
Dipl.-Ing. Bernhard Kerbl, BSc

Load Balancing for Hardware and Software
Rendering on the Graphics Processing Unit

Dissertation

to achieve the university degree of

Dr. techn.

Doctoral Program: Computer Sciences

submitted to

Graz University of Technology

Supervisors

Prof. Dr. Dieter Schmalstieg and Ass.Prof. Dr. Markus Steinberger

Evaluator

Prof. Dr. Michael Doggett

Institute of Computer Graphics and Vision
Head: Prof. Dr. Dieter Schmalstieg

Graz, October 2018

“Speed is key.”

Seán William McLoughlin

iii

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,
andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den
benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche
kenntlich gemacht habe.

Ort Datum Unterschrift

v

Abstract

The key to coping with the massive computational demands of rendering large
3D scenes in real-time lies in parallelization. To provide the necessary comput-
ing power, a modern graphics processing unit (GPU) features thousands of
cores. However, channeling this power into competitive performance demands
effective load balancing strategies to make sure all cores are best utilized at
all times. Static load balancing distributes the workload according to a fixed,
predefined scheme based on the properties of each individual work package.
In contrast, dynamic load balancing can take additional system parameters of
the GPU into account, e.g., the current fill rate on each individual processor.
Doing so increases the scope of possible load balancing methods but also
leads to higher conceptual complexity and communication overhead.

This thesis analyzes and extends practical use cases of both dynamic and
static load balancing strategies fit for execution on the GPU architecture. We
examine this topic by considering the GPU in its two key roles for modern
computer science: first, as a ubiquitous, general-purpose co-processor for
massively parallel software applications; second, as a powerful, highly effi-
cient sort-middle rasterization pipeline for graphics content. Focusing on the
example of software rendering applications, which are commonly bound by
particularly tight runtime constraints, we aim to enable custom scheduling,
task aggregation and even prioritization for a broad range of time-critical
procedures. Furthermore, we analyze non-trivial load balancing behavior
and policies as they are being used for processing data in the conventional
hardware rendering pipeline.

The obtained results prove the significance of sophisticated scheduling and
load balancing for the performance of computer graphics applications. Based
on appropriate guidelines for the design of algorithms and data structures,
tailored towards the peculiarities of today’s GPUs, we apply novel insights to
optimize work distribution for parallel software rendering and demonstrate
adaptive behavior to make optimal use of available computing power. We also
show how in-depth knowledge about internal load balancing enables optim-
ization of input to minimize shading effort during hardware rendering.

vii

Kurzfassung

Der Schlüssel zur Bewältigung des wachsenden Bedarfs an Rechenleistung bei
der grafischen Darstellung von komplexen, dreidimensionalen Szenen liegt in
der Parallelisierung. Um die nötige Leistung zu erbringen, verwenden moder-
ne Grafikprozessoren (GPUs) mehrere Tausend Rechenkerne gleichzeitig. Die
optimale Nutzung dieses Potenzials erfordert jedoch eine gerechte Verteilung
der gesamten Arbeitslast. Statische Ansätze für den Lastausgleich folgen ei-
nem fixierten, vordefinierten Schema, basierend nur auf den Eigenschaften der
einzeln anfallenden Arbeitspakete. Beim dynamischen Lastausgleich können
zusätzliche Systemparameter (e.g., der momentane Status einzelner Rechen-
kerne) im Verteilungsprozess berücksichtigt werden. Dynamische Methoden
erweitern daher den Gestaltungsraum möglicher Strategien, erfordern jedoch
zusätzliche Mess- und Kommunikationsprozesse.

In dieser Dissertation wird die praktische Anwendbarkeit von dynamischen
und statischen Methoden zum Lastausgleich auf der GPU analysiert und er-
weitert. Die Behandlung dieses Themas erfordert die Betrachtung der GPU in
ihren wesentlichen Rollen für die wissenschaftliche Forschung: erstens, als leis-
tungsstarker, hocheffizienter und zunehmend allgegenwärtiger Co-Prozessor
für parallele Berechnungen; zweitens, als hochoptimierte Komponente für die
Generierung von Rasterbildern aus grafischen Inhalten.

Ziel ist die Ermöglichung maßgeschneiderter dynamischer Strategien für
den Lastausgleich bei komplexen, üblicherweise zeitkritischen Abläufen, wie
etwa Software Rendering. Außerdem untersuchen wir nicht-triviale, stati-
sche Methoden zum Lastausgleich, wie sie bei konventionellem GPU Ren-
dering mittels Rasterisierung zum Einsatz kommen. Die so gewonnenen
Einsichten und Resultate zeigen die Bedeutung guter Verteilungsstrategien
für die Leistungsfähigkeit moderner Grafikapplikationen auf. Neue Einblicke
ermöglichen die Umsetzung von verbesserter Lastverteilung und infolge-
dessen adaptives Verhalten auf der GPU, basierend auf dafür geeigneten
Richtlinien. Des Weiteren kann sogar die Leistung in konventionellen GPU
Renderprozessen durch ein klares Verständnis interner Ausgleichsstrategien
und entsprechender Datenaufbereitung nachweislich verbessert werden.

ix

Acknowledgements

I would like to express my gratitude for the care, attention and effort invested
in me over the last few years by superiors and comrades alike. I want to thank
my supervisor, Prof. Dieter Schmalstieg, whose resourcefulness, ingenuity
and creativity are lauded by those who have had the pleasure of working with
him. His vast expertise, paired with a readiness to consider novel fields of
research, routinely rewards students who pick up on his ideas with academic
decorations. Dieter’s sage qualities have been perfectly complemented by my
co-supervisor, Ass. Prof. Markus Steinberger, whose seemingly limitless vigor
is only exceeded by his wit and skillfulness. Markus’ quest for ever greater
achievements unites and propels those who are willing to devote their time
and effort to the conception of new landmarks in computer science.

Special thanks go to my colleagues who let me participate in their research
and contributed to mine. I want to specifically thank Denis Kalkofen, Michael
Kenzel, Peter Mohr, Jörg Müller, Markus Tatzgern, Michael Donoser, Philip
Voglreiter, Wolfgang Tatzgern, Elena Ivanchenko and Bernhard Kainz. I would
also like to thank Lorenz Jäger, Patrick Kasper, Alexander Isop, Okan Erat,
Laurenz Theuerkauf, Daniel Brajko, Alexander Skiba, Andreas Wurm, Chris-
tian Lesjak, Christoph Wörgötter, Dietmar Maurer, Martin Oswald, Johannes
Iber, Pedro Boechat and Franz Leberl, who gave me the motivation, help and
support needed to fulfill my academic and educational duties as a researcher
and university teaching assistant.

Furthermore, I want to thank Michael Doggett for agreeing to review this
thesis, as well as for his guidance during my research with the Lund University
Graphics Group.

I am grateful for having been granted two exceptionally caring parents, Ulrike
and Reinhold, who never stopped supporting and encouraging me on my
way. With honesty and prudence, they have contributed to the progress of my
studies in more ways than I can recount.

This work was supported by the German Research Foundation (DFG) grant
STE 2565/1-1 and the Austrian Science Fund (FWF) grant I 3007.

xi

Contents

Abstract vii

Kurzfassung ix

Acknowledgements xi

1. Introduction 1
1.1. Evolution of the Graphics Processing Unit 1

1.2. The GPU as a General-Purpose Co-Processor 3

1.3. Non-trivial Load Balancing on the GPU 4

1.4. Research Objectives . 5

2. Related Work 7
2.1. Dynamic Load Balancing & Prioritization 8

2.1.1. Work Distribution Schemes on the GPU 8

2.1.2. Concurrent Queue Designs 10

2.1.3. Adaptive and Prioritized Rendering 12

2.2. Static Load Balancing & Hardware Rendering 14

2.2.1. Vertex Processing . 15

2.2.2. Rasterization . 16

3. Overview 19
3.1. Prioritized Dynamic Load Balancing on GPUs 19

3.2. Static Load Balancing for GPU Rendering 24

3.3. Further Publications . 27

4. The Broker Queue 29
4.1. GPU Scheduling & Concurrent Queues 30

4.2. Requirements for Massively Parallel Queues 31

4.3. The Broker Queue . 34

4.3.1. Brokering . 36

xiii

Contents

4.3.2. Data Storage and Exchange 37

4.3.3. Further Remarks . 38

4.4. Linearizability . 39

4.4.1. Data Storage and Exchange 39

4.4.2. Brokering . 41

4.5. Broker Queue Variants . 42

4.5.1. The Broker Work Distributor 42

4.5.2. The Broker Stealing Queue 42

4.6. Evaluation . 43

4.6.1. Initial Runtime Comparison 43

4.6.2. Imbalanced and Real-world Scenarios 45

4.6.3. Broker Queue Variants Comparison 49

4.7. Discussion . 49

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU 51
5.1. Adaptive Rendering & Priority Scheduling 52

5.2. Hierarchical Buckets for GPU Scheduling 54

5.2.1. Hierarchical Buckets . 54

5.2.2. Customizable Priorities 57

5.2.3. Enqueue . 58

5.2.4. Dequeue . 59

5.2.5. Maintain . 61

5.2.6. Application Programming Interface 62

5.3. Scheduling Policies . 64

5.3.1. Discretized Priorities . 64

5.3.2. Round-Robin . 66

5.3.3. Fair Scheduling . 67

5.3.4. Earliest-Deadline-First . 70

5.3.5. Application Defined Priorities 72

5.4. Implementing Adaptive Rendering 75

5.4.1. Foveated Micropolygon Rendering 75

5.4.2. Adaptive Sampling for Path Tracing 78

5.5. Remarks on Load Balancing and Rendering 83

6. Batch-based Load Balancing: Vertex Reuse and Optimization 85
6.1. Optimizing for the Post-Transform Cache 86

6.2. GPU Vertex Reuse Strategies . 87

6.2.1. Measuring Vertex Reuse 87

6.2.2. Collecting Detailed Batching Information 89

6.2.3. Identifying Batch Patterns and Boundaries 89

xiv

Contents

6.2.4. Predicting Batch Breakdown for the GPU 92

6.3. Batch-based Mesh Optimization 96

6.4. Evaluation . 99

6.5. Discussion . 104

7. Binning Patterns for Balanced Sort-Middle Rendering 105
7.1. Sort-Middle Rendering & Load Balancing 106

7.2. Built-In GPU Patterns . 107

7.3. Guidelines for Pattern Designs 108

7.3.1. Space Utilization . 109

7.3.2. Local Clustering of Geometry 110

7.3.3. Influence of Orientation 111

7.4. Designing and Evaluating Patterns 114

7.4.1. Space-filling Curves . 116

7.4.2. Randomized Patterns . 117

7.4.3. Fixed Shift . 118

7.4.4. Variable Shift . 120

7.4.5. Comparison of All Categories 121

7.4.6. Influence of Partitioning 123

7.4.7. Observations and Remarks 126

7.5. Binning Patterns for Software Rasterization 127

7.6. Discussion . 129

8. Conclusion 131
8.1. Summary . 131

8.2. Observations and Insights . 133

8.3. Future Work . 134

Bibliography 137

A. Performance of the Broker Queue on Other Architectures 151

B. Identified GPU Binning Patterns 161
B.1. Nvidia Fermi . 162

B.2. Nvidia Kepler . 163

B.3. Nvidia Maxwell . 164

B.4. Nvidia Pascal . 165

B.5. AMD . 166

B.6. Intel . 166

xv

List of Figures

1.1. Simplified DirectX 9-style rendering pipeline 2

3.1. Properties of dynamic GPU scheduling solutions 20

3.2. Progressively sorting priorities 22

3.3. The cure streaming pipeline concept 25

4.1. Contended atomics on CPU and GPU architectures 39

4.2. Microbenchmark runtimes of tested queues 44

4.3. Evaluation of imbalanced queuing scenarios 46

4.4. Measuring queue performance for computing Page Rank . . . 48

4.5. Detailed performance analysis of Broker Queue variants 50

5.1. Load balancing on the GPU through queuing 55

5.2. Examples of hierarchical bucket queuing illustrated 56

5.3. Optimized parallel dequeuing procedure 60

5.4. Progressive priority sorting in a concurrent queue 62

5.5. Callback functions for discretized priorities 65

5.6. Evaluation of quota-driven scheduling 69

5.7. Evaluation of earliest-deadline-first scheduling 71

5.8. Comparison of scheduling accuracy with previous techniques . 73

5.9. Comparsion of execution time with previous techniques 74

5.10. Foveated micropolygon rendering on the GPU 76

5.11. Subdivision quality with naı̈ve and foveated REYES rendering 77

5.12. Comparison of uniform and adaptive sampling for path tracing 79

5.13. MSE progression with uniform and adaptive sampling 81

5.14. Adaptively sampling scenes with path-tracing on the GPU . . . 82

6.1. Vertex shader invocations for repeating index sequence 88

6.2. Accuracy of shading rate prediction with caching and batching 95

6.3. Visualizing batch prediction and observed GPU batches 96

6.4. Ideal parameters for cache-based optimization algorithms . . . 100

xvii

List of Figures

7.1. Observable GPU binning patterns 108

7.2. Game scenes used in evaluation 109

7.3. Progression for spacing out clustered bins 110

7.4. Effects of spreading out bins on load deviation 111

7.5. Load variance along different viewport directions 112

7.6. Layouts of suggested rasterizer patterns 115

7.7. Space-filling curves . 117

7.8. Randomized patterns . 118

7.9. Fixed-shift patterns . 120

7.10. Variable-shift patterns . 121

7.11. Performance comparison of relevant patterns 122

7.12. Pattern performance with partitioned input 125

7.13. Software pipeline runtime breakdown for sample scene 130

A.1. Evaluation of the Broker Queue on the CPU 152

A.2. Microbenchmarks on Kepler and Maxwell, per-thread 153

A.3. Microbenchmarks on Kepler and Maxwell, per-warp 154

A.4. Detailed microbenchmark comparison, per-thread 155

A.5. Detailed microbenchmark comparison, per-warp 156

A.6. Imbalanced scenarios on Kepler and Maxwell 157

A.7. Imbalanced scenarios on Kepler and Maxwell, continued 158

A.8. Page Rank experiments on Kepler and Maxwell 159

A.9. Page Rank experiments on Kepler and Maxwell, continued . . 160

B.1. Binning patterns used by the Nvidia Fermi architecture. 162

B.2. Binning patterns used by the Nvidia Kepler architecture. . . . 163

B.3. Binning patterns used by the Nvidia Maxwell architecture. . . . 164

B.4. Binning patterns used by the Nvidia Pascal architecture. 165

B.5. Binning patterns used by AMD GPUs. 166

B.6. Binning patterns used by Intel GPUs. 166

xviii

1. Introduction

Contents

1.1. Evolution of the Graphics Processing Unit 1

1.2. The GPU as a General-Purpose Co-Processor 3

1.3. Non-trivial Load Balancing on the GPU 4

1.4. Research Objectives . 5

As modern society embraces the arrival of the digital age, the amount of data
we produce, consume and rely on every day keeps growing in quantity and
complexity, with no signs of slowing down. Our daily routines are increasingly
dependent on powerful tools and procedures to handle, distribute and convey
new information as quickly as possible. While advances in semiconductor
fabrication continue to follow Moore’s Law, increases in clock speed have
become stagnant due to physical limitations. Instead, hardware and software
have turned towards parallelization as an answer to the ever-growing demand
for more computing power. The graphics processing unit (GPU) plays an
integral role in this scenario, as it has progressively evolved into a massively
parallel hardware architecture that consumers and researchers alike are aiming
to harness for performing diverse, computation-intensive routines.

1.1. Evolution of the Graphics Processing Unit

The history of the GPU is one of continuous transformation. As the require-
ments and objectives of its users and programmers changed, so did the GPU
in an effort to satisfy their demands. From its early days of bit blitting to its
modern-day role as an exceedingly fine-tuned rendering powerhouse, more
than three decades have passed. During this time, the transition from two-

1

1. Introduction

Input
Assembly

Triangles Raster
Operations

Fragment
Shading

Rasterizer
Vertex

Shading
Clipping/

Culling
Primitive
Assembly

Triangle
Setup

Geometry Processing Rasterization

Primitive ProcessingVertex Processing Fragment Processing

Figure 1.1.: Simplified DirectX 9-style rendering pipeline

to three-dimensional content marks a major shift in focus for the graphics
community and the rendering pipeline. The ability to handle polyhedral
geometry relieved visual content creators from the effort of providing ren-
derings for their artwork from all feasible viewing perspectives. Instead, the
transformation of vertices outlining a 3D object, according to a spectator’s
particular view, could now be performed by a dedicated geometry processing
stage. Subsequent stages of the graphics pipeline would then perform the
assembly and rasterization of the resulting 3D primitives (see Figure 1.1).

The key to handling increasingly complex 3D scenes in real-time lies in
parallelization. At runtime, the GPU continuously fetches adequate work
packages from a data stream or queue and distributes them to available
processors, thereby achieving trivial, yet effective load balancing. To increase
performance, manufacturers have continuously raised the number of built-in
processors (or shading units) with every new generation of GPU models, and
continue to do so to this day. Although vertex transformation was initially
handled by the central processing unit (CPU), the performance benefits of
independently processing vertices in parallel soon provided sufficient reason
to expand the capabilities of the GPU accordingly. Furthermore, memory
transfer for camera updates on static geometry was greatly reduced, as vertex
data could reside on the GPU and simply be transformed anew with an
appropriate matrix. Hence, early GPU shading units were grouped into
separate physical modules and featured a minimal, specialized instruction set
to fulfill their respective task: vertex transformation or fragment shading.

Little by little, the desire to make rendering more convenient and less restrict-
ive led to the insertion of additional access points to the pipeline, enabling
elevated configurability and, eventually, programmability. Most notably, the
responsibility for computing vertex and pixel information was transferred
from hardware to custom shader programs meant to be executed directly on
the GPU: Shading languages such as HLSL and GLSL emerged for the sole
purpose of writing code to compute the final state of individual vertices or
fragments from incoming vertex attributes and auxiliary parameters.

2

1.2. The GPU as a General-Purpose Co-Processor

In the following hardware generations, the rendering pipeline was extended
even further: adding geometry and tessellation shaders made the visualization
of highly detailed models more convenient and memory-efficient. These
additions were facilitated by the advent of the unified shader architecture:
instead of requiring different hardware modules to take care of individual
stages, shading units were made more versatile and capable of processing
any shader, regardless of where in the pipeline it occurs. The augmented
capabilities and instruction sets of these modern shader units paved the way
for the utilization of GPUs as ubiquitous, general-purpose co-processors.

1.2. The GPU as a General-Purpose Co-Processor

The documented path of GPU applications from the early prototypes to con-
temporary models manifests many smaller branches, indicating experimental
features that were tried, tested and usually discontinued. However, one partic-
ular fork in this road remains to this day: In addition to hardware rendering,
the GPU has attained a significant alternative purpose as a massively parallel,
general-purpose co-processor for handling large, homogeneous workloads,
typically overseen and controlled by the CPU. Early on, carefully formatting
the input feed for vertex and fragment shaders provided users with ways to
run computations in parallel on the GPU that were unrelated to rendering.

These efforts were soon answered by the introduction of compute shaders
to rendering APIs and even specialized compute APIs to write parallel pro-
cedures for execution on the GPU. Two popular examples are given by the
vendor-specific Compute Unified Device Architecture (CUDA) for Nvidia
models and OpenCL for AMD. With these tools, it has become relatively easy
to formulate complex algorithms as functions that are concurrently called by
thousands of light-weight GPU threads under a single-instruction-multiple-
data (SIMD) directive. Code for parallel execution can be written with C/C++
syntax, and many fundamental instructions (e.g., atomic integer operations)
are either built-in or can be implemented based on available primitives. Com-
pute APIs and shaders operate in a separate context and expose far more direct
control over execution configuration, synchronization and communication. For
threads running in lockstep on the same compute unit, they usually provide
optimized methods for exchanging or communicating results efficiently. On
the other hand, they are barred from access to specialized hardware features
that play a crucial role in high-performance rendering, such as the render
output unit (ROP) or control over collaborating rasterization clusters.

3

1. Introduction

Developers who use compute shaders or APIs are responsible for configuring
the launch of a job such that a sufficient number of calls to the parallel
procedure will be scheduled. The scheduling of instructions on the GPU
is dictated by a simple, hardwired first-in-first-out (FIFO) scheduler, which
cannot be influenced dynamically. Such a regime only permits very coarse-
granular control of execution on the device. Using a contemporary rendering
API such as OpenGL or Direct3D, commands are simply streamed to the GPU
and executed more or less in order. Similarly, compute jobs are dispatched
and inserted into opaque queues, from which they are then launched onto the
device. Once a job has been dispatched, it cannot be modified and must run to
completion. Consequently, the GPU is rarely considered as a viable option for
complex compute applications that depend on sophisticated scheduling for,
e.g., enabling fair resource sharing, exhibiting adaptive behavior, or adhering
to a strict time plan. This lack of fine-granular control has led researchers to
look for ways to work around the rigid hardware scheduling policies.

1.3. Non-trivial Load Balancing on the GPU

By denying access to low-level hardware scheduling decisions for compute
jobs, manufacturers impede developers’ abilities to implement sophisticated
scheduling strategies. Prioritization, task aggregation and quota-driven ex-
ecution are only some examples for the concepts that are unavailable with
conventional compute job designs. Using the example of software rendering—
which is often bound by real-time constraints—it has been shown that pri-
oritization and adaptive scheduling of workloads can be very beneficial to
the performance of graphics applications (Hachisuka et al., 2008; Overbeck,
Donner and Ramamoorthi, 2009; Rousselle, Knaus and Zwicker, 2011). Several
resourceful members of the computer graphics community have previously
suggested ways to circumvent built-in scheduling and instead introduce cus-
tom work distribution schemes. Unfortunately, the presented approaches are
either highly specialized, lack options for fine-granular prioritization or incur
an immense overhead, effectively nullifying any potential performance gain.
However, it stands to reason that a topic as recent and powerful as GPU pro-
gramming warrants additional effort to pursue approaches for fine-granular,
dynamic scheduling and thereby advance the status quo of massively paral-
lel computing. Perhaps finding a solution to these issues becomes easier as
we contemplate examples of non-trivial load balancing found in the GPU’s
hardware rendering pipeline and analyze how those are handled internally.

4

1.4. Research Objectives

Based on the observation that vertices are usually referenced several times
throughout a mesh, GPU vertex processing strives to reduce the number of
redundant shader invocations through vertex reuse. Historically, this feat was
achieved by the post-transform vertex cache. However, the dependence on a
centralized caching structure is at odds with the massively parallel design
of modern GPU hardware. Furthermore, suggesting that a reusable vertex
can only be detected after a thread has been tasked with shading it implies
wasted cycles. Even worse, entire warps would be forced to execute shading
in lockstep if even a single assigned vertex is unavailable for reuse. A much
more intuitive solution would be to assume support for basic load balancing
strategies in the hardware rendering pipeline. This way, incoming vertex
streams could be analyzed and appropriately split to produce work packages
with an adequate workload for utilizing warps under reuse. Whether these
capabilities are actually present in hardware and how vertex reuse is managed
internally by the GPU remains to be seen.

A similar situation arises with regard to the transition of data from geometry
processing to the rasterization stage. The hardware rendering pipeline is,
with global consent, considered to be a sort-middle architecture: assembled
3D primitives are sorted into image-space bins before rasterization occurs,
thus permitting each rasterizer to exclusively modify a portion of the frame
buffer without the need for costly synchronization. While this seems perfectly
reasonable considering the cost of global memory access and communication
overhead with thousands of concurrent threads, it raises the question of how
exactly this intermediate sorting step is implemented. To avoid bottlenecks
from a small number of overburdened processors, assignment of primitives
must employ a reliable load balancing strategy to uniformly distribute the
workload among all active rasterizers.

1.4. Research Objectives

It is with these deliberations in mind that we set out to take a closer look at
custom, high-level scheduling strategies for the GPU in compute mode and to
evaluate whether they can be implemented in software applications that de-
pend on prioritization, without sacrificing critical performance. Furthermore,
we aim to devise experimental strategies for identifying and exploiting the
mechanics of to-date undisclosed load balancing policies incorporated into the
hardware rendering pipeline. We define the following research objectives:

5

1. Introduction

• Summarize and learn from the achievements of previous methods for
enabling custom scheduling on the GPU. Our focus lies with approaches
that enable work prioritization, ideally as fine-granular as possible.

• Analyze the most essential and common modules incorporated into
these software scheduling systems and assess their potential for optim-
ization. As we improve the performance of the basic building blocks, we
increase the chance of high performance in the final assembled system.

• Suggest a load balancing solution that enables efficient work priorit-
ization and provides a high level of support for arbitrary scheduling
policies. Furthermore, we strive to minimize overhead in order to ensure
and demonstrate applicability even for compute jobs that are usually
bound by real-time constraints, e.g., software rendering on the GPU.

• Identify mechanisms used internally by the modern GPU to achieve
adequate load balancing at various stages of the hardware rendering
pipeline. The obtained knowledge should advance our understanding
of how to optimally utilize the available hardware modules and fill in
some of the blank spots in our conceptual map of the pipeline layout.

• Utilize the novel information on internal GPU load balancing to improve
the performance of classic sort-middle rendering. Ideally, this should
apply to both the hardware pipeline, as well as software implementa-
tions: For the first, we hope to find new ways of optimizing input data to
exploit our new-found insights. For the latter, we expect that hardware
solutions for non-trivial load balancing can serve as a guideline for
implementing effective methods in GPU software rendering as well.

Our approach to each of these topics, experimental results and the insights we
have obtained during our research were, to the best of our abilities, formulated
and documented in the upcoming chapters of this thesis.

6

2. Related Work

Contents

2.1. Dynamic Load Balancing & Prioritization 8

2.1.1. Work Distribution Schemes on the GPU 8

2.1.2. Concurrent Queue Designs 10

2.1.3. Adaptive and Prioritized Rendering 12

2.2. Static Load Balancing & Hardware Rendering 14

2.2.1. Vertex Processing 15

2.2.2. Rasterization . 16

A massively parallel device such as the modern GPU provides several oppor-
tunities for applying load balancing and optimization schemes to ensure that
available cores are reasonably utilized at runtime. In the context of parallel
program execution, high processor utilization is generally preferable, as it
either minimizes the runtime required for processing a fixed workload or,
inversely, maximizes the amount of work that can be done within a given
time budget. Previous work has already demonstrated the effectiveness and
ample usefulness of fully dynamic as well as static load balancing methods
for GPU applications.

Terminology In the following, we use the nomenclature conventions estab-
lished by the Nvidia/CUDA execution model to refer to hardware modules
and routines: Computation on the GPU is based on SIMD execution in small
groups of threads called warps that operate in lockstep. A compute job is
described by a kernel that defines a grid of blocks, with each block consisting of
the same number of warps, that all fit on one of the GPU’s streaming multipro-
cessors (SM). For topics relating to the rendering pipeline, we refer to stages
and shaders according to their names in standard OpenGL documentation.

7

2. Related Work

2.1. Dynamic Load Balancing & Prioritization

Focusing on the GPU as an increasingly programmable general purpose
co-processor for parallel software applications, previous work has shown
that complex procedures can be divided into work packages, which may
then, in turn, be distributed and managed on the device to manifest custom
dynamic scheduling behavior. These approaches enable high-level techniques—
conventionally reserved for CPU-side execution—to be implemented on the
GPU, such as task prioritization, adaptive processing and dynamic load balan-
cing. The foundation for these techniques is usually provided by an underlying
parallel data structure that efficiently stores, handles and promotes available
work packages, the most common choice being a queue. Hence, in the interest
of leveraging high-level dynamic load balancing techniques on the GPU, it
is essential to advance our understanding of effective queuing strategies for
these massively parallel devices. Naturally, the benefits of doing so also affect
the applicability of load balancing to software rendering applications. Given a
limited time frame, priority-based adaptive rendering routines boast a higher
image fidelity than naı̈ve alternatives. This is commonly achieved by directing
more computing power to any domain (e.g., image region) that requires more
thorough processing than others, i.e., selective prioritization.

2.1.1. Work Distribution Schemes on the GPU

For current GPU architectures, a variety of external priority schedulers exist.
They can be viewed as an extension to the driver, controlling which kernels
are forwarded to the GPU at which point in time. Timegraph (Kato, Karthik
Lakshmanan et al., 2011), for example, delays and reorders kernels that
are being sent to the GPU according to deadlines. More intricate CPU-side
scheduling systems explored priority queues (Elliott and Anderson, 2012) or
directed acyclic graphs (Membarth et al., 2012) for managing kernels, as well as
the possibility of scheduling across multiple CPU and GPU instances (Wen, Z.
Wang and O’Boyle, 2014). The major limitation of these approaches is that they
consider kernels as immutable, indivisible entities: Memory transfers (Kato,
K. Lakshmanan et al., 2011) and kernels (Basaran and Kang, 2012) can be
split into smaller jobs to reduce the time until the GPU is responsive again.
With fine-granular scheduling of blocks instead of entire kernels, utilizing
knowledge about how many multiprocessors are available, a better real-time
scheduling performance can be achieved (H. Lee and Al Faruque, 2014).

8

2.1. Dynamic Load Balancing & Prioritization

Yet, all these approaches influence GPU scheduling only indirectly, which
leads to several disadvantages: a long delay between making a scheduling
decision on the CPU and its effect on the GPU, the need to frequently syn-
chronize CPU and GPU, and the inherent inefficiency of submitting kernels
too small to fully occupy the device. Additionally, dynamic priorities and
work generation on the GPU are not supported by these approaches. Re-
cent GPU architectures can execute multiple kernels concurrently (Nvidia,
2012) given that sufficient resources are available. This feature relies on mul-
tiple work queues situated on the GPU, each feeding all available streaming
multiprocessors. While priorities are not supported for these queues, future
architectures might add them, as outlined in the provisional OpenCL 2.1
standard (Khronos-Group, 2015). However, these priorities are assumed to be
static and only applicable to entire kernels.

The persistent threads strategy (Aila and Laine, 2009) aims to cope with this
lack of fine-grained task scheduling mechanisms in the kernel-based GPU
execution model. Their concept employs a software queuing structure and
persistent threads that fill up the entire GPU and run in an infinite loop. In
every iteration, each thread consumes available work items from the queue,
until no more items remain. Cederman and Tsigas (2008) were the first to
build a load balancing system based on this approach. Persistent threads in
combination with work queues have been used in a variety of other application
areas: sparse matrix-vector multiplication (Bell and Garland, 2009), sorting
algorithms (Satish, Harris and Garland, 2009), scan algorithms (Breitbart,
2011), and construction of kd-trees (Vinkler et al., 2015). Although a single
queue is sufficient to achieve simple work distribution, multiple queues are
often used for advanced scheduling mechanisms, such as inserting tasks from
the CPU (L. Chen et al., 2010), task donation (Tzeng, Patney and Owens, 2010),
stealing (Chatterjee et al., 2011), or managing different task types in a single
megakernel (Steinberger, Kenzel, Boechat et al., 2014).

To add multi-tasking to a persistent threads approach, all tasks have to be
compiled into one large megakernel (Hargreaves, 2005). In their simplest
form, megakernels are written as one large switch clause, with threads de-
ciding at each iteration which case (i.e., task) to execute. While there are
certain downsides to megakernels (Laine, Karras and Aila, 2013), they are
often outweighed by better scheduling and the potential to exploit data
locality (Steinberger, Kenzel, Boechat et al., 2014). Megakernels have been
used in the Optix raytracing framework (Parker et al., 2010) as well as
the dynamic task scheduling frameworks of Softshell (Steinberger, Kainz
et al., 2012) and Whippletree (Steinberger, Kenzel, Boechat et al., 2014).

9

2. Related Work

While not their main focus, the latter two also provide ways of prioritizing
workloads on the GPU: Softshell uses a monolithic queue, which can be pro-
gressively sorted, slowly moving high priority tasks to the front of the queue.
Whippletree uses multiple queues to concurrently schedule warp and block
level tasks, and can explicitly collect tasks of the same type (task aggregation).
Whippletree further allows for a prioritization of individual queues over
others, which can be used to, e.g., keep their lengths manageable at runtime.

2.1.2. Concurrent Queue Designs

With queues playing such an integral role in the implementation of work dis-
tribution software for the GPU, it seems imperative that we identify effective,
concurrent queuing algorithms that minimize overhead and thus maximize
scheduling benefit. Although alternative structures other than queues have
been successfully employed for simpler work distribution schemes (Arora,
Blumofe and Plaxton, 1998; Hendler, Lev et al., 2006), doing so usually implies
the abandonment of linearizable first-in-first-out (FIFO) ordering.

FIFO Queues and Linearizability Arguably, the FIFO queue design, which
defines a head from which items are drawn and a tail for appending items,
is the most common choice. FIFO naturally lends itself to work distribution,
because it implicitly maintains tasks in the order in which they were submit-
ted. In case of a single producer and single consumer scenario, a strict FIFO
ordering, as described in the original algorithm by Lamport (1983), FastFor-
ward (Giacomoni, Moseley and Vachharajani, 2008), or MCRingBuffer (P. P. C.
Lee, Bu and Chandranmenon, 2009), is easy to achieve.

In a massively parallel scenario, however, FIFO in its original sense is no longer
applicable, since many threads can concurrently interact with the queue.
This fact gives rise to the concept of linearizability, which can be used to
prove observable FIFO behavior when operations overlap temporally. In short,
linearizability can be understood as the constraint that an external observer,
observing only the abstract data structure operations, gets the illusion that
each of these operations takes effect instantaneously at some point between
its invocation and its response (M. P. Herlihy and Wing, 1990). Although it is
not necessarily required for achieving effective work distribution, ensuring
linearizable FIFO behavior has become a quality seal and defines the gold
standard for sophisticated concurrent queue designs.

10

2.1. Dynamic Load Balancing & Prioritization

Lock-Freedom In a multi-threaded environment, a blocking algorithm in-
volves procedures that can arrive at a system-wide impasse if one or more
threads cannot progress due to failure or suspension. In contrast, non-blocking
algorithms are guaranteed to avoid such gridlocks by ensuring either lock-
freedom or wait-freedom: the first constitutes that at least one thread can proceed
at all times and thereby ensure system-wide progress, while the latter guar-
antees continual progress for every single participating thread. The available
literature on concurrent queues has a strong focus on lock-freedom, which is
often held as key to performance in concurrent systems.

Previous Concurrent Queuing Algorithms One way of constructing a con-
current queue design is given by using a linked list. Valois (1994) provided
one of the first lock-free, link-based queues using compare-and-swap instruc-
tions. Problems with the original design were later corrected by Michael and
Scott (1995), although the corrections greatly diminish its practical value. An
alternative is provided by the authors in the Michael-Scott queue (Michael
and Scott, 1996), which is still among the most popular lock-free concurrent
queues. The same authors further present a blocking queue that supports
concurrent insertion and removal using two locks. The baskets queue by
Hoffman, Shalev and Shavit (2007) presents a variation on the Michael-Scott
queue, exploiting the fact that no binding order can be defined for elements
that are concurrently inserted, thus any ordering is equally valid.

Array-based queues employ a continuous array of elements, commonly oper-
ated as a ring buffer. The early work by Gottlieb, Lubachevsky and Rudolph
(1983) introduced the first array-based queue that scales linearly to a large
number of cores thanks to a fine-grained locking approach. In addition to
head and tail pointers, it uses two counters to track concurrent enqueues
and dequeues. However, due to its rather simple design, their queue is not
linearizable (Blelloch et al., 2003). Orozco et al. (2012) addressed these issues
by presenting the circular buffer queue, which avoids the additional coun-
ters, but acts fully blocking during enqueue and dequeue. As an alternative,
they propose the high throughput queue, which returns to the problematic
two-counter approach of Gottlieb, Lubachevsky and Rudolph. Valois (1994)
proposed a lock-free, array-based queue that relies on compare-and-swap
on non-aligned memory addresses, which is not supported by common pro-
cessor architectures, thus rendering it impractical. The ring buffer by Shann,
Huang and C. Chen (2000) appears to be the first practical lock-free, array-
based queue. Also lock-free, Tsigas and Zhang (2001) presented their queuing

11

2. Related Work

solution, which reduces contention by updating parts of the queue only peri-
odically. Recently, Morrison and Afek (2013) have proposed a lock-free linked
concurrent ring queue, which consists of multiple smaller arrays and avoids
contention by using fetch-and-add over compare-and-swap. Yang and Mellor-
Crummey (2016) presented a similarly segmented, wait-free queue that uses a
fast-path/slow-path dynamic to avoid stalling threads.

Contrary to the prevailing trend of lock-freedom, Scogland and Feng (2015)
have presented a blocking array-queue, built on top of a ring buffer ticket
system, that can easily be ported to the GPU. While their approach offers
high performance, it blocks execution when the queue runs full or empty, and
only a single thread in each warp is allowed to interface with the queue. An
alternative, non-blocking interface has been proposed to circumvent this, but
its implementation entails a drastically reduced queuing performance.

Apart from enabling general work scheduling strategies, priority queues
can be particularly helpful to computer graphics in the context of adaptive
rendering procedures. In these particular applications, one or more queues
are used to organize and continuously promote the execution of tasks or jobs
that are currently expected to have the best effect on image quality.

2.1.3. Adaptive and Prioritized Rendering

Adaptive rendering follows the idea of smartly managing limited computa-
tional resources, so as to achieve high image fidelity with reduced compu-
tational effort. A prominent example of applying this principle is given by
the REYES architecture (Cook, Carpenter and Edwin Catmull, 1987): Large
input patches are progressively subdivided (or split) into multiple, smaller
patches, according to guiding mathematical principles for computing redu-
cible, continuous surface structures (e.g., Bezier splines). Patches found to be
wholly occluded or invisible can be immediately culled. Eventually, patches
are diced into primitives. If a visible primitive is deemed fine enough to satisfy
visual demands (e.g., its screen-projected bounds fall below the Nyquist rate),
it is shaded and its color value is added to the output image. This procedure
is inherently adaptive since the number of splits per patch is not fixed, but
changes depending on their extent and proximity to the camera. Furthermore,
for adhering to a fixed runtime budget, a priority queue can be used to ensure
that big patches are subdivided first, so that at any given time during the
procedure, all projected patches are more or less equally fine.

12

2.1. Dynamic Load Balancing & Prioritization

In the first full REYES rendering pipeline for the GPU, RenderAnts, Zhou et al.
(2009) employ a parallel method for subdivision, which was first described
by Patney and Owens (2008). Their approach repeatedly launches CUDA
kernels to split and bound input patches, deciding at the end of each iteration,
which are to be culled, split or shaded in the next. To accommodate the
growing number of items to process as patches are split repeatedly, the
authors maintain a queue to store geometric details and assigned task for each
patch. Patney, Ebeida and Owens (2009) further presented similar solutions
for Catmull-Clark subdivision (E. Catmull and Clark, 1998) on the GPU.
Steinberger, Kenzel, Boechat et al. (2014) demonstrate an exemplary REYES-
style micropolygon rendering approach that avoids multiple kernel launches
by using a persistent megakernel. Their approach was later extended by
Sattlecker and Steinberger (2015) to produce advanced visual effects, including
displacement mapping, motion blur and depth-of-field.

Another notable example of adaptive rendering is given by the concept of ”a
posteriori” Monte Carlo sampling techniques for path tracing (Zwicker et al.,
2015). While micropolygon rendering targets geometry subdivision, adapt-
ive path tracing operates on the image domain instead. Pioneered by early
attempts to reduce sampling rates while preserving image quality (Mitchell,
1987; Ward, Rubinstein and Clear, 1988; Guo, 1998), these methods aim to
reduce notorious high-frequency noise by dynamically prioritizing image seg-
ments with high estimated error: For each segment of the output image, new
samples are created depending on current variance, in order to achieve uni-
form fidelity. Hachisuka et al. (2008) abstract the concept to the k-dimensional
space, where each dimension corresponds to an independent variable that
affects the image function (e.g., time, depth-of-field distortion). Error values
are then computed and updated for all k-dimensional segments contained by
a kd-tree data structure. Trying to avoid the ”curse of dimensionality”, Over-
beck, Donner and Ramamoorthi (2009) instead employ a 2D wavelet basis to
obtain image error estimates and perform a smooth reconstruction. Rousselle,
Knaus and Zwicker (2011) and Li, Y.-T. Wu and Chuang (2012) expand on
this concept by supporting not only wavelets but rather providing a variety of
different filters. For each pixel and iteration, filters are then chosen for their
ability to minimize the error. Moon, Carr and S.-E. Yoon (2014) successfully
apply local regression and use a reduced subspace of features to guide ad-
aptive sampling. All of the above approaches are based on priority queues,
which they use for storing image segments and updating the ordering within
depending on current sampling error estimates. By continuously dispatching
new samples to the segment that is currently the head of the queue, regions

13

2. Related Work

with high divergence receive more samples than others. Doing so improves
convergence rates significantly and reduces the time required to produce high-
fidelity renderings, compared to naı̈ve uniform sampling. The dependence of
these adaptive algorithms on priority queuing, however, renders an effective
implementation in a massively parallel environment challenging.

In an effort to attain similar benefits for path tracing on the GPU, Liu, J.-Z.
Wu and Zheng (2012) and Liu and Zheng (2013) proposed parallelizable
algorithms with adaptive behavior. Their solution first performs analysis on
a low number of initial samples to determine a one-time, static allocation of
secondary samples per image region. Based on this initial estimate, image
regions are then rendered independently by individual blocks, closely mim-
icking the approaches by Hachisuka et al. (2008) and Overbeck, Donner and
Ramamoorthi (2009). Other, more sophisticated ‘a priori’ methods (Zwicker
et al., 2015; Lehtinen et al., 2012; Mehta et al., 2014; Kettunen et al., 2015) can
be similarly adapted and therefore lend themselves to execution on the GPU.
A priori load balancing solutions for improved image quality are straightfor-
ward to implement, but unable to dynamically react to sudden changes in the
error estimate, which reflects the downside of static load balancing.

2.2. Static Load Balancing & Hardware Rendering

In contrast to dynamic scheduling techniques, more specialized, static meth-
ods for balancing GPU workload are an integral part of hardware rendering.
Given the classic example of a sort-middle pipeline, we can select individual
stages and examine the current conventions and potential improvements for
optimizing load at runtime. In this thesis, we consider two specific pipeline
tasks: vertex processing and primitive rasterization. For vertex processing, it
is historically assumed that a centralized post-transform vertex cache enables
reuse of previously shaded vertex information. Several methods have been
proposed that exploit this assumed GPU hardware feature to minimize the
number of vertex shader invocations. However, with the inexorably increasing
parallelism found in graphics hardware, it seems illogical that modern devices
would still rely on such a highly contended resource.

By identifying more reasonable, inherently parallel approaches to vertex reuse,
we gain new insights into how static load balancing for rendering occurs in
hardware today. Additionally, doing so provides us with a starting point for
implementing effective vertex processing in software rendering applications
for GPUs (Kenzel, Kerbl, Tatzgern et al., 2018).

14

2.2. Static Load Balancing & Hardware Rendering

Regarding primitive rasterization, we claim to provide the first comprehensive
analysis of how spatial layouts of screen-space bins can influence the expected
performance when rendering realistic input data in a sort-middle pipeline.

2.2.1. Vertex Processing

The average vertex is referenced six times in a well-connected triangle mesh.
Both hardware and software solutions have been presented over time in an ef-
fort to save on redundant computations through reuse of already transformed
vertices, with the goal of significantly reducing vertex processing load and
overall rendering runtime. Early attempts approached the issue as a problem
of compressing and decompressing the input geometry, which led to the con-
ception of triangle strips as well as algorithms that turn arbitrary meshes into
a strip-based representation (M. Deering, 1995; Evans, Skiena and Varshney,
1996; Chow, 1997). Hoppe (1999) introduced the idea of reordering vertex
indices—relying on a post-transform cache in the graphics processor—to
dynamically take advantage of locality of reference when possible, without re-
quiring all geometry submitted for rendering to be encoded first. The specifics
of cache operations are thereby abstracted to avoid sensitivity to differences in
hardware architectures. Details on cache behavior of early GPU architectures
can, howeve,r be found in corresponding documentation (Riguer, 2006), as
well as hardware proposals and simulation frameworks (Sheaffer, Luebke and
Skadron, 2004; P.-H. Wang et al., 2011).

Generalizing from triangle strips to arbitrary indexed triangle sets has enabled
more recent work to consider highly elaborate reordering schemes. Lin and Yu
(2006) describe the K-Cache algorithm, which includes a predictive simulation
of the cache evolution in each iteration, rendering their approach quite time-
consuming. Forsyth (2006) omits this predictive simulation for final cache
positions, but assumes an exponential falloff for the probability of a cache
hit instead and thus requires no parameterization. As a consequence, a low
cache miss rate comparable to that of Lin and Yu can be achieved with
significantly shorter required processing time. Its speed makes the algorithm
by Forsyth a popular choice in the industry. Sander, Nehab and Barczak (2007)
have presented another extremely fast, scalable algorithm named Tipsify for
reordering vertex indices as part of their mesh optimization tool chain. Tipsify
works particularly well with larger cache sizes, as has been confirmed in
experimental evaluations.

15

2. Related Work

Recent work on out-of-core geometry processing has shown how data can be
rearranged without changing the mesh itself to improve performance even in
applications beyond rendering (Isenburg and Lindstrom, 2005). Cache con-
siderations may also be applied when processing or transmitting geometry.
Chhugani and Kumar (2007) have explored the concept of cache-based op-
timization to achieve a compression-friendly topology representation. The
authors report cache miss rates on par with those of Lin and Yu, as well as
extremely low storage requirements of only ∼8 bits per triangle. Considering
the entire cache hierarchy from hard drive to main memory to rendering
system, appropriately reordering geometry data can significantly increase
transfer rates (S. Yoon and Lindstrom, 2007; Tchiboukdjian, Danjean and
Raffin, 2010; Tchiboukdjian, Danjean and Raffin, 2008).

While the methodologies, theoretical benefits and widespread adoption of
the above approaches are rather impressive, evidence that the assumed post-
transform cache is still part of modern hardware is virtually non-existent.
Hence, an in-depth evaluation of cache-based optimization methods on recent
GPU models is strongly needed to assess their contemporary usefulness. If
we can, in fact, verify—as has been recently suspected—that the idea of a
post-transform cache has become obsolete, we have reason to believe that
other stages of the hardware pipeline may also not behave as expected.

2.2.2. Rasterization

In a sort-middle architecture, primitives that leave the geometry stage are
commonly sorted into image-space bins, to enable independent pixel updates
in these image regions by available shading units and reduce synchronization
overhead. In addition to its application in hardware rasterization, subdividing
the viewport into spatial bins or tiles has become common practice in the
pursuit of high-performance software rendering (Seiler et al., 2008; Molnar,
Eyles and Poulton, 1992; Clarberg, Toth and Munkberg, 2013; Patney, Tzeng
et al., 2015). A notable example for a fully-programmable GPU software
rasterization pipeline is presented by Laine and Karras (2011). However,
in contrast to hardware rendering which follows a streaming design, they
require that rendered geometry is preprocessed and the distribution of clip-
space triangles is known before rasterization, which enables them to balance
workload dynamically. In the hardware streaming pipeline, the process of
assigning primitives to bins, which eventually map to processing cores, must
occur ad-hoc and usually follows a static, built-in spatial pattern.

16

2.2. Static Load Balancing & Hardware Rendering

Previously suggested patterns for subdividing the screen space for parallel
processing include using scanlines, horizontal and vertical strips or rectangular
tiles (L. Wang et al., 2011). Juliachs, Carrard and Nominé (2007) shuffle 2D
portions of the viewport and distribute them to available rasterizers randomly.
M. W. Eldridge (2001) illustrates a tiling pattern for interleaved tile quads in
the renowned Pomegranate architecture (M. Eldridge, Igehy and Hanrahan,
2000). However, the authors neither elaborate on how this pattern is produced,
nor how its performance would be affected by scaling the tile size or the
number of processors. Molnar, Cox et al. (1994) generally recommend using
small bin sizes as a means to achieve better load balance. Naturally, as bins
get smaller, work is more evenly distributed. A mathematical approach to
predict performance curves and ideal bin sizes was presented by McManus
and Beckmann (1996). However, decreasing bin size also implies an increase
of the total workload itself, since triangles have to be processed by every bin
they overlap. Thus, the choice of an appropriate binning strategy is a delicate
one and plays a notable role in the design of a graphics pipeline (M. Chen
et al., 1998; J. Chen et al., 2005; Dan Crişu, 2012).

The above material and publications, while originating from varied disciplines,
provide us with extensive knowledge and a suitable scientific background to
fulfill the objectives of this thesis. The expert knowledge of these esteemed
authors enables us to make new assumptions, perform meaningful experi-
ments and properly interpret the obtained results. We will revisit them at the
appropriate times to complement their findings with our own insights.

17

3. Overview

Contents

3.1. Prioritized Dynamic Load Balancing on GPUs 19

3.2. Static Load Balancing for GPU Rendering 24

3.3. Further Publications . 27

3.1. Prioritized Dynamic Load Balancing on GPUs

In the first part of this thesis, we will focus on fully dynamic strategies for
load balancing on the GPU, with additional emphasis on prioritization and
applications to software rendering. The author has contributed to several
papers on this topic that we list below and contextualize in Figure 3.1.

1. Markus Steinberger, Bernhard Kainz, Bernhard Kerbl, Stefan Hauswies-
ner, Michael Kenzel and Dieter Schmalstieg (Nov. 2012). ‘Softshell: dy-
namic scheduling on GPUs’. In: ACM Trans. Graph. 31.6, 161:1–161:11

The author has contributed the initial CUDA implementation for parallel
progressive sorting of work items. He also wrote a substantial part of the
path tracing and scene graph parsing applications used for evaluation.

2. Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl,
Mark Dokter and Dieter Schmalstieg (Nov. 2014). ‘Whippletree: Task-
based Scheduling of Dynamic Workloads on the GPU’. In: ACM Trans.
Graph. 33.6

The author has helped compare Whippletree with Softshell, tested early
versions and implemented the REYES micropolygon rendering example.

19

3. Overview

Broker Work Distributor
Fast, sufficiently predictable work queue

Softshell
GPU priority work scheduling

Broker Work Distributor

Whippletree
Support for multiple queues

Broker Work Distributor

Hierarchical
Bucket Queuing

Fine-granular, fast priority scheduling

Broker Queue
Fully linearizable queue

Softshell

Broker Queue

Whippletree

Broker Queue

Hierarchical Bucket Queuing

1

2

4

3

(2012)

(2014)

(2016)

(2018)

Advancing GPU Queue Algorithm
A

d
va

n
ci

n
g

G
P

U
 S

ch
ed

u
lin

g
So

lu
ti

o
n

s

Figure 3.1.: Overview of relevant dynamic GPU scheduling solutions in context. The novel
contributions that we present as part of this thesis are indicated by green boxes.

3. Bernhard Kerbl, Michael Kenzel, Joerg H. Mueller, Dieter Schmalstieg
and Markus Steinberger (2018). ‘The Broker Queue: A Fast, Linearizable
FIFO Queue for Fine-Granular Work Distribution on the GPU’. In: Pro-
ceedings of the International Conference on Supercomputing. ICS ’18. Beijing,
China

The author did most of the writing and analysis, comparison and prac-
tical applications of the broker queue. Joerg Mueller helped with the
evaluation. Michael Kenzel and Markus Steinberger provided the initial
broker work distributor algorithm. Dieter Schmalstieg revised the paper.

4. Bernhard Kerbl, Michael Kenzel, Dieter Schmalstieg, Hans-Peter Seidel
and Markus Steinberger (2016). ‘Hierarchical Bucket Queuing for Fine-
Grained Priority Scheduling on the GPU’. In: Computer Graphics Forum

The author wrote most of the paper and provided the hierarchy designs
as well as adaptive rendering applications. Dieter Schmalstieg and Hans-
Peter Seidel contributed their expertise. Bucket queuing is largely based
on previous work by Michael Kenzel and Markus Steinberger.

20

3.1. Prioritized Dynamic Load Balancing on GPUs

In order to establish a frame of reference for the chapters on dynamic load
balancing, let us compare the contributions in these publications and the
individual tools for priority scheduling on the GPU presented therein.

Instead of relying on writing separate, light-weight kernels for performing
different tasks in a pipeline, one can alternatively launch a larger, persistent
megakernel that can take care of managing versatile tasks, in order to circum-
vent these restrictions. The Softshell framework occupies the entire GPU with
such a persistent megakernel and makes threads continuously look for new
work to process. The elemental key component in this approach is a parallel
queuing data structure, from which work packages can be drawn. In contrast
to previous approaches, Softshell enables persistent GPU threads to enqueue
new work packages (or items), hence task consumption and creation is com-
pletely dynamic and can be autonomously scheduled on-chip. Additionally,
Softshell enables the evaluation of custom priority functions for every item in
the queue. A dedicated group of warps takes care of progressively sorting the
queue based on these priorities at runtime, as shown in Figure 3.2.

The idea of dynamic scheduling on the GPU was investigated further in the
creation of Whippletree, which demonstrated improved efficiency by exploiting
shared device memory where possible and supporting different levels of
parallelism for concurrent tasks. As with Softshell, queuing plays a central role
in Whippletree, which provides queues in both global and shared memory for
storing and fetching new work packages to be processed in a persistent threads
megakernel. In order to minimize overhead, support for work prioritization
was weakened by omitting the slow sorting routine and only allowing to
define a fixed priority for all work items that perform the same procedures
and are stored in the same queues. While significantly coarser than having
fully dynamic priorities for each item, this strategy still enables Whippletree
to process high-priority jobs before less important ones with great efficacy.

Although they form an essential part of both Softshell and Whippletree, their
underlying queue structures have not been explicitly examined. Efficient
queues for work distribution on the GPU pose a particular challenge due to
the extreme level of parallelism they must support. Chapter 4 provides a state-
of-the-art evaluation of concurrent queuing techniques, lists key properties for
GPU execution and shows how they can be considered in the design of parallel
queuing algorithms. We demonstrate this by example of the Broker Work
Distributor, which we successfully employed in both Softshell and Whippletree,
as well as the Broker Queue, which can serve as a linearizable alternative in any
solution that uses the broker work distributor, as indicated in Figure 3.1.

21

3. Overview

workpackage priorities

sorting

sorting

start

sorting

sorting

restart

sorting calls

Figure 3.2.: When progressively sorting priority work queues, we must only modify segments
that are safe to access and restart from the back if we get too close to the front.

Unfortunately, neither Softshell nor Whippletree can fully solve the problem
of load balancing under prioritization. The rather sluggish sorting approach
of Softshell only takes effect when executing work packages with exorbitant
runtimes, giving the dedicated warps enough time to produce a reasonably
sorted queue. Especially for graphics applications, which are often bound by
real-time processing constraints, relying on such a concept is not an option.
Procedure-based prioritization, as supported by Whippletree, is also not
sufficient for graphics pipelines, as it cannot capture fine-granular significance
of individual work items in a stage: although the process is the same, shading
a triangle in close proximity to the camera may be vastly more important than
one that is far away. In Chapter 5 of this thesis, we thus describe and evaluate
Hierarchical Bucket Queuing, which enables quota-driven scheduling on the
GPU and fine-granular prioritization fit for adaptive rendering. A comparison
of key features with Softshell and Whippletree is provided in Table 3.1.

Table 3.1.: Properties and features of individual GPU priority scheduling frameworks.

Softshell Whippletree Hierarchical
Bucket Queuing

Queue(s) One Multiple Many
Basic structure Monolithic List Tree
Queue memory Global Global/Shared Global/Shared
Work prioritization Fine Coarse Fine
On-line queue sorting Required None Optional
Runtime overhead High Low Low

22

3.1. Prioritized Dynamic Load Balancing on GPUs

Much like Softshell and Whippletree, the priority scheduling solution presen-
ted in this thesis is based on launching a persistent threads GPU megakernel
and relies on an efficient queuing algorithm to provide core functionality
for task scheduling. Similarly, the active threads also interact with queues
that are maintained on-chip to receive work and can submit new work items
dynamically. In fact, our implementation of hierarchical bucket queuing was
created by integrating various new concepts into the existing Whippletree
framework, which has enabled us to exploit available core functions and
facilitated a fair comparison with previous work. Since we built our solution
on the Whippletree architecture, we can also use the same optimizations for
global and shared memory queues to benefit from locality of reference.

In contrast to interfacing with a single monolithic queue in Softshell and
Whippletree’s basic multi-queue support, hierarchical bucket queuing targets
designs that feature a significantly higher number of queues. In this context,
a queue can be understood as an abstract container that implements methods
for enqueuing and dequeuing work items. An invoked transaction can then
be recursively forwarded into one of possibly many subjacent child queues,
or buckets, until it reaches a terminal queue that performs the actual storage
management. Since there is no limitation with regard to these parent-child
relationships, our design encourages the creation of tree-like hierarchies with
arbitrary complexity and makes it easy to deploy fine-granular work prioritiz-
ation policies. Hierarchical bucket queuing, like Softshell, supports on-line
sorting of work items in terminal queues, which, given enough time, can pro-
duce an accurately ordered priority queue with arbitrary granularity. However,
this behavior is optional and only enabled on-demand in our implementation,
since the combination of hierarchies and bucketing often suffices to bring
about adequately prioritized processing of tasks.

By including a detailed description of a massively parallel queuing algorithm
and a fast, intuitive priority scheduling approach, the contents of Chapters 4

and 5 convey the essentials for building elaborate load balancing solutions
on the GPU. In contrast to a simple persistent threads approach, we can
now build applications that exhibit adaptive behavior and focus processing
power on particularly important tasks while maintaining a well-balanced
compute core load. Thanks to the low runtime overhead of the Whippletree
framework our implementation is based on, prioritization with hierarchical
bucket queuing can satisfy soft real-time constraints and thus provides an
adequate basis for creating adaptive software rendering applications, as we
will demonstrate in the first part of this thesis.

23

3. Overview

3.2. Static Load Balancing for GPU Rendering

In the second part of this thesis, we shift our focus from dynamic load
balancing to static variants in the context of GPUs as high-performance, sort-
middle rasterization architectures. The benefits of doing so are three-fold: First,
we gain new insights into state-of-the-art load balancing schemes and how
they suit the design of modern GPUs. Second, from these findings, we can
infer steps to optimize input data to best exploit the prevalent hardware load
balancing mechanisms. Third, we can consider them as a lodestar for deriving
suitable and effective load balancing policies for parallel sort-middle software
rendering, tailored towards effective execution on the GPU architecture.

The corresponding chapters of this thesis can (and should) be understood in
the context of a larger project that the author was involved in, namely the
development of a fully programmable software rendering pipeline. Research
into this topic has been rewarded by a co-authored publication:

5. Michael Kenzel, Bernhard Kerbl, Dieter Schmalstieg and Markus Stein-
berger (Nov. 2018). ‘A High-Performance Software Graphics Pipeline
Architecture for the GPU’. In: ACM Trans. Graph. 37.4

The author provided the CUDA implementation for deploying the sort-
middle assignment of primitives to screen-space bins. He also wrote
most of the applications, helped with collecting meaningful test results
and writing the paper.

The main contribution of this paper features a complete DirectX 9-style stream-
ing pipeline for rendering, written entirely in C++/CUDA, and hence dubbed
CUDA rendering engine, or cure for short. Its aim is to take advantage of the
parallel processing power of the GPU to perform high-speed rendering tasks,
while still preserving full programmability at every pipeline stage. In contrast
to previous GPU software rendering approaches, the streaming design enables
data flow control as well as running multiple pipeline stages concurrently,
thus avoiding device-wide synchronization and memory consumption spikes.
Figure 3.3 outlines the general design of the basic cure rendering pipeline.
Note that cure, like the dynamic load balancing methods discussed above, is
dependent on a concurrent queuing solution.

The fundamental operating principles of the hardware rasterization pipeline
are well-known, and understanding them poses a prerequisite for creating
elaborate real-time graphics applications against available rendering APIs.

24

3.2. Static Load Balancing for GPU Rendering

cuRE

Queues

Rasterization

Compute Cores

Geometry

Vertex
Processing

Primitive
Assembly

Sort-Middle
(Binning) RS

GS

RS

GS

Shading &
Blending

Coverage Tests

Figure 3.3.: The cure streaming pipeline concept. In contrast to other software pipelines, data
can be transferred between stages without requiring multiple kernel launches. The
compute cores can perform tasks from the geometry stage (GS) or rasterization
stage (RS) concurrently, exploiting shared GPU memory for organizing workload
within stages. Crossing from GS to RS, primitives have to be sorted and stored in
designated queues that map to groups of compute cores with exclusive access to
a portion of the framebuffer. After completing the rasterization tasks, the output
can be written without interference or having to rely on global synchronization.

However, these conventional APIs conceal the internal, integral load balancing
mechanisms that are required to ensure that the available parallel compute
power is optimally utilized, as data transfers from one stage to the next. In
the process of conceiving a high-performance software solution for the GPU
that closely mimics the hardware pipeline, these questions suddenly become
highly relevant. In our research, we have identified concrete solutions for load
balancing problems in sort-middle rendering by uncovering undocumented
GPU scheduling policies, designing meaningful experiments and verifying
anticipated performance benefits for hardware and software rendering. These
achievements arose naturally during the implementation of the overarching
cure project. Specifically, the chapters on static load balancing will address the
findings and solutions we obtained while working on the particular pipeline
stages enclosed in Figure 3.3 by green boxes.

In Chapter 6, we tackle the widely accepted preconception regarding the ex-
istence of a post-transform cache for vertex reuse in hardware rendering. We
disprove the existence of a centralized cache on recent models from three major
GPU vendors. Our investigations indicate how vertex information is actually
reused during rendering and reveals the underlying load balancing schemes.

25

3. Overview

Based on these insights, we devise an algorithm for mesh optimization which
reorders vertex indices to maximize reuse and minimize vertex shader invoca-
tions. The majority of this content is based on a previous publication:

6. Bernhard Kerbl, Michael Kenzel, Elena Ivanchenko, Dieter Schmalstieg
and Markus Steinberger (Aug. 2018). ‘Revisiting The Vertex Cache:
Understanding and Optimizing Vertex Processing on the modern GPU’.
In: Proc. ACM Comput. Graph. Interact. Tech. 1.2

The paper was written entirely by the author, who also contributed to
the reverse-engineering process and provided baseline implementations
for optimization algorithms. Michael Kenzel wrote the DirectX 12 batch
interpreter and Elena Ivanchenko developed tools for batch visualization
and evaluation. Markus Steinberger contributed the implementation
for batch prediction and batch-based optimization. Dieter Schmalstieg
helped universally with his expert knowledge and guidance.

Another vital application of static load balancing for rendering is examined
in Chapter 7, where we consider the topic of binning for rasterization. We
identify how the assignment of primitives to individual processing units fol-
lows particular patterns and, based on statistical analysis, present alternative
approaches that scale well with increasing processor counts. While these find-
ings may not necessarily affect decisions for future hardware designs, we show
that their consideration can significantly raise performance for state-of-the-art
software rasterization. The chapter is based on a conference paper:

7. Bernhard Kerbl, Michael Kenzel, Dieter Schmalstieg and Markus Stein-
berger (2017). ‘Effective Static Bin Patterns for Sort-middle Rendering’.
In: Proceedings of High Performance Graphics. HPG ’17. Los Angeles, Cali-
fornia: ACM

The author did most of the paper writing and designed all experiments,
visual material and auxiliary tools required for evaluation. Michael
Kenzel and Markus Steinberger helped with the writing and provided
the initial motivation for this research. Dieter Schmalstieg oversaw the
creative process and helped improve the paper on several occasions.

26

3.3. Further Publications

3.3. Further Publications

The following publications indicate additional research projects that the author
was involved in during his doctoral studies. Some of them, while represent-
ative of his scientific interests, do not fit the theme of this thesis and were
therefore omitted. For others, although they may be of significant relevance
to the discussed topics, their main contribution cannot be attributed to the
author. However, we will highlight their importance and influence on the
formation process for this thesis where appropriate.

8. Bernhard Kerbl, Philip Voglreiter, Rostislav Khlebnikov, Dieter Schmal-
stieg, Daniel Seider, Michael Moche, Philipp Stiegler, R. Horst Portugal-
ler and Bernhard Kainz (2013). ‘Intervention Planning of Hepatocellular
Carcinoma Radio-Frequency Ablations’. In: Clinical Image-Based Proced-
ures. From Planning to Intervention. Vol. 7761. Lecture Notes in Computer
Science. Springer Berlin Heidelberg

The author wrote the entire paper and designed the user interface for
initiating different established simulation and planning algorithms by
the co-authors.

9. Bernhard Kerbl, Denis Kalkofen, Markus Steinberger and Dieter Schmal-
stieg (2015). ‘Interactive Disassembly Planning for Complex Objects’. In:
Computer Graphics Forum 34.2

The entire paper, implementation of the code base and evaluation was
done by the author. Denis Kalkofen, Markus Steinberger and Dieter
Schmalstieg provided their expertise during the initial conception and
revision of the paper.

10. Peter Mohr, Bernhard Kerbl, Michael Donoser, Dieter Schmalstieg and
Denis Kalkofen (2015). ‘Retargeting Technical Documentation to Aug-
mented Reality’. In: Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. CHI ’15. Seoul, Republic of Korea:
ACM

The author provided his knowledge and available code for motion plan-
ning in reproducing disassembly instructions. He developed parallel
implementations for most integral subprocedures. He also assisted in
paper writing, algorithm evaluation and the collection of test results.

27

3. Overview

11. Bernhard Kerbl, Joerg H. Mueller, Michael Kenzel, Dieter Schmalstieg
and Markus Steinberger (2018). ‘A Scalable Queue for Work Distribu-
tion on GPUs’. In: Proceedings of the 23rd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. PPoPP ’18. Vienna, Austria:
ACM

This publication represents an early, shortened version of the later ac-
cepted full paper on the broker queue. The contributions by the authors
are therefore identical.

12. Michael Kenzel, Bernhard Kerbl, Wolfgang Tatzgern, Elena Ivanchenko,
Dieter Schmalstieg and Markus Steinberger (Aug. 2018). ‘On-the-fly
Vertex Reuse for Massively-Parallel Software Geometry Processing’. In:
Proc. ACM Comput. Graph. Interact. Tech. 1.2

A significant portion of the paper writing process was organized, su-
pervised and supported by the author. He also helped with the imple-
mentation of the application for computing mesh envelopes and further
collected and interpreted experimental results.

28

4. The Broker Queue

Contents

4.1. GPU Scheduling & Concurrent Queues 30

4.2. Requirements for Massively Parallel Queues 31

4.3. The Broker Queue . 34

4.3.1. Brokering . 36

4.3.2. Data Storage and Exchange 37

4.3.3. Further Remarks 38

4.4. Linearizability . 39

4.4.1. Data Storage and Exchange 39

4.4.2. Brokering . 41

4.5. Broker Queue Variants 42

4.5.1. The Broker Work Distributor 42

4.5.2. The Broker Stealing Queue 42

4.6. Evaluation . 43

4.6.1. Initial Runtime Comparison 43

4.6.2. Imbalanced and Real-world Scenarios 45

4.6.3. Broker Queue Variants Comparison 49

4.7. Discussion . 49

Before we begin to dissect the existing dynamic GPU load balancing strategies
and try to improve them with high-level concepts, we first need to revisit the
fundamental building block of GPU scheduling: concurrent queuing. Detailed
knowledge on how to build a fast, versatile and reliable parallel work queue
not only gives us a solid foundation for developing novel load balancing
approaches on top of it, but can, in fact, benefit any application that seeks to
circumvent the limit of rigid, built-in GPU kernel scheduling.

29

4. The Broker Queue

4.1. GPU Scheduling & Concurrent Queues

At the core of most dynamic scheduling strategies for GPUs are concurrent
queues, which collect and distribute work, usually in a FIFO manner (Ce-
derman and Tsigas, 2008; Steinberger, Kainz et al., 2012; Steinberger, Kenzel,
Boechat et al., 2014). The available literature on concurrent queues has a
strong focus on lock-freedom, which is often held as key to performance in
concurrent systems. However, these algorithms are commonly geared towards
CPU architectures and do not cater to the peculiarities of powerful and ubi-
quitous GPU hardware. The lock-free property is often achieved by methods
in the spirit of optimistic concurrency control (Kung and Robinson, 1981), e.g.,
through algorithms that assume a low incidence of failed atomic operations
from competing threads. However, as others (M. Herlihy, Luchangco and
Moir, 2003; Hendler, Incze et al., 2010) have already noted, the overhead
that is actually caused by repeatedly failing code sections can outweigh the
benefits of true lock-freedom. As an alternative, blocking queues have been
proposed specifically for the GPU (Scogland and Feng, 2015). Unfortunately,
conventional blocking queues substantially limit options for load balancing, as
they do not return the control to the calling thread in underflow or overflow
situations. Thus, they cannot be used in multi-queue setups and advanced
work distribution strategies, e.g., work stealing (Chatterjee et al., 2011).

In this chapter, we present a new queue design, fit for work distribution and
general queuing on the GPU. First, we identify desired properties for efficient
work distribution on the GPU and assess the fitness of previous algorithms in
this respect (Section 4.2). Based on these properties, we describe a scalable,
linearizable queue, the broker queue (BQ), which shows the performance of a
blocking queue, but can return control to the scheduler in case of underflow
or overflow (Section 4.3). Additionally, we present two variants of the BQ,
which can further improve performance at the expense of linearizable FIFO
behavior. All presented algorithms

• support all execution paradigms of the GPU: individual threads, thread
groups of SIMD width (warps), and cooperative thread groups (blocks),
• store items in a ring buffer and thus avoid costly memory allocation,
• ensure that enqueue/dequeue are not fully-blocking, if the queue is full

or empty, thus enabling multi-queue setups, and
• only show blocking behavior for threads if they try to interact with

the same queue entries, to avoid read-before-write hazards, limiting
blocking conditions to cases where it is absolutely necessary.

30

4.2. Requirements for Massively Parallel Queues

We prove linearizability of the broker queue (Section 4.4) and describe specifics
for implementing variants of BQ in Section 4.5. We compare our designs to the
state-of-the-art in both synthetic tests and realistic use cases (Section 4.6).

4.2. Requirements for Massively Parallel Queues

Queuing algorithms on the GPU not only have to handle thousands of concur-
rent enqueue and dequeue operations correctly, they also need to consider the
specifics of the underlying hardware. This includes confinement to a limited
amount of memory, constraining register usage, and operating on a SIMD
device, where individual lanes can diverge. Thus, the requirements for an
efficient work queue on the GPU differ significantly from those on the CPU.

We will compare our insights with an extensive body of previous algorithms
and categorize the most relevant techniques with regard to these desired
properties: An early array-based queue (GQ) by Gottlieb, Lubachevsky and
Rudolph (1983); A popular lock-free queue (MSQ) by Michael and Scott (1996)
and a blocking queue by the same authors using two locks, which we call dual
mutex queue (2MQ); The first practical lock-free, array-based queue (SHCQ)
by Shann, Huang and C. Chen (2000); A queue by Tsigas and Zhang (TZQ),
which updates its contents periodically (2001); The baskets queue (BAQ) by
Hoffman, Shalev and Shavit (2007); A circular buffer queue (CBQ) and its
high-throughput alternative (HTQ) by Orozco et al. (2012); The lock-free
linked concurrent ring queue (LCRQ) by Morrison and Afek (2013), consisting
of multiple smaller, concurrent ring queues (CRQs); A fast blocking queue
(SFQ) by Scogland and Feng (2015) and its non-blocking variant (NSFQ).
And finally, a recently proposed wait-free queue (WFQ) devised by Yang and
Mellor-Crummey (2016); A comprehensive listing for availability of identified
requirements in the above queuing methods, as well as our technique, is
available in Table 4.1.

Most recent non-blocking queuing algorithms rely on optimistic concurrency
control (Kung and Robinson, 1981). However, the high resource contention on
the GPU—when thousands of threads try to access the same data element—
can lead to a significant number of retries, e.g., hundreds to thousands of
repeated compare-and-swap (C&S) operations for a single enqueue. Obvi-
ously, such behavior impacts performance negatively. In accordance with
other authors (M. Herlihy, Luchangco and Moir, 2003; Hendler, Incze et al.,
2010), we argue that in order to design a work queue that is highly scalable,

31

4. The Broker Queue

a potentially blocking algorithm is preferable over using contended C&S
operations. To avoid retries on failed C&S operations, every thread has to be
assigned a unique spot in the queue. This requirement intuitively leads to an
array-based queue design, using atomic fetch-and-add (F&A) to increment
front and back pointers (or head and tail) of the queue instead of C&S. Even
though such a design also brings forth two points of contention, performance
on the GPU can still be high, as F&A operations are exceptionally efficient on
recent hardware generations (Harris, 2014).

Using F&A on front and back pointers, in combination with a per-element tick-
eting system, can be further extended to enable fair ordering: the algorithm
does not constrain head and tail pointers to the size of the ring buffer, but
rather allows them to wrap around to simulate an array of infinite length, so
they can yield both a ring buffer location and a ticket. As soon as a thread
reaches the F&A on the pointer, its position in the queue is assigned. From that
point on, there is no risk of that thread taking significantly longer to complete
an enqueue or dequeue due to interference of queuing-related operations,
e.g., due to failing C&S. Our queue, CBQ and SFQ offer these guarantees;
LCRQ and WFQ use tickets that may be invalidated by contending threads.
Another important property of a queue for work distribution is guarantee of
predictable behavior. For example, the queue must not sporadically report
over-/underflow or have queued elements seemingly change order. The ac-
cepted standard for proving predictable behavior is linearizability, which
applies to most related work except for GQ, as shown by Blelloch et al. (2003),
HTQ (Orozco et al., 2012), and TZQ, as shown by Colvin and Groves (2005).

On the GPU, the degree of parallelism (or occupancy) that can be achieved at
runtime is dictated by the resource requirements of a kernel. For example, ex-
ceeding a certain number of registers may reduce the number of concurrently
launched warps and thus the ability of the GPU to effectively hide latency.
Since the queuing algorithm must be embedded in the kernel in order to
use it for work distribution, a low resource footprint is desirable to allow for
high occupancy of the routines built on top of it. Due to their sophisticated
design, even bare-bone implementations of LCRQ and WFQ reduce achievable
occupancy on current GPU models according to our tests.

Large numbers of dynamic memory management operations are known to
be the cause of potential bottlenecks for GPU execution (Steinberger, Kenzel,
Kainz et al., 2012). Using static memory only implicitly avoids these potential
overheads. Hence, a work queue on the GPU should avoid dynamic memory
allocation, which, in theory, gives array-based queues a technical advantage

32

4.2.
R

equirem
ents

for
M

assively
P

arallel
Q

ueues
Table 4.1.: While many parallel queues have been proposed, most lack desired properties for efficient work distribution on the GPU.

General lock-free queues are commonly dependent on dynamic memory and therefore difficult to realize on the GPU.
Faster queuing approaches either lack linearizability, or their rigorous blocking behavior precludes multi-queue setups.
Our queue (BQ) fulfills all identified desired properties for massively parallel work distribution.

GQ MSQ 2MQ SHCQ TZQ BAQ CBQ HTQ LCRQ SFQ NSFQ WFQ BQ

highly scalable • • • • • • •

fair ordering • ◦ • ◦ •

linearizability • • • • • • • • • •

low resource footprint • • • • • • • • • • •

static memory only • • • • •

all execution paradigms • • • • • • • • • • •

multi-queue support • • • • • • • • • • •

multi-element dequeue • •

• . . . fulfills the requirement, ◦ . . . partially fulfills the requirement

33

4. The Broker Queue

over common linked-list alternatives. However, array-based queues often still
need to allocate memory for queued elements individually, as the queue
storage is operated using C&S, and thus can only store pointers to the actual
elements. If elements are instead stored in the queue directly, access to it needs
to be secured, to avoid read-before-write and write-before-read hazards.

The design of the GPU architecture yields multiple programming and execu-
tion paradigms. General queue designs must be able to work within all of
them, including independent thread execution, warp-synchronous execution,
sub-warp execution, and cooperative block execution. This requires a queue
design that does not transfer blocking states between threads in the same
warp, i.e., block ready-to-execute threads, as others are stalled in the queue.
Similarly, multi-queue setups require threads to return from dequeue opera-
tions, if a queue is already empty, so they can probe other queues that might
still hold work. Essentially, both requirements boil down to queues being
non-blocking when a queue is full or empty.

Our proposed design, the broker queue—although forgoing the non-blocking
property of most recent queue designs—exhibits all desired properties lis-
ted above. Furthermore, it enables a thread to dequeue multiple elements at
once, raising efficiency in cooperative block execution scenarios. It shows all
advantages of simpler, conventional blocking queues, while also ensuring
linearizability and detecting overflow and underflow without blocking.

4.3. The Broker Queue

The core functionality of the broker queue is defined by its four integral
components: (1) a ring buffer that can store queued elements directly, (2) a
head and a tail pointer for ticketing, (3) a ticket buffer that locks individual
queue elements, and (4) an explicit counter to weigh enqueue against dequeue
operations. The configuration of these buffers and the interface to enqueue/d-
equeue is given in Algorithm 1. Note that W indicates an atomic transaction,
whereas⇐ is a memory access and← a local variable assignment.

The key characteristic of this queue interface can be viewed as a broker, giving
rise to the name of our queue. The broker not only considers items stored in
the ring buffer of the queue: it also accepts assurances to provide or consume
items, before the actual transactions occur.

34

4.3. The Broker Queue

ALGORITHM 1: Broker Queue of size N
1 QueueElements RingBu f f er[N] with N = 2n

2 unsigned int Tickets[N] ← {0, 0, · · · , 0}
3 unsigned int Head ← 0, Tail ← 0
4 int Count ← 0
5 enqueue (Element)
6 while not ensureEnqueue () do
7 (head, tail) W (Head, Tail)
8 if N ≤ tail − head < N + MaxThreads/2 then
9 return Full

10 putData (Element)
11 return Success

12 ensureEnqueue ()
13 Num W Count
14 while true do
15 if Num ≥ N then
16 return false

17 if atomicAdd (Count,1) < N then
18 return true

19 Num ← atomicSub (Count,1) −1

20 putData (Element)
21 Pos ← atomicAdd (Tail,1)
22 P ← Pos % N
23 waitForTicket (P, 2 · (Pos/N))
24 RingBu f f er[P] ⇐ Element
25 Tickets[P] W 2 · (Pos/N) + 1

26 dequeue ()
27 while not ensureDequeue () do
28 (head, tail) W (Head, Tail)
29 if N + MaxThreads/2 ≤ tail − head− 1 then
30 return Empty

31 return readData ()

32 ensureDequeue ()
33 Num W Count
34 while true do
35 if Num ≤ 0 then
36 return false

37 if atomicSub (Count,1) > 0 then
38 return true

39 Num ← atomicAdd (Count,1) +1

35

4. The Broker Queue

40 readData ()
41 Pos ← atomicAdd (Head,1)
42 P ← Pos % N
43 waitForTicket (P, 2 · (Pos/N) + 1))
44 Element ⇐ RingBu f f er[P]
45 Tickets[P] W 2 · ((Pos + N)/N)
46 return Element

47 waitForTicket (Pos, ExpectedTicket)
48 Ticket W Tickets[Pos]
49 while Ticket 6= ExpectedTicket do
50 backoff ()
51 Ticket W Tickets[Pos]

4.3.1. Brokering

Usually, atomically operated head and tail pointers for ticketing prohibit a
non-blocking reaction to over- and underflow. For example, if the queue holds
a single element and multiple threads increase the head pointer atomically,
the head is moved past the tail. Although threads could detect that the pointer
was moved too far, reverting the move is difficult, as it would require a
coordinated effort of all involved threads. Additionally, other threads could,
in the meantime, enqueue new elements, validating some of the dequeue
operations that were already rolled back.

To avoid these issue, we introduce an additional counter variable (Count).
It ensures that only threads which are guaranteed to eventually complete
their enqueue or dequeue operation (and thus validly move head or tail)
are allowed to interact with those pointers. For enqueue, this assurance is
provided by the ensureEnqueue method, which returns true, iff there is either
sufficient space in the ring buffer to store an element, or a sufficient number
of other threads have already committed to dequeue elements. Similarly,
ensureDequeue returns true, iff there is an element in the ring buffer for the
thread to dequeue, or at least one other thread committed to enqueue an
unclaimed element. Thus, Count essentially models the relation between head
and tail after all operations of concurrently active threads have completed. If
Count is decreased below zero or increased above the ring buffer size, a thread
can perform a rollback with an inverse operation (lines 19 and 39), without
the need of explicit coordination with other threads. Due to the possibility

36

4.3. The Broker Queue

of other threads modifying Count in the meantime, the result of the rollback
may suggest that the operation is now, in fact, possible. As other threads may
have picked up on this (previously invalid) assurance, the thread must try to
verify it by atomically modifying Count one more time. This retry behavior
requires a loop over the corresponding instructions (lines 13-19 and 33-39).

4.3.2. Data Storage and Exchange

The internal workings of the broker queue match the assurances of the broker
to actual ring buffer slots and create a connection between enqueue and
dequeue operations. A slot identifies the location for writing/reading to/from
the centralized ring buffer storage of the broker queue. The atomic operations
on Head and Tail (line 21 and 41) return a tally for computing the ticket number
and, implicitly, a ring buffer slot for reading or storing elements (line 22 and
42). The ticketing itself assigns even-numbered tickets to enqueue operations
and odd numbered tickets to dequeue operations. Since the broker has already
confirmed at this point that performing the assured operations will yield a
valid queue state and thus will eventually succeed, putData and readData

simply implement a blocking behavior. This is achieved by waiting on a
spinlock in waitForTicket, until the thread’s turn has come to interact with
the assigned ring buffer location. To achieve favorable scheduling, threads
back off after an unsuccessful spin. Each successful operation increases the
ticket number for a slot by the total ring buffer size. Consistency on integer
wrap-around can be easily guaranteed by choosing a power of two for the
size of the queue N and using unsigned integers for pointers and tickets.

The methods ensureEnqueue and ensureDequeue are themselves called from
a loop by the queue interface. The motivation behind this design is linearizab-
ility. A broker state indicating no available slot does not necessarily guarantee
that a Full or Empty must actually be observable in the linearized opera-
tion of the queue. For example, a thread might reduce the Count variable to
zero through dequeue, but get suspended before changing the Head. Another
thread—just examining the Count variable—would assume the queue to be
empty, although the previously assured dequeue might happen much later,
and thus the queue never (observably) reached the Empty state. As Count
might have changed during the execution of putData or readData, threads are
required to continuously try to register their operation. Therefore, a thread
that detects a potential Full or Empty state waits until that state can be
definitely observed (loop from line 6 to 9 and 27 to 30).

37

4. The Broker Queue

4.3.3. Further Remarks

Next to enabling simultaneous access by an arbitrary number of threads, the
biggest advantage of the BQ is that threads are only stalled if the queue is
close to running empty or full. If there is sufficient time between adding an
element and it being read, no thread has to wait. Another advantage of the
BQ is that the ticketing system can grant threads access to queue elements for
an extended period. As read and write operations on the actual elements do
not need to be atomic, the queue can return a pointer to the acquired slot, i.e.,
returning P instead of reading or writing (line 24 / 44).

To determine whether the queue is full or empty, we rely on comparing Head
and Tail. Thus, both variables need to be read in a single atomic instruction,
which is enabled on current GPU designs by defining them as 32-bit wide
offsets from the buffer address and placing them together in a 64-bit word.
Alternatively, actual 64-bit pointers could be used on architectures that support
the atomic C&S2 operation used by Morrison and Afek (2013). Note that, due
to our assurance-based interaction with the pointers, Head can overtake Tail,
and the distance between the pointers can grow beyond the queue size. Thus,
special care needs to be taken when comparing the pointers (line 8 and 29).

At first glance, it would appear that the Count variable presents a central
choke point for the queuing algorithm. Recent approaches, such as LCRQ and
WFQ, take special care to avoid singular, global variables for communicating
queue states across threads. This is motivated by the fact that, on many con-
ventional architectures (e.g., x86), contended atomic operations incur a severe
performance penalty. However, due to their importance for massively parallel
applications, atomic operations are extremely efficient in GPU hardware and
handle contention well. Figure 4.1 shows the average time required for F&A
operations on a single global variable, relative to uncontended memory ac-
cess. While this ratio rises sharply for CPU architectures with an increasing
number of contending threads, the GPU architecture is much more forgiving.
Furthermore, the contention on Count becomes significant only when the
queue is facing either underflow or overflow; i.e., when Count is changed
multiple times by a single thread. Hence, the usage of Count in the algorithm
comes at the consideration of the underlying hardware and its low demand
in reasonably balanced enqueue/dequeue scenarios.

38

4.4. Linearizability

100 101 102 103 104

Threads

0 x

50 x

100 x

150 x

200 x

250 x
C
o
n
te

n
ti
o
n
 O

ve
rh

e
a
d Intel Xeon E5-2686 v3

Intel i7-6850K
Nvidia Titan X (Pascal)

Figure 4.1.: Ratio of average time required for a contended F&A instruction to a single, non-
atomic memory transaction on the respective architecture. On the GPU, a 10 000×
contended F&A shows roughly the same overhead as 10× contention on the CPU.

4.4. Linearizability

To prove linearizability (M. P. Herlihy and Wing, 1990), one can model access
to the queue as a history H. Every function call is represented by an invocation-
response pair of events in the history. Two events are said to be ordered in H,
if the response of one precedes the invocation of the other. If such an ordering
is not possible for any two events, they are considered overlapping, and a
linearizable data structure is allowed to order them arbitrarily. Linearizability
is given if the partial ordering of event pairs can consolidate a total ordering
such that the specifications of the data structure are fulfilled.

The semantics of the broker queue are those of a concurrent FIFO queue, which
takes on three states: Success in case enqueue or dequeue succeeded, Full if
enqueue is not possible, as the queue is full, and Empty in case there is no ele-
ment left for dequeue. There are two relevant parts for showing linearizability
of the broker queue: the exchange of data through putData and readData, as
well as the brokering through ensureEnqueue and ensureDequeue.

4.4.1. Data Storage and Exchange

To show the linearizability of putData and readData, we consider threads
that never see Full or Empty (ignoring ensureEnqueue and ensureDequeue

for now). To this end, we use an auxiliary array H of infinite length, storing
event pairs observed for every enqueue call Ei = (ei, ēi) and dequeue call

39

4. The Broker Queue

Di = (di, d̄i). Each event shall be associated with its position in H, i.e., ei < ej
iff ei is recorded before ej. An event shall be recorded during the atomic
operations on Tail (ei) and Head (di) (line 21 and 41) and after receiving a ticket
(ēi, d̄i) (line 23 and 43). For example, H = {e1, e2, ē2, ē1, d1, d̄1, . . . }. Every event
pair Ei and Di shall be associated with Pos = i obtained by the calling thread,
and Pos shall reflect the FIFO ordering of elements in the queue (ignoring
wrap-around of Pos for now). Thus, for linearizability, the following ordering
must hold:

Ei < Ej ∧ Di < Dj ∧ Ei < Di ∧ Ei < Dj ∀i < j

Obviously, Ei < Ej and Di < Dj is trivial to observe, as the atomic counter
makes sure that ei < ej and di < dj. Thus, either the respective calls are
non-overlapping (ēi < ej, d̄i < dj) and no reordering is necessary, or they do
overlap and can be reordered to fulfill the requirements. For a single pair of
calls Ei and Di, it can be shown that Ei < Di: given that tickets are unique,
waitForTicket during dequeue must wait for enqueue to issue the dequeue

ticket, and ēi < d̄i. Thus, an ordering Ei < Di is certainly possible, as they
are either ordered correctly or overlapping. What remains to be shown, is
that all three requirements hold at the same time, i.e., one reordering does
not contradict another and Ei < Dj ∀i < j. The only possibility for an overall
reordering to fail is if d̄j < ei, i.e., a dequeue finishes before an earlier enqueue
starts, as this would make the calls non-overlapping and prohibit a reordering.
This is not possible, due to the atomic operation on Tail, which yields ei < ej.
In combination with ēi < d̄i and ei < ēi, we find ei < ej < ēj < d̄j, and d̄j ≮ ei.
Thus, all calls can be reordered according to Pos.

Since the ring buffer is of limited size, threads may potentially be competing
to access the same slots. If multiple enqueue and dequeue operations are
assigned to the same position, the ticket system makes sure that the order is
kept as intended. The ticket for Ei is given by TEi = 2 · bi/Nc, for Di, TDi =
2 · bi/Nc+ 1. After a wrap-around, TEi+N = 2 · b(i + N)/Nc = 2 · bi/Nc+ 2
and TDi+N = 2 · bi/Nc+ 3, i.e., every operation receives a unique ticket which
is monotonically increasing. In this way, the ordering at each spot of the ring
buffer is ensured, as long as the tickets do not wrap around. If Pos wraps
around at 232, the tickets wrap around at 232/N = 232−n. As long as the
number of threads concurrently interacting with the queue stays below this
value, the same ticket cannot be issued more than once at the same time.
Hence, the order of operations on individual buffer slots follows Pos, and the
queue in general maintains the indented linearizable FIFO behavior.

40

4.4. Linearizability

4.4.2. Brokering

Brokering evolves around the ensure functions, which may return Full or
Empty. If ensureEnqueue/ensureDequeue returns true, a thread is forwarded
to putData/readData, which results in linearizable behavior as outlined above.
Thus, only the Full and Empty cases require a more detailed analysis. Ignoring
the wrap-around of Head and Tail for now, we define two additional events ∞h,t
and ∅h,t. If the call returns Full or Empty, these events shall be respectively
recorded during the combined head and tail reads (line 7 and 28), with
h = head and t = tail. Linearizability at underflow is given, if calls can be
reordered such that an Empty state is reached at ∅h,t:

Dt < ∅h,t < Et+1.

Ignoring wrap-around, Empty is returned for t − h ≤ 0, i.e., when both
pointers are the same or Head has overtaken Tail. Observing such a pointer
pair means that et and dt, dt+1, . . . , dh have been recorded, and et+1 has not
happened yet:

et, dt < ∅h,t < et+1.

All Di with i > t are irrelevant for the Empty in question, all ei and di for
i ≤ t have already taken place (and thus Ei and Di are either completed or
overlapping), and et+1 has not occurred yet. Thus, there is no E or D that
prevents a reordering to achieve Dt < ∅h,t < Et+1. Furthermore, there are no
other Empty or Full events that can interfere with creating such an Empty
state: ∞h,t cannot take place at the same time (as the conditions for h and t
are different). Another event ∅h2,t2 with t2 = t and h2 = h may take place
at the same time—and can simply be inserted right before or after ∅h,t. An
Empty event with t2 = t and h2 6= h is also possible, which would be treated
identically. If t2 < t, the event has already been inserted into H earlier. Thus,
the Empty state is linearizable. Linearizability with regard to the Full state
is analogous to the Empty state, with Eh+N < ∞h,t < Dh+1, hence we omit
repeating the derivation here.

Finally, the wrap-around of the pointer after 232 must be considered. It is
possible for Head to overtake Tail, with a factor equal to half the maximum
number of concurrently active threads—if all threads are concurrently en-
queuing and dequeuing, and all operations on the Head occur before the
ones on Tail. Similarly, Tail can advance by half the maximum number of
concurrently active threads further than N away from Head. These conditions
can simply be included into the comparison as an additional margin (line 8

and 29). This condition obviously fails if N + MaxThreads/2 ≥ 232.

41

4. The Broker Queue

4.5. Broker Queue Variants

To ensure linearizability, our broker queue potentially waits until suspected
Full and Empty states are observable from Head and Tail. Obviously, waiting
comes at a cost. Hence, we also derive a simplified version of BQ which avoids
waiting by shedding linearizability, yielding the broker work distributor (BWD).
Dropping linearizable FIFO behavior opens the door for potentially even more
efficient work distribution methods, e.g., work stealing (Arora, Blumofe and
Plaxton, 1998; Hendler, Lev et al., 2006). As BQ is also applicable in these
use cases, we additionally describe the broker stealing queue (BSQ) for effective
stealing of queued tasks.

4.5.1. The Broker Work Distributor

The conversion from broker queue to the broker work distributor is straight-
forward. Instead of waiting for ensureEnqueue and ensureDequeue in a loop
to ensure Full/Empty are actually observable, these functions are called only
once by enqueue and dequeue. The result of this call is taken at face value,
returning Full/Empty if the broker cannot find a slot/match immediately.
The downside of the BWD is its non-linearizability. Since Count is only used
as an assurance swap, it does not faithfully represent the real queue state ob-
servable when the actual data is put into the queue or taken out of the queue.
While this behavior is undesirable when a queue needs to behave strictly like
a concurrent FIFO queue, it is not detrimental during work distribution.

If an ensureEnqueue yields false, it indicates that, according to all threads
that started interacting with the queue thus far, all elements will be drained
from the queue; i.e., unless another thread starts enqueue, the queue will reach
Empty. This behavior is arguably sufficient for work distribution and, with
regard to multi-queue setups, provides a reasonable indicator for efficiently
switching to another queue that might contain work.

4.5.2. The Broker Stealing Queue

The broker stealing queue (BSQ) provides a simple work stealing implement-
ation by abstracting multiple underlying queues through one interface. Each
executing block on the GPU is assigned its own, default BQ for storing and
reading queued elements. If a thread in a block cannot find an item in its

42

4.6. Evaluation

assigned default queue, it tries to steal work from a different block. This is
achieved by iterating over all available queues and performing a standard
dequeue on each, until an element is found or all queues were checked.

4.6. Evaluation

To evaluate our techniques, we compare their aptitude for work distribu-
tion with previous work. We implemented the queues listed in Table 4.1 in
CUDA—with the exception of BAQ (as it is within 2× of MSQ), and CBQ
and HTQ, which are similar to SFQ and GQ, respectively. In order to offer
an exhaustive, yet reasonably concise evaluation of our algorithm against
numerous previous approaches, we first identify the most competitive tech-
niques in a microbenchmark. For the strongest contenders, we provide a more
detailed analysis under both lenient and strenuous conditions. All tests were
performed on an Nvidia GTX Titan X (Pascal). Additional test results for
Nvidia Maxwell and Kepler architectures can be found in Appendix A.

4.6.1. Initial Runtime Comparison

Our initial microbenchmark performs 10 alternating enqueue-dequeue pairs
over a varying number of concurrently running threads. Due to this ideally
balanced setup, we can include blocking queues into the test, as neither Empty
or Full states are reached. Figure 4.2a shows the average achieved runtimes.
Due to their high register usage, LCRQ and WFQ reach the maximum number
of concurrently running threads at 43 008 threads on the Titan X (Pascal), i.e.,
they achieve 37% less occupancy than the other approaches. Since SFQ can
only execute at a per-warp granularity, we repeat the above experiment with
only one thread in each warp accessing the queue (Figure 4.2b).

These initial experiments confirm that non-blocking strategies, based around
the concept of optimistic concurrency control, do not work well with thou-
sands of threads. All four non-blocking queues built around optimistic C&S
(TZQ, SHCQ, NSFQ, and MSQ) are trailing significantly behind the others.
Even a queue that allows only two threads concurrent access (2MQ) can be
significantly faster. However, as the number of concurrent threads approaches
maximum occupancy, all of the above techniques are more than 1000× slower
than the remaining algorithms with per-thread granularity, and more than

43

4. The Broker Queue

0 10000 20000 30000 40000 50000 60000
Threads

0

2000

4000

6000

Ti
m

e
[m

s]

BQ
GQ
LCRQ
WFQ
2MQ

MSQ
NSFQ
SHCQ
TZQ

(a) Runtime of all queues, with thread granularity

0 250 500 750 1000 1250 1500 1750
Warps

0

50

100

150

Ti
m

e
[m

s]

BQ
GQ
LCRQ
WFQ
SFQ

2MQ
MSQ
NSFQ
SHCQ
TZQ

(b) Runtime of all queues, with warp granularity

0 10000 20000 30000 40000 50000 60000
Threads

0.1

0.2

Ti
m

e
[m

s]

BQ
GQ
LCRQ
WFQ

(c) Details for fastest queues, with thread granularity

0 250 500 750 1000 1250 1500 1750
Warps

0.05

0.10

0.15

0.20

Ti
m

e
[m

s]

BQ
GQ
LCRQ
WFQ
SFQ

(d) Details for fastest queues, with warp granularity

Figure 4.2.: Runtime performance results of all queues for 10 enqueue/dequeue operations.

100× slower with per-warp queuing interaction. Clearly the fastest runtimes
for these initial test are obtained by our queues, as well as GQ and the recently
proposed SFQ, LCRQ and WFQ. Note that we have omitted BWD and BSQ
from these plots, since they exhibit virtually identical behavior to BQ in this
balanced scenario.

A closer look at the runtime performance of the faster contenders is given in
Figure 4.2c and 4.2d, which include lowest and highest measured runtimes as
overlay. Although GQ is non-linearizable, it trails behind BQ with a slowdown
of more than 2× for launch configurations exceeding 45 056 threads (or 1504
warps), caused by continuous modification of the two counters in addition
to front and back pointers. LCRQ and WFQ have a higher base cost than all
other techniques (3–6× compared to BQ) and quickly deteriorate at per-thread
granularity, but catch up with the non-linearizable GQ per-warp. With an
increasing number of threads accessing the queue, LCRQ also shows the
highest variance in runtime. Per-warp, LCRQ continuously loses its advantage
over WFQ’s higher base cost. Although SFQ is conceptually much simpler
and less versatile than our queue, it is still narrowly outperformed by the BQ.
For launch configurations with > 512 warps, we found a relative slowdown
between 1.4% and 9%. We ascribe this fact to BQ not having to poll a closed
state, unlike SFQ. Overall, BQ poses the fastest queue in this scenario.

44

4.6. Evaluation

4.6.2. Imbalanced and Real-world Scenarios

In order to prove their usefulness in a realistic work scheduling scenario,
queuing algorithms must be able to reliably handle cases where each task
produces a certain amount of work, the number of enqueues and dequeues is
not balanced, and queues can actually run empty.

Synthetic Benchmark To produce imbalanced scenarios, we first extend our
initial test case such that every thread randomly performs between 1 and
10 loop iterations where enqueue and dequeue themselves are called with
reduced probability. Consequently, the number of enqueue and dequeue op-
erations is no longer balanced, which introduces the possibility of underflow.
Furthermore, we simulate a workload for each task by executing 128 fused
multiply-add (FMA) instructions after each successful dequeue.

Since this scenario requires threads to recover from underflow in order to
finish the test, they cannot be evaluated for the blocking SFQ. Also note that
we avoid overflow in this test by allocating sufficient memory for all queues.
LCRQ, which is based on maintaining smaller linked buffers, reacts to an
overfull buffer by allocating and initializing new ones. In order to mask this
dependency on dynamic memory, we pre-allocate and initialize a chunk 32×
the size of the other queues to provide LCRQ with enough resources.

We show our results for imbalanced test cases in Figure 4.3. With simulated
workload added, the differences across techniques diminish for the default be-
havior. This can be observed in Figure 4.3a, where a 2× higher probability of
enqueue than dequeue ensures that every thread can perform its task without
delay, given that overflow does not occur. In the opposite case—probability
of dequeue exceeds that of enqueue 2×—underflow occurs, and performance
figures change considerably (Figure 4.3b). Since there is never a substantial
amount of work to steal, BSQ keeps unsuccessfully checking other queues, and
its overhead is never amortized. The non-blocking techniques LCRQ and WFQ
are at least 2.5× slower than all other techniques. Note that both approaches
behave destructively, as queue slots can become unusable if a dequeue arrives
there before an enqueue. In contrast to LCRQ, WFQ counteracts slot thrash-
ing with its slow-path/fast-path dynamic, by turning unsuccessful dequeue
threads into enqueue helpers. This is reflected by its runtime rising ∼6×
slower than LCRQ at underflow. However, BQ significantly outperforms both
approaches and hence poses the fastest linearizable queue of those tested.

45

4. The Broker Queue

BQ BWD BSQ GQ LCRQ WFQ

0 10000 20000 30000 40000 50000 60000
Threads

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250
Ti

m
e

[m
s]

(a) P(enq) = 50%, P(deq) = 25%

0 10000 20000 30000 40000 50000 60000
Threads

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ti
m

e
[m

s]

(b) P(enq) = 25%, P(deq) = 50%

Figure 4.3.: We consider imbalanced test cases, both synthetic and realistic. We test enqueue
with probability P(enq) and dequeue with P(deq) on initially empty queues. In
(a), P(enq) > P(deq) and the queues never run empty. Using a constant workload
reduces the performance gap compared to the initial benchmark. In (b), queues
quickly hit underflow, which has a devastating effect on the performance of LCRQ
and WFQ, and, to a much lesser extent, on BQ.

46

4.6. Evaluation

The simpler, non-linearizable GQ achieves up to 64% faster runtimes than
BQ, but is also prone to erroneously detecting empty states. In a real-world
scheduling scenario—where the workload is not known beforehand—this
may cause threads to quit prematurely, compromising performance and
correctness. The fastest runtimes are reported for our non-linearizable version
of BQ, the BWD (10% faster than GQ at maximum occupancy). Compared to
GQ, underflow detection by the BWD is less problematic, since it makes all
interactions immediately visible via the Count variable. Hence, it follows that
the BQ/BWD pair provides the best choice for a linearizable/non-linearizable
queue, respectively, in imbalanced scenarios.

Page Rank In order to provide a real-world example, we evaluate all com-
petitive queues that are capable of handling underflow on the computation
of page rank for two directed networks. Specifically, we compute the first 8

iterations for the data sets p2p-gnutella31 and web-NotreDame, provided by the
Stanford Large Network Dataset Collection (Leskovec and Krevl, 2014). The
development of queue performance with increasing thread count is plotted
in Figure 4.4. We pre-fill queues with one work item per node and launch a
persistent kernel that tries to dequeue elements, until all threads agree that no
more work is being generated. Active nodes pass on their latest available page
rank value to their neighbors. If a node N finds that it is the last to contribute
to the page rank of another node M in iteration i, M is enqueued for iteration
i + 1. In order for LCRQ and WFQ to run fairly stable without immediately
consuming all available memory, we had to shrink their buffer segments
below the suggested size (<128 slots per segment). We also added traversal
of previous Head pointers to LCRQ to reclaim abandoned segments.

Performance measurements for tested queues are shown in Figures 4.4a and
4.4b. LCRQ/WFQ quickly fall behind, with slowdown of at least 60/6× over
GQ, BQ and its variants in p2p-gnutella31, and 95/400× in web-NotreDame
for more than 10 240 threads. In both networks, BQ outperforms GQ. This
confirms our assumption that GQ’s erroneous underflow detection is detri-
mental for tasks that only terminate when no more data is produced, which
holds for the Page Rank test (in contrast to our synthetic tests). Consequently,
BQ and BWD are consistently 10–15% faster than GQ for configurations
>10 240 threads. Furthermore, we find that BSQ performs best for the large
web-NotreDame network at maximum occupancy (9% over BWD). This is due
to new work being generated in bursts when a neighborhood of nodes finish
an iteration simultaneously, allowing for work stealing to take effect.

47

4. The Broker Queue

BQ BWD BSQ GQ LCRQ WFQ

0 10000 20000 30000 40000
Threads

101

102

103

Ti
m

e
[m

s]

(a) Page Rank for p2p-Gnutella31

0 10000 20000 30000 40000
Threads

102

103

Ti
m

e
[m

s]

(b) Page Rank for web-NotreDame

Figure 4.4.: Testing queues in a real-world example to compute 8 iterations of page rank, we
find that our algorithms (BQ, BWD and BSQ) are the fastest available techniques.
For both medium-sized networks (a, 60k nodes) and large ones (b, 300k nodes),
our queues achieve lower runtimes than simpler alternatives (GQ).

48

4.7. Discussion

4.6.3. Broker Queue Variants Comparison

To investigate differences in behavior between BQ, BWD and BSQ in detail, we
test various enqueue and dequeue probabilities under maximum occupancy.
Figure 4.5a shows that, if enqueue probability is higher than dequeue, there
is negligible difference in queue performance among the three approaches
(<10%, thus within usual variance), with BSQ being marginally faster due
to reduced contentions. However, at lower enqueue rates, the performance
of BSQ suffers considerably (up to 30× slowdown). This is explained by its
modus operandi: at maximum occupancy, a high number of thread blocks
(and thus distributed queues) is employed. Hence, with few work items being
generated at all times, work stealing constantly checks many queues, just to
determine that they are all empty.

The largest difference between the BQ and BWD queues can be observed when
dequeue happens about twice as often as enqueue. At this point, every other
dequeue attempt observes a potential Empty state (BQ up to 5× slower). It is
unlikely to observe an actual underflow of the queue, as there are still many
enqueue operations happening, leading to multiple fail-and-retry attempts.
For lower enqueue probabilities, it is easier to observe Empty and thus the
performance of BQ normalizes. Similarly, for higher enqueue probabilities, it is
also more likely for a dequeue to immediately succeed. It follows that ensuring
linearizability of BQ can increase runtime by up to 20× if the queue is nearly
empty/full all the time. However, already a small simulated workload (320

FMA operations) reverses this trend (Figure 4.5b): under load, BSQ shows
lower relative slowdown (∼6×), and Empty/Full are likely matched by the
pointers, as fewer threads access the queue concurrently. Hence, average
performance of BQ and BWD is nearly identical.

4.7. Discussion

In this chapter, we presented queuing strategies geared towards effective work
distribution on the GPU: the broker queue, as well as two simpler, optimized
variants. Previous work in this field usually follows one of two strategies:
relying on optimistic concurrency control and thus being non-blocking, or
showing strict blocking behavior, even when the queues are full or empty.
While the former shows poor scalability in massively parallel environments
with thousands of threads, the latter prohibits effective scheduling mechan-
isms for work distribution on the GPU.

49

4. The Broker Queue

0 25 50 75 100
Enqueue Probability [%]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ti

m
e

[m
s]

(a) Runtimes with no workload

BQ, 25 %
BQ, 50 %
BQ, 75 %
BQ, 100 %
BWD, 25 %
BWD, 50 %
BWD, 75 %
BWD, 100 %
BSQ, 25 %
BSQ, 50 %
BSQ, 75 %
BSQ, 100 %

0 25 50 75 100
Enqueue Probability [%]

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
[m

s]

(b) Runtimes with 320 FMAs workload

Figure 4.5.: Performance comparison of BQ, BWD and BSQ at different enqueue/dequeue
ratios shows that BSQ in general reduces contention in ideal cases, but suffers
from massive overhead otherwise. (a) As BQ is hitting a potentially empty queue,
it waits until the state is verified, which reduces its performance, especially if
that state is likely to change again. (b) This effect becomes smaller as the task
workload (simulated by 320 FMAs after each dequeue operation) increases.

Instead of following either strategy, we have combined the most desirable
features of both, keeping the scalability of blocking queues, while ensuring
versatility through non-blocking detection of under- or overflow. Compar-
ing to an extensive body of previous work, we found that our techniques
consistently rank among the most competitive approaches. Since the broker
queue was conceived with GPU hardware in mind, it does not rely on exotic
or impractical hardware features, rendering its implementation straightfor-
ward. Our evaluation showed the broker queue to be the fastest linearizable
queue for distributing work on the GPU in various scenarios. In balanced and
realistic setups, the broker queue outperformed all previous algorithms. We
also presented an even faster, non-linearizable variant of the broker queue,
for the purpose of general work distribution: the broker work distributor. In
terms of performance, the broker work distributor surpassed all previous
approaches, even in synthetic imbalanced scenarios. Adding work stealing
on top of our queue can ideally increase efficiency even further under real-
istic load. Although our proposed algorithms do not fulfill the non-blocking
property, they are resilient to under- and overflow scenarios, making them
prime candidates for work distribution and dynamic load balancing on the
GPU. In fact, the queues described in this chapter can be effectively applied
in any scenario where a fast, concurrent queue is needed.

50

5. Hierarchical Bucket Queuing and
Adaptive Rendering on the GPU

Contents

5.1. Adaptive Rendering & Priority Scheduling 52

5.2. Hierarchical Buckets for GPU Scheduling 54

5.2.1. Hierarchical Buckets 54

5.2.2. Customizable Priorities 57

5.2.3. Enqueue . 58

5.2.4. Dequeue . 59

5.2.5. Maintain . 61

5.2.6. Application Programming Interface 62

5.3. Scheduling Policies . 64

5.3.1. Discretized Priorities 64

5.3.2. Round-Robin . 66

5.3.3. Fair Scheduling 67

5.3.4. Earliest-Deadline-First 70

5.3.5. Application Defined Priorities 72

5.4. Implementing Adaptive Rendering 75

5.4.1. Foveated Micropolygon Rendering 75

5.4.2. Adaptive Sampling for Path Tracing 78

5.5. Remarks on Load Balancing and Rendering 83

Armed with a queuing algorithm that delivers high-end performance in a
variety of scenarios, we seek to apply our solution in a parallel scheduling
framework. Our goal is to leverage fine-granular work prioritization fit for
adaptive rendering applications while minimizing runtime overhead.

51

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

5.1. Adaptive Rendering & Priority Scheduling

The static nature of GPU execution is a severe limitation, even in its core
application of interactive graphics. For example, virtual reality applications
demand low-latency, real-time rendering for high-resolution, head-mounted
displays (HMD). Long latencies or spikes in rendering time can lead to severe
discomfort. According to current beliefs (Hunt, 2015), foveated rendering—
adaptively rendering regions around the user’s fixation point in higher
resolution—is one way to address these issues. However, using a traditional
rendering API, one can only rely on predictions about how long rendering
might take to decide upfront on an allocation of computing power that might
meet a given deadline, without guarantee. One solution could be a progressive
renderer with dynamic priorities. It could adaptively focus computing power
around areas of interest. Rendering can stop, as the deadline of acceptable
latency is reached, maximizing the quality achieved within a given time
frame. This idea is not new. Prioritized rendering has been investigated in
previous work, e.g., for the goal of reducing sampling rates in path tracing
(Mitchell, 1987; Overbeck, Donner and Ramamoorthi, 2009; Rousselle, Knaus
and Zwicker, 2011). However, most of these approaches were conceived with
no or at best low degrees of parallelism considered. The peculiarities of the
GPU require that load balancing and prioritization be considered in a whole
new light. Scheduling a task on the GPU means mapping it to blocks or
warps. A large number of tasks is typically required to make efficient use of
the massively parallel GPU. The execution time of each task should be kept
short to avoid branch divergence, hence we cannot rely on slow, exact solu-
tions for prioritization (e.g., Softshell) and hope to hide sorting latency with
excessively long tasks. Coarser prioritization (e.g., Whippletree) usually fails
to capture important differences in priority for individual work packages.

The sum of these facts makes prioritized load balancing an interesting but
challenging problem for deployment on the GPU: There is usually a large
number of short tasks to be managed, thus, scheduling decisions must be
made very often. Making scheduling decisions involves reading informa-
tion about the execution state from memory, which is very costly. Due to
the massive parallelism and short task durations, tasks enter and leave the
scheduling system in parallel at a high rate. Constant reorganization of shared
data structures such as sorted queues or heaps is problematic, as locking must
be avoided. On the GPU, a priority queue in the original sense is not even a
theoretical possibility, as there is no absolute order that could be established
for thousands of parallel operations carried out at any given point in time.

52

5.1. Adaptive Rendering & Priority Scheduling

Thus, GPU priority scheduling can only aim to execute tasks with higher
priority before tasks with lower priority on average. Hence, the effect of a
fine-granular, approximate ordering of tasks according to their importance
may be virtually indistinguishable from exact sorting in a massively parallel
environment. However, even an approximate priority scheduling solution
can enable a variety of applications to benefit from adaptive behavior. While
following such a relaxed prioritization policy can be expected to simplify the
task of designing an analogous implementation in a parallel environment, we
still need to consider and overcome the aforementioned issues. We tackle them
with our approach based on a hierarchical organization of bucket queues and
make the following contributions:

• We present a flexible, hierarchical queuing structure for the GPU that
can be configured to implement a variety of scheduling policies and is
efficient for massively parallel access.

• We expose our bucket queues through a scheduling control model
consisting of three simple entry points that allow for an easy and efficient
implementation of different scheduling policies. Our model can be
plugged into any persistent threads solution and would also lend itself
to implementation in future hardware.

• We investigate different methods to implement fair-scheduling, earliest-
deadline-first scheduling, and user-defined scheduling policies on top
of our approach and compare the performance of each policy in a set of
synthetic tests with previous work.

• We show how priority scheduling can be used for elaborate load balan-
cing with guaranteed latency for foveated micropolygon rendering as
well as adaptive path tracing.

The exposition in this chapter follows three logical steps which define the
sequence of the following sections. First, we will describe the individual
methods required for hierarchical bucket queuing, along with our frame of
reference for the definition of priorities and the programming interface to our
implementation in a parallel C++/CUDA framework. Next, we will assess
the general efficacy of our relaxed prioritization scheme for realizing basic
task scheduling policies on the GPU in comparison with previous work. We
discuss trends, strengths and weaknesses, as well as beneficial conditions and
configurations for our work, relevant alternatives and considerations for a
theoretical implementation in dedicated hardware. Finally, we will show how
our solution can be used to introduce adaptive behavior to GPU software
rendering applications while ensuring dynamically balanced workload.

53

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

5.2. Hierarchical Buckets for GPU Scheduling

Work queues are widely accepted as the standard tool for load balancing on
the GPU. They are used by software schedulers and the GPU hardware, as
shown in Figure 5.1. They can be filled by the CPU and also directly by kernels
executing on the GPU (Jones, 2012). Task-specific work queues are further
useful, as they allow for work aggregation (Steinberger, Kenzel, Boechat et al.,
2014). The goal of this chapter is to design a priority scheduling scheme that
integrates and enhances these existing practices. We identify the following set
of requirements a queue-based system must fulfill to achieve this goal:

R1 While one application might require a single queue and permit mixing
different tasks, another application might need multiple queues to ag-
gregate tasks of different types. Thus, priority scheduling mechanisms and
the queuing back-end must be customizable.

R2 When a multiprocessor requests work, the GPU-wide scheduling must
not block, as this would halt other multiprocessors concurrently request-
ing work. Consequently, a separate, serial priority scheduler between queues
and multiprocessors cannot be used.

R3 Current strategies for GPU scheduling allow tasks to be generated and
inserted into the queues at any point by any thread on the GPU. To
avoid stalls, producers must be able to add work in parallel without
interference. Hence, complex data structures that require locking whenever a
new task is generated are not an option.

R4 Peak performance can only be achieved if a multiprocessor does not
stop executing tasks unless all tasks have been processed. Thus, execution
must not be halted for priority scheduling, i.e., it is not possible to use periodic
rebuilds of data structures or very complex scheduling algorithms.

5.2.1. Hierarchical Buckets

We propose the use of multiple instances of an efficient queue, such as the
broker work distributor, organized into a hierarchical structure of buckets.
By making the hierarchy configurable by the application, it is possible to
cover a variety of scenarios. Every node of the constructed hierarchy can
have an arbitrary number of children, i.e., it is possible to place any number
of buckets within another bucket. Leaf nodes in the resulting tree, i.e., the
terminal buckets, correspond to queues storing the actual tasks. Buckets can

54

5.2. Hierarchical Buckets for GPU Scheduling

Figure 5.1.: To keep the multiprocessors of the GPU busy, work is usually managed in queues
located on the GPU. These queues can be filled by the CPU as well as the GPU.

be limited to certain types of tasks, allowing each queue to be optimized for
the subset of data types it has to hold. Adding an element to a bucket queue
hierarchy corresponds to walking down the tree until a leaf node is found
and pushing into the corresponding queue. To demonstrate the universality of
such a configurable system, we have provided several examples in Figure 5.2:
(a) The simplest configuration corresponds to a single bucket containing all
types of tasks, which is analogous to previous-generation GPU command
queues and simple persistent threads approaches, as well as Softshell (Stein-
berger, Kainz et al., 2012). (b) A group of multiple child buckets all taking the
same tasks corresponds to current-generation GPU work queues. (c) A list
where buckets accept one specific task type (i.e., they perform the same in-
structions) maps to the behavior in Whippletree (Steinberger, Kenzel, Boechat
et al., 2014). (d) By using a two-level hierarchy, the first level can implement a
discrete set of priorities, while the second level can collect tasks of different
types. This way, it is possible to combine priority scheduling and work aggreg-
ation for load balancing. (e) In a more complex setup, tasks for two different
processes can be stored (P0 and P1). While P0 enqueues all tasks indiscrimin-
ately, P1 supports organizing tasks with different priorities. Note that in this
example, certain priorities are only assumed by particular tasks (distinguished
by color). At the lowest level, the queues can distinguish between small tasks
(S) that need to be aggregated to fully utilize a multiprocessor and larger
tasks that are stored in a combined queue (C) with other task types.

55

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

(a) (b) (c)

HI MID LO

(d)

HI MID LO

P0
P1

C C CS S S

(e)

Figure 5.2.: Hierarchical bucket queues can (a, b) capture simple setups similar to the work-
dispatching mechanisms found on the GPU, (c) collect tasks according to their
type, (d) combine prioritization with work aggregation, and (e) implement sophist-
icated structures. Note that colored terminal buckets can be specifically optimized
for the subset of data types they are supposed to hold.

56

5.2. Hierarchical Buckets for GPU Scheduling

5.2.2. Customizable Priorities

While the fundamental concept of a queuing hierarchy enables a variety of
applications in itself, we need to define an efficient and easy-to-use scheme
for establishing priority-based load balancing on top of it. Taking into account
R2-R4, we propose a configurable, lightweight priority scheduling model
based on the observation that a persistent threads megakernel fed from a
queueing hierarchy enables the following three forms of scheduling:

1. When a new task is generated, the bucket hierarchy is traversed and the
appropriate queue to store this task can be selected.

2. When a multiprocessor finishes a task (or a set of tasks), the bucket from
which to retrieve the next task can be selected.

3. During execution, a small number of maintainer threads can update the
queues by reorganizing elements in the background.

Given these possibilities, a variety of sophisticated dynamic load balancing
strategies can be realized. Being able to choose one of several queues during
enqueue allows for (discrete) sorting according to arbitrary criteria. Being
able to choose which queue to dequeue from allows the system to make
decisions based on the current execution state, which might have changed
since the tasks were enqueued. For example, tasks could be sorted into queues
according to which process they belong to when they are generated. As a
working block dequeues the next task, it could choose according to how
much processing power each process has consumed in the meanwhile to, e.g.,
achieve fair scheduling. In addition to these fundamental control mechanisms,
dedicated maintainer threads can be deployed to continuously adjust the
order of tasks within queues according to a constantly changing metric.

With our approach, we imagine all three forms of scheduling to be freely
programmable, similar to the way shaders bring programmability to a graphics
pipeline: before execution, task types are defined, the bucket queue hierarchy
is set up and user-defined callback functions that implement each type of
scheduling decision are registered. These functions are called whenever (1) a
new task is generated, (2) a multiprocessor requests new data, or (3) during
queue maintenance. Our current implementation employs a persistent threads
megakernel approach similar to Whippletree (Steinberger, Kenzel, Boechat et
al., 2014), using their basic framework with our own scheduling mechanisms
added in. We also use their basic queue implementation, the broker work
distributor, in the leaf nodes of the bucket hierarchy. Note that any other
persistent threads approach and queue could be used here instead.

57

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

5.2.3. Enqueue

Whenever a new task is generated, we want to enqueue it efficiently, while
still allowing for control by the application. Given that the bucket hierarchy
is known at compile-time, enqueue can be completed with a single traversal
of the hierarchy. Callbacks registered with every bucket in the hierarchy are
called during traversal of the tree to decide which child bucket to choose next.
When a leaf node is reached, we enqueue the task into its associated queue.

Consider the example in Figure 5.2e: The callback for the first bucket returns
which process the task belongs to. In case the task comes from P1, the next
callback determines if it is of high, medium, or low priority, before deciding
if the task is large enough to be stored in a combined queue or if it should be
merged with others of the same kind. Note that we could also only provide a
single callback determining the final queue. However, enforcing a hierarchy
makes it easy to reuse and extend an existing scheduling policy. For example,
if another process with a different set of queues is added, it will be represented
by a new branch under the first bucket, and no changes to the remaining parts
of the hierarchy are needed.

As long as the underlying queue implementation supports concurrent enqueue
operations, our priority scheme fulfills R3. In case that there is no space
available in a found terminal queue, there are different possibilities to recover.
We can walk back up the hierarchy while executing the callbacks with a
reduced set of choices, return that the enqueue failed due to lack of free
storage, or keep retrying the enqueue operation until a slot is available. Since
the first option is difficult to implement for the user and the third option bears
the risk of deadlocking, we opt for the second option and consider the case of
a failed enqueue an exception that the application has to handle.

Tasks can also be generated from the CPU, e.g., via a traditional kernel
launch, or an initial set of tasks that set in motion a more complex dynamic
algorithm. In this case, we can either traverse the bucket hierarchy on the
CPU and transfer the tasks to the appropriate queues on the GPU, or launch
a kernel where each thread is responsible for generating and enqueuing
one or more tasks. While the first option can generate tasks even while the
persistent megakernel is running (L. Chen et al., 2010), the second option
enables handling of multiple tasks in parallel. As the first option usually
involves a performance overhead and the Whippletree programming model
only supports the second, we also limit our implementation to that case.

58

5.2. Hierarchical Buckets for GPU Scheduling

To optimize the traversal process, we skip the evaluation of any callbacks
if there is only a single viable choice, e.g., a multi-bucket setup where each
bucket is constrained to a specific task type (compare Figure 5.2c). Even if
callbacks are evaluated, their execution is usually very efficient, since the
task’s payload will normally have already been moved into local memory
and no additional transactions are required. If the underlying system were to
be implemented by a hardware scheduler, it would still make sense for the
callbacks to be evaluated on the compute cores of the GPU. As task generation
(or kernel launches via dynamic parallelism) happens during kernel execution,
the thread generating the task can also immediately perform the traversal.

5.2.4. Dequeue

Similar to enqueue, we expect callbacks for dequeue to be registered with
every bucket. When a multiprocessor finishes its previous work and requires
new tasks to be dequeued, a possible solution would be to traverse the
hierarchy top-down. However, empty terminal queues are expected to be a
common case with this strategy, especially with a large number of buckets,
prolonging the search for available tasks. Furthermore, due to the SIMD
nature of execution on the GPU, there is always at least a full warp of threads
available when fetching new tasks. Hence, we can make use of these otherwise
idle threads to implement a parallel bottom-up traversal for dequeue: every
thread starts at a different leaf and walks up the hierarchy. At each bucket, the
information coming from each of its children is combined by the respective
callback until the final load balancing decision is computed at the root. This
whole process basically corresponds to a parallel reduction, enabling us to
find the most relevant non-empty queue. Once the queue to dequeue from
has been chosen, we compute the number of tasks to be fetched such that
the currently available threads on the multiprocessor all receive sufficient
work. Next, we try to dequeue the respective number of tasks from the queue.
However, other worker blocks may have consumed all tasks from that queue
during the time spent in traversal. In this case, we restart the dequeue process
and mark the now empty queue. We found this trial-and-error approach to be
much more efficient than locking queues during traversal (R2).

The bottom-up approach is not only more efficient when dealing with a large
number of queues, but turns out to be a good approach for implementing
many more complex load balancing strategies in general. Consider two single-
threaded task types, each having its own bucket—one high priority, the other

59

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

1:

2:

3:

HI MID LO

0 0 0 0 3 4 7 6 1

1: count()

2: max()

3: first_non_empty()

0 4 7
HI MID LO

4

Figure 5.3.: Dequeue example: (1) the callback for the leaf buckets returns the number of
elements in the queue; (2) the callback for each prioritized bucket on the middle
layer selects the child queue with the highest element count; (3) the root bucket
selects the child with the highest priority reporting a non-empty queue. In this
example, dequeue would choose the green bucket with MID priority.

low. Assume that there is one task in the high priority queue and several in
the low priority queue. A sophisticated scheduler might want to choose to
execute multiple low priority tasks instead of a single high priority task, as it
can make better use of the available processors. If we used a naı̈ve top-down
traversal, it would be difficult to implement such a behavior across multiple
hierarchy levels, as this would require descending into every leaf and keeping
track of all the results computed along the way. With the bottom-up approach,
however, such behavior can be achieved in a very simple and natural way. The
full process in an exemplary setup is illustrated in Figure 5.3.

If this bottom-up scheme were to be implemented in hardware, we would also
consider performing the traversal on the compute units of the GPU, since that
would make the full instruction set available to the callbacks. Considering
that some warps usually finish before others, there is potential to hide the
added latency from the evaluation of the callbacks, by having the first warp
to complete the previous task immediately start evaluating the dequeue
callbacks. This is likely to lead to new tasks already being available as soon as
the remaining warps complete.

60

5.2. Hierarchical Buckets for GPU Scheduling

5.2.5. Maintain

While a large number of important load balancing strategies can be imple-
mented by enqueuing and dequeuing logic alone, there are cases that require
changing the order of elements already in queues, i.e., sorting the queues.
While fully sorting the queues is not a viable option (cf. R4), Steinberger,
Kainz et al. (2012) showed that progressive sorting can be used to gradually
rearrange queue contents in a non-blocking fashion. We adopt this approach,
allowing each queue to be flagged for automatic maintenance by registering a
callback for it. Given an item that is currently stored in the queue, the callback
must return a numerical priority value that can be used for sorting.

If any queue is marked for maintenance, we dedicate a configurable number of
GPU threads to continuous sorting. Instead of sorting the entire queue at once,
only tasks within a limited sorting window are considered at each point. A
sorting pass progressively advances the sorting window from the back of the
queue to the front, as proposed in the original approach (Steinberger, Kainz
et al., 2012) and outlined in Figure 5.4. Once a sorting pass is finished, sorting
is restarted at the back of the queue. To avoid stalling dequeue operations,
we uphold a safety margin to the very front of the queue. Multiple queues
are handled by simply cycling through them. Some queues, however, might
require more attention than others. Therefore, we record the actual number of
exchange operations carried out during one sorting pass and the number of
new elements received since last restarting the sort. Using these values, we
prioritize the sorting of those queues which we expect to contain the highest
number of unsorted elements.

In practice, we reserve a single GPU worker block to be used as a dedicated
maintainer. For an integration with a hardware scheduler, a programmable
unit would be required if the callback needs to be reevaluated during each
sort, i.e., if priorities of queued tasks are allowed to change. In this case, we
would suggest assigning a small block of threads to maintenance, similar
to the current software approach. However, if priorities are static, dedicated
maintainer threads can be avoided. Instead, the priority of each task can be
computed when it is enqueued and stored alongside the task. The priorit-
ies can then be read from memory and sorting can be implemented by a
hardwired unit instead.

61

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

(f)

(b)

(c)

(d)

(e)

(a)

Figure 5.4.: Progressive sorting of a queue using a sorting window (orange) with safety
margin to the front, while tasks are concurrently removed from the queue; time
steps (a)-(f): (a) for all tasks in the sorting window, the callback delivers priorities
(dark blue to white); (b) the returned values are sorted locally; (c) tasks are
exchanged according to the local sorting; (d) the sorting window is advanced to
the front; (e) the next segment is sorted; (f) the safety margin reaches the front of
the queue, sorting cannot continue without stalling the execution and must be
canceled and restarted at the back.

5.2.6. Application Programming Interface

Since we use Whippletree’s execution model, our API builds upon its template-
based CUDA/C++ interface. In Whippletree, a task can be defined as follows
(slightly simplified):

1 s t r u c t Task {
2 s t a t i c const i n t NumThreads ;
3 typedef i n t Payload ;
4 d e v i c e s t a t i c
5 void execute (i n t t id , Payload& data) ;
6 } ;

When chosen for execution, the task’s execute method is called by the reques-
ted number of threads, all receiving the dequeued payload as input.

Following the spirit of a C++ interface, the bucket hierarchy and callback
functions are also set up using templates in our API. Both buckets (Bucket)
and queues (Queue) expect a template class that specifies the callback functions.

62

5.2. Hierarchical Buckets for GPU Scheduling

1 template<c l a s s LeafCB , c l a s s . . . Tasks>
2 s t r u c t Queue ;
3

4 template<c l a s s BucketCB , c l a s s . . Children>
5 s t r u c t Bucket ;

For leaf nodes, two callbacks can be provided:

1 s t r u c t LeafCal lback {
2 template<c l a s s Queue>
3 d e v i c e s t a t i c
4 CustomType checkLeaf (const Queue& q) ;
5

6 template<c l a s s Task>
7 d e v i c e s t a t i c
8 Comparable maintain (Task : : Payload& data) ;
9 } ;

The checkLeaf callback is called during dequeue and provides the information
that is propagated up the hierarchy. The maintain callback is optional. Only
if it is present will the maintainer attempt to sort the queue. Note that the
return value of this method can be chosen freely, the only requirement is that
a suitable comparison operator exists.

The bucket’s traverse callback for enqueuing and its propagate callback for
dequeuing have the following signature:

1 s t r u c t BucketCallback {
2 template<c l a s s Task>
3 i n t t r a v e r s e (Task : : Payload& data) ;
4

5 i n t propagate (CustomType∗ i n f o s) ;
6 } ;

Note that traverse itself is a template and can be specialized for different
tasks. Also note that CustomType can be of any type as long as it is compatible
with the return type of checkLeaf.

Once a user has set up the callback functions, the queuing hierarchy can be
established. The following example shows how Figure 5.2d can be defined
with just a few lines of code, using the callback definitions LeafHasData,
RoundRobin, and Discrete, which we discuss in the upcoming section:

63

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

1 typedef Queue<LeafHasData , Task1> Queue1 ;
2 typedef Queue<LeafHasData , Task2> Queue2 ;
3 typedef Queue<LeafHasData , Task3> Queue3 ;
4 typedef Bucket<RoundRobin<3 , AlwaysFirst > ,
5 Queue1 , Queue2 , Queue3> B3 ;
6 Bucket<Discre te <3>, B3 , B3 , B3> Root ;

Note that each terminal queue only stores the payload for a single task type.
B3 defines a bucket that has three queues as children. By adding B3 three
times to the root node, three instances of B3 are created as immediate child
buckets of the root.

Given the bucket hierarchy root node, our implementation generates the load
balancing logic from the user-provided callbacks and combines it with the
task execute functions into a megakernel. If at least one maintainer callback
is provided, additional routines are added to the megakernel for turning the
block with id ‘0’ into the maintainer upon kernel launch.

5.3. Scheduling Policies

We now show how the discussed queuing framework can be brought to use
in practice. First, we demonstrate how simple scheduling mechanisms, e.g.,
discretized prioritization and round-robin can be set up with bucket queues.
After that, we focus on more advanced examples such as fair scheduling,
earliest-deadline-first, and user-defined policies. We also compare our results
to previous work. For our evaluation, we used an Intel i7-4771 with 16GB
RAM running Windows 10 and an Nvidia Geforce GTX 980Ti.

5.3.1. Discretized Priorities

A simple way to build priority scheduling is using a fixed number of buckets,
each for a different priority. Whenever a new task is created, its priority value
is computed and it is inserted into the appropriate bucket. During dequeuing,
available buckets are probed in descending order of priority. Assuming pri-
orities, e.g., in the range [0, 1), we discretize them linearly according to the
total number of available buckets. See Figure 5.5 for an example using four
buckets, each covering one quarter of the total priority range.

64

5.3. Scheduling Policies

priority: 1 0

Figure 5.5.: Discretized priorities can be configured with very simple callback functions.
During enqueue, the appropriate bucket is chosen, while dequeue takes tasks
from the bucket with the highest priority that is not empty.

The corresponding callbacks are straightforward to set up:

1 template<i n t NumChildren>
2 s t r u c t D i s c r e t e {
3 template<c l a s s Task>
4 d e v i c e s t a t i c
5 i n t t r a v e r s e (Task : : Payload& payLoad){
6 re turn payLoad . p r i o r i t y ∗ NumChildren ;
7 }
8 d e v i c e s t a t i c
9 i n t propagate (bool∗ i n f o s) {
10 f o r (i n t i = NumChildren−1; i >= 0 ; - -i)
11 i f (i n f o s [i])
12 re turn i ;
13 re turn 0 ;
14 }
15 }

1 s t r u c t LeafHasData {
2 template<c l a s s Queue>
3 d e v i c e s t a t i c
4 bool checkLeaf (const Queue& q){
5 re turn q . count () > 0 ;
6 }
7 } ;

65

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

traverse discretizes the priority and returns the id of the bucket with appro-
priate priority. checkLeaf determines if data is available in the queue, and
propagate runs through the buckets in descending order of priority, choosing
the first non-empty bucket.

5.3.2. Round-Robin

Another common strategy that is straightforward to implement is per-multi-
processor round-robin. Consider a setup with one root bucket and an arbitrary
number of child buckets that should be accessed in a round-robin fashion.
Every multiprocessor stores the id of the last child bucket chosen for dequeue
in shared memory. During each invocation of the propagate method, the id is
incremented to identify the next bucket for dequeuing.

1 template<i n t NumChildren , c l a s s Traverser>
2 s t r u c t RoundRobin : publ ic Traverser {
3 d e v i c e s t a t i c
4 i n t& getLas t () {
5 s h a r e d i n t l a s t ;
6 re turn l a s t ;
7 }
8 d e v i c e s t a t i c
9 i n t propagate (bool∗ i n f o s){
10 i n t &next = getLas t () ;
11 next = (next + 1) % NumChildren ;
12 f o r (i n t i = 0 ; i < NumChildren ; ++ i){
13 i f (i n f o s [next])
14 re turn next ;
15 next = (next + 1) % NumChildren ;
16 }
17 re turn 0 ;
18 }
19 } ;

Note that the Round-Robin class requires another class as template argument
that is supposed to provide the traverse method. Deriving the scheduling
policy from a custom template facilitates the reuse of existing Round-Robin
mechanisms for dequeuing and mixing them with any kind of enqueue policy.
The initial queue is chosen randomly through additional operations that have
been omitted here for the sake of clarity. For detailed control, we support
setting an optional initializer method that is called right after kernel launch.

66

5.3. Scheduling Policies

5.3.3. Fair Scheduling

In a system that supports the execution of multiple processes, one common
goal is to provide a fair load balancing setup to assign an equal amount of
compute time to each process. In this context, a process can either be a single
task that is respawned multiple times, or an entire group of different tasks
that are capable of instancing each other. We consider two solutions for fair
scheduling with our hierarchical bucket queue framework, by using either
multiple, separate buckets or a single, sorted bucket.

Separate Buckets The first way to implement fair scheduling in our system
is by using separate child buckets that are pooled by a fair-scheduling root
bucket. To implement this concept, we associate a counter with each child
bucket and record the total time that processes from this bucket have con-
sumed so far. During dequeue, the fair scheduling bucket selects the child
whose counter is currently lowest. Keeping track of the total time consumed
allows us to either assign equal compute times to all buckets or enforce
predefined target quotas for individual processes.

Sorted Bucket Alternatively, quota-driven fair scheduling can also be set up
by utilizing the queue maintainer. Mixing all tasks in the same queue, we can
simply use the deviation in runtime from their desired target quota as sorting
criterion. However, as sorting the queues takes time and the priorities are
constantly changing, prioritization might significantly lag behind execution.

To measure the time spent on each process, we queried the built-in cycle
counter present on each multiprocessor before and after executing a task.
Note that this measure is not guaranteed to capture the exact time a task
was actually executing instructions, as the hardware warp scheduler switches
between all warps present on a multiprocessor based on their ready state.
Thus, all tasks being executed on the same multiprocessor can influence the
measured execution time for each other. If a more precise time measurement
is needed, the megakernel can be configured to use a single, large thread
block per multiprocessor. We can then make uniform scheduling decisions
among the entire multiprocessor, and all tasks executed concurrently belong
to the same bucket. In this case, the consumed clock cycles capture the time an
entire multiprocessor was assigned to a certain process and the measurements
can be considered fair.

67

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

Evaluation To evaluate both fair scheduling implementations and compare
our approach with previous work, we set up five processes and launched
1 000 initial tasks for each. Each task was primed to execute a random number
of fused-multiply-add (FMA) instructions and memory (MEM) operations to
simulate diverse workload characteristics. In order to evaluate how behavior
is influenced by the overall rate at which load balancing decisions need to be
made, we set up two scenarios to generate different per-task loads: 500 FMA
+ 5 MEM and 8 000 FMA + 80 MEM on average. After executing, each task
immediately enqueued a copy of itself to ensure that the system remained
fully occupied. We recorded 10 000 scheduling decisions, capturing the time
spent on each process. To measure the overhead of scheduling, we executed
the same tasks with conventional CUDA kernel launches and recorded the
difference to the average task throughput. We compared bucket queuing
with Whippletree without scheduling and Softshell with priority sorting as
references. The results are shown in Figure 5.6.

Results obtained from Whippletree indicate that handling light-weight tasks
with 500 FMA and only a few memory transactions provide a challenging
scenario for dynamic load balancing approaches. The overhead of storing
and fetching task payloads in a queue led to a slowdown of about 20% in
comparison with CUDA. However, in the 8 000+80 scenario, the overhead
became negligible. Whippletree follows a simple FIFO approach and thus did
not consider the desired quotas (dotted lines), assigning processing resources
to one task after the other. Using the maintainer (Sorted Bucket) shows that
progressive sorting caused hardly any overhead compared to Whippletree
(less than 2%), which is not surprising, considering that only one out of 88

employed thread blocks was used for sorting on the Geforce GTX 980Ti. In
the 500+5 scenario, sorting did not meet the quotas within 10 milliseconds,
since tasks were consumed too quickly from the front of the queue to enable
thorough sorting in the back. In the 8 000+80 scenario however, load balancing
converged after approximately 100 milliseconds with noticeable oscillations
around the target quotas. Softshell uses dynamic memory allocation for the
payload and a hash map to combine payloads. Thus, its overhead is im-
mense in comparison to a simple CUDA kernel (only 20% and 25% achieved
throughput). However, as expected, its scheduling strategy (although slower)
behaves similarly to the sorting implemented by the maintainer. Using separ-
ate buckets clearly achieved the best load balancing behavior in the examined
scenarios. In comparison with Whippletree’s FIFO execution, a slight increase
in overhead occurs in both of our fair scheduling implementations, which we
ascribe to the additional effort of checking multiple queues for dequeuing.

68

5.3. Scheduling Policies

(a) Whippletree 500+5 (b) Whippletree 8 000+80

(c) Sorted Bucket 500+5 (d) Sorted Bucket 8 000+80

(e) Softshell 500+5 (f) Softshell 8 000+80

(g) Separate Buckets 500+5 (h) Separate Buckets 8 000+80

Figure 5.6.: Quota-driven scheduling with target time quotas (dashed lines) of 7%, 13%, 20%,
27% and 33%. Efficacy and overhead of our framework are compared against
Softshell and Whippletree for reference. While separate buckets can quickly adjust
the scheduling to match the desired quota, sorting takes significantly longer and
oscillates around the target values.

69

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

5.3.4. Earliest-Deadline-First

Earliest-deadline-first is a common strategy in hard real-time scenarios, where
all processing power is dedicated to the job with the closest deadline. Using
our hierarchical bucket queuing framework, we find multiple ways to imple-
ment earliest-deadline-first scheduling. As our first approach, we can set up a
maintainer that sorts tasks according to the deadline of their associated job
(Sorted). Second, we simply use separate buckets for each job and always
choose that with the earliest deadline (PerJob). Third, given an application
that takes a known, finite amount of time to run, we can discretize the en-
tire runtime into buckets (Discretized). Hence, each bucket corresponds to a
specific time frame of the program’s execution and tasks can be enqueued
accordingly, while dequeue will always draw from the bucket with the closest
upcoming deadlines. All tasks within a bucket must be executed before its
associated time frame passes to ensure that no task deadline is missed.

In many applications, tasks that failed to meet their deadline can generally be
skipped. Thus, as an optimization of our third approach, we can still work
in discretized time but instead keep a ring buffer of buckets that only holds
tasks up to a certain interval into the future (WrapAroundBuckets). As time
progresses, the oldest buckets can then be reused for upcoming deadlines.

Evaluation To test earliest-deadline-first scheduling, we launched one con-
troller block separate from the laboring megakernel to periodically create
tasks for six task types at recurring intervals between 1ms and 8ms. For each
type, one to four tasks were created at every turn, each running between 0.1ms
and 4ms to execute a mixture of FMA and MEM instructions. Each scheduling
strategy was evaluated by gradually increasing the number of tasks by up to a
factor of 128 of the initial load and measuring how many tasks still completed
within their deadline. For WrapAroundBuckets, we used a future window of
10ms and 256 buckets. Again, we compare overall behavior and performance
for each of our hierarchical bucket queuing solutions to Whippletree and
Softshell. The results for these tests are shown in Figure 5.7.

Except for Softshell, all approaches managed to respect deadlines for low
workloads. Unfortunately, Softshell’s overhead was simply too high to cope
with a load multiplier above 1. Tasks were issued periodically one interval’s
time before the deadline. Thus, their occurrence, to a certain extent, followed
the deadline and simple FIFO scheduling (employed in Whippletree) with its
lower overhead could keep up with the other approaches.

70

5.3. Scheduling Policies

Figure 5.7.: Earliest-deadline-first results for different scheduling implementations with de-
tailed closeups on the bottom. (left) The fraction of tasks executed on time by each
method as the workload increases. (right) The average lateness shows by how
much time on average tasks miss their deadline. The minimum and maximum
lateness for each method are overlaid as well.

However, at higher loads (starting at a load multiplier of about 30), differences
emerged. Whippletree and Discretized did not (or could not) identify the job
with the closest deadline and were the first approaches to miss deadlines.
Soon after, PerJob and Sorted also dropped in performance. PerJob’s drop is
comparatively steep, which can be explained by the fact that PerJob still tries
to schedule tasks that already missed their deadline. Also, PerJob showed
a relatively high overhead, which we ascribe to the necessity of finding the
queue with the earliest deadline to dequeue items. However, the average
lateness increased similarly for Discretized, Whippletree, PerJob and Sorted.
WrapAroundBuckets performed better than all other approaches, with com-
paratively high ratio of tasks on time and exhibiting a smaller increase in
average lateness with increasing load. It is the only approach that clearly
outperformed the simple FIFO scheduling implemented by Whippletree.

71

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

5.3.5. Application Defined Priorities

Finally, we evaluated the capabilities of bucket queues in applications that
involve tasks with arbitrary priorities. A possible example for such a scenario
can be given by any adaptive algorithm where the importance of a particular
operation is difficult or impossible to predict in advance, e.g., REYES-style
subdivision or adaptive image sampling. We compare the performance of
queue sorting to discretized-priority buckets. In our test setup, we launched
W initial tasks and assigned uniformly distributed, random priorities to them.
Every task executed a variable workload of FMA and MEM operations and
spawned another task with a random priority. This way, an average of W
tasks were contained within the queuing structure at all times during the
evaluation. We recorded the order in which tasks were executed, as well as
their associated priority. The test was stopped as soon as N tasks had finished.
We computed the achieved scheduling accuracy as

S =
1

N(W − 1)
·

N

∑
i=0

W

∑
j=0

si,j,

where i and j may represent any two tasks that were concurrently queued
for execution. si,j = 1 for tasks i and j, iff the task with the higher priority
was chosen first; otherwise, si,j = 0. Note that the restriction to simultan-
eously enqueued tasks is necessary for a meaningful assessment, since a
high-priority task n that was only generated after a low-priority task m fin-
ished could not possibly be processed before m. For random priorities, no
scheduling at all leads to an expected accuracy of approximately 50%. If all
elements are executed in the correct order, scheduling accuracy equals 100%.
As multiprocessors execute in parallel, 100% accuracy may never be reached
in practice.

Evaluation The measured scheduling accuracy is shown in Figure 5.8. As
reference for comparison, we again include Softshell and Whippletree. Soft-
shell and Bucket Sorted exhibited similar behavior. Queue sorting turned
out to be ineffective under low and high loads. With only a few elements
in the queue, sorting was not able to start as there was no sufficient safety
margin and thus the achieved accuracy was about 50%. On the other hand,
with a high number of elements in the queue, progressive sorting was not
fast enough to move high priority elements to the front. Consequently, sorting
accuracy quickly deteriorated with rising number of elements in flight W.

72

5.3. Scheduling Policies

(a) 64 threads per block (b) 256 threads per block

(c) 512 threads per block (d) 1024 threads per block

Figure 5.8.: Scheduling accuracy with varying threads per block and task complexity:
(Softshell|Bucket Sorted) [FMA]+[MEM]. Bucket queues used 16 or 128 buckets.

The comparably high scores recorded for Softshell are misleading; due to
its immense scheduling overhead, a lot more time could be spent on sorting
relative to time spent on task execution and thus higher accuracies were
achieved for the same W. The performance of both sorting techniques is
also dependent on the task duration, since long-running tasks (e.g., 4096+16

or 16394+64) are dequeued less frequently, and, thus, remain longer inside
the queue and undergo additional sorting passes. In contrast, the accuracy
of Buckets was not affected significantly by task runtime, nor by W. We
observed a slight drop in performance for very large W. Since discretized
prioritization leads to fast consumption of high-priority tasks, a larger number
of tasks accumulated in low-priority queues and could not be accurately
distinguished. Overall, the error of bucket queues approximately equaled
the expected discretization error. With 16 buckets, we achieved an accuracy

73

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

Figure 5.9.: Softshell shows up to 10× the execution time of the other approaches. Bucket
Sorted and Buckets 16 show only a small execution time overhead. Using a high
number of buckets without our upward propagation optimization significantly
increases execution time (up to 2×).

of up to 94%; with 128 buckets, this figure rose to 99%. Bucket Sorted only
achieved such high accuracies with more than 512 threads being used for
sorting, and about 10 000 elements in the queue. Since Whippletree does not
consider per-item priorities in its scheduling at all, it yielded an expected
default accuracy of 50%. Softshell failed to run to completion for 512 and 1024

threads per block.

The impact on execution time is shown in Figure 5.9. The log-scale plot
demonstrates that Softshell took roughly ten times longer than all other
techniques to finish any of the test cases. Bucket Sorted again only added a
small overhead to the execution time compared to Whippletree. As Buckets
did not run a sorting algorithm, it conserved more bandwidth and processing
power for task execution. However, with an increasing number of buckets,
more time was spent on traversing the bucket hierarchy. Processing the
hierarchy top-down with only a single thread (Buckets noopt) instead of
bottom-up (see Section 5.2.4) more than doubled the execution time (256+1

and 4096+16). Using our bottom-up approach (Buckets), the overhead was
significantly reduced, underlining the usefulness of this design choice in
the first place. The 16 bucket version managed execution times on par with
Whippletree while achieving a scheduling accuracy of up to 94%.

74

5.4. Implementing Adaptive Rendering

5.4. Implementing Adaptive Rendering

In order to demonstrate how hierarchical bucket queuing is applicable to
rendering, we present two use case scenarios: micropolygon rendering and
path tracing. For both applications, we assume soft real-time constraints.

5.4.1. Foveated Micropolygon Rendering

Virtual reality applications demand low-latency, high-resolution image syn-
thesis, especially when using an HMD output device. Frame latency is a
particularly sensitive issue in such applications and must be kept below a
certain threshold. With fast eye movements, it is usually difficult to predict
rendering times, as the focus might quickly change from object to object, lead-
ing to the violation of latency constraints. One potential way to address this
problem would be to use a rendering method that allows gradual refinement
of the image until the deadline for maximum tolerable latency expires, thus
maximizing the image quality within a given timeframe.

One rendering technique that produces such gradual refinement is micro-
polygon rendering, as used in the REYES pipeline (Cook, Carpenter and
Edwin Catmull, 1987). While REYES-style micropolygon rendering has been
implemented on the GPU before (Tzeng, Patney and Owens, 2010; Steinberger,
Kenzel, Boechat et al., 2014), using our prioritized load balancing, we can
now take advantage of foveated rendering (Cater, Chalmers and Ledda, 2002)
to significantly improve image quality by prioritizing refinement around the
user’s fixation point. Using dynamic priorities, we are able to set up foveated
rendering in a way that both satisfies latency deadlines and generates high
quality in focus areas.

The central task of micropolygon rendering is posed by the recursive bound-
and-split loop to subdivide patches until, eventually, they are small enough
to be shaded as a grid of micropolygons. Ideally, we want a smooth transition
where fine and coarse patches meet and reasonable visual quality throughout
the entire image to avoid popping artifacts during motion. For each patch,
we evaluate its split priority based on its projected patch size and distance
to the current fixation point, thus prioritizing large patches that are close to
the fixation point. Dynamic load balancing is essential in this example, since
we cannot predict the projected extents of all patches resulting from recursive

75

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

(a) Foveated rendering of Tea scene

3

HI LO...

21

D
ic

e
+

S
h
a
d
e

In
it
ia

l
B
o
u
n
d

S
p
lit

 V

S
p
lit

 V

...

S
p
lit

 U

S
p
lit

 U

(b) Micropolygon render setup

Figure 5.10.: Foveated micropolygon rendering. (a) The color intensity on the right side
indicates the degree of subdivision applied, which is highest at the fixation point
(yellow ring mark) and gradually falls off with increasing distance. (b) Schematic
visualization of the bucket queue setup to achieve the desired prioritization.

splits in advance. Building on the Whippletree REYES implementation (Stein-
berger, Kenzel, Boechat et al., 2014), we set up a three-level bucket hierarchy,
as shown in Figure 5.10b. The first bucket distinguishes between split tasks
and all other task types. It prioritizes the execution of the initial bound tasks,
shading and dicing over patch splits. This leads to an early creation of all
initial split tasks and drains the pipeline of all intermediate data that is ready
to be rendered. On the second level, split tasks are inserted into discretized
priority buckets. Below each priority bucket, a round-robin scheduler switches
between splits along the u and v direction, which are implemented as separate
tasks. Before we enqueue patches to be split, we check if the procedure is
likely to execute before the target latency is reached. If this is not the case, we
stop the recursion and directly forward the patch to the dicing and rendering
stages. For time measurement we again rely on the per-multiprocessor cycle
counts, which we synchronize in each frame.

We test our approach with two animated scenes: Killeroo and Tea, shown
in Figures 5.10a and 5.11. For rendering, we chose a viewport with a 4K
resolution. Conventional REYES rendering of the Killeroo scene at full image
quality takes between 30ms and 60ms, the Tea scene takes between 15ms and
22ms. With foveated rendering, we can limit the Killeroo scene to a guaranteed
20ms and the Tea scene to 10ms by adaptively generating full image quality
only around the fixation point and lower quality in the remaining image.
Figure 5.11 demonstrates the details of our approach for the Killeroo scene.

76

5.4. Implementing Adaptive Rendering

(a) Splits: patch size / distance (b) Splits: foveated combined

(c) Full quality 58ms (d) Foveated 20ms

(e) Splits: full quality (f) difference enhanced 200×

Figure 5.11.: (a, top) Using the projected patch size as priority, the processing power is
distributed evenly; (a, bottom) using the distance to the focus point as priority
instead leads to very localized refinement. (b) A combination of both creates a
reasonable falloff. (c and e) A full-quality render pass produces high geometric
detail, but requires a considerable amount of time. Using foveated rendering,
only the focus area (red ring mark) is rendered at full quality and image synthesis
is sped up significantly. (f) Visualization of the difference image between full
quality and foveated rendering.

77

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

5.4.2. Adaptive Sampling for Path Tracing

While Monte Carlo path tracing on the GPU is becoming increasingly popular,
generating high-quality images quickly remains a challenging task due to
the notorious noise, which is most prominent in the early stages of image
synthesis. For implementations on the CPU, adaptive, priority-based solutions
have been proposed to reduce noise and enhance image quality with a low
sample budget, e.g., by distributing more samples to image regions with
a high estimated local error (Hachisuka et al., 2008; Overbeck, Donner and
Ramamoorthi, 2009). Since the error estimate and the rate of convergence in an
image region may change with each new sample, adaptive sampling usually
relies heavily on a continually maintained priority queue to always identify
the region with the highest error estimate before casting new samples.

Porting the adaptive sampling approach to the GPU is non-trivial, since
massively parallel execution generally provides little support for efficient and
adequately sorted queues. However, with bucket queue hierarchies, different
prioritization schemes can be incorporated efficiently. As a demonstration, we
implemented a path tracer for static scenes, with support for low-discrepancy
sequence sampling, depth-of-field (DOF) and an arbitrary number of light
sources. Our implementation uses a single task type, which casts four rays
with a random number of maximum bounces for each pixel upon execution.
To avoid write conflicts, each task is assigned to a dedicated 8×8 pixel region
of the output image. Upon completion, each task enqueues a copy of itself,
thus allowing the persistent thread blocks to constantly fetch new work for
execution. This approach has been shown to achieve high occupancy on GPUs
(Aila and Laine, 2009). We force the persistent threads execution to pause
every 50ms to display the current image via OpenGL. Using this one task
in Whippletree establishes our base-line implementation, which, in practice,
performs uniform sampling of the image domain.

In order to enable adaptive sampling through prioritization, we set up a single-
level hierarchy with 128 individual buckets. Furthermore, a current local error
needs to be computed before enqueuing. Given an approximate, predefined
lower and upper bound on the error for image synthesis, task priority is
obtained by interpolating the current local estimate between bounds: high
error equals high priority. Naturally, a rendering algorithm cannot depend on
high-level knowledge of the final image in order to compute the difference
to the ground truth. Instead, we can collect information from cast samples to
compute an error estimate based on per-pixel variance.

78

5.4. Implementing Adaptive Rendering

(a) Chessboard scene with DOF (b) Sample distribution

(c) Mixed-focus region (d) Out-of-focus region

Figure 5.12.: Comparison of uniform and adaptive sampling using the expected gain error es-
timate as priority. (a) Path-traced chessboard scene with DOF and 9 light sources
rendered at resolution 1024× 750. (b) Sample distribution with prioritization
after 4s, brighter means more. (c, d) Comparison of the result of uniform and
adaptive sampling after 4s to ground truth (2048 samples/pixel) in marked
regions. Left: ground truth; Center: uniform; Right: adaptive sampling.

To evaluate our approach, we test two different per-pixel error metrics. First,
we use the expected error reduction constructed around the Monte-Carlo
error estimate E ∝ σ/

√
N:

∆E ≈ σ√
N
− σ√

N + 4
,

where σ is the current variance estimate over all N samples for a pixel
so far. We call this error metric ’expected gain’. Second, we use the error
metric devised by Mitchell (1987) for obtaining anti-aliased images. Per-pixel
estimates are added up to obtain the local error estimate for an 8× 8 region.
Both metrics require at least two samples to compute an initial variance
estimate. Thus, we set the priority of the initial tasks to the maximum, forcing
four samples to be computed for each pixel before relying on prioritization
for further sampling. Figure 5.12 outlines the adaptive behavior when using
the expected gain metric for sampling the scenes. At equal run times, our
prioritized rendering reduces noise in comparison with uniform sampling.

79

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

In Figure 5.13, we show the development of the mean squared error (MSE)
over time for the two prioritization schemes after the initial four samples
have been computed. Two additional scenes (Sponza and Dragons), along
with the sampling distribution generated by our algorithm, are shown in
Figure 5.14. Adaptive sampling quickly reduces the MSE by up to 45% for the
Chessboard scene, 35% for the Sponza scene and 22% for the Dragons scene
when compared with uniform sampling. Note that the MSE is only recorded
once all image regions have been sampled at least once. Any deviations from
uniform sampling before that cannot be attributed to prioritization, since error
estimates cannot be computed for unsampled regions. Expected gain metric
seems to perform slightly better at early frames, but loses its advantage after
the initial noise has been cleared up.

Decreasing Priorities It should be noted for both applications that, as the
rendering procedure progresses, the overall geometry coarseness or the estim-
ated error for image regions is bound to continuously decrease. Consequently,
since the placement in a priority bucket is computed via linear interpolation
between defined minimum and maximum bounds, eventually all tasks will be
repeatedly placed in the lowest priority bucket queue, thereby prohibiting pri-
oritization. While this did not pose an issue in our evaluation due to its short
duration dictated by the soft real-time constraint, it should be considered for
general adaptive systems. One solution would be to use a non-linear function
for computing the queue index to emplace patches or image regions, but
this may not suffice. A more general approach would be to adapt the upper
bound for interpolation, depending on the fill levels of the queues. Since our
implementations always dequeue from the first non-empty bucket with top
priority, we can track how many higher-priority queues were skipped due
to them being empty. Hence, if a given number of buckets at the top of the
priority range is continuously skipped for a substantial amount of time, it
means that they are going unused. In that case, the upper interpolation bound
used for computing the appropriate bucket index could simply be reduced
by a scaling factor, in order to reactivate currently unused priority queues.
Naturally, doing so would require that all tasks in this hierarchy need to be
reclassified once with the new priority function before priority queuing as
usual can resume. For micropolygon rendering, all threads would have to take
patches from the hierarchy until they agree that it is empty, then process them
from a transition queue until they agree that it has been emptied as well. For
adaptive sampling, we can simply use atomic counters, since the number of
queued image regions is determined by the resolution and therefore fixed.

80

5.4. Implementing Adaptive Rendering

0 5 10 15 20 25 30
time(s)

10-5

10-4

10-3

M
S
E

(a) Chessboard MSE

0 5 10 15 20 25 30
time(s)

0.6

0.7

0.8

0.9

1.0

M
S
E
 r

a
ti

o

(b) Chessboard MSE ratio

0 5 10 15 20 25 30
time(s)

10-2

10-1

M
S
E

(c) Sponza MSE

0 5 10 15 20 25 30
time(s)

0.7

0.8

0.9

1.0

M
S
E
 r

a
ti

o

(d) Sponza MSE ratio

(e) Dragons MSE (f) Dragons MSE ratio

Figure 5.13.: Progression of the MSE during path tracing. (a, c, e) With priority scheduling,
the MSE reduces more rapidly. (b, d, f) The ratio of the MSE relative to baseline
uniform sampling shows that the MSE is reduced by up to 45% in early frames.

81

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

(a) Dragons scene

(b) Dragons sample distribution

(c) Sponza scene

(d) Sponza sample distribution

Figure 5.14.: Adaptively sampling two scenes with hierarchical bucket queuing

82

5.5. Remarks on Load Balancing and Rendering

5.5. Remarks on Load Balancing and Rendering

Using hierarchical bucket queues, it is, for the first time, possible to set
up a variety of priority-based load balancing policies directly on the GPU.
Bucket queues can be tailored to the needs of the application, not only for
priority scheduling, but also to combine tasks or integrate multiple processes
into a single scheduler. Bucket queues are easily configured by defining
a small number of callback functions. They enable simple load balancing
schemes, like FIFO or round-robin scheduling, as well as more complex
strategies, like earliest-deadline-first or fair scheduling. According to our
tests, prioritized load balancing using hierarchical bucket queues clearly
outperformed previous sorting-based or coarse-grained approaches, making
it the preferred choice for scheduling on the GPU. We integrated our bucket
queues into the Whippletree framework and were able to show that even in
challenging situations, our approach only adds a small overhead (between 1%
to 5%) compared to the original framework’s baseline. While being directly
applicable to any persistent threads approach, our design also lends itself well
to a potential implementation in hardware.

As a classic example of GPU workload, rendering procedures can also benefit
from priority scheduling, as we have demonstrated for latency-controlled,
foveated micropolygon rendering and priority-driven path tracing. Foveated
rendering is enabled by the ability to direct the available processing power
to a particular focus region. With path tracing, prioritizing the image areas
that are expected to reduce the image error the most can quickly decrease the
difference to the ground truth by up to 45% in comparison to simple uniform
sampling. While priority-based rendering is certainly of interest for future
virtual reality systems, it will require additional work to integrate priorities
deeper into the rendering pipeline.

Although hierarchical bucket queuing provides a general solution to dynamic
load balancing for software rendering, as of now, it can only be applied to
the GPU when seen as a fully programmable, general-purpose co-processor.
However, load balancing is also of great importance when we consider other
aspects of the GPU, specifically its role as a high-performance sort-middle
rasterization pipeline. Doing so naturally restricts the degree to which we can
manipulate GPU behavior, since multiple integral features—such as built-in
load balancing mechanisms—are intentionally concealed out of necessity or
to satisfy confidentiality.

83

5. Hierarchical Bucket Queuing and Adaptive Rendering on the GPU

Nevertheless, since we know the fundamental principles of its architecture, we
can speculate that built-in load balancing mechanisms must exist in order to
achieve high efficiency. Revealing those mechanisms could help us optimize
our input to the pipeline, provide us with insights into guiding hardware
design directives and furthermore inspire concepts for future, elaborate GPU
software rendering solutions.

84

6. Batch-based Load Balancing:
Vertex Reuse and Optimization

Contents

6.1. Optimizing for the Post-Transform Cache 86

6.2. GPU Vertex Reuse Strategies 87

6.2.1. Measuring Vertex Reuse 87

6.2.2. Collecting Detailed Batching Information 89

6.2.3. Identifying Batch Patterns and Boundaries 89

6.2.4. Predicting Batch Breakdown for the GPU 92

6.3. Batch-based Mesh Optimization 96

6.4. Evaluation . 99

6.5. Discussion . 104

The same transformed vertex is on average required six times during ren-
dering of a typical triangle mesh. To avoid redundant vertex transformation,
graphics processors have traditionally employed a post-transform cache, of-
ten simply referred to as the vertex cache. The assumption of this module
in hardware sparked research into the topic of how to optimize geometry
to maximize locality of vertex references for caching. With the increasingly
massive parallelism found in modern GPUs, the idea of the geometry stage
relying on a centralized cache structure is now at odds with the tenet of load
balancing and has recently been challenged (Barczak, 2016; Giesen, 2011).
However, no detailed analysis beyond faint suspicions has been published on
this matter. In this chapter, we put the hypothesis of graphics hardware using
a post-transform cache to the test. We design and conduct experiments that
clearly show that the behavior of vertex processing on a modern GPU is not
consistent with the assumed presence of a traditional post-transform cache.

85

6. Batch-based Load Balancing: Vertex Reuse and Optimization

6.1. Optimizing for the Post-Transform Cache

Hoppe (1999) notably suggested the use of a post-transform cache for graphics
hardware and demonstrated their now widely-known mesh processing al-
gorithm to generate cache-optimized triangle strips from input geometry data.
In order to maximize the cache hit rate, triangles are reordered by greedily
growing strips and introducing cuts whenever the strips become too long to
still effectively exploit the cache for vertex transformation. Hoppe’s algorithm
was included in the D3DX library from DirectX 9 onward and has since
been migrated to the DirectXMesh project, which remains a popular tool for
developing graphics applications. Lin and Yu (2006) later developed another
algorithm, K-Cache, which iteratively selects focus vertices and outputs all
connected faces, before marking the focus vertex as visited. Forsyth (2006)
also presented their own mesh optimization algorithm, which assumes an
exponential falloff for the probability of a cache hit. Another fast, cache-based
mesh optimization algorithm is Tipsify (Sander, Nehab and Barczak, 2007),
which is part of AMD’s Triangle Order Optimization Tool (Tootle).

Despite these efforts, detailed evidence for the actual implementation of a
post-transform cache and the associated benefit from cache-oriented mesh
optimization algorithms on modern GPUs is scarce, driving researchers to
adopt microbenchmarks for exposing actual hardware behavior (Barczak,
2016; Jia et al., 2018). The lack of mention of a post-transform cache in recent
articles (Purcell, 2010; Kubisch, 2015) raises the question to which degree
this widely-accepted concept still aligns with the reality of these devices. As
demonstrated by Kenzel, Kerbl, Tatzgern et al. (2018), a batch-based approach
seems to match the behavior of modern GPUs much more closely, confirming
our intuition that the primary objective on massively parallel architectures
should be efficiently dividing and distributing incoming workload, rather
than minimizing the number of redundant vertex computations. Through
thorough testing and analysis, we are able to reveal in this chapter some of the
details for actual reuse strategies that current GPUs seem to follow. Armed
with the knowledge gathered in these reverse-engineering attempts, we are
able to predict how GPUs will subdivide an input stream into independently
processable batches with great accuracy. We present novel insights on how non-
trivial load balancing in the hardware pipeline is achieved under the constraint
of adequate vertex reuse. We then turn our attention towards the topic of
mesh optimization and outline a general algorithmic framework for reordering
indexed triangle sets for batch-based vertex processing, given that the concrete
batching routine used by the target hardware is fully understood.

86

6.2. GPU Vertex Reuse Strategies

6.2. GPU Vertex Reuse Strategies

To go about answering the question whether a modern GPU uses a traditional
vertex cache or not, we conduct the following experiment: We set up a vertex
buffer holding three vertices and an index buffer containing the sequence
{0, 1, 2, 0, 1, 2, 0, . . .} up to a given maximum length. We then draw increas-
ingly larger portions of this sequence. Using a Direct3D 11 pipeline statistics
query, we record the number of times the vertex shader is invoked when
drawing each portion. To account for effects related to the size of transformed
vertex data, we repeat the experiment for different numbers of output vertex
attributes, ranging from 0 to the maximum 124 supported by Direct3D.

Figure 6.1 shows the behavior of the vertex shader invocation count as the
number of indices drawn increases for a selection of GPUs, which are repres-
entative of the behavior we have observed for different vendors. Assuming
the presence of a common post-transform cache of reasonable size, for this
input stream, we would expect each vertex to be transformed exactly once.
However, on almost all GPUs that we tested, we observe the vertex invocation
count rising continuously as the stream length surpasses certain thresholds.
The only exception we have seen stem from older Intel GPUs, which did, in
fact, exhibit the behavior expected of a post-transform cache. This is consistent
with publicly available documentation for these models (Developer’s Guide for
Intel R© Processor Graphics For 4th Generation Intel R© CoreTM Processors 2013).

To summarize our findings so far: None of the assessed modern GPU models
seem to employ a singular post-transform cache. The number of output vertex
attributes does not seem to affect any GPU’s ability to take advantage of vertex
reuse. Furthermore, we can also rule out the presence of multiple independent
post-transform caches instead of a single shared one, as such an architecture
would lead the vertex invocation count to eventually plateau. However, even
when drawing up to 30 million triangles, the vertex invocation count kept
consistently rising on all tested, modern GPU models. Hence, in order to
identify actual GPU vertex reuse strategies, further assessment is required.

6.2.1. Measuring Vertex Reuse

To quantify vertex processing efficiency, we introduce the average shading
rate (ASR) measure, i.e., the average number of vertex shader invocations per
triangle drawn. An analogous measure that has been commonly used in the

87

6. Batch-based Load Balancing: Vertex Reuse and Optimization

3
387

771
1155

1539
1923

2307
2691

indices drawn

0
9

18
27
36
45
54
63
72
81
90

sh
a
d
e
r

in
vo

ca
ti
o
n
s

(a) Nvidia GeForce GTX 1080 Ti

3
387

771
1155

1539
1923

2307
2691

indices drawn

0

3

6

9

12

15

18

21

sh
a
d
e
r

in
vo

ca
ti
o
n
s

(b) AMD Radeon R7 260X

3 387 771
1155

1539
1923

2307
2691

indices drawn

0
3
6
9

12
15
18
21

sh
ad

er
 in

vo
ca

tio
ns

(c) AMD Radeon RX Vega 56

3
387

771
1155

1539
1923

2307
2691

indices drawn

0

9

18

27

36

45

54

63

72

sh
a
d
e
r

in
vo

ca
ti
o
n
s

(d) Intel HD Graphics 520

Figure 6.1.: The number of times the vertex shader is invoked on a selection of GPUs from
different vendors when drawing a recurring {0, 1, 2} index sequence of increasing
length. A post-transform cache of reasonable size would achieve perfect reuse
in this scenario, processing every vertex exactly once and leading to a total of
three shader invocations, independent of the input sequence length. The observed
‘staircasing’ is indicative of a batch-based approach for processing of the input
primitive stream, where vertex reuse is only possible locally within each batch.

past is the average cache miss rate (ACMR). However, in light of our findings,
we would argue that thinking about vertex reuse in terms of caching is not
necessarily beneficial. In order to measure the ASR achieved on a particular
GPU for a given triangle mesh, we can use the same approach as before where
we relied on a Direct3D 11 pipeline statistics query that allows us to measure
the total number of vertex shader invocations. On more recent hardware,
a more fine-granular result can be obtained by using atomic operations to
increment a per-vertex counter from within the vertex shader.

88

6.2. GPU Vertex Reuse Strategies

6.2.2. Collecting Detailed Batching Information

Given the massively parallel nature of a modern GPU, it can be assumed
that the apparent failure to reuse indefinitely repeating vertex data is caused
by subdivision of input into smaller, independent batches to accommodate
its large number of concurrent shading units. To understand the formation
process of batches by GPUs to consolidate the necessity for load balancing and
vertex information reuse, we aim to examine which vertices are processed by
individual thread groups. Since we consider multiple vendors in this chapter,
we use the general term wavefronts, or simply waves instead of warp.

Luckily, experimental support for Shader Model 6.0 (recently added to the Dir-
ect3D 12 API) exposes wave-level operations that allow cross-communication
between threads that share a wavefront. Although not officially supported
for vertex shading, we found that they can, in fact, be used even then, at
least on all GPUs with Direct3D 12 that we tested. With the help of these
cross-communication commands, we are able to write a vertex shader that
outputs the information of exactly which vertex indices are processed in
parallel within the same wave. We start by determining how many threads
are currently running the vertex shader in a given wave. The thread with the
lowest lane id then atomically increments a counter to allocate space in an out-
put buffer and communicates the start index to all other threads in the wave.
Using a parallel prefix sum, we assign a unique index to each active thread.
Finally, each thread writes the vertex index they are currently assigned to
process into the output buffer at the given offset. The first thread additionally
outputs the total number of vertex indices processed by the wave.

6.2.3. Identifying Batch Patterns and Boundaries

We describe here a set of reproducible experiments that we used to confirm
the trends and patterns we observed from the collected batch information.
Their description also serves to outline the logic and constraints for forming
batches on Nvidia and AMD GPUs from recent generations with practical
examples. The results from our initial assessment give us a starting point to
further investigate batching behavior: The locations at which steps for the
vertex invocation count occur actually give us the first indicator, namely the
maximum size of batches in an ideal case (i.e., perfect reuse throughout the
mesh). For the sake of brevity, we will refer to this parameter henceforth as
MAX SIZE. For Nvidia, we can consistently observe steps every 96 indices

89

6. Batch-based Load Balancing: Vertex Reuse and Optimization

(see Figure 6.1a). This makes sense, in so much as we know warps on Nvidia
to run 32 threads in lockstep. Thus, in an ideal scenario, a batch size of
96 indices allows every thread to process a separate triangle, defined by 3

different indices. On the AMD R7 200, we find the MAX SIZE to be 384 (see
Figure 6.1b). It should be mentioned that, on the RX Vega 56 (Figure 6.1c),
this figure seems to vary, relative to the number of indices in the index buffer,
peaking at 384 as well. We have not investigated this behavior further, as
even the smallest of our test cases triggers the maximum batch size of 384

to take effect. We confirm these numbers by drawing from an index buffer
where each assumed batch is filled with a different, repeating triplet of unique
indices. For a MAX SIZE of 6, e.g., the index buffer would be constructed as
{0, 1, 2, 0, 1, 2 | 3, 4, 5, 3, 4, 5 | 6, 7, . . .}. On Intel models HD 520 and HD 630, we
found that vertex reuse seems to be more dynamic, largely depending on the
number of different indices being rendered. For the repeating test sequence of
3 unique indices, full reuse only happens within 66 indices and partial reuse
up to 208 (see Figure 6.1d); however, for other data which we will describe
shortly, we have found a maximum reuse window of up to 1791 indices.

Next, we vary the data within each assumed batch of length MAX SIZE, to
see if other limitations apply. For this, we can fill the index buffer with a
consistently increasing sequence of N indices, where N is divisible by 3 and
N < MAX SIZE, followed by (MAX SIZE − N) indices in triplets {N −
4, N− 3, N− 2}. Simply put, the index buffer contains N

3 unique triangles and
then repeats the second-but-last triangle until we hit MAX SIZE. Assuming
that vertex reuse in a batch works at least over two consecutive triangles,
the average shading rate must, therefore, remain at N·3

MAX SIZE as long as the
batch goes on. On Nvidia, we found that this condition failed at N = 33 and
the ASR jumped to (N+1)·3

MAX SIZE . Again, we found this number to be curiously
close to the Nvidia warp size. Further variations based on this procedure
have indeed confirmed that one batch may reference no more than 32 unique
vertices. Formulating it as a rule to apply to batch formation, we refer to the
figure of maximum allowed unique vertices as MAX UNIQUES. We also
noticed that occurrences of later ASR steps were shifted according to batches
being terminated early due to the MAX UNIQUES constraint. Hence, it
follows that Nvidia GPUs can dynamically choose start and end positions for
portions of the index buffer that qualify as a batch where reuse applies. In
contrast, the identified boundary MAX SIZE always applies on AMD GPUs
without fail. There is no value for MAX UNIQUES that causes irregularities
in development of the ASR. For generality and notational convenience, we can,
therefore, define that MAX UNIQUES = MAX SIZE on AMD. For Intel, we

90

6.2. GPU Vertex Reuse Strategies

observed MAX UNIQUES to equal 128, which has been reported on Haswell
before (Barczak, 2016). For 128 different indices, MAX SIZE = 1791 can
be observed. It seems that Intel’s behavior can be described as MAX SIZE
being proportional to the number of different indices already being found,
introducing batch boundaries depending on how many different indices have
been recorded. A closer analysis of the hardware behavior also indicated that
Intel internally completely sorts all indices and assigns them in alternating
orders to 8-wide SIMD execution units.

Finally, we need to determine if and when the reusability of vertex information
inside a batch can expire. We begin by considering the separating distance
between indices as a potential factor. We start from our default repeating
index buffer {0, 1, 2, 0, 1, 2, 0, . . .} of length MAX SIZE and replace one entry
at location i with a new index X > 2. Another instance of X will be placed
at a distance n from the first, at position i + n. Increasing n towards the limit
MAX SIZE, a step in the ASR will then indicate that this particular vertex
could not be reused over that distance. On Nvidia GPUs, we found that this
is the case for n = 41. We noted a slight difference in the general retention
behavior, depending on the API being used. On OpenGL, the identification of
reusable vertices is always equivalent to a look-back of distance 42 into the
index buffer. With DirectX, this behavior changes to a variable 42±3 look-back,
depending on the local index within a triangle, i.e., the index buffer location
modulo 3. Specifically, reuse is detected between two positions in the index
buffer i, j (i < j) iff they reference the same vertex and their distance is d:

d ≤ 44, if i ≡ 0(mod 3)
d ≤ 40∨ d = 42, if i ≡ 1(mod 3)
d ≤ 42∧ d 6= 40, if i ≡ 2(mod 3)

In terms of data structures, the retention can thus be modeled as a FIFO cache
of length ∼42 that always pushes queried entries, regardless of whether it
already contains them or not. Any index that is not found in the retention
model will count towards the number of unique vertices. On AMD, we could
not identify a simple limiting separation distance within a batch. Instead,
we tested whether the number of unique indices separating two instances of
X would have an effect on the ASR. In fact, we found that reuse inside a
batch on AMD does not work for two indices that are separated by more
than 14 unique indices. Hence, the retention model of AMD for vertex reuse
inside a batch can be expressed by a least-recently-used (LRU) cache of
size 15. In contrast to Nvidia, this ”forgetful” behavior does not influence

91

6. Batch-based Load Balancing: Vertex Reuse and Optimization

how batches are formed, however, it will obviously affect the ASR, since
”forgotten” vertices that reoccur need to be shaded once more. On Intel,
we could not identify a predictable condition for expiration of previously
computed vertices above the already stated relationship between MAX SIZE
and MAX UNIQUES. Interestingly, we could observe certain vertices being
shaded more often than others for no apparent reason, e.g., for the repetitive
sequence {0, 1, 2, 0, 1, 2, . . . }, vertex 2 is shaded three times as often as 0 and 1,
whereas for a sequence {0, 1, 2, 3, 0, 1, 2, 3, . . . } all vertices are shaded equally
and overall fewer shader invocations occur than in the first case. Based on
these observations, it seems impossible to capture Intel’s retention model with
a simple construct. Thus, assuming the best reuse scenario with sufficiently
many different indices being rendered, we approximate Intel with a FIFO
cache of size MAX UNIQUES.

Although we were able to identify these peculiarities in the architectures and
verified them using the batch information produced according to Section
6.2.2, we can still observe unresolved artifacts in the batching behavior. For
Nvidia, we found that the FIFO reuse does not hold if indices cross over
a multiple of 216, i.e., 16-bit boundary. For instance, if two indices Ia and
Ib are placed in a batch where bIa/216c 6= bIb/216c, reuse according to the
look-back retention may not occur. A potential explanation is an internal
optimization for processing 16-bit wide indices, which can be handled more
efficiently. For AMD, we found that the LRU size is also not always 15, but
might sometimes be slightly longer or shorter. However, we were unable to
find a comprehensive model to reproduce these exceptions. Analyzing the
information of concurrently processed indices by wavefronts, we found that
parts of different batches might be forwarded to the same wavefront on AMD,
which ensures near perfect occupancy of the compute units. We assume that
this combination can be modeled as a separate step after creating batches and
identifying reuse within a batch with the sole goal of avoiding idle threads.

6.2.4. Predicting Batch Breakdown for the GPU

Given the information that we obtained by means described in Section 6.2.2
and interpreted in Section 6.2.3, we are able to make a qualified predic-
tion about how a full list of triangle indices is split into separate batches
on the GPU. Our base approach for predicting the batch breakdown is
listed in Algorithm 2. Note that the properties that we identified for in-
dividual architectures can be abstracted by allowing the parameterization

92

6.2. GPU Vertex Reuse Strategies

ALGORITHM 2: Predicting batch breakdown

1 in unsigned int Indices[]
2 out unsigned int invocations← 0

// Initialize

3 unsigned int pos← 0
4 unsigned int size← 0
5 unsigned int uniques← 0
6 MemoryModule Available← ∅

7 for each triangle 4 in the index buffer Indices do

8 added← 0
9 Available′ ← Available

10 for i← 0 to 2 do

11 id← ith index 4(i) of triangle 4

12 if {id} 6⊂ Available′ then
13 added← added + 1

14 else
15 Notify Available′ of id at (pos + i)

16 if (uniques + added) > MAX UNIQUES or (size + i) > MAX SIZE
then

17 Found batch in Indices from (pos− size) to pos
18 Reset Available, initialize its contents to ∅
19 Available′ ← Available
20 size← 0
21 uniques← 0

// Continue with current triangle 4, load its i
indices into Available′

22 for j← 0 to i do
23 if 4(j) 6⊂ Available′ then
24 Store 4(j) in Available′

25 added← added +1

26 else
27 Notify Available′ of 4(j) at (pos + j) .

28 else
29 Store id in Available′

30 Available← Available′

31 pos← pos + 3
32 size← size + 3
33 uniques← uniques + added
34 invocations← invocations + added 93

6. Batch-based Load Balancing: Vertex Reuse and Optimization

of the MemoryModule, as well as the boundary values MAX SIZE and
MAX UNIQUES. The MemoryModule encapsulates the behavior of how
previously shaded data is maintained for quick reuse. MAX SIZE and
MAX UNIQUES define the maximum allowed number of indices in a batch
and of unique vertices used, respectively. The algorithm processes the index
buffer in groups of three, assuming the input to be a triangle mesh. Shaded
and available vertices (uniques) are tracked by the algorithm, as well as the
total number of indices (size) in the current batch. If one of the boundary
conditions is detected (line 16), we terminate the current batch and start a
new one. This includes resetting the memory for available vertex informa-
tion and—if a termination condition is detected mid-triangle—reloading its
already visited indices (lines 22 to 27).

We evaluate the accuracy of our prediction scheme by simulating the batch
breakdown for a number of commonly used 3D scenes (see Section 6.4).
Nvidia’s batching, as discerned above, can be achieved by setting MAX SIZE
to 96 and MAX UNIQUES to 32. Availability of vertex data is tracked by
the MemoryModule. For lack of a more accurate solution, we use a 15-wide
LRU cache on AMD here and precise retention on Nvidia, according to the
description in Section 6.2.3. As AMD shows no limitation of unique vertices for
a batch, we set both MAX SIZE and MAX UNIQUES to the hard boundary
of 384 indices. This effectively takes care of the first stage of AMD’s two-tiered
batching process. Although the second tier of AMD’s approach influences
the assignment and combination of vertices to wavefronts, it does not affect
batching boundaries, nor the number of shader invocations. For the purpose of
predicting or improving vertex reuse, the second stage can thus be ignored.

We keep the ASR returned by each simulation and compute the deviation
from the actual measured ASR. We compare our results to global FIFO/LRU
cache-based simulations of variable size. This is equivalent to the optimization
scenarios used, e.g., by Hoppe (1999) and Lin and Yu (2006), with look-ahead
simulations to minimize the predicted ASR. Assessing the cache simulation
accuracy at various sizes serves two relevant purposes: First, in order to
irrefutably disprove existence of a centralized post-transform vertex cache, we
want to ensure that no reasonably-sized cache can produce the ASR values we
measured. Since we make no assumptions about the size of such a fictitious
structure, we need to check a wide range of different sizes in order to conclus-
ively rule out centralized caching. Second, it serves as an insight into which
cache sizes actually come closest to the observed behavior. This information
may guide researchers and developers to select the best parameters if they
choose to continue using cache-based optimization algorithms.

94

6.2. GPU Vertex Reuse Strategies

0 128 256 384 512
Simulated cache size

10 3

10 2

10 1

100

M
SE

 o
f s

im
ul

at
ed

 a
nd

 a
ct

ua
l A

SR

FIFO Cache
LRU Cache
Batch-based

(a) Cache-based vs ours on Nvidia

0 128 256 384 512
Simulated cache size

10 3

10 2

10 1

100

M
SE

 o
f s

im
ul

at
ed

 a
nd

 a
ct

ua
l A

SR

FIFO Cache
LRU Cache
Batch-based

(b) Cache-based vs ours on AMD (RX Vega 56)

Figure 6.2.: Accuracy of shading rate predictions using different simulation techniques. For
Nvidia, the MSE with our batch-based approach is less than a third, for AMD it
is half of the closest cache-based simulation. On Nvidia, the minimum occurs at a
cache size of 10 for FIFO, on AMD at 15 for LRU. Although based on a single
centralized cache instead of multiple parallel ones, these results seem to reflect
our assumptions for retention on the respective architectures.

The mean squared error (MSE) to the actual measured ASR on the GPU
(averaged over our full test suite) is shown in Figures 6.2a and 6.2b. Evidently,
our batch-based approach is significantly more accurate than cache-based
simulations. At their best configuration (i.e., with a cache size of 10/15), the
MSE of FIFO and LRU variants is still more than 3× that of ours on Nvidia,
and 2× on AMD. In fact, our prediction for batches and ASR on Nvidia
are completely accurate for models that contain fewer than 216 indices. The
remaining reported error stems from our inability to predict batching of scenes
that are bigger than that. As mentioned above, Nvidia appears to employ an
(as of yet unidentified) mechanism that avoids reuse of indices in the same
batch if their integer division by 216 yields different results. We visualize the
adverse effect of this property on the quality of our batch prediction algorithm
in Figure 6.3. On AMD, the slightly higher residual error is due to behavior
not fully captured by our batching function, including the exact size for LRU
retention, as discussed in Section 6.2.3.

95

6. Batch-based Load Balancing: Vertex Reuse and Optimization

(a) Bunny prediction (b) Bunny measured (c) Buddha prediction (d) Buddha measured

Figure 6.3.: Rendering of the predicted and actually reported batches as they are processed
on Nvidia for the bunny and happy buddha models. Random colors are used to
distinguish batch boundaries. For scenes with a vertex count < 216, such as bunny,
we can perfectly predict how batches are formed (a, b). For larger scenes, our
model is not exact, but can still predict ASR and overall batch generation more
accurately than cache-based simulations (c, d).

6.3. Batch-based Mesh Optimization

In order to determine whether knowledge of batch boundaries can be be-
neficial for preprocessing algorithms, we design a simple and concise mesh
reordering algorithm based on the knowledge we gathered from observed
hardware behavior. Focusing on low runtime, our algorithm follows a greedy
strategy that continuously grows batches by choosing an origin and iteratively
adding faces to the batch. Similar to existing approaches, the selection of the
next face to be added to the mesh in each step is governed by a cost or priority
function that identifies the most suitable candidate. The full algorithm and its
integration of the batch prediction function are outlined in Algorithm 3.

Our algorithm considers four parts for the priority of each face: Vertex Reuse R,
Vertex Valence V, Face Distance D and Batch Neighborhood N. Priority p for tri-
angle 4 is computed by weighting the factors with appropriate coefficients:

p(4) = kr · R(4) + kv ·V(4) + kd · D(4) + kn · N(4). (6.1)

• Vertex Reuse captures the number of vertices of a triangle that will result
in a reuse of the vertex shading information when the triangle is added
to the current batch, i.e., how many of its vertices are already in the batch
and will be identified for reuse when this triangle is added. Obviously,
choosing a high priority kr is important to build batches that result in
as few vertex shader invocations as possible. To determine how many
vertices of a triangle actually will be reused, it is essential to know
how and when the hardware introduces batch boundaries and how it
identifies reusable vertex information.

96

6.3. Batch-based Mesh Optimization

• Vertex Valence corresponds to the sum over all vertex valences of the
triangle, whereby whenever a triangle is added to the index buffer, the
valence for all its vertices is reduced by one. One can think of this as
making a copy Mcopy of the input mesh on which the vertex valence
is tracked and whenever a triangle is added to the index buffer, it is
removed from the mesh copy. Using a negative priority kv will prioritize
triangles with low valence, i.e., those which will likely have a low chance
of leading to reuse if they are left over. This approach also guarantees
that the algorithm will start batches from mesh boundaries (and from
boundaries of previous batches) and not randomly grow isolated batches
all over the mesh.
• Face Distance is computed on the dual graph of the mesh and corresponds

to the sum over all distances from all faces currently in the batch to all
surrounding faces, i.e., triangles that can be reached from all triangles
in the batch over few other triangles show a small D. This means that a
negative kd will prioritize those triangles that can be reached easily, and
will thus lead to more ‘circular’ batches. On the other hand, a positive
kd will lead to elongated batches. Especially under the assumption that
vertex reuse is possible among all triangles within a batch, ‘circular’
batches are preferable as they will show the highest potential reuse.
• Batch Neighborhood is 1 for triangles that are direct neighbors to triangles

which have been added to completed batches, i.e., are part of the bound-
ary of Mcopy but are not part of the boundary in the original mesh. Thus,
N allows to guide batches along already existing batches (positive kn)
or slightly push batches away from already existing ones (negative kn).
The former helps to avoid fragmentation of batches; the latter helps to
avoid elongated batches, especially when kd = 0.

In order to increase the probability of a cache hit, previous work usually con-
siders the immediate neighborhood of the last processed triangle first, thereby
catering to the presumed, underlying cache architecture. In contrast, we argue
that the order of faces within a batch is irrelevant for mesh optimization,
as long as the hardware can identify that the same vertices are referenced.
Furthermore, knowing when the hardware inserts a batch boundary, allows
an optimization algorithm additional freedom, as there is no possibility for the
next triangle to create any reuse with previously referenced vertices. Thus, the
optimization algorithm can ‘jump’ to any other mesh location. Especially for
a hardware that inserts batch boundaries often, e.g., Nvidia, these jumps have
a significant impact on the overall performance. In the mindset of previous
algorithms, they can be seen as very frequent cache resets.

97

6. Batch-based Load Balancing: Vertex Reuse and Optimization

ALGORITHM 3: Batch-based Optimization with Batching Predictor bp

1 in VertexInformation vI[]
2 in unsigned int Indicesorig[]
3 out unsigned int Indicesopt[]

4 Set reuseVertices← ∅
5 Map distance← ∅
6 PriorityQueue queue← ∅
7 for each triangle 4 ∈ Indicesorig do
8 V(4)← ∑2

i=0 vI[4(i)].valence
9 Insert 4 with score V(4) · kv into queue

10 while queue 6= ∅ do
11 4 ← highest-scoring entry in queue
12 if can add 4 according to bp then
13 Pop 4 from queue and add it to Indicesopt

// add R(·) and reduce V(·), add D(·) according to new 4
14 for i← 0 to 2 do
15 ri ← 0 if 4′(i) ∈ reuseVertices else 1
16 for 4′ ∈ vI[4(i)].faces do
17 adjust p(4′) by (ri · kr − kv)

18 for 4′ ∈ neighbors of 4 do
19 adjust p(4′) by kd · D(4,4′)
20 distance(4′)← kd · D(4,4′)
21 Add indices of 4 to reuseVertices

// update R(·) for ’forgotten’ vertices

22 for v ∈ reuseVertices do
23 if v can no longer be reused according to bp then
24 remove v from reuseVertices
25 for 4′ ∈ vI[v].faces do
26 adjust p(4′) by −kr

27 else
// remove R(·) due to batch end, remove D(·) and add N(·)

28 for v ∈ reuseVertices do
29 for 4′ ∈ vI[v].faces do
30 adjust p(4′) by −kr

31 for 4′ ∈ neighbors of 4 do
32 adjust p(4′) by kn − distance(4′)
33 Reset bp for new batch
34 reuseVertices← ∅
35 distance← ∅

98

6.4. Evaluation

Computing and updating these factors for all triangles whenever a triangle
is added to the current batch or a batch is completed, continuously changes
the priority of all potential triangles. Using a priority queue with low update
complexity when the priorities are increased or decreased is essential for
efficient processing. To this end, we employ a Fibonacci Heap as our priority
queue. Empiric assessment has shown that the configuration

kc = 1024, kv = −4, kd = −1, kn = −1 (6.2)

yields consistently good results. In terms of computational effort, distance
information D is by far the most expensive factor of our cost function, since
its maintenance requires updates to all faces that are neighbors to the current
batch. In order to reduce processing time while maintaining low ASR, we can
eliminate D from the cost function and set kv = kn = −3.

The previously discussed algorithm is based on some simplified views on the
hardware. As mentioned above, we have found that indices that go across
multiples of 216 on Nvidia will prohibit reuse within a batch. Thus, we added
a simple Nvidia post-processing step that operates on the preprocessed mesh,
to make sure that the simulated batch boundaries are not destroyed by this
behavior. Whenever we determine (based on our simulation) that a batch
contains indices that cross a 16-bit boundary, we duplicate conflicting vertices
and add them to the end of the vertex buffer. Obviously, this can again result
in the batch crossing over 16-bit boundaries (if the previously largest index is
not in the same 16-bit boundary as the new vertex buffer size), which may
require us to copy another set of vertices to the back. Instead of referencing
the original lower vertices, the indices are then recast to reference the newly
added ones. Note that this step increases the total vertex count and reduces
the ideal reuse potential of the mesh. However, it results in better achieved
reuse within batches and improves ASR on Nvidia, as we will shortly see.

6.4. Evaluation

To compare with previous work, we use readily available libraries for al-
gorithms by Hoppe (1999) and Sander, Nehab and Barczak (2007) from Dir-
ectXMesh and Tootle, respectively. For the work by Forsyth (2006), we used the
standalone version (TomF), provided by Adrian Stone, as referenced in the
original publication. Regarding K-Cache optimization (Lin and Yu, 2006), we
consider our own, faithful C/C++ implementation.

99

6. Batch-based Load Balancing: Vertex Reuse and Optimization

5 9 10 11 14 16 32 64 128 164
Cache Size

1.00

1.25

AS
R

K-Cache ASR on Nvidia

5 9 10 11 14 16 32 64 128 164
Cache Size

1.0

1.2

AS
R

Tipsify ASR on Nvidia

5 9 10 11 14 16 32 64 128 164
Cache Size

0.75

1.00

AS
R

K-Cache ASR on AMD RX Vega 56

5 9 10 11 14 16 32 64 128 164
Cache Size

0.75

1.00

AS
R

Tipsify ASR on AMD

5 9 10 11 14 16 32 64 128 164
Cache Size

0.6

0.8

AS
R

K-Cache ASR on Intel HD 630

5 9 10 11 14 16 32 64 128 164
Cache Size

0.6

0.8

AS
R

Tipsify ASR on Intel

Figure 6.4.: We evaluate the ASR of meshes processed with differently parameterized op-
timization methods K-Cache and Tipsify on Nvidia, AMD and Intel hardware.
Similar to our prediction models, Nvidia and AMD achieve best performance
with cache-based optimizations at sizes between 10 and 16. On Intel, best reuse
occurs at a cache size of 128 which is the maximum number of reusable vertices.

For input data, we include a variety of commonly used test scenes from the
graphics community, as well as clip-space geometry that we captured from
five recent video games and an Nvidia technical demo: Age of Mythology
(abbreviated am), Assassin’s Creed: Black Flag (as), Deus Ex: Human Re-
volution (dx), Stone Giant animation (sg), Total War: Shogun 2 (sh), Rise of
the Tomb Raider (tr), and The Witcher 3 (tw). We process each input scene
with the above algorithms and record the achieved ASR when rendering
them on different GPU models, as described in Section 6.2.1. To enable a fair
comparison, we selected the cache sizes for K-Cache and Tipsify that pro-
duced the best results (see Figure 6.4). Hence, these results serve not only as a
baseline to compare against but also as a survey on the potential performance
of previous approaches on modern hardware. All models were rendered as
indexed triangle lists using 32-bit indices. For smaller models, we also tested
16-bit indices and found that it does not influence the resulting ASR at all.

100

6.4. Evaluation

The lowest shading rate with K-Cache was achieved with a cache size of
10 entries on Nvidia and AMD. For Tipsify, we used a cache size of 11 on
Nvidia, and 14 on AMD. This is in accordance with our previous assessment
regarding cache-based ASR prediction: given that these algorithms simulate
and optimize the ASR based on the existence of a cache, they perform best
at the configuration where a cache-based prediction is closest to the actual
behavior, i.e., at a cache size between 10 and 16. On Intel, as previously
assumed, the best cache size equals its MAX UNIQUES figure (128).

For Nvidia GPUs, we tested all techniques on the Geforce GTX 780Ti, 980Ti,
1060, 1080 and 1080Ti, covering three different hardware generations (Kepler,
Maxwell and Pascal). Recorded shading rates were identical in all cases,
regardless of the particular model used, and are shown in Table 6.1. For
reference, we also give the ideal ASR values, i.e., shading rates that would
be achieved with absolute reuse of shaded vertex output. As documented by
these results, our simple, batch-based algorithm yields the lowest shading
rate out of all contestants in every test scenario but one. For large, carefully
crafted meshes, the benefit of our algorithm over the best contender is sig-
nificant: for the Happy Buddha statue, we report a 15% improvement over
the best alternative, K-Cache. For the dragon model, this figure jumps to a
25% improvement over the best result yielded from previous work by Hoppe.
For weakly structured meshes, such as the tree model and scenes obtained
from captured video game frames, the improvement of the ASR is smaller,
but usually still significant in the 3-10% range.

A large portion of this improvement is hinged on our post-processing step,
which makes sure indices within a batch will not cross 16-bit boundaries. As
shown above, we cannot exactly predict Nvidia’s batching for arbitrary input
models that contain more than 216 unique vertices (see Figure 6.3). Note that
ignoring this property would mean that the algorithm assumes reuse within
batches that do not align with those constructed by the GPU, and virtually
all potential benefit is annulled. For game scenes, optimizing without this
post-processing step usually results in a 1-10% increase of the ASR. In contrast,
for happy buddha and xyz dragon, ignoring 16-bit boundary constraints yields
a much higher ASR of 1.01 and 1.15, respectively.

For AMD, we considered an R7 200 from the GCN2 generation, as well as an
RX Vega 56. For the AMD models, the results of batching were much less re-
warding than for Nvidia. Although our batch-based algorithm is on par with
more elaborate techniques, it is usually bested by either K-Cache and TomF.
We note here once more that the identification of the AMD batching functions

101

6. Batch-based Load Balancing: Vertex Reuse and Optimization

Table 6.1.: Achieved ASR with different mesh optimization techniques applied, on recent
Nvidia generations. For all cases but one, our simple, batch-based mesh optimiza-
tion can outperform elaborate methods, most prominently for the happy buddha

and xyz dragon test cases. For reference, we also include the ASR that would be
possible with perfect reuse (e.g., using a centralized cache of infinite size).

Hoppe K-Cache Tipsify TomF Ours Perfect Reuse

sphere 0.83 0.82 0.83 0.88 0.81 0.50
bunny 0.84 0.84 0.86 0.88 0.82 0.50
happy buddha 0.98 0.95 0.98 0.99 0.81 0.50
xyz dragon 1.07 1.10 1.08 1.16 0.82 0.50
tree 2.07 2.09 2.09 2.08 2.06 2.06
am01 0.97 0.86 0.88 0.87 0.84 0.60
am02 0.95 0.81 0.81 0.81 0.78 0.48
as01 0.87 0.85 0.88 0.86 0.83 0.59
as02 1.27 1.26 1.28 1.26 1.24 1.11
dx01 0.88 0.85 0.90 0.85 0.89 0.61
dx02 0.87 0.84 0.88 0.85 0.84 0.62
sg01 0.87 0.83 0.88 0.84 0.83 0.53
sg02 0.89 0.85 0.89 0.85 0.84 0.56
sh01 1.01 0.97 1.00 0.97 0.92 0.74
sh02 0.98 0.95 0.98 0.95 0.94 0.74
tr01 0.95 0.89 0.93 0.89 0.87 0.68
tr02 0.93 0.89 0.92 0.89 0.88 0.66
tw01 0.87 0.87 0.89 0.89 0.84 0.55
tw02 1.43 1.39 1.41 1.39 1.37 1.23

is likely incomplete. However, the properties of the AMD architecture also
reduce the impact that correct batching can have. Given the combination of
large batches and small cache size, elaborate algorithms focusing on cache
optimization achieve ASR rates that are already close to ideal. While fully
understanding and incorporating knowledge about batch boundaries into a
sophisticated algorithm is guaranteed to yield better reuse, our simple optim-
ization algorithm mostly relies on ASR improvement through approximate
batching, which is insufficient for AMD GPU models. Recorded ASR values
are listed in Table 6.2a.

102

6.4. Evaluation

Table 6.2.: ASR for all test scenes with optimization techniques applied. We provide recorded
results for AMD RX Vega 56 (virtually identical to those by the R7 200) and Intel
HD 630. Although the performance of our simple batch-based method is usually
on par with more sophisticated techniques, it is commonly bested by either the
K-Cache or Tipsify algorithms.

(a) AMD

Hoppe K-Cache Tipsify TomF Ours

sph 0.66 0.67 0.68 0.77 0.72

bun 0.68 0.70 0.72 0.77 0.72

bud 0.73 0.71 0.75 0.74 0.75

dra 0.67 0.69 0.71 0.77 0.72

tree 2.06 2.07 2.07 2.06 2.06
am1 0.85 0.74 0.76 0.77 0.77

am2 0.81 0.68 0.68 0.69 0.68
as1 0.74 0.73 0.75 0.74 0.75

as2 1.19 1.19 1.20 1.19 1.20

dx1 0.77 0.75 0.79 0.75 0.82

dx2 0.75 0.73 0.76 0.74 0.74

sg1 0.73 0.71 0.75 0.73 0.74

sg2 0.77 0.73 0.77 0.75 0.76

sh1 0.88 0.84 0.86 0.84 0.84

sh2 0.87 0.85 0.88 0.86 0.86

tr1 0.83 0.78 0.81 0.79 0.80

tr2 0.81 0.78 0.81 0.79 0.79

tw1 0.72 0.73 0.75 0.78 0.75

tw2 1.35 1.31 1.33 1.32 1.32

(b) Intel

Hoppe K-Cache Tipsify TomF Ours

0.59 0.58 0.52 0.58 0.60

0.60 0.53 0.53 0.57 0.58

0.61 0.55 0.55 0.55 0.62

0.60 0.53 0.52 0.57 0.60

2.06 2.06 2.06 2.06 2.06
0.72 0.60 0.60 0.65 0.69

0.67 0.48 0.48 0.55 0.60

0.62 0.59 0.60 0.60 0.64

1.14 1.11 1.12 1.12 1.14

0.64 0.63 0.65 0.62 0.73

0.63 0.62 0.62 0.62 0.65

0.57 0.54 0.55 0.55 0.60

0.61 0.56 0.57 0.58 0.63

0.79 0.74 0.74 0.75 0.77

0.77 0.74 0.75 0.77 0.78

0.72 0.68 0.68 0.69 0.71

0.70 0.66 0.67 0.67 0.70

0.63 0.57 0.57 0.60 0.63

1.29 1.23 1.24 1.24 1.27

Similar trends can be observed for our evaluation on Intel GPUs (Table 6.2b).
Since their architecture features the biggest batch size and the largest cache,
the achieved ASR values with cache-based algorithms are even closer to ideal
reuse rates. Additionally, as previously mentioned, batching alone does not
suffice to fully explain the formation of the shading rate on Intel. Hence, our
simple batch-focused algorithm is on par with Hoppe’s optimization, but
newer, cache-focused algorithms provide a better choice overall.

103

6. Batch-based Load Balancing: Vertex Reuse and Optimization

6.5. Discussion

Although modern GPU hardware evolves at a staggering speed, the existence
of a central, post-transform vertex cache is still considered to be self-evident
by many. Our experiments conclusively show that this assumption does no
longer match the behavior that we observe on these massively parallel devices.
The most reasonable and, in fact, most likely alternative is the batch-driven
decomposition of input vertex data so that it can be efficiently handled in
separate, independent shading units to achieve adequate load balancing for
the vertex processing portion of the pipeline. By drawing a strong association
between the hardware design and information obtained through indirect
measurements, we have shown that it is possible to predict this decomposition
process with high accuracy. Understanding the subdivision and distribution
of vertex input on GPUs has several important implications for research into
mesh optimization algorithms: previous work commonly uses cache-based
software simulations to illustrate the merit of their work. However, during
our evaluation, we have shown that the actually achieved vertex shading rates
differ significantly from those reported by such simulations.

Knowledge of the GPU batch functions provides us with a reliable tool for
off-line simulation and evaluation of mesh optimization algorithms. Given the
exact parameters of the batch function, we were able to devise a preprocessing
algorithm to improve the vertex shading rate on modern GPUs beyond the cap-
abilities of previous work. Furthermore, since hardware simulation and state
prediction is oftentimes included in the optimization algorithm itself, our work
opens the door for the development of new algorithms that may achieve even
lower shading rates and better vertex reuse on contemporary GPU hardware.
We have made our source code for reuse analysis and optimization available to
the public at https://github.com/GPUPeople/vertex_batch_optimization.
Lastly, challenging a concept as established as the post-transform cache and
finding a more precise fit raises the question what other pipeline stages, as-
sumptions and conventional notions on GPU rendering should be revisited.

104

https://github.com/GPUPeople/vertex_batch_optimization

7. Binning Patterns for Balanced
Sort-Middle Rendering

Contents

7.1. Sort-Middle Rendering & Load Balancing 106

7.2. Built-In GPU Patterns . 107

7.3. Guidelines for Pattern Designs 108

7.3.1. Space Utilization 109

7.3.2. Local Clustering of Geometry 110

7.3.3. Influence of Orientation 111

7.4. Designing and Evaluating Patterns 114

7.4.1. Space-filling Curves 116

7.4.2. Randomized Patterns 117

7.4.3. Fixed Shift . 118

7.4.4. Variable Shift . 120

7.4.5. Comparison of All Categories 121

7.4.6. Influence of Partitioning 123

7.4.7. Observations and Remarks 126

7.5. Binning Patterns for Software Rasterization 127

7.6. Discussion . 129

Having observed the policies of modern GPUs to consolidate both vertex
reuse and effective load balancing in a massively parallel environment, we
move to the rasterization stage and examine the assignment of primitives to
framebuffer tiles. Again, we assume that the implementation of this pipeline
stage in hardware is governed by considerations for load balancing that we
aim to identify, enhance and apply in our parallel software renderer, cure.

105

7. Binning Patterns for Balanced Sort-Middle Rendering

7.1. Sort-Middle Rendering & Load Balancing

Work distribution strategies for parallel rendering have been classified by
Molnar, Cox et al. (1994) based on where in the pipeline redistribution between
processors occurs: before geometry processing (sort-first), between geometry
and fragment processing (sort-middle), or after fragment processing (sort-last).
In a sort-middle approach, the output domain is spatially subdivided into
multiple bins. Primitives that are generated by the geometry stage are sorted
into the bins they overlap before rasterization and fragment shading occur.
Each bin is then assigned to one or several processing units, ideally in such a
way that leverages near-uniform load for all participating processors.

Sort-middle seems to be the preferable strategy on modern GPU hardware,
since the screen area covered by output primitives is easy to compute after
geometry processing and the transfer overhead is relatively small compared to
after they have been split into a large number of fragments. GPU rasterization
typically uses a coarse-to-fine strategy and is implemented on special-purpose
hardware units called rasterizers. The assignment of bins to rasterizers com-
monly follows a static, fixed spatial pattern. Using such a static pattern for
load balancing seems straightforward, but also rather well-reasoned, given
that it grants each rasterizer exclusive access to the frame buffer in the as-
signed region, which eliminates the problem of resource contention and has a
positive impact on cache performance.

It stands to reason that the design of such a binning pattern can have an
appreciable effect on sort-middle rendering performance. If the distribution
of fragments is not sufficiently uniform across screen space, the resulting
load imbalances will turn individual rasterizers to bottlenecks. If we reject the
option of dynamic load balancing because of its elevated hardware demands,
using a suitable static binning pattern seems a requirement for achieving
adequate rasterization performance on GPUs. Furthermore, as the trend of
increasing processor counts continues, good scalability of binning patterns
may become relevant in future hardware. Thus, we found it surprising that
detailed advice on patterns with good load balancing characteristics is scarce
in related literature. With screen resolutions reaching 4K or even 8K and
parallel rendering ranging from smartphones to desktop systems and even
into the cloud, load balancing strategies become more and more important.

In order for static binning to be globally applicable, patterns must be scalable
with respect to bin size, number of rasterizers, and screen size. In this chapter,
we investigate these issues in detail and make the following contributions:

106

7.2. Built-In GPU Patterns

1. We determine and analyze the patterns employed on the GPU through-
out recent years.

2. We analyze real-world rendering workloads from recent video games
and derive requirements for effective patterns.

3. We present ten different pattern design strategies based on these require-
ments and previous work.

4. We assess and compare the load balancing characteristics of the proposed
patterns on more than 200 game scenes.

5. We evaluate the effects of the most promising patterns on overall per-
formance in cure, a GPU software rendering pipeline.

7.2. Built-In GPU Patterns

On the GPU, physical cores may be grouped together hierarchically to form
powerful logical processing clusters. In Nvidia architectures (NVIDIA, 2009),
up to 30 streaming multiprocessors (SMs), each capable of maintaining thou-
sands of threads, are grouped into a small number of graphics processing
clusters (GPCs). Workload distribution for rasterization occurs only on GPC
level of the architecture, with each GPC representing a logical rasterizer.

To analyze binning patterns on Nvidia GPUs, we use a custom GLSL shader
and the NV_shader_thread_group extension to identify pixel locations that
submit to the same group of SMs and are therefore handled by the same
GPC. Based on these experiments and the architecture specification, we have
recreated the patterns that are used for workload distribution during hard-
ware rasterization. Figure 7.1 shows these patterns for multiple hardware
generations. According to our results, on five out of six recent flagship models
(Figures 7.1a–c), a diagonally aligned pattern at 45

◦ is used for identifying
responsible rasterizers. A corresponding assignment map for 8 rasterizers is
shown in Figure 7.1d. While we also found less obvious patterns (particularly
in models with imbalanced GPCs), these violate our defined requirement
for patterns being scalable, as they cater to one precise configuration and
could not be ported to another model. However, even for them, a trend of
diagonal alignment of bins is prominent. Regardless of the patterns used,
bin sizes are consistently small at 16× 16 pixels in an effort to mitigate load
imbalance (Purcell, 2010). We also consider Intel and AMD models (Figures
7.1e–h), for which we used a timing-based approach to identify screen regions
that influence each other’s performance for processing fragments. On those
architectures, load balancing appears to not be limited to rasterizers alone.

107

7. Binning Patterns for Balanced Sort-Middle Rendering

(a) GTX 780 Ti (b) GTX 580/680/1080 (c) Titan Xp

3 4 5 6 7 8 1
4 5 6 7 8 1 2

4 5 6 7 8 1 2 3
5 6 7 8 1 2 3 4
6 7 8 1 2 3 4 5

2 3 4 5 67 8 1
2 3 4 5 6 78 1

2 3 4 5 6 7 81

3
2

(d) Diagonal

(e) HD 4000 (f) HD 530 (g) 6770M (h) R9 270X

Figure 7.1.: Observed patterns for workload distribution used in GPUs by Nvidia (a–c), which
seem to follow a diagonal (d) pattern. (e, f) Patterns on Intel and (g, h) AMD.

For the AMD R9 270X and HD 7870 models, e.g., we detected 8 separate
domains distinctly sharing rendered workload, in contrast to the 2 officially
documented rasterizers available (AMD, 2012). We suspect that this is due
to those architectures employing a more fine-grained load balancing concept
directly between individual compute units. The full list of detected patterns
and description of timing-based experiments are available in Appendix B.

7.3. Guidelines for Pattern Designs

An effective static bin pattern for load balancing in rasterization should
consider the workload characteristics of typical rendering content. To this end,
we identify fundamental caveats and run statistical tests on versatile, authentic
computer graphics scenes to derive guidelines for pattern design. To obtain a
manageable parameter space, we adopt the following restrictions regarding
layout combinations for bins and viewports: First, we only consider square
bin resolutions, which is common practice in existing software and hardware
pipelines. Second, bin sizes are considered to be an immutable property of
the underlying architecture. Third, the pattern layout must not depend on
high-level parameters, such as window resolution or size. Fourth, all analytical

108

7.3. Guidelines for Pattern Designs

(a) Total War: Shogun 2 (2011) (b) Rise of the Tomb Raider (2015)

Figure 7.2.: Selected game scenes from our dataset. Images show the original rendering with
an overlay of the output by the software rendering pipeline we used to verify
our analytical results. Not shown here: Deus Ex: Human Revolution (2011), Tomb
Raider (2013), Assassin’s Creed IV: Black Flag (2013), Age of Mythology (2014), The
Witcher 3: Wild Hunt (2015) and Nvidia’s Stone Giant technical DirectX 11 demo.
Total War: Shogun 2 capture courtesy of The Creative Assembly. Rise of the
Tomb Raider screenshot courtesy of Crystal Dynamics.

and practical evaluations focus on applications running in landscape mode
at screen resolutions with a 16:9 aspect ratio. In the following sections, we
assume that a low variance in fragment load across all rasterizers provides a
meaningful indicator of effective workload balancing and draw conclusions
for suitable design choices accordingly. Once established, we assess and
compare the relative benefits of individual patterns in the context of software
rasterization with these theoretical assumptions.

Our guidelines are grounded in both a theoretical analysis and in an in-
depth evaluation of a representative dataset modeling typical GPU workloads.
In order to faithfully reproduce realistic GPU rasterization tasks, we have
selected seven video games and a recent Nvidia tech demo (see Figure 7.2).
For each of these applications, we have captured the triangle stream for at
least 20 frame snapshots by injecting a custom DirectX 11 DLL, which saves
clip-space data directly to a file. All capturing was done at 1080p resolution.

7.3.1. Space Utilization

An efficient binning pattern must respect the number of available rasterizers
in its layout. Consider a naı̈ve binning policy for N parallel rasterizers, where
each rasterizer is assigned to an entire row of bins on the viewport (cf. Crockett
and Orloff, 1993). Although this policy may achieve satisfactory results with
a small bin height h and low number of rasterizers N, choosing either value

109

7. Binning Patterns for Balanced Sort-Middle Rendering

(a) Initial state (b) First iteration (c) New layout

Figure 7.3.: Progression for spacing out clustered bins.

such that h · (N − 1) surpasses the vertical resolution of the viewport implies
that at least one rasterizer remains idle. Such a naı̈ve pattern would, therefore,
not scale well with increasing rasterizer count. Given the restriction that bin
sizes are immutable, the only option towards a scalable binning policy is to
pack bins for all available rasterizers into as small a 2D region as possible and
thereby increase the likelihood of rasterizer participation.

7.3.2. Local Clustering of Geometry

In most scenes, geometry is not uniformly distributed (M. F. Deering, 1993).
Decorative elements such as grass, soil or water are represented with low
geometric density, while prominent objects, such as trees, edifices or living
entities, are designed with a stronger emphasis on geometric detail. These ob-
servations suggest that the geometry of a 3D scene, projected to a 2D viewport,
has a tendency to form local clusters in screen space. In this case, assigning
one rasterizer to contiguous bins could considerably hurt performance.

In order to quantify the influence of local geometry clusters on load balancing,
we have assessed the potential improvement that can be achieved by iteratively
increasing the distance between bins assigned to the same rasterizer, as
outlined in Figure 7.3. For our evaluation running at 1080p, we first assume
a bin size X × X and subdivide the screen into quad regions (Figure 7.3a)
containing four bins each. Each quad is then assigned its own dedicated
rasterizer, and we compute the reference standard deviation σre f over all
rasterizers from the ideal fragment load in this configuration. We then proceed
to break up the quads (Figure 7.3b) by incrementally increasing the distance
between the bins assigned to each rasterizer. From each original quad, one bin
location is moved two slots to the right, one is moved two slots upward and

110

7.3. Guidelines for Pattern Designs

Figure 7.4.: Spreading out bins assigned to the same rasterizer lessens the impact of triangle
clusters and reduces load variance. Smallest σ occurs at farthest separation.

one is moved both upwards and to the right. After the first iteration, the gap
between bins assigned to the same rasterizer spans two slots (Figure 7.3c). We
continue to space out the bin locations in this way until the distance between
the bins for each rasterizer surpasses half of the viewport height. In each
iteration i, we record the current standard deviation σi of rasterizer workload
and compare it to σre f . The ideal distance between rasterizers is given by the
iteration index i that produced the smallest ratio σ/σre f , multiplied by two.

Figure 7.4 shows the results of this experiment for several different bin sizes,
averaged over our entire dataset. Note that the best offset for a bin size X× X
is usually found at or close to distance ∆X such that 2 · ∆X · X = 1080. Thus,
the ideal distance between bins assigned to the same rasterizer is equal to
their maximal possible separation. Furthermore, the effect of breaking up the
original clusters has a major impact on the variance, reducing σ by at least
30%. Note that, at 160× 160, no offset occurred, since 160 · 4 > 1080

2 .

7.3.3. Influence of Orientation

Both space utilization and local clustering behavior imply that bins assigned
to the same rasterizer should be as widely spaced out as possible in order to
avoid local rasterizer repetition. However, we have yet to establish whether
the impact of these repetitions is equally severe in all directions. In real-
world scenarios, gravity ensures a natural preference of horizontal structures
in bedrock, bodies of water and terrain. In contrast, man-made structures,

111

7. Binning Patterns for Balanced Sort-Middle Rendering

(a) Full Test Set (b) Age of Mythology Only

Figure 7.5.: Average variance of fragment load when dividing the viewport into pixel lines
with different orientations. Numbers inside the left circle give the line length N
that is illustrated by the corresponding ring. Horizontal and vertical directions
exhibit high variance (red). Only in Age of Mythology is the variance higher with
vertical lines than with horizontal.

plants and animate entities often stand upright, affording them a superior
vantage point. As a matter of fact, very few elements remain that are naturally
diagonally aligned. Graphics applications aiming to present realistic scenes
exhibit similar structural properties in their geometry. Consequently, we can
assume that horizontal and vertical rasterizer repetitions make a pattern more
susceptible to localized triangle clusters and therefore more likely to suffer
from workload imbalances.

In order to confirm this theory, we analyze the influence on load variance
when subdividing the viewport into screen space lines of varying orientation.
Samples for computing variance are taken at pixel level by setting up a sliding
window of N × N pixels and sampling N consecutive pixel locations along a
line through the center of the sliding window in a given direction, defined
by an angular parameter. Line sampling is performed using a Bresenham
algorithm aligned with the desired angle. The sum of the fragments submitted
to the N pixels in each line is recorded. We then compute the standard
deviation σ of the fragment counts for the given direction over all sliding
window positions. σ is further normalized for each scene by dividing with
the average number of fragments per pixel. This process is performed for
a discrete set of directions, yielding the average variance for each tested
orientation. We list the extrema of normalized average standard deviations,
as well as the corresponding orientations for all tested applications and
sliding window resolutions in Table 7.1. Furthermore, Figure 7.5 provides a
more intuitive classification of all tested directions on our dataset, with each
concentric circle representing a different line length N.

112

7.3.
G

uidelines
for

P
attern

D
esigns

Table 7.1.: Direction of the lowest and highest average standard deviation (normalized) along all directions for different applications.
High σ indicates that an effective pattern should avoid assigning bins along those directions to the same rasterizer.

N AoM AC 4 TR RTR SG SH 2 DX: HR TW 3

σlo σhi σlo σhi σlo σhi σlo σhi σlo σhi σlo σhi σlo σhi σlo σhi

16

1 1.04 1 1.03 0.64 0.65 0.96 0.98 0.52 0.53 1.61 1.7 0.7 0.72 1.5 1.56

(46
◦) (0◦) (44

◦) (90
◦) (44

◦) (90
◦) (44

◦) (94
◦) (44

◦) (90
◦) (44

◦) (92
◦) (44

◦) (90
◦) (46

◦) (92
◦)

32

0.95 1 0.96 1.01 0.61 0.63 0.92 0.96 0.51 0.52 1.51 1.67 0.68 0.71 1.4 1.53

(46
◦) (0◦) (44

◦) (90
◦) (44

◦) (90
◦) (44

◦) (90
◦) (46

◦) (90
◦) (136

◦) (90
◦) (44

◦) (90
◦) (136

◦) (90
◦)

64

0.88 0.94 0.92 0.99 0.6 0.61 0.86 0.91 0.5 0.51 1.39 1.63 0.65 0.68 1.29 1.48

(44
◦) (0◦) (44

◦) (90
◦) (46

◦) (90
◦) (44

◦) (88
◦) (44

◦) (90
◦) (44

◦) (90
◦) (44

◦) (90
◦) (136

◦) (90
◦)

128

0.78 0.85 0.84 0.95 0.56 0.59 0.78 0.85 0.47 0.5 1.22 1.58 0.60 0.66 1.15 1.42

(136
◦) (0◦) (44

◦) (90
◦) (44

◦) (90
◦) (44

◦) (88
◦) (44

◦) (90
◦) (44

◦) (90
◦) (44

◦) (90
◦) (46

◦) (90
◦)

113

7. Binning Patterns for Balanced Sort-Middle Rendering

Based on our analysis, all applications show the highest variance in fragment
load between lines oriented at fully horizontal and vertical orientations, thus
confirming our initial assumption. With the exception of Age of Mythology,
horizontal structures appear to have a much bigger impact than vertical ones.
This is easily explained: Age of Mythology is the only application that enforces
a fixed top-down view and has most objects of interest (e.g., units, buildings
and resources) vertically aligned. All remaining applications place the viewer
at a first or third person perspective. From a viewpoint raised 1-2m above
ground, far-reaching planar meshes (e.g., terrain, water, floors, rooftops) tend
to line up with the horizon, causing a significant concentration of geometry
(and thus overdraw) at horizontal lines. Furthermore, most scenarios place
complex objects on or close to a flat surface. Based on these insights, we
formulate the goal for effective binning to avoid both vertical and horizontal
rasterizer repetitions whenever possible.

7.4. Designing and Evaluating Patterns

In this section, we describe ten different patterns based on suggestions from
previous work, adaptations of common space-filling techniques and our
analysis of GPU hardware rasterization. Furthermore, we incorporate the
insights gained in Section 7.3 in an effort to improve existing techniques and
design a superior binning policy. We categorize, discuss and compare all
patterns based on their basic approach. Finally, we pick the most promising
pattern from each category to analyze trends and prospects for their expected
effectiveness. All considered patterns (shown in Figure 7.6) are assessed using
realistic clip-space geometry from our dataset.

Since an ideal binning policy would ensure completely uniform workload
among all rasterizers, we rate patterns based on the variance of fragment
load they produce. We process our input geometry data according to OpenGL
conventions and record the amount and distribution of the resulting fragments,
generated by the triangles processed in each rasterizer. In order to ensure that
the observed trends are generally valid, we always assess variance at multiple
bin sizes and rasterizer counts.

As a baseline for comparisons, we choose the Diagonal pattern (Figure 7.1d)
used in several recent GPU models offered by Nvidia. This pattern can be
generated as follows: Initially, all N rasterizers are lined up in ascending order
according to their index. With each row, the index of the first rasterizer is

114

7.4. Designing and Evaluating Patterns

2
7 8

1

5 6
7 8

2
3 4
1

3 4
5 6 2

7 8
1

5 6
7 8

2
3 4
1

3 4
5 6

2
7 8

1

5 6
7 8

2
3 4
1

3 4
5 6 2

7 8
1

5 6
7 8

2
3 4
1

3 4
5 6

(a) Z-Curve

3
4

2
1 6

78
5

1 2
345

67
8
1 2

34
5
6 7

8 1
2 3

4
56

7 8 1 2
34

5
6 7

8 1
2 3

4
56

7 8
1
23

456
7 8

12
3 4 5

6 7
8

(b) Hilbert Curve

1

78
2

5

6
3
4

3

8

1
5

4

2

76
6 3

2

5

3

1

1

4

4

5

1

5
2

2

5

3
3

2

7 6
6

2
5

8
8

8
8

1

7

6

6

14
4

3

7 8

6

5

4 7

1

8 46

1

74

(c) PRUT

23 45 6 71
2

3
4

5 6
7

8
1

4

5

6 7 2

3

8
13

4

5

6
7

8
1

3

45

6

81

2

3

5
2

3

2

4

1

5

6

7

8
7

6
7

8

23

4
2 1

1
5

78

5 6
8 4

(d) HMD

6 7 8 1 2 3 45
2 3 4 5 6 7 81

2 3 45 6 7 8 1
2 3 4 5 6 7 81

6 7 8 1 2 3 45
2 3 4 5 6 7 81

2 3 45 6 7 8 1
2 3 4 5 6 7 81

(e) X-shift

7
8

3
4

5

1

2 6
1

6
7
8

3
2

4

5

7
8

3
4

5

1

2 6
1

6
7
8

3
2

4

5

7
8

3
4

5

1

2 6
1

6
7
8

3
2

4

5

7
8

3
4

5

1

2 6
1

6
7
8

3
2

4

5

(f) Y-shift

2 3 4 5 6 78 1
2 3 45 6 7 8 1

2 3 4 5 6 7 81

23 4 5 6 7 8 1
2 3 4 5 67 8 1

2 34 5 6 7 8 1

2 3 4 5 6 7 8 1
2 3 4 56 7 8 1

(g) X-shift+offset

2 3 4 5 6 7 81
2 3 4 5 67 8 1

4 5 6 72 38 1
2 3 4 5 6 7 8 1

2 3 45 6 7 8 1 2 3 45 6 7 8 1
2 3 41 2 3 41 56 7 86 7 8

5 6 7 8 1 23 4
2 31 2 315 6 7 85 6 7 844

(h) Sudoku

2 3 4 5 67 8 1
2 3 45 6 7 8 1

2 3 4 5 6 7 81

2 34 5 6 7 8 1
2 3 4 5 6 78 1

23 4 5 6 7 8 1

2 3 4 5 6 7 8 1
2 3 4 56 7 8 1

(i) Van der Corput

Figure 7.6.: Illustration of examined rasterizer patterns in a square bin tile of size 8. Bins of
same color are assigned to the same rasterizer.

offset by one slot. Indices outside the possible range are wrapped around,
creating a repetitive pattern. This policy leads to those bins that are assigned
to a given rasterizer forming a diagonal line.

115

7. Binning Patterns for Balanced Sort-Middle Rendering

7.4.1. Space-filling Curves

Space-filling curves are a popular concept for efficiently querying and ad-
dressing multidimensional data. In computer graphics, popular applications
include the creation of spatial data structures (Karras, 2012), as well as op-
timizing two-dimensional memory access when programming for the GPU
(Nocentino and Rhodes, 2010). Here, we assess the performance of two space-
filling curves that are well-established and routinely employed, namely the
Z-Curve and the Hilbert Curve.

Z-Curve To produce a Z-Curve pattern that covers the entire viewport, we
traverse all rasterizer bins and compute the 2D Morton code mxy for each
individual bin location (x, y), where (0, 0)→ 0 indicates the bin in the lower
left corner. The index for the rasterizer to which we assign each bin is selected
as mxy mod N. Figure 7.6a shows the corresponding binning pattern, partially
overlaid with the Z-Curve.

Hilbert Curve Similarly to Z-Curve, we traverse all bins in the viewport and
use the 2D Hilbert distance function distH(x, y) to compute the length of the
curve at each bin location, with the bin in the lower left corner specifying
the origin. The appropriate rasterizer is chosen from N available indices by
calculating distH(x, y) mod N. An exemplary layout following the Hilbert
Curve in a square bin tile of size 8 is shown in Figure 7.6b.

Evaluation In Figure 7.7, we show the rasterizer load variance over our
entire dataset for Z-Curve and Hilbert Curve. We plot the recorded values
relative to our baseline Diagonal at different rasterizer counts. The thick stroke
encompasses results for all tested bin sizes, ranging from 4× 4 to 192× 192
pixels, and thus indicates the influence of the bin size on the evaluation and
the robustness of the pattern to changing this parameter. The thin opaque line
marks the average over all bin sizes. Overall, both patterns appear to perform
similarly well; however, Z-Curve behaves less consistently with varying bin
sizes at low rasterizer counts, as indicated by the significant thickness of the
red stroke. We thus consider Hilbert Curve the more suitable representative
for expected performance from space-filling curves.

116

7.4. Designing and Evaluating Patterns

6 8 12 20 36 68 100
Rasterizers employed

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
ta

nd
ar

d
de

vi
at

io
n
σ

re
la

tiv
e

to
D

ia
go

na
l Z-Curve Hilbert Curve

Figure 7.7.: Patterns using space-filling curves.

7.4.2. Randomized Patterns

In computer graphics, randomization is often used as a means to suppress
noticeably repetitive artifacts or to create natural-looking shapes and patterns
for visual scenes (e.g., Monte Carlo methods). To assess randomization for
our purposes, we examine two patterns whose layout is entirely defined by
randomly generated values.

Pseudo-random Uniform Traversal This pattern is generated by traversing
all bins over the image domain left-to-right, bottom-to-top and using the
Mersenne Twister 19937 with a uniform distribution from 1 to N to choose a
rasterizer for each bin at random. Hence, there are no guarantees ensuring
minimum separation between bins assigned to the same rasterizer, or even
equal occurrence of rasterizers throughout the image domain (Figure 7.6c).

Note that the space-filling curves and the pseudo-random uniform traversal
are the only patterns we evaluate that may create a unique, non-repetitive
arrangement over the entire viewport. All patterns discussed from here on
out are defined by periodically repeating bin tiles.

Hierarchical Maximized Distance Inside a tile of N × N bins, we use ran-
domized samples to assign rasterizers in a fashion similar to Poisson disk
sampling. To fill all bins in the N × N tile, we cycle N times through the N

117

7. Binning Patterns for Balanced Sort-Middle Rendering

6 8 12 20 36 68 100
Rasterizers employed

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

nd
ar

d
de

vi
at

io
n
σ

re
la

tiv
e

to
D

ia
go

na
l PRUT HMD

Figure 7.8.: Patterns based on randomization.

available rasterizer indices to ensure equal occurrence of all rasterizers in a tile.
At each iteration, we use a simple dart-throwing technique with the rasterizer
index as parameter R. We draw up to 50 vacant sample positions inside the
N × N tile at random. In the absence of an ideal value for the Poisson disk
radius to test against, we always select the bin that is the farthest from all
other bins currently assigned to rasterizer R. The result of this process for an
8× 8 tile is illustrated by Figure 7.6d.

Evaluation In Figure 7.8, we show the relative variance compared to our
Diagonal baseline for pseudo-random uniform traversal (PRUT) and hierarchical
maximized distance (HMD). HMD clearly outperforms PRUT on all accounts.
We attribute the superior effectiveness to the fact that, in contrast to PRUT,
HMD prioritizes large distances between bins assigned to the same rasterizer
and thus encourages better space utilization.

7.4.3. Fixed Shift

Instead of shifting bin assignments by a single position in each row, as in
the Diagonal pattern, we investigate the effect of wider fixed-distance shifts.
Based on the trends we identified in the previous section, doing so is expected
to significantly benefit from better space utilization and, consequently, more
uniform distribution of localized geometry clusters to rasterizers.

118

7.4. Designing and Evaluating Patterns

X-Shift A horizontal shift for each row is computed by multiplying the row
index r with a fixed value ∆ = N

k , where N is the number of rasterizers, and k
gives the number of rows until the pattern repeats. The corresponding offset
in row r can thus be computed as ∆r =

⌊ r·N
k
⌋

mod N. Hence, X-shift forms
rectangular, but not necessarily square periodically repeating N × k tiles (see
Figure 7.6e). Notice that this implies a vertical rasterizer repetition every k
rows. In order to maximize the distance between any two bins assigned to the
same rasterizer, we choose k close to the square root of N as

⌊√
N
⌋

.

Y-Shift Y-shift is essentially a rotated version of X-shift. Shift parameters are
chosen similarly. However, instead of a horizontal shift per row, a vertical shift
is applied per column (see Figure 7.6f). Analogous to X-shift, Y-shift resets
every k columns and has a tendency towards horizontal repetitions.

X-Shift+Offset While Diagonal has a small minimum distance between
bins assigned to the same rasterizer, X-shift has a higher rate of rasterizer
repetition on the vertical axis, making it a potentially weak candidate in
rendering scenarios with prominent vertical structures (e.g., Age of Mythology).
X-shift+offset aims to combine the benefits of both approaches: based on the
shift function for X-shift, row arrangements are offset by one position every
k rows. The shift in row r can thus be computed as ∆r =

⌊
r·(N+1)

k

⌋
mod N.

Though this modification may be minor, it effectively ensures that vertical
rasterizer repetitions do not occur before passing N rows (see Figure 7.6g).
Thus, instead of periodic N × k tiles where k� N, X-shift+offset can fill a full
N × N tile of bins before repeating itself.

Evaluation In Figure 7.9, we compare fixed shift patterns X-shift, Y-shift and
X-shift+offset relative to Diagonal. When applied to our full dataset, Y-shift
is clearly trailing behind the other alternatives. This comes as no surprise:
According to the directional analysis of our dataset, horizontally aligned
geometry is much more prominent; thus, the frequent horizontal rasterizer
repetitions in Y-shift cause its performance to falter. An obvious exception to
this observed trend is posed by Age of Mythology, for which the performance
of Y-shift is generally on par and, in isolated cases, clearly better than X-shift.
However, both patterns are outperformed by X-shift+offset, which we ascribe
to the fact that X-shift+offset reduces both horizontal and vertical repetitions.

119

7. Binning Patterns for Balanced Sort-Middle Rendering

6 8 12 20 36 68 100
Rasterizers employed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
ta

nd
ar

d
de

vi
at

io
n
σ

re
la

tiv
e

to
D

ia
go

na
l Y-shift X-shift X-shift+offset

Figure 7.9.: Comparing fixed-shift patterns.

7.4.4. Variable Shift

In addition to patterns obtained by applying a fixed shift, we consider two
instances of shift patterns with less predictable behavior.

Sudoku As part of their discussion on suitable binning patterns, M. W.
Eldridge (2001) implicitly suggest that uniform workload distribution over
periodically repeating N × N tiles can be facilitated by requiring that no two
bins in the same row or column are assigned to the same rasterizer. Due to its
conceptual similarity, we call this strategy Sudoku, after the popular Japanese
puzzle. A random N × N tile that fulfills the Sudoku constraint can be quickly
generated by drawing a random shifting value for each row in the interval
[0, N) and disallowing choosing the same shift value twice. Figure 7.6h shows
one arrangement following the Sudoku policy in a square bin tile of size 8.

Van der Corput For this shift-based pattern, row shifts are computed based
on a base 2 Van der Corput low-discrepancy sequence

(
0, 1

2 , 1
4 , 3

4 , 1
8 , 5

8 , 3
8 , . . .

)
.

The shift in row r is given by the rth element in the sequence, multiplied by
the next higher power of two for the number of rasterizers, 2dldNe. Hence,
the horizontal distance between two bins for the same rasterizer will be > N

2
for any N that corresponds to a power of 2. If this is not the case, all shifts
> N are skipped, generating a non-repeating pattern inside a bin tile of size

120

7.4. Designing and Evaluating Patterns

6 8 12 20 36 68 100
Rasterizers employed

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

S
ta

nd
ar

d
de

vi
at

io
n
σ

re
la

tiv
e

to
D

ia
go

na
l Sudoku Van der Corput

Figure 7.10.: Comparing variable-shift patterns.

N. Note that this pattern also implicitly fulfills the constraint that Sudoku is
based on. However, there is no factor of randomization in its design. Figure
7.6i shows the definite arrangement of a square bin tile that is generated by
this method for N = 8.

Evaluation Figure 7.10 compares the variance relative to Diagonal for Sudoku
and Van der Corput. Both patterns show very similar development for varying
rasterizer counts and bin sizes. We attribute this circumstance to their shared
quality, namely the constraint of allowing rasterizers only once per row and
column. Although both patterns appear to be very effective at distributing
workload evenly, Van der Corput exhibits an evident advantage over Sudoku.

7.4.5. Comparison of All Categories

Finally, we compare the most promising patterns from all categories and assess
their characteristics and overall behavior. Figure 7.11 shows the development
of all approaches at three different bin sizes. In order to stress the possible
benefits of using one pattern over another, we plot the coefficient of the
variation cv = σ

µ . The choice of using cv over σ is motivated by the fact
that, in contrast to comparing quality of workload distribution, the standard
deviation cannot adequately quantify the exact potential for improvement
without knowing the average load per rasterizer µ. Trends for low rasterizer

121

7. Binning Patterns for Balanced Sort-Middle Rendering

1 10 100 500
#Batches

1

2

3

4

c v
 re

la
tiv

e
to

 V
an

de
r

Co
rp

ut

HMD
PRUT

Hilbert Curve
Z-Curve

X-shift+offset
Van der Corput

Diagonal

6 10 20 30 40 50 60 70 80 90 100
Rasterizers employed

0.00

0.02

0.04

0.06

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
c v

16×16 bins @ 1080p

6 10 20 30 40 50 60 70 80 90 100
Rasterizers employed

0.1

0.2

0.3

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
c v

64×64 bins @ 1080p

6 10 20 30 40 50 60 70 80 90 100
Rasterizers employed

0.2

0.4

0.6

0.8

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
c v

128×128 bins @ 1080p

Figure 7.11.: Performance comparison on our dataset for the most promising patterns, along-
side the Diagonal baseline. The coefficient of variation cv estimates the imbalance
in rasterizer workload for each pattern at different configurations. While X-
shift+offset performs as well as Van der Corput for low rasterizer counts, they
usually start to diverge at ∼20 rasterizers.

122

7.4. Designing and Evaluating Patterns

counts are identical at all evaluated bin resolutions: Diagonal quickly falls
behind all other techniques due to its poor handling of clusters and space
utilization. All other patterns exhibit a much slower growth of cv, with X-
shift+offset and Van der Corput tied for best performance. However, for higher
bin resolutions and rasterizers counts, X-shift+offset gradually falls behind. For
bigger bin sizes, the differences between the techniques (with the exception of
Diagonal) become less pronounced. Note however the ranges of the plotted
coefficients for the respective bin sizes: The recorded values of cv at 128× 128
differ from those at 16× 16 by more than one order of magnitude. Thus,
differences between the individual techniques have a much higher impact at
bigger bin sizes in terms of performance. The most promising pattern out of
those evaluated is Van der Corput, with its coefficient of variation consistently
below or on par with its contenders.

Considering our previously stated guidelines for pattern design, the high
performance of Van der Corput is not surprising. In each 2D bin tile (N × N),
each rasterizer is referenced with the same frequency, leading to a good space
utilization. Within each row, the distance between bins assigned to the same
rasterizer is maximal. The same is true for each individual column. Thus, ho-
rizontally and vertically dense regions will be assigned to the same rasterizer
only when there is no way to avoid that. Moreover, the pattern generation
rule ensures that the 2D distance between rasterizers is always high, avoiding
local clusters. The direction in which rasterizer assignments repeat within
a 2D region is loosely oriented along a 45◦ angle. All these considerations
also apply to X-shift+offset, which also shows a very competitive perform-
ance. However, Van der Corput is locally less structured than X-shift+offset,
which probably is the reason for giving it an additional edge over the other
approaches, especially when the rasterizer count increases.

7.4.6. Influence of Partitioning

So far, we have evaluated patterns on typical GPU workloads for complete
frames. However, when rendering large scenes, the GPU cannot process all
primitives at once and only a limited number of primitives are concurrently
in-flight. In order to quantify the influence of this workload partitioning in
the context of binning patterns, we split the input triangle stream of each
scene into M batches of equal size, while maintaining the order of primitives
as they were submitted to the GPU. We then simulate the binning of each
individual batch separately, evaluate the resulting temporally local variance,

123

7. Binning Patterns for Balanced Sort-Middle Rendering

and compute an average cv from all M individual batches. By performing this
process with several different values for parameter M, we can identify trends
that are likely to influence pattern performance on actual hardware.

Figure 7.12a shows the influence of the batch size on cv when using 6 raster-
izers and a bin size of 16× 16. This is equivalent to the configuration used
in the Nvidia GeForce Titan Xp and thus representative for current graphics
hardware. For very small batch sizes, the relative variance is high, as only
few triangles are rendered and few bins actually receive workloads. However,
as the batch size increases to 10− 25% of the full scene load, cv already con-
verges to the figures measured for the full scene. This points towards patterns
already performing as expected when only a small portion of the scene can be
processed in parallel. As the amount of rendered geometric detail is steadily
increasing, this result also points towards the necessity to be able to process at
least 10% of a scene at once to achieve close-to-ideal load balancing. In Figure
7.12b, we consider a setup with a higher number of simulated rasterizers.
This would correspond to, e.g., a software rendering approach on the GPU,
since the GPCs are inaccessible. The largest independent structure that can
be explicitly controlled and programmed on the GPU are instead its shared
multi-processors. The choice to set the number of rasterizers to 20 reflects an
approximation of available processing power on contemporary GPU models.
More specifically, this setup corresponds to a software renderer supplying
one rasterizer per SM on a GTX 1080Ti. We can see that the variance remains
higher for a longer period of time, starting to converge at roughly 20% of the
scene being included in one batch.

We further consider the expected benefit of choosing one pattern over another
for these smaller workloads. To visualize their relative behavior in detail, we
plot the development of cv as the degree of partitioning increases relative
to Van der Corput as a reference in Figure 7.12c. The relative difference in
performance between patterns steadily decreases as the batch size becomes
smaller. However, when using batches with a size of 1/100 of the full scene,
the difference between the best and worst pattern still makes for a factor of
2×. Like in our previous experiments, both X-shift+offset and Van der Corput
remain the most efficient methods, even though the initial advantage of X-
shift+offset degrades with batches getting smaller. Surprisingly, we found
that HMD approaches more advanced patterns with increasing degree of
partitioning, and even reaches sophisticated space-filling curves. This can be
explained by the fact that smaller batches affect a limited portion of the screen
and HMD explicitly considers separation of rasterizers in its layout, which is
the most dominant factor when rendering few primitives.

124

7.4. Designing and Evaluating Patterns

1 10 100 500
#Batches

1

2

3

4

c v
 re

la
tiv

e
to

 V
an

de
r

Co
rp

ut

HMD
PRUT

Hilbert Curve
Z-Curve

X-shift+offset
Van der Corput

Diagonal

0.0 0.2 0.4 0.6 0.8 1.0
Portion of scene per batch

0.05
0.10
0.15
0.20
0.25
0.30

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
c v

16x16 bins, 6 rasterizers

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Portion of scene per batch

0.05
0.10
0.15
0.20
0.25
0.30

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
c v

16x16 bins, 20 rasterizers

(b)

1 10 100 500
#Batches

1

2

4

8

c v
 re

la
tiv

e
to

 V
an

de
r

Co
rp

ut 16x16 bins, 6 rasterizers

(c)

1 10 100 500
#Batches

1

2

3
4

c v
 re

la
tiv

e
to

 V
an

de
r

Co
rp

ut 16x16 bins, 20 rasterizers

(d)

Figure 7.12.: Developments in pattern performance with regard to scene partitioning into
batches. (a) For configurations corresponding to current hardware rendering,
partitioning strongly affects cv and thus the expected quality of load balancing.
Measurements converge toward previous results at a batch size of about 1/10

of the scene. (b) For the parallelism that can be expected when using one bin
per SM in a software renderer, the convergence rate is considerably slower. (c)
Relative to Van der Corput, HMD converges toward similar performance as filling
curves. As with increasing the number of rasterizers, partitioning causes Diagonal
to eventually deteriorate. Configuration (d) shows Diagonal being overtaken by
the trivial PRUT, and Z-Curve outperforming Hilbert Curve.

125

7. Binning Patterns for Balanced Sort-Middle Rendering

As can be seen in Figure 7.12d, increasing the number of rasterizers to 20
results in a stronger influence of partitioning on Diagonal. While Diagonal
performs equally well as HMD when processing the entire scene at once, it
fails to show relative improvement and is eventually even overtaken by the
straightforward PRUT pattern. Thus, as the size of batches decreases, Diagonal
eventually falls behind all other alternatives. Furthermore, we find this setup
to be one of several instances where Z-Curve eventually beats Hilbert Curve.
This is not a general rule, but still a common occurrence, which solidifies
our initial impression that space-filling curves should be considered on a
case-by-case basis, since there is no single best choice for all configurations.

Finally, we found that partitioning favorably affects X-shift+offset when us-
ing bigger bin sizes with high rasterizer counts. In those large-bins/many-
rasterizers configurations, as shown above, the pattern usually starts to trail
behind Van der Corput when processing entire scenes. However, increasing the
number of batches a scene is partitioned into causes X-shift+offset to quickly
approach the reference. We consider this circumstance an argument for the
general usability of X-shift+offset, as its divergence from Van der Corput appears
to be mitigated by the (likely) partitioning of large scene input data.

7.4.7. Observations and Remarks

The coefficient of variation (see Figure 7.11) lets us speculate on how the
employed patterns may translate into performance on real hardware. For
a bin size of 16× 16 @ 1080p, where a bin covers 1/120 of the screen hori-
zontally, up to 18 rasterizers achieve a cv < 1% using the best pattern. This
setup corresponds to the bin size employed on current Nvidia GPU designs,
which often rely on a diagonal pattern. Translated into runtime perform-
ance, rasterizers must handle a load imbalance of less than 1% on average.
Considering that there might be other system-wide load balancing strategies
happening concurrently, for instance, with vertex processing on the GPU, one
would probably not expect any noticeable performance hit. In comparison,
if a diagonal pattern is used, the 1% threshold is already exceeded with 10
rasterizers. We hypothesize that the challenges of finding a static pattern that
ensures equally uniform load balancing across many processors is one reason
for using relatively few logical rasterizers (GPCs) in current GPU designs,
even as the SM count is increased. A consequence of this design choice is that
more advanced dynamic load balancing strategies between a rasterizer and
its associated multiprocessors are needed.

126

7.5. Binning Patterns for Software Rasterization

Naturally, the demands on the rasterizer itself also increase as the resolution
increases. Since the graphics pipeline must enforce primitive order during ras-
terization (Purcell, 2010), the rasterizer is not completely free in its strategies
for parallelization. Thus, it is questionable whether rasterization performance
can be scaled along with fragment processing performance in future hardware
designs without increasing the number of rasterizers.

With larger bin sizes, the influence of the pattern becomes more severe. In
these cases, our best contender, the Van der Corput pattern, deviates from an
ideal distribution by up to 10% for 30 rasterizers with a bin size of 1/30 of
the viewport width, and 25% with a bin size of 1/15. Such larger bin sizes
relative to the viewport width might be found on mobile devices, which
render in lower resolution, or in software-based rendering, which tries to
avoid communication overhead between compute cores.

Analyzing the influence of scene partitioning on workload variance, our
experiments indicate that about 10− 20% of the scene should be processed in
parallel. In this case, we see an equally good work distribution as if the entire
scene was processed as one. When processing only small geometry batches,
the relative performance difference between the patterns hardly changes,
indicating that our pattern design criteria are largely independent of the
amount of data being rendered. This is not surprising, as most considerations
guide local bin assignment rather than a global strategy.

It is tempting to draw the conclusion that a small bin size is essential for
good performance. However, our analysis only considers the load balancing
characteristics and ignores the cost of data transfer and duplication. A smal-
ler bin size will quickly lead to increased communication overhead, as the
same triangle now overlaps more bins and is assigned to more rasterizers.
Depending on the implementation, this overhead may effectively outweigh
the benefits of using smaller bins.

7.5. Binning Patterns for Software Rasterization

In order to test our pattern designs in a complete system and to verify the-
oretical results for their impact on rendering performance, we use cure, our
software rendering pipeline running in CUDA, which supports arbitrary
patterns for rasterization (Kenzel, Kerbl, Schmalstieg et al., 2018). Note that
cure follows a full streaming model, employs a sort-middle design, and can

127

7. Binning Patterns for Balanced Sort-Middle Rendering

dynamically switch between tasks in the geometry stage and rasterization/-
fragment stages. Furthermore, it does not process entire scenes at once but
gradually streams its pipeline data, overall mimicking hardware rendering.
Thus, this experimental setup gives an accurate estimate for the performance
impact of tested patterns. We have extended the original input geometry with
auxiliary data listing the appropriate rasterizer indices for every triangle. We
precompute these data for all test scenes, bin sizes and patterns and load them
during rendering to perform load balancing according to each pattern.

We process our test dataset at two different bin sizes of 16× 16 and 64× 64
pixels and assess pattern performance for rendering at 1080p resolution. As
we do not have access to the hardware rasterizers (GPCs) directly, our imple-
mentation employs an equal number of rasterizers on each SM in software.
Thus, the rasterizer count must be either smaller than or a multiple of the SM
count, and we run our tests using 6, 20 and 60 logical rasterizers on a GTX
1080Ti. We simulate elaborate fragment shading by performing 2500 fused
multiply-add instructions before submitting the fragment color.

Table 7.2 shows the average achieved frame rates as frames per second (FPS)
for running the full test set with each technique at different bin sizes and ras-
terizer counts. The numbers in brackets further state the harmonic mean of the
average relative speed-up in each scene over the baseline set by Diagonal. The
behavior of the patterns at different settings closely matches our predictions:
with higher numbers of rasterizers and bigger bin size, the impact of choosing
a sophisticated pattern increases, outclassing Diagonal by a factor of almost
1.9× using 60 rasterizers at 1080p. The relative performance gain between
different patterns is also amplified with the rise of either parameter. Overall,
we see that both X-shift+offset and Van der Corput perform the strongest, with
the former dominating at low and the latter at high rasterizer counts.

A detailed breakdown of the times spent on the individual pipeline stages by
each SM for the game scene in Figure 7.2b is shown in Figure 7.13. For the
diagonal pattern, it can be observed that the dynamic load balancing between
geometry processing and rasterization/fragment processing clearly moves the
geometry load to those SM instances that receive the least rasterization load
(SM 3-10). However, this trivial load balancing is not sufficient to counteract
the imbalance introduced by Diagonal, and a majority of the SM instances
(1-17) idle for about 15% of the total runtime.

128

7.6. Discussion

Table 7.2.: Results for tested patterns on our dataset at multiple configurations. For each
pattern, we show average achieved frame rate, as well as relative speed-up over
Diagonal. The technique with best performance is marked bold for every setup.

(a) 16 × 16 bin size

#Rasterizers Hilbert HMD X-shift+offset Van der Corput

6 3.3 (1.00) 3.3 (1.00) 3.3 (1.00) 3.3 (1.00)
20 10.9 (1.00) 10.9 (1.00) 11 (1.01) 11 (1.01)
60 16.2 (1.09) 16.1 (1.08) 16.4 (1.10) 16.4 (1.10)

(b) 64 × 64 bin size

#Rasterizers Hilbert HMD X-shift+offset Van der Corput

6 3.3 (0.99) 3.3 (0.99) 3.4 (1.01) 3.4 (1.01)
20 9.5 (1.02) 9.6 (1.04) 10.3 (1.12) 10.3 (1.11)
60 10.6 (1.72) 10.3 (1.70) 11.0 (1.78) 11.6 (1.89)

Using Van der Corput, the rasterization load is distributed more uniformly, and
the remaining imbalance is counteracted by the dynamic load balancing with
geometry processing. All SMs finish within 4% of the runtime, significantly
boosting overall performance. Note that, in actual game content, the relative
load on geometry processing and fragment processing is often even more
skewed than in our test example, as fragment shaders tend to become more
and more complex.

7.6. Discussion

We have identified and analyzed possible influential factors on load balancing
and overall performance to be considered when designing a static binning
pattern for sort-middle rasterization. In an effort to optimize load balancing
behavior, we have presented several different examples of patterns with
distinct characteristics and assessed them both analytically and practically.
Runtime measurements for each applied pattern in various configurations
were obtained using cure, a state-of-the-art software rendering pipeline for
the GPU. Based on our predictions and their confirmation from the measured
runtime results, we have successfully identified a set of patterns that scale
well with the number of rasterizers and can exhibit significantly improved
performance over naı̈ve approaches.

129

7. Binning Patterns for Balanced Sort-Middle Rendering

(a) Diagonal

(b) Van der Corput

Pipeline
Geometry processing

Vertex processing
Primitive processing

Rasterization
Binning
Bin Rasterizer
Tile Work Distribution
Tile Rasterizer
Fragment Work Distr.
Fragment Shading
Blending

Primitive Order

Figure 7.13.: Detailed performance breakdown of the rendering pipeline runtime using Di-
agonal and Van der Corput patterns with 20 rasterizers at 1080p to draw the
scene from Rise of the Tomb Raider shown in Figure 7.2b in cure. While dynamic
load-balancing between geometry processing (green) and Rasterization (purple)
can counteract different fragment loads to some extent, the imbalance created
by Diagonal is too severe, and the overall occupancy clearly suffers, with many
processors being idle for more than 15% of the total runtime.

Specifically, we have identified two deterministic patterns that exhibit close-
to-ideal behavior and are easy to apply. Although performance gains may
be negligible for small bin sizes and low rasterizer counts, they become
more pronounced when either of these values grows. The desire for high
resolutions and the communication penalty of small bin sizes is likely to
lead to the utilization of more rasterizers, in turn creating a strong need for
a good binning pattern in new hardware designs. However, even if future
developments were to solve this problem in a different way, current software
rendering applications like cure that are barred from access to low-level
hardware features (e.g., GPCs) can already exploit our findings to benefit from
improved load balancing today, as we have shown.

130

8. Conclusion

Contents

8.1. Summary . 131

8.2. Observations and Insights 133

8.3. Future Work . 134

8.1. Summary

In this thesis, we strove to put dynamic and static load balancing approaches
on the GPU to the test. We have considered the GPU in its two most relevant
contexts: as a ubiquitous, increasingly programmable and massively parallel
co-processor to the sequentially oriented CPU; and as a highly specialized
hardware pipeline for sort-middle rendering. For the first, we were driven
by recent achievements regarding dynamic load balancing to devise a novel,
general solution for high-performance custom scheduling and prioritization.

We have dissected the individual components that previous scheduling sys-
tems were based on and identified concurrent queuing algorithms as pivotal
performance factors. To cater to the particular needs and peculiarities of
the GPU architecture, we have designed a linearizable queuing algorithm,
the broker queue, that fulfills the conceivable requirements for optimal
performance in this domain. Our evaluation has shown that the resulting
queue is several orders of magnitudes faster than other linearizable altern-
atives, and even outperforms non-linearizable, potentially blocking algorithms.

131

8. Conclusion

For both synthetic and realistic workloads, the broker queue and its variants
seem to be the most suitable choice to date for running GPU applications that
aim to surpass the rigid hardware scheduling model and supply dynamic
load balancing instead. Its support for fair ordering, as well as multi-queue
structures, further renders them prime candidates to be used in higher-level
scheduling systems.

With the availability of these exceedingly fast queuing methods under our
belt, we revisited the idea of sorting work packages for larger GPU compute
jobs, according to their defined importance for progress in the big picture.
Unwilling to sacrifice either performance or fine-granular categorization, we
have proposed a middle-of-the-road solution: hierarchical bucket queuing.
We can deploy arbitrarily complex scheduling strategies with this approach,
limited in scope only by our skill and on-device memory. The granularity for
prioritization in a hierarchy can be customized to address particular needs for
load balancing. This has been demonstrated in-depth on fundamental schedul-
ing tasks, proving that quota-based and earliest-deadline-first problems pose
no problem for our scheduling framework. In terms of versatility and efficacy,
it easily surpasses relevant previous approaches. The exhibited performance
is sufficient to apply hierarchical bucket queuing even to the time-critical
procedures found in software rendering pipelines and can introduce adaptive
behavior with the help of efficient task prioritization.

While prioritized software rendering remains an enticing project for optimal
exploitation of the GPU’s raw computing power, the GPU is also subject to
several intricate load balancing strategies in its original role as a hardware
rasterizer. We have taken a closer look at two specific stages of the conventional
rendering pipeline, namely vertex transformation and rasterization. In both
cases, we have found that a rigid distribution of workload is usually employed
on top of trivial dynamic load balancing, in order to leverage vertex data
reuse and sort-middle primitive-to-rasterizer assignment.

The consideration of how workload can be effectively distributed in a massively
parallel system has brought us to the logical—and ultimately verifiable—
conclusion, that the idea of a centralized post-transform vertex cache is no
longer accurate. Instead, we have identified static procedures used to split
input streams into batches with predictable vertex reuse to satisfy demands
for load balancing as well as avoiding redundant shader invocations. The
subsequent assignment in the graphics pipeline of output geometry data to
image-space bins is required in the sort-middle architecture to allow raster-
izers exclusive access to render targets. We have identified patterns that are

132

8.2. Observations and Insights

commonly used by GPUs to achieve this feat and provided our own pattern
designs and evaluations thereof. Incorporating the most effective pattern
into cure, our parallel software rendering pipeline has caused a noticeable
reduction in runtime, especially for fragment-heavy routines.

8.2. Observations and Insights

With regard to GPU queuing, we have seen that the benefits of elaborate
algorithms, i.e., achieving continuous, system-wide progress, can easily be
outweighed by the implied overhead. Furthermore, the high resource con-
sumption of complex procedures can lead to reduced occupancy, since the
limitations on registers and shared memory are quickly exhausted by elab-
orate functions and structures. We have seen this specifically in the cases
of the LCRQ and the WFQ during our evaluation. This implies that GPU
frameworks must put particular focus on keeping functions light-weight. A
seemingly naı̈ve approach—such as the reliance of the broker queue on con-
tended atomic operations—can, in fact, be much more effective than building
complex methods that rely on optimistic concurrency control.

In much the same spirit (‘less is more’), we found that for hierarchical bucket
queuing, a limited number of discrete priority ranges can already elicit ad-
aptive behavior in scheduling frameworks. With approximately 16 bucket
queues being used, we have already observed prioritization behavior with
an accuracy close to what can be ideally expected in such a parallel sys-
tem. Further increase in the granularity achieves only minor improvements
and causes additional overhead during hierarchy traversal. Furthermore, the
idea (and system support) to interrupt megakernels and immediately reuse
queues without initializing is a powerful one, since it enables running time-
constrained procedures, e.g., real-time rendering applications. Even though
it now seems feasible that custom dynamic load balancing for software ren-
dering pipelines on the GPU may well be within our grasp, we must also not
ignore the particular use cases where static load balancing remains essential.

Static load balancing must, for instance, be considered when revisiting al-
legedly established concepts of GPU hardware rendering. Based on the pre-
vailing assumption that the post-transform cache is an indispensable part of
the rendering pipeline, mesh optimization algorithms have aimed to produce
reordered sequences of vertex references that cater to this particular hardware
module. We have investigated the measurable distribution of concurrently

133

8. Conclusion

processed vertices and thereby come to the conclusion that hardware behavior
does not match the vertex cache theory. While there appears to be limited
retention of previously computed results, vertex reuse is neither global nor
dynamic. On recent GPU architectures, our batch-based reuse models are
more accurate at predicting average shading rates than the cache-based altern-
atives. Knowing the exact batching function of a device enables us to present
our own variation of reordering-based mesh optimization for vertex reuse.
On Nvidia models, we claim to have in essence deciphered all relevant parts
of the batching function: here, our batch-based optimization technique was
shown to be the most effective method available.

Also on Nvidia GPUs, we have identified the go-to solution for sort-middle
primitive-to-rasterizer assignment to be a simple diagonal pattern, or a slight
variation thereof. While our evaluation shows that the diagonal pattern is not
the most scalable for balancing rasterizer load by a long shot, the fact that
GPUs continue to employ only a small number of graphics processing clusters
for rasterization relativizes this verdict: at roughly 5–7 rasterizers being used
in recent models, the impact of choosing a more suitable pattern is, according
to our simulations, marginal at best. Once again, the recurring theme for the
findings in this thesis appears to be: ‘Less is more’. However, these insights
may become relevant as the demand for ever higher parallelism increases
in future hardware generations. Furthermore, control of the dedicated GPU
rasterization units is exclusive to the hardware pipeline and is not available
when using compute APIs and software solutions. For those, our experiments
have shown that the use of an appropriate static rasterizer pattern can signific-
antly improve performance in a state-of-the-art sort-middle software renderer
and produce equalized load.

8.3. Future Work

While the contributions presented in this thesis provide several revelations
and insights on suitable mechanisms for load balancing on the GPU, there are
still open questions and unsolved problems that inhibit their applicability. For
one, the adaptive rendering solutions presented in the context of hierarchical
bucket queuing are comparatively simple in their design. This was not neces-
sarily a choice: more elaborate adaptive sampling and subdivision schemes
usually imply non-local dependencies to, e.g., compare local error estimates
with bordering image regions. Such a concept could, in our current system,

134

8.3. Future Work

only be implemented through the use of costly global synchronization and
communication routines, which would severely impact performance. Thus,
a useful future extension would be additional support for queue communic-
ation, enabling algorithms to check and possibly reassign priorities across
several layers of a hierarchy.

The mesh optimization algorithm that we presented to fit batch-based work-
load distribution performs exceptionally well on all tested Nvidia models.
However, on other architectures, results are more modest, as for AMD and
Intel, the identification of the respective batching function is incomplete. Un-
fortunately, this is in part due to the short-term unavailability of adequate
hardware to us and curt research project time frame. Needless to say, with
additional time and labor, it should be possible to create a well-rounded
solution that produces ideal vertex streams for all contemporary devices. The
creation of an accessible, easy-to-use optimization suite is an important item
on our agenda and will be pursued to completion in the near future.

It should also be noted that, although we have identified new and suitable
rasterizer patterns, their elaborate design makes them less trivial to compute
than the simpler alternatives. For an operation that occurs as frequently
in a rendering pipeline as sorting a primitive into a screen-space bin, the
architecture should neither have to rely on complex computations nor on a
lookup of a precomputed pattern layout from memory. So far, we have not
found a trivial solution to compute covered bin indices for primitives with
our suggested patterns while ensuring a low code and resource footprint.
However, we are making steady progress and hope to provide an optimal
implementation of this pattern in our GPU software renderer, cure, soon.

Finally, we aim to conduct further research into applications of load balancing,
as we continue to refine and extend the features in various GPU-related
projects. The best place to apply any new knowledge will be the ongoing cure

project, where we aim to keep pushing the boundaries of high-performance
software rasterization. We hope to present new, relevant contributions soon in
the context of cure and any of its eventual descendants.

135

Bibliography

Aila, Timo and Samuli Laine (2009). ‘Understanding the efficiency of ray
traversal on GPUs’. In: Proc. High Performance Graphics. HPG ’09. New
Orleans, Louisiana: ACM, pp. 145–149. isbn: 978-1-60558-603-8. doi: 10.
1145/1572769.1572792. url: http://doi.acm.org/10.1145/1572769.
1572792 (cit. on pp. 9, 78).

AMD (2012). White Paper: AMD GRAPHICS CORES NEXT (GCN) ARCHI-
TECTURE. https : / / www . amd . com / Documents / GCN _ Architecture _

whitepaper.pdf. Retrieved June 16, 2017 (cit. on p. 108).
Arora, Nimar S., Robert D. Blumofe and C. Greg Plaxton (1998). ‘Thread

scheduling for multiprogrammed multiprocessors’. In: Proceedings of the
tenth annual ACM symposium on Parallel algorithms and architectures. SPAA
’98. Puerto Vallarta, Mexico: ACM, pp. 119–129. isbn: 0-89791-989-0. doi:
10.1145/277651.277678. url: http://doi.acm.org/10.1145/277651.
277678 (cit. on pp. 10, 42).

Barczak, Joshua (2016). Vertex Cache Measurement. Retrieved: June 4th, 2018.
url: http://www.joshbarczak.com/blog/?p=1231 (cit. on pp. 85, 86, 91).

Basaran, C. and Kyoung-Don Kang (July 2012). ‘Supporting Preemptive
Task Executions and Memory Copies in GPGPUs’. In: Real-Time Systems
(ECRTS), 2012 24th Euromicro Conference on, pp. 287–296. doi: 10.1109/
ECRTS.2012.15 (cit. on p. 8).

Bell, Nathan and Michael Garland (2009). ‘Implementing sparse matrix-vector
multiplication on throughput-oriented processors’. In: Proc. High Perform-
ance Computing Networking, Storage and Analysis. SC ’09. Portland, Oregon:
ACM, 18:1–18:11. isbn: 978-1-60558-744-8. doi: 10.1145/1654059.1654078.
url: http://doi.acm.org/10.1145/1654059.1654078 (cit. on p. 9).

Blelloch, Guy E., Perry Cheng, Phillip B. Gibbons and P. B. Gibbons (2003).
‘Theory of Computing Systems Scalable Room Synchronizations’. In: (cit.
on pp. 11, 32).

137

https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1572769.1572792
http://doi.acm.org/10.1145/1572769.1572792
http://doi.acm.org/10.1145/1572769.1572792
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://doi.org/10.1145/277651.277678
http://doi.acm.org/10.1145/277651.277678
http://doi.acm.org/10.1145/277651.277678
http://www.joshbarczak.com/blog/?p=1231
https://doi.org/10.1109/ECRTS.2012.15
https://doi.org/10.1109/ECRTS.2012.15
https://doi.org/10.1145/1654059.1654078
http://doi.acm.org/10.1145/1654059.1654078

Bibliography

Breitbart, Jens (2011). ‘Static GPU threads and an improved scan algorithm’. In:
Proc. Conference on Parallel Processing. Euro-Par 2010. Ischia, Italy: Springer-
Verlag, pp. 373–380. isbn: 978-3-642-21877-4. url: http://dl.acm.org/
citation.cfm?id=2031978.2032029 (cit. on p. 9).

Cater, Kirsten, Alan Chalmers and Patrick Ledda (2002). ‘Selective Quality
Rendering by Exploiting Human Inattentional Blindness: Looking but Not
Seeing’. In: Proceedings of the ACM Symposium on Virtual Reality Software
and Technology. VRST ’02. Hong Kong, China: ACM, pp. 17–24. isbn: 1-
58113-530-0. doi: 10.1145/585740.585744. url: http://doi.acm.org/10.
1145/585740.585744 (cit. on p. 75).

Catmull, E. and J. Clark (1998). ‘Seminal Graphics’. In: New York, NY, USA:
ACM. Chap. Recursively Generated B-spline Surfaces on Arbitrary Topo-
logical Meshes, pp. 183–188. isbn: 1-58113-052-X. doi: 10.1145/280811.
280992. url: http://doi.acm.org/10.1145/280811.280992 (cit. on p. 13).

Cederman, Daniel and Philippas Tsigas (2008). ‘On dynamic load balancing
on graphics processors’. In: Proce. Symposium on Graphics Hardware. GH ’08.
Sarajevo, Bosnia and Herzegovina: Eurographics Association, pp. 57–64.
isbn: 978-3-905674-09-5. url: http://dl.acm.org/citation.cfm?id=
1413957.1413967 (cit. on pp. 9, 30).

Chatterjee, Sanjay, Max Grossman, Alina Sbirlea and Vivek Sarkar (2011).
‘Dynamic Task Parallelism with a GPU Work-Stealing Runtime System’.
In: Proc. Languages and Compilers for Parallel Computing. LCPC ’11 (cit. on
pp. 9, 30).

Chen, Jiawen, Michael I. Gordon, William Thies, Matthias Zwicker, Kari
Pulli and Frédo Durand (2005). ‘A Reconfigurable Architecture for Load-
balanced Rendering’. In: Proceedings of the ACM SIGGRAPH/EUROGRAPH-
ICS Conference on Graphics Hardware. HWWS ’05. Los Angeles, California:
ACM, pp. 71–80. isbn: 1-59593-086-8. doi: 10.1145/1071866.1071878. url:
http://doi.acm.org/10.1145/1071866.1071878 (cit. on p. 17).

Chen, Long, O. Villa, S. Krishnamoorthy and G.R. Gao (2010). ‘Dynamic
load balancing on single- and multi-GPU systems’. In: Parallel Distributed
Processing (IPDPS), pp. 1–12. doi: 10.1109/IPDPS.2010.5470413 (cit. on
pp. 9, 58).

Chen, Milton, Gordon Stall, Homan Igehy, Kekoa Proudfoot and Pat Hanrahan
(1998). ‘Simple Models of the Impact of Overlap in Bucket Rendering’.
In: SIGGRAPH/Eurographics Workshop on Graphics Hardware. Ed. by S. N.
Spencer. The Eurographics Association. doi: 10.2312/EGGH/EGGH98/105-
112 (cit. on p. 17).

Chhugani, Jatin and Subodh Kumar (2007). ‘Geometry Engine Optimiza-
tion: Cache Friendly Compressed Representation of Geometry’. In: Pro-

138

http://dl.acm.org/citation.cfm?id=2031978.2032029
http://dl.acm.org/citation.cfm?id=2031978.2032029
https://doi.org/10.1145/585740.585744
http://doi.acm.org/10.1145/585740.585744
http://doi.acm.org/10.1145/585740.585744
https://doi.org/10.1145/280811.280992
https://doi.org/10.1145/280811.280992
http://doi.acm.org/10.1145/280811.280992
http://dl.acm.org/citation.cfm?id=1413957.1413967
http://dl.acm.org/citation.cfm?id=1413957.1413967
https://doi.org/10.1145/1071866.1071878
http://doi.acm.org/10.1145/1071866.1071878
https://doi.org/10.1109/IPDPS.2010.5470413
https://doi.org/10.2312/EGGH/EGGH98/105-112
https://doi.org/10.2312/EGGH/EGGH98/105-112

Bibliography

ceedings of the 2007 Symposium on Interactive 3D Graphics and Games. I3D
’07. Seattle, Washington: ACM, pp. 9–16. isbn: 978-1-59593-628-8. doi:
10.1145/1230100.1230102. url: http://doi.acm.org/10.1145/1230100.
1230102 (cit. on p. 16).

Chow, Mike M. (1997). ‘Optimized Geometry Compression for Real-time
Rendering’. In: Proceedings of the 8th Conference on Visualization ’97. VIS
’97. Phoenix, Arizona, USA: IEEE Computer Society Press, 347–ff. isbn: 1-
58113-011-2. url: http://dl.acm.org/citation.cfm?id=266989.267103
(cit. on p. 15).

Clarberg, Petrik, Robert Toth and Jacob Munkberg (July 2013). ‘A Sort-based
Deferred Shading Architecture for Decoupled Sampling’. In: ACM Trans.
Graph. 32.4, 141:1–141:10. issn: 0730-0301. doi: 10.1145/2461912.2462022.
url: http://doi.acm.org/10.1145/2461912.2462022 (cit. on p. 16).

Colvin, R. and L. Groves (June 2005). ‘Formal verification of an array-based
nonblocking queue’. In: 10th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS’05), pp. 507–516. doi: 10.1109/ICECCS.
2005.49 (cit. on p. 32).

Cook, Robert L., Loren Carpenter and Edwin Catmull (Aug. 1987). ‘The Reyes
image rendering architecture’. In: SIGGRAPH Comput. Graph. 21.4, pp. 95–
102. issn: 0097-8930. doi: 10.1145/37402.37414. url: http://doi.acm.
org/10.1145/37402.37414 (cit. on pp. 12, 75).

Crockett, Thomas W. and Tobias Orloff (1993). ‘A MIMD Rendering Algorithm
for Distributed Memory Architectures’. In: Proceedings of the 1993 Sym-
posium on Parallel Rendering. PRS ’93. San Jose, California, USA: ACM,
pp. 35–42. isbn: 0-89791-618-2. doi: 10.1145/166181.166186. url: http:
//doi.acm.org/10.1145/166181.166186 (cit. on p. 109).

Dan Crişu (2012). ‘Hardware algorithms for tile-based real-time rendering’.
PhD thesis. Delft University of Technology. isbn: 978-90-72298-26-3 (cit. on
p. 17).

Deering, M. F. (Sept. 1993). ‘Data complexity for virtual reality: where do all
the triangles go?’ In: Proceedings of IEEE Virtual Reality Annual International
Symposium, pp. 357–363 (cit. on p. 110).

Deering, Michael (1995). ‘Geometry Compression’. In: Proceedings of the 22Nd
Annual Conference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’95. New York, NY, USA: ACM, pp. 13–20. isbn: 0-89791-701-4.
doi: 10.1145/218380.218391. url: http://doi.acm.org/10.1145/
218380.218391 (cit. on p. 15).

Developer’s Guide for Intel R© Processor Graphics For 4th Generation Intel R© CoreTM

Processors (2013). Manual. Intel Corporation (cit. on p. 87).

139

https://doi.org/10.1145/1230100.1230102
http://doi.acm.org/10.1145/1230100.1230102
http://doi.acm.org/10.1145/1230100.1230102
http://dl.acm.org/citation.cfm?id=266989.267103
https://doi.org/10.1145/2461912.2462022
http://doi.acm.org/10.1145/2461912.2462022
https://doi.org/10.1109/ICECCS.2005.49
https://doi.org/10.1109/ICECCS.2005.49
https://doi.org/10.1145/37402.37414
http://doi.acm.org/10.1145/37402.37414
http://doi.acm.org/10.1145/37402.37414
https://doi.org/10.1145/166181.166186
http://doi.acm.org/10.1145/166181.166186
http://doi.acm.org/10.1145/166181.166186
https://doi.org/10.1145/218380.218391
http://doi.acm.org/10.1145/218380.218391
http://doi.acm.org/10.1145/218380.218391

Bibliography

Eldridge, Matthew Willard (2001). ‘Designing Graphics Architectures Around
Scalability and Communication’. AAI3026802. PhD thesis. isbn: 0-493-
38235-6 (cit. on pp. 17, 120).

Eldridge, Matthew, Homan Igehy and Pat Hanrahan (2000). ‘Pomegranate:
A Fully Scalable Graphics Architecture’. In: Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH
’00. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,
pp. 443–454. isbn: 1-58113-208-5. doi: 10 . 1145 / 344779 . 344981. url:
http://dx.doi.org/10.1145/344779.344981 (cit. on p. 17).

Elliott, Glenn A. and James H. Anderson (2012). ‘Globally scheduled real-
time multiprocessor systems with GPUs’. English. In: Real-Time Systems
48.1, pp. 34–74. issn: 0922-6443. doi: 10.1007/s11241-011-9140-y. url:
http://dx.doi.org/10.1007/s11241-011-9140-y (cit. on p. 8).

Evans, Francine, Steven Skiena and Amitabh Varshney (1996). ‘Optimizing
Triangle Strips for Fast Rendering’. In: Proceedings of the 7th Conference on
Visualization ’96. VIS ’96. San Francisco, California, USA: IEEE Computer
Society Press, pp. 319–326. isbn: 0-89791-864-9. url: http://dl.acm.org/
citation.cfm?id=244979.245626 (cit. on p. 15).

Forsyth, Tom (2006). Linear-speed vertex cache optimisation. url: https://

tomforsyth1000.github.io/papers/fast_vert_cache_opt.html (cit. on
pp. 15, 86, 99).

Giacomoni, John, Tipp Moseley and Manish Vachharajani (2008). ‘FastForward
for efficient pipeline parallelism: a cache-optimized concurrent lock-free
queue’. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming. PPoPP ’08. Salt Lake City, UT, USA:
ACM, pp. 43–52. isbn: 978-1-59593-795-7. doi: 10.1145/1345206.1345215.
url: http://doi.acm.org/10.1145/1345206.1345215 (cit. on p. 10).

Giesen, Fabian (2011). A trip through the Graphics Pipeline 2011. Retrieved: June
4th, 2018. url: https://fgiesen.wordpress.com/2011/07/03/a-trip-
through-the-graphics-pipeline-2011-part-3/ (cit. on p. 85).

Gottlieb, Allan, Boris D. Lubachevsky and Larry Rudolph (Apr. 1983). ‘Basic
Techniques for the Efficient Coordination of Very Large Numbers of
Cooperating Sequential Processors’. In: ACM Trans. Program. Lang. Syst.
5.2, pp. 164–189. issn: 0164-0925. doi: 10.1145/69624.357206. url: http:
//doi.acm.org/10.1145/69624.357206 (cit. on pp. 11, 31).

Guo, Baining (1998). ‘Progressive Radiance Evaluation Using Directional
Coherence Maps’. In: Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’98. New York, NY, USA:
ACM, pp. 255–266. isbn: 0-89791-999-8. doi: 10.1145/280814.280888. url:
http://doi.acm.org/10.1145/280814.280888 (cit. on p. 13).

140

https://doi.org/10.1145/344779.344981
http://dx.doi.org/10.1145/344779.344981
https://doi.org/10.1007/s11241-011-9140-y
http://dx.doi.org/10.1007/s11241-011-9140-y
http://dl.acm.org/citation.cfm?id=244979.245626
http://dl.acm.org/citation.cfm?id=244979.245626
https://tomforsyth1000.github.io/papers/fast_vert_cache_opt.html
https://tomforsyth1000.github.io/papers/fast_vert_cache_opt.html
https://doi.org/10.1145/1345206.1345215
http://doi.acm.org/10.1145/1345206.1345215
https://fgiesen.wordpress.com/2011/07/03/a-trip-through-the-graphics-pipeline-2011-part-3/
https://fgiesen.wordpress.com/2011/07/03/a-trip-through-the-graphics-pipeline-2011-part-3/
https://doi.org/10.1145/69624.357206
http://doi.acm.org/10.1145/69624.357206
http://doi.acm.org/10.1145/69624.357206
https://doi.org/10.1145/280814.280888
http://doi.acm.org/10.1145/280814.280888

Bibliography

Hachisuka, Toshiya, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale,
Greg Humphreys, Matthias Zwicker and Henrik Wann Jensen (Aug. 2008).
‘Multidimensional Adaptive Sampling and Reconstruction for Ray Tracing’.
In: ACM Trans. Graph. 27.3, 33:1–33:10. issn: 0730-0301. doi: 10.1145/
1360612.1360632. url: http://doi.acm.org/10.1145/1360612.1360632
(cit. on pp. 4, 13, 14, 78).

Hargreaves, Shawn (2005). ‘Generating shaders from HLSL fragments’. In:
ShaderX3: Advanced rendering with DirectX and OpenGL (cit. on p. 9).

Harris, Mark (2014). ‘Maxwell: The most advanced CUDA GPU ever made’.
In: (cit. on p. 32).

Hendler, Danny, Itai Incze, Nir Shavit and Moran Tzafrir (2010). ‘Flat com-
bining and the synchronization-parallelism tradeoff’. In: Proceedings of the
22nd ACM symposium on Parallelism in algorithms and architectures. SPAA
’10. Thira, Santorini, Greece: ACM, pp. 355–364. isbn: 978-1-4503-0079-7.
doi: 10.1145/1810479.1810540. url: http://doi.acm.org/10.1145/
1810479.1810540 (cit. on pp. 30, 31).

Hendler, Danny, Yossi Lev, Mark Moir and Nir Shavit (Feb. 2006). ‘A Dynamic-
sized Nonblocking Work Stealing Deque’. In: Distrib. Comput. 18.3, pp. 189–
207. issn: 0178-2770. doi: 10.1007/s00446- 005- 0144- 5. url: http:
//dx.doi.org/10.1007/s00446-005-0144-5 (cit. on pp. 10, 42).

Herlihy, Maurice P. and Jeannette M. Wing (July 1990). ‘Linearizability: A
Correctness Condition for Concurrent Objects’. In: ACM Trans. Program.
Lang. Syst. 12.3, pp. 463–492. issn: 0164-0925. doi: 10.1145/78969.78972.
url: http://doi.acm.org/10.1145/78969.78972 (cit. on pp. 10, 39).

Herlihy, Maurice, Victor Luchangco and Mark Moir (2003). ‘Obstruction-Free
Synchronization: Double-Ended Queues as an Example’. In: Proceedings of
the 23rd International Conference on Distributed Computing Systems. ICDCS
’03. Washington, DC, USA: IEEE Computer Society, pp. 522–. isbn: 0-
7695-1920-2. url: http://dl.acm.org/citation.cfm?id=850929.851942
(cit. on pp. 30, 31).

Hoffman, Moshe, Ori Shalev and Nir Shavit (2007). ‘The baskets queue’. In:
Proceedings of the 11th international conference on Principles of distributed
systems. OPODIS’07. Guadeloupe, French West Indies: Springer-Verlag,
pp. 401–414. url: http://dl.acm.org/citation.cfm?id=1782394.
1782423 (cit. on pp. 11, 31).

Hoppe, Hugues (1999). ‘Optimization of Mesh Locality for Transparent Vertex
Caching’. In: Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’99. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., pp. 269–276. isbn: 0-201-48560-5.

141

https://doi.org/10.1145/1360612.1360632
https://doi.org/10.1145/1360612.1360632
http://doi.acm.org/10.1145/1360612.1360632
https://doi.org/10.1145/1810479.1810540
http://doi.acm.org/10.1145/1810479.1810540
http://doi.acm.org/10.1145/1810479.1810540
https://doi.org/10.1007/s00446-005-0144-5
http://dx.doi.org/10.1007/s00446-005-0144-5
http://dx.doi.org/10.1007/s00446-005-0144-5
https://doi.org/10.1145/78969.78972
http://doi.acm.org/10.1145/78969.78972
http://dl.acm.org/citation.cfm?id=850929.851942
http://dl.acm.org/citation.cfm?id=1782394.1782423
http://dl.acm.org/citation.cfm?id=1782394.1782423

Bibliography

doi: 10.1145/311535.311565. url: http://dx.doi.org/10.1145/311535.
311565 (cit. on pp. 15, 86, 94, 99, 101).

Hunt, Warren (2015). Virtual Reality: The Next Great Graphics Revolution. High
Performance Graphics, 2015, Keynote (cit. on p. 52).

Isenburg, Martin and Peter Lindstrom (Nov. 2005). ‘Streaming meshes’. In:
IEEE Visualization, pp. 231–238. isbn: 0-7803-9462-3 (cit. on p. 16).

Jia, Zhe, Marco Maggioni, Benjamin Staiger and Daniele Paolo Scarpazza
(2018). ‘Dissecting the NVIDIA Volta GPU Architecture via Microbench-
marking’. In: CoRR abs/1804.06826. arXiv: 1804.06826. url: http://
arxiv.org/abs/1804.06826 (cit. on p. 86).

Jones, Stephen (2012). ‘Introduction to dynamic parallelism’. In: GPU Techno-
logy Conference Presentation S. Vol. 338 (cit. on p. 54).

Juliachs, M., T. Carrard and J.-P. Nominé (2007). ‘Hybrid CPU-GPU Unstruc-
tured Meshes Parallel Volume Rendering on PC Clusters’. In: Proceedings
of the 7th Eurographics Conference on Parallel Graphics and Visualization.
EGPGV ’07. Lugano, Switzerland: Eurographics Association, pp. 85–92.
isbn: 978-3-905673-50-0. doi: 10.2312/EGPGV/EGPGV07/085- 092. url:
http://dx.doi.org/10.2312/EGPGV/EGPGV07/085-092 (cit. on p. 17).

Karras, Tero (2012). ‘Maximizing Parallelism in the Construction of BVHs,
Octrees, and K-d Trees’. In: Proceedings of the Fourth ACM SIGGRAPH /
Eurographics Conference on High-Performance Graphics. EGGH-HPG’12. Paris,
France: Eurographics Association, pp. 33–37. isbn: 978-3-905674-41-5. doi:
10.2312/EGGH/HPG12/033-037. url: http://dx.doi.org/10.2312/EGGH/
HPG12/033-037 (cit. on p. 116).

Kato, Shinpei, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa and R.
Rajkumar (Nov. 2011). ‘RGEM: A Responsive GPGPU Execution Model
for Runtime Engines’. In: Real-Time Systems Symposium (RTSS), 2011 IEEE
32nd, pp. 57–66. doi: 10.1109/RTSS.2011.13 (cit. on p. 8).

Kato, Shinpei, Karthik Lakshmanan, Raj Rajkumar and Yutaka Ishikawa (2011).
‘TimeGraph: GPU scheduling for real-time multi-tasking environments’.
In: Proc. USENIX ATC, pp. 17–30 (cit. on p. 8).

Kenzel, Michael, Bernhard Kerbl, Dieter Schmalstieg and Markus Steinberger
(Nov. 2018). ‘A High-Performance Software Graphics Pipeline Architecture
for the GPU’. In: ACM Trans. Graph. 37.4 (cit. on pp. 24, 127).

Kenzel, Michael, Bernhard Kerbl, Wolfgang Tatzgern, Elena Ivanchenko, Di-
eter Schmalstieg and Markus Steinberger (Aug. 2018). ‘On-the-fly Vertex
Reuse for Massively-Parallel Software Geometry Processing’. In: Proc.
ACM Comput. Graph. Interact. Tech. 1.2 (cit. on pp. 14, 28, 86).

142

https://doi.org/10.1145/311535.311565
http://dx.doi.org/10.1145/311535.311565
http://dx.doi.org/10.1145/311535.311565
https://arxiv.org/abs/1804.06826
http://arxiv.org/abs/1804.06826
http://arxiv.org/abs/1804.06826
https://doi.org/10.2312/EGPGV/EGPGV07/085-092
http://dx.doi.org/10.2312/EGPGV/EGPGV07/085-092
https://doi.org/10.2312/EGGH/HPG12/033-037
http://dx.doi.org/10.2312/EGGH/HPG12/033-037
http://dx.doi.org/10.2312/EGGH/HPG12/033-037
https://doi.org/10.1109/RTSS.2011.13

Bibliography

Kerbl, Bernhard, Denis Kalkofen, Markus Steinberger and Dieter Schmal-
stieg (2015). ‘Interactive Disassembly Planning for Complex Objects’. In:
Computer Graphics Forum 34.2 (cit. on p. 27).

Kerbl, Bernhard, Michael Kenzel, Elena Ivanchenko, Dieter Schmalstieg and
Markus Steinberger (Aug. 2018). ‘Revisiting The Vertex Cache: Under-
standing and Optimizing Vertex Processing on the modern GPU’. In: Proc.
ACM Comput. Graph. Interact. Tech. 1.2 (cit. on p. 26).

Kerbl, Bernhard, Michael Kenzel, Joerg H. Mueller, Dieter Schmalstieg and
Markus Steinberger (2018). ‘The Broker Queue: A Fast, Linearizable FIFO
Queue for Fine-Granular Work Distribution on the GPU’. In: Proceedings
of the International Conference on Supercomputing. ICS ’18. Beijing, China
(cit. on p. 20).

Kerbl, Bernhard, Michael Kenzel, Dieter Schmalstieg, Hans-Peter Seidel and
Markus Steinberger (2016). ‘Hierarchical Bucket Queuing for Fine-Grained
Priority Scheduling on the GPU’. In: Computer Graphics Forum (cit. on
p. 20).

Kerbl, Bernhard, Michael Kenzel, Dieter Schmalstieg and Markus Steinberger
(2017). ‘Effective Static Bin Patterns for Sort-middle Rendering’. In: Pro-
ceedings of High Performance Graphics. HPG ’17. Los Angeles, California:
ACM (cit. on p. 26).

Kerbl, Bernhard, Joerg H. Mueller, Michael Kenzel, Dieter Schmalstieg and
Markus Steinberger (2018). ‘A Scalable Queue for Work Distribution on
GPUs’. In: Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. PPoPP ’18. Vienna, Austria: ACM
(cit. on p. 28).

Kerbl, Bernhard, Philip Voglreiter, Rostislav Khlebnikov, Dieter Schmalstieg,
Daniel Seider, Michael Moche, Philipp Stiegler, R. Horst Portugaller and
Bernhard Kainz (2013). ‘Intervention Planning of Hepatocellular Car-
cinoma Radio-Frequency Ablations’. In: Clinical Image-Based Procedures.
From Planning to Intervention. Vol. 7761. Lecture Notes in Computer Science.
Springer Berlin Heidelberg (cit. on p. 27).

Kettunen, Markus, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Dur-
and and Matthias Zwicker (July 2015). ‘Gradient-domain Path Tracing’.
In: ACM Trans. Graph. 34.4, 123:1–123:13. issn: 0730-0301. doi: 10.1145/
2766997. url: http://doi.acm.org/10.1145/2766997 (cit. on p. 14).

Khronos-Group (2015). The OpenCL Specification 2.1 (cit. on p. 9).
Kubisch, Christoph (2015). Life of a triangle – NVIDIA’s logical pipeline. Tech. rep.

NVIDIA Corporation. url: https://developer.nvidia.com/content/
life-triangle-nvidias-logical-pipeline (visited on 04/01/2017) (cit.
on p. 86).

143

https://doi.org/10.1145/2766997
https://doi.org/10.1145/2766997
http://doi.acm.org/10.1145/2766997
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline

Bibliography

Kung, H. T. and John T. Robinson (June 1981). ‘On optimistic methods for
concurrency control’. In: ACM Trans. Database Syst. 6.2, pp. 213–226. issn:
0362-5915. doi: 10.1145/319566.319567. url: http://doi.acm.org/10.
1145/319566.319567 (cit. on pp. 30, 31).

Laine, Samuli and Tero Karras (2011). ‘High-performance Software Rasteriz-
ation on GPUs’. In: Proc. High Performance Graphics. HPG ’11, pp. 79–88.
isbn: 978-1-4503-0896-0 (cit. on p. 16).

Laine, Samuli, Tero Karras and Timo Aila (2013). ‘Megakernels Considered
Harmful: Wavefront Path Tracing on GPUs’. In: Proc. High-Performance
Graphics. HPG ’13. Anaheim, California: ACM, pp. 137–143. isbn: 978-1-
4503-2135-8. doi: 10.1145/2492045.2492060. url: http://doi.acm.org/
10.1145/2492045.2492060 (cit. on p. 9).

Lamport, Leslie (Apr. 1983). ‘Specifying Concurrent Program Modules’. In:
ACM Trans. Program. Lang. Syst. 5.2, pp. 190–222. issn: 0164-0925. doi: 10.
1145/69624.357207. url: http://doi.acm.org/10.1145/69624.357207
(cit. on p. 10).

Lee, Haeseung and M.A. Al Faruque (Mar. 2014). ‘GPU-EvR: Run-time event
based real-time scheduling framework on GPGPU platform’. In: Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2014, pp. 1–
6. doi: 10.7873/DATE.2014.233 (cit. on p. 8).

Lee, Patrick P. C., Tian Bu and Girish Chandranmenon (2009). ‘A lock-free,
cache-efficient shared ring buffer for multi-core architectures’. In: Pro-
ceedings of the 5th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems. ANCS ’09. Princeton, New Jersey: ACM,
pp. 78–79. isbn: 978-1-60558-630-4. doi: 10.1145/1882486.1882508. url:
http://doi.acm.org/10.1145/1882486.1882508 (cit. on p. 10).

Lehtinen, Jaakko, Timo Aila, Samuli Laine and Frédo Durand (July 2012).
‘Reconstructing the Indirect Light Field for Global Illumination’. In: ACM
Trans. Graph. 31.4, 51:1–51:10. issn: 0730-0301. doi: 10.1145/2185520.
2185547. url: http://doi.acm.org/10.1145/2185520.2185547 (cit. on
p. 14).

Leskovec, Jure and Andrej Krevl (June 2014). SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data (cit. on
p. 47).

Li, Tzu-Mao, Yu-Ting Wu and Yung-Yu Chuang (Nov. 2012). ‘SURE-based
Optimization for Adaptive Sampling and Reconstruction’. In: ACM Trans.
Graph. 31.6, 194:1–194:9. issn: 0730-0301. doi: 10.1145/2366145.2366213.
url: http://doi.acm.org/10.1145/2366145.2366213 (cit. on p. 13).

Lin, G. and T. P. Y. Yu (July 2006). ‘An improved vertex caching scheme for
3D mesh rendering’. In: IEEE Transactions on Visualization and Computer

144

https://doi.org/10.1145/319566.319567
http://doi.acm.org/10.1145/319566.319567
http://doi.acm.org/10.1145/319566.319567
https://doi.org/10.1145/2492045.2492060
http://doi.acm.org/10.1145/2492045.2492060
http://doi.acm.org/10.1145/2492045.2492060
https://doi.org/10.1145/69624.357207
https://doi.org/10.1145/69624.357207
http://doi.acm.org/10.1145/69624.357207
https://doi.org/10.7873/DATE.2014.233
https://doi.org/10.1145/1882486.1882508
http://doi.acm.org/10.1145/1882486.1882508
https://doi.org/10.1145/2185520.2185547
https://doi.org/10.1145/2185520.2185547
http://doi.acm.org/10.1145/2185520.2185547
http://snap.stanford.edu/data
https://doi.org/10.1145/2366145.2366213
http://doi.acm.org/10.1145/2366145.2366213

Bibliography

Graphics 12.4, pp. 640–648. issn: 1077-2626. doi: 10.1109/TVCG.2006.59
(cit. on pp. 15, 16, 86, 94, 99).

Liu, Xiao-Dan, Jia-Ze Wu and Chang-Wen Zheng (June 2012). ‘KD-tree based
parallel adaptive rendering’. In: The Visual Computer 28.6, pp. 613–623.
issn: 1432-2315. doi: 10.1007/s00371-012-0709-9. url: https://doi.
org/10.1007/s00371-012-0709-9 (cit. on p. 14).

Liu, Xiao-Dan and Chang-Wen Zheng (June 2013). ‘Parallel adaptive sampling
and reconstruction using multi-scale and directional analysis’. In: The
Visual Computer 29.6, pp. 501–511. issn: 1432-2315. doi: 10.1007/s00371-
013-0814-4. url: https://doi.org/10.1007/s00371-013-0814-4 (cit. on
p. 14).

McManus, Donald and Carl Beckmann (1996). ‘Optimal Static 2-dimensional
Screen Subdivision for Parallel Rasterization Architectures’. In: Proceedings
of the Eleventh Eurographics Conference on Graphics Hardware. EGGH’96.
Poitiers, France: Eurographics Association, pp. 59–67. doi: 10.2312/EGGH/
EGGH96/059-067. url: http://dx.doi.org/10.2312/EGGH/EGGH96/059-
067 (cit. on p. 17).

Mehta, Soham Uday, JiaXian Yao, Ravi Ramamoorthi and Fredo Durand (July
2014). ‘Factored Axis-aligned Filtering for Rendering Multiple Distribution
Effects’. In: ACM Trans. Graph. 33.4, 57:1–57:12. issn: 0730-0301. doi: 10.
1145/2601097.2601113. url: http://doi.acm.org/10.1145/2601097.
2601113 (cit. on p. 14).

Membarth, Richard, Jan-Hugo Lupp, Frank Hannig, Jürgen Teich, Mario
Körner and Wieland Eckert (2012). ‘Dynamic Task-Scheduling and Re-
source Management for GPU Accelerators in Medical Imaging’. English. In:
Architecture of Computing Systems. Ed. by Andreas Herkersdorf, Kay Römer
and Uwe Brinkschulte. Vol. 7179. ARCS 2012. Springer Berlin Heidelberg,
pp. 147–159. isbn: 978-3-642-28292-8. doi: 10.1007/978-3-642-28293-
5_13. url: http://dx.doi.org/10.1007/978-3-642-28293-5_13 (cit. on
p. 8).

Michael, Maged M. and Michael L. Scott (1995). Correction of a Memory Man-
agement Method for Lock-Free Data Structures. Tech. rep. Rochester, NY, USA
(cit. on p. 11).

Michael, Maged M. and Michael L. Scott (1996). ‘Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms’. In: Proceedings
of the fifteenth annual ACM symposium on Principles of distributed computing.
PODC ’96. Philadelphia, Pennsylvania, USA: ACM, pp. 267–275. isbn:
0-89791-800-2. doi: 10.1145/248052.248106. url: http://doi.acm.org/
10.1145/248052.248106 (cit. on pp. 11, 31, 151).

145

https://doi.org/10.1109/TVCG.2006.59
https://doi.org/10.1007/s00371-012-0709-9
https://doi.org/10.1007/s00371-012-0709-9
https://doi.org/10.1007/s00371-012-0709-9
https://doi.org/10.1007/s00371-013-0814-4
https://doi.org/10.1007/s00371-013-0814-4
https://doi.org/10.1007/s00371-013-0814-4
https://doi.org/10.2312/EGGH/EGGH96/059-067
https://doi.org/10.2312/EGGH/EGGH96/059-067
http://dx.doi.org/10.2312/EGGH/EGGH96/059-067
http://dx.doi.org/10.2312/EGGH/EGGH96/059-067
https://doi.org/10.1145/2601097.2601113
https://doi.org/10.1145/2601097.2601113
http://doi.acm.org/10.1145/2601097.2601113
http://doi.acm.org/10.1145/2601097.2601113
https://doi.org/10.1007/978-3-642-28293-5_13
https://doi.org/10.1007/978-3-642-28293-5_13
http://dx.doi.org/10.1007/978-3-642-28293-5_13
https://doi.org/10.1145/248052.248106
http://doi.acm.org/10.1145/248052.248106
http://doi.acm.org/10.1145/248052.248106

Bibliography

Mitchell, Don P. (Aug. 1987). ‘Generating Antialiased Images at Low Sampling
Densities’. In: SIGGRAPH Comput. Graph. 21.4, pp. 65–72. issn: 0097-8930.
doi: 10.1145/37402.37410. url: http://doi.acm.org/10.1145/37402.
37410 (cit. on pp. 13, 52, 79).

Mohr, Peter, Bernhard Kerbl, Michael Donoser, Dieter Schmalstieg and Denis
Kalkofen (2015). ‘Retargeting Technical Documentation to Augmented
Reality’. In: Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. CHI ’15. Seoul, Republic of Korea: ACM (cit. on
p. 27).

Molnar, Steven, Michael Cox, David Ellsworth and Henry Fuchs (July 1994).
‘A Sorting Classification of Parallel Rendering’. In: IEEE Comput. Graph.
Appl. 14.4, pp. 23–32. issn: 0272-1716. doi: 10.1109/38.291528. url:
http://dx.doi.org/10.1109/38.291528 (cit. on pp. 17, 106).

Molnar, Steven, John Eyles and John Poulton (July 1992). ‘PixelFlow: High-
speed Rendering Using Image Composition’. In: SIGGRAPH Comput.
Graph. 26.2, pp. 231–240. issn: 0097-8930. doi: 10.1145/142920.134067.
url: http://doi.acm.org/10.1145/142920.134067 (cit. on p. 16).

Moon, Bochang, Nathan Carr and Sung-Eui Yoon (Sept. 2014). ‘Adaptive
Rendering Based on Weighted Local Regression’. In: ACM Trans. Graph.
33.5, 170:1–170:14. issn: 0730-0301. doi: 10.1145/2641762. url: http:
//doi.acm.org/10.1145/2641762 (cit. on p. 13).

Morrison, Adam and Yehuda Afek (Feb. 2013). ‘Fast Concurrent Queues for
x86 Processors’. In: SIGPLAN Not. 48.8, pp. 103–112. issn: 0362-1340. doi:
10.1145/2517327.2442527. url: http://doi.acm.org/10.1145/2517327.
2442527 (cit. on pp. 12, 31, 38, 151).

Nocentino, Anthony E. and Philip J. Rhodes (2010). ‘Optimizing Memory
Access on GPUs Using Morton Order Indexing’. In: Proceedings of the 48th
Annual Southeast Regional Conference. ACM SE ’10. Oxford, Mississippi:
ACM, 18:1–18:4. isbn: 978-1-4503-0064-3. doi: 10.1145/1900008.1900035.
url: http://doi.acm.org/10.1145/1900008.1900035 (cit. on p. 116).

NVIDIA (2009). Whitepaper: NVIDIA’s Next Generation CUDA Compute Architec-
ture: Fermi. http://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf. Retrieved April
6, 2017 (cit. on pp. 107, 161).

Nvidia (2012). Next generation CUDA computer architecture Kepler GK110 (cit. on
p. 9).

Orozco, Daniel, Elkin Garcia, Rishi Khan, Kelly Livingston and Guang R.
Gao (Jan. 2012). ‘Toward High-throughput Algorithms on Many-core
Architectures’. In: ACM Trans. Archit. Code Optim. 8.4, 49:1–49:21. issn:

146

https://doi.org/10.1145/37402.37410
http://doi.acm.org/10.1145/37402.37410
http://doi.acm.org/10.1145/37402.37410
https://doi.org/10.1109/38.291528
http://dx.doi.org/10.1109/38.291528
https://doi.org/10.1145/142920.134067
http://doi.acm.org/10.1145/142920.134067
https://doi.org/10.1145/2641762
http://doi.acm.org/10.1145/2641762
http://doi.acm.org/10.1145/2641762
https://doi.org/10.1145/2517327.2442527
http://doi.acm.org/10.1145/2517327.2442527
http://doi.acm.org/10.1145/2517327.2442527
https://doi.org/10.1145/1900008.1900035
http://doi.acm.org/10.1145/1900008.1900035
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Bibliography

1544-3566. doi: 10.1145/2086696.2086728. url: http://doi.acm.org/10.
1145/2086696.2086728 (cit. on pp. 11, 31, 32).

Overbeck, Ryan S., Craig Donner and Ravi Ramamoorthi (Dec. 2009). ‘Ad-
aptive Wavelet Rendering’. In: ACM Trans. Graph. 28.5, 140:1–140:12. issn:
0730-0301. doi: 10.1145/1618452.1618486. url: http://doi.acm.org/10.
1145/1618452.1618486 (cit. on pp. 4, 13, 14, 52, 78).

Parker, Steven G. et al. (July 2010). ‘OptiX: a general purpose ray tracing
engine’. In: ACM Trans. Graph. 29.4, 66:1–66:13. issn: 0730-0301. doi: 10.
1145/1778765.1778803. url: http://doi.acm.org/10.1145/1778765.
1778803 (cit. on p. 9).

Patney, Anjul, Mohamed S. Ebeida and John D. Owens (2009). ‘Parallel View-
dependent Tessellation of Catmull-Clark Subdivision Surfaces’. In: Pro-
ceedings of the Conference on High Performance Graphics 2009. HPG ’09.
New Orleans, Louisiana: ACM, pp. 99–108. isbn: 978-1-60558-603-8. doi:
10.1145/1572769.1572785. url: http://doi.acm.org/10.1145/1572769.
1572785 (cit. on p. 13).

Patney, Anjul and John D. Owens (Dec. 2008). ‘Real-time Reyes-style Adaptive
Surface Subdivision’. In: ACM Trans. Graph. 27.5, 143:1–143:8. issn: 0730-
0301. doi: 10.1145/1409060.1409096. url: http://doi.acm.org/10.
1145/1409060.1409096 (cit. on p. 13).

Patney, Anjul, Stanley Tzeng, Kerry A. Seitz Jr. and John D. Owens (July 2015).
‘Piko: A Framework for Authoring Programmable Graphics Pipelines’.
In: ACM Trans. Graph. 34.4, 147:1–147:13. issn: 0730-0301. doi: 10.1145/
2766973. url: http://doi.acm.org/10.1145/2766973 (cit. on p. 16).

Purcell, Tim (2010). ‘Fast Tessellated Rendering on the Fermi GF100’. In: High
Performance Graphics Conf., Hot 3D presentation (cit. on pp. 86, 107, 127).

Riguer, Guennadi (2006). The Radeon X1000 Series Programming Guide (cit. on
p. 15).

Rousselle, Fabrice, Claude Knaus and Matthias Zwicker (Dec. 2011). ‘Adaptive
Sampling and Reconstruction Using Greedy Error Minimization’. In: ACM
Trans. Graph. 30.6, 159:1–159:12. issn: 0730-0301. doi: 10.1145/2070781.
2024193. url: http://doi.acm.org/10.1145/2070781.2024193 (cit. on
pp. 4, 13, 52).

Sander, Pedro V., Diego Nehab and Joshua Barczak (July 2007). ‘Fast Triangle
Reordering for Vertex Locality and Reduced Overdraw’. In: ACM Trans.
Graph. 26.3. issn: 0730-0301. doi: 10.1145/1276377.1276489. url: http:
//doi.acm.org/10.1145/1276377.1276489 (cit. on pp. 15, 86, 99).

Satish, Nadathur, Mark Harris and Michael Garland (2009). ‘Designing effi-
cient sorting algorithms for manycore GPUs’. In: Proc. International Sym-
posium on Parallel&Distributed Processing. IPDPS ’09. Washington, DC,

147

https://doi.org/10.1145/2086696.2086728
http://doi.acm.org/10.1145/2086696.2086728
http://doi.acm.org/10.1145/2086696.2086728
https://doi.org/10.1145/1618452.1618486
http://doi.acm.org/10.1145/1618452.1618486
http://doi.acm.org/10.1145/1618452.1618486
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/1778765.1778803
http://doi.acm.org/10.1145/1778765.1778803
http://doi.acm.org/10.1145/1778765.1778803
https://doi.org/10.1145/1572769.1572785
http://doi.acm.org/10.1145/1572769.1572785
http://doi.acm.org/10.1145/1572769.1572785
https://doi.org/10.1145/1409060.1409096
http://doi.acm.org/10.1145/1409060.1409096
http://doi.acm.org/10.1145/1409060.1409096
https://doi.org/10.1145/2766973
https://doi.org/10.1145/2766973
http://doi.acm.org/10.1145/2766973
https://doi.org/10.1145/2070781.2024193
https://doi.org/10.1145/2070781.2024193
http://doi.acm.org/10.1145/2070781.2024193
https://doi.org/10.1145/1276377.1276489
http://doi.acm.org/10.1145/1276377.1276489
http://doi.acm.org/10.1145/1276377.1276489

Bibliography

USA: IEEE Computer Society, pp. 1–10. isbn: 978-1-4244-3751-1. doi:
10.1109/IPDPS.2009.5161005. url: http://dx.doi.org/10.1109/
IPDPS.2009.5161005 (cit. on p. 9).

Sattlecker, Martin and Markus Steinberger (2015). ‘Reyes Rendering on the
GPU’. In: Proceedings of the 31st Spring Conference on Computer Graphics.
SCCG ’15. Smolenice, Slovakia: ACM, pp. 31–38. isbn: 978-1-4503-3693-2.
doi: 10.1145/2788539.2788543. url: http://doi.acm.org/10.1145/
2788539.2788543 (cit. on p. 13).

Scogland, Thomas R.W. and Wu-chun Feng (2015). ‘Design and Evaluation
of Scalable Concurrent Queues for Many-Core Architectures’. In: Proc.
ACM/SPEC International Conference on Performance Engineering. ICPE ’15.
Austin, Texas, USA: ACM, pp. 63–74. isbn: 978-1-4503-3248-4. doi: 10.
1145/2668930.2688048. url: http://doi.acm.org/10.1145/2668930.
2688048 (cit. on pp. 12, 30, 31).

Seiler, Larry et al. (Aug. 2008). ‘Larrabee: A Many-core x86 Architecture for
Visual Computing’. In: ACM Trans. Graph. 27.3, 18:1–18:15. issn: 0730-0301.
doi: 10.1145/1360612.1360617. url: http://doi.acm.org/10.1145/
1360612.1360617 (cit. on p. 16).

Shann, Chien-Hua, T.-L. Huang and Cheng Chen (2000). ‘A practical nonblock-
ing queue algorithm using compare-and-swap’. In: Parallel and Distributed
Systems, 2000. Proceedings. Seventh International Conference on, pp. 470–475.
doi: 10.1109/ICPADS.2000.857731 (cit. on pp. 11, 31).

Sheaffer, J. W., D. Luebke and K. Skadron (2004). ‘A Flexible Simulation
Framework for Graphics Architectures’. In: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware. HWWS ’04.
Grenoble, France: ACM, pp. 85–94. isbn: 3-905673-15-0. doi: 10.1145/
1058129.1058142. url: http://doi.acm.org/10.1145/1058129.1058142
(cit. on p. 15).

Steinberger, Markus, Bernhard Kainz, Bernhard Kerbl, Stefan Hauswiesner,
Michael Kenzel and Dieter Schmalstieg (Nov. 2012). ‘Softshell: dynamic
scheduling on GPUs’. In: ACM Trans. Graph. 31.6, 161:1–161:11 (cit. on
pp. 9, 19, 30, 55, 61).

Steinberger, Markus, Michael Kenzel, Pedro Boechat, Bernhard Kerbl, Mark
Dokter and Dieter Schmalstieg (Nov. 2014). ‘Whippletree: Task-based
Scheduling of Dynamic Workloads on the GPU’. In: ACM Trans. Graph.
33.6 (cit. on pp. 9, 13, 19, 30, 54, 55, 57, 75, 76).

Steinberger, Markus, Michael Kenzel, Bernhard Kainz and Dieter Schmalstieg
(2012). ‘ScatterAlloc: Massively parallel dynamic memory allocation for
the GPU’. In: Innovative Parallel Computing (InPar), 2012, pp. 1–10. doi:
10.1109/InPar.2012.6339604 (cit. on p. 32).

148

https://doi.org/10.1109/IPDPS.2009.5161005
http://dx.doi.org/10.1109/IPDPS.2009.5161005
http://dx.doi.org/10.1109/IPDPS.2009.5161005
https://doi.org/10.1145/2788539.2788543
http://doi.acm.org/10.1145/2788539.2788543
http://doi.acm.org/10.1145/2788539.2788543
https://doi.org/10.1145/2668930.2688048
https://doi.org/10.1145/2668930.2688048
http://doi.acm.org/10.1145/2668930.2688048
http://doi.acm.org/10.1145/2668930.2688048
https://doi.org/10.1145/1360612.1360617
http://doi.acm.org/10.1145/1360612.1360617
http://doi.acm.org/10.1145/1360612.1360617
https://doi.org/10.1109/ICPADS.2000.857731
https://doi.org/10.1145/1058129.1058142
https://doi.org/10.1145/1058129.1058142
http://doi.acm.org/10.1145/1058129.1058142
https://doi.org/10.1109/InPar.2012.6339604

Bibliography

Tchiboukdjian, Marc, Vincent Danjean and Bruno Raffin (June 2008). ‘A Fast
Cache-Oblivious Mesh Layout with Theoretical Guarantees’. In: Interna-
tional Workshop on Super Visualization (IWSV’08). Kos, Greece. url: https:
//hal.inria.fr/inria-00436053 (cit. on p. 16).

Tchiboukdjian, Marc, Vincent Danjean and Bruno Raffin (Sept. 2010). ‘Binary
Mesh Partitioning for Cache-Efficient Visualization’. In: IEEE Transactions
on Visualization and Computer Graphics 16.5, pp. 815–828. issn: 1077-2626.
doi: 10.1109/TVCG.2010.19 (cit. on p. 16).

Tsigas, Philippas and Yi Zhang (2001). ‘A simple, fast and scalable non-
blocking concurrent FIFO queue for shared memory multiprocessor sys-
tems’. In: Proceedings of the thirteenth annual ACM symposium on Parallel
algorithms and architectures. SPAA ’01. Crete Island, Greece: ACM, pp. 134–
143. isbn: 1-58113-409-6. doi: 10.1145/378580.378611. url: http://doi.
acm.org/10.1145/378580.378611 (cit. on pp. 11, 31).

Tzeng, Stanley, Anjul Patney and John D. Owens (2010). ‘Task management
for irregular-parallel workloads on the GPU’. In: Proc. High Performance
Graphics. HPG ’10. Saarbrucken, Germany: Eurographics Association,
pp. 29–37. url: http://dl.acm.org/citation.cfm?id=1921479.1921485
(cit. on pp. 9, 75).

Valois, John D. (1994). ‘Implementing Lock-Free Queues’. In: In Proceedings
of the Seventh International Conference on Parallel and Distributed Computing
Systems, Las Vegas, NV, pp. 64–69 (cit. on p. 11).

Vinkler, M., V. Havran, J. Bittner and J. Sochor (2015). ‘Parallel On-Demand
Hierarchy Construction on Contemporary GPUs’. In: IEEE Transactions
on Visualization and Computer Graphics PP.99, pp. 1–1. issn: 1077-2626. doi:
10.1109/TVCG.2015.2465898 (cit. on p. 9).

Wang, Po-Han, Chia-Lin Yang, Yen-Ming Chen and Yu-Jung Cheng (Oct.
2011). ‘Power Gating Strategies on GPUs’. In: ACM Trans. Archit. Code
Optim. 8.3, 13:1–13:25. issn: 1544-3566. doi: 10.1145/2019608.2019612.
url: http://doi.acm.org/10.1145/2019608.2019612 (cit. on p. 15).

Wang, Lizhe, Dan Chen, Ze Deng and Fang Huang (July 2011). ‘Review:
Large Scale Distributed Visualization on Computational Grids: A Review’.
In: Comput. Electr. Eng. 37.4, pp. 403–416. issn: 0045-7906. doi: 10.1016/
j.compeleceng.2011.05.010. url: http://dx.doi.org/10.1016/j.
compeleceng.2011.05.010 (cit. on p. 17).

Ward, Gregory J., Francis M. Rubinstein and Robert D. Clear (June 1988). ‘A
Ray Tracing Solution for Diffuse Interreflection’. In: SIGGRAPH Comput.
Graph. 22.4, pp. 85–92. issn: 0097-8930. doi: 10.1145/378456.378490. url:
http://doi.acm.org/10.1145/378456.378490 (cit. on p. 13).

149

https://hal.inria.fr/inria-00436053
https://hal.inria.fr/inria-00436053
https://doi.org/10.1109/TVCG.2010.19
https://doi.org/10.1145/378580.378611
http://doi.acm.org/10.1145/378580.378611
http://doi.acm.org/10.1145/378580.378611
http://dl.acm.org/citation.cfm?id=1921479.1921485
https://doi.org/10.1109/TVCG.2015.2465898
https://doi.org/10.1145/2019608.2019612
http://doi.acm.org/10.1145/2019608.2019612
https://doi.org/10.1016/j.compeleceng.2011.05.010
https://doi.org/10.1016/j.compeleceng.2011.05.010
http://dx.doi.org/10.1016/j.compeleceng.2011.05.010
http://dx.doi.org/10.1016/j.compeleceng.2011.05.010
https://doi.org/10.1145/378456.378490
http://doi.acm.org/10.1145/378456.378490

Bibliography

Wen, Yuan, Zheng Wang and M.F.P. O’Boyle (Dec. 2014). ‘Smart multi-task
scheduling for OpenCL programs on CPU/GPU heterogeneous platforms’.
In: High Performance Computing (HiPC), 2014, pp. 1–10. doi: 10.1109/HiPC.
2014.7116910 (cit. on p. 8).

Yang, Chaoran and John Mellor-Crummey (2016). ‘A Wait-free Queue As
Fast As Fetch-and-add’. In: Proc. ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. PPoPP ’16. Barcelona, Spain: ACM,
16:1–16:13. isbn: 978-1-4503-4092-2. doi: 10.1145/2851141.2851168. url:
http://doi.acm.org/10.1145/2851141.2851168 (cit. on pp. 12, 31, 151).

Yoon, Sung-eui and Peter Lindstrom (Nov. 2007). ‘Random-Accessible Com-
pressed Triangle Meshes’. In: IEEE Transactions on Visualization and Com-
puter Graphics 13.6, pp. 1536–1543. issn: 1077-2626. doi: 10.1109/TVCG.
2007.70585 (cit. on p. 16).

Zhou, Kun, Qiming Hou, Zhong Ren, Minmin Gong, Xin Sun and Baining
Guo (Dec. 2009). ‘RenderAnts: Interactive Reyes Rendering on GPUs’.
In: ACM Trans. Graph. 28.5, 155:1–155:11. issn: 0730-0301. doi: 10.1145/
1618452.1618501. url: http://doi.acm.org/10.1145/1618452.1618501
(cit. on p. 13).

Zwicker, Matthias, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi
Ramamoorthi, Fabrice Rousselle, Pradeep Sen, Cyril Soler and Sungeui E.
Yoon (2015). ‘Recent Advances in Adaptive Sampling and Reconstruction
for Monte Carlo Rendering’. In: Computer Graphics Forum. doi: 10.1111/
cgf.12592 (cit. on pp. 13, 14).

150

https://doi.org/10.1109/HiPC.2014.7116910
https://doi.org/10.1109/HiPC.2014.7116910
https://doi.org/10.1145/2851141.2851168
http://doi.acm.org/10.1145/2851141.2851168
https://doi.org/10.1109/TVCG.2007.70585
https://doi.org/10.1109/TVCG.2007.70585
https://doi.org/10.1145/1618452.1618501
https://doi.org/10.1145/1618452.1618501
http://doi.acm.org/10.1145/1618452.1618501
https://doi.org/10.1111/cgf.12592
https://doi.org/10.1111/cgf.12592

Appendix A.

Performance of the Broker Queue
on Other Architectures

We revisit our argument regarding design choices in the broker queue, given
that it targets GPU architectures. At the core of its functionality, the broker
queue employs a Counter variable to weigh enqueued against dequeued
elements in the queue. This counter is modified using atomic addition or
subtraction primitives. Previous queue designs that target CPU architectures
usually refrain from such designs, as they tend to create choke points. How-
ever, in our research, we have shown that the differences in design between
CPU and GPU have significant influences on their respective performance
for contended atomic operations. Hence, the broker queue exploits the pe-
culiarities of the GPU architecture to achieve high performance, despite it
employing a methodology that would be considered harmful on CPUs. Here
we show that, on the CPU, the broker queue is easily bested by elaborate
queuing techniques that were carefully tailored towards CPU architectures in-
stead. Figures A.1a and A.1b plot runtimes for a queuing experiment, similar
to the initial evaluation in Chapter 4 each thread performs a fixed number
N = 10 000 000 of enqueue/dequeue pairs. We compare against the most
recently presented techniques, LCRQ (Morrison and Afek, 2013) and WFQ
(Yang and Mellor-Crummey, 2016), as well as the Michael-Scott queue (MSQ)
(Michael and Scott, 1996). We use the readily available framework conceived
for the evaluation of WFQ 1 and add an implementation of our own queuing
algorithm, according to the provided pseudocode.

1Hosted at https://github.com/chaoran/fast-wait-free-queue.

151

Appendix A. Performance of the Broker Queue on Other Architectures

2 4 6 8
Threads

20

30

40

50

60
Ti

m
e

[m
s]

BQ
LCRQ
MSQ
WFQ

(a) Intel(R) Core(TM) i7-4820K CPU @3.70GHz

0 10 20 30 40
Threads

0

100

200

300

400

Ti
m

e
[m

s]

BQ
LCRQ
MSQ
WFQ

(b) Intel(R) Xeon(R) CPU E5-2680 v2 @2.80GHz

Figure A.1.: Evaluation of the broker queue on CPUs.

As expected, the sophisticated designs of LCRQ and WFQ outperform our
approach on CPU architectures (see Figures A.1a and A.1b). In our experiment,
the non-linear growth in runtime peaks at the maximum number of available
threads at more than 2× compared to LCRQ or WFQ. Contention is easily
identified to be the bottleneck and is even visible in the graphs. Figure
A.1a clearly shows our approach to be the fastest at a single thread, due to
its low code complexity. However, as the number of threads increase, this
fact is reversed, and the broker queue quickly trails behind more complex,
less contention-heavy alternatives. Figure A.1b show an increased runtime
spike in the range from 10 to 20 threads. Given that each CPU on the target
machine contains 10 cores, it is reasonable to assume that in this range, the
requirement for contended atomic operations and implied synchronization
between physical CPUs is extremely costly. In comparison, both WFQ and
LCRQ experience only a slight uptick in total runtime. Interestingly, the
broker queue is still significantly more efficient than the Michael-Scott queue.
In conclusion, our experiments show that the broker queue is a poor choice
and that fast alternatives exist for execution on the CPU. However, it also
highlights how seemingly simple approaches can outperform established
methods on GPUs: the weaknesses of the broker queue on the CPU (i.e., relying
on contended atomic addition) become its strengths on GPU hardware.

We ran the same experiments that were included in our full evaluation for
two older Nvidia GPU generations. In addition to the original 1080Ti model
(Pascal), we investigate GTX 780Ti (Kepler) and 980Ti (Maxwell) perform-
ance. Experiments for initial runtime, imbalanced workload and practical
application (Page Rank) were run on each. The overall trends from Chapter
4 are confirmed by the following figures. We discuss results, deviations in
performance and other artifacts in the accompanying captions below.

152

0 5000 10000 15000 20000 25000 30000
Threads

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
[m

s]

BQ
GQ
LCRQ
WFQ
2MQ

MSQ
NSFQ
SHCQ
TZQ

(a) Runtime of all queues, with thread granularity on GTX 780Ti

0 10000 20000 30000 40000
Threads

0

1000

2000

3000

4000

5000

Ti
m

e
[m

s]

BQ
GQ
LCRQ
WFQ
2MQ

MSQ
NSFQ
SHCQ
TZQ

(b) Runtime of all queues, with thread granularity on GTX 980Ti

Figure A.2.: Running initial runtime comparison (10 enqueue/dequeue pairs) on all tested
queues. As with our previously reported results, we can clearly distinguish
two classes in terms of performance. The fastest parallel queuing algorithms
in this basic case, thus warranting detailed assessment, are the LCRQ, WFQ,
Gottlieb’s Queue (GQ) and ours (BQ). The non-blocking version of the queue
by Scogland-Feng is particularly slow on the 780Ti and less so on the 980Ti. In
contrast, while still slower than the top contenders, the dual-mutex queue (2MQ)
seems to perform much better on the Kepler architecture than on newer GPUs.

153

Appendix A. Performance of the Broker Queue on Other Architectures

0 200 400 600 800 1000
Warps

0

20

40

60

80

100

120

Ti
m

e
[m

s]

BQ
GQ
LCRQ
WFQ
SFQ

2MQ
MSQ
NSFQ
SHCQ
TZQ

(a) Runtime of all queues, with warp granularity on GTX 780Ti

0 200 400 600 800 1000 1200 1400
Warps

0

25

50

75

100

125

150

175

Ti
m

e
[m

s]

BQ
GQ
LCRQ
WFQ
SFQ

2MQ
MSQ
NSFQ
SHCQ
TZQ

(b) Runtime of all queues, with warp granularity on GTX 980Ti

Figure A.3.: For per-warp execution, Scogland-Feng’s fully blocking queue (SFQ) joins the
contenders for highest performance. As the GTX 780Ti is the oldest and weakest
model we tested, the restrictions for maximum occupancy are more severe. Hence,
due to high code complexity, WFQ can only obtain 60% of the occupancy that
simpler designs can achieve. Apart from that, all previous trends are confirmed,
with queuing algorithms still clearly split into two groups in terms of sheer
performance.

154

0 5000 10000 15000 20000 25000 30000
Threads

0.05

0.10

0.15

0.20

0.25

Ti
m

e
[m

s]

BQ
GQ
LCRQ
WFQ

(a) Details for fastest queues, with thread granularity on GTX 780Ti

0 10000 20000 30000 40000
Threads

0.05

0.10

0.15

0.20

0.25

Ti
m

e
[m

s]

BQ
GQ
LCRQ
WFQ

(b) Details for fastest queues, with thread granularity on GTX 980Ti

Figure A.4.: Detailed assessment of initial runtime comparison with per-thread granularity
for the fastest queuing contenders. On the GTX 780Ti, the LCRQ surpasses the
GQ towards the higher end of its spectrum of possible configurations, which
differs from our previous results. Notice, however, that LCRQ maintains its high
variance in runtime over 100 iterations, thus its worst performance is still higher
than that of GQ. On the GTX 980Ti, relative performance is highly similar to
reported results for Pascal, with LCRQ performing clearly worse than GQ and
BQ. The slowest algorithm on both architectures remains the WFQ.

155

Appendix A. Performance of the Broker Queue on Other Architectures

0 200 400 600 800 1000
Warps

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ti
m

e
[m

s]

BQ
GQ
LCRQ
WFQ
SFQ

(a) Details for fastest queues, with warp granularity on GTX 780Ti

0 200 400 600 800 1000 1200 1400
Warps

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ti
m

e
[m

s]

BQ
GQ
LCRQ
WFQ
SFQ

(b) Details for fastest queues, with warp granularity on GTX 980Ti

Figure A.5.: Details for fastest queues, with warp granularity. Due to higher occupancy
granted by architecture specifications, the WFQ eventually bests LCRQ on the
980Ti. As the number of threads/warps in use increases, the scalable broker
queue outperforms all other contenders. On the GTX 780Ti, it is up to 6% faster
than even the fully blocking SFQ, which may only run in balanced scenarios with
per-warp granularity. On the GTX 980Ti, this figure jumps to 12% advantage of
BQ over SFQ.

156

BQ BWD BSQ GQ LCRQ WFQ

0 5000 10000 15000 20000 25000 30000
Threads

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Ti

m
e

[m
s]

(a) P(enq) = 50%, P(deq) = 25% on GTX 780Ti

0 10000 20000 30000 40000
Threads

0.10

0.15

0.20

0.25

0.30

Ti
m

e
[m

s]

(b) P(enq) = 50%, P(deq) = 25% on GTX 980Ti

Figure A.6.: We test an imbalanced scenario where threads are more likely to enqueue than to dequeue. P(enq) and P(deq) denote
probabilities with which threads perform enqueue and dequeue operations, respectively. Furthermore, we simulate a
light workload by performing 128 fused multiply-adds (FMAs) between dequeue and enqueue. We always start with
an empty queue and increase the number of threads that concurrently perform operations on it. On the 780Ti, work
stealing (BSQ) appears to be slightly less effective than on the 980Ti, compared to other techniques. We also noticed
fluctuations in runtime and hence an increase in variance of BWD, GQ and especially BSQ, which however does not
affect their mean performance significantly.

157

A
pp

endix
A

.
P

erform
ance

of
the

B
roker

Q
ueue

on
O

ther
A

rchitectures

BQ BWD BSQ GQ LCRQ WFQ

0 5000 10000 15000 20000 25000 30000
Threads

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e
[m

s]

(a) P(enq) = 25%, P(deq) = 50% on 780Ti

0 10000 20000 30000 40000
Threads

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
[m

s]

(b) P(enq) = 25%, P(deq) = 50% on 980Ti

Figure A.7.: Testing the inverse of the previously described scenario, we have a probability for dequeuing higher than that for
enqueuing. Consequently, we quickly hit a border case for the queuing algorithm, namely the Empty state. As more
entries are consumed than are being emplaced, the queue needs to frequently handle threads failing to dequeue. While
WFQ remains fairly stable thanks to its slow-path/fast-path mechanism, the LCRQ quickly starts to deteriorate as it is
forced to continuously close and allocate new ring segments. The BQ is also affected by failing dequeues, but to a much
lesser degree. The BSQ, whose work stealing scheme requires confirming that no more work is available in any queue,
naturally gets consistently slower with an increasing number of threads, as more threads also imply more queues that
need to be checked. On both Kepler and Maxwell architectures, BQ is the linearizable queue that is the least affected by
frequent Empty states. The non-linearizable BWD and GQ are affected even less and—in contrast to results reported for
the 1080Ti—are virtually tied for best performance.

158

BQ BWD BSQ GQ LCRQ WFQ

0 5000 10000 15000 20000 25000 30000
Threads

101

102

103

Ti
m

e
[m

s]

(a) Page Rank for p2p-Gnutella31 on GTX 780Ti

0 10000 20000 30000 40000
Threads

101

102

103

Ti
m

e
[m

s]

(b) Page Rank for p2p-Gnutella31 on GTX 980Ti

Figure A.8.: We run our implementation of queuing-based Page Rank on Kepler and Maxwell
architectures, using the p2p-Gnutella31 network. The code complexity of the Page
Rank procedure, on top of the underlying queuing algorithm, restricts potential
occupancy even further. Note that on the GTX 780Ti, LCRQ and WFQ can
achieve no more than 50% of the occupancy that is obtained with the remaining
techniques. As the number of threads increases, the benefit of BQ and BWD over
GQ rises up to 15–17%, respectively, on both architectures. BSQ is clearly trailing
on the GTX 780Ti, but eventually on par with GQ on the GTX 980Ti, which is
fitted with a higher number of compute cores and thus allows for an even higher
level of parallelism.

159

Appendix A. Performance of the Broker Queue on Other Architectures

BQ BWD BSQ GQ LCRQ WFQ

0 5000 10000 15000 20000 25000 30000
Threads

102

103

Ti
m

e
[m

s]

(a) Page Rank for web-NotreDame on GTX 780Ti

0 10000 20000 30000 40000
Threads

102

103

Ti
m

e
[m

s]

(b) Page Rank for web-NotreDame on GTX 980Ti

Figure A.9.: We again consider the fastest identified parallel queuing algorithms for com-
puting Page Rank values. The significantly more extensive input from the web-
NotreDame test set contains 300k nodes and 1.5m edges. On both the 780Ti and
the 980Ti, LCRQ and WFQ are quickly afflicted by excessively long runtime. The
simpler GQ shows much better performance than the non-blocking queues but
is still slower than all of our techniques. The results on the 980Ti closely mimic
those for the 1080Ti, with BWD being faster than BQ due to reduced overhead,
and BSQ benefitting from effective work stealing. However, on the 780Ti—as was
already suggested above—work stealing appears to be less effective compared to
a fast, centralized queuing approach. Hence, the BWD technique beats BSQ for
our extensive Page Rank test case on the Kepler generation model.

160

Appendix B.

Identified GPU Binning Patterns

While each major GPU manufacturer publishes general information on their
GPU architectures, details on how the hardware graphics pipeline is imple-
mented are scarce to come by. To get an idea of how current GPU architectures
distribute the rendering workload to their hardware rasterizers and/or pro-
grammable cores, we conducted a number of experiments designed to identify
screen regions which share computational resources. The full set of results for
all the GPUs we ran these experiments on is presented in this appendix.

On all recent Nvidia architectures, multiprocessors are grouped into graphics
processing clusters (GPCs). Each GPC contains one rasterizer which has
exclusive control over the GPC’s multiprocessors (NVIDIA, 2009). For Nvidia’s
GPU models, we used the NV_shader_thread_group OpenGL extension which
allows a fragment shader to query which multiprocessor the fragment is being
processed on. Notice that less powerful models by Nvidia usually feature
GPCs with imbalanced computing power, i.e., unequal SMs per GPC. This is
indicated by the “;”-separated list following the GPC count and also reflected
in the corresponding patterns (weaker GPCs occur less frequently).

For AMD and Intel models, we used an indirect measuring approach, as
there is no similar support for querying executing processors in the fragment
shader. Hence, we chose a large number N and instantiated N triangles (with
Z-testing disabled) to cover exactly one pixel at a specific location p. Then, we
iterated over different pixel locations p′ and examined the effect of drawing
N more triangles to cover this location as well. For those pixel locations p and
p′ where the time required to draw both sets of triangles is particularly high,
we can assume that they map to the same rasterization unit.

161

Appendix B. Identified GPU Binning Patterns

Thus, we can use timing measurement to identify image regions that are
assigned to the same rasterizer, or, at least, cause the GPU to behave as if that
were the case. All identified patterns were reproducible in multiple launches
and constant in their layout and bin size.

B.1. Nvidia Fermi

(a) Quadro 6000 (2:4:4:4) (b) GeForce GTX 480 (3:4:4:4)

(c) GeForce GTX 560Ti (4:4) (d) GeForce GTX 580 (4:4:4:4)

Figure B.1.: Patterns used by the Nvidia Fermi architecture. Numbers in parentheses give the
number of multiprocessors of the individual GPCs.

162

B.2. Nvidia Kepler

B.2. Nvidia Kepler

(a) GeForce GTX 660 (1:2:2) (b) GeForce GTX 670MX (2:1:2)

(c) GeForce GTX 680 (2:2:2:2) (d) GeForce GTX 780 (2:2:2:3:3)

(e) GeForce GTX TITAN (3:2:3:3:3) (f) GeForce GTX 780 Ti (3:3:3:3:3)

Figure B.2.: Binning patterns used by the Nvidia Kepler architecture.

163

Appendix B. Identified GPU Binning Patterns

B.3. Nvidia Maxwell

(a) GeForce GTX 960 (4:4) (b) GeForce GTX 970 (4:3:3:3)

(c) GeForce GTX 980 (4:4:4:4) (d) GeForce GTX 980 Ti (4:4:4:4:3:3)

(e) GeForce GTX TITAN X (4:4:4:4:4:4)

Figure B.3.: Binning patterns used by the Nvidia Maxwell architecture.

164

B.4. Nvidia Pascal

B.4. Nvidia Pascal

(a) GeForce GTX 1050 Ti (3:3) (b) GeForce GTX 1060 6GB (5:5)

(c) GeForce GTX 1080 (5:5:5:5) (d) GeForce GTX 1080 Ti (5:5:5:5:4:4)

(e) TITAN X (5:5:5:5:4:4) (f) TITAN Xp (5:5:5:5:5:5)

Figure B.4.: Binning patterns used by the Nvidia Pascal architecture.

165

Appendix B. Identified GPU Binning Patterns

B.5. AMD

(a) Radeon 6770M (b) Radeon R9 270X

Figure B.5.: Binning patterns used by AMD GPUs.

B.6. Intel

(a) HD Graphics 4000 (b) HD Graphics 530

Figure B.6.: Binning patterns used by Intel GPUs.

166

	Abstract
	Kurzfassung
	Acknowledgements
	Introduction
	Evolution of the Graphics Processing Unit
	The GPU as a General-Purpose Co-Processor
	Non-trivial Load Balancing on the GPU
	Research Objectives

	Related Work
	Dynamic Load Balancing & Prioritization
	Work Distribution Schemes on the GPU
	Concurrent Queue Designs
	Adaptive and Prioritized Rendering

	Static Load Balancing & Hardware Rendering
	Vertex Processing
	Rasterization

	Overview
	Prioritized Dynamic Load Balancing on GPUs
	Static Load Balancing for GPU Rendering
	Further Publications

	The Broker Queue
	GPU Scheduling & Concurrent Queues
	Requirements for Massively Parallel Queues
	The Broker Queue
	Brokering
	Data Storage and Exchange
	Further Remarks

	Linearizability
	Data Storage and Exchange
	Brokering

	Broker Queue Variants
	The Broker Work Distributor
	The Broker Stealing Queue

	Evaluation
	Initial Runtime Comparison
	Imbalanced and Real-world Scenarios
	Broker Queue Variants Comparison

	Discussion

	Hierarchical Bucket Queuing and Adaptive Rendering on the GPU
	Adaptive Rendering & Priority Scheduling
	Hierarchical Buckets for GPU Scheduling
	Hierarchical Buckets
	Customizable Priorities
	Enqueue
	Dequeue
	Maintain
	Application Programming Interface

	Scheduling Policies
	Discretized Priorities
	Round-Robin
	Fair Scheduling
	Earliest-Deadline-First
	Application Defined Priorities

	Implementing Adaptive Rendering
	Foveated Micropolygon Rendering
	Adaptive Sampling for Path Tracing

	Remarks on Load Balancing and Rendering

	Batch-based Load Balancing: Vertex Reuse and Optimization
	Optimizing for the Post-Transform Cache
	GPU Vertex Reuse Strategies
	Measuring Vertex Reuse
	Collecting Detailed Batching Information
	Identifying Batch Patterns and Boundaries
	Predicting Batch Breakdown for the GPU

	Batch-based Mesh Optimization
	Evaluation
	Discussion

	Binning Patterns for Balanced Sort-Middle Rendering
	Sort-Middle Rendering & Load Balancing
	Built-In GPU Patterns
	Guidelines for Pattern Designs
	Space Utilization
	Local Clustering of Geometry
	Influence of Orientation

	Designing and Evaluating Patterns
	Space-filling Curves
	Randomized Patterns
	Fixed Shift
	Variable Shift
	Comparison of All Categories
	Influence of Partitioning
	Observations and Remarks

	Binning Patterns for Software Rasterization
	Discussion

	Conclusion
	Summary
	Observations and Insights
	Future Work

	Bibliography
	Performance of the Broker Queue on Other Architectures
	Identified GPU Binning Patterns
	Nvidia Fermi
	Nvidia Kepler
	Nvidia Maxwell
	Nvidia Pascal
	AMD
	Intel

