen-
cies.

One of these methods is the Wave Based Method (WBM) [14], which has been developed
at the KU Leuven over the past 20 years. The WBM is a deterministic method and is
based on the so-called Trefftz principle [15]. Even though it is a deterministic method,
an improved computational efficiency is obtained by using a priori information of the fi-
nal solution, which allows for its application in the mid-frequency range. The WBM has
already been developed for many different types of problems, e.g. interior and exterior
acoustics, poroelastic materials and structural dynamics. Especially in the field of struc-
tural dynamics, the investigations have been focused on beam, thin plate, membrane and
shell vibration problems. Although this already covers a broad band of problems arising
in structural dynamics, there is still room for extensions and improvements of the WBM
in the field of structural vibrations.

While the WBM for thin plate vibration problems governed by the Kirchhoff plate theory
is well developed, the prediction of thick plate vibrations is not yet feasible with the WBM.
Furthermore, the definition of a thin and thick plate is not consistent in the literature,
which is crucial for choosing the most appropriate theory. This leads to the following two
goals in this dissertation:

1.) Analysis of the validity ranges of the Kirchhoff and Mindlin plate theory

Generally, the literature states that the Kirchhoff plate theory is applicable for thin
plates and low frequencies, while the more accurate, but also more complicated,
Mindlin plate theory can be used for thick plates and higher frequencies. There-
fore, two different limits of the theories have to be distinguished, a geometrical limit
(thin or thick plate), which can be defined through a ratio of the plate thickness to
the smallest lateral dimension, and a frequency limit, which can be specified by the
ratio of the bending wavelength to the plate thickness. A review of the literature
shows that several definitions of a thin and thick plate exist, which are rather differ-
ent from each other. Also the frequency limits for the Kirchhoff and Mindlin plate
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theory are not consistent within the literature. Therefore, one goal of this dissertation
is the review of the stated limits in the literature and the analysis of the underlying
assumptions, which have led to the definition of these limits. Furthermore, collecting
additional information on the validity of the two plate theories, especially for plate
bending vibrations, is an objective of this thesis.

2.) Extension of the WBM to thick plate vibration problems

The WBM for harmonic vibrations of thin plates governed by the Kirchhoff plate
theory has been well developed by Vanmaele and her co-workers [16, 17, 18]. Since
the applicability of the Kirchhoff plate theory is limited to thin plates, the vibrations
of thick plates cannot yet be predicted by the WBM. The main goal of this dissertation
is to close this gap and extend the WBM to thick plate vibration problems governed
by the Mindlin plate theory. Therefore, the universal methodology of the WBM for
generalized Helmholtz problems stated in a WBM review article by Deckers and her
co-workers [14] has to be specialized for the governing equations of the Mindlin plate
theory and specific problems like stress singularities in the response field have to be
addressed.

The practical application of the WBM involves several challenges, e.g. the need of analyt-
ical particular solution functions to represent external loadings or the ill-conditioning of
the WBM system matrix, which has to be considered in the matrix building and solution
process. This leads to two additional goals of this dissertation:

3.) Development of new particular solution functions for plate vibrations

The application of the WBM and generally most of the other Trefftz methods re-
quires the transformation of a system of inhomogeneous partial differential equations
into a homogenous one. This is usually achieved by finding closed-form particular
solution functions, which fulfil the inhomogeneous partial differential equations, while
neglecting the applied boundary conditions (infinite domain). For plate vibration
problems, only the solutions for an infinite plate domain excited by a point load is
available in the literature, which limits the efficient use of the WBM for other load
cases. Although a technique to find an approximate solution for general load cases
has been developed by Jonckheere and his co-workers [19, 20], new particular solution
functions are of major interest. Therefore, the development of analytical particular
solution functions for plate vibration problems under certain load cases is another
goal of this dissertation.

4.) Improvement of the stability and conditioning of the WBM

Among all indirect Trefftz methods, the ill-conditioning of the resulting system matrix
is a great challenge, since an accurate but efficient construction of the system matrix
is required and the solution of the system of linear equations has to be performed
with appropriate linear solvers. The conditioning of the system matrix is strongly
influenced by the chosen basis functions [21] and therefore, a goal of this dissertation
is the analysis of the applied function selection and the identification of possible
improvements in the function selection concerning the accuracy and stability of the
WBM. Furthermore, investigating the efficiency, stability and accuracy of different
solvers for the system of linear equations arising in the WBM is an important point
in this work.
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1.3 Outline of the dissertation

1.3 Outline of the dissertation

This dissertation in structured into four parts. The first part contains the introduction
and theoretical background and in the second part the main research questions are an-
swered. The main conclusions are drawn in the third part and finally several appendices
are collected in the fourth part.

Part I: Introduction to the simulation of steady-state structural vibrations

Part I consists of four chapters. Apart from a general introduction and the theoretical
background on mathematical models and numerical techniques, the first research goal is
addressed.

Chapter 1 gives a short introduction on the importance of numerical techniques in the
product development process and states the main research goals of this dissertation.

Chapter 2 introduces the most important mathematical models for structural vibrations
of plates. Furthermore, the first research goal is addressed by a detailed analysis of the
useful ranges of validity of the Kirchhoff and Mindlin plate theory.

Chapter 3 presents an overview of the most important numerical techniques to solve
structural vibration problems. Additionally, improvements and extensions of the common
element-based and statistical methods to close the mid-frequency gap as well as Trefftz
based approaches are outlined.

Chapter 4 provides an in-depth discussion of the WBM. The general methodology of
the WBM for generalized Helmholtz problems is stated and the required steps to build a
WBM model are explained. The properties of the WBM are compared to other methods
and a comprehensive literature survey of the WBM is presented, including all fields of
application and improvements and extensions of the WBM.

Part II: Extensions and improvements of the WBM for structural vibrations

Part II focuses on the main research goals, the extension of the WBM to the vibrations of
thick plates, and is structured into two chapters.

Chapter 5 discusses the development of new particular solution functions for thin and
thick plates. First the mathematical principle used to derive the particular solutions
are stated and then the known solutions of the point load excitation are reviewed. The
response field of an infinite plate to a constant ring load, a constant circular load and an
alternating circular load are developed by either analytically integrating the point force
solution or using the Hankel transform.

Chapter 6 handles the extension of the WBM to plate vibrations governed by the Mindlin
plate theory. Stress singularities arising in the Mindlin plate theory are analyzed to formu-
late so-called special purpose functions, which can improve the computational properties of
the WBM. The general methodology of the WBM is specialized for the Mindlin plate the-
ory by transforming the governing equations of the Mindlin plate to Helmholtz equations,
defining the basis functions, proving the T-completeness of the function sets and develop-
ing the weighted residual formulation, which finally leads to a system of linear equations.
A different wave function selection with advanced numerical properties is presented and a
variety of validation examples is solved with the WBM.
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1 Introduction

Part III: Conclusion and final remarks

Chapter 7 summarizes the main developments of the dissertation and concludes with the
main achievements yielded by this work.

Chapter 8 proposes further research topics, which have not been covered in this work.

Part IV: Addenda

Part IV collects the derivation of different variational formulations for structural problems,
additional results of the validation examples, the bibliography, the author’s curriculum
vitae and a publication list.
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2 State-of-the-art mathematical models for
structural vibrations

This chapter presents the mathematical modelling techniques for solid structures and
especially simplified models for thin structures and their range of validity are reviewed. In
Section 2.1, the basic equations of elasticity are stated for linear elastic, isotropic materials
and small deformations and displacements. Furthermore, a generalized mixed variational
principle is shown, which allows for the representation of the basic equations in a strong
and weak integral form. Simplified models for thin structures, e.g. the Kirchhoff plate
theory or the Mindlin plate theory, are presented in Section 2.2. Several assumptions
are used in the development of these simplified models, which are only fulfilled under
certain conditions. Therefore, the range of validity of the different simplified models is
investigated in Section 2.3.

2.1 Vibrations of linear elastic solids

The basic equations of elasticity are reviewed in this section, which can also be found in
many textbooks, e.g. [22] or [23]. The equilibrium approach and the variational approach
are used to derive the governing equations. A linear elastic, isotropic material is assumed
and the deformation and displacements of the body are considered to be small. Therefore,
the linear strain-displacement relations and Hooke’s law for isotropic materials are valid.
The stresses and the body force vector f acting on an infinitesimal element are shown
in Figure 2.1. Applying Newton’s second law to the infinitesimal element and using the
Einstein summation convention, the equations of motion in terms of stresses are given
by

σij,j + fi = ρ
∂2ui
∂t2

(i, j) = {x, y, z}, (2.1)

with σij (i = j) the normal stresses, σij = σji (i , j) the shear stresses, fi the body forces,
ρ the density, t the time and ui the displacements. In Equation (2.1) the index notation
•,? denotes the partial derivative of • with respect to ?. The linear strain-displacement
relations are

εij = 1
2(ui,j + uj,i), (2.2)

with εij (i = j) the normal strains and εij = εji (i , j) the shear strains. The constitutive
relations for an isotropic, linear elastic material (Hooke’s law)

σij = λ εkk δij + 2µ εij k = {x, y, z}, (2.3)

9



2 State-of-the-art mathematical models for structural vibrations

Figure 2.1: Normal and shear stress on an infinitesimal element

with δij the Kronecker delta and λ and µ the Lamé constants, relate the stresses and
strains. The Lamé constants are given by

λ = E (1 + j η) ν
(1 + ν) (1− 2 ν) , (2.4)

µ = E (1 + j η)
2 (1 + ν) , (2.5)

with E the Young’s modulus, ν the Poisson’s ratio, η ≥ 0 the material loss factor and
j =
√
−1 the imaginary unit. The constitutive relations can also be defined through the

strain energy density function for linear, isotropic materials [24]

U = λ

2 εii εjj + µ εij εij (2.6)

and the relation
σij = ∂U

∂εij
. (2.7)

The substitution of the linear strain-displacement relations (Equation (2.2)) and the con-
stitutive relations (Equation (2.3)) into the equations of motion in terms of stresses (Equa-
tion (2.1)) and the assumption of harmonic vibrations at angular frequency ω, lead to the
Navier-Cauchy equations [23]

µui,jj + (λ+ µ)uj,ij + fi = −ρω2 ui, (2.8)

where the factor e jω t is omitted.

10



2.1 Vibrations of linear elastic solids

In the absence of body forces (fi = 0), it is possible to decompose the Navier-Cauchy
equations using

ux = ∂Φ
∂x

+ ∂H3
∂y
− ∂H2

∂z
, (2.9)

uy = ∂Φ
∂y

+ ∂H1
∂z
− ∂H3

∂x
, (2.10)

uz = ∂Φ
∂z

+ ∂H2
∂x
− ∂H1

∂y
, (2.11)

where Φ is a potential function, which gives rise to dilatation and H1, H2 and H3 are
potential functions, which give rise to rotation [23, 25]. The Navier-Cauchy equations
(Equation (2.8)) are fulfilled if the potential functions satisfy the Helmholtz equations

∇2 Φ + ω2

c2
L

Φ = 0, (2.12)

∇2Hi + ω2

c2
S

Hi = 0 i = {1, 2, 3}, (2.13)

with

cL =
√
λ+ 2µ
ρ

and cS =
√
µ

ρ
, (2.14)

the propagation velocities of dilatational (longitudinal) and rotational (shear) plane waves
in an infinite elastic solid [23, 25] and∇2 = ∂2/∂x2+∂2/∂y2+∂2/∂z2 the three-dimensional
Laplace operator in Cartesian coordinates.

In Figure 2.2 an elastic solid Ω, which is divided into two sub-domains Ω = Ω(α) ∪Ω(β), is
shown. The Navier-Cauchy equations are three coupled second-order partial differential
equations and require three boundary conditions at every point of the problem surface
Γ = Γ(α) ∪ Γ(β). The boundary coordinate systems, shown in Figure 2.2, with the normal
unit vectors n(l) and the tangential unit vectors s(l) and t(l) (l = {α, β}), which satisfy
n(l) · s(l) = 0 and n(l) × s(l) = ±t(l) (+ for l = α and − for l = β), are used to define the
common boundary and interface conditions. Each sub-domain surface is subdivided into
three non-overlapping parts Γ(α) = Γ(α)

u ∪Γ(α)
σ ∪Γ(α, β) and Γ(β) = Γ(β)

u ∪Γ(β)
σ ∪Γ(α, β), where

Γ(α, β) is the interface between the two sub-domains. The common boundary conditions
are [20]:

• Dirichlet boundary conditions (kinematic boundary conditions) with prescribed nor-
mal displacement u(l)

n and tangential displacements u(l)
s and u

(l)
t :

r ∈ Γ(l)
u


R

(l)
un = u

(l)
n − u(l)

n = 0,
R

(l)
us = u

(l)
s − u(l)

s = 0,
R

(l)
ut = u

(l)
t − u

(l)
t = 0,

(2.15)

with u(l)
n = n(l)Tu(l), u(l)

s = s(l)Tu(l) and u(l)
t = t(l)

T
u(l) and the displacement vector

u(l) =
[
u

(l)
x , u

(l)
y , u

(l)
z

]T
. The special case of fixed boundaries is given by u

(l)
n = 0,

u
(l)
s = 0 and u

(l)
t = 0.

11



2 State-of-the-art mathematical models for structural vibrations

• Neumann boundary conditions (mechanical boundary conditions) with prescribed
normal traction σ

(l)
n and tangential tractions σ(l)

s and σ
(l)
t :

r ∈ Γ(l)
σ


R

(l)
σn = σ

(l)
n − σ(l)

n = 0,
R

(l)
σs = σ

(l)
s − σ(l)

s = 0,
R

(l)
σt = σ

(l)
t − σ

(l)
t = 0,

(2.16)

with σ
(l)
n = n(l)Tσ(l)n(l), σ(l)

s = s(l)Tσ(l)n(l) and σ
(l)
t = t(l)

T
σ(l)n(l) and the Cauchy

stress tensor

σ(l) =


σ

(l)
xx σ

(l)
yx σ

(l)
zx

σ
(l)
xy σ

(l)
yy σ

(l)
zy

σ
(l)
xz σ

(l)
yz σ

(l)
zz

. (2.17)

The special case of a free boundary is given by σ(l)
n = 0, σ(l)

s = 0 and σ
(l)
t = 0.

The so-called mixed boundary conditions are a combination of Dirichlet and Neumann
boundary conditions in different coordinate directions and are defined by

r ∈ Γ(l)
uσ


R

(l)
un = u

(l)
n − u(l)

n = 0 or R
(l)
σn = σ

(l)
n − σ(l)

n = 0,
R

(l)
us = u

(l)
s − u(l)

s = 0 or R
(l)
σs = σ

(l)
s − σ(l)

s = 0,
R

(l)
ut = u

(l)
t − u

(l)
t = 0 or R

(l)
σt = σ

(l)
t − σ

(l)
t = 0

(2.18)

and the special case of rolling boundary conditions with zero normal displacement (u(l)
n =

0) and zero tangential tractions (σ(l)
s = 0 and σ

(l)
t = 0).

At the common interface Γ(α, β), the two sub-domains are forced to move together and the
continuity of displacements and the force equilibrium across the interface

r ∈ Γ(α,β)



R
(α, β)
un = u

(α)
n + u

(β)
n = 0,

R
(α, β)
us = u

(α)
s + u

(β)
s = 0,

R
(α, β)
ut = u

(α)
t + u

(β)
t = 0,

R
(α, β)
σn = σ

(α)
n − σ(β)

n = 0,
R

(α, β)
σs = σ

(α)
s − σ(β)

s = 0,
R

(α, β)
σt = σ

(α)
t − σ(β)

t = 0,

(2.19)

have to be fulfilled. At the common interface, the normal and tangential boundary vectors
of the two sub-domains are related by n(α) = −n(β), s(α) = −s(β) and t(α) = −t(β).

Together, the basic equations (Equations (2.1) – (2.3)) and the boundary and interface
conditions (Equations (2.15), (2.16), (2.18) and (2.19)) describe the problem of elasto-
dynamics in strong form. For certain numerical methods, it is beneficial to describe the
problem of elastodynamics in a weak form. The variational approach is a possibility to
derive a weak form of the elastodynamic problem.

Compared to the previously shown equilibrium approach, the sub-region three-field gener-
alized mixed variational principle for elasticity, shown in [26] for the static problem, is an

12



2.2 Simplified models for thin structures: Plate theories

Figure 2.2: Boundary conditions and coordinate systems of a subdivided elastic solid

alternative approach to derive the basic equations and boundary and interface conditions
of elasticity. The stationary condition of the functional

δL = 0 =
∫ t1

t0

∑
l

$
Ω(l)

∂U(ε(l)
ij )

∂ε
(l)
ij

− σ(l)
ij

δε(l)
ij −

(
ε

(l)
ij −

1
2
(
u

(l)
i,j + u

(l)
j,i

))
δσ

(l)
ij

−
(
σ

(l)
ij,j + f

(l)
i − ρ ü

(l)
i

)
δu

(l)
i

dV +
"
Γ(l)
σ

(
σ(l)
r − σ(l)

r

)
δu(l)

r dS −
"
Γ(l)
u

(
u(l)
r − u(l)

r

)
δσ(l)

r dS

+
"

Γ(α, β)

((
σ(α)
r − σ(β)

r

)
δu(α)

r −
(
u(α)
r + u(β)

r

)
δσ(β)

r

)
dS

dt, (2.20)

with δ• the variation operator, l = {α, β}, (i, j) = {x, y, z}, r = {n, s, t} and •̈ the
second derivative with respect to time is equivalent to the basic equations of elasticity
(Equations (2.1) – (2.3)) and the boundary and interface conditions (Equations (2.15),
(2.16), (2.18) and (2.19)). The integral form of the elastodynamic problem in Equation
(2.20) is derived in Appendix A by extending the approach shown in [26] to dynamic
problems. The strong integral form in Equation (2.20) can be transformed into a weak
form through integration by parts.

2.2 Simplified models for thin structures: Plate theories

If one dimension of an elastic solid is sufficiently small compared to the other two dimen-
sions, it is not always necessary to solve the three-dimensional elasticity equations derived
in Section 2.1. Simplified two-dimensional models, the so-called plate models, have been
developed to study the deformation and stress fields in thin plane elastic solids.

The plate models introduce additional assumptions of the displacement field, which sim-
plify the governing equations compared to the Navier-Cauchy equations from three-dimens-
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2 State-of-the-art mathematical models for structural vibrations

ional elasticity. Depending on the kinematic assumptions, several plate theories, the clas-
sical plate theory (Kirchhoff plate theory) [10], the first order shear deformation theory
(Mindlin plate theory) [11] and higher order shear deformation theories, e.g. the Reddy
plate theory [27], have been developed.

In Section 2.2.1 the Mindlin plate theory is reviewed and the underlying assumptions of
the theory and the resulting governing equations are stated. The Kirchhoff plate theory is
derived in Section 2.2.2 and an overview of higher order plate theories is given in Section
2.2.3. A comparison of the Kirchhoff and Mindlin plate theory and their range of validity
are shown in Section 2.3.

2.2.1 Mindlin plate theory

The Mindlin plate theory, a first order shear deformation theory developed by Mindlin in
1951 [11], is reviewed in this section. A further description of the theory can be found in
many textbooks, e.g. [22, 9]. In the Mindlin plate theory, it is assumed that [22]

• the plate thickness is small compared to the other two dimensions of the plate,

• the out-of-plane displacement of the plate is small compared to the plate thickness,

• straight lines, which are normal to the middle plane in the undeformed plate (trans-
verse normals), remain straight in the deformed state,

• the transverse normals are inextensible and the transverse stress component is neg-
ligible

and therefore, the linear strain-displacement relations are valid and the displacements,
shown in Figure 2.3, are given by

u(x, y, z, t) = u0(x, y, t) + z ψx(x, y, t), (2.21)
v(x, y, z, t) = v0(x, y, t) + z ψy(x, y, t), (2.22)
w(x, y, z, t) = w(x, y, t). (2.23)

In Equations (2.21) – (2.23), u0(x, y, t) and v0(x, y, t) are the displacements in x- and
y-direction of the points on the middle plane (z = 0), w(x, y, t) is the out-of-plane dis-
placement in z-direction (independent of z), ψx(x, y, t) is the positive rotation about the
y-axis and ψy(x, y, t) is the negative rotation about the x-axis. The plate thickness is
denoted by h and the geometric middle plane, as seen in Figure 2.3, coincides with the
xy-plane.

Substituting Equations (2.21) – (2.23) into the linear strain-displacement relations (Equa-
tion (2.2)) leads to

εxx = ∂u0
∂x

+ z
∂ψx
∂x

= ε0
xx + z κx, (2.24)

εyy = ∂v0
∂y

+ z
∂ψy
∂y

= ε0
yy + z κy, (2.25)

εzz = 0, (2.26)

εxy = 1
2

(
∂u0
∂y

+ ∂v0
∂x

+ z

(
∂ψx
∂y

+ ∂ψy
∂x

))
= 1

2γ
0
xy + z κxy, (2.27)
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Figure 2.3: Kinematic assumptions of the Mindlin plate theory

εxz = 1
2

(
ψx + ∂w

∂x

)
= 1

2γxz, (2.28)

εyz = 1
2

(
ψy + ∂w

∂y

)
= 1

2γyz, (2.29)

with ε0
xx, ε0

yy and γ0
xy the strains of the middle surface (membrane strains), κx, κy and κxy

the flexural strains (curvatures) and γxz and γyz the shear strains [9].

From the linear strain-displacement relations it is apparent, that the strains due to flexure
vary linearly in thickness direction, while the membrane and shear strains are constant
through the plate thickness. Even though εzz = 0, a state of plane stress (σzz = 0) is
assumed, since the thickness of the plate is small compared to the other two dimensions.
The plane stress-reduced constitutive relations for a linear elastic isotropic material are
given by [22]

σxx = E (1 + j η)
1− ν2 (εxx + ν εyy), σxy = 2Gεxy,

σyy = E (1 + j η)
1− ν2 (εyy + ν εxx), σxz = 2Gεxz, (2.30)

σzz = 0 (neglected), σyz = 2Gεyz,

with G = µ the shear modulus. Substituting Equations (2.24) – (2.29) into Equation (2.30)
and integrating over the plate thickness h, the normal forces

Nx =
∫ −h2
−h2

σxx dz = C
(
ε0
xx + ν ε0

yy

)
, (2.31)

Ny =
∫ −h2
−h2

σyy dz = C
(
ε0
yy + ν ε0

xx

)
, (2.32)
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2 State-of-the-art mathematical models for structural vibrations

the shear forces

Nxy =
∫ −h2
−h2

σxy dz = C

2 (1− ν) γ0
xy, (2.33)

Qx =
∫ −h2
−h2

σxz dz = k2Ghγxz, (2.34)

Qy =
∫ −h2
−h2

σyz dz = k2Ghγyz (2.35)

and the bending and twisting moments

Mx =
∫ −h2
−h2

σxx z dz = D (κx + ν κy), (2.36)

My =
∫ −h2
−h2

σyy z dz = D (κy + ν κx), (2.37)

Mxy =
∫ −h2
−h2

σxy z dz = D (1− ν)κxy (2.38)

are obtained. In Equations (2.31) – (2.38)

C = E (1 + j η)h
1− ν2 (2.39)

is the extensional rigidity of the plate,

D = E (1 + j η)h3

12 (1− ν2) (2.40)

is the flexural rigidity of the plate and k2 is the shear correction factor (Reissner 5/6,
Mindlin π2/12) to account for the actual shear stress distribution in z-direction.

The normal and shear forces and the bending and twisting moments, given in Equations
(2.31) – (2.38), can also be defined through the membrane energy density

Um(ε0
xx, ε

0
yy, γ

0
xy) = C

2

((
ε0
xx

)2
+
(
ε0
yy

)2
+ 2 ν ε0

xx ε
0
yy + 1

2 (1− ν)
(
γ0
xy

)2
)
, (2.41)

the bending energy density

U b(κx, κy, κxy) = D

2
(
κ2
x + κ2

y + 2 ν κx κy + 2 (1− ν)κ2
xy

)
(2.42)

and the shear strain energy density

U s(γxz, γyz) = k2Gh

2
(
γ2
xz + γ2

yz

)
(2.43)

and the relations

Nx = ∂Um
∂ε0

xx

, Ny = ∂Um
∂ε0

yy

, Nxy = ∂Um
∂γ0

xy

,

Mx = ∂U b
∂κx

, My = ∂U b
∂κy

, 2Mxy = ∂U b
∂κxy

, (2.44)

Qx = ∂U s
∂γxz

, Qy = ∂U s
∂γyz

.
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2.2 Simplified models for thin structures: Plate theories

An infinitesimal plate element is shown in Figure 2.4, with the shear forces Qx and Qy,
the bending moments Mx and My, the twisting moment Mxy, the external normal load
q and the external moments mx and my in Figure 2.4a and the membrane forces Nx, Ny

and Nxy in Figure 2.4b (body forces are neglected). The equilibrium of forces in x-, y- and
z-direction and the equilibrium of moments about the x- and y-axis lead to the governing
equations of the Mindlin plate theory

∂Nx

∂x
+ ∂Nxy

∂y
= ρ h

∂2u0
∂t2

, (2.45)

∂Nxy

∂x
+ ∂Ny

∂y
= ρ h

∂2v0
∂t2

, (2.46)

∂Qx
∂x

+ ∂Qy
∂y

+ q = ρ h
∂2w

∂t2
, (2.47)

∂Mx

∂x
+ ∂Mxy

∂y
−Qx +mx = ρ h3

12
∂2ψx
∂t2

, (2.48)

∂Mxy

∂x
+ ∂My

∂y
−Qy +my = ρ h3

12
∂2ψy
∂t2

. (2.49)

Substituting Equations (2.31) – (2.38) into the governing equations (Equations (2.45) –
(2.49)) leads to the equations of motion in terms of displacements

∂2u0
∂x2 + 1− ν

2
∂2u0
∂y2 + 1 + ν

2
∂2v0
∂x ∂y

= ρ h

C

∂2u0
∂t2

, (2.50)

∂2v0
∂y2 + 1− ν

2
∂2v0
∂x2 + 1 + ν

2
∂2u0
∂x ∂y

= ρ h

C

∂2v0
∂t2

, (2.51)

k2Gh

(
∂2w

∂x2 + ∂2w

∂y2 + Φ
)

+ q = ρ h
∂2w

∂t2
, (2.52)

D

2

(
(1− ν)∇2ψx + (1 + ν)∂Φ

∂x

)
− k2Gh

(
ψx + ∂w

∂x

)
+mx = ρ h3

12
∂2ψx
∂t2

, (2.53)

D

2

(
(1− ν)∇2ψy + (1 + ν)∂Φ

∂y

)
− k2Gh

(
ψy + ∂w

∂y

)
+my = ρ h3

12
∂2ψy
∂t2

, (2.54)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplace operator in Cartesian coor-
dinates and Φ = ∂ψx/∂x + ∂ψy/∂y. It is apparent that Equations (2.50) and (2.51) are
decoupled from the Equations (2.52) – (2.54) and therefore, the in-plane deformation u0
and v0 (membrane behaviour) is decoupled from the out-of-plane deformation w, ψx and
ψy(bending behaviour). The decoupling only occurs if linear strain-displacement relations
are assumed and the plate geometry and material properties are symmetric with respect
to the middle plane.

In the absence of surface loads (q = 0, mx = 0, my = 0) and the assumption of harmonic
vibrations at angular frequency ω, it is possible to decompose Equations (2.50) and (2.51)
using [17]

u0(x, y) = − 1
k2
l

∂e(x, y)
∂x

+ 1
k2
t

∂o(x, y)
∂y

, (2.55)

v0(x, y) = − 1
k2
l

∂e(x, y)
∂y

− 1
k2
t

∂o(x, y)
∂x

, (2.56)
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(a) Shear forces and moments (b) Membrane forces

Figure 2.4: Infinitesimal plate element

with e(x, y) the dilatational strain and o(x, y) the rotational strain and

kl =

√
ω2 ρ h

C
and kt =

√
ω2 ρ

G
(2.57)

the in-plane longitudinal and in-plane shear wavenumber. Substituting Equations (2.55)
and (2.56) into Equations (2.50) and (2.51) leads to two uncoupled Helmholtz equations(

∇2 + k2
l

)
e(x, y) = 0, (2.58)(

∇2 + k2
t

)
o(x, y) = 0. (2.59)

Similar, the decomposition of Equations (2.52) – (2.54) is achieved by applying three po-
tential functions w1(x, y), w2(x, y) and H(x, y) and the relations [11]

w(x, y) = w1(x, y) + w2(x, y), (2.60)

ψx(x, y) = (µ1 − 1) ∂w1(x, y)
∂x

+ (µ2 − 1) ∂w2(x, y)
∂x

+ ∂H(x, y)
∂y

, (2.61)

ψy(x, y) = (µ1 − 1) ∂w1(x, y)
∂y

+ (µ2 − 1) ∂w2(x, y)
∂y

− ∂H(x, y)
∂x

, (2.62)

which transform Equations (2.52) – (2.54) to three uncoupled Helmholtz equations(
∇2 + k2

f1
)
w1(x, y) = 0, (2.63)(

∇2 + k2
f2
)
w2(x, y) = 0, (2.64)(

∇2 + k2
s

)
H(x, y) = 0, (2.65)
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with

k2
f1 = 1

2 k
4
b

(
R+ S +

√
(R− S)2 + 4

k4
b

)
, (2.66)

k2
f2 = 1

2 k
4
b

(
R+ S −

√
(R− S)2 + 4

k4
b

)
, (2.67)

k2
s = 2

1− ν
(
Rk4

b − 1
S

)
, (2.68)

the bending dominant and shear dominant flexural wavenumber and the out-of-plane shear
wavenumber [28]. The constants in Equations (2.60) – (2.62) and Equations (2.66) – (2.68)
are given by

S = D

k2Gh
, k4

b = ρ hω2

D
, R = h2

12 ,

µ1 =
k2
f2

Rk4
b − 1/S , µ2 =

k2
f1

Rk4
b − 1/S .

(2.69)

In Figure 2.5 a plate domain Ω, which is divided into two sub-domains Ω = Ω(α) ∪ Ω(β),
is shown. The in-plane deformation of the plate is defined by two coupled second-order
partial differential equations, while the out-of-plane deformation is governed by three
coupled second-order partial differential equations. Therefore, two boundary conditions
are required for the membrane behaviour and three boundary conditions for the bending
behaviour at every point of the plate boundary Γ = Γ(α) ∪ Γ(β).

The boundary coordinate systems, shown in Figure 2.5, with the normal unit vectors
n(l) =

[
n

(l)
x , n

(l)
y , 0

]T
and the tangential unit vectors s(l) =

[
s

(l)
x , s

(l)
y , 0

]T
(l = {α, β}),

which satisfy n(l) × s(l) = ez, are used to define the common boundary and interface
conditions. The boundary of each sub-domain is subdivided into four non-overlapping
parts Γ(α) = Γ(α)

u ∪Γ(α)
σ ∪Γ(α)

uσ ∪Γ(α, β) and Γ(β) = Γ(β)
u ∪Γ(β)

σ ∪Γ(β)
uσ ∪Γ(α, β), where Γ(α, β)

is the interface between the two sub-domains.

Figure 2.5: Boundary conditions and coordinate systems of a subdivided plate
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2 State-of-the-art mathematical models for structural vibrations

The common boundary conditions for the in-plane deformation (u0, v0) are [17]:

• Dirichlet boundary conditions (kinematic boundary conditions) with prescribed nor-
mal displacement u(l)

n and tangential displacement u(l)
s :

r ∈ Γ(l)
u

R
(l)
un = u

(l)
n − u(l)

n = 0,
R

(l)
us = u

(l)
s − u(l)

s = 0,
(2.70)

with u(l)
n = n(l)Tu(l) and u(l)

s = s(l)Tu(l) and the in-plane displacement vector u(l) =[
u

(l)
0 , v

(l)
0

]T
. The special case of fixed boundaries is given by u(l)

n = 0 and u
(l)
s = 0.

• Neumann boundary conditions (mechanical boundary conditions) with prescribed
normal force N (l)

n and tangential force N (l)
ns:

r ∈ Γ(l)
σ

R
(l)
Nn

= N
(l)
n −N (l)

n = 0,
R

(l)
Nns

= N
(l)
ns −N (l)

ns = 0,
(2.71)

where the special case of a free boundary is given by N (l)
n = 0 and N

(l)
ns = 0.

• Mixed boundary conditions are a combination of Dirichlet and Neumann boundary
conditions in different coordinate directions. Two different combinations are feasible(
Γ(l)
uσ = Γ(l)

uσ1 ∪ Γ(l)
uσ2

)
:

r ∈ Γ(l)
uσ1

R
(l)
us = u

(l)
s − u(l)

s = 0,
R

(l)
Nn

= N
(l)
n −N (l)

n = 0,
(2.72)

and

r ∈ Γ(l)
uσ2

R
(l)
un = u

(l)
n − u(l)

n = 0,
R

(l)
Nns

= N
(l)
ns −N (l)

ns = 0.
(2.73)

The special case of a simply-supported boundary is given if u(l)
s = 0 and N

(l)
n = 0

for the first combination and u
(l)
n = 0 and N

(l)
ns = 0 for the second combination.

At the common interface Γ(α, β), the continuity of displacements and the force equilibrium
across the interface

r ∈ Γ(α,β)


R

(α, β)
un = u

(α)
n + u

(β)
n = 0,

R
(α, β)
us = u

(α)
s + u

(β)
s = 0,

R
(α, β)
Nn

= N
(α)
n −N (β)

n = 0,
R

(α, β)
Nns

= N
(α)
ns −N (β)

ns = 0,

(2.74)

have to be fulfilled.

The common boundary conditions for the out-of-plane deformation (w, ψx, ψy) are [20]:

• Dirichlet boundary conditions (kinematic boundary conditions) with prescribed out-
of-plane displacement w(l) and rotations ψ(l)

n and ψ
(l)
s :

r ∈ Γ(l)
u


R

(l)
w = w(l) − w(l) = 0,

R
(l)
ψn

= ψ
(l)
n − ψ(l)

n = 0,
R

(l)
ψs

= ψ
(l)
s − ψ(l)

s = 0,
(2.75)
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with ψ(l)
n = n(l)Tψ(l) and ψ(l)

s = s(l)Tψ(l) and the rotation vector ψ(l) =
[
ψ

(l)
x , ψ

(l)
y

]T
.

The special case of fixed boundaries is given by w(l) = 0, ψ(l)
n = 0 and ψ

(l)
s = 0.

• Neumann boundary conditions (mechanical boundary conditions) with prescribed
bending moment M (l)

n , twisting moment M (l)
ns and shear force Q(l)

n :

r ∈ Γ(l)
σ


R

(l)
Mn

= M
(l)
n −M (l)

n = 0,
R

(l)
Mns

= M
(l)
ns −M (l)

ns = 0,
R

(l)
Qn

= Q
(l)
n −Q(l)

n = 0,
(2.76)

where the special case of a free boundary is given by M (l)
n = 0, M (l)

ns = 0 and Q(l)
n = 0.

• Mixed boundary conditions are a combination of Dirichlet and Neumann bound-
ary conditions. Two different types are considered

(
Γ(l)
uσ = Γ(l)

uσ1 ∪ Γ(l)
uσ2

)
, the soft

support:

r ∈ Γ(l)
uσ1


R

(l)
w = w(l) − w(l) = 0,

R
(l)
Mn

= M
(l)
n −M (l)

n = 0,
R

(l)
Mns

= M
(l)
ns −M (l)

ns = 0,
(2.77)

and the hard support:

r ∈ Γ(l)
uσ2


R

(l)
w = w(l) − w(l) = 0,

R
(l)
Mn

= M
(l)
n −M (l)

n = 0,
R

(l)
ψs

= ψ
(l)
s − ψ(l)

s = 0.
(2.78)

The special case of simply-supported boundaries is given if w(l) = 0 and M
(l)
n = 0

and M
(l)
ns = 0 for soft simply-supported and ψ

(l)
s = 0 for hard simply-supported

boundary conditions. In general, the soft simply-supported boundary conditions are
used to avoid the plate paradox shown in [29].

At the common interface Γ(α, β), the continuity of the displacement and rotations and the
force and moment equilibrium across the interface

r ∈ Γ(α,β)



R
(α, β)
w = w(α) − w(β) = 0,

R
(α, β)
ψn

= ψ
(α)
n + ψ

(β)
n = 0,

R
(α, β)
ψs

= ψ
(α)
s + ψ

(β)
s = 0,

R
(α, β)
Mn

= M
(α)
n −M (β)

n = 0,
R

(α, β)
Mns

= M
(α)
ns −M (β)

ns = 0,
R

(α, β)
Qn

= Q
(α)
n +Q

(β)
n = 0,

(2.79)

have to be applied to ensure a rigid connection between both sub-domains.

The bending moment M (l)
n , twisting moment M (l)

ns , shear force Q
(l)
n and rotations ψ(l)

n

and ψ
(l)
s are shown in Figure 2.6a and the normal force N (l)

n and tangential force N (l)
ns in
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(a) Shear forces and moments (b) Membrane forces

Figure 2.6: Infinitesimal element at a plate boundary

Figure 2.6b (•(l) is omitted in the figures). The equilibrium of forces and moments for the
infinitesimal plate elements in Figure 2.6 lead to

N (l)
n = n(l)2

x N (l)
x + n(l)2

y N (l)
y + 2n(l)

x n(l)
y N (l)

xy , (2.80)

N (l)
ns = n(l)

x n(l)
y (N (l)

y −N (l)
x ) + (n(l)2

x − n(l)2
y )N (l)

xy , (2.81)

M (l)
n = n(l)2

x M (l)
x + n(l)2

y M (l)
y + 2n(l)

x n(l)
y M (l)

xy , (2.82)

M (l)
ns = n(l)

x n(l)
y (M (l)

y −M (l)
x ) + (n(l)2

x − n(l)2
y )M (l)

xy , (2.83)
Q(l)
n = n(l)

x Q(l)
x + n(l)

y Q(l)
y . (2.84)

The strong form of the plate membrane problem is finally given by the governing equations
in terms of displacements (Equations (2.50) and (2.51)) and the boundary and interface
conditions in Equations (2.70) – (2.74). The plate bending problem (Mindlin plate the-
ory) is governed by Equations (2.52) – (2.54) and the boundary and interface conditions
(Equations (2.75) – (2.79)).

The plate membrane problem and the plate bending problem is completely decoupled in
case of a planar plate if linear strain-displacement relations are assumed and the plate
geometry and material properties are symmetric with respect to the middle plane. The
assembly of non-coplanar plates leads to a coupling of the in-plane and out-of-plane de-
formation through the interface conditions [17], while the governing equations are still
decoupled. For curved plates, so-called shells, the membrane and bending behaviour is
coupled through the governing equations [22].

As in Section 2.1, the sub-region three-field generalized mixed variational principle for thick
plates, shown in [26, 30] for the static problem, can be applied to derive the governing
equations and boundary and interface conditions of the Mindlin plate theory. Since the
scope of this work is on pure bending problems, the integral form of the plate membrane
problem is omitted. The extension of the approach shown in [26, 30] to the dynamic
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problem leads to the stationary condition of the functional

δL = 0 =
∫ t1

t0

∑
l

"
Ω(l)

∂U (l)
b

∂κ
(l)
x

−M (l)
x

δκ(l)
x +

∂U (l)
b

∂κ
(l)
y

−M (l)
y

δκ(l)
y

+

∂U (l)
b

∂κ
(l)
xy

− 2M (l)
xy

δκ(l)
xy +

∂U (l)
s

∂γ
(l)
xz

−Q(l)
x

δγ(l)
xz +

∂U (l)
s

∂γ
(l)
yz

−Q(l)
y

δγ(l)
yz

−
(
κ(l)
x −

∂ψ
(l)
x

∂x

)
δM (l)

x −
(
κ(l)
y −

∂ψ
(l)
y

∂y

)
δM (l)

y −
(

2κ(l)
xy −

∂ψ
(l)
x

∂y

−∂ψ
(l)
y

∂x

)
δM (l)

xy −
(
γ(l)
xz −

∂w(l)

∂x
− ψ(l)

x

)
δQ(l)

x −
(
γ(l)
yz −

∂w(l)

∂y
− ψ(l)

y

)
δQ(l)

y

−
(
∂M

(l)
x

∂x
+ ∂M

(l)
xy

∂y
−Q(l)

x +m(l)
x −

ρ h3

12 ψ̈(l)
x

)
δψ(l)

x −
(
∂M

(l)
y

∂y
+ ∂M

(l)
xy

∂x
−Q(l)

y

+m(l)
y −

ρ h3

12 ψ̈(l)
y

)
δψ(l)

y −
(
∂Q

(l)
x

∂x
+ ∂Q

(l)
y

∂y
+ q(l) − ρ h ẅ(l)

)
δw(l)

dx dy

−
∫

Γ(l)
u ∪Γ(l)

uσ2

((
ψ(l)
s − ψ

(l)
s

)
δM (l)

ns +
(
w(l) − w(l)

)
δQ(l)

n

)
ds

+
∫

Γ(l)
σ

((
M (l)
ns −M

(l)
ns

)
δψ(l)

s +
(
Q(l)
n −Q

(l)
n

)
δw(l)

)
ds

−
∫

Γ(l)
u

(
ψ(l)
n − ψ

(l)
n

)
δM (l)

n ds+
∫

Γ(l)
σ ∪Γ(l)

uσ2

(
M (l)
n −M

(l)
n

)
δψ(l)

n ds

+
∫

Γ(α, β)

((
M (α)
n −M (β)

n

)
δψ(α)

n +
(
M (α)
ns −M (β)

ns

)
δψ(α)

s +
(
Q(α)
n +Q(β)

n

)
δw(α)

−
(
ψ(α)
n + ψ(β)

n

)
δM (β)

n −
(
ψ(α)
s + ψ(β)

s

)
δM (β)

ns −
(
w(β) − w(α)

)
δQ(β)

n

)
ds

dt, (2.85)

which gives the integral form of the Mindlin plate theory and is equivalent to all field equa-
tions and boundary and interface conditions of the plate bending problem. In Equation
(2.85) only the hard mixed boundary conditions are considered. The soft mixed boundary
conditions can be included in a similar way. Equation (2.85) is derived in Appendix B.
The transformation of the strong integral form in Equation (2.85) to the weak form can
be achieved through integration by parts.

2.2.2 Kirchhoff plate theory

The Kirchhoff plate theory, also called the classical plate theory, developed by Kirchhoff in
1850 [10], is the simplest plate model with further assumptions compared to the Mindlin
plate theory. It is additionally assumed that [22]

• A straight line, which is normal to the middle plane in the undeformed state, remains
not only straight but also normal to the middle surface in the deformed state

• The effects due to rotatory inertia are negligible
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2 State-of-the-art mathematical models for structural vibrations

and therefore, the influence of transverse shear deformation is neglected. Since the mem-
brane and bending behaviour is decoupled in the Kirchhoff plate theory under the same
assumptions as for the Mindlin plate theory, only the out-of-plane deformation is consid-
ered in the following derivation (u0 = 0 and v0 = 0).

The rotations in the Kirchhoff plate theory are given by

ψx(x, y, t) = −∂w(x, y, t)
∂x

, (2.86)

ψy(x, y, t) = −∂w(x, y, t)
∂y

, (2.87)

since transverse normals remain straight and normal to the middle plane after deformation.
The displacements are therefore defined by

u(x, y, z, t) = −z ∂w(x, y, t)
∂x

, (2.88)

v(x, y, z, t) = −z ∂w(x, y, t)
∂y

, (2.89)

w(x, y, z, t) = w(x, y, t) (2.90)

and the linear strain-displacement relations lead to

εxx = −z ∂
2w

∂x2 = z κx, εzz = 0, (2.91)

εyy = −z ∂
2w

∂y2 = z κy, εxz = 0, (2.92)

εxy = −z ∂
2w

∂x∂y
= z κxy, εyz = 0. (2.93)

The equilibrium of forces and moments for an infinitesimal element are the same as for
the Mindlin plate theory. Rearranging Equations (2.48) and (2.49) and neglecting the
rotatory inertia terms and external moment loading (mx = 0, my = 0) give

Qx = ∂Mx

∂x
+ ∂Mxy

∂y
, (2.94)

Qy = ∂Mxy

∂x
+ ∂My

∂y
. (2.95)

Substituting Equations (2.94) and (2.95) into Equation (2.47) leads to the governing equa-
tion of the Kirchhoff plate

∂2Mx

∂x2 + ∂2My

∂y2 + 2∂
2Mxy

∂x ∂y
+ q = ρ h

∂2w

∂t2
, (2.96)

with the bending moments Mx and My and the twisting moment Mxy defined in Equations
(2.36) – (2.38). The shear forces cannot be calculated from Equations (2.34) and (2.35),
since the plate is assumed to be infinitely stiff in transverse shear (εxz = 0, εyz = 0)
[25]. Substituting Equations (2.91) – (2.93) and Equations (2.36) – (2.38) into the Equation
(2.96) results in the governing equation of the Kirchhoff plate in terms of the out-of-plane
displacement

∇2∇2w + ρ h

D

∂2w

∂t2
= q

D
. (2.97)
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If harmonic vibrations at angular frequency ω are assumed and the surface load q is absent,
Equation (2.97) can be decomposed into two uncoupled Helmholtz equations(

∇2 + k2
b

)
wb1(x, y) = 0, (2.98)(

∇2 − k2
b

)
wb2(x, y) = 0, (2.99)

with
k4
b = ρ hω2

D
(2.100)

the plate bending wavenumber.

Equation (2.97) is a fourth-order partial differential equation and therefore the Kirchhoff
plate theory requires two boundary conditions at every point of the boundary. As for
the Mindlin plate theory a subdivided plate domain Ω = Ω(α) ∪ Ω(β) is viewed and the
coordinate systems shown in Figure 2.5 and defined in Section 2.2.1 are used to specify the
boundary and interface conditions. The common boundary conditions for the Kirchhoff
plate theory are [20]:

• Dirichlet boundary conditions (kinematic boundary conditions) with prescribed out-
of-plane displacement w(l) and rotation ψ

(l)
n :

r ∈ Γ(l)
u

R
(l)
w = w(l) − w(l) = 0,

R
(l)
ψn

= ψ
(l)
n − ψ(l)

n = 0,
(2.101)

with ψ
(l)
n = −

(
∂w(l)

∂x n
(l)
x + ∂w(l)

∂y n
(l)
y

)
= −∂w(l)

∂n(l) . The special case of fixed boundaries

is given by w(l) = 0 and ψ
(l)
n = 0.

• Neumann boundary conditions (mechanical boundary conditions) with prescribed
bending moment M (l)

n and generalized shear force V (l)
n :

r ∈ Γ(l)
σ

R
(l)
Mn

= M
(l)
n −M (l)

n = 0,
R

(l)
Vn

= V
(l)
n − V (l)

n = 0,
(2.102)

with V
(l)
n = Q

(l)
n + ∂M

(l)
ns

∂s(l) a combined boundary condition of shear force and twist-
ing moment and Qn, Mn and Mns defined in Equations (2.82) – (2.84). The free
boundary condition is given by M (l)

n = 0 and V
(l)
n = 0.

• Mixed boundary conditions are a combination of Dirichlet and Neumann boundary
conditions. In the Kirchhoff plate theory only the hard support is applicable:

r ∈ Γ(l)
uσ

R
(l)
w = w(l) − w(l) = 0,

R
(l)
Mn

= M
(l)
n −M (l)

n = 0.
(2.103)

The special case of simply-supported boundaries is given if w(l) = 0 and M
(l)
n = 0.
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In the Kirchhoff plate theory, corner forces can appear at discontinuities of the boundary,
e.g. polygonal plates, which need to be considered in the boundary conditions. A detailed
description of the corner forces and of more complicated plate loadings, e.g. moment load-
ing, can be found in e.g. [31]. The corner forces and moment loadings are not considered
in this work.

At the common interface Γ(α, β), the continuity of the displacement and rotation and the
force and moment equilibrium across the interface

r ∈ Γ(α,β)


R

(α, β)
w = w(α) − w(β) = 0,

R
(α, β)
ψn

= ψ
(α)
n + ψ

(β)
n = 0,

R
(α, β)
Mn

= M
(α)
n −M (β)

n = 0,
R

(α, β)
Vn

= V
(α)
n + V

(β)
n = 0,

(2.104)

have to be fulfilled.

An integral form of the Kirchhoff plate problem can be derived by extending the sub-region
three-field generalized mixed variational principle for thin plates, shown in [32] and [26]
for the static plate deformation, to the dynamic case. The final result is given by

δL = 0 =
∫ t1

t0

∑
l

"
Ω(l)

∂U (l)
b

∂κ
(l)
x

−M (l)
x

δκ(l)
x +

∂U (l)
b

∂κ
(l)
y

−M (l)
y

δκ(l)
y

+

∂U (l)
b

∂κ
(l)
xy

− 2M (l)
xy

δκ(l)
xy −

(
κ(l)
x + ∂2w(l)

∂x2

)
δM (l)

x −
(
κ(l)
y + ∂2w(l)

∂y2

)
δM (l)

y

− 2
(
κ(l)
xy + ∂2w(l)

∂x ∂y

)
δM (l)

xy −
(
∂2M

(l)
x

∂x2 + ∂2M
(l)
y

∂y2 + 2 ∂
2M

(l)
xy

∂x ∂y
+ q(l)

−ρ h ẅ(l)
)
δw(l)

dx dy −
∫

Γ(l)
u ∪Γ(l)

uσ

(
w(l) − w(l)

)
δV (l)

n ds+
∫

Γ(l)
σ

(
V (l)
n − V

(l)
n

)
δw(l) ds

+
∫

Γ(l)
u

(
∂w(l)

∂n(l) + ψ
(l)
n

)
δM (l)

n ds−
∫

Γ(l)
σ ∪Γ(l)

uσ

(
M (l)
n −M

(l)
n

)∂δw(l)

∂n(l) ds

+
∫

Γ(α, β)

((
M (β)
n −M (α)

n

)∂δw(α)

∂n(α) +
(
V (α)
n + V (β)

n

)
δw(α)

+
(
∂w(α)

∂n(α) + ∂w(β)

∂n(β)

)
δM (β)

n +
(
w(α) − w(β)

)
δV (β)

n

)
ds

dt, (2.105)

which is equivalent to all field equations and boundary conditions of the Kirchhoff plate
theory excluding the effects due to concentrated corner forces. In [26] and [32] corner
forces are considered in the variational principle for the static problem and it is straight
forward to include them in Equation (2.105). The derivation of Equation (2.105) is shown
in Appendix C. Integration by parts of the strong integral form in Equation (2.105) leads
to a weak form suitable for certain numerical methods.
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2.2.3 Higher order plate theories

Mindlin’s first order shear deformation theory is in general sufficient to analyze the vi-
brations of isotropic moderately thick plates if appropriate shear correction factors are
applied [33]. The vibration analysis of highly orthotropic or composite plates may require
higher order shear deformation theories instead of the Mindlin plate theory to yield accu-
rate results [33]. A great review of higher order plate theories can be found in [33] and
[34] and a short overview is given in this section.

The first straight forward extension of the Mindlin plate theory is the second order shear
deformation theory, where the displacement field

u(x, y, z, t) = u0(x, y, t) + z ψx(x, y, t) + z2 ϕx(x, y, t), (2.106)
v(x, y, z, t) = v0(x, y, t) + z ψy(x, y, t) + z2 ϕy(x, y, t), (2.107)
w(x, y, z, t) = w0(x, y, t) + z ψz(x, y, t) + z2 ϕz(x, y, t), (2.108)

is assumed [34]. Introducing the rotations ψz(x, y, t) and ϕz(x, y, t) leads to the inclusion
of the effect of transverse normal strain, while the case of inextensible transverse normals
is given by ψz(x, y, t) = 0 and ϕz(x, y, t) = 0 [35]. Essenburg showed that the effect of
transverse normal strain is especially significant if surface displacements are prescribed
[36]. The introduction of second order terms in the displacements leads to additional un-
knowns, which are difficult to interpret in physical terms [35]. Furthermore, the inclusion
of second order terms in the in-plane displacements hardly improves the obtained results
[37]. The second order shear deformation theory is used for example, in [38] for the ana-
lysis of the static deformation of infinite plates resting on an elastic half space, in [39] to
investigate the dynamic response of fiber reinforced composite plates and in [40] to model
the static and dynamic behaviour of laminated orthotropic plates.

The general displacement field of a third order shear deformation theory is given by [34]

u(x, y, z, t) = u0(x, y, t) + z ψx(x, y, t) + z2 ϕx(x, y, t) + z3 ζx(x, y, t), (2.109)
v(x, y, z, t) = v0(x, y, t) + z ψy(x, y, t) + z2 ϕy(x, y, t) + z3 ζy(x, y, t), (2.110)
w(x, y, z, t) = w0(x, y, t) + z ψz(x, y, t) + z2 ϕz(x, y, t), (2.111)

which allows for the inclusion of cross sectional warping and effects due to transverse
normal strain. A third order plate theory using all components given in Equation (2.109) –
(2.111) is developed in [41] and validated for an infinite homogenous plate subjected to a
static sinusoidal pressure, while in [42] only the out-of-plane effects are considered (u0 = 0,
v0 = 0, ϕx = 0, ϕy = 0 and ψz = 0) to investigate the static deformation of isotropic
rectangular plates.

Another class of third order plate theories is build upon the classical plate theory and
satisfies the requirement of shear stress free boundary conditions at the top and bottom
surface of the plate [34]. Therefore, shear correction factors are avoided, which is the
main advantage of these theories. An overview of this class of third order theories is given
in [43] and [9]. The most popular third order plate theory, the Reddy plate theory [27],
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considers the displacement field

u(x, y, z, t) = u0(x, y, t) + z ψx(x, y, t)− 4 z3

3h2

(
ψx(x, y, t) + ∂w0(x, y, t)

∂x

)
, (2.112)

v(x, y, z, t) = v0(x, y, t) + z ψy(x, y, t)−
4 z3

3h2

(
ψy(x, y, t) + ∂w0(x, y, t)

∂y

)
, (2.113)

w(x, y, z, t) = w0(x, y, t), (2.114)

which satisfies the stress free boundary conditions at z = ±h/2 of the plate and neglects
the effects due to transverse normal strain. Applications of the Reddy plate theory for
isotropic and laminated composite plates can be found in e.g [9] and [44].

In [9] it is stated that the development of even higher order theories has not been at-
tempted due to the growing algebraic complexity and computational effort and since only
a marginal gain in accuracy is expected. For an extensive overview of plate theories, espe-
cially trigonometric shear deformation theories and stress based plate theories, the reader
is referred to [34].

2.3 Useful ranges of validity for the Kirchhoff and Mindlin plate
theory

The assumptions used in the Kirchhoff and Mindlin plate theory are only valid if certain
geometrical and frequency limits are not exceeded. In general, it is stated that the Kirch-
hoff plate theory is only valid for thin plates and low frequencies, while the Mindlin plate
theory is applicable to moderately thick plates and higher frequencies.

There is no precise definition of a thin or a moderately thick plate in the literature. In
[22, 45, 46] a plate is considered to be thin if the ratio of the plate thickness h to the lesser
of the other two dimensions is smaller than 1/20, while [47, 48] requires a ratio of less
than 1/10 and [9] a ratio of less than 1/30. A moderately thick plate is defined in [46, 48]
as a plate with a ratio of thickness to the lateral dimension smaller than 1/5, while [49]
considers an upper limit of 3/20.

The frequency limit of both theories is given in the literature either by the ratio of the
occurring bending wavelength λ to the plate thickness h or by the ratio of the angular
frequency ω to the angular frequency of the lowest, simple thickness-shear mode in a plate
ωs = π

h

√
G
ρ . Many different frequency limits for the Kirchhoff plate theory can be found

in the literature. In [5] the limit is defined by λ/h > 6 (ω/ωs < 0.17), while in [23] and
[50] the limit λ/h > 7.85 (ω/ωs < 0.1) is given. A stricter limit is stated in [51] and
[52] where the ratio λ/h > 20 (ω/ωs < 0.015) is considered. Finally, in [11] the range
λ/h > 5...10 (ω/ωs < 0.24...0.06) limits the validity of the Kirchhoff plate theory. The
limits for the Mindlin plate theory also differ in the literature. In [50], the limit λ/h > 2
(ω/ωs < 0.77) is stated, while in [23] a ratio λ/h > 2.8 (ω/ωs < 0.5) is considered. The
very strict limit λ/h > 10 (ω/ωs < 0.06) is given in [52], while in [51] the looser limit
λ/h > 1 (ω/ωs < 1.76) is defined.

Since the ranges of validity for both plate models are very different in the literature, the
stated limits are reviewed in the following sections. Therefore, the free vibrations of an
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infinite plate are examined with both plate theories and the analytical results are compared
to the exact elasticity solution. This approach is also used in [23] and [50] to define the
frequency limits of the plate theories.

To investigate the influence of the plate boundary conditions, the free vibration solutions
of simple plate geometries, e.g. rectangular plates, circular plates and sector plates, with
different boundary conditions are calculated with the Kirchhoff and Mindlin plate theory
and compared to each other. Exact elasticity solutions for free plate vibrations are only
available in the literature for the simply-supported rectangular plate [53] and therefore
highly accurate finite element models are used to calculate the eigenfrequencies of all
other plate configurations.

2.3.1 Free vibrations of an infinite plate

Even though an infinite plate is not feasible in a real life application, Mindlin showed in
[54] that a simplified plate model only leads to accurate results for finite plates if the plate
theory is able to accurately predict the frequency spectrum of an infinite plate.

The exact elasticity solution of the free vibrations of a plate with traction-free surfaces in a
state of plane strain is due to Rayleigh [55] and Lamb [56] and leads to an infinite number
of frequency branches. The Kirchhoff plate theory can only predict the lowest asymmetric
frequency branch, which corresponds to (bending dominant) flexural deformation, while
the Mindlin plate theory gives the first three asymmetric frequency branches, which leads
to a bending dominant flexural, shear dominant flexural and thickness-twist deformation
[28, 57].

The solutions for the free vibration of an infinite plate in a state of plane strain (inde-
pendency of the y-coordinate) can be found in several textbooks, e.g. [23] and [50]. The
analytical solution for the Kirchhoff plate theory is given in explicit form by

ωk
ωs

= (ξh)2

2π

√
2

3 (1− ν) , (2.115)

with ωk the angular frequency defined by the Kirchhoff plate theory, ωs = π
h

√
G
ρ the an-

gular frequency of the lowest, simple thickness-shear mode in a plate and ξ the wavenum-
ber along the x-direction. The explicit solutions for the three frequency branches of the
Mindlin plate theory are

ωmf1
ωs

= 1
π

√√√√
g −

√
g2 − 2 k2(ξh)4

1− ν , (2.116)

ωmf2
ωs

= 1
π

√√√√
g +

√
g2 − 2 k2(ξh)4

1− ν , (2.117)

ωms
ωs

= 1
π

√
(ξ h)2 + 12 k2, (2.118)

with
g = 6 k2 + (ξh)2

2

(
k2 + 2

1− ν

)
(2.119)
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and ωmf1 the angular frequency of the bending dominant flexural vibration, ωmf2 the
angular frequency of the shear dominant flexural vibration and ωms the angular frequency
for the thickness-twist vibration. In general, the solutions for the exact elasticity theory
cannot be given in explicit form. The asymmetric frequency branches are defined by the
solutions of the transcendental equation

4 sin
(
β

2

)
cos
(
α

2

)
(ξh)2 αβ + cos

(
β

2

)
sin
(
α

2

)(
(ξh)2 − β2

)2
= 0, (2.120)

with

α =
√
π2 1− 2 ν

2(1 + ν)

(
ω3D
ωs

)2
− (ξh)2, (2.121)

β =
√
π2
(
ω3D
ωs

)2
− (ξh)2 (2.122)

and ω3D the asymmetric frequency branches of the plate using the three-dimensional
elasticity theory. The exact solution corresponding to the thickness-twist vibration of the
Mindlin plate theory is given by

ω3Ds
ωs

= 1
π

√
π2 + (ξh)2, (2.123)

with ω3Ds the frequency branch of the first asymmetric thickness-shear vibration calculated
with the elasticity theory.
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Figure 2.7: Frequency spectrum of an infinite isotropic plate (ν = 0.3)
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2.3 Useful ranges of validity for the Kirchhoff and Mindlin plate theory

The solutions for the Kirchhoff plate theory (Equation (2.115)), the Mindlin plate theory
(Equations (2.116) – (2.118)) and the exact three-dimensional model (Equations (2.120)
and (2.123)) are illustrated in Figure 2.7 for the Poisson’s ratio ν = 0.3. For the Mindlin
plate theory the shear correction factors k2

M = π2

12 (Mindlin [11]) and k2
W = 5

6−ν (Wittrick
[58]) are used.

It is apparent from Figure 2.7 that the Kirchhoff plate theory is only valid for small values
of ξh, while the Mindlin plate theory agrees very well with the exact elasticity solution
for the shown range. The shear correction factor kW leads to a better result for the first
asymmetric frequency branch (bending dominated flexure), but is less accurate for the
shear dominant flexural and thickness-twist vibrations compared to the shear correction
factor kM . By comparing Equations (2.118) and (2.123) it is apparent that the Mindlin
plate theory becomes exact for the thickness-twist vibrations if the shear correction factor
kM is used. Therefore, the lines of the two frequency branches cannot be distinguished in
Figure 2.7.

To assess the validity of the plate theories, the relative error for bending dominant flexural
vibrations

εf1 = 100 · |{ωk, ωmf1} − ω3Df1|
ω3Df1

(2.124)

is defined. In Table 2.1 the limits for the frequency ratio ωmf1/ωs and the ratio λ/h =
2π/(ξh) to reach a relative error of 1%, 2%, 5% and 10% are given. The Poisson’s ratio
is set to ν = 0.3 and the shear correction factor kW is used to calculate ωmf1 in Table
2.1. The maximum relative error of the Mindlin plate theory using the shear correction
factor kW is less than 0.5% for ω/ωs < 1, whereas the shear correction factor kM leads to
a maximum relative error of 3.2% for ω/ωs < 1.

Table 2.1: Relative error εf1 of the Kirchhoff and Mindlin plate theory (ν = 0.3)
1% 2% 5% 10%

ωmf1
ωs

λ
h

ωmf1
ωs

λ
h

ωmf1
ωs

λ
h

ωmf1
ωs

λ
h

Kirchhoff 0.0087 26.35 0.0175 18.55 0.0435 11.58 0.0865 8.028

Mindlin kM 0.2208 4.693 0.5864 2.458 −− −− −− −−
Mindlin kW −− −− −− −− −− −− −− −−

As it is shown in the next section, in general, the shear dominant flexural and thickness-
twist vibrations occur at rather high frequencies compared to the bending dominant flex-
ural vibrations. Angular frequencies higher than ωs are not considered in this work and
therefore the validity of the Mindlin plate theory is not examined for ω/ωs > 1.

Comparing the results in Table 2.1 to the limits stated in the literature shows that nearly
all recommendations allow for an error greater than 10% in case of the Kirchhoff plate
theory. Only the strictest rule defined in [51] and [52] leads to an error between 1%
and 2% for an infinite plate. Depending on the used shear correction factor, the rules
applied for the Mindlin plate lead to an error of approximately 1.8% – 2.4% (kM ) and
0.2% – 0.3% (kW ). The strictest rule for the Mindlin plate theory results in a negligible
error. Applying the looser limit from [51] would lead to ω/ωs < 1.76, where not only
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2 State-of-the-art mathematical models for structural vibrations

the first asymmetric frequency branch, but also the higher frequency branches need to be
accurately represented. According to [50] the Mindlin plate theory is limited to ω/ωs < 1.2,
since the next higher thickness-modes cannot be approximated by the theory.

2.3.2 Influence of boundary conditions and other effects

In the previous section, the errors introduced by the approximate plate theories in case
of an infinite plate have been shown. If the plate has finite dimensions and the simplified
plate models are used to calculate the eigenfrequencies, the applied boundary conditions
introduce additional errors. To examine the ability of the plate theories to accurately
approximate the exact elasticity solution, several simple plate geometries, e.g. rectangular
plates, circular plates and sector plates, with different combinations of classical boundary
conditions are investigated.

An exact elasticity solution is only available in the literature for the hard simply-supported
rectangular plate [53, 59, 60]. Solutions for rectangular plates with other combinations
of boundary conditions are only feasible through approximate numerical methods. Malik
and Bert [61] and Liew and Teo [62] used the differential quadrature method to calculate
eigenfrequencies of rectangular plates with different boundary conditions, while Liew and
his co-workers [63] applied the Ritz method to numerically solve the problem.

Exact solutions for the free vibrations of rectangular Mindlin plates are only available
if two opposite sides are simply-supported (Levy-type plates), while the other two sides
can have arbitrary combinations of boundary conditions. Mindlin [57] investigated the
free vibrations of simply-supported rectangular plates, while Hashemi and Arsanjani [64]
developed the analytical solutions for all possible combinations of Levy-type plates. All
other combinations of boundary conditions have to be solved with numerical methods,
e.g. [65] and [66].

The situation for the results of rectangular Kirchhoff plates is similar to that of rectangu-
lar Mindlin plates. Analytical solutions are only available for Levy-type plates, which are
presented by Leissa [67]. Leissa [67] also used the Ritz method to calculate the eigenfre-
quencies for all other possible combinations of classical boundary conditions.

Since no analytical solutions for circular plates using the exact elasticity theory are avail-
able, Liew and Yang [68] used the Ritz method with a set of orthogonal polynomials to
calculate the eigenfrequencies for all classical boundary conditions, while Zhou and his
co-workers [69] applied the Chebyshev-Ritz method to find the eigenfrequencies. The an-
alytical solutions for circular Mindlin plates are given by Irie et al. [70] and for circular
Kirchhoff plates by Leissa [71] for all classical boundary conditions.

Even though several numerical solutions for annular sector plates with different combi-
nations of boundary conditions using the exact elasticity theory exist in the literature,
e.g. [72] and [73], no solutions can be found for sector plates. Exact analytical solutions
for sector plates having simply-supported radial edges and arbitrary boundary conditions
at the circular edge are reported by Huang and McGee [74] for the Mindlin plate theory
and by Huang et al. [75] for the Kirchhoff plate theory. If other boundary conditions
are applied at the radial edges, numerical methods have to be used in order to get the
free vibration results for the sector plate. Wang and Wang [76] developed the differential
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quadrature method for the free vibration analysis of sectorial Kirchhoff plates with various
combinations of boundary conditions, while McGee and his co-workers [77] and McGee
et al. [78] applied the classical Ritz method to calculate the eigenfrequencies. Numerical
results for sectorial Mindlin plates are given by Liu and Liew [79] applying the differential
quadrature method and by Huang et al. [80] who employed the classical Ritz method.

To investigate the influence of boundary conditions on the validity of the plate theories, all
previously mentioned analytical solutions for the free vibrations of plates are implemented
in MATLAB R© R2017b and eleven rectangular plates, three circular plates and twelve
sector plates with different lateral dimensions and boundary conditions are analyzed. The
thickness of the Kirchhoff and Mindlin plate configurations is varied from very thin plates
to moderately thick plates in 230 steps. The first 100 asymmetric bending dominant
flexural modes are calculated and therefore not only the low frequency range but also the
so-called mid frequency range is considered in the analysis.

Since an exact elasticity solution is only available for the simply-supported rectangu-
lar plate, the commercial Finite Element software ANSYS R© 17.1 is used to build three-
dimensional FEM models of all other plate configurations with two different thicknesses.
The quadratic 20-node hexahedral element SOLID186 is applied to calculate the eigenfre-
quencies of the plate configurations and at least six quadric elements in thickness direction
are used to avoid shear locking effects [81]. According to [82] at least six linear or three
quadric elements per wavelength are required to successfully control the approximation
error of the FEM, while for higher frequencies the pollution error becomes significant and
a higher number of elements should be applied [83, 84]. To ensure accurate results at least
15 quadric elements per wavelength in lateral direction are used in the FEM simulations.

It is expected that the Mindlin plate theory using the shear correction factor kW leads to
highly accurate results within the validity region of the Kirchhoff plate theory, since the
ratio of ω/ωs is very small. Therefore, with exception of the simply-supported rectangular
plate, the Mindlin plate theory using kW serves as reference solution for the Kirchhoff
plate theory. For the Mindlin plate theory, the three-dimensional FEM models are used
as reference solutions.

To assess the validity of the plate models and the influence of the boundary conditions,
the additional error εad, caused by the boundary conditions, is defined by

εad = |εtot − εexp|, (2.125)

with

εtot = 100 · ωk − ωmf1
ωmf1

(Kirchhoff) and εtot = 100 · ωmf1 − ω3D
ω3D

(Mindlin) (2.126)

the total relative error compared to the reference solution and

εexp = 100 · ω
inf
k − ωmf1
ωmf1

(Kirchhoff) and εexp = 100 ·
ωinfmf1 − ω3D

ω3D
(Mindlin) (2.127)

the expected relative error, which results from the infinite plate solution. The angular
eigenfrequencies ωinfk (Kirchhoff) and ωinfmf1 (Mindlin) are calculated using the frequency
equations of the infinite plate (Equation (2.115) for Kirchhoff and Equation (2.116) for

33



2 State-of-the-art mathematical models for structural vibrations

Mindlin) and the wavenumber of the reference solution ξref = {ξmf1, ξ3D}, calculated by
substituting the reference solution ωref = {ωmf1, ω3D} into the corresponding frequency
equations of the infinite plate (Equation (2.116) for Mindlin as reference and Equation
(2.120) for the 3D solution as reference).

Rectangular plate configurations

The dimensions and boundary conditions of the rectangular plate configurations are shown
in Figure 2.8. The lateral dimensions of the plate in x- and y-direction are denoted by
a and b. The boundaries 1 (x = 0) and 3 (x = a) are simply-supported for all plate
configurations, while the boundaries 2 (y = 0) and 4 (y = b) are either simply-supported
(S), clamped (C) or free (F). Four different combinations of boundary conditions, SSSS,
SCSC, SCSF and SFSF are examined.

Figure 2.8: Dimensions and boundary conditions of the rectangular plate configurations

The angular frequency ratios {ω3D, ωmf1, ωk}/ωs only depend on the ratios a/b and a/h
and the Poisson’s ratio ν of the plate, which is set to ν = 0.3 for the following analysis.
Three different ratios of the lateral dimensions a/b = {0.66̇, 1, 1.5} are used to investigate
the influence of the boundary conditions. The analytical solutions of the Kirchhoff plate
[67] and the Mindlin plate [64] are evaluated for 230 different ratios of the smallest lateral
dimension of the plate a or b to the plate thickness h, varying from very thin plates
({a, b}/h = 500) to moderately thick plates ({a, b}/h = 10).

Since the evaluation of the 3D FEM models is very time consuming, the eigenfrequencies
of the plates are only calculated for two different plate thicknesses {a, b}/h = {10, 20}. In
Table 2.2 the total number of elements, the degrees of freedom, the number of elements in
plate thickness direction and the minimum number of elements per wavelength λ in lateral
dimension are listed for the different FEM models. The same FEM mesh is applied for all
combinations of boundary conditions.

In the case of the simply-supported plate, the numerical results show that no additional
error is introduced by the boundary condition for the Kirchhoff and Mindlin plate theory
compared to the exact elasticity solution. The total error of the asymmetric bending
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Table 2.2: 3D FEM models for the analysis of the rectangular plate configurations
a/b a/h (b/h) # elements # FE dofs # z-divisions # elements/λ

0.66̇ 10 129600 1767639 6 25
20 518400 7034439 6 49

1 10 86400 1180839 6 20
20 345600 4694439 6 40

1.5 10 129600 1767639 6 24
20 518400 7034439 6 49

modes of simply-supported rectangular Kirchhoff and Mindlin plates is equivalent to the
error occurring in an infinite plate. Straight simply-supported boundary conditions do not
introduce additional errors, since no coupling between the different frequency branches
occurs at the boundary [57] and boundary layers are not present [85].

The total and expected errors of the Mindlin plate theory for other combinations of bound-
ary conditions are shown in Figures 2.9 – 2.11. The shear correction factor kW is applied.
The total errors of the first 100 asymmetric bending dominant flexural modes are plotted
and marked by red crosses. Bending modes with a similar nodal pattern are connected
by a solid red line and the assigned values define the number of maxima (minima) of the
corresponding mode shapes in y-direction. The number of maxima (minima) of the mode
shapes in x-direction rises with increasing frequency. The expected error resulting from
the infinite plate solution is plotted by a solid black line. Several conclusions are apparent
from the given results:

• For all rectangular plate configurations, the angular eigenfrequencies ω do not exceed
the angular frequency of the lowest, simple thickness-shear mode in the plate ωs.
Therefore, only asymmetric bending dominant flexural vibration is expected (pure
in-plane modes are not considered in this work) and the ability of the Mindlin plate
theory to model the other frequency branches plays only a minor part, if the first
100 bending modes are calculated and the ratio {a, b}/h > 10.

• Free boundary conditions have a stiffening (positive additional error) and clamped
boundary conditions a softening (negative additional error) effect compared to the
infinite plate solution.

• The additional error introduced by the boundary conditions decreases if the plate
becomes thinner and the ratio of the lateral dimensions a/b has only a minor impact.
The mode shape also influences the additional error.

• The maximum additional error occurs for free boundary conditions, but since a
stiffening of the plate is introduced, the total error is even lower than the error in
the infinite plate for higher frequencies. Clamped boundary conditions lead to the
highest total error for rectangular plates.

• The additional error introduced by the boundary conditions is small and does not
exceed 0.25% for {a, b}/h = 10 and 0.075% for {a, b}/h = 20.

• The Mindlin plate theory leads to excellent results with a maximum total error of
less than 0.6% for the first 100 bending modes and a ratio {a, b}/h = 10.
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Figure 2.9: Expected and actual total error of a rectangular Mindlin plate (a/b = 0.66̇)
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(d) SCSF, a/h = 20
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(e) SFSF, a/h = 10
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(f) SFSF, a/h = 20

Figure 2.10: Expected and actual total error of a rectangular Mindlin plate (a/b = 1)
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(a) SCSC, b/h = 10
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(b) SCSC, b/h = 20
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(c) SCSF, b/h = 10
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(d) SCSF, b/h = 20
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(e) SFSF, b/h = 10
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(f) SFSF, b/h = 20

Figure 2.11: Expected and actual total error of a rectangular Mindlin plate (a/b = 1.5)
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The additional error εad of the Kirchhoff plate theory with SCSC, SCSF and SFSF bound-
ary conditions depending on the angular frequency ratio ωmf1/ωs (x-axis) and the ratio
of the smallest lateral dimension to the plate thickness {a, b}/h (y-axis with logarithmic
scale) is shown in Figures 2.12 – 2.20. Vertical dashed lines illustrate the 1%, 2% and 5%
error limits defined from the infinite plate solution in Table 2.1. The x-axis is limited by an
angular frequency ratio of ωmf1/ωs < 0.045, since the expected error of the Kirchhoff plate
theory already exceeds 5%. The first 100 asymmetric bending dominated flexural modes
are shown, which are ordered from top to bottom. The additional error is illustrated by
the colorbar.

From Figures 2.12 – 2.20 the following can be concluded:

• The additional error introduced by the boundary conditions rises, if the plate thick-
ness increases or higher frequencies are viewed. The mode shape also influences the
additional error.

• The introduction of boundary conditions leads to a further stiffening effect compared
to the Mindlin plate theory, since the additional error is always positive. This effect
is more pronounced for clamped boundaries compared to the free boundaries.

• The accurate prediction of the fundamental eigenfrequency (first mode) of SCSC
rectangular plates requires a ratio of the smallest lateral dimension to the plate
thickness of {a, b}/h > 30 (1% total error), {a, b}/h > 20 (2% total error) or
{a, b}/h > 13 (5% total error). These limits depend on the stiffness of the boundary
conditions and therefore are looser for the SFSF rectangular plate, see Figures 2.12
and 2.14. Comparing the Figures 2.12, 2.15 and 2.18, it is apparent that the ratio
of the lateral dimensions a/b has only a minor effect on the limits.

• Highly accurate results are only guaranteed, if the angular frequency limit defined
from the infinite plate solution ωk/ωs < 0.0087 is fulfilled and a ratio {a, b}/h > 30
is given.

• The first 100 bending modes can only be calculated accurately for very thin plates.
Depending on the desired accuracy the limit ranges from {a, b}/h > 160 (1% total
error), {a, b}/h > 120 (2% total error) to {a, b}/h > 70 (5% total error). These
limits are only slightly changing for the different boundary conditions and lateral
dimensions of the rectangular plate.

• Since the frequency limit of the Kirchhoff plate theory requires very thin plates
to predict the first 100 eigenfrequencies, the additional error, introduced by the
boundary conditions, is in general negligible for higher order modes.

• As long as the frequency limit, defined from the infinite plate solution, for the Kirch-
hoff plate theory is fulfilled and the ratio of the smallest lateral dimension to the plate
thickness {a, b}/h > 30, the additional error introduced by the boundary conditions
can be neglected for all modes (εad < 1% at ωmf1/ωs = 0.045).

The Kirchhoff plate theory only models asymmetric bending dominant flexural modes
and therefore an additional error is introduced by the boundary conditions if a coupling
of different mode types occurs at the boundary [57]. Such a coupling is only absent for
straight simply-supported boundaries. Furthermore, the Kirchhoff plate theory is not able
to model boundary layers, which are present in the elasticity theory [85].
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Figure 2.12: Additional error of a SCSC rectangular Kirchhoff plate (a/b = 0.66̇)
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Figure 2.13: Additional error of a SCSF rectangular Kirchhoff plate (a/b = 0.66̇)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

10
15
20
30
50
75

100
150
250

500

1stmode

100thmode

1% 2% 5%

ωmf1/ωs

a

h

0

0.5

1

1.5
1.62

ε a
d
[%

]

Figure 2.14: Additional error of a SFSF rectangular Kirchhoff plate (a/b = 0.66̇)
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Figure 2.15: Additional error of a SCSC rectangular Kirchhoff plate (a/b = 1)
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Figure 2.16: Additional error of a SCSF rectangular Kirchhoff plate (a/b = 1)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

10
15
20
30
50
75

100
150
250

500

1stmode

100thmode

1% 2% 5%

ωmf1/ωs

a

h

0

0.5

1

1.5

2.02

ε a
d
[%

]

Figure 2.17: Additional error of a SFSF rectangular Kirchhoff plate (a/b = 1)
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Figure 2.18: Additional error of a SCSC rectangular Kirchhoff plate (a/b = 1.5)
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Figure 2.19: Additional error of a SCSF rectangular Kirchhoff plate (a/b = 1.5)
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Figure 2.20: Additional error of a SFSF rectangular Kirchhoff plate (a/b = 1.5)
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Circular plate configurations

The dimensions and boundary conditions of the circular plate configurations are illus-
trated in Figure 2.21. The radius of the circular plate is denoted by R and the boundary
of the plate is either simply-supported, clamped or free. The angular frequency ratios
{ω3D, ωmf1, ωk}/ωs for circular plates only depend on the ratio of the characteristic lat-
eral dimension to the plate thickness (2R/h) and the Poisson’s ratio ν.

Figure 2.21: Dimensions and boundary conditions of the circular plate configurations

The analytical solutions for circular Kirchhoff [71] and Mindlin plates [70] are used to
analyze the eigenfrequencies of the plates for 230 different thicknesses, ranging from
2R/h = 500 (thin plate) to 2R/h = 10 (moderately thick plate) and the Poisson’s ra-
tio ν = 0.3 is applied.

In total six different 3D FEM models are solved for the analysis of the circular plate
configurations with two different ratios 2R/h = {10, 20}. The FEM model properties are
listed in Table 2.3 and are identical for all three boundary conditions.

Table 2.3: 3D FEM models for the analysis of the circular plate configurations
2R/h # elements # FE dofs # z-divisions # elements/λ

10 256000 3372531 8 15
20 256000 3372531 8 15

The total and expected errors of the circular Mindlin plates are shown in Figure 2.22.
Similar to the rectangular plate results, the total errors of the asymmetric bending dom-
inant flexural modes are plotted and marked by red crosses and bending modes with a
similar nodal pattern are connected by a solid red line. The assigned values define the
number of nodal lines (lines of zero displacement) in circumferential direction.

The number of nodal lines in radial direction generally rises with increasing frequency.
The only exception is the fundamental mode (mode with the lowest frequency) of the
free circular plate, which has two nodal lines in radial direction and zero nodal lines in
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circumferential direction. The expected error resulting from the infinite plate solution is
plotted by a solid black line.

In case of the moderately thick plates (2R/h = 10) with clamped and simply-supported
boundary conditions (Figures 2.22a and 2.22c) only the first 82 modes are plotted, since
the modes 83 to 100 exceed the angular frequency ratio ω3D/ωs = 1 (ω3D/ωs ≈ 1.1 for
the 100th mode) and therefore shear dominant modes appear. The first 100 asymmetric
bending modes are shown for all other circular plate configurations.

The findings for the circular and rectangular plates are similar. A view additional conclu-
sions are:

• For curved boundaries, the simply-supported boundary conditions introduce an ad-
ditional error, since a coupling between the different mode types occurs at the bound-
ary and a boundary layer is present [85].

• If no circumferential nodal lines are present in the mode shape, the additional error
in case of completely free boundary conditions is most pronounced.

• The Mindlin plate theory is able to predict the first 100 eigenfrequencies very ac-
curately independent of the boundary conditions if the ratio of the characteristic
length to the plate thickness 2R/h < 10.

The additional error εad of the Kirchhoff plate theory with clamped, simply-supported and
free boundary conditions is illustrated in Figures 2.23 – 2.25. The y-axis has a logarithmic
scale and shows the ratio of the characteristic length to the plate thickness 2R/h. The
vertical dashed lines indicate the 1%, 2% and 5% error limits defined from the infinite plate
solution. Similar to the rectangular plate, the first 100 asymmetric bending dominated
flexural modes are shown, which are ordered from top to bottom. Due to the symmetry
of the circular plates several double modes appear in the analysis.

The findings for the circular and rectangular Kirchhoff plate are very similar. The ad-
ditional error for the simply-supported circular plate, shown in Figure 2.24, is less than
0.25% but not 0% as for the rectangular plate, since simply-supported boundary conditions
lead to boundary layers if the boundary is curved.

Since the clamped circular plate is stiffer than the SCSC rectangular plate, the limit for
the ratio of the smallest characteristic length 2R to the plate thickness h to accurately
predict the first 100 modes is even stricter. Depending on the desired accuracy a ratio
2R/h = 185 (1% total error), 2R/h = 125 (2% total error) and 2R/h = 75 (5% total
error) is required.

A limit for the ratio 2R/h > 30 is sufficient to ensure accurate results if the frequency limit
defined by the infinite plate solutions is not exceeded. Even though the additional error
introduced by the boundary conditions is higher for the clamped circular plate compared
to the SCSC rectangular plate, the additional error is still negligible (ε ≈ 1% at ωmf1/ωs =
0.04).

An accurate prediction of the fundamental mode for the clamped circular plate requires a
ratio 2R/h = 33 (1% total error), 2R/h = 23 (2% total error) and 2R/h = 15 (5% total
error), which is slightly higher compared to the SCSC rectangular plate.
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(a) Clamped, 2R/h = 10
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(b) Clamped, 2R/h = 20
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(c) Simply-supported, 2R/h = 10
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(d) Simply-supported, 2R/h = 20
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(e) Free, 2R/h = 10
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(f) Free, 2R/h = 20

Figure 2.22: Expected and actual total error of a circular Mindlin plate
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Figure 2.23: Additional error of a clamped circular Kirchhoff plate
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Figure 2.24: Additional error of a simply-supported circular Kirchhoff plate

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

10
15
20
30
50
75

100
150
250

500

1stmode

100thmode

1% 2% 5%

ωmf1/ωs

2R

h

0

0.5

1

1.24

ε a
d
[%

]

Figure 2.25: Additional error of a free circular Kirchhoff plate
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Sector plate configurations

In Figure 2.26 the dimensions and boundary conditions of the sector plate configurations
are illustrated. The radius of the plate is denoted by R and the sector angle by α.
The radial edges 1 and 3 are always simply-supported, while the circumferential edge
2 is either simply-supported (S), clamped (C) or free (F). The angular frequency ratios
{ω3D, ωmf1, ωk}/ωs for sector plates only depend on the sector angle α, the ratio of the
plate radius R to the plate thickness h and the Poisson’s ratio ν, which is set to ν = 0.3.

Figure 2.26: Dimensions and boundary conditions of the sector plate configurations

Four different sector angles α = {30◦, 165◦, 195◦, 330◦} with three different combinations
of boundary conditions SSS, SCS and SFS are investigated. The smallest characteristic
lateral dimension of the plate, denoted by R∗, depends on the chosen sector angle α and
is given by R∗ = R sin(α) (α = 30◦), R∗ = R (α = 165◦), R∗ = R (1− sin(α)) (α = 195◦)
and R∗ = 2R (α = 330◦). The analytical solutions for sectorial Kirchhoff [75] and Mindlin
plates [74] are evaluated for 230 different thicknesses, ranging from R∗/h = 500 (thin
plate) to R∗/h = 10 (moderately thick plate).

The 3D elasticity results are calculated for two different thicknesses R∗/h = {10, 20} using
the FEM models listed in Table 2.4. The meshing for the SFS sector plates differs from
the FEM meshes of the SSS and SCS sector plates, since a higher number of elements
per wavelength in lateral dimension have been required for the SFS sector plates to get
accurate results.

If the radial edges are simply-supported and the sector angle α exceeds 180◦, stress singu-
larities can arise at the corner (r = 0) [75, 74] and affect the solutions of the Kirchhoff and
Mindlin plate theory. The strength of the singularity increases with rising sector angle
and therefore weak (α = 195◦) and strong singularities (α = 330◦) are expected.

The total and expected errors of the Mindlin plate theory for the three different boundary
conditions are shown in Figures 2.27 – 2.30. The total errors of the bending modes are
marked by red crosses and bending modes with a similar nodal pattern are connected
by a solid red line. The assigned values define the number of nodal lines (lines of zero
displacement) in circumferential direction. The number of nodal lines in radial direction
rises with increasing frequency. The solid black line illustrates the expected errors.

In case of the moderately thick plates (R∗/h = 10) with a sector angle α = 330◦ (Fig-
ures 2.30a, 2.30c and 2.30e) only the first 73 (clamped), 74 (simply-supported) and 99
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Table 2.4: 3D FEM models for the analysis of the sector plate configurations
α R∗/h BC # elements # FE dofs # z-divisions # elements/λ

30◦
10 SCS, SSS 259200 3520839 6 20

SFS 236016 3129039 8 28

20 SCS, SSS 405000 5494539 6 25
SFS 236016 3129039 8 28

165◦
10 SCS, SSS 375000 4951176 8 18

SFS 300396 3863526 12 23

20 SCS, SSS 375000 4951176 8 17
SFS 300396 3863526 12 23

195◦
10 SCS, SSS 257470 3352146 10 26

SFS 397431 5200764 9 36

20 SCS, SSS 397736 5252706 8 34
SFS 393484 5257914 7 41

330◦
10 SCS, SSS 325704 4195893 12 28

SFS 424134 5554950 9 41

20 SCS, SSS 393147 5150553 9 33
SFS 403137 5391060 7 44

(free) modes are plotted, since the higher order modes exceed the angular frequency ratio
ω3D/ωs = 1. The first 100 bending modes are shown for all other configurations. The
sector plate with α = 30◦ (Figure 2.27) leads to similar findings as the rectangular and
circular plate. Especially the additional error εad for the SSS plate is close to zero, since
two straight boundaries and only one slightly curved boundary are present.

Comparing the results in Figure 2.27 (α = 30◦) and Figure 2.28 (α = 165◦), it is apparent
that a difference in the additional error only occurs for mode shapes without nodal lines
in radial direction. Especially for a free circumferential edge (SFS), the mode with zero
radial and circumferential nodal lines leads to a high total error (25% for R/h = 10 and
23% for R/h = 20). Similar results are found in [86] for annular Kirchhoff plates with a
clamped inner boundary. A further investigation of the higher errors, appearing for mode
shapes without nodal lines in radial direction is not carried out in this work.

To investigate the influence of corner stress singularities on the Mindlin plate, the results
for the sector plate with α = 165◦ (Figure 2.28) and α = 195◦ (Figure 2.29) are compared.
Stress singularities only occur for mode shapes without nodal lines in radial direction [74].
Even though a higher additional error is apparent in Figure 2.29 for modes with zero nodal
lines in radial direction, the error cannot be attributed to the stress singularities, since a
similar error is found for the sector plate with α = 165◦. Therefore, the Mindlin plate
theory is capable of accurately representing the singularities in the corner.

The additional and total error for the sector plate with α = 330◦ (stronger stress singu-
larities) are similar compared to the previous examples. The additional errors for modes
with zero or one nodal line(s) in radial direction are higher. The higher error for modes
with one radial nodal line is due to the fact that the modes with one radial nodal line are
equivalent to the vibrations of a sector plate with α = 165◦ and zero radial nodal lines.
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(a) SCS, R sin(α)/h = 10
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(b) SCS, R sin(α)/h = 20
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(c) SSS, R sin(α)/h = 10
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(d) SSS, R sin(α)/h = 20
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(e) SFS, R sin(α)/h = 10
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(f) SFS, R sin(α)/h = 20

Figure 2.27: Expected and actual total error of a sectorial Mindlin plate (α = 30◦)
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(a) SCS, R/h = 10

0 0.1 0.2 0.3−0.15
−0.1

−0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0

1

2
3

4
5

6
7

8

ω3D/ωs

ε
[%

]

εexp
εtot

(b) SCS, R/h = 20

0 0.2 0.4 0.6 0.8−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

0

1

2

3
4

5
6

7
8

ω3D/ωs

ε
[%

]

εexp
εtot

(c) SSS, R/h = 10

0 0.1 0.2 0.3−0.1

0

0.1

0.2

0.3

0.4

0.5 0

1

2

3
4

5
6

7
8

ω3D/ωs

ε
[%

]
εexp
εtot

(d) SSS, R/h = 20

0 0.2 0.4 0.6 0.8−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

0

1
↑0

2

3

4

5

6
7

8

ω3D/ωs

ε
[%

]

εexp
εtot

(e) SFS, R/h = 10

0 0.1 0.2 0.3−0.1

0

0.1

0.2

0.3

0.4

0.5

0

1
↑0

2

3

4
5

6
7

8

ω3D/ωs

ε
[%

]

εexp
εtot

(f) SFS, R/h = 20

Figure 2.28: Expected and actual total error of a sectorial Mindlin plate (α = 165◦)
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Figure 2.29: Expected and actual total error of a sectorial Mindlin plate (α = 195◦)

51



2 State-of-the-art mathematical models for structural vibrations

0 0.2 0.4 0.6 0.8 1−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2

0

1
2

3

4 5

ω3D/ωs

ε
[%

]
εexp
εtot

(a) SCS, R/h = 10

0 0.1 0.2 0.3 0.4 0.5−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2

0

1

2 3 4
5

ω3D/ωs

ε
[%

]

εexp
εtot

(b) SCS, R/h = 20

0 0.2 0.4 0.6 0.8 1−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4

0

1
2

3

4 5

ω3D/ωs

ε
[%

]

εexp
εtot

(c) SSS, R/h = 10

0 0.1 0.2 0.3 0.4 0.5−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4

0

1
2 3 4

5

ω3D/ωs

ε
[%

]
εexp
εtot

(d) SSS, R/h = 20

0 0.2 0.4 0.6 0.8 1−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

0

1

↑0

2
3

4
5

ω3D/ωs

ε
[%

]

εexp
εtot

(e) SFS, R/h = 10

0 0.1 0.2 0.3 0.4−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4

0

1

↑0

2
3 4 5

ω3D/ωs

ε
[%

]

εexp
εtot

(f) SFS, R/h = 20

Figure 2.30: Expected and actual total error of a sectorial Mindlin plate (α = 330◦)
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2.3 Useful ranges of validity for the Kirchhoff and Mindlin plate theory

The additional error εad of the Kirchhoff plate for the three different combinations of
boundary conditions SCS, SSS and SFS are illustrated in Figures 2.31 – 2.42. The y-
axis has a logarithmic scale and shows the ratio of the characteristic length to the plate
thickness R∗/h. The 1%, 2% and 5% error limits defined from the infinite plate solution are
plotted with vertical dashed lines. The first 100 asymmetric bending dominated flexural
modes are shown, which are ordered from top to bottom.

The results of the sector plates with α = 30◦ in Figures 2.31 – 2.33 and with α = 165◦ in
Figures 2.34 – 2.36 lead to similar findings as the results of the rectangular and circular
plates, since no stress singularities are present for these plate configurations. The addi-
tional errors are low, since the two straight radial boundaries are simply-supported and
only the circumferential boundary introduces additional errors.

The colorbars illustrating the additional error in Figures 2.37 – 2.42 (α = {195◦, 330◦})
are limited by 3%, since the additional errors for modes with stress singularities are rather
high.

According to [75], the Kirchhoff plate theory only includes moment singularities at the
corner r = 0. The occurring shear force singularities are not modelled by the Kirchhoff
plate theory, since the influence of shear deformation is neglected.

Stress singularities only occur, if the mode shape has no radial nodal lines. For α = 195◦
eight such modes are present within the first 100 modes, while for α = 330◦ only six modes
have stress singularities.

It is apparent from Figures 2.37 – 2.42 that the stress singularities lead to a larger addi-
tional error compared to the Mindlin plate theory, while the additional errors for modes
without stress singularities are in the expected limits. The additional errors of the first
eigenfrequency for very thin plates (R∗/h = 100) are εad ≈ 3.5% (α = 195◦) and εad ≈ 4%
(α = 330◦) in case of the SCS sector plate. While the additional error hardly depends on
the ratio R∗/h for sector plates with a sector angle α = 195◦ (εad ≈ 4% at R∗/h = 30), a
significant increase in the additional error is noted for a sector angle α = 330◦ (εad ≈ 10%
at R∗/h = 30).

The higher additional error for α = 330◦ compared to α = 195◦ is expected, since the
stress singularity increases with rising α. The influence of the stress singularity on the
additional error slightly decreases with a higher number of nodal lines in circumferential
direction. The additional error of the highest mode with stress singularities for a ratio
R∗/h = 100 is given by εad ≈ 1% (α = 195◦) and εad ≈ 3% (α = 330◦) for the SCS
plate.

If discontinuities at a plate boundary are present, e.g. corners in polygonal plates, and
shear force singularities are expected, the Kirchhoff plate theory is in general not able to
predict accurate results for all modes having shear force singularities, even for very thin
plates and low frequencies.

Since an analytical solution for free vibrations of sectorial Kirchhoff plates is only available
for simply-supported radial edges, the analytical static solution for all different combina-
tions of boundary conditions derived in [87], can be used to estimate if a shear force
singularity occurs.
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Figure 2.31: Additional error of a SCS sectorial Kirchhoff plate (α = 30◦)
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Figure 2.32: Additional error of a SSS sectorial Kirchhoff plate (α = 30◦)
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Figure 2.33: Additional error of a SFS sectorial Kirchhoff plate (α = 30◦)
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Figure 2.34: Additional error of a SCS sectorial Kirchhoff plate (α = 165◦)
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Figure 2.35: Additional error of a SSS sectorial Kirchhoff plate (α = 165◦)
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Figure 2.36: Additional error of a SFS sectorial Kirchhoff plate (α = 165◦)
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Figure 2.37: Additional error of a SCS sectorial Kirchhoff plate (α = 195◦)
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Figure 2.38: Additional error of a SSS sectorial Kirchhoff plate (α = 195◦)
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Figure 2.39: Additional error of a SFS sectorial Kirchhoff plate (α = 195◦)
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Figure 2.40: Additional error of a SCS sectorial Kirchhoff plate (α = 330◦)
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Figure 2.41: Additional error of a SSS sectorial Kirchhoff plate (α = 330◦)
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Figure 2.42: Additional error of a SFS sectorial Kirchhoff plate (α = 330◦)
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2.3.3 Further error sources and final remarks on the plate model validity

In the previous two sections the validity of the Kirchhoff and Mindlin plate theory has been
examined by comparing the free vibration solutions for an infinite plate and certain types
of bounded plates to the solutions derived by the elasticity theory. For plates without
complicated effects, the following limits for the Kirchhoff plate theory are proposed:

• The Kirchhoff plate theory is able to predict the angular eigenfrequencies very accu-
rately (≈ 1% error) if the angular frequency ratio ωk/ωs < 0.009 (λ/h > 25) and the
ratio of the smallest characteristic lateral dimension to the plate thickness is greater
than 30.

• The results of the Kirchhoff plate theory are still acceptable (≈ 5% error) if ωk/ωs <
0.04 (λ/h > 12.5) and the ratio of the smallest characteristic lateral dimension to
the plate thickness is greater than 20.

The limit for the ratio of the smallest characteristic lateral dimension to the plate thickness
agrees very well with the stated limits in the literature, while the frequency limits in the
literature allow for a rather high error of approximately 10%.

The Mindlin plate theory predicts the eigenfrequencies highly accurately for the complete
viewed frequency range ωmf1/ωs < 1 (λ/h > 1.5) if the ratio of the smallest characteristic
lateral dimension to the plate thickness is greater than ten. Due to the given results,
it is recommended to use the shear correction factor kW introduced by Wittrick, if the
vibrations of moderately thick plates are analyzed. The accuracy of the Mindlin plate
theory for even thicker plates and higher frequencies is not examined in this work. A
general limit for the Mindlin plate theory is given by ωmf1/ωs = 1.2, since, according
to [50], the next higher thickness-modes appear, which cannot be approximated by the
Mindlin plate theory.

If shear force singularities are present in the plate domain, it is recommended to use the
Mindlin rather than the Kirchhoff plate theory, since the singularity strongly affects the
global response. The Mindlin plate theory is able to model the shear force singularity,
while the Kirchhoff plate theory fails to do so.

For the definition of the validity ranges of the plates theory, only their ability to accurately
predict the eigenfrequency is taken into account. Especially the deviations of the corre-
sponding mode shapes to the mode shapes predicted by the elasticity theory will affect
the general accuracy of the plate theories. The investigation of this aspect is not in the
scope of this work.

The stated limits are only applicable for isotropic plates. Especially highly orthotropic
and composite plates require an accurate representation of the shear deformation. There-
fore, the Kirchhoff plate theory leads to inaccurate results even for thin plates [88] and
appropriate shear correction factors are needed for the Mindlin plate theory [89].
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3 Numerical techniques for the calculation
of steady-state plate vibrations

An analytical solution for the mathematical models described in Section 2.1 and Section
2.2 is only feasible for a very limited number of problems with simple geometries and spe-
cific boundary conditions and source terms. Therefore, approximate numerical methods
have been developed to solve the partial differential equation(s) with arbitrary bound-
ary conditions and loadings in general problem domains. There are several possibilities
to classify the variety of numerical methods [20]. In the following, the numerical meth-
ods applied to solve steady-state structural vibration problems are categorized into three
groups: element based techniques, statistical methods and Trefftz based approaches.

3.1 Element based techniques

In element based techniques, either the whole problem domain (domain methods) or the
boundary of the problem domain (boundary methods) is divided into a large number of
small elements [90]. Locally defined simple shape functions are used to approximate the
field variable(s), e.g. the displacements and rotations. The most popular domain method
is the (conventional) Finite Element Method (FEM) [91, 92], while the Boundary Element
Method (BEM) [93, 94] is a typical boundary method. In the following sections, the
(conventional) FEM for steady-state plate vibrations is reviewed and several extensions
and improvements of the FEM are discussed. The BEM is most effective for problem
domains with a small boundary to volume ratio and especially for unbounded domains
[20] and since only bounded problems are investigated in this work, a review of the BEM
is not included.

3.1.1 Conventional Finite Element Method

The conventional FEM is at present very widely used in practice to solve engineering prob-
lems, especially because the method has been developed extensively over the last 75 years
and is able to tackle real-life applications [92]. Furthermore, many commercial software
packages are available, which simplifies the use of FEM in engineering and science. It needs
to be noted that the term ”conventional” refers to the classical FEM, which uses simple
polynomial shape functions and an unaltered weak form of the mathematical problem.
For steady-state vibration problems, the conventional FEM is practically limited to low
frequencies, since the computational time strongly increases with higher frequencies [95].
This limit is further discussed in a subsequent section and extensions and improvements
of the FEM to overcome this limit are reviewed in Section 3.1.2.
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3 Numerical techniques for the calculation of steady-state plate vibrations

The procedure to solve a steady-state plate vibration problem with FEM consists in general
of five steps [20, 96]:

• The problem domain is discretized into a large number of non-overlapping elements.

• Within each element, the field variables, e.g. the displacements and rotations, are
approximated by simple polynomial shape functions. The contribution factors (nodal
values) of the polynomial shape functions are the unknowns in the FE model.

• The polynomial shape functions violate the governing equations and certain types of
boundary conditions. Minimizing the resulting residuals in an integral sense leads to
the FE system matrices. The minimization can be achieved either by a variational
principle, a weighted residual approach or a least-square approach.

• The unknown nodal values are obtained by solving a sparse system of linear equa-
tions.

• Through a post-processing step, the primary field variables (displacements and rota-
tions) and derived quantities, e.g. stresses, can be calculated for the whole domain.

In the next section, the general modeling steps for steady-state plate vibrations are de-
scribed for the Kirchhoff and Mindlin plate theory.

FEM model for steady-state structural plate vibrations

The first modelling step is the discretization of the problem domain Ω into ne non-
overlapping elements (Ω = ∪nee=1Ω(e) with Ω(i) ∩ Ω(j) = 0, ∀i , j), which are all intercon-
nected by nfe nodes. The number of nodes per element n(e)

a generally depends on the di-
mension of the problem, the order of the used polynomial functions within the element and
the applied element type, e.g. triangular or quadrilateral elements. A coarse discretization
of a two-dimensional domain, the so-called FE mesh, with ten quadrilateral elements using
second order polynomial functions (eight nodes per element) is shown in Figure 3.1. A to-
tal number of nfe = 45 nodes connect the ne = 10 elements. The node numbers associated

Figure 3.1: FE mesh of a 2D domain with ten quadrilateral elements and 45 nodes
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3.1 Element based techniques

with one element are collected in the set S(e)
N , e.g. S(5)

N = {14, 15, 17, 22, 23, 24, 25, 26}.
Since second order polynomial functions are applied within the elements, also curved
boundaries can be approximated rather accurately. It is apparent from Figure 3.1 that a
certain node at position r = rfe can be associated with several different elements, e.g. node
9 is related to the elements 2 and 4.

In the following, the sparse system of linear equations, resulting from the FEM approxima-
tion, is derived for the Mindlin and Kirchhoff plate theory. Since the bending behaviour
of plates is of major interest in this work, the FEM models stated below do not include
the membrane behaviour of the plates.

a.) Mindlin plate FEM model

The primary field variables of the Mindlin plate theory are the out-of-plane displacement
w(r) and the rotations ψx(r) and ψy(r), which are collected in the vector ψ(r) = [ψx, ψy]T .
Within each element, the primary field variables are approximated by a sum of n(e)

a poly-
nomial shape functions

w(e)(r) ≈
∑
a

N (e)
wa (r) ŵ(e)

a = N (e)
w (r) ŵ(e), a ∈ S(e)

N , r ∈ Ω(e),

ψ(e)(r) ≈
∑
a

 N
(e)
ψxa

(r) ψ̂(e)
xa

N
(e)
ψya

(r) ψ̂(e)
ya

 =

 N (e)
ψx

(r) 0

0 N
(e)
ψy

(r)

 ψ̂(e)
x

ψ̂
(e)
y

 = N
(e)
ψ (r) ψ̂(e),

(3.1)

where N (e)
wa , N (e)

ψxa
and N (e)

ψya
are the polynomial shape functions for the displacements and

rotations, which are gathered in the row vectors N (e)
w , N (e)

ψx
and N (e)

ψy
. The contribution

factors of the shape functions ŵ(e)
a , ψ̂(e)

xa and ψ̂(e)
ya are collected in the column vectors ŵ(e),

ψ̂
(e)
x and ψ̂(e)

y .

Since the polynomial shape functions are defined within one element, their values are
zero in all other elements. Furthermore, each shape function N

(e)
wa , N (e)

ψxa
and N

(e)
ψya

has
a value of 1 at the node position r = ra and a zero value for all other node positions
r = rfe (fe , a). Through these properties of the shape functions, the nodal values are
equivalent to the contribution factors and are equal to the value of the field variables at
r = ra in the final solution.

The approximate solutions do not fulfill the governing equations and certain boundary
conditions exactly and therefore, a variational principle, a weighted residual approach or
a least-square approach is used to minimize the residuals in an integral sense. In the
conventional FEM, a weighted residual approach is applied and the weighting functions
are expanded in the same locally defined functions as the primary field variables (Galerkin
approach). For many problems, the weighted residual approach becomes equivalent to the
variational principle, e.g. for structural plate vibrations [91].

In the conventional FEM, the strain and stress fields are derived quantities, which are
calculated from the displacement and rotation fields using the Equations (2.24) – (2.29)
and Equations (2.34) – (2.38). Therefore, the variational form of the Mindlin plate theory,
shown in Equation (2.85), is simplified, since only a variation with respect to the primary
field variables is required.
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3 Numerical techniques for the calculation of steady-state plate vibrations

Assuming harmonic vibrations at angular frequency ω and applying integration by parts
reduce the general three-field variational form of the Mindlin plate theory in Equation
(2.85) to a weak form [91]"

Ω

(
(S δψ)T DS ψ + δψT αψ + δψT α∇w + (δ∇w)T αψ + (∇δw)T α∇w

)
dx dy

−
"
Ω

(
δψT

ω2 ρ h3

12 ψ + δw ω2 ρ hw

)
dx dy −

"
Ω

(
δψT m+ δw q

)
dx dy (3.2)

−
∫

Γσ

(
δψTnMn + δψTsM s + δwQn

)
ds−

∫
Γuσ2

δψTnMnds = 0,

with α = k2Gh, ∇ the del operator, m = [mx, my]T , n and s the normal and tangential
unit vector at the boundary and

S =


∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

, D = D


1 ν 0
ν 1 0
0 0 1−ν

2

. (3.3)

Using the approximation functions for the field variables from Equation (3.1) in Equation
(3.2) and expanding the variations δ• with the same functions (Galerkin approach) finally
leads to a system of linear equations(

−ω2
[
Mww 0

0 Mψψ

]
+
[
Kww Kwψ

Kψw Kψψ

]) ŵ
ψ̂

 =
[
fw

fψ

]
, (3.4)

which has to be solved for the unknown nodal values ŵ = [ŵ1, ŵ2, · · · , ŵfe]T and ψ̂ =[
ψ̂x1, ψ̂x2, · · · , ψ̂xfe, ψ̂y1, ψ̂y2, · · · , ψ̂yfe

]T
.

The global mass matrices Mww and Mψψ and the global stiffness matrices Kww, Kwψ =
KT
ψw and Kψψ are calculated through an assembly process of the element matrices, which

are defined by

M (e)
ww =

"
Ω

N (e)T
w ρ hN (e)

w dx dy, M
(e)
ψψ =

"
Ω

N
(e)T
ψ

ρ h3

12 N
(e)
ψ dx dy,

K(e)
ww =

"
Ω

(
∇N (e)

w

)T
α∇N (e)

w dx dy, K
(e)
wψ =

"
Ω

(
∇N (e)

w

)T
αN

(e)
ψ dx dy, (3.5)

K
(e)
ψψ =

"
Ω

(
SN (e)

ψ

)T
DSN (e)

ψ dx dy +
"
Ω

N
(e)T
ψ αN

(e)
ψ dx dy.

The forces acting on an element are given by

f (e)
w =

"
Ω

N (e)T
w q dx dy +

∫
Γσ
N (e)T
w Qn ds,

f
(e)
ψ =

"
Ω

N
(e)T
ψ m dx dy +

∫
Γσ
N

(e)T
ψ

(
nMn + sM s

)
ds+

∫
Γuσ2

N
(e)T
ψ nMn ds,

(3.6)
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which are assembled to the global forces fw and fψ. Boundary conditions with prescribed
primary variables w, ψn and ψs are applied through row and column elimination.

For a detailed description of the assembly process, the evaluation of the integrals and the
inclusion of the boundary conditions, the reader is referred to [91] and [92].

b.) Kirchhoff plate FEM model

The Kirchhoff plate theory only has the out-of-plane displacement w(r) as primary field
variable, which is approximated by a sum of n(e)

a polynomial shape functions within the
element

w(e)(r) ≈
∑
a

N (e)
wa (r) ŵ(e)

a = N (e)
w (r) ŵ(e), a ∈ S(e)

N , r ∈ Ω(e). (3.7)

While the polynomial shape functions used for the Mindlin plate theory only have to be
C0 continuous, the Kirchhoff plate theory requires C1 continuous shape functions, which
leads to difficulties in the implementation [91]. The other properties of the shape functions
are similar between both theories.

The general three-field variational form in Equation (2.105) is used to derive a weak
integral form of the Kirchhoff plate theory. If only the variation with respect to w is
considered and harmonic vibration at frequency ω is assumed, Equation (2.105) simplifies
to "

Ω

(L δw)T DLw dx dy −
"
Ω

δw ω2 ρ hw dx dy −
"
Ω

δw q dx dy

−
∫

Γσ

[
δw V n −

∂δw

∂n
Mn

]
ds+

∫
Γuσ

∂δw

∂n
Mn ds = 0,

(3.8)

where

L =
[
∂2

∂x2 ,
∂2

∂y2 , 2 ∂2

∂x∂y

]T
(3.9)

and integration by parts is applied. Inserting the approximation functions from Equation
(3.7) into Equation (3.8) leads to a system of linear equations(

−ω2M +K
)
ŵ = fw, (3.10)

where M is the global mass matrix, K the global stiffness matrix, fw the global force
vector and ŵ = [ŵ1, ŵ2, · · · , ŵfe] the unknown nodal values. The global matrices and
force vector are defined through an assembly of the element matrices and force vectors,
which are given by

M (e) =
"
Ω

N (e)T
w ρ hN (e)

w dx dy,

K(e) =
"
Ω

(
LN (e)

w

)T
DLN (e)

w dx dy, (3.11)

f (e)
w =

"
Ω

N (e)T
w q dx dy +

∫
Γσ

N (e)T
w V n −

∂N
(e)T
w

∂n
Mn

ds−
∫

Γuσ

∂N
(e)T
w

∂n
Mn ds.
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3 Numerical techniques for the calculation of steady-state plate vibrations

Mesh requirements for accurate FEM results

The structural models described in the Sections 2.1 and 2.2 can all be decomposed into
a set of Helmholtz equations if harmonic vibrations are assumed. The vibrations of the
linear elastic solid are governed by four (Equations (2.12) and (2.13)), the plate membrane
vibrations by two (Equations (2.58) and (2.59)), the Mindlin plate bending vibrations
by three (Equations (2.63) – (2.65)) and the Kirchhoff plate bending vibrations by two
Helmholtz equations (Equations (2.98) and (2.99)).

The accuracy of the FEM based on the Galerkin approach is influenced by the interpolation
and pollution error if problems described by Helmholtz equations are solved [83, 84, 97,
98]. The interpolation error, also called the approximation error, occurs through the
approximation of the dynamic field by simple polynomial shape functions and is dominant
at lower frequencies. The pollution error (dispersion error) results from a difference in
wavelengths between the physical problem at hand and the FE discretized problem and
becomes important at rising frequencies [99].

The a priori error estimators developed in [83] and [84] can be used to asses the FE
mesh requirements to bound the interpolation and pollution error. The rule to limit the
interpolation error is given by [84, 99](

k hfe
p

)p
< C, (3.12)

where k = 2π/λ is the wavenumber of the viewed Helmholtz equation, hfe the greatest
element size in the FE model, p the order of the polynomial shape functions and C a
constant. Setting the constant C = 1 leads to the well known rule of thumb that a
constant number of six to ten linear elements (p = 1) or three to four quadric elements
(p = 2) per wavelength are required to get accurate results [100].

The relation to bound the pollution error is defined by [84, 96, 99]

k L

(
k hfe
p

)2 p
< C, (3.13)

where L is a characteristic length of the problem domain and C = 1 is used in this work.
It is apparent from Equation (3.13) that a constant number of elements per wavelength
is not sufficient to limit the pollution error for rising frequencies (k L > 1). A variable
number of elements per wavelength is required to control the pollution error

# elements
λ

→ 2π
√

2π L
λ
, p = 1 (linear), (3.14)

# elements
λ

→ π
4

√
2π L

λ
, p = 2 (quadric), (3.15)

which depends on the ratio of the characteristic length of the problem domain to the
wavelength L/λ.

The a priori error estimators used to define the criteria in Equations (3.12) and (3.13)
are proven in [83] and [84] only for dispersion-free problems, e.g steady-state acoustics
[96]. It is assumed that the relations are also applicable for the dispersive Kirchhoff and
Mindlin plate vibration problem, even though there is no formal prove in the literature
[96, 101, 13].
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3.1 Element based techniques

Properties of conventional FEM models

The conventional FEM uses locally defined simple shape functions to approximate the
field variables. Applying this approach to the analysis of structural vibration problems
leads to the following characteristic features of the FEM [17, 20]:

a.) Geometric flexibility

The discretization of the problem domain into a large number of small elements gives the
FEM great flexibility to model complex geometries. The necessity of small elements to
control the pollution error, as described in the previous section, inherently leads to almost
no restrictions concerning the problem domain.

b.) Properties of the system matrices

Since the shape functions in the FEM are locally defined within one small element, the
system matrices are large and sparsely populated with a banded structure. The system
matrices are real-valued for real-valued material parameters and the symmetry of the
matrices is guaranteed if a variational approach exists for the investigated problem [91].

c.) Frequency independent model matrices

In general, the mass and stiffness matrix are frequency independent, which allows for
the reuse of the matrices for different frequencies. It is also possible to apply modal
reduction schemes, which improves the computational efficiency. However, in certain cases
the material properties of the view problem are frequency dependent and prohibit the reuse
of the system matrices and the modal reduction techniques.

d.) Model size

The size of the system matrices depends on the total number of nodes nfe and degrees of
freedom per node. To fulfill the mesh requirements described in the previous section, the
model size increases rapidly with rising frequencies.

e.) Model generation process

The model generation process includes the meshing of the problem domain and the creation
of the system matrices. The matrices are generated by the integration of simple polynomial
functions, which is not very demanding, since very efficient numerical integration schemes,
e.g. Gauss-Legendre quadrature, can be applied. If the same FE mesh is used over a wide
frequency range and the matrices are frequency independent, the model generation process
hardly contributes to the total computational time. A refinement of the model can be
achieved by a reduction of the element size (h-refinement) or an increase in the element
order (p-refinement), which requires a (partial) recalculation of the system matrices.

f.) Accuracy of derived quantities

The primary field variables are approximated by polynomial shape functions of order p.
Derived quantities, e.g. stresses, have a lower spatial resolution, since these quantities are
only approximated by lower order polynomials.
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3 Numerical techniques for the calculation of steady-state plate vibrations

3.1.2 Advances in the Finite Element Method

The conventional FEM is limited to the lower frequency range, since a rather fine dis-
cretization of the problem domain is required to control the pollution error, which leads
to a rapid increase in the computational load for rising frequencies. Therefore, several
attempts have been made to either optimize the modelling and solution process of the
FEM to decrease the computation time or to modify the FE formalism to reduce the pol-
lution error and hence the model size. An outline of these improvements to the FEM are
given in the following sections. The reader is referred to [99] and [96] for a more profound
overview.

Improvements in the FE modelling and solution process

A commonly used approach to optimize the FE modelling process is an adaptive refine-
ment of the FE mesh. The quality of the mesh is increased in regions with the highest
approximation errors. An a posterior error estimator is mandatory to identify these re-
gions. Following the rules for adequate meshes in Equations (3.12) and (3.13), either
the element size is reduced (h-refinement) [83] or the order of the elements is increased
(p-refinement) [102, 103] or both methods are combined (hp-refinement) [104, 84, 105].

In the conventional FEM, the system of linear equations is solved by direct solution meth-
ods, e.g. Gaussian elimination or factorization, which require a huge amount of memory
and computation time for large systems. The application of iterative solvers in general ac-
celerates the solution process but their stability depends on the conditioning of the linear
system [99].

The response of a system over a broad frequency range (frequency response function)
is of great interest, but computationally demanding if a fine frequency discretization is
required. Instead of solving the large linear system of equations for every frequency step,
so-called Fast Frequency Sweep (FFS) methods can be applied. In FFS the solution of
the large linear system is only calculated in certain expansion points and the derivatives
of the solution are used to predict the response of the system in the neighborhood of
the expansion points [106, 107]. A considerable reduction of computation time can be
expected if the frequency response function is sufficiently smooth.

Another possibility to reduce the computational load is the subdivision of a large problem
into a number of smaller problems, which can be solved independently. Then a distribution
of the problem over a large number of parallel computers is possible, which leads to
an efficient solution process. Methods using this approach are commonly referred to as
Domain Decomposition Methods (DDM), which are described in e.g. [108, 109, 110].

Modifications in the FE formalism

Compared to the previous enhancements of the FEM, which try to optimize the modelling
and solution process and therefore allow for the use of more accurate meshes, other ap-
proaches attempt to reduce the pollution error through a modification of the underlying
system of equations. These techniques either try to stabilize the FEM by adding terms
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to the weak integral formulation used by the FEM (Stabilized FEM), to generalize the
FEM by introducing a priori information of the solution in the approximation functions
(Generalized FEM) or to interfere in the numerical integration scheme applied in the
FEM.

The Galerkin Least-Squares FEM (GLS-FEM), presented in [111] for 1D and in [112] for
2D Helmholtz equations, adds a least-square operator based on a dispersion analysis to the
standard FEM weak formulation to reduce the pollution error. While in the 1D case the
pollution error can be eliminated completely, only an improvement over the classical FEM
is achieved in the 2D case, since the dispersion is direction dependent. The reduction of
the pollution error through the GLS-FEM is less pronounced for elastic wave propagation
[113]. A similar approach is the Galerkin Gradient Least-Squares FEM (G∇LS-FEM),
which includes a least-square term containing residuals of the gradient of the governing
differential equation to the weak formulation of the FEM [114, 115]. The method reduces
the pollution error also for elastic waves and is therefore superior for the analysis of
plate vibrations compared to the classical and GLS-FEM [113]. The combination of both
methods is called Galerkin Generalized Least Squares FEM (GGLS-FEM) [116].

The Partition of Unity Finite Element Method (PUFEM) uses a multiplication of the
classical polynomial basis functions with functions containing a priori information of the
local behaviour of the solution to improve the classical FEM [117]. The PUFEM applies
generlized harmonic polynomials or a system of plane waves to avoid the pollution error in
the numerical simulation of plate vibrations [118]. The Discontinues Enrichment Method
(DEM) adds free-space solutions of the homogenous differential equations to the classical
polynomial shape functions, to incorporate a priori knowledge of the solution. A Lagrange
multiplier technique is used to enforce the continuity at the element interfaces [119]. The
DEM is applied in [120] to investigate the vibrations of Kirchhoff plates in the medium-
frequency range and the advantages of the DEM compared to the classical FEM are
shown.

Instead of using the classical Gauss-Legendre or Gauss-Lobatto rule to integrate the poly-
nomial shape functions, a generalized integration rule is proposed in [121] to reduce the
dispersion error in the FEM solution of the Helmholtz equation. Through a dispersion
analysis, the optimal location of the integration points is defined, which increases the ob-
tained accuracy from second-order (classical FEM) to fourth-order. In [122] the modified
integration rule is extended to 1D, 2D and 3D linear elastodynamic problems.

3.2 Statistical methods

In contrast to the element based techniques, statistical methods do not calculate the dis-
tribution of the field variables in the problem domain, but determine space and frequency
averaged energy quantities for a statistical ensemble [13]. The most popular method and
basis for several other approaches is the Statistical Energy Analysis (SEA) [123, 124]. An
overview of the SEA is given in Section 3.2.1. Since the conventional SEA is in general
limited to high frequency vibrations [125], several improvements have been made to extend
its applicability to lower frequencies, which are outlined in Section 3.2.2.
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3.2.1 Statistical Energy Analysis

In the SEA, the considered system is divided into a (small) number of subsystems, which
are groups of similar modes within a physical component of a system. Modes are considered
to be similar if they all have a resonance frequency in a given frequency band and similar
mode shapes, which results in similar values of the damping, excitation and coupling
parameters. These subsystems act as energy storage elements, which can dissipate energy
through system damping, transfer energy to other elements and receive energy through
external sources [123]. Further assumptions in the SEA are [126, 127]:

• The coupling between the subsystems is conservative.

• The excitation forces are uncorrelated white noise.

• Only a direct weak coupling between the subsystems exists (see [128] for a discus-
sion).

• The energy is equally partitioned between the modes in the subsystems (equipartition
of energy) or a diffuse wave field is given in the subsystems.

• The damping loss factor is equal for all modes in a subsystem and the damping is
light.

• The number of modes in a subsystem is large and the resonance frequencies are
uniformly distributed in the viewed frequency band.

In general, these assumptions are only fulfilled in the high frequency region. Several
extensions to the classical SEA to relax the given assumptions are outlined in Section
3.2.2.

A typical SEA model, consisting of two subsystems, is shown in Figure 3.2.

Figure 3.2: Typical SEA system with two subsystems

There is only one primary variable for each subsystem i, which is the total dynamical
energy of the subsystem modes Ei. The bar over Ei indicates an average over a frequency
band ∆ω, centered at angular frequency ωc. Another characteristic parameter is the total
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number of modes Ni in the subsystem i for the chosen frequency band. For steady-state
conditions, the power balance equation for each subsystem i is given by

Πi, in = Πi, diss +
n∑
j=1
j,i

Πij , i = 1, 2, . . . , n (3.16)

where Πi, in is the averaged power input to subsystem i from external sources, Πi, diss the
averaged dissipated power in the subsystem i, Πij the averaged power flow from subsystem
i to subsystem j and n the total number of subsystems. The averaged dissipated power
in subsystem i is defined by

Πi, diss = ωc ηiEi, (3.17)

where ηi is the damping loss factor. If the assumptions for the SEA stated above are
fulfilled, the averaged power flow between two subsystems is proportional to the difference
in averaged total energy in the subsystems

Πij = ωc
(
ηij Ei − ηjiEj

)
, (3.18)

where ηji = (Ni/Nj) ηij are the coupling loss factors.

Using Equations (3.17) and (3.18) in the power balance equations (Equation (3.16)) leads
to a system of linear equations [125]

M1 +
n∑
j,1

h1j −h21 · · · −hn1

−h12 M2 +
n∑
j,2

h2j · · · −hn2

...
...

. . .
...

−h1n −h2n · · · Mn +
n∑
j,n

hnj





E1
n1

E2
n2

...

En
nn


=



Π1, in

Π2, in

...

Πn, in


, (3.19)

where ni = Ni/∆ω is the modal density, Mi = ωc ηi ni the modal overlap and hij = ωc ηij ni
the power transfer coefficient. Due to the reciprocity relation hij = hji, the system matrix
of the SEA is symmetric. Furthermore, the system matrix is small and sparsely populated,
since the number of subsystems is in general low and because a certain subsystem is
only coupled with directly connected subsystems (no indirect coupling). The solution of
Equation (3.19) leads to the averaged total energies in the subsystems, which can be used
to calculate other parameters, e.g. the average vibration levels.

The SEA modelling process leads to several advantages [125]:

• Through the low number of degrees of freedom, the SEA matrix system can be
solved very efficiently. Therefore, numerical experiments can be performed in a very
efficient way.

• The model of a subsystem only requires relatively few gross parameters, e.g. modal
density, coupling loss factor, damping loss factor and power input.
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• Since it is a statistical approach, it is well suited for high frequency problems, because
the vibration characteristics of a system, e.g. eigenfrequencies and mode shapes, are
very sensitive to uncertainties in geometry and material parameters.

Nevertheless, the application of the SEA is limited through the assumptions stated above,
which in general are only fulfilled in the high frequency range. Furthermore, the definition
of the subsystem requires a lot of user experience to fulfill the similarity requirement
between the modes and all the other assumptions. The SEA also only predicts spatial and
frequency averaged energy levels and local information, e.g. displacements or stresses, is
not available [13].

3.2.2 Improvements and extensions of the SEA

Several extensions and improvements to the SEA have been developed to relax the required
assumptions and to simplify the use of the SEA in practice, which are outlined in this
section.

The assumption that a diffuse wave field is required within each of the subsystem is relaxed
by the Wave Intensity Analysis (WIA) [129, 130]. A Fourier series is used to model the
direction dependency of the vibrational wavefields in each component, which leads to a
conventional SEA model with additional indirect coupling loss factors.

The Statistical modal Energy distribution Analysis (SmEdA) does not assume equipar-
tition of modal energies within one subsystem, therefore the coupling between pairs of
modes of different subsystems are examined instead of the coupling between the whole
subsystems [131]. This improves the results compared to SEA especially if the modal
overlap in subsystems is low and localized excitation is present in the model [131].

In the Energy Distribution Analysis (EDA) a post-processing procedure is applied to FEM
models to calculate frequency averaged subsystem energies [132, 133]. Since the EDA is
based on a deterministic technique, correlated and localized excitations as well as strongly
coupled subsystems can be examined [134].

There are several other extensions and generalizations of the SEA, which are outlined for
instance in [134].

3.3 Trefftz based approaches

In 1926, Trefftz [15] proposed a deterministic numerical method as an alternative to the
Rayleight-Ritz method, which incorporates a priori information of the problem solution
in the definition of the approximation functions. If the problem is governed by linear
partial differential equations, the solution can be found by a boundary discretization alone.
According to [135], the Trefftz formulations can be classified into the indirect and direct
Trefftz method. The indirect methods use solutions of the homogenous partial differential
equations as basis functions and the unknown contribution factors are determined by
a minimization of the boundary residuals. In the direct methods, a weighted residual
approach is applied and the weighting functions are expanded in terms of solutions of the
homogenous partial differential equations. A boundary discretization is used to solve the
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resulting boundary integral equation. While the unknowns in the direct Trefftz method
are physical quantities (e.g. displacements or rotations), the contribution factors in the
indirect Trefftz method have no direct physical meaning [135].

The basis functions in the indirect Trefftz method (or the weighting functions in the
direct Trefftz method) have to form a so-called T-complete set. A basis function set is
T-complete if it is able to represent any possible solution field in the problem domain
and fulfills the homogenous partial differential equations [20]. Since the T-complete set is
globally defined and non-orthogonal, all Trefftz methods lead to an ill-conditioned system
of linear equations [136].

Since the direct Trefftz method is a rather new method, it is rarely applied to dynamic
problems [137]. In [138] and [139] the direct method is used to solve the Helmholtz equation
(acoustics and membrane vibrations). Apart from that, the direct Trefftz method has been
applied to the static in-plane elasticity problem [140], the static thin plate bending problem
[141] and the static moderately thick plate bending problem [142].

The indirect Trefftz method is wildly used to solve elastostatic and steady-state acoustic
models and some of the applied methods have been extended to steady-state elastodynamic
problems, e.g. plate vibrations. A different choice of the basis function sets and procedure
to fit the boundary and interface conditions lead to a variety of indirect Trefftz methods.
A broad overview of the indirect Trefftz methods applied to the Helmholtz equation is
given in [137] and [143]. In the subsequent sections, several indirect Trefftz methods,
which have been applied or can be extended to analyze plate vibrations, are reviewed. The
source simulation techniques, appearing with different names in the literature, are meshless
methods and are outlined in Section 3.3.1. An overview of indirect Trefftz methods using
a domain decomposition and an indirect coupling approach is given in Section 3.3.2. The
methods applying a domain decomposition and a direct coupling are stated in Section
3.3.3.

The main focus of this work is an indirect Trefftz method using a domain decomposition
and a direct coupling called Wave Based Method (WBM), which is fully described in
Chapter 4.

3.3.1 Source Simulation Techniques

These kinds of methods apply distributed source terms, which lie outside the viewed
problem domain, as basis function set. Depending on the choice of source terms and
their locations and the way of imposing the boundary conditions, the methods appear
with different names, e.g. Source Simulation Technique [144], Method of Fundamental
Solutions (MFS) [145, 146], Equivalent Source Method (ESM) [147], Wave Superposition
Method [148], Boundary Knot Method (BKM) [149, 150], etc.. In [151] a review of the
different forms of the Source Simulation Techniques is given. A main advantage of these
methods is that no meshing of the domain is required.

Apart from the application of these methods to acoustics and static strucural problems,
several extensions to plate vibration problems can be found in the literature. In [152] the
scattering of flexural waves in heterogeneous thin plates is analyzed using a collocation
method to fit the boundary conditions and the response of the plate to a point force is
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applied as source terms. The MFS has been used to determine the eigenfrequencies of thin
plates [153, 154] and the frequency response function of a vibroacoustic problem [155]. The
BKM is used in [156] to predict the eigenfrequencies of arbitrary shaped thin plates.

The main drawback of these methods, apart from the ill-conditioned system matrices, is
that no rule exists to find the optimal number and position of the source points [151]. Since
the BKM applies non-singular general solutions instead of singular fundamental solutions
as basis function set, the source points can be placed on the boundary, which mitigates
this drawback.

3.3.2 Indirectly coupled methods

These types of methods decompose the problem domain into several sub-domains and
apply the T-complete set as basis functions within every sub-domain. Since the inter-
element continuity is in general not fulfilled a priori, a coupling scheme between the
elements is required. In the indirect coupling approaches, auxiliaries like an auxiliary frame
containing standard polynomial shape functions or Lagrange multipliers are applied.

Depending on the indirect coupling technique, the used T-complete set and the approach
used to minimize the boundary and interface residuals, several methods have been devel-
oped.

The hybrid-Trefftz Finite Element method (HT-FEM) [157] applies an auxiliary inter-
element displacement or traction frame to couple adjacent elements. A modified variational
principle is used to enforce the continuity of the field variables. In [158] the HT-FEM is
applied to linear elastodynamics, in [159] to the analysis of forced Kirchhoff plate vibrations
and in [160] to transient plate bending problems.

The Discontinuous Galerkin Method (DGM) with Lagrange multipliers [161, 162, 163]
can be considered as a special case of the DEM by dropping the standard polynomial
field from the approximation functions. Therefore, only the free-space solutions are used
to approximate the field variables, and Lagrange multipliers are applied to enforce the
inter-element continuity in a weak form.

3.3.3 Directly coupled methods

The last group of Trefftz methods also applies a domain decomposition, but enforces the
inter-element continuity of the field variables in a direct way. The Trefftz collocation
method [164] uses simple point collocation to impose the boundary and interface condi-
tions, while the least-square method, proposed in [165], enforces the continuity between
the elements through a least-square approach.

The Ultra Weak Variational Formulation (UWVF) [166, 167] uses the adjoint partial
differential equation to derive a different variational formulation of the problem at hand.
Through the variational formulation of the UWVF, the interface conditions are inherently
satisfied [20]. In [168] the UWVF has been extended to elastic wave propagation problems
and in [169] to the analysis of thin clamped plate vibration problems.
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The Variational Theory of Complex Rays (VTCR) [170, 171] applies a variational for-
mulation, which enables a priori independent approximations within the sub-domains.
Complex rays termed interior rays, edge rays and corner rays, which satisfy the partial
differential equations of the viewed problem, are used as basis functions. The amplitudes
of the complex rays are discretized by piecewise polynomials.

The Wave Based Method (WBM) [21], which also corresponds to this category of Trefftz
methods, is described in detail in the next chapter.
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4 The Wave Based Method

In this chapter, the Wave Based Method (WBM), developed by Desmet [21] in 1998, is
reviewed in detail. The WBM is a deterministic approach and belongs to the category of
indirect Treffz methods with a direct coupling between the sub-domains. It can be applied
to solve any steady-state dynamic problem, which is governed by a set of Helmholtz equa-
tions. For two-dimensional bounded problems, the basis function set consists of travelling
and evanescent waves, which may be enriched by special purpose functions to treat cer-
tain effects, e.g. singularities in the solution. The direct coupling of sub-domains and the
enforcement of boundary conditions are performed with a weighted residual formulation
[14], although in earlier works a least-square approach has been tested [21, 96].

In Section 4.1, the methodology of the WBM to solve problems governed by Helmholtz
equations is outlined. The properties of the WBM are discussed in Section 4.2 and a
broad review of the state-of-the-art developments of the WBM are given in Section 4.3.
The following sections are mainly based on the comprehensive review papers of Deckers
and her co-workers [14] and Pluymers et al. [137] with additional information on recent
developments.

4.1 Methodology for a generalized Helmholtz problem

In this section the WBM modelling steps for a two-dimensional bounded problem governed
by a set of Helmholtz equations are outlined. The reader is referred to, e.g. [99] and [172]
for unbounded and three-dimensional problems. In Section 4.1.1 the generalized bounded
Helmholtz problem, which can be solved by the WBM, is described. The modeling steps
of the WBM to solve the outlined problem are given in Section 4.1.2.

4.1.1 Generalized Helmholtz problem

The general bounded two-dimensional problem domain Ω, shown in Figure 4.1, is decom-
posed into two sub-domains Ω = Ω(α) ∪ Ω(β) (the generalization to an arbitrary number
of sub-domains is straightforward). Such a decomposition might be necessary because the
parameters of the sub-domains are different or the geometry of the problem domain is con-
cave (more details on this restriction of the WBM are given in the subsequent sections).
It is assumed that the mathematical model of the physical problem at hand gives rise to
a number of nH Helmholtz equations with a total number of nH field variables

∇2 u(l)
m + k(l)2

m u(l)
m = f (l)

m , m = 1, . . . , nH , r ∈ Ω(l), l = {α, β}, (4.1)

where r is the spatial coordinate, u(l)
m (r) the field variable of the mth Helmholtz equation

in the sub-domain l, k(l)
m the associated physical wavenumber and f

(l)
m an external source
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Figure 4.1: General two-dimensional bounded problem with two domains Ω(α) and Ω(β),
different boundary conditions Γ(α)

j and Γ(β)
j and the common interface Γ(α, β)

term. The field variables u(l)
m (r) of the sub-domain l are gathered in the column vector

u(l)(r) =
[
u

(l)
1 , u

(l)
2 , . . . , u

(l)
nH

]T
.

In order to obtain a well-posed problem, nH boundary conditions need to be imposed on
every point of the domain boundary Γ = ∂Ω. Since the problem domain in Figure 4.1 is
decomposed into two sub-domains, the domain boundary is partitioned into two external
sub-domain boundaries Γ = Γ(α) ∪ Γ(β) and both sub-domains share a common interface
Γ(α, β). The external sub-domain boundaries can be divided into non-overlapping parts
Γ(l) = ⋃

j Γ(l)
j , which allows for the definition of different types of boundary conditions at

each boundary part Γ(l)
j . The set of boundary conditions at a boundary part Γ(l)

j can be
given in a general form

B(l)
j,k u

(l) = B
(l)
j,k, k = 1, . . . , nH , r ∈ Γ(l)

j , (4.2)

where B(l)
j,k is a general boundary differential operator and B(l)

j,k(r) an externally prescribed
boundary field. Furthermore, continuity conditions at the common interface have to be
fulfilled, which can be given by

B(α)
k u(α) + B(β)

k u(β) = 0, k = 1, . . . , 2nH , r ∈ Γ(α, β), (4.3)

with B(α)
k and B(β)

k general boundary differential operators, which ensure the continuity
between the field variables u(α) and u(β). The well-posedness of the problem is only
retained if one continuity condition is imposed for each of the nH field variables on each
sub-domain. It is apparent that in general the field variables within one sub-domain are
coupled through the boundary conditions and a coupling of the field variables of different
sub-domains occurs by imposing the continuity conditions.

The generalized Helmholtz problem is solved when the field variables u(l)
m fulfilling the

governing equations (Equation (4.1)), the boundary conditions in Equation (4.2) and the
interface conditions in Equation (4.3) are determined. In the next section, the WBM is
used to find an approximate solution for the field variables u(l)

m , since analytical solutions
are rarely feasible.
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4.1.2 The modeling procedure of the WBM

In general, the WBM requires four to five modelling steps in order to solve a generalized
Helmholtz problem:

• In case of a concave problem domain, a partitioning into convex sub-domains is
needed.

• For each sub-domain a suitable set of wave functions has to be selected. If source
terms are present in the sub-domain, a specific particular solution of the Helmholtz
equation is required. Special purpose functions can be added if certain effects have
to be treated, e.g. singularities in the solution field.

• The system of linear equations is constructed through the fitting of the boundary
and interface conditions via a weighted residual approach.

• The solution of the system of linear equations leads to the contribution factors of
the selected wave functions.

• A postprocessing step is needed to calculate the dynamic variables and derived quan-
tities.

A detailed description of each modelling step is given in the subsequent sections.

Partitioning of the problem domain

As previously mentioned, the WBM is restricted to convex problem (sub)-domains. If the
general problem domain is non-convex, a partitioning into convex sub-domains is required.
This limitation is due to the selected basis function set applied in the WBM, which is only
a T-complete set, if it is used in a convex domain [21]. Through the partitioning into
convex sub-domains, the applied function set becomes T-complete, but the additional
interface conditions, given in Equation (4.3), have to be fulfilled.

In general, many different configurations of convex sub-domains are possible for the par-
titioning of a concave problem domain. In [96] it is proposed that the total number of
sub-domains and the number of small sub-domains should be minimized, while highly
irregular sub-domains and large area ratios between the sub-domains are avoided.

Selection of the basis function sets

The WBM is an indirect Trefftz approach and therefore analytical solutions of the ho-
mogenous partial differential equations are used as basis function set. If the problem
domain is decomposed into nα non-overlapping sub-domains, each field variable u(α)

m in
each sub-domain is approximated by a solution expansion

u(α)
m ≈ û(α)

m =
n

(α)
m∑

wm=1

(
û(α)
wm Φ(α)

wm

)
+ u(α)

p,m = Φ(α)
m û(α)

m + u(α)
p,m, α = 1, . . . , nα, (4.4)
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where Φ(α)
wm are the wave functions defined in the sub-domain Ω(α), û(α)

wm the wave contri-
bution factors, n(α)

m the number of used wave functions and u
(α)
p,m the particular solution

functions. The n(α)
m wave functions and contribution factors are gathered in the row vector

Φ
(α)
m and the column vector û(α)

m .

The particular solution function u
(α)
p,m has to fulfill the inhomogeneous Helmholtz equa-

tion
∇2 u(α)

p,m + k(α)2
m u(α)

p,m = f (α)
m (4.5)

without the necessity of satisfying any boundary or interface conditions. In general, the
particular solution functions are found by solving the Helmholtz equation in an infinitely
extended medium.

The applied wave functions Φ(α)
wm in Equation (4.4) are solutions of the homogeneous

Helmholtz equation
∇2 Φ(α)

wm + k(α)2
m Φ(α)

wm = 0, (4.6)

while the contribution factors û(α)
wm are freely chosen constants. Several different possibil-

ities exist to define T-complete wave function sets Φ(α)
wm , e.g. plane waves or Bessel type

functions [173].

The WBM applies plane waves as function set. The characteristic lengths L(α)
x and L

(α)
y

of the smallest rectangle (see Figure 4.2), circumscribing the convex sub-domain, and a
local sub-domain coordinate system {xD, yD} are used to select the wavenumbers for the
plane wave functions [21]. The plane wave functions are a combination of cosine and/or
sine functions in one direction (either in xD- or yD-direction) and exponential functions
in the second direction. The wavenumber component associated with the sine or cosine
functions is chosen as such that an integer number of half wavelenghts fits into the cor-
responding bounding box dimension [20]. The dispersion relation determines the second
wavenumber component corresponding to the exponential functions. Depending on the
second wavenumber component, either a propagating wave (real wavenumber), an evanes-
cent wave (imaginary wavenumber) or a harmonic decaying wave (complex wavenumber)
occurs [100]. This selection of wavenumbers leads to a T-complete function set in convex
domains, as it is shown in [21] for steady-state acoustic problems and in [17] for thin

Figure 4.2: Smallest rectangular bounding box, circumscribing a convex 2D sub-domain
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plate bending vibrations. The advantage of the inclusion of evanescent waves in the basis
function set is the possibility to capture near field effects, e.g. edge effects at boundaries.

Construction of the system of linear equations

The solution expansions given in Equation (4.4) fulfill the Helmholtz equations (Equation
(4.1)) independently of the contribution factors. However, the boundary conditions in
Equation (4.2) and the interface conditions in Equation (4.3) are in general violated by
the proposed basis functions. The approximation of the boundary and interface conditions
can be achieved by different approaches [135]. The simplest approach is the collocation
method, where the boundary and interface residuals are forced to vanish at certain colloca-
tion points. Even though this approach is the simplest and computationally most efficient,
the errors between the collocation points may be rather high [135]. Using specific locations
of the collocation points, e.g. the evaluation points of the Gauss-Legendre quadrature, can
remove this drawback [136]. In the WBM however, a least-square approach or a weighted
residual formulation is applied. In the least-square approach a functional defined by the
sum of the squares of the boundary and interface residuals is minimized. Weighting factors,
which preserve the numerical equivalence between the different residuals, are required. In
the weighted residual formulation, the boundary and interface residuals are orthogonalised
with respect to some weighting functions and integrated over the problem boundary and
interfaces. The sum of these integrals is forced to vanish for any combination of weighting
functions.

In [21] and [96] both methods have been compared and it is argued that in the WBM,
the weighted residual formulation is superior to the least-square approach, since numer-
ical tests have shown a higher convergence rate for the weighted residual formulation.
Furthermore, it is not straightforward to assess a priori the required weighting factors in
the least-square approach, which have great influence on the convergence rate. Therefore,
the weighted residual formulation is used in this work to fit the boundary and interface
conditions.

The weighting functions v(α)
• (r) are used to orthogonalize the boundary and interface

residuals of the sub-domains Ω(α) (α = 1, . . . , nα) and an integration over the boundaries
and interfaces leads to

nα∑
β=1, β,α

nH∑
k

∫
Γ(α, β)

v
(α)
k

(
B(α)
k u(α) + B(β)

k u(β)
)

ds

+
∑
j

nH∑
k=1

∫
Γ(α)
j

v
(α)
j,k

(
B(α)
j,k u

(α) −B(α)
j,k

)
ds = 0.

(4.7)

The first term enforces the interface conditions between the sub-domains Ω(α) and Ω(β)

and the second term the boundary conditions imposed on the sub-domain Ω(α). The
boundary and interface specific weighting functions v(α)

• can be computed by

v
(α)
• = T (α)

• ṽ(α), (4.8)

where T (α)
• is a specific partial differential operator and ṽ(α) =

[
ṽ

(α)
1 , ṽ

(α)
2 , . . . , ṽ

(α)
nH

]T
a

column vector containing the different weighting function components ṽ(α)
m . A commonly
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applied approach to find the problem dependent partial differential operator T (α)
• is a

variational analysis of the problem at hand [96]. In the WBM, the Galerkin approach is
applied and the weighting function components ṽ(α)

m are expand in the same wave functions
as the field variables u(α)

m leading to

ṽ(α)
m =

n
(α)
m∑

wm=1
v̂(α)
wm Φ(α)

wm = Φ(α)
m v̂(α)

m , (4.9)

where v̂(α)
wm are the weighing factors of the weighting functions, which are gathered in the

column vector v̂(α)
m .

Using the approximate expansion of the field variables (Equation (4.4)) and the weighting
function expansion (Equation (4.9)) in the weighted residual approach, given in Equation
(4.7), results in

v̂(α)T
([
C(α,1), . . . , C(α,α−1), A(α), C(α,α+1), . . . , C(α,nα)

]


û(1)

...

û(α−1)

û(α)

û(α+1)

...

û(nα)


−b(α)

)
= 0, (4.10)

where v̂(α) =
[
v̂(α)T

1 , v̂(α)T
2 , . . . , v̂(α)T

nH

]T
and û(α) =

[
û(α)T

1 , û(α)T
2 , . . . , û(α)T

nH

]T
are col-

umn vectors containing the weighting functions factors v̂(α)
m and the wave function con-

tribution factors û(α)
m . The coupling matrices C(α,β) result from the interface conditions

between the adjacent sub-domains Ω(α) and Ω(β), while the sub-domain matrix A(α) orig-
inates from the minimization of the boundary residuals and a back coupling at the in-
terfaces. Non-zero boundary conditions B(α)

j,k , 0 and source terms f (α)
m lead to the load

vector b(α). Applying this procedure to all sub-domains (α = 1, . . . , nα) and enforcing
that Equation (4.10) vanishes for any combination of weighing functions lead to the linear
system

Aû = b, (4.11)

where the square system matrix A is an assembly of all sub-domain matrices A(α) and
coupling matrices C(α,β), the column vector û =

[
û(1)T , û(2)T , . . . , û(nα)T

]T
contains all

unknown wave contribution factors and the column vector b =
[
b(1)T , b(2)T , . . . , b(nα)T

]T
gathers all load vectors.

Solution of the linear system and postprocessing steps

The linear system in Equation (4.11) has to be solved for the unknown wave contribution
factors. Since the linear system of equations is in general ill-conditioned [21], direct solvers
are preferred for the solution, e.g. LU factorization (Gaussian elimination) or singular value
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decomposition (SVD). Substituting the resulting contribution factors into the solution ex-
pansion given in Equation (4.4) leads to an analytical approximation of the field variables.
Derived quantities, e.g. stresses, can be computed with the same spatial resolution as the
primary field variables by applying the associated differential operators.

4.2 Properties of a wave based model

In this section, the properties of the WBM are stated and the advantages and disadvan-
tages compared to the FEM are described. Even though both methods are deterministic
methods, the fundamental difference in the choice of approximation functions leads to
different features concerning the model discretization, the degrees of freedom, the geo-
metric flexibility, the construction and properties of the system matrices and the problem
dependent computational load.

Problem subdivision and degrees of freedom

Compared to the FEM, which requires a discretization of the problem domain into a large
number of small elements, the WBM applies a domain decomposition into a small number
of large convex sub-domains, which is mandatory for the T-completeness of the applied
function set [21]. In addition to the decomposition rules stated in [96] (see Section 4.1.2),
steep changes of the boundary conditions within one sub-domain should be avoided [14].

An increase in the accuracy in the conventional FEM is achieved by either a finer dis-
cretization of the problem domain (h-refinement) or an increase of the polynomial order
(p-refinement). In general, a local refinement requires a (partial) remeshing of the domain.
Furthermore, a remeshing of the whole problem domain might be necessary due to the
mesh requirements at higher frequencies. The WBM applies a higher number of wave
function within one sub-domain to increase the accuracy and therefore a remeshing of the
problem is not required, even at high frequencies.

The degrees of freedom in the FEM represent the value of the field variable at the nodal
positions (nodal values) and therefore have direct physical meaning. In general, the num-
ber of degrees of freedom are rather high in the FEM, especially for high frequencies. The
unknowns in the WBM are the contribution factors of the applied wave functions, which
have no direct physical meaning. A postprocessing step is needed in order to get the
values of the field variables at certain positions. The application of analytical solutions of
the governing equations in the WBM introduces a priori information of the solution and
therefore the number of degrees of freedom is in general considerably lower compared to
the FEM.

Complexity of the model geometry

The fine discretization in the FEM leads to a high flexibility concerning the geometric
complexity of the model, which allows for the application of the FEM to almost any
problem domain. Since the WBM is most effective for a small number of large convex
sub-domains, highly complex domains, which have to be partitioned into a larger number
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of sub-domains to fulfill the convexity requirement, lead to a decrease in the computation
efficiency of the WBM. This is due to the increase of interfaces between the sub-domains,
which require the integration of highly oscillating functions [14]. This drawback is relaxed
by improvements of the WBM like the Multi-Level WBM [174, 175] and the hybrid Finite
Element-Wave Based Method [96], which are outlined in Section 4.3.

Construction of the system matrices

While the construction of the system matrices in the FEM requires the integration of lower
order polynomial functions, in the WBM integrals of highly oscillating functions have to
be evaluated. Therefore, the computational load to build the system matrices is higher
for the WBM compared to the FEM and furthermore, due to the frequency dependency of
the WBM matrices, the system matrix has to be computed for each considered frequency.
Although, an analytical integration of the integrals appearing in the WBM is possible for
straight boundaries [96], in general, a numerical integration technique is applied. Using
numerical integration gives a higher flexibility concerning the boundary shape of the sub-
domains and also allows for the evaluation of integrals, which cannot be solved analytically,
e.g. integrals resulting from source terms. The Gauss-Legendre quadrature appears to be
the most effective numerical integration technique for the occurring integrands [96] and the
matrix multiplication technique shown in [176] can be applied to evaluate the integrals very
efficiently. Since the resulting system matrix is ill-conditioned, the numerical integration
has to be performed very carefully to ensure sufficiently accurate matrix coefficients. In
[17] a rule is derived for the optimal number of Gauss points, which leads to accurate
results (relative error of 10−10 compared to the analytical solution) with a minimum of
computational costs.

Properties of the system matrices

The FEM leads to system matrices, which are in general large, symmetric, real-valued,
frequency independent and sparsely populated with a banded structure (see Section 3.1.1).
In contrast, the system matrices resulting from the WBM are always complex, frequency
dependent and fully populated [20]. The system matrix has a considerable lower size
compared to the FEM and is symmetric or non-symmetric, depending on the analyzed
physical problem. As pointed out in [136], Trefftz methods lead to an ill-conditioned
system of linear equations, which is also true for the WBM. In [21] it is shown that
accurate results can be obtained, even though the system matrix is ill-conditioned, if
direct solution methods are applied and the WBM matrices fulfill both Picard conditions
[177, 178].

Accuracy of derived quantities

Since the FEM uses polynomial shape functions for the approximation of the primary field
variables, the solutions of the derived quantities, which are calculated by applying partial
differential operators to the primary field variables, have a lower spatial resolution and
accuracy. The WBM however uses wave functions for the approximation of the primary
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field variables and since the derivations of the wave functions are again wave functions, the
derived quantities are predicted with the same spatial resolution as the primary variables
[14].

System matrix solution and computational load

The system matrix of the FEM allows for the use of efficient sparse direct or iterative
solvers, but due to the large size of the matrices, the system solution process is still the
most demanding step in FEM, while the computational load for the construction of the
system matrices is usually negligible. Even though the construction of the WBM matrices
is more demanding than the calculation of the FEM system matrices, the considerably
smaller size of the fully populated WBM matrices allows for a more sufficient solution
process compared to the FEM. Furthermore, due to the application of analytical solutions
of the homogenous governing equations, the convergence rate of the WBM is superior [20].
This holds true for moderately complex geometries, since the computational load of the
WBM rises with the required number of convex sub-domains.

4.3 State-of-the-art developments

In this section, the state-of-the-art developments of the WBM are presented. In Section
4.3.1 an overview of the physical problems, which are currently analyzed with the WBM,
is given. Further improvements and extensions of the WBM are outlined in Section 4.3.2,
especially the treatment of singularities and methods to relax the geometrical limitations
of the WBM. Finally, some applications of the WBM to engineering problems are stated in
Section 4.3.3. Several review papers of the WBM exist in the literature, e.g. [179, 137, 180]
for two-dimensional bounded and unbounded acoustic problems including the coupling of
the WBM to FEM, [181] for steady-state structural problems, [182] for the WBM applied
to poroelastic materials and [95, 14] for general reviews.

4.3.1 Physical problems tackled by the WBM

Since the WBM can be applied to any problem, which is governed by a (set of) Helmholtz
equation(s), a great variety of physical problems can be tackled by the WBM. In the
following sections, the problems analyzed with the WBM so far, are stated.

Steady-state acoustic problems

The steady-state acoustic problem is governed by one Helmholtz equation [99] and there-
fore can be solved by the WBM. Depending on the problem domain, interior acoustic
problems (bounded domain) and exterior acoustic problems (unbounded domain) are dis-
tinguished.
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a.) Interior acoustic problem

The first developments of the WBM for steady-state acoustics in bounded two-dimensional
and three-dimensional domains have been carried out by Desmet [21]. The weighted resid-
ual formulation as well as a least-square approach are used to fit the boundary conditions
and general information on the practical implementation of the WBM, e.g. the wave func-
tion scaling, the numerical integration of the wave functions, the wave function truncation
and the linear dependency of the wave functions, is given.

In [183] a high performance implementation of the WBM for uncoupled two-dimensional
acoustic problems in convex and non-convex domains is compared to a commercial FEM
code and the high computational efficiency of the WBM is shown. An object-oriented
implementation scheme for the WBM is developed in [184] and applied to the steady-
state acoustics of a two-dimensional L-shaped problem domain. Several other examples of
two-dimensional interior acoustic problems solved by the WBM can be found in [99] and
[96].

Applications of the WBM in three-dimensional interior acoustics are given in [185] and
[186] for convex domains and in [187] and [188] for non-convex domains. In [99] an
impedance coupling between sub-domains is developed for two- and three-dimensional
problems and compared to the originally proposed direct coupling of the velocity and
pressure fields. It is shown that the impedance coupling exhibits better convergence char-
acteristics than the pressure and velocity coupling. The three-dimensional axisymmetric
acoustic problem in bounded domains is tackled in [189] by introducing a specific wave
function set.

b.) Exterior acoustic problem

While in interior acoustic problems the field variables have to satisfy the governing equa-
tions and the boundary conditions, exterior acoustic problems also require the fulfillment
of the so-called Sommerfeld radiation condition. In [99] the WBM is developed for two-
dimensional exterior acoustic problems. A truncation surface is introduced, which divides
the problem domain into a bounded and an unbounded part. In the bounded part, the
classical wave functions are applied and in the unbounded part new wave functions are
presented, which also satisfy the Sommerfeld radiation conditions. In [190] the steady-
state acoustics of a two-dimensional car-like cavity with an open boundary are analyzed
with the WBM and in [172] several other two-dimensional examples are presented.

The extension to three-dimensional exterior acoustic problems is mainly performed in
[191], [172] and [192] and applications of the method are shown in [193] for simple three-
dimensional geometries and in [194] for a truck engine geometry. Investigations concerning
the required number of wave functions and optimal decomposition strategies for three-
dimensional exterior acoustic problems are presented in [195].

A modification of the wave function set used in unbounded acoustic domains is applied
in [196] to analyze two-dimensional semi-infinite radiation and scattering problems and
transmission or diffraction problems. Similar approaches are also used for the three-
dimensional case [197, 172].
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Steady-state structural dynamics

The steady-state vibrations of linear elastic solid structures are governed by a set of four
Helmholtz equations (Equations (2.12) and (2.13)). Even though, the WBM could be
used to solve the three-dimensional elasticity equations, only simplified models, e.g. plate
membrane and bending problems and shell vibrations, are solved by the WBM so far.

a.) Plate membrane problems

The WBM for steady-state vibrations of the in-plane behaviour of two-dimensional struc-
tural solids is developed by Vanmaele and her co-workers [198, 181, 17]. Therefore, the
coupled dynamic Navier equations are decomposed into two uncoupled Helmholtz equa-
tions, which simplifies the definition of the T-complete function set. Two different types
of decompositions are analyzed and a direct coupling approach between sub-domains is
used.

b.) Plate bending problems

In [21], Desmet already considered the uncoupled plate bending problem and derived the
wave function sets for steady-state Kirchhoff plate vibrations. The WBM is also applied
in [199] and [200] to investigate the vibrations of thin convex plates and the weighted
residual approach is used to fit the boundary conditions, while in [201] a least-square
approach is implemented. Further developments of the WBM for steady-state Kirchhoff
plate vibrations are shown in [17], [16] and [181], analysing an additional function set,
the importance of corner residuals in the Kirchhoff plate theory and non-convex problem
domains. Applications of the WBM to orthotropic Kirchhoff plates are given in [202]
and [203]. The treatment of point connections, e.g. point connected masses, springs or
dampers, are shown in [13].

c.) Three-dimensional flat plate assemblies

If flat plates are assembled at an arbitrary angle, a coupling between the membrane and
bending vibrations occurs through the common interface of the flat plates. Therefore, a
combination of the WBM for plate membrane and plate bending problems is proposed
[204, 205, 17, 181], where a full coupling and a reduced coupling (in-plane displacements
are neglected) are analyzed. While the full coupling leads to accurate predictions of the
out-of-plane displacements, the neglecting of the in-plane displacements results in a large
error.

d.) Shell vibrations

The first attempts to use the WBM for cylindrical shell vibrations are reported in [206]
and [21], where a two-dimensional acoustic cavity is coupled with a force-excited shell
structure. The analysis of free vibrations of ring stiffened cylindrical shells with inter-
mediate large frame ribs is performed in [207]. Therefore, the WBM is applied to the
Donnell-Mushtari shell theory and coupled with circular and annular circular thin plates.
A similar approach is used in [208] for the free vibration analysis of cylindrical shells with a
nonuniform and eccentric stiffeners distribution. The WBM is further extended to the free
and forced vibrations of cylindrical shells with discontinuities in thickness [209], elastically
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coupled annular plates and cylindrical shell structures [210] and non-uniformly supported
cylindrical shells [211]. All these extensions apply the Flügge shell theory and external
loading is introduced through the boundary conditions.

Coupled vibro-acoustic problems

In the coupled vibro-acoustic problem, a vibrating structure is in contact with a fluid and
a mutual coupling interaction between the structural vibrations and the acoustic pressure
field occurs. While the pressure field acts as external loading on the structure, the surface
vibrations are treated as boundary conditions in the acoustic problem.

The WBM for a coupled vibro-acoustic problem of a plate interacting with a bounded two-
or three-dimensional acoustic domain is developed in [21]. The acoustic pressure exciting
the plate is included by a particular solution function fulfilling the inhomogeneous terms
in the partial differential equation of the Kirchhoff plate theory. The plate vibrations
are treated as velocity boundary conditions in the acoustic problem. Further applications
of the WBM to bounded vibro-acoustic problems are given in [212] and [96] for two-
dimensional domains and in [213] and [214] for three-dimensional domains.

The extension of the WBM to coupled vibro-acoustic problems with a two-dimensional
unbounded acoustic domain is shown in [215] using a least-square fit of the boundary
conditions, while in [216] a weighted residual approach and an impedance coupling between
sub-domains is applied. In [217] and [192] the WBM is applied to coupled vibro-acoustic
problems with a three-dimensional unbounded acoustic domain.

Poroelastic material modelling

Porolelastic materials comprise two constituents, the frame (an elastic solid) and the fluid
filling. The vibrations of both constituents can be strongly coupled, depending on the
frequency range. Different mathematical models have been proposed for poroelastic mate-
rials, e.g. the equivalent fluid model, the Biot model and the equivalent solid model, which
result in partial differential equations [182].

The WBM is applied in [218] to analyze two-dimensional problems including poroelastic
materials, which are modelled as an equivalent fluid. The same approach is used in [219]
to investigate the acoustic performance of sound absorbing materials.

The development of the WBM for poroelastic materials modelled by the more accurate
Biot theory is shown in [220]. The partial differential equations resulting from the Biot
model are decomposed into three Helmholtz equations, which allows for a straightforward
definition of the T-complete function sets. Applications of the WBM to two-dimensional
poroelastic material problems using the Biot model can be found in [221] and in [222] the
WBM for a poroelastic material coupled with an acoustic domain is presented. The three-
dimensional axisymmetric Biot model is investigated in [189] by modifying the original
wave function set of the WBM.
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4.3.2 Current improvements and extensions of the WBM

The main drawback of the WBM is given by the geometrical limitation due to the need for
convex sub-domains. Several improvements and extensions have been made to enhance
the geometrical flexibility of the WBM. First of all, the convergence of the WBM in
certain non-convex domains with smooth concave parts is shown in [223], which allows for
the application of the WBM without subdividing the domain. In case of other types of
non-convex domains, which would require a partitioning into a large number of convex sub-
domains, the Multi-Level WBM and the Hybrid Finite Element-Wave Based Method or the
Hybrid Boundary Element-Wave Based Method have been developed. These extensions,
as well as the treatment of singularities in the solution field and other hybrid methods,
are outlined in the subsequent sections.

Treatment of singularities in the solution field

Singularities in the solution field may occur due to discontinuities in the material parame-
ters, boundary conditions or boundary shape (e.g. corner points in polygonal domains). If
such singularities are present in the solution, the WBM suffers from convergence problems,
since the representation of a singularity is difficult with the classical wave function set.
Therefore, so-called special purpose functions are added to the classical wave function set,
which are able to capture the singular behaviour [198].

The special purpose functions, developed for the WBM, have to satisfy the partial differ-
ential equations and can be found in the literature for corner singularities, which occur
especially in polygonal shaped domains. The first special purpose functions have been
developed for the two-dimensional plate bending problem using the Kirchhoff plate theory
[224, 18]. An infinite wedge domain is examined and an exact analytical solution for spe-
cific boundary conditions is defined, which represents the singularity in the corner and can
be added to the original wave function set. Since such a solution only exists for a specific
type of boundary condition, the solution of the static problem is examined to define special
purpose functions for arbitrary boundary conditions. This concept has been extended to
treat singularities in two-dimensional acoustic problems [225, 220] and plate membrane
problems [198], although it is shown that in certain configurations, logarithmic singular-
ities are present, which cannot be handled by the proposed approach. Special purpose
functions for the two-dimensional Biot model are only available for the so-called sliding
edge boundary conditions [226, 222, 220], due to a lack of analytical solutions of the static
problem for other combinations of boundary conditions. Therefore, another approach is
shown in [227], where a coupling of the FEM and the WBM is proposed. The FEM is
used to model the areas in the vicinity of the singularities, while the WBM is applied to
the rest of the problem domain.

Multi-Level WBM

The requirement of the WBM that the domain has to be decomposed into convex sub-
domains especially limits the method if a bounded domain contains several inclusions or
multiple scatterers are present in an unbounded domain. To overcome these limitations,
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a multi-level approach has been proposed, where every inclusion (scatterer) is treated as
a separate level and the superposition principle is applied to link all levels through the
weighted residual method [14]. The problem geometries, which appear at the different lev-
els, are very well suited for the application of the WBM, since in general only a low number
of convex sub-domains is required for moderately complex inclusions (scatterers).

The Multi-Level WBM is first applied in [228] and [174] for two-dimensional acoustic prob-
lems with multiple scatterers in unbounded domains. The extension to three-dimensional
unbounded acoustic problems is shown in [172] and in [229] symmetric boundary condi-
tions for the Multi-Level WBM are derived to improve the computational efficiency for
symmetric two- and three-dimensional acoustic problems. The application of the multi-
level approach to bounded problems with multiple inclusions is shown in [175, 230] for the
two-dimensional acoustic and membrane problem, in [13] for the two-dimensional plate
bending problem (Kirchhoff plate theory) and in [231] for the two-dimensional Biot equa-
tions (poroelastic material).

A very similar approach is shown in [232] for certain concave problem domains without
inclusions. A complement-graph conception is applied, which enables the analysis of con-
cave geometries without a partitioning into convex sub-domains. Therefore, the concave
problem domain is supplemented by artificial convex sub-domains to finally yield a con-
vex geometry. The proposed method is used to analyze two-dimensional plate bending
problems.

Hybrid WB methods

Another possibility to enhance the WBM is the combination of the WBM with another
numerical method, e.g. FEM, BEM, SEA or the Transfer Matrix Method. If each method
is applied according to its own strengths, powerful hybrid methodologies can be obtained,
which combine the advantages of both approaches.

a.) Hybrid Finite Element-Wave Based Method (FE-WBM)

The hybrid FE-WBM uses the geometric flexibility of the FEM to model the complex parts
of the problem domain, while the WBM is applied in the remaining moderately complex
areas to retain the computational efficiency. Several different coupling approaches are
proposed to ensure the continuity between the FEM and the WBM domains.

The first hybrid FE-WBM approach is presented in [96] for two-dimensional acoustic prob-
lems in bounded domains. Three different types of auxiliary frames (Lagrange multiplier
technique) are proposed to indirectly couple the FEM to the WBM, a pressure frame, a
velocity frame and an equivalent velocity frame. Several applications of the hybrid FE-
WBM applying a velocity frame are shown in [233] and [234] for two-dimensional bounded
acoustic problems. A direct coupling approach is investigated in [235] and it is stated that
the convergence rate of the direct and indirect coupling methods is very similar. A two-
dimensional vibro-acoustic problem is examined in [236], where the structural domain and
the adjacent acoustic domains are discretized with the FEM and the remaining acoustic
areas are modeled with the WBM.
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The extension to three-dimensional acoustic problems in bounded domains is presented in
[237] and three different direct coupling approaches between FEM and WBM, the pressure-
velocity coupling, the impedance coupling and a mixed impedance-pressure coupling, are
proposed. A comparison of direct and indirect coupling approaches for three-dimensional
acoustic problems in bounded domains can be found in [99] and [238]. In [239] a three-
dimensional vibro-acoustic problem is analyzed with the hybrid FE-WBM, where the
structural components are modelled with the FEM and the WBM is used in the acoustic
domain. A direct coupling between the structural and acoustic domain is implemented.
The same approach is used in [240] to study the sound transmission through a panel.

A further increase in the computational efficiency can be gained if a model reduction
technique is applied to the FEM part of the hybrid FE-WBM. In [241, 101] a modally
reduced structural FEM model, where the uncoupled structural modes are used to reduce
the degrees of freedom, is directly coupled to an acoustic WBM model to solve three-
dimensional vibro-acoustic problems. The analysis of three-dimensional interior acoustic
problems is shown in [242, 243], where a direct coupling approach is applied to link a
modally reduced acoustic FEM model to an acoustic WBM model. The Craig-Bampton
approach is used to reduce the FEM model and a further optimization of the method is
achieved, by applying a projection approach to the static constraint modes. A summary
of these enhancements can be found in [230] and an application to a large-sized vehicle
model in [244].

The hybrid FE-WBM for two-dimensional acoustic problems in unbounded domains has
been developed in [172]. The FEM is used inside the truncation surface to model the
complex geometry, while the WBM is applied in the exterior domain. The methodology
is similar to the so-called DtN map, but is numerically more efficient [245].

The application of the hybrid FE-WBM to structural vibrations is shown in [246] for the
plate membrane problem and in [17] for combined plate-beam problems, where the beams
are modelled with the FEM and a direct coupling to a WBM plate model is implemented.

Finally the extension of the hybrid FE-WBM to the Biot model is carried out in [247] and
[227]. The hybrid FE-WBM is especially used to treat corner singularities as mentioned
in a previous section. In [248] and [20] a three-dimensional bounded acoustic problem
coupled with a trim layer (poroelastic material) is analyzed with the hybrid FE-WBM.
The acoustic domain is modeled with the WBM and the poroelastic material with FEM,
which allows for a detailed description of the trim layer.

b.) Hybrid Boundary Element-Wave Based Method (BE-WBM)

Even though, the Multi-Level WBM leads to a significant improvement of the applicability
of the WBM in case of several inclusions (scatterers) in the problem domain, only moder-
ately complex inclusions (scatterers) can be handled due to the convexity requirement of
the WBM. To overcome this limitation, the hybrid BE-WBM has been developed. The ge-
ometrical flexibility of the BEM is used to model the complex inclusions (scatterers), while
the WBM is applied for the moderately ones to improve the computational efficiency.

In [249, 229] the hybrid BE-WBM is developed for two- and three-dimensional acoustic
problems in unbounded domains. Similar to the Multi-Level WBM, simple scatterers are
described in separate levels by the WBM, while the complex scatters are modeled with the
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BEM in one single level. The superposition principle and a weighted residual approach is
applied to combine all levels in one system of linear equations.

The extension of the hybrid FE-WBM to two- and three-dimensional acoustic problems in
bounded domains is shown in [250] and [251]. The complex inclusions are modelled by the
BEM, while the moderately complex bounded domain and simple inclusions are described
by the WBM. A significant increase in computational efficiency is reported compared to
the FEM.

c.) Hybrid Wave Based Method-Statistical Energy Analysis (WBM-SEA)

Depending on the frequency, each subsystem of a structure may have a different vibrational
behaviour. While in the low frequency range, all subsystems can be accurately described
by deterministic methods, statistical approaches have to be applied in the high frequency
range due to the high dependency of the system response to uncertainties. In the so-called
mid-frequency range, some of the subsystems still have a deterministic behaviour, while
others have to be described in a statistical way. Therefore, the hybrid WBM-SEA has
been developed, where the deterministic subsystems are modeled with the WBM, while
the statistical subsystems are described by the SEA.

In [252] the hybrid WBM-SEA is developed for three-dimensional vibro-acoustic problems
in bounded domains, following an approach shown in [253] for the hybrid FE-SEA. A
deterministic acoustic WBM model is coupled to a SEA plate model. An interface grid is
applied to couple the indirect deterministic WBM to the SEA. Further applications of the
hybrid WBM-SEA can be found in [13].

d.) Hybrid Wave Based-Transfer Matrix Model (WBM-TMM)

Another hybrid method, the hybrid Wave Based-Transfer Matrix Model (WBM-TMM), is
developed in [254] to predict the transmission loss through a multilayered thin structure
by analysing two acoustic chambers separated by the investigated panel. The WBM is
used to model the acoustic chambers, while the multilayered panel is modelled with the
TMM. In [255] this approach is extended to multilayered structures with air cavities. A
slightly different approach is used in [20] and [256] to couple the WBM and the TMM. The
method is applied to vibro-acoustic simulations, especially to investigate the absorption
and transmission characteristics of multilayered materials.

Other improvements and extensions

Several other improvements and extensions of the WBM have been made, which do not
belong to the categories listed above. In [176] B-splines are used to model the problem ge-
ometry to improve the geometric flexibility of the WBM and different integration schemes
are investigated and applied to two-dimensional acoustic problems. Different types of wave
function selections are proposed in [257] and the effects on the convergence rates of the
WBM are investigated. Attempts to increase the accuracy of the WBM are shown in [258],
where the so-called V-Cycling method is applied and three different strategies, the Matrix
Subdivision approach, the Optimization approach and orthonormal wave functions, are
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implemented. An enrichment of the classical wave function set to incorporate a priori
information of discontinuities in the boundary conditions is developed in [259].

A boundary and interface error indicator-controlled adaptive local refinement strategy for
the WBM is proposed in [260] and [261] for three dimensional acoustic problems in un-
bounded domains. A low number of wave functions is used in an initial step and depending
on the boundary and interface residuals, the number of wave functions is increased until
a certain residual goal is reached.

In the WBM an analytical particular solution is required to transform the inhomoge-
neous partial differential equation(s) to homogeneous one(s) (see Section 4.1). In general,
such analytical solutions are only available for simple source terms, e.g. a point source.
Therefore, two different approaches are proposed in [19] and [20] based on the numerical
integration of the point source solution and the decomposition of the applied source into
the wave number domain. The methods are tested for two-dimensional plate vibration
problems under distributed deterministic and random excitation.

In [262, 13] a very efficient way to perform a Monte Carlo simulation with the WBM is
shown, where randomly distributed point masses are added to a plate. Another approach
to include non-deterministic input parameters is developed in [263] by introducing the
interval perturbation WBM and the hybrid perturbation WBM.

Several potential application areas of the WBM are reviewed in [264], [265] and [266].

4.3.3 Applications of the WBM to engineering problems

The sound transmission loss of finite lightweight multilayered structures is examined with
the WBM in [267] and a comparison to measurements and the TMM shows very good
results. The absorption, reflection and transmission coefficients of two-dimensional rigid
frame porous structures with periodic inclusions are investigated in [268] using a unit
cell model and the Bloch-Floquet boundary conditions. Therefore, the wave functions for
periodic semi-infinite two-dimensional acoustics problems are derived and applied in the
WBM. The acoustic performance of sound absorbing materials has been investigated in
[219] using an equivalent fluid model for the porous material.

The sensitivity of a vibro-acoustic model to changes in the design parameters has been
investigated in [269] by applying the WBM and the direct differentiation method, while
in [270, 271] the WBM and the adjoint variable method are applied to investigate the
sensitivity of a two-dimensional acoustic problem. In [272] the hybrid FE-WBM has been
applied for a topology optimization of bounded acoustic problems, where the non-design
domains are modeled by the WBM, while the design domains are described by a FEM
model. A great increase in computational efficiency compared to a pure FEM model is
reported. The optimization of an acoustic lens design has been carried out in [273] by
applying the multi-level WBM and a genetic algorithm.

In [274] the WBM is used for the calculation of the structural intensity in a plates, while the
frequency averaged input power into plates is evaluated in [275] by applying the Lorentzian
function as weighting function.
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An efficient optimisation of local vibration control treatments for structural components
is presented in [276] using the WBM and multilayered damping models are investigated
in [277].

92



Part II

Extensions and improvements of the
Wave Based Method for structural

vibrations

93





5 Particular solution functions for plate
bending vibrations

As outlined in Section 4.1.2, a particular solution function is required if the WBM is used to
solve inhomogeneous partial differential equations. Especially for plate bending problems,
an analytical closed-form solution is only available in the literature for an undamped
isotropic plate under point force excitation. To extend the applicability of the WBM
to other excitations, Jonckheere et al. [19] developed two methods, which allow for the
introduction of distributed excitations in the WBM for plate vibrations. The first method
uses a numerical integration of the point force solution (Hankel-based approach), while in
the second approach the Fourier transform is applied to decompose the distributed load in
the wavenumber domain (Fourier-based approach). The Hankel-based approach requires
the numerical integration of highly oscillating functions for each response point and is
therefore computationally demanding, especially for large excitation areas. The Fourier-
based approach performs very well if the forward and inverse Fourier transform can be
calculated analytically. For localized discontinuous loads, the Fourier-based approach leads
to inaccurate results, since the so-called Gibbs phenomenon appears [20].

In this chapter, the point force excitation of Kirchhoff and Mindlin plates is reviewed and
damping through a complex Young’s modulus is introduced. To extend the applicability
of the WBM, the closed-form solutions for harmonic vibrations of Kirchhoff and Mindlin
plates subjected to a constant harmonic ring load, a constant harmonic circular load and
an alternating harmonic circular load are derived. Two different approaches are applied to
define closed-form analytical solutions. The first approach uses the analytical integration of
the harmonic point force solution, while the second approach applies the Hankel transform
to solve the inhomogeneous partial differential equations.

In Section 5.1, the Hankel transform, the residue theorem and Jordan’s lemma, which are
required to derive the new particular solutions, are stated. The solutions for the Mindlin
theory are developed in Section 5.2 and the solutions for the Kirchhoff theory are derived
as special case of the Mindlin solutions in Section 5.3.

5.1 Basic mathematical principles

The Hankel transform is a powerful integral transformation technique for axisymmetric
problems, e.g. the plate bending problem under point force excitation. Its definition
and properties, which are used to solve the subsequent problems, are stated in Section
5.1.1. Especially the inverse Hankel transform requires the integration of complicated
integrands over infinite limits. Therefore, in Section 5.1.2 the basics of the residue theorem
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and Jordan’s lemma, which are very useful tools to evaluate these kinds of integrals, are
shown.

5.1.1 The Hankel transform

The Hankel transform is an integral transformation technique, which is used in the follow-
ing sections to solve the axisymmetric plate vibration problems. The forward and inverse
Hankel transform of order zero and one are defined by [278]

H0[f(r)] = f̃(kr) =
∫ ∞
r=0

f(r) r J0(kr r) dr, (5.1)

H −1
0

[
f̃(kr)

]
= f(r) =

∫ ∞
kr=0

f̃(kr) kr J0(kr r) dkr, (5.2)

H1[f(r)] = ˜̃f(kr) =
∫ ∞
r=0

f(r) r J1(kr r) dr, (5.3)

H −1
1

[ ˜̃f(kr)
]

= f(r) =
∫ ∞
kr=0

˜̃f(kr) kr J1(kr r) dkr, (5.4)

with f̃(kr) the zero-order and ˜̃f(kr) the first-order Hankel transform of the the function
f(r) and Jn(•) the nth-order Bessel function of the first kind. The operational properties
of the Hankel transform [278]

H0

[(
d2

dr2 + 1
r

d
dr

)
f(r)

]
= −k2

r f̃(kr), (5.5)

H1

[df(r)
dr

]
= −kr f̃(kr), (5.6)

are used in the subsequent derivations, to transform partial differential equations into
algebraic ones.

5.1.2 The residue theorem and Jordan’s lemma

The residue theorem is a method in complex analysis, which allows for the evaluation of
line integrals over closed curves in the complex plane. Even though, the residue theorem
is defined for integrals over closed curves in the complex plane, the evaluation of integrals
on the real axis ranging from −∞ to ∞ is possible. If Jordan’s lemma is applicable, the
residue theorem results in the integral formulas [279]

∫ ∞
−∞

f(x) e j a x dx =


2π j

s+∑
k=1

Res
z=z+

k

[
f(z) e j a z

]
+ π j

m∑
k=1

Res
z=pk

[
f(z) e j a z

]
a > 0,

−2π j
s−∑
k=1

Res
z=z−

k

[
f(z) e j a z

]
− π j

m∑
k=1

Res
z=pk

[
f(z) e j a z

]
a < 0,

(5.7)

where z+
k are poles in the upper half plane, z−k poles in the lower half plane, pk poles

on the real axis and Res[•] is the residue at the pole. Equation (5.7) is only valid if the
condition

lim
|z|→+∞

f(z) = 0 (5.8)
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is satisfied [279]. There are several methods for the evaluation of residues. Since only
simple poles appear in the subsequent calculations, the formula [279]

Res
z=zk

[
f(z) e j a z

]
= lim

z→zk
(z − zk) f(z) e j a z (5.9)

can be applied, which is valid for simple poles zk ,∞.

5.2 Particular solutions for the Mindlin plate theory

In this section, the particular solution function for a Mindlin plate under harmonic point
load excitation is reviewed and a comparison with existing solutions is carried out. New
solutions for a harmonic constant ring load, a harmonic constant circular load and a
harmonic alternating circular load are derived with two different approaches, the analytical
integration of the point force solution and the direct use of the Hankel transform.

An infinitely extended Mindlin plate is considered in the following and therefore no bound-
ary conditions have to be fulfilled. The governing equations in terms of displacements
for the out-of-plane deformation, given in Equations (2.52) – (2.54) for Cartesian coordi-
nates, can be transformed into a polar coordinate system {r, ϕ, z} using x = r cos(ϕ) and
y = r sin(ϕ). For axisymmetric problems, the deformation is independent of ϕ and the
governing equations for harmonic vibrations are simplified to [280](

∇2
a −

1
r2 + ρ h3 ω2

12D

)
ψr −

k2Gh

D

(
ψr + dw

dr

)
= 0, (5.10)

( d
dr + 1

r

)
ψr +

(
∇2
a + ρω2

k2G

)
w + 1

k2Gh
q = 0, (5.11)

where ∇2
a = d2

dr2 + 1
r

d
dr is the two-dimensional Laplace operator in polar coordinates for

axisymmetric problems, ψr = ψx cos(ϕ) + ψy sin(ϕ) is the positive rotation about the
ϕ-axis and the moment loadings are set to mx = 0 and my = 0. Since the problem is
axisymmetric, the negative rotation about the r-axis ψϕ = −ψx sin(ϕ) + ψy cos(ϕ) = 0.
Rewriting Equations (5.10) and (5.11) leads to a decoupled differential equation for the
out-of-plane displacement(

∇2
a + k2

f1
)(
∇2
a + k2

f2
)
w = − S

D

(
∇2
a +Rk4

b − S−1
)
q (5.12)

and the rotation is given by

ψr =
(
Rk4

b − S−1
)−1 d

dr

((
∇2
a + S k4

b + S−1
)
w + S

D
q

)
. (5.13)

In Equations (5.12) and (5.13), the flexural wavenumbers, defined in Equations (2.66) and
(2.67), and the constants given in Equation (2.69) are used.

Instead of solving Equation (5.12) directly, the zero-order Hankel transform can be applied,
which leads to

w̃ = S
(
k2
r −Rk4

b + S−1)
D
(
k2
r − k2

f1

)(
k2
r − k2

f2

) q̃, (5.14)
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where the operational property of the Hankel transform, shown in Equation (5.5), is used.
Similarly, the solution of Equation (5.13) can be determined from the first-order Hankel
transform ˜̃ψr =

(
Rk4

b − S−1
)−1

kr

((
k2
r − S k4

b − S−1
)
w̃ − S

D
q̃

)
= kr

D
(
k2
r − k2

f1

)(
k2
r − k2

f2

) q̃, (5.15)

where Equations (5.6) and (5.14) are applied. If the zero-order Hankel transform of the
external normal load q̃ is known, the inverse Hankel transforms of Equations (5.14) and
(5.15) lead to the solution of the out-of-plane displacement w(r) and the rotation ψr(r) in
the spatial domain.

5.2.1 Point load excitation

An external normal point load at the origin of the coordinate system (x = 0 and y = 0 or
r = 0) is defined by

qpoint(x, y) = q0 δ(x) δ(y) or qpoint(r) = q0 δ(r)
2π r , (5.16)

where q0 is the amplitude of the harmonic point load and δ(•) the Dirac delta function.
The corresponding zero-order Hankel transform is given by [278]

q̃point(kr) = q0
2π . (5.17)

Using Equation (5.17) in Equations (5.14) and (5.15) and applying the inverse Hankel
transform leads to the solution of the out-of-plane displacement and rotation in an integral
form

wpoint(r) = S q0
2πD

∫ ∞
kr=0

k2
r −Rk4

b + S−1(
k2
r − k2

f1

)(
k2
r − k2

f2

) kr J0(kr r) dkr, (5.18)

ψr, point(r) = q0
2πD

∫ ∞
kr=0

k2
r(

k2
r − k2

f1

)(
k2
r − k2

f2

) J1(kr r) dkr. (5.19)

A closed-form solution of these integrals can be obtained, using the integral representations
of the Bessel function of the first kind [281]

J0(kr r) = 2
π

∫ ∞
u=0

sin(kr r cosh(u)) du, (5.20)

J1(kr r) = − 2
π

∫ ∞
u=0

cos(kr r cosh(u)) cosh(u) du, (5.21)

and interchanging the order of integration

wpoint(r) = S q0
π2D

∫ ∞
u=0

∫ ∞
kr=0

k2
r −Rk4

b + S−1(
k2
r − k2

f1

)(
k2
r − k2

f2

) kr sin(kr r cosh(u)) dkr du, (5.22)

ψr, point(r) = − q0
π2D

∫ ∞
u=0

∫ ∞
kr=0

k2
r cosh(u)(

k2
r − k2

f1

)(
k2
r − k2

f2

) cos(kr r cosh(u)) dkr du. (5.23)
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Both integrals are symmetric with respect to kr and therefore can be written as

wpoint(r) = S q0 j
2π2D

∫ ∞
u=0

∫ ∞
kr=−∞

k2
r −Rk4

b + S−1(
k2
r − k2

f1

)(
k2
r − k2

f2

) kr e−j kr r cosh(u) dkr du, (5.24)

ψr, point(r) = − q0
2π2D

∫ ∞
u=0

∫ ∞
kr=−∞

k2
r cosh(u)(

k2
r − k2

f1

)(
k2
r − k2

f2

) e−j kr r cosh(u) dkr du, (5.25)

since an integral of an odd function vanishes for a symmetric integration interval. The
residue theorem and Jordan’s lemma can be applied to perform the integration with respect
to kr.

In the following calculations, it is assumed that the material loss factor η > 0. The
special case of an undamped plate is considered at the end of this section using the limit
absorption principle stated in [282]. The integrands in Equations (5.24) and (5.25) have
the same first-order poles, which are given by

kr1 = kf1 with Im[kr1] < 0 independent of ω, (5.26)
kr2 = −kf1 with Im[kr2] > 0 independent of ω, (5.27)
kr3 = kf2 with Im[kr3] > 0 for ω < ωc and Im[kr3] < 0 for ω > ωc, (5.28)
kr4 = −kf2 with Im[kr4] < 0 for ω < ωc and Im[kr4] > 0 for ω > ωc, (5.29)

with kf1 =
√
k2
f1 and kf2 =

√
k2
f2 (principal square roots), ωc the so-called cut-off

frequency and Im[•] the imaginary part of a complex number. While for the undamped
case (η = 0) the cut-off frequency is given by ωc =

√
k2 G
ρR [51], an explicit formula for ωc is

not available in the general damped case (η > 0). The implicit function gωc(ω) = Im
[
k2
f2

]
can be used to numerically calculate ωc, by evaluating the condition gωc(ω = ωc) = 0.

Comparing the general integral formulas in Equation (5.7) with the integrals in Equations
(5.24) and (5.25), it is apparent that the parameter a = −r cosh(u) < 0 and therefore,
only simple poles in the lower half-plane contribute to the final results. Using Equation
(5.9) and defining

gw(kr) = k2
r −Rk4

b + S−1(
k2
r − k2

f1

)(
k2
r − k2

f2

) kr e−j kr r cosh(u), (5.30)

gψr(kr) = k2
r cosh(u)(

k2
r − k2

f1

)(
k2
r − k2

f2

) e−j kr r cosh(u), (5.31)

results in the residues at the simple poles

Res
kr=kf1

[gw(kr)] =
k2
f1 −Rk4

b + S−1

2
(
k2
f1 − k2

f2

) e−j kf1 r cosh(u), (5.32)

Res
kr=∓kf2

[gw(kr)] = −
k2
f2 −Rk4

b + S−1

2
(
k2
f1 − k2

f2

) e±j kf2 r cosh(u), (5.33)
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Res
kr=kf1

[gψr(kr)] = kf1 cosh(u)
2
(
k2
f1 − k2

f2

) e−j kf1 r cosh(u), (5.34)

Res
kr=∓kf2

[gψr(kr)] = ± kf2 cosh(u)
2
(
k2
f1 − k2

f2

) e±j kf2 r cosh(u). (5.35)

The Heine’s formulas for the integral representation of the Hankel functions [283]

H(1)
0 (z) = −2 j

π

∫ ∞
u=0

e j z cosh(u) du, 0 < arg[z]< π, (5.36)

H(2)
0 (z) = 2 j

π

∫ ∞
u=0

e−j z cosh(u) du, −π < arg[z] < 0, (5.37)

H(1)
1 (z) = − 2

π

∫ ∞
u=0

e j z cosh(u) cosh(u)du, 0 < arg[z]< π, (5.38)

H(2)
1 (z) = − 2

π

∫ ∞
u=0

e−j z cosh(u) cosh(u) du, −π < arg[z] < 0, (5.39)

with H(1)
n (•) and H(2)

n (•) the nth-order Hankel functions of the first and second kind, can
be applied to perform the integration with respect to u. The final results are given by

wpoint(r) = j q0

4D
(
k2
f1 − k2

f2

)( 1
µ1 − 1 H(2)

0 (kf1 r)−
1

µ2 − 1 H(2)
0 (∓kf2 r)

)
, (5.40)

ψr, point(r) = − j q0

4D
(
k2
f1 − k2

f2

)(kf1 H(2)
1 (kf1 r)± kf2 H(2)

1 (∓kf2 r)
)
, (5.41)

where the upper signs have to be applied for ω < ωc and the lower signs for ω > ωc. In
the derivation of Equations (5.40) and (5.41), the relations between the Hankel functions
[284]

H(1)
0 (j z) = −H(2)

0 (−j z), H(1)
1 (j z) = H(2)

1 (−j z), −1
2 π < arg[z] ≤ 1

2 π, (5.42)

are used. The final results in Equations (5.40) and (5.41) can be presented in a different
form

wpoint(r) = − j q0

4D
(
k2
f1 − k2

f2

)( 1
µ1 − 1 H(1)

0 (−kf1 r)−
1

µ2 − 1 H(1)
0 (±kf2 r)

)
,

= − q0

2πD
(
k2
f1 − k2

f2

)( 1
µ1 − 1 K0(j kf1 r)−

1
µ2 − 1 K0(∓j kf2 r)

)
,

(5.43)

ψr, point(r) = − j q0

4D
(
k2
f1 − k2

f2

)(kf1 H(2)
1 (−kf1 r)± kf2 H(2)

1 (±kf2 r)
)
,

= j q0

2πD
(
k2
f1 − k2

f2

)(kf1 K1(j kf1 r)± kf2 K1(∓j kf2 r)),
(5.44)

applying Equation (5.42) or the relations [284]

K0(z) = −1
2 π j H(2)

0 (−j z), K1(z) = −1
2 πH(2)

1 (−j z), −1
2 π < arg[z] ≤ π, (5.45)

with Kn(•) the nth-order modified Bessel function of the second kind.
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5.2 Particular solutions for the Mindlin plate theory

The out-of-plane displacement wpoint(r) and the rotation ψr, point(r) of a steel plate (E =
2.1× 1011 N/m2, ρ = 7850 kg/m3, ν = 0.3, h = 2 mm) excited by a point load q0 = 1 N at
angular frequency ω = 1200 rad/s are shown in Figure 5.1. The shear correction factor kW
is applied and the material loss factor η is varied from 0 (undamped plate) to 0.5 (highly
damped plate). It is apparent from Figure 5.1 that the displacement and rotation decay
with rising distance from the source point. As expected, the decay is more pronounced
for higher damping values.
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(b) Rotation about the ϕ-axis

Figure 5.1: Out-of-plane displacement wpoint and rotation about the ϕ-axis ψr, point of an
infinite Mindlin plate excited by a harmonic point load at r = 0

Limit absorption principle - the undamped plate

According to the limit absorption principle, which is stated in [282], a purely elastic solid is
an idealization of a weakly absorbing material and therefore the solution of the undamped
plate can be found by the limiting case η → 0. Since k2

f1 is always real positive for η → 0,
the principle square root kf1 =

√
k2
f1 is also real positive. Depending on the frequency,
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5 Particular solution functions for plate bending vibrations

k2
f2 is either real negative (ω < ωc) or real positive (ω > ωc). The principle square roots

are therefore given by kf2 = j
√∣∣∣k2

f2

∣∣∣ (ω < ωc) and kf2 =
√
k2
f2 (ω > ωc).

The results for an undamped plate excited by a harmonic point load, given by Rose
and Wang [51], lead to the same amplitude as the results given in Equation (5.43), but
are complex conjugated. A numerical integration of Equations (5.18) and (5.19) for an
arbitrary parameter set agrees with the results shown in Equations (5.43) and (5.44) and
therefore it is assumed that the presented derivations are mathematically correct.

Point load at an arbitrary point of the coordinate system

If the point of excitation is not located at the origin of the coordinate system, but at an
arbitrary position (ř, ϕ̌), see Figure 5.2, a shift of the coordinate system can be performed
to calculate the out-of-plane displacement wpoint(r, ϕ) and the rotations ψr, point(r, ϕ) and
ψϕ, point(r, ϕ). Transforming the solutions wpoint(r1) and ψr1, point(r1) to the coordinate
system (r, ϕ) leads to

wpoint(r, ϕ) = j q0

4D
(
k2
f1 − k2

f2

)( 1
µ1 − 1 H(2)

0 (kf1 d)− 1
µ2 − 1 H(2)

0 (∓kf2 d)
)
, (5.46)

ψr, point(r, ϕ) = − j q0 (r − ř cos(ϕ− ϕ̌))
4 dD

(
k2
f1 − k2

f2

) (
kf1 H(2)

1 (kf1 d)± kf2 H(2)
1 (∓kf2 d)

)
, (5.47)

ψϕ, point(r, ϕ) = − j q0 ř sin(ϕ− ϕ̌)
4 dD

(
k2
f1 − k2

f2

)(kf1 H(2)
1 (kf1 d)± kf2 H(2)

1 (∓kf2 d)
)
, (5.48)

with the distance of the response point P to the point of excitation

d =
√
r2 + ř2 − 2 r ř cos(ϕ− ϕ̌). (5.49)

Figure 5.2: Point load at an arbitrary position (x̌, y̌)
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5.2 Particular solutions for the Mindlin plate theory

5.2.2 Other axisymmetric load cases

In this section, the solutions for a Mindlin plate excited by a constant harmonic ring
load and a constant harmonic circular load, shown in Figures 5.3a and 5.3b, are derived.
Since the problems are axisymmetric, two different approaches can be used to find the
solutions. In the first approach, an analytical integration of the point force solution, given
in Equations (5.46) – (5.48), is performed, using the addition theorems for Bessel functions.
A similar technique has been applied in [285] for the analysis of pavement structures. The
second technique is based on the Hankel transform and a direct evaluation of the resulting
integrals.

(a) Constant ring load (b) Constant circular load

Figure 5.3: Other axisymmetric load cases

Constant ring load

The constant ring load, illustrated in Figure 5.3a, is given by

qring(ř) = q0 δ(ř − r0), (5.50)

where q0 is the load per unit length and r0 the radius of the constant ring load. Since the
governing equations of the Mindlin plate theory are linear partial differential equations,
the solution for an arbitrary distributed load can be found by an integration of the unit
point force solution multiplied by the load distribution. This results in

wring(r, ϕ) =
∫ ∞
ř=0

∫ 2π

ϕ̌=0
qring(ř)wpoint(r, ϕ, ř, ϕ̌) ř dϕ̌dř, (5.51)

ψr, ring(r, ϕ) =
∫ ∞
ř=0

∫ 2π

ϕ̌=0
qring(ř)ψr, point(r, ϕ, ř, ϕ̌) ř dϕ̌dř, (5.52)

ψϕ, ring(r, ϕ) =
∫ ∞
ř=0

∫ 2π

ϕ̌=0
qring(ř)ψϕ, point(r, ϕ, ř, ϕ̌) ř dϕ̌dř, (5.53)

where Equations (5.46) – (5.48) are applied.
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5 Particular solution functions for plate bending vibrations

The integrals with respect to ϕ̌ can be evaluated using the addition theorems for Bessel
functions [281, 283]

H(2)
0 (γ z) = J0(γ a) H(2)

0 (γ b) + 2
∞∑
m=1

Jm(γ a) H(2)
m (γ b) cos(mβ), (5.54)

z−1 H(2)
1 (γ z) = 2

γ a b

∞∑
m=0

(m+ 1) Jm+1(γ a) H(2)
m+1(γ b) sin((m+ 1)β)

sin(β) , (5.55)

b− a e−jβ

z
H(2)

1 (γ z) =
∞∑

m=−∞
Jm(γ a) H(2)

m+1(γ b) e jmβ , (5.56)

with z =
√
a2 + b2 − 2 a b cos(β) and the restriction b > a > 0. Applying the integral

formulas for trigonometric functions∫ 2π

ϕ̌=0
e jm (ϕ−ϕ̌) dϕ̌ =

{
2π, m = 0
0, m ∈ Z |m , 0

, (5.57)

∫ 2π

ϕ̌=0
cos(m (ϕ− ϕ̌)) dϕ̌ =

{
2π, m = 0
0, m ∈ Z |m , 0

, (5.58)

∫ 2π

ϕ̌=0
sin(m (ϕ− ϕ̌)) dϕ̌ = 0, m ∈ Z, (5.59)

leads to

wring(r) = jπ
2D

(
k2
f1 − k2

f2

)



∫ ∞
ř=0

qring(ř)
(

J0(kf1 ř) H(2)
0 (kf1 r)

µ1 − 1

−J0(∓kf2 ř) H(2)
0 (∓kf2 r)

µ2 − 1

)
ř dř,

r > ř,

∫ ∞
ř=0

qring(ř)
(

J0(kf1 r) H(2)
0 (kf1 ř)

µ1 − 1

−J0(∓kf2 r) H(2)
0 (∓kf2 ř)

µ2 − 1

)
ř dř,

r < ř,

(5.60)

ψr, ring(r) = −jπ
2D

(
k2
f1 − k2

f2

)



∫ ∞
ř=0

qring(ř)
(
kf1 J0(kf1 ř) H(2)

1 (kf1 r)

±kf2 J0(∓kf2 ř) H(2)
1 (∓kf2 r)

)
ř dř,

r > ř,

∫ ∞
ř=0

qring(ř)
(
kf1 J1(kf1 r) H(2)

0 (kf1 ř)

±kf2 J1(∓kf2 r) H(2)
0 (∓kf2 ř)

)
ř dř,

r < ř,

(5.61)

ψϕ, ring(r) = 0, (5.62)

where the cases r > ř and r < ř have to be distinguished. Since the problem is axisym-
metric for the chosen coordinate system, the results are independent of ϕ and the rotation
ψϕ, ring(r) is equal to zero.
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5.2 Particular solutions for the Mindlin plate theory

The integration with respect to ř leads to the final results

wring(r) = j q0 π r0

2D
(
k2
f1 − k2

f2

)



(
J0(kf1 r0) H(2)

0 (kf1 r)
µ1 − 1

−J0(∓kf2 r0) H(2)
0 (∓kf2 r)

µ2 − 1

)
,

r > r0,

(
J0(kf1 r) H(2)

0 (kf1 r0)
µ1 − 1

−J0(∓kf2 r) H(2)
0 (∓kf2 r0)

µ2 − 1

)
,

r < r0,

(5.63)

ψr, ring(r) = −j q0 π r0

2D
(
k2
f1 − k2

f2

)



(
kf1 J0(kf1 r0) H(2)

1 (kf1 r)

±kf2 J0(∓kf2 r0) H(2)
1 (∓kf2 r)

)
,

r > r0,

(
kf1 J1(kf1 r) H(2)

0 (kf1 r0)

±kf2 J1(∓kf2 r) H(2)
0 (∓kf2 r0)

)
,

r < r0,

(5.64)

where the integration property of the Dirac delta function is used. From Equation (5.63) it
is apparent that the out-of-plane displacement is finite at r = 0 and continuous at r = r0.
The formula for the Wronskian determinant of Bessel functions [284]

J1(x) H(2)
0 (x)− J0(x) H(2)

1 (x) = − 2 i
πx

(5.65)

can be applied to show the continuity of the rotation ψr, ring at r = r0.

In the second solution technique, the zero-order Hankel transform of the constant ring
load

q̃ring(kr) = q0 r0 J0(kr r0) (5.66)

is combined with the transformed solutions of the Mindlin plate given in Equations (5.14)
and (5.15) and the inverse Hankel transform is applied

wring(r) = S q0 r0
D

∫ ∞
kr=0

k2
r −Rk4

b + S−1(
k2
r − k2

f1

)(
k2
r − k2

f2

) kr J0(kr r) J0(kr r0) dkr, (5.67)

ψr, ring(r) = q0 r0
D

∫ ∞
kr=0

k2
r(

k2
r − k2

f1

)(
k2
r − k2

f2

) J1(kr r) J0(kr r0) dkr. (5.68)

The evaluation of these integrals can be done by the general formula for integrals involving
products of two Bessel functions [286]∫ ∞

x=0

xµ−ν+2 `+1

x2 + a2 Jµ(p x) Jν(q x)dx = (−1)` aµ−ν+2 ` Kµ(p a) Iν(q a) ` ∈N0, (5.69)
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with the restrictions

− (`+ 1) < Re[µ] < Re[ν]− 2 `+ 2 and p > q and − π

2 < arg[a] < π

2 (5.70)

and In(•) the nth-order modified Bessel function of the first kind. Using the partial fraction
decompositions

S
(
k2
r −Rk4

b + S−1)(
k2
r − k2

f1

)(
k2
r − k2

f2

) = 1
k2
f1 − k2

f2

(
−1

(µ1 − 1) (k2
r − k2

f1) + 1
(µ2 − 1) (k2

r − k2
f2)

)
, (5.71)

kr(
k2
r − k2

f1

)(
k2
r − k2

f2

) = 1
k2
f1 − k2

f2

(
kr

k2
r − k2

f1
− kr
k2
r − k2

f2

)

= 1
kr
(
k2
f1 − k2

f2

)( k2
f1

k2
r − k2

f1
−

k2
f2

k2
r − k2

f2

)
,

(5.72)

and the parameters µ = 0, ν = 0 and l = 0 to evaluate the integral in Equation (5.67)
and the parameters µ = 1, ν = 0, l = 0 for r > r0 and µ = 0, ν = 1, l = 0 for r < r0 to
integrate Equation (5.68) result in

wring(r) = −q0 r0

D
(
k2
f1 − k2

f2

)



( I0(j kf1 r0) K0(j kf1 r)
µ1 − 1

− I0(∓j kf2 r0) K0(∓j kf2 r)
µ2 − 1

)
,

r > r0,

( I0(j kf1 r) K0(j kf1 r0)
µ1 − 1

− I0(∓j kf2 r) K0(∓j kf2 r0)
µ2 − 1

)
,

r < r0,

(5.73)

ψr, ring(r) = j q0 r0

D
(
k2
f1 − k2

f2

)


(kf1 I0(j kf1 r0) K1(j kf1 r)
±kf2 I0(∓j kf2 r0) K1(∓j kf2 r)),

r > r0,

(−kf1 I1(j kf1 r) K0(j kf1 r0)
∓kf2 I1(∓j kf2 r) K0(∓j kf2 r0)),

r < r0,

(5.74)

which become equivalent to Equations (5.63) and (5.64) if the relations between the Bessel
functions

I0(z) = J0(−j z), I1(z) = j J1(−j z), −π < arg[z] ≤ 1
2 π, (5.75)

and the relations shown in Equation (5.45) are applied.

If the radius of the ring load approaches zero and the load per unit length is set to
q0 7→ q0

2π r0
, the ring load becomes equivalent to a point load. Using J0(0) = 1 or I0(0) = 1,

it follows from Equations (5.63) and (5.64) or Equations (5.73) and (5.74) that wring(r) =
wpoint(r) and ψr, ring(r) = ψr, point(r) for r0 → 0.

The out-of-plane displacement wring(r) and the rotation ψr, ring(r) of a steel plate (pa-
rameters as in the previous section) excited by a constant ring load (q0 = 1

2π r0
N/m,
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5.2 Particular solutions for the Mindlin plate theory

r0 = 0.8 m) at angular frequency ω = 1200 rad/s are illustrated in Figure 5.4. The shear
correction factor kW is applied. The out-of-plane displacement and the rotation are con-
tinuous at r = r0 and are decaying with rising r (more pronounced for higher η). The
maximum displacement and rotation are approximately five times lower compared to the
point force excitation, even though the total load is equivalent in both cases.
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(a) Out-of-plane displacement
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(b) Rotation about the ϕ-axis

Figure 5.4: Out-of-plane displacement wring and rotation about the ϕ-axis ψr, ring of an
infinite Mindlin plate excited by a harmonic ring load with r0 = 0.8

Constant circular load

The constant circular load, shown in Figure 5.3b, is defined by

qcirc(ř) = q0 H(r0 − ř), (5.76)

where q0 is the amplitude of the surface pressure, H(•) the Heaviside step function and r0
the radius of the constant circular load. Similar to the solution of the constant ring load,
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5 Particular solution functions for plate bending vibrations

an integration of the unit point force solution multiplied by the circular load distribution
can be applied to find the out-of-plane displacement and the rotations

wcirc(r, ϕ) =
∫ ∞
ř=0

∫ 2π

ϕ̌=0
qcirc(ř)wpoint(r, ϕ, ř, ϕ̌) ř dϕ̌dř, (5.77)

ψr, circ(r, ϕ) =
∫ ∞
ř=0

∫ 2π

ϕ̌=0
qcirc(ř)ψr, point(r, ϕ, ř, ϕ̌) ř dϕ̌dř, (5.78)

ψϕ, circ(r, ϕ) =
∫ ∞
ř=0

∫ 2π

ϕ̌=0
qcirc(ř)ψϕ, point(r, ϕ, ř, ϕ̌) ř dϕ̌dř. (5.79)

The integration with respect to ϕ̌ is equivalent to the integrations from Equations (5.51) –
(5.53) to Equations (5.60) – (5.62). Applying the property of the Heaviside step function
leads to

wcirc(r) = j q0 π

2D
(
k2
f1 − k2

f2

)



∫ r0

ř=0

(
J0(kf1 ř) H(2)

0 (kf1 r)
µ1 − 1

−J0(∓kf2 ř) H(2)
0 (∓kf2 r)

µ2 − 1

)
ř dř,

r > r0,

(∫ r

ř=0

(
J0(kf1 ř) H(2)

0 (kf1 r)
µ1 − 1

−J0(∓kf2 ř) H(2)
0 (∓kf2 r)

µ2 − 1

)
ř dř

+
∫ r0

ř=r

(
J0(kf1 r) H(2)

0 (kf1 ř)
µ1 − 1

−J0(∓kf2 r) H(2)
0 (∓kf2 ř)

µ2 − 1

)
ř dř

)
,

r < r0,

(5.80)

ψr, circ(r) = −j q0 π

2D
(
k2
f1 − k2

f2

)



∫ r0

ř=0

(
kf1 J0(kf1 ř) H(2)

1 (kf1 r)

±kf2 J0(∓kf2 ř) H(2)
1 (∓kf2 r)

)
ř dř,

r > r0,

(∫ r

ř=0

(
kf1 J0(kf1 ř) H(2)

1 (kf1 r)

±kf2 J0(∓kf2 ř) H(2)
1 (∓kf2 r)

)
ř dř

+
∫ r0

ř=r

(
kf1 J1(kf1 r) H(2)

0 (kf1 ř)

±kf2 J1(∓kf2 r) H(2)
0 (∓kf2 ř)

)
ř dř

)
,

r < r0,

(5.81)

ψϕ, circ(r) = 0, (5.82)

where the cases r > r0 and r < r0 have to be distinguished.
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To evaluate the integrals in Equations (5.80) and (5.81), the recurrence formulas for Bessel
and Hankel functions [281]

d
dz (z J1(z)) = z J0(z) → z J1(z) =

∫
z J0(z) dz, (5.83)

d
dz
(
zH(2)

1 (z)
)

= zH(2)
0 (z) → zH(2)

1 (z) =
∫
zH(2)

0 (z) dz, (5.84)

and the formula for the Wronskian determinant of Bessel functions, given in Equation
(5.65), can be applied. The integration with respect to ř leads to the final results

wcirc(r) = j q0 π r0

2D
(
k2
f1 − k2

f2

)



(
J1(kf1 r0) H(2)

0 (kf1 r)
(µ1 − 1) kf1

±J1(∓kf2 r0) H(2)
0 (∓kf2 r)

(µ2 − 1) kf2

)
,

r > r0,

J0(kf1 r) H(2)
1 (kf1 r0)− 2 j

π kf1 r0

(µ1 − 1) kf1

±
J0(∓kf2 r) H(2)

1 (∓kf2 r0)± 2 j
π kf2 r0

(µ2 − 1) kf2

,
r < r0,

(5.85)

ψr, circ(r) = −j q0 π r0

2D
(
k2
f1 − k2

f2

)



(
J1(kf1 r0) H(2)

1 (kf1 r)

−J1(∓kf2 r0) H(2)
1 (∓kf2 r)

)
,

r > r0,

(
J1(kf1 r) H(2)

1 (kf1 r0)

−J1(∓kf2 r) H(2)
1 (∓kf2 r0)

)
,

r < r0,

(5.86)

where the continuity of the rotation ψr, circ at r = r0 is apparent from Equation (5.86)
and can be shown for the out-of-plane displacement wcirc by using Equation (5.65).

The results in Equations (5.85) and (5.86) can also be derived by the Hankel transform of
the constant circular load, which is given by

q̃circ(kr) = q0 r0
kr

J1(kr r0). (5.87)

Using the transformed solutions of the Mindlin plate (Equations (5.14) and (5.15)) and
the inverse Hankel transform leads to

wcirc(r) = S q0 r0
D

∫ ∞
kr=0

k2
r −Rk4

b + S−1(
k2
r − k2

f1

)(
k2
r − k2

f2

) J0(kr r) J1(kr r0) dkr, (5.88)

ψr, circ(r) = q0 r0
D

∫ ∞
kr=0

kr(
k2
r − k2

f1

)(
k2
r − k2

f2

) J1(kr r) J1(kr r0) dkr. (5.89)
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5 Particular solution functions for plate bending vibrations

The integrals in Equations (5.88) and (5.89) can be evaluated by the general formula given
in Equation (5.69) and the partial fraction decompositions, shown in Equations (5.71) and
(5.72). The parameters µ = 0, ν = 1 and l = 0 have to be applied to solve Equation (5.88)
for r > r0, while an expanding of the fractions in Equation (5.71) to

1
k2
r − k2

f1
= 1
k2
f1

(
k2
r

k2
r − k2

f1
− 1

)
, (5.90)

1
k2
r − k2

f2
= 1
k2
f2

(
k2
r

k2
r − k2

f2
− 1

)
(5.91)

is necessary to find the solution of Equation (5.88) for r < r0. After the expansion, the
parameters µ = 1, ν = 0 and l = 0 can be used to evaluate the integrals involving the
rational terms while the integrals with the constant factors are forms of discontinuous
Weber-Schafheitlin integrals [281]∫ ∞

x=0
J0(q x) J1(p x) dx =

{
0, p < q
1
p , p > q

. (5.92)

Finally, the parameters µ = 1, ν = 1 and l = 0 are used to evaluate the integrals in
Equation (5.89), leading to

wcirc(r) = j q0 r0

D
(
k2
f1 − k2

f2

)



(
I1(j kf1 r0) K0(j kf1 r)

(µ1 − 1) kf1

± I1(∓j kf2 r0) K0(∓j kf2 r)
(µ2 − 1) kf2

)
,

r > r0,

− I0(j kf1 r) K1(j kf1 r0) + j
kf1 r0

(µ1 − 1) kf1

∓
I0(∓j kf2 r) K1(∓j kf2 r0)∓ j

kf2 r0

(µ2 − 1) kf2

,
r < r0,

(5.93)

ψr, circ(r) = q0 r0

D
(
k2
f1 − k2

f2

)


(I1(j kf1 r0) K1(j kf1 r)
−I1(∓j kf2 r0) K1(∓j kf2 r)),

r > r0,

(I1(j kf1 r) K1(j kf1 r0)
−I1(∓j kf2 r) K1(∓j kf2 r0)),

r < r0,

(5.94)

which become equivalent to Equations (5.85) and (5.86) if the relations between the Bessel
function in Equations (5.45) and (5.75) are applied. The point force solution can be found
as a limiting case of Equations (5.85) and (5.86) or Equations (5.93) and (5.94) by setting
q0 7→ q0

π r2
0

and using the limits

lim
r0→0

J1(z r0)
r0

= z

2 , (5.95)

lim
r0→0

I1(z r0)
r0

= z

2 . (5.96)
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5.2 Particular solutions for the Mindlin plate theory

In Figure 5.5, the out-of-plane displacement wcirc(r) and the rotation ψr, circ(r) of a
steel plate (same parameters as in Figure 5.1) excited by a constant circular load (q0 =

1
π r2

0
N/m2, r0 = 0.8 m) at angular frequency ω = 1200 rad/s are shown . The shear cor-

rection factor kW is used. Similar to the constant ring load excitation, the out-of-plane
displacement and the rotation are continuous at r = r0 and are decaying with rising r. The
maximum displacement and rotation are even lower compared to the ring load excitation,
which is expected since the load is spread over a larger area.
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(a) Out-of-plane displacement
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(b) Rotation about the ϕ-axis

Figure 5.5: Out-of-plane displacement wcirc and rotation about the ϕ-axis ψr, circ of an
infinite Mindlin plate excited by a harmonic circular load with r0 = 0.8

5.2.3 Non-axisymmetric loading

For certain types of non-axisymmetric loadings, a closed-form solution for the out-of-plane
displacement and the rotations can be found by the analytical integration of the point force
solution. A practically important non-axisymmetric loading, which occurs when a circular
cylinder is mounted to a plate and excited by a harmonic horizontal force [287], is shown
in Figure 5.6.
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5 Particular solution functions for plate bending vibrations

Figure 5.6: Alternating circular load

The alternating circular load is given in polar coordinates by

qac(ř, ϕ̌) = q0 ř

r0
H(r0 − ř) cos(ϕ̌), (5.97)

where q0 is the maximum amplitude and r0 the radius of the alternating circular load.
The integration of the point force solution multiplied with the given loading leads to the
out-of-plane displacement and rotations

wac(r, ϕ) =
∫ ∞
ř=0

∫ 2π

ϕ̌=0
qac(ř)wpoint(r, ϕ, ř, ϕ̌) ř dϕ̌ dř, (5.98)

ψr, ac(r, ϕ) =
∫ ∞
ř=0

∫ 2π

ϕ̌=0
qac(ř)ψr, point(r, ϕ, ř, ϕ̌) ř dϕ̌ dř, (5.99)

ψϕ, ac(r, ϕ) =
∫ ∞
ř=0

∫ 2π

ϕ̌=0
qac(ř)ψϕ, point(r, ϕ, ř, ϕ̌) dϕ̌ ř dř. (5.100)

The evaluation of these integrals with respect to ϕ̌ results in

wac(r, ϕ) = j q0 π cos(ϕ)
2D

(
k2
f1 − k2

f2

)
r0



∫ r0

ř=0

(
J1(kf1 ř) H(2)

1 (kf1 r)
µ1 − 1

−J1(∓kf2 ř) H(2)
1 (∓kf2 r)

µ2 − 1

)
ř2 dř,

r > r0,

(∫ r

ř=0

(
J1(kf1 ř) H(2)

1 (kf1 r)
µ1 − 1

−J1(∓kf2 ř) H(2)
1 (∓kf2 r)

µ2 − 1

)
ř2 dř

+
∫ r0

ř=r

(
J1(kf1 r) H(2)

1 (kf1 ř)
µ1 − 1

−J1(∓kf2 r) H(2)
1 (∓kf2 ř)

µ2 − 1

)
ř2 dř

)
,

r < r0,

(5.101)
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5.2 Particular solutions for the Mindlin plate theory

ψr, ac(r, ϕ) = j q0 π cos(ϕ)
4D

(
k2
f1 − k2

f2

)
r0



∫ r0

ř=0

(
H(2)

0 (kf1 r)−H(2)
2 (kf1 r)

(kf1 J1(kf1 ř))−1

±H(2)
0 (∓kf2 r)−H(2)

2 (∓kf2 r)
(kf2 J1(∓kf2 ř))−1

)
ř2 dř,

r > r0,

(∫ r

ř=0

(
H(2)

0 (kf1 r)−H(2)
2 (kf1 r)

(kf1 J1(kf1 ř))−1

±H(2)
0 (∓kf2 r)−H(2)

2 (∓kf2 r)
(kf2 J1(∓kf2 ř))−1

)
ř2 dř

+
∫ r0

ř=r

(
J0(kf1 r)− J2(kf1 r)(
kf1 H(2)

1 (kf1 ř)
)−1

± J0(∓kf2 r)− J2(∓kf2 r)(
kf2 H(2)

1 (∓kf2 ř)
)−1

)
ř2 dř

)
,

r < r0,

(5.102)

ψϕ, ac(r, ϕ) = −j q0 π sin(ϕ)
2D

(
k2
f1 − k2

f2

)
r0 r



∫ r0

ř=0

(
J1(kf1 ř) H(2)

1 (kf1 r)

−J1(∓kf2 ř) H(2)
1 (∓kf2 r)

)
ř2 dř,

r > r0,

(∫ r

ř=0

(
J1(kf1 ř) H(2)

1 (kf1 r)

−J1(∓kf2 ř) H(2)
1 (∓kf2 r)

)
ř2 dř

+
∫ r0

ř=r

(
J1(kf1 r) H(2)

1 (kf1 ř)

−J1(∓kf2 r) H(2)
1 (∓kf2 ř)

)
ř2 dř

)
,

r < r0,

(5.103)

where the addition theorems for Bessel functions (Equations (5.54) – (5.56)) and the inte-
gral formulas for trigonometric functions∫ 2π

ϕ̌=0
cos(ϕ̌) e jm (ϕ−ϕ̌) dϕ̌ =

{
π e±jϕ, m = ±1
0, m ∈ Z |m , ±1

, (5.104)

∫ 2π

ϕ̌=0
cos(ϕ̌) cos(m (ϕ− ϕ̌)) dϕ̌ =

{
π cos(ϕ), m = 1
0, m ∈N0 |m , 1

, (5.105)

∫ 2π

ϕ̌=0
cos(ϕ̌) sin(m (ϕ− ϕ̌)) dϕ̌ =

{
π sin(ϕ), m = 1
0, m ∈N0 |m , 1

, (5.106)

are applied. The recurrence formulas for Bessel and Hankel functions [281]

d
dz
(
z2 J2(z)

)
= z2 J1(z) → z2 J2(z) =

∫
z2 J1(z) dz, (5.107)

d
dz
(
z2 H(2)

2 (z)
)

= z2 H(2)
1 (z) → z2 H(2)

2 (z) =
∫
z2 H(2)

1 (z) dz, (5.108)
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5 Particular solution functions for plate bending vibrations

and the Wronskian determinants of Bessel functions [284]

J1(x) H(2)
2 (x)− J2(x) H(2)

1 (x) = 2 i
πx

(5.109)

J2(x) H(2)
0 (x)− J0(x) H(2)

2 (x) = − 4 i
πx2 (5.110)

allow for the integration with respect to ř, which leads to the final results

wac(r, ϕ) = j q0 π r0 cos(ϕ)
2D

(
k2
f1 − k2

f2

)



(
J2(kf1 r0) H(2)

1 (kf1 r)
kf1 (µ1 − 1)

±J2(∓kf2 r0) H(2)
1 (∓kf2 r)

kf2 (µ2 − 1)

)
,

r > r0,

J1(kf1 r) H(2)
2 (kf1 r0)− 2 j r

π kf1 r2
0

kf1 (µ1 − 1)

±
J1(∓kf2 r) H(2)

2 (∓kf2 r0)± 2 j r
π kf2 r2

0

kf2 (µ2 − 1)

,
r < r0,

(5.111)

ψr, ac(r, ϕ) = j q0 π r0 cos(ϕ)
4D

(
k2
f1 − k2

f2

)



(
H(2)

0 (kf1 r)−H(2)
2 (kf1 r)

J2(kf1 r0)−1

−H(2)
0 (∓kf2 r)−H(2)

2 (∓kf2 r)
J2(∓kf2 r0)−1

)
,

r > r0,

(
J0(kf1 r)− J2(kf1 r)

H(2)
2 (kf1 r0)−1 − 4 j

π k2
f1 r

2
0

−J0(∓kf2 r)− J2(∓kf2 r)
H(2)

2 (∓kf2 r0)−1 + 4 j
π k2

f2 r
2
0

)
,

r < r0,

(5.112)

ψϕ, ac(r, ϕ) = −j q0 π r0 sin(ϕ)
2D

(
k2
f1 − k2

f2

)
r



(
J2(kf1 r0) H(2)

1 (kf1 r)
kf1

±J2(∓kf2 r0) H(2)
1 (∓kf2 r)

kf2

)
,

r > r0,

J1(kf1 r) H(2)
2 (kf1 r0)− 2 j r

π kf1 r2
0

kf1

±
J1(∓kf2 r) H(2)

2 (∓kf2 r0)± 2 j r
π kf2 r2

0

kf2

,
r < r0,

(5.113)

where the cases r > r0 and r < r0 have to be distinguished.
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5.2 Particular solutions for the Mindlin plate theory

Since the loading is not axisymmetric, the out-of-plane displacement and the rotations
depend on r and ϕ. The continuity of the field variables wac, ψr, ac and ψϕ, ac at r = r0 is
apparent if the Wronskian determinants given in Equations (5.109) and (5.110) are applied.
The out-of-plane displacement wac(r, ϕ) and the rotations ψr, ac(r, ϕ) and ψϕ, ac(r, ϕ) of a
damped steel plate (η = 0.05) excited by an alternating circular load (q0 = 1 N/m2,
r0 = 0.8 m) at angular frequency ω = 1200 rad/s are illustrated in Figure 5.7.
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Figure 5.7: Out-of-plane displacement wac and rotations ψr, ac and ψϕ, ac of an infinite
Mindlin plate excited by a harmonic alternating circular load with r0 = 0.8
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5 Particular solution functions for plate bending vibrations

5.3 Particular solutions for the Kirchhoff plate theory

The particular solution functions for the Kirchhoff plate theory can be obtained as a
special case of the Mindlin plate solutions. If the rotatory inertia is neglected and the
shear modulus is set to infinity (neglecting the shear deformation), the Mindlin plate
theory reduces to the Kirchhoff plate theory [11]. In this case, the constants in Equation
(2.69) are given by R = 0, S = 0, µ1 = 0 and µ2 = 0 and the wavenumbers, defined in
Equations (2.66) and (2.67), become kf1 = kb and kf2 = j kb with kb = 4

√
k4
b . Furthermore,

the cut-off frequency ωc rises to infinity and therefore ω is always less than ωc. Using these
simplifications in the solutions of the Mindlin plate (Equations (5.40), (5.41), (5.63), (5.64),
(5.85), (5.86), (5.111) – (5.113)) leads to the following results for the Kirchhoff plate:

a.) Point force

wpoint(r) = j q0
8Dk2

b

(
−H(2)

0 (kb r) + H(2)
0 (−j kb r)

)
, (5.114)

ψr, point(r) = − j q0
8Dkb

(
H(2)

1 (kb r) + j H(2)
1 (−j kb r)

)
. (5.115)

b.) Constant ring load

wring(r) = j q0 π r0
4Dk2

b



(
−J0(kb r0) H(2)

0 (kb r)

+J0(−j kb r0) H(2)
0 (−j kb r)

)
,

r > r0,

(
−J0(kb r) H(2)

0 (kb r0)

+J0(−j kb r) H(2)
0 (−j kb r0)

)
,

r < r0,

(5.116)

ψr, ring(r) = −j q0 π r0
4Dkb



(
J0(kb r0) H(2)

1 (kb r)

+j J0(−j kb r0) H(2)
1 (−j kb r)

)
,

r > r0,

(
J1(kb r) H(2)

0 (kb r0)

+j J1(−j kb r) H(2)
0 (−j kb r0)

)
,

r < r0.

(5.117)

c.) Constant circular load

wcirc(r) = j q0 π r0
4Dk3

b



(
−J1(kb r0) H(2)

0 (kb r)

+j J1(−j kb r0) H(2)
0 (−j kb r)

)
,

r > r0,

( 4 j
π kb r0

− J0(kb r) H(2)
1 (kb r0)

+ j J0(−j kb r) H(2)
1 (−j kb r0)

)
,

r < r0,

(5.118)

ψr, circ(r) = −j q0 π r0
4Dk2

b



(
J1(kb r0) H(2)

1 (kb r)

−J1(−j kb r0) H(2)
1 (−j kb r)

)
,

r > r0,

(
J1(kb r) H(2)

1 (kb r0)

−J1(−j kb r) H(2)
1 (−j kb r0)

)
,

r < r0.

(5.119)
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d.) Alternating circular load

wac(r, ϕ) = j q0 π r0 cos(ϕ)
4Dk3

b



(
−J2(kb r0) H(2)

1 (kb r)

+j J2(−j kb r0) H(2)
1 (−j kb r)

)
,

r > r0,

( 4 j r
π kb r

2
0
− J1(kb r) H(2)

2 (kb r0)

+ j J1(−j kb r) H(2)
2 (−j kb r0)

)
,

r < r0,

(5.120)

ψr, ac(r, ϕ) = j q0 π r0 cos(ϕ)
8Dk2

b



(
H(2)

0 (kb r)−H(2)
2 (kb r)

J2(kb r0)−1

−H(2)
0 (−j kb r)−H(2)

2 (−j kb r)
J2(−j kb r0)−1

)
,

r > r0,

( −8 j
π k2

b r
2
0

+ J0(kb r)− J2(kb r)
H(2)

2 (kb r0)−1

− J0(−j kb r)− J2(−j kb r)
H(2)

2 (−j kb r0)−1

)
,

r < r0,

(5.121)

ψϕ, ac(r, ϕ) = −j q0 π r0 sin(ϕ)
4Dk3

b r



(
J2(kb r0) H(2)

1 (kb r)

−j J2(−j kb r0) H(2)
1 (−j kb r)

)
,

r > r0,

( −4 j r
π kb r

2
0

+ J1(kb r) H(2)
2 (kb r0)

− j J1(−j kb r) H(2)
2 (−j kb r0)

)
,

r < r0.

(5.122)

In the Kirchhoff plate theory, the rotations are not independent from the out-of-plane
displacement and can be computed by

ψr(r, ϕ) = −∂w(r, ϕ)
∂r

and ψϕ(r, ϕ) = −1
r

∂w(r, ϕ)
∂ϕ

. (5.123)

These relations are fulfilled by the results in Equations (5.114) – (5.122). The particular
solutions for the Kirchhoff plate theory can also be found in a paper from the present
author [288], which are identical to the present results.
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6 Extension of the Wave Based Method to
thick plate vibrations

The WBM for thin plate vibration problems (Kirchhoff plate theory) has been extensively
developed by Vanmaele and her co-workers [17, 16] including the definition of different
function sets and the treatment of corner stress singularities. Since the Kirchhoff plate
theory is limited to thin plates and low frequencies, see Section 2.3, an extension of the
WBM to thick plate vibrations using the Mindlin plate theory is shown in this chapter.

If stress singularities are present in the problem domain, the WBM suffers from conver-
gence problems [18] and therefore so-called special purpose functions have to be defined
to resolve this issue. In Section 6.1 stress singularities occurring within the Mindlin plate
theory are examined for static and dynamic deformations, which allows for the definition
of special purpose functions in a subsequent section. The application of the WBM to the
Mindlin plate theory is shown in Section 6.2, where the general description of the WBM
from Section 4.1 is specialized for vibrations of Mindlin plates. In Section 6.3, a modified
selection of the wave functions is presented, which leads to a higher accuracy and stability
of the WBM. Several validation examples with convex and non-convex domains having
different boundary conditions are investigated in Section 6.4. A comparison of the WBM
and the classical FEM over a wide frequency range is presented and the effect of differ-
ent function sets and special purpose functions on the convergence rate of the WBM is
shown.

6.1 Stress singularities in the Mindlin plate theory

Singularities in the bending or shear stress field are of course physically impossible, but
they are a result of the modeling process and the linear theory of elasticity [289]. Such sin-
gularities may occur if plates are loaded with concentrated forces or moments, since finite
stress resultants are applied over regions with vanishingly small areas [289]. Furthermore,
singularities can appear if discontinuities in the plate domain or at the plate boundary are
present, e.g. rapid changes of the plate thickness, the material parameters or the boundary
conditions. A particular case of stress singularities in the Mindlin plate theory arises in
the vicinity of an angular corner if a certain critical angle is reached [74, 290].

The singularities due to concentrated loads do not affect the convergence rate of the WBM,
since the included particular solution functions exactly represent the singular behaviour.
However, corner stress singularities have a strong influence on the stability and convergence
rate of the WBM, because the singularity in the stress field has to be constructed with
plane wave functions [18].
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6 Extension of the Wave Based Method to thick plate vibrations

Therefore, the corner bending and shear force singularities appearing in Mindlin plates
are analyzed in the subsequent sections. The following assumptions, which have also been
used in [17] for Kirchhoff plates, are made for the analytical study of the corner stress
singularities:

• An external loading has no effect on the stress singularities in the corner point
provided that the loading is integrable [291].

• The boundary conditions applied at edges away from the corner point hardly affect
the stresses in the vicinity of the corner [291].

• The plate consists of a single linear elastic material (an extension to multiple mate-
rials is possible).

Through these assumptions, a study of an unloaded infinite wedge domain with an internal
angle α, see Figure 6.1, can be performed to investigate the stress singularities at the corner
point (r = 0).

In Section 6.1.1 the vibrations of the infinite wedge domain are analyzed and the behaviour
of the bending moments and shear forces in the vicinity of the corner is investigated. Since
an exact dynamic solution can only be defined for hard simply-supported radial edges, the
static solution of the infinite wedge domain is stated in Section 6.1.2 for arbitrary boundary
conditions. A comparison of the singular stress behaviour in the static and dynamic case
is presented in Section 6.1.3.

6.1.1 Vibrations of an infinite wedge domain

The exact solutions for the free vibrations of thick sectorial plates with simply-supported
radial edges have been presented by Huang et al. [74] and are the basis for the following
derivations. Compared to [74], the boundary conditions at the circumferential edge are not
included and a differentiation between symmetric and antisymmetric bending deformation
is made. In general, the material loss factor η is unequal to zero and therefore, the
differentiation between the cases ω > ωc and ω < ωc, which has been performed by Huang
and his co-workers [74], is omitted.

Figure 6.1: Infinite wedge domain without external loading
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6.1 Stress singularities in the Mindlin plate theory

General analytical solution for an infinite wedge

In the absence of external loadings (q = 0, mx = 0, my = 0), the governing equations of
the Mindlin plate theory are given in polar coordinates by [292](

∇2 + k2
f1
)
w1(r, ϕ) = 0, (6.1)(

∇2 + k2
f2
)
w2(r, ϕ) = 0, (6.2)(

∇2 + k2
s

)
H(r, ϕ) = 0, (6.3)

where∇2 = ∂2

∂r2 + 1
r
∂
∂r+ 1

r2
∂2

∂ϕ2 is the two-dimensional Laplace operator in polar coordinates.
The out-of-plane displacement w(r, ϕ) and the rotations ψr(r, ϕ) and ψϕ(r, ϕ) are defined
by [292]

w(r, ϕ) = w1(r, ϕ) + w2(r, ϕ), (6.4)

ψr(r, ϕ) = (µ1 − 1) ∂w1(r, ϕ)
∂r

+ (µ2 − 1) ∂w2(r, ϕ)
∂r

+ 1
r

∂H(r, ϕ)
∂ϕ

, (6.5)

ψϕ(r, ϕ) = (µ1 − 1) 1
r

∂w1(r, ϕ)
∂ϕ

+ (µ2 − 1) 1
r

∂w2(r, ϕ)
∂ϕ

− ∂H(r, ϕ)
∂r

, (6.6)

where the constants from Equation (2.69) are used.

The general analytical solutions of Equations (6.1) – (6.3) proposed in [74] do not distin-
guish between symmetric and antisymmetric bending. Therefore, the modified general
solutions

w1(r, ϕ) =
∞∑
k=1

cos(λsk ϕ) R1λs
k
(kf1 r) + sin(λak ϕ) R1λa

k
(kf1 r), (6.7)

w2(r, ϕ) =
∞∑
k=1

cos(λsk ϕ) R2λs
k
(kf2 r) + sin(λak ϕ) R2λa

k
(kf2 r), (6.8)

H(r, ϕ) =
∞∑
k=1
− sin(λsk ϕ) R3λs

k
(ks r) + cos(λak ϕ) R3λa

k
(ks r), (6.9)

with
R1λ(kf1 r) = A1λ Jλ(kf1 r) +B1λ Yλ(kf1 r),
R2λ(kf2 r) = A2λ Jλ(kf2 r) +B2λ Yλ(kf2 r), λ = λsk orλak,
R3λ(ks r) = A3λ Jλ(ks r) +B3λ Yλ(ks r),

(6.10)

are used, where the eigenvalues λ depend on the prescribed boundary conditions at ϕ =
±α/2 and symmetric bending modes are associated with λsk, while λak lead to antisymmetric
bending modes. In Equation (6.10), Aiλ and Biλ (i = {1, 2, 3}) are arbitrary constants,
which are determined by imposing three regularity conditions at r = 0 and three boundary
conditions at the circumferential edge. Since an infinite wedge domain is considered, only
the regularity conditions at r = 0 [74]

w(0, ϕ) = finite, (6.11)
ψr(0, ϕ) = finite, (6.12)
ψϕ(0, ϕ) = finite, (6.13)

are taken into account.
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6 Extension of the Wave Based Method to thick plate vibrations

Following the procedure shown in [74], first the regularity condition for the out-of-plane
displacement is imposed. Since the results for negative and positive values of λ lead to
identical admissible solution functions, only the case λ ≥ 0 is considered. Using the limit

lim
z→0

Jν(z) = finite, ν ≥ 0, (6.14)

in Equation (6.4) leads to

lim
r→0

w(r, ϕ) = lim
r→0

(B1λ Yλ(kf1 r) +B2λ Yλ(kf2 r)) = finite, (6.15)

where the multiplications with cos(λsk ϕ) or sin(λak ϕ) can be omitted. Applying the relation
[281]

Yν(z) = Jν(z) cos(ν π)− J−ν(z)
sin(ν π) , ν < Z (6.16)

and Equation (6.14) simplify Equation (6.15) to

lim
r→0

(
−B1λ

J−λ(kf1 r)
sin(λπ) −B2λ

J−λ(kf2 r)
sin(λπ)

)
= finite. (6.17)

The series representation of the Bessel function of the first kind [284]

Jν(z) =
∞∑
k=0

(−1)k z2k+ν

k! 22k+ν Γ(k + ν + 1) , (6.18)

with Γ(•) the gamma function and •! the factorial shows that the out-of-plane displacement
is only limited if all coefficients of r2k−λ with 2k − λ < 0 vanish. This leads to

B1λ k
−λ
f1 +B2λ k

−λ
f2 = 0, 0 ≤ λ ≤ 2, (6.19)

B1λ = B2λ = 0, λ > 2, (6.20)

since for λ > 2 more than one linearly independent equation has to be fulfilled and for
0 ≤ λ ≤ 2 only k = 0 has to be considered [74]. If λ is an integer value, a different
representation for the Bessel function of the second kind has to be applied, since the
relation in Equation (6.16) is only valid for non-integer values. The procedure is outlined
in Appendix D and leads to Equation (6.19) for λ = {0, 1, 2} and to Equation (6.20) for
λ = {3, 4, . . . }.
The second regularity condition for the rotation, lim

r→0
ψr(r, ϕ) = finite, can be simplified

to

lim
r→0

((µ1 − 1) kf1
2

(
C1λ Jλ−1(kf1 r) +B1λ

J−λ+1(kf1 r)− J−λ−1(kf1 r)
sin(λπ)

)

+(µ2 − 1) kf2
2

(
C2λ Jλ−1(kf2 r) +B2λ

J−λ+1(kf2 r)− J−λ−1(kf2 r)
sin(λπ)

)

−λ
r

(
C3λ Jλ(ks r)−B3λ

J−λ(ks r)
sin(λπ)

))
= finite,

(6.21)

where Equations (6.14) and (6.16), the recurrence formula for Bessel functions of the first
kind

dJν(z)
dz = 1

2(Jν−1(z)− Jν+1(z)) (6.22)
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6.1 Stress singularities in the Mindlin plate theory

and the identities sin((λ ± 1)π) = − sin(λπ) and tan((λ − 1)π) = tan(λπ) are used in
Equation (6.5). The multiplications with cos(λsk ϕ) or sin(λak ϕ) can be omitted in Equation
(6.21) and Ciλ = Aiλ +Biλ cot(λπ) (i = {1, 2, 3}). Substituting the series representation
of the Bessel function (Equation (6.18)) into Equation (6.21) and gathering terms with
the same exponents for the variable r lead to

lim
r→0

( ∞∑
k=0

(−1)k
(

(µ1 − 1) k2k−λ+2
f1 B1λ + (µ2 − 1) k2k−λ+2

f2 B2λ

k! 22k−λ+2 sin(λπ) Γ(k − λ+ 2) r2k−λ+1

+
(µ1 − 1) k2k+λ

f1 C1λ + (µ2 − 1) k2k+λ
f2 C2λ − λ

k+λ k
2k+λ
s C3λ

k! 22k+λ Γ(k + λ) r2k+λ−1

−
(µ1 − 1) k2k−λ

f1 B1λ + (µ2 − 1) k2k−λ
f2 B2λ − λ

k−λ k
2k−λ
s B3λ

k! 22k−λ sin(λπ) Γ(k − λ) r2k−λ−1
))

= finite,

(6.23)

where the relation Γ(k ± λ+ 1) = (k ± λ) Γ(k ± λ) is applied.

Using a similar procedure for the third regularity condition, lim
r→0

ψϕ(r, ϕ) = finite, gives

lim
r→0

( ∞∑
k=0

(−1)k
(

k2k−λ+2
s B3λ

k! 22k−λ+2 sin(λπ) Γ(k − λ+ 2) r
2k−λ+1

−
(µ1 − 1) k2k+λ

f1 C1λ + (µ2 − 1) k2k+λ
f2 C2λ − k+λ

λ k2k+λ
s C3λ

k! 22k+λ Γ(k + λ+ 1)λ−1 r2k+λ−1

+
(µ1 − 1) k2k−λ

f1 B1λ + (µ2 − 1) k2k−λ
f2 B2λ − k−λ

λ k2k−λ
s B3λ

k! 22k−λ sin(λπ) Γ(k − λ+ 1)λ−1 r2k−λ−1
))

= finite,

(6.24)

where the multiplications with sin(λsk ϕ) or − cos(λak ϕ) are omitted. As pointed out in
[74], different cases have to be distinguished to define the relations between the constants
Aiλ and Biλ (i = {1, 2, 3}).
Case I: λ ∈N0

For integer values of λ, a different representation of the Bessel function of the second
kind has to be applied. It is shown in Appendix D that the constants B1λ, B2λ and
B3λ have to be equal to zero and Aiλ (i = {1, 2, 3}) can be chosen arbitrary.

Case II: 0 < λ < 1

In this range, Equations (6.23) and (6.24) are only fulfilled if the coefficients of rλ−1

and r−λ−1 (k = 0) are equal to zero, since all other terms vanish in the limit r → 0.
Therefore, the two relations

(µ1 − 1) k−λf1 B1λ + (µ2 − 1) k−λf2 B2λ + k−λs B3λ = 0,
(
r−λ−1

)
(6.25)

(µ1 − 1) kλf1C1λ + (µ2 − 1) kλf2C2λ − kλs C3λ = 0,
(
rλ−1

)
(6.26)

have to be satisfied. It follows from Equation (6.19) that

B1λ = −
(
kf1
kf2

)λ
B2λ, (6.27)
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which can be used in Equation (6.25) to get

B3λ =
(
ks
kf2

)λ
(µ1 − µ2)B2λ. (6.28)

Rearranging Equation (6.26) finally leads to

B2λ =
(µ1 − 1) kλf1A1λ + (µ2 − 1) kλf2A2λ − kλs A3λ

cot(λπ) k−λf2

(
(µ1 − 1) k2λ

f1 − (µ2 − 1) k2λ
f2 + (µ1 − µ2) k2λ

s

) , (6.29)

while the constants Aiλ (i = {1, 2, 3}) can be chosen arbitrary.

Case III: 1 < λ < 2

In this case, the coefficients of r2k−λ+1 (k = 0) and r2k−λ−1 (k = {0, 1}) have to be
zero to fulfill the Equations (6.23) and (6.24), which leads to the conditions

(µ1 − 1) k−λf1 B1λ + (µ2 − 1) k−λf2 B2λ + k−λs B3λ = 0,
(
r−λ−1

)
, (6.30)

(µ1 − 1) k2−λ
f1 B1λ + (µ2 − 1) k2−λ

f2 B2λ − k2−λ
s f(λ)B3λ = 0,

(
r−λ+1

)
, (6.31)

where f(λ) = (λ/(2−λ))±1 (+ for ψr and − for ψϕ). Combining these conditions with
the relation in Equation (6.19) gives only the trivial solution B1λ = B2λ = B3λ = 0,
since the determinate of the coefficient matrix is unequal to zero for any parameter
set. The constants Aiλ (i = {1, 2, 3}) can be chosen arbitrary.

Case IV: λ > 2

For λ > 2, Equation (6.20) shows that B1λ = B2λ = 0 (regularity condition of the out-
of-plane displacement) and therefore, the terms in Equation (6.23) related to r2k−λ+1

vanish. Furthermore, it follows from Equations (6.23) that the constant B3λ = 0
(coefficients of r2k−λ−1) and the constants Aiλ (i = {1, 2, 3}) can be chosen arbitrary
(coefficients of r2k+λ−1). The same results can be found from Equation (6.24).

The general analytical solution for the infinite wedge domain is therefore defined by Equa-
tions (6.7) – (6.9) and

0 < λ < 1



R1λ = A1λ
(
Jλ(kf1 r)− C k2λ

f1 (µ1 − 1) Yλ(kf1 r)
)

−A2λC (kf1 kf2)λ (µ2 − 1) Yλ(kf1 r)
+A3λC (kf1 ks)λ Yλ(kf1 r),

R2λ = A1λC (kf1 kf2)λ (µ1 − 1) Yλ(kf2 r)
+A2λ

(
Jλ(kf2 r) + C k2λ

f2 (µ2 − 1) Yλ(kf2 r)
)

−A3λC (kf2 ks)λ Yλ(kf2 r),
R3λ = A1λC (kf1 ks)λ (µ1 − µ2) (µ1 − 1) Yλ(ks r)

+A2λC (kf2 ks)λ (µ1 − µ2) (µ2 − 1) Yλ(ks r)
+A3λ

(
Jλ(ks r)− C k2λ

s (µ1 − µ2) Yλ(ks r)
)
,

(6.32)

with
C = 1

cot(λπ)
(
(µ1 − 1) k2λ

f1 − (µ2 − 1) k2λ
f2 + (µ1 − µ2) k2λ

s

) (6.33)

124



6.1 Stress singularities in the Mindlin plate theory

and

λ ≥ 1
λ = 0


R1λ = A1λ Jλ(kf1 r),
R2λ = A2λ Jλ(kf2 r),
R3λ = A3λ Jλ(ks r).

(6.34)

Bending moments and shear force singularities

The general analytical solutions from the previous section can be used to identify singu-
larities of the bending moments and shear forces in the vicinity of the corner point r = 0.
The bending moments (Mr, Mϕ, Mrϕ) and shear forces (Qr, Qϕ) in polar coordinates are
given by [292]

Mr(r, ϕ) = D

(
∂ψr
∂r

+ ν

r

(
ψr + ∂ψϕ

∂ϕ

))
, (6.35)

Mϕ(r, ϕ) = D

(1
r

(
ψr + ∂ψϕ

∂ϕ

)
+ ν

∂ψr
∂r

)
, (6.36)

Mrϕ(r, ϕ) = D

2 (1− ν)
(1
r

(
∂ψr
∂ϕ
− ψϕ

)
+ ∂ψϕ

∂r

)
, (6.37)

Qr(r, ϕ) = k2Gh

(
ψr + ∂w

∂r

)
, (6.38)

Qϕ(r, ϕ) = k2Gh

(
ψϕ + 1

r

∂w

∂ϕ

)
. (6.39)

Depending on the value of λ, either the analytical solutions from Equation (6.34) or
Equation (6.32) have to be used in Equations (6.35) – (6.39) to analyze the behaviour of
the bending moments and shear forces in the vicinity of the corner point.

The asymptotic forms of the bending moments in case of λ ≥ 1 or λ = 0 are given by

Mr|r→0 =
D (1− ν)

(
(µ1 − 1) kλf1A1λ + (µ2 − 1) kλf2A2λ − kλs A3λ

)
f1(ϕ)

Γ(λ− 1) 2λ rλ−2, (6.40)

Mϕ|r→0 =
D (ν − 1)

(
(µ1 − 1) kλf1A1λ + (µ2 − 1) kλf2A2λ − kλs A3λ

)
f1(ϕ)

Γ(λ− 1) 2λ rλ−2, (6.41)

Mrϕ|r→0 =
D (1− ν)

(
(µ1 − 1) kλf1A1λ + (µ2 − 1) kλf2A2λ − kλs A3λ

)
f2(ϕ)

Γ(λ− 1) 2λ rλ−2, (6.42)

where the recurrence formula (Equation (6.22)) and the series representation of the Bessel
function (Equation (6.18)) are applied. Depending on whether symmetric or antisymmet-
ric bending is considered, the function f1(ϕ) = {cos(λsk ϕ), sin(λak ϕ)} and the function
f2(ϕ) = {− sin(λsk ϕ), cos(λak ϕ)}. It is apparent from Equations (6.40) – (6.42) that the
bending moments become singular at r = 0 if λ < 2 [74]. For the integer values λ = 0
and λ = 1, the bending moments at r = 0 approach a finite value, since Γ(−1)→ j∞ and
Γ(0)→ j∞.
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6 Extension of the Wave Based Method to thick plate vibrations

If 0 < λ < 1, the asymptotic forms of the bending moments can be expressed as

Mr|r→0 = −
D (1− ν)

(
(µ1 − 1) kλf1A1λ + (µ2 − 1) kλf2A2λ − kλs A3λ

)
sin(λπ) 22−λ Γ(1− λ)C(

(µ1 − 1)Cν1 k
2
f1 − (µ2 − 1)Cν1 k

2
f2 + (µ1 − µ2)λ k2

s

)
f1(ϕ) r−λ,

(6.43)

Mϕ|r→0 = −
D (1− ν)

(
(µ1 − 1) kλf1A1λ + (µ2 − 1) kλf2A2λ − kλs A3λ

)
sin(λπ) 22−λ Γ(1− λ)C(

(µ1 − 1)Cν2 k
2
f1 − (µ2 − 1)Cν2 k

2
f2 − (µ1 − µ2)λ k2

s

)
f1(ϕ) r−λ,

(6.44)

Mrϕ|r→0 =
D (1− ν)

(
(µ1 − 1) kλf1A1λ + (µ2 − 1) kλf2A2λ − kλs A3λ

)
sin(λπ) 22−λ Γ(−λ)C(

(µ1 − 1) k2
f1 − (µ2 − 1) k2

f2 − (µ1 − µ2) k2
s

)
f2(ϕ) r−λ,

(6.45)

where Cν1 =
(

2 (1+ν)
1−ν − λ

)
and Cν2 =

(
2 (1+ν)

1−ν + λ
)

and Equations (6.16), (6.18) and
(6.22) are applied. In this case, the bending moments exhibit a singularity at the corner
point for the whole range 0 < λ < 1 [74].

The asymptotic forms of the shear forces in case of λ ≥ 1 or λ = 0 are given by

Qr|r→0 =
k2Gh

(
µ1 kλf1A1λ + µ2 kλf2A2λ − kλs A3λ

)
2λ Γ(λ) f1(ϕ) rλ−1, (6.46)

Qϕ|r→0 =
k2Gh

(
µ1 kλf1A1λ + µ2 kλf2A2λ − kλs A3λ

)
2λ Γ(λ) f2(ϕ) rλ−1, (6.47)

and therefore, no shear force singularities occur for λ ≥ 1 or λ = 0, since Equations (6.46)
and (6.47) approach a finite value for r → 0 [74]. For 0 < λ < 1, the asymptotic forms of
the shear forces are

Qr|r→0 = k2Gh cot(λπ)C f1(ϕ)
2λ Γ(λ)

(
kλf1

(
(µ1 − 1)

(
k2λ
f2 − k2λ

f1
)

+ 1
cot(λπ)C

)
A1λ

+kλf2

(
(µ2 − 1)

(
k2λ
f2 − k2λ

f1
)

+ 1
cot(λπ)C

)
A2λ − kλs

(
k2λ
f2 − k2λ

f1
)
A3λ

)
rλ−1,

(6.48)

Qϕ|r→0 = k2Gh cot(λπ)C f2(ϕ)
2λ Γ(λ)

(
kλf1

(
(µ1 − 1)

(
k2λ
f2 − k2λ

f1
)

+ 1
cot(λπ)C

)
A1λ

+kλf2

(
(µ2 − 1)

(
k2λ
f2 − k2λ

f1
)

+ 1
cot(λπ)C

)
A2λ − kλs

(
k2λ
f2 − k2λ

f1
)
A3λ

)
rλ−1,

(6.49)

which show that the shear forces vary as rλ−1 and become singular as r → 0 [74].

From Equations (6.40) – (6.42) and (6.43) – (6.45) it is apparent that the additional restric-
tion

(µ1 − 1) kλf1A1λ + (µ2 − 1) kλf2A2λ − kλs A3λ = 0 (6.50)
for the integration constants Aiλ (i = {1, 2, 3}) removes the singularities of the bending
moments, while the singularities in the shear forces remain. Furthermore, this restriction
simplifies the solution functions for 0 < λ < 1 (Equation (6.32)) to Equation (6.34).
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6.1 Stress singularities in the Mindlin plate theory

Hard simply-supported infinite wedge

The eigenvalues λsk and λak are determined through the boundary conditions applied at
the radial edges 1 and 2 (see Figure 6.1). However, an analytical solution for the dynamic
problem is only available if both radial edges are hard simply-supported

w(r,±α/2) = 0, (6.51)
ψr(r,±α/2) = 0, (6.52)
Mϕ(r,±α/2) = 0. (6.53)

According to [74], the symmetric and antisymmetric eigenvalues for the hard simply-
supported infinite wedge are given by

λsk = (2 k − 1) π
α
,

λak = 2 k π
α
.

k = 1, 2, . . . (6.54)

Using these eigenvalues in the general analytical solutions from the previous section and
assuming α < 2π, bending moment singularities in the vicinity of the corner are expected
for internal angles α > π/2, having the asymptotic behaviour

M |r→0 ∼ r
π
α
−2,

π

2 < α ≤ π, (6.55)

M |r→0 ∼ r−
π
α + r

2π
α
−2, π < α ≤ 3π

2 , (6.56)

M |r→0 ∼ r−
π
α + r

2π
α
−2 + r

3π
α
−2,

3π
2 < α ≤ 2π. (6.57)

Shear force singularities only arise for symmetric modes and an internal angle α > π. The
asymptotic behaviour of the shear forces in the vicinity of the corner is given by

Q|r→0 ∼ r
π
α
−1, π < α ≤ 2π. (6.58)

Since an analytical solution for the dynamic case is only available for the hard simply-
supported boundary conditions, the solutions for the static problem are examined in the
subsequent section.

6.1.2 Static solution for an infinite wedge domain

While the literature on analytical solutions for bending vibrations of wedge domains
is rather limited, several authors have investigated the static bending deformation of
Reissner-Mindlin plates (ω = 0) and examined the stress singularities in the vicinity
of the corner point. In [293] a series approach is applied and moment singularities for ho-
mogenous boundary conditions (clamped, free, hard simply-supported) are identified. An
additional result for hard simply-supported boundary conditions, which has been missed
in [293], is reported in [294]. Huang [290] used the Frobenius method to analyze the be-
haviour of the bending moments and shear forces in the vicinity of a corner point within the
first-order shear deformation theory. Ten different combinations of homogenous boundary
conditions (clamped, free, hard simply-supported, soft simply-supported) are considered
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Table 6.1: Characteristic equations for the static eigenvalues of an infinite wedge domain

Boundary conditions Characteristic equation
Moments Shear forces

Clamped–clamped
sin
(
λ̄sM α

)
= λ̄sM (1 + ν)

3− ν sin(α)

sin
(
λ̄aM α

)
= − λ̄

a
M (1 + ν)

3− ν sin(α)

cos
(
λ̄sQ

α

2

)
= 0

sin
(
λ̄aQ

α

2

)
= 0

Free–free
sin
(
λ̄sM α

)
= −λ̄sM sin(α)

sin
(
λ̄aM α

)
= λ̄aM sin(α)

sin
(
λ̄sQ

α

2

)
= 0

cos
(
λ̄aQ

α

2

)
= 0

Hard SS–hard SS
cos
((
λ̄sM − 1

) α
2

)
cos
((
λ̄sM + 1

) α
2

)
= 0

sin
((
λ̄aM − 1

) α
2

)
sin
((
λ̄aM + 1

) α
2

)
= 0

cos
(
λ̄sQ

α

2

)
= 0

sin
(
λ̄aQ

α

2

)
= 0

Soft SS–soft SS
sin
(
λ̄sM α

)
= −λ̄sM sin(α)

sin
(
λ̄aM α

)
= λ̄aM sin(α)

cos
(
λ̄sQ

α

2

)
= 0

sin
(
λ̄aQ

α

2

)
= 0

Clamped–free sin2
(
λ̄M α

)
= 4− λ̄2

M (1 + ν)2 sin2(α)
(3− ν) (1 + ν)

cos
(
λ̄Q α

)
= 0

Clamped–hard SS sin
(
2 λ̄M α

)
= − λ̄M (1 + ν)

(3− ν) sin(2α) sin
(
λ̄Q α

)
= 0

Clamped–soft SS sin2
(
λ̄M α

)
= 4− λ̄2

M (1 + ν)2

(3− ν) (1 + ν) sin2(α) sin
(
λ̄Q α

)
= 0

Hard SS–free sin
(
2 λ̄M α

)
= λ̄M sin(2α) cos

(
λ̄Q α

)
= 0

Hard SS–soft SS sin
(
2 λ̄M α

)
= λ̄M sin(2α) sin

(
λ̄Q α

)
= 0

Soft SS–free sin
(
λ̄M α

)
= ±λ̄M sin(α) cos

(
λ̄Q α

)
= 0

and compared to [293] and [294], also shear force singularities are reported. Functional
analytical methods are applied in [295] to study corner stress singularities and the results
from Huang [290] are confirmed, while additional homogenous boundary conditions (soft
clamped, two different frictional conditions, sliding edge), which are less common, are
included. The effect of logarithmic stress singularities and logarithmic intensification of
power stress singularities are mentioned in [293], [294], [291], [295] and [296], but only pure
power stress singularities have been examined. In [297], several plate configurations with
homogenous boundary conditions, which lead to logarithmic corner stress singularities, are
reported, while in [291] the possibility of logarithmic corner stress singularities induced
by inhomogeneous boundary conditions is stated. In [296], a complex potential method
is applied to study corner stress singularities in isotropic homogeneous and bi-material
wedges having homogenous boundary conditions, while Huang [298] uses an eigenfunction
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6.1 Stress singularities in the Mindlin plate theory

expansion solution to study corner stress singularities in bi-material Mindlin plates.

In this work, plates consisting of a single linear elastic material with homogenous boundary
conditions are considered. The effect of logarithmic stress singularities only appears for a
few specific internal angles α and are not taken into account. According to Huang [290],
the bending moments and shear forces in the vicinity of the corner have the asymptotic
behaviour

M |r→0 ∼ rλ̄M−1 and Q|r→0 ∼ rλ̄Q−1 (6.59)

where λ̄M > 0 and λ̄Q > 0 are the static eigenvalues for moments and shear force singular-
ities. The characteristic equations to determine the static eigenvalues are derived in [290]
and are stated in Table 6.1 for completeness. If the boundary conditions are symmetric,
it is possible to distinguish between eigenvalues for symmetric (λ̄sM , λ̄sQ) and antisym-
metric deformations (λ̄aM , λ̄aQ). The characteristic equations in Table 6.1 are solved with
the routine fsolve (trust-region dogleg algorithm) from the commercial software package
MATLAB R© R2016b and the resulting static eigenvalues are plotted in Figure 6.2.
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Figure 6.2: Static eigenvalues of an infinite wedge domain with various radial boundary
conditions

130



6.1 Stress singularities in the Mindlin plate theory

6.1.3 Comparison of the singularities in the static and dynamic solution

The analytical solutions of the static and dynamic hard simply-supported infinite wedge
can be used to compare the singular behaviour of the moment and shear forces in the
vicinity of the corner point. In case of hard simply-supported radial boundaries, the static
eigenvalues can be computed in closed-form and from Equation (6.59) it is apparent that
stress singularities only occur for static eigenvalues smaller than 1. The comparison of the
static and dynamic eigenvalues listed in Table 6.2 shows that the asymptotic behaviour of
the bending moments and shear forces is identical for both cases.

Table 6.2: Comparison of the static and dynamic eigenvalues causing singularities
Moments Shear forces

static dynamic static dynamic

π
>
α
>

π 2

M ∼ rλ̄s
M1−1,

λ̄sM1 = π

α
− 1,

M ∼ rλs
1−2,

λs1 = π

α
,

−− −−

3
π 2
>
α
>
π M ∼ rλ̄s

M2−1 + rλ̄
a
M1−1,

λ̄sM2 = −π
α

+ 1,

λ̄aM1 = 2π
α
− 1,

M ∼ r−λs
1 + rλ

a
1 −2,

λs1 = π

α
,

λa1 = 2π
α
,

Q ∼ rλ̄s
Q1−1,

λ̄sQ1 = π

α
,

Q ∼ rλs
1−1,

λs1 = π

α
,

2π
>
α
>

3
π 2 M ∼ rλ̄s

M2−1 + rλ̄
a
M1−1

+ rλ̄
s
M3−1,

λ̄sM3 = 3π
α
− 1,

M ∼ r−λs
1 + rλ

a
1 −2

+ rλ
s
2−2,

λs2 = 3π
α
,

Q ∼ rλ̄s
Q1−1,

λ̄sQ1 = π

α
,

Q ∼ rλs
1−1,

λs1 = π

α
,

The eigenvalues from the static and dynamic case are related by λ̄M = λ − 1 (λ > 1)
and λ̄M = 1 − λ (λ < 1) for moment singularities and λ̄Q = λ (λ < 1) for shear force
singularities.

Since in the static case, two different analytical solutions are used to find the eigenvalues
for moment and shear force singularities, both eigenvalues are determined independently
from each other. In the dynamic case however, eigenvalues smaller than 1 always induce
singularities in both fields if the analytical solutions from Equation (6.32) are applied,
while eigenvalues greater than 1 and smaller than 2 only exhibit moment singularities
(solutions from Equation (6.34)). For 0 < λ < 1, the order of the moment and shear force
singularities (M ∼ r−λM , Q ∼ r−λQ) are therefore related by λQ = 1− λM . This relation
is generally not fulfilled for the eigenvalues of the static solution, with the exception of
hard simply-supported radial edges.

By adding the restriction given in Equation (6.50) to the general dynamic solutions in
Equation (6.32), the moment singularity for 0 < λ < 1 vanishes and only the shear force
singularities remain. This allows for the independent definition of analytical solutions
having either moment singularities (1 < λ < 2) or shear force singularities (0 < λ < 1) for
the dynamic problem.
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6 Extension of the Wave Based Method to thick plate vibrations

6.2 Application of the Wave Based Method

In this section, the general methodology of the WBM for generalized Helmholtz problems,
shown in Section 4.1, is applied to the Mindlin plate vibration problem. The field variable
expansion is presented in Section 6.2.1, including the development of the T-complete func-
tion sets and the definition of special purpose functions to treat corner stress singularities.
The construction of the system matrices and the derivation of the weighted residual for-
mulation from the sub-region three-field generalized mixed variational form of the Mindin
plate are outlined in Section 6.2.2.

In Figure 6.3, a general Mindlin WBM model with nα convex sub-domains is illus-
trated. Each sub-domain α has a local domain coordinate system

(
x

(α)
D , y

(α)
D

)
, which

is aligned with the smallest rectangular bounding box having the dimensions L(α)
x and

L
(α)
y . Depending on the applied boundary conditions and the interfaces to adjacent

sub-domains, the boundary of each sub-domain α is divided into non-overlapping parts
Γ(α) = Γ(α)

u ∪ Γ(α)
σ ∪ Γ(α)

uσ1 ∪ Γ(α)
uσ2 ∪ Γ(α, β). If a certain type of the four common bound-

ary conditions is not present at the sub-domain α, the associated boundary part becomes
Γ(α)
• = ∅. Similar, the part of the interface becomes Γ(α, β) = ∅ if the sub-domains α and
β do not share a common boundary.

Figure 6.3: WBM sub-domains and domain coordinate systems of a general Mindlin plate
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6.2 Application of the Wave Based Method

6.2.1 Field variable expansion

As pointed out in Section 2.2.1, the governing equations of the Mindlin plate theory can
be decomposed into three Helmholtz equations (nH = 3) with the field variables w(α)

1 (r),
w

(α)
2 (r) and H(α)(r) within each sub-domain α. The three field variables are approximated

by the field variable expansions

w
(α)
1 ≈ ŵ(α)

1 =
n

(α)
w1∑

kw1=0
û

(α)
kw1

Φ(α)
kw1

+
∑
ci

ŵ
(ci)
1C + ŵ

(α)
1p , (6.60)

w
(α)
2 ≈ ŵ(α)

2 =
n

(α)
w2∑

kw2=0
û

(α)
kw2

Φ(α)
kw2

+
∑
ci

ŵ
(ci)
2C + ŵ

(α)
2p , (6.61)

H(α) ≈ Ĥ(α) =
n

(α)
H∑

kH=0
û

(α)
kH

Φ(α)
kH

+
∑
ci

Ĥ
(ci)
C + Ĥ(α)

p , (6.62)

where Φ(α)
• are the wave functions, which form a T-complete set, û(α)

• the wave contri-
bution factors, ŵ(ci)

1C , ŵ(ci)
2C and Ĥ

(ci)
C the special purpose functions to treat corner stress

singularities at the corner ci and ŵ
(α)
1p , ŵ(α)

2p and Ĥ
(α)
p the particular solution functions.

Since the particular solution functions shown in Chapter 5 are given in terms of the out-
of-plane displacement w and the rotations ψx and ψy, a splitting of the results into the
components ŵ(α)

1p , ŵ(α)
2p and Ĥ

(α)
p has to be performed. The terms in the solutions of

Chapter 5 associated with the wavenumber kf1 lead to ŵ(α)
1p , while the terms associated

with kf2 result in ŵ
(α)
2p . The component Ĥ(α)

p is equal to zero for the considered load
cases.

T-complete sets of wave functions

The wave functions Φ(α)
• have to form a T-complete set, to ensure the convergence of the

WBM to the exact solution. The applied basis functions Φ(α)
• , which are very similar to the

basis functions used in [17] for the Kirchhoff plate theory, are listed in Table 6.3. The wave
functions are defined in the local domain coordinate system and two different function sets
are considered. In [21], it is shown that using the smallest rectangular bounding box to
define the wavenumbers in Table 6.3, results in the highest convergence rate of the WBM.
The first wavenumbers are chosen as such that an integer number of half wavelenghts
equals the dimension of the bounding box, which leads to

k
(α)
iw1,x = iw1 π

L
(α)
x

and k
(α)
jw1,y = jw1 π

L
(α)
y

, (6.63)

k
(α)
iw2,x = iw2 π

L
(α)
x

and k
(α)
jw2,y = jw2 π

L
(α)
y

, (6.64)

k
(α)
iH ,x

= iH π

L
(α)
x

and k
(α)
jH ,y

= jH π

L
(α)
y

. (6.65)
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6 Extension of the Wave Based Method to thick plate vibrations

Table 6.3: Wave function sets for the Mindlin plate problem
Wave function sets for w1

Set 1
Φ(α)
iw1 = cos

(
k

(α)
iw1,x x

(α)
D

)
exp

(
−j k(α)

iw1,y y
(α)
D

)
iw1 = 0, 1, ...n(α)

w1i

Φ(α)
jw1 = exp

(
−j k(α)

jw1,x x
(α)
D

)
cos
(
k

(α)
jw1,y y

(α)
D

)
jw1 = 0, 1, ...n(α)

w1j

Set 2
Φ′(α)
iw1 = sin

(
k

(α)
iw1,x x

(α)
D

)
exp

(
−j k(α)

iw1,y y
(α)
D

)
iw1 = 1, 2, ...n′(α)

w1i

Φ′(α)
jw1 = exp

(
−j k(α)

jw1,x x
(α)
D

)
sin
(
k

(α)
jw1,y y

(α)
D

)
jw1 = 1, 2, ...n′(α)

w1j

Wave function sets for w2

Set 1
Φ(α)
iw2 = cos

(
k

(α)
iw2,x x

(α)
D

)
exp

(
−j k(α)

iw2,y y
(α)
D

)
iw2 = 0, 1, ...n(α)

w2i

Φ(α)
jw2 = exp

(
−j k(α)

jw2,x x
(α)
D

)
cos
(
k

(α)
jw2,y y

(α)
D

)
jw2 = 0, 1, ...n(α)

w2j

Set 2
Φ′(α)
iw2 = sin

(
k

(α)
iw2,x x

(α)
D

)
exp

(
−j k(α)

iw2,y y
(α)
D

)
iw2 = 1, 2, ...n′(α)

w2i

Φ′(α)
jw2 = exp

(
−j k(α)

jw2,x x
(α)
D

)
sin
(
k

(α)
jw2,y y

(α)
D

)
jw2 = 1, 2, ...n′(α)

w2j

Wave function sets for H

Set 1
Φ(α)
iH

= sin
(
k

(α)
iH ,x

x
(α)
D

)
exp

(
−j k(α)

iH ,y
y

(α)
D

)
iH = 1, 2, ...n(α)

Hi

Φ(α)
jH

= exp
(
−j k(α)

jH ,x
x

(α)
D

)
sin
(
k

(α)
jH ,y

y
(α)
D

)
jH = 1, 2, ...n(α)

Hj

Set 2
Φ′(α)
iH

= cos
(
k

(α)
iH ,x

x
(α)
D

)
exp

(
−j k(α)

iH ,y
y

(α)
D

)
iH = 0, 1, ...n′(α)

Hi

Φ′(α)
jH

= exp
(
−j k(α)

jH ,x
x

(α)
D

)
cos
(
k

(α)
jH ,y

y
(α)
D

)
jH = 0, 1, ...n′(α)

Hj

The Helmholtz equations (Equations (2.63) – (2.65)) are only fulfilled if the corresponding
wavenumbers are defined by

k
(α)
iw1,y = ±

√(
k

(α)
f1

)2
−
(
k

(α)
iw1,x

)2
and k

(α)
jw1,x = ±

√(
k

(α)
f1

)2
−
(
k

(α)
jw1,y

)2
, (6.66)

k
(α)
iw2,y = ±

√(
k

(α)
f2

)2
−
(
k

(α)
iw2,x

)2
and k

(α)
jw2,x = ±

√(
k

(α)
f2

)2
−
(
k

(α)
jw2,y

)2
, (6.67)

k
(α)
iH ,y

= ±
√(

k
(α)
s

)2
−
(
k

(α)
iH ,x

)2
and k

(α)
jH ,x

= ±
√(

k
(α)
s

)2
−
(
k

(α)
jH ,y

)2
. (6.68)

It is apparent from Table 6.3 that four different types of wave functions are defined for
each field variable

(
Φ(α)
kw1
→
{

Φ(α)
iw1 , Φ(α)

jw1 , Φ′(α)
iw1 , Φ′(α)

jw1

}
, Φ(α)

kw2
→
{

Φ(α)
iw2 , Φ(α)

jw2 , Φ′(α)
iw2 , Φ′(α)

jw2

}
,

Φ(α)
kH
→
{

Φ(α)
iH
, Φ(α)

jH
, Φ′(α)

iH
, Φ′(α)

jH

})
and therefore, the total number of wave functions in
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each sub-domain α is given by

n
(α)
w1 = 2

(
n

(α)
w1i + n

(α)
w1j + n

′(α)
w1i + n

′(α)
w1j + 2

)
, (6.69)

n
(α)
w2 = 2

(
n

(α)
w2i + n

(α)
w2j + n

′(α)
w2i + n

′(α)
w2j + 2

)
, (6.70)

n
(α)
H = 2

(
n

(α)
Hi + n

(α)
Hj + n

′(α)
Hi + n

′(α)
Hj + 2

)
. (6.71)

In [21], it is shown that the T-completeness of a function set for convex domains is ensured
if the function set is able to represent arbitrary boundary conditions at the edges of a
rectangular domain, which encloses the convex domain. Since the Mindlin plate vibration
problem is governed by three Helmholtz equations, three arbitrary boundary conditions
have to be fulfilled at the edges of the problem domain. To show the T-completeness of
the two different function sets given in Table 6.3, two rectangular domains with arbitrary
boundary conditions are investigated. In Figure 6.4a a rectangular domain with prescribed
boundary conditions Qn, ψn and Mns at the edges Γ1–Γ4 is shown. Similar to the approach
used in [17], the problem is split into two sub-problems to proof the T-completeness of
the first function set in Table 6.3. The rectangular domain, illustrated in Figure 6.4b, is
used to show the capability of the second function set to represent arbitrary boundary
conditions.

(a) Sub-problems for proofing the T-completeness of the wave functions in set 1

(b) Sub-problems for proofing the T-completeness of the wave functions in set 2

Figure 6.4: Rectangular domains with arbitrary boundary conditions
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6 Extension of the Wave Based Method to thick plate vibrations

For the first sub-problems in Figures 6.4a and 6.4b (zero boundary conditions at x = 0 and
x = Lx), the first wave functions of set 1 (Φiw1 , Φiw2 , ΦiH ) and set 2

(
Φ′iw1 , Φ′iw2 , Φ′iH

)
are applied. Evaluating the displacements, rotations, bending moments and shear forces
using the formulas from Section 2.2.1 shows that the boundary conditions at the edges Γ2
and Γ4 are only fulfilled if

sin(kiw1,x Lx) = 0, (6.72)
sin(kiw2,x Lx) = 0, (6.73)
sin(kiH ,x Lx) = 0. (6.74)

The choice of kiw1,x, kiw2,x and kiH ,x given in Equations (6.63) – (6.65) satisfies these
conditions and therefore the zero boundary conditions of the first sub-problems are ful-
filled. Similar, applying the second wave functions of set 1 (Φjw1 , Φjw2 , ΦjH ) and set 2(
Φ′jw1 , Φ′jw2 , Φ′jH

)
to the second sub-problems in Figures 6.4a and 6.4b (zero boundary

conditions at y = 0 and y = Ly) leads to

sin(kjw1,y Ly) = 0, (6.75)
sin(kjw2,y Ly) = 0, (6.76)
sin(kjH ,y Ly) = 0, (6.77)

for the boundary conditions at Γ1 and Γ3. These conditions are also fulfilled by the
wavenumbers given in Equations (6.63) – (6.65).

For the first sub-problem in Figure 6.4a, the boundary conditions at the edges Γ1 and Γ3
have to be satisfied by the function series

w1(x, y) =
∞∑

iw1=0
cos(kiw1,x x)

ûiw1 e
−j
√
k2
f1−k2

iw1,x
y

+ û∗iw1 e
j
√
k2
f1−k2

iw1,x
y

, (6.78)

w2(x, y) =
∞∑

iw2=0
cos(kiw2,x x)

ûiw2 e
−j
√
k2
f2−k2

iw2,x
y

+ û∗iw2 e
j
√
k2
f2−k2

iw2,x
y

, (6.79)

H(x, y) =
∞∑

iH=1
sin(kiH ,x x)

ûiH e
−j
√
k2
s−k2

iH,x
y

+ û∗iH e
j
√
k2
s−k2

iH,x
y

, (6.80)

while the boundary conditions at the edges Γ2 and Γ4 in the second sub-problem have to
be fulfilled by the function series

w1(x, y) =
∞∑

jw1=0
cos(kjw1,y y)

ûjw1 e
−j
√
k2
f1−k2

jw1,y
x

+ û∗jw1 e
j
√
k2
f1−k2

jw1,y
x

, (6.81)

w2(x, y) =
∞∑

jw2=0
cos(kjw2,y y)

ûjw2 e
−j
√
k2
f2−k2

jw2,y
x

+ û∗jw2 e
j
√
k2
f2−k2

jw2,y
x

, (6.82)

H(x, y) =
∞∑

jH=1
sin(kjH ,y y)

ûjH e
−j
√
k2
s−k2

jH,y
x

+ û∗jH e
j
√
k2
s−k2

jH,y
x

. (6.83)

In Equations (6.78) – (6.83), ûiw1 , û∗iw1 , ûiw2 , û∗iw2 , ûiH , û∗iH , ûjw1 , û∗jw1 , ûjw2 , û∗jw2 , ûjH and
û∗jH are arbitrary constants.
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Evaluating Qn(x, y), ψn(x, y) and Mns(x, y) at the boundary Γ1 (y = 0) using the function
series in Equations (6.78) – (6.80) and the relations stated in Section 2.2.1 leads to the
conditions

Qn(x, 0) = k2Gh

 ∞∑
iw1=0

µ1 âiw1 cos(kiw1,x x)

+
∞∑

iw2=0
µ2 b̂iw2 cos(kiw2,x x) +

∞∑
iH=1

kiH ,x ĉiH cos(kiH ,x x)

 = Qn1(x),

(6.84)

ψn(x, 0) =
∞∑

iw1=0
(µ1 − 1) âiw1 cos(kiw1,x x)

+
∞∑

iw2=0
(µ2 − 1) b̂iw2 cos(kiw2,x x) +

∞∑
iH=1

kiH ,x ĉiH cos(kiH ,x x) = ψn1(x),
(6.85)

Mns(x, 0) = D (1− ν)

 ∞∑
iw1=0

−(µ1 − 1) kiw1,x âiw1 sin(kiw1,x x)

−
∞∑

iw2=0
(µ2 − 1) kiw2,x b̂iw2 sin(kiw2,x x)

−
∞∑

iH=1

(
k2
iH ,x
− k2

s

2

)
ĉiH sin(kiH ,x x)

 = Mns1(x),

(6.86)

and the results for the second boundary Γ3 (y = Ly) are given by

Qn(x, Ly) = k2Gh

 ∞∑
iw1=0

µ1 â
∗
iw1 cos(kiw1,x x)

+
∞∑

iw2=0
µ2 b̂

∗
iw2 cos(kiw2,x x) +

∞∑
iH=1

kiH ,x ĉ
∗
iH

cos(kiH ,x x)

 = Qn3(x),

(6.87)

ψn(x, Ly) =
∞∑

iw1=0
(µ1 − 1) â∗iw1 cos(kiw1,x x)

+
∞∑

iw2=0
(µ2 − 1) b̂∗iw2 cos(kiw2,x x) +

∞∑
iH=1

kiH ,x ĉ
∗
iH

cos(kiH ,x x) = ψn3(x),
(6.88)

Mns(x, Ly) = D (1− ν)

 ∞∑
iw1=0

(µ1 − 1) kiw1,x â
∗
iw1 sin(kiw1,x x)

+
∞∑

iw2=0
(µ2 − 1) kiw2,x b̂

∗
iw2 sin(kiw2,x x)

+
∞∑

iH=1

(
k2
iH ,x
− k2

s

2

)
ĉ∗iH sin(kiH ,x x)

 = Mns3(x),

(6.89)

which have to be fulfilled for any point x ∈ [0, Lx] at the boundaries Γ1 and Γ3. The
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6 Extension of the Wave Based Method to thick plate vibrations

arbitrary constants in Equations (6.84) – (6.89) are defined by

âiw1 = j
√
k2
f1 − k2

iw1,x (ûiw1 − û∗iw1), (6.90)

b̂iw1 = j
√
k2
f2 − k2

iw2,x (ûiw2 − û∗iw2), (6.91)

ĉiw1 = ûiH + û∗iH , (6.92)

â∗iw1 = −j
√
k2
f1 − k2

iw1,x

ûiw1 e
−j
√
k2
f1−k2

iw1,x
Ly − û∗iw1 e

j
√
k2
f1−k2

iw1,x
Ly

, (6.93)

b̂∗iw2 = −j
√
k2
f2 − k2

iw2,x

ûiw2 e
−j
√
k2
f2−k2

iw2,x
Ly − û∗iw2 e

j
√
k2
f2−k2

iw2,x
Ly

, (6.94)

ĉ∗iH = −j

ûiH e
−j
√
k2
s−k2

iH,x
Ly − û∗iH e

j
√
k2
s−k2

iH,x
Ly

. (6.95)

The results in Equations (6.84), (6.85), (6.87) and (6.88) can be considered as half-range
cosine Fourier series representations of the prescribed shear forces Qn1 and Qn3 and pre-
scribed rotations ψn1 and ψn3, while Equations (6.86) and (6.89) are half-range sine Fourier
series representations of the prescribed bending moments Mns1 and Mns3. As long as the
distributions of the prescribed boundary conditions are piecewise continuous and bounded,
the Fourier cosine and sine series converge uniformly to the prescribed distributions and
the unknown coefficients in Equations (6.90) – (6.95) can be computed by the Euler for-
mulas for Fourier coefficients [299]. Discontinuities in the prescribed distributions reduce
the convergence rate of the Fourier cosine and sine series and may lead to the so-called
Gibbs phenomenon (over- and undershoots close to the discontinuity) [299]. While for the
Fourier cosine series this problem only arises if the prescribed distribution itself has a dis-
continuity, the Fourier sine series also suffers from this effect if the prescribed values at the
end points (x = 0 and x = Lx) are unequal to zero. This is due to the required assumption
of a periodic extension of the prescribed distribution outside the interval x ∈ [0, Lx].

The results for the second sub-problem in Figure 6.4a can be found by interchanging x
and y in Equations (6.84) – (6.89) and replacing the indices i• with j• and the applied
boundary conditions from Γ1 and Γ3 to Γ2 and Γ4. Therefore, the function set 1 in Table
6.3 is able to represent arbitrary boundary conditions for a rectangular domain and forms
a T-complete function set for convex Mindlin plate domains.

The derivation for the function set 2 (rectangular plate in Figure 6.4b) leads to similar
results, where the prescribed displacements w• and bending moments Mn• are represented
by Fourier sine series and the rotation ψs• by Fourier cosine series. Hence, also the function
set 2 is a T-complete function set.

Special purpose functions

According to [17], the WBM suffers from convergency problems if singularities are present
in the field variables and therefore, so-called special purpose functions are included in the
field variable expansion to avoid this issue. The special purpose functions have to satisfy
the governing equations of the Mindlin plate and represent the singular behaviour of the
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6.2 Application of the Wave Based Method

field variables. The analytical solutions of the infinite wedge domain, given in Section
6.1, can be used to treat corner stress singularities in the Mindlin plate theory. While for
hard simply-supported boundary conditions, the exact solutions are available (fulfilling
the governing equations and the boundary conditions), the solutions of the static problem
are used to define the special purpose functions for all other combinations of boundary
conditions. Three different types of corner functions have to be considered, which either
exhibit moment singularities, shear force singularities or both at the corner point. If
singularities are present at the corner point ci, the special purpose functions

ŵ
(ci)
1C (rci , ϕci) =

n
(ci)
M∑
b=1

û
(ci)
Mw1b

Υ(ci)
Mw1b

+
n

(ci)
Q∑
b=1

û
(ci)
Qw1b

Υ(ci)
Qw1b

+
n

(ci)
MQ∑
b=1

û
(ci)
MQw1b

Υ(ci)
MQw1b

+ û
(ci)
MQw2b

Υ(ci)
MQw1b + û

(ci)
MQHb

Υ̃(ci)
MQw1b

,

(6.96)

ŵ
(ci)
2C (rci , ϕci) =

n
(ci)
M∑
b=1

û
(ci)
Mw2b

Υ(ci)
Mw2b

+
n

(ci)
Q∑
b=1

û
(ci)
Qw1b

Υ(ci)
Qw2b

+ û
(ci)
QHb

Υ(ci)
Qw2b

+
n

(ci)
MQ∑
b=1

û
(ci)
MQw1b

Υ(ci)
MQw2b

+ û
(ci)
MQw2b

Υ(ci)
MQw2b + û

(ci)
MQHb

Υ̃(ci)
MQw2b

,

(6.97)

Ĥ
(ci)
C (rci , ϕci) =

n
(ci)
M∑
b=1

û
(ci)
MHb

Υ(ci)
MHb

+
n

(ci)
Q∑
b=1

û
(ci)
QHb

Υ(ci)
QHb

+
n

(ci)
MQ∑
b=1

û
(ci)
MQw1b

Υ(ci)
MQHb

+ û
(ci)
MQw2b

Υ(ci)
MQHb

+ û
(ci)
MQHb

Υ̃(ci)
MQHb

,

(6.98)

are included in the field variable expansion. These corner functions are defined in a local
corner coordinate system (rci , ϕci), which is given by the coordinates of the corner point
ci and the associated bisecting line. As illustrated in Figure 6.5 the corner functions are
not necessarily restricted to one sub-domain α. While the corner functions defined at the

Figure 6.5: Corner coordinate systems for special purpose functions within a WBM model
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6 Extension of the Wave Based Method to thick plate vibrations

corner ci+4 only contribute to the field in the sub-domain α, the corner functions required
at the corner ci have to be included in the sub-domains α and α+ 1.

The first kind of corner functions exhibiting moment stress singularities are given by

Υ(ci)
Mw1b

=
{

cos(λsMb ϕci) JλsMb
(kf1 rci), (6.99a)

sin(λaMb ϕci) JλaMb
(kf1 rci), (6.99b)

Υ(ci)
Mw2b

=
{

cos(λsMb ϕci) JλsMb
(kf2 rci), (6.100a)

sin(λaMb ϕci) JλaMb
(kf2 rci), (6.100b)

Υ(ci)
MHb

=
{ − sin(λsMb ϕci) JλsMb

(ks rci), (6.101a)
cos(λaMb ϕci) JλaMb

(ks rci), (6.101b)
with 1 < λsMb < 2 the symmetric and 1 < λaMb < 2 the anti-symmetric eigenvalues for
moment singularities. If both boundaries at the corner ci are hard simply-supported, the
eigenvalues from the analytical solutions λsMb = λsk and λaMb = λak (Equation (6.54)) can
be applied. For other boundary conditions the eigenvalues from the static solutions (Table
6.1) are used to define the corner functions. The comparison of the static and dynamic
solutions in Section 6.1.3 shows that the same order of singularity in the moments is
induced if the eigenvalues are set to λsMb = λ̄sM + 1 and λaMb = λ̄aM + 1 for symmetric
boundary conditions and λsMb = λaMb = λ̄M + 1 for non-symmetric boundary conditions.
Since the arbitrary contribution factors û(ci)

Mw1b
, û(ci)

Mw2b
and û

(ci)
MHb

of the corner functions
representing moment singularities are independent from each other, the total number of
included functions at the corner ci is given by 3n(ci)

M .

If the boundaries at the corner ci are not hard simply-supported, the eigenvalues exhibit-
ing moment or shear force singularities are not related. Therefore, corner functions are
required, which only lead to shear force singularities, while the moments remain bounded.
Using the analytical solutions from Equation (6.32) and applying the additional restriction
from Equation (6.50) lead to the corner functions for shear force singularities

Υ(ci)
Qw1b

=
{ cos(λsQb ϕci) JλsQb(kf1 rci), (6.102a)

sin(λaQb ϕci) JλaQb(kf1 rci), (6.102b)

Υ(ci)
Qw2b

=


− cos(λsQb ϕci) JλsQb(kf2 rci)

µ1 − 1
µ2 − 1

(
kf1
kf2

)λsQb
, (6.103a)

− sin(λaQb ϕci) JλaQb(kf2 rci)
µ1 − 1
µ2 − 1

(
kf1
kf2

)λaQb
, (6.103b)

Υ(ci)
Qw2b =


cos(λsQb ϕci) JλsQb(kf2 rci)

1
µ2 − 1

(
ks
kf2

)λsQb
, (6.104a)

sin(λaQb ϕci) JλaQb(kf2 rci)
1

µ2 − 1

(
ks
kf2

)λaQb
, (6.104b)

Υ(ci)
QHb

=
{ − sin(λsQb ϕci) JλsQb(ks rci), (6.105a)

cos(λaQb ϕci) JλaQb(ks rci), (6.105b)

where 0 < λsQb < 1 are the symmetric and 0 < λaQb < 1 the anti-symmetric eigenvalues
for shear force singularities. The eigenvalues λsQb and λaQb are defined through the static
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6.2 Application of the Wave Based Method

solutions given in Table 6.1 with the relations λsQb = λ̄sQ and λaQb = λ̄aQ for symmetric
boundary conditions and λsQb = λaQb = λ̄Q for non-symmetric boundary conditions. Since
an additional restriction is necessary to define the corner functions for shear force singu-
larities, only two independent functions for each eigenvalue can be included. The corner
functions Υ(ci)

Qw1b
and Υ(ci)

Qw2b
have the same contribution factor û(ci)

Qw1b
and Υ(ci)

QHb
and Υ(ci)

Qw2b

share the contribution factor û(ci)
QHb

. This leads to a total number of 2n(ci)
Q corner functions

for shear force singularities at the corner ci.

For hard simply-supported boundary conditions a third type of corner functions, which
leads to moment and shear force singularities at the corner point ci, is defined. The
analytical solutions given in Equation (6.32) can be used directly to define these corner
functions

Υ(ci)
MQw1b

=


cos(λsMQb ϕci) (JλsMQb(kf1 rci)− C k

2λsMQb
f1 (µ1 − 1) YλsMQb

(kf1 rci)), (6.106a)

sin(λaMQb ϕci) (JλaMQb(kf1 rci)− C k
2λaMQb
f1 (µ1 − 1) YλaMQb

(kf1 rci)), (6.106b)

Υ(ci)
MQw1b =

− cos(λsMQb ϕci)C (kf1 kf2)λsMQb (µ2 − 1) YλsMQb
(kf1 rci), (6.107a)

− sin(λaMQb ϕci)C (kf1 kf2)λaMQb (µ2 − 1) YλaMQb
(kf1 rci), (6.107b)

Υ̃(ci)
MQw1b

=

 cos(λsMQb ϕci)C (kf1 ks)λ
s
MQb YλsMQb

(kf1 rci), (6.108a)

sin(λaMQb ϕci)C (kf1 ks)λ
a
MQb YλaMQb

(kf1 rci), (6.108b)

Υ(ci)
MQw2b

=

 cos(λsMQb ϕci)C (kf1 kf2)λsMQb (µ1 − 1) YλsMQb
(kf2 rci), (6.109a)

sin(λaMQb ϕci)C (kf1 kf2)λaMQb (µ1 − 1) YλaMQb
(kf2 rci), (6.109b)

Υ(ci)
MQw2b =


cos(λsMQb ϕci) (JλsMQb(kf2 rci) + C k

2λsMQb
f2 (µ2 − 1) YλsMQb

(kf2 rci)), (6.110a)

sin(λaMQb ϕci) (JλaMQb(kf2 rci) + C k
2λaMQb
f2 (µ2 − 1) YλaMQb

(kf2 rci)), (6.110b)

Υ̃(ci)
MQw2b

=

− cos(λsMQb ϕci)C (kf2 ks)λ
s
MQb YλsMQb

(kf2 rci), (6.111a)

− sin(λaMQb ϕci)C (kf2 ks)λ
a
MQb YλaMQb

(kf2 rci), (6.111b)

Υ(ci)
MQHb

=

− sin(λsMQb ϕci)C (kf1 ks)λ
s
MQb (µ1 − µ2) (µ1 − 1) YλsMQb

(ks rci), (6.112a)

cos(λaMQb ϕci)C (kf1 ks)λ
a
MQb (µ1 − µ2) (µ1 − 1) YλaMQb

(ks rci), (6.112b)

Υ(ci)
MQHb

=

− sin(λsMQb ϕci)C (kf2 ks)λ
s
MQb (µ1 − µ2) (µ2 − 1) YλsMQb

(ks rci), (6.113a)

cos(λaMQb ϕci)C (kf2 ks)λ
a
MQb (µ1 − µ2) (µ2 − 1) YλaMQb

(ks rci), (6.113b)

Υ̃(ci)
MQHb

=


− sin(λsMQb ϕci) (JλsMQb(ks rci)− C k

2λsMQb
s (µ1 − µ2) YλsMQb

(ks rci)), (6.114a)

cos(λaMQb ϕci) (JλaMQb(ks rci)− C k
2λaMQb
s (µ1 − µ2) YλaMQb

(ks rci)), (6.114b)

with the constant C defined in Equation (6.33) and 0 < λsMQb = λsk < 1 the symmetric
and 0 < λaMQb = λak < 1 the anti-symmetric eigenvalues given in Equation (6.54). The
different corner functions are related by their contribution factors û(ci)

MQw1b

(
Υ(ci)•

)
, û(ci)

MQw2b
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(
Υ(ci)
•
)

and û(ci)
MQHb

(
Υ̃(ci)•

)
. The total number of independent corner functions exhibiting

moment and shear force singularities at the corner ci is therefore given by 3n(ci)
MQ.

The corner functions do not form a T-complete set and are only included to represent the
singularities in field variables.

Notes on the implementation of the function sets

As mentioned in e.g. [21] or [99], the following steps have to be considered in the practical
implementation of the function sets to yield proper results with the WBM:

a.) Function scaling

The numerical condition of the WBM model is strongly influenced by the amplitudes of
the included wave functions and special purpose functions and therefore a scaling of the
functions to a maximum amplitude of 1 is necessary [21]. While for the wave functions
in Table 6.3 a scaling factor in the exponent of the exponential functions is included
[99], it is advantageous to use an implementation of exponentially scaled Bessel functions
(Jν(•) exp(−|Im(•)|) to scale the corner functions.

b.) Linear dependency of wave functions

At specific frequencies, the selection of the wave numbers given in Equations (6.63) – (6.65)
leads to linearly dependent functions, which results in a singular system of linear equations
[99]. Removing the dependent wave functions from the field variable expansion resolves
this issue.

c.) Wave function truncation

To define the total numbers of included wave functions n(α)
w1 , n(α)

w2 and n
(α)
H in Equations

(6.60) – (6.62), the frequency dependent truncation rule{
k

(α)
iw1,x, k

(α)
iw2,x, k

(α)
iH ,x

, k
(α)
jw1,y, k

(α)
jw2,y, k

(α)
jH ,y

}
≥ T max

(
k

(1)
f1 , k

(2)
f1 , . . . , k

(nα)
f1

)
, (6.115)

with T the user-specified truncation factor, is applied. This truncation rule ensures that
the highest wavenumber in the field variable expansion exceeds the highest physical oscil-
latory wavenumber (kf1) by a factor of T [17]. The wavenumber kf1 is used, since it is
the only physical wavenumber which corresponds to travelling waves.

6.2.2 Construction of the system matrices

The field variable expansions in Equations (6.60) – (6.62) satisfy the governing equations
of the Mindlin plate theory exactly and therefore, only a fitting of the prescribed boundary
and interface conditions is required. The boundary and interface residuals are minimized
by the weighted residual approach outlined in Section 4.1.2, which leads to a system of
linear equations with the unknown contribution factors û(?)

• . The differential operators
for the boundary and interface conditions are defined in the following section and the
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differential operators (T•) used on the weighting functions are derived from the sub-region
three-field generalized mixed variational form of the Mindlin plate theory.

Boundary and interface conditions

The four different kinds of common boundary conditions in the Mindlin plate theory, given
in Equations (2.75) – (2.78), can be rewritten in terms of the three field variables w1, w2
and H by

B(α)
u u(α) −B(α)

u = 0, r ∈ Γ(α)
u (6.116)

B(α)
σ u(α) −B(α)

σ = 0, r ∈ Γ(α)
σ (6.117)

B(α)
uσ1 u

(α) −B(α)
uσ1 = 0, r ∈ Γ(α)

uσ1 (6.118)

B(α)
uσ2 u

(α) −B(α)
uσ2 = 0, r ∈ Γ(α)

uσ2 (6.119)

with the column vector u(α) =
[
w

(α)
1 , w

(α)
2 , H(α)

]T
gathering the field variables in the

sub-domain α and the column vectors

B
(α)
u =


w(α)

ψ
(α)
n

ψ
(α)
s

, B(α)
σ =


Q

(α)
n

M
(α)
n

M
(α)
ns

, B(α)
uσ1 =


w(α)

M
(α)
n

M
(α)
ns

, B(α)
uσ2 =


w(α)

M
(α)
n

ψ
(α)
s

, (6.120)

gathering the prescribed boundary conditions. The boundary operators

B(α)
w =


1
1
0


T

, B(α)
Qn

= k2Gh


µ1

∂
∂n(α)

µ2
∂

∂n(α)

∂
∂s(α)


T

,

B(α)
ψn

=


(µ1 − 1) ∂

∂n(α)

(µ2 − 1) ∂
∂n(α)

∂
∂s(α)


T

, B(α)
Mn

= D


(µ1 − 1)

(
∂2

∂n(α)2 + ν ∂2

∂s(α)2

)
(µ2 − 1)

(
∂2

∂n(α)2 + ν ∂2

∂s(α)2

)
(1− ν) ∂2

∂n(α) ∂s(α)


T

, (6.121)

B(α)
ψs

=


(µ1 − 1) ∂

∂s(α)

(µ2 − 1) ∂
∂s(α)

− ∂
∂n(α)


T

, B(α)
Mns

= D (1− ν)


(µ1 − 1) ∂2

∂n(α) ∂s(α)

(µ2 − 1) ∂2

∂n(α) ∂s(α)

1
2

(
∂2

∂s(α)2 − ∂2

∂n(α)2

)

T

,

are collected in the matrices

B(α)
u =


B(α)
w

B(α)
ψn

B(α)
ψs

, B(α)
σ =


B(α)
Qn

B(α)
Mn

B(α)
Mns

, B(α)
uσ1 =


B(α)
w

B(α)
Mn

B(α)
Mns

, B(α)
uσ2 =


B(α)
w

B(α)
Mn

B(α)
ψs

, (6.122)

where ∂
∂n(α) and ∂

∂s(α) are the normal and tangential derivatives at the boundaries of the
sub-domain α.
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The interface conditions between two sub-domains α and β (Equation (2.79)) can be given
in terms of the field variables u(α) and u(β) by

B(α)
u u(α) −B(β)

u∗ u(β) = 0, r ∈ Γ(α, β)
u (6.123)

B(α)
σ u(α) −B(β)

σ∗ u(β) = 0, r ∈ Γ(α, β)
σ (6.124)

with the modified boundary operator matrices

B(β)
u∗ =


B(β)
w

−B(β)
ψn

−B(β)
ψs

, B(β)
σ∗ =


−B(β)

Qn

B(β)
Mn

B(β)
Mns

. (6.125)

To ensure the well-posedness of the problem, either only the continuity of displacements(
Γ(α, β)
u = Γ(α, β) , Γ(α, β)

σ = ∅
)

or the equilibrium of forces and moments
(
Γ(α, β)
σ = Γ(α, β) ,

Γ(α, β)
u = ∅

)
is imposed as a boundary condition on the sub-domain α, while the remaining

interface conditions are imposed on the sub-domain β.

Weighted residual formulation

Applying the weighted residual formulation for the generalized Helmholtz problem (Equa-
tion (4.7)) to the Mindlin plate theory requires the definition of the partial differential
operators T (α)

• for the weighting functions ṽ(α). A general approach to find these par-
tial differential operators is a variational analysis of the problem at hand. Therefore, the
variational form of the Mindlin plate, given in Equation (2.85), is investigated and four
different partial differential operators

T (α)
u = −B(α)

σ , T (α)
σ = B(α)

u , T (α)
uσ1 =


−B(α)

Qn

B(α)
ψn

B(α)
ψs

, T (α)
uσ2 =


−B(α)

Qn

B(α)
ψn

−B(α)
Mns

, (6.126)

are identified. Finally, the weighted residual formulation for the Mindlin plate theory,
used within the framework of the WBM, is given by

nα∑
α=1

(∫
Γ(α)
u

((
T (α)
u ṽ(α)

)T
B(α)
u u(α) −B(α)

u

)
ds

+
∫

Γ(α)
σ

((
T (α)
σ ṽ(α)

)T
B(α)
σ u(α) −B(α)

σ

)
ds

+
∫

Γ(α)
uσ1
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T (α)
uσ1 ṽ(α)

)T
B(α)
uσ1u

(α) −B(α)
uσ1

)
ds

+
∫

Γ(α)
uσ2
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T (α)
uσ2 ṽ(α)

)T
B(α)
uσ2u

(α) −B(α)
uσ2

)
ds

+
nα∑

β=1, β,α

(∫
Γ(α, β)
u

(
T (α)
u ṽ(α)

)T (
B(α)
u u(α) −B(β)

u∗ u(β)
)
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+
∫

Γ(α, β)
σ

(
T (α)
σ ṽ(α)

)T (
B(α)
σ u(α) −B(β)

σ∗ u(β)
)

ds
))

= 0,

(6.127)
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where the first four integrals enforce the boundary conditions at the sub-domain α and the
last two integrals ensure the continuity of displacements and rotations and the equilibrium
of forces and moments at the interface between the sub-domains α and β.

6.3 Modified selection of the wave functions

In this section, a modified selection of the wave functions is introduced, which is not
based on the smallest rectangular bounding boxes circumscribing the viewed sub-domains.
In the classical WBM the traveling and evanescent wave functions, included in the field
variable expansion of the sub-domain α, are defined within a sub-domain coordinate system(
x

(α)
D , y

(α)
D

)
, which results from the rectangular bounding box circumscribing the sub-

domain α. The modified wave function selection uses the sub-domain coordinate system(
x

(α)
D , y

(α)
D

)
to specify the travelling wave functions in the sub-domain α, while a local

boundary coordinate system
(
x

(α)
bk
, y

(α)
bk

)
is applied to define the evanescent wave functions

at the boundary Γ(α)
k . The boundary coordinate systems for two connected sub-domains

α and β are shown in Figure 6.6. The x(α)
bk

-axis always points inward the sub-domain α

and the associated y
(α)
bk

-axis originates from a rotation about the z-axis. At an interface
Γ(α, β), two different boundary coordinate systems, one for the sub-domain α and one for
the sub-domain β, is defined.

Figure 6.6: Boundary coordinate systems for the modified selection of the wave functions

The modified selection of the wave functions is mainly motivated by the results given in
[257], where the convergence rate of the WBM for a rectangular domain and a nearly
rectangular domain with a slightly rotated boundary are compared. Van Hal and his
co-workers [257] have shown that the convergency rate of the WBM for the rectangular
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6 Extension of the Wave Based Method to thick plate vibrations

domain is much higher compared to the slightly modified problem and introduced a mod-
ification of the field variable expansion by including more travelling waves. A minimal
improvement of the convergence rate has been reported [257].

The modification of the wave function selection in this work follows a different approach.
Due to the exponential decay, the evanescent waves in the field variable expansions hardly
contribute to the total value of the field variables inside the domain. The main purpose of
the evanescent waves is to capture near field effects close to the boundaries. For the rect-
angular domain, the evanescent waves are perfectly aligned with the boundaries, since the
bounding box is identical to the problem domain. For non-rectangular domains, this aline-
ment is not retained and the amplitudes of the evanescent waves become rather localized
at the boundaries as illustrated in Figure 6.7.
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(a) Square domain
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(b) Domain with inclined boundary

Figure 6.7: Evanescent wave function defined by the smallest rectangular bounding box

The modified wave function selection can be considered as a rotation of the evanescent
waves to restore the alignment with the boundaries. An evanescent wave defined through
the boundary coordinate system is shown in Figure 6.8 and it is apparent that the rotated
wave becomes much more similar to the wave defined at the rectangular domain (Figure
6.7a) compared to the original wave (Figure 6.7b). A drawback of the modification is that
the T-completeness of the modified wave function sets cannot be proven as in Section 6.2.1.
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Figure 6.8: Evanescent wave function defined through the boundary coordinate system
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The numerical results shown in Section 6.4 indicate though that the modified function sets
are still T-complete for convex sub-domains.

As long as the frequency is lower than the cut-off frequency ωc =
√

k2 G
ρR , the physical

wavenumber kf1 is a real number and the physical wavenumbers kf2 and ks are imaginary
numbers. Therefore, the wave functions included in the expansions of the field variables
w

(α)
2 and H(α) are always evanescent waves, independent of the chosen wavenumbers in

Equations (6.64) and (6.65). The wave functions included for the field variable w(α)
1 are

either travelling waves (the wavenumber in Equation (6.63) is low) or evanescent waves
(the wavenumber in Equation (6.63) is high).

The modified wave function selection results in the following basis functions for w(α)
1 , w(α)

2
and H(α):

Wave functions for w(α)
1 (travelling waves):

Set 1


Φ(α)
iw1 = cos

(
k

(α)
iw1,x x

(α)
D

)
exp

(
−j k(α)

iw1,y y
(α)
D

)
,

Φ(α)
jw1 = exp

(
−j k(α)

jw1,x x
(α)
D

)
cos
(
k

(α)
jw1,y y

(α)
D

)
,

(6.128)

Set 2


Φ′(α)
iw1 = sin

(
k

(α)
iw1,x x

(α)
D

)
exp

(
−j k(α)

iw1,y y
(α)
D

)
,

Φ′(α)
jw1 = exp

(
−j k(α)

jw1,x x
(α)
D

)
sin
(
k

(α)
jw1,y y

(α)
D

)
,

(6.129)

with the wavenumbers

k
(α)
iw1,x = iw1 π

L
(α)
x

and k
(α)
iw1,y = ±

√(
k

(α)
f1

)2
−
(
k

(α)
iw1,x

)2
, (6.130)

k
(α)
jw1,y = jw1 π

L
(α)
y

, and k
(α)
jw1,x = ±

√(
k

(α)
f1

)2
−
(
k

(α)
jw1,y

)2
. (6.131)

The travelling waves for the expansion of the field variable w(α)
1 are identical to the orig-

inal wave function selection and are defined within the local domain coordinate system(
x

(α)
D , y

(α)
D

)
. The integer indices iw1 and jw1 start from 0 for the function set 1 and from 1

for set 2. As long as k(α)
iw1,y and k(α)

jw1,x are real valued, the wave functions Φ(α)
iw1 , Φ(α)

jw1 , Φ′(α)
iw1

and Φ′(α)
jw1 are travelling waves. Starting from iw1 > (k(α)

f1 L
(α)
x )/π and jw1 > (k(α)

f1 L
(α)
y )/π,

the wave functions become evanescent and the following different definition of the wave
functions is applied.

Wave functions for w(α)
1 (evanescent waves):

Set 1: Φ(α)
lw1

= cos
(
k

(α)
lw1,y

y
(α)
bk

)
exp

(
j k(α)
lw1,x

x
(α)
bk

)
, (6.132)

Set 2: Φ′(α)
lw1

= sin
(
k

(α)
lw1,y

y
(α)
bk

)
exp

(
j k(α)
lw1,x

x
(α)
bk

)
, (6.133)

with the wavenumbers

k
(α)
lw1,y

= lw1 π

L
(α)
bk

and k
(α)
lw1,x

=
√(

k
(α)
f1

)2
−
(
k

(α)
lw1,y

)2
. (6.134)
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The integer index k represents the considered boundary Γ(α)
k and L

(α)
bk

is the length of
the boundary. The wave functions in Equations (6.132) and (6.133) are defined in the
local boundary coordinate system

(
x

(α)
bk
, y

(α)
bk

)
and the integer index lw1 starts from lw1 >

(k(α)
f1 L

(α)
bk

)/π.

Since the wave functions for the field variables w(α)
2 and H(α) are always evanescent, only

one definition of the wave functions is required.

Wave functions for w(α)
2 (evanescent waves):

Set 1: Φ(α)
iw2 = cos

(
k

(α)
iw2,y y

(α)
bk

)
exp

(
j k(α)
iw2,x x

(α)
bk

)
(6.135)

Set 2: Φ′(α)
iw2 = sin

(
k

(α)
iw2,y y

(α)
bk

)
exp

(
j k(α)
iw2,x x
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)
(6.136)

with the wavenumbers

k
(α)
iw2,y = iw2 π
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bk

and k
(α)
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√(
k
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−
(
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. (6.137)

The integer index iw2 starts from 0 for the first function set and from 1 for the second
function set .

Wave functions for H(α) (evanescent waves):

Set 1: Φ(α)
iH

= sin
(
k

(α)
iH ,y

y
(α)
bk

)
exp

(
j k(α)
iH ,x

x
(α)
bk

)
(6.138)

Set 2: Φ′(α)
iH

= cos
(
k

(α)
iH ,y

y
(α)
bk

)
exp

(
j k(α)
iH ,x

x
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)
(6.139)

with the wavenumbers

k
(α)
iH ,y

= iH π

L
(α)
bk

and k
(α)
iH ,x

=
√(

k
(α)
s

)2
−
(
k

(α)
iH ,y

)2
. (6.140)

The integer index iH starts from 1 for the first function set and from 0 for the second
function set.

Since the amplitudes of the wave functions defined above are always smaller than 1, a wave
function scaling is not necessary for the modified wave function selection. For a rectangular
problem domain, the wave functions from the modified selection become identical to the
originally propose wave function selection. The truncation rule given in Equation (6.115)
can also be applied for the modified wave function selection.

6.4 Validation examples

In this section, the WBM is applied to different steady-state harmonic plate bending
problems to investigate the computational efficiency and accuracy of the method. A
convex plate geometry with various types of boundary conditions and harmonic loadings
is examined in Section 6.4.1. In these kinds of problems the WBM models consist of
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only one domain and the decomposition into several sub-domains is avoided. In Section
6.4.2 non-convex plate domains are analyzed and the influence of the decomposition of the
problem domain on the computational properties of the WBM is shown.

The main objectives of the validation examples are:

• Verifying the capability of the WBM to solve plate vibration problems governed by
the Mindlin plate theory

• Comparing the original and modified wave function selection regarding their com-
putational accuracy and efficiency

• Studying the properties of the different wave function sets and the effects of special
purpose functions for corner stress singularities

• Investigating the influence of the direct solvers used to calculate the contribution
factors in the WBM

• Analysing the computational efficiency of the WBM compared to the classical FEM

The WBM models are built and solved with MATLAB R© R2017b and an Intel R© CoreTM

i7 system (4× 3.4 GHz, 16 GB RAM), running a Windows 10 operating system, is used to
perform the calculations. In [176] it is shown that a numerical evaluation of the integrals
arising in the weighted residual formulation of the WBM can be performed in a highly
efficient way. As in [17], the Gauss-Legende quadrature rule is applied to numerically
evaluate the integrals, while the rule to chose the optimal number of Gauss points, given
in [17], is slightly modified to

nG
Lb

= max(0.54T kf1 + 60, 90), (6.141)

with nG the number of Gauss points and Lb the length of the viewed boundary. Compared
to the rule given in [17], twice as many Gauss points are used to ensure an accurate
evaluation of the integrals especially if special purpose functions are included. To solve
the system of linear equations resulting from the weighted residual formulation either
the LU -factorization with partial pivoting, which is implemented in the Matlab function
linsolve, or the singular value decomposition (SVD) is applied.

In lack of analytical solutions for the considered plate vibration problems, the reference
solutions to compare the results of the WBM are calculated with the FEM. The commercial
software ANSYS R© 17.1 is used to build the FEM models and the quadratic 8-noded
quadrilateral Shell281 element, which has the Mindlin theory implemented, is applied. To
get highly accurate reference solutions, very fine FEM meshes are required and therefore,
the calculations are performed on an Intel R© XeonTM server (8× 2.9 GHz, 192 GB RAM)
running a Windows server 2012 operating system.

To assess the accuracy and efficiency of the WBM, contour plots of the primary field
variables (w, ψx, ψy) and the absolute error compared to the reference solution

|ε| = | •WBM − •Ref |, (6.142)

with •WBM the value of the field variable (w, ψx, ψy) calculated with the WBM and •Ref
the value of the reference solution, are shown. Furthermore, frequency response functions
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6 Extension of the Wave Based Method to thick plate vibrations

(FRF) over a wide frequency range are calculated with the WBM and the averaged absolute
values of the field variables

avg(| • |) = 1
nrp

nrp∑
i=1
| • (xi, yi)|, (6.143)

are compared to the reference solutions. In Equation (6.143) nrp denotes the total number
of response points, (xi, yi) the coordinates of the response points and • = {w, ψx, ψy}.
The influence of the different wave function selections and the included wave function sets
is investigated through convergence curves, where the averaged relative error

〈δ〉 = 1
nrp

nrp∑
i=1

| •WBM (xi, yi)− •Ref (xi, yi)|
| •Ref (xi, yi)|

, (6.144)

is plotted against the total number of included wave functions (# dofs).

To illustrate the computational efficiency of the WBM, several WBM and FEM models are
built and the averaged relative error of the models compared to the reference solution is
plotted against the computation time. Since the system matrices of the FEM are generally
frequency independent, only the direct solution time of the system of linear equations is
taken into account, while the time to build the linear system is not considered. In the
WBM the system matrix has to be computed for every frequency and therefore, the time
to build and solve the linear system is included. All computations for the comparison are
performed on an Intel R© CoreTM i7 system (4×3.4 GHz, 16 GB RAM) and no parallelization
of the computations is applied to ensure a proper comparison.

6.4.1 Single domain problems

The geometry of the single domain problems is shown in Figure 6.9. The polygonal plate
has the dimensions L(1)

x = 1 m and L
(1)
y = 0.5 m and is bounded by four edges Γ(1)

1 − Γ(1)
4 .

The material properties of the steel plate are E = 2.1× 1011 N/m2, ρ = 7850 kg/m3, ν =
0.3 and η = 0 and three different thicknesses, see Table 6.4, are considered. The shear cor-

Figure 6.9: Geometry of the single domain problems
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rection factor kW is used in the Mindlin plate theory. In Table 6.4 the ratio of the smallest
lateral dimension to the plate thickness, the frequency of the lowest, simple thickness-shear
mode and the frequency limits for the Kirchhoff plate theory are listed. While the plates
with thickness h1 and h2 are generally considered as thin plates, the plate with thickness
h3 is moderately thick.

Table 6.4: Thicknesses of the convex plate configurations and Kirchhoff limits
example h [m] L

(1)
y /h fs [Hz] fGk1% [Hz] fGk2% [Hz]

h1 0.005 100 320766 2791 5613

h2 0.010 50 160383 1395 2807

h3 0.025 20 64153 558 1123

Four different types of boundary conditions are considered in the following sections. For
the clamped and free plates, the boundary conditions at all four edges are identical, while
the cantilever plate has one clamped boundary and three free boundaries. For these three
types of boundary conditions no stress singularities are present at the four corner points.
In the last configurations, all boundaries are hard simply-supported and stress singularities
arise in the corners c3 and c4.

A FEM model with a maximum element size of 0.001 m (at least ≈ 90 quadric elements
per wavelength) is used to calculate the first 100 eigenfrequencies (bending) of the different
plate configurations to assess the relevant frequency ranges. Three different frequencies
are examined for each thickness and boundary condition, which are located after the

Table 6.5: Modal analysis of the convex plate configurations

bcd h
> 10 modes > 40 modes > 70 modes 100 modes

f [Hz] λ [m] f [Hz] λ [m] f [Hz] λ [m] f [Hz] λ [m]

clamped
h1 850 0.2402 2610 0.1366 4195 0.1075 5772 0.0914
h2 1650 0.2427 5080 0.1367 8000 0.1078 10850 0.0917
h3 3850 0.2444 10700 0.1386 15870 0.1094 20501 0.0931

free
h1 220 0.4726 1310 0.1933 2550 0.1382 3769 0.1135
h2 440 0.4723 2580 0.1935 4970 0.1382 7246 0.1136
h3 1050 0.4794 5900 0.1941 10700 0.1386 14885 0.1138

cantilever
h1 420 0.3419 1780 0.1657 3170 0.1239 4506 0.1036
h2 840 0.3411 3500 0.1656 6120 0.1241 8590 0.1038
h3 2000 0.3445 7750 0.1668 12770 0.1249 17061 0.1046

hard SS
h1 670 0.2706 2300 0.1456 3800 0.1130 5291 0.0955
h2 1300 0.2738 4600 0.1439 7310 0.1131 10054 0.0955
h3 3150 0.2718 9800 0.1459 15060 0.1130 19704 0.0955
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10th-bending mode, the 40th-bending mode and the 70th-bending mode. An overview of
these frequencies f and the bending wavelengths λ is given in Table 6.5. Comparing the
frequency limits of the Kirchhoff plate theory given in Table 6.4 with the frequencies listed
in Table 6.5, it is apparent that accurate results over the complete frequency range can
only be expected from the Kirchhoff plate theory for the plates with the thickness h1.

The details of the FEM models used to calculate the reference solutions for the error
plots and convergence curves are given in Table 6.6. The same FEM mesh is applied for
one type of boundary condition independent of the plate thickness or viewed frequency.
Even though the geometry of all validation examples is the same, the FEM meshes differ
between the applied boundary conditions, since the plate loadings are not identical. An
accurate representation of the loadings in the FEM models is necessary to get accurate
results, which leads to a different number of nodes (# nodes) and elements (# elements)
among the four boundary conditions. Especially for the hard simply-supported plates, a
mesh refinement at the corner points c3 and c4 is necessary to capture the corner stress
singularities. Since very fine FEM meshes are applied (more than 200 quadric elements
per wavelength), highly accurate reference solutions can be expected.

Table 6.6: FEM reference models for the convergence analysis
bcd max(el. size) [m] # nodes # elements min(# el./λ)

clamped 0.00050 7408526 2467599 215

free 0.00055 7077725 2357474 251

cantilever 0.00055 5693529 1896066 225

hard SS 0.00055 7532205 2508486 205

Since the FEM models listed in Table 6.6 are too computationally demanding to calculate
frequency response functions over a wide frequency range (≈ the first 100 bending modes),
models with less degrees of freedom are used to get a reference solution. Again, the
same FEM mesh is applied for one type of boundary condition independent of the plate
thickness or viewed frequency step. According to Equation (3.15), ten quadric elements
per wavelength are required to control the pollution error for the highest frequencies in
the frequency response functions. Although, the element size is increased compared to

Table 6.7: FEM reference models for the FRF
bcd max(el. size) [m] # nodes # elements min(# el./λ)

clamped 0.005 74580 24669 20

free 0.005 86215 28544 24

cantilever 0.005 69473 22962 22

hard SS 0.005 69473 22962 20
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the models in Table 6.6, at least 20 elements per wavelength are used, which exceeds the
requirement of Equation (3.15) by a factor of two.

The convergence curves of the FEM are determined by decreasing the mesh size of the
FEM models from 0.05 m (at least ≈ 2 elements per wavelength) to 0.001 m (at least ≈ 90
elements per wavelength) in 13 steps.

To enable a detailed analysis of the properties of the WBM, each validation example
is calculated with various WBM models. Either the original or modified wave function
selection is used and models applying only the first wave function sets (set1 ) or both
sets (set1a2 ) are built. The resulting systems of linear equations are solved with the LU-
factorization or the SVD and the truncation factor is varied from T = 0.5 to T = 8 in
steps of 0.25. If corner stress singularities are present, additional models including special
purpose functions (set1CF, set1a2CF) are built.

A regular grid of approximately 10000 response points inside the problem domain is used
to calculate the errors and averaged values of the field variables. To avoid high relative
errors close to nodal lines (zero values of the field variables), only response points having
an amplitude greater than 5% of the maximum value are included in the prediction of the
averaged relative error 〈δ〉.

Clamped plate

In Figure 6.10, the boundary conditions and loading of the clamped plate configurations
are illustrated. The out-of-plane displacement and rotations are set to zero at all four
edges and an alternating circular load with an amplitude of q0 = 10 N and a radius of
r0 = 0.07 m harmonically excites the plate. The smallest rectangular bounding box used
to define the wave functions in the WBM is indicated by the dashed lines. At corner
points with two clamped boundaries, stress singularities are only exhibit if the internal
angle exceeds 180◦, which is not the case for the given examples. Therefore, no special
purpose functions are included in the WBM models. The particular solution functions
given in Equations (5.111) – (5.113) are used to represent the harmonic loading.

Figure 6.10: Boundary conditions and harmonic loading of the clamped plates
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Figure 6.11: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.005 m) excited by an alternating circular load at 2610 Hz calcu-
lated with the original WBM using only the function set 1 and a truncation
factor T = 2

The contour plots of the field variables (w, ψx, ψy) and absolute errors compared to the
reference solution for the clamped plate with a thickness h = 0.005 m excited at 2610 Hz
are shown in Figures 6.11 and 6.12. The results in Figure 6.11 are calculated with the
original wave function selection, while the modified wave function selection is used in
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Figure 6.12: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.005 m) excited by an alternating circular load at 2610 Hz calcu-
lated with the modified WBM using only the function set 1 and a truncation
factor T = 2

Figure 6.12. In both computations only the first wave function sets are included and a
truncation factor of T = 2 is applied, which leads to 278 wave functions for the original
and 244 wave functions for the modified wave function selection. The system of linear
equations is solved with the LU-factorization. The contour plots show that the clamped
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boundary conditions are accurately represented by both WBM models and therefore, the
prediction errors |ε| are rather low. Although, the original wave function selection leads
to an accurate result, the error of the modified wave function selection is even about one
order of magnitude lower, while using less degrees of freedom. This shows the advanced
convergence properties of the modified wave function selection.

The contour and error plots for all other thicknesses and frequencies can be found in
Appendix E in Figures E.1 – E.16. Since the viewed frequencies are situated directly after
the 10th-bending mode, the 40th-bending mode and the 70th-bending mode, the plate
deformations are very similar among all plate thicknesses. The WBM models, which
apply the modified wave function selection, have a similar accuracy for all other clamped
plate examples, independent of the plate thickness or viewed frequency. The contour plots
calculated with the original wave function selection show that the clamped boundary
conditions are not always accurately fulfilled, especially for higher frequencies and plate
thicknesses, see e.g. Figures E.7a, E.7c and E.7e. Therefore, the results calculated with the
original selection are less accurate and contrary to the modified wave function selection,
the error |ε| depends on the viewed frequency and plate thickness. An analysis of the
system matrices is carried out to investigate the different computational properties of the
two wave function selections.

The system matrices of the WBM are generally ill-conditioned and therefore, accurate
solutions can only be obtained if the Picard conditions stated in [177, 178] are satisfied.
To verify the Picard conditions, a singular value decomposition [300] of the WBM system
matrix

A = U ΣV H , (6.145)

where A is the WBM system matrix, Σ a diagonal matrix containing the singular values
σi, U and V two orthonormal matrices and •H the complex conjugate transpose, has to be
performed. Furthermore, the coefficients βi = UH

i b, with Ui the ith-column of the matrix
U and b the right hand side vector of the WBM linear system, have to be calculated. The
Picard conditions are fulfilled if [21]

• the singular values σi are ordered in a descending sequence and the difference of two
consecutive singular values is only large at the lower end of the sequence and

• the absolute values of the coefficients βi are smaller or of the same order of magnitude
as their associated singular value σi.

The singular values σi and absolute values |βi| of the two WBM models applied to calculate
the results in Figures 6.11 and 6.12 are plotted in Figure 6.13. It is apparent that the
condition number of the original wave function selection (≈ 4 × 1021 (double precision),
≈ 9×1038 (quadruple precision)) is significantly worse compared to the modified selection
(≈ 5× 1012 (independent of precision)).

For the original wave function selection, the standard double precision floating point arith-
metic is not accurate enough to calculate the actual singular values of the system matrix,
which leads to several similar numerical values for small σi (horizontal line at the lower
end of the plot). Therefore, a multiprecision toolbox for MATLAB R© R2017b [301] is used
to compute the singular values with quadruple precision (approximately 34 decimal dig-
its). At the beginning of the sequence, the singular values are identical between the double
and quadruple precision computations, but starting from approximately the 220th singular
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Figure 6.13: Picard conditions for the original and modified wave function selection (cla-
mped plate)

value a huge difference appears. Furthermore, not even quadruple precision is sufficient to
calculate all singular values correctly, which is apparent by the horizontal line at the end
of the plot in Figure 6.13.

Although, the Picard conditions are still roughly fulfilled by the original wave function
selection, the system matrix of the modified selection has considerably better properties.
Hence, the accuracy of the WBM using the original wave function selection is generally
limited due to the bad conditioning of the system matrix and the inevitable round-off
errors in double precision. This effect is more pronounced at high frequencies, since a
constant truncation factor T leads to an increasing number of wave functions in the WBM
model for rising frequencies and the conditioning of the WBM system matrix becomes
worse.

In Figure 6.14, the frequency response functions for the clamped plate with thickness
h = 0.025 m calculated with the WBM and the FEM are compared. The WBM models
are built with the modified wave function selection and both function sets are applied.
The truncation factor is set to T = 2 and the system of linear equations is solved with
the LU-factorization. The frequency starts at 50 Hz and is increased to 20050 Hz in 2000
steps. Therefore, approximately the first 100 bending modes are included in the response
function. The WBM results are in excellent agreement with the reference solution over
the complete frequency range, even at high frequencies and close to eigenfrequencies. The
averaged values of the field variables are plotted to capture the accuracy of the WBM
in the whole plate domain. The results for the plates with the thicknesses h = 0.005 m
and h = 0.01 m are similar, which can be seen in the Appendix E in Figures E.17 and
E.18. Due to the numerical instabilities of the original wave function selection caused by
the ill-conditioning of the system matrix and round-off errors, see above, the FRF is not
calculated with the WBM using the original selection.
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Figure 6.14: Frequency response functions of a clamped plate (h = 0.025 m) excited by an
alternating circular load calculated with the FEM (reference mesh) and the
modified WBM (function set 1 and set 2, T = 2)
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Figure 6.15: Convergence curves of the out-of-plane displacement (clamped plate with
h = 0.01 m) for the original WBM (set1 ( ), set1a2 ( )) and the modified
WBM (set1 ( ), set1a2 ( ))

101 102 103 10410−7

10−5

10−3

10−1

101

# dofs

〈δ
〉

(a) 1650 Hz

101 102 103 10410−7

10−5

10−3

10−1

101

# dofs

〈δ
〉

(b) 5080 Hz

101 102 103 10410−7

10−5

10−3

10−1

101

# dofs

〈δ
〉

(c) 8000 Hz

Figure 6.16: Convergence curves of the rotation about the x-axis (clamped plate with
h = 0.01 m) for the original WBM (set1 ( ), set1a2 ( )) and the modified
WBM (set1 ( ), set1a2 ( ))
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Figure 6.17: Convergence curves of the rotation about the y-axis (clamped plate with
h = 0.01 m) for the original WBM (set1 ( ), set1a2 ( )) and the modified
WBM (set1 ( ), set1a2 ( ))

The convergence rates of different WBM models (solved with LU-factorization) for the
clamped plate with thickness h = 0.01 m and all three frequencies are illustrated in Fig-
ures 6.15 – 6.17. The models using the modified wave function selection nearly uniformly
converge to highly accurate results for each frequency (less than 0.001% error), while the
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original wave function selection stagnates at a certain error level for the first two fre-
quencies (1% for f = 1650 Hz and 3.5% for f = 5080 Hz) and does not converge for the
highest frequency. Apparently, including the second wave function sets (set1a2 ) hardly
influences the convergence rate of the WBM for the given examples. At the lowest excita-
tion frequency f = 1650 Hz both wave function selections only require approximately 100
wave functions to calculate the amplitudes of the field variables with an error less than
1%. Even for the second frequency f = 5080 Hz and third frequency f = 8000 Hz, only
160 and 260 wave functions have to be included in the WBM models using the modified
selection.

According to Section 6.2.1, the WBM using the original wave function selection should con-
verge to the analytical solution of the plate vibration problem. The bad conditioning of the
WBM system matrix and the inevitable round-off errors in the numerical implementation
cause instabilities in the calculations and prevent the convergence of the results. In Figure
6.18 the convergence curves of the original WBM for the clamped plate (h = 0.001 m) ex-
cited at 8000 Hz computed with double and quadruple precision are compared. While the
relative error fluctuates between 8% and 400% for the computations in double precision,
the quadruple precision arithmetic leads to a stable relative error of approximately 8%.
These results clearly show the influence of the conditioning and round-off errors on the
accuracy of the original WBM.
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Figure 6.18: Convergence curves (clamped plate with h = 0.01 m excited at 8000 Hz) for
the original WBM in double precision (set1 ( ), set1a2 ( )) and quadru-
ple precision (set1 ( ), set1a2 ( ))

The convergence curves for the clamped plates with thickness h = 0.005 m and h = 0.025 m
are given in Appendix E in Figures E.19 – E.24. For the thin plate with thickness h =
0.005 m, the WBM using the original wave function selection stagnates at a relative error
of approximately 0.8% to 2%, while for the thick plate (h = 0.025 m) a fluctuation of the
relative error between 2% and 20% occurs. As expected, the accuracy of the WBM models
applying the modified wave function selection are hardly influenced by the thickness or
excitation frequency and the results uniformly converge to a relative error of less than
0.001%.

To show the computational efficiency of the WBM, the convergence curves of the out-of-
plane displacement for the clamped plate with thickness h = 0.01 m with respect to the
computation time are illustrated in Figure 6.19. The WBM models apply the modified
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wave function selection and the LU-factorization is used to solve the linear system of
equations. Even though, quadric elements are used in the FEM, the convergence rate of
the WBM is considerably higher. Depending on the viewed frequency, the computation
time of the FEM to reach a relative error of 1% is approximately 12 times (f = 1650 Hz),
40 times (f = 5080 Hz) and 90 times (f = 8000 Hz) higher compared to the WBM. The
results for the rotation about the x- and y-axis and the other two thicknesses are practically
identical and therefore not shown.
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Figure 6.19: Convergence curves of the out-of-plane displacement (clamped plate with
h = 0.01) for the FEM ( ) and the modified WBM (set1 ( ), set1a2
( ))

According to the rule given in Equation (3.15), the FEM with quadric elements (p = 2)
requires 7.08 (1650 Hz), 8.18 (5080 Hz) and 8.68 (8000 Hz) elements per wavelength to
control the pollution error. While this rule leads to an error of 1.9% for f = 1650 Hz and
3.6% for f = 5080 Hz in the given example, the error increases to 15.7% for f = 8000 Hz.
The growing error indicates that the constant C in the rule to control the pollution error
(Equation (3.13)) is actually frequency dependent for plate bending problems. Changing
the constant C in Equation (3.13) from 1 to 0.1, reduces the error for the clamped plate
examples to less than 2% in the complete frequency range. As stated in [96], an a priori
error estimator would be required to define a more appropriate rule, which is not yet
available in the literature for plate bending vibration problems.

Free plate

The boundary conditions and loading of the free plate configurations are shown in Figure
6.20. All four edges can move freely and therefore, the normal bending moments, the
twisting moments and shear forces are equal to zero at the boundaries. The free plates are
excited by a harmonic ring load with a constant amplitude of q0 = 10 N/m and a radius of
r0 = 0.09 m. The smallest rectangular bounding box is identical to the one of the clamped
plate and indicated by the dashed lines. If free boundary conditions are imposed on the
edges at a corner point, stress singularities only occur for internal angles greater than 180◦
(see Section 6.1.2). Since all internal angles in the plate domain are smaller than 180◦,
no stress singularities are exhibit and special purpose functions are not included in the
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6 Extension of the Wave Based Method to thick plate vibrations

Figure 6.20: Boundary conditions and harmonic loading of the free plates

following WBM models. The constant ring load is represented by the particular solution
functions given in Equations (5.63) and (5.64).

The contour and error plots of the out-of-plane displacement and the rotations about the
x- and y-axis for the free plate with a thickness h = 0.005 m excited at 1310 Hz are shown
in Figures 6.21 and 6.22. A WBM model using the original wave function selection is used
to calculate the results in Figure 6.21, while the modified selection is applied in Figure
6.22. The truncation factor is set to T = 2 and only the first wave function sets are
included, which leads to a total number of 200 wave functions for the original selection
and 176 wave functions for the modified selection. The resulting linear systems are solved
with the LU-factorization.

The contour plots of the field variables calculated with the original and modified wave
function selection are similar, but the error plots in Figures 6.21 and 6.22 show that
the accuracy of the WBM model using the original wave function is approximately two
orders lower compared to the modified wave function selection. Furthermore, the absolute
errors of the original wave function selection in Figure 6.21 are of the same order as the
amplitudes of the field variables and therefore, a sufficient accuracy is not yet reached.

Since the accurate representation of the boundary conditions cannot be recognised from
the contour plots, the averaged boundary residuals

avg(|RMn |) = 1
Lbnd

∫
Γ

∣∣∣M (WBM)
n −Mn

∣∣∣ ds, (6.146)

avg(|RMns |) = 1
Lbnd

∫
Γ

∣∣∣M (WBM)
ns −Mns

∣∣∣ ds, (6.147)

avg(|RQn |) = 1
Lbnd

∫
Γ

∣∣∣Q(WBM)
n −Qn

∣∣∣ ds, (6.148)

with Lbnd the total length of the boundary, Mn = 0, Mns = 0 and Qn = 0 the prescribed
boundary conditions and M

(WBM)
n , M (WBM)

ns and Q
(WBM)
n the moments and shear force

calculated with the WBM models, are computed. The integrals in Equations (6.146) –
(6.148) are evaluated numerically with the trapezoidal rule, which is implemented in the
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Figure 6.21: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.005 m) excited by a constant ring load at 1310 Hz calculated
with the original WBM using only the function set 1 and a truncation factor
T = 2

Matlab function trapz. Additionally, the averaged amplitudes of the moments (avg(|Mx|),
avg(|My|), avg(|Mxy|)) and shear forces (avg(|Qx|), avg(|Qy|)) in the whole plate domain
are calculated for the reference solution, to be able to quantify the boundary residuals.
The averaged boundary residuals for the WBM using the original wave function selection
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Figure 6.22: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.005 m) excited by a constant ring load at 1310 Hz calculated
with the modified WBM using only the function set 1 and a truncation factor
T = 2

are given by avg(|RMn |) = 0.0026 N, avg(|RMns |) = 0.062 N and avg(|RQn |) = 1.659 N/m,
while the modified selection leads to the residuals avg(|RMn |) = 0.0022 N, avg(|RMns |) =
0.0016 N and avg(|RQn |) = 0.291 N/m. Comparing the residuals with the averaged mo-
ments avg(|Mx|) = 0.138 N, avg(|My|) = 0.191 N and avg(|Mxy|) = 0.084 N and shear
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forces avg(|Qx|) = 6.154 N/m and avg(|Qy|) = 7.061 N/m, shows that the original wave
function selection is not able to accurately represent the boundary conditions, especially
the twisting moment Mns (residual ≈ 50% of the averaged moment) and normal shear
force Qn (residual ≈ 25% of the averaged shear force). The residuals of the WBM model
using the modified selection are significantly lower (≈ 1% to 5% of the averaged values),
which leads to the large difference in accuracy between the two models.

To verify the Picard conditions for the WBM models used to calculate the plate defor-
mations shown in Figures 6.21 and 6.22, a SVD of the system matrices is performed
and the singular values σi and coefficients |βi| are plotted in Figure 6.23. Similar to
the clamped plate examples, the original wave function selection leads to a system ma-
trix having a rather poor conditioning number (cond(A) ≈ 3 × 1021 (double precision),
cond(A) ≈ 2× 1039 (quadruple precision)) compared to the modified wave function selec-
tion (cond(A) ≈ 1× 1010 (independent of precision)). The system matrix of the modified
WBM fulfills both Picard conditions, while for the original WBM model, the ratio of the
coefficients |βi| to the singular values σi becomes rather high at the end of the sequence,
which violates the second Picard condition. This violation is only evident if quadruple
precision is used to build the WBM model, since in double precision the singular values
become constant at the end of the sequence and remain well above the constants |βi|.
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Figure 6.23: Picard conditions for the original and modified wave function selection (free
plate)

The contour and error plots for all other thicknesses and frequencies are shown in Appendix
E in Figures E.25 – E.40. Similar to the findings for the clamped plate configurations, the
modified wave function selection leads to highly accurate results independent of the plate
thickness or excitation frequency, while the performance of the original wave function
selection strongly depends on the thickness and frequency. The plate deformations are
very similar among the plate thicknesses, since the viewed frequencies are situated between
the same eigenmodes of the plates.
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Figure 6.24: Frequency response functions of a free plate (h = 0.025 m) excited by a con-
stant ring load calculated with the FEM (reference mesh) and the modified
WBM (function set 1 and set 2, T = 2)
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The frequency response functions of the free plate with a thickness h = 0.025 m calculated
with the WBM and FEM are compared in Figure 6.24. The modified wave function
selection is used to build the WBM model and both wave function sets are included. The
truncation factor is set to T = 2 and the LU-factorization is applied to solve the system
of linear equations. To include approximately the first 100 bending modes, the excitation
frequency starts at 50 Hz and is increased to 15050 Hz in 2000 steps. Since the truncation
factor is constant, the total number of wave functions in the WBM model rises from 44
to 568. Similar to the results of the clamped plate configurations, the WBM solutions
are in excellent agreement with the reference model over the whole frequency range, even
close to eigenfrequencies. The results for the free plates with the thicknesses h = 0.005 m
and h = 0.01 m are given in Appendix E in Figures E.41 and E.42. Independent of the
plate thickness, the WBM applying the modified wave function selection leads to highly
accurate results for the three field variables over the complete frequency range. Since the
contour plots in Figure 6.21 already show that the WBM models using the original wave
function selection lead to relatively high errors, the computation of the frequency response
functions is omitted.

In Figures 6.25 – 6.27, the convergency curves of different WBM models (solved with LU-
factorization) for the free plate with thickness h = 0.01 m and all frequencies are shown.
The WBM models applying the modified wave function selection converge to highly accu-
rate results (≈ 0.001% error) for all frequencies, while the original wave function selection
stagnates at an averaged relative error of approximately 7% for the first frequency (440 Hz),
30% for the second frequency (2580 Hz) and 75% for the third frequency (4970 Hz). Includ-
ing the second wave function sets (set1a2 ) leads to a minor improvement of the convergence
rate compared to WBM models, which only use the first wave function sets (set1 ). This
effect is more pronounced for lower frequencies and only appears for the modified wave
function selection.

If the modified wave function selection and the first wave function sets (set1 ) are used in
the WBM model, only 59 wave functions (440 Hz), 135 wave functions (2580 Hz) and 199
wave functions (4970 Hz) are required to reach an averaged relative error of 1%. Adding
the second wave function sets (set1a2 ) reduces the required degrees of freedom to 52
(440 Hz), 134 (2580 Hz) and 182 (4970 Hz).

Due to the bad conditioning of the system matrix and the violation of the Picard condi-
tions, the WBM models using the original wave function selection have a limited accuracy.
If the WBM models are built and solved with quadruple precision, the error decreases to
approximately 6% for the first frequency (440 Hz), 10% for the second frequency (2580 Hz)
and 40% for the third frequency (4970 Hz).

The convergence curves for the free plates with thickness h = 0.005 m and h = 0.025 m
are shown in Appendix E in Figures E.43 – E.48. As expected, the convergence rate of the
WBM models applying the modified wave function selection is hardly influenced by the
plate thickness, since the viewed frequencies are situated between the same eigenmodes
and therefore the plate deformations are very similar. On the contrary, the accuracy of
the solutions calculated with the original wave function selection strongly depends on the
plate thickness and the viewed frequency. While for the lowest frequency, the reached
accuracy is still acceptable, the errors at higher frequencies, especially for thicker plates,
become too high.
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Figure 6.25: Convergence curves of the out-of-plane displacement (free plate with h =
0.01 m) for the original WBM (set1 ( ), set1a2 ( )) and the modified
WBM (set1 ( ), set1a2 ( ))
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Figure 6.26: Convergence curves of the rotation about the x-axis (free plate with h =
0.01 m) for the original WBM (set1 ( ), set1a2 ( )) and the modified
WBM (set1 ( ), set1a2 ( ))
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Figure 6.27: Convergence curves of the rotation about the y-axis (free plate with h =
0.01 m) for the original WBM (set1 ( ), set1a2 ( )) and the modified
WBM (set1 ( ), set1a2 ( ))

A comparison of the computational efficiency between the WBM and the FEM for the
free plate with the thickness h = 0.01 is illustrated in Figure 6.28. Since the convergence
curves of the three field variables are very similar, only the results for the out-of-plane
displacement are shown. The WBM models use the modified wave function selection and
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Figure 6.28: Convergence curves of the out-of-plane displacement (free plate with h =
0.01) for the FEM ( ) and the modified WBM (set1 ( ), set1a2 ( ))

the LU-factorization is applied to solve the system of linear equations. It is apparent
that the WBM outperforms the FEM for the given example and that the difference in
computational time increases with rising frequency. The computational time of the FEM to
reach an averaged relative error of 1% is 3.5 (440 Hz), 25 (2580 Hz) and 44 times (4970 Hz)
higher compared to the WBM. The WBM models including only the first function sets
(set1 ) and both function sets (set1a2 ) perform nearly equally for the free plate vibration
examples.

Cantilever plate

In Figure 6.29, the boundary conditions and loading of the cantilever plate configurations
are illustrated. The edge, which coincides with the x-axis is clamped (zero displacement
and rotations), while the other edges can move freely (zero normal and twisting moments
and normal shear forces). The cantilever plates are harmonically excited by a constant
circular load with the amplitude q0 = 10 N/m2 and the radius r0 = 0.05 m. At the corner
points of the cantilever plate, stress singularities are not exhibit, since the critical angles

Figure 6.29: Boundary conditions and harmonic loading of the cantilever plates

169



6 Extension of the Wave Based Method to thick plate vibrations

−6.18 −3.23 −0.28 2.67 5.62
·10−9

w [m]
(a) Real part of the displacement

10−14 10−13 10−12 10−11 10−10

|ε| [m]
(b) Absolute error of the displacement

−1.53 −0.84 −0.15 0.54 1.23
·10−7

ψx [rad]
(c) Real part of the rotation about the x-axis

10−13 10−12 10−11 10−10 10−9

|ε| [rad]
(d) Absolute error of the rotation about the x-axis

−1.20 −0.57 0.06 0.69 1.31
·10−7

ψy [rad]

(e) Real part of the rotation about the y-axis

10−13 10−12 10−11 10−10 10−9

|ε| [rad]
(f) Absolute error of the rotation about the y-axis

Figure 6.30: Out-of-plane displacement and rotations about the x- and y-axis of a can-
tilever plate (h = 0.005 m) excited by a constant circular load at 1780 Hz
calculated with the modified WBM using only the function set 1 and a trun-
cation factor T = 2

shown in Figures 6.2b and 6.2e (180◦ for the corner points c3 and c4 and 61.3◦ for c1 and
c2) are not exceeded. Therefore, no special purpose functions are included in the following
WBM models and the particular solution functions given in Equations (5.85) and (5.86)
are used to represent the harmonic loading.
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In Figure 6.30, the out-of-plane displacement and rotations about the x- and y-axis of
the cantilever plate with a thickness of h = 0.005 m excited at 1780 Hz are illustrated. A
WBM model applying the modified wave function selection and including only the first
wave function sets is used to calculate the response of the plate. The system of linear
equations is solved with the LU-factorization and the truncation factor is set to T = 2,
which leads to a total number of 207 wave functions. Due to the findings in the previous
two validation examples, WBM models using the original wave function selection are not
further considered in the following investigations.

The absolute error of the WBM shown in Figure 6.30 is rather low compared to the
amplitudes of the field variables and it is apparent that the clamped boundary condi-
tions are accurately fulfilled. To verify the accurate representation of the free boundary
conditions, the averaged boundary residuals defined in Equations (6.146) – (6.148) are
computed and compared to the averaged moment and shear force amplitudes. The av-
eraged boundary residuals avg(|RMn |) = 5.93 × 10−5 N, avg(|RMns |) = 3.15 × 10−5 N
and avg(|RQn |) = 0.0026 N/m are approximately two orders lower compared to the aver-
aged moments avg(|Mx|) = 0.0018 N, avg(|My|) = 0.0025 N and avg(|Mxy|) = 0.0010 N
and shear forces avg(|Qx|) = 0.0972 N/m and avg(|Qy|) = 0.1300 N/m, and therefore,
all boundary conditions are accurately fulfilled by the WBM model. The WBM system
matrices show the same numerical properties as for the clamped and free plate examples.

In Appendix E, the contour and error plots for all other plate thicknesses and frequencies
are shown in Figures E.49 – E.56. In general, the absolute error is several orders of mag-
nitude lower compared to the amplitude of the field variables except for certain regions
close to the corner points. This effect can be explained by the Gibbs phenomenon, which
appears if only sine functions are used to approximate the boundary conditions and the
sudden change of the enforced boundary conditions at the corners c1 and c2. The follow-
ing convergence results show that this issue can be resolved by adding the second wave
function sets.

The frequency response functions of the cantilever plate with a thickness of h = 0.025 m
calculated with the WBM and FEM are compared in Figure 6.31. The frequency is
increased from 50 Hz up to 16050 Hz in 2000 steps and therefore, approximately the first
100 bending modes are included in the response function. The modified wave function
selection and both wave function sets are used to build the WBM model and the resulting
system of linear equations is solved with the LU-factorization. The truncation factor is
set to T = 2, which leads to 44 wave functions for the lowest frequency and 592 wave
function for the highest frequency. It is apparent from Figure 6.31 that the results of the
WBM are in excellent agreement with the reference solutions for all three field variables.
The WBM is able to predict accurate results with a low number of degrees of freedom,
even close to the eigenfrequencies.

In Appendix E, the frequency response functions for the cantilever plates with the thick-
nesses h = 0.005 m and h = 0.01 m are shown in Figures E.57 and E.58. For each thickness,
the frequency is increased in 2000 steps and approximately the first 100 bending modes
are included in the frequency ranges. It is apparent from Figures E.57 and E.58 that
the results of the WBM models and the reference solution coincide over the complete fre-
quency range. Therefore, the accuracy of the WBM applying the modified wave function
selection is not influenced by the plate thickness.
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Figure 6.31: Frequency response functions of a cantilever plate (h = 0.025 m) excited by
a constant circular load calculated with the FEM (reference mesh) and the
modified WBM (function set 1 and set 2, T = 2)
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Figure 6.32: Convergence curves of the out-of-plane displacement (cantilever plate with
h = 0.01 m) for the modified WBM solved with the LU (set1 ( ), set1a2
( )) and the SVD (set1 ( ), set1a2 ( ))
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Figure 6.33: Convergence curves of the rotation about the x-axis (cantilever plate with
h = 0.01 m) for the modified WBM solved with the LU (set1 ( ), set1a2
( )) and the SVD (set1 ( ), set1a2 ( ))
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Figure 6.34: Convergence curves of the rotation about the y-axis (cantilever plate with
h = 0.01 m) for the modified WBM solved with the LU (set1 ( ), set1a2
( )) and the SVD (set1 ( ), set1a2 ( ))

The convergence curves for the cantilever plate with the thickness h = 0.01 m calculated
with different WBM models are illustrated in Figures 6.32 – 6.34. Only the modified wave
function selection is considered and the WBM models using either the first wave function
sets (set1 ) or both wave function sets (set1a2 ) are solved with the LU-factorization or the

173



6 Extension of the Wave Based Method to thick plate vibrations

singular value decomposition (SVD). Even though the WBM models using the first func-
tion sets converge to accurate results, including the second wave function sets considerably
improves the convergence rate, especially for the lowest frequency. While this effect cannot
be seen for the clamped and free plate configurations, the accurate representation of the
sudden change of the boundary conditions at the corners c1 and c2 in the cantilever plate
requires a high number of wave functions if only the first wave function sets are included.
If both wave function sets are used, the WBM nearly uniformly converges to an averaged
relative error of less than 0.001% independent of the frequency and a total number of 97
(840 Hz), 166 (3500 Hz) and 223 (6120 Hz) wave functions is required to reach an averaged
relative error of 1%.

The convergence rate of the WBM is hardly influenced by the direct solver used to calculate
the wave contribution factors, which is apparent from Figures 6.32 – 6.34. Although, the
final results are very similar, the computed contribution factors are rather different between
the LU-factorization and the SVD. The SVD seems more stable for high numbers of degrees
of freedom and gives slightly more accurate results for large WBM models. However, the
SVD is computationally more demanding compared to the LU-factorization and therefore,
the LU-factorization is recommended to solve the system of linear equations if the WBM
model is not too large.

In Appendix E, the convergence curves for the cantilever plates with the thickness h =
0.005 m and h = 0.025 m are shown in Figures E.59 – E.64. The plate thickness has hardly
any influence on the convergence properties of the WBM models, since the plate deforma-
tions at the chosen frequencies are very similar among the different plate thicknesses.

To assess the computation efficiency of the WBM compared to the FEM, their convergence
curves for the out-of-plane displacement of the cantilever plate with a thickness of h =
0.01 m are given in Figure 6.35. The computation time required by the WBM using
the modified wave function selection and both wave function sets to reach an averaged
relative error of 1% is approximately 5 (840 Hz), 15 (3500 Hz) and 70 (6120 Hz) times
lower compared to the FEM, which shows the advanced computational properties of the
WBM. The findings for the other plate thicknesses and field variables are very similar and
therefore not presented here.
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Figure 6.35: Convergence curves of the out-of-plane displacement (cantilever plate with
h = 0.01) for the FEM ( ) and the modified WBM (set1 ( ), set1a2
( ))
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Hard simply-supported plate

In the last single domain example, the hard simply-supported plate shown in Figure 6.36 is
analyzed. All four edges are hard simply-supported and the plate is harmonically excited
by a point load having an amplitude of q0 = 10 N. If both edges at a corner point are
hard simply-supported, moment stress singularities arise for internal angles greater than
90◦, while shear force singularities are exhibited for angles greater than 180◦. Therefore,
moment singularities occur at the corner points c3 (α = 134.5◦) and c4 (α = 108.4◦).

Figure 6.36: Boundary conditions and harmonic loading of the hard SS plates

While in the previous validation examples only the first wave function sets (set1 ) or both
sets (set1a2 ) are used to build the WBM models, additional models including special
purpose functions (set1CF, set1a2CF), which represent the corner stress singularities in
the corners c3 and c4, are analyzed in the following. From Figure 6.2c it is apparent that
only one symmetric eigenvalue leads to moment singularities in the corners c3 and c4.
Therefore, three special purpose functions are included for each of the two corners, which
are listed in Table 6.8. The particular solution functions given in Equations (5.40) and
(5.41) are used to represent the harmonic point loading.

Table 6.8: Special purpose functions for the hard simply-supported plate examples
corner α corner functions eigenvalue

c3 134.5◦
Υ(c3)
Mw11 = cos(λsM1 ϕc3) JλsM1

(kf1 rc3)

Υ(c3)
Mw21 = cos(λsM1 ϕc3) JλsM1

(kf2 rc3)

Υ(c3)
MH1 = − sin(λsM1 ϕc3) JλsM1

(ks rc3)

λsM1 = 1.338

c4 108.4◦
Υ(c4)
Mw11 = cos(λsM1 ϕc4) JλsM1

(kf1 rc4)

Υ(c4)
Mw21 = cos(λsM1 ϕc4) JλsM1

(kf2 rc4)

Υ(c4)
MH1 = − sin(λsM1 ϕc4) JλsM1

(ks rc4)

λsM1 = 1.660
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Figure 6.37: Out-of-plane displacement and rotations about the x- and y-axis of a hard
simply-supported plate (h = 0.005 m) excited by a point load at 2300 Hz
calculated with the modified WBM using the function set 1, corner functions
and a truncation factor T = 2

The contour and error plots of the hard simply-supported plate with a thickness h =
0.005 m excited at 2300 Hz are shown in Figure 6.37. A WBM model applying the modified
wave function selection and including the first wave function sets and the special purpose
functions given in Table 6.8 is used to calculate the results in Figure 6.37. The truncation
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factor is set to T = 2, which results in 232 degrees of freedom, and the system of linear
equations is solved with the LU-factorization. It is apparent from Figure 6.37a that the
out-of-plane displacement boundary conditions are well fulfilled for all four edges. Since the
representation of the other two boundary conditions cannot be assessed by Figure 6.37, the
averaged boundary residuals avg(|Rψn |) = 3.3× 10−9 rad and avg(|RMn |) = 8.4× 10−4 N
are compared with the averaged rotations avg(|ψx|) = 4.9 × 10−6 rad and avg(|ψy|) =
3.7 × 10−6 rad and averaged moments avg(|Mx|) = 0.365 N, avg(|My|) = 0.496 N and
avg(|Mxy|) = 0.153 N. Both residuals are at least two orders of magnitude lower compared
to the averaged values of the rotations and moments and therefore all boundary conditions
are accurately represented by the WBM model. As a result, the absolute errors of the
predicted field variables are several orders of magnitude lower compared to the amplitudes
of the field variables, which shows the high accuracy of the WBM.

In Figure 6.38, the singular values σi and the coefficients |βi| of the WBM system matrix
used to calculate the results in Figure 6.37 are illustrated. Additionally, the values for the
same WBM model without special purpose functions are plotted to show the influence of
the corner functions on the properties of the WBM system matrix. From Figure 6.38 it is
evident that both Picard conditions are fulfilled by the WBM models and including the
special purpose functions hardly influences the numerical properties and conditioning of
the system matrix (cond(A) = 1.91 × 1010 (set1 ) and cond(A) = 1.21 × 1011 (set1CF)).
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Figure 6.38: Picard conditions for the modified wave function selection with and without
corner functions (hard simply-supported plate)

The contour and error plots for all other frequencies and plate thicknesses are given in
Appendix E in Figures E.65 – E.72. Independent of the plate thickness or frequency, the
WBM models using the modified wave function selection and the special purpose functions
lead to accurate results for all three field variables. The properties and performance of the
original wave function selection is not investigated for the hard simply-supported plate
configurations.
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Figure 6.39: Frequency response functions of a hard simply-supported plate (h = 0.025 m)
excited by a point load calculated with the FEM (reference mesh) and the
modified WBM (function set 1 and set 2, corner functions, T = 2)
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The frequency response functions of the hard simply-supported plate with a thickness
h = 0.025 m calculated with the WBM and the FEM are compared in Figure 6.39. Start-
ing from 50 Hz, the frequency is increased to 20050 Hz in 2000 steps and therefore, ap-
proximately the first 100 bending modes are covered in the response function. The WBM
model uses the modified wave function selection and both wave function sets and the cor-
ner functions given in Table 6.8 are included. The truncation factor is set to T = 2, which
leads to 50 degrees of freedom for the lowest frequency and 684 for the highest frequency
and the LU-factorization is used to solve the system of linear equations. It is apparent
from Figure 6.39 that the results of the WBM model are in excellent agreement with
the reference solution over the whole frequency range. The results for the hard simply-
supported plates with thickness h = 0.005 m and h = 0.01 m illustrated in Appendix E in
Figures E.73 and E.74 show a similar accuracy of the WBM.

To analyze the effect of the special purpose functions on the convergence rate of the
WBM, models with and without corner functions are built and the convergence curves
for the hard simply-supported plate with a thickness h = 0.01 m are plotted in Figures
6.40 – 6.42. All WBM models use the modified wave function selection and either only
the first wave function sets (set1 ), both wave function sets (set1a2 ) or additionally the
corner functions in Table 6.8 (set1CF, set1a2CF) are included. The convergence curves
for the lowest frequency (1300 Hz) in Figures 6.40a, 6.41a and 6.42a show that all WBM
models converge to accurate results, but the WBM models including the special purpose
functions have an advanced convergence rate compared to the models without corner
functions. While the WBM model including corner functions requires 80 wave functions to
reach an averaged relative error of 1%, the model without corner functions needs 250 wave
functions. Including the second wave function sets leads to a slightly reduced convergence
of the WBM for this thickness and frequency.

The effect of the moment singularities on the convergence rate of the WBM is less pro-
nounced for the second frequency (4600 Hz), see Figures 6.40b, 6.41b and 6.42b. If only
the first wave function sets are included in the WBM models, a model with 150 degrees
of freedom leads to an averaged relative error of 1%, while a model with corner functions
only needs 130. Hence, the corner functions only slightly increase the convergence rate for
this thickness and frequency. Furthermore, including both wave function sets results in a
lower convergence rate for models without corner functions, whereas it hardly effects the
convergence for models with corner functions.

For the highest frequency (7310 Hz), the effect of the corner functions on the convergence
rate is very similar to the lowest frequency. In contrary to all previous examples, the WBM
using the modified wave function selection starts to stagnate at an averaged relative error
of approximately 0.1% and including more than approximately 230 wave functions does
not further increase the accuracy. This indicates that the reference solutions calculated
with the FEM is not accurate enough. Since a FEM model with even more degrees of
freedom is not feasible with the available hardware, the averaged boundary residuals of
the WBM models are compared to analyze the accuracy of the WBM. While the WBM
model having 230 degrees of freedom leads to the averaged boundary residuals avg(|Rw|) =
2.44 × 10−11 m, avg(|Rψn |) = 2.19 × 10−9 rad and avg(|RMn |) = 5.8 × 10−3 N, the model
with 1095 degrees of freedom has the averaged boundary residuals avg(|Rw|) = 2.44 ×
10−13 m, avg(|Rψn |) = 2.06 × 10−11 rad and avg(|RMn |) = 1.41 × 10−4 N. The averaged
boundary residuals of the WBM model with 1095 degrees of freedom are several orders
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Figure 6.40: Convergence curves of the out-of-plane displacement (hard SS plate with h =
0.01 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF ( ),
set1a2CF ( ))
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Figure 6.41: Convergence curves of the rotation about the x-axis (hard SS plate with
h = 0.01 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF ( ),
set1a2CF ( ))
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Figure 6.42: Convergence curves of the rotation about the y-axis (hard SS plate with
h = 0.01 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF ( ),
set1a2CF ( ))

lower compared to the model with 230 degrees of freedom and therefore, the bigger model
should be far more accurate since in the WBM only the boundary conditions have to be
fulfilled as accurate as possible and no additional errors are introduced inside the problem
domain. This proves that the accuracy of the FEM reference model is not high enough,
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6.4 Validation examples

which leads to the constant error of the WBM models at the end of Figures 6.40c, 6.41c
and 6.42c.

The results for the hard simply-supported plates with thickness h = 0.005 m and h =
0.025 m are shown in Appendix E in Figures E.75 – E.80. The convergence properties
of the WBM models including corner functions are independent of the plate thickness,
while the stability of the models without corner functions are thickness and frequency
dependent, due to the moment singularities in the corner points.

In Figure 6.43, the convergence rate of the WBM models is compared to the FEM for the
hard simply-supported plate with the thickness h = 0.01 m. Since the convergence rate
for all three field variables is rather similar, only the averaged relative error of the out-
of-plane displacement is plotted. Although, the evaluation of the integrals involving the
special purpose functions given in Table 6.8 is computationally demanding, the numerical
efficiency of the WBM models including the corner functions is the highest. Even the
WBM models without corner functions outperform the FEM for the given example. The
computational time required by the FEM to reach an averaged relative error of 1% is
approximately 6 (1300 Hz), 27 (4600 Hz) and 79 (7310 Hz) times higher compared to the
WBM including corner functions. Therefore, corner stress singularities do not alter the
computational efficiency of the WBM if special purpose functions are included in the
model.
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Figure 6.43: Convergence curves of the out-of-plane displacement (hard SS plate with h =
0.01) for the FEM ( ) and the modified WBM (set1 ( ), set1a2 ( ),
set1CF ( ), set1a2CF ( ))

6.4.2 Multi domain problem

In this section, the computational properties of the WBM for non-convex plate domains
are analyzed. In case of non-convex plate domains, a decomposition into convex sub-
domains is necessary and interface conditions have to be fulfilled. The polygonal steel
plate, shown in Figure 6.44, has the dimensions Lx = 1.4 m and Ly = 1.2 m and the
material parameters E = 2.1 × 1011 N/m2, ρ = 7850 kg/m3, ν = 0.3 and η = 0. The
plate is decomposed into two convex sub-domains Ω(1) and Ω(2) with the boundaries Γ(1)

1 ,
Γ(1)

2 , Γ(1)
3 , Γ(2)

1 , Γ(2)
2 and Γ(2)

3 and the common interface Γ(1,2), which is given by a straight
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6 Extension of the Wave Based Method to thick plate vibrations

Figure 6.44: Geometry and loading of the multi domain clamped plate

line between the corner points c2 and c5. Three different plate thicknesses are considered,
see Table 6.9, and the shear correction factor kW (Wittrick) is used in the Mindlin plate
theory. The ratio of the smallest lateral dimension to the plate thickness, the frequency of
the lowest, simple thickness-shear mode and the frequency limits for the Kirchhoff plate
theory are listed in Table 6.9. All three plate configurations are generally considered as
thin plates and therefore, the applicability of the Kirchhoff plate theory is only limited by
the excitation frequency.

Table 6.9: Thicknesses of the multi domain clamped plates and Kirchhoff limits
example h [m] Ly/h fs [Hz] fGk1% [Hz] fGk2% [Hz]

h1 0.005 240 320766 2791 5613

h2 0.010 120 160383 1395 2807

h3 0.025 48 64153 558 1123

All six boundaries of the plate are clamped (zero out-of-plane displacement and zero
rotations about the x- and y-axis) and a constant circular load, which is located in the sub-
domain Ω(1) and has an amplitude of q0 = 10 N/m2 and a radius r0 = 0.07 m, harmonically
excites the plate. The smallest rectangular bounding boxes of the two sub-domains used
to define the travelling wave functions in the WBM have the dimensions L(1)

x = 0.85 m,
L

(1)
y = 0.5 m, L(2)

x = 1.006 m and L
(2)
y = 0.67 m and are indicated by the dashed lines in

Figure 6.44.
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Table 6.10: Modal analysis of the multi domain clamped plates

h
> 10 modes > 40 modes > 70 modes 100 modes

f [Hz] λ [m] f [Hz] λ [m] f [Hz] λ [m] f [Hz] λ [m]

h1 350 0.3746 1043 0.2167 1650 0.1721 2255 0.1471
h2 680 0.3794 2060 0.2169 3240 0.1722 4394 0.1473
h3 1650 0.3804 4740 0.2186 7200 0.1738 9493 0.1486

To assess the relevant frequency ranges for the three plate configurations, a modal analy-
sis of the plates with a FEM model having at least 147 quadric elements per wavelength
(maximum element size 0.001 m) is performed to calculate the first 100 bending eigenfre-
quencies. Similar to the single domain problems, three different frequencies are examined,
which are located after the the 10th-bending mode, the 40th-bending mode and the 70th-
bending mode. In Table 6.10, these frequencies are listed and the corresponding bending
wavelengths λ are shown. A comparison of the frequencies given in Table 6.10 and the
Kirchhoff frequency limits stated in Table 6.9 shows that the Kirchhoff plate theory is only
applicable over the complete frequency range for the thinnest plate with the thickness h1.

Since no analytical solutions for the given plate bending problems exist, highly accurate
FEM models are used to calculate the reference solutions for the error plots, convergence
curves and frequency response functions. In Table 6.11, the details of two different FEM
models are listed. The FEM model for the convergence and error plots uses at least 290
quadric elements per wavelength, which ensures highly accurate results, since according to
the rule in Equation (3.15) only 9 quadric elements would be sufficient. The same model
is used for all three thicknesses and examined frequencies. Due to the high computational
load, the reference solutions for the frequency response functions are calculated with a
smaller FEM model with only 28 quadric elements per wavelength (three times more than
required according to Equation (3.15)).

Table 6.11: FEM reference models for the convergence analysis and the FRF
max(el. size) [m] # nodes # elements min(# el./λ)

conv. 0.0006 7621372 2538165 290

FRF 0.0050 110855 36676 28

If the boundaries of a plate are clamped, stress singularities in the vicinity of a corner arise
for internal corner angles α greater than 180◦, see Figure 6.2a. Therefore, moment and
shear force singularities can be expected in the corner c2 (α = 240.3◦). To ensure accurate
reference solutions, the FEM meshes of the models listed in Table 6.11 are locally refined
close to the corner point c2 to capture the stress singularities.

The convergence curves of the FEM are constructed by decreasing the mesh size of the
FEM model from 0.2 m (at least ≈ 1 elements per wavelength) to 0.002 m (at least ≈ 86
elements per wavelength) in 11 steps.
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6 Extension of the Wave Based Method to thick plate vibrations

To analyze the computational properties of the WBM and the influence of the different
function sets, several different WBM models are applied to predict the plate responses.
Due to the findings in the single domain problems, only the modified wave function selec-
tion is considered. The WBM models either include only the first wave function sets (set1 )
or both function sets (set1a2 ) and since corner singularities are exhibit in the problem
domain, additional models with special purpose functions (set1CF, set1a2CF) are built.
The truncation factor is varied from T = 0.5 to T = 8 in steps of 0.5 and the particular
solution functions given in Equations (5.85) and (5.86) are used to represent the constant
circular loading.

In lack of analytical solutions for the dynamic plate bending problem of an infinite wedge
with clamped boundary conditions, the eigenvalues from the static problem are used to
define the special purpose functions. The static eigenvalues, which exhibit moment or
shear force singularities in the corner point c2, are calculated through the characteristic
equations given in Table 6.1. Moment singularities result from the symmetric eigenvalue
λ̄sM = 0.834 and the antisymmetric eigenvalue λ̄aM = 0.680, while shear force singularities
arise from the symmetric eigenvalue λ̄sQ = 0.749. Using the relations between the static
and dynamic eigenvalues stated in Section 6.2.1 leads to the special purpose functions
shown in Table 6.12. In total, 8 independent special purpose functions are included,
since the corner functions for the shear force singularity are related in pairs through their
weighting factors.

To predict the errors and averaged values of the field variables, a regular grid of approxi-
mately 10000 response points inside each WBM sub-domain is used. Only response points
having an amplitude of the field variable greater than 5 % of the maximum value are
considered in the relative error prediction to avoid misleading results due to high relative
errors close to nodal lines (zero values of the field variables).

Table 6.12: Special purpose functions for the multi domain clamped plate examples
corner α corner functions eigenvalue

c2 240.3◦

Υ(c2)
Mw11 = cos(λsM1 ϕc2) JλsM1

(kf1 rc2)

Υ(c2)
Mw21 = cos(λsM1 ϕc2) JλsM1

(kf2 rc2)

Υ(c2)
MH1 = − sin(λsM1 ϕc2) JλsM1

(ks rc2)

λsM1 = 1.834

Υ(c2)
Mw12 = sin(λaM2 ϕc2) JλaM2

(kf1 rc2)

Υ(c2)
Mw22 = sin(λaM2 ϕc2) JλaM2

(kf2 rc2)

Υ(c2)
MH2 = cos(λaM2 ϕc2) JλaM2

(ks rc2)

λaM2 = 1.680

Υ(c2)
Qw11 = cos(λsQ1 ϕc2) JλsQ1

(kf1 rc2)

Υ(c2)
Qw21 = − cos(λsQ1 ϕc2) JλsQ1

(kf2 rc2) µ1−1
µ2−1

(
kf1
kf2

)λsQ1

Υ(c2)
Qw21 = cos(λsQ1 ϕc2) JλsQ1

(kf2 rc2) 1
µ2−1

(
ks
kf2

)λsQ1

Υ(c2)
QH1 = − sin(λsQ1 ϕc2) JλsQ1

(ks rc2)

λsQ1 = 0.749
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Figure 6.45: Out-of-plane displacement and rotations about the x- and y-axis of a multi
domain clamped plate (h = 0.005 m) excited by a constant circular load at
1043 Hz calculated with the modified WBM using both function sets, corner
functions and a truncation factor T = 4
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6 Extension of the Wave Based Method to thick plate vibrations

The contour plots of the field variables and the error plots compared to the reference
solution for the plate with the thickness h = 0.005 m excited at 1043 Hz are illustrated in
Figure 6.45. A WBM model using both function sets and the special purpose functions
stated in Table 6.12 is applied to calculate the results in Figure 6.45. The truncation
factor is set to T = 4, which leads to a total number of 1270 wave functions, and the
system of linear equations is solved with the LU-factorization. It is apparent from Figure
6.45 that the clamped boundary conditions as well as the interface conditions between
the sub-domains are well fulfilled. Since in the WBM errors are only introduced through
non-zero boundary and interface residuals, the absolute errors within the problem domain
are approximately two orders of magnitude lower compared to the amplitudes of the field
variables, which shows the high accuracy of the modified WBM also for non-convex plate
domains.

The contour and error plots for all other plate thicknesses and frequencies are shown in
Appendix E in Figures E.81 – E.88. The characteristics of the results for the frequencies
f2 and f3 are very similar to the results in Figure 6.45 and no dependency on the plate
thickness is observed. For the frequency f1, the absolute error in the sub-domain Ω(2) is
an order of magnitude higher compared to sub-domain Ω(1) for the thicknesses h = 0.01 m
and h = 0.025 m (but still low), which is not the case for the plate with thickness h =
0.005 m. This higher inaccuracy might result from the different sub-domain shapes, since a
rectangular sub-domain (or close to rectangular) is beneficial for the accuracy and stability
of the WBM. Additionally, the response of the sub-domain Ω(1) is mainly influenced by
the constant circular load, while the sub-domain Ω(2) is only excited through the interface
Γ(1,2). Therefore, small errors at the interface conditions might lead to high errors within
the sub-domain Ω(2). Further investigations are necessary to clarify the actual source of
this increased error in the sub-domain Ω(2).

The frequency response functions of the multi domain clamped plate with the thickness h =
0.025 m calculated with the FEM and the WBM are shown in Figure 6.46. The frequency
starts at 50 Hz and is increased to 9050 Hz in 2000 steps and therefore, approximately
the first 100 bending modes are included in the response. A WBM model using both
function sets and the special purpose functions stated in Table 6.12 is applied to predict
the averaged amplitudes of the field variables. The truncation factor is set to T = 4,
which leads to 174 wave functions for the lowest and 1782 wave functions for the highest
frequency and the SVD is used to solve the system of linear equations. The results of
the WBM are in excellent agrement with the reference solution over the whole frequency
range, even close to the eigenfrequencies. This clearly shows the applicability of modified
WBM in the low- and mid-frequency range for non-convex plates having moment and
shear force singularities.

In Appendix E, the frequency response functions for the multi domain clamped plate with
the thicknesses h = 0.005 m and h = 0.01 m are shown in Figures E.89 and E.90. The
frequency is increased in 2000 steps to include approximately the first 100 bending modes
in the viewed frequency range. Also for these two thicknesses, the results predicted by the
WBM models are in excellent agreement with the reference solutions over the complete
frequency range and close to the eigenfrequencies. The overall accuracy of the modified
WBM is therefore hardly influenced by the plate thickness or excitation frequency, even
though local differences of the accuracy are observed.
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Figure 6.46: Frequency response functions of a multi domain clamped plate (h = 0.025 m)
excited by a constant circular load calculated with the FEM (reference mesh)
and the modified WBM (function set 1 and set 2, corner functions, T = 4)
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Figure 6.47: Convergence curves of the out-of-plane displacement (multi domain clamped
plate with h = 0.01 m) for the modified WBM (set1 ( ), set1a2 ( ),
set1CF ( ), set1a2CF ( ))
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Figure 6.48: Convergence curves of the rotation about the x-axis (multi domain clamped
plate with h = 0.01 m) for the modified WBM (set1 ( ), set1a2 ( ),
set1CF ( ), set1a2CF ( ))
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Figure 6.49: Convergence curves of the rotation about the y-axis (multi domain clamped
plate with h = 0.01 m) for the modified WBM (set1 ( ), set1a2 ( ),
set1CF ( ), set1a2CF ( ))

A comparison of the convergence rates of different WBM models for the multi domain
clamped plate with the thickness h = 0.01 m is illustrated in Figures 6.47 – 6.49. The
WBM models either use only the first function sets (set1 ), both function sets (set1a2 )
or additionally include the special purpose functions (set1CF, set1a2CF) listed in Table
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6.12. The systems of linear equations are solved with the SVD to increase the stability
of the computations, although the computational load is higher compared to the LU-
factorization. It needs to be noted that both direct solution techniques finally have a
comparable accuracy, but the convergence curves of the WBM results calculated with the
LU-factorization are less smooth.

Although the WBM is able to reach an averaged relative error of less than 1% for all
frequencies, the convergence curves are not perfectly uniform especially for the lowest
frequency. Furthermore, it is apparent that including the special purpose functions only
slightly increases the convergence of the WBM for the given examples and that using
both function sets is more efficient compared to applying only the first function sets.
The amplitudes of the shear force corner functions

(
Υ(c2)
Qw21 , Υ(c2)

Qw21, Υ(c2)
QH1

)
increase very

fast with the distance to the corner point c2, since the wavenumbers kf2 and ks are
imaginary numbers. Therefore, the functions are very localized at the points with the
highest distances, while the function values are close to zero everywhere else in the plate
domain. This property has a negative effect on the conditioning of the system matrix and
additionally the numerical integration of these functions is strongly influenced by round
of errors, which might explain the minor influence of the special purpose functions on
the convergence rate for this example. Compared to the simply-supported plate example,
the special purpose functions do not fulfill the clamped boundary conditions along the
adjacent edges of the corner point c2, which might also reduce their beneficial effect on
the convergence rate.

The WBM model including both function sets and the special purpose functions requires
approximately 715 (680 Hz), 890 (2060 Hz) and 750 (3240 Hz) wave functions to reach an
averaged relative error of less than 1%. In contrary to the previous examples, the required
number of wave functions is not steadily increasing with the excitation frequency, but
remains nearly at the same level. This also indicates that the corner stress singularities
still have a major influence on the convergence rate even though special purpose functions,
which represent the singular behaviour, are included in the model.

The convergence curves for the multi domain clamped plates with the thicknesses h =
0.005 m and h = 0.025 m are plotted in Appendix E in Figures E.91 – E.96. The findings
for these thicknesses are nearly equivalent to the plate with the thickness h = 0.01 m, with
the exception that the WBM converges more uniformly for the thinnest plate excited at
frequency f1. This different behaviour has already been observed in the contour and error
plots.

In Figures 6.50 – 6.52, the computational efficiency of the WBM is compared to the FEM.
Only the convergence curves for the out-of-plane displacement are plotted, since the con-
vergence properties for the rotations about the x- and y-axis are very similar. It is apparent
that the WBM generally outperforms or is at least as efficient as the FEM for all frequen-
cies and thicknesses. The computational time of the FEM to reach an averaged relative
error of 1% is approximately 1 to 5 time(s) (frequency f1), 8 to 15 times (frequency f2)
and 10 to 13 times (frequency f3) higher compared to the WBM model including both
function sets and special purpose functions. The decrease of the computational time is
not as pronounced as for the previous examples, which results from the required decom-
position of the problem domain into two sub-domains and the difficulties of representing
the corner stress singularities even though special purpose functions are available.
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Figure 6.50: Convergence curves of the out-of-plane displacement (multi domain clamped
plate with h = 0.005) for the FEM ( ) and the modified WBM (set1CF
( ), set1a2CF ( ))
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Figure 6.51: Convergence curves of the out-of-plane displacement (multi domain clamped
plate with h = 0.01) for the FEM ( ) and the modified WBM (set1CF
( ), set1a2CF ( ))
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Figure 6.52: Convergence curves of the out-of-plane displacement (multi domain clamped
plate with h = 0.025) for the FEM ( ) and the modified WBM (set1CF
( ), set1a2CF ( ))
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7 Conclusion

This dissertation focuses on the prediction of steady-state harmonic vibrations of plates,
especially on the extension and improvement of an efficient numerical method called Wave
Based Method (WBM). During the past 15 years, great advances have been made in the
development of the WBM, which is a deterministic method based on the Trefftz-principle.
The method has been extended to a wide range of problems and the performance, stability
and applicability of the WBM have been continuously improved. While the WBM is very
well developed for the vibrations of thin plates governed by the Kirchhoff plate theory, the
prediction of the vibrations of thick plates is not yet feasible. Furthermore, the definition
of a thin and thick plate and therefore the validity ranges of the commonly used plate
theories, is not consistent in the literature, which leads to difficulties in the choice of the
most appropriate plate theory for a specific problem. To resolve these issues, the following
two objectives are formulated:

• The first objective is the definition of the validity ranges of the most common plate
theories, the Kirchhoff and Mindlin plate theory, for plate vibration problems de-
pending on the required accuracy.

• The second objective is the extension of the WBM to structural vibrations of thick
plates governed by the Mindlin plate theory.

Additional objectives of the dissertation concern the improvement of the WBM and are
related to the implementation of the WBM:

• The third objective is the development of particular solution functions, which are
analytical solutions of the partial differential equations arising in the plate theories
under certain external loadings. These functions are mandatory for the application
of the WBM.

• The fourth objective refers to the improvement of the numerical properties of the
WBM system matrix and the increase of the stability and accuracy of the method.

The main achievements of this dissertation and the applied approaches to fulfill the stated
objectives are summarized in the following sections.

7.1 Validity ranges of the Kirchhoff and Mindlin plate

An extensive literature survey on the validity ranges of the Kirchhoff and Mindlin plate
theory shows that two different limits, a geometrical limit and a frequency limit, have to
be considered in the application of the plate theories. The geometrical limit is generally
defined through a ratio of the plate thickness to the smallest lateral dimension of the plate
domain and leads to the categorization into thin and thick plates. The frequency limit
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is given by the ratio of the bending wavelength to the plate thickness. Both limits are
not consistently defined in the literature and generally the basis for the definitions is not
clearly stated.

A common approach to define the frequency limits of the plate theories is the inves-
tigation of free vibrations in an infinite plate domain, since analytical solutions of the
three-dimensional elasticity model are available. A review of the solutions is carried out
and the results for the first bending dominant flexural vibrations of the Kirchhoff and
Mindlin plate theory are compared to the solutions given by the three-dimensional elas-
ticity theory. The frequency limits of the two plate models leading to an error of 1%,
2%, 5% and 10% are defined and two different shear correction factors for the Mindlin
plate theory are examined, which enables the choice of the most appropriate plate theory
depending on the required accuracy. While the limits stated in the literature allow for an
error between approximately 1% and more than 10% for the Kirchhoff plate theory, the
limits for the Mindlin plate theory lead to an error of approximately 0% – 2%.

In real-life applications, plates have finite dimensions and certain boundary conditions are
applied at their edges. To investigate the influence of the boundaries, the free vibration
characteristics of simple plate geometries are analyzed, since analytical solutions for these
geometries are generally available in the literature for the Kirchhoff and Mindlin plate
theory. In lack of analytical solutions for the three-dimensional elasticity theory, FEM
models are used to calculate the reference solutions. A comparison of the results shows
that the influence of the boundaries on the accuracy of the plate theories strongly depends
on the applied boundary condition and the mode number. The ratio of the smallest lateral
dimension to the plate thickness (geometrical limit) has to be greater than 30 (1% error)
or 20 (5% error) for the Kirchhoff plate theory. This limit also draws the line between a
thin and a (moderately) thick plate, at least in the context of vibration problems. The
Mindlin plate theory predicts highly accurate results for plates with a ratio of the smallest
lateral dimension to the plate thickness greater than ten. However, even thicker plates are
not examined in this work and therefore, the Mindlin plate theory might be applicable
also for plates with higher thicknesses.

The stated limits enable a proper choice of the structural model (Kirchhoff, Mindlin, three-
dimensional elasticity) for plate vibration problems depending on the required accuracy.
However, special effects, like stress singularities in corners, have to be taken into account
prior to the selection of the model, since additional errors can be introduced through these
effects.

7.2 Development of the WBM for thick plate vibrations

The extension of the WBM to thick plate vibrations is the main objective of this dis-
sertation. The general framework of the WBM is applied to the governing equations of
the Mindlin plate theory. The first step is the decomposition of the coupled system of
partial differential equations resulting from the Mindlin plate theory into three uncoupled
Helmholtz equations, which is achieved through three potential functions.
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7.3 New particular solution functions for plate vibrations

Since the WBM is an indirect Trefftz method, a T-complete set of basis functions is
required, which is formulated in a Cartesian coordinate system. In the WBM, the ba-
sis functions are traveling and evanescent waves, depending on the chosen wavenumbers,
which are defined in the smallest rectangular bounding box circumscribing the plate do-
main. The T-completeness of the chosen basis function sets is proven through a rectangular
plate domain with arbitrary boundary conditions. Two different basis function sets are
defined, which are both T-complete for convex domains.

In the Mindlin plate theory, stress singularities can arise in the vicinity of a corner if
certain internal angles are exceeded. These stress singularities can have a major influence
on the convergence rate of the WBM. Therefore, the literature on corner stress singularities
arising in Mindlin plates is reviewed and a static and dynamic analysis of an infinite wedge
plate domain is carried out to get the critical angles and the order of the singularity for
various types of boundary conditions. This allows for the identification of corner stress
singularities in a specific plate domain and so-called special purpose functions are defined,
which accurately represent the singular behaviour near the corner point.

The system of linear equations in the WBM results from a fitting of the boundary and
interface conditions, since the governing equations in the problem domain are exactly
fulfilled. A weighted residual formulation is used in the WBM to fit the boundary and
interface conditions in an integral sense. To get a proper weighted residual formulation
for the Mindlin plate problem, the sub-region three-field generalized mixed variational
principle for thick plates is extended from the static to the dynamic case.

To verify the capability of the WBM to tackle thick plate vibration problems, several
validation examples are considered. In lack of analytical solutions, highly accurate FEM
models are used to calculate the reference solutions. Even though, the WBM should theo-
retically converge to the exact solution, it is shown that the accuracy of the original WBM
is limited through the bad conditioning of the system matrix and numerical inaccuracies.
A great improvement of the accuracy and stability is achieved by a modified wave function
selection, which is summarized in Section 7.4.

7.3 New particular solution functions for plate vibrations

In general, the application of the Trefftz principle requires a transformation of inhomoge-
neous partial differential equations to homogeneous ones, since the applied basis functions
only satisfy the homogenous partial differential equations. If particular solution functions,
which satisfy the inhomogeneous partial differential equations, while neglecting the bound-
ary conditions, are available, the transformation can be performed in a straightforward
and efficient way.

In the WBM such particular solution functions are required, but for plate bending vibra-
tions only solutions for point load excitations are available in the literature. To extend
the applicability of the WBM, new particular solution functions are developed and the
solutions for the point load are reexamined.

The Hankel transform and the residue theorem are applied to solve the problem of an
infinite plate (Mindlin plate theory) exited by a point load. The amplitude of the final
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result is identical with the solution stated in the literature, but complex conjugated. To
prove the correctness of the presented results, the solutions for the Kirchhoff plate theory
are obtained as a special case of the Mindlin plate theory and compared to the solutions
in the literature.

Two different approaches, the analytical integration of the point force solution and the
Hankel transform, are used to derive closed-form particular solution functions for axisym-
metric load cases. The harmonic response of an infinite plate domain to a constant ring
load and to a constant circular load are presented. Additionally, the results for an alter-
nating circular load, which are derived through an analytical integration of the point force
solution, are shown.

Due to the development of these new particular solution functions, an efficient application
of the WBM for the stated load cases is enabled. All presented loadings are considered
in the validation examples and excellent results are obtained, which proves the correct
derivation of the particular solution functions.

7.4 Improvement of the WBM - A new wave function selection

The convergence rate of the WBM and the conditioning of the WBM system matrix are
optimal for a rectangular problem domain. As soon as minimal changes are made to
the plate geometry, the conditioning of the linear system gets worse and the convergence
rate is reduced. Therefore, an alternative wave function selection is proposed to mitigate
this effect. While in the original WBM, all basis functions are defined in the smallest
rectangular bounding box circumscribing the plate domain, the new selection distinguishes
between traveling and evanescent waves.

The traveling waves are still defined in a domain coordinate system, which is given by
the smallest rectangular bounding box, while a boundary coordinate system is applied
to specify the evanescent wave functions. The goal of this approach is the alignment of
the evanescent waves with the boundary lines, which is the situation for the original wave
function selection and a rectangular domain. The new wave function selection becomes
identical to the original one for a rectangular domain.

The validation examples clearly show the advanced properties of the modified wave func-
tion selection compared to the original one. The conditioning of the WBM system matrix
is significantly improved and the WBM models using the modified wave function selec-
tion reach highly accuracy results. A reduction of the convergence rate through moment
singularities is avoided by introducing special purpose functions, which represent the sin-
gular behaviour in the vicinity of corner points. This positive effect of the special purpose
functions is less pronounced for shear force singularities, since the developed functions are
very localized, which introduces numerical problems.

A comparison of the computational time between the modified WBM and the classical
FEM shows the high computation efficiency of the WBM. The WBM outperforms the
FEM for all validation examples. Therefore, the WBM is able to predict the vibrations of
thick plates in the mid-frequency range with high accuracy and reasonable computational
load.
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8 Future research topics

Although, the WBM is already well developed for certain problems, their is still room for
further improvements and extensions, which did not fit into the scope of this dissertation.
The following future research topics are proposed to further develop the WBM:

• The new wave function selection is also applicable for other physical problems tackled
by the WBM. The effects on the convergence rate and stability of the WBM for these
problems should be investigated.

• A formal mathematical prove of the T-completeness of the proposed wave function
selection is essential to ensure at least the theoretical convergence of the WBM for
any type of problem. Since this is a major task, it did not fit into the time frame of
this work.

• The alignment of the evanescent wave functions with the boundary is only possible
for straight edges. In case of curved boundaries, different approaches have to be de-
veloped to allow for a general application of the modified WBM. A possible solution
might be a close-fitting polygonal frame.

• Additional closed-form particular solution functions would improve the applicability
of the WBM. Especially a constant rectangular load is of major interest, since a
piecewise constant interpolation of arbitrary loads would be possible.

• The definition of alternative special purpose functions for shear force singularities,
which are not exponentially growing and therefore introduce numerical problems,
might increase the convergence rate of the WBM for thick plate vibrations.

• General improvements of the WBM, like the hybrid FE-WBM and the multi level
WBM, have to be extended to thick plate vibration problems, to remove the geo-
metrical limitations of the WBM.
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A The sub-region three-field generalized
mixed variational principle for
elastodynamics

The sub-region three-field generalized mixed variational principle is proposed in [26] to de-
rive all basic equations of elastostatic problems through a functional stationary condition.
To extend the proposed method to the elastodynamic problem, either the d’Alembert’s
principle can be applied by including inertial forces as externally applied forces [302] or
by introducing a kinetic energy density in terms of velocity components and integrating
over time between fixed limits at which the displacement variations disappear [303].

The functional used in [26] for the static problem is given by

Π = Π(α)
p −Π(β)
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pc , (A.1)
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the three-field generalized complementary energy of the sub-region Ω(β) and

H(α, β)
pc =

"
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the mixed energy at the interface Γ(α, β). The traction σ(l)
i = σ

(l)
ij n

(l)
j with n(l)

j the compo-
nents of the normal unit vector, the prescribed traction σ

(l)
i and the prescribed displace-

ment ui are given in Cartesian coordinates.
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A The sub-region three-field generalized mixed variational principle for elastodynamics

The variation of Equations (A.2) – (A.4) with respect to u(l)
i , σ(l)

ij and ε
(l)
ij leads to [26]
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using the partial integration$
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The extension to elastodynamics is ether accomplished by including inertial forces as
external body forces by modifying the external body forces f (l)

i 7→ f
(l)
i − ρ ü

(l)
i [302] or by

introducing a kinetic energy density function T = 1
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through integration over time between fixed limits (t0, t1) at which δu
(l)
i = 0 and setting

the first variation δL = 0 [303]. The variation of the kinetic energy function is integrated
by parts
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Combining the Equations (A.5), (A.7), (A.9) and (A.11) leads to the final result
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which is equivalent to the result obtained with δΠ = 0 in [26] and introducing the modified
external body forces using d’Alembert’s principle. The transformation of the surface
integrals in Equation (A.13) to the boundary coordinate systems shown in Figure 2.2"
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with r = {n, s, t}, leads to the boundary and interface conditions given in Equation (2.15),
(2.16) and (2.19). The mixed boundary conditions can be derived from the Dirichlet and
Neummann boundary conditions.
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B The sub-region three-field generalized
mixed variational principle for thick plates

The sub-region three-field generalized mixed variational principle is derived in [26] and [30]
for the static deformation of elastic thick plates and is extended to the dynamic problem
in this chapter. Similar to the previous chapter, either the d’Alembert’s principle can be
used by applying inertial forces (moments) as externally applied forces (moments) [302] or
by introducing a kinetic energy density [303], which includes translational and rotational
kinetic energy. The stationary condition δΠ = 0 of the functional [26, 30]

Π = Π(α)
p −Π(β)

c +H(α, β)
pc , (B.1)

with the three-field generalized potential energy of the plate sub-region Ω(α)
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the three-field generalized complementary energy of the plate sub-region Ω(β)
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B The sub-region three-field generalized mixed variational principle for thick plates

and the additional energy term of the interface Γ(α, β)
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is equivalent to all field equations and boundary and interface conditions for the static
deformation of elastic thick plates.

The variation of the potential energy of the plate sub-region Ω(α) (Equation (B.2)) is given
by
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where the integration by parts in two variables [304]"
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are used.

The variation of the complementary energy of the plate sub-region Ω(β) (Equation (B.3))
leads to
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δQ(β)

y

+
(
∂M

(β)
x

∂x
+ ∂M

(β)
xy

∂y
−Q(β)

x +m(β)
x

)
δψ(β)

x +
(
∂M

(β)
y

∂y
+ ∂M

(β)
xy

∂x
−Q(β)

y

+m(β)
y

)
δψ(β)

y +
(
∂Q

(β)
x

∂x
+ ∂Q

(β)
y

∂y
+ q(β)

)
δw(β)

dx dy

+
∫

Γ(β)
u ∪Γ(β)

uσ2

((
ψ(β)
s − ψ(β)

s

)
δM (β)

ns +
(
w(β) − w(β)

)
δQ(β)

n

)
ds

−
∫

Γ(β)
σ

((
M (β)
ns −M

(β)
ns

)
δψ(β)

s +
(
Q(β)
n −Q

(β)
n

)
δw(β)

)
ds

+
∫

Γ(β)
u

(
ψ(β)
n − ψ(β)

n

)
δM (β)

n ds−
∫

Γ(β)
σ ∪Γ(β)

uσ2

(
M (β)
n −M (β)

n

)
δψ(β)

n ds

+
∫

Γ(α, β)

(
ψ(β)
n δM (β)

n + ψ(β)
s δM (β)

ns + w(β) δQ(β)
n

)
ds, (B.14)
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B The sub-region three-field generalized mixed variational principle for thick plates

where the integration by parts in two variables [304]"
Ω(β)

ψ(β)
x

∂δM
(β)
x

∂x
dx dy =

∫
Γ(β)

ψ(β)
x δM (β)

x dy −
"
Ω(β)

∂ψ
(β)
x

∂x
δM (β)

x dx dy, (B.15)

"
Ω(β)

ψ(β)
y

∂δM
(β)
y

∂y
dx dy = −

∫
Γ(β)

ψ(β)
y δM (β)

y dx−
"
Ω(β)

∂ψ
(β)
y

∂y
δM (β)

y dx dy, (B.16)

"
Ω(β)

ψ(β)
x

∂δM
(β)
xy

∂y
dx dy = −

∫
Γ(β)

ψ(β)
x δM (β)

xy dx−
"
Ω(β)

∂ψ
(β)
x

∂y
δM (β)

xy dx dy, (B.17)

"
Ω(β)

ψ(β)
y

∂δM
(β)
xy

∂x
dx dy =

∫
Γ(β)

ψ(β)
y δM (β)

xy dy −
"
Ω(β)

∂ψ
(β)
y

∂x
δM (β)

xy dx dy, (B.18)

"
Ω(β)

w(β) ∂δQ
(β)
x

∂x
dx dy =

∫
Γ(β)

w(β) δQ(β)
x dy −

"
Ω(β)

∂w(β)

∂x
δQ(β)

x dx dy, (B.19)

"
Ω(β)

w(β) ∂δQ
(β)
y

∂y
dx dy = −

∫
Γ(β)

w(β) δQ(β)
y dx−

"
Ω(β)

∂w(β)

∂y
δQ(β)

y dx dy, (B.20)

the transformation of the bending moments M (β)
x and M

(β)
y and twisting moment M (β)

xy

and rotations ψ(β)
x and ψ

(β)
y to the boundary coordinates (n(β), s(β))(

δM (β)
x dy − δM (β)

xy dx
)
ψ(β)
x −

(
δM (β)

y dx− δM (β)
xy dy

)
ψ(β)
y =(

ψ(β)
n δM (β)

n + ψ(β)
s δM (β)

ns

)
ds (B.21)

and the transformation of the shear forces Q(β)
x and Q

(β)
y to the boundary coordinates

(n(β), s(β)) (
δQ(β)

x dy − δQ(β)
y dx

)
w(β) = w(β) δQ(β)

n ds (B.22)

are used.

The variation of the additional energy term of the interface Γ(α, β) (Equation (B.4)) results
in

δH(α, β)
pc =

∫
Γ(α, β)

(
−M (β)

n δψ(α)
n − ψ(α)

n δM (β)
n − ψ(α)

s δM (β)
ns

−M (β)
ns δψ

(α)
s + w(α) δQ(β)

n +Q(β)
n δw(α)

)
ds. (B.23)

The extension to the dynamic problem of thick plates is achieved either by modifying the
external normal load q(l) 7→ q(l)−ρ h ẅ(l) and the external moments m(l)

x 7→ m
(l)
x − ρ h3

12 ψ̈
(l)
x

and m
(l)
y 7→ m

(l)
y − ρ h3

12 ψ̈
(l)
y (d’Alembert’s principle) or by introducing the kinetic energy

density of a thick plate [22]

T = ρ h

2

(
ẇ(l)2 + h2

12
(
ψ̇(l)2
x + ψ̇(l)2

y

))
(B.24)
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and defining the functional

L =
∫ t1

t0

"
Ω

T dx dy −Π

dt (B.25)

through integration over time between fixed limits (t0, t1) at which δw(l) = 0, δψ(l)
x = 0

and δψ(l)
y = 0 and setting the first variation δL = 0 [303]. Integrating the variation of the

kinetic energy by parts leads to

δ

∫ t1

t0

"
Ω(l)

T dx dy dt =
∫ t1

t0

"
Ω(l)

ρ h

(
ẇ(l) δẇ(l) + h2

12
(
ψ̇(l)
x δψ̇(l)

x + ψ̇(l)
y δψ̇(l)

y

))
dx dy dt

= −
∫ t1

t0

"
Ω(l)

ρ h

(
ẅ(l) δw(l) + h2

12
(
ψ̈(l)
x δψ(l)

x + ψ̈(l)
y δψ(l)

y

))
dx dy dt, (B.26)

where "
Ω(l)

ρ h

(
ẇ(l) δw(l) + h2

12
(
ψ̇(l)
x δψ(l)

x + ψ̇(l)
y δψ(l)

y

))
dx dy

∣∣∣t1
t0

= 0 (B.27)

is used. Combining Equations (B.5), (B.14), (B.23) and (B.26) leads to the final result

δL = 0 =
∫ t1

t0

∑
l

"
Ω(l)

∂U (l)
b

∂κ
(l)
x

−M (l)
x

δκ(l)
x +

∂U (l)
b

∂κ
(l)
y

−M (l)
y

δκ(l)
y

+

∂U (l)
b

∂κ
(l)
xy

− 2M (l)
xy

δκ(l)
xy +

∂U (l)
s

∂γ
(l)
xz

−Q(l)
x

δγ(l)
xz +

∂U (l)
s

∂γ
(l)
yz

−Q(l)
y

δγ(l)
yz

−
(
κ(l)
x −

∂ψ
(l)
x

∂x

)
δM (l)

x −
(
κ(l)
y −

∂ψ
(l)
y

∂y

)
δM (l)

y −
(

2κ(l)
xy −

∂ψ
(l)
x

∂y

−∂ψ
(l)
y

∂x

)
δM (l)

xy −
(
γ(l)
xz −

∂w(l)

∂x
− ψ(l)

x

)
δQ(l)

x −
(
γ(l)
yz −

∂w(l)

∂y
− ψ(l)

y

)
δQ(l)

y

−
(
∂M

(l)
x

∂x
+ ∂M

(l)
xy

∂y
−Q(l)

x +m(l)
x −

ρ h3

12 ψ̈(l)
x

)
δψ(l)

x −
(
∂M

(l)
y

∂y
+ ∂M

(l)
xy

∂x
−Q(l)

y

+m(l)
y −

ρ h3

12 ψ̈(l)
y

)
δψ(l)

y −
(
∂Q

(l)
x

∂x
+ ∂Q

(l)
y

∂y
+ q(l) − ρ h ẅ(l)

)
δw(l)

)
dx dy

−
∫

Γ(l)
u ∪Γ(l)

uσ2

((
ψ(l)
s − ψ

(l)
s

)
δM (l)

ns +
(
w(l) − w(l)

)
δQ(l)

n

)
ds

+
∫

Γ(l)
σ

((
M (l)
ns −M

(l)
ns

)
δψ(l)

s +
(
Q(l)
n −Q

(l)
n

)
δw(l)

)
ds

−
∫

Γ(l)
u

(
ψ(l)
n − ψ

(l)
n

)
δM (l)

n ds+
∫

Γ(l)
σ ∪Γ(l)

uσ2

(
M (l)
n −M

(l)
n

)
δψ(l)

n ds

+
∫

Γ(α, β)

((
M (α)
n −M (β)

n

)
δψ(α)

n +
(
M (α)
ns −M (β)

ns

)
δψ(α)

s +
(
Q(α)
n +Q(β)

n

)
δw(α)

−
(
ψ(α)
n + ψ(β)

n

)
δM (β)

n −
(
ψ(α)
s + ψ(β)

s

)
δM (β)

ns −
(
w(β) − w(α)

)
δQ(β)

n

)
ds

dt. (B.28)
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C The sub-region three-field generalized
mixed variational principle for thin plates

In [26] and [32] the sub-region three-field generalized mixed variational principle for the
static deformation of elastic thin plates is derived. In this chapter the method is extended
to the dynamic problem using either the d’Alembert’s principle [302] or the introduction of
a kinetic energy density [303]. The stationary condition δΠ = 0 of the functional [26, 32]

Π = Π(α)
p −Π(β)

c +H(α, β)
pc , (C.1)

with the three-field generalized potential energy of the plate sub-region Ω(α)

Π(α)
p =

"
Ω(α)

(
U b(κ(α)

x , κ(α)
y , κ(α)

xy )− q(α)w(α) −M (α)
x

(
κ(α)
x + ∂2w(α)

∂x2

)

−M (α)
y

(
κ(α)
y + ∂2w(α)

∂y2

)
−2M (α)

xy

(
κ(α)
xy + ∂2w(α)

∂x ∂y

))
dx dy

−
∫

Γ(α)
u ∪Γ(α)

uσ

(
Q(α)
n + ∂M

(α)
ns

∂s(α)

)(
w(α) − w(α)

)
ds−

∫
Γ(α)
σ

V
(α)
n w(α) ds

+
∫

Γ(α)
u

M (α)
n

(
∂w(α)

∂n(α) + ψ
(α)
n

)
ds+

∫
Γ(α)
σ ∪Γ(α)

uσ

M
(α)
n

∂w(α)

∂n(α) ds, (C.2)

the three-field generalized complementary energy of the plate sub-region Ω(β)

Π(β)
c =

"
Ω(β)

(
− U b(κ(β)

x , κ(β)
y , κ(β)

xy ) +M (β)
x κ(β)

x +M (β)
y κ(β)

y + 2M (β)
xy κ(β)

xy

+
(
∂2M

(β)
x

∂x2 + ∂2M
(β)
y

∂y2 + 2 ∂
2M

(β)
xy

∂x ∂y
+ q(β)

)
w(β)

)
dx dy −

∫
Γ(β)
u

M (β)
n ψ

(β)
n ds

−
∫

Γ(β)
u ∪Γ(β)

uσ

(
Q(β)
n + ∂M

(β)
ns

∂s(β)

)
w(β)ds+

∫
Γ(β)
σ ∪Γ(β)

uσ

(
M (β)
n −M (β)

n

)∂w(β)

∂n(β) ds

−
∫

Γ(β)
σ

(
Q(β)
n + ∂M

(β)
ns

∂s(β) − V
(β)
n

)
w(β)ds, (C.3)

and the additional energy term of the interface Γ(α, β)

H(α, β)
pc =

∫
Γ(α, β)

(
M (β)
n

∂w(α)

∂n(α) +
(
Q(β)
n + ∂M

(β)
ns

∂s(β)

)
w(α)

)
ds, (C.4)
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C The sub-region three-field generalized mixed variational principle for thin plates

is equivalent to all field equations and boundary and interface conditions for the static
deformation of elastic thin plates (excluding the effects due to corner forces).

The variation of the potential energy of the plate sub-region Ω(α) (Equation (C.2)) gives

δΠ(α)
p =

"
Ω(α)

∂U (α)
b

∂κ
(α)
x

−M (α)
x

δκ(α)
x +

∂U (α)
b

∂κ
(α)
y

−M (α)
y

δκ(α)
y

+

∂U (α)
b

∂κ
(α)
xy

− 2M (α)
xy

δκ(α)
xy −

(
κ(α)
x + ∂2w(α)

∂x2

)
δM (α)

x −
(
κ(α)
y + ∂2w(α)

∂y2

)
δM (α)

y

−2
(
κ(α)
xy + ∂2w(α)

∂x ∂y

)
δM (α)

xy −
(
∂2M

(α)
x

∂x2 + ∂2M
(α)
y

∂y2 + 2 ∂
2M

(α)
xy

∂x ∂y
+ q(α)

)
δw(α)

dx dy

−
∫

Γ(α)
u ∪Γ(α)

uσ

(
w(α) − w(α)

)
δV (α)

n ds+
∫

Γ(α)
σ

(
V (α)
n − V (α)

n

)
δw(α) ds

+
∫

Γ(α)
u

(
∂w(α)

∂n(α) + ψ
(α)
n

)
δM (α)

n ds−
∫

Γ(α)
σ ∪Γ(α)

uσ

(
M (α)
n −M (α)

n

)∂δw(α)

∂n(α) ds

−
∫

Γ(α, β)

(
M (α)
n

∂δw(α)

∂n(α) − V
(α)
n δw(α)

)
ds, (C.5)

where the integration by parts in two variables [304]"
Ω(α)

(
M (α)
x

∂2δw(α)

∂x2 +M (α)
y

∂2δw(α)

∂y2 + 2M (α)
xy

∂2δw(α)

∂x ∂y

)
dx dy = (C.6)

∫
Γ(α)

(
M (α)
n

∂δw(α)

∂n(α) − V
(α)
n δw(α)

)
ds+

"
Ω(α)

(
∂2M

(α)
x

∂x2 + ∂2M
(α)
y

∂y2 + 2 ∂
2M

(α)
xy

∂x ∂y

)
δw(α)dx dy

is used.

The variation of the complementary energy of the plate sub-region Ω(β) (Equation (C.2))
leads to

δΠ(β)
c =

"
Ω(β)

−
∂U (β)

b

∂κ
(β)
x

−M (β)
x

δκ(β)
x −

∂U (β)
b

∂κ
(β)
y

−M (β)
y

δκ(β)
y

−
∂U (β)

b

∂κ
(β)
xy

− 2M (β)
xy

δκ(β)
xy +

(
κ(β)
x + ∂2w(β)

∂x2

)
δM (β)

x +
(
κ(β)
y + ∂2w(β)

∂y2

)
δM (β)

y

+2
(
κ(β)
xy + ∂2w(β)

∂x ∂y

)
δM (β)

xy +
(
∂2M

(β)
x

∂x2 + ∂2M
(β)
y

∂y2 + 2 ∂
2M

(β)
xy

∂x ∂y
+ q(β)

)
δw(β)

dx dy

+
∫

Γ(β)
u ∪Γ(β)

uσ

(
w(β) − w(β)

)
δV (β)

n ds−
∫

Γ(β)
σ

(
V (β)
n − V (β)

n

)
δw(β) ds

−
∫

Γ(β)
u

(
∂w(β)

∂n(β) + ψ
(β)
n

)
δM (β)

n ds+
∫

Γ(β)
σ ∪Γ(β)

uσ

(
M (β)
n −M (β)

n

)∂δw(β)

∂n(β) ds

−
∫

Γ(α, β)

(
∂w(β)

∂n(β) δM
(β)
n − w(β) δV (β)

n

)
ds, (C.7)

212



where the integration by parts in two variables [304]"
Ω(β)

w(β) δ

(
∂2M

(β)
x

∂x2 + ∂2M
(β)
y

∂y2 + 2∂
2M

(β)
xy

∂x ∂y

)
dx dy =

∫
Γ(β)

(
w(β) δV (β)

n − ∂w(β)

∂n(β) δM
(β)
n

)
ds

+
"
Ω(β)

(
∂2w(β)

∂x2 δM (β)
x + ∂2w(β)

∂y2 δM (β)
y + 2 ∂

2w(β)

∂x ∂y
δM (β)

xy

)
dx dy (C.8)

is used.

The variation of the additional energy term of the interface Γ(α, β) (Equation (C.4)) results
in

δH(α, β)
pc =

∫
Γ(α, β)

(
M (β)
n

∂δw(α)

∂n(α) + ∂w(α)

∂n(α) δM
(β)
n + w(α) δV (β)

n + V (β)
n δw(α)

)
ds. (C.9)

The dynamic problem of thin plates can be described either by modifying the external
normal load q(l) 7→ q(l) − ρ h ẅ(l) (d’Alembert’s principle) or by introducing the kinetic
energy density of a thin plate T = ρ h

2 ẇ
(l)2 (rotatory inertia is neglected) and defining the

functional

L =
∫ t1

t0

"
Ω

T dx dy −Π

dt (C.10)

through integration over time between fixed limits (t0, t1) at which δw(l) = 0 and setting
the first variation δL = 0 [303]. The variation of the kinetic energy δT is given by Equation
(B.26) if the rotatory inertia terms are neglected.

Combining Equations (C.5), (C.7), (C.9) and (B.26) (without rotatory inertia terms) leads
to the final result

δL = 0 =
∫ t1

t0

∑
l

"
Ω(l)

∂U (l)
b

∂κ
(l)
x

−M (l)
x

δκ(l)
x +

∂U (l)
b

∂κ
(l)
y

−M (l)
y

δκ(l)
y

+

∂U (l)
b

∂κ
(l)
xy

− 2M (l)
xy

δκ(l)
xy −

(
κ(l)
x + ∂2w(l)

∂x2

)
δM (l)

x −
(
κ(l)
y + ∂2w(l)

∂y2

)
δM (l)

y

− 2
(
κ(l)
xy + ∂2w(l)

∂x ∂y

)
δM (l)

xy −
(
∂2M

(l)
x

∂x2 + ∂2M
(l)
y

∂y2 + 2 ∂
2M

(l)
xy

∂x ∂y
+ q(l)

−ρ h ẅ(l)
)
δw(l)

dx dy −
∫

Γ(l)
u ∪Γ(l)

uσ

(
w(l) − w(l)

)
δV (l)

n ds+
∫

Γ(l)
σ

(
V (l)
n − V

(l)
n

)
δw(l) ds

+
∫

Γ(l)
u

(
∂w(l)

∂n(l) + ψ
(l)
n

)
δM (l)

n ds−
∫

Γ(l)
σ ∪Γ(l)

uσ

(
M (l)
n −M

(l)
n

)∂δw(l)

∂n(l) ds

+
∫

Γ(α, β)

((
M (β)
n −M (α)

n

)∂δw(α)

∂n(α) +
(
V (α)
n + V (β)

n

)
δw(α)

+
(
∂w(α)

∂n(α) + ∂w(β)

∂n(β)

)
δM (β)

n +
(
w(α) − w(β)

)
δV (β)

n

)
ds

dt. (C.11)

213





D Regularity conditions for integer
eigenvalues in an infinite wedge domain

The relation between the Bessel function of the first and second kind in Equation (6.16)
is only valid for non-integer orders. The series representation of the Bessel function of the
second kind for integer orders n [284]

Yn(z) = − 1
π

n−1∑
k=0

(
(n− k − 1)! z2 k−n

k! 22 k−n

)
+ 2
π

ln
(
z

2

)
Jn(z)

− 1
π

∞∑
k=0

(
(ψ0(k + 1) + ψ0(n+ k + 1)) (−1)k z2 k+n

k! (n+ k)! 22 k+n

)
,

n ∈N0, (D.1)

where ψ0(•) is the digamma function, can be applied to define the required relations
between the constants Aiλ and Biλ (i = {1, 2, 3}) for λ ∈N0.

Using Equations (6.14), (6.18) and (D.1) in the regularity condition for the out-of-plane
displacement (Equation (6.11)) results in

lim
r→0

w(r, ϕ) = lim
r→0
− 1
π

λ−1∑
k=0

((λ− k − 1)!
k! 22 k−λ

(
k2 k−λ
f1 B1λ + k2 k−λ

f2 B2λ
)
r2 k−λ

)

+ 2
π

∞∑
k=0

(
(−1)k

k! 22k+λ Γ(k + λ+ 1)
(
k2k+λ
f1 B1λ + k2k+λ

f2 B2λ
)
r2k+λ ln(r)

)
= finite,

(D.2)

where ln
(
kf1 r

2

)
= ln

(
kf1
2

)
+ ln(r) and ln

(
kf2 r

2

)
= ln

(
kf2
2

)
+ ln(r) are used and the

multiplication with cos(λsk ϕ) or sin(λak ϕ) is omitted. The following cases have to be
distinguished to further simplify Equation (D.2):

Case I: λ = 0

If λak = 0, the functions w1 and w2 and the out-of-plane displacement w(r, ϕ) are
identical to zero in the whole domain and no restriction on B1λ and B2λ are required.
For λsk = 0, it follows from Equation (D.2) and

lim
z→0

ln(z) zν = 0 for ν > 0 (D.3)

that the condition B10 +B20 = 0 has to be fulfilled.

Case II: λ = {1, 2}
In this case, only the coefficients of r2k−λ with k = 0 have to be equal to zero, since
all other terms are bounded in the limit. This leads to the relation

k−λf1 B1λ + k−λf2 B2λ = 0, (D.4)

which is identical to Equation (6.19).
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D Regularity conditions for integer eigenvalues in an infinite wedge domain

Case III: λ = {3, 4, . . . }
For these values of λ more than one linearly independent function has to be satisfied
to fulfill Equation (D.2) (coefficients of r2k−λ with k = {0, 1, . . . } have to be zero),
which leads to the trivial solution B1λ = B2λ = 0.

Considering the two regularity conditions for the rotations (Equations (6.12) and (6.13)),
the following cases are distinguished:

Case I: λ = 0

If λak = 0, the rotation ψr(r, ϕ) is identical to zero in the whole domain, while the
rotation ψϕ(r, ϕ) in the vicinity of the corner is given by

lim
r→0

ψϕ(r, ϕ) = lim
r→0

ksB30 Y1(ks r) = finite, (D.5)

which leads to B30 = 0. For λsk = 0, the rotation ψϕ(r, ϕ) is identical to zero and the
regularity condition for the rotation ψr(r, ϕ) simplifies to

lim
r→0
−(µ1 − 1) kf1B10 Y1(kf1 r)− (µ2 − 1) kf2B20 Y1(kf2 r) = finite. (D.6)

Using the series representation of the Bessel function of the second kind in Equation
(D.6) leads to the condition (µ1−1)B10 +(µ2−1)B20 = 0 (coefficient of r−1 has to be
equal to zero). Combining this condition with the relation derived for the out-of-plane
displacement leads to the trivial result B10 = B20 = 0, since more than one linear
independent equation has to be fulfilled.

Case II: λ = {1, 2, . . . }
In this case, the two regularity conditions for the rotations (Equations (6.12) and
(6.13) can be simplified to

lim
r→0

ψr(r, ϕ) = lim
r→0

(µ1 − 1) kf1B1λ
2 (Yλ−1(kf1 r)−Yλ+1(kf1 r))

+ (µ2 − 1) kf2B2λ
2 (Yλ−1(kf2 r)−Yλ+1(kf2 r))−

λB3λ
r

Yλ(ks r) = finite,
(D.7)

lim
r→0

ψϕ(r, ϕ) = lim
r→0

(µ1 − 1)λB1λ
r

Yλ(kf1 r) + (µ2 − 1)λB2λ
r

Yλ(kf2 r)

− ksB3λ
2 (Yλ−1(ks r)−Yλ+1(ks r)) = finite.

(D.8)

Inserting Equations (D.1) and (6.18) into the simplified forms and using Equations
(6.14) and (D.3) results in the trivial solution B1λ = B2λ = B3λ = 0.

All cases therefore conclude that B1λ = B2λ = B3λ = 0 for λ ∈N0 and Aiλ (i = {1, 2, 3})
can be chosen arbitrary.
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E Additional results for the validation
examples

In this appendix all contour plots, absolute error plots compared to the reference solution,
convergence curves of the WBM with respect to the total number of degrees of freedom and
the convergence curves of the WBM compared to the FEM with respect to the calculation
time, which are not shown in Section 6.4, are presented. For a detailed discussion of the
results for the single domain problems (clamped, free, cantilever and simply-supported
plate), the reader is referred to Section 6.4.1 and for the results of the multi domain
clamped plate to Section 6.4.2.
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Single domain clamped plate
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Figure E.1: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.005 m) excited by an alternating circular load at 850 Hz calculated
with the original WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.2: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.005 m) excited by an alternating circular load at 4195 Hz calcu-
lated with the original WBM using only the function set 1 and a truncation
factor T = 2
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Figure E.3: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.005 m) excited by an alternating circular load at 850 Hz calculated
with the modified WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.4: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.005 m) excited by an alternating circular load at 4195 Hz calcu-
lated with the modified WBM using only the function set 1 and a truncation
factor T = 2
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Figure E.5: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.01 m) excited by an alternating circular load at 1650 Hz calculated
with the original WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.6: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.01 m) excited by an alternating circular load at 5080 Hz calculated
with the original WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.7: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.01 m) excited by an alternating circular load at 8000 Hz calculated
with the original WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.8: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.01 m) excited by an alternating circular load at 1650 Hz calculated
with the modified WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.9: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.01 m) excited by an alternating circular load at 5080 Hz calculated
with the modified WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.10: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.01 m) excited by an alternating circular load at 8000 Hz calcu-
lated with the modified WBM using only the function set 1 and a truncation
factor T = 2
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Figure E.11: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.025 m) excited by an alternating circular load at 3850 Hz calcu-
lated with the original WBM using only the function set 1 and a truncation
factor T = 2
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Figure E.12: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.025 m) excited by an alternating circular load at 10700 Hz calcu-
lated with the original WBM using only the function set 1 and a truncation
factor T = 2
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Figure E.13: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.025 m) excited by an alternating circular load at 15870 Hz calcu-
lated with the original WBM using only the function set 1 and a truncation
factor T = 2
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Figure E.14: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.025 m) excited by an alternating circular load at 3850 Hz calcu-
lated with the modified WBM using only the function set 1 and a truncation
factor T = 2
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Figure E.15: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.025 m) excited by an alternating circular load at 10700 Hz calcu-
lated with the modified WBM using only the function set 1 and a truncation
factor T = 2
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Figure E.16: Out-of-plane displacement and rotations about the x- and y-axis of a clamped
plate (h = 0.025 m) excited by an alternating circular load at 15870 Hz calcu-
lated with the modified WBM using only the function set 1 and a truncation
factor T = 2
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Figure E.17: Frequency response functions of a clamped plate (h = 0.005 m) excited by an
alternating circular load calculated with the FEM (reference mesh) and the
modified WBM (function set 1 and set 2, T = 2)
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Figure E.18: Frequency response functions of a clamped plate (h = 0.01 m) excited by an
alternating circular load calculated with the FEM (reference mesh) and the
modified WBM (function set 1 and set 2, T = 2)
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Figure E.19: Convergence curves of the out-of-plane displacement (clamped plate with
h = 0.005 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( ))
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Figure E.20: Convergence curves of the rotation about the x-axis (clamped plate with
h = 0.005 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( ))
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Figure E.21: Convergence curves of the rotation about the y-axis (clamped plate with
h = 0.005 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( ))
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Figure E.22: Convergence curves of the out-of-plane displacement (clamped plate with
h = 0.025 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( ))
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Figure E.23: Convergence curves of the rotation about the x-axis (clamped plate with
h = 0.025 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( ))
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Figure E.24: Convergence curves of the rotation about the y-axis (clamped plate with
h = 0.025 m) for the original WBM (set1 ( ), set1a2 ( )) and the
modified WBM (set1 ( ), set1a2 ( ))
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Figure E.25: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.005 m) excited by a constant ring load at 220 Hz calculated with
the original WBM using only the function set 1 and a truncation factor T = 2
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Figure E.26: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.005 m) excited by a constant ring load at 2550 Hz calculated
with the original WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.27: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.005 m) excited by a constant ring load at 220 Hz calculated with
the modified WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.28: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.005 m) excited by a constant ring load at 2550 Hz calculated
with the modified WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.29: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.01 m) excited by a constant ring load at 440 Hz calculated with
the original WBM using only the function set 1 and a truncation factor T = 2
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Figure E.30: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.01 m) excited by a constant ring load at 2580 Hz calculated with
the original WBM using only the function set 1 and a truncation factor T = 2
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Figure E.31: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.01 m) excited by a constant ring load at 4970 Hz calculated with
the original WBM using only the function set 1 and a truncation factor T = 2
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Figure E.32: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.01 m) excited by a constant ring load at 440 Hz calculated with
the modified WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.33: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.01 m) excited by a constant ring load at 2580 Hz calculated with
the modified WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.34: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.01 m) excited by a constant ring load at 4970 Hz calculated with
the modified WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.35: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.025 m) excited by a constant ring load at 1050 Hz calculated
with the original WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.36: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.025 m) excited by a constant ring load at 5900 Hz calculated
with the original WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.37: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.025 m) excited by a constant ring load at 10700 Hz calculated
with the original WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.38: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.025 m) excited by a constant ring load at 1050 Hz calculated
with the modified WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.39: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.025 m) excited by a constant ring load at 5900 Hz calculated
with the modified WBM using only the function set 1 and a truncation factor
T = 2
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Figure E.40: Out-of-plane displacement and rotations about the x- and y-axis of a free
plate (h = 0.025 m) excited by a constant ring load at 10700 Hz calculated
with the modified WBM using only the function set 1 and a truncation factor
T = 2
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(a) Averaged out-of-plane displacement
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(b) Averaged rotation about the x-axis
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(c) Averaged rotation about the y-axis

Figure E.41: Frequency response functions of a free plate (h = 0.005 m) excited by a con-
stant ring load calculated with the FEM (reference mesh) and the modified
WBM (function set 1 and set 2, T = 2)
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(b) Averaged rotation about the x-axis
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Figure E.42: Frequency response functions of a free plate (h = 0.01 m) excited by a con-
stant ring load calculated with the FEM (reference mesh) and the modified
WBM (function set 1 and set 2, T = 2)
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Figure E.43: Convergence curves of the out-of-plane displacement (free plate with h =
0.005 m) for the original WBM (set1 ( ), set1a2 ( )) and the modified
WBM (set1 ( ), set1a2 ( ))
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Figure E.44: Convergence curves of the rotation about the x-axis (free plate with h =
0.005 m) for the original WBM (set1 ( ), set1a2 ( )) and the modified
WBM (set1 ( ), set1a2 ( ))
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Figure E.45: Convergence curves of the rotation about the y-axis (free plate with h =
0.005 m) for the original WBM (set1 ( ), set1a2 ( )) and the modified
WBM (set1 ( ), set1a2 ( ))
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Figure E.46: Convergence curves of the out-of-plane displacement (free plate with h =
0.025 m) for the original WBM (set1 ( ), set1a2 ( )) and the modified
WBM (set1 ( ), set1a2 ( ))
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Figure E.47: Convergence curves of the rotation about the x-axis (free plate with h =
0.025 m) for the original WBM (set1 ( ), set1a2 ( )) and the modified
WBM (set1 ( ), set1a2 ( ))
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Figure E.48: Convergence curves of the rotation about the y-axis (free plate with h =
0.025 m) for the original WBM (set1 ( ), set1a2 ( )) and the modified
WBM (set1 ( ), set1a2 ( ))
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Figure E.49: Out-of-plane displacement and rotations about the x- and y-axis of a can-
tilever plate (h = 0.005 m) excited by a constant circular load at 420 Hz
calculated with the modified WBM using only the function set 1 and a trun-
cation factor T = 2
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Figure E.50: Out-of-plane displacement and rotations about the x- and y-axis of a can-
tilever plate (h = 0.005 m) excited by a constant circular load at 3170 Hz
calculated with the modified WBM using only the function set 1 and a trun-
cation factor T = 2
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Figure E.51: Out-of-plane displacement and rotations about the x- and y-axis of a can-
tilever plate (h = 0.01 m) excited by a constant circular load at 840 Hz calcu-
lated with the modified WBM using only the function set 1 and a truncation
factor T = 2
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Figure E.52: Out-of-plane displacement and rotations about the x- and y-axis of a can-
tilever plate (h = 0.01 m) excited by a constant circular load at 3500 Hz
calculated with the modified WBM using only the function set 1 and a trun-
cation factor T = 2
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Figure E.53: Out-of-plane displacement and rotations about the x- and y-axis of a can-
tilever plate (h = 0.01 m) excited by a constant circular load at 6120 Hz
calculated with the modified WBM using only the function set 1 and a trun-
cation factor T = 2
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Figure E.54: Out-of-plane displacement and rotations about the x- and y-axis of a can-
tilever plate (h = 0.025 m) excited by a constant circular load at 2000 Hz
calculated with the modified WBM using only the function set 1 and a trun-
cation factor T = 2
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Figure E.55: Out-of-plane displacement and rotations about the x- and y-axis of a can-
tilever plate (h = 0.025 m) excited by a constant circular load at 7750 Hz
calculated with the modified WBM using only the function set 1 and a trun-
cation factor T = 2
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Figure E.56: Out-of-plane displacement and rotations about the x- and y-axis of a can-
tilever plate (h = 0.025 m) excited by a constant circular load at 12770 Hz
calculated with the modified WBM using only the function set 1 and a trun-
cation factor T = 2
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Figure E.57: Frequency response functions of a cantilever plate (h = 0.005 m) excited by
a constant circular load calculated with the FEM (reference mesh) and the
modified WBM (function set 1 and set 2, T = 2)
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Figure E.58: Frequency response functions of a cantilever plate (h = 0.01 m) excited by
a constant circular load calculated with the FEM (reference mesh) and the
modified WBM (function set 1 and set 2, T = 2)
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Figure E.59: Convergence curves of the out-of-plane displacement (cantilever plate with
h = 0.005 m) for the modified WBM solved with the LU (set1 ( ), set1a2
( )) and the SVD (set1 ( ), set1a2 ( ))
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Figure E.60: Convergence curves of the rotation about the x-axis (cantilever plate with
h = 0.005 m) for the modified WBM solved with the LU (set1 ( ), set1a2
( )) and the SVD (set1 ( ), set1a2 ( ))
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Figure E.61: Convergence curves of the rotation about the y-axis (cantilever plate with
h = 0.005 m) for the modified WBM solved with the LU (set1 ( ), set1a2
( )) and the SVD (set1 ( ), set1a2 ( ))
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Figure E.62: Convergence curves of the out-of-plane displacement (cantilever plate with
h = 0.025 m) for the modified WBM solved with the LU (set1 ( ), set1a2
( )) and the SVD (set1 ( ), set1a2 ( ))
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Figure E.63: Convergence curves of the rotation about the x-axis (cantilever plate with
h = 0.025 m) for the modified WBM solved with the LU (set1 ( ), set1a2
( )) and the SVD (set1 ( ), set1a2 ( ))

101 102 103 10410−6

10−4

10−2

100

102

# dofs

〈δ
〉

(a) 2000 Hz

101 102 103 10410−6

10−4

10−2

100

102

# dofs

〈δ
〉

(b) 7750 Hz

101 102 103 10410−6

10−4

10−2

100

102

# dofs

〈δ
〉

(c) 12770 Hz

Figure E.64: Convergence curves of the rotation about the y-axis (cantilever plate with
h = 0.025 m) for the modified WBM solved with the LU (set1 ( ), set1a2
( )) and the SVD (set1 ( ), set1a2 ( ))
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Figure E.65: Out-of-plane displacement and rotations about the x- and y-axis of a hard
simply-supported plate (h = 0.005 m) excited by a point load at 670 Hz
calculated with the modified WBM using the function set 1, corner functions
and a truncation factor T = 2
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Figure E.66: Out-of-plane displacement and rotations about the x- and y-axis of a hard
simply-supported plate (h = 0.005 m) excited by a point load at 3800 Hz
calculated with the modified WBM using the function set 1, corner functions
and a truncation factor T = 2
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Figure E.67: Out-of-plane displacement and rotations about the x- and y-axis of a hard
simply-supported plate (h = 0.01 m) excited by a point load at 1300 Hz
calculated with the modified WBM using the function set 1, corner functions
and a truncation factor T = 2
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Figure E.68: Out-of-plane displacement and rotations about the x- and y-axis of a hard
simply-supported plate (h = 0.01 m) excited by a point load at 4600 Hz
calculated with the modified WBM using the function set 1, corner functions
and a truncation factor T = 2

273



E Additional results for the validation examples

−1.53 −0.71 0.11 0.92 1.74
·10−7

w [m]
(a) Real part of the displacement

10−13 10−12 10−11 10−10 10−9

|ε| [m]
(b) Absolute error of the displacement

−5.62 −2.40 0.82 4.03 7.25
·10−6

ψx [rad]
(c) Real part of the rotation about the x-axis

10−11 10−10 10−9 10−8

|ε| [rad]
(d) Absolute error of the rotation about the x-axis

−5.93 −3.05 −0.18 2.69 5.57
·10−6

ψy [rad]

(e) Real part of the rotation about the y-axis

10−11 10−10 10−9 10−8

|ε| [rad]
(f) Absolute error of the rotation about the y-axis

Figure E.69: Out-of-plane displacement and rotations about the x- and y-axis of a hard
simply-supported plate (h = 0.01 m) excited by a point load at 7310 Hz
calculated with the modified WBM using the function set 1, corner functions
and a truncation factor T = 2
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Figure E.70: Out-of-plane displacement and rotations about the x- and y-axis of a hard
simply-supported plate (h = 0.025 m) excited by a point load at 3150 Hz
calculated with the modified WBM using the function set 1, corner functions
and a truncation factor T = 2
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Figure E.71: Out-of-plane displacement and rotations about the x- and y-axis of a hard
simply-supported plate (h = 0.025 m) excited by a point load at 9800 Hz
calculated with the modified WBM using the function set 1, corner functions
and a truncation factor T = 2
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Figure E.72: Out-of-plane displacement and rotations about the x- and y-axis of a hard
simply-supported plate (h = 0.025 m) excited by a point load at 15060 Hz
calculated with the modified WBM using the function set 1, corner functions
and a truncation factor T = 2
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Figure E.73: Frequency response functions of a hard simply-supported plate (h = 0.005 m)
excited by a point load calculated with the FEM (reference mesh) and the
modified WBM (function set 1 and set 2, corner functions, T = 2)
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Figure E.74: Frequency response functions of a hard simply-supported plate (h = 0.01 m)
excited by a point load calculated with the FEM (reference mesh) and the
modified WBM (function set 1 and set 2, corner functions, T = 2)
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Figure E.75: Convergence curves of the out-of-plane displacement (hard SS plate with
h = 0.005 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( ))

101 102 103 10410−5
10−4
10−3
10−2
10−1

100
101

# dofs

〈δ
〉

(a) 670 Hz

101 102 103 10410−5
10−4
10−3
10−2
10−1

100
101

# dofs

〈δ
〉

(b) 2300 Hz

101 102 103 10410−5
10−4
10−3
10−2
10−1

100
101

# dofs

〈δ
〉

(c) 3800 Hz

Figure E.76: Convergence curves of the rotation about the x-axis (hard SS plate with
h = 0.005 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( ))
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Figure E.77: Convergence curves of the rotation about the y-axis (hard SS plate with
h = 0.005 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( ))
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Figure E.78: Convergence curves of the out-of-plane displacement (hard SS plate with
h = 0.025 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( ))
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Figure E.79: Convergence curves of the rotation about the x-axis (hard SS plate with
h = 0.025 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( ))
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Figure E.80: Convergence curves of the rotation about the y-axis (hard SS plate with
h = 0.025 m) for the modified WBM (set1 ( ), set1a2 ( ), set1CF
( ), set1a2CF ( ))
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Figure E.81: Out-of-plane displacement and rotations about the x- and y-axis of a multi
domain clamped plate (h = 0.005 m) excited by a constant circular load at
350 Hz calculated with the modified WBM using both function sets, corner
functions and a truncation factor T = 4
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Figure E.82: Out-of-plane displacement and rotations about the x- and y-axis of a multi
domain clamped plate (h = 0.005 m) excited by a constant circular load at
1650 Hz calculated with the modified WBM using both function sets, corner
functions and a truncation factor T = 4
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Figure E.83: Out-of-plane displacement and rotations about the x- and y-axis of a multi
domain clamped plate (h = 0.01 m) excited by a constant circular load at
680 Hz calculated with the modified WBM using both function sets, corner
functions and a truncation factor T = 4

284



−6.13 −3.06 0.00 3.07 6.13
·10−9

w [m]
(a) Real part of the displacement

10−14 10−13 10−12 10−11 10−10

|ε| [m]
(b) Absolute error of the displacement

−1.50 −0.79 −0.09 0.62 1.32
·10−7

ψx [rad]
(c) Real part of the rotation about the x-axis

10−12 10−11 10−10 10−9

|ε| [rad]
(d) Absolute error of the rotation about the x-axis

−7.39 −3.74 −0.09 3.57 7.22
·10−8

ψy [rad]

(e) Real part of the rotation about the y-axis

10−12 10−11 10−10 10−9

|ε| [rad]
(f) Absolute error of the rotation about the y-axis

Figure E.84: Out-of-plane displacement and rotations about the x- and y-axis of a multi
domain clamped plate (h = 0.01 m) excited by a constant circular load at
2060 Hz calculated with the modified WBM using both function sets, corner
functions and a truncation factor T = 4
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Figure E.85: Out-of-plane displacement and rotations about the x- and y-axis of a multi
domain clamped plate (h = 0.01 m) excited by a constant circular load at
3240 Hz calculated with the modified WBM using both function sets, corner
functions and a truncation factor T = 4
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Figure E.86: Out-of-plane displacement and rotations about the x- and y-axis of a multi
domain clamped plate (h = 0.025 m) excited by a constant circular load at
1650 Hz calculated with the modified WBM using both function sets, corner
functions and a truncation factor T = 4
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Figure E.87: Out-of-plane displacement and rotations about the x- and y-axis of a multi
domain clamped plate (h = 0.025 m) excited by a constant circular load at
4740 Hz calculated with the modified WBM using both function sets, corner
functions and a truncation factor T = 4
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Figure E.88: Out-of-plane displacement and rotations about the x- and y-axis of a multi
domain clamped plate (h = 0.025 m) excited by a constant circular load at
7200 Hz calculated with the modified WBM using both function sets, corner
functions and a truncation factor T = 4
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(b) Averaged rotation about the x-axis
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Figure E.89: Frequency response functions of a multi domain clamped plate (h = 0.005 m)
excited by a constant circular load calculated with the FEM (reference mesh)
and the modified WBM (function set 1 and set 2, corner functions, T = 4)
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Figure E.90: Frequency response functions of a multi domain clamped plate (h = 0.01 m)
excited by a constant circular load calculated with the FEM (reference mesh)
and the modified WBM (function set 1 and set 2, corner functions, T = 4)
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Figure E.91: Convergence curves of the out-of-plane displacement (multi domain clamped
plate with h = 0.005 m) for the modified WBM (set1 ( ), set1a2 ( ),
set1CF ( ), set1a2CF ( ))
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Figure E.92: Convergence curves of the rotation about the x-axis (multi domain clamped
plate with h = 0.005 m) for the modified WBM (set1 ( ), set1a2 ( ),
set1CF ( ), set1a2CF ( ))
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Figure E.93: Convergence curves of the rotation about the y-axis (multi domain clamped
plate with h = 0.005 m) for the modified WBM (set1 ( ), set1a2 ( ),
set1CF ( ), set1a2CF ( ))
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Figure E.94: Convergence curves of the out-of-plane displacement (multi domain clamped
plate with h = 0.025 m) for the modified WBM (set1 ( ), set1a2 ( ),
set1CF ( ), set1a2CF ( ))
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Figure E.95: Convergence curves of the rotation about the x-axis (multi domain clamped
plate with h = 0.025 m) for the modified WBM (set1 ( ), set1a2 ( ),
set1CF ( ), set1a2CF ( ))
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Figure E.96: Convergence curves of the rotation about the y-axis (multi domain clamped
plate with h = 0.025 m) for the modified WBM (set1 ( ), set1a2 ( ),
set1CF ( ), set1a2CF ( ))
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[84] F. Ihlenburg, I. Babuška, Finite element solution of the Helmholtz equation with
high wave number Part II: The h-p version of the FEM, SIAM Journal on Numerical
Analysis 34 (1) (1997) 315–358.

[85] M. Dauge, Z. Yosibash, Boundary layer realization in thin elastic three-dimensional
domains and two-dimensional Hierarchic plate models, International Journal of
Solids and Structures 37 (17) (2000) 2443–2471.

[86] D. W. Zietlow, D. C. Griffin, T. R. Moore, The limitations on applying classical thin
plate theory to thin annular plates clamped on the inner boundary, AIP Advances
2 (4) (2012) 042103–1–8.

[87] M. L. Williams, Surface Stress Singularities Resulting from Variouis Boundary Con-
ditions in Angular Plates under Bending, in: Proceedings of the First U.S. National
Congress of Applied Mechanics, 1952, pp. 325–329.

[88] K. S. Numayr, R. H. Haddad, M. A. Haddad, Free vibration of composite plates
using the finite difference method, Thin-Walled Structures 42 (3) (2004) 399–414.

[89] S. Vlachoutsis, Shear correction factors for plates and shells, International Journal
for Numerical Methods in Engineering 33 (7) (1992) 1537–1552.

[90] A. H.-D. Cheng, D. T. Cheng, Heritage and early history of the boundary element
method, Engineering Analysis with Boundary Elements 29 (3) (2005) 268–302.

[91] O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, The Finite Element Method: Its Basis
and Fundamentals, Butterworth-Heinemann, Oxford, 2013.

[92] K.-J. Bathe, Finite Element Procedures, Klaus-Jürgen Bathe, Watertown, 2014.

[93] C. A. Brebbia, J. C. F. Telles, L. C. Wrobel, Boundary Element Techniques: Theory
and Applications in Engineering, Springer -Verlag, Berlin, 1984.

300



Bibliography

[94] J. T. Katsikadelis, The Boundary Element Method for Plate Analysis, Elsevier Inc.,
Oxford, 2014.

[95] W. Desmet, Mid-frequency vibro-acoustic modelling: challenges and potential so-
lutions, in: Proceedings of the International Conference on Noise and Vibration
Engineering ISMA2002, Leuven, Belgium, 2002, pp. 835–862.

[96] B. van Hal, Automation and Performance Optimization of the Wave Based Method
for Interior Structural-Acoustic Problems, Ph.D. thesis, Katholieke Universiteit Leu-
ven (2004).
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[195] T. Mócsai, A. Hepberger, F. Diwoky, H.-H. Priebsch, Investigations on potential im-
provements of the Wave Based Technique for the application to radiation problems
under anechoic conditions, in: Proceedings of the International Conference on Noise
and Vibration Engineering ISMA2008, Leuven, Belgium, 2008, pp. 1547–1562.

[196] B. Bergen, B. Pluymers, B. Van Genechten, D. Vandepitte, W. Desmet, A Trefftz
based method for solving Helmholtz problems in semi-infinite domains, Engineering
Analysis with Boundary Elements 36 (1) (2012) 30–38.

[197] J. Rejlek, B. Pluymers, A. Hepberger, H.-H. Priebsch, W. Desmet, Application of
the Wave Based Technique for steady-state semi-infinite sound radiation analysis,
Computer Assisted Mechanics and Engineering Sciences 15 (3/4) (2008) 337–351.

[198] C. Vanmaele, K. Vergote, D. Vandepitte, W. Desmet, Simulation of in-plane vibra-
tions of 2D structural solids with singularities using an efficient wave based pre-
diction technique, Computer Assisted Methods in Engineering and Science 19 (2)
(2012) 135–171.

[199] B. van Hal, W. Desmet, D. Vandepitte, P. Sas, An efficient prediction technique
for the steady-state dynamic analysis of flate plates, in: Proceedings of the 29th
International Congress on Noise Control Engineering Inter-Noise 2000, Nice, France,
2000, pp. 1–5.

[200] B. van Hal, W. Kobek, P.and Desmet, D. Vandepitte, Steady-state response analysis
of a flat convex plate by the wave based prediction technique, in: Proceedings of the
5th National Congress on Theoretical and Applied Mechanics, Louvain-la-Neuve,
Belgium, 2000, pp. 87–90.

[201] B. van Hal, W. Desmet, D. Vandepitte, P. Sas, Application of the efficient wave
based prediction technique for the steady-state dynamic analysis of flat plates, in:
Proceedings of the International Conference on Noise and Vibration Engineering
ISMA25, Leuven, Belgium, 2000, pp. 607–614.

[202] H. Devriendt, D. Vandepitte, W. Desmet, Vibro-acoustic simulation of damped or-
thotropic plates with the wave based method, in: Proceedings of the International
Conference on Noise and Vibration Engineering ISMA2014 including USD2014, Leu-
ven, Belgium, 2014, pp. 2261–2276.

[203] X. Xia, Z. Xu, Z. Zhang, Y. He, Bending vibration prediction of orthotropic plate
with wave-based method, Journal of Vibroengineering 19 (3) (2017) 1546–1556.

308



Bibliography

[204] C. Vanmaele, W. Desmet, D. Vandepitte, On the use of the wave based method for
the steady-state dynamic analysis of three-dimensional plate assemblies, in: Proceed-
ings of the International Conference on Noise and Vibration Engineering ISMA2004,
Leuven, Belgium, 2004, pp. 1643–1657.

[205] K. Vergote, C. Vanmaele, D. Vandepitte, W. Desmet, An efficient wave based ap-
proach for the time-harmonic vibration analysis of 3D plate assemblies, Journal of
Sound and Vibration 332 (8) (2013) 1930–1946.

[206] W. Desmet, P. Sas, D. Vandepitte, A Wave Based Prediction Technique for Vibro-
Acoustic Systems with Cylindrical Shell Components, in: Proceedings of the Fifth
International Congress on Sound and Vibration, Adelaide, Australia, 1997, pp. 1–11.

[207] M. Chen, J. Wei, K. Xie, N. Deng, G. Hou, Wave based method for free vibration
analysis of ring stiffened cylindrical shell with intermediate large frame ribs, Shock
and Vibration 20 (3) (2013) 459–479.

[208] J. Wei, M. Chen, G. Hou, K. Xie, N. Deng, Wave Based Method for Free Vibration
Analysis of Cylindrical Shells With Nonuniform Stiffener Distribution, Journal of
Vibration and Acoustics 135 (6) (2013) 1–13.

[209] M. Chen, K. Xie, K. Xu, P. Yu, Wave Based Method for Free and Forced Vibration
Analysis of Cylindrical Shells With Discontinuity in Thickness, Journal of Vibration
and Acoustics 137 (5) (2015) 1–14.

[210] K. Xie, M. Chen, L. Zhang, D. Xie, Wave based method for vibration analysis of
elastically coupled annular plate and cylindrical shell structures, Applied Acoustics
123 (2017) 107–122.

[211] K. Xie, M. Chen, L. Zhang, D. Xie, Free and forced vibration analysis of non-
uniformly supported cylindrical shells through wave based method, International
Journal of Mechanical Sciences 128-129 (2017) 512–526.

[212] W. Desmet, P. Sas, D. Vandepitte, An indirect Trefftz method for the steady-state
dynamic analysis of coupled vibro-acoustic systems, Computer Assisted Methods in
Engineering and Science 8 (2/3) (2001) 271–288.

[213] W. Desmet, B. van Hal, P. Sas, D. Vandepitte, A computationally efficient prediction
technique for the steady-state dynamic analysis of coupled vibro-acoustic systems,
Advances in Engineering Software 33 (7-10) (2002) 527–540.

[214] B. Pluymers, W. Desmet, D. Vandepitte, P. Sas, Application of the wave based
prediction technique for the analysis of the coupled vibro-acoustic behaviour of a
3D cavity, in: Proceedings of the International Conference on Noise and Vibration
Engineering ISMA2002, Leuven, Belgium, 2002, pp. 891–900.

[215] B. Pluymers, W. Desmet, D. Vandepitte, P. Sas, Application of an efficient wave-
based prediction technique for the analysis of vibro-acoustic radiation problems,
Journal of Computational and Applied Mathematics 168 (1) (2004) 353–364.

[216] B. Pluymers, W. Desmet, D. Vandepitte, P. Sas, On the use of a wave based pre-
diction technique for steady-state structural-acoustic radiation analysis, Computer
Modeling in Engineering and Sciences 7 (2) (2005) 173–183.

309



Bibliography

[217] J. Rejlek, H.-H. Priebsch, Wave based technique for the analysis of fully coupled
structural-acoustic unbounded problems, in: Proceedings of the International Con-
ference on Noise and Vibration Engineering ISMA2010 including USD2010, Leuven,
Belgium, 2010, pp. 2407–2424.

[218] R. Lanoye, G. Vermeir, W. Lauriks, F. Sgard, W. Desmet, Application of the wave
based technique for the sound field prediction above a patchwork of acoustic absorb-
ing materials, in: Proceedings of the Forum Acousticum 2005, Budapest, Hungary,
2005, pp. 1–6.

[219] R. Lanoye, G. Vermeir, W. Lauriks, F. Sgard, W. Desmet, Prediction of the sound
field above a patchwork of absorbing materials, The Journal of the Acoustical Society
of America 123 (2) (2008) 793–802.

[220] E. Deckers, A Wave Based Approch for Steady-State Biot Models of Poroelastic
Materials, Ph.D. thesis, Katholieke Universiteit Leuven (2012).

[221] E. Deckers, N.-E. Hörlin, D. Vandepitte, W. Desmet, A Wave Based Method for
the efficient solution of the 2D poroelastic Biot equations, Computer Methods in
Applied Mechanics and Engineering 201-204 (2012) 245–262.

[222] E. Deckers, B. Van Genechten, D. Vandepitte, W. Desmet, Efficient treatment of
stress singularities in poroelastic wave based models using special purpose enrich-
ment functions, Computers and Structures 89 (11-12) (2011) 1117–1130.

[223] J. Jegorovs, On the convergence of the WBM solution in certain nonconvex domains,
in: Proceedings of the International Conference on Noise and Vibration Engineering
ISMA2006, Leuven, Belgium, 2006, pp. 2201–2209.

[224] C. Vanmaele, D. Vandepitte, W. Desmet, Application of the Wave Based Prediction
Technique for structural problems with stress singularities, in: Proceedings of the
International Conference on Noise and Vibration Engineering ISMA2006, Leuven,
Belgium, 2006, pp. 2405–2424.

[225] E. Deckers, B. Bergen, B. Van Genechten, D. Vandepitte, W. Desmet, An efficient
Wave Based Method for 2D acoustic problems containing corner singularities, Com-
puter Methods in Applied Mechanics and Engineering 241-244 (2012) 286–301.

[226] E. Deckers, D. Vandepitte, W. Desmet, An efficient wave based method for 2D
dynamic poroelastic problems with corner stress singularities, in: Proceedings of the
International Conference on Noise and Vibration Engineering ISMA2010 including
USD2010, Leuven, Belgium, 2010, pp. 2267–2284.

[227] J. S. Lee, E. Deckers, S. Jonckheere, W. Desmet, Y. Y. Kim, A direct hybrid finite
element-wave based modelling technique for efficient analysis of poroelastic materials
in steady-state acoustic problems, Computer Methods in Applied Mechanics and
Engineering 304 (2016) 55–80.

[228] B. Van Genechten, B. Bergen, B. Pluymers, D. Vandepitte, W. Desmet, A novel
modelling approach for sound propagation analysis in a multiple scatterer environ-
ment, in: Proceedings of Acoustics08, 2008, pp. 5223–5228.

310



Bibliography

[229] O. Atak, Wave Based Modeling Methods for Acoustic Inclusion and Multiple Scat-
tering Problems in the Mid-Frequency Range, Ph.D. thesis, Katholieke Universiteit
Leuven (2014).

[230] B. Van Genechten, Trefftz-Based Mid-Frequency Analysis of Geometrically Complex
Vibro-Acoustic Systems - Hybrid Methodologies and Multi-Level Modelling, Ph.D.
thesis, Katholieke Universiteit Leuven (2010).

[231] E. Deckers, S. Jonckheere, W. Desmet, A Multi-Level Wave Based Method to predict
the dynamic response of 2D poroelastic materials containing inclusions, in: Proceed-
ings of the 10th European Congress and Exposition on Noise Control Engineering
EuroNoise2015, Maastricht, Netherlands, 2015, pp. 1155–1160.

[232] L. Chen, L. Li, Wave-based prediction analysis for dynamic-response problem in
non-convex domain, Journal of Vibroengineering 17 (4) (2015) 1671–1683.

[233] B. van Hal, W. Desmet, D. Vandepitte, P. Sas, A coupled finite element-wave based
approach for the steady-state dynamic analysis of acoustic systems, Journal of Com-
putational Acoustics 11 (2) (2003) 285–303.

[234] B. van Hal, W. Desmet, D. Vandepitte, P. Sas, Hybrid Finite Element - Wave
Based Method for Acoustic Problems, Computer Assisted Methods in Engineering
and Science 10 (4) (2003) 479–494.

[235] P. Silar, A. Hepberger, B. Pluymers, W. Desmet, T. Bartosch, H. Pramberger,
Investigation of a coupled finite element-wave based technique for 2D steady-state
acoustic analysis comparing a direct and an indirect approach, in: Proceedings of
the Thirteenth International Congress on Sound and Vibration ICSV13, Vienna,
Austria, 2006, pp. 1–8.

[236] B. van Hal, W. Desmet, D. Vandepitte, Hybrid finite element - wave-based method
for steady-state interior structural-acoustic problems, Computers and Structures
83 (2) (2005) 167–180.

[237] B. Pluymers, C. Vanmaele, W. Desmet, D. Vandepitte, Application of a hybrid finite
element - Trefftz approach for acoustic analysis, Computer Assisted Mechanics and
Engineering Sciences 13 (3) (2006) 427–444.

[238] B. Pluymers, B. Van Genechten, P. Silar, A. Hepberger, W. Desmet, Validation of a
direct/indirect hybrid finite element-wave based method for 3D steady-state acoustic
analysis, in: Proceedings of the International Conference on Engineering Dynamics
ICED2007, Carvoeiro, Portugal, 2007, pp. 1–8.

[239] B. Van Genechten, D. Vandepitte, W. Desmet, A hybrid wave based vibro-acoustic
modelling technique for the prediction of interior noise in an aircraft fuselage, in:
Proceedings of the 25th Congress of International Council of the Aeronautical Sci-
ences ICAS2006, Hamburg, Germany, 2006, pp. 1–10.

[240] S. Jonckheere, M. Vivolo, B. Pluymers, D. Vandepitte, W. Desmet, Vibro-Acoustic
Characterisation of Lightweight Structures: A Numerical-Experimental Approach,
in: Proceedings of the 7th International Styrian Nose, Vibration & Harshness
Congress ISNVH2012, Graz, Austria, 2012, pp. 1–15.

311



Bibliography

[241] B. Van Genechten, B. Pluymers, C. Vanmaele, D. Vandepitte, W. Desmet, On
the coupling of Wave Based models with modally reduced Finite Element models
for structural-acoustic analysis, in: Proceedings of the International Conference on
Noise and Vibration Engineering ISMA2006, Leuven, Belgium, 2006, pp. 2383–2403.

[242] B. Van Genechten, D. Vandepitte, W. Desmet, On the coupling of Wave Based
models with modally reduced Finite Element models for 3D interior acoustic analysis,
in: Proceedings of the International Conference on Noise and Vibration Engineering
ISMA2008, Leuven, Belgium, 2008, pp. 1631–1651.

[243] B. Van Genechten, B. Pluymers, D. Vandepitte, W. Desmet, A Hybrid Wave Based
- Modally Reduced Finite Element Method for the Efficient Analysis of Low- and
Mid-Frequency Car Cavity Acoustics, SAE International Journal of Passenger Cars
- Mechanical Systems 2 (1) (2009) 1494–1504.

[244] A. Maressa, S. Jonckheere, B. Van Genechten, B. Pluymers, W. Desmet, Hybrid
Finite Element-Wave Based techniques for interior vibro-acoustics. Application to a
large-sized vehicle model, in: Proceedings of the International Conference on Noise
and Vibration Engineering ISMA2012 including USD2012, Leuven, Belgium, 2012,
pp. 3937–3950.

[245] B. Bergen, E. Deckers, B. Van Genechten, D. Vandepitte, W. Desmet, An explicit
Wave based model as alternative to the DtN map for solving unbounded Helmholtz
problems with the finite element method, Engineering Analysis with Boundary El-
ements 55 (2015) 58–66.

[246] C. Vanmaele, W. Desmet, D. Vandepitte, A direct hybrid finite element - wave based
prediction technique for the steady state dynamic analysis of two dimensional solids,
in: Proceedings of the 12th International Congress on Sound and Vibration ICSV12,
Lisbon, Portugal, 2005, pp. 1–8.

[247] J. S. Lee, E. Deckers, S. Jonckheere, W. Desmet, A direct hybrid wave based - finite
element modeling of poroelastic materials, in: Proceedings of the Symposium on the
Acoustics of Poro-Elastic Materials SAPEM2011, Ferrara, Italy, 2011.

[248] S. Jonckheere, E. Deckers, B. Van Genechten, D. Vandepitte, W. Desmet, A di-
rect hybrid Finite Element - Wave Based Method for the steady-state analysis of
acoustic cavities with poro-elastic damping layers using the coupled Helmholtz-Biot
equations, Computer Methods in Applied Mechanics and Engineering 263 (2013)
144–157.

[249] O. Atak, B. Bergen, D. Huybrechs, B. Pluymers, W. Desmet, Coupling of Boundary
Element and Wave Based Methods for the efficient solution of complex multiple
scattering problems, Journal of Computational Physics 258 (2014) 165–184.

[250] O. Atak, D. Huybrechs, B. Pluymers, W. Desmet, Coupling of Boundary Element
and Wave Based Methods for the efficient solution of bounded acoustic problems
with inclusions, in: Proceedings of the International Conference on Noise and Vibra-
tion Engineering ISMA2014 including USD2014, Leuven, Belgium, 2014, pp. 4247–
4257.

312



Bibliography

[251] O. Atak, S. Jonckheere, E. Deckers, D. Huybrechs, B. Pluymers, W. Desmet, A
hybrid Boundary Element-Wave Based Method for an efficient solution of bounded
acoustic problems with inclusions, Computer Methods in Applied Mechanics and
Engineering 283 (2015) 1260–1277.

[252] K. Vergote, B. Van Genechten, D. Vandepitte, W. Desmet, On the analysis of vibro-
acoustic systems in the mid-frequency range using a hybrid deterministic-statistical
approach, Computers and Structures 89 (11-12) (2011) 868–877.

[253] R. S. Langley, J. A. Cordioli, Hybrid deterministic-statistical analysis of vibro-
acoustic systems with domain couplings on statistical components, Journal of Sound
and Vibration 321 (3-5) (2009) 893–912.

[254] A. Dijckmans, G. Vermeir, Development of a hybrid wave based-transfer matrix
model for sound transmission analysis, The Journal of the Acoustical Society of
America 133 (4) (2013) 2157–2168.

[255] A. Dijckmans, G. Vermeir, Hybrid wave based - transfer matrix modeling of sound
insulation problems, in: Proceedings of the International Conference on Noise and
Vibration Engineering ISMA2014 including USD2014, Leuven, Belgium, 2014, pp.
2277–2292.

[256] S. Jonckheere, D. Vandepitte, W. Desmet, A Wave Based Transfer Matrix Method
for accurate simulation of acoustic problems with multilayered damping treatment,
in: Proceedings of the 10th European Congress and Exposition on Noise Control
Engineering EuroNoise2015, Maastricht, Netherlands, 2015, pp. 1149–1154.

[257] B. van Hal, W. Desmet, B. Pluymers, P. Sas, D. Vandepitte, Improving the Wave
Based Method for the Steady-State Dynamic Analysis of Acoustic Systems, in: Pro-
ceedings of the 9th International Congress on Sound and Vibration ICSV 9, Orlando,
USA, 2002, pp. 1–8.

[258] J. Jegorovs, J. Mohring, Wave Based Method in a complex domain: accuracy im-
provement, in: Proceedings of the International Conference on Noise and Vibration
Engineering ISMA2008, Leuven, Belgium, 2008, pp. 1533–1545.

[259] J. Rejlek, F. Diwoky, A. Hepberger, B. Pluymers, Wave Based Technique: enrich-
ment of the set of basis functions, in: Proceedings of the International Conference on
Noise and Vibration Engineering ISMA2008, Leuven, Belgium, 2008, pp. 1533–1545.
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