
submitted to

Graz University of Technology

DOCTORAL THESIS

Dipl.-Ing. Johannes Iber, BSc

An Approach for Adding Resilience
to Industrial Control Systems

Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Uwe Römer

Institute of Technical Informatics

to achieve the university degree of

 Doktor der technischen Wissenschaften

Supervisor

Advisor
Dipl.-Ing. Dr. techn. Christian Kreiner

Graz, March 2019

AFFIDAVIT
I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present doctoral thesis.

Date Signature

i

Acknowledgments

This doctoral thesis has been carried out at the Institute of Technical Informatics at Graz
University of Technology, in cooperation with the industrial partner Andritz Hydro GmbH
in Vienna.

I deeply appreciated my mentor and advisor, Dipl.-Ing. Dr. techn. Christian Kreiner,
for his guidance, discussions, and his warmly and sincere nature. Sadly, his life ended too
early in the last year of my doctorate studies.

I thank Rudolf Neuner from Andritz Hydro GmbH. He patiently explained to me how
things work in practice and was always open for my suggestions and ideas.

I thank my supervisor, Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Uwe Römer, for guid-
ing me through the last phase of my doctoral thesis.

Furthermore, my thanks go to Dipl.-Ing. Dr. techn. habil Andreas Riel who kindly
agreed to serve as a second adviser of my thesis.

I am very thankful to the love of my life, Mag.-pharm Theresa Holzer. Without her, I
would not be the person I am today.

Special thanks go to all colleagues working with me in the same research project, also
known as the ”A-Team”, consisting of Dipl.-Ing. Dr. techn. Andrea Höller, Dipl.-Ing. Dr.
techn. Tobias Rauter, Dipl.-Ing. Michael Krisper, and Dipl.-Ing. Jürgen Dobaj. Each of
them is an incredible person and it was a joy to spend time with them.

I am very grateful to my parents, Roswitha and Josef Iber. Without them nothing
would have been possible and they always believe in me. I thank my sister Mag. iur.
Andrea Iber for reminding me to finish my thesis.

I thank my friends Florian Gollowitsch, B.Ed. M.A., Christoph Kronawetter, B.Ed, and
Armin Liesinger. I always had a good time with them during my studies.

Last but not least, I thank all my former colleagues at the university. Each of them
broadened my technical horizon. We also had a lot of fun, which is equally important.

Graz, March 2019
Johannes Iber

iii

Abstract

Industrial control systems are virtually everywhere in our society. They are used in in-
dustries such as electricity, manufacturing, transportation, chemistry or even the food
industry. At the time of writing, these systems are becoming more technically advanced,
versatile, more interconnected, and in certain areas, such as sensing devices, more hetero-
geneous.

This thesis has been carried out in the domain of industrial control systems for hy-
dropower plants. We confirm the following hypothesis: System knowledge enables auto-
mated resilience in industrial control systems. System knowledge is information about
the concrete configuration of an industrial control system. Resilience is the persistence
of service delivery that can justifiably be trusted, when facing changes. We confirm this
hypothesis with contributions targeting design and run time.

Regarding design time, we propose modeling languages for specifying the system configu-
ration and non-functional properties. We are applying contract-based design for capturing
the non-functional behavior of single components. The proposed concepts are tailored for
capturing non-functional properties such as security, performance, or redundancy. We
complement the design time contributions with design patterns for designing configurabil-
ity into domain-specific modeling languages.

Regarding run time, we analyzed the potential of self-adaptive software systems for
adding resilience in the context of hydropower plant units. The goal of such systems
would be to defend the hardware/software stack below the control logic against hardware
failures, security attacks, software bugs, misconfiguration, and faults in the physical envi-
ronment. We contribute a decentralized hierarchical self-adaptive software system named
Scari for lifting the identified potential. We developed a prototype implementation and
experimented with it in distinct scenarios. A key element in this self-adaptive system is
the reuse of design time information at run time and utilizing the system knowledge for
adaptations. To the best of our knowledge, we are the first ones applying a self-adaptive
software system for adding resilience to industrial control systems. Through our work on
self-adaptive software systems, we encountered three design patterns grasping the trade-off
between distributing data and information. Furthermore, we found a design pattern for
separating processing and coordination in computer systems.

v

Kurzfassung

Industrielle Steuerungssysteme sind praktisch überall in unserer Gesellschaft zu finden.
Sie werden in Branchen wie Elektrizität, Fertigung, Transport, Chemie oder sogar der
Lebensmittelindustrie eingesetzt. Zum jetzigen Zeitpunkt werden diese Systeme technisch
fortschrittlicher, vielseitiger, stärker vernetzt und in bestimmten Bereichen, wie z.B. bei
Sensoren, heterogener.

Diese Arbeit wurde im Bereich der industriellen Steuerungssysteme für Wasserkraftwer-
ke durchgeführt. Wir bestätigen die folgende Hypothese: Systemwissen ermöglicht automa-
tisierte Resilienz in industriellen Steuerungssystemen. Systemwissen ist Information über
die konkrete Konfiguration eines industriellen Steuerungssystems. Resilienz ist die Persi-
stenz der Leistungserbringung, der man trotz Veränderungen weiterhin vertrauen kann.
Wir bestätigen diese Hypothese mit Beiträgen die auf die Design- und Laufzeit abzielen.

In Bezug auf die Designzeit präsentieren wir Modellierungssprachen zur Spezifikation
der Systemkonfiguration und nicht-funktionaler Eigenschaften. Wir verwenden Contract-
Based Design zur Erfassung des nicht-funktionalen Verhaltens einzelner Komponenten. Die
vorgeschlagenen Konzepte sind auf die Erfassung von nicht-funktionalen Eigenschaften wie
Sicherheit, Performance oder Redundanz zugeschnitten. Wir ergänzen die Designzeitbei-
träge durch Entwurfsmuster zur Gestaltung der Konfigurierbarkeit in domänenspezifischen
Modellierungssprachen.

In Bezug auf die Laufzeit analysierten wir das Potenzial selbstadaptiver Softwaresy-
steme zur Erhöhung der Resilienz im Kontext von Wasserkraftwerkseinheiten. Das Ziel
solcher Systeme wäre es, den Hardware/Software-Stack unterhalb der Steuerungslogik ge-
gen Hardwareausfälle, Sicherheitsangriffe, Software-Bugs, Fehlkonfigurationen und Fehler
in der physikalischen Umgebung zu schützen. Wir präsentieren ein dezentrales hierarchi-
sches, selbstadaptives Softwaresystem namens Scari, um das identifizierte Potenzial zu he-
ben. Wir entwickelten einen Prototypen und experimentierten mit diesem in verschiedenen
Szenarien. Ein Schlüsselelement in diesem selbstadaptiven System ist die Wiederverwen-
dung von Designzeitinformationen zur Laufzeit und die Nutzung des Systemwissens für au-
tomatisierte Anpassungen. Nach bestem Wissen und Gewissen sind wir die Ersten, die ein
selbstadaptives Softwaresystem einsetzen um die Resilienz von industriellen Steuerungssy-
stemen zu erhöhen. Durch unsere Arbeit an selbstadaptiven Softwaresystemen stießen wir
auf drei Entwurfsmuster, die sich mit dem Kompromiss zwischen der Verteilung von Daten
und Informationen befassen. Darüber hinaus haben wir ein Entwurfsmuster zur Trennung
von Verarbeitung und Koordination in Computersystemen gefunden.

vii

Contents

Acknowledgments iii

Abstract v

Kurzfassung vii

List of Figures xiii

List of Tables xvii

List of Listings xix

List of Abbreviations xxi

1. Introduction 1
1.1. Motivation . 1
1.2. Hypothesis and Contributions . 4
1.3. Structure . 5

2. Background 9
2.1. Model Driven Engineering . 9
2.2. Contract-based Design . 13
2.3. Self-Adaptive Software Systems . 17
2.4. Hierarchy of Self-* Properties . 18
2.5. Adaptation Loops . 20

2.5.1. MAPE-K . 20
2.5.2. OODA . 21
2.5.3. CADA . 22
2.5.4. Discussion of the Adaptation Loops 23

2.6. Design Patterns for Decentralized Control in Self-Adaptive Systems 23
2.7. Models@Run.time . 25

3. Related Work 27
3.1. Contract-Based Design . 27
3.2. Self-Adaptive Software Systems . 28

ix

An Approach for Adding Resilience to Industrial Control Systems

4. Overview 37
4.1. Industrial Control System . 37
4.2. Approach . 38

4.2.1. Design Time . 39
4.2.2. Run Time . 42
4.2.3. Transformation . 45

4.3. Use Case . 47
4.3.1. Design Time . 47
4.3.2. Run Time . 48

5. Design Time 53
5.1. Motivation . 53
5.2. Requirements . 54
5.3. Modeling Languages . 54

5.3.1. Constraint . 59
5.3.2. Contract . 63
5.3.3. Data Point . 66
5.3.4. Resource . 68
5.3.5. Component . 71
5.3.6. Deployment . 74
5.3.7. System Configuration . 75

5.4. Technical Implementation . 76
5.5. Utilization of Models and Contracts . 77
5.6. Meeting Requirements . 78
5.7. Discussion of Limitations . 79
5.8. Design Patterns . 79

6. Run Time 81
6.1. Motivation . 81
6.2. Potential of Self-Adaptive Software Systems 82
6.3. Requirements . 86
6.4. Scari . 88

6.4.1. Knowledge Base . 92
6.4.2. Monitor . 94
6.4.3. Syndrome Processor . 95
6.4.4. Recommendation Decision Maker . 97
6.4.5. Plan Maker . 97
6.4.6. Plan Decision Maker . 98
6.4.7. Action Handler . 99

6.5. Technical Implementation . 101
6.5.1. Scari Core Library . 101

x

Contents

6.5.2. Decide Phase . 102
6.5.3. Act Phase . 103
6.5.4. Scari Modeling Framework . 104
6.5.5. Knowledge Base . 105
6.5.6. Networking . 108

6.6. Experiments . 108
6.6.1. Proprietary PLC Memory Fault . 109
6.6.2. Remote Attestation . 113
6.6.3. Remote Attestation Higher Layer . 115
6.6.4. Data Point Mismatch . 118

6.7. Meeting Requirements . 121
6.8. Discussion of Limitations . 123

6.8.1. Hierarchical Control . 123
6.8.2. Utilizing Architectural Models . 124
6.8.3. Syndrome Processors . 124
6.8.4. Adaptations . 125
6.8.5. Configuration of Scari . 125
6.8.6. Waiting Time . 126
6.8.7. Real-Time . 126
6.8.8. Human Intervention . 127
6.8.9. Security of Scari . 127
6.8.10. Git . 127

6.9. Design Patterns . 128

7. Conclusion and Future Work 131

8. Publications 135

A. Appendix 229

Bibliography 233

xi

List of Figures

1.1. Standard functions used for controlling processes in hydropower plants
(source: Andritz Hydro). 2

1.2. Overview of the thesis. 6

2.1. Four-layer metamodeling architecture typically used in MDE (adapted from
[11]). 10

2.2. UML example four-layer metamodel hierarchy (adapted from [17]). 11
2.3. The three parts of a modeling language and their relation to each other

(adapted from [10]). 12
2.4. Contract assumptions and guarantees of a component. 13
2.5. Contract over different design levels (adapted from [25]). 14
2.6. Parts of a self-adaptive software system (adapted from [33]). 18
2.7. Hierarchy of self-* properties (adapted from [30]). 19
2.8. MAPE-K loop (adapted from [28]). 20
2.9. OODA loop (adapted from [39]). 21
2.10. CADA loop (adapted from [43]). 22
2.11. Five patterns of how MAPE can be organized (adapted from [33]) 24

4.1. Overview of the target industrial control system. 37
4.2. Overview of the presented approach. 39
4.3. Overview of the design time metamodels. 40
4.4. Exemplary contracts. 41
4.5. Scari loop. 44
4.6. Scari deployed in layers. 45
4.7. Models at design and run time. 46
4.8. Exemplary design time use case. 47
4.9. Exemplary memory fault on the ACPU. 48
4.10. Exemplary hardware fault of an interface module. 50
4.11. Exemplary control devices under attack. 51

5.1. Overview of all design time metamodels. 55
5.2. Example model containing resources, components, deployments and contracts. 56
5.3. Exemplary contract, contract definition, constraint system and data type

system. 56
5.4. Exemplary contract state machine for a PLC. 57

xiii

An Approach for Adding Resilience to Industrial Control Systems

5.5. Metamodel for data types, variables, expression statements, and data type
conversions. 60

5.6. Metamodel for expressions. 61
5.7. Metamodel for configuring the constraint modeling language. 62
5.8. Metamodel for contracts. 63
5.9. Metamodel for contract state machines. 64
5.10. Metamodel for the interface contract user. 65
5.11. Metamodel for data points. 66
5.12. Metamodel for data point references. 67
5.13. Metamodel for specifying lists of data points. 67
5.14. Metamodel for hardware compounds. 68
5.15. Metamodel for central and interface modules. 69
5.16. Metamodel for PLCs. 69
5.17. Metamodel for networks. 70
5.18. Metamodel for POUs. 71
5.19. Metamodel for FUPs. 72
5.20. Metamodel for tasks. 72
5.21. Metamodel for applications. 73
5.22. Metamodel for deployments. 74
5.23. Metamodel for the system configuration. 75
5.24. Screenshot of the Eclipse Rich Client Prototype. 76
5.25. Exemplary verification of timing. 77
5.26. Exemplary run-time constraint derived from design time. 78

6.1. Scari loop. 88
6.2. Exemplary syndrome processors. 90
6.3. Scari deployed in layers. 92
6.4. Purpose of the knowledge base. 93
6.5. Object diagram of a hierarchy of knowledge bases. 94
6.6. State machine diagram of a syndrome processor. 96
6.7. State machine diagram of an action handler. 100
6.8. Component diagram of the Scari software architecture. 101
6.9. Class diagram of the messages used by Scari. 102
6.10. Class diagram of the world metamodel. 105
6.11. Overview of a scariworldd instance. 106
6.12. Synchronization of the world models. 107
6.13. Raspberry Pi Model B testbed equipped with Infineon Iridium 9670 TPM

add-on boards. 109
6.14. Proprietary PLC memory fault. 110
6.15. Class diagram and measurements of the proprietary PLC scenario. 111
6.16. Class diagram of the simplified PLC metamodel. 113

xiv

List of Figures

6.17. Remote attestation scenario . 114
6.18. Measurements of the remote attestation scenario. 116
6.19. Remote attestation scenario with a higher layer. 117
6.20. Measurements of the extended remote attestation scenario. 118
6.21. Data mismatch happening on Source PLC A 119
6.22. Measurements of the data point mismatch scenario. 120

8.1. Overview of contributions and related papers. 135

xv

List of Tables

3.1. Comparison of contract-based design approaches. 28
3.2. Searched sources for comparing our work. 29
3.3. Comparison concerning self-CHOP properties. 30
3.4. Comparison concerning domain, model-based, external, and MAPE. 31
3.5. Comparison concerning reaction time, reason for an adaptation, targeted

level, and kind of adaptation technique. 32
3.6. Comparison concerning autonomous reasoning mechanisms and decision cri-

terias. 32
3.7. Comparison concerning decentralization, hierarchical organization, and par-

allel adaptations of distinct nodes. 33
3.8. Comparison concerning decentralized knowledge bases and their possible

hierarchical organization. 34

4.1. Plans for dealing with a permanent memory fault. 49
4.2. Plans for dealing with a hardware fault affecting an interface module. . . . 50
4.3. Plans for dealing with the security use case. 51

5.1. Patterns for designing configurability into domain-specific language elements. 80

6.1. Potential of self-adaptive mechanisms from the perspective of control de-
vices in the hydropower setting. 83

6.2. Exemplary situations, plans and actions. 91
6.3. Event notifications distributed by the Decide phase. 103
6.4. Event notifications distributed by the Act phase. 103
6.5. Event notifications distributed by the knowledge base. 108
6.6. Event notifications distributed by the network entity. 108
6.7. Available plans and actions of the PLC memory fault scenario. 110
6.8. Available plans and actions of the remote attestation scenario. 115
6.9. Available plans and actions of the extended remote attestation scenario. . . 116
6.10. Available plans and actions of the data point mismatch scenario. 119
6.11. Three design patterns grasping the trade-off between distributing data and

information. The fourth design patterns is about separating processing and
coordination in computer systems. 129

xvii

List of Listings

6.1. Definition of a ScariObject. 104
6.2. Instantiations of ScariObjects. 104

A.1. The ScariObject of type Entity serialized to a JSON file. 229

xix

List of Abbreviations

ACPU Application CPU.

CCPU Communication CPU.

CPS Cyber Physical Systems.

D-Bus Desktop Bus.

DoS attack Denial-of-Service attack.

DSL Domain–Specific Language.

DSML Domain–Specific Modeling Language.

FUP Function Plan.

GPL General–Purpose Language.

GPML General–Purpose Modeling Language.

IoT Internet of Things.

MAPE-K Monitor Analyze Plan Execute - Knowledge.

MDE Model-Driven Engineering.

MDSE Model-Driven Software Engineering.

OMG Object Management Group.

OODA Observe Orient Decide Act.

PLC Programmable Logic Controller.

POU Program Organization Unit.

QEMU Quick Emulator.

xxi

An Approach for Adding Resilience to Industrial Control Systems

SCADA Supervisory Control And Data Acquisition.

Scari Secure and Reliable Infrastructure.

TLS Transport Layer Security.

UML Unified Modeling Language.

xxii

1. Introduction

Industrial control systems are virtually everywhere in our society. They are used in in-
dustries such as electricity, manufacturing, transportation, chemistry or even the food
industry. At the time of writing, these systems are becoming more technically advanced,
versatile, more interconnected, and in certain areas, such as sensing devices, more hetero-
geneous.

This thesis is devoted to adding resilience to industrial control systems by leveraging
system knowledge at design and run time. By doing so, an industrial control system
continues to be reliable and secure despite system parts are failing or under attack.

In the following, we provide a brief description of our industrial domain and motivate this
research by explaining the forces driving this thesis. Based on these forces we postulate a
hypothesis and derive two research questions. Our research contributions provide answers
to these research questions and indicate the correctness of the postulated hypothesis. We
conclude this Chapter with an overview of the remainder of this thesis.

1.1. Motivation
This thesis has been carried out in cooperation with the Andritz Hydro GmbH (Vienna),
in the scope of the HyUnify project. The context of the project were next generation pro-
grammable logic controllers targeting the hydropower domain. The goals were to develop
and demonstrate concepts that ease the configuration and interconnection of control de-
vices, increase the availability and reliability of control devices, and add advanced security
features.

Basically, hydropower plants are used in different configurations to utilize water energy
for producing electricity. During the last decades, computer-based controllers have been
intensively deployed to automatically control, monitor and protect various processes in
the plants. Figure 1.1 shows the plant internal structure and the installation including the
control functions that are performed by embedded systems. In summary, these control
functions are the following:

Turbine Control. Controlling the produced energy by regulating the volume of water
flowing into the turbine blades.

Protection. The plant is monitored according to some operational requirements and
characteristics, including the behaviour of the current produced and frequency. In

1

An Approach for Adding Resilience to Industrial Control Systems

Protection

Excitation

Turbine Governor

Synchronization

Generic Device
HIPASE

Figure 1.1.: Standard functions used for controlling processes in hydropower plants
(source: Andritz Hydro).

cases of deviation from the desired behaviour, the protecting devices are capable to
turn the plant into the safe state before any damage can be incorporated.

Excitation. The energy produced by generators originates from the magnetic field that
is produced by rotating electromagnets, which are usually supplied with the current
from external excitation machines. This configuration is realized in order to be able
to dynamically control the strength of the magnetic field with the aim to balance
the produced and consumed energy.

Synchronization. In many cases, multiple generators are used in a composition to pro-
duce the energy and are connected to the distribution network. To realise this
scenario, it is very important that they are synchronized with respect to current
characteristics. Otherwise, disastrous damages are likely to occur.

There are four distinct forces driving the development of the HIPASE device and the
research presented in this thesis.

The first force is that many possible ways exist on how to realize and to deploy the
four control functions due to different nature and configurations of plants.

The HIPASE device, shown in Figure 1.1 on the right, provides a common platform for
the application software, by utilizing the principles of component-based software engineer-

2

1. Introduction

ing [1]. That is, the functions are realized as compositions of software components, which
correspond to small functions, such as ones that provide basic logic and arithmetic oper-
ations, but also some complex functions such as controllers and filters that can be found
in the IEC 61131 [2] standard for example. The configuration of a device depends on
the available sensors and actuators, and the physical properties of the target hydropower
turbine. Each set of hydropower turbines found in hydropower plants has been uniquely
engineered for the target plant in order to achieve the highest efficiency. Thus, hydropower
turbines behave in slightly different ways.

Not only the configuration of the application software varies, but also the number of
deployed HIPASE devices and their interconnections are dependent on the hydropower
plant. This is due to the fact that the customers of hydropower equipment decide what
devices are installed and what requirements concerning availability, reliability, security
etc. need to be fulfilled. In some hydropower plants, several hot-standby devices may be
available, while other plants rely on failsafe mechanisms independent of the control devices.
Some systems are composed out of parts from competing hydropower equipment suppliers.
The ongoing IEC 61850 standardization is an effort of enabling this interchangeability and
interoperability of plant equipment [3].

The second force are other renewable energy sources, such as wind and solar, that
become integrated into the power grid on a grand scale [4].

The complicated and limited predictability of wind and solar concerning energy con-
version has an impact on the technology of hydropower plant unit control systems. The
energy conversion of a plant unit needs to be adjusted in shorter periods of time in order
to meet the quickly changing demand. In the past, plant operators could plan the produc-
tion of electricity several days in advance. Nowadays, they have to intervene more often
to meet the production goals. Hydropower plants along a river can be owned and oper-
ated by distinct companies which have differing production goals as they are competing
on the electricity market. If an operator decides to produce more electricity, the water
level can unexpectedly rise for other operators along a river. Such situations can lead to
additional unplanned interventions. Among other things, this need of intervention leads to
the integration of fast state-of-the-art communication technologies such as Ethernet and
the ability of more fine-grained remote controls.

The third force is an industry-wide trend of collecting more knowledge about systems
in use and to leverage this knowledge for optimizing operation and maintenance processes.

This is also known as “big data” [5]. Ideally, automatic mechanisms can learn about a
system through various sensors, collect data and analyze it in real time. One result of such
mechanisms would be to optimize the efficiency of single plants and turbines. Another
one would be that these mechanisms plan dynamic maintenance intervals for individual
turbines. Today, these turbines are maintained in fixed intervals. Dynamic maintenance
intervals could extend the operational time of single turbines. This push for observing
systems in use, has effects on the used technology in control devices. For instance, the
cycle time of tasks deployed on the HIPASE device ranges from 1 millisecond to 100

3

An Approach for Adding Resilience to Industrial Control Systems

milliseconds. Observing the consumed and produced data of tasks in real time, requires
fast CPUs and networks for shifting data to the observer. Furthermore, this observation
dependent performance load on CPUs and networks should not influence the primary
function of the hydropower equipment, which is to control hydropower turbines.

The fourth force is that critical infrastructures, such as hydropower plants, are in-
creasingly the target of security attacks.

For instance, the Industrial Control Systems Cyber Emergency Response Team (ICS-
CERT) is an organization of the department of homeland security and provides a trusted
party to report incidents in the USA [6]. They published that the number of reported
security incidents in the energy sector increased from 18 incidents in the year 2010 to 59
incidents in the year 2016 [7, 8]. In the hydropower domain, this is also a result of the
technical advancement necessary for serving the other three forces. Systems that have
been isolated physically before are now becoming more and more complex and exposed.
At some point, an entity part of the control system may be connected to the Internet or
offers an interface for exchanging data with the, potentially hostile, environment.

1.2. Hypothesis and Contributions

The focus of our research was on the above mentioned control device for hydropower
plants. From the four forces above the following hypothesis emerged:

Hypothesis System knowledge enables automated resilience in industrial control systems.

By using the term system knowledge, we refer to knowledge about the concrete config-
uration of an industrial control system.

Laprie [9] defines resilience as the persistence of service delivery that can justifiably be
trusted, when facing changes. In our industrial context, service delivery means that a
hydropower unit, consisting of a turbine, sensors, actuators and dedicated control devices,
continues to convert energy as expected. Regarding changes, we are focusing on changes
concerning the threats the system is facing. In a hydropower unit, the threat changes can
have their source in the changes to the system or its environment. For instance through
hardware faults, software bugs, misconfiguration, or security attacks.

By using the term automated resilience, we intend that software handles the persistence
of service delivery, when facing changes, without human intervention.

Based on the hypothesis, we derived two research questions in order to narrow our
research:

RQ1 What kind of system knowledge is required?

RQ2 How to integrate system knowledge for automated resilience?

4

1. Introduction

During the course of answering these research questions, we created four contributions
that we shall elaborate on in the remainder of this thesis:

C1 Modeling languages for specifying the system configuration and non-functional prop-
erties at design time. We are applying contract-based design for capturing the non-
functional behavior of single components.

C2 Identification of the potential of self-adaptive software systems in industrial control
systems. We analyzed our industrial setting regarding what detection and adaptation
mechanisms can be applied against hardware faults, misconfiguration of the control
logic, software bugs, security attacks, and changes in the environment.

C3 A decentralized hierarchical self-adaptive software system named Scari for integrat-
ing detection, reasoning and adaptation mechanisms at run time. This system is
supported by a decentralized hierarchical and model-based knowledge base which
reflects the current system knowledge.

C4 Design patterns providing architectural solutions for recurring problems. These are
derived from our work on C1 and C3.

Based on C1 and C3, we give the following answer to RQ1: Knowledge about application
logic, hardware/software components, and non-functional properties, needs to exist for
enabling automated resilience.

Based on C1, we give the following answer to RQ2: At design time, system knowledge
can be leveraged for automated verification of industrial configurations.

Based on C2 and C3, we give the following answer to RQ2: At run time, system knowl-
edge can be leveraged for automatically detecting faults and adapting to situations.

In conclusion, our research confirms the postulated hypothesis.

For the sake of clarity, Figure 1.2 provides an overview of the hypothesis, research
questions, answers, contributions and peer-reviewed papers. Starting with the hypothesis,
we derived two research questions. We answer them with three summarizing answers,
which are based on three contributions. The fourth contribution, namely design patterns,
originated from our contributed modeling languages and self-adaptive software system.
These design patterns are architectural solutions to recurring problems and provide an
intellectual value on their own. In total, we published nine peer-reviewed papers.

1.3. Structure
The contributions to our research are devoted to the phases design and run time. Design
time is the phase starting with the development of a hardware or software component

5

An Approach for Adding Resilience to Industrial Control Systems

Hypothesis

System knowledge enables automated resilience in industrial control systems.

Research Question

What kind of system knowledge is required?

Research Question

How to integrate system knowledge for automated resilience?

Answer

At design time, system knowledge can be
leveraged for automated verification of industrial

configurations.

Answer

At run time, system knowledge can be leveraged for
automatically detecting faults and adapting to

situations.

Answer

Knowledge about application logic, hardware/software
components, and non-functional properties, needs to exist

for enabling automated resilience.

Paper
A

Paper
B

Paper
C

Paper
D

Paper
E

Paper
F

Paper
G

Paper
H

Paper
I

Contribution

Modeling languages for specifying the system configuration and
non-functional properties.

Contribution

A decentralized hierarchical self-adaptive software system for
integrating detection, reasoning and adaptation mechanisms.

Contribution

Identification of the potential of self-adaptive software systems
in industrial control systems.

Contribution

Design patterns.

Figure 1.2.: Overview of the thesis.

and ending with the commissioning of a control system. Run time is the phase a control
system is in operation. The remainder of this thesis is structured as follows:

Chapter 2 provides an introduction to model-driven engineering, contract-based design,
and self-adaptive software systems.

Chapter 3 relates this research to the state-of-knowledge and compares our approach to
the literature.

Chapter 4 explains the industrial setting and provides an overview of our approach. It
concludes with an exemplary use case.

Chapter 5 presents our research targeting the design time of industrial control systems
in the hydropower domain. Here we present C1 and parts of C4. We propose modeling
languages for specifying the system configuration and non-functional properties. At the
end of this Chapter we briefly present four design patterns.

Chapter 6 is devoted to our research targeting the run time of industrial control systems.
Here we present C2, C3, and parts of C4. We identify the potential of a self-adaptive
system in our industrial context. We propose a novel self-adaptive software system named
Scari for adding resilience mechanisms. At the end of this Chapter we briefly present four

6

1. Introduction

design patterns.
Chapter 7 concludes this thesis and gives directions for future work.
Chapter 8 showcases nine peer-reviewed publications.

7

2. Background
Here, we provide a brief introduction to the theoretical background and key terms used
in this thesis. Section 2.1 provides a short introduction into Model-Driven Engineering
(MDE). We give an overview of contract-based design in Section 2.2. Section 2.3 presents
the concept of self-adaptive software systems. In order to show what the goals of self-
adaptive software systems are, we discuss in Section 2.4 a hierarchy of self-* properties.
Usually, a self-adaptive software system is realized with a closed-loop mechanism. We
present and discuss three feedback loops used for adaptation in Section 2.5. These loops
represent the essence of architectures that aim to fulfill one or several of the presented self-
* properties. In Section 2.6, we show how adaptation loops can be organized in distributed
systems. Finally, in Section 2.7, we present the concept “Models@Run.time” that aims
to utilize models based on the MDE principles in order to support self-adaptive software
systems.

2.1. Model Driven Engineering
MDE is a methodology where models are the key artifacts of all development-related
activities and tasks [10]. We apply MDE in our approach at design and run time.

The core principle is “Everything is a model” [11]. Model-Driven Software Engineering
(MDSE) is a subset of MDE and only focuses on the development of software. However,
in the literature, the terms MDSE and MDE are often used interchangeably.

MDE promises improvements in productivity, portability, interoperability, maintain-
ability and documentation of software or development processes [12]. The work in [13]
mentions it is difficult to provide absolute measures of the benefits of MDE. For instance,
studies found in the literature have reported productivity gains ranging from -27% to
+1000% [14]. Whittle et al. [15] surveyed 450 MDE practitioners and interviewed 22
more from 17 different companies representing 9 different industrial sectors. They high-
light that the use of MDE is widespread and surprisingly the companies who successfully
applied MDE largely did so by creating or using languages specifically developed for their
domain, rather than using general-purpose languages such as UML.

Kühne [16] uses, in the context of MDE, the following definition for models: A model is
an abstraction of a (real or language-based) system allowing predictions or inferences to
be made. Note that a model is always a model of something.

Figure 2.1 illustrates the core principle of MDE [10]. Note that a metamodel is in fact
a model.

9

An Approach for Adding Resilience to Industrial Control Systems

meta-metamodel

metamodel

model

system

M3

M2

M1

M0

conformsTo

conformsTo

conformsTo

representedBy

Modeling
world

Real
world

Figure 2.1.: Four-layer metamodeling architecture typically used in MDE (adapted from
[11]).

• M3: This layer is the basis of the metamodeling architecture. Its purpose is to
provide a modeling language for defining modeling languages. Usually, a meta-
metamodel is defined reflexively, that means it can define itself. In practice, it does
not make any sense to define further meta layers [10]. In Figure 2.1, this behavior
is described by a conformsTo relationship.
• M2: The purpose of this layer is to describe modeling languages which are used

on the next layer for specifying the actual model. It has to conform to the meta-
metamodel at layer M3, similar to the way a programming language has to conform
to its grammar. For instance, UML itself resides on this level.
• M1: Models at this layer represent and abstract modeled systems. They have to

conform to the corresponding metamodel. An example would be an UML model
describing classes of a software.
• M0: This layer is not part of the modeling world but part of the real world. It

consists of real systems, which are abstracted and represented by M1 models.

For demonstration purposes, we present the example hierarchy used in the Unified Mod-
eling Language (UML) 2.4.1 Infrastructure specification [17]. Figure 2.2 illustrates this
hierarchy. Note that the Object Management Group (OMG) uses the notion instanceOf
instead of conformsTo. Meta Object Facility (MOF) is an OMG standard [18] for de-
scribing meta-models, such as UML. As we can see in Figure 2.2, UML concepts, such as
Attribute, Class or Instance, are defined by the element Class of MOF. The user model

10

2. Background

Class

Attribute Class Instance

«instanceOf» «instanceOf» «instanceOf»

classifier

Video

+title: String

«instanceOf»

«instanceOf»

: Video

title = "a title"

«instanceOf»

«snapshot»

«instanceOf»

aVideo

«instanceOf»

M3: MOF

M2: UML

M1: User model

M0: Run-time instances

Figure 2.2.: UML example four-layer metamodel hierarchy (adapted from [17]).

on layer M1 uses instances of the UML layer, for defining the class Video and an instance
specification (snapshot) of Video. Note that class specifications and instances (objects of
classes) are defined on the same layer. Finally, such a Video class represents the real world
concept of a video.

According to Brambilla et al. [10], a modeling language is defined through three parts:

Abstract Syntax: The abstract syntax of a modeling language is the metamodel. It de-
scribes the structure of a language and how different elements are connected and can
be combined. It is independent of any particular representation or encoding [10].
Usually, a metamodel contains classes, attributes and associations for describing the
language. Such an abstract syntax can be further improved by constraints defined
with constraint languages. For instance, a simple constraint would be if the name
of an element always has to start with an upper-case letter.

Concrete Syntax: Metamodels only define the abstract syntax but not the concrete no-
tation of a modeling language. Concrete syntaxes are specific visual representations
of a metamodel. They can be either textual or graphical. Of course, it is possible to
define both for one metamodel. Designers work with concrete syntaxes when they
manipulate a metamodel. For instance, if the concrete syntax is graphical, they use
one or more diagrams.

Semantics: The correct usage and meaning of elements or the meaning of the different
ways they can be combined is described by semantics. Brambilla et al. [10] point

11

An Approach for Adding Resilience to Industrial Control Systems

out that the semantics of a language can be defined in various ways: by defining
all concepts, properties, relationships and constraints through a formal language;
through practical implementations of code generators which implicitly define the se-
mantics of the language by generating code; or by defining in-place transformations
for simulating the model’s behavior.

Semantics

Abstract Syntax Concrete Syntax

Defines meaning Defines meaning
(derived)

Representations

Figure 2.3.: The three parts of a modeling language and their relation to each other
(adapted from [10]).

Figure 2.3 highlights these parts and shows the relationships between them. Several
concrete syntaxes can represent the abstract syntax. The semantics defines the meaning
of the abstract syntax and indirectly the meaning of concrete syntaxes. Brambilla et al. [10]
state that all three parts are mandatory for a modeling language to be well-defined. For
instance, a partial or wrong specification of the semantics enables the wrong usage of a
language and leads to misinterpretations of the meaning of language elements and purpose.
Different people may understand the concepts and models differently.

Modeling languages typically allow to define different models targeting static (or struc-
tural) or dynamic aspects of a problem or solution. The first aspect describes modeled
entities and their relations, while the dynamic aspect describes their behavior, e.g., actions
and interactions [10].

Generally, languages can be classified into two categories:

Domain–Specific Modeling Language (DSML) is a language designed for the pur-
pose to target a specific domain. A DSML should ease the task of people that need
to describe things in that domain[10].

General–Purpose Modeling Language (GPML) is a language that can be applied

12

2. Background

to any domain. Therefore, a GPML is more complex and more complicated to
understand than a DSML.

Brambilla et al. [10] mention that this distinction is not so deterministic and well-
defined. As an example, UML can be used to model any kind of vertical domain (GPML)
but can be seen as a DSML tailored to specify software systems. Also, it is possible to
extend and customize UML for domain-specific needs by leveraging UML Profiles.

A DSML and a Domain–Specific Language (DSL), used in the non-modeling world, are
very similar. Therefore, instead of using DSML and GPML, we use the terms DSL and
General–Purpose Language (GPL) in the context of this thesis. Brambilla et al. [10] note
that DSL is, in the modeling community, instead of DSML by far the most widely adopted
acronym. The same is true for the acronym GPL.

2.2. Contract-based Design

In our proposed approach, we are leveraging contract-based design for capturing non-
functional properties in order to describe how a component behaves. Contract-based
design usually sees a component as an abstraction - a hierarchical entity that represents
a single unit of design [19, 20]. Therefore, in the context of contract-based design, a
component can represent, for instance, a Program Organization Unit (POU), an interface
module, a software application or a control device.

The essence of this paradigm is to decompose a component into different independent
views referred to as contracts, which capture the behavior of a target functional or non-
functional property under certain conditions [20, 21]. This approach significantly reduces
the complexity of design and verification because the single properties become manageable.

Contract

E.g. for timing, security, safety state, platform, ...

Component

Assumption

Guarantee

Assumption

Environment
Properties

Component
Properties
(e.g. input)

To the environment
(e.g. state, output,

simply works)

Figure 2.4.: Contract assumptions and guarantees of a component.

Informally, a contract is a set of assumptions and guarantees. Figure 2.4 illustrates the
main purpose of a contract.

13

An Approach for Adding Resilience to Industrial Control Systems

An assumption asserts what a contract expects from the component environment (this
can include interactions with other components) and its own properties. Additionally, an
assumption provides a certain context for the guarantees. The condition contained in an
assumption can reference for instance input data, events or system properties. In general,
the available variables are set or inferred by the analysis environment.

A guarantee describes what a component provides to the environment if the correspond-
ing assumptions become valid. In the simplest case a guarantee states that a component
just works under the constrained context. More complex contracts define limits on e.g.,
output data, environment characteristics or non-functional properties such as timing.

Historically, contract-based design is influenced by Meyer’s design-by-contract principle
[22] for object-oriented software [23]. The main difference is that contract-based design
goes much further and provides means to integrate components in the design hierarchy [24].
This is achieved by capturing the context by assumptions (which may include platforms,
other components, etc.) under which a component behaves as specified by the guarantees.
Furthermore, a system can be viewed by selecting only appropriate contracts of interest.

Component

Design level n-1

Design level n

Design level n+1

Assumed

from neighbours

Guaranteed

From/by higher design levels

From/by lower design levels

Figure 2.5.: Contract over different design levels (adapted from [25]).

Figure 2.5 illustrates that contract-based design not only allows analyzing components
on a horizontal design level (e.g., interaction between software modules, hardware devices,
etc.). It also enables analysis to take place on a vertical level between different layers of
abstraction [23].

A solid theoretical foundation has been devised by several authors, including Benveniste
et al. [23, 26], and Sangiovanni-Vincentelli et al. [19]. In the following, we briefly describe
the relevant parts for this thesis of the contract-based design theory based on the descrip-
tions provided by Benveniste et al. [26] and Vanherpen [27].

A contract C consists of a set of assumptions A and guarantees G describing the pre-
conditions and postconditions of a component in terms of its set of design variables V AR,

14

2. Background

respectively. Or, more formally:

C = (V AR,A,G)

A component M is said to satisfy a contract C, formulated as M |= C, whenever it
fulfills the set of guarantees under the given set of assumptions. Using set theory, this can
be formalized as [26]:

M |= C if and only if M ∩A ⊆ G

A contract is said to be consistent if its set of implementations is nonempty (M 6=
Ø) and compatible if its set of environments E is nonempty (E 6= Ø). Note that E is
an environment of C if and only if E ⊆ A. A consistent contract, however, does not
imply a consistent design. If, for example, component M interfaces with component
M ′, consistency can only be guaranteed if variables belonging to the set of guarantees of
component M equals the variables belonging to the set of assumptions of component M ′.

Contract-based design theory defines two operators relevant for this thesis: the con-
junction operator ∧ and the composition operator ⊗. Consider two contracts representing
different views on a POU named A:

CD
A

variables :

{
inputs : dx
outputs : dy

types : dx, dy ∈ R
assumptions : dx < 5
guarantees : dy > 2

and CT
A

variables :

{
inputs : c
outputs : ta

types : c ∈ L, ta ∈ R+
assumptions : c = ”imx28”
guarantees : ta ≤ 50µs

CD
A is a contract that guarantees that data point dy is greater than two if the input

data point dx is less than five. CT
A specifies that the execution time of POU A is less than

or equal to fifty microseconds, assuming that it is executed on an i.MX28 processor.
Contracts that relate to different aspects that may exist on a single component can be

combined using the conjunction operator ∧. These different aspects relate to the different
concerns stakeholders have with respect to the component under design.

Let C ′ = (A′, G′) and C ′′ = (A′′, G′′) be contracts related to the implementation of two
different viewpoints on a single component M , then the resulting contract C = C ′ ∧ C ′′,
can be obtained as follows [26, 27]:

A = (A′ ∪A′′)
G = (G′ ∩G′′)

CD
A ∧ CT

A results in the contract CA:

15

An Approach for Adding Resilience to Industrial Control Systems

CA

variables :
{
inputs : dx, c
outputs : dy, ta

types : dx, dy ∈ R, c ∈ L, ta ∈ R+

assumptions :
{
dx < 5
c = ”imx28”

guarantees :
{
dy > 2
ta ≤ 50µs

Note that a conjunction of contracts relaxes the assumptions and enforces the guaran-
tees. As such, if there exists an implementation M that satisfies the conjunction of two
contracts, the implementation satisfies either contracts as well. This is formally written
as [26, 27]:

If M |= C ′ ∧ C ′ then M |= C ′ and M |= C ′′

In our industrial setting it is often the case that distinct components are interconnected
through their interfaces. For instance, a module of a control device is interconnected
with an ACPU. Further on, an ACPU is interconnected with an CCPU. Similar, POUs
are interconnected in order to build FUPs. In such cases, the composition operator ⊗ is
proposed by [26] to combine contracts. Let now C ′ = (A′, G′) and C ′′ = (A′′, G′′) be the
contracts of two connected components M ′ and M ′′, respectively. Then the composition
C = C ′ ⊗ C ′′ can be obtained as follows:

A = (A′ ∩A′′) ∪ ¬(G′ ∩G′′)
G = (G′ ∩G′′)

Following contract CB describes a POU named B:

CB

variables :
{
inputs : dy, c
outputs : dz, tb

types : dy, dz ∈ R, c ∈ L, tb ∈ R+

assumptions :
{
dy > 1
c = ”imx28”

guarantees :
{
dz = 1
tb ≤ 30µs

Interconnecting POU A with POU B would lead to the contract composition CA⊗CB.
This results in the following contract CAB:

16

2. Background

CAB

variables :
{
inputs : dx, c
outputs : dz, ta, tb

types : dx, dz ∈ R, c ∈ L, ta, tb ∈ R+

assumptions :
{
dx < 5
c = ”imx28”

guarantees :

dz = 1
ta ≤ 50µs
tb ≤ 30µs

For a more detailed description of the contract-based design theory and how contracts
can be refined between vertical design abstraction layers, we refer to [19, 23, 26].

2.3. Self-Adaptive Software Systems
A significant contribution of our approach is a self-adaptive software system that enables
to add resilience mechanisms to individual and compositions of control devices.

Historically, the intention of building self-adaptive software systems has been around
for some time. Though not being the first talking and writing about self-adaptive soft-
ware systems but making significant investments, IBM introduced in 2001 the Autonomic
Computing Initiative in response to their observation that the main obstacle to further
progress in the IT industry is a looming software complexity crisis [28]. They argued that
systems were becoming too interconnected, too diverse and complex for even the most
skilled system integrators to install, configure, optimize, maintain, and merge. Back then,
IBM researchers predicted that by the end of the decade the IT industry would need up to
200 million workers, equivalent to the entire US labor force, to manage a billion people and
millions of businesses using a trillion devices connected via the Internet [29]. Based on this
idea of the future, they envisioned the need to develop computer systems that can manage
themselves when given high-level objectives. Since then, the term Autonomic Computing
has emerged into a broader context related with Organic Computing, bio-inspired com-
puting, self-organizing systems, ultrastable computing, and adaptive systems, to name a
few [29]. As pointed out by Salehie and Tahvildari [30], the term self-adaptive software
system is focused on the domain of software systems. In the following, we only use this
term instead of Autonomic Computing or others as it narrows the scope. Furthermore,
we use this definition of a self-adaptive software:

Self-adaptive software modifies its own behavior in response to changes in its
operating environment. By operating environment, we mean anything observ-
able by the software system, such as end-user input, external hardware devices
and sensors, or program instrumentation. [31]

The fundamental reason for applying self-adaptive software systems is the increasing
cost of handling the complexity of software systems to achieve their goals [30, 32].

17

An Approach for Adding Resilience to Industrial Control Systems

Self-Adaptive Software System

Managing Subsystem

Managed Subsystem

Environment
Non-controllable software, hardware, network, physical context

monitor

monitor

monitor

adapt

affect

Figure 2.6.: Parts of a self-adaptive software system (adapted from [33]).

Typically, self-adaptive software systems follow an external (architecture) approach [30].
An internal approach interweaves application and adaptation logic based on programming
language features such as exceptions, conditions, and parametrization. The issue with
an internal self-adaptive software system is that sensors, actuators, parallel adaptation
processes and actual purpose of an application are complicated to engineer within one
software design. This further leads to notable drawbacks, e.g., with respect to scalability,
testability and maintainability. In an external approach, as illustrated in Figure 2.6, the
domain-specific application logic named Managed Subsystem is monitored by a Managing
Subsystem. The Managing Subsystem is where the actual adaptation logic resides. It
additionally monitors the Environment that may consist of other software, hardware,
network, or of the physical context (including humans). Based on monitored data and
analyzed problems the Managing Subsystem decides whether and what to adapt inside
the Managed Subsystem.

2.4. Hierarchy of Self-* Properties

In this thesis, we are proposing a software architecture that enables self-adaptiveness of
control devices. Self-Adaptiveness is a broad term and represents the sum of several self-*
properties. Salehie and Tahvildari [30] discuss these properties in detail and represent
them in the hierarchy illustrated in Figure 2.7.

The top level named General Level contains global properties of self-adaptive systems.
Terms, found in literature, which are basically a subset of self-adaptiveness are self-
managing, self-governing, self-maintenance, self-control, self-evaluating, and self-organizing.

The Major Level terms are coined by the IBM Autonomic Computing Initiative and
serve as the defacto standard in self-adaptive systems [30]. The following four properties

18

2. Background

Self-Configuring Self-Healing

Self-Optimizing Self-Protecting

General Level

Major Level

Primitive Level

Self-Adaptiveness

Self-Awareness Context-Awareness

Figure 2.7.: Hierarchy of self-* properties (adapted from [30]).

are generally also known as self-CHOP [34]:

• Self-configuring: A system reconfigures itself automatically in response to changes
following high-level policies.
• Self-healing: A system automatically detects, diagnoses, and reacts to software

and hardware failures by healing itself.
• Self-optimizing: A system continually seeks opportunities to improve its own per-

formance and resource allocation.
• Self-protecting: This property has two aspects. One is that a system automatically

defends itself against malicious attacks or cascading failures. The other one is that
it mitigates the effects of attacks.

The Primitive Level represents the base of the Major Level and consists of two prop-
erties. Without them a self-adaptive system would not be able to realize the properties
from the Major Level:

• Self-awareness: A system is aware of its own states and behaviors.
• Context-awareness: A system is aware of its operational environment.

All these properties above define what self-adaptive systems are targeting to achieve.
In our approach we are aiming for all Primitive Level and Major Level properties except
self-optimization. The vision of the proposed system is to autonomously configure, heal,
and protect itself based on its own state and the operational environment.

19

An Approach for Adding Resilience to Industrial Control Systems

2.5. Adaptation Loops
The proposed self-adaptive software system of this work is built around an adaptation
loop. There are different options of how a self-adaptive software system can be organized.
Muccini et al. [35] reveal in a systematic literature review that concerning Cyber Physical
Systems (CPS), the so-called Monitor Analyze Plan Execute - Knowledge (MAPE-K) loop
is by far the dominant adaptive mechanism with a share of 60%. It is followed by multi-
agent and self-organization based technologies (both have 29% - some studies combine
technologies). Multi-agent systems are large-scale open decentralized systems that consist
of autonomous components or systems [36] that work together for achieving a common
goal. Self-organization techniques are inspired by nature, where behavior emerges, e.g.,
from cells [37]. Multi-agent systems and self-organization techniques are out-of-scope of
this work as they do not fit our industrial setting.

In the following, we present three loops that try to grasp the necessary steps and activ-
ities of a self-adaptive software system. After that, we shortly discuss the commonalities
between them and highlight five design patterns of how loops based on the MAPE elements
can be organized.

2.5.1. MAPE-K

Autonomic manager

Monitor

Analyze Plan

Execute
Knowledge

Managed Element

Figure 2.8.: MAPE-K loop (adapted from [28]).

Figure 2.8 illustrates the MAPE-K loop, introduced by Kephart and Chess [28] defining
IBMs Autonomic Computing vision. It consists of the steps Monitor, Analyze, Plan,
Execute, and a shared part representing Knowledge. The target of MAPE-K is the Managed
Element, which is monitored with sensors and changed with actuators. The Monitor step
gathers information about the Managed Element that is usually related to the current
performance and load of the system [38]. The Analyze step considers the data, identifies

20

2. Background

problems and attempts to find the source or cause of it. The Plan step reacts to the results
of the Analyze step and creates a set of actions to remedy a problem. The last step, which
is named Execute, implements these actions and changes the Managed Element through
actuators. Knowledge is the central point where all the information within a MAPE-K
loop comes together. The Monitor stores its observed data at this point. The Analyze
step uses it to find anomalies. The Plan step leverages it to create actions and gathers
its policies and goals from there. Finally, the Execute step stores its record of executed
actions in it.

As we can see in Figure 2.8 there is an Autonomic Manager around the MAPE-K
loop. That is basically an interface for controlling and monitoring the adaptive system.
[28] foresaw a plethora of Autonomic Managers each managing for instance a hardware
resource (e.g., CPU, printer, storage) or software resource (e.g., database, service, legacy
system).

2.5.2. OODA

Observations

Unfolding
Circumstances

Outside
Information

Unfolding
Interaction With

Environment

Genetic
Heritage

Analysis &
Synthesis

New
Information

Previous
Experiences

Cultural
Traditions

Genetic
Heritage

Analysis &
Synthesis

New
Information

Previous
Experiences

Cultural
Traditions

Decision
(Hypothesis)

Action
(Test)

Feed
Forward

Feed
Forward

Implicit Guidance & Control

Feedback

Feed
Forward

Feedback

Feedback

Unfolding
Interaction

With
Environment

Observe Orient Decide Act

Figure 2.9.: OODA loop (adapted from [39]).

Colonel John Boyd was a United States Air Force fighter pilot and Pentagon consultant
who developed the first version of his Observe Orient Decide Act (OODA) loop for ex-
plaining how to achieve success in air-to-air combat in the 1950’s. Later, he expanded
his groundbreaking work and hypothesized that it is the essence of winning and loosing
of organizations and people [40]. As pointed out by other authors, it lends itself well to
self-adaptive software systems [41, 42]. In the OODA loop, Observe means to gather,
monitor, and filter data. Figure 2.9 illustrates the type of data that can be observed;
implicit guidance and control refers to the significant influence of the Orientation step. In
the Orient step a list of options is derived through analysis and synthesis, previous ex-

21

An Approach for Adding Resilience to Industrial Control Systems

perience, new information, and of course as the loop is intended for humans, genetic and
cultural heritage. The derived list of options is then fed forward to the Decide step where
the best hypothesis is selected via a ranking. In the last step, the selected option is acted
out and in a way tested in the environment. As pointed out by John Boyd, orientation
shapes observation, shapes decision, shapes action, and in turn is shaped by the feedback
and other phenomena [40]. He demonstrated that it is crucial to go through the OODA
loop faster and better than an opponent when facing direct combat. Further, he noted that
the entire loop (not just orientation) is an ongoing many-sided implicit cross-referencing
process of projection, empathy, correlation, and rejection. In our approach we illustrate
how we transfer the OODA loop to our variant of a loop that targets to adapt systems.

2.5.3. CADA

Collect

Analyze

Decide

Act

Application
requirements

Environmental
sensors

Network
instrumentation

Inference

Uncertain resoning

Bounds and envelopes

Economic models

Rules and policies

Game theory

Risk analysis Decision
theory

Hypothesis
generation

Managed
elements

Record strategies

Inform users or
administrators

User context

Figure 2.10.: CADA loop (adapted from [43]).

Dobson et al. [43] describe the generic Collect - Analyze - Decide - Act loop for autonomic
communication systems. The field of autonomic communication targets to improve the
ability of networks and services to cope with unpredicted changes concernings topology,
load, task and so on. As we can see in Figure 2.10 it is similar to MAPE-K and the
OODA loop, but more generic. In the Collect activity data is gathered from several
sources, in the Analyze activity analyzed, then a Decision is made, and finally acted out
in the Act activity. The loop is annotated with several techniques and approaches, which
can be applied for implementing the single activities. As mentioned by Cheng et al. [44],
reasoning in self-adaptive systems typically involve these four activities.

22

2. Background

2.5.4. Discussion of the Adaptation Loops

In essence, the three presented adaptation loops are variants of the same idea, which is
to have a chain of activities that lead to an appropriate response to a problem of the
managed system. However, the loops vary concerning the different steps and feedback.
MAPE-K introduces the Knowledge part as common information source for each activity
taking place. OODA emphasizes that the different steps give feedback to what is observed
and the loop is essentially driven by the Orient phase. The Orient phase of OODA
corresponds to the Analyze and Plan steps of the MAPE-K loop. OODA introduces an
explicit separate Decide phase that is embedded into the Plan step of MAPE-K. The
CADA-loop is a generic version of an adaptation loop. We are including it because it
highlights the different technologies which can be applied in each step.

An important design decision concerning self-adaptive systems is whether a loop is
realized time-driven or event-driven. A time-driven MAPE would adapt periodically. An
event-driven MAPE is triggered by an observation made by a monitor. In this thesis we
present an adaptation loop that is in principle event-driven, but the Analyze step is split
into distinct reasoning mechanisms that could be time-driven.

2.6. Design Patterns for Decentralized Control in Self-Adaptive
Systems

We propose a decentralized self-adaptive system that is organized as a hierarchy. There
exist different ways of how a distributed system can be controlled by one or several adapta-
tion loops. Weyns et al. [33] gathered five patterns for decentralized control in self-adaptive
systems that describe how MAPE loops can be related to each other. We shortly describe
the essence of these patterns in the following:

• Coordinated Control Pattern: Consider a distributed system where each node
has its own MAPE loop. This pattern proposes that all the Monitor, Analyze, Plan,
and Execute steps coordinate their operation with corresponding peers of other loops.
For instance in Figure 2.11a, Analyze entities interact with each other to make a
decision about the need for an adaptation.
• Information Sharing Pattern: In this pattern all Monitors in a distributed sys-

tem share their observed states with each other, while Analyze, Plan and Execute
entities are acting independently from their counterparts on other nodes. Figure
2.11b shows an example of this pattern.
• Master/Slave Pattern: There exists a central master component that is respon-

sible for the Analyze and Plan steps of adaptations. Figure 2.11c illustrates the
situation where two slave loops are controlled by one master component. The slave
nodes in such a system are responsible for monitoring states and executing actions.

23

An Approach for Adding Resilience to Industrial Control Systems

M A P E M A P E

M A P EM A P E

(a) Coordinated Control

M A P E M A P E

M A P EM A P E

(b) Information Sharing

A P

M EM E

(c) Master/Slave

M A E M A E

M A EM A E

P

P

(d) Regional Planning

M A P E

M A P E

M A P EM A P E

(e) Hierarchical Control

Figure 2.11.: Five patterns of how MAPE can be organized (adapted from [33])

• Regional Planning Pattern: Such a distributed system is partitioned into regions
where in each region a central component performs the Plan step. The Monitor,
Analyze, and Execute steps are deployed on other nodes. Figure 2.11d shows that
the central Plan components can be connected with each other.
• Hierarchical Control Pattern: This pattern organizes MAPE loops in hierarchies

such as in Figure 2.11e. For instance a loop is in control of a node. If it cannot
adapt, a situation can be escalated to a higher loop that possesses a broader control
of the target distributed system. Furthermore, the information passed between the
different levels may be filtered or aggregated.

24

2. Background

2.7. Models@Run.time

Our proposed self-adaptive software system supports the distinct activities with run time
models derived from design time. Models@Run.time is a term for describing the research
field of utilizing software models, specified according to the MDE principles, for self-
adaptive software systems [45]. The term run.time refers to the novelty opposed to the
fact that traditional MDE has been applied for describing the architecture of software
and systems at design time. One of the most prominent examples of such a design time
technology is UML standardized by the OMG [46].

A run time model is essentially a software model that represents at run time parts of
a real system and is causally connected to it (e.g., a system change leads to a change in
the model). Such a software model possesses several properties that are in our opinion
beneficial for self-adaptive software systems:

• Design-time models are in many domains already available and can be transformed
to living specifications at run time.
• A model can be queried in order to find resources and to learn something about a

system.
• Software models are based on modeling languages and adhere to semantics. Simply

put, a mechanism cannot easily construct a model randomly and arbitrarily.
• Validation is an important aspect of software models and constraints can be provided

for ensuring that a run-time model is correct.
• An adaptation mechanism can explore if a change would be correct by forking a

model and trying out different configurations.
• Transformation is an essential part of MDE. Manipulating and transforming models

to executable artifacts offers systems an opportunity to self-modify. Furthermore,
a changed run time model could be transformed to input formats for a variety of
simulation and verification software.
• Run time models which change over time can be transformed back to design time

models.

Giese et al. [47] distinguish between three different kinds of run-time models within a self-
adaptive software system. Note that not all kinds have to be present within an adaptive
system but all of them are useful for each activity in an adaptation loop:

• System Models: This kind of model reflects an abstract view of the system itself.
It allows an adaptive system to reason about the system and to simulate different
kinds of configurations. Consequently, such a model needs to be in sync with the
real system.
• Context Models: A run time model can be used to reflect the context of a system

and to specify it in a processable way. The characteristics of the context cast in such

25

An Approach for Adding Resilience to Industrial Control Systems

a model can either be derived directly from the environment by sensors or indirectly
derived from other observations.
• Requirements Models: This kind of model captures the requirements and goals

of a self-adaptive system. In a way it sets the boundaries of what a system can do.
The collect, analyze, plan/decide, or act parts of an adaptation loop can be partly or
fully configured with this kind of model. Usually this relationship is unidirectional,
meaning that a system is not supposed to change its requirements. However, it can
prioritize one over another.

26

3. Related Work

Here, we first summarize literature about contract-based design and highlight our addition
to the state of knowledge (C1). Then we compare related work dealing with self-adaptive
software systems with our proposed work named Secure and Reliable Infrastructure (Scari)
(C3) in detail.

3.1. Contract-Based Design

Promising applications of contract-based design have been shown for several domains. This
paradigm has been demonstrated for smart integrated energy management systems [48],
aircraft electric power systems [20], mixed-signal integrated circuits [49], and automotive
systems [23, 50, 51]. Despite these examples, contract-based design is still at its infancy
[52].

Most state-of-the-art approaches either tackle single non-functional properties or take
a relatively theoretical approach without concrete modeling languages. Therefore, there
only exist a few modeling languages for realizing contract-based design.

Warg et al. [53] present a prototype modeling tool named SafetyAdd for contracts. Their
work solely focuses on safety integrity levels.

Sievers and Madni [54] propose contract stereotypes for SysML [55] ports. Additionally
they propose trained Hidden Markov models for describing flexible contracts.

Grabowski et al. [56] present a template language called SSPL that allows the speci-
fication of requirements and assertions on every system architecture level and show how
contract-based requirements refinement can go hand-in-hand with architecture refinement
in SysML. They provide an Eclipse-based tool supporting their method.

According to their website [57], the CHESS project sought to improve MDE practices
and technologies to better address safety, reliability, performance, robustness and other
non-functional concerns while guaranteeing correctness of component development and
composition for embedded systems. A result of this EU project was a modeling language
which allows a specification of components and corresponding contracts. The modeling
language is based on UML and the profiles SysML and MARTE [58]. It allows to associate
contracts with component definitions and to refine existing contracts [59].

Amorim et al. [60] propose ConSerts M, which are modular and composable contracts
created at development time as part of a sound and mostly traditional safety argumen-
tation. The focus is set on ensuring safety through the system lifecycle, even if parts of

27

An Approach for Adding Resilience to Industrial Control Systems

the system are replaced or updated as part of maintenance or upgrades. Additionally,
the authors propose a combination of their contract approach with an ontology-based run
time reconfiguration for the use in automotive applications [61].

VerSaI (Vertical Safety Interfaces) [62] is a contract-based modeling approach, which
assists the integrator of an integrated architecture in checking whether the application
software components are able to run safely on the execution platform of the system. The
VerSaI language is a metamodel based formalization of the typical dependencies between
the certificates of an application and a platform.

Approach MB Types Configurable Constraints State-Based Modeling
SafetyAdd [53] X - - -
Sievers and Madni [54] X - - -
Grabowski et al. [56] X - - -
CHESS [59] X - - -
ConSerts M [60] X - - -
VerSaI [62] X - - -
This work X X X X

Table 3.1.: Comparison of contract-based design approaches.

Table 3.1 compares our work with the related work. Similar to other approaches, our
work is model-based. However, we are adding to the state of knowledge the concept of
contract types that allow to define which assumptions and guarantees are possible for a
concrete contract instance. Furthermore, we are proposing a constraint language, which
is configurable by a contract type. For instance, it allows to define that only equality and
inequality operators are allowed to be used for a certain contract type. This should ease
the transformation of contracts to other tools. Last but not least, we are proposing a state
machine where each state represents a valid set of contracts. This is useful for capturing
the distinct states of a device as a whole without adding this information to each single
contract.

3.2. Self-Adaptive Software Systems
In the following, we are focusing on self-adaptive software systems that are architecture-
based. An architecture is a set of elements or components, the relations between them,
as well as the properties of both and denotes the high-level structure of a system. A self-
adaptive system that is architecture-based maintains a model of itself and adapts itself to
realize particular quality objectives using a feedback loop [63].

Table 3.2 shows conferences, workshops, journals and surveys we searched for self-
adaptive software systems in order to compare our work to the current state of knowledge.
We performed this search in a systematic way. First, we selected metrics of interest based
on our proposed self-adaptive software system and used by the surveys of Salehie and
Tahvildari [30], Krupitzer et al. [63], and Krupitzer et al. [64]. Then, we manually went

28

3. Related Work

ID Conferences/Workshops/Journals/Surveys
SOSA International Conference on Self-Adaptive and Self-Organizing Systems
ICAC International Conference on Autonomic Computing
Adaptive International Conference on Adaptive and Self-Adaptive Systems and Application
SEAMS International Symposium on Software Engineering for Adaptive & Self-Managing Systems
ICSE International Conference on Software Engineering
ASE International Conference on Automated Software Engineering
ECSA European Conference on Software Architecture
MRT International Workshop on Models@run.time
MRT-ICAC International Workshop on Models@run.time for Self-aware Computing Systems
MRT-SeAC Joint International Workshop on Models@run.time and Self-aware Computing Systems
SeAC Workshop on Self-Aware Computing
DAS Workshop on Distributed Adaptive Systems
SISSY International Workshop on Self-Improving System Integration
SOSeMC Self-Organizing Self-Managing Clouds Workshop
AKSAS International Workshop on Architectural Knowledge for Self-Adaptive Systems
TAAS ACM Transactions on Autonomous and Adaptive Systems
TSE IEEE Transactions on Software Engineering
[30] Self-Adaptive Software: Landscape and Research Challenges
[63] A survey on engineering approaches for self-adaptive systems
[64] Comparison of approaches for self-improvement in self-adaptive systems (extended version)
[65] Self-adaptive systems: A survey of current approaches, research challenges and applications

Table 3.2.: Searched sources for comparing our work.

through the yearly proceedings or published journals. We selected suitable publications
based on the title and abstract. Next, we analyzed the publications by reading them. We
further expanded the search of approaches based on referenced related work. Thus, the
presented approaches were not necessarily published in the enumerated sources in Table
3.2. Where available we analyzed the single approaches based on the corresponding PhD
theses.

Table 3.3 compares our work concerning the self-CHOP properties. Scari (our work) is
self-configuring, similar to most self adaptive systems, because the knowledge base reflects
the current state of the system. The monitors, reasoning, and planning mechanisms adjust
themselves dynamically through the changing knowledge. Scari aims to heal and protect
control systems. This is contrary to most self-adaptive systems, which are focusing on
self-optimizing their managed subsystem. In our case, self-optimization would need to
change the control logic, which our approach tries to preserve as far as possible.

Out of these 24 approaches we selected nine approaches that provide a detailed descrip-
tion of their software architecture. In the following we briefly present these approaches:

Rainbow [68] is the most cited self-adaptive software system. It observes entities with
probes and gauges for updating a central architecture model of the target system. With a
DSL one can define model constraints that trigger adaptations. The example applications
of Rainbow are instantiations of web-server-based systems.

MADAM [79] is a middleware and adapts mobile component-based applications based on
context changes. The context includes issues describing the system infrastructure (such

29

An Approach for Adding Resilience to Industrial Control Systems

Approach Self-Configuring Self-Healing Self-Optimizing Self-Protecting
Quo [66] X - X -
IBM Oceano [67] X - X -
Rainbow [68] X X X -
Tivoli Risk Manager [69] - - -X -
KX [70] X - - -
Accord [71] X - - -
ROC [72] - X - -
TRAP [73] X - - -
K-Component [74] X - - -
Self-Adaptive [75] X X - -
CASA [76] X - X -
J3 [77] - - X -
DEAS [78] X - - -
MADAM [79] X - X -
M-Ware [80] X - X -
ML-IDS [81] - - - X
PLASMA [82] X X - -
IBM ACRA [83] X X - -
DIVA [84] X - X -
Mistral [85] X - X -
RESIST [86] X - X -
DARE [87] X X - -
MARTAS [88] X - X -
Kubernetes [89] X X -/X -
Scari (this work) X X - X

Table 3.3.: Comparison concerning self-CHOP properties.

as battery level and network resources) and the user (such as position, noise, and user
needs). It generates distinct variants and selects one variant based on a utility function.

IBM ACRA [83] stands for Autonomic Computing Reference Architecture. It is based
on a hierarchical organization of MAPE-K loops. IBM applied it to IT infrastructures in
order to automate tasks and responses to situations. For instance, an administrator could
realize an automatic workaround (reboot the server) when an out-of-system-resources
incident occurs.

DIVA [84] targets dynamic software product lines in which variabilities are bound at
run time. It leverages aspect-oriented modeling techniques to refine features and automat-
ically build complete configurations before the actual adaptation happens. The current
configuration is determined by a goal-based reasoning component.

Mistral [85] optimizes the trade-off between performance and power consumption as well
as between the cost of an adaptation in cloud computing scenarios. It is decentralized and
hierarchical.

RESIST [86] is a purely proactive approach that optimizes the reliability of embedded
systems. It estimates reliability as the probability that a system performs its required
functions under stated conditions for a specified period of time. The authors evaluated
their system with a mobile emergency response system.

30

3. Related Work

DARE [87] targets component-based software architectures in distributed settings in
order to heal and optimize them. Although it is decentralized, it selects the entity with
the lowest IP address to be the leader and recovery node for the others. The behavior of
DARE is shown in abstract randomized experiments.

MARTAS [88] deals with the automated management of Internet of Things (IoT). It
utilizes quality models for minimizing packet loss, latency, and power consumption.

Kubernetes [89] is not an architecture-based self-adaptive system. Still, we included it
because it is wildly popular in the domain of cloud computing for orchestrating software
containers. These software containers can realize for instance web applications. Kuber-
netes is a centralized approach, which ensures that the deployment of software containers
on nodes conforms to a user-definable configuration. The observed metrics are saved in a
key-value store. So-called controllers process values continuously within one central loop
and change the system accordingly. Interestingly, it targets similar applications such as
Rainbow without an architecture model and a DSL for the controllers.

Approach Domain Model-Based External MAPE
Rainbow [68] Web Server Management X X All
MADAM [79] Applications for Mobile Computing X X All
IBM ACRA [83] IT Infrastructure - X All
DIVA [84] Dynamic Software Product Lines X X All
Mistral [85] Cloud Computing X X All
RESIST [86] Dynamic Mobile and Embedded Systems X X All
DARE [87] Component-Based Software Architectures X X All
MARTAS [88] Internet-of-Things X X All
Kubernetes [89] Software Container Management - X All
Scari (this work) Industrial Control Systems X X All

Table 3.4.: Comparison concerning domain, model-based, external, and MAPE.

Table 3.4 compares the approaches concerning their domain, whether they are model-
based, external and apply all MAPE activities. What sets our approach apart is that,
as far as we know, we are the first ones applying self-adaptive system to an industrial
control system and especially in the context of hydropower plants. Except Kubernetes, all
compared approaches are model-based. Kubernetes relies on configuration files with pre-
defined keywords for setting up the self-adaptive system. Furthermore, all approaches are
external, which means the managed subsystems are monitored by managing subsystems,
and implement all MAPE activities.

Table 3.5 compares the approaches concerning the time they are reacting, the reason
for an adaptation, the targeted level they are adapting and the available adaptation tech-
niques. Scari can operate reactive and proactive to situations. Reactive means that after
a situation happened the system adapts. Proactive means that a system can adapt be-
forehand to avoid possible situations. Scari is able to do this because it can incorporate
autonomous reasoning mechanisms, which we named syndrome processors that can rec-
ommend on their own for instance new honeypot settings or memory tests. Other systems

31

An Approach for Adding Resilience to Industrial Control Systems

Approach Time Reason Level Adaptation Technique
Rainbow [68] Reactive TR App/TR Parameter/Structure
MADAM [79] Reactive Ctx App Parameter/Structure
IBM ACRA [83] Reactive Ctx/TR App/Comm/TR Parameter/Structure
DIVA [84] Reactive Ctx App Parameter/Structure
Mistral [85] Reactive/Proactive TR TR Structure
RESIST [86] Proactive TR App/Comm/TR Structure
DARE [87] Reactive TR App/TR Structure
MARTAS [88] Reactive TR Comm/TR Parameter
Kubernetes [89] Reactive TR TR Structure
Scari (this work) Reactive/Proactive Ctx/TR App/Comm/TR Parameter/Structure

Table 3.5.: Comparison concerning reaction time, reason for an adaptation, targeted level,
and kind of adaptation technique.

that are only able to react need to wait for input from monitoring activities. Concerning
the reason for an adaptation, we distinguish between a change in the technical resource
(TR) or a change in the context (Ctx). Some approaches only monitor their technical
resource for a change, while others monitor their context. Scari is capable of both because
we do not restrict what the monitors are allowed to observe and they are not bound to
the knowledge base. For instance, Rainbow is restricted to technical resources because
everything, which is observed needs to coexist and be described in the knowledge base in
advance. Level refers to the target of adaptation. Scari aims at the application (App),
communication (Comm) and technical resource (TR) levels. Note that Scari is not adapt-
ing the control (application) logic, but it can deploy tasks, which are part of a control
application, to other technical resources. Furthermore, it can adjust the input/output
data points and reroute communication. Concerning adaptation techniques, we have the
possibility of adapting parameters and the structure of industrial control systems. Sum-
ming up, we needed to create a more flexible approach regarding the above enumerated
metrics than other approaches found in literature in order to fulfill the self-* properties.

Approach Autonomous Reasoning Mechanisms Decision Criteria
Rainbow [68] - Models, Policies
MADAM [79] - Goal, Utility
IBM ACRA [83] - Rules, Policies
DIVA [84] - Goal
Mistral [85] - Utility
RESIST [86] - Utility
DARE [87] - Policies
MARTAS [88] - Models, Utility
Kubernetes [89] - Rules
Scari (this work) X Models, Rules, Policies

Table 3.6.: Comparison concerning autonomous reasoning mechanisms and decision crite-
rias.

Table 3.6 compares our approach concerning autonomous reasoning mechanisms and

32

3. Related Work

decision criteria. The first metric describes that reasoning mechanisms can be implemented
in a way that they follow their own cycle. This is possible in Scari because of the loose
coupling between monitors, syndrome processors, and the adaptation activities. As far
as we know, we are the first proposing this feature. Decision critera is the metric for
identifying the need for adaptation and for choosing suitable adaptation plans [63]. A
self-adaptive system leveraging models as decision criteria, works out suitable adaptation
plans through analysis of the models. For rule-based or policy-based approaches, rules or
policies determine, how the system should react in different situations and how to adapt.
Goal-based approaches aim at fulfilling specific system goals. These goals influence how
the system should perform. During the planning process, the adaptation logic must define
adaptation plans for achieving these goals. The goals can be contradicting, which must
be solved by the adaptation logic. In utility-based approaches, utility is a function of the
system value for the user and involved costs. The goal is to maximize the overall system
utility. The adaptation logic evaluates the utility values of adaptation strategies and
selects the one with the highest utility. One of the challenges is the difficulty of defining
utility functions, as well as the complexity and the uncertainty in calculating adaptation
costs and utility values [63].

Due to the flexibility of the autonomous reasoning mechanisms (syndrome processors),
our approach is able to incorporate decisions based on models, rules, and policies. We
are not proposing a goal-based approach because we do not have changing goals during
run-time. We are not proposing utility functions because our approach is not targeted at
self-optimization. This would also involve the control logic, where a centralized approach
would be more suitable for optimizing a hydropower unit, plant or a network of hydropower
plants. Central entities that can optimize plants already exist in the hydropower domain
through control rooms that operate plants along a river.

Approach Decentralized Hierarchical Parallel Adaptations of Distinct Nodes
Rainbow [68] - - -
MADAM [79] - - -
IBM ACRA [83] X X X
DIVA [84] - - -
Mistral [85] X X X
RESIST [86] - - -
DARE [87] X - -
MARTAS [88] - - -
Kubernetes [89] - - -
Scari (this work) X X X

Table 3.7.: Comparison concerning decentralization, hierarchical organization, and parallel
adaptations of distinct nodes.

Table 3.7 compares the approaches concerning decentralization, hierarchical organiza-
tion, and the possibility of parallel adaptations of distinct nodes. As pointed out by other
authors [33, 63, 65, 90, 91], in the area of autonomic and self-adaptive software systems a

33

An Approach for Adding Resilience to Industrial Control Systems

centralized approach with one adaptation loop is the dominant topology found in litera-
ture. According to Krupitzer et al. [63], the main challenge with decentralized approaches
is that the dynamic adaptation and recovery is carried out by using partial knowledge of
the system. Various degrees of decentralization are possible [63]. In fully decentralized
approaches, each subsystem has a complete adaptation logic and different patterns of com-
munication are possible. Between the extreme of a fully decentralized approach with only
equal entities and the extreme of a centralized approach, hybrid approaches exist that
add central components to decentralized approaches or distribute the adaptation logic
functionality to subsystems [33]. In our comparison, we count every self-adaptive soft-
ware system that is not centralized to the spectrum of decentralized approaches, similar
to the way it is done by Weyns et al. [33] and the authors of the presented decentralized
approaches.

We compare the approaches whether they are organized in a hierarchical way and if
it is possible to carry out parallel adaptations on distinct nodes. DARE is the only
decentralized approach not capable of this because it selects one leader node that reasons
and plans for all other nodes.

Scari is not a fully decentralized approach. Through the hierarchical organization, higher
nodes can adapt lower nodes. However, this suits industrial control systems, which are
usually also organized in a hierarchy.

Approach Decentralized Knowledge Bases Hierarchical Knowledge Bases
Rainbow [68] - -
MADAM [79] - -
IBM ACRA [83] X -
DIVA [84] - -
Mistral [85] - -
RESIST [86] - -
DARE [87] X -
MARTAS [88] - -
Kubernetes [89] - -
Scari (this work) X X

Table 3.8.: Comparison concerning decentralized knowledge bases and their possible hier-
archical organization.

Table 3.8 compares, whether the approaches utilize decentralized knowledge bases and
their possible hierarchical organization. A decentralized knowledge base resides on each
entity in contrary to a centralized one. It can contain all available knowledge or only
aspects. In Scari, an entity contains the knowledge about itself and child entities. In
IBM ACRA, the knowledge bases are not necessarily connected. In DARE, every entity
maintains a partial knowledge base and the overall architecture is discovered through
message exchanges. What sets Scari apart is that we propose a hierarchical knowledge
base, which reflects the hierarchical organization of the self-adaptive system.

In addition to these comparisons, we are the first ones incorporating contract-based

34

3. Related Work

design into run-time models for self-adaptive software systems.

35

4. Overview

In this Chapter, we first illustrate the target industrial system. Based on this illustration,
we show the concept of our approach in Section 4.2. Finally, we provide a brief use case
demonstrating the combination of design and run time in Section 4.3.

4.1. Industrial Control System

Hydropower
Plant Unit

Control Device

TCP/IP

Sensors

Actuators

Interface
Module
Interface
Module

Supervisory
Computer

Central Module

CCPU

ACPU

controls

Central Module

CCPU

ACPU

controls

Communication

IFCPU

IMIMIMIM

IEC 61131 like
components

Offers Values as Data Points

Hardware
View

Software
View Cyclic

Task

FUP
POU

POU

POU

POUFUP
POU

POU

POU

POU

FUP POU POU POUFUP POU POU POU

Cyclic
Task

FUP
POU

POU

POU

POU

FUP POU POU POU

Control
DeviceNetwork

View

Runs on

Figure 4.1.: Overview of the target industrial control system.

The context of this thesis are distributed control devices that operate hydropower plant
units. Figure 4.1 illustrates a simplified overview of the Supervisory Control And Data
Acquisition (SCADA) architecture we were dealing with in our research project.

On network level, control devices are connected via Ethernet and operated by a super-
visory system. These supervisory computers are mainly responsible for two things. One

37

An Approach for Adding Resilience to Industrial Control Systems

responsibility is to observe the state of physical processes. The other one is to adjust
parameters of control devices in order to control the energy conversions. The observation
and adjustment actions are done by using so-called data points which are variables with
a certain basic data type such as Integer or Boolean.

The control devices are connected to hydropower plant units. Their functional responsi-
bility is to operate these units through one of the four different phases namely excitation,
synchronization, protection and turbine control.

Technically, these devices have a Programmable Logic Controller (PLC) architecture.
Concerning the hardware design, a control device is built out of one central module and
several interface modules. A central module consists of a Communication CPU (CCPU)
and an Application CPU (ACPU). The CCPU is responsible for network connections and
controlling/monitoring the ACPU. It runs a customized Linux distribution and can be
accessed by various protocols such as SSH and Modbus. From the security point of view it
protects the ACPU and verifies incoming commands. At the time of writing, the current
ACPU is a single-core processor and the next generation will be based on a multi-core
processor. The ACPU executes the control logic. It runs a real-time operating system in
order to ensure guaranteed cycle times. The interface modules connect the control device
with sensors and actuators of the hydropower plant unit. Central modules and interface
modules are connected via Ethernet.

The control logic software executed by the ACPU of a central module is component-
based and heavily influenced by the IEC 61131 standard for programmable logic controllers
[92]. Basically, the control logic is hierarchically build out of components, compositions
and tasks. A component is called Program Organization Unit (POU) and a composition
is named Function Plan (FUP). POUs are coded with the C-programming language and
stored as binaries on the devices. Such POUs implement basic functions, e.g simple logic
gates, or complex algorithms. Based on these POUs, reusable FUPs are designed that
implement the specific control logic for a hydropower plant unit. Technically, FUPs are
serialized as XML files and loaded by a POU scheduler. Finally, such FUPs are called by
cyclic tasks, for instance every 10 milliseconds. Again, tasks are serialized as XML files.

FUPs operate on data points that are set and read by the interface modules. At the
start of a cyclic task the necessary data points are collected, then the FUPs are executed,
and subsequently the calculated data points are written back. The interface modules
receive these data points and actuate accordingly. Further, data points are shared with
other control devices or supervisory computers over one or several redundant networks.
This can either be realized by a network directly between ACPUs or via the CCPU.

4.2. Approach

Figure 4.2 illustrates an overview of our approach. On the left hand side, we find models
representing the resources and control logic of the industrial control system. The models

38

4. Overview

Design Time Run Time

Transformation

Control
Device

Control
Device

Application

Cyclic
Task

FUP
POU

POU

POUFUP

POU POU POU

Cyclic
Task

deployed on

deployed on

deployed on
Observe Act

Orient Decide

Knowledge
Base

Observe Act

Orient Decide

Knowledge
Base

Control
Device

Control
Device

ScariScari

Control
Device

Scari

Control Device

Interface
Module

Central Module

CCPU

ACPU

controls
IFCPU

Control Device

Interface
Module

Central Module

CCPU

ACPU

controls
IFCPU

ScariScari

ScariScari

Control Device

Interface
Module

Central Module

CCPU

ACPU

controls
IFCPU

Scari

Scari

Hardware
Fault

Security
Attack

Software
Bug

Environmental
AnomalyContract

Contract

Contract

MisconfigurationContract

Figure 4.2.: Overview of the presented approach.

about the system resources are gathered from the devices. The control logic and the cor-
responding deployments are created manually by plant engineers. System configurations
are intended to be verifiable concerning functional and non-functional properties. The
aim is to ensure that the overall configuration of the industrial control system is correct
at design time and the time span of the commissioning is minimized.

On the right hand side, we find a self-adaptive software system that detects anomalies
and reacts to them. The intention of this system is to add resilience to the control devices
of the control system. The aim is to tolerate hardware faults, defend devices against
security attacks, detect software bugs, reveal misconfigurations, and react to faults in the
device environment. The self-adaptive system is deployed on each device and organized
in a hierarchical way. The models from design time are used for detection, reasoning, and
structural adaptation of single control devices and networks.

These two parts are connected by a transformation step illustrated in the middle of
Figure 4.2. From design to run time, the control logic is deployed on single devices. The
system model is split into parts because control devices only need to know their own cyclic
control logic. From run to design time, the system configuration is assembled from these
parts.

In the following, we discuss design time, run time, and transformation in more detail.

4.2.1. Design Time
With regards to design time, the goal is to have an abstract representation of the intended
control system in order to ensure that the target system is correct in terms of functional
properties such as data point compatibility and also concerning non-functional properties
such as timing and security.

Our approach is to use domain-specific modeling languages that enable plant engineers
to specify the control logic in the form of tasks and FUPs. Note that each control device in

39

An Approach for Adding Resilience to Industrial Control Systems

our setting utilizes cyclic tasks. If these control devices are interconnected they exchange
data points between cyclic tasks. With our modeling languages it is possible to specify
how tasks are deployed and on what central module of a control device.

Figure 4.3 illustrates the four main kinds of domain-specific modeling languages that
are used for describing the control logic and an industrial control system.

System Configuration
Megamodel

Deployment
Metamodel

Component
Metamodel

Resource
Metamodel

Contract Metamodel

Figure 4.3.: Overview of the design time metamodels.

The Component Metamodel is used for specifying control applications, cyclic tasks,
FUPs, and the interfaces of POUs. An application is a container modeling the interaction
between cyclic tasks. This is necessary because output data points from tasks can be used
as input by tasks running on other devices. An application model contains this dependency
information. Models based on the Component Metamodel are supposed to be manually
created by plant engineers.

The Resource Metamodel represents devices part of the control system. It includes
interface modules, central modules, control devices, hydro-power plant devices, network
devices and software applications. These kinds of models are supposed to be created by
querying the real networked system and should be managed by the tooling.

The Deployment Metamodel is used in order to specify where the control logic defined
with the Component Metamodel is located at models defined with the Resource Metamodel.

The System Configuration Megamodel is the entry model for processing a configuration.
It refers to the used applications, deployments, and resources. A megamodel is a model
containing both the models and the relations between those models [93].

Supporting these modeling languages we use a Contract Metamodel for modeling con-
tract-based design. Each entity, such as a task or hardware part, can basically refer to
contracts in order to enhance them with arbitrary non-functional properties such as timing,
hardware requirements, uncertainty and security. We chose contract-based design because
it fits the component-based design of our system. It allows to couple components with
assumptions and guarantees in order to verify correct configurations. Single contracts in

40

4. Overview

our proposed modeling language are dedicated to specific non-functional viewpoints.
Figure 4.2 illustrates on the left hand side how models created with the modeling lan-

guages from above can look like. It shows an application containing two tasks where one
depends on the other. The dependency is deployed onto a specific physical connection,
while the tasks reside on separate control devices. As we can see, each entity can be
annotated with contracts.

contract definition pou_timing uses
constraint system contract_constraints

assumption cpu expects string is required

guarantee wcet expects μs is required

guarantee bcet expects μs is required

contract or_timing_nxp realizes pou_timing

assumption cpu = "imx28"

guarantee bcet = 2.0

guarantee wcet = 4.0

contract definition command_signature uses
constraint system contract_constraints

assumption signer expects string

contract or_timing_intel realizes pou_timing

assumption cpu = "x5-E3940"

guarantee bcet = 0.2

guarantee wcet = 0.4

contract hipase_signer realizes
command_signature

assumption signer = "CompanyXY"

Figure 4.4.: Exemplary contracts.

Figure 4.4 illustrates exemplary contracts for timing and security. We propose con-
tract definitions as type specifications for contracts. In Figure 4.4, the contract defini-
tion pou timing specifies what assumptions and guarantees are possible. The contracts
or timing nxp and or timing intel describe the timing of a the POU Or for distinct CPUs.
Similarly, the contract definition command signature serves as a type for the contract
hipase signer.

In order to support these contracts, we are proposing a configurable constraint language
for limiting the design space of contracts. Furthermore, we propose a state machine where
each state can contain a different set of contracts. This is useful for describing devices
which have distinct operation modes.

Based on these models a system configuration can be verified in distinct ways. One
way is structural. In the simplest form a configuration of this kind can be verified as
to whether the connected data points between tasks, FUPs, and POUs are compatible.
Another simple verification is to check whether connected distributed tasks deal with the
same hydropower plant unit or if they are misconfigured.

Utilizing contract-based design enhances these structural checks by adding a flexible
mechanism that allows to analyze a configuration from multiple view points. For instance,

41

An Approach for Adding Resilience to Industrial Control Systems

a POU interface can be enhanced by a timing contract that guarantees a specific timing
based on an assumed CPU, or it states how much memory it needs in order to guarantee
its functionality. A task can be enhanced by adding contracts stating that it needs data
points within a certain period and that they need to be measured using redundant and
independent means. The structural information and the contracts can be processed by
tools that are specialized for specific properties. The errors and warnings produced by such
tools could be expressed using a separate modeling language that can annotate entities
from the metamodels above.

In addition to the verification at design time, the contracts can be utilized as input for
run time monitoring and verification.

4.2.2. Run Time
The goal at run time is to have a software system that detects various anomalies and faults,
and adapts the control devices in order to increase the reliability and security. We are not
aiming to change the control logic itself. Instead, we want to ensure that the hardware and
software stack below the intended control logic can perform as long as possible. In order
to achieve this, we are reusing the models from design time as an information source and
verification input. Furthermore, models at run time reflect the current parametrization
and structure of the devices.

Our overall aim is to detect and adapt to anomalies and faults from five distinct areas:

• Hardware Fault: As an example, permanent memory cell faults in RAM or CPU
registers, used by the ACPU or CCPU, can be detected with memory checks. Af-
ter such a detection, a faulty location could be circumvented by reconfiguration
of the operating system or by moving the control logic to another module or de-
vice. Further, permanent hardware faults in interface modules could be recognized
and handled by using an alternative interface module. A control device should not
only be able to recognize its own faulty hardware but also that of others. As data
points are distributed to other control devices controlling other parts of the same
hydropower plant unit, they should be able to observe and analyze that something
might be wrong with the hardware of other control devices or networking devices.
Ultimately, the control logic running on one device could be migrated to alternative
ACPUs, central modules or devices.

• Security Attack: Each control device in our setting knows from whom it receives
or sends data, based on its configuration. This information could be used for de-
tecting network security attacks or attackers that imitate control devices. Infected
devices can be detected when the data points they are distributing suddenly develop
odd behavior or do so over time and do not reflect the real environment. Addition-
ally, unexpected behavior of devices can hint to security incidents, e.g., attempting
access to control devices which they are not supposed to. Revealed attacks can

42

4. Overview

be handled by blocking and isolating infected devices or network resources. Other
kinds of attacks are for instance attempts to access restricted resources or physical
manipulation of sensors.

• Software Bug: Software running on top of modules can be updated in order to
gain new features or fix bugs. Albeit being a very useful feature to be able to update
the software, these changes may introduce new bugs. Resource and performance
monitors, which observe the behavior of tasks could be used to detect changed and
different behavior patterns.

• Misconfiguration: Although our approach verifies the control logic during run
time concerning various aspects, it is still possible that for instance data points are
not transmitted between devices in time. Thus, monitors observing the behavior of
tasks, interface modules, etc. could detect faults in the configuration of the control
logic.

• Environmental Anomaly: The sensors and actuators, which are the connection
between the PLCs and the power plant environment (e.g., the water turbines) can
break or drift over time. Detecting such environmental anomalies and reacting to
them is also an important area in order to make a control system more reliable.

Detection and adaptation for these areas could be done by implementing separate mech-
anisms specialized to single faults with corresponding adaptation methods. However, this
involves the orchestration of these mechanisms in parallel and ensuring that adaption
mechanisms do not interfere with each other. Furthermore, some anomalies are cross-
cutting. For instance, if a drift of a data point on a device is observed, this could indicate
a hardware fault or a security attack. If a hardware fault and a security mechanism reacted
the same time, it could be fatal for the hydropower plant. We are thus proposing an in-
frastructure that allows orchestration of such diverse detection and adaption mechanisms
and ensures that only one is carried out at one point in time. We name our infrastructure
Scari (Secure and reliable infrastructure).

Figure 4.5 illustrates the adaptive loop of Scari. It consists of 5 parts, which are Observe,
Orient, Decide, Act, and a common Knowledge Base.

The Observe part consists of monitors that are specialized in discovering and measur-
ing specific anomalies, for instance a drift in data or a security-related violation. These
monitors notify an arbitrary number of interested syndrome processors, residing in the
Orient part. The syndrome processors are implementing a specific detection mechanism,
e.g., for hardware faults or security attacks. Technically, they receive notifications about
a situation and react on them based on rules or more advanced mechanisms. If one or
several syndrome processors diagnose a problem, they recommend plan types for handling
or analyzing a situation. For instance, based on the received notifications, a hardware

43

An Approach for Adding Resilience to Industrial Control Systems

Observe Act

Orient Decide

Event

Syndrome
Processors

Recommendation
Decision Maker

Plan Maker

Plan Decision
Maker

Action Handler

1 Notification

N Recommendations 1 Recommendation

N Plans

1 Plan = {N Actions}

 Monitor

World Model

Adapt

Information Change

Knowledge
Base

1 Notification Event 1 Notification Event

1 Notification

Event

1 Notification

Event

Figure 4.5.: Scari loop.

fault syndrome processor may recommend circumventing a damaged module, while a se-
curity syndrome processor may recommend isolating a device. Next, the recommendation
decision maker selects the best recommendation on the basis of a definable prioritization
for the covered events and chosen plan types. The selected recommendation is then for-
warded to the plan maker that creates the actions for the plan type. Some plan types
may be realized in different ways. We thus added a plan decision maker that selects the
plan with the least affected Scari instances and the lowest number of used actions. In the
final part, the plan is executed by an action handler, and the system is adapted to the
situation diagnosed by a syndrome processor. Each of the entities of the Decide and Act
parts feeds back its states as events. This enables the syndrome processors to log the state
of their recommendations and to be notified in turn that the system has adapted. The
knowledge base provides support for the other four parts. It contains the deployed models,
including contracts, from design time and additional run time information. It serves as a
source of knowledge for the Observe, Orient and Decide parts, while the Act part stores
the executed changes of the system there.

As depicted in Figure 4.6, Scari instances run on the ACPU and CCPU of each central
module and on different layers above. Each of these instances incorporates the five parts of
the Scari adaptive loop and can react autonomously. We chose a decentralized architecture
because the control devices in our industrial setting can be deployed in unique system
configurations incorporating devices from other companies. The Scari instances can be
organized in layers in order to escalate situations to entities with more adaptation options.
As illustrated in Figure 4.6 notifications about events and system knowledge are sent

44

4. Overview

Control
Device
Control
Device
Control
Device

Control
Device
Control
Device
Control
Device

Control Device

Interface
Module
Interface
Module

Central
Module CCPU

ACPU

controls IFCPU

IMIMIMIM

Control Device

Interface
Module

Central
Module CCPU

ACPU

controls IFCPU

IMIM

Control
Device
Control
Device

Observe Act

Orient Decide

Knowledge
Base

Observe Act

Orient Decide

Knowledge
Base

Control Device

Interface
Module

Central
Module CCPU

ACPU

controls IFCPU

IMIM

Control
Device

Observe Act

Orient Decide

Knowledge
Base

ScariScariScari

Events
+

Knowledge
Actions

ScariScari

ScariScari
ScariScari ScariScari ScariScariScari

ScariScari

Figure 4.6.: Scari deployed in layers.

upwards to higher layers while actions from higher layers can change lower layers. This
hierarchical organization of Scari has two advantages:

One is that a knowledge base only needs to know its subgraph. If the knowledge within
a Scari instance changes, information is only propagated up to the parent nodes. Dis-
tributing all information on all available Scari instances would additionally lead to more
network traffic.

The second advantage is that an adaptive loop only needs to handle its subgraph. A
loop does not need to manage other parts of the overall control system, which also eases
the configuration of Scari. If it is not possible to adapt to an event occurring on a node,
it can be escalated to a parent node that has more knowledge, more resources, and can
therefore leverage more powerful adaptation mechanisms. In our hydropower setting it is
conceivable that these adaptation layers are even laid over different hydropower plants,
where they are acting on a greater time scale.

4.2.3. Transformation

Figure 4.7 showcases models at design and run time. At design time the deployment of
tasks to resources is explicitly modeled. At run time the tasks are already deployed and an
application is split into distinct PLC configurations. Objects of type Me are referring to
the specific device models at run time. Scari organizes models hierarchically and distinct
modeling languages can be utilized by the different layers.

Design time provides to run time system knowledge, which can be utilized by the dis-
tinct participants of Scari. For instance, monitors can utilize contracts for observing
performance behavior. Also syndrome processors can configure themselves based on the

45

An Approach for Adding Resilience to Industrial Control Systems

: ApplicationEntity

: Deployment

: TaskToHipaseDevice

: TaskEntity

: TaskEntity

: TaskConnection : Network

: HipaseDevice

: EthernetLink

: HipaseDevice

: TaskToHipaseDevice

: TaskConnectionToEthernetLink

: SystemConfiguration

Knowledge Base

Knowledge BaseKnowledge Base

super:Me

1:Me

:HipaseDevice

:InterfaceModule:Task

0:Me

:HipaseDevice :Contract

:InterfaceModule:Task

:Network

0:Me

:HipaseDevice:EthernetConn :Contract

:InterfaceModule:Task

1:Me

:HipaseDevice:EthernetConn

:InterfaceModule:Contract :Task

:EthernetConn :EthernetConn

Design Time

Run Time

: ContractEntity

: ContractEntity

:Contract

:Contract :Contract

Figure 4.7.: Models at design and run time.

provided system knowledge. Furthermore, a plan maker could utilize the design time
verification mechanisms for verifying generated plans.

From run to design time, the system knowledge gets updated and adjusted to real world
behavior. For instance, contract and model violations can be observed. Scari can adapt the
system knowledge in order to update contracts e.g., concerning performance or reliability.

The transformation of design-time models to run-time models can reside on a supervisory
computer or computers used during commissioning. The generated run-time models are
deployed by using the action handlers, which set the corresponding knowledge bases or by
bootstrapping a Scari instance. The first way is preferable if the knowledge base already
contains information.

The transformation of run-time models to design-time models works by cloning a higher
layer knowledge base to a computer where the run-time models are transformed to a design-
time configuration reflecting the current system configuration. It is only necessary to clone
a higher layer knowledge base because it incorporates the knowledge from lower layers.

46

4. Overview

4.3. Use Case

We demonstrate using the following examples how models at design time look like and
what our proposed self-adaptive system is able to do at run time.

4.3.1. Design Time

Control Device A
Interface
Module
Interface
Module

Central Module

CCPU

ACPU

Central Module

CCPU

ACPU

IFCPU

IMIMIMIM

Control Device A
Interface
Module

Central Module

CCPU

ACPU

IFCPU

IMIM

Control Device B
IMIMIMCentral Module

CCPU

ACPU

Central Module

CCPU

ACPU

Central Module

CCPU

ACPU

IMIMIMIMIMIM

Ethernet Switch

Cyclic
Task

FUP
POU

POU
POU

POUFUP
POU

POU
POU

POU

FUP POU POU POUFUP POU POU POU

Cyclic
Task

FUP
POU

POU
POU

POU

FUP POU POU POU

Cyclic
Task

FUP
POU

POU
POU

POU

FUP POU POU POU

Control Device C
IMIMIMCentral

Module

CCPU

ACPU

IMIMIMIMIMIM

contract pou realizes
pou_timing

assumption cpu = "x5-E3940"
guarantee bcet = 3.3 μs
guarantee wcet = 4.4 μs

contract signer realizes
command_signature

assumption signer =
"companyX"

contract
pou_scheduler_memory
realizes mem_consumption

assumption cpu = "imx28"
guarantee max = 20 MB

contract
ccpu_throughput realizes
datapoint_throughput

guarantee dps = 10000
contract Ifcpu_latency realizes
latency

guarantee max-latency = 50 µs

contract task_datapoints realizes
dps_distinct_sources

assumption set1 = ["a", "b"]
assumption set2 = ["a-red", "b-red"]

contract a-to-c realizes latency

assumption protocol = "TCP/IP"
assumption from = "a"
assumption to = "c"
guarantee max-latency = 125 µs

Figure 4.8.: Exemplary design time use case.

Figure 4.8 illustrates a visualization of models at design time, which could be specified
with our proposed modeling languages. A cyclic task with two FUPs is deployed on the
central module of control device A. Data points are received from the ACPU of control
device B physically over an Ethernet connection. Control device C is connected to the
same hydropower unit but the ACPU is not connected with the others.

Figure 4.8 shows distinct kinds of contracts describing non-functional properties of
hardware and software. The shown non-functional properties are timing, latency, redun-
dancy, throughput, memory consumption, and security. The contracts describing timing,
throughput, memory consumption and the latency contract ifcpu latency would be cap-
tured during the development and production of the hardware and software components
through testing. If the software of the PLCs gets updated at run time these contracts
would need to be updated as well. The contract task datapoints describes that data points
contained in set1 and set2 need to be provided by distinct sources. This constraint must
be fulfilled by the design time model and at run time. The latency contract a-to-c must be

47

An Approach for Adding Resilience to Industrial Control Systems

measured during the commissioning of such a system. The security contract signer states
that only commands signed with the specified certificate are allowed to be accepted. “com-
panyX” would point to a specific public key.

In order to verify a model of this kind, it can be transformed into data consumable by
specialized tools. For instance, timing analysis software could calculate the worst case,
average case and best-case behavior of task chains, taking the Ethernet networks into
account. The results would then be presented to the engineer for optimizing the system
configuration.

If the various verifications are successful the design-time models can be transformed
and deployed to the PLCs. In our approach, this information is preserved as architectural
models at run time for detecting anomalies and adapting to situations. The contracts can
play an important role for the detection. Furthermore, the contracts can be utilized for
verification of planned adaptations for ensuring their correctness.

4.3.2. Run Time

In the following we discuss three use cases at run time where Scari can be applied for
dealing with a problematic situation. The models from design time support the different
Scari activities in adapting to a problematic situation.

Memory Fault ACPU

Control Device

Central Module

CCPU

ACPU

controls

IMIMIMIM

Core 0

Voter (Monitor)

Core 1

Calculation

Core 3

Redundant
Calculation

Core 3

Redundant
Calculation

ScariScari

Hardware Fault
Syndrome
Processor

Security
Syndrome
Processor

Data
Mismatch

Figure 4.9.: Exemplary memory fault on the ACPU.

Figure 4.9 shows a hardware fault residing on the ACPU. In this scenario one calculation
is running redundant on core 1, 2 and 3 of the ACPU. All calculations are observed by a

48

4. Overview

voter (monitor). Now, if a data mismatch happens, the voter notifies the syndrome pro-
cessors residing on the CCPU. These syndrome processors are implementing the logic for
processing notifications and recommending a suitable plan. In our experiments we imple-
mented the syndrome processors as rule-based engines, state machines or time-triggered
tasks.

Situation Plan Actions
Emergency Safe State

• Activate Hot-Standby PLC
• Stop PLC
• Notify Higher Layer

Data Mismatch Memory Test
• Stop Calculation on Core
• Perform Memory Test

Located Faulty Memory Area Mask Memory
• Switch Memory Area
• Mask Faulty Memory Area

Repaired Memory Start Calculation
• Start Calculation on Core 3
• Reconfigure Voter

Table 4.1.: Plans for dealing with a permanent memory fault.

Table 4.1 illustrates the plans which could be recommended by the hardware fault
syndrome processor. The plan “Safe State” can be recommended if there is no possibility
of repairing a system. It could involve activating a hot-standby PLC. However, if the data
mismatch is only affecting the calculation on core 3, the hardware fault syndrome processor
can recommend testing the used memory area. If the memory test finds a faulty area, the
syndrome processor can recommend to switch the memory area and to permanently mask
the memory area by configuring the operating system. After a new successful memory
test, the hardware fault syndrome processor can recommend the plan “Start Calculation”.

This example shows that a PLC is able to heal itself and to continue the control activities
with Scari.

Hardware Fault Interface Module

Figure 4.10 illustrates the three control devices from design time. It shows that a per-
manent hardware fault is happening on an interface module of the control device B. The
hardware fault manifests itself through missing data at the connected ACPUs. At the
same time, control device C would obtain the same data from an interface module.

Table 4.2 enumerates plans for dealing with this situation. If control device B is con-
nected with a hot-standby device it could activate it and stop itself. If it obtains a re-
dundant interface module it could recommend the plan “Switch Module”. On the network
layer, the higher-layer Scari instance could recommend to circumvent the faulty interface

49

An Approach for Adding Resilience to Industrial Control Systems

Control Device A
IMIMIMCentral Module

CCPU

ACPU

Central Module

CCPU

ACPU

Central Module

CCPU

ACPU

IMIMIMIMIMIM

Control Device B
IMIMIMCentral Module

CCPU

ACPU

Central Module

CCPU

ACPU

Central Module

CCPU

ACPU

IMIMIMIMIMIM

Ethernet Switch

Control Device C
IMIMIMCentral

Module

CCPU

ACPU

IMIMIMIMIMIM

No
Data

No
Data

ScariScari ScariScari ScariScari

Higher-Layer
Scari

Higher-Layer
Scari

Redundant
IM

HW Fault

Figure 4.10.: Exemplary hardware fault of an interface module.

Situation Plan Actions
Emergency Safe State

• Activate Hot-Standby PLC
• Stop PLC
• Notify Higher Layer

HW Fault in Interface Module Switch Module
• Use Data from Redundant Module
• Stop Faulty Interface Module

HW Fault in Interface Module
of Child PLC

Reconfigure Data Point
Distribution • Stop Hydropower Unit

• Add Data Connections
• Reconfigure FUPs
• Start Hydropower Unit

Table 4.2.: Plans for dealing with a hardware fault affecting an interface module.

module with a reconfiguration of the data point distribution. The timing contracts can
be used during plan creation in order to ensure that data points arrive in time.

Note that the proposed self-adaptive software system does not react in real time. We
are assuming that the first reaction in this case would be done by the PLC software itself.
Scari would then try to recommend one of the plans in Table 4.2 for the system self-healing.

Manipulated FUP

Figure 4.11 illustrates an overview of a security-related use case. In this example, an
attacker was able to deploy a hostile cyclic task to control device B. This hostile task may
target to slowly destroy a hydropower plant unit, similar to the intention of the famous
Stuxnet computer worm [94, 95]. Monitors and syndrome processors located on the CCPU
of control devices and connected to the same hydropower plant unit have the means to

50

4. Overview

Control Device A
Interface
Module
Interface
Module

Central Module

CCPU

ACPU

Central Module

CCPU

ACPU

IFCPU

IMIMIMIM

Control Device A
Interface
Module

Central Module

CCPU

ACPU

IFCPU

IMIM

Control Device B
IMIMIMCentral Module

CCPU

ACPU

Central Module

CCPU

ACPU

Central Module

CCPU

ACPU

IMIMIMIMIMIM

Ethernet Switch

Control Device C
IMIMIMCentral

Module

CCPU

ACPU

IMIMIMIMIMIM

ScariScari

Drift in
Data

ScariScari

Higher-Layer
Scari

Higher-Layer
Scari

ScariScari

Cyclic
Task

Figure 4.11.: Exemplary control devices under attack.

detect the slow but harmful drift of data points.

Situation Plan Actions
Drift in Data Notify Higher Layer

• Send Notification

Drift in Data Isolate Device
• Stop Hydropower Unit
• Blacklist Device

Isolated Device Reconfigure Data Point Distribution
• Add Data Connections
• Reconfigure FUPs
• Start Hydropower Unit

Table 4.3.: Plans for dealing with the security use case.

Table 4.3 enumerates possible plans in such a situation. Control device A could react
by notifying the higher Scari instance that there is a drift in the data sent from control
device B. A security syndrome processor located in the higher layer could react by rec-
ommending the plan “Isolate Device”. If this plan was successful, the syndrome processor
could recommend the plan “Reconfigure Data Point Distribution” in order to restore the
availability of the hydropower unit.

In the presented example we knew beforehand that it is a security-related situation.
Syndrome processors have to analyze notifications and recommend appropriate plans. It
might also be the case that there are syndrome processors, which are dedicated to diagnos-
ing hardware faults and they interpret the situation differently. This is a benefit of Scari
as it provides a common infrastructure for all kinds of distinct reasoning mechanisms. It
allows to compete syndrome processors for the best recommendation. In essence, this is
the reason why it is important to prioritize events and plan types in order to make a de-

51

An Approach for Adding Resilience to Industrial Control Systems

cision. For instance, one could prioritize security-related events over hardware-related. It
depends on the domain and the available means how events and plan types are prioritized.

52

5. Design Time

This Chapter is devoted to the phase starting with the development of a hardware or
software component and ending with the commissioning of a control system. We pro-
pose modeling languages for describing the available hardware and software resources, the
control (application) logic and the deployment of the control logic (C1). Additionally,
we propose a modeling language for specifying contracts and contract types based on the
contract-based design paradigm. It also incorporates a state machine for contracts. We use
this contract-based design modeling language for capturing the behavior of non-functional
properties. From our work on modeling languages, we derived four design patterns that
describe how to design configurability into domain-specific language elements (C4).

In Section 5.1, we motivate our work by enumerating our goals concerning design time.
Section 5.2 discusses requirements to the modeling languages that are derived from our
motivation. Section 5.3 presents our modeling languages. Section 5.4 explains how we
implemented the modeling languages technically. Section 5.5 showcases how the modeling
languages can be utilized. In Section 5.6, we explain how our modeling languages fulfill
the requirements discussed in Section 5.2. Section 5.7 enumerates the limitations of our
approach. Finally, Section 5.8 enumerates design patterns that we found during our work
on modeling languages.

5.1. Motivation

At the time of writing, the PLCs of our project partner are programmed individually with
graphical function block diagrams. These diagrams comply with IEC 61131-3 [2]. IEC
61131-3 specifies a set of standardized POUs. This set is extended with hydropower specific
ones. A PLC in our setting executes tasks periodically for instance every 10 milliseconds.
This is also true if there exist interconnections between control devices. Thus, it is crucial
that a PLC finishes a task and transmits data points to a second PLC in time, before the
second PLC restarts the receiving task.

There are two goals we pursue with our work at design time. The first goal is to
have models of the control devices and the deployed tasks in order to verify whether a
system configuration is correct concerning functional and non-functional properties. At
the time of writing, a correct system configuration is accomplished by trying out. An
automated verification would simplify the commissioning of control devices. For instance,
if the worst-case and best-case execution time of the single POUs, hardware modules and

53

An Approach for Adding Resilience to Industrial Control Systems

bus connections are known through testing, it could be estimated beforehand if a data
point will be sent between two control devices in time.

The second goal is to annotate and use these models at run time for enforcing and
verifying constraints and assumptions. For instance, a constraint at run time may be
that two input data points for a cyclic task are acquired and pre-processed from distinct
sensors and hydropower equipment. As security increasingly becomes important in the
hydropower domain, another constraint could be that commands are signed by a fixed
set of SCADA entities. The constraints themselves are supposed to be specified at design
time.

These two goals are also aligned with our research questions. Regarding the first research
question, we determine what kind of system knowledge is required for creating models for
verification. Concerning the second research question, the modeled system knowledge
provides means for evaluating options for actions in order to add resilience.

5.2. Requirements
In the following, we discuss requirements derived from the motivation above. Requirements
are marked with a “REQ” plus a number in square brackets.

Models for representing an industrial control system need to reflect the tasks and FUPs
[REQ1] in order to grasp the control logic. Furthermore, it is necessary to describe in-
terface modules and available data points [REQ2] for relating the tasks to the physical
environment. The control device of our industrial setting can be deployed in clusters for
realizing parallel functionalities. Therefore, it is also necessary to model the interconnec-
tions of control devices and tasks [REQ3]. An engineer should be able to verify tasks in
distinct scenarios. Therefore, a modeling language should support a loose coupling be-
tween task and control device [REQ4]. Last but not least, we want to express assumptions
and constraints for instance about security, timing, or performance. Further on, these
constraints should be verifiable by specialized tools. Thus, an approach should provide a
generic modeling concept for non-functional properties [REQ5].

5.3. Modeling Languages
Figure 5.1 provides an overview of all proposed design time modeling languages.

The System Configuration Megamodel is the entry model for processing a configuration.
It refers to the used applications, deployments, and resources. A megamodel is a model
containing both - the models and the relations between them [93].

The Component Metamodel is used for specifying control applications, cyclic tasks,
FUPs, and the interfaces of POUs. An application is a container modeling the interaction
between cyclic tasks. This is necessary because output data points from tasks can be used
as input by tasks running on other devices. An application model contains this dependency

54

5. Design Time

System Configuration
Megamodel

Deployment
Metamodel

Component
Metamodel

Resource
Metamodel

Contract Metamodel

Constraint
Metamodel

Data Point
Metamodel

Figure 5.1.: Overview of all design time metamodels.

information. Models based on the Component Metamodel are supposed to be manually
created by plant engineers.

The Resource Metamodel represents devices part of the control system. It includes inter-
face modules, central modules, control devices, hydro-power plant devices, network devices
and software applications. This kind of model is supposed to be created by querying the
real networked system and should be managed by the tooling.

The Deployment Metamodel is used in order to specify where the control logic defined
with the Component Metamodel is located in models defined with the Resource Metamodel.

The Data Point Metamodel provides modeling concepts for defining data-point types
and values. It is used by the Component, Resource and Deployment metamodels.

The Contract Metamodel offers means to define contract definitions, contracts, contract
state machine definitions and contract state machines. These mechanisms capture the
non-functional behavior of resources, components, and deployments.

The Constraint Metamodel is used for defining data types, variables and constraints. It
is the foundation of the Data Point and Contract modeling languages.

Figure 5.2 presents a model as it would be defined with our approach. The right hand
side shows resources such as Hipase devices, their modules and Ethernet connections be-
tween devices. This information should be provided by the existing devices in a hydropower
plant and automatically discovered at the time an engineer configures a plant. The left-
hand side shows the control logic consisting of an application, tasks, and FUPs. Between
these two models are the deployment objects that link control logic with resources. The
system configuration object at the top of Figure 5.2 serves as entry point to the mod-
els. In addition to these models, contract entities and definitions are shown that specify
non-functional properties. They can be attached to each object in the model.

Figure 5.3 shows how a contract is defined with our proposed modeling languages. The

55

An Approach for Adding Resilience to Industrial Control Systems

: ApplicationEntity

: Deployment

: TaskToHipaseDevice

: TaskEntity: TaskDefinition

: TaskExecutionSequence

: FupEntity : FupDefinition

: FupExecutionSequenceDefinition

: PoeEntity: PoeDefinition

: ContractEntity

Timing : ContractDefinition

: DatapointListDefinition

: TaskEntity: TaskDefinition

: TaskExecutionSequence: DatapointListDefinition

: TaskConnection

: PoeEntity : FupEntity

: Network

: HipaseDevice

central : ModuleEntity : SoftwareApplication

interface : ModuleEntity

: PowerPlantDevice

: EthernetLink

: ContractEntity

: HipaseDevice

central : ModuleEntity

: SoftwareApplication

CentralModule : ModuleDefinition

acpu : HardwareCompound

 : ContractEntity

 Security: ContractDefinition

ccpu : HardwareCompound

: ContractStateMachineEntity

: ContractStateMachineDefinition

interface : ModuleEntity : PowerPlantDevice

: ContractEntity

interfaceXY : ModuleDefinition

: DatapointListDefinition

cpu : HardwareCompound

: TaskToHipaseDevice

: ContractEntity

Reliability : ContractDefinition

: TaskConnectionToEthernetLink

: SystemConfiguration

: ContractEntity

: ContractEntity

: ContractEntity

: ContractEntity

: ContractEntity : ContractDeployment

Figure 5.2.: Example model containing resources, components, deployments and contracts.

contract definition pou_timing uses constraint system
contract_constraints

parameter definition dps : datapoints

assumption cpu expects string is required
assumption datapoints expects boolean

guarantee bcet expects μs is required
guarantee wcet expects μs is required

contract complex_pou realizes pou_timing

parameter dps = {
x : float32 = 0.0,
y : int32 = 0

}

assumption cpu = "imx28"
assumption datapoints = dps[0] < 20.7 && dps[1] > 10

guarantee bcet = 33 μs
guarantee wcet = 44 μs

constraint system contract_constraints uses
datatypes contract

configuration expression {
disable arithmetic

}

datatypes system contract

primitive string {
type String

}

primitive boolean {
type Boolean

}

primitive int32 {
type Integer
bits 32

}

primitive float32 {
type Float
bits 32

}

collection datapoints {
require names
types {

 int32, float32
}

}

primitive μs {
type Float

}

Figure 5.3.: Exemplary contract, contract definition, constraint system and data type sys-
tem.

data-type system on the right-hand side illustrates the available data types for the contract.
A collection of type datapoints holds the single data points which have to be specified with
a name and type. The illustrated constraint system references the data type system and
disables the possibility of arithmetic operations within the assumptions and guarantees.
This is useful if a contract is transformed to a tool, which verifies for instance the timing.
A constraint system can configure each aspect of our proposed constraint language. Figure
5.3 illustrates a contract definition for the timing of POUs. It defines a parameter dps of
type datapoints, assumptions concerning CPU and data points, and guarantees for best

56

5. Design Time

and worst case execution times. The assumption and guarantee definitions specify the
expected return type of the constraints and whether an instantiation is required. The
contract complex pou realizes the contract definition. It specifies two data points; an
assumption targeting the CPU and a constraint referencing the parameter dps with the
contained data points. If the assumptions are fulfilled the contract guarantees best and
worst execution times.

contract statemachine definition machine_definition
uses constraint system contract_constraints

uses contract definition pou_timing
uses contract definition command_signature

parameter nextState : string = ""

Event: nextState == „running“BootBoot
Ready

Contract "Command Signer"

Ready

Contract "Command Signer"

Running

Contract "Command Signer"
Contracts "Pou Timing"

Running

Contract "Command Signer"
Contracts "Pou Timing"

Load

Contract "Command Signer"

Load

Contract "Command Signer"

Debug

Contract "Special Command Signer"

Debug

Contract "Special Command Signer"

Event: nextState == „debug“

Event: nextState == „ready“

Event: nextState == „ready“

Event: nextState == „ready“

Event: nextState == „ready“
Event: nextState == „load“

Figure 5.4.: Exemplary contract state machine for a PLC.

Figure 5.4 shows an exemplary contract state machine for a PLC. Depending on the
state, a different set of contracts becomes valid. For instance, certificate signatures of
other participants are accepted if the contract “Special Command Signer” becomes valid
in the state Debug. Also, there is only a POU timing provided if the control device is in the
state Running. The contract-state-machine definition machine definition names available
contract definitions and parameters for triggering the state changes. Similar to contracts,
a contract state machine must comply with the definition.

Here we enumerate possible non-functional properties graspable by contracts in our
industrial setting:

Timing Contracts can be used for describing the worst, average, and best case timing be-
havior of interface modules, devices, network connections, and software applications.
Depending on the described component, a timing contract could state assumptions
about the CPU, operating system, processed data points, and workload.

Memory usage Contracts can capture the memory usage of software applications in order
to ensure that a device is capable of executing them. This is useful because the
available memory on the PLC of our project partner depends on the number of
processed data points.

57

An Approach for Adding Resilience to Industrial Control Systems

Security Contracts can be used for specifying run-time constraints, e.g., which certificate
needs to be used for sending commands to a PLC. Similar to this, a contract could
state what applications can be executed on a communication partner in order to be
trusted. Furthermore, contracts could be used for specifying trust boundaries.

Redundancy Concerning run time, a contract can state for instance that a data point
needs to be provided by distinct modules and sensors.

Throughput Contracts could state the amount of data points a component can transmit
per time slot. For instance, the CCPU transmits data points between the supervisory
computer and the ACPU. A contract guaranteeing a certain amount of data points
per time unit could help optimizing the supervisory computer.

In the following, we discuss the responsibility, rationale, structure and behavior of the
metamodels illustrated in Figure 5.1. Note that we chose textual DSLs as concrete syntaxes
of the modeling languages. Therefore, objects are often not connected directly with each
other but only through a specific reference object. Furthermore, a lot of the semantics is
realized by the textual languages.

We verified the correctness of our proposed modeling languages by transforming exist-
ing PLC configurations from our project partner into models. We then generated equal
configuration files from these models. Therefore, we conclude that our modeling languages
preserve the contained information.

58

5. Design Time

5.3.1. Constraint
Responsibility: The constraint modeling language is used for specifying data types,
variables and expressions. Furthermore, it enables to specify data type and constraint
systems. A data type system defines available data types and their possible conversions.
A constraint system restricts what expression statements and variables are allowed to be
used. This modeling language is reused by the contract and data point modeling languages.
Rationale: The specification of data types is important for ensuring that data is seman-
tically correct. We designed our own constraint language in order to make it configurable
concerning available operators in expressions. We use this feature for specifying contract
types that are transformable to input data for third-party verification tools.
Structure & Behavior: Figure 5.5 shows the classes for specifying data types, variables,
signatures of method calls, concrete values, and expression statements. Primitive data
types refer to built-in basic types such as string or integer. Our proposed constraint
language also allows to specify valid data type conversions from and to data types. This
enables to cast variables to other data types. The data type conversion ensures that a cast
is semantically correct. An object of type Signature is specifying the signature of a method
that can be called by an expression. This is useful for code generators that interpret such
signatures. We did not add the possibility of specifying a method body because signatures
merely serve as references to methods realized by an interpreter or in generated code.

Figure 5.6 shows the distinct operations possible. Each operator inherits from the class
IExpression. Semantically, each operator returns a valid data type and can therefore be
used within assumptions or guarantees, which always expect a certain data type. In the
case of the comparison and logical operators, our constraint language internally returns a
primitive boolean type.

Figure 5.7 illustrates the classes for configuring the constraint language. A Variable
Configuration specifies variable-related settings such as disabling the possibility to specify
concrete values. As mentioned above, objects of type Signature can be used for specifying
methods known by generators. The Expression Configuration is used for a fine-grained
control over expressions. The Data Type System offers the possibility to package data
types and is referenced by the Constraint System.

59

An Approach for Adding Resilience to Industrial Control Systems

ExpressionStatement

IExpression

Signature

SignatureParameter

name : EString

IVariable

IVariableValue

ConcreteValue

value : EString

VariableValueReference

RecordAttributeValue

ConcreteIntegerValue

signed : EBoolean = false

ConcreteFloatValue

signed : EBoolean = false

ConcreteBooleanValue

ConcreteStringValue

ConcreteNullValue

IStatement

SignatureOrVariable

name : EString

IDataType

name : EString

UnitType

PrimitiveType

basicDataType :
BasicDataType = String

bits : EInt = 0

BasicDataType

String

Boolean

Integer

UnsignedInteger

FloatEnumType EnumLiteral

name : EString

value : EInt = -1

CollectionType

requireNames : EBoolean = false

RecordType

RecordAttribute

name : EString

Variable

ConversionTo

ConversionFrom

DataTypeConversion

lossy : EBoolean = false

[0..*] parameters
name [0..1] returnParameter

name

[0..*] content

[1..1] reference

[1..1] value

[1..1] expression

[0..1] dataType

name

[1..1] dataType

[1..1] type

[1..*] literals
name

[1..*] dataTypes

[1..*] attributes

name

[1..1] dataType
[1..1] attribute

[0..*] conversionTo

[0..*] conversionFrom

[1..1] refDataType

name

Figure 5.5.: Metamodel for data types, variables, expression statements, and data type
conversions.

60

5. Design Time

IExpression

Addition Subtraction Multiplication Division Modulo ArithmeticSigned

Arithmetic

ComparisonLessGreater

LessThan LessThanOrEqualTo GreaterThan GreaterThanOrEqualTo

Equal NotEqual

Logical

And Or Not

ILiteral

value : EString

IntegerLiteral FloatLiteral StringLiteral BooleanLiteral

IfExpression

ComparisonEqual

CollectionReferenceAccessor

RecordAccessor

IVariable

 content : IVariableValue

NullLiteral

CollectionIndexAccessor

index : EInt

EnumLiteralAccessor

IAccessor

SignatureOrVariableAccessor

signatureCall : EBoolean = false

SignatureOrVariable

name : EString

RecordAttribute

name : EString

IDataType

name : EString

 conversionTo : ConversionTo

 conversionFrom :

ConversionFrom

EnumType EnumLiteral

name : EString

value : EInt = -1

[1..1] then
[0..1] else

[0..1] left

[0..1] right

[0..1] left [0..1] right

[1..1] expression

[0..1] left

[0..1] right

[0..1] left

[0..1] right

[1..1] expression

[1..1] if

[1..1] collection

[1..1] collection

[1..1] record

[1..1] value

[0..*] arguments

[1..1] signatureOrVariable

[1..1] attribute

[0..1] dataType

[1..*] literals

name

[1..1] enum

[1..1] literal

Figure 5.6.: Metamodel for expressions.

61

An Approach for Adding Resilience to Industrial Control Systems

ConstraintSystem

name : EString

VariableConfguration

disableNull : EBoolean = false

disableConcreteValues : EBoolean = false

disableVariableValueReference : EBoolean = false

disableVariable : EBoolean = false

ExpressionConfguration

disableArithmetic : EBoolean = false

disableAddition : EBoolean = false

disableSubtraction : EBoolean = false

disableMultiplication : EBoolean = false

disableDivision : EBoolean = false

disableModulo : EBoolean = false

disableArithmeticSigned : EBoolean = false

disableComparisonLessGreater : EBoolean = false

disableLessThan : EBoolean = false

disableLessThanOrEqualTo : EBoolean = false

disableGreaterThan : EBoolean = false

disableGreaterThanOrEqualTo : EBoolean = false

disableComparisonEqual : EBoolean = false

disableEqual : EBoolean = false

disableNotEqual : EBoolean = false

disableLogical : EBoolean = false

disableAnd : EBoolean = false

disableOr : EBoolean = false

disableNot : EBoolean = false

disableVariableAccessor : EBoolean = false

disableCollectionReferenceAccessor : EBoolean = false

disableRecordAccessor : EBoolean = false

disableLiteral : EBoolean = false

disableIntegerLiteral : EBoolean = false

disableFloatLiteral : EBoolean = false

disableStringLiteral : EBoolean = false

disableBooleanLiteral : EBoolean = false

disableIfExpression : EBoolean = false

disableSignatureAccessor : EBoolean = false

disableNullLiteral : EBoolean = false

disableCollectionIndexAccessor : EBoolean = false

IVariable

 content : IVariableValue

Signature

 parameters : SignatureParameter

 returnParameter : SignatureParameter

DataTypeSystem

name : EString

IDataType

name : EString

 conversionTo : ConversionTo

 conversionFrom : ConversionFrom

[0..1] variableConfguration

[0..1] expressionConfguration

[0..*] variables

[0..*] signatures

[0..1] datatypeSystem

[0..*] usedDataTypeSystems

name

[0..*] dataTypes

Figure 5.7.: Metamodel for configuring the constraint modeling language.

62

5. Design Time

5.3.2. Contract

Responsibility: The contract modeling language is used for specifying types of contracts
and contract state machines. Furthermore, instances of contracts and contract state ma-
chines can be defined.
Rationale: Contract-based design is our chosen approach for capturing non-functional
requirements and properties of distinct entities. It enables to capture what an entity
assumes from the environment and what it in return guarantees. We introduced the
concept of contract types for specifying semantically how a contract instance can look like.
This is important for generating correct input for arbitrary analysis tools. We introduce
the concept of a finite state machine, where single states constitute valid contracts because
there can exist cases where the behavior of an entity, including non-functional properties,
changes over time or as a result of specific events. The idea is to have finite state machines,
where the single states may contain several currently valid contracts. A state machine itself
operates on parameters provided by the environment or the internal states of an entity. If
a contract state machine changes its current state, former contained contracts can become
invalid or overwritten.
Structure & Behavior: Figure 5.8 illustrates our proposed metamodel for contracts. We
separate a contract into two parts. A Contract Definition represents a type for Contract
Entities. It states the available parameters, assumptions and guarantees. Furthermore,
it represents the target non-functional property. A Contract Entity captures the unique
behavior concerning the target non-functional property of a component in relationship to
its environment.

ContractDefnition

name : EString

AssumptionDefnition GuaranteeDefnition

ConstraintDefnition

ContractEntity

name : EString

AssumptionEntity GuaranteeEntity

ConstraintEntity

ParameterDefnition

name : EStringConditionDefnition

name : EString

ConditionEntity

IVariable

ExpressionStatement
IDataType

name : EString

ConstraintSystem

name : EString

[0..*] assumptionDefnitions [0..*] guaranteeDefnitions

[1..1] contractDefnition

name

[0..*] guaranteeEntities[0..*] assumptionEntities

[0..*] parameterDefnitions

name
[1..1] conditionDefnition

name

[0..*] parameters

name

[0..*] realizedParameterEntities

name

[1..1] constraint

[0..*] expectedDataTypes

name

[1..1] dataType
name

[0..1] constraintSystem

Figure 5.8.: Metamodel for contracts.

Parameters can represent properties of the execution environment, data ports or events.
They can be used by Constraint Entities in order to set the specific assumption or guar-
antee. Parameter Definitions are used to specify that a variable of a specific data type
may exist, but the concrete value has to be defined by the realizing Contract Entity. This

63

An Approach for Adding Resilience to Industrial Control Systems

can be useful for data arrays where the data points contained are individual for each
component.

In the context of assumptions and guarantees, it is possible for a Constraint Definition
to set expected data types. The associated Constraint Entity must provide an expression
where the resulting data type equals one of the expected types.

As we can see in Figure 5.8, we use from the constraint modeling language IVariable for
parameters, IDataType for data types, and Expression Statement for constraint expres-
sions. The expressions are configured by the Constraint System referenced by the Contract
Definition.

The assumptions and guarantees of the Contract Entities must be either automatically
gathered by a measurement software or issued by humans. The referenced Contract Defi-
nition can be used by tools in order to distinguish different kinds of contracts.

Single contracts are sometimes not adequate for representing non-functional properties.
There are cases where the behavior of a component, including non-functional properties,
changes over time or as a result of specific events. We thus decided to expand the theory
of contract-based design and capture such differences concerning contracts by applying
the concept of a finite state machine. The idea is to have a finite state machine, where
the single states may contain several currently valid contracts. The state machine itself
operates on parameters provided by the environment or the internal states of a component.

ContractStateMachineDefnition

name : EString

ContractStateMachineEntity

name : EString

ContractStateMachineEvent

name : EString

ContractDefnition

ContractStateMachineState

name : EString

initialState : EBoolean = false

ContractEntity

ContractStateMachineTransition

ParameterDefnition

name : EString

required : EBoolean = false

IVariable

ExpressionStatement IDataType

ConstraintSystem

[1..1] contractStateMachineDefnition name

[0..*] events name [0..*] statesname

[1..1] contractDefnition

name

[0..*] transitions

[1..1] targetStatename
[1..1] event

name

[0..*] usedContractDefnitions

name

[0..*] parameterDefnitions

name

[0..*] contractEntities

name

[0..*] parameters

name

[0..*] realizedParameterEntities

name

[1..1] constraint [1..1] dataType

name

[0..1] constraintSystem

Figure 5.9.: Metamodel for contract state machines.

Figure 5.9 illustrates our proposed metamodel for a contract state machine. We again
use the concept of definition and entity in order to separate the specification and actual
instance of a so-called contract state machine.

A Contract State Machine Definition constitutes allowed Contract Definitions, concrete
parameters and declarations of parameters, which need to be defined by corresponding
Contract State Machine Entities.

Parameters are supposed to be used by Contract State Machine Events within constraint
expressions, which trigger transitions to other Contract State Machine States. Such a state

64

5. Design Time

contains zero to infinite Contract Entities.
Again, the metamodel elements IVariable, IDataType and Expression Statement and

Constraint System are provided by the constraint modeling language.

ContractEntityUser ContractStateMachineEntityUser

ContractUser

ContractEntity

name : EString

ContractStateMachineEntity

name : EString

[0..*] contractEntitiesname [0..*] contractStateMachineEntitiesname

Figure 5.10.: Metamodel for the interface contract user.

Additionally, the modeling language provides the interface Contract User for adding the
contract functionality to classes found in the modeling languages resource, component,
deployment, and system configuration. Figure 5.10 illustrates this class. Every class
inheriting from Contract User can reference contracts and contract state machines.

65

An Approach for Adding Resilience to Industrial Control Systems

5.3.3. Data Point
Responsibility: The data point modeling language is used for specifying data points
provided by resources or function plans.
Rationale: We extracted the definition of data points into an own modeling language
in order to reuse the metamodel for the resource, component, and deployment modeling
languages.
Structure & Behavior: The data point modeling language is based on the constraint
modeling language in order to reuse the semantics of data types and variables.

IDataPoint

assignableFrom : EBoolean = false

assignableTo : EBoolean = false

DataPoint

AccessRestrictedDataPoint

dataPointAccessType : DataPointAccessType = READ

DataPointAccessType

READ

WRITE

READWRITE

ValueDataPoint

DataPointSetting

 variable : Variable

DataPointReference

 dataPointListDeclaration :

DataPointListDeclaration

 accessor : IAccessor

 dataPointReferenceEntityAccessor :

DataPointReferenceEntityAccessor

IVariable

 dataType : IDataType

 content : IVariableValue
[0..1] dataPoint

name

[0..1] dataPointReference

Figure 5.11.: Metamodel for data points.

Figure 5.11 illustrates the interface IDataPoint that inherits from IVariable. We differ-
entiate between Data Points, Value Data Points obtaining a variable value, and Access
Restricted Data Points. Semantically, we interpret the Data Point Access Type in assign-
ments. Data Point Setting is utilized by instantiations of FUPs, POUs, and modules for
setting a data point.

Figure 5.12 shows the metamodel of the concept of data point references. As illustrated
by the exemplary Data Point Reference, it first references a Data Point Reference Entity,
then a Data Point List Declaration and finally the target Data Point through an IAccessor.
We decided to implement it that way because the reference follows the same syntax similar
to the one used by our project partner.

Figure 5.13 illustrates the concept of data point lists. These are used by FUPs, POUs,
tasks, and modules. A Data Point List Declaration declares a list and configures dis-
tinct aspects. We introduced this concept because it adds some flexibility to our DSLs
concerning future device generations.

66

5. Design Time

DataPointReference

DataPointReferenceEntity

DataPointListDeclaration

name : EString

DataPointReferenceEntityAccessor

IAccessor

Exemplary DataPointReference:
entity{fup.pou}.list{input}.point{a.y}

DataPointAssignment

[0..1] dataPointListDeclaration

[0..1] dataPointReferenceEntityAccessor

[1..1] dataPointReferenceEntity

[0..1] parentAccessor

[1..1] accessor

[0..1] from [0..1] to

Figure 5.12.: Metamodel for data point references.

DataPointListDeclaration

name : EString

enableDataPoint : EBoolean = false

enableValueDataPoint : EBoolean = false

enableAccessRestrictedDataPoint : EBoolean = false

enableDataPointsSettable : EBoolean = false

enableAssignableFrom : EBoolean = false

enableAssignableTo : EBoolean = false

enableSpecifcAssignableFrom : EBoolean = false

enableSpecifcAssignableTo : EBoolean = false

enableInternalAssignableFrom : EBoolean = false

enableInternalAssignableTo : EBoolean = false

enableSpecifcInternalAssignableFrom : EBoolean = false

enableSpecifcInternalAssignableTo : EBoolean = false

enableInvertible : EBoolean = false

 expectedDataTypes : IDataType

DataPointListDefnition

IDataPoint

assignableFrom : EBoolean = false

assignableTo : EBoolean = false

internalAssignableFrom : EBoolean = false

internalAssignableTo : EBoolean = false

 dataType : IDataType

 content : IVariableValue

DataPointSettingList

DataPointSetting

 variable : Variable

 dataPointReference : DataPointReference

[1..1] dataPointListDeclaration

name

[0..*] dataPoints

[1..1] dataPointListDeclaration name

[0..*] dataPointSettings

Figure 5.13.: Metamodel for specifying lists of data points.

67

An Approach for Adding Resilience to Industrial Control Systems

5.3.4. Resource

Responsibility: The resource modeling language reflects the used hardware, software
applications, control devices and network topologies.
Rationale: We separated the resource metamodel into an own modeling language in order
to be flexible regarding deployments and applications. We could add new kinds of devices
without changing the other modeling languages.
Structure & Behavior: In the following, we discuss the resource modeling language
starting with the “smallest” hardware components and ending with the network level.

CpuEntity

name : EString

cores : EInt = 1

clockRate : EFloat = 0.0

fpu : EBoolean = false

RamEntity

name : EString

megabytes : EInt = 0

HardwareCompound

name : EString

application : EBoolean = false

communication : EBoolean = false

ContractUser

 contractStateMachineEntities : ContractStateMachineEntity

 contractEntities : ContractEntity

EthernetPort

name : EString

[0..1] cpuEntity

name

[0..*] ramEntities

[0..*] ethernetPorts

name

Figure 5.14.: Metamodel for hardware compounds.

Figure 5.14 shows the class Hardware Compound, which references a CPU Entity and a
RAM Entity. We decided to reference these an not contain them because the specifications
can be reused by other Hardware Compounds. It also models Ethernet ports.

Figure 5.15 illustrates that the concept of a module is split into three classes namely
Module Entity, Module Definition, and Module Declaration. Module Declaration states us-
able data types and data point lists. We added this class in order to be flexible concerning
future modules that may use other types and lists. Module Definition defines the concrete
module type with Hardware Compounds and Data Point List Definitions. The Module
Entity instantiates the module and contains Software Applications an Data Point Setting
Lists. It also references the connected Power Plant Device.

Figure 5.16 showcases that a Hipase Device contains Module Entities. It inherits from
Network Resource in order to be referable by a network.

Figure 5.17 presents the network layer. It references Network Resources, such as a

68

5. Design Time

ModuleDefnition

name : EString

ModuleDeclaration

name : EString

ContractUser

 contractStateMachineEntities : ContractStateMachineEntity

 contractEntities : ContractEntity

DataPointListDeclaration

name : EString

DataPointListDefnition

 dataPoints : IDataPoint

ModuleEntity

name : EString

position : EInt = -1

DataPointReferenceEntity

SoftwareApplication

name : EString

version : EString

HardwareCompound

name : EString

application : EBoolean =

false
communication :
EBoolean = false
 ethernetPorts :
EthernetPort

PowerPlantDevice

name : EString
DataPointSettingList

 dataPointSettings :
DataPointSettingPowerPlantDeviceAttribute

name : EString

value : EString

DataTypeSystem

name : EString

[1..1] moduleDeclaration

name

[0..*] dataPointListDeclarations

name

[0..*] dataPointListDefnitions

[1..1] moduleDefnition

name

[0..*] softwareApplications

name

[0..*] hardwareCompounds

name

[0..*] connectedDevices

name

[0..*] dataPointSettingLists

[0..*] attributesname

[0..1] dataTypeSystem

name

Figure 5.15.: Metamodel for central and interface modules.

HipaseDevice

ContractUser

 contractStateMachineEntities : ContractStateMachineEntity

 contractEntities : ContractEntity

ModuleEntity

name : EString

position : EInt = -1

 moduleDefnition : ModuleDefnition

 softwareApplications : SoftwareApplication

 connectedDevices : PowerPlantDevice

 dataPointSettingLists : DataPointSettingList

NetworkResource

name : EString

DataPointReferenceEntity

[0..*] moduleEntitiesname

Figure 5.16.: Metamodel for PLCs.

69

An Approach for Adding Resilience to Industrial Control Systems

Network

name : EString

ContractUser

 contractStateMachineEntities : ContractStateMachineEntity

 contractEntities : ContractEntity

NetworkResource

name : EString

EthernetLink

name : EString

EthernetSwitch

name : EString

EthernetPort

name : EString

EthernetPortReference

SwitchEthPortRef HipaseDeviceEthPortRef

 hipaseDevice : HipaseDevice

ModuleEthPortRef

 moduleEntity : ModuleEntity

HardwareCompoundEthPortRef

 hardwareCompound :

HardwareCompound

[0..*] ethernetLinks

name

[0..*] ethernetSwitches

name

[0..*] networkResources

name[0..*] ethernetPorts name

[0..1] from [0..1] to

[0..1] ethernetSwitch

name

[0..1] ethernetPort

name

[0..1] moduleEthPortRef
[0..1] hardwareCompoundEthPortRef

[0..1] ethernetPort

name

Figure 5.17.: Metamodel for networks.

Hipase Device, and connects the Ethernet Ports through Ethernet Links. Semantically,
the concrete syntax ensures that Ethernet Ports contained in the Network Resources are
available to be referenced by Ethernet Links.

The Network Resources and Module Entities do not provide certain network properties
such as an IP address or Modbus configuration. We propose to describe such properties
with contracts in order to make them configurable without changing a resource model.

70

5. Design Time

5.3.5. Component
Responsibility: The component modeling language is used for describing POUs, FUPs,
tasks and applications. An application contains tasks, their interconnections and data
point assignments.
Rationale: We structured the control logic into an own modeling language for making
it independent of changes in the resource or deployment metamodels. The POUs, FUPs,
and tasks can be specified similar to the way it is done by the IEC 61131 standard for
programmable logic controllers [92]. We added the concept of an application, which allows
the connection of cyclic tasks independent of their deployment.
Structure & Behavior: In the following, we present the component modeling language
starting with POUs and ending with applications.

PoeDeclaration

name : EString

PoeDefnition

name : EString

type : EString

version : EString

PoeEntity

name : EString

ContractUser

 contractStateMachineEntities : ContractStateMachineEntity

 contractEntities : ContractEntity

DataPointSettingList

 dataPointSettings :

DataPointSetting

DataPointListDeclaration

name : EString

DataPointListDefnition

 dataPoints : IDataPoint

DataPointReferenceEntity

Inversion

 dataPointReference : DataPointReference

ComponentEntity

DataTypeSystem

name : EString

FupExecutionElement

 executionDataPointAssignments :

DataPointAssignment

[1..1] poeDeclaration

name

[1..1] poeDefnition

name

[0..*] dataPointSettingLists

[0..*] dataPointListDeclarationsname

[1..1] dataPointListDeclaration

name

[0..*] dataPointListDefnitions
[0..*] inversions

[0..1] dataTypeSystem

name

Figure 5.18.: Metamodel for POUs.

POUs are implemented as libraries and written in the C programming language. Figure
5.18 shows the metamodel representing such software components. A Poe Declaration
states the usable data types and data point lists. We added this class in order to be
flexible concerning future POUs that may use other types and lists. The Poe Definition
specifies the available data points and contracts. This definition is reused by the Poe
Entities that are instantiated by FUPs. The class Inversion inverts the value of a data
point.

FUPs are compositions of POUs and FUPs. As illustrated in Figure 5.19, we structured
it similar to the concept of a POU. It obtains a class Fup Execution Sequence Definition
that states the sequence of POUs and FUPs. This sequence is then executed by the PLC
in order to control a hydropower unit.

Tasks specify the sequence of FUPs and the cycle time. Figure 5.20 shows the meta-
model. Again, we split the concept into the three classes.

71

An Approach for Adding Resilience to Industrial Control Systems

FupDeclaration

name : EString

FupDefnition

name : EString

version : EString

FupEntity

name : EString

ContractUser

 contractStateMachineEntities : ContractStateMachineEntity

 contractEntities : ContractEntity

FupExecutionSequenceDefnition

FupExecutionElement

DataPointListDeclaration

name : EString

DataPointListDefnition

 dataPoints : IDataPoint

DataPointSettingList

 dataPointSettings :
DataPointSetting

DataPointReferenceEntity

Inversion

DataPointReference

 accessor : IAccessor

 dataPointReferenceEntityAccessor
: DataPointReferenceEntityAccessor

ComponentEntity

DataTypeSystem

name : EString

ExecutionElement

 executionDataPointAssignments : DataPointAssignment

ExecutionAssignment

TaskExecutionElement
[1..1] fupDeclaration

name

[1..1] fupDefnition

name

[0..1] executionSequenceDefnition

[0..*] executionElements

[0..*] dataPointListDeclarations

name
[0..*] dataPointListDefnitions

[0..*] dataPointSettingLists

[0..*] inversions

[0..1] dataPointReference

[0..1] dataTypeSystem

name

Figure 5.19.: Metamodel for FUPs.

TaskDefnition

name : EString

priority : EInt

cycle : EFloat = 0

ContractUser

 contractStateMachineEntities : ContractStateMachineEntity

 contractEntities : ContractEntity

TaskDeclaration

name : EString

DataPointListDeclaration

name : EStringDataPointListDefnition

 dataPoints : IDataPoint

TaskExecutionSequenceDefnition

name : EString

TaskExecutionElement

executionDataPointAssignments

 : DataPointAssignment

DataPointReferenceEntity

TaskEntity

name : EString

DataTypeSystem

name : EString

ExecutionAssignment

FupEntity

[0..*] dataPointListDeclarationsname

[1..1] taskDeclaration

name

[0..*] dataPointListDefnitions

[0..*] executionElements

[0..1] executionSequenceDefnition

[1..1] taskDefnition [0..1] dataTypeSystem

name

Figure 5.20.: Metamodel for tasks.

The concept of an application is not present in the IEC 61131 standard for programmable
logic controllers [92]. We added it to model distributed cyclic tasks that are interconnected.

72

5. Design Time

Figure 5.21 showcases the metamodel. A Task Connection allows to interconnect Task
Entities and data points.

ApplicationEntity

name : EString

TaskEntity

name : EString

 taskDefnition : TaskDefnition

DataPointAssignment

 from : DataPointReference

 to : DataPointReference

ContractUser

 contractStateMachineEntities : ContractStateMachineEntity

 contractEntities : ContractEntity

TaskConnection

name : EString

[0..*] taskEntities

name

[0..*] dataPointAssignments

[0..*] taskConnections

[0..1] from

name
[0..1] to

name

Figure 5.21.: Metamodel for applications.

73

An Approach for Adding Resilience to Industrial Control Systems

5.3.6. Deployment
Responsibility: The deployment modeling language is used for specifying how tasks,
defined with the component modeling language, are deployed onto the control devices, de-
fined with the resource modeling language. Additionally, it is possible to deploy contracts
to resources.
Rationale: This modeling language is necessary for “gluing” control logic together with
resources. It allows us to let both exist independent of each other.
Structure & Behavior: Figure 5.22 illustrates the deployment classes. The central
class is Deployment, which can contain Contract Deployment, Contract State Machine
Deployment, Task To Hipase Device Deployment, and Task Connection to Ethernet Links
Deployment.

Deployment

name : EString

Network

name : EString

ApplicationEntity

name : EString

ContractUser

 contractStateMachineEntities : ContractStateMachineEntity

 contractEntities : ContractEntity

ContractDeployment

name : EString

ContractStateMachineDeployment

name : EString

ContractEntity

ContractStateMachineEntity

TaskToHipaseDeviceDeployment

TaskConnectionToEthernetLinksDeployment

EthernetLinkDeployment

IDataPointMapping

 dataPointAssignments : DataPointAssignment

DataPointMapping

ModuleDeployment

HardwareCompoundDeployment

CoreDeployment

core : EInt = 0

TaskConnection

EthernetLink

TaskEntity

name : EString

HipaseDevice

ModuleEntity

HardwareCompound

[1..1] network

name

[1..1] applicationEntity

name

[1..1] contractStateMachineEntity

[1..1] contractUser

[1..1] contractUser

[1..1] contractEntity

[0..*] taskToHipaseDeviceDeployments

[0..*] taskConnectionToEthernetLinksDeployments

[0..*] ethernetLinkDeployments

[0..1] dataPointMapping

[0..1] moduleDeployment

[0..1] hardwareCompoundDeployment

[0..1] coreDeployment

[1..1] taskConnection

name

[1..1] targetEthernetLink

name

[0..*] taskEntities

name [1..1] taskEntity
[1..1] hipaseDevice

[1..1] targetModule

name

[0..*] moduleEntities

name

[0..1] targetHardwareCompound

name

[0..*] contractStateMachineDeployments

[0..*] contractDeployments

Figure 5.22.: Metamodel for deployments.

The contained classes of the class Task To Hipase Device Deployment refine the deploy-
ment. These fine-grained deployments could be added by an automated tooling. The Data
Point Mapping fulfills the crucial rule of interconnecting data points.

74

5. Design Time

5.3.7. System Configuration
Responsibility: The system configuration references used resource, component and de-
ployment models. It serves as entry point for model verifications and transformations.
Rationale: Collecting a complete hydropower plant configuration based on applications,
resources, and deployments is a tedious task. This issue is solved by the system configu-
ration modeling language.
Structure & Behavior: Figure 5.23 illustrates one class named System Configuration
that refers to the application entities, deployment, and network models. Its only purpose
is to provide an entry point for model analysis and transformations. It is also useful for
verifying that all applications are deployed to resources.

SystemConfguration

name : EString

ContractUser

Deployment

name : EString

ApplicationEntity

name : EString

Network

name : EString

[0..*] deploymentsname

[0..*] applicationEntities

name

[1..1] applicationEntity

name

[0..*] networks

name

[1..1] network

name

Figure 5.23.: Metamodel for the system configuration.

75

An Approach for Adding Resilience to Industrial Control Systems

5.4. Technical Implementation

Figure 5.24.: Screenshot of the Eclipse Rich Client Prototype.

We realize the metamodels using the Eclipse Modeling Framework [96]. Additionally,
we use Xtext [97] for designing textual domain-specific languages. The use of textual
languages influenced the design of the modeling languages in Section 5.3. For instance,
references are often not directly between objects, but through an object linking two objects.
This is necessary for modeling a textual reference. Furthermore, we leverage the KLighD
framework [98] for automatically visualizing the models graphically.

Figure 5.24 shows on the left-hand side various files that represent parts of the system
configuration. Because we are utilizing textual languages, there is not one model contain-
ing all information but several files containing parts of a complete model. This has two
advantages: First, the parts can be referenced and composed arbitrary by distinct system
configurations. Second, textual models are utilizing names and not UUIDs for referring to
objects. This simplifies replacing a part with a distinct one. With graphical modeling lan-
guages a user usually cannot influence the UUID of a newly created object. It is therefore
a tedious task to update the UUIDs of related models if one wants to replace an object.

76

5. Design Time

5.5. Utilization of Models and Contracts
We identified three application areas for our proposed modeling languages. In the follow-
ing, we briefly discuss the areas verification, search of combinations, and input for run
time.

EthernetACPU A

Task 11

Cycle 10
WCET 5
BCET 3

Task 21

WCET 2
BCET 1

ACPU B

Task 31

Cycle 12
WCET 5
BCET 3

TX RX

Control Device A
IMIMCentral Module

CCPU

ACPU

Central Module

CCPU

ACPU

IMIMIMIM

Control Device A
IMCentral Module

CCPU

ACPU

IMIM

Control Device B
IMIMCentral Module

CCPU

ACPU

Central Module

CCPU

ACPU

IMIMIMIM

Ethernet

Contract
Guarantee wcet: 2
Guarantee bcet: 1

Cyclic
Task
10

FUP
POU

POU
POU

POUFUP
POU

POU
POU

POU

FUP POU POU POUFUP POU POU POU

Cyclic
Task
10

FUP
POU

POU
POU

POU

FUP POU POU POU

Cyclic
Task
10

FUP
POU

POU
POU

POU

FUP POU POU POU

Contract
Assumption: Processor
Guarantee wcet : 0,2
Guarantee bcet : 0,1

Cyclic
Task
12

Transformation

Figure 5.25.: Exemplary verification of timing.

Verification: The presented modeling languages allow to verify an industrial configu-
ration concerning functional and non-functional properties. From a functional point of
view, the deployments can be verified if the provided data points of an interface mod-
ule are compatible with the input and output data points of tasks. Also the data point
compatibility of distributed tasks can be verified. From a non-functional point of view, a
system configuration can be verified with regards to the distinct properties enumerated in
Section 5.3.

The purpose of the proposed contract modeling language is to enable the specification
of non-functional properties in order to transform them, with the support of the functional
model, into input data for specialized analysis tools. For instance, we experimented with
pyCPA1, which is an open-source tool implementing Compositional Performance Analysis
[99], for calculating the end-to-end timing of task chains. Figure 5.25 illustrates how such

1https://pycpa.readthedocs.io

77

An Approach for Adding Resilience to Industrial Control Systems

a verification works. The model annotated with timing contracts is transformed to a
representation analyzable with pyCPA. Then the tool calculates the worst-case response
times of tasks and end-to-end timing of task chains based on provided busses, CPUs,
corresponding scheduling policies, and a task graph. Finally, the calculated results are
presented to the engineer responsible for the hydropower unit.
Search of Combinations: An useful addition to our proposed modeling language would
be the automatic deployment of tasks to PLCs. A näıve algorithm could try all deployment
possibilities of tasks and utilize verification tools for ensuring a correct deployment.

A more advanced method, without trying all possible combinations, could be based on
Constraint Programming [100], which is a widely applied method to solve decision and
optimization problems. Kajtazovic [24] presents in his doctoral thesis, which has been
carried out in a research project with the same company, an approach that transforms
contracts for software components to a constraint satisfaction problem. Similarly, such an
approach could be applied for finding optimal task deployments.

Control Device A

Control Device B

Data Point Monitor

From 192.168.8.106 data point voltage
every 10 milliseconds

Figure 5.26.: Exemplary run-time constraint derived from design time.

Input for Run Time: A system configuration created at design time can also be useful
at run time. For instance, based on the task graph specifying the exchanged data points,
a monitor can observe whether data is received by a PLC in time. Figure 5.26 illustrates
the case that a monitor observes if the data point “voltage” is sent every 10 milliseconds to
the control device. Such observations and run-time constraints can also be based on non-
functional properties such as timing, security and redundancy. In Chapter 6, we propose
a self-adaptive software system that is based on this idea of utilizing models and contracts
at run time.

5.6. Meeting Requirements

REQ1 tasks and FUPs: We provide a dedicated modeling language for specifying POUs,
FUPs, and tasks.

REQ2 interface modules and available data points: The resource modeling language al-
lows defining interface module types containing data points. Also instantiations of
interface modules can define available data points.

78

5. Design Time

REQ3 interconnections of control devices and tasks: With the resource modeling lan-
guage it is possible to specify physical connections between ports, e.g., Ethernet. It
is possible to define connections between data points contained in tasks with the
component modeling language.

REQ4 loose coupling between task and control device: The deployment modeling lan-
guage ensures that tasks are loosely coupled with control devices.

REQ5 generic modeling concept for non-functional properties: The contract modeling
language allows us to define arbitrary non-functional properties. Through contract
types we can ensure that contracts adhere to the expected semantics.

5.7. Discussion of Limitations
For utilizing the proposed modeling languages, a tight integration into the development
of the single hardware components and software applications would be necessary. For
instance, contracts for capturing the timing behavior would need to be defined based
on automatic test setups. This would reduce the need for engineers who have a deep
understanding of contract-based design.

With our proposed resource modeling language we tried to be generic for enabling future
PLC hardware configurations. However, it is still possible that a future PLC requires an
upgrade of the modeling language.

The decoupling of control logic and resources is different to the existing approach taken
by our project partner. With their programming tool, FUPs are directly programmed for
the target PLC. With our approach a deployment is necessary to be defined by a user.
Because of the decoupling, it would need more assistance from the tooling in order to
guide the user for defining valid input and output data points leveraged by FUPs in our
approach.

5.8. Design Patterns
We found four design patterns for designing configurability into domain-specific language
elements. We derived them from our work on modeling languages. Table 5.1 shows an
overview of these design patterns with a short description of them. These patterns target to
solve the general problem of how to embody a domain-specific concept in language elements
that a language user is able to configure the concept to a certain degree. Therefore, they
share the same problem and context but are subject to different forces.

Each of these patterns adds another level of configurability to a concept. The detailed
explanations including associated forces and consequences can be found in Paper B [101].
We demonstrate the patterns by utilizing a simple finite state machine. In addition to
these state machine examples, it contains an experience report of how we applied these

79

An Approach for Adding Resilience to Industrial Control Systems

patterns in our research project. Concerning Scari (run time), these patterns can be
applied for designing the modeling language of a world model.

Pattern Description Known Uses
ATOMIC
CONCEPT

Instantiations of a language concept only differ
by the values of their properties. The solution is
to represent a concept as one language element
and to add desired configurable attributes and
references. This pattern is the simplest kind of
representing a concept within a domain-specific
language.

• JSON.
• Can be found in virtually every

domain-specific language (e.g.
control structures).

ENTITY
TYPE

Instantiations of a language concept differ con-
cerning their available properties. Additionally,
it is desired to reuse the definition of available
properties. The solution is to add an Entity lan-
guage element and an EntityType element. These
two different kinds of elements can only repre-
sent the target concept together. The Entity ele-
ment must reference at least one EntityType ele-
ment. The EntityType element can define prop-
erties for the Entity element. Further, it can spec-
ify reusable data. Entities can be differentiated
by their referenced EntityTypes.

• The elements Class and In-
stanceSpecification found in
UML.

• Interfaces and concrete compo-
nents found in component-based
modeling languages.

• The patterns TYPE-OBJECT
and ITEM-DESCRIPTOR.

DEEP CON-
FIGURA-
TION

The reuse of already specified Entities is desired
and the number of reused Entities varies. The
solution is that Entities can reference other Enti-
ties in order to add, modify or remove configura-
tion information. There can be an arbitrary long
chain of them. Each Entity represents an instance
of the language concept and may be semantically
complete.

• Inheritance of classes.
• Packages contain data and can

reuse data from other packages.
• UML state machines can be re-

defined and extended.

CONCEPT
TAILORING

A language concept needs to be adjustable for
slightly different cases inside a domain. Addi-
tionally, these adjustments may configure the lan-
guage infrastructure. There exist two solutions
for this need. The first is to add a Declaration
element within the domain-specific language for
constraining the concept. The second is to spec-
ify the Declaration outside of the language and to
load it by the tooling infrastructure around a lan-
guage. The settings of the Declaration can either
restrict a language concept or enable features.

• Profiles found in UML.
• XML Schemas.
• The patterns KNOWLEDGE

LEVEL and ADAPTIVE OB-
JECT MODELS.

Table 5.1.: Patterns for designing configurability into domain-specific language elements.

80

6. Run Time

This Chapter is devoted to the phase a control system is in operation. We identify the
potential of a self-adaptive software system in our industrial context for detecting and
adapting to hardware faults, security attacks, misconfiguration of the control logic, soft-
ware bugs and changes in the environment (C2). Based on this analysis, we propose
a decentralized hierarchical and model-based self-adaptive software system named Scari
(C3). From our work on decentralized and distributed systems, we derived four design
patterns (C4). Three design patterns try to grasp the trade-off between distributing data
and information. The fourth design pattern provides a solution for separating processing
and coordination in computer systems.

In Section 6.1, we motivate our work. In Section 6.2, we analyze the potential of self-
adaptive software systems in our industrial setting. Section 6.3 discusses requirements on
a self-adaptive software system that are derived from our analysis. Section 6.4 provides
an overview of how Scari works in general and the distinct parts in detail. Section 6.5
explains how we implemented Scari technically. Section 6.6 showcases distinct situations
and how these can be handled with Scari. In Section 6.7, we explain how Scari fulfills the
requirements discussed in Section 6.3. Section 6.8 enumerates limitations of our approach.
Finally, Section 6.9 enumerates design patterns that we found during our work on self-
adaptive software systems.

6.1. Motivation

Industrial control systems have three advantages for adding resilience compared to other
kinds of systems such as enterprise or even consumer systems. The first advantage of
industrial control systems is that they are highly deterministic in their behavior. Data is
processed and distributed at fixed points in time. Adjustments of physical processes yield
predictable output, except if something is broken. The second one is that all devices used,
including hardware, software, network topology, and communication patterns etc. are in
principle known and only changed under strict change management. The third advantage
is that a lot of industrial systems are designed in a redundant way in order to deal with
permanent faults.

A self-adaptive system that takes these three advantages into account could defend the
hardware/software stack of a system against a variety of threats. The determinism can
be leveraged for detecting odd behaviors. The knowledge about existing devices can be

81

An Approach for Adding Resilience to Industrial Control Systems

utilized for detecting wrong arrangements and connections. The redundancy of data allows
to detect and circumvent faulty parts of a system.

6.2. Potential of Self-Adaptive Software Systems

Table 6.1 is an analysis of our industrial setting and illustrates anomalies, detection and
adaptation mechanisms for the different system threats hardware fault, security attack,
software bug and misconfiguration from the perspective of control devices. The latter
threat misconfiguration refers to the design of FUPs and how control devices are configured
to distribute data points. A different version of this analysis is presented in Paper E [102],
which also includes a fifth potential application namely faults in the environment. In the
following, we skip this part in order to simplify the presented analysis. We created the
analysis presented in Paper E based on the combined expertise of the four authors and
an expert from the cooperating company. The first draft of this analysis was created by
the author of this thesis. Then the draft was discussed with the three co-authors of Paper
E. Finally, the four authors discussed the analysis together with the head of the software
development dealing with the control device from the cooperating company.

Table 6.1 uses three sets of columns for describing threats. First of all, concerning
anomalies, then detection, and last adaptation methods. The left-hand side shows the lo-
cation where a problem originating from the different kind of threats resides. Sensor and
Actuator are part of the hydropower unit and generalize the various devices connecting a
control device with a turbine. Concerning the control device, interface modules are con-
nected with the sensors and actuators of a hydropower unit. They transmit their measured
values as data points to the ACPU and receive parameters as data points. The ACPU
is part of the central module and the place where the actual control logic resides. The
CCPU is responsible for the communication with the supervisory network and controls the
ACPU. An ACPU can be connected with the ACPU of another device in order to share
data points. We analyzed the network level concerning two kinds of devices. Connected
device represents a control device that sends or receives data points. Network resource
is a very abstract representation of any other device in a network such as a switch or
supervisory computer. The enumerations of anomalies, detection and adaptation methods
are not complete and intended to show what is possible in our industrial setting.

Anomalies: Dead is an anomaly describing that the affected location is not responding
to interaction attempts. This can be caused by a hardware fault, security attack, or
software bug. We do not consider the misconfiguration of FUPs as a cause, because
FUPs are merely changing parameters of actuators. This should not affect the actuator
itself. Performance describes how well a system executes a task. It consists of CPU load,
memory consumption or latency. When it comes to the hydropower unit and the control
device level, we consider the performance to be potentially affected by hardware faults,

82

6. Run Time

h
s

b
h
s

b
h
s

b
h
s

b

h
s

b
h
s

b
h
s

b
h
s

b

h
s

h
s

b
h
s

b
h
s

b
h
s

b
h
s

b

h
s

h
s

b
h
s

b
h
s

b
h
s

b
h
s

b

h
s

b
h
s

b
h
s

b

h
s

b
h
s

b
h
s

b

h
s

b
h
s

b
h
s

b
h
s

b
s

s
b

h
s

b
h
s

b
h
s

b
h
s

b
m

h
s

b
m

s
s
b

m

h
s

b
h
s

b
h
s

b
s

s
b

m

h
s

h
b

h
s

b
h
s

b
h

h
s

b
s

s
s

h
s

h
b

h
s

b
m

h
s

b
m

h
h
s

b
s

s
s

m

h
s

h
b

h
h
s

b
s

s
s

s
m

h
s

b
h
s

b
h
s

b
h
s

b
h

b

h
s

b
m

h
s

b
h
s

b
h

b

h
s

b
m

h
s

b
h
s

b
h

b

h
s

b
s

h
s

b
h
s

b
h
s

b
m

h
s

b
m

s
s
m

h
s

b
s

h
s

b
h
s

b
h
s

b
h
s

b
s

s

h
s

b
h
s

b
m

h
s

b
m

h
s

b
s

h
s

b
m

s
s

s
h
s

b
m

h
s

b
h
s

b
h
s

b
h
s

s
h
s

b
s

s
s

h
s

b

h
s

b
m

h
h
b

m
s

b

h
s

b
h

h
b

h
b

s
b

Dead

Performance

Faultydatapoint

Parameterchangehasnoeffect

Taskmissesdeadline

Frequencyofdatapoint

Missingtraffic

Connectionfromunknown

Unknownsoftware

Behaviorofsoftware

Calculateddatapointisnotused

Datapointfrom/towrongunit

Hardwareredundancy

Softwarediversity

Outlierdetection

Datapointfromothercontroldevice

Datafromotherhydropowerplants

Memorytest

Performancemonitor

Networktrafficpatterns

Attestation

Firewall

Honeypot

SecureandTrustedBoot

Sandboxing

Functionalmodelofhydropowerunit

Alarmand/orcontrolledshutdown

Migratetoredundantcentralmodule

Migratetodifferentdevice

Redundantinterfacemodule

Datapointfromothercontroldevice

Circumventnetworkresource

Isolateandcircumvent

Maskfaultymemorycells

Rollbacksoftware

H
yd

ro
p
o
w
er

u
n
it

S
en

so
r

A
ct

u
at

or

C
o
n
tr
o
l
d
ev

ic
e

In
te

rf
ac

e
m

o
d

u
le

A
C

P
U

C
C

P
U

N
et
w
o
rk

C
o

n
n

ec
te

d
d

ev
ic

e

N
et

w
or

k
re

so
u

rc
e

A
n
o
m
a
ly

D
et
ec

ti
o
n

A
d
a
p
ta
ti
o
n

h
=

h
ar

d
w

ar
e

fa
u

lt
,

s
=

se
cu

ri
ty

at
ta

ck
,

b
=

b
u

g
,

m
=

m
is

co
n

fi
g

u
ra

ti
o

n

Ta
bl

e
6.

1.
:P

ot
en

tia
lo

fs
el

f-a
da

pt
iv

e
m

ec
ha

ni
sm

s
fr

om
th

e
pe

rs
pe

ct
iv

e
of

co
nt

ro
ld

ev
ic

es
in

th
e

hy
dr

op
ow

er
se

tt
in

g.

83

An Approach for Adding Resilience to Industrial Control Systems

software bugs or security attacks. The intention for a security attack may be to manipulate
the real-time control loop or to execute malware. From a security perspective, interface
modules can be hacked because their software can be updated through the CCPU. On
network level we relate the term performance to the transmission speed of data from one
device to another. We treat performance losses concerning the transmission of data as
a security-related attack, e.g., caused by a Denial-of-Service attack (DoS attack). Faulty
data point refers to a data point that is wrong but not through a systematic error. We
regard this to be caused by hardware faults, security attacks or software bugs on all
enumerated locations except the CCPU. The CCPU can be the origin of such an anomaly
if it transmits data points between an ACPU and an engineer or supervisory system
accessing a PLC. However, in this analysis we relate Faulty data point to the exchange of
data points between ACPUs. Parameter change has no effect describes the situation that
a FUP or supervisory computer wants to change an actuator through a data point, but the
sensed data points do not indicate that anything is behaving differently. The cause of such
a problem can reside on all locations and originate from all mentioned threats. Task misses
deadline refers to the situation that a FUP, contained in a cyclic task, needs to finish its
work before the cycle starts again. This can only happen on the ACPU and we consider
this to be caused by a hardware fault, software bug, security attack or misconfiguration.
Frequency of data point describes the distribution of data points within a network. A faulty
frequency can be caused through a hardware fault, security attack, bug or misconfiguration
residing on a connected device or on a network resource. A similar anomaly is Missing
traffic, which stands for the absence of distributed data points and messages. Connection
from unknown refers to the case of a hacked control device or unknown network resource
that suddenly attempts to communicate. Unknown software means that foreign software
is started or executed on the interface module, ACPU or CCPU. Behavior of software
represents hacked or faulty software that accesses data or communicates in an unexpected
way or frequency. Calculated data point is not used states a misconfiguration of a FUP.
Data point from/to wrong unit can either be caused by an unintentional misconfiguration
of the CCPU or a security attack on network level.

Detection methods: Hardware redundancy is about duplication of components or
devices in order to increase the reliability. A voter can then detect hardware faults or
security attacks if only one subsystem is affected by such a threat. We added the detection
of software bugs on network level because the control devices could be updated at different
points in time. Software diversity refers to the idea of realizing a software functionality in
two or more distinct ways. One way is by developing the functionality of a software several
times in different ways by using independent development teams and technologies. A
second approach is to compile software with different settings and to automatically create
diverse software [103]. Since diverse software works in slightly different ways, there is a
chance that permanent hardware faults can be detected in a manner similar to Hardware
redundancy. Furthermore, it allows to detect software bugs residing at different parts of the
control device. Outlier Detection refers to mechanisms that detect patterns within data

84

6. Run Time

points that do not correspond to an expected behavior. This can be achieved by thresholds,
historic data, or advanced mechanisms such as machine learning. It should be possible to
detect hardware faults, security attacks, bugs and misconfigurations of FUPs that corrupt
data points on all locations. Concerning Network resource, Outlier Detection is supposed to
detect transmission faults. Data point from other control device can be used for redundancy
and plausibility checks. Data from other hydropower plants may be used for plausibility
checks of the sensed data concerning the river, e.g., height of water, and how hydropower
units are behaving in general. Memory test is about checking the memory regularly and
detecting permanent faults in memory cells. A Performance monitor observes a system
regarding CPU usage, temperature, available memory or latency. This can be used on
all locations for detecting Performance anomalies. Network traffic patterns describes the
idea to observe the timing and sequence of network messages in order to detect incorrect
behavior originating from connected devices or network resources. Hadeli et al. [104]
demonstrate how such information can be derived from an industrial configuration and
expert knowledge in order to detect anomalies. Similarly, Anton et al. [105] evaluate four
different machine learning algorithms for detecting network traffic anomalies in industrial
networks. Attestation is a security method where an attestator proves to a challenger,
locally or remotely that used files and executed binaries correspond to their signatures
[106]. Firewall, Honeypot, Secure and Trusted Boot and Sandboxing refer to mechanisms
that are primarily applicable for detecting a security attack. Functional model of the
hydropower unit describes the idea of a detailed software model in order to verify the
change of data points with the expected outcome. This includes the possibility to verify
if the configuration of the FUPs and distribution of data points is correct.

Adaptation methods: Alarm and/or controlled shutdown is a strategy applicable to
all cases. Migrate to redundant central module is possible because the presented control
device offers an open architecture where arbitrary modules can be attached. Migrate to
different device can either be realized with a hot-standby device instantly taking over or
through a costlier process where a device is selected for taking over the control activities.
Redundant interface module enables to switch between interface modules and to circum-
vent hardware faults, security attacks or software bugs. Data point from other control
device refers to the possibility to transmit data points, e.g., a data point for voltage, from
one device to another. Circumvent network resource depends on the affected network
device. A switch can be circumvented if another path exists. A supervisory computer
can be replaced with a redundant one. Isolate and circumvent stands for blocking a Con-
nected device or Network resource and to circumvent it by leveraging redundant devices
or data points. Mask faulty memory cells leverages the capabilities of operating systems
to blacklist memory areas. Modern control devices can periodically receive updates and
new features. Rollback software assumes that a former version does not contain a freshly
introduced software bug.

As we can see in Table 6.1, there are several shared anomalies, detection and adaptation

85

An Approach for Adding Resilience to Industrial Control Systems

mechanisms. Some of the presented detection and adaptation mechanisms rely on having
redundant or stand-by hardware. One could argue that combinations of detection and
adaptation mechanisms can be implemented separately and focused on only one system
threat. The downside of keeping combinations of detection and adaptation mechanisms
strictly separate is that they might interfere with each other or reach wrong conclusions
about the real cause of an anomaly. A self-adaptive software system offers means to
deal with cross-cutting anomalies by orchestrating different mechanisms. It would have
to reason about the combined outcome of several reasoning mechanisms in order to find
the real cause. Based on the cause, a suitable adaptation mechanism would have to be
selected. It is important to note that adaptation mechanisms do need some execution time.
This may introduce delays into control processes. The impact of a small delay depends
on the domain and application. For example, in the hydropower plant context one could
argue that the benefit of fixing a permanent hardware fault, but at the cost of introducing
a small delay is preferable to a broken or faulty control activity. Furthermore, testing an
adaptation before it is carried out is a complicated procedure. This means a self-adaptive
system must have a precise representation of the real system in order to ensure that an
adaptation works as intended.

All in all, it is our considered opinion that the combination of presented detection and
adaptation methods would add a valuable improvement to industrial control systems. The
novelty is that these methods are glued together in order to enable a self-adaptive software
system dealing with distinct system threats. It would allow the control devices to repair
and protect themselves while they support the physical process.

6.3. Requirements

In the following, we discuss requirements derived from the analysis above. Requirements
are marked with a “REQ” plus a number in square brackets.

A system for lifting the potential from above needs to be open for arbitrary and ex-
isting detection mechanisms [REQ1]. For instance, the detection method “Sandboxing”
can be based on existing technologies, e.g., mandatory access control for Linux platforms.
Furthermore, functionalities such as the detection and adaptation method “Data point
from other control device” may already exist in PLC software. It should require a min-
imal effort for adding detection mechanisms [REQ2] to the system. At the same time,
a self-adaptive software system needs to allow the parallel coexistence of distinct reason-
ing mechanisms [REQ3]. As an example, the detection method “Performance monitor”
can be used for detecting anomalies originating from hardware faults, security attacks or
software bugs. However, it needs entities that interpret an anomaly and try to repair or
prevent the root cause. Such an interpretation can be based on the feedback from multiple
detection methods. Therefore, if reasoning mechanisms coexist in parallel they can track
and interpret distinct feedbacks from detection methods over time. In order to support

86

6. Run Time

this coexistence of distinct reasoning mechanisms, it is a requirement that a detection
mechanism can notify distinct reasoning mechanisms at once [REQ4]. Furthermore, if
a reasoning mechanism interprets a situation it should be possible to recommend a plan
for dealing with a situation [REQ5]. If a reasoning mechanism immediately carries out a
plan it would prevent other, possibly more important, strategies recommended by other
reasoning mechanism. Because we are aiming at distinct reasoning mechanisms that are
executed in parallel, it is possible that at least two mechanisms are recommending plans
at two close points in time. Therefore, it is a requirement on the self-adaptive system
to choose one recommendation [REQ6]. For instance, this allows the competition of two
distinct reasoning mechanisms targeting security attacks or hardware faults.

We believe that recommended plans should consist of atomic operations [REQ7] because
it enables the reuse of adaptation activities. For instance, an atomic operation can be the
deployment of a FUP or the stop of a PLC. It should be possible to combine atomic
operations arbitrarily [REQ8].

It is crucial that adaptations must not interfere with each other [REQ9]. Otherwise, the
outcome of two interfering adaptations would be unpredictable and not as intended by
single plans. As we want to leverage diverse kinds of reasoning mechanisms that lead to
adaptations, it would be beneficial if plans are reuseable [REQ10] and their applicability
is checked during plan creation [REQ11]. The latter requirement is important to prevent
an adaptation that harms the industrial system.

In the introduction of this thesis, we outlined that control devices are deployed in
various settings and interconnections. Therefore, we consider it to be a requirement that
a device is able to react to threats on its own [REQ12]. If a fault affects functionally
independent devices, they should be able to react at the same time [REQ13]. Depending
on the devices part of the network topology, it may be possible to escalate to higher layers
with more capabilities [REQ14]. Typically, PLC devices are part of a SCADA system
that is organized hierarchically [107]. The higher layers of such systems control the lower
ones. Thus, it is a requirement that lower layers should not be able to adapt higher layers
[REQ15] in order to respect this control hierarchy and to avoid loops.

For supporting the various detection methods, reasoning mechanisms and plan creators
it would be beneficial to provide the architectural information via one consistent knowledge
base [REQ16]. This knowledge base can contain information from a system’s design time
such as tasks, function plans, hardware metadata, contracts or topologies. Furthermore,
such a knowledge base can reflect the current state [REQ17] of a device. If an adaptation
is carried out that changes a significant parameter or performs a structural change, the
outcome can be reflected inside the knowledge base. Subsequently, detection methods
and reasoning mechanisms could reconfigure themselves if the structure and connections
between devices change.

One of the above requirements is that a device can react to threats on its own because
such devices can be deployed in various settings. Thus, a consistent knowledge base should
be deployed on each device [REQ18]. Another requirement from above is that a self-

87

An Approach for Adding Resilience to Industrial Control Systems

adaptive system should be organized hierarchically and higher layers are typically more
capable than lowers. Therefore, it is necessary that knowledge bases get synchronized
between layers [REQ19] for operating on the current state of the overall system.

Different layers may need different representations of their functionality and structure.
Therefore, it should be possible to use distinct kinds of models [REQ20] in order to al-
low specialized representations. It should also be possible to combine models arbitrarily
[REQ21] for representing a hierarchy with its distinct specialized representations.

6.4. Scari

Observe Act

Orient Decide

Event

Syndrome
Processors

Recommendation
Decision Maker

Plan Maker

Plan Decision
Maker

Action Handler

1 Notification

N Recommendations 1 Recommendation

N Plans

1 Plan = {N Actions}

 Monitor

World Model

Adapt

Information Change

Knowledge
Base

1 Notification Event 1 Notification Event

1 Notification

Event

1 Notification

Event

Figure 6.1.: Scari loop.

Scari (Secure and reliable infrastructure) is our proposed solution based on self-adaptive
software systems. With the term infrastructure we mean the hardware, e.g., CPU, physical
network; and software, e.g., operating system, applications; stack providing the facilities
for running industrial control logic. A self-adaptive software system is a system that is able
to change its own behavior in response to changes in the operational environment [31]. We
do not aim to change the control logic itself. Instead, we want to ensure that devices and
networks last longer, operate in the presence of hardware faults, mitigate security attacks
and can detect bugs and misconfigurations. Roughly speaking, the primary goal of Scari
is to provide a generic and easily to extend infrastructure that allows the establishment
and orchestration of different kinds of anomaly detection mechanisms with corresponding
adaptation mechanisms. Scari itself follows an external approach, which means it observes

88

6. Run Time

the system and adapts it through interfaces and communication channels.
The underlying principle of Scari is an event-driven loop that combines the well-known

MAPE-K [28] with the OODA loop of John Boyd [40] [42]. As illustrated in Figure 6.1, it
consists of 5 parts, namely Observe, Orient, Decide, Act, and a common Knowledge Base.
The entities of the five parts are loosely coupled through a message bus.

The Observe part consists of monitors that are specialized in discovering and measuring
specific anomalies, for instance a drift in data. These monitors notify an arbitrary number
of interested syndrome processors, residing in the Orient part. The syndrome processors
are implementing a specific detection mechanism, e.g., for hardware faults or security at-
tacks. Technically, they can use any viable method for detection such as machine-learning
or simple thresholds. If one or several syndrome processors diagnose a problem, they rec-
ommend plan types for handling a situation. For instance, a hardware fault syndrome
processor may recommend circumventing a damaged module, while a security syndrome
processor may recommend isolating a device. Next, the recommendation decision maker
selects the best recommendation on the basis of a definable prioritization for the covered
events and chosen plan types. The selected recommendation is then forwarded to the plan
maker that creates the actions for the plan type. Some plan types may be realized in
different ways, we thus added a plan decision maker that selects the plan with the least
affected systems/resources and the lowest number of used actions. In the final part, the
plan is executed by a action handler, and the system is adapted to the situation diag-
nosed by a syndrome processor. Each of the entities of the Decide and Act parts feed
back their states as events. This enables the syndrome processors to log the state of their
recommendations and to be notified in turn that the system has adapted.

The knowledge base serves as a source of knowledge for the Observe, Orient and Decide
parts, while the Act part stores the executed changes of the system there. It contains the
deployed models, including contracts, from design time and additional run-time informa-
tion. Examples of such models are control logic (Tasks, FUPs, POUs), installed software
applications, hardware (RAM, CPU, etc.), network connections and so on. We engineer
these architecture run-time models according to the model-driven engineering principles
[10]. So we have metamodels defining domain-specific languages and one meta-metamodel
serving as a common technical base for the metamodels. One reason for applying model-
driven engineering techniques is that we can precisely describe a part of a system with a
specialized language that only the interested entities need to understand. A generalized
schema for representing data would make it more difficult to grasp the semantics and less
effective to support the Observe, Orient, and Decide steps. Another reason is that models
are manageable reflections that abstract from unnecessary details of the system [108].

In addition to the models, the knowledge base incorporates a log of the distributed mes-
sages (notification, recommendation, plan, action) and a world version that changes if the
models change. The world version is used by the recommendation and plan messages in
order to ensure that they refer to the current state. If a message does not refer to the
current state it is rejected by the Decide and Act entities because it comes from an out-

89

An Approach for Adding Resilience to Industrial Control Systems

dated state of the world. Furthermore, syndrome processors need to reevaluate diagnosed
problems and recommendations that were not taken if the knowledge base changes. It is
crucial that the models can only be changed with an action while others can just access
the knowledge base for deriving information.

The combination of MAPE-K with OODA leads in our opinion to the best of both
concepts. MAPE-K introduces the knowledge base as a common information source for
the different steps. OODA adds an explicit Decide part, which is useful for the selection
of recommendations. The Plan step of MAPE-K is distributed over several loosely cou-
pled entities. We also adopt from OODA that each step gives feedback to monitors and
syndrome processors. This allows them to consider what happened with their notifications
and recommendations.

Data Point Frequency
Monitor

Honeypot Syndrome
Processor

CPU Usage Monitor

Memory Monitor

Command Signature
Monitor

Data Point Value
Monitor

Task Timing Monitor

Sandboxing Monitor

Remote Attestation
Monitor

Permanent Memory Fault Syndrome Processor

Misconfiguration Syndrome
Processor

Software Bug Syndrome Processor
if event ”data point mismatch”

and has hot-standby
 and software update last 12 hours

then recommend ”rollback software”

Activate Hot StandbyActivate Hot Standby Mask Memory AreaMask Memory Area

Set Hot StandbySet Hot Standby

if event ”Task output not used”

then recommend ”alarm”

After certain time span
Recommend plan

„Change Honeypot Settings“

Intrusion Syndrome
Processor

if event ”Sandboxing violation”

then recommend „Safestate“

Figure 6.2.: Exemplary syndrome processors.

Figure 6.2 shows examples of possible syndrome processors surrounded by monitors and
how they can be implemented. We experimented with state machines, rule engines and
time-triggered syndrome processors.

A syndrome processor implemented as state machine is useful for adaptations that span
over several plans. For instance the permanent memory fault syndrome processor in Figure
6.2 first recommends the plan to activate a hot standby device, then recommends the plan
to mask a memory area and finally changes the control device itself to a hot standby
device.

A software bug syndrome processor may be realized as a rule in order to recommend
a rollback of software if the conditions are satisfied. The architecture of Scari allows
the single syndrome processors to use their own database separated from the knowledge
base for saving syndrome-specific characteristics. This further eases the development of
syndrome processors.

The honeypot syndrome processor illustrates a time-triggered use case. After a certain
time span it recommends to change the honeypot settings. This may include the rerouting
of data points or the change of networking settings.

90

6. Run Time

Situation Plan Actions
Emergency Safe State

• Activate Hot-Standby PLC
• Stop PLC
• Notify Higher Layer

Data Point Mismatch Increase Data Point Monitoring
• Activate Hot-Standby PLC
• Increase Monitoring

Located Faulty Memory Area Mask Memory
• Mask Memory
• Reboot

Hacked PLC Isolation
• Stop PLC
• Add Network Connection
• Replace Data Points
• Add Attestation Monitor
• Start PLC

Interface Module Failure Switch Module
• Replace Data Points
• Stop Module

Table 6.2.: Exemplary situations, plans and actions.

Table 6.2 lists exemplary situations, plans and actions. The term situation refers to
cases where the corresponding plan would be suitable. The distinct plan types would be
recommended by syndrome processors. The enumerated actions would be dynamically
generated by the plan maker based on the models found in the knowledge base. The
advantage of this reusability of plan types is that syndrome processors do not need to
possess any logic of how a plan is implemented. Also, the plan maker can ensure that the
recommended plan is actually possible. An action is supposed to be atomic in order to
combine it in distinct plans and to increase its utility.

In our industrial setting, Scari is supposed to run on all devices and is organized in a
hierarchical manner. Figure 6.3 illustrates how we intend to deploy Scari in our hydropower
plant setting. An event-driven loop would be deployed on each ACPU and CCPU. The
CCPU loops are observed by single loops responsible for a hydropower unit. A hydropower
unit is basically a turbine controlled by several control devices responsible for excitation,
synchronization, protection and turbine control. It is imaginable that these unit loops are
goverened by one hydropower plant loop. Such a hydropower plant loop could be observed
by a Scari loop responsible for different hydropower plants. In the literature, organizing
adaptive loops in the presented way is known as Hierarchical Control pattern [33].

As shown in Figure 6.3, the information that flows upwards in the hierarchy are events
and knowledge, while the information going down are actions adjusting lower nodes. It is
important to note that a Scari loop residing on a higher layer needs to lock all knowledge
bases and implicitly the corresponding action handlers of the lower loops. Otherwise, one

91

An Approach for Adding Resilience to Industrial Control Systems

Control
Device
Control
Device
Control
Device

Control
Device
Control
Device
Control
Device

Control Device

Interface
Module
Interface
Module

Central
Module CCPU

ACPU

controls IFCPU

IMIMIMIM

Control Device

Interface
Module

Central
Module CCPU

ACPU

controls IFCPU

IMIM

Control
Device
Control
Device

Observe Act

Orient Decide

Knowledge
Base

Observe Act

Orient Decide

Knowledge
Base

Control Device

Interface
Module

Central
Module CCPU

ACPU

controls IFCPU

IMIM

Control
Device

Observe Act

Orient Decide

Knowledge
Base

ScariScariScari

Events
+

Knowledge
Actions

ScariScari

ScariScari
ScariScari ScariScari ScariScariScari

ScariScari

Figure 6.3.: Scari deployed in layers.

lower Scari loop could be faster with an own plan and the result of two interfering actions
would be unpredictable. Furthermore, lock notifications from higher loops include the
world version of the target loop in order to ensure that the higher loop operates on the
current state of the world.

This hierarchical organization of Scari has two advantages: One is that a knowledge base
only needs to know its subgraphs. If a knowledge base on a node changes, information
is only propagated up to the subsequent higher nodes. The second advantage is that an
adaptive loop only needs to handle its subgraph. A loop does not need to manage other
parts of the overall industrial system, which also eases the configuration of Scari. If it is
not possible to adapt to an event occurring on a node, it can be escalated to a parent
node that has more knowledge, more resources, and can therefore leverage more powerful
adaptation mechanisms. A drawback is that each higher layer would need to act on a
much greater time scale.

In the following, we discuss the responsibility, rationale, and structure and behavior of
the knowledge base, monitor, syndrome processor, recommendation decision maker, plan
maker, plan decision maker, and action handler.

6.4.1. Knowledge Base

Responsibility: The knowledge base manages a so-called world model of a device and
its associated child entities. This model serves as information source for the distinct
participants of the Scari loop. It consists of relevant architectural and parametrization
information obtained from design time and updated through run-time information. The
knowledge bases are responsible for synchronizing information across layers. In addition,

92

6. Run Time

a knowledge base provides a world version for ensuring that entities are referring to the
current model. This world version is used by notifications, recommendations, plans and
actions. Furthermore, it contains a history of changes in order to enable the assessment
of adaptations through human operators.
Rationale: The design rationale for the knowledge base is to provide a consistent source of
information about the structure and parameterization to monitors, syndrome processors,
plan creators and actions. This is important for ensuring that participants are operating on
the same state of the information. Thus, we added a world version that indicates whether
something changed. Every change of the models contained in a knowledge base leads to
a new world version. A knowledge base uses the world version of child knowledge bases
in order to lock them. This is necessary for ensuring that a higher-layer Scari instance
operates on a fully synchronized knowledge base. We decided that each Scari instance
uses an own knowledge base in order to support distinct deployments of control devices.
A locking mechanism is provided by the knowledge bases because they reflect the current
states. Only an action handler holding the lock is able to perform changes in order to
prevent influences from other action handlers.

Knowledge Base

0:Me :PLC

:Contract

:InterfaceModule:Task
World Version: 2a

MonitorMonitorMonitor

Syndrome
ProcessorSyndrome
ProcessorSyndrome
Processor Plan Maker

Action
Handler

Figure 6.4.: Purpose of the knowledge base.

Structure & Behavior: Figure 6.4 shows how the knowledge base provides the contained
models to the distinct entities. The object of type Me is known to all participants and
serves as entry point for exploring the distinct kinds of models. It references an object,
which represents the corresponding device a Scari instance is running on. This generic
entry object of type Me is useful to monitors, syndrome processors, and plan makers for
configuring themselves. Based on the referenced object, they can decide how they behave.

Figure 6.5 shows three hierarchically organized knowledge bases. This is also reflected
by the contained models. Again, objects of type Me play a crucial role as generic entry
points. Such objects also reference child objects of type Me. In Scari, the models are fully
synchronized upwards in order to provide all information to the participants. The world
versions are crucial for ensuring that adaptations are operating on the current state of the
world. They are also used for locking knowledge bases by plan decision makers.

93

An Approach for Adding Resilience to Industrial Control Systems

Knowledge Base

Knowledge BaseKnowledge Base

super:Me

1:Me

:PLC

:InterfaceModule :Contract:Task

0:Me

:PLC :Contract

:InterfaceModule:Task

:Network

0:Me

:PLC:EthernetConn :Contract

:InterfaceModule:Task

1:Me

:PLC:EthernetConn

:InterfaceModule :Contract:Task

:EthernetConn :EthernetConn

World Version: 88a

World Version: 3b World Version: 12

Figure 6.5.: Object diagram of a hierarchy of knowledge bases.

As can be seen in Figures 6.4 and 6.5, the knowledge bases contain the design-time
information at run time.

6.4.2. Monitor

Responsibility: A monitor observes one property of a system, detects anomalies and
notifies interested syndrome processors. The detection methods enumerated in Table 6.1
can be realized as single monitors.
Rationale: One requirement concerning Scari is to be able to incorporate existing de-
tection methods. Another one is that it should require a minimal effort to incorporate
them. Monitors fulfill these requirements. They can represent existing detection methods.
For incorporating an existing method into Scari, a monitor can obtain the results from a
detection method through an existing interface. Then a monitor distributes a notification
containing the event and the obtained information. We decided that a monitor does not
directly update a knowledge base for the purpose of making monitors independent from
the specific world models. The notifications represent events currently happening on the
systems.
Structure & Behavior: The basic step for turning a detection method into a monitor
is to add the ability to distribute notifications about an event. A notification contains the
event type and necessary details for syndrome processors. If necessary, a monitor can be
configurable by Scari actions for instance to increase the monitoring of data points.

A monitor does not update the knowledge base, which reflects the structure and param-
eterization of a system. However, it is still possible that a monitor configures itself based
on models and contracts from the knowledge base.

94

6. Run Time

6.4.3. Syndrome Processor
Responsibility: A syndrome processor reasons about detected anomalies and relates
them to information provided by the knowledge base. Based on this interpretation, a
syndrome processor may recommend a possible plan type for dealing with the situation.
Rationale: At one point in an adaptive system it is necessary that someone analyzes
how to handle a situation. Syndrome processors are supposed to do that based on notifi-
cations. We decided to allow the existence of distinct syndrome processors for easing the
development of reasoning mechanisms that are specialized on the revelation of a certain
fault. Such a reasoning mechanism can react on arbitrary received notifications of inter-
est. Additionally, a syndrome processor can store notifications for analyses over time. We
decided that a syndrome processor can only recommend a plan type and cannot create the
single actions because of three considerations. The first consideration is that syndrome
processors would need to implement concrete algorithms for creating specific adaptations.
By only recommending a plan type, the algorithm for creating the adaptations can be
reused. The second consideration is that the creation of adaptation plans takes time. Ad-
ditionally, it may be necessary to retrieve information about the individual devices from
the knowledge base. This extra processing time and resource consumption would limit
the possibility to compare recommended adaptations from distinct syndrome processors
because one syndrome processor may take too long for generating adaptation plans. The
third consideration is that reusable plan creators are simpler to test during development.
Structure & Behavior: Figure 6.6 illustrates the distinct states of a syndrome processor
and what a syndrome processor observes regarding its recommendation.

In the Configure state, a syndrome processor obtains structure and parameters about the
corresponding entity from the knowledge base. The information of interest can include for
instance whether the syndrome processor runs on a control device, what interface modules
are available, what software applications are executed, which data points are received, etc.
Based on this information, a syndrome processor can select possible plan types.

Then, a syndrome processor moves into the Orient state where it evaluates notifications
and relates them to information about the system. In the simplest form, this evaluation
of notifications and system information can be realized as a rule-based system. Basically,
a rule in a rule-based system consists of an if-then condition [109]. For instance, a se-
curity syndrome processor that receives notifications from a monitor that observes PLC
commands can implement the following simple rule:

if event ”command not signed by XY” then recommend plan ”block ip address”

Similarly, a syndrome processor repairing software bugs could implement the following
rule:

if event ”data point mismatch” and has hot-standby and software update last 12 hours
then recommend plan ”rollback software”

95

An Approach for Adding Resilience to Industrial Control Systems

DecideDecide

ActAct

Configure

Obtains information from knowledge base.
Selects possible plan types.

Configure

Obtains information from knowledge base.
Selects possible plan types.

Orient

Evaluates event notifications and relates them to the
obtained information.

Orient

Evaluates event notifications and relates them to the
obtained information.

Recommend

Creates recommendation and adds plan type, event
notifications, world version and necessary data.

Recommend

Creates recommendation and adds plan type, event
notifications, world version and necessary data.

Recommendation Decision Maker

Starts to evaluate recommendations.

Recommendation Decision Maker

Starts to evaluate recommendations.

Recommendation Decision Maker

Selects one recommendation.

Recommendation Decision Maker

Selects one recommendation.

Plan Maker

Creates plans based on recommended plan type.

Plan Maker

Creates plans based on recommended plan type.

Plan Decision Maker

Selects one plan.

Plan Decision Maker

Selects one plan.

Plan Decision Maker

Locks knowledge base.

Plan Decision Maker

Locks knowledge base.

Action Handler

Executes plan.

Action Handler

Executes plan.

Action Handler

Unlocks knowledge base.

Action Handler

Unlocks knowledge base.

Situation detected.

Knowledge base changed.

Failed.

Knowledge base changed.

Figure 6.6.: State machine diagram of a syndrome processor.

We also experimented with syndrome processors which are time-triggered or based on
state machines. A time-triggered syndrome processor is useful for recurring maintenance
tasks. A state machine is useful for syndrome processors that need to execute distinct
plans in sequence and decide on their outcomes.

During the Recommend state a syndrome processor creates the recommendation with
the selected plan type, adds the corresponding event notifications, the world version and
necessary data for the plan. Then the syndrome processor distributes the recommendation
to the Scari infrastructure.

Now, a syndrome processor needs to track its recommendation if the syndrome processor
is interested in the result of a plan. Note that a recommendation does not need to perform
an adaptation. For instance, a plan could execute a hardware test that interrupts the

96

6. Run Time

control logic. In this case, a syndrome processor may go through multiple states where
it recommends plans based on the outcome of previously executed tests. As depicted in
Figure 6.6, a syndrome processor can observe the phases Decide and Act of the Scari loop.
Concerning the Decide phase, it is important to track whether the recommendation failed
or if the knowledge base changed and the recommendation becomes outdated. After the
recommendation passed through the Decide phase successfully, the syndrome processor
can observe the results of single actions and a plan in general.

Figure 6.6 shows that a syndrome processor usually reverts to the state Configure if
the knowledge base changed. This is necessary for updating information about the corre-
sponding device and to select available plan options.

6.4.4. Recommendation Decision Maker

Responsibility: A recommendation decision maker chooses between recommendations
after a certain timeout. It selects the recommendation based on the covered event with
the highest priority. If there are equal recommendations it selects the one with the plan
type of the highest priority.
Rationale: Because we propose to leverage distinct syndrome processors for reasoning
about a situation, it is necessary that their recommendations are compared to each other.
A recommendation consists of the covered events and a plan type. The recommendation
decision maker selects a recommendation based on the highest prioritized event. For
instance, in our industrial domain, events concerned with the correctness of the control
activities are more important than temporary high CPU utilizations. If there are several
recommendations covering events with the same priority, we choose the recommendation
with the highest prioritized plan type. For instance, a plan for putting a device into a
safe state would have a higher priority than a plan selecting a different interface module
as input for data points. We decided to realize the recommendation decision maker with
a timeout for giving various syndrome processors a chance to recommend a plan. The
timeout starts with the first received recommendation. The drawback of this approach
is that there is a fixed delay between a recommendation and the creation of plans. An
alternative would be to create plans based on the first recommendation and to withdraw
the plans if a higher priority recommendation is received before the final plan is executed.
Structure & Behavior: Algorithm 1 illustrates the steps taken by the recommendation
decision maker. First, it selects the recommendations with the highest event priority. If
there are several equal recommendations, it takes one with the highest plan type priority.
The distinct prioritizations are determined beforehand.

6.4.5. Plan Maker

Responsibility: A plan maker creates plans, containing atomic actions for a given plan
type. Concerning the distinct plan types, there exist corresponding plan creators that

97

An Approach for Adding Resilience to Industrial Control Systems

Data: Recommendation[] recs
Result: Recommendation
Recommendation[] eventCandidates
int highestPriority = -1
foreach r in recs do

if eventPriority(r) > highestPriority then
eventCandidates.clear()
eventCandidates += r
highestPriority = eventPriority(r)

else if eventPriority(r) == highestPriority then
eventCandidates += r

end
end
if eventCandidates.size() == 1 then

return eventCandidates[0]
end
highestPriority = -1
Recommendation rec
foreach r in eventCandidates do

if planPriority(r) > highestPriority then
rec = r
highestPriority = planPriority(r)

end
end
return rec

Algorithm 1: Recommendation Decision Maker

are called by the plan maker. The plan creators leverage information provided by the
recommendation and knowledge base.
Rationale: We added the plan maker to extract the creation of adaptations from the
syndrome processors. This has the advantage that plans are reusable and that the corre-
sponding plan creators verify whether an adaptation is possible. We decided that a plan
maker can create more than one plan in order to enable algorithms that can create several
distinct solutions.
Structure & Behavior: First, the plan maker chooses the corresponding plan creator.
Plan creators are dedicated to one plan type. Then, the plan creator verifies the data
part of the recommendation. Finally, the plan creator generates plans containing a set of
actions. It should rely on the knowledge base for generating valid plans. The plan maker
passes the created plans to the next phase of the Scari loop.

6.4.6. Plan Decision Maker

Responsibility: A plan maker can create distinct plans that realize a plan type in differ-
ent ways. The plan decision maker selects one plan with the least affected Scari instances.
If there are several candidate plans, it selects the one with the least amount of actions.
Additionally, the plan decision maker locks the knowledge base.

98

6. Run Time

Data: Plan[] plans
Result: Plan
Plan[] planCandidates
int leastAffectedScari = MAX INT
foreach p in plans do

if affectedScari(p) < leastAffectedScari then
planCandidates.clear()
planCandidates += p
leastAffectedScari = affectedScari(p)

else if affectedScari(p) == leastAffectedScari then
planCandidates += p

end
end
if planCandidates.size() == 1 then

return planCandidates[0]
end
leastActions = MAX INT
Plan plan
foreach p in planCandidates do

if numberOfActions(p) < leastActions then
plan = p
leastActions = numberOfActions(p)

end
end
return plan

Algorithm 2: Plan Decision Maker

Rationale: We extracted the comparison of plans from the plan maker in order to simplify
the distinct plan creators. We decided to compare plans based on the affected Scari
instances in order to change the least number of control devices. Similar, if there are
several plan candidates we take the plan with the least amount of actions in order to
change as little as possible. The locking of the knowledge base is necessary in order
to prevent interferences from higher ranking Scari instances. Furthermore, the locking
mechanism of the knowledge base ensures that it is synchronized with the lower layers. If
the knowledge base is not synchronized, the plan decision maker withdraws the plan.
Structure & Behavior: Algorithm 2 illustrates the steps taken by the plan decision
maker. First, it selects the plans which affect the least number of Scari instances. If there
are several equal plans, it takes one with the smallest possible number of actions. The
distinct prioritizations are determined beforehand.

6.4.7. Action Handler

Responsibility: The action handler executes plans and contained atomic actions. If an
action targets a lower layer action handler, the action handler sends the action to the target
Scari instance and waits until the action finished. All actions within a plan are executed

99

An Approach for Adding Resilience to Industrial Control Systems

Execute PlanExecute Plan

WaitWait

Verify Lock TokenVerify Lock Token Verify Lock TokenVerify Lock Token

Validate ActionValidate Action

Execute ActionExecute Action

Select next ActionSelect next Action

Validate & ExecuteValidate & Execute Send to Lower UnitSend to Lower Unit

WaitWait

Local Lower Unit

Plan received Action received

Unlock Knowledge BaseUnlock Knowledge Base

Figure 6.7.: State machine diagram of an action handler.

in a serial sequence. The single actions are responsible for changing the knowledge base.
If a plan finished successfully, the action handler unlocks the knowledge base.
Rationale: This is the only entity part of Scari capable of actively changing the structure
of devices. We deploy one action handler on each Scari instance. We realized the action
handler in this way in order to make the execution of actions predictable and to prevent
interferences.
Structure & Behavior: Figure 6.7 shows the distinct states of an action handler. An
action handler reacts on plan and action messages. If it receives a plan, it verifies the lock
token by asking the knowledge base. Afterwards, the action handler executes contained
actions sequentially. If an action targets a lower unit, it is sent to a lower action handler
and the sending action handler waits until the action finished. When an action handler
receives an action to execute, it first verifies the lock token. Then it verifies the action,
which means that the corresponding action logic revises whether all necessary data exists.
Then the action handler executes the action. At the end of a plan, an action handler
unlocks the knowledge base. If an action fails, the action handler aborts the plan and
leaves the knowledge base locked.

100

6. Run Time

6.5. Technical Implementation

libscaricore

librecdecisionmaker libplanmaker libplandecisionmaker

libactionhandler libscarinetwork

libscarimf

libscariworld

libgit2

qt5 libdbus

qt5 libnetworkqt5 libwebsockets

scaridecisiond

actionhandlerd

scariworldd

scarinetworkd

Figure 6.8.: Component diagram of the Scari software architecture.

We implemented our prototype of Scari in C++ using the Qt framework1 version 5.7.1.
We decided to do so because it is also the preferred way of developing software by our
project partner. Figure 6.8 illustrates a component diagram of the Scari libraries and
infrastructure daemon applications. We organized the application logic in libraries in or-
der to have the opportunity to realize Scari within one or split into several independent
applications. In the following we shortly present these libraries and the corresponding
daemon applications. First we explain the core library, which is used by all other compo-
nents except the Scari modeling framework. Then we present the components part of the
Decide phase and of the Act phase. After that we describe the Scari modeling framework.
Next, we explain the realized knowledge base containing the world model. Last, we shortly
explain the networking between Scari loops.

6.5.1. Scari Core Library

libscaricore is the central library, which specifies the minimum number of classes necessary
for communicating with the Scari infrastructure. It contains the classes and serialization
functions for notification, recommendation, plan, and action messages. Figure 6.9 shows
a class diagram of the different message types, which inherit from the parent abstract
class CausalElement. The name of this abstract class comes from the containment causes.
It enables to create a chain of messages in order to reconstruct why a notification, rec-
ommendation, plan, or action has been carried out. This information can be useful for
syndrome processors. Furthermore, a recommendation decision maker decides based on
the caused notifications. The CausalElement class contains different attributes that are

1https://www.qt.io/

101

An Approach for Adding Resilience to Industrial Control Systems

CausalElement

+ name : QString = ""

+ receiverType : ConnectionType = Unit
+ receiverMeName : QString = ""

+ senderType : ConnectionType = Unit
+ senderMeName : QString = ""
+ senderAddress : QString = ""
+ senderPort : quint16 = 4243
+ messageSenderName : QString = ""
+ expectsReply : bool = false

+ attributes : QVariantMap
+ worldVersion : QString = ""

+ senderTimeSinceEpochUs : qlonglong
+ receiverTimeSinceEpochUs: qlonglong

causes
*

«enumeration»
ConnectionType

Unit
LowerLayer
HigherLayer
Specific

Notification

+ eventType : QString = ""

Recommendation

+ planType : QString = ""
+ selected : bool = false

Plan

+ type : QString = ""
+ selected : bool = false
+ lockToken : int = 0

Action

+ type : QString = ""
+ lockToken : int = 0

actions
*

Figure 6.9.: Class diagram of the messages used by Scari.

used for specifying the receiver and sender in order to ease the delivery of messages. The
field attributes can be used for attaching arbitrary data. The field worldVersion is manda-
tory for recommendations and plans for ensuring that they refer to the current world. At
the bottom of Figure 6.9 are the different message types Notification, Recommendation,
Plan and Action. Note that the classes Plan and Action contain a lockToken, which is
necessary for changing the knowledge base.

In addition to these message types, libscaricore contains two classes that are used for
receiving and sending messages over the message bus. We utilize Desktop Bus (D-Bus)2,
which is available and enabled in many Linux distributions by default. Essentially, it
provides many-to-many communication. We use the qt5 dbus library for accessing the
message bus. This allows us to loosely couple monitors, syndrome processors and the
Scari infrastructure. At design time syndrome processors can be developed with respect
to the available event and plan types. At any point during run time it is possible to start
additional monitors and syndrome processors that connect seamlessly to the message bus.
A downside of using D-Bus is that it does not guarantee any real-time constraints.

6.5.2. Decide Phase

librecdecisionmaker, libplanmaker, and libplandecisionmaker implement the different stages
of the Decide phase. The event and plan type priorities of the recommendation decision
maker are definable with JSON. It selects the recommendation based on the covered event

2https://dbus.freedesktop.org

102

6. Run Time

with the highest priority. If there are equal recommendations it selects the one with the
plan type of the highest priority. The plan maker uses the Qt5 plugin mechanism in order
to load plugins that contain the logic for constructing a given plan type. The plan decision
maker selects the created plan with the least amount of actions. These three libraries are
used by the application scaridecisiond. Further it depends on libscariworld for locking the
knowledge base. Table 6.3 enumerates events that can be distributed as notifications by
scaridecisiond during the Decide phase. They are important for tracking recommendations
and to react if something fails.

Event Description
World Cannot Connect Scaridecisiond cannot connect to the knowledge base.
Rec Invalid World Version World version of the recommendation is outdated.
Rec Gets Evaluated Attached recommendation gets evaluated.
Rec Selected Attached recommendation is selected.
Plan Creator Does Not Exist Plan creator for the plan type does not exist
Plan Invalid Rec Recommendation does not provide the required metadata.
Plan Creator No Plans Plan creator did not create plans.
Plan Creator Created Plans Plan creator created plans.
Plan None Selected No plan selected by the plan decision maker.
Plan Selected A plan is selected by the plan decision maker.
Plan Lock Failed Plan decision maker could not lock the knowledge base.

Table 6.3.: Event notifications distributed by the Decide phase.

6.5.3. Act Phase

libactionhandler implements the Act phase of the Scari loop and is utilized by the appli-
cation actionhandlerd. Its purpose is to execute selected plans, manage the distribution of
contained actions and finally execute actions. Every action is a single plugin and leverages
the Qt5 plugin mechanism. Table 6.4 enumerates events possibly distributed during the
execution of a plan.

Event Description
World Cannot Connect Actionhandlerd cannot connect to the knowledge base.
Plan Lock Token Mismatch Lock token of the plan does not match the lock token of the knowledge base.
Action Does Not Exist Action does not exist.
Action Lock Token Mismatch Lock token of the action does not match the lock token of the knowledge base.
Action Invalid The meta data of the action is invalid.
Action Failed The execution of the action failed.
Action Successful The action finished successful.
World Unlock Failed Actionhandlerd could not unlock the knowledge base.
World Unlocked Actionhandlerd unlocked the knowledge base.
Plan Failed The execution of the plan failed.
Plan Successful The plan finished successful.

Table 6.4.: Event notifications distributed by the Act phase.

103

An Approach for Adding Resilience to Industrial Control Systems

6.5.4. Scari Modeling Framework

libscarimf realizes our modeling framework based on C++ and Qt5. We leverage the Qt
framework because it adds reflection and meta information about objects to C++ in a
platform-independent way.

We added macros that we use for defining attributes, references, and compositions to
our modeling framework. Listing 6.1 illustrates an example definition of a ScariObject.
Attributes are used for basic datatypes provided by the Qt framework. References are used
for pointing to other ScariObjects. Containments make a ScariObject part of another. An
object can only be owned by one other object. Each macro definition expands to setter and
getter methods. A ScariObject is inherited from QObject and possesses all the features
provided by the Qt framework. ScariObject definitions get automatically registered in
a factory, realized as singleton, at the time the dynamic linker loads the surrounding
library. Every ScariObject has a UUID as name in order to make them unique. We save
ScariObjects as JSON. This is the point where the Qt reflection mechanisms come in
handy. They allow to discover and call all attributes and methods of an object at run time
in a generic way.

Listing 6.1: Definition of a ScariObject.
#include "scariobjectdefs.h"

SCARI_OBJECT(Entity)

Q_OBJECT

ATTRIBUTE_ONE(bool, active, false)
ATTRIBUTE_N(int, values)

REFERENCE_ONE(Entity, otherEntity)
REFERENCE_N(Entity, otherEntities)

COMPOSITION_ONE(Entity, ownedEntity)
COMPOSITION_N(Entity, ownedEntities)

SCARI_OBJECT_END(Entity)

Listing 6.2: Instantiations of ScariObjects.
ScariObjectSet set;

Entity ∗e = set.createObject<Entity>();
Entity ∗e1 = set.createObject<Entity>();
Entity ∗e2 = set.createObject<Entity>();
Entity ∗e3 = set.createObject<Entity>();

e−>set_active(true);
e−>add_to_values(42);
e−>set_otherEntity(e1);
e−>add_to_otherEntities(e1);
e−>set_ownedEntity(e2);
e−>add_to_ownedEntities(e3);

ScarimfUtil::saveToDir(e, QDir::current());

Listing 6.2 shows how a ScariObject can be used by an application. ScariObjectSet
takes care of the memory management and resolves references or containments. Listing
A.1, found in the Appendix, contains the resulting JSON file. Note that we did not
optimize the file size.

The main advantage of our modeling framework is that applications only need to refer-
ence modeling language libraries that they need to know. This allows to deploy different
specialized modeling languages at different layers of Scari.

104

6. Run Time

*

settings

0..1

Me

+ ownAddress : QString = ""

+ lowerLayerPort : quint16 = 4242
+ lowerLayerAddress : QString = ""

+ higherLayerMeName : QString = ""
+ higherLayerAddress : QString = ""
+ higherLayerPort : quint16 = 4242
+ higherLayerUrl: QUrl = ""

+ specificPort : quint16 = 4243
+ specificAddress : QString = ""

lowerLayer

*

lowerLayerHistoric

*

ScariObjectmeObject
0..1

properties
*0..1Settings

+ applicationName : QString = ""
+ organizationName : QString = ""

SettingsProperty

+ key : QString = ""
+ value : QVariant = QVariant::Invalid

Figure 6.10.: Class diagram of the world metamodel.

6.5.5. Knowledge Base

The library libscariworld and the application scariworldd implement the knowledge base
of the Scari loop.

Figure 6.10 illustrates the modeling language worldml utilized by libscariworld. The
central element and starting point of every model exploration is the class Me representing
the entity the corresponding Scari loop is running on. The attribute ownAddress contains
the general IPv4 or IPv6 address of the entity supposed to be used by applications or
monitors. lowerLayerPort and lowerLayerAddress contain the network settings for listen-
ing to connections from lower-layer Scari instances. The higherLayer* attributes are the
counterpart to the lower-layer settings and are used by lower-layer loops for connecting to
a higher-layer Scari. The necessary settings for scarinetworkd are higherLayerPort, and
higherLayerAddress or higherLayerUrl. The higherLayerMeName is automatically set by
scarinetworkd and informs syndrome processors if there exists a higher layer. Addition-
ally, it allows to detect whether the higher entity changed. The attributes specificPort and
specificAddress can be used by higher layers in order to directly send actions to a Scari
instance. The reference lowerLayer points to the current lower Me instances. This is a
crucial reference for syndrome processors and plan makers in order to find lower-layer en-
tities. The reference lowerLayerHistoric contains lower layers which have been connected
once but are now disconnected. The containment settings can be used for storing settings
specific to applications, monitors, syndrome processors, or Scari specific applications. We
added the attribute organizationName to the class Settings to be compatible with opera-
tion systems such as Windows where application settings are supposed to be stored in the
system registry. Last but not least, the reference meObject points to the current object

105

An Approach for Adding Resilience to Industrial Control Systems

that represents the entity in detail. By referencing the class ScariObject it is possible to
utilize any type defined with the Scari modeling framework. The meObject is not used by
scariworldd. Therefore, it does not need to be aware of other modeling languages than
worldml.

Git project on filesystem

Current Me

Child Me

Child Me

Serialized JSON

.git

scariworldd

JSON Objects

synchronizes

Syndrome
Processor

WorldProxy
(parses JSON)

ScariObjects D-Bus

ScariDecisionD

WorldProxy

ScariObjects

ActionHandlerD

WorldProxy

ScariObjects

D-Bus

D-Bus

Figure 6.11.: Overview of a scariworldd instance.

Figure 6.11 illustrates an overview of what scariworldd implements. All scariworldd
operations are accessible over D-Bus as a service. Syndrome processors, plan creators and
actions can retrieve arbitrary model elements managed by scariworldd. Usually the model
discovery starts with an object of type Me illustrated above in Figure 6.10. scariworldd
holds ScariObjects as JSON objects in memory. The JSON objects get transformed to
ScariObjects at the entities which are interested in the content. scariworldd stores the
JSON objects as files in a git repository.

scariworldd manages the contained models, updates the world version, restricts access,
and synchronizes the models between different layers. The access can be restricted by
locking a world and its lower layer worlds. scariworldd takes care of that by sending lock
notifications containing a lock number and the world version of the target world to the
lower layer. The target world version is important because otherwise it could happen
that a parent loop operates on an outdated world and would try to apply a destructive
adaption.

We synchronize the worlds with git, leveraging the libgit23 implementation. Serialized
models are stored as JSON files and as compressed objects in a git repository. Each
change of the world is reflected by a commit and it is possible to analyze the history of

3https://libgit2.org/

106

6. Run Time

higher-scariworldd
(world version: a1)

Me Network

lower-scariworldd
(world version: b1)

Me PLC

Me Old PLC

World Changed
Notification

higher-scariworldd
(world version: a2)

Me Network

lower-scariworldd
(world version: b1)

Me PLC

Me PLC

Fetch
&

Subtree Merge

Step 1 Step 2

Figure 6.12.: Synchronization of the world models.

a Scari loop. Furthermore, it would even be possible to rollback a world. In addition to
the model elements, the repository stores the messages sent over D-Bus. Each repository
obtains a world tag which is incremented to the latest commit if a model element changes.
The commit id targeted by the world tag equals the world version used by the Scari
framework. Figure 6.12 shows how worlds become synchronized between layers. A change
of the world leads to a notification that is sent to the higher layer world. The higher-layer
world is responsible for fetching and merging the data. We perform a subtree merge,
which incorporates the child tree into the master tree of the merging repository. The
resulting directory structure of the repository reflects the hierarchical organization of Scari
as illustrated in Figure 6.11. Furthermore, scariworldd parses the changed JSON files and
manages the current Me object.

It is possible that the synchronization of a world takes longer than a syndrome processor
would need to react to a notification from a lower layer. In our prototype implementation,
scaridecisiond would not be able to lock the target world and its children if the world
version of the recommendation does not match the version of the world. If the synchro-
nization has not been carried out at the time scaridecisiond locks the world, then the
unsynchronized child world would reject the receiving lock from the higher layer. The
drawback of our prototype implementation is that a syndrome processor needs to reeva-
lute the situation if it has been faster than the git synchronization mechanism. Table 6.5
enumerates event notifications distributed by scariworldd.

107

An Approach for Adding Resilience to Industrial Control Systems

Event Description
World Changed The knowledge base was changed. This is important for other Scari entities.
World Lock Used internally by scariworldd for locking the child knowledge bases.
World Unlock Used internally by scariworldd for unlocking the child knowledge bases.

Table 6.5.: Event notifications distributed by the knowledge base.

6.5.6. Networking
libscarinetwork implements the functionality of distributing messages between layers and
Scari loops. It is utilized by scarinetworkd. Figure 6.9, shown above, illustrates that we
distinguish between Unit, LowerLayer, HigherLayer and Specific as message receiver types.
Unit targets the local D-Bus. All other receiver types are managed by scarinetworkd
in order to support the loose coupling of Scari components. scarinetworkd obtains the
network settings from the local Me object. It communicates with other Scari loops over
WebSockets. The WebSocket protocol is located at layer 7 in the OSI model and depends
on TCP at layer 4 [110]. We decided to leverage it because it is small, simple to use,
and well supported by Qt5 and many other frameworks. Table 6.6 enumerates events
distributed by scarinetworkd.

Event Description
Network Send Failed Scarinetworkd could not send the message.
Network Websocket Error A websocket error occurred.
Network Websocket SSL Error A websocket SSL error occured.
Network Disconnect Socket A websocket disconnected.
Network Connected Socket Scarinetworkd connected a websocket to another Scari instance.

Table 6.6.: Event notifications distributed by the network entity.

6.6. Experiments
For evaluating and examining different mechanisms with Scari, we built a testbed consist-
ing of eight Raspberry Pi 3 Model B devices running the Raspbian distribution based on
Linux kernel version 4.9.59-v7+. Figure 6.13 illustrates the test setup.

Each side of the testbed consists of four Raspberries with a central power supply located
in the middle. On top of the hardware stack resides a Netgear FS116 10/100 MBit/s
Ethernet switch. Utilizing affordable Raspberry Pis for our testbed has the advantage
that other researchers have the opportunity to yield comparable results for the following
scenarios. Furthermore, the Raspberry Pi 3 Model B runs a 1.2 GHz Quad-Core ARM
Cortex-A53 processor, offers an extended 40-pin GPIO header, one Ethernet port, four
USB 2.0 ports, Bluetooth 4.1 and 802.11 b/g/n Wireless LAN. This allows us to simulate
a network of PLCs that could communicate over various redundant channels and control
simulated physical mechanisms.

108

6. Run Time

Figure 6.13.: Raspberry Pi Model B testbed equipped with Infineon Iridium 9670 TPM
add-on boards.

In the following four subsections we give details of scenarios where Scari is applied.
Subsection 6.6.1 utilizes the proprietary PLC software from our project partner and we
artificially inject permanent DRAM memory faults through an extended version of the
emulator software Quick Emulator (QEMU). Subsection 6.6.2 presents a security-related
scenario where PLCs mutually attest themselves whether an unknown software is started.
Subsection 6.6.3 shows the remote attestation case in an extended situation where a higher
layer needs to adapt. Subsection 6.6.4 illustrates the case that one PLC experiences a data
point mismatch and another PLC also has to react.

We measure the execution time of all steps, the number and sizes of all messages, and
the different git repository sizes. We selected these metrics because they give a good
indication of the performance overhead of Scari. The provided execution times are based
on the arithmetic mean of ten single unrelated experiments.

6.6.1. Proprietary PLC Memory Fault

Figure 6.14 illustrates an experiment of Scari in our industrial setting with the proprietary
software from our project partner. We implemented a memory-injection mechanism into
QEMU4 to change memory content during runtime. Our implementation is based on
previous work from our research group [111]. We use this manipulated QEMU to simulate
stuck-at memory errors at known memory locations.

Now, the scenario is that a permanent stuck-at memory error happens at the memory
location of a data point. Table 6.7 illustrates the used plans and actions.

A monitor performs a cyclic check of the input and output data points of a FUP. If it
encounters a wrong data point value, it notifies the Scari applications. Then a syndrome

4https://github.com/jib218/scari-qemu

109

An Approach for Adding Resilience to Industrial Control Systems

PC

Linux

Raspberry Pi 3 Model B

QEMU Emulator customized by us
with memory fault injection

Proprietary PLC Software Observe & Adapt

Linux

ScariScari
Linux

Scari

Hot-Standby Device

Simulated
Activation

Permanent
Memory Fault

Figure 6.14.: Proprietary PLC memory fault.

Situation Plan Actions
Data Point Mismatch Increase Data Point Monitoring

• Activate Hot-Standby PLC
• Increase Monitoring

Located Memory Area Test Memory
• Test Memory

Located Faulty Memory Area Mask Memory
• Mask Memory
• Reboot ACPU

No Data Point Mismatch Decrease Data Point Monitoring
• Set Self Hot-Standby
• Decrease Monitoring

Emergency Safe State
• Activate Hot-Standby PLC
• Stop PLC
• Notify Higher Layer

Table 6.7.: Available plans and actions of the PLC memory fault scenario.

processor recommends activating the hot-standby device and increasing the data point
monitoring, which means that also data points inside of a FUP are monitored. Then the
monitor compares all data points of a FUP with an oracle. Based on such an event, the
syndrome processor recommends performing memory tests on the addresses of the affected
data points. Depending on the results, the syndrome processor may recommend to mask
the faulty memory areas with the Linux kernel boot parameter memmap5. memmap
enables to mark specific memory addresses as reserved which are thus not assigned by
Linux. The physical memory addresses can be obtained in Linux by using the pagemap6

functionality. Masking a faulty memory area in Linux requires a reboot. After the reboot,
the monitor can verify whether the data points are still incorrect. If not, the syndrome

5https://www.kernel.org/doc/html/v4.14/admin-guide/kernel-parameters.html
6https://www.kernel.org/doc/Documentation/vm/pagemap.txt

110

6. Run Time

processor can recommend to set the device itself to hot-standby mode and decrease the
monitoring.

All together these adaptions take four rounds. The detailed explanation of how the
monitor, datafault syndrome processor, and plans work can be found in Paper G [112].

CcpuAcpuCombination

+ ip : QString = "127.0.0.1"

+ state : QString = "inactive"

MemoryGap

+ from : QString = ""

+ to : QString = ""

fups

*

Task

+ cycle : int = 1000

outputVariables

0..1

*

localVariables

0..1

*

inputVariables

0..1

*

FUP

DataPoint

+ variable : QString = ""

+ type : QString = ""

+ value : QString = ""

POU

+ type : QString = ""

from
1

to
1

Assignment

memoryGaps
*

0..1

0..1

*

tasks

steps
0..1 *

assignments
0..1 *

0..1

*
inputVariables

0..1

*

parameterVariables
0..1

*

outputVariables

(a) Class diagram of the proprietary PLC metamodel.

0 1 2 3 4
Round

0

10

20

30

40

50

of

 m
es

sa
ge

s

2 15 25 36 50

messages

(b) Amount of messages.

0 1 2 3 4
Round

0

50

100

150

200

250

300

350

Si
ze

 [k
ib

ib
yt

e]

23 55 91 15
0

24
523 40

54

84

10
1

.git
files

(c) Size of the git repository.

1 2 3 4
Round

100

101

102

103

104

105

Ex
ec

ut
io

n
Ti

m
e

[m
s]

15
9.

1

27
0

26
3.

8

1.
8

1.
1

2.
6

0.
7

19
.8

21
.9

22 20
.5

3.
3 21
.6

24
.6

2.
6

25
.7

33
.3

25
.8

27

0.
8 55

3.
9

67
0.

1

0.
7

24
.3

89
25

7.
4

22
.1

datapoint monitor
datafault sp
scaridecisiond
plan maker
actionhandlerd
action 1
action 2

(d) Execution times of the different rounds.

Figure 6.15.: Class diagram and measurements of the proprietary PLC scenario.

Figure 6.15a illustrates the modeling language we created for this scenario. The class
CcpuAcpuCombination represents our special situation where we are leveraging a Rasp-
berry Pi to orchestrate the proprietary PLC software running on top of QEMU. The

111

An Approach for Adding Resilience to Industrial Control Systems

attribute ip specifies the target address of the PLC software and the attribute state the
current mode. The contained objects of type MemoryGap match the masked memory ar-
eas. We add one MemoryGap object during the execution of the third plan. The contained
objects of type Task represent the executed logic of the PLC. The class FUP specifies the
single steps represented by objects of type POU. Both classes can specify input-, local-,
and outputVariables that are objects of type DataPoint. The class Assignment is used by
POU objects for setting input and output variables. We designed this modeling language
close to the IEC 61131 structure used by our project partner [92].

In our scenario we are using one Task and Fup object. The Fup object owns two steps
consisting of two POU objects, each of them realizing a boolean not. The memory error
happens at a linking data point between the two POU objects. Additionally, the Me
object owns two Settings objects for the monitor and syndrome processor.

Figure 6.15b illustrates the amount of messages distributed over D-Bus during the ex-
ecution of single rounds. Round 0 refers to the amount of messages before the first event
happened. Figure 6.15c shows how the size of the git repository managed by scariworldd
behaves. .git is the place inside a repository where git stores all configurations, commits,
tags, trees, and objects. files refers to the json models and messages saved to the file
system at the end of a round. Figure 6.15d contains the execution times of the single
applications, plan plugins, and action plugins during each round on a logarithmic scale
in milliseconds. The data point monitor needs to communicate with the proprietary PLC
with XML commands send over TCP/IP. The execution times of scaridecisiond and ac-
tionhandlerd mainly consist of sending notifications and locking/unlocking the world. In
round one, the first action consists of sending a notification to the data point monitor and
the second action changes the state of the PLC object. In round two, the action performs
a memory test at the target memory area. In round three, the first action executes a script
at the target Linux instance in order to mask the memory area. The second action starts a
reboot and waits until the PLC is reachable again. In the last round a notification is sent
to the data point monitor and the state of the PLC object is changed to be hotstandby.

Note that these execution times do not include the delays introduced by D-Bus. We
measured in this scenario, that a delay between the sender and receiver of a message can
take up to 5 milliseconds. Also, Figure 6.15b does not include the time scaridecisiond waits
until it evaluates the recommendations. This is definable by the user. In our scenario it
would make sense to wait less than a second because the datafault syndrome processor
only takes up to 2.6 milliseconds. However, a good waiting time depends on the number
of syndrome processors and the longest calculation time.

With this experiment, we demonstrated that Scari is suitable for dealing with a per-
manent memory fault scenario. The execution time of the single Scari phases is quite low
compared to the time a monitor needs for retrieving a data point from the observed ACPU.
Figure 6.15b illustrates that at each round of Scari about ten to fourteen messages are
distributed by the distinct parts. This is necessary for ensuring that a syndrome processor
can log the state of its recommendation. Because of these messages, also the size of the

112

6. Run Time

Network Plc

+ state : QString = "inactive"

InputSpec OutputSpec FunctionPlan

+ cycle : int = 1000

Unit

+ name : QString = ""

Replacement

+ target : QString = ""

+ with : QString = ""

CommWebSocket

+ address : QString = ""

+ port : quint16 = 4242

+ repeatThreeTimes = true

+ dataPoints : QString [*]

DataPoint

+ name : QString = ""

+ value : qint32 = 0

POU

+ type : QString = ""

+ inputDataPoints : QString [*]

+ outputDataPoints : QString[*]

inputSpec

0..1

1

outputSpec

0..1

1

fup

0..1

1

unit
0..1 1

replacements

0..1

*

websockets

0..1

*

websockets

0..1

*
localDataPoints

0..1

*

steps

0..1

*

Figure 6.16.: Class diagram of the simplified PLC metamodel.

git repository grows from 46 kibibytes to 346 kibibytes. This growth is not as bad as it
sounds because Scari only interacts in unusal situations.

6.6.2. Remote Attestation

Here, we present a remote attestation case of how Scari could deal with a security-related
violation of the integrity. Attestation is a security method where an attestator proves to a
challenger, locally or remotely, that used files and binaries correspond to their signatures
[106]. In contrast to the scenario above, we use a self-built software implementing the
behavior of a simple PLC. The software can execute function plans containing components
that perform simple operations such as an add or not triggered by a definable cycle. We
only support data points representable by 32-bit integers. Furthermore, our PLC simulator
can send data points to other PLC simulators over the WebSocket protocol, which eases for
us to conduct experiments. Because the PLC simulator is only focused on simple control
logic, it lacks many features compared to the proprietary one from our project partner.
The benefit is that this eases for us to inject failures and conduct experiments.

Figure 6.16 illustrates the used modeling language. The class Network represents the
higher layer Scari instance. The class Plc contains an object of type Unit that represents
a simplification of the connected hydropower unit. Objects of the types InputSpec and
OutputSpec are contained within Plc and specify what data points are received and sent
over websockets. If a CommWebSocket is used by an InputSpec the PLC application starts
a websocket server that listens for incoming connections. If it is used by an OutputSpec the
PLC application tries to connect to the target address and port. We included the option to
send a data point three times because this behavior is required in the hydropower domain.

113

An Approach for Adding Resilience to Industrial Control Systems

Additionally, the class InputSpec utilizes objects of type Replacement for substituting data
points with redundant ones. We use this class in the first case for switching the used data
points. The last type contained in the class Plc is the class FunctionPlan. It posesses an
attribute cycle, a containment localDataPoints and steps consisting of POU objects. Data
points are created with this modeling language by defining them inside CommWebSocket
objects, through local data points of a FunctionPlan, or by naming outDataPoints in POU
objects.

Source PLC A

ScariScari

Attestation
Service Sink PLC

ScariScari

Remote
Attestation
Challenger

Data Point a
TPM

Integrity
Violation

Source PLC B

ScariScari

Attestation
Service

TPM

Data Point a-redundant

Figure 6.17.: Remote attestation scenario

Figure 6.17 illustrates the scenario where Source PLC A and Source PLC B are sending
the data point a to a Sink PLC. The Source PLCs are proving to the Sink PLC that they
are not manipulated by an attacker and therefore the data points are trustable. To do so
we leverage a modified Linux Integrity Measurement Architecture subsystem that detects
if files are altered. It hashes and verifies files by using an Infineon Iridium 9670 TPM.
Figure 6.13 above shows these TPMs attached to our testbed. This ensures, together with
a form of secure boot mechanism, that an attacker is not able to manipulate the security
integrity mechanism. Now, if an untrusted software is started on a PLC, e.g., on Source
PLC A, the integrity mechanism would inform the local attestation service. This service
notifies the observing remote attestation challengers. The remote attestation challenger,
located on the Sink PLC, notifies the local syndrome processors.

Table 6.8 enumerates the available plans. In the case illustrated in Figure 6.17, the
syndrome processor recommends to replace the data point a with a-redundant which also
adapts the model accordingly.

Figure 6.18a shows the amount of messages sent over D-Bus at the Sink PLC before
and after the PLC got adapted. Figure 6.18b illustrates the size of the .git directory and
the current files. The increase of the size is caused through the added object of type
Replacement and the sent Scari messages.

114

6. Run Time

Situation Plan Actions
Failed Attestation Switch Variables

• Add Replacement

Failed Attestation Notify Higher Layer
• Send Notification

Table 6.8.: Available plans and actions of the remote attestation scenario.

Figure 6.18c provides a detailed overview of the single execution times. A attestationd
is the time from being notified by the integrity mechanism and the start to informing
the attestation monitors. action 1 involves the configuration of the PLC software and
the addition of the Replacement object to the model. The action communicates with our
PLC software over a socket connection. Note that the measured execution times are worse
than in the proprietary PLC memory fault scenario above. This is due to the fact that
the used Plc model element contains all configurations while the CcpuAcpuCombination
model element from above references FUP objects. Therefore, the transferred model sizes
over D-Bus are bigger. An additional possible reason is that there are more applications
executed on the Raspberry Pi and it also needs to deal with several network connections.

This experiment demonstrated how Scari can behave in a security related scenario. Note
that a control device can deal with this situation on its own without a higher layer. The
execution times of the single activities are neglectable but could be further optimized.
The size of the git repository doubled. This is because the Plc object contains all other
objects. A model where the objects are referenced and not contained would optimize this
situation.

6.6.3. Remote Attestation Higher Layer

In this scenario we are leveraging a higher layer for adapting to a security-related violation
of the integrity of a PLC. We are reusing the modeling language shown above in Figure
6.16.

Figure 6.19 shows the scenario. Source PLC B is now a control device, which happens to
calculate the same data point similar to the way it is provided by Source PLC A. However,
at the beginning of the scenario it is not sending its data point to the Sink PLC.

Table 6.9 enumerates the used plans and actions. Now, the examined situation is that
Source PLC A experiences an integrity violation. The Sink PLC is not able to replace
the affected data point on its own. Therefore, it notifies the higher layer. The syndrome
processor residing on the Supervisory Computer recommends a plan that involves stopping
the Source PLC A and the Sink PLC. After these first actions, the Source PLC B is
configured by an action to send the data point a to the Sink PLC. Then an action starts
a new remote attestestion monitor on the Sink PLC targeting Source PLC B. The last
action is to start the Sink PLC again and to let the control system continue.

115

An Approach for Adding Resilience to Industrial Control Systems

0 1
Round

0

2

4

6

8

10

12

14

16

of

 m
es

sa
ge

s

6 17

Sink

(a) Amount of messages.

0 1
Round

0

20

40

60

80

100

Si
ze

 [k
ib

ib
yt

e]

34 62

33

49

Sink .git
Sink files

(b) Size of the git repository.

1
Round

0

50

100

150

200

Ex
ec

ut
io

n
Ti

m
e

[m
s]

0.
2

4.
4

2.
2

46
.4

0.
3

32
19

8.
7

A attestationd
Sink monitor
Sink sp
Sink scaridecisiond
Sink plan maker
Sink actionhandlerd
action 1

(c) Execution times.

Figure 6.18.: Measurements of the remote attestation scenario.

Situation Plan Actions
Failed Attestation Notify Higher Layer

• Send Notification

Failed Attestation Isolation
• Stop PLC
• Add OutputWebSocket
• Add Attestation Monitor
• Start PLC

Table 6.9.: Available plans and actions of the extended remote attestation scenario.

Figure 6.20a illustrates the messages sent over the single Scari loops. In round one the
Sink PLC notifies the higher layer through a plan. Whether it is necessary to do this
through a recommendation, is a design choice. In round two the higher layer recommends

116

6. Run Time

Source PLC A

ScariScari

Attestation
Service

Alternative Source PLC
B ScariScari

Attestation
Service

Sink PLC

ScariScari

Remote
Attestation
Challenger

Data Point

Supervisory Computer

ScariScari
Supervisory Computer

Scari

TPM

TPM

Integrity
Violation

Figure 6.19.: Remote attestation scenario with a higher layer.

to isolate Source PLC A. The higher layer sequentially sends actions to the lower layer
Scari instances. This leads to the same amount of messages on both Source PLCs because
each executes one action. The Sink PLC executes three actions.

Figure 6.20b shows the behavior of the git repositories. In round zero and one the
repository of the Source PLC A is slightly bigger than the repository of Source PLC B.
This is because Source PLC A obtains an object of type CommWebSocket. It changes in
round two because Source PLC B also receives an object of type CommWebSocket.

Figure 6.20c highlights the execution times of the first and second round. In the first
round, A attestationd resides on Source PLC A and the Sink PLC responds to the security
violation by sending a notification to the higher layer through Sink action 1. In the second
round, Super sp located on the Supervisory Computer recommends to isolate Source PLC
A. The whole adaption takes 3245,7 milliseconds including the network communication
between the Scari loops. The plan consists of the following actions: First the Sink PLC
is stopped with Sink action 1. Then the Source PLC A is stopped with A action. Next,
Source PLC B receives a new output websocket with B action. Finally, the Sink PLC
starts a new remote attestation monitor targeting Source PLC B with Sink action 2 and
the Sink PLC continues with Sink action 3.

This experiment shows that the hierarchical organization of Scari enables to deal with
situations that can only be resolved by an entity overlooking several PLCs. A drawback
is that the git repository of the supervisory computer grows because it incorporates the
information of the lower layers. In this case, a compressing or pruning algorithm for the
repository could remedy the situation.

117

An Approach for Adding Resilience to Industrial Control Systems

0 1 2
Round

0

10

20

30

40

50

60

of
 m

es
sa

ge
s

6 6 176 6 176 17 3221 21 58

A
B
Sink
Super

(a) Amount of messages.

0 1 2
Round

0

100

200

300

400

500

Si
ze

 [k
ib

ib
yt

e]

31
.2

31
.2

57
.3

18
.3

18
.3 24

.6

31 31 57
.3

17
.6

17
.6 25

.7

33 59 12
0

29 44

58

10
8

10
8

37
9

79 79

15
1

A .git
A files
B .git
B files
Sink .git
Sink files
Super .git
Super files

(b) Size of the git repository.

1 2
Round

100

101

102

103

Ex
ec

ut
io

n
Ti

m
e

[m
s]

0.
2

4.
4

2.
3 48

.1
0.

3
42

.5
1.

3

15
0.

6
18

2.
6

17
0.

3
1.

4
97

.3
19

1.
7

32
45

.7
16

9.
4

22
24

.2

A attestationd
Sink monitor
Sink sp
Sink scaridecisiond
Sink plan maker
Sink actionhandlerd
Sink action 1
Sink action 2
Sink action 3
Super sp
Super scaridecisiond
Super plan maker
Super actionhandlerd
A action
B action

(c) Execution times.

Figure 6.20.: Measurements of the extended remote attestation scenario.

6.6.4. Data Point Mismatch

In this scenario a data point mismatch between redundant PLCs happens. It shows how
Scari can deal with parallel adaptations on distinct PLCs. We are reusing the modeling
language shown above in Figure 6.16.

Figure 6.21 illustrates three Source PLCs and one Sink PLC. These PLCs are observed
by one Supervisory computer. Each of the three Source PLCs is generating the same data
point a, which are sent to the Sink PLC. Additionally, they send the data points to each
other in order to verify if their calculated data point is correct.

Table 6.10 enumerates the available plans and actions. Now what happens in this
scenario is that the Source PLC A recognices a mismatch from its own data point. At
about the same time the Sink PLC recognices that the data point from Source PLC A is

118

6. Run Time

Source PLC A

Hot Standby Source
PLC C

Sink PLC

ScariScariData Point a

Supervisory Computer

ScariScari
Supervisory Computer

Scari

ScariScari

ScariScari

Hot Standby Source
PLC B

ScariScari

Data
Mismatch

Data Point a-redundant

Data Point a-redundant-1

Figure 6.21.: Data mismatch happening on Source PLC A

Situation Plan Actions
Data Point Mismatch Safe Stop

• Stop PLC
• Send Notification

Data Point Replaced Add Model Object
• Add Replacement Object
• Send Notification

Table 6.10.: Available plans and actions of the data point mismatch scenario.

incorrect. These detection capabilities are realized within our PLC simulation software.
Source PLC A distributes a notification to its local Scari instance that a data mismatch
occurs. The syndrome processor recommends stopping the PLC and sending a notification
to the higher layer. The Sink PLC immediately reacts on its own by replacing the faulty
data point a with a redundant one. After this reaction, the Sink PLC sends a notification
to its local Scari instance. The corresponding syndrome processor recommends adding
the replacement to the world model, which also makes the replacement persistent over
reboots. The plan also involves to notify the higher layer. At this point in the scenario
we stop. The supervisory instance could now try to repair the Source PLC A through
software and inform engineers.

Figure 6.22a shows the messages residing on the Source PLC A, the Sink PLC, and the
Supervisory Computer. The two PLC Scari rounds take the same amount of messages.
Six messages appear at the Supervisory Computer. Two are the notifcations from the
PLCs. Another two are “World Changed” notifications from the lower layer. They lead
to two more local “World Changed” notifications because the higher layer world needs to
synchronize.

Figure 6.22b illustrates the behavior of the git repositories of all PLCs and the Super-

119

An Approach for Adding Resilience to Industrial Control Systems

0 1
Round

0

5

10

15

20

25

30

of

 m
es

sa
ge

s

6 196 1927 33

A
Sink
Super

(a) Amount of messages.

0 1
Round

0

50

100

150

200

250

300

350

Si
ze

 [k
ib

ib
yt

e]

31 65

24 40

31 31

24 24

32 32

24 24

31 65

20 38

14
0

20
5

10
9

13
5

A .git
A files
B .git
B files
C .git
C files
Sink .git
Sink files
Super .git
Super files

(b) Size of the git repository.

1
Round

0

50

100

150

200

250

Ex
ec

ut
io

n
Ti

m
e

[m
s]

4.
1

1.
9

38
.6

0.
3

35
.1

18
2.

4
0.

7

4.
3

2 37
.9

0.
3

49
.9

19
0.

6
0.

6 A plc
A sp
A scaridecisiond
A plan maker
A actionhandlerd
A action 1
A action 2
Sink plc
Sink sp
Sink scaridecisiond
Sink plan maker
Sink actionhandlerd
Sink action 1
Sink action 2

(c) Execution times of the separate Scari loops.

Figure 6.22.: Measurements of the data point mismatch scenario.

visory Computer. Each PLC and the Supervisory Computer obtains models based on the
modeling language shown in Figure 6.16 above. The Supervisory Computer is represented
by an object of type Network. The PLCs contain function plans that send and receive the
data points. The objects of type Me also contain settings for the syndrome processors and
PLC software.

Figure 6.22c contains the execution times of the Scari loops residing on the Source PLC
A and the Sink PLC. The left-hand bars describe the Scari loop of the Source PLC A.
A plc is the time of the PLC software that it takes for recognicing the mismatch until
the notification is sent. A action 1 refers to stopping the Source PLC A and updating
the model. A action 2 executes the notification of the higher layer. The right-hand bars
depict the Scari loop of the Sink PLC. Sink plc is the time of the PLC that it takes for
adding the replacement and sending the notification. Sink action 1 adds an object of type

120

6. Run Time

Replacement to the model. Sink action 2 notifies the higher layer.
This scenario shows that Scari is able to deal with a situation that needs to be handled

at several places at the same time. We moved the direct reaction of the Sink PLC directly
into the PLC software in order to deal with the situation immediately. This could also
be achieved through a Scari loop round but would need much longer. The advantage
compared to a centralized Scari instance handling all PLCs at the same time is, that a
layer of separate Scari instances can adapt faster. If a problem can only be handled by
one instance overlooking all PLCs, the individual Scari instances can escalate to a higher
layer. In our case, this would be the Supervisory Computer Scari instance.

6.7. Meeting Requirements

REQ1 open for arbitrary and existing detection mechanisms: Detection mechanisms
are called monitors in Scari. They do not need to use the knowledge base and do
not rely on other entities.

REQ2 minimal effort for adding detection mechanisms: A detection mechanism just
needs to be extended with the functionality to distribute an event notification for
being part of Scari. These notifications should include the current world version,
which is also distributed as notification by the knowledge base.

REQ3 parallel coexistance of distinct reasoning mechanisms: In Scari, an arbitrary
number of syndrome processors with their own technology concerning reasoning can
exist. This requirement is the main reason why we chose OODA as underlying con-
cept. OODA offers an orientation phase which is represented by syndrome processors
and a dedicate decide phase.

REQ4 notify distinct reasoning mechanisms at once: We support this one-to-many com-
munication style through the use of a message bus.

REQ5 recommend a plan for dealing with a situation: With the explicit message type
”Recommendation”, a syndrome processor proposes a plan type and necessary meta
data.

REQ6 choose one recommendation: The recommendation decision maker selects one
recommendation based on predefinable priorities.

REQ7 atomic operations: The action handler executes single actions in a serial manner.
Each action must fulfill only one purpose.

REQ8 combine atomic operations arbitrarily: A plan consists of arbitrary actions in or-
der to fulfill the adaptation.

121

An Approach for Adding Resilience to Industrial Control Systems

REQ9 adaptations must not interfere with each other: We ensure this requirement by
locking the knowledge base and the children. Thus, lower Scari instances are not
able to perform adaptations while a higher one is active.

REQ10 plans are reuseable: Syndrome processors can only recommend plans and plans
are reusable.

REQ11 applicability is checked during plan creation: This is ensured by the implemen-
tation of the individual plan creators.

REQ12 react to threats on its own: We realize this requirement by proposing a decen-
tralized and hierarchical system. Scari instances at the same layer or in distinct
hierarchies can react on their own.

REQ13 react at the same time: This is possible for Scari instances at the same hierar-
chical layer while a higher Scari instance is not locking its graph.

REQ14 escalate to higher layers with more capabilities: This requirement is ensured by
the hierarchical organization.

REQ15 lower layers should not be able to adapt higher layers: In Scari lower devices
can only send notifications to higher layers.

REQ16 knowledge base: We propose decentralized and hierarchical knowledge bases that
provide the architectural information as models.

REQ17 reflect the current state: Actions must adapt the knowledge base accordingly to
their adaptations. The knowledge base does not ensure on its own that it contains
the right information.

REQ18 a consistent knowledge base should be deployed on each device: Each device
maintains its own knowledge base.

REQ19 knowledge bases get synchronized between layers: If a knowledge base is
changed, it notifies the higher layer. The higher layer pulls the changed model data
from the lower layer.

REQ20 distinct kinds of models: We ensure this in our implementation by proposing a
modeling framework that allows to define specialized modeling languages for distinct
kinds of devices or layers.

REQ21 combine models arbitrarily: Through the use of a world modeling language that
is present in every knowledge base and a model object named Me, we can deploy
any models on a device. A Scari entity can ensure on its own that it is compatible.
Our proposed modeling framework allows to combine distinct modeling languages
arbitrarily.

122

6. Run Time

6.8. Discussion of Limitations
In this Section, we discuss limitations of Scari and reflect on important design decisions.
We address the following issues and limitations:

• Hierarchical control as an important design decision for Scari.

• Pros and cons of utilizing architectural models as reflection of the device and config-
uration.

• Limitations concerning syndrome processors.

• Dealing with failed adaptations and the possible preemption of them.

• Setting up the configuration of Scari.

• Waiting time of the recommendation decision maker.

• Possible real-time behavior of the Scari framework.

• Dealing with human intervention at run time.

• Security of Scari itself.

• Discussion of our decision to take git as underlying mechanism for the knowledge
base.

6.8.1. Hierarchical Control

We decided to engineer Scari in accordance with the idea that each device can react on
its own or escalate to a superiour entity. This increases the utility of our system as
control devices in our setting can be deployed in distinct combinations. Furthermore, we
decided that each Scari loop maintains its own knowledge base. An alternative to our
distributed knowledge bases would be a centralized knowledge base. One advantage of
our architecture is that there can happen multiple adaptations of distinct devices on lower
layers at the same time. Another advantage is that the adaptation time is potentially
lower because there is less communication overhead. The major drawback of our approach
is the synchronization needed for the knowledge bases. A higher layer cannot lock if it
does not operate on a fully synchronized knowledge base. We consider this to be necessary
to prevent wrong recommendations and incorrect creations of plans. With an engineering
effort, the knowledge bases could be centralized and the single Scari instances would
leverage cached information. This would eliminate the synchronization steps between each
layer but would require synchronizing caches. Also, the centralized knowledge base would
need to maintain different world versions for keeping the feature of multiple adaptations of

123

An Approach for Adding Resilience to Industrial Control Systems

distinct devices. Thus, it essentially would accelerate the synchronization between layers
but would still include a management overhead.

A complete opposite of our proposed hierarchical organization of adaptations loops
would be one centralized loop. In theory, this is possible with Scari. The single devices
could just host monitors and syndrome processors, while a central recommendation deci-
sion maker decides what to do. However, it would require quite an engineering effort of
enabling multiple adaptations at different locations at the same time. This is also the rea-
son why centralized self-adaptive systems found in the literature only allow one adaptation
at a time.

6.8.2. Utilizing Architectural Models

A model is always a model of something. In our case, the architectural models represent
hardware/software components, their interconnections and settings. A challenge these
aspects propose is keeping them in sync with the device itself. In the proposed version of
Scari, we only synchronize the models through adaptations. This can lead to short time
periods where the world model does not reflect the true state of the device. For instance,
in the experiment in Subsection 6.6.4 the PLC software of the Sink PLC itself resolves the
problem of a faulty data point. This makes sense because it is the fastest way of dealing
with the situation. We utilize a special syndrome processor that recommends updating
the world model. From the recommendation to the adaptation it takes 285,6 milliseconds
plus the waiting time of the recommendation decision maker. Within this time the world
model is practically not consistent with the device. We think this is acceptable because
of two reasons. The first reason is that no other adaptation can be carried out while
the model is updated. The recommendation of updating a model would need a higher
priority than others. The second reason is that Scari adaptations do not happen very
often. Scari targets to extend the availability of devices but does not directly control
hydropower turbines.

An alternative to utilizing an architectural model of the target device would be querying
the responsible software components themselves. For instance, when a syndrome processor
receives a notification from a monitor, it could ask the PLC software and other software
components what their states are. The problem is that one could not be sure whether
this reflects a consistent state. The architectural models are linked to a world version.
If a model changes, this is subsumed by the new world version, which invalidates older
architectural models.

6.8.3. Syndrome Processors

Syndrome processors are the entities that drive the Scari loop. They reason about events,
recommend adaptations and utilize the world model for configuring themselves. A syn-
drome processor does not necessarily need to rely on notifications sent from monitors.

124

6. Run Time

Essentially, the difference between a monitor and a syndrome processor is that a monitor
observes a change and notifies other entities about it while a syndrome processor reasons
about a situation and recommends an adaptation. If there is no need to separate the
observation and reasoning of a situation then a syndrome processor could fulfill both roles
in order to become faster.

A drawback is that syndrome processors need to track their recommendations. This is
because another recommendation could be selected, a plan cannot be created, the action
handler could be locked by the higher layer, or the recommendation refers to an outdated
world version. In all these cases, a syndrome processor may reevaluate a situation.

Another drawback is that syndrome processors can only cope with situations and rec-
ommend adaptations anticipated at design time. For instance, a security attack, which
has not been foreseen at design time cannot be recognized during run time. Also the
available plan types are fixed during run time.

6.8.4. Adaptations

Actions are supposed to be atomic and used by plans in a sequential order. It may
happen that an action fails to perform its adaptation. In that case, the action handler
daemon stops the execution of the plan, leaves the system locked and distributes a special
notification to the local unit and higher layer. With an engineering effort, this notification
could be received by a special entity that triggers an emergency mechanism.

Alternatively, a roll back mechanism could be implemented that executes actions in
reverse. However, this would just shift the problem as the corresponding roll back for an
action could also fail.

As mentioned above, we execute actions in a sequential order. This is also true for plans
as they cannot interfere each other. We do not consider it useful that a currently executed
plan can become preempted by another plan. It would be complicated for a plan creator
to create actions that preempt a running plan at the right point in time and do not cause
some inconsistencies.

6.8.5. Configuration of Scari

In our prototype implementation, Scari is configured by initializing the scariworldd daemon
with preconfigured models. At startup, if scariworldd does not find an object of type Me
in its repository, it incorporates the preconfigured models provided by a configuration file.
The monitors and syndrome processors are started by hand but obtain their configuration
from the corresponding world model. With an engineering effort, monitors and syndrome
processors could be started by a daemon observing the world model. We envision that
the world model is preconfigured with an object of type Me and a device specific model
during the production of control devices. The monitors and syndrome processors could
then be added during the initial commissioning of devices.

125

An Approach for Adding Resilience to Industrial Control Systems

6.8.6. Waiting Time

We omitted in our work guidelines of what is a good waiting time for the recommendation
decision maker. This is because it depends on the syndrome processors that are competing
around events. The syndrome processors in our experiments needed between 0.7 and 2.6
milliseconds for recommending a plan. This is because they are simple state machines that
react on events. They precalculate the suitable recommendations based on the current
world model. Potentially, such a syndrome processor could also be a costly algorithm that
dynamically needs to check the current world model and data processed in the past. In
our scenarios a small waiting time of several milliseconds would be enough.

A viable alternative to the waiting time of the recommendation decision maker could
be the possibility to cancel the creation of a plan if a recommendation with a higher
priority is received. In that case, if there is currently no plan created, the recommendation
decision maker would process the first recommendation received. The priority of each
subsequent recommendation would then be compared to the one currently processed. In
our experiments, we measured execution times from the selected recommendation to the
distributed selected plan ranging from 23,1 to 289 milliseconds. With an engineering effort,
a plan can be canceled until it is distributed. This mechanism could replace the waiting
time of the recommendation decision maker. The syndrome processor with the canceled
plan could recommend the same plan later if the target fault still exists.

6.8.7. Real-Time

Detecting threats and adapting a system in real-time was not a requirement of Scari. In
our opinion, several things would be needed for achieving a real-time behavior from the
recommendation to the adaptation. D-Bus would need to be replaced with a message
bus that offers hard real-time guarantees. In our experiments, we measured that a delay
between the sender and receiver of a message sent over D-Bus ranges from less than one
millisecond to five milliseconds. According to the D-Bus FAQ 7, a D-Bus one-to-one
communication is 2.5 times slower than simply pushing data raw over a UNIX socket.

A real-time operating system can help substantially towards a predictable communica-
tion timing. Possible plans would need to be precalculated by the plan maker for each
possible recommendation. With an engineering effort, the syndrome processors could reg-
ister their possible recommendations at the plan maker. Further, the timing of world
model changes, network latency and single actions need to be measured beforehand in
order to precalculate the total execution time of plans.

If all these changes are applied and the software is extensively measured, one could
guarantee distinct real-time deadlines for single recommendations with the corresponding
adaptations.

7https://dbus.freedesktop.org/doc/dbus-faq.html

126

6. Run Time

6.8.8. Human Intervention

It is crucial that engineers do not interfere with Scari while it is active. This could lead to
an unsynchronized world model or counteracting adaptations. With an engineering effort,
Scari could be paused while an architectural change is carried out. Such a mechanism
should also include an update of the world model. Having a special state for a system
during configuration is not uncommon. The commercial PLC we dealt with also has a
special state named “load” which enables to configurate tasks. Correspondingly, Scari
could be paused if the “regular” state of the PLC changes to “load”.

6.8.9. Security of Scari

In our prototype implementation we trust all notifications, recommendations, plans, and
actions sent over D-Bus and WebSockets. This is not secure. With an engineering effort,
this behavior could be changed. By default, D-Bus authenticates the user under which
an application is executed and not the application itself. A distinct user cannot connect
to the session bus of another user. This can be improved by utilizing SELinux to assure
that the correct applications access the message bus. As a downside, this does not prevent
malicious applications running in the same security context. Concerning WebSockets,
our implementation can be improved by utilizing Transport Layer Security (TLS) with
company specific certificates. The same is true for the synchronization of git repositories.

However, even if the layers of Scari and the surrounding mechanisms, are properly
secured and not maliciously modifiable, our approach would not be invulnerable against
security attacks. For instance, an attacker, with enough knowledge and access to parts
of a plant, could lead a Scari instance to believe that a fault occured and trigger the
recommendation of a plan type. It is the responsibility of the plan creators to ensure
that a plan does not damage the system. Under the assumption that plan creators are
implemented properly, an attacker could therefore only change the structure of a system
or trigger a fail-safe mechanism. In the worst case, this would stop the production of
electricity but would not cause damage to the physical process.

6.8.10. Git

We rely on the version control sytem git for tracking changes and synchronizing knowledge
bases between layers. This fits our requirements surprisingly well. In our experiments,
one can observe that git repositories can grow up to three times the size of the round
before. This is not as bad as it sounds because of two reasons. First, Scari only commits
changes to the git repository if something is adapted. This should rarely happen because
adaptations should not be carried out very often. Second, the software git provides a
garbage collection routine8, which packages objects and compresses them. By default,

8https://git-scm.com/docs/git-gc

127

An Approach for Adding Resilience to Industrial Control Systems

changed model files are stored by git in new objects and we implement the same behavior
with libgit2. By applying this routine on the repositories of the experiments, we could
achieve up to four times smaller repository sizes.

What our combination of storing serialized JSON files on the filesystem and managing
a git repository does not provide is some kind of query language such as SQL. In our
experiments, we did not miss this feature because syndrome processors, plan creators and
actions are directly operating on the models and know their specific structure. Where a
query language could be useful, is on a higher layer which oversees several Scari instances.
A plan creator could then use a simple query for finding viable data points. In our
implementation, such a plan creator has to retrieve every child of type Me, check whether
it points to a viable device and revise the provided data points. This would be easier to
implement with a database.

6.9. Design Patterns
In distributed systems, we encountered three design patterns that try to grasp the trade-off
between distributing data and information. Table 6.11 gives an overview of these patterns
together with their known uses. A detailed explanation extended with a self-driving vehicle
scenario in order to demonstrate the patterns can be found in Paper D [113].

Additionally, Table 6.11 lists the pattern SEPARATION OF PROCESSING AND CO-
ORDINATION, which is presented in Paper H [114]. It provides an architectural solution
which shows how processing subsystems can be observed and adjusted by coordination
subsystems. For instance in an industrial control system, a controller (processing) needs
to control a physical process (resource) while also being observable and adjustable by a
supervisory computer (coordination). The primary purpose of such a controller is to con-
trol the physical process within a defined time span. Additionally, the controller needs to
distribute data to other devices or receive adjustments from higher ranking supervisory
computers. All of these coordination tasks need to be done while supporting the physical
process in real time. The supervisory computer may not be bound to specific real time
requirements. This situation roughly describes the problem the presented pattern solves
with a solution consisting of three parts.

128

6. Run Time

Pattern Description Known Uses
LOCAL
DATA
PROCESSING

Entities, part of a distributed system, need to
provide services. For doing that, they have to
exchange states about the environment or them-
selves. The presented solution is that each entity
is responsible for analyzing its sensed raw data
to create higher level information. The entities
exchange higher level information instead of raw
data streams.

• SCADA systems.
• Vehicle-to-X technologies.
• Wireless sensor networks.

CENTRAL
DATA
PROCESSING

A service provided by an entity needs raw data
sensed by other entities. Collecting higher level
information from others would hide patterns and
dependencies which would lead to a worse ser-
vice. The solution is to gather raw data at one
central entity responsible for the intended ser-
vice and utilize powerful analysis methods (e.g.
machine learning) for calculating appropriate ac-
tions. Other entities in the network are only re-
sponsible for sensing the environment, transmit-
ting raw data to the accumulating entity and ex-
ecuting actions send from that entity.

• Internet of Things together with
Cloud Computing.

• The pattern AGGREGATING
DEVICE GATEWAY in the do-
main of Internet of Things.

• Master Terminal Units found in
SCADA systems.

• The pattern LOG AGGREGA-
TION in the domain of cloud
computing.

MIXED
DATA
PROCESSING

An entity needs to provide a service even if net-
work connections fail. The intended service can
be improved if raw data and information from
other entities is available. The solution is that
the entity realizes an analyzing mechanism in or-
der to provide the service in a degraded form with
the stored or currently sensed data and refined
information. If a network is available, the entity
may collect information or raw data from others.
Another possibility would be that the entity con-
nects to an other realizing the CENTRAL DATA
PROCESSING pattern as soon as a network is
available.

• Navigation applications
• The pattern LOCAL PRO-

CESSING GATEWAY in the
domain of Internet of Things.

• Edge-centric computing

SEPARATION
OF
PROCESSING
AND
COORDINATION

Systems are built for a purpose. The purpose
transacted is usually handled by the processing
part of a system and is observed and adjusted by
coordination parts. In principle, these two kinds
of system parts share the same target resource;
the thing that is controlled by processing and in-
directly by coordination subsystems. This leads
to mutual influences, which can result in timing
and priorities violations as well as performance
degradations. This pattern provides an architec-
tural solution which shows how processing sub-
systems can be observed and adjusted by coordi-
nation subsystems.

• Linux Xenomai
• Self-Adaptive Software Systems

(Scari)
• Bolt processor interconnect

Table 6.11.: Three design patterns grasping the trade-off between distributing data and
information. The fourth design patterns is about separating processing and
coordination in computer systems.

129

7. Conclusion and Future Work

As outlined in the introduction, our work confirms the following hypothesis: System knowl-
edge enables automated resilience in industrial control systems. We verify this hypothesis
by exploring the possibilities of utilizing system knowledge at design and especially at run
time for adding resilience.

Concerning design time we contribute modeling languages for describing the system
knowledge (C1). Particularly, we propose metamodeling fragments for describing con-
tracts and state machines in order to capture non-functional behavior of components.
Supporting this, we propose a configurable constraint language, which can be leveraged
by contract type specifications. The contract types limit the design space of a contract
and therefore ease the transformation to verification tools. We show that our modeling
languages can be utilized for verification, search of combinations and as input for run time.
Based on our design-time work we derived design patterns for designing configurability
into domain-specific modeling languages (C4).

We believe that contract-based design can play a key role in future systems for captur-
ing non-functional properties. We envision that the construction of contracts should be
done automatically during development. We think that manually capturing non-functional
contracts, such as the timing of a software component on a certain operating system and
processor, is too tedious for an engineer. In order to realize automatic mechanisms, simu-
lation environments would be needed where an engineer deploys, for instance, a software
component, and the system measures the behavior. However, certain non-functional con-
tracts, such as contracts expecting hardware/software components to be signed with spe-
cific certificates, would probably still be manually configured. The contract state machine
that we propose can play an important role in the composition of systems out of contracts.
If at run time a certain state in a system changes the contract state machine can enable
new contracts and invalidate or override old contracts.

Regarding the presented metamodel fragments for contracts, we do not present com-
position, refinement, and conjunction of contracts as described theoretical by Benveniste
et al. [23]. This may be a worthwile gap for future directions of the modeling language.
Furthermore, the presented metamodel could be ported to UML as a thin generic UML
profile. This profile could be aligned with the existing OMG specifications MARTE [58]
and SysML [55]. As mentioned by Selić and Gérard [115], a natural complementarity ex-
ists between MARTE and SysML. We have the view that a UML profile for contract-based
design would benefit from concepts such as the physical types of MARTE or the constraint
blocks of SysML. Not using such existing and standardized modeling concepts would be

131

An Approach for Adding Resilience to Industrial Control Systems

similar to reinventing the wheel. The advantages of such a UML profile for contracts could
be manifold. The most important one is the fact that it would allow the rise of specialized
analyzing tools of different vendors which target single non-functional properties. The
input of such tools would depend, in such an ideal ecosystem, on the same UML profile
for contract-based design.

Concerning run time, we identified the potential of a self-adaptive software system for
tackling hardware faults, security attacks, software bugs, misconfiguration, and faults in
the physical environment, in our industrial setting (C2). To the best of our knowledge,
we are the first ones identifying the potential of such a system in order to defend the
hardware/software stack of industrial control systems. Based on this identified potential,
we contribute a self-adaptive software system (Scari) that combines MAPE-K with the
OODA loop (C3). We organize instances of this loop decentralized and hierarchical with
own knowledge bases. This architecture allows us to execute adaptations on distinct de-
vices in parallel. Based on these concepts we implemented a prototype implementation.
We conducted realistic experiments in four scenarios. In order to evaluate our approach,
we compared it to our requirements and in detail to state-of-the-art self-adaptive software
systems. We discussed the issues and limitations of our approach and the technical im-
plementation. This discussion can provide helpful hints and wisdom for other researchers.
Based on our work at run time, we identified three design patterns grasping the trade-off
between distributing data and information at run time. Furthermore, we found a design
pattern for separating processing and coordination in computer systems (C4).

Scari is an ambitious attempt of taming harmful events in future industrial control
systems. It is by no means a silver bullet and can only be part of a holistic approach that
includes a plethora of development processes, verification methods, configuration methods,
simulation environments etc.

The next step of the technical implementation of Scari would be to make it real-time
capable for guaranteeing adaptation times. This would make it applicable for safety use
cases. Furthermore, timing information could also be incorporated in the decision steps of
the Scari loop. From the security perspective, the access to the self-adaptive system itself
needs to be restricted.

A fundamental issue of self-adaptive software systems is that their monitors can be
tricked by attackers that control the environment. At least, the planning part of Scari
ensures that an adaptation is possible and tries to prevent harm.

With our testbed, we went into the direction of simulating “good” Scari configurations.
Here, on could extend this testbed for simulating hydropower settings more realistic. From
a scientific point of view, one could built a generic testbed, out of the proposed one, for
comparing future decentralized self-adaptive software systems.

Regarding the configuration and development of monitors, syndrome processors and
plans, it would be worthwhile goal to derive them from analysis methods such as Hazard
Analysis and Risk Assessment (HARA), Failure Mode and Effects Analysis (FMEA), and
STRIDE (Security).

132

7. Conclusion and Future Work

Concerning the hierarchical structure of Scari, different structures could be explored.
For instance, the decide, act, and knowledge parts of the loop could be centralized on
higher layers.

Scari targets the properties self-configuring, self-healing and self-protecting. The prop-
erty self-optimization is out of scope of this thesis and it would involve an understanding
of the control logic. In our opinion, a centralized approach would be better suited for
targeting self-optimization because it needs the complete knowledge about a hydropower
unit.

The potential of self-adaptive systems raised in this thesis is a worthwhile goal to achieve.
The presented self-adaptive software system named Scari could serve as reference architec-
ture and starting point for future resilient system. We are confident that other domains,
such as IoT and edge computing, can learn from this approach and that many aspects are
reusable.

The proposed combination of design time modeling and a self-adaptive system at run
time morphs the implicit system knowledge about an industrial control system into ex-
plicit “living” domain-specific knowledge contained in a structured, machine-processable
way. This may enable new possibilities for designing reliable and secure industrial control
systems in the future.

133

8. Publications

Paper
A

Paper
B

Paper
C

Paper
D

Paper
E

Paper
F

Paper
G

Paper
H

Paper
I

Contribution

Modeling languages for specifying the system configuration and
non-functional properties.

Contribution

A decentralized hierarchical self-adaptive software system for
integrating detection, reasoning and adaptation mechanisms.

Contribution

Identification of the potential of self-adaptive software systems
in industrial control systems.

Contribution

Design patterns.

Figure 8.1.: Overview of contributions and related papers.

This thesis has been presented in parts in peer-reviewed workshop papers, conference
papers and a book chapter (ordered by publication date). Figure 8.1 shows how the papers
are related to our four contributions. In Paper A we propose pragmatic modeling concepts
that are supposed to pave the way for integrating contract-based design into component
models of systems. Paper B contains four design patterns for designing configurability
into domain-specific language elements. Paper C proposes our approach of describing
and verifying an industrial system at design time and utilizing this information at run
time for our self-adaptive software system Scari. Paper D discusses three design patterns
that try to grasp the trade-off between distributing data and information in distributed
systems. Paper E shows in detail the potential of a self-adaptive system in our industrial
setting. Paper F provides an overview of Scari and discusses design considerations and
future research challenges. Paper G applies Scari in order to detect and repair permanent
memory faults. Paper H presents a pattern for separating processing and coordination
in computer systems.

A. J Iber, A Höller, T Rauter, and C Kreiner. “Towards a Generic Modeling Language
for Contract-Based Design.” In: Proceedings of the 2nd International Workshop on
Model-Driven Engineering for Component-Based Software Systems co-located with

135

An Approach for Adding Resilience to Industrial Control Systems

ACM/IEEE 18th International Conference on Model Driven Engineering Languages
& Systems (MoDELS 2015). ModComp@MoDELS ’15. CEUR-WS.org, 2015

B. J Iber, A Höller, T Rauter, and C Kreiner. “Patterns for Designing Configurability
into Domain-Specific Language Elements.” In: Proceedings of the 21st European
Conference on Pattern Languages of Programs. EuroPlop ’16. ACM, 2016. isbn:
978-1-4503-4074-8. doi: 10.1145/3011784.3011785

C. J Iber, T Rauter, M Krisper, and C Kreiner. “An Integrated Approach for Resilience
in Industrial Control Systems.” In: Proceedings of the 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops. DSN-
W ’17. IEEE, 2017. doi: 10.1109/DSN-W.2017.23

D. J Iber, T Rauter, M Krisper, and C Kreiner. “Patterns Grasping the Trade-off
Between Distributing Data and Information.” In: Proceedings of the 22nd European
Conference on Pattern Languages of Programs. EuroPLoP ’17. ACM, 2017. isbn:
978-1-4503-4848-5. doi: 10.1145/3147704.3147724

E. J Iber, T Rauter, M Krisper, and C Kreiner. “The Potential of Self-Adaptive Soft-
ware Systems in Industrial Control Systems.” In: Proceedings of the 24th European
Conference on Software Process Improvement. EuroAsiaSPI ’17. Springer Interna-
tional Publishing, 2017. isbn: 978-3-319-64218-5

F. J Iber, T Rauter, and C Kreiner. “A Self-Adaptive Software System for Increasing
the Reliability and Security of Cyber-Physical Systems.” In: Solutions for Cyber-
Physical Systems Ubiquity. IGI Global, 2018. doi: 10.4018/978-1-5225-2845-
6.ch009

G. J Iber, M Krisper, J Dobaj, and C Kreiner. “Dynamic Adaption to Permanent Mem-
ory Faults in Industrial Control Systems.” In: Proceedings of the 9th International
Conference on Ambient Systems, Networks and Technologies. ANT ’18. Elsevier,
2018. doi: 10.1016/j.procs.2018.04.058

H. J Iber, M Krisper, J Dobaj, and C Kreiner. “Separation of processing and coor-
dination in computer systems.” In: Proceedings of the 23rd European Conference
on Pattern Languages of Programs. EuroPLoP ’18. ACM, 2018. isbn: 978-1-4503-
6387-7/18/07. doi: 10.1145/3282308.3282322

Additionally, this thesis is supplemented by the following peer-reviewed poster paper
which was anticipating Scari:

I. A Höller, J Iber, T Rauter, and C Kreiner. “Poster: Towards a Secure, Resilient,
and Distributed Infrastructure for Hydropower Plant Unit Control.” In: Proceedings
of the 2016 International Conference on Embedded Wireless Systems and Networks.
EWSN ’16. Graz, Austria: Junction Publishing, 2016. isbn: 978-0-9949886-0-7

136

8. Publications

Peer-reviewed papers authored by the author of this thesis and presented at international
conferences that are not included in this thesis (only principal authorship papers):

1. J Iber, N Kajtazović, A Höller, T Rauter, and C Kreiner. “Ubtl - UML Testing Pro-
file based Testing Language.” In: Proceedings of the 3rd International Conference on
Model-Driven Engineering and Software Development. Modelsward ’15. SciTePress,
2015. isbn: 978-989-758-083-3. doi: 10.5220/0005241300990110

2. J Iber, N Kajtazović, G Macher, A Höller, T Rauter, and C Kreiner. “A Textual
Domain-Specific Language Based on the UML Testing Profile.” In: Communications
in Computer and Information Science. Vol. 580. Springer International Publishing,
2015. isbn: 9783319278681. doi: 10.1007/978-3-319-27869-8_9

137

An Approach for Adding Resilience to Industrial Control Systems

In reference to IEEE copyrighted material, which is used with permission in this thesis,
the IEEE does not endorse any of Graz University of Technology’s products or services.
Internal or personal use of this material is permitted. If interested in reprinting/repub-
lishing IEEE copyrighted material for advertising or promotional purposes or for cre-
ating new collective works for resale or redistribution, please go to http://www.ieee.
org/publications_standards/publications/rights/rights_link.html to learn how
to obtain a License from RightsLink.

138

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

8. Publications

Towards a Generic Modeling Language for
Contract-Based Design

Johannes Iber, Andrea Höller, Tobias Rauter, and Christian Kreiner
Institute for Technical Informatics

Graz University of Technology
Inffeldgasse 16, Graz, Austria

{johannes.iber, andrea.hoeller, tobias.rauter, christian.kreiner}@tugraz.at

Abstract—Component-based and model-driven engineering are
key paradigms for handling the ever-increasing complexity of
technical systems. Surprisingly few component models consider
extra-functional properties as first class entities.

Contract-based design is a promising paradigm, which has
the potential to fill this shortage of methods for dealing with
extra-functional properties. By defining the concept of using
assumptions in order to determine the environment, and by using
the concept of guarantees to state what a component provides to
the environment, it enables the analyzability of components and
compositions in advance and during system execution.

With this work, we aim to create the base for a pragmatic
model-driven method that provides reusable modeling concepts
for contracts targeting arbitrary extra-functional properties.
Furthermore, we expand the current state-of-the-art of contract-
based design by introducing the concept of a finite state machine,
where single states consist of several valid contracts. It is also
assumed that these modeling language features will ease the
use of contract-based design. Additionally, we demonstrate the
applicability of the presented modeling concepts on an exemplary
use case from the automotive domain.

Index Terms—Metamodeling, contract-based design, extra-
functional properties, component models

I. INTRODUCTION

Numerous industrial sectors are currently confronted with
massive difficulties originating from managing the increasing
complexity of systems. The automotive industry, for instance,
has an annual increase rate of software-implemented functions
of about 30% [1]. This rate is even higher for avionics
systems [2]. Additionally, this development of systems is not
restricted to software, as we are facing a so-called Internet of
Things, where the number of physical devices is expected to
expansively explode [3]. New challenges regarding complexity
of systems emerge caused by this dramatic increase of diverse
hardware/software, possible interactions and distributed intel-
ligences [4].

Component-based engineering is today a widely recognized
and well-established paradigm for tackling complexity of
systems [5]. Together with model-driven engineering, it forms
a potentially powerful union to construct, analyze, and deploy
systems.

But still, modern component models are flawed. As shown
by Crnković et al. [5], astonishingly few (software) compo-
nent models are addressing extra-functional properties (e.g.
timing, safety, memory consumption, etc.) as first class enti-
ties. However, these properties are essential for composing a

component-based system predictable and safe. Management
of extra-functional properties is thus still one of the core
challenges faced by component-based design [6].

Contract-based design is a promising paradigm for filling or
narrowing this gap, [7]. It captures the behavior of a specific
functional or extra-functional property in relationship with
the environment of a component. Despite the existence of a
mathematical groundwork [7] [8] and exemplary applications,
a standard and generic metamodel for contract-based design
does not yet exist.

With this work, we provide pragmatic modeling concepts
that pave the way for integrating contract-based design into
component models of systems. We present a metamodel
fragment for contracts which target arbitrary single extra-
functional properties. Furthermore, we introduce the concept
of a finite state machine, where single states constitute valid
contracts. This concept extends the current state-of-the-art
regarding contract-based design. We show the applicability
of these modeling concepts by using an example from the
automotive domain. The target component of the use case
is a simplified electronic steering column lock, which we
examine with respect to the extra-functional properties safety
and timing.

The remainder of this paper is structured as follows: the
next Section provides a brief overview of the background
to this work. In Section III the proposed modeling concepts
are introduced. Subsequently, a use case demonstrating the
applicability of these concepts is described in Section IV.
Finally, concluding remarks and future research opportunities
are given in Section V.

II. BACKGROUND AND RELATED WORK

Here, we give an overview of system abstractions and
properties. After this, we briefly explain contract-based design.
Finally, we summarize the related work concerning contract-
based design, which is also the motivation setting for this
work.

A. System Abstractions and Properties

According to Jantsch [9], there are four main different
abstraction models or views concerning embedded system
engineering. First is the computational model, which describes
the observable behavior of a system or of its single parts

c©2015 Authors. Reprinted, with permission. The definitive version was published in Proceedings of the 2nd International Workshop
on Model-Driven Engineering for Component-Based Software Systems (Modcomp), September 2015.

139

Paper 1 - ModComp 2015

(hardware, software components), i.e. the relationship between
inputs and outputs [10]. Second, a data model exists that
provides notations for information (e.g. integer, boolean).
Third, a time model is needed to constitute the causality
of events. Fourth, a communication model is established to
specify how components interact. This model forms the top-
level system behavior.

In the context of the properties of systems the literature
distinguishes between functional and extra-functional (also
known as non-functional) properties. Functional properties
describe the function of a system or component, i.e. behav-
ior, input or output data types. Extra-functional properties
provide additional information and give a better insight into
the behavior and capability of a system or component [6].
A wide range of such properties exists, e.g. safety, security,
portability, performance. Since these issue from humans, there
is no method to determine a priori which extra-functional
properties exist in a system [6] [11].

B. Contract-based Design

Contract-based design usually sees a component as an
abstraction, a hierarchical entity that represents a single unit
of design [8] [12]. Therefore in the context of contract-based
design a component can represent, for instance a module, a
composition, a complex system or even a physical device.

The essence of this paradigm is to decompose a component
into different independent views referred to as contracts, which
capture the behavior of a target functional or extra-functional
property under certain conditions [12] [13]. This approach
significantly reduces the complexity of design and verification,
because the single properties become manageable.

Informally, a contract is a set of assumptions and guarantees.
An assumption asserts what a contract expects from the

component environment (this can include interactions with
other components). Additionally, an assumption provides a
certain context for the guarantees. The condition contained
in an assumption can reference for instance input data, events
or system properties. In general, the available variables are set
or inferred by the analysis environment.

A guarantee describes what a component provides to the
environment if the corresponding assumptions become valid.
In the simplest case a guarantee states that a component just
works under the constrained context. More complex contracts
define limits for instance for output data, environment charac-
teristics or extra-functional properties such as timing.

Historically, contract-based design is influenced by Meyer’s
design-by-contract principle [14] for object-oriented software
[7]. The main difference is that contract-based design goes
much further and provides means to integrate components in
the design hierarchy [10]. This is achieved through capturing
the context by assumptions (which may include platforms,
other components, etc.), under which a component behaves
as specified by the guarantees. Furthermore, a system can be
viewed by selecting only appropriate contracts of interest.

Fig.1 illustrates that contract-based design not only allows
the analyzing of components on a horizontal design level (e.g.

Component

Design level n-1

Design level n

Design level n+1

Assumed

from neighbours

Guaranteed

From/by higher design levels

From/by lower design levels

Fig. 1. Contract assumptions and guarantees for a component (Adapted from
[15])

interaction between software modules, hardware devices, etc.).
It also enables analyzing to take place on a vertical level
between different kinds of abstraction [7].

A solid mathematical groundwork already exists for this as
provided by several authors, including Benveniste et al. [7],
and Sangiovanni-Vincentelli et al. [8].

Promising applications of contract-based design have been
shown for several domains. For instance, this paradigm has
been demonstrated for smart integrated energy management
systems [16], aircraft electric power systems [12], mixed-
signal integrated circuits [17], and automotive [18] [7]. Despite
these examples, contract-based design is still at its infancy
[19].

Little work has been done towards establishing a generic
standard metamodel for contract-based design. Warg et al. [20]
presents a prototype modeling tool for contracts, but their work
solely focuses on safety integrity levels.

C. Summary of Contract-Based Design

There exist a few approaches for realizing contract-based
design, for instance the contract-based model developed in the
framework of the SPEEDS project [13]. The problem is that
state-of-the-art approaches either tackle single extra-functional
properties, or take a relatively theoretical approach without
concrete modeling examples or tool implementations. A sur-
vey concerning the certification of safety-relevant systems,
carried out by the SafeCer consortium [21], shows that only
a few companies are actually using contracts for components.
And where this is the case they are relying on Meyer’s design-
by-contract principle on a programming language level.

III. PROPOSED MODELING LANGUAGE CONCEPTS

In this section, we explain concepts which are necessary
for a pragmatic modeling language that targets contract-based
design.

A. Target System Abstractions and Properties

With the following concepts, we aim at enriching the
computational, time, and communication models of a system.
Furthermore, the data model plays an important role, as it
provides data types and notations, which could be used by
contracts.

140

8. Publications

In the context of properties, our intention is to capture extra-
functional properties and not necessarily functional behavior.
We take the view that functional behavior is better described
by other well-established methods than by the use of many
different contracts.

The issue of what extra-functional properties we are aiming
at, is dependents on the specific use case or context under
which the following language features are used. These con-
cepts may be applied for a wide range of different extra-
functional properties (e.g. security, safety, timing, expected
hardware/platform, memory consumption, many-core environ-
ment, etc.). But certainly not for all of them, since no silver
bullet exists for dealing with every extra-functional property
[11].

B. Pragmatic Modeling Langugage Features

In the following, we present a modeling concept for con-
tracts. Additionally, we introduce the concept of a finite state
machine for contracts.

1) Contract: Fig.2 illustrates our proposed metamodel for
contracts. We separate a contract into two parts. A Contract
Declaration represents a type for Contract Definitions. It
states the available parameters, assumptions and guarantees.
Furthermore, it represents the target extra-functional property.
A Contract Definition captures the unique behavior concerning
the target extra-functional property of a component in relation-
ship to its environment.

Parameters can represent properties of the execution envi-
ronment, data ports or events. They can be used by Constraint
Definitions in order to set the specific assumption or guarantee.
Parameter Declarations are used to specify that a variable of
a specific data type may exist, but the concrete value has to be
defined by the realizing Contract Definition. This can be useful
for data arrays where the data points contained are individual
for each component.

In the context of assumptions and guarantees, it is possible
for a Constraint Declaration to set expected data types. The
associated Constraint Definition must provide an expression
where the resulting data type equals one of the expected types.

As we can see in Fig.2, we use the placeholders Variable
for parameters, DataType for data types, and Expression for
constraint expressions. These elements should be provided by
a suitable constraint language or referable by the language that
is used for the Constraint Definition expressions.

2) Finite State Machine for Contracts: Single contracts are
sometimes not adequate for representing extra-functional prop-
erties. As we explain with our presentation in the following
Section IV, cases exist where the behavior of a component -
including extra-functional properties - changes over time or
as a result of specific events. We thus expand the theory of
contract-based design and capture such differences concerning
contracts by applying the concept of a finite state machine.
The idea is to have a finite state machine, where the single
states may contain several currently valid contracts. The state
machine itself operates on parameters provided by the envi-
ronment or the internal states of a component.

Fig.3 illustrates our proposed metamodel for such a state
machine. We again use the concept of declaration and defini-
tion in order to separate the specification and actual instance
of a so-called contract state machine.

A Contract State Machine Declaration constitutes allowed
Contract Declarations, concrete parameters and declarations
of parameters which need to be defined by corresponding
Contract State Machine Definitions.

Parameters are supposed to be used by Contract State
Machine Events within constraint expressions, which trigger
transitions to other Contract State Machine States. Such a state
contains zero to infinite Contract Definitions.

Again, the metamodel elements Variable, DataType and
Expression, refer to an arbitrary constraint language.

The actual semantics of a contract state machine depends
on the target extra-functional properties and is determined by
convention. It may be that entering a state implies that only
those Contract Definitions it contains are valid. An alternative
convention would be, that all visited Contract Definitions are
valid except that a current Contract Definition overrides a
former visited one by using the same Contract Declaration.

IV. USE CASE

In this Section we show the application of our modeling
concepts as presented on an exemplary use case from the
automotive domain. First we give an overview of the target
component and system. After that, we apply contracts together
with a contract state machine. Finally, we discuss the use case
presented.

A. Example - Electronic Steering Column Lock

Fig.4 illustrates a simplified electronic steering column lock
(ESCL). Such locks are mandatory for cars in many countries.
The Electronic Control Unit (ECU) decides whether to lock
the steering column based on the input signals Key State and
Velocity. These signals may be transmitted by a CAN bus or
separate connections. If the ECU decides to lock the steering
column, an actuator is activated which inserts the bolt into the
steering column. Otherwise, the ECU decides to hold or eject
the bolt.

There are several extra-functional properties which are
worth considering in a system of this kind. In the following, we
apply the modeling concepts presented for the extra-functional
properties safety and timing. In the safety context we capture
the data on whether the component ESCL is performing
normally, is in a failure state, or recovering from a failure
state. A failure state can be induced for instance by faulty
transmitted data or other misbehaving components. Further to
this we capture the data on how long it takes to execute the
lock or unlock mechanism in two separate contract definitions.

B. Declarations

According to our metamodel concepts, the first step is to
specify general declarations for components. Such declara-
tions are known to contract checkers, interpreters or model
transformers in advance. Fig.5 illustrates declarations for a

141

Paper 1 - ModComp 2015

Fig. 2. Proposed Metamodel for Contract Declarations and Definitions

Fig. 3. Proposed Metamodel for Contract State Machine Declarations and Definitions

Component
Electronic Steering Column Lock

Actuator ECU

Key State

Velocity

Steering
Wheel

Fig. 4. Example Component - Electronic Steering Column Lock

component’s safety status and timing. Additionally, we specify
a contract state machine declaration that is used to capture the
behavior of a component in order to set valid contracts.

The contract declaration Component Safety Status assumes
whether the component of interest is enabled and guarantees

Contract Declaration "Component
Safety Status"

Assumption Enabled : Boolean

Guarantee State : SafetyStateEnum

Contract State Machine Declaration
"Component Contract Behavior"

Uses contract declaration "Component Safety
Status“
Uses contract declaration "Component Timing“

Parameter declaration key_state : Boolean
Parameter declaration velocity : Float
Parameter component_restart : Boolean = false
...

Contract Declaration "Component
Timing"

Parameter key_state : Boolean = false
Parameter velocity : Float = 0.0
...

Assumption Environment : Boolean

Guarantee Execution Time : Time

Fig. 5. Use Case Declarations for the target extra-functional properties

a certain safety state to the environment. The available types
for this guarantee are restricted by the data type SafetySta-
teEnum, which contains the literals NORMAL, FAILURE, and
RECOVER (not shown in Figure 5).

The contract declaration Component Timing is used to

142

8. Publications

guarantee a specific execution time for certain assumed envi-
ronments. The parameters key state and velocity are provided
by the analysis environment. The boolean parameter key state
indicates whether the ignition system is activated (boolean
value true), while the parameter velocity states the current
speed of the car. A comprehensive contract declaration would
provide several other parameters, which may be obtained
for instance by a CAN bus or observed from the condition
of a system. The issue of which of these parameters are
actually used by the assumption Environment depends on the
component. When this assumption results in a boolean true,
the guarantee Execution Time becomes valid.

Furthermore, contract definitions of these declarations can
be used by the single states of the contract state machine
Component Contract Behavior. Here again the parameters con-
tained are obtained by the analysis environment or transmitted
by the available connections. For instance, the parameter
component restart must be set by the analysis environment
or by the described component. These parameters are used
by a contract state machine definition in order to specify the
events for state transitions.

C. Definitions

We now present how the declarations from above are used.

Contract "ESCL Normal" :
"Component Safety Status"

Assumption Enabled = true

Guarantee State = NORMAL

Contract "ESCL Safe State" :
"Component Safety Status"

Assumption Enabled = true

Guarantee State = FAILURE

Contract "ESCL Recover" :
"Component Safety Status"

Assumption Enabled = true

Guarantee State = RECOVER

Contract State Machine "Component ESCL Contract Behavior" : "Component Contract Behavior"
Parameter key_state = false
Parameter velocity = 0.0

Event: not key_state && velocity > 0.0

Event: component_restart

Event: not key_state && velocity > 0.0

Event: (key_state && velocity >= 0.0) ||
(not key_state && velocity == 0.0)

Normal

Contract "ESCL Normal"
Contract "ESCL Lock"
Contract "ESCL Unlock"

Failure

Contract "ESCL Safe State"

Repair

Contract "ESCL Recover"

Contract "ESCL Lock" : "Component Timing"

Assumption Environment = not key_state && velocity == 0.0

Guarantee Execution Time = 100 ms

Contract "ESCL Unlock" : "Component
Timing"

Assumption Environment = key_state

Guarantee Execution Time = 80 ms

Fig. 6. Contract State Machine and Contract Definitions of the ESCL Example

Fig.6 illustrates a contract state machine definition which
sets the valid contract definitions according to the current state.
The parameters are realizations of the parameter declarations
declared by the contract state machine declaration Component
Contract Behavior and are initialized to default values.

The initial state of this example is state Normal. Within this
state, we can guarantee the execution time in respect to the
locking and releasing mechanism. Furthermore, the contract
ESCL Normal determines the safety state NORMAL to the
environment. Whenever an abnormal event occurs such as
there is no key but the car is moving, the contract state machine
changes to the state Failure. In this state we cannot constitute
the execution time of the ECSL and the contract ESCL Safe
State becomes valid. After the component ESCL restarts, the
state machine changes to the state Repair, which is reflected
by the contract ESCL Recover. When the recover procedure
was successful, the state machine changes to the state Normal,
where the contained contracts become valid again, otherwise
the state machine switches back to state Failure.

D. Discussion of the Use Case

We have shown how our contract modeling features can be
used as presented on a simplified use case. It is imaginable
that this example can be further advanced to capture the target
and other extra-functional properties in more detail.

Note that we do not capture the actual functional behavior
of the component ESCL. We rather use the functional behavior
of the environment in order to determine how the target extra-
functional properties timing and safety status of the component
are changing and what guarantees are valid in that state. The
semantics of the contract state machine we present is such
that a new state invalidates the former visited contracts. The
assumptions and guarantees of the Contract Definitions must
be either automatically gathered by a measurement software
or issued by humans.

Such a contract state machine can be used for two purposes.
One purpose is that a system becomes analyzable in ad-

vance, also with respect to composability. A model checker
could simulate such a system and calculate the different
expected safety states. Another model checker would be able
to estimate the overall timing of a system.

The second purpose would be that a detection mechanism
observes and constitutes the single states during runtime of a
system and takes appropriate action based on predetermined
contracts.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented concepts for modeling contracts
and showed in a use case how these concepts can be applied.

The vision is to have a generic modeling language for
specifying contract types and contract instances. By using the
term generic we mean contracts that are suitable for at least a
substantial number of extra-functional properties.

We introduced the concept of splitting a contract into a
declaration and a definition. For analysis purposes a specific
contract declaration would be known by a model checker or
code generator beforehand. It declares the available parame-
ters, assumptions and guarantees, while a contract definition
uses such a declaration to define the actual behavior of a target
extra-functional property.

143

Paper 1 - ModComp 2015

Furthermore, we introduced the concept of a contract state
machine which is basically a finite state machine where the
single states represent different contract definitions. This con-
cept is necessary, because a component may behave in differ-
ent ways depending on the input data, environment properties
or specific events. For instance, the timing of a component
may be different depending on its previous processed data. It
may also be different if the environment has changed. Such
changes may require different valid contracts.

Concerning our future work, we are currently working
on a configurable constraint modeling language, inspired by
OCL [22], which we want to use for setting assumptions and
guarantees. The idea is to have a constraint language where
language elements, such as an if expression or a boolean
operation, can be disabled and is afterwards not usable by
an assumption or guarantee. This is useful, in our opinion, to
simplify the construction of contract checkers or interpreters,
because not all concepts of an expression language need to be
considered and handled properly. It would also provide a user
with direct feedback concerning what language elements are
allowed for use.

Additionally, the presented modeling features for contracts
do not consider composition, refinement, and conjunction of
contracts as described theoretical by Benveniste et al. [7]. We
are still working on finding pragmatic and usable metamodel
solutions for these concepts.

After building this in a form suited to our use case meta-
model for contract-based design, we are planning to develop a
thin generic UML profile [23] for contracts and contract state
machines.

This profile will be aligned with the existing OMG specifi-
cations MARTE [24] and SysML [25]. As mentioned by Selić
and Gérard [26], a natural complementarity exists between
these two profiles. We are of the view that a UML profile for
contract-based design would benefit from concepts such as the
physical types of MARTE or the constraint blocks of SysML.
Not using such existing and standardized modeling concepts
would be like reinventing the wheel.

The advantages of such a UML profile for contracts could
be manifold. The most important one is, that it would allow
the rise of specialized analyzing tools of different vendors
which target single extra-functional properties. The input of
such tools would depend, in such an ideal ecosystem, on the
same UML profile for contract-based design.

REFERENCES

[1] C. Ebert and C. Jones, “Embedded Software: Facts, Figures, and Future,”
Computer, vol. 42, no. 4, Apr. 2009.

[2] P. Feiler, J. Hansson, D. de Niz, and L. Wrage, “System Architecture
Virtual Integration: An Industrial Case Study,” Software Engineering In-
stitute, Carnegie Mellon University, Pittsburgh, Pennsylvania, CMU/SEI-
2009-TR-017, 2009.

[3] M. Miller, The Internet of Things: How Smart TVs, Smart Cars, Smart
Homes, and Smart Cities Are Changing the World. Pearson Education,
2015.

[4] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, Sep. 2012.

[5] I. Crnkovic, S. Sentilles, V. Aneta, and M. R. Chaudron, “A Classifica-
tion Framework for Software Component Models,” IEEE Transactions
on Software Engineering, vol. 37, no. 5, Sep. 2011.

[6] S. Sentilles, P. Štěpán, J. Carlson, and I. Crnković, “Integration of Extra-
Functional Properties in Component Models,” in Component-Based
Software Engineering. Springer Berlin Heidelberg, 2009.

[7] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. L. Sangiovanni-Vincentelli, W. Damm, T. Henzinger,
and K. Larsen, “Contracts for Systems Design,” INRIA, Rennes, France,
Tech. Rep., 2012.

[8] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems,”
European Journal of Control, vol. 18, no. 3, Jan. 2012.

[9] A. Jantsch, Modeling Embedded Systems and SoCs: Concurrency and
Time in Models of Computation. San Francisco, Amsterdam: Morgan
Kaufmann, 2004.

[10] N. Kajtazovic, “A Component-based Approach for Managing Changes
in the Engineering of Safety-critical Embedded Systems,” Ph.D. disser-
tation, Graz University of Technology, 2014.

[11] I. Crnkovic, M. Larsson, and O. Preiss, “Concerning Predictability
in Dependable Component-Based Systems: Classification of Quality
Attributes,” in Architecting Dependable Systems III. Springer Berlin
Heidelberg, 2005.

[12] P. Nuzzo, Huan Xu, N. Ozay, J. B. Finn, A. L. Sangiovanni-Vincentelli,
R. M. Murray, A. Donze, and S. A. Seshia, “A Contract-Based Method-
ology for Aircraft Electric Power System Design,” IEEE Access, vol. 2,
2014.

[13] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis, “Multiple Viewpoint Contract-Based Specification and
Design,” 2008.

[14] B. Meyer, “Applying ’design by contract’,” Computer, vol. 25, no. 10,
Oct. 1992.

[15] A. Rajan and T. Wahl, Eds., CESAR - Cost-efficient Methods and
Processes for Safety-relevant Embedded Systems. Vienna: Springer
Vienna, 2013.

[16] M. Maasoumy, P. Nuzzo, and A. Sangiovanni-Vincentelli, “Smart Build-
ings in the Smart Grid: Contract-Based Design of an Integrated Energy
Management System,” 2015.

[17] P. Nuzzo, A. Sangiovanni-Vincentelli, Xuening Sun, and A. Puggelli,
“Methodology for the Design of Analog Integrated Interfaces Using
Contracts,” IEEE Sensors Journal, vol. 12, no. 12, Dec. 2012.

[18] N. Kajtazovic, C. Preschern, A. Höller, and C. Kreiner, “Constraint-
Based Verification of Compositions in Safety-Critical Component-Based
Systems,” in Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing, ser. Studies in Computational In-
telligence. Springer International Publishing, 2015.

[19] P. Nuzzo and A. Sangiovanni-Vincentelli, “Lets Get Physical: Computer
Science Meets Systems,” in From Programs to Systems. The Systems
perspective in Computing. Springer Berlin Heidelberg, 2014.

[20] F. Warg, B. Vedder, M. Skoglund, and A. Soderberg, “Safety ADD: A
Tool for Safety-Contract Based Design,” in 2014 IEEE International
Symposium on Software Reliability Engineering Workshops, Nov. 2014.

[21] O. Bridal, R. Mader, A. Geven, E. Schoitsch, H. Martin, M. Larramendi,
A. Aristimuno, A. Fritsch, E. Vaumorin, M. Bordin, A. Solinas,
A. Martelli, I. Korago, A. Levcenkovs, F. Joakim, R. Land,
A. Söderberg, P. Conmy, and M. Illarramendi, “State-of-practice
and state-of-the-art agreed over workgroup,” Tech. Rep., 2011.
[Online]. Available: http://www.safecer.eu/images/pdf/pSafeCer\ D1.0.
1StateOfThePracticeAndTheArt.pdf

[22] Object Management Group (OMG), “Object Constraint Language
Version 2.4,” 2014. [Online]. Available: http://www.omg.org/spec/OCL/
2.4/

[23] ——, “Unified Modeling Language (UML),” 2015. [Online]. Available:
http://www.omg.org/spec/UML/Current

[24] ——, “UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems Version 1.1,” 2011. [Online]. Available:
http://www.omg.org/spec/MARTE/

[25] ——, “OMG Systems Modeling Language (OMG SysML) Version
1.3,” 2012. [Online]. Available: http://www.omg.org/spec/SysML/1.3/

[26] B. Selić and S. Gérard, Modeling and Analysis of Real-Time and
Embedded Systems with UML and MARTE, 2014.

144

8. Publications

Patterns for Designing Configurability into
Domain-Specific Language Elements
JOHANNES IBER, ANDREA HÖLLER, TOBIAS RAUTER and CHRISTIAN KREINER, Institute of
Technical Informatics, Graz University of Technology

Nowadays, designing a domain-specific language is easier than ever before. Nevertheless, finding the right balance concerning

the configurability of concepts represented by language elements is a complicated design task. With this paper we provide four

patterns that discuss different kinds of configurability that can also be combined. In the end, we show the application of these

patterns using an example we had to deal with in our research project.

CCS Concepts: •Software and its engineering→ Design patterns;

Additional Key Words and Phrases: configurability, domain-specific language, language element

ACM Reference Format:
Johannes Iber, Andrea Höller, Tobias Rauter, and Christian Kreiner. 2016. Patterns for Designing Configurability into Domain-
Specific Language Elements , 14 pages.
DOI: http://dx.doi.org/10.1145/3011784.3011785

1. INTRODUCTION

New domain-specific languages are designed by engineers and researchers all the time. Especially
through the rise of so-called language workbenches this task becomes subsequently easier to accom-
plish. Language Workbenches are tools that help to build a domain-specific language [Fowler 2010].
We claim that with the help of these tools, the number of languages rises much higher in the future.

There exists a lot of literature on how to technically design a domain-specific language and corre-
sponding infrastructure. But, as far we know, little has been mentioned about the inherent configura-
tion nature concerning the representation of concepts through language elements. By using the term
concept we mean a domain-specific thing that is represented inside a language. Language elements are
for us the building blocks to configure a concept and to bring it to life with data. With this work, we
aim to give language designers useful patterns in order to foresee the consequences of their language
element design decisions. These patterns are not canceling each other out and can be combined in
order to make a concept more flexible.

We use the term domain-specific language not only for textual languages based on grammars (e.g.
build by using an Extended-Backus Naur Form grammar), but also for model-based languages (e.g.
facilitating the metamodeling architecture defined by the Object Management Group), and internal
languages (e.g. defined inside a host programming language like Java). The following patterns can be
applied with all these techniques.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP ’16, July 06 - 10, 2016, Kaufbeuren, Germany
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4074-8/16/07 $15.00
DOI: http://dx.doi.org/10.1145/3011784.3011785

EuroPLoP ’16, Publication date: 2016.

c©2016 Authors. Reprinted, with permission. The definitive version was published in Proceedings of the 21th European Conference
on Pattern Languages of Program (EuroPLoP 16), July 2016.

145

Paper 2 - EuroPLoP 2016

0:2 • J. Iber, A. Höller, T. Rauter and C. Kreiner

The remainder of this work is structured as follows: the next Section gives an overview of this work.
Section 3 describes the Atomic Concept pattern, which can be seen as the base pattern for the other
ones. Section 4 describes the second pattern named EntityType. Section 5 outlines the Deep Con-
figuration pattern. Section 6 presents the last pattern named Concept Tailoring. Section 7 gives an
experience report and documents our journey of applying these patterns. Finally, Section 8 concludes
this work.

2. OVERVIEW

The presented patterns are targeting to solve the general problem of how to embody a domain-specific
concept in language elements that a language user is able to configure the concept to a certain degree.
Therefore, they share the same problem and context. The explicit highlighting of these two parts is
omitted inside the single patterns.

The first pattern named Atomic Concept represents the simplest one and serves as base for the
others. It can be found in probably every domain-specific language and represents concepts where
reusing data is not needed. The second pattern adds a layer that allows the reuse of information and
enables the definition of variants of concepts. The third pattern named Deep Configuration reuses data
from existing instantiations of a concept. The fourth pattern targets to unhinge information from the
infrastructure around a language. It makes parts of it adjustable by a language user.

In all patterns, we use the term Entity for a language element that represents the referable instance
of a language concept. EntityType is, for us, a kind of language element that defines the behavior and
attributes of corresponding Entities. A Declaration element unhinges information from the language
infrastructure and deeply influences EntityType and Entity elements. The element kinds EntityType
and Declaration are usually partly or completely hidden for other language elements not part of the
target language concept.

A

B

C

Event: E0 Event: E1

Event: E0

Fig. 1: A simple finite state machine that serves as an example for the following patterns.

The running example demonstrating the patterns is a simple finite state machine that consists
of events, states and transitions. Figure 1 visualizes the exemplary state machine. The expressed
behavior remains in all examples the same. Main differences between the examples are how a state
machine is organized and, more importantly, what is configurable and reusable by language users.
The examples itself are presented in two parts. An abstract part illustrates a high level description of
the example, while the other part shows how the example could be defined in a host general purpose
programming language like Java.

EuroPLoP ’16, Publication date: 2016.

146

8. Publications

Patterns for Designing Configurability into Domain-Specific Language Elements • 0:3

3. ATOMIC CONCEPT PATTERN

Entity

Forces

—Each Entity is similar to others.
—Different variants can, but not necessarily be expressed by contained attributes.
—Serves as building block for other language concepts.

Solution

Add one language element that represents the language concept. Add desired configurable attributes
and references. The possible variants of this language element are defined by these attributes and
references.

This pattern is used for Entities that realize a language concept where parts of the concept itself are
not supposed to be reused. The configuration nature is not split between separate elements. This is the
simplest kind of representing a concept within a language. Examples are control or data structures
that just exist.

Consequences

+ Easy to implement.
+ Easy to validate.
+ Easy to understand for language users.
+- Limits concept variability.
- Static semantics.
- May not be appropriate for all kind of language concepts.
- Complicated to evolve if language environment changes. Existing artifacts may break.

Abstract Example

Figure 2a illustrates an application of the Atomic Concept pattern on a state machine. Each state
defines possible transitions to others, triggered by the occurrence of certain events. This is a realization
of this pattern, because there does not exist a separation between the referable entity state machine
and a defining or configuring kind of elements. Figure 2b shows an alternative application of the
Atomic Concept pattern on a state machine, where the behavior is defined as rules.

Java Example

Listing 1 shows an implementation of an Atomic Concept state machine similar to Figure 2b. The class
FSMEntity (lines 7-27) represents the whole instantiation of the language concept state machine. It
offers a method addTransition (lines 11-17) that allows adding usable transitions, while the method
move (lines 19-26) triggers the finite state machine and determines a new state. The class Transition

EuroPLoP ’16, Publication date: 2016.

147

Paper 2 - EuroPLoP 2016

0:4 • J. Iber, A. Höller, T. Rauter and C. Kreiner

State Machine Entity

state A {
 on event E0 -> state B
}

state B {
 on event E0 -> state A
 on event E1 -> state C
}

state C {}

...

(a)

State Machine Entity

current_state = A

if state A and event E0
current_state=B

if state B and event E0
current_state=A

if state B and event E1
current_state=C

...

(b)

Fig. 2: Two different possible realizations of an Atomic Concept state machine.

(lines 1 - 5) is used for representing a transition from a current state to a target state based on an
event.

Listing 1: Java realization of the second Atomic Concept example.

1public class Transition {
2public String currentState = "";
3public String event = "";
4public String targetState = "";
5}

7public class FSMEntity {
8public String currentState = "";
9private Vector<Transition> transitionTable = new

Vector<Transition>();

11public void addTransition(String currentState,
String event, String targetState) {

12Transition t = new Transition();
13t.currentState = currentState;
14t.event = event;

15t.targetState = targetState;
16transitionTable.add(t);
17}

19public void move(String event) {
20for (Transition t : transitionTable) {
21if (t.currentState.equals(this.currentState) &&

t.event.equals(event)) {
22this.currentState = t.targetState;
23break;
24}
25}
26}
27}

Listing 2 demonstrates how the class FSMEntity is used. The states and events are defined inside
transitions. The methode move triggers the state machine based on the event argument.

Listing 2: Application of the Java example

1public static void main(String[] args) {
2FSMEntity entity = new FSMEntity();

4entity.addTransition("A", "E0", "B");
5entity.addTransition("B", "E0", "A");
6entity.addTransition("B", "E1", "C");

7entity.currentState = "A";

9entity.move("E0");
10// ...
11}

EuroPLoP ’16, Publication date: 2016.

148

8. Publications

Patterns for Designing Configurability into Domain-Specific Language Elements • 0:5

Known Uses

—The Atomic Concept pattern is the simplest form of implementing a concept inside a language. It
can be found in virtually every domain-specific language. Some languages like JSON [Crockford
2016] consist exclusive of concepts which are compositions of this pattern. Control structures, like
a while loop, are usually realizations of this pattern. Another application is to use it for properties
that capsule for instance a type, name and value.

4. ENTITYTYPE PATTERN

Entity EntityType

1 .. n

Forces

—Entities express the same concept but differ concerning their available properties.
—Different instantiations of a language concept are needed.
—Language infrastructure is probably fixed.
—A reuse of already defined data is needed.

Solution

Add an Entity language element and a EntityType element. These two different kinds of elements can
only represent the target concept together. The Entity element must reference at least one EntityType
element. The EntityType element can define properties for the Entity element. Further, it can specify
reusable data. Entities can be differentiated by their referenced EntityTypes.

Consequences

+ Entity becomes flexible concerning the available properties.
+ The defining part of Entities is separate.
+ Appropriate for type-object relationships.
+ Concept known to users from common programming languages.
- A change of EntityType data affects all dependent Entities.
- The semantics of the language element EntityType is embedded into the language infrastructure.

Abstract Example

Figure 3 illustrates an exemplary application of this pattern on a state machine. Note, that a state
machine is now split into two parts. The State Machine Type is used for specifying available states and
events. The State Machine Entity describes the transitions and represents the usable state machine.
This decoupling allows the specification of several state machines that share the same states and
events. Further, State Machine Entities become distinguishable from each other based on the used
State Machine Type.

EuroPLoP ’16, Publication date: 2016.

149

Paper 2 - EuroPLoP 2016

0:6 • J. Iber, A. Höller, T. Rauter and C. Kreiner

State Machine Entity

transitions {
 t0:state A and event E0
 -> state B
 t1:state B and event E0
 -> state A
 t2:state B and event E1
 -> state C
}

State Machine Type

states {
 state A
 state B
 state C
}
events {
 event E0
 event E1
}

type

Fig. 3: EntityType example

Java Example

Listing 3 shows the EntityType state machine realized in Java code. The class FSMType (lines 1 - 4)
is used for describing states and events, while the class FSMEntity (lines 10 - 30) holds the transi-
tion information. Further, the class FSMEntity owns a method validateStateMachine (lines 23 - 25)
which ensures that transitions correspond to the states and events specified by the used FSMType. We
skipped the implementation of this method as it can be realized in different ways.

Listing 3: Java realization of the EntityType example.

1public class FSMType {
2public Vector<String> states = new Vector<String>();
3public Vector<String> events = new Vector<String>();
4}

6public class Transition {
7// Equal to Atomic Concept
8}

10public class FSMEntity {
11public FSMType type;
12public String currentState = "";
13private /∗ . ∗/ transitionTable = // Equal to Atomic

Concept

15public FSMEntity(FSMType type) {

16this.type = type;
17}

19public void addTransition(/∗ ... ∗/) {
20// Equal to Atomic Concept
21}

23public boolean validateStateMachine() {
24// Implementation specific
25}

27public void move(String event) {
28// Equal to Atomic Concept
29}
30}

Listing 4 illustrates the use of the classes FSMType and FSMEntity. What changed to the pattern
above is, that defined states and events are encapsulated and such capsules are comparable and in-
terchangeable. It is also imaginable that the EntityType and Entity parts are specified by different
stakeholders. The validation of a state machine is necessary because otherwise invalid transitions
would be specifiable.

Known Uses

—A prominent concept of UML that applies this pattern are the language elements Class and Instance-
Specification [Object Management Group (OMG) 2015]. A Class specifies features that characterize
the structure and behavior of objects. An InstanceSpecification may describe an object with data

EuroPLoP ’16, Publication date: 2016.

150

8. Publications

Patterns for Designing Configurability into Domain-Specific Language Elements • 0:7

Listing 4: Application of the Java example

1public static void main(String[] args) {
2FSMType def = new FSMType();
3def.states.add("A");
4def.states.add("B");
5def.states.add("C");
6def.events.add("E0");
7def.events.add("E1");

9FSMEntity entity = new FSMEntity(def);
10entity.addTransition("A", "E0", "B");

11entity.addTransition("B", "E0", "A");
12entity.addTransition("B", "E1", "C");
13entity.currentState = "A";

15if (entity.validateStateMachine()) { // Correct SM
16entity.move("E0");
17// ...
18}
19}

that correspond to the features of the language element Class. Therefore, the Class element behaves
like a EntityType and defines reusable properties, while InstanceSpecification is an Entity which is
referred to for instance by Interaction Diagrams.

—Many component-based modeling languages apply this pattern by using interfaces as EntityTypes
while the concrete components are Entities [Crnkovic et al. 2011].

—In literature this pattern is also known as type-object [Johnson and Woolf 1998] and item-descriptor
[Coad 1992] pattern.

5. DEEP CONFIGURATION PATTERN

Entity

0 .. n

Forces

—Reuse of already specified Entities is desired.
—The number of reused Entities varies.

Solution

Entities add, modify, or remove configuration information from other Entities. There can be an arbi-
trary long chain of them. Each Entity represents an instance of the language concept and may be
complete.

Consequences

+ Extensible Entities.
+ Reuse of already specified information.
- Changes of Entities have consequences on dependent Entities.
- Very fragile.

EuroPLoP ’16, Publication date: 2016.

151

Paper 2 - EuroPLoP 2016

0:8 • J. Iber, A. Höller, T. Rauter and C. Kreiner

Abstract Example

Figure 4 illustrates a state machine where states, events and transitions are specifiable inside State
Machine Entities. The difference to the patterns above is, that an arbitrary number of Entities can
be added on top of each other. Each of these state machines is fully functional. The advantage of this
pattern is that language users can efficiently reuse or modify already defined information.

State Machine Entity

states {
 state A
 state B
}
events {
 event E0
}
transitions {
 t0:state A and event E0
 -> state B
}

State Machine Entity

states {
 state C
}
events {
 event E1
}
transitions {
 t1:state B and event E1
 -> state C
}

State Machine Entity

states {
}
events {
 event E2
}
transitions {
 t1:state C and event E2
 -> state A
}

parentEntity parentEntity

Fig. 4: Deep Configuration example

Java Example

Listing 5 represents a realization of the Deep Configuration pattern which allows defining a chain of
state machines like it is depicted in Figure 4. The class FSMEntity (lines 5 - 40) provides an attribute
parentEntity (line 6) that allows reusing an already defined FSMEntity. The getAll methods (lines 22
- 26) are used for collecting all states, events and transitions. The validateStateMachine (lines 28 -30)
and move (lines 32 - 39) methods serve the same purpose like in the patterns above.

Listing 5: Java realization of the Deep Configuration example.

1public class Transition {
2// Equal to Atomic Concept
3}

5public class FSMEntity {
6public FSMEntity parentEntity;
7public Vector<String> states = new Vector<String>();
8public Vector<String> events = new Vector<String>();
9public Vector<Transition> transitionTable = new

Vector<Transition>();
10public String currentState = "";

12public FSMEntity() {}

14public FSMEntity(FSMEntity parentEntity) {
15this.parentEntity = parentEntity;
16}

18public void addTransition(/∗ . ∗/) {
19// Equal to Atomic Concept
20}

22public Vector<String> getAllStates() {/∗ . ∗/}

24public Vector<String> getAllEvents() {/∗ . ∗/}

26public Vector<Transition> getAllTransitions() {/∗.∗/}

28public boolean validateStateMachine() {
29// Implementation specific
30}

32public void move(String event) {
33Vector<Transition> allTransitions =

getAllTransitions();
34for (Transition t : allTransitions)
35if (t.currentState.equals(this.currentState) &&

t.event.equals(event)) {
36this.currentState = t.targetState;
37break;
38}
39}
40}

EuroPLoP ’16, Publication date: 2016.

152

8. Publications

Patterns for Designing Configurability into Domain-Specific Language Elements • 0:9

Listing 6 demonstrates how the chain of finite state machines of Figure 4 are specified with the Java
class FSMEntity of Listing 5. The big downside of this pattern is that if a referenced entity is changed
the consequences for dependent entities is not always simple to foresee.

Listing 6: Application of the Java example

1public static void main(String[] args) {
2FSMEntity entity0 = new FSMEntity();
3entity0.states.add("A");
4entity0.states.add("B");
5entity0.events.add("E0");
6entity0.addTransition("A", "E0", "B");
7entity0.currentState = "A";

9if(entity0.validateStateMachine()) { // Correct SM
10entity0.move("E0");
11}

13FSMEntity entity1 = new FSMEntity(entity0);
14entity1.states.add("C");
15entity1.events.add("E1");
16entity1.addTransition("B", "E1", "C");

17entity1.currentState = "A";

19if(entity1.validateStateMachine()) { // Correct SM
20entity1.move("E0");
21}

23FSMEntity entity2 = new FSMEntity(entity1);
24entity2.events.add("E2");
25entity2.addTransition("C", "E2", "A");
26entity2.currentState = "B";

28if(entity2.validateStateMachine()) { // Correct SM
29entity2.move("E1");
30}
31}

Known Uses

—The concept of inheritance of classes, known from programming and modeling languages like UML,
is an application of this pattern. Derived classes reuse, add or modify information.

—The concept of a package is a realization of this pattern. A package contains data (e.g. classes) and
can reuse data from other packages.

—UML offers the possibility to redefine a state machine [Object Management Group (OMG) 2015]. A
specialized state machine can extend a general one. It can add or redefine states and transitions
similar to the example of this pattern.

6. CONCEPT TAILORING PATTERN

Declaration

Language Concept consisting of various
Entities and EntityTypes

0 .. n

EuroPLoP ’16, Publication date: 2016.

153

Paper 2 - EuroPLoP 2016

0:10 • J. Iber, A. Höller, T. Rauter and C. Kreiner

Forces

—Domain-specific concept has to be applicable for slightly different cases inside a domain.
—Some parts of a concept need to be constrained. For instance, there could exist different target plat-

forms with different support of features.
—Language infrastructure has to be dynamic and parts of it should be configurable by the language

user.

Solution

In principle, there are two ways of applying this solution.
One is to add a Declaration element inside a language to the existing elements that represent a con-

cept. Then it configures a context for EntityType and Entity elements and consists of various settings
that adjust the possibilities of what can be done with a concept. At some point a language concept has
to refer to a specific Declaration element.

The second way is to specify the Declaration outside of a domain-specific language with a different
language, for instance with XML, and to load it by the tooling infrastructure around a language.

Basically, this pattern makes behavior explicit that would have been hard-coded into the language
infrastructure. Further, it allows adjusting a domain-specific concept semantically. The settings of the
Declaration can either restrict a language concept or enable features.

Consequences

+ Implicit configuration of language infrastructure becomes accessible and adjustable.
+ Allows adjusting domain concepts without breaking existing artifacts. Legacy artifacts simply use

an already existing Declaration.
+ Supports fast but not disruptive changing domain concepts.
+ Declaration may be hidden for a language user, but accessible for the language infrastructure.
+ Validation happens more on language concepts and less on domain semantics.
- Complicated to understand for language users.
- Implementation effort higher than in the patterns above. The validation of an Entity or EntityType

needs to take the optional Declaration element in account.
- Difficult do define the appropriate variability inside the language elements.
- No gain if the concept is fixed and behaves semantically always the same.
- Language infrastructure has to be aware of possible variants and consequences.
- May only be a bet on different uses of a language concept.

Abstract Example

Figure 5 illustrates a Concept Tailoring state machine. The difference to the EntityType state machine
is that there exists a third kind of element named State Machine Declaration. We designed that a
Declaration can only be referenced by a State Machine Type element, but this is basically up to the
language designer. It defines a context for state machines and limits their specification possibilities.
The benefit is that information about the context of state machines becomes explicit and simple to
change while otherwise it would be implicit and part of the language infrastructure. The State Machine
Declaration does not necessarily need to be accessible to language users. It may also be hidden by the
language infrastructure and loaded besides the user defined content. This approach is useful because
the language infrastructure becomes less hard coded.
EuroPLoP ’16, Publication date: 2016.

154

8. Publications

Patterns for Designing Configurability into Domain-Specific Language Elements • 0:11

State Machine Entity

transitions {
 t0:state A and event E0
 -> state B
 t1:state B and event E0
 -> state A
 t2:state B and event E1
 -> state C
}

State Machine Type

states {
 state A
 state B
 state C
}
events {
 event E0
 event E1
}

type

State Machine
Declaration

loops = True
parallel transitions = False
max states = -1
max events = -1
max transitions = -1

declaration

Fig. 5: Concept Tailoring example

Java Example

Listing 7 shows the Java realization. The class FSMDeclaration (lines 1-4) is responsible for making in-
frastructure information explicit. In this example only the maximum number of states is configurable,
but it is imaginable that also other properties are available (i.e. see Figure 5). Note, that such a config-
uration influences the whole depicted concept and not only the EntityType part. The classes FSMType
(lines 6 - 18) and FSMEntity (lines 24 - 45) are similar to the EntityType pattern. The class FSMType
includes a method validate (lines 15 - 18) that carries out checks based on the used FSMDeclaration.

Listing 7: Java realization of the Concept Tailoring example.

1public class FSMDeclaration {
2public int maxNumberStates = −1;
3// ...
4}

6public class FSMType {
7public FSMDeclaration declaration;
8public Vector<String> states = new Vector<String>();
9public Vector<String> events = new Vector<String>();

11public FSMType(FSMDeclaration declaration) {
12this.declaration = declaration;
13}

15public boolean validate() {
16// Implementation specific
17}
18}

20public class Transition {
21// Equal to Atomic Concept
22}

24public class FSMEntity {

25public FSMType type;
26public String currentState = "";

28private Vector<Transition> transitionTable = new
Vector<Transition>();

30FSMEntity(FSMType type) {
31this.type = type;
32}

34public void addTransition(/∗ ... ∗/) {
35// Equal to Atomic Concept
36}

38public boolean validateStateMachine() {
39// Implementation specific
40}

42public void move(String event) {
43// Equal to Atomic Concept
44}
45}

Listing 8 illustrates the application of the classes FSMDeclaration, FSMType and FSMEntity. It is
similar to EntityType, except that a restricting configuration, expressed by the FSMDeclaration, is
added.

EuroPLoP ’16, Publication date: 2016.

155

Paper 2 - EuroPLoP 2016

0:12 • J. Iber, A. Höller, T. Rauter and C. Kreiner

Listing 8: Application of the Java example

1public static void main(String[] args) {
2FSMDeclaration decl = new FSMDeclaration();
3decl.maxNumberStates = 5;

5FSMType def = new FSMType(decl);
6def.states.add("A");
7def.states.add("B");
8def.states.add("C");
9def.events.add("E0");
10def.events.add("E1");

12FSMEntity entity = new FSMEntity(def);

13entity.addTransition("A", "E0", "B");
14entity.addTransition("B", "E0", "A");
15entity.addTransition("B", "E1", "C");
16entity.currentState = "A";

18if (entity.validateStateMachine()) { // Correct SM
19entity.move("E0");
20// ...
21}
22}

Known Uses

—Profiles in UML [Object Management Group (OMG) 2015] are an application of this pattern. They
define a context for general UML concepts and can restrict how elements are used. Further, stereo-
types can be used to make parts of the tooling infrastructure adjustable by language users.

—In principle, XML schemas are a realization of this pattern, as schemas define the legal building
blocks of an XML document [W3C 2016]. A schema can be loaded by a tooling infrastructure for
validating a document.

—In the context of object models, Fowler [Fowler 1997] names this pattern Knowledge Level. The
author shortly describes it as a group of objects that describe how another group of objects should
behave (also known as a meta level).

—Also in the context of object models, Yoder et al. [Yoder et al. 2001] describe an object-oriented archi-
tecture style called Adaptive Object Models where this pattern plays a key role. There it is identified
as a realization of the Strategy pattern where rules validate Entities and EntityTypes.

7. EXPERIENCE REPORT

In our research project we had the task to implement a modeling language for describing compo-
nents and compositions that are used by a component-based infrastructure. In our case, a component
represents an executable that offers datapoints which are set, read and parameterized during execu-
tion. A composition represents an entity that connects datapoints and executes existing components
or other user-defined compositions. The whole architecture is inspired by the IEC 61131 standard for
programmable logic controllers [John and Tiegelkamp 2010]. In the following we concentrate on the
flexibility and configurability of the language concept Component.

Component

Datapoint List Input
Datapoint List Parameter
Datapoint List Output

Composition

Execution
Sequence

calls
{0..n}

Fig. 6: Sketch of the first version we had in mind.

EuroPLoP ’16, Publication date: 2016.

156

8. Publications

Patterns for Designing Configurability into Domain-Specific Language Elements • 0:13

Figure 6 illustrates the solution we had first in mind. A composition owns an element called execu-
tion sequence. This execution sequence referes to components and calls them during the execution of
the composition. The components contain datapoints inside the datapoint lists Input, Parameter and
Output.

Having one language element representing the concept Component is not suitable for our case as
we want to have different entities of components of the same definition. Therefor, we applied the En-
tityType pattern. Figure 7 illustrates this solution. The Component Type is used to define datapoints
which are contained inside the three different types of datapoint lists. A Component Entity has to ref-
erence one Component Type. Further, a Component Entity owns a language element Settings that can
be used to configure datapoints that are contained inside the datapoint list Parameter.

Component Type
Datapoint List Input {

point x : bool
...

}
Datapoint List Parameter {

point y : bool = false
}
Datapoint List Output {

point z : bool
}

Composition

Execution Sequence

...

type

Component Entity

Settings Parameter {
point y = true

}

Fig. 7: Intermediate version that applies the EntityType pattern.

We were not happy with this version of our modeling language. The language compiler had to know
a lot about the meaning of language elements. For instance we had separate language elements that
described input, parameter and output datapoint lists. The semantics of each list was hard-coded inside
the language compiler. We solved this by applying the Concept Tailoring pattern in order to make the
behavior of datapoint lists configurable. Figure 8 illustrates the result of that iteration. We split the
concept of a component into three different kinds of language elements. A Component Declaration is
used to declare the available datapoint lists and to define their behavior. A Component Type is used to
describe a type of component with its unique datapoints. A Component Entity is used by the execution
sequence of a composition. It represents the instantiation of a component and offers the possibility to
parameterize datapoint lists that are configured to be settable. Now our language compiler only has to
know about the behavior of the language concepts. But it does not have to know what a datapoint list
called Input means because this information is now defined by the Component Declaration. Note, that
concerning the language concept datapoint list we apply the EntityType pattern. The concept execution
sequence does not need any special treatment and is a realization of the Atomic Concept pattern.

We stopped at this version of the modeling language because we currently do not find it justifiable to
apply more configuration patterns. Theoretically, the Deep Configuration pattern could be applied on
the language element Component Entity in order to reuse defined settings. Of course, this additional
change would make the concept Component more fragile.

EuroPLoP ’16, Publication date: 2016.

157

Paper 2 - EuroPLoP 2016

0:14 • J. Iber, A. Höller, T. Rauter and C. Kreiner

Component Type
Composition

Execution Sequence

...

type

Component Entity

Component Declaration

declaration
Settings Parameter {

point y = true
}

Datapoint List Input {
point x : bool
...

}

Datapoint List Parameter {
point y : bool = false

}

Datapoint List Output {
point z : bool

}

Datapoint List Type Input {
enable assignable to

}

Datapoint List Type Parameter {
enable settable

}

Datapoint List Type Output {
enable assignable from

}

Fig. 8: Final version of the modeling language that applies the Concept Tailoring pattern on the language concept component.

8. CONCLUSION

To sum up, we presented four patterns describing different kinds of representing a concept through
language elements. Each of these patterns has another effect on the configurability of a concept. Last,
but not least, these patterns can be combined for describing a concept ever more flexible. If a language
designer decides to apply all these patterns for a concept, the resulting language architecture probably
looks like the Adaptive Object Model [Yoder et al. 2001].

Acknowledgments

We thank our shepherd Ralph Johnson for his inspiring advice. Further, we thank our EuroPLoP 2016
focus group for giving very helpful hints and suggestions.

REFERENCES

Peter Coad. 1992. Object-oriented patterns. Commun. ACM 35, 9 (1992), 152–159.
Ivica Crnkovic, Severine Sentilles, Vulgarakis Aneta, and Michel R.V. Chaudron. 2011. A Classification Frame-

work for Software Component Models. IEEE Transactions on Software Engineering 37, 5 (sep 2011), 593–615.
DOI:http://dx.doi.org/10.1109/TSE.2010.83

Douglas Crockford. 2016. Introduction to JSON. (2016). http://json.org/
Martin Fowler. 1997. Analysis Patterns: Reusable Object Models. Addison-Wesley.
Martin Fowler. 2010. Domain-Specific Languages. Pearson Education.
Karl Heinz John and Michael Tiegelkamp. 2010. IEC 61131-3: Programming Industrial Automation Systems. Springer Berlin

Heidelberg, Berlin, Heidelberg.
Ralph Johnson and Bobby Woolf. 1998. The Type Object Pattern. In Pattern Languages of Program Design 3. Addison-Wesley.
Object Management Group (OMG). 2015. OMG Unified Modeling Language (OMG UML), Version 2.5. (2015). http://www.omg.

org/spec/UML/2.5/
W3C. 2016. XML Schema. (2016). https://www.w3.org/XML/Schema
Joseph W. Yoder, Federico Balaguer, and Ralph Johnson. 2001. Architecture and Design of Adaptive Object-models. SIGPLAN

Not. 36, 12 (Dec. 2001), 50–60. DOI:http://dx.doi.org/10.1145/583960.583966

EuroPLoP ’16, Publication date: 2016.

158

8. Publications

An Integrated Approach for Resilience in Industrial
Control Systems

Johannes Iber, Tobias Rauter, Michael Krisper and Christian Kreiner
Institute of Technical Informatics, Graz University of Technology, Austria
{johannes.iber, tobias.rauter, michael.krisper, christian.kreiner}@tugraz.at

Abstract—New generations of industrial control systems offer
higher performance, they are distributed, and it is very likely
that they are internet connected in one way or another. These
trends raise new challenges in the contexts of reliability and
security. We propose a novel approach that tackles the complexity
of industrial control systems at design time and run time.
At design time our target is to ease the configuration and
verification of controller configurations through model-driven
engineering techniques together with the contract-based design
paradigm. At run time the information from design time is reused
in order to support a modular and distributed self-adaptive
software system that aims to increase reliability and security. The
industrial setting of the presented approach are control devices
for hydropower plant units.

I. INTRODUCTION

Cyber-physical systems (CPS) are the recent evolution of
networked embedded systems that blend physical mechanisms
with software. One part of the broad range of different kinds
of CPS are industrial control systems. According to a National
Institute of Standards and Technology workshop report [1] the
key challenges of CPS development include what is needed to
cost-effectively and rapidly build-in and assure safety, reliabil-
ity, availability, security and performance of next generation
CPS. Industry is using more and more commercial off-the-
shelf hardware platforms, which are inexpensive and offer high
performance. The downside of these platforms is that typically
they only offer limited safety and fault tolerance features
[2] [3]. This is a matter for concern since industrial control
systems are increasingly becoming the targets of security
attacks [4].

The inherent problem of CPS is complexity. This issue is
going to escalate even more for industrial control systems,
because they are becoming large-scale distributed systems.
Systems of this kind must deal with uncertainty, change during
operation and moreover be scalable and tolerant to threats [5].

With this work we contribute a novel integrated approach in
which we aim to manage and deal with the negative effects of
complexity at design time and run time. The industrial setting
of our approach is that of control systems for hydro-electrical
power plants, which also happens to be the context of our
ongoing research project.

Concerning design time, we apply the principles of model-
driven engineering and propose to utilize models that describe
the available hardware resources, the control logic, and the
deployment of the control logic onto specific hardware re-
sources. Furthermore, we apply the paradigm contract-based

design for enhancing models with arbitrary non-functional
properties, e.g. timing, security, safety, and performance. To
ensure that the configuration of a control system is valid we
use verification tools that are specialized on one of these
properties.

To ensure resilience to security attacks or hardware faults at
run time, just a correct configuration of a distributed control
system alone is not enough. Tackling such threats requires
mechanisms that are specialized in detecting anomalies and
adapting the system. Thus, we are proposing a self-adaptive
software system, named Scari (Secure and reliable infrastruc-
ture), that provides the means to implement and orchestrate
adaptive mechanisms. Scare offers a knowledge base that
reflects the current state of a system as models. These models
are constructed based on design time models and information
available at run time. If a mechanism wants to change a system
it can verify the changes with similar tools as those used for
the design time models.

The remainder of this paper is structured as follows: Section
II provides a brief overview of the related work. Section III
explains our industrial setting. Section IV shows the approach
in detail. Section V demonstrates a use case. In Section VI we
shortly discuss the approach. Finally, concluding remarks and
future work are given in Section VII.

II. RELATED WORK

In the following subsections we describe three research
areas which are significant for our approach. The first area
is contract-based design, a well-known paradigm that we use
for capturing non-functional properties at design time and run
time. The second area is about self-adaptive software systems,
a method we utilize at run time. In the last subsection, we
present in brief Models@Run.time, a flavor of self-adaptive
software systems where models play a key-role.

A. Contract-based Design

Contract-based design usually sees a component as an
abstraction, a hierarchical entity that represents a single unit of
design [6] [7]. In the context of contract-based design a com-
ponent can represent e.g. a software module, a composition, a
complex system or even a physical device.

The essence of this paradigm is to decompose a component
into different independent views referred to as contracts, which
capture the behavior of a functional or non-functional property
under certain conditions [7] [8]. Functional properties describe

2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops

978-0-7695-6168-4/17 $31.00 © 2017 IEEE

DOI 10.1109/DSN-W.2017.23

67

2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops

2325-6664/17 $31.00 © 2017 IEEE

DOI 10.1109/DSN-W.2017.23

67c©2017 IEEE. Reprinted, with permission. From Proceedings of the 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), June 2017.

159

Paper 3 - Radiance 2017

the function of a system or component, i.e. behavior, input, or
output data. Non-functional properties (also known as extra-
functional) provide additional information and give insight
into the behavior and capability of a system or component
[9]. Examples of non-functional properties are safety, security,
portability, performance.

The goal of contract-based design is to significantly reduce
the complexity of design and verification by making functional
and non-functional properties manageable. Additionally, a
system can be viewed by selecting only appropriate contracts
of interest.

��������

	
�
��

���������

��������	

����
���
��������	

�
��	
��
��
�	������

�	��	
�
�
�	�������
�������
����

�	�����
�
��	
��
�
�������������
	������

Figure 1. Assumptions and guarantees of a contract.

Informally, a contract is a set of assumptions and guarantees
as illustrated in Figure 1.

An assumption asserts what a contract expects from the
environment (including interactions with other components) or
from the described component itself. Essentially it provides a
specific context for the guarantees. The condition contained in
an assumption can reference e.g. input data, events or system
properties. In general, the available variables are set or inferred
by the analysis environment.

A guarantee describes what a component provides to the
environment as long as the corresponding assumptions hold.
In the simplest case a guarantee states that a component just
works under the constrained context. More complex contracts
define limits for output data, environment characteristics or
non-functional properties such as timing.

In another work we presented a generic modeling lan-
guage for specifying contracts and contract-state machines
[10] which we are also using for our approach in this work.

B. Self-Adaptive Software Systems

Self-adaptive software modifies its own behavior in
response to changes in its operating environment. By
operating environment, we mean anything observ-
able by the software system, such as end-user input,
external hardware devices and sensors, or program
instrumentation. [11]

Self-adaptive software systems can follow internal or exter-
nal approaches; typically the external (architectural) approach
is used [12]. An internal approach interweaves application
and adaption logic based on programming language features
like exceptions, conditions, and parametrization. The issue
with that is that sensors, actuators, parallel adaption pro-
cesses and actual purpose of an application are complicated
to engineer within a single software design. This leads to

���������������	�� ����!����

"�
���
����#�!����

"�
�������#�!����

�
��	
��
�
$	
�%	
�	���#����	�� ������� ����
�� 	&����!��%���%	
��'�

�	
��	

�	
��	

�	
��	

�����

����%�

Figure 2. Parts of a self-adaptive software system (adapted from [13]).

notable drawbacks with respect to scalability, testability and
maintainability.

In an external approach, as illustrated in Figure 2, the
domain-specific application logic, which is termed Managed
Subsystem is monitored by a Managing Subsystem. The Man-
aging Subsystem is where the actual adaption logic resides.
It additionally monitors the Environment that may consist of
other software, hardware, network, or the physical context
(including humans). On the basis of monitored data and
analyzed problems, the Managing Subsystem decides whether
and what to adapt inside the Managed Subsystem.

In general, a Managing Subsystem itself incorporates an
adaptive loop that is responsible for reacting to problems
originating from the monitors. Muccini et al. reveal in a
systematic literature review [5] that, at least in literature, the
MAPE-K loop is by far the dominant adaptive loop for CPS,
with a share of 60%.

���	
	��%���
���

"	
��	

�
��!(� ���

�'�%���
)
	 �����

"�
����������
�

Figure 3. MAPE-K (adapted from [14]).

Figure 3 illustrates the MAPE-K adaptive loop [14]. It
consists of the steps Monitor, Analyze, Plan, Execute, and a
shared part representing Knowledge.

The Monitor step gathers information about the Managed
Element that is usually related to the current performance and
load of the system [15]. The Analyze step reasons about the
data, identifies problems and attempts to find the source or
cause of it. The Plan step reacts to the results of the Analyze
step and creates a set of actions to solve the problem. The last
step, termed Execute, implements these actions and changes
the Managed Element through actuators.

Knowledge is the central point where all the information
within a MAPE-K loop comes together. The Monitor step

6868

160

8. Publications

stores its observed data there, the Analyze step uses it to
find anomalies, the Plan step leverages it to create actions
and gathers its policies and goals from there, and finally, the
Execute step stores its record of executed actions in it.

Cultural
Traditions

Analysis &
Synthesis

PreviousExperiences
New

Information

Genetic
Heritage Decision

(Hypothesis)
Observations Action

(Test)

Unfolding
Interaction

With
EnvironmentFeedback

Feedback

Unfolding
Interaction

With
Environment

ActDecideOrientObserve
Implicit

Guidance
& Control

Feed

Forward

Feed Feed

Forward Forward

Unfolding
Circumstances

Outside
Information

Implicit
Guidance
& Control

John Boyd's OODA Loop

Feedback

Figure 4. OODA-loop [16].

In our approach we use a combination of MAPE-K with
John Boyd’s OODA loop. Colonel John Boyd was a United
States Air Force fighter pilot and Pentagon consultant who
developed the first version of his OODA-loop for explaining
how to achieve success in air-to-air combat in the 1950s. Later
he expanded his groundbreaking work and hypothesized that
it is the essence of winning and loosing of organizations and
people [17]. As pointed out by other authors, this also suits
well for self-adaptive system [18]. Figure 4 illustrates the type
of data that can be observed. The first step in the OODA-loop,
Observe, gathers, monitors, and filters data. Implicit guidance
and control over this observations have significant influence for
the following Orient step. In the Orient step a list of options
is derived through analysis and synthesis, previous experience,
new information, and genetic and cultural heritage (as the loop
is intended for humans). The derived list of options is then
forwarded to the Decide step where the best hypothesis is
selected via a ranking. In the last step, the Act, the selected
option is executed and tested whether the hypothesis was
correct. As pointed out by John Boyd, “orientation shapes
observation, shapes decision, shapes action, and in turn is
shaped by the feedback and other phenomena” [17].

C. Models@Run.Time

Models@Run.Time is a term for describing the field of
utilizing software models, specified according to the model-
driven engineering principles for self-adaptive software sys-
tems [19]. Opposed to traditional model-driven engineering,
the novelty in Run.Time refers to the fact that it describes the
architecture of software and systems at design time.

Giese et al. [20] distinguish between three different kinds
of run time models within a self-adaptive software system:

• System Models: This kind of models reflects an abstract
view of the system itself. It allows an adaptive system to
reason about the system and to simulate different kinds
of configurations. As a consequence a model of this kind
always needs to be in sync with the real system.

• Context Models: A run time model can be used to reflect
the context of a system and to specify it in a processable

way . The characteristics of the context in such a model
can either be derived directly from the environment by
sensors or indirectly derived from other observations.

• Requirements Models: This kind of models captures
the requirements and goals of a self-adaptive system. In
a way it sets the boundaries of what a system can do.
Usually this relationship is unidirectional, meaning that
a system is not intended to change its requirements, but
it can, prioritize one over another.

III. INDUSTRIAL SETTING

The industrial setting of our approach are distributed con-
trol devices that operate hydro-power plant units. Figure 5
illustrates a simplified overview of such an industrial control
system.

*!�	�	 �
���
��+
��

�	
�	��,���%�

���-.�

��
�	�

�%����	�

.
����%��
"	����

�������	!
�	�����

��
����"	����
���+

���+

%	
�	��

�	���
�%���	

./��+

."."

.���01121���&��
%	��	
�
��

3�����4���������,����	�
��

*�� ���
4��

�	�� ���
4�� �!%��%�

���&

/+�
�3+

�3+
�3+

�3+

/+� �3+ �3+ �3+

�	
�	�
,���%�$�� 	&�

4��

5�
��	

Figure 5. Overview of the target industrial control system.

On network view level, the control devices are connected
via Ethernet and operated by supervisory computers. These su-
pervisory computers are responsible for observing the state of
physical processes and adjusting parameters of control devices
in order to control the energy conversions. The observation
and adjustment actions are done by using so-called datapoints,
which are variables with specific data type such as Integer or
Boolean.

The control devices are connected to hydropower plant
units. Their functional responsibility is to operate these units
through one of the four different functions: excitation, syn-
chronization, protection and turbine control.

Technically, these devices have a programmable logic con-
troller (PLC) architecture. Concerning the hardware view, a
control device is built out of central modules and interface
modules. A central module consists of a communication CPU
(CCPU) and an application CPU (ACPU). The CCPU is re-
sponsible for network connections and controlling/monitoring
the ACPU. It runs a customized Linux distribution. From
the security point of view it protects the ACPU and verifies

6969

161

Paper 3 - Radiance 2017

incoming commands. The ACPU is a multi-core processor and
executes the actual control logic. It runs a real-time operating
system in order to ensure guaranteed cycle times. The interface
modules are connecting the control device with sensors and
actuators of the hydropower plant unit. Central modules and
interface modules are connected via Ethernet.

The control logic software executed by the ACPU of a
central module is component-based and heavily influenced by
the IEC 61131 standard for programmable logic controllers
[21]. It is hierarchically built out of components, compositions
and tasks. Components are termed Program Organization Units
(POU), and compositions are named Function Plans (FUP).
POUs are coded in the programming language C and stored
as binaries on the devices. Such POUs implement basic func-
tions ranging from simple logic gates to complex algorithms.
Consisting of POUs, FUPs are designed by plant engineers to
implement specific control logic for a hydropower plant unit
and are executed by cyclic tasks in real-time on the ACPU.

FUPs operate on datapoints that are set and read by the
interface modules. The necessary datapoints are collected at
the start of a cyclic task, the FUPs are then executed and the
calculated datapoints are written back. The interface modules
receive these datapoints and actuate accordingly. Datapoints
can also be shared with other control devices or supervisory
computers.

IV. APPROACH

Figure 6 illustrates an overview of our approach. On the
left hand side we see models representing the configuration
and logic of the industrial control system. Configurations of
this kind are created manually by plant engineers and can
be verified. On the right hand side we find a self-adaptive
software system that detects anomalies and reacts to them. It
verifies changes of the run time system by utilizing models
originating from design time. These two parts are connected
by a transformation step illustrated in the middle of Figure 6.
In the following sections we discuss the three parts in more
detail.

A. Design Time

At design time the goal is to have an abstract representation
of the intended control system in order to ensure that the target
system is correct in terms of functional properties such as
datapoint compatibility and also in non-functional properties
such as timing, security, safety.

Our approach is to use textual domain-specific modeling
languages that enable plant engineers to specify the control
logic in the form of tasks and FUPs. It is possible to specify
how tasks are deployed and on what devices/central modules.

Figure 7 illustrates the four main kinds of domain-specific
modeling languages that are used for describing the control
logic and an industrial control system.

The Component Metamodel is used for specifying appli-
cations, cyclic tasks, FUPs, and the interfaces of POUs. An
application is a container modeling the interaction between
cyclic tasks. This is necessary because output datapoints from

tasks can be used as input by tasks running on other devices.
An application model contains this dependency information.
The Component Metamodel is supposed to be manually used
by plant engineers.

The Resource Metamodel is representing physical control
systems. It includes interface modules, central modules, con-
trol devices, hydro-power plant devices and various network
devices. This kind of models are created by querying the
real networked system and are automatically managed by the
tooling.

The Deployment Metamodel is used by plant engineers in
order to specify where the control logic defined with the
Component Metamodel is deployed.

The System Configuration Megamodel is the entry model for
processing a configuration. It refers to the used applications,
deployments, and physical resources. A megamodel is a model
containing both the models and the relations between those
models.

Supporting these modeling languages we use a contract-
based design modeling language, which we present in another
work [10]. Each entity such as a task or hardware part
can basically refer to contracts in order to enhance them
with arbitrary non-functional properties like timing, portability,
security and safety.

Figure 6 illustrates on the left hand side how models created
with the modeling languages from above can appear. It shows
an application containing two tasks where one depends on the
other. The dependency is deployed onto a specific physical
connection, while the tasks reside on separate control devices.
As we can see, each entity can be annotated with a contract.

Based on these models a system configuration can be ver-
ified in different ways. One way is structural. In the simplest
form a configuration of this kind can be verified as to whether
the connected datapoints between tasks, FUPs, and POUs are
compatible. Another simple verification is to check whether
connected distributed tasks deal with the same hydro-power
plant unit or if they are misconfigured.

Utilizing contract-based design enhances these structural
checks by adding a flexible mechanism that allows the in-
troduction of arbitrary non-functional properties. For instance,
a POU interface can be enhanced by a timing contract that
guarantees a specific timing based on an assumed CPU, or
it states how much memory it needs in order to guarantee
its functionality. A task can be enhanced by adding contracts
which state that it needs datapoints within a certain period
and that they need to be measured using redundant and inde-
pendent means. The structural information and the contracts
can be processed by tools that are specialized for specific
properties. The errors and warnings produced by such tools
can be expressed using a separate modeling language that can
annotate entities from the metamodels above.

We realize the metamodels technically using the Eclipse
Modeling Framework [22] and use Xtext [23] for designing
textual domain-specific languages. Additionally, we leverage
the KLighD framework [24] for automatically visualizing the
models graphically. Specialized verification tools can either

7070

162

8. Publications

Design�Time Run�Time

Transformation

Control�
Device

Control�
Device

Application

Cyclic�
Task

FUP
POU

POU
POUFUP

POU POU POU

Cyclic�
Task

deployed�on

deployed�on

deployed�on
Observe Act

Orient Decide

Knowledge
Base

Control�
Device

Scari

Control�Device

Interface�
Module

Central�Module
CCPU

ACPU

controls
IFCPU

Scari

Scari

Hardware�
Faults

Security
Attacks

Undetected
Bugs

Environmental�
Anomalies

Contract

Contract

Contract

Figure 6. Overview of the presented approach.

System�Configuration�
Megamodel

Deployment�
Metamodel�

Component�
Metamodel

Resource�
Metamodel

Figure 7. Overview of the design time metamodels.

utilize the models directly, or can be transformed to arbitrary
formats.

B. Run Time

The goal at run time is to have a software that adapts
the control system to various anomalies and faults in order
to increase the reliability and security. We are not aiming to
change the control logic itself. Instead, we want to ensure that
the hardware and software stack below the intended control
logic can perform as long as possible. In order to achieve this
we are reusing the models from design time as an information
source and verification input.

Our overall aim is to detect and adapt to anomalies and
faults from different areas:

• Hardware faults: As an example, permanent memory
cell faults in RAM or CPU registers, used by the ACPU
or CCPU, can be detected with memory checks. After
such a detection, a faulty location could be circumvented
by reconfiguration of the operating system or by moving
the control logic to another module or device. Further,
permanent hardware faults in interface modules could be
recognized and handled by using an alternative interface
module. A control device should not only be able to
recognize its own faulty hardware but also that of others.
As datapoints are distributed to other control devices
controlling other parts of the same hydropower plant
unit, they should be able to observe and analyze that
something might be wrong with the hardware of other
control devices or networking devices. Ultimately, the
control logic running on one device could be migrated
to alternative ACPUs, central modules, or devices.

• Security attacks: Each control device in our setting
knows from whom it receives or sends data to based
on its configuration. This information could be used for
detecting network security attacks or attackers that imitate
control devices. Infected devices can be detected when
the datapoints they are distributing suddenly develop odd
behavior or do so over time and do not reflect the real en-
vironment. Additionally, unexpected behavior of devices
can hint to security incidents, e.g. attempting access to
control devices which they are not supposed to. Revealed
attacks can be handled by blocking and isolating infected
devices or network resources. Other kinds of attacks are
for instance attempts to access restricted resources, or
physical manipulation of sensors.

• Undetected Bugs: Software running on top of modules
can be updated in order to gain new features or fix bugs.
Albeit being a very useful feature to be able to update
the software, these changes may introduce new bugs.
Resource and performance monitors which observe the
behavior of tasks could be used to detect changed and
different behavior patterns.

• Environmental anomalies: The sensors and actuators
which are the connection between the PLCs and the
power plant environment (e.g. the water turbines) can
break or drift over time. Detecting such environmental
anomalies and reacting to them is also an important area
in order to make a control system more reliable.

Detection and adaption for these areas could be done by im-
plementing separate mechanisms specialized to one anomaly
with a corresponding adaption method. However, this is a
complex task involving the orchestration of these mechanisms
in parallel and to ensuring that adaption mechanisms do not
interfere with each other. Furthermore, some anomalies are
cross-cutting. For instance, if a drift of a datapoint on a
device is observed, this could indicate a hardware fault or a
security attack. If a hardware fault and a security mechanism
would react at the same time this could be fatal for the
hydropower plant. We are thus proposing an infrastructure that
allows orchestration of such diverse detection and adaption

7171

163

Paper 3 - Radiance 2017

3#���� �%�

3��
� ,�%���

���
�

�!
�	���
�	%���	�

5�%	���
����	
�
,�%���	
�"�&� ���
�"�&�

���
�,�%���	
�
"�&�

�%��	
�*�
���

1�$	����%���	

$�5�%	���
����	
� 1�5�%	���
����	

$����
�

1����
�6�7$��%��	
�8

�"	
��	

9	���"	���

�����

.
�	����	
 ���
��

)
	 �����
:���

1�$	����%���	
 ���
� 1�$	����%���	
 ���
�

1�$	����%���	

���
�

1�$	����%���	

���
�

Figure 8. Scari adaptive loop.

mechanisms and ensures that only one is carried out at one
point in time. We name our infrastructure Scari (Secure and
reliable infrastructure).

Figure 8 illustrates the adaptive loop of Scari. It consists of 5
parts, which are Observe, Orient, Decide, Act, and a common
Knowledge Base.

The Observe part consists of Monitors that are specialized
in discovering and measuring specific anomalies, for instance
a drift in data. These monitors notify an arbitrary numbers of
interested Syndrome Processors, residing in the Orient part.
The Syndrome Processors are implementing a specific detec-
tion mechanism e.g. for hardware faults or security attacks.
Technically, they can use any viable method for detection
like machine-learning or simple thresholds. If one or several
Syndrome Processors diagnose a problem, they recommend
plan types for handling a situation. For instance a hardware
fault Syndrome Processor may recommend circumventing a
damaged module, while a security Syndrome Processor may
recommend isolating a device. Next, the Recommendation
Decision Maker selects the best recommendation on the basis
of a definable prioritization for the covered events and chosen
plan types. The selected recommendation is then forwarded
to the Plan Maker that creates the actions for the plan type.
Some plan types may be realized in different ways, we thus
added a Plan Decision Maker that selects the plan with the
least affected systems/resources and the lowest number of used
actions. In the final part, the plan is executed by a Action
Handler, and the system is adapted to the situation diagnosed
by a Syndrome Processor. Each of the entities of the Decide
and Act parts feed back their states as events. This enables the
Syndrome Processors to log the state of their recommendations
and to be notified in turn that the system has adapted. The
Knowledge Base provides support for the other four parts. It
contains the deployed models, including contracts, from design
time and additional run time information. It serves as a source
of knowledge for the Observe, Orient and Decide parts, while
the Act part stores the executed changes of the system there.

The combination of MAPE-K with OODA leads in our
opinion to the best of both concepts. MAPE-K introduces
the Knowledge Base as a common information source for the
different steps. OODA adds an explicit Decide part which
is useful for the selection of recommendations. The Plan

step of MAPE-K is distributed over several loosely coupled
entities. We also take from OODA that each step gives
feedback to Monitors and Syndrome Processors. This allows
them to consider what happened with their notifications and
recommendations.

As can be seen in Figure 6 on the right side, Scari runs on
the ACPU and CCPU of each central module and on different
network resources above. Each of these instances incorporates
the five parts of the Scari adaptive loop, except the ACPU
which lacks the Knowledge Base for performance reasons.
This hierarchical organization of Scari has two advantages:

One is that a Knowledge Base only needs to know its
subgraphs. If a World Model on a node changes, information
is only propagated up to the parent nodes. A Knowledge Base
may be configured to prune lower node data if it is not needed
on the higher levels. For memory efficiency, information is
only stored inside the nodes and up to specific layers, where
it is actually needed. Distributing all information on all nodes
would additionally lead to more network traffic.

The second advantage is that an adaptive loop only needs
to handle its subgraph. A loop does not need to manage
other parts of the overall control system which also eases
the configuration of Scari. If it is not possible to adapt to an
event occurring on a node, it can be escalated to a parent
node that has more knowledge, more resources, and can
therefore leverage more powerful adaption mechanisms. In our
hydropower setting, it is conceivable that these adaption layers
are even laid over different hydropower plants, where they are
acting on a greater time scale.

Technically, we implemented Scari in C++ together with
the Qt framework [25]. The Knowledge Base uses a C++
modeling framework developed by us and inspired by the
Eclipse Modeling Framework [22]. It leverages the libgit2
library [26] for distributing models. Scari itself with its differ-
ent adaptive layers is intended to be statically configured in
advance. Furthermore, the architecture allows to dynamically
add monitors, syndrome processors, plan creation mechanisms
and actions at run time.

C. Transformation

The transformation from the design time models to the run
time models resides on a supervisory computer. Next, the run
time models are deployed by using the Action Handlers which
set the corresponding Knowledge Bases. The other direction
works by cloning a Knowledge Base to a supervisory computer
where the run time models are transformed to a design time
configuration.

V. USE CASE

We demonstrate in the following use case how models at
design time appear and how they can be relevant for run time
adaptions.

A. Design Time

Figure 9 illustrates a visualization of the models at design
time. A cyclic task with two FUPs is deployed on the central

7272

164

8. Publications

module of control device A. Datapoints are sent to control
device B over Ethernet. The CCPUs are responsible for
shifting datapoints from one hardware interface to another and
therefore introduce a certain delay. The execution of a POU
takes a specific time depending on the speed of the processor.
Timings are annotated as contracts and provided in advance.
The timing for a functionality on a processor is measured
extensively and packaged with the software deployed on the
device. It is the responsibility of the tooling to gather the
contracts of the hardware resources. The timing from the POUs
is also given and packaged with the interfaces.

�	
�	��,���%���
.
����%��
"	����

��
����"	����
���+

���+

./��+

."."

�	
�	��,���%���
.
����%��
"	����

��
����"	����

���+

���+

./��+

."."

����
��

"	�������������
��!(��
5����������

��
��	����#�%&
�	��

	������	���

� ��%�

�	
��%�;
��������	
;��	%���	
����
���;�!�<�(�=������!

�!%��%�
���&

/+�
�3+

�3+
�3+

�3+

/+� �3+ �3+ �3+

�	
��%�;
��������	
;��	%���	�
����
���;�'�=���'�%���	
�����

Figure 9. Design Time.

In order to verify a model of this kind it can be transformed
into data that a timing analysis software can process. This
software could calculate the worst case, average case and
best case behavior, taking the Ethernet network into account.
The results are then transformed back into a simple modeling
language that annotates entities with errors and warnings.

If the various verifications are successful the design time
model can be transformed and deployed by utilizing the Ac-
tion Handlers. The available Monitors, Syndrome Processors
and the configurations of the Decision Makers have to be
configured separately. However, the Monitors and Syndrome
Processors can adjust themselves depending on the deployed
design time models.

B. Run Time
Figure 10 illustrates the case of a permanent hardware fault

residing on an interface module. A Monitor running on the
ACPU can observe if a datapoint is stuck and notify the higher
Scari loop residing on the CCPU. The Syndrome Processor
can reach the conclusion that there is probably a permanent
hardware fault on the interface module. The Scari loop placed
on the CCPU cannot change other devices and only knows
about the architecture of nodes hierarchically below it. It
thus escalates the situation to a higher loop that has more
knowledge and resources.

Here, on this higher level, a Syndrome Processor could con-
clude that the faulty datapoints can be replaced by datapoints

*!�	�	 �����
��+
��

�	
�	��,���%���

.
����%��
"	����

��
����"	����

���+

���+

%	
�	��

./��+

�	
�	��,���%���

.
����%��
"	����

��
����"	����

./��+

���+

���+

%	
�	��
�%�� �%��

"	
��	

� ��%�3#���� �%�

3��
� ,�%���

)
	 �����
:���

��
�	��
�	

Figure 10. Run Time.

from another device that is connected with the same hydro-
power plant unit. This is possible because the four different
functions excitation, synchronization, protection and turbine
control are carried out by different devices. In such a case, the
Syndrome Processor first adjusts a copy of the model and veri-
fies it by utilizing similar tools as the tools used for verification
of the design time models. For example, it verifies whether
the timing contracts are still met. If the verification process is
completed successfully, the Syndrome Processor recommends
changing the system. The Recommendation Decision Maker
approves the recommendation if it is the only one or if it has
a higher priority than recommendations from other Syndrome
Processors. It could reject a recommendation if the system has
already changed in the meantime. After the acceptance, the
Plan Maker creates the specific plan containing the intended
actions. Next, if there are several possible plans, the Plan
Decision Maker decides for the optimal plan depending on
some criteria (e.g. least number of actions, least number
of involved devices), which is then executed by an Action
Handler. Finally, the faulty datapoints are replaced by valid
ones and the device can continue to operate.

Note, that in the presented use case, we know beforehand
that the cause is a hardware fault. Syndrome processors must
analyze notifications by running algorithms that detect such
patterns. It might also be that there are syndrome processors
which are dedicated to diagnose security-related issues and
interpret the situation differently.

VI. DISCUSSION

Having a precise representation and the respective verifi-
cation tools increases the confidence into a control system.
However, it requires a rigorous development process where
functional and non-functional properties of software compo-
nents, hardware, and the dependencies between them are mea-
sured and captured in detail. This is difficult when software
components are provided by different vendors. Solving this
issue would require at least strict conventions and interface
design as well as strong contracts and standards. Furthermore,

7373

165

Paper 3 - Radiance 2017

a thorough verified representation does not guarantee that it
is working as intended by a plant engineer. The control logic
itself can still be flawed which relates to the halting problem.

Applying an external self-adaptive software system for
dealing with problems is a promising approach. The modular
architecture allows adding arbitrary technologies for detection
and adaption. It is even possible that syndrome processors
recommend changing parts of the adaptive loop itself. They
could recommend adding or replacing monitors, syndrome
processors, plans, and actions. In this way, it becomes fully
meta-adaptive. Together with models from design time, a
system of this kind gains an understanding of what is being
executed and about the inter-dependencies. In the context of
adaption, a challenge for such systems would be to assure that
they do not do more harm than good in their effort to prevent
arising problems. The contracts from design time support the
verification. Concerning security, it is important to secure the
meta-adaptive system itself, otherwise it would represents a
potential additional attack surface.

The transformation from run to design time is also an impor-
tant property of our approach. This allows plant engineers to
use a modified system as new base model for manual changes.
Furthermore, it visualizes the current state which supports
understanding and maintaining such systems.

VII. CONCLUSION AND FUTURE WORK

In this work we outlined a novel approach of how models
together with contracts can be utilized at design and run time
in an industrial control system setting. At design time, textual
domain-specific languages are leveraged for specifying control
logic that can be verified by various tools. Through the use
of contract-based design we support the enrichment with non-
functional properties, such as timing, resource consumption,
safety and security. At run time, we propose a self-adaptive
software system that is built around models as a source of
knowledge and verification. The goal of this self-adaptive
software is to increase the reliability and security. It utilizes
a novel adaptive loop that is a combination of the MAPE-K
and OODA loop.

At the time of this writing, we implemented the tex-
tual domain-specific languages and the Eclipse-based tooling
around them. We are currently exploring the space of vali-
dation and verification possibilities in order to increase the
confidence that a configuration is correct. We also plan to
do performance measurements and case studies in order to
gather more data about the suitability of this adaptive loop in
embedded systems.

We have realized the adaptive loop of Scari itself in the
context of the run time part of our approach and are in
the stage of implementing and trying out different detection
and adaption mechanisms. In the near future we plan to
investigate methods for configuring a self-adaptive system and
ways of dealing with interferences caused by human operators.
Furthermore, we intend to explore how models can help to
assure that an adaption really performs as intended.

REFERENCES

[1] NIST, “Foundations for Innovation in Cyber-Physical Systems,” Tech.
Rep., 2013.

[2] M. S. Alhakeem, P. Munk, R. Lisicki, H. Parzyjegla, H. Parzyjegla, and
G. Muehl, “A Framework for Adaptive Software-Based Reliability in
COTS Many-Core Processors,” in ARCS 2015.

[3] A. Höller, B. Spitzer, T. Rauter, J. Iber, and C. Kreiner, “Diverse
Compiling for Software-Based Recovery of Permanent Faults in COTS
Processors,” in 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshop (DSN-W). IEEE, 2016.

[4] B. Miller and D. Rowe, “A survey SCADA of and critical infrastructure
incidents,” in RIIT ’12. ACM Press, 2012.

[5] H. Muccini, M. Sharaf, and D. Weyns, “Self-adaptation for Cyber-
physical Systems: A Systematic Literature Review,” in SEAMS. ACM
Press, 2016.

[6] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems,”
European Journal of Control, vol. 18, no. 3, 2012.

[7] P. Nuzzo, Huan Xu, N. Ozay, J. B. Finn, A. L. Sangiovanni-Vincentelli,
R. M. Murray, A. Donze, and S. A. Seshia, “A Contract-Based Method-
ology for Aircraft Electric Power System Design,” IEEE Access, vol. 2,
2014.

[8] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis, “Multiple Viewpoint Contract-Based Specification and
Design,” 2008.

[9] S. Sentilles, P. Štěpán, J. Carlson, and I. Crnković, “Integration of Extra-
Functional Properties in Component Models,” in Component-Based
Software Engineering. Springer Berlin Heidelberg, 2009.

[10] J. Iber, A. Höller, T. Rauter, and C. Kreiner, “Towards a generic model-
ing language for contract-based design,” in ModComp 2015 Workshop
Proceedings.

[11] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G. Johnson, N. Med-
vidovic, A. Quilici, D. Rosenblum, and A. Wolf, “An architecture-based
approach to self-adaptive software,” IEEE Intelligent Systems, vol. 14,
no. 3, 1999.

[12] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, no. 2, 2009.

[13] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer,
J. Wuttke, J. Andersson, H. Giese, and K. M. Göschka, “On Patterns
for Decentralized Control in Self-Adaptive Systems,” in Software Engi-
neering for Self-Adaptive Systems II, 2013.

[14] J. Kephart and D. Chess, “The vision of autonomic computing,” Com-
puter, vol. 36, no. 1, 2003.

[15] Y. Brun, R. Desmarais, K. Geihs, M. Litoiu, A. Lopes, M. Shaw, and
M. Smit, A Design Space for Self-Adaptive Systems. Springer Berlin
Heidelberg, 2013.

[16] Wikimedia Commons. (2014) Ooda loop. [Online]. Available:
https://commons.wikimedia.org/wiki/File:OODA.Boyd.svg

[17] J. R. Boyd, “The Essence of Winning and Losing,” 1996. [Online].
Available: http://dnipogo.org/john-r-boyd/

[18] A. Chandra, P. R. Lewis, K. Glette, and S. C. Stilkerich, Reference
Architecture for Self-aware and Self-expressive Computing Systems.
Springer International Publishing, 2016.

[19] G. Blair, N. Bencomo, and R. B. France, “Models@ run.time,” Com-
puter, vol. 42, no. 10, 2009.

[20] H. Giese, N. Bencomo, L. Pasquale, A. J. Ramirez, P. Inverardi,
S. Wätzoldt, and S. Clarke, Living with Uncertainty in the Age of
Runtime Models. Springer International Publishing, 2014.

[21] K. H. John and M. Tiegelkamp, IEC 61131-3: Programming Industrial
Automation Systems. Springer Berlin Heidelberg, 2010.

[22] Eclipse Foundation, “Website of the EMF Project,”
http://www.eclipse.org/modeling/emf/, 2017.

[23] ——, “Website of the Xtext Project,” http://www.eclipse.org/Xtext/,
2017.

[24] C. Schneider, M. Spönemann, and R. von Hanxleden, “Just model!
putting automatic synthesis of node-link-diagrams into practice,” in
IEEE Symposium on Visual Languages and Human Centric Computing,
2013.

[25] The Qt Company, “Website of the Qt Framework,” https://www.qt.io/,
2017.

[26] LibGit2, “Website of the libgit2 Library,” https://libgit2.github.com/,
2017.

7474

166

8. Publications

Patterns grasping the trade-off between distributing
data and information
JOHANNES IBER, TOBIAS RAUTER, MICHAEL KRISPER and CHRISTIAN KREINER, Institute
of Technical Informatics, Graz University of Technology

Today, we are at the dawn of the age of cyber-physical systems and internet of things. One of the commonalities these areas
share is that such systems typically consist of networks of entities with means to gather data about the state of the surrounding
environment. A fundamental design decision in such settings is whether to transfer data to more capable entities or to ana-
lyze data at the sensing entity and to share the resulting information. With this work, we discuss this trade-off by grasping
it with three patterns, namely the LOCAL DATA PROCESSING, CENTRAL DATA PROCESSING, and MIXED DATA
PROCESSING patterns.

CCS Concepts: •Software and its engineering→ Patterns; Designing software;

Additional Key Words and Phrases: raw data, information, distributed systems

ACM Reference Format:
Johannes Iber, Tobias Rauter, Michael Krisper, and Christian Kreiner. 2017. Patterns grasping the trade-off between distributing
data and information EuroPLoP (July 2017), 7 pages.
DOI: https://doi.org/10.1145/3147704.3147724

1. INTRODUCTION

In many kinds of distributed systems there is the fundamental decision to make whether raw data or
refined information should be distributed for providing a service. In a nutshell, distributing raw data
has the advantage that every interested entity can know everything. Distributing information (with
this term we mean states or statements mined from the raw data) has the advantage that it is usually
more compact and reliefs receiving entities from reprocessing raw data. For instance, a temperature
sensor could continuously stream its sensed temperature to an interested entity. Such a case we con-
sider as distributing raw data. Distributing information would be to average the temperature of the
last ten minutes. There is a loss of detail, but the network gets less strained and the interested entity
does not need to carry out analyzation mechanisms. We use the term entity for all participants of a
distributed system, e.g. a hardware device, a software running on a smartphone, or a server.

The primary target audience of this work are engineers that face the challenge of designing a reactive
distributed system. In the following, we present our attempt of grasping the named trade-off with the
LOCAL DATA PROCESSING, CENTRAL DATA PROCESSING, and MIXED DATA PROCESSING
patterns. In Section 3 we present the patterns in the context of self-driving vehicles. Finally, Section 4
concludes this work.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-4848-5/2017/07...$15.00
DOI: https://doi.org/10.1145/3147704.3147724

Proceedings of the 22nd European Conference on Pattern Languages of Programs

c©2017 Authors. Reprinted, with permission. The definitive version was published in Proceedings of the 22nd European Conference
on Pattern Languages of Program (EuroPLoP 17), July 2017.

167

Paper 4 - EuroPLoP 2017

2 • J. Iber, T. Rauter, M. Krisper and C. Kreiner

2. PATTERNS

2.1 LOCAL DATA PROCESSING

Problem. Entities, part of a distributed system, need to provide services. For doing that, they have
to exchange states about the environment or themselves.

Forces

—Throughput: Distributing raw data strains the available network.
—Performance: Analyzing mechanisms can be executed on the entity.
—Standardization: Protocols for information sharing are available.
—Dependency: Communication between the entities is necessary.

Solution. Each entity is responsible for analyzing its sensed raw data to create higher level informa-
tion. The entities exchange higher level information instead of raw data streams. Figure 1 illustrates
the case that each participating entity processes its own data and shares the resulting information
with each other.

Entity

Entity

Entity

Actuating/Sensing

Analyzing

Information Flow

Fig. 1. LOCAL DATA PROCESSING

Consequences

+ Information is interpreted locally from data right after it is gathered by an entity .
+ The size, in terms of bytes, and frequency of information is lower than raw data, therefore this

pattern produces less network traffic than distributing raw data.
+ Information sharing entity is in control of deciding what is private or confident.
+ Entities do not depend on a central entity.
- Refining information from raw data consumes computing power which may not be available on sens-

ing entities.
- Big data effects, e.g. detecting patterns in a large amount of data, are complicated to achieve as every

entity only sees its part of the environment.
- Each entity needs to be updated if one wants to change the analyzing software.
- If too much information is distributed, the network is still strained.

Known Uses

—Classic Supervisory Control And Data Acquisition (SCADA) systems consist of master terminal units
(MTUs) and remote terminal units (RTUs). RTUs are devices that control objects in the physical

Proceedings of the 22nd European Conference on Pattern Languages of Programs

168

8. Publications

Patterns grasping the trade-off between distributing data and information • 3

world, like hydro-power plant units, and which are themselves controlled by MTUs. An example
of a RTU is a programmable logic controller, where a control logic processes data sensed from a
physical object and reacts within a fixed period of time. Such controllers are supervised by local
MTUs that can intervene by adjusting parameters or by collecting live data from the RTUs. The
RTUs themselves can also be interlinked in order to provide data (for instance the current voltage) to
each other. Depending on the timing constraints, a RTU may need to control within a short period of
time and thus refines the information of the data itself in order to calculate an appropriate response
[Boyer 2009]. This is a realization of the presented pattern if such a RTU shares the calculated
information and not a stream of the sensed raw data with a MTU or other RTUs.

—Vehicle-to-vehicle and vehicle-to-infrastructure technologies are about sharing e.g. safety-relevant
information between vehicles and infrastructure like traffic lights, street signs, and roadways. For in-
stance, vehicles could share threats or hazards originating from other vehicles and take pre-emptive
actions to avoid and mitigate crashes [Narla 2013]. An application of the LOCAL DATA PROCESS-
ING pattern in this context is the local refining of environment information from raw data coming
from various techniques like radar, lidar, GPS, and computer vision. The interpreted information is
then shared with other vehicles that can take such a information into account for refining their own
state of the environment.

—It is typical in wireless sensor networks that sensor nodes preprocess the raw data for lowering
the cost of communication [Tubaishat and Madria 2003]. Thus, such nodes disseminate information
instead of raw data.

2.2 CENTRAL DATA PROCESSING

Problem. A service provided by an entity needs raw data sensed by other entities. Collecting higher
level information from others would hide patterns and dependencies which would lead to a worse
service.

Forces

—Throughput:Distributing raw data to all entities participating in the distributed system strains the
network.

—Performance: Most entities are too weak for leveraging costly analyzing mechanisms.
—Timing: A reaction does not need to follow immediately after a data has been analyzed.
—Analyzability: Only distributing information would hide patterns and dependencies.

Solution. Gather raw data at one central entity responsible for the intended service and utilize pow-
erful analysis methods (e.g. machine learning) for calculating appropriate actions. Other entities in the
network are only responsible for sensing the environment, transmitting raw data to the accumulating
entity and executing actions send from that entity. Figure 2 shows an entity that accumulates raw
data from others and shares the refined information with interested entities.

Consequences

+ All data are available to the analyzing entity.
+ The data analyzer can be optimized or replaced at one point.
+ Eases the use of online machine learning algorithms as more training data are available.
+ Easier to develop as one has only to deal with data at one point.
+ Cheap sensing and actuating entities.
- Transferring raw data produces a lot of network traffic and it may need some time.
- Entities between the data source and sink need a certain amount of memory for temporary storage.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

169

Paper 4 - EuroPLoP 2017

4 • J. Iber, T. Rauter, M. Krisper and C. Kreiner

Entity

Entity

Entity

Actuating/Sensing

Analyzing

Information Flow

Raw Data Flow

Fig. 2. CENTRAL DATA PROCESSING

- Central point needs a decent understanding of where the data comes from and about the participat-
ing entities.

- If a sensing entity looses its network connection it may become useless.
- Central entity may become a single point of failure.
- Central entity knows everything. This is relevant concerning privacy.
- Central entity may need a vast amount of computational power.

Known Uses

—The current state-of-the-art concerning the integration of the internet of things and cloud computing
is an application of the CENTRAL DATA PROCESSING pattern. That is, lots of things feed data to
clouds, where it is processed and refined to information that is the base for providing an intelligent
service [Daz et al. 2016]. For instance, a microphone may record a spoken command that is send to
the cloud where the command gets analyzed. A response to a command could be that the living room
lighting is switched on.

—[Reinfurt et al. 2016] mention Aggregating Device Gateway as a variant of the Device Gateway pat-
tern where a gateway for internet of thing devices accumulates messages for refining them to a
higher level information. E.g. a gateway averages the temperature readings of several devices and
forwards such an information to the backend once a minute.

—As mentioned in the pattern above, classic SCADA systems consist of MTUs and RTUs. Depending
on the supervised physical process, it may be required for some control calculations to centralize
raw input data at a MTU. Such a MTU would complete the control functions and send the resulting
orders to the appropiate RTUs to effect the control [Boyer 2009].

—[Sousa et al. 2017] present the LOG AGGREGATION pattern where, in the domain of cloud comput-
ing, log files of different services are stored at a central entity. The main advantage is that developers
can quickly query and visualize information from logs. This is useful for debugging a system con-
sisting out of different services. For instance it is easier to track the behavior of a single user over
different services in order to find out what went wrong.

2.3 MIXED DATA PROCESSING

Problem. Entity needs to provide a service even if network connections fail. The intended service
can be improved if raw data and information from other entities is available.

Forces
Proceedings of the 22nd European Conference on Pattern Languages of Programs

170

8. Publications

Patterns grasping the trade-off between distributing data and information • 5

—Connectivity: Network is temporary available and is unreliable.
—Analyzability: The intended service gets better if more data and information is available.
—Standardization: Protocols for sharing data and information are available.
—Availability: If network fails, the entity still has to provide a (degraded) service.

Solution. The entity realizes an analyzing mechanism that provides the service in a degraded form
with the stored or currently sensed data and refined information. If a network is available, the entity
may collect information or raw data from others. Another possibility would be that the entity connects
to an other realizing the CENTRAL DATA PROCESSING pattern as soon as a network is available.
Figure 3 shows entities that can share raw data or information with more capable entities. If a con-
nection gets cut off the single entity is able to provide a degraded service.

Entity

Entity

Entity

Actuating/Sensing

Analyzing

Information Flow

Raw Data Flow

Unreliable Network

Fig. 3. MIXED DATA PROCESSING

Consequences

+ Provided service can degrade if network is not available.
+ Reduces the impact of an unreliable network.
+ Minimizes the latency between sensing data and providing a reaction.
- Not suitable for every kind of service.
- Entity needs more computational power than it would need for just transferring sensed data.
- The more powerful entity may know everything. This is relevant concerning privacy.

Known Uses

—Navigation applications can calculate routes without an internet connection. If an internet connec-
tion is available, such systems can leverage powerful datacenters that have access to current traffic
information. With traffic information the calculated routes can be optimized and a more useful ser-
vice is provided to a user.

—[Reinfurt et al. 2016] present the Local Processing Gateway as a variant of the Device Gateway
pattern. Such a gateway mirrors or replaces functionality of the backend. This can minimize the
communication with the backend and reduces latency. Another advantage is that it reduces the
impact from a connection loss between gateway and backend.

—Edge-centric computing is a novel paradigm where computations and services are not gathered in
central clouds, but also reside on edge entities, like smart phones, tablets, routers, or media centers

Proceedings of the 22nd European Conference on Pattern Languages of Programs

171

Paper 4 - EuroPLoP 2017

6 • J. Iber, T. Rauter, M. Krisper and C. Kreiner

Navigation satellite system

Cloud based infrastructure for
driving support

Vehicles report
driving events into
the cloud and to
other vehicles

Vehicles get driving situations,
recommendations, commands
from the cloud and other
vehicles

Fig. 4. Self-Driving Vehicle Scenario (Based on [Messnarz et al. 2017])

[Garcia Lopez et al. 2015]. Based on the needs of a service, such a system would dynamically recon-
figure itself to process data locally together with near entities or fall back to powerful clouds where
a vast amount of data and information come together.

3. SELF-DRIVING VEHICLE SCENARIO

Figure 4 illustrates an advanced driver assistance system where vehicles are connected to a cloud
based infrastructure [Messnarz et al. 2017]. The connections between the vehicles and cloud are based
on well established mobile internet technologies. Disconnections can take place at any time and cannot
be avoided. That implies in-vehicle systems have to be capable of maintaining some mode of safe
operation even when suddenly disconnected. Vehicles determine their position by fusing the results of
more than one positioning system, thereby improving position accuracy. Navigation satellite systems
based on GPS, Glonass, Galileo, and more, are well established and globally available. Supplementary
technologies include received signal strength based positioning, e.g. by using mobile internet base
stations.

When connected, vehicles can report and receive data to and from cloud services that operate on a
fleet level, as well as communicate with nearby other vehicles (vehicle-to-vehicle) and infrastructure.
Vehicles reporting to a fleet-level infrastructure can supply a broad range of driving, environment, and
sensor events together with the vehicle identification and position to the cloud infrastructure. On this
level it becomes possible to analyze data on overall fleet level, and such analysis can include the vehicle
position. In turn, vehicles can receive for their current position both fleet-typical behavior under certain
Proceedings of the 22nd European Conference on Pattern Languages of Programs

172

8. Publications

Patterns grasping the trade-off between distributing data and information • 7

environmental conditions (matching the current conditions), and any real-time exceptional conditions
(e.g. accident warnings, deviations of nearby vehicles from normal behavior).

Now, in such a system we find the patterns from above multiple times. The vehicle-to-vehicle com-
munication is a realization of the LOCAL DATA PROCESSING pattern. Vehicles locally refine their
sensed data and share high-level information, like deviations of nearby vehicles or accidents, directly
with each other. The CENTRAL DATA PROCESSING pattern can be found in the relationship of the
vehicle with the cloud. The cloud refines the received data from the vehicles and returns information,
like steering related information, to a specific vehicle. The MIXED DATA PROCESSING pattern can
also be found in this relationship e.g. for navigation routes. The cloud may provide precise and near to
optimal routing information, but if a connection gets disrupted the vehicle can navigate on its own.

4. CONCLUSION

To sum up, we presented three patterns describing different strategies of handling data. The LOCAL
DATA PROCESSING pattern illustrates the case that entities, part of distributed system, are locally
refining information. The CENTRAL DATA PROCESSING pattern introduces the concept of refining
information from raw data at a central entity. The MIXED DATA PROCESSING pattern reflects a
combination of these two patterns, where an entity decides dynamically whether to refine information
locally or to propagate the data to a central entity. We discussed these patterns with their consequences
and known uses. Note, that the three patterns can occur several times within a system depending on
the specific use case.

Acknowledgments

We thank our shepherd Michael Weiss for his inspiring and constructive comments. Further, we thank
our EuroPLoP 2017 focus group for giving very helpful hints and suggestions.

REFERENCES

Stuart A. Boyer. 2009. Scada: Supervisory Control And Data Acquisition (4th ed.). International Society of Automation, USA.
Manuel Daz, Cristian Martn, and Bartolom Rubio. 2016. State-of-the-art, challenges, and open issues in the integration of

Internet of things and cloud computing. Journal of Network and Computer Applications 67, Supplement C (2016), 99 – 117.
DOI:http://dx.doi.org/https://doi.org/10.1016/j.jnca.2016.01.010

Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta, Teruo Higashino, Adriana Iamnitchi, Marinho Barcel-
los, Pascal Felber, and Etienne Riviere. 2015. Edge-centric Computing: Vision and Challenges. SIGCOMM Comput. Commun.
Rev. 45, 5 (Sept. 2015), 37–42. DOI:http://dx.doi.org/10.1145/2831347.2831354

Richard Messnarz, Alexander Much, Christian Kreiner, Miklos Biro, and Jenny Gorner. 2017. Need for the Continuous Evolu-
tion of Systems Engineering Practices for Modern Vehicle Engineering. Springer International Publishing, Cham, 439–452.
DOI:http://dx.doi.org/10.1007/978-3-319-64218-5 36

Siva RK Narla. 2013. The evolution of connected vehicle technology: From smart drivers to smart cars to... self-driving cars.
Institute of Transportation Engineers. ITE Journal 83, 7 (2013), 22.

Lukas Reinfurt, Uwe Breitenbücher, Michael Falkenthal, Frank Leymann, and Andreas Riegg. 2016. Internet of Things Pat-
terns. In Proceedings of the 21st European Conference on Pattern Languages of Programs (EuroPlop ’16). ACM, New York, NY,
USA. DOI:http://dx.doi.org/10.1145/3011784.3011789

Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar. 2017. Engineering Software for the
Cloud: Messaging Systems and Logging. In Proceedings of the 22nd European Conference on Pattern Languages of Programs
(EuroPlop ’17). ACM, New York, NY, USA.

M. Tubaishat and S. Madria. 2003. Sensor networks: an overview. IEEE Potentials 22, 2 (April 2003), 20–23.
DOI:http://dx.doi.org/10.1109/MP.2003.1197877

Proceedings of the 22nd European Conference on Pattern Languages of Programs

173

8. Publications

The Potential of Self-Adaptive Software Systems
in Industrial Control Systems

Johannes Iber(B), Tobias Rauter, Michael Krisper, and Christian Kreiner

Institute of Technical Informatics, Graz University of Technology,
Inffeldgasse 16, Graz, Austria

{johannes.iber,tobias.rauter,michael.krisper,christian.kreiner}@tugraz.at

Abstract. New generations of industrial control systems offer higher
performance, are networked and can be controlled remotely. Following
this progress, the complexity of such systems increases through hetero-
geneous systems, hardware and more capable software. This may lead to
an increase of unreliability and insecurity. Self-adaptive software systems
offer a mean of dealing with complexity by monitoring a control sys-
tem, detecting anomalies and adapting the control system to problems.
Regarding such methods, industrial control systems have the advantage
of being less dynamic. The network topology is fixed, devices rarely
change, and the functionality of all the resources is known in princi-
ple. In this work, we examine this advantage and present the potential
of self-adaptive software systems. The context of the presented work is
control systems for hydropower units.

1 Introduction

Industrial control systems are computer systems that monitor and control
physical processes. Essentially, they are used in critical infrastructures, such
as electricity generation and industrial plants. New generations offer higher per-
formance, are networked and can be controlled remotely. Such systems are con-
sidered to be part of the broad range of cyber-physical systems.

According to a National Institute of Standards and Technology workshop
report [10] the key challenges of cyber-physical systems development include
what is needed to cost-effectively and rapidly build in and assure the safety, reli-
ability, availability, security and performance of next-generation systems. Indus-
try is using more and more commercial off-the-shelf hardware platforms, which
are inexpensive and offer a high performance. The downside of these platforms
is that typically they only offer sparse safety and fault tolerance features [1,6].
Furthermore, industrial control systems are increasingly becoming targets of
security attacks [2,8].

Industrial control systems have a big advantage compared to other kinds of
systems. The devices used, including hardware and software, network topology,
and communication patterns etc. are known and rarely change during operation
[2,3]. In our opinion this broad knowledge enables automatic mechanisms that
can react e.g. to permanent hardware faults and security attacks. The goal of
c© Springer International Publishing AG 2017
J. Stolfa et al. (Eds.): EuroSPI 2017, CCIS 748, pp. 150–161, 2017.
DOI: 10.1007/978-3-319-64218-5 12

c©2017 Springer International Publishing Switzerland. Reprinted, with permission.
From Proceedings of the European & Asian System, Software & Service Process Improvement & Innovation (EuroAsiaSPI), September
2017.

175

Paper 5 - EuroAsiaSPI 2017

The Potential of Self-Adaptive Software Systems 151

such mechanisms would be to increase the reliability of a control system and
to defend it against hackers. Self-adaptive software systems offer a means of
orchestrating such automatic mechanisms. The underlying idea of self-adaptive
software systems is to monitor a managed system and to adapt it in dependence
on defined goals. Such a system would not change the architecture of the control
systems themselves, but a self-adaptive system would run on top of it instead.

The contribution of this work is an attempt at enumerating this potential of
self-adaptive software systems in industrial control systems. We outline the appli-
cation possibilities in the context of hydropower plants; a domain with which
we are familiar. The highlighted application areas of self-adaptive software are
hardware faults, security attacks and hacks, software bugs, misconfiguration of
the control logic, and faults in the physical environment. We list different anom-
alies originating from these areas. We present various detection and adaption
mechanisms corresponding to the anomalies. It is important to note that we do
not wish to change the control logic itself. What we aim to do instead is to
strengthen the underlying hardware and software stacks.

The remainder of this paper is structured as follows: the next Section provides
a brief introduction to self-adaptive software systems. In Sect. 3 the industrial
setting of our work is presented. Subsequently, the different application areas
are presented in Sect. 4. In Sect. 5 we discuss the commonalities between the
different areas. Finally, concluding remarks are given in Sect. 6.

2 Self-adaptive Software Systems

Self-adaptive software modifies its own behavior in response to changes in
its operating environment. By operating environment, we mean anything
observable by the software system, such as end-user input, external hard-
ware devices and sensors, or program instrumentation [11].

Typically, self-adaptive software systems follow an external (architecture)
approach [13]. An internal approach interweaves application and adaption logic
based e.g. on programming language features such as exceptions, conditions, and
parametrization. The issue with an internal approach is that sensors, actuators,
parallel adaption processes and purpose of an application are complicated to
engineer within one software design. This leads to notable drawbacks, e.g. with
respect to scalability, testability and maintainability.

In an external approach, as illustrated in Fig. 1, the domain-specific applica-
tion logic termed Managed Subsystem is monitored by a Managing Subsystem.
The Managing Subsystem is where the actual adaption logic resides. It addition-
ally monitors the Environment that may consist of other software, hardware,
network, or of the physical context including humans. In the presented setting,
a Managing Subsystem observes anomalies of a control system (Managed Sub-
system). By applying different detection mechanisms a Managing Subsystem is
supposed to analyze the root cause of the observed anomalies. In the final step
it chooses an appropriate adaption mechanism for circumventing the problem.

176

8. Publications

152 J. Iber et al.

Fig. 1. Parts of a self-adaptive software system (adapted from [14])

Typically, the Managing Subsystem itself comprises an adaptive loop that coor-
dinates different detection mechanisms and adapts accordingly. Muccini et al. [9]
reveal in a systematic literature review that in the context of a cyber-physical sys-
tem, the so-called MAPE-K loop (Monitor,Analyze,Plan,Execute -Knowledge)
is by far the dominant adaptive loop in science with a share of 60%.

3 Industrial Setting

The industrial setting of the following application areas are networked control
devices that operate hydropower plant units. We choose this setting because
it is also our project context and we are familiar with it. Figure 2 illustrates a
simplified overview of such an industrial control system.

On network level, control devices are connected via Ethernet and operated by
supervisory computers. These supervisory computers are responsible for observ-
ing the state of physical processes and adjusting parameters of control devices in
order to control the energy conversions. The observation and adjustment actions
are done by using so-called datapoints which are variables with a specific basic
data type such as integer or boolean.

The control devices are connected to hydropower plant units. Their functional
responsibility is to operate these units through one of the four different functions
namely excitation, synchronization, protection and turbine control.

Technically, these devices have a programmable logic controller (PLC) archi-
tecture. In the context of the hardware design, a control device is built out of
central modules and interface modules. A central module consists of a communi-
cation CPU (CCPU) and an application CPU (ACPU). The CCPU is responsible
for network connections and controlling/monitoring the ACPU. It runs a cus-
tomized Linux distribution and can be accessed by various protocols such as
SSH and Modbus. From the security perspective this protects the ACPU and
verifies incoming commands. The ACPU is a multi-core processor and executes
the actual control logic. It runs a real-time operating system in order to ensure
guaranteed cycle times. The interface modules connecting the control device with

177

Paper 5 - EuroAsiaSPI 2017

The Potential of Self-Adaptive Software Systems 153

Fig. 2. Overview of the industrial control system

the sensors and actuators of the hydropower plant unit. Central modules and
interface modules are connected via Ethernet.

The control logic executed by the ACPU of a central module is component-
based and heavily influenced by the IEC 61131 standard for programmable
logic controllers [7]. It is hierarchically built out of components, compositions
and tasks. Components are termed Program Organization Units (POU) and
compositions are named Function Plans (FUP). POUs are coded with the
C-programming language and stored as binaries on the devices. Such POUs
implement basic functions, e.g. simple logic gates, or complex algorithms. Based
on these POUs, reusable FUPs are designed by plant engineers that implement
the specific control logic for a hydropower plant unit. Finally, such FUPs are
executed by cyclic tasks in real-time.

FUPs operate on datapoints that are set and read by the interface modules.
At the start of a cyclic task the necessary datapoints are collected, then the
FUPs are executed, and subsequently the calculated datapoints are written back.
The interface modules receive these datapoints and actuate accordingly. Further,
datapoints can be shared with other control devices or supervisory computers.

The supervisory computers are themselves part of a control hierarchy. Higher
hierarchy levels control for instance different hydropower plants along a river.

178

8. Publications

154 J. Iber et al.

4 Application Areas

Figure 3 illustrates a network of control devices, a supervisory computer and a
hydropower plant unit containing sensors and actuators. The arrows from the
left and right side represent areas we are proposing to tackle with detection and
adaption mechanisms. In the issue of hardware faults, we are targeting those
faults located inside a control device. The hydropower unit is out of scope. In
the context of security attacks, our interest is to detect hacks of sensors, actuators
and control devices. Unknown software bugs can be added through updating the
software or occur if an untested state arises. The area misconfiguration relates
to the case of a human operator making a mistake in the design of the control
logic. Faults in the physical environment relates to the sensors and actuators
that form a part of the hydropower unit. We discuss such anomalies from the
point of view of a control device. In the following, we examine these five areas
on the control device and network level. We present the observable anomalies
together with corresponding detection and adaption mechanisms. Note that the
presented anomalies, detection and adaption mechanisms are not complete and
are imaginable concerning hydropower units. They may not be appropriate for
all kinds of domains.

Fig. 3. Overview of the presented application areas of self-adaptive software in
hydropower control systems

4.1 Hardware Faults

In this area we focus on hardware faults located in central and interface mod-
ules part of a control device. Table 1 illustrates an overview of where a fault can
be located, what anomalies can occur originating from a hardware fault, how
hardware faults can be detected based on the anomalies, and what can be done
concerning adaption. The left hand side of Table 1 shows the location. ACPU is
part of the central module and the place where the actual control logic resides.
The CCPU is responsible for the communication with the network and controls

179

Paper 5 - EuroAsiaSPI 2017

The Potential of Self-Adaptive Software Systems 155

Table 1. Different locations where a permanent hardware fault can reside with corre-
sponding anomalies, and possible detection and adaption mechanisms.

the ACPU. Further, the interface modules are connected with the sensors and
actuators of a hydropower unit. They transmit their measured values as data-
points to the ACPU and receive parameters as datapoints. The network part
is presented from a control device perspective. Connected device represents a
control device that sends or receives datapoints. Network resource can be any
other kind of devices in a network such as a switch or a supervisory computer.

The anomalies in the first set of columns may occur because of a fault resid-
ing in the locations on the left hand side. Dead means that it is not responding
on interaction attempts. System performance describes the capability of a sys-
tem in how it executes a task. It consists of CPU load, memory consumption
and latency. The anomaly Faulty datapoint refers to a datapoint that is wrong.
Parameter change has no effect describes the situation that a task or supervi-
sory computer wants to change an actuator through a datapoint, but the sensed
datapoints do not indicate that anything is behaving differently. Task misses
deadline refers to the situation that a task needs to finish its work before the
cycle starts again. Frequency of datapoint describes the distribution of data-
points within a network. Missing traffic is an anomaly concerning the absence
of distributed datapoints and communication.

The second set of columns refers to detection mechanisms that use such
anomalies as evidence for a hardware fault. Hardware redundancy is about dupli-
cation of components or devices in order to increase the reliability. A voter can

180

8. Publications

156 J. Iber et al.

then detect discrepancies. Software diversity refers to the idea of realizing a
software functionality in two or more distinct ways. Diversity can be achieved
by developing the functionality of a software several times in different ways by
using independent development teams and technologies. Another approach is to
compile software with different settings [5]. Since diverse software is working in
other ways, there is a chance that permanent hardware faults can be detected
in a manner similar to Hardware redundancy. Outlier Detection refers to mecha-
nisms that detect patterns that do not correspond to an expected behavior. One
such a technique is machine learning. A simpler one would be utilizing certain
thresholds of datapoint values. Datapoints from other control devices can be used
for redundancy and plausibility checks. Data from other hydropower plants can
be used for a plausibility check of the sensed data concerning the river and how
the hydropower units are behaving. Cyclic memory test is about checking the
memory regularly and detecting permanent faults manifesting in memory cells.
A System monitor keeps watch on a system regarding CPU usage, temperature,
available memory or network traffic. A change of one of the watched parameters
can indicate a hardware fault.

The third set of columns shows possible adaption mechanisms. These mech-
anisms can be applied after a hardware fault with the corresponding location is
detected. In general these mechanisms assume the existence of some redundant
hardware, otherwise it would be difficult to circumvent permanent hardware
faults.

Migrate to different CPU means to use an alternative ACPU or CCPU. This
adaption mechanism assumes that either a CPU is available on a module, or
that a standby central module is plugged into the control device. Migrate to
different central module is similar to the adaption mechanism described above.
It assumes that another central module is available for migrating the ACPU
and CCPU. Migrate to different device is a costlier process where a redundant
device is selected for taking over the control activities. Use other interface module
assumes that an interface module offering the same datapoints is available. This
is not restricted to one device. In general, it is possible to transmit datapoints,
e.g. a datapoint for voltage, from one device to another. Circumvent network
resource depends on the affected network device. A switch can be circumvented
if other paths exist. A supervisory computer can be replaced with a redundant
one. Alarm is a general mechanism that notifies a human operator who can
change parts of the control system. Tell OS to mask memory cells leverages the
capabilities of operating systems to blacklist faulty memory areas.

4.2 Security Attacks and Hacks

Industrial control systems usually behave in a foreseeable and deterministic man-
ner. In principal, each control device knows from and to whom it receives or sends
data. Furthermore, the used software running on top of a devices is known. An
attacker would have to introduce a different behavior or software in order to
harm a control system.

181

Paper 5 - EuroAsiaSPI 2017

The Potential of Self-Adaptive Software Systems 157

Table 2. Different locations that can be hacked and the corresponding anomalies,
detection and adaption mechanisms. The hydropower unit is also considered.

Table 2 shows different parts that could be hacked. An attacker could manip-
ulate sensors and actuators which may lead to faulty datapoints or parameters
with no effect. Such a situation can be detected with mechanisms such as those
pointed out in Subsect. 4.1. At control device level, an interface or central module
could be hacked. The anomalies Unknown software and Behavior of software are
related to the detection mechanisms Secure Boot and Sandboxing. Secure Boot
ensures that only trusted software is started. Sandboxing restricts the environ-
ment of a software and mitigates the impact of e.g. a buffer overflow. On network
level, the traffic between devices plays a key role of identifying security breaches
in addition to the states and effects of datapoints. The detection mechanism
Network traffic patterns leverages the fact that the traffic in an industrial con-
trol system follows cycles and deterministic behavior [4]. Remote Attestation can
be used to prove the integrity of one control device to another [12]. Using this
method a hacked control device would fail to prove that its integrity has not been
violated. A Honeypot is a bait for attackers that behaves like a control device
in the network. Any connection attempt to a honeypot would indicate a secu-
rity problem. The illustrated adaption mechanisms are known from above. The
adaption mechanism Isolate stands for circumventing and blocking an infected
device.

182

8. Publications

158 J. Iber et al.

Table 3. Locations where anomalies of software bugs can be detected and adapted.

4.3 Software Bugs

In this area, our target is to detect and adapt to software bugs (Table 3). There
are two kinds of bugs that we consider. One kind are bugs that are introduced
after an update. The other kind is already present in the software but lurks
around until an untested case or state occurs.

The detection method Hardware redundancy on network level assumes that
not all software is updated at once or that the hardware uses different means
of obtaining data. Runtime Verification corresponds directly to the anomaly
Behavior of software. It is about analyzing logs and interactions of software in
order to detect new behavior. The adaption mechanism Replace software with
former version is a rollback and assumes that a former version does not contain
the detected software bug.

4.4 Misconfiguration of the Control Logic

Industrial control systems are configured by human operators. This opens the
possibility of logical mistakes. Control devices and other devices are usually
observed for a period of time in order to ensure that they behave as expected.
Here, detection mechanism can accelerate test times. Furthermore, it may hap-
pen that single control devices are replaced and parts of a plant configuration
change. Table 4 shows anomalies originating from misconfiguration. The last
three anomalies are solely traceable to configuration mistakes. Specific mech-
anisms for logical mistakes stands for detection mechanisms that are domain
specific for common misconfigurations. Concerning adaption mechanisms there

183

Paper 5 - EuroAsiaSPI 2017

The Potential of Self-Adaptive Software Systems 159

Table 4. Locations where anomalies of misconfiguration can be detected and adapted.

are not many strategies for resolving misconfigurations. Configuring a control
device is a creative task. Automatically creating control logic in a safe manner
requires a deep understanding of all kinds of devices.

4.5 Faults in the Physical Environment

Control devices in our setting are not directly connected with a water turbine.
The link is mediated by sensors and actuators and these can break or drift over

Table 5. Faults in the physical environment reside in sensors and actuators between
a control device and the turbine.

184

8. Publications

160 J. Iber et al.

time. Detecting and adapting to such problems can again make a control system
more reliable.

Table 5 shows anomalies that can originate from sensors and actuators. Fur-
thermore, such anomalies can be observed through a connected device if it merely
forwards them. The detection mechanisms presented are similar to the ones
above. What we added is to leverage a Functional model of the hydropower unit.
The idea behind such a model is to verify the change of parameters with the
expected outcome. The proposed adaption mechanisms are similar to the ones
above.

5 Discussion

As we can see from the different tables, there are several shared anomalies, detec-
tion and adaption mechanisms. Some of these presented detection and adaption
mechanism rely on having redundant or stand-by hardware. One could argue
that the different mechanisms can be implemented separately and focused on
only one problem area. The downside of keeping them strictly separate is that
they could interfere with each other or reach wrong conclusions about the real
cause of a problem. A self-adaptive software system offers means to deal with
cross-cutting anomalies by orchestrating different mechanisms. It would have to
reason about the combined outcome of several detection mechanisms in order to
find the affected area containing the real cause. Based on the cause, a suitable
adaption mechanism would have to be selected. It is important to note that
adaption mechanisms do need some execution time. This may introduce delays
into control processes. The problem of how bad a small delay really is depends
on the domain. E.g. in the hydropower plant context one could argue that the
benefit of fixing a permanent hardware fault, but at the cost of introducing a
small delay, is preferable to a broken or faulty control activity. Furthermore,
testing an adaption before it is carried out is a complicated procedure. This
means a self-adaptive system must have a precise representation of the real sys-
tem in order to ensure that an adaption works as intended. All in all, it is our
considered opinion that the presented detection and adaption possibilities would
add a valuable improvement to industrial control systems by making them meta-
adaptive. A system incorporating some or all of these features has the potential
of being more reliable and secure than state of the art control systems.

6 Conclusion

In this work, we presented five areas where a self-adaptive system could improve
current and future generations of industrial control systems. The highlighted
application areas are hardware faults, security attacks and hacks, software bugs,
misconfiguration of the control logic and faults in the physical environment. Self-
adaptive software systems are part of our ongoing research towards increasing
the reliability and security of control system for hydropower units. The presented
anomalies, detection and adaption mechanisms are real possibilities to be faced in

185

Paper 5 - EuroAsiaSPI 2017

The Potential of Self-Adaptive Software Systems 161

our industrial setting, but may differ or appear to be different in other domains.
Despite this we believe that most of our observations are readily transferable to
other industrial domains.

References

1. Alhakeem, M.S., Munk, P., Lisicki, R., Parzyjegla, H., Parzyjegla, H., Muehl, G.: A
framework for adaptive software-based reliability in COTS many-core processors.
In: ARCS 2015 (2015)

2. Cárdenas, A.A., Amin, S., Lin, Z.S., Huang, Y.L., Huang, C.Y., Sastry, S.: Attacks
against process control systems. In: ASIACCS 2011. ACM Press (2011)

3. Cheung, S., Dutertre, B., Fong, M., Lindqvist, U., Skinner, K., Valdes, A.: Using
model-based intrusion detection for SCADA networks. In: Proceedings of the
SCADA Security Scientific Symposium (2007)

4. Hadeli, H., Schierholz, R., Braendle, M., Tuduce, C.: Leveraging determinism in
industrial control systems for advanced anomaly detection and reliable security
configuration. In: Conference on Emerging Technologies & Factory Automation.
IEEE (2009)

5. Höller, A., Rauter, T., Iber, J., Kreiner, C.: Patterns for automated software diver-
sity to support security and reliability. In: EuroPLoP 2015. ACM (2015)

6. Höller, A., Spitzer, B., Rauter, T., Iber, J., Kreiner, C.: Diverse compiling for
software-based recovery of permanent faults in COTS processors. In: DSN-W 2016.
IEEE (2016)

7. John, K.H., Tiegelkamp, M.: IEC 61131–3: Programming Industrial Automation
Systems. Springer, Heidelberg (2010)

8. Miller, B., Rowe, D.: A survey SCADA of and critical infrastructure incidents. In:
RIIT 2012. ACM Press (2012)

9. Muccini, H., Sharaf, M., Weyns, D.: Self-adaptation for cyber-physical systems: a
systematic literature review. In: SEAMS. ACM Press (2016)

10. NIST: Foundations for Innovation in Cyber-Physical Systems. Technical report
(2013)

11. Oreizy, P., Gorlick, M., Taylor, R., Heimhigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D., Wolf, A.: An architecture-based approach to self-
adaptive software. IEEE Intell. Syst. 14(3), 54–62 (1999)

12. Rauter, T., Höller, A., Iber, J., Kreiner, C.: Thingtegrity: a scalable trusted com-
puting architecture for the internet of things. In: EWSN 2016. Junction Publishing
(2016)

13. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14 (2009)

14. Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke,
J., Andersson, J., Giese, H., Göschka, K.M.: On patterns for decentralized control
in self-adaptive systems. In: Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.)
Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-35813-5 4

186

8. Publications

Solutions for Cyber-
Physical Systems Ubiquity

Norbert Druml
Independent Researcher, Austria

Andreas Genser
Independent Researcher, Austria

Armin Krieg
Independent Researcher, Austria

Manuel Menghin
Independent Researcher, Austria

Andrea Hoeller
Independent Researcher, Austria

A volume in the Advances in Systems Analysis,
Software Engineering, and High Performance
Computing (ASASEHPC) Book Series

c©2018 IGI Global. Reprinted, with permission. From Solutions for Cyber-Physical Systems Ubiquity, 2018.

187

Paper 6 - Solutions for Cyber-Physical Systems Ubiquity

Published in the United States of America by
IGI Global
Engineering Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2018 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.

Names: Druml, Norbert, 1980- editor.
Title: Solutions for cyber-physical systems ubiquity
 / Norbert Druml, Andreas Genser, Armin Krieg, Manuel Menghin, and Andrea
 Hoeller, editors.
Description: Hershey, PA : Engineering Science Reference, [2018] | Includes
 bibliographical references.
Identifiers: LCCN 2017012032| ISBN 9781522528456 (hardcover) | ISBN
 9781522528463 (ebook)
Subjects: LCSH: Cooperating objects (Computer systems)--Handbooks, manuals,
 etc. | Internet of things--Handbooks, manuals, etc. | Automatic
 control--Handbooks, manuals, etc.
Classification: LCC TK5105.8857 .H367 2018 | DDC 004.67/8--dc23 LC record available at https://lccn.loc.
gov/2017012032

This book is published in the IGI Global book series Advances in Systems Analysis, Software Engineering, and High Perfor-
mance Computing (ASASEHPC) (ISSN: 2327-3453; eISSN: 2327-3461)

188

8. Publications

223

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

DOI: 10.4018/978-1-5225-2845-6.ch009

ABSTRACT

The advancement and interlinking of cyber-physical systems offer vast new opportunities for industry. The
fundamental threat to this progress is the inherent increase of complexity through heterogeneous systems,
software, and hardware that leads to fragility and unreliability. Systems cannot only become more unreli-
able, modern industrial control systems also have to face hostile security attacks that take advantage of
unintended vulnerabilities overseen during development and deployment. Self-adaptive software systems
offer means of dealing with complexity by observing systems externally. In this chapter the authors
present their ongoing research on an approach that applies a self-adaptive software system in order to
increase the reliability and security of control devices for hydro-power plant units. The applicability of
the approach is demonstrated by two use cases. Further, the chapter gives an introduction to the field of
self-adaptive software systems and raises research challenges in the context of cyber-physical systems.

INTRODUCTION

Cyber-physical systems (CPS) are the next-generation of systems that integrate computational and
physical components. In contrary to the embedded devices of the last decades, they offer high perfor-
mance, are interconnected and, with a good chance, somehow connected with the internet. Following

A Self-Adaptive Software
System for Increasing the
Reliability and Security of
Cyber-Physical Systems

Johannes Iber
Graz University of Technology, Austria

Tobias Rauter
Graz University of Technology, Austria

Christian Kreiner
Graz University of Technology, Austria

189

Paper 6 - Solutions for Cyber-Physical Systems Ubiquity

224

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

this trend, control devices typically found in industry are going to manage more and more functionality
with the help of sophisticated software. According to a National Institute of Standards and Technology
workshop report (NIST, 2013) the key challenges of CPS development include what is needed to cost-
effectively and rapidly build in and assure the safety, reliability, availability, security and performance
of next-generation CPS. Industry is using more and more commercial off-the-shelf hardware platforms,
which are inexpensive and offer a high performance. The downside of these platforms is that they typi-
cally only sparsely offer safety and fault tolerance features (Alhakeem et al., 2015). Further, industrial
cyber-physical systems are becoming increasingly targets of security attacks (Miller & Rowe, 2012).

The inherent problem of CPS is complexity. This issue is going to escalate as CPS become large-
scale distributed systems. They have to deal with uncertainty, change during operation, be scalable and
tolerant to threats (Muccini, Sharaf, & Weyns, 2016). Self-adaptive software systems are systems that
target to deal with complexity. Typically, self-adaptive software systems externally observe their managed
systems, detect problems and adapt the managed systems in order to repair or circumvent inconsisten-
cies. In the case of security, a self-adaptive software system can detect security attacks and isolate the
infected devices or block the attackers. In the case of hardware faults, a self-adaptive software system
can detect permanent hardware faults and move the application logic running on a managed system to an
alternative hardware. Such problems would be complicated for a managed system itself to circumvent,
but through an external overlooking system this becomes possible and the lurking complexity of CPS
may become manageable.

Because of the increased performance and connectivity of modern and future hardware, self-adaptive
software systems can be deployed to former restricted devices found in industry. In this chapter, ongoing
research of an approach is presented that provides a novel application of a self-adaptive software system
in an industrial setting, namely control devices for hydro-power plant units which is also the context
of our research project. The goal of the presented approach is to increase the reliability and security
of systems through anomaly detection and adaption. Simply put, we want to extend the time of control
systems as long as possible so that they can carry out undisturbed their intended purposes.

The following Sections are structured as follows: First we give a detailed overview of the underly-
ing principles of self-adaptive software systems. After that we extensive present our approach named
Scari (Secure and reliable infrastructure); including an overview of our industrial setting (hydro-power
plants), the vision of Scari, the detailed approach and two use cases. In the subsequent Section, we
present a number of research challenges that we derive from our self-adaptive software system. Last,
we conclude this Chapter.

BACKGROUND

Self-adaptive software modifies its own behavior in response to changes in its operating environment.
By operating environment, we mean anything observable by the software system, such as end-user input,
external hardware devices and sensors, or program instrumentation. (Oreizy et al., 1999)

Historically, the intention of building self-adaptive software systems has been around some time. Though
not being the first talking and writing about self-adaptive software systems but making significant invest-
ments, IBM introduced in 2001 the Autonomic Computing Initiative in response to their observation that
the main obstacle to further progress in the IT industry is a looming software complexity crisis (Kephart

190

8. Publications

225

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

& Chess, 2003). They argued that systems become too interconnected, too diverse and complex for even
the most skilled system integrators to install, configure, optimize, maintain, and merge. Back then, IBM
researchers predicted that by the end of the decade the IT industry would need up to 200 million work-
ers, equivalent to the entire US labor force, to manage a billion people and millions of businesses using
a trillion devices connected via the Internet (Dobson, Sterritt, Nixon, & Hinchey, 2010). Based on this
idea of the future, they envisioned the need to develop computer systems that can manage themselves
given high-level objectives. Since then, the term autonomic computing has emerged into a broader
context related with organic computing, bio-inspired computing, self-organizing systems, ultrastable
computing, and adaptive systems, to name a few (Dobson et al., 2010). As pointed out by Salehie &
Tahvildari (2009), the term self-adaptive software system is focused on the domain of software systems.
In the following we only use this term instead of autonomic computing or others as it narrows the scope.
The fundamental reason for applying self-adaptive software systems is the increasing cost of handling
the complexity of software systems to achieve their goals (Laddaga, 2001; Salehie & Tahvildari, 2009).

Typically, self-adaptive software systems follow an external (architecture) approach (Salehie &
Tahvildari, 2009). An internal approach interweaves application and adaption logic based on program-
ming language features like exceptions, conditions, and parametrization. The issue with an internal
self-adaptive software system is that sensors, actuators, parallel adaption processes and actual purpose
of an application are complicated to engineer within one software design. This further leads to notable
drawbacks, e.g. with respect to scalability, testability and maintainability. In an external approach, as
illustrated in Figure 1, the domain-specific application logic named Managed Subsystem is monitored
by a Managing Subsystem. The Managing Subsystem is where the actual adaption logic resides. It ad-
ditionally monitors the Environment that may consist of other software, hardware, network, or of the
physical context (including humans). Based on monitored data and analyzed problems the Managing
Subsystem decides whether and what to adapt inside the Managed Subsystem.

In order to show what a self-adaptive system actually means and what such a system desires we dis-
cuss in the next Subsection a hierarchy of self-properties. For the process of collecting data about the
environment and Managed Subsystem, and finally adapting the Managed Subsystem, usually closed-loop

Figure 1. Parts of a self-adaptive software system
Based on Weyns et al., 2013.

191

Paper 6 - Solutions for Cyber-Physical Systems Ubiquity

226

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

mechanisms are implemented inside the Managing Subsystem. We present three so-called adaption loops
after the self-properties. These adaption loops represent the essence of architectures that aim to fulfill
one or several of the presented self-properties. In the last part of this Section, we present the concept
of utilizing models based on the Model-Driven Engineering principles in order to support self-adaptive
software systems. This concept is named by its community Models@Run.time.

Hierarchy of Self-Properties

Self-Adaptiveness is a very broad term and represents the sum of several self-properties. Salehie & Tah-
vildari (2009) discuss these properties in detail and represent them in the hierarchy illustrated in Figure 2.

The top level named General Level contains global properties of self-adaptive systems. Terms, found
in literature, which are basically a subset of self-adaptiveness are self-managing, self-governing, self-
maintenance, self-control, self-evaluating, and self-organizing.

The Major Level terms are coined by the IBM Autonomic Computing Initiative and serve as the
defacto standard in self-adaptive systems (Salehie & Tahvildari, 2009). The following four properties
are generally also known as self-CHOP (M. Hinchey & Sterritt, 2006):

• Self-Configuring: A system reconfigures itself automatically in response to changes following
high-level policies.

• Self-Healing: A system automatically detects, diagnoses, and reacts to software and hardware
failures by healing itself.

• Self-Optimizing: A system continually seeks opportunities to improve its own performance and
resource allocation.

• Self-Protecting: This property has two aspects. One is that a system automatically defends itself
against malicious attacks or cascading failures. The other one is that it mitigates the effects of
attacks.

Figure 2. Hierarchy of self-properties
Based on Salehie & Tahvildari, 2009.

192

8. Publications

227

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

The Primitive Level represents the base of the Major Level and consists of two properties. Without
them a self-adaptive system would not be able to realize the properties from the Major Level:

• Self-Awareness: A system is aware of its own states and behaviors.
• Context-Awareness: A system is aware of its operational environment.

All these properties above are defining what self-adaptive systems are targeting to achive. In our ap-
proach, we are aiming for all Primitive Level and Major Level properties except self-optimization. The
vision of the proposed system is to autonomously configure, heal, and protect itself based on its own
state and the operational environment.

Adaption Loops

There exist different variants of how a self-adaptive software system can be organized. Muccini et al.
(2016) reveal in a systematic literature review that concerning CPS, the so-called MAPE-K loop (later
explained in detail) is by far the dominant adaptive mechanism with a share of 60%. It is followed by
multi-agent and self-organization based technologies (both have 29% - some studies combine tech-
nologies). Multi-agent systems are large-scale open decentralized systems that consist of autonomous
components or systems (Müller & Fischer, 2014) that work together for achieving a common goal.
Self-organization techniques are inspired by nature where behavior emerges e.g. from cells (Jelasity et
al., 2006). Multi-agent systems and self-organization techniques are out-of-scope of this work as they
do not fit our industrial setting.

In the following we present three adaption loops that try to grasp the necessary steps and activities
of a self-adaptive software system. After that, we shortly discuss the commonalities between them and
highlight five patterns of how several loops can be organized.

MAPE-K

Figure 3 illustrates the MAPE-K adaptive loop, introduced by Kephart & Chess (2003) defining IBMs
autonomic computing vision. It consists of the steps Monitor, Analyze, Plan, and Execute, and a shared
part representing Knowledge. The target of MAPE-K is the Managed Element which is monitored with
sensors and changed with actuators. The Monitor step gathers information about the Managed Element
that is usually related to the current performance and load of the system (Brun et al., 2013). The Analyze
step reasons about the data, identifies problems and attempts to find the source or cause of them. The
Plan step reacts to the results of the Analyze step and creates a set of actions to remedy a problem. The
last step, named Execute, implements these actions and changes the Managed Element through actua-
tors. Knowledge is the central point where all the information within a MAPE-K loop comes together.
The Monitor stores its observed data at this point. The Analyze step uses it to find anomalies. The Plan
step leverages it to create actions and gathers its policies and goals from there. Finally, the Execute step
stores its record of executed actions in it.

As we can see on Figure 3 there is an Autonomic Manager around the loop. That is basically an in-
terface for controlling and monitoring the adaptive system. Kephart & Chess (2003) foresaw a plethora
of Autonomic Manager each managing for instance a hardware resource (e.g. CPU, printer, storage) or
software resource (e.g. database, service, legacy system).

193

Paper 6 - Solutions for Cyber-Physical Systems Ubiquity

228

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

OODA

Colonel John Boyd was a United States Air Force fighter pilot and Pentagon consultant who developed
the first version of his OODA-loop for explaining how to achieve success in air-to-air combat in the
1950’s. Later he expanded his groundbreaking work and hypothesized that it is the essence of winning
and losing of organizations and people (Boyd, 1996). As pointed out by other authors it lends itself well to
self-adaptive system (Chandra, Lewis, Glette, & Stilkerich, 2016; Grenander, Simpson, & Sindiy, 2009).
In the OODA-loop, Observe means to gather, monitor, and filter data. Figure 4 illustrates the type of data
that can be observed; implicit guidance and control refers to the significant influence of the Orientation
step. In the Orient step a list of options is derived through analysis and synthesis, previous experience,

Figure 3. MAPE-K
Based on Kephart & Chess, 2003.

Figure 4. OODA-loop
Source: Wikimedia Commons, 2014.

194

8. Publications

229

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

new information, and of course as the loop is intended for humans, genetic and cultural heritage. The
derived list of options is then feed forwarded to the Decide step where the best hypothesis is selected
via a ranking. In the last step, the selected option is acted out and in a way tested in the environment.
As pointed out by John Boyd, orientation shapes observation, shapes decision, shapes action, and in
turn is shaped by the feedback and other phenomena (Boyd, 1996). He demonstrated, that in the direct
combat it is crucial to go through this loop faster and better than an opponent. Further, he noted that the
entire loop (not just orientation) is an ongoing many-sided implicit cross-referencing process of projec-
tion, empathy, correlation, and rejection. We illustrate in our approach how we transfer the OODA-loop
to our variant of an adaption loop.

CADA

Dobson et al. (2006) describe the generic Collect - Analyze - Decide - Act loop for autonomic commu-
nication systems. The field of autonomic communication targets to improve the ability of networks and
services to cope with unpredicted changes like topology, load, task and so on. As we can see in Figure
5 it is similar to MAPE-K and the OODA-loop, but way more generic. In the Collect activity data is
gathered from several sources, in the Analyze activity analyzed, then a Decision is made, and finally
acted out in the Act activity. The loop is annotated with several techniques and approaches which can
be applied for implementing the single activities. As mentioned by Cheng et al. (2009), reasoning in
self-adaptive systems typically involve these four activities.

Figure 5. CADA-loop
Based on Dobson et al. (2006).

195

Paper 6 - Solutions for Cyber-Physical Systems Ubiquity

230

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

Discussion of the Adaption Loops

Essentially the three presented loops are variants of the same idea, which is to have a chain of activities
that lead to an appropriate response to a problem of the managed system. However, the loops vary con-
cerning the different steps and feedback. MAPE-K introduces the Knowledge part as common information
source for each activity taking place. OODA emphasizes that the different steps give feedback to what
is observed and that the adaptive loop is essentially driven by the Orient phase. The Orient phase of
OODA corresponds to the Analyze and Plan steps of the MAPE-K loop. OODA introduces an explicit
separate Decide phase that is embedded into the Plan step of MAPE-K. The CADA-loop is a generic
version of an adaptive loop. We include it because it highlights the different technologies which can be
applied in each step.

Usually, self-adaptive software does not consist of only one adaptive loop in the whole, possibly dis-
tributed, system. Such systems incorporate multiple loops connected or running in parallel. Weyns et al.
(2013) gathered five patterns for decentralized control in self-adaptive systems that describe how MAPE
loops can be related to each other. We describe the essence of these patterns in the following shortly:

• Coordinated Control Pattern: Consider a distributed system where each node owns an own
MAPE loop. This pattern proposes that all the Monitor, Analyze, Plan, and Execute steps coordi-
nate their operation with corresponding peers of other loops. For instance, Analyze entities inter-
act with each other to make a decision about the need for an adaption.

• Information Sharing Pattern: In this pattern, all Monitors in a distributed system are sharing
their observed states with each other, while Analyze, Plan and Execute entities are acting indepen-
dently from their counterparts on other nodes.

• Master/Slave Pattern: There exists a central master component that is responsible for the Analyze
and Plan step of adaptions. The other nodes in such a system are responsible for monitoring states
and executing actions.

• Regional Planning Pattern: Such a distributed system is partitioned into regions where in each
region a central component performs the Plan step. The Monitor, Analyze, and Execute steps are
deployed on other nodes. The central Plan components can be connected with each other.

• Hierarchical Control Pattern: This pattern organizes MAPE loops in hierarchies. For instance,
a loop is in control of a node. If it cannot adapt, a situation can be escalated to a higher loop that
possesses a broader control of the target distributed system.

Another important design decision concerning self-adaptive systems is whether a control loop is
realized event-driven or time-driven.

Models@Run.time

Models@Run.time is a term for describing the research field of utilizing software models, specified
according to the Model-Driven Software Engineering (MDSE) principles, for self-adaptive software
systems (Blair, Bencomo, & France, 2009). The runtime refers to the novelty opposed to the fact that
traditional MDSE has been applied for describing the architecture of software and systems at design
time. One of the most prominent examples of such a design time technology is the Unified Modeling
Language (UML) standardized by the Object Management Group.

196

8. Publications

231

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

Figure 6 illustrates the core principle of MDSE (Brambilla, Cabot, & Wimmer, 2012). Note that a
meta-model, also known as modeling language, is in fact a model.

M3: This layer is the basis of the MDSE architecture. Its purpose is to provide a modeling language for
defining modeling languages. Usually a meta-meta-model is defined reflexively, that means it can
define itself. In practice, it does not make any sense to define further meta layers, (Brambilla et
al., 2012). In Figure 6 this behavior is described by a conformsTo relationship.

M2: The purpose of this layer is to describe modeling languages which are used on the next layer for
specifying the actual model. It has to conform to the meta-meta-model at layer M3, like a pro-
gramming language has to conform to its grammar. For instance, UML itself resides on this level.

M1: Models at this layer represent and abstract modeled systems. They have to conform to the cor-
responding meta-model. An example would be an UML model describing classes of a software.

M0: This layer is not part of the modeling world and part of the real world. It consists of real systems,
which are abstracted and represented by M1 models.

Figure 6. Four-layer metamodeling architecture typically used in model-driven engineering
Based on Bézivin (2004).

197

Paper 6 - Solutions for Cyber-Physical Systems Ubiquity

232

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

Now, a runtime model is essentially a software model that represents at runtime parts of a real sys-
tem and is causally connected to it (e.g. a system change leads to a change in the model). Such software
model possesses several properties that are in our opinion beneficial for self-adaptive software systems:

• Design time models are in many domains already available and can be transformed to living speci-
fications at runtime.

• A model can be queried in order to find resources and to learn something about a system.
• Software models are based on modeling languages (M2) and adhere to semantics. Simply put, a

mechanism cannot easily construct a model randomly and arbitrary.
• Validation is an important aspect of software models and constraints can be provided for ensuring

that a runtime model is correct.
• An adaption mechanism can explore if a change would be correct by forking a model and trying

out different configurations.
• Transformation is an essential part of MDSE. Manipulating and transforming models to execut-

able artifacts offers systems an opportunity to self-modify. Further a changed runtime model could
be transformed to input formats for a variety of simulation and verification software.

• Runtime models which change over time can be transformed back to design models.

Giese et al. (2014) distinguish between three different kinds of runtime models within a self-adaptive
software system. Note that not all kinds have to be present within an adaptive system, but all of them
are useful for each activity in an adaptive loop:

• System Models: This kind of models reflects an abstract view of the system itself. It allows an
adaptive system to reason about the system and to simulate different kinds of configurations.
Consequently, such a model needs to be in sync with the real system.

• Context Models: A runtime model can be used to reflect the context of a system and to specify it
in a processable way. The characteristics of the context cast in such a model can either be derived
directly from the environment by sensors or indirectly derived from other observations.

• Requirements Models: This kind of models captures the requirements and goals of a self-adap-
tive system. In a way, it sets the boundaries of what a system can do. The collect, analyze, plan/
decide, or act parts of an adaptive loop can be partly or fully configured with these kinds of model.
Usually this relationship is unidirectional, meaning that a system is not supposed to change its
requirements. However, it can prioritize one over another.

SCARI: A SECURE AND RELIABLE INFRASTRUCTURE

Scari (Secure and reliable infrastructure) is our approach of a self-adaptive software system that targets
to increase the resilience of networked embedded systems typically found in industry. With the term
infrastructure, we mean the hardware (e.g. CPU, physical network, etc.) and software (operating system,
applications, etc.) stack providing the facilities for running industrial control logic. We do not target to
adapt the control logic running on industrial control systems. Instead we want to ensure that devices and
networks last longer, operate in the presence of hardware faults, and mitigate security attacks. Further,

198

8. Publications

233

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

we target to make control devices smarter in order to recognize anomalies in the data they receive from
their environment.

In the following, we start by explaining our specific industrial setting from the hydro-power domain.
Then we move on to a detailed specification of the vision of Scari. After that we present thoroughly our
approach. Last, we discuss two simplified use cases, one handling a hardware fault, the other illustrates
a security attack.

Industrial Setting

The context of this work are distributed control devices that operate hydro-power plant units. The reason
why we choose this context is that such systems are also the context of our research project within the
presented approach is developed. Figure 7 illustrates a simplified overview of the Supervisory Control
And Data Acquisition (SCADA) system we are aiming to make more reliable by applying an adaptive
software system.

On network level, control devices are connected via ethernet and operated by a supervisory system.
These supervisory computers are mainly responsible for two things. One responsibility is to observe the
state of physical processes. The other one is to adjust parameters of control devices in order to control

Figure 7. Overview of the target SCADA system

199

Paper 6 - Solutions for Cyber-Physical Systems Ubiquity

234

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

the energy conversions. The observation and adjustment actions are done by using so-called datapoints
which are variables with a certain basic data type like integer or Boolean.

The control devices are connected to hydropower plant units. Their functional responsibility is to
operate these units through one of the four different phases namely excitation, synchronization, protec-
tion and turbine control.

Technically, these devices have a programmable logic controller (PLC) architecture. Concerning the
hardware design, a control device is build out of central modules and interface modules. A central module
consists of a communication CPU (CCPU) and an application CPU (ACPU). The CCPU is responsible
for network connections and controlling/monitoring the ACPU. It runs a customized Linux distribution
and can be accessed by various protocols like SSH and Modbus. From the security point of view, it
protects the ACPU and verifies incoming commands. The ACPU is a multi-core processor and executes
the actual control logic. It runs a real-time operating system in order to ensure guaranteed cycle times.
The interface modules are connecting the control device with sensors and actuators of the hydropower
plant unit. Central modules and interface modules are connected via Ethernet.

The control logic software executed by the ACPU of a central module is component-based and
heavily influenced by the IEC 61131 standard for programmable logic controllers (John & Tiegelkamp,
2010). Basically, the control logic is hierarchically build out of components, compositions and tasks.
Components are called Program Organization Units (POU) and compositions are named Function
Plans (FUP). POUs are coded with the C-programming language and stored as binaries on the devices.
Such POUs implement basic functions, e.g. simple logic gates, or complex algorithms. Based on these
POUs, reusable FUPs are designed that implement the specific control logic for a hydropower plant
unit. Technically, FUPs are serialized as XML files and loaded by a POU scheduler. Finally, such FUPs
are called by cyclic tasks, for instance every 10 milliseconds. Again, tasks are serialized as XML files.

FUPs operate on datapoints that are set and read by the interface modules. At the start of a cyclic
task the necessary datapoints are collected, then the FUPs are executed, and subsequently the calculated
datapoints are written back. The interface modules receive these datapoints and actuate accordingly.
Further, datapoints are shared with other control devices or supervisory computers.

Vision

Roughly speaking, the primary goal of Scari is to provide a generic and reusable infrastructure that
allows to establish and orchestrate different kinds of anomaly detection with corresponding adaption
mechanisms. The aim of these adaption mechanisms is to increase the resilience of control devices and
networks in order to keep control processes as long as possible alive. Depending on the impact of a situ-
ation, power plant operators should be alarmed additionally to or instead of an adaption.

Figure 8 illustrates the four different areas we are Scari developing for.
One area are hardware faults. For instance, permanent memory cell faults in RAM or CPU registers

can be detected with memory checks. After such a detection, the faulty locations can be circumvented by
reconfiguration of the operating system or through diverse compiled software that does not use certain
CPU registers. Also, permanent hardware faults in interface modules could be recognized and handled
e.g. by using an alternative interface module. A control device should not only be able to recognize its
own faulty hardware. As datapoints are distributed to other control devices controlling other parts of the
same hydro-power plant unit, they should be able to observe and analyze that something might be wrong

200

8. Publications

235

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

with the hardware of other control devices or networking devices. Ultimately, the control logic running
on one device could be migrated to alternative ACPUs, central modules, or devices.

The second area are security attacks. Each control device knows in principal from whom it receives
or sends data to. This information could be used for detecting network attacks or attacker that behave
like a control device. Further, infected devices can be detected if the datapoints they are distributing are
suddenly or over time odd and do not reflect the real environment. Additionally, the behavior of real
devices which are unexpectedly trying to access control devices they are not supposed to, can be a hint
for a security incident. Revealed attacks can be handled by blocking and isolating infected devices or
network resources. Other kinds of attacks are for instance software that tries to access resources it is not
allowed to or sensors that are physically manipulated.

The third area is the environment the control devices are interacting with. The control devices are
not directly connected with a water turbine. There are sensors and actuators in between that can break or
drift over time. Detecting such anomalies and reacting to them would again make a system more reliable.

The last area are software bugs or misconfigurations of the control devices and networking devices.
An adaptive software system can detect high CPU loads, memory consumptions or frequent real-time
violations.

An adaptive software system dealing with all of these four areas has the potential of increasing the
life-time, reliability, and security of industrial systems. As we can imagine of the examples, not only
the analyzed datapoints can often be the same, also adaption mechanisms (e.g. migration) can be reused
for handling different faults. Therefore, we believe that one generic architecture orchestrating different
anomaly detection mechanisms and adaption strategies is needed. Further, a representation of the context,
the requirements and the system itself through models has a significant potential of boosting detection,
decision, and adaption mechanisms.

Figure 8. Problem areas we are targeting to detect and adapt to

201

Paper 6 - Solutions for Cyber-Physical Systems Ubiquity

236

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

Approach

The underlying principle of Scari is a combination of MAPE-K and the OODA-loop of John Boyd.
Figure 9 illustrates the different steps (Observe, Orient, Decide, Act), the included entities (Monitor,
Syndrome Processors, Recommendation Decision Maker, Plan Maker, Plan Decision Maker, Action
Handler), and the Knowledge Base. The arrows between the entities represent messages. Information
between the entities only flows through these messages and they are not coupled with other means. We
take the steps Observe, Orient, Decide, Act from the OODA-loop because they emphasize an explicit
Decide step while the MAPE-K loop subsumes this, in our opinion, essential part within the step Plan.
What we also borrow from the OODA-loop is the feedback from the Decision and Act steps going back
to the Observe step. We design this feedback as Notification about an Event which triggers interested
Syndrome Processors. As it is emphasized in the OODA-loop, the Syndrome Processors residing in the
Orient step implicitly guide and control the Observe and Act steps. From MAPE-K we notably adopt
the Knowledge Base part that is illustrated as World Model. It is used as shared information source for
the different loosely coupled entities and reflects the state of the world. The Plan step of MAPE-K is
actually split and embedded into the Syndrome Processors, the Recommendation Decision Maker, the
Plan Maker and the Plan Decision Maker.

Combining MAPE-K and OODA takes in our opinion the best of both concepts. MAPE-K introduces
the Knowledge Base as a common information source for the different steps. OODA adds an explicit
Decide part which is useful for the coordination concerning which kind of mechanism is performed. As
explained above, the Plan step of MAPE-K is distributed over several loosely coupled entities. What we
also take from OODA is that each step gives feedback to Monitors and Syndrome Processors. This is
allowing them to take into consideration what happened with their notifications and recommendations.

In detail the adaptive loop illustrated in Figure 9 works as follows: In the first step, named Orient, a
Monitor recognizes an Event. This could be for instance an unexpected datapoint value monitored by a
simple voter that compares two runs of the same task (we elaborate this example in one of the following

Figure 9. Adaptive loop of Scari

202

8. Publications

237

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

use cases). The voter is the Monitor and the unexpected datapoint represents the Event. The adaptive loop
itself can only be triggered by an Event. In principle, the Scari loop is event-driven and not time-driven.

In the next step, the collected data about the Event is distributed by the Monitor as Notification
message to an arbitrary number of interested Syndrome Processors. Syndrome Processors are part of
the Orient step and specialized on recognizing specific syndromes e.g. a security attack based on the
received Notifications (in MAPE-K Notifications are called symptoms). The used techniques for analyzing
Events and to detect anomalies can technically vary. For some cases a classification approach from the
machine-learning domain can be beneficial while for others one receive of a specific Event is enough
for instantly diagnosing a syndrome. The Syndrome Processors do not have to react every time they
receive a Notification. They can collect several Notifications about different Events over time in order to
diagnose a syndrome. After a Syndrome Processor is sure about an anomaly or wants to find out more
about a situation it fires a so-called Recommendation. A Recommendation consists of a Plan type and a
collection of Notifications that are significant for the Recommendation. There exist two general classes
of Plan types. One kind of types is targeting to find out more about a situation, e.g. a memory test. The
other kind changes a system and adapts the software. We treat both classes in the same way because they
cost time and can delay other computations. Further, it would make adaption mechanisms very fragile
if costly analyzing mechanisms are carried out at the same time on the same CPU or device. Therefore,
it is important that only one plan mechanism is executed on a system at one point in time.

The Recommendation Decision Maker plays a key role in the orchestration of different Recommen-
dations that may be received from different Syndrome Processors within a short configurable period
of time. Based on a simple definable prioritization, first of the covered Events and then of the chosen
Plan types, it decides which Recommendation gets selected. Of course, if the world is locked because
a Plan is currently executed, the Recommendation Decision Maker rejects to decide and distributes an
Event as Notification that it currently cannot decide. It is up to the Syndrome Processors to evaluate such
a situation. If a Recommendation is successfully selected, then the Recommendation Decision Maker
distributes an Event and retransmits the final Recommendation marked as selected.

In the next phase, part of the same step Decide, the selected Recommendation is processed by a Plan
Maker that can create variants of a chosen Plan type based on the information from the World Model. A
Plan consists of a collection of Actions. An Action is an atomic activity carried out on the target system.
The potentially more than one Plans are again distributed and a corresponding Event is thrown.

After that, the Plans are processed by a Plan Decision Maker which chooses the Plan with the least
affected systems/resources and the least amount of used Actions.

In the last step, named Act, the selected Plan is taken by an Action Handler. This entity executes the
single Actions contained within a Plan and changes the World Model accordingly. Note that this is the
only entity in the adaptive loop that can actively change a system.

As mentioned above, the World Model is the central knowledge base for all parts of the adaptive loop
in Figure 9. It consists of various models describing parts of the architecture of a system at runtime.
Examples of such parts are control logic (Tasks, FUPs, POUs), installed software applications, hardware
(RAM, CPU, etc.), network connections and so on. We engineer these architecture runtime models ac-
cording to the model-driven engineering principles (Brambilla et al., 2012). So, we have metamodels
defining domain-specific languages and one meta-metamodel serving as a common technical base for
the metamodels. One reason for applying model-driven engineering techniques is that we can precisely
describe a part of a system with a specialized language that only the interested entities need to under-
stand. A generalized schema for representing data would make it more difficult to grasp the semantics

203

Paper 6 - Solutions for Cyber-Physical Systems Ubiquity

238

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

and less effective to support the Observe, Orient, and Decide steps. Another reason is that models are
manageable reflections that abstract from unnecessary details of the system (Aßmann, Götz, Jézéquel,
Morin, & Trapp, 2014). In addition to the World Model, the Knowledge Base incorporates a log of the
distributed messages (Notification, Recommendation, Plan, Action) and a revision hash that changes
if the World Model changes. The revision hash is used by the Recommendation and Plan messages in
order to ensure that they refer to the current state of the World Model. If a message is not referring to
the current state it is simply ignored by the Decide and Act entities because it comes from a former state
of the world. Crucial for the adaptive loop is that the World Model can only be changed with an Action
executed by the Action Handler while others can just access the World Model for deriving information.

Note that all entities within the four steps Observe, Orient, Decide and Act are executed in parallel in
separate processes. The Recommendation Decision Maker may be blocked because the Action Handler
is adapting but it is always running for denying or allowing Recommendations.

So far, we have only explained the entities and steps of the adaptive loop used by Scari but not how
and where we want to deploy them. Figure 10 illustrates that we foresee multiple loops on different adap-
tion layers. The lowest layer resides on the ACPU while the parent layer of that loop is located on the
CCPU. On top of that are adaptive loops grouping control devices according to their logical structure.

We organize these loops in a directed acyclic graph. That means a loop can have one to several parent
loops where it can escalate to if it cannot handle an anomaly. In literature, organizing adaptive loops in
the presented way is known as Hierarchical Control pattern (Weyns et al., 2013).

There are two reasons for us organizing the Scari adaption loops in a hierarchical way.
The first reason is that Knowledge Bases only need to know their subgraphs. If a World Model on a node

changes, information is only propagated up to the parent nodes. A Knowledge Base may be configured

Figure 10. Multi-layer Scari

204

8. Publications

239

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

to prune lower node data if it is not needed on the higher levels. Further it is more efficient regarding
memory consumption if information is only present on nodes or until certain layers, where it is actually
needed. Distributing all information on all nodes would additionally lead to more network traffic.

The second reason for a hierarchical organization is that an adaptive loop only needs to handle its
subgraph. A loop does not need to manage other parts of the overall graph which also eases the con-
figuration of Scari. If it is not possible to adapt to an Event happening on a node, it can be escalated to
a parent node that has more knowledge, more and different resources under control and can therefore
leverage mightier adaption mechanisms. In our hydro-power setting, it is imaginable that these adap-
tion layers are even laid over different hydro-power plants (then of course acting on bigger time scales).

As shown in Figure 10 the information that flows a graph up are Events and Knowledge, while the
information going down are Actions adjusting lower nodes. It is important to note that an adaptive loop
residing on a higher layer needs to lock all Action Handlers of the lower loops. Otherwise, one lower
adaptive loop could be faster with an own Plan and the result of two interfering Actions would be un-
predictable. Even if a lower node is not in the scope of a higher layer Plan it could lead to uncertainty
if such a node is allowed to change its behavior.

Another aspect that needs to be taken in consideration are the different time scales residing on the
different layers. An adaptive loop on the ACPU can react much quicker than an adaptive loop overlook-
ing several control devices. Also, the communication between the layers can take a notably amount of
time. Further, the control logic operating a hydro-power plant unit should not be disrupted by observing
Monitors.

Last a few words on the technical implementation of Scari. In general, we implement the different
entities with the C++ programming language together with the Qt framework. The messages Notifica-
tion, Recommendation, Plan and Action within one adaptive loop are distributed over DBus which is a
software bus (the developers call it a smart socket) enabling a loose coupling between Monitors, Syn-
drome Processors, and so on. The communication between the layers is implemented with encrypted
websockets. The self-adaptive infrastructure itself has to be secured, otherwise it would represent a huge
attack surface. The Plan Maker and the Action Handler entities are offering a plugin architecture in
order to create Plans for a specific plan type or to implement the actual Action. Concerning the World
Models we are using an own C++ modeling framework inspired by the Eclipse Modeling Framework.
Scari itself with the different adaptive layers is supposed to be statically configured beforehand.

Exemplary Use Cases

In the following we present two examples that demonstrate the potential of Scari. The first one is about a
permanent hardware fault located inside the RAM. The second one demonstrates a case where a control
device is infected by malicious software.

Hardware Fault Example

Figure 11 shows an overview of a hardware fault case. In this scenario one calculation is running redun-
dant on core 1 and core 3. Both calculations are observed by a voter (Monitor). Now, if a data mismatch
is happening then the voter notifies a minimalistic syndrome processor that instantly recommends to
check the used memory areas and the used CPUs. This Recommendation is processed by a Recommen-
dation Decision Maker and forwarded to the Plan Maker. The Plan Maker selects suitable time slots

205

Paper 6 - Solutions for Cyber-Physical Systems Ubiquity

240

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

for the checks. This is possible because the actual task execution time is lower than the specified cycle
time. Such time windows open the possibility to perform memory checks seeking permanent hardware
faults. After the plan is created, we omit the Plan Decision Maker. We scale down the Scari loop on
the ACPU for performance reasons. We want to react on the ACPU within a short time period because
the control loop is directly affected. Therefore, we omit the Plan Decision Maker and also drop the
Knowledge Base as it costs memory and processing power. After the memory checks are performed,
we have a result, which is again processed by the minimalistic syndrome processor. If one memory area
in the RAM is affected, then the syndrome processor recommends to just use the results of the work-
ing calculation and to ignore the other one. This Recommendation goes through the reduced adaptive
loop and finally an Event is thrown by the Action Handler that the reconfiguration finished. Again, the
minimalistic syndrome processor reacts on such an Event and notifies the higher-layer about the situ-
ation on the ACPU. The higher-layer is located on the CCPU where we have more time on analyzing
situations. A security syndrome processor may use this as evidence that something suspicious is going
on. A memory fault syndrome processor may recommend to start a redundant calculation on another
module part of the device. Or it recommends that the memory area of the affected task gets remapped
to circumvent the faulty memory cell and to restart the redundant calculation. Hoeller, Spitzer, Rauter,
Iber, & Kreiner (2016) show that diverse compilation of software has the potential of circumventing
faulty hardware locations. It is imaginable that such an approach is applicable for us to heal the hardware
with recompiled software to a certain degree.

Figure 11. Overview of the hardware fault example

206

8. Publications

241

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

What we learn from this example is that the adaptive loops have different temporal properties. A
Scari loop on the ACPU has to react faster than the higher loop on the CCPU. On the ACPU, we are also
restricted on the use of parallel processes as we usually only have one core available for adaption pur-
poses. Therefore, we omit a Knowledge Base and a Plan Decision Maker. The Plan Maker is configured
to only create one Plan. If an ACPU does not execute several tasks the Scari loop may be dynamically
configured to load functionality in order to diagnose more syndromes.

In the presented example, we are in fact dealing with cross-cutting concerns. The faulty memory
location may also be caused by a security-related attack. Orchestrating different detection and adaption
mechanisms is one of the main benefits of applying a self-adaptive software system like Scari. Another
benefit is that recommendations and actions can be reused by different syndrome processors.

Security Example

Figure 12 illustrates an overview of a security-related example. Let’s suppose that control device X has
been infected with a malicious software. This hostile software may target to slowly destroy a hydro-power
plant unit, similar to the intention of the famous Stuxnet computer worm (Falliere, Murchu, & Chien,
2011; Langner, 2011). Syndrome processors, located on the CCPU of control devices, connected to the
same hydro-power plant unit, have the means to detect the slow but harmful drift of datapoints. They
can react for instance by notifying a higher-layer adaption loop that the data they are observing, drifts.
The notified layer has more insights into the situation and is able to react with mightier mechanisms for
instance by isolating a device and migrating the application logic.

Further, if an infected device tries to spread the malicious software to other devices, those devices
can detect such an intrusion. They obey structural information of what connections are allowed and can
therefore come to the conclusion that an unexpected connection attempt from a device is in fact a hostile

Figure 12. Overview of the security example

207

Paper 6 - Solutions for Cyber-Physical Systems Ubiquity

242

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

attack. Based on this diagnosed syndrome, devices could react by blaming the infected device and the
higher layer could again isolate and migrate to stand-by devices.

In the presented example, we know beforehand that it is a security-related situation. Syndrome pro-
cessors have to analyze notifications by running algorithms that detect such patterns. It might also be
that there are syndrome processors which are dedicated to diagnose hardware faults and interpret the
situation differently. This is another benefit of Scari as it provides a common infrastructure for com-
munication. It allows to compete syndrome processors about the best recommendation. Essentially, this
is the reason why it is important to prioritize events and plan types in order to make a decision. For
instance, we generally suggest that security-related events have a higher priority than hardware-related.
However, it depends on the domain and the available means how events and plan types are prioritized.

RESEARCH CHALLENGES

Although, there is a high potential for the proposed self-adaptive software infrastructure, it possesses
many research challenges. We derived following challenges based on our experience with Scari.

1. Determinism: Applications usually found in industrial settings have to fulfill real-time require-
ments. Monitor and especially adapt mechanisms introduce time delays that are complicated to
predict. In addition, an adaption mechanism needs to be sure that timing constraints are intact after
a system change.

2. Resource Overhead: The impact of all entities part of the self-adaptive software system on the
resource requirements (e.g. performance, memory, network traffic) should be kept low simply
because they are deployed on embedded devices.

3. Tools and Frameworks: Implementing a self-adaptive software system is not a trivial task. One
has to build several tools and frameworks with well-defined interfaces. The software part of the
adaption loop has to be generic and adjustable to the specific domain and adaption layer. Concerning
the representation of knowledge, one needs modeling frameworks and data distribution facilities for
restricted platforms. Additionally, tools are needed for configuring and deploying such a system.

4. Runtime Models: It is crucial for a model used at runtime to abstract only the relevant details of
a system in order to support effective adaption (Bennaceur et al., 2014). Models that are too fine-
grained can lead to large amounts of data, while higher-level models can ignore relevant details
for diagnosing syndromes.

5. Anomaly Detection Techniques: Anomalies are patterns in data that do not conform to a well-
defined notion of normal behavior. For detecting anomalies there exist a vast amount of different
techniques (Chandola, Banerjee, & Kumar, 2009). In Scari, these techniques reside in the single
syndrome processors. Finding the right detection technique for an anomaly and deciding what is
abnormal is challenging.

6. Adaption Mechanisms: Exploring the space of possibilities concerning adaption mechanisms is a
domain-specific task. Deducing adjustable generic mechanisms from domain-specific approaches
can be fruitful for all different sorts of self-adaptive software systems.

7. Development Methods for Configuring a Self-Adaptive System: Applied adaption mechanisms
directly affect a system regarding several dimensions like functionality, safety, and security. Further,
the valuing of a recommendation over another in the Decide phase of an adaption loop is in fact

208

8. Publications

243

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

a design decision made by system architects. Therefore, we advocate that these aspects actively
have to be taken into consideration at design time of a system, for instance during a hazard and
risk analysis.

8. Testing and Assurance: There need to be means in order to verify that a system is still working as
expected after an adaption. In Scari we currently assume that an adaption mechanism is behaving
as intended. As pointed out by Salehie & Tahvildari (2009) testing and assurance are probably
the least focused phases in engineering self-adaptive software, and there are only a few research
efforts addressing this topic.

9. Self-Optimization: Observing a system and adapting it to become better regarding performance
and memory consumption may yield significant improvements. There is of course the risk that one
causes unintentionally the opposite effect solely by performing costly optimization observations
and adaptions.

10. Interference of the Managed System Through Human Operators: Industrial control systems
have to be adjustable by operators at runtime. An adaptive system has to be aware of such an in-
tentional manipulation and should not counteract by adaption. As far as we know, little has been
mentioned about this potential problem in literature.

11. Interoperability: As we are facing systems of systems, it can become crucial for self-adaptive
software systems to work together. For this issue, there is a need for well-defined standardized
protocols and formats.

FUTURE RESEARCH DIRECTIONS

At the time of this writing, we are in the stage of implementing and trying out different detection and
adaption mechanisms. This relates to the two challenges Anomaly Detection Techniques and Adaption
Mechanisms. In the near future, we plan to investigate methods for configuring a self-adaptive system and
ways of dealing with interferences through human operators. Testing and Assurance is another challenge
which we want to tackle by conducting research whether the potential of model-driven engineering can
be leveraged for increasing the confidence in performing adaptions.

CONCLUSION

In this chapter, we outlined a novel application of an adaptive software system within a CPS setting.
Increasing the resilience of current and future CPS system is one of the key challenges in order to relieve
the ever increase of complexity and unpredictability. Self-adaptive software systems are a promising ap-
proach of dealing with these key challenges as they observe, diagnose problems, and apply mechanisms
in order to adapt and enhance a system. With Scari we presented a concept of a self-adaptive system
currently targeting hydro-power plants. We are confident that other industrial or Internet of Things
domains can learn from our ongoing approach and that many aspects are reusable. We demonstrate the
applicability of this system on two uses cases, one handling a hardware fault, while the other identifies a
security attack. We outlined several research challenges derived from Scari and are going to investigate
several of them in the future.

209

Paper 6 - Solutions for Cyber-Physical Systems Ubiquity

244

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

REFERENCES

Alhakeem, M. S., Munk, P., Lisicki, R., Parzyjegla, H., Parzyjegla, H., & Muehl, G. (2015). A Frame-
work for Adaptive Software-Based Reliability in COTS Many-Core Processors. In Proceedings the 28th
international conference on architecture of computing systems ARCS ‘15 (pp. 1–4).

Aßmann, U., Götz, S., Jézéquel, J.-M., Morin, B., & Trapp, M. (2014). A Reference Architecture and
Roadmap for Models@run.time Systems. In Models@run.time: Foundations, applications, and roadmaps
(pp. 1–18). doi:10.1007/978-3-319-08915-7_1

Bennaceur, A., France, R., Tamburrelli, G., Vogel, T., Mosterman, P. J., & Cazzola, W. … Redlich, D.
(2014). Mechanisms for leveraging models at runtime in self-adaptive software. In N. Bencomo, R.
France, B.H.C. Cheng et al. (Eds.), Models@run.time: Foundations, applications, and roadmaps (pp.
19–46). Cham: Springer International Publishing. doi:10.1007/978-3-319-08915-7_2

Bézivin, J. (2004). In search of a basic principle for model driven engineering. Novatica Journal, Special
Issue, 5(2), 21–24.

Blair, G., Bencomo, N., & France, R. B. (2009). Models@ run.time. Computer, 42(10), 22–27. doi:10.1109/
MC.2009.326

Boyd, J. R. (1996). The Essence of Winning and Losing. Retrieved from http://dnipogo.org/john-r-boyd/

Brambilla, M., Cabot, J., & Wimmer, M. (2012). Model-Driven Software Engineering in Practice. Syn-
thesis Lectures on Software Engineering, 1(1), 1–182. doi:10.2200/S00441ED1V01Y201208SWE001

Brun, Y., Desmarais, R., Geihs, K., Litoiu, M., Lopes, A., Shaw, M., & Smit, M. (2013). A Design
Space for Self-Adaptive Systems. In R. de Lemos, H. Giese, H. A. Müller, & M. Shaw (Eds.), Software
engineering for self-adaptive systems ii (pp. 33–50). Berlin, Heidelberg: Springer Berlin Heidelberg.
doi:10.1007/978-3-642-35813-5_2

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. ACM Computing Sur-
veys, 41(3), 1–58. doi:10.1145/1541880.1541882

Chandra, A., Lewis, P. R., Glette, K., & Stilkerich, S. C. (2016). Reference Architecture for Self-aware
and Self-expressive Computing Systems. In P. R. Lewis, M. Platzner, B. Rinner, J. Tørresen, & X. Yao
(Eds.), Self-aware computing systems: An engineering approach (pp. 37–49). Cham: Springer Interna-
tional Publishing. doi:10.1007/978-3-319-39675-0_4

Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., & Andersson, J. … Whittle, J. (2009).
Software Engineering for Self-Adaptive Systems: A Research Roadmap. In B.H.C. Cheng, R. de Lemos,
H. Giese et al. (Eds.), Software engineering for self-adaptive systems (pp. 1–26). Berlin, Heidelberg:
Springer. doi:10.1007/978-3-642-02161-9_1

Dobson, S., Sterritt, R., Nixon, P., & Hinchey, M. (2010). Fulfilling the Vision of Autonomic Comput-
ing. Computer, 43(1), 35–41. doi:10.1109/MC.2010.14

210

8. Publications

245

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

Dobson, S., Zambonelli, F., Denazis, S., Fernández, A., Gaïti, D., & Gelenbe, E. … Schmidt, N. (2006).
A survey of autonomic communications. ACM Transactions on Autonomous and Adaptive Systems, 1(2),
223–259. doi:10.1145/1186778.1186782

Falliere, N., Murchu, L. O., & Chien, E. (2011). W32. stuxnet dossier. White Paper, Symantec Corp.,
Security Response, 5(6).

Giese, H., Bencomo, N., Pasquale, L., Ramirez, A. J., Inverardi, P., Wätzoldt, S., & Clarke, S. (2014).
Living with Uncertainty in the Age of Runtime Models. In N. Bencomo, R. France, B. H. C. Cheng, &
U. Aßmann (Eds.), Models@run.time: Foundations, applications, and roadmaps (pp. 47–100). Cham:
Springer International Publishing. doi:10.1007/978-3-319-08915-7_3

Grenander, S., Simpson, K., & Sindiy, O. (2009). The Autonomy System Architecture. In Proceedings
of the AIAA infotech@Aerospace conference. Reston, Virigina: American Institute of Aeronautics; As-
tronautics. doi:10.2514/6.2009-1884

Hinchey, M., & Sterritt, R. (2006). Self-Managing Software. Computer, 39(2), 107–109. doi:10.1109/
MC.2006.69

Hoeller, A., Spitzer, B., Rauter, T., Iber, J., & Kreiner, C. (2016). Diverse Compiling for Software-
Based Recovery of Permanent Faults in COTS Processors. In 2016 46th annual ieee/ifip international
conference on dependable systems and networks workshop (dsn-w) (pp. 143–148). IEEE; doi:10.1109/
DSN-W.2016.34

Jelasity, M., Babaoglu, O., Laddaga, R., Nagpal, R., Zambonelli, F., & Sirer, E. … Smirnov, M. (2006).
Interdisciplinary Research: Roles for Self-Organization. IEEE Intelligent Systems, 21(2), 50–58.
doi:10.1109/MIS.2006.30

John, K. H., & Tiegelkamp, M. (2010). IEC 61131-3: Programming Industrial Automation Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-12015-2

Kephart, J., & Chess, D. (2003). The vision of autonomic computing. Computer, 36(1), 41–50. doi:10.1109/
MC.2003.1160055

Laddaga, R. (2001). Active Software. In P. Robertson, H. Shrobe, & R. Laddaga (Eds.), Self-adaptive
software: First international workshop, IWSAS 2000 (pp. 11–26). Berlin, Heidelberg: Springer Berlin
Heidelberg. doi:10.1007/3-540-44584-6_2

Langner, R. (2011). Stuxnet: Dissecting a Cyberwarfare Weapon. IEEE Security & Privacy Magazine,
9(3), 49–51. doi:10.1109/MSP.2011.67

Miller, B., & Rowe, D. (2012). A survey SCADA of and critical infrastructure incidents. In Proceedings
of the 1st annual conference on research in information technology - riit ’12 (p. 51). New York, New
York, USA: ACM Press. doi:10.1145/2380790.2380805

211

Paper 6 - Solutions for Cyber-Physical Systems Ubiquity

246

A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems

Muccini, H., Sharaf, M., & Weyns, D. (2016). Self-adaptation for Cyber-physical Systems: A System-
atic Literature Review. In Proceedings of the 11th international workshop on software engineering for
adaptive and self-managing systems - seams ’16 (pp. 75–81). New York, New York, USA: ACM Press.
doi:10.1145/2897053.2897069

Müller, J. P., & Fischer, K. (2014). Application Impact of Multi-agent Systems and Technologies: A
Survey. In Agent-oriented software engineering (pp. 27–53). Berlin, Heidelberg: Springer Berlin Hei-
delberg. doi:10.1007/978-3-642-54432-3_3

NIST. (2013). Foundations for Innovation in Cyber-Physical Systems.

Oreizy, P., Gorlick, M., Taylor, R., Heimhigner, D., Johnson, G., & Medvidovic, N. … Wolf, A. (1999).
An architecture-based approach to self-adaptive software. IEEE Intelligent Systems, 14(3), 54–62.
doi:10.1109/5254.769885

Salehie, M., & Tahvildari, L. (2009). Self-adaptive software: Landscape and research challenges. ACM
Transactions on Autonomous and Adaptive Systems, 4(2), 1–42. doi:10.1145/1516533.1516538

Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., & Prehofer, C. … Göschka, K. M. (2013).
On Patterns for Decentralized Control in Self-Adaptive Systems. In Software engineering for self-adaptive
systems ii (pp. 76–107). doi:10.1007/978-3-642-35813-5_4

Wikimedia Commons. (2014). OODA loop. Retrieved from https://commons.wikimedia.org/wiki/
File:OODA.Boyd.svg

KEY TERMS AND DEFINITIONS

Anomaly: An anomaly is a pattern in data that does not conform to a well-defined notion of normal
behavior.

Model: A model is an abstraction of a system allowing predictions or inferences to be made.
Model-Driven Engineering: In this method models are the key artifacts of all development related

activities and tasks.
Models@Run.time: A model@run.time is a causally connected model of the associated system that

emphasizes the structure, behavior, or goals of the system.
Reliability: Reliability is the ability of a system to continue its correct service for a specified period

of time.
Resilience: Resilience refers to the robustness of a system to adapt itself so as to absorb and tolerate

the consequences of failures, attacks or changes.
Self-Adaptive Software System: A Self-adaptive software system is a system that modifies its own

behavior in response to changes in its operating environment.

212

8. Publications

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 130 (2018) 392–399

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2018.04.058

9th International Conference on Ambient Systems, Networks and Technologies, ANT-2018 and
the 8th International Conference on Sustainable Energy Information Technology,

SEIT 2018, 8-11 May, 2018, Porto, Portugal

10.1016/j.procs.2018.04.058

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

1877-0509

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

The 9th International Conference on Ambient Systems, Networks and Technologies
(ANT 2018)

Dynamic Adaption to Permanent Memory Faults in Industrial
Control Systems

Johannes Iber∗, Michael Krisper∗, Jürgen Dobaj∗, Christian Kreiner∗

Institute of Technical Informatics, Graz University of Technology, Inffeldgasse 16, Graz, Austria

Abstract

Industrial control systems are making increased use of commercial off-the-shelf hardware components. One such component is
memory based on DRAM technology. As pointed out by others, DRAM memory can experience permanent hardware errors, e.g. a
memory cell can be permanently stuck-at zero or one. In the worst case, such a fault may have serious safety-related consequences.
In this work, we present the application of a self-adaptive software system named Scari that detects erroneous datapoints, analyzes
them concerning permanent stuck-at faults, and adapts to them by masking defect memory areas. Crucial for this to work is a
hot-standby device that takes over the control loop during the detection and adaption phases. The goal of the mechanism presented
here is automatic self-repair of a faulty control device to increase its service life and to strengthen overall resilience. The industrial
setting of the presented approach is that of control devices for hydropower plant units.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: self-adaptive software system; permanent memory faults; industrial control systems

1. Introduction

Industrial control systems usually consist of distributed embedded devices, such as programmable logic controllers
(PLCs) that control physical processes, and supervisory computers that gather data and command PLCs (amongst
other devices). In contrast to systems of last decades, modern industrial control systems offer higher performance,
are distributed and often connected to the internet. Because industrial control systems are becoming large-scale
distributed systems, the inherent problem of complexity is certain to escalate. Systems of this kind must deal with
uncertainty, change during operation and moreover be scalable and tolerant to threats1. Modern systems are built out
of commercial off-the-shelf hardware platforms, which are inexpensive and offer high performance. The downside
of these platforms is that typically they offer only limited safety and fault tolerance features2 3. One such component
is DRAM memory that has been shown to be vulnerable against permanent hard errors such as stuck-at zero or
one4. Scari (Secure and reliable infrastructure) is our ongoing effort of creating a self-adaptive software system that

∗ Corresponding author.
E-mail address: firstname.lastname@tugraz.at

1877-0509 c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

The 9th International Conference on Ambient Systems, Networks and Technologies
(ANT 2018)

Dynamic Adaption to Permanent Memory Faults in Industrial
Control Systems

Johannes Iber∗, Michael Krisper∗, Jürgen Dobaj∗, Christian Kreiner∗

Institute of Technical Informatics, Graz University of Technology, Inffeldgasse 16, Graz, Austria

Abstract

Industrial control systems are making increased use of commercial off-the-shelf hardware components. One such component is
memory based on DRAM technology. As pointed out by others, DRAM memory can experience permanent hardware errors, e.g. a
memory cell can be permanently stuck-at zero or one. In the worst case, such a fault may have serious safety-related consequences.
In this work, we present the application of a self-adaptive software system named Scari that detects erroneous datapoints, analyzes
them concerning permanent stuck-at faults, and adapts to them by masking defect memory areas. Crucial for this to work is a
hot-standby device that takes over the control loop during the detection and adaption phases. The goal of the mechanism presented
here is automatic self-repair of a faulty control device to increase its service life and to strengthen overall resilience. The industrial
setting of the presented approach is that of control devices for hydropower plant units.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: self-adaptive software system; permanent memory faults; industrial control systems

1. Introduction

Industrial control systems usually consist of distributed embedded devices, such as programmable logic controllers
(PLCs) that control physical processes, and supervisory computers that gather data and command PLCs (amongst
other devices). In contrast to systems of last decades, modern industrial control systems offer higher performance,
are distributed and often connected to the internet. Because industrial control systems are becoming large-scale
distributed systems, the inherent problem of complexity is certain to escalate. Systems of this kind must deal with
uncertainty, change during operation and moreover be scalable and tolerant to threats1. Modern systems are built out
of commercial off-the-shelf hardware platforms, which are inexpensive and offer high performance. The downside
of these platforms is that typically they offer only limited safety and fault tolerance features2 3. One such component
is DRAM memory that has been shown to be vulnerable against permanent hard errors such as stuck-at zero or
one4. Scari (Secure and reliable infrastructure) is our ongoing effort of creating a self-adaptive software system that

∗ Corresponding author.
E-mail address: firstname.lastname@tugraz.at

1877-0509 c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

The 9th International Conference on Ambient Systems, Networks and Technologies
(ANT 2018)

Dynamic Adaption to Permanent Memory Faults in Industrial
Control Systems

Johannes Iber∗, Michael Krisper∗, Jürgen Dobaj∗, Christian Kreiner∗

Institute of Technical Informatics, Graz University of Technology, Inffeldgasse 16, Graz, Austria

Abstract

Industrial control systems are making increased use of commercial off-the-shelf hardware components. One such component is
memory based on DRAM technology. As pointed out by others, DRAM memory can experience permanent hardware errors, e.g. a
memory cell can be permanently stuck-at zero or one. In the worst case, such a fault may have serious safety-related consequences.
In this work, we present the application of a self-adaptive software system named Scari that detects erroneous datapoints, analyzes
them concerning permanent stuck-at faults, and adapts to them by masking defect memory areas. Crucial for this to work is a
hot-standby device that takes over the control loop during the detection and adaption phases. The goal of the mechanism presented
here is automatic self-repair of a faulty control device to increase its service life and to strengthen overall resilience. The industrial
setting of the presented approach is that of control devices for hydropower plant units.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: self-adaptive software system; permanent memory faults; industrial control systems

1. Introduction

Industrial control systems usually consist of distributed embedded devices, such as programmable logic controllers
(PLCs) that control physical processes, and supervisory computers that gather data and command PLCs (amongst
other devices). In contrast to systems of last decades, modern industrial control systems offer higher performance,
are distributed and often connected to the internet. Because industrial control systems are becoming large-scale
distributed systems, the inherent problem of complexity is certain to escalate. Systems of this kind must deal with
uncertainty, change during operation and moreover be scalable and tolerant to threats1. Modern systems are built out
of commercial off-the-shelf hardware platforms, which are inexpensive and offer high performance. The downside
of these platforms is that typically they offer only limited safety and fault tolerance features2 3. One such component
is DRAM memory that has been shown to be vulnerable against permanent hard errors such as stuck-at zero or
one4. Scari (Secure and reliable infrastructure) is our ongoing effort of creating a self-adaptive software system that

∗ Corresponding author.
E-mail address: firstname.lastname@tugraz.at

1877-0509 c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

2 J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000

aims to increase the resilience of networked embedded devices5 6. Our goal is to defend the hardware/software stack
underneath the executed control loops in order to execute them correctly for as long as possible. We are simultaneously
targeting various different areas such as security attacks and hardware faults7. It thus provides an open architecture
where arbitrary mechanisms can be plugged in and executed in parallel. With this work we contribute the design
of a self-adaptive mechanism within Scari that detects permanent stuck-at DRAM faults and leverages mechanisms
provided by Linux to circumvent them. Such a mechanism enables it to automatically repair a control device and to
increase the fault-tolerance of an industrial system. We embed this mechanism in a self-adaptive framework because
this enables the implementation of several competing mechanisms. Erronous data for example, could also be an
indication for a security-related issue.

The remainder of this paper is structured as follows: Section 2 explains our industrial setting. Section 3 pro-
vides a brief overview of the related work including our ongoing self-adaptive software effort. Section 4 shows the
contribution of this work in detail. Finally, concluding remarks and future work are given in Section 5.

2. Industrial setting

Hydropower Plant Unit

Control Device

Sensors

Actuators

Interface
Module
Interface
Module

Central Module

CCPU

ACPU

controls

Central Module

CCPU

ACPU

controls
IFCPU

IMIMIMIM

IEC 61131 like
components

Offers Values as Datapoints

Hardware View

Software View
Cyclic
Task

FUP
POU

POU
POU

POUFUP
POU

POU
POU

POU

FUP POU POU POUFUP POU POU POU

Cyclic
Task

FUP
POU

POU
POU

POU

FUP POU POU POU

Runs on

Fig. 1: Overview of the industrial control system

The industrial setting of this work is that of
networked control devices operating hydropower
plant units. We chose this setting because it is
also our project context and we are familiar with
it. Fig. 1 illustrates a simplified overview of such
a control device. These devices can be deployed
in a hot-standby setting where a redundant active
device immediately takes over if a fault on the
main device occurs.

The control devices are connected to hy-
dropower plant units. Their functional respon-
sibility is to operate these units through one of
the four different functions namely excitation,
synchronization, protection and turbine control.
Technically, these devices have a programmable
logic controller (PLC) architecture. In the context of the hardware design, a control device is built out of central
modules and interface modules. A central module consists of a communication CPU (CCPU) and an application
CPU (ACPU). The CCPU is responsible for network connections and controlling/monitoring the ACPU. It runs a
customized Linux distribution and can be accessed by various protocols such as SSH and Modbus. From the security
perspective this protects the ACPU and verifies incoming commands. The ACPU is a multi-core processor and exe-
cutes the actual control logic. It runs Linux together with Xenomai8 (a framework that adds real-time capabilities to
Linux) in order to ensure guaranteed cycle times. The interface modules connect the control device with the sensors
and actuators of the hydropower plant unit. Central modules and interface modules are connected via Ethernet.

The control logic executed by the ACPU of a central module is component-based and much influenced by the IEC
61131 standard for programmable logic controllers9. It is hierarchically built out of components, compositions and
tasks. Components are termed Program Organization Units (POU) and compositions are named Function Plans (FUP).
POUs are coded with the C-programming language and stored as binaries on the devices. Such POUs implement
basic functions, e.g. simple logic gates, or complex algorithms. Based on these POUs, reusable FUPs are designed
by plant engineers that implement the specific control logic for a hydropower plant unit. Finally, such FUPs are
executed by cyclic tasks in real-time. FUPs operate on datapoints that are set and read by the interface modules.
At the start of a cyclic task the necessary datapoints are collected, then the FUPs are executed, and subsequently
the calculated datapoints are written back. The interface modules receive these datapoints and actuate accordingly.
Further, datapoints can be shared with other control devices or supervisory computers.

FUPs operate on datapoints that are set and read by the interface modules. At the start of a cyclic task the necessary
datapoints are collected, then the FUPs are executed, and subsequently the calculated datapoints are written back. The

c©2018 Authors. Reprinted, with permission. The definitive version was published in Proceedings of the 9th International Conference
on Ambient Systems, Networks and Technologies (ANT), May 2018.

213

Paper 7 - ANT 2018

 Johannes Iber et al. / Procedia Computer Science 130 (2018) 392–399 393Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

The 9th International Conference on Ambient Systems, Networks and Technologies
(ANT 2018)

Dynamic Adaption to Permanent Memory Faults in Industrial
Control Systems

Johannes Iber∗, Michael Krisper∗, Jürgen Dobaj∗, Christian Kreiner∗

Institute of Technical Informatics, Graz University of Technology, Inffeldgasse 16, Graz, Austria

Abstract

Industrial control systems are making increased use of commercial off-the-shelf hardware components. One such component is
memory based on DRAM technology. As pointed out by others, DRAM memory can experience permanent hardware errors, e.g. a
memory cell can be permanently stuck-at zero or one. In the worst case, such a fault may have serious safety-related consequences.
In this work, we present the application of a self-adaptive software system named Scari that detects erroneous datapoints, analyzes
them concerning permanent stuck-at faults, and adapts to them by masking defect memory areas. Crucial for this to work is a
hot-standby device that takes over the control loop during the detection and adaption phases. The goal of the mechanism presented
here is automatic self-repair of a faulty control device to increase its service life and to strengthen overall resilience. The industrial
setting of the presented approach is that of control devices for hydropower plant units.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: self-adaptive software system; permanent memory faults; industrial control systems

1. Introduction

Industrial control systems usually consist of distributed embedded devices, such as programmable logic controllers
(PLCs) that control physical processes, and supervisory computers that gather data and command PLCs (amongst
other devices). In contrast to systems of last decades, modern industrial control systems offer higher performance,
are distributed and often connected to the internet. Because industrial control systems are becoming large-scale
distributed systems, the inherent problem of complexity is certain to escalate. Systems of this kind must deal with
uncertainty, change during operation and moreover be scalable and tolerant to threats1. Modern systems are built out
of commercial off-the-shelf hardware platforms, which are inexpensive and offer high performance. The downside
of these platforms is that typically they offer only limited safety and fault tolerance features2 3. One such component
is DRAM memory that has been shown to be vulnerable against permanent hard errors such as stuck-at zero or
one4. Scari (Secure and reliable infrastructure) is our ongoing effort of creating a self-adaptive software system that

∗ Corresponding author.
E-mail address: firstname.lastname@tugraz.at

1877-0509 c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

The 9th International Conference on Ambient Systems, Networks and Technologies
(ANT 2018)

Dynamic Adaption to Permanent Memory Faults in Industrial
Control Systems

Johannes Iber∗, Michael Krisper∗, Jürgen Dobaj∗, Christian Kreiner∗

Institute of Technical Informatics, Graz University of Technology, Inffeldgasse 16, Graz, Austria

Abstract

Industrial control systems are making increased use of commercial off-the-shelf hardware components. One such component is
memory based on DRAM technology. As pointed out by others, DRAM memory can experience permanent hardware errors, e.g. a
memory cell can be permanently stuck-at zero or one. In the worst case, such a fault may have serious safety-related consequences.
In this work, we present the application of a self-adaptive software system named Scari that detects erroneous datapoints, analyzes
them concerning permanent stuck-at faults, and adapts to them by masking defect memory areas. Crucial for this to work is a
hot-standby device that takes over the control loop during the detection and adaption phases. The goal of the mechanism presented
here is automatic self-repair of a faulty control device to increase its service life and to strengthen overall resilience. The industrial
setting of the presented approach is that of control devices for hydropower plant units.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: self-adaptive software system; permanent memory faults; industrial control systems

1. Introduction

Industrial control systems usually consist of distributed embedded devices, such as programmable logic controllers
(PLCs) that control physical processes, and supervisory computers that gather data and command PLCs (amongst
other devices). In contrast to systems of last decades, modern industrial control systems offer higher performance,
are distributed and often connected to the internet. Because industrial control systems are becoming large-scale
distributed systems, the inherent problem of complexity is certain to escalate. Systems of this kind must deal with
uncertainty, change during operation and moreover be scalable and tolerant to threats1. Modern systems are built out
of commercial off-the-shelf hardware platforms, which are inexpensive and offer high performance. The downside
of these platforms is that typically they offer only limited safety and fault tolerance features2 3. One such component
is DRAM memory that has been shown to be vulnerable against permanent hard errors such as stuck-at zero or
one4. Scari (Secure and reliable infrastructure) is our ongoing effort of creating a self-adaptive software system that

∗ Corresponding author.
E-mail address: firstname.lastname@tugraz.at

1877-0509 c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

The 9th International Conference on Ambient Systems, Networks and Technologies
(ANT 2018)

Dynamic Adaption to Permanent Memory Faults in Industrial
Control Systems

Johannes Iber∗, Michael Krisper∗, Jürgen Dobaj∗, Christian Kreiner∗

Institute of Technical Informatics, Graz University of Technology, Inffeldgasse 16, Graz, Austria

Abstract

Industrial control systems are making increased use of commercial off-the-shelf hardware components. One such component is
memory based on DRAM technology. As pointed out by others, DRAM memory can experience permanent hardware errors, e.g. a
memory cell can be permanently stuck-at zero or one. In the worst case, such a fault may have serious safety-related consequences.
In this work, we present the application of a self-adaptive software system named Scari that detects erroneous datapoints, analyzes
them concerning permanent stuck-at faults, and adapts to them by masking defect memory areas. Crucial for this to work is a
hot-standby device that takes over the control loop during the detection and adaption phases. The goal of the mechanism presented
here is automatic self-repair of a faulty control device to increase its service life and to strengthen overall resilience. The industrial
setting of the presented approach is that of control devices for hydropower plant units.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: self-adaptive software system; permanent memory faults; industrial control systems

1. Introduction

Industrial control systems usually consist of distributed embedded devices, such as programmable logic controllers
(PLCs) that control physical processes, and supervisory computers that gather data and command PLCs (amongst
other devices). In contrast to systems of last decades, modern industrial control systems offer higher performance,
are distributed and often connected to the internet. Because industrial control systems are becoming large-scale
distributed systems, the inherent problem of complexity is certain to escalate. Systems of this kind must deal with
uncertainty, change during operation and moreover be scalable and tolerant to threats1. Modern systems are built out
of commercial off-the-shelf hardware platforms, which are inexpensive and offer high performance. The downside
of these platforms is that typically they offer only limited safety and fault tolerance features2 3. One such component
is DRAM memory that has been shown to be vulnerable against permanent hard errors such as stuck-at zero or
one4. Scari (Secure and reliable infrastructure) is our ongoing effort of creating a self-adaptive software system that

∗ Corresponding author.
E-mail address: firstname.lastname@tugraz.at

1877-0509 c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

2 J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000

aims to increase the resilience of networked embedded devices5 6. Our goal is to defend the hardware/software stack
underneath the executed control loops in order to execute them correctly for as long as possible. We are simultaneously
targeting various different areas such as security attacks and hardware faults7. It thus provides an open architecture
where arbitrary mechanisms can be plugged in and executed in parallel. With this work we contribute the design
of a self-adaptive mechanism within Scari that detects permanent stuck-at DRAM faults and leverages mechanisms
provided by Linux to circumvent them. Such a mechanism enables it to automatically repair a control device and to
increase the fault-tolerance of an industrial system. We embed this mechanism in a self-adaptive framework because
this enables the implementation of several competing mechanisms. Erronous data for example, could also be an
indication for a security-related issue.

The remainder of this paper is structured as follows: Section 2 explains our industrial setting. Section 3 pro-
vides a brief overview of the related work including our ongoing self-adaptive software effort. Section 4 shows the
contribution of this work in detail. Finally, concluding remarks and future work are given in Section 5.

2. Industrial setting

Hydropower Plant Unit

Control Device

Sensors

Actuators

Interface
Module
Interface
Module

Central Module

CCPU

ACPU

controls

Central Module

CCPU

ACPU

controls
IFCPU

IMIMIMIM

IEC 61131 like
components

Offers Values as Datapoints

Hardware View

Software View
Cyclic
Task

FUP
POU

POU
POU

POUFUP
POU

POU
POU

POU

FUP POU POU POUFUP POU POU POU

Cyclic
Task

FUP
POU

POU
POU

POU

FUP POU POU POU

Runs on

Fig. 1: Overview of the industrial control system

The industrial setting of this work is that of
networked control devices operating hydropower
plant units. We chose this setting because it is
also our project context and we are familiar with
it. Fig. 1 illustrates a simplified overview of such
a control device. These devices can be deployed
in a hot-standby setting where a redundant active
device immediately takes over if a fault on the
main device occurs.

The control devices are connected to hy-
dropower plant units. Their functional respon-
sibility is to operate these units through one of
the four different functions namely excitation,
synchronization, protection and turbine control.
Technically, these devices have a programmable
logic controller (PLC) architecture. In the context of the hardware design, a control device is built out of central
modules and interface modules. A central module consists of a communication CPU (CCPU) and an application
CPU (ACPU). The CCPU is responsible for network connections and controlling/monitoring the ACPU. It runs a
customized Linux distribution and can be accessed by various protocols such as SSH and Modbus. From the security
perspective this protects the ACPU and verifies incoming commands. The ACPU is a multi-core processor and exe-
cutes the actual control logic. It runs Linux together with Xenomai8 (a framework that adds real-time capabilities to
Linux) in order to ensure guaranteed cycle times. The interface modules connect the control device with the sensors
and actuators of the hydropower plant unit. Central modules and interface modules are connected via Ethernet.

The control logic executed by the ACPU of a central module is component-based and much influenced by the IEC
61131 standard for programmable logic controllers9. It is hierarchically built out of components, compositions and
tasks. Components are termed Program Organization Units (POU) and compositions are named Function Plans (FUP).
POUs are coded with the C-programming language and stored as binaries on the devices. Such POUs implement
basic functions, e.g. simple logic gates, or complex algorithms. Based on these POUs, reusable FUPs are designed
by plant engineers that implement the specific control logic for a hydropower plant unit. Finally, such FUPs are
executed by cyclic tasks in real-time. FUPs operate on datapoints that are set and read by the interface modules.
At the start of a cyclic task the necessary datapoints are collected, then the FUPs are executed, and subsequently
the calculated datapoints are written back. The interface modules receive these datapoints and actuate accordingly.
Further, datapoints can be shared with other control devices or supervisory computers.

FUPs operate on datapoints that are set and read by the interface modules. At the start of a cyclic task the necessary
datapoints are collected, then the FUPs are executed, and subsequently the calculated datapoints are written back. The

214

8. Publications

394 Johannes Iber et al. / Procedia Computer Science 130 (2018) 392–399
J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000 3

interface modules receive these datapoints and actuate accordingly. Further, datapoints can be shared with other
control devices or supervisory computers.

3. Related work

3.1. DRAM errors

In general, Dynamic Random-Access Memory (DRAM) errors can be categorized into soft and hard errors. Soft
errors are transient errors where a memory cell is corrupted temporary, but fully functional before and after the
fault. The causes of soft errors are mostly environmental, such as alpha particles, electromagnetic interference or
electrostatic discharge. Hard errors are permanent faults in which physical damage has occurred within the memory
itself. For instance, a specific bit in a DRAM chip could be permanently stuck-at zero or one. As shown by10 11 12,
DRAM errors are dominated by hard errors rather than soft errors. Hwang et al.
12 mention that hard errors account for 95% of all observed DRAM errors in some analyzed systems. Furthermore,
multiple errors are more likely to occur near the same rows and columns of the physical layout of a DRAM chip12.

One common way of dealing with DRAM errors is to use Dual Inline Memory Modules (DIMMs) with error
correcting code (ECC) techniques. Typical ECCs are able to correct single bit errors and to detect, but not correct,
double bit errors in a memory word. More powerful codes, such as the Chipkill family for example, can correct up
to four adjacent bits at once. A study carried out by Schroeder et al. 10 shows that 1.3% a year of all DIMMs in the
Google server fleet are affected by so-called uncorrectable errors despite applying ECC techniques. Uncorrectable
errors are considered by Google to be serious enough to replace the DIMM at fault. According to the study, platforms
where only a simple ECC technique is applied will even have a 3-6 times higher probability of seeing an uncorrectable
error than platforms where a more powerful ECC is applied.

Stefanovici et al. 4 conclude that their research shows that a DRAM chip can be perfectly fine if software retires
the problematic parts of a memory. They claim that almost 90% of their observed memory-access errors could have
been prevented by sacrificing less than 1 megabyte of memory per computer. In this work, we show how this proposal
could appear when implemented for industrial control systems.

3.2. Scari

Observe Act

Orient Decide

Event

Syndrome
Processors

Recommendation
Decision Maker Plan Maker

Plan Decision
Maker

Action Handler

1 Notification

N Recommendations 1 Recommendation

N Plans

1 Plan = {N Actions}

 Monitor

World Model

Adapt

Information Change

Knowledge
Base

1 Notification Event 1 Notification Event

1 Notification

Event

1 Notification

Event

Fig. 2: Scari adaptive loop.

Scari (Secure and reliable infrastructure)
is our ongoing research effort of cre-
ating a self-adaptive software system
that targets to increase the resilience of
networked embedded system like con-
trol devices used in hydropower plants.
With the term infrastructure we mean the
hardware (e.g. CPU, physical network,
. . .) and software (operating system, ap-
plications, . . .) stack providing the facil-
ities for running industrial control logic.
We do not target to adapt the control
logic itself. Instead, we want to ensure
that devices and networks last longer, op-
erate in the presence of hardware faults, and mitigate security attacks. Furthermore we have the target of making
control devices smarter in order to recognize anomalies in the data they receive from their environment. These targets
are explained in detail in7 where we show how the determinism found in industrial control systems can be used to
increase resilience for the areas hardware faults, security attacks, misconfiguration, faults in the physical device envi-
ronment, and software bugs. In the following, we briefly describe the relevant properties of Scari in order to explain
the contribution of this work. A more detailed explanation of Scari can be found in5 6.

4 J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000

Fig. 2 illustrates the adaptive loop of Scari. It consists of 5 parts, which are Observe, Orient, Decide, Act, and a
common Knowledge Base.

The Observe part consists of Monitors that are specialized in discovering and measuring specific anomalies, such
as for example a drift in data. These monitors notify an arbitrary number of interested Syndrome Processors, residing
in the Orient part. The Syndrome Processors implement a specific detection mechanism e.g. for hardware faults or
security attacks. Technically, they can use any viable method for detection like machine-learning or simple thresholds.
If one or several Syndrome Processors diagnose a problem, they recommend plan types for handling a situation. For
instance a hardware fault Syndrome Processor may recommend circumventing a damaged module, while a security
Syndrome Processor may recommend isolating a device. Following on from this the Recommendation Decision Maker
selects the best recommendation on the basis of a definable prioritization for the covered events and chosen plan types.
The selected recommendation is then forwarded to the Plan Maker that creates the actions for the plan type. Some
plan types can be implemented in different ways, we thus added a Plan Decision Maker that selects the plan with the
least affected systems/resources and the lowest number of used actions. In the final part, the plan is executed by an
Action Handler, and the system is adapted. Each of the entities of the Decide and Act parts feed back their states as
events. This enables the Syndrome Processors to log the state of their recommendations and to be notified in turn
that the system has adapted. The Knowledge Base provides support for the other four parts. It contains the deployed
models from design time and additional run time information. It serves as a source of knowledge for the Observe,
Orient and Decide parts, while the Act part stores the executed changes of the system there.

In our approach we combine MAPE-K13 14 with John Boyd’s OODA loop15 16. This leads in our opinion to the
best of both concepts. MAPE-K consists of the steps Monitor, Analyze, Plan, Execute, and a shared part representing
Knowledge, while OODA stands for Observe, Orient, Decide and Act. The Analyze and Plan steps of MAPE-K are
subsumed within OODA as Orient. Furthermore, MAPE-K introduces the Knowledge Base as a common information
source for the different steps. OODA adds an explicit Decide part which is useful for the selection of recommenda-
tions. The Plan step of MAPE-K is distributed over several loosely coupled Syndrome Processors. We also take over
from OODA the capability of each step for giving feedback in the form of notifications to Monitors and Syndrome
Processors. This allows them to consider what happened with their notifications and recommendations.

In our industrial setting, Scari runs on all devices and is organized in a hierarchical manner. For instance CCPU
loops are supervised by a Scari loop executed on network level. This hierarchical organization of Scari has two
advantages: One is that a Knowledge Base only needs to know its subgraphs. If a World Model on a node changes,
information is only propagated up to the parent nodes. The second advantage is that an adaptive loop only needs to
handle its subgraph. A loop does not need to manage other parts of the overall control system which also eases the
configuration of Scari. If it is not possible to adapt to an event occurring on a node, it can be escalated to a parent
node that has more knowledge, more resources and can therefore leverage more powerful adaption mechanisms. In
our hydropower setting, it is conceivable that these adaption layers are even laid over different hydropower plants,
where they are acting on a greater time scale.

Technically, we implement Scari in C++ together with the Qt framework 1. The Knowledge Base uses a C++
modeling framework developed by us and inspired by the Eclipse Modeling Framework 2. It leverages the libgit2
library 3 for distributing models. Scari itself with its different adaptive layers is intended to be statically configured in
advance. Furthermore, the architecture allows the dynamic addition of monitors, syndrome processors, plan creation
mechanisms and actions in run time.

4. Approach

The goal of our approach is to restore the functionality of a device after memory failures by masking out the faulty
memory areas and continuing to operate with the still functional memory. In order to do this, we observe datapoints,
perform memory tests on the addresses of the affected datapoints and mask the faulty areas with the Linux kernel boot

1 https://www.qt.io/
2 http://www.eclipse.org/modeling/emf/
3 https://libgit2.github.com/

215

Paper 7 - ANT 2018

 Johannes Iber et al. / Procedia Computer Science 130 (2018) 392–399 395
J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000 3

interface modules receive these datapoints and actuate accordingly. Further, datapoints can be shared with other
control devices or supervisory computers.

3. Related work

3.1. DRAM errors

In general, Dynamic Random-Access Memory (DRAM) errors can be categorized into soft and hard errors. Soft
errors are transient errors where a memory cell is corrupted temporary, but fully functional before and after the
fault. The causes of soft errors are mostly environmental, such as alpha particles, electromagnetic interference or
electrostatic discharge. Hard errors are permanent faults in which physical damage has occurred within the memory
itself. For instance, a specific bit in a DRAM chip could be permanently stuck-at zero or one. As shown by10 11 12,
DRAM errors are dominated by hard errors rather than soft errors. Hwang et al.
12 mention that hard errors account for 95% of all observed DRAM errors in some analyzed systems. Furthermore,
multiple errors are more likely to occur near the same rows and columns of the physical layout of a DRAM chip12.

One common way of dealing with DRAM errors is to use Dual Inline Memory Modules (DIMMs) with error
correcting code (ECC) techniques. Typical ECCs are able to correct single bit errors and to detect, but not correct,
double bit errors in a memory word. More powerful codes, such as the Chipkill family for example, can correct up
to four adjacent bits at once. A study carried out by Schroeder et al. 10 shows that 1.3% a year of all DIMMs in the
Google server fleet are affected by so-called uncorrectable errors despite applying ECC techniques. Uncorrectable
errors are considered by Google to be serious enough to replace the DIMM at fault. According to the study, platforms
where only a simple ECC technique is applied will even have a 3-6 times higher probability of seeing an uncorrectable
error than platforms where a more powerful ECC is applied.

Stefanovici et al. 4 conclude that their research shows that a DRAM chip can be perfectly fine if software retires
the problematic parts of a memory. They claim that almost 90% of their observed memory-access errors could have
been prevented by sacrificing less than 1 megabyte of memory per computer. In this work, we show how this proposal
could appear when implemented for industrial control systems.

3.2. Scari

Observe Act

Orient Decide

Event

Syndrome
Processors

Recommendation
Decision Maker Plan Maker

Plan Decision
Maker

Action Handler

1 Notification

N Recommendations 1 Recommendation

N Plans

1 Plan = {N Actions}

 Monitor

World Model

Adapt

Information Change

Knowledge
Base

1 Notification Event 1 Notification Event

1 Notification

Event

1 Notification

Event

Fig. 2: Scari adaptive loop.

Scari (Secure and reliable infrastructure)
is our ongoing research effort of cre-
ating a self-adaptive software system
that targets to increase the resilience of
networked embedded system like con-
trol devices used in hydropower plants.
With the term infrastructure we mean the
hardware (e.g. CPU, physical network,
. . .) and software (operating system, ap-
plications, . . .) stack providing the facil-
ities for running industrial control logic.
We do not target to adapt the control
logic itself. Instead, we want to ensure
that devices and networks last longer, op-
erate in the presence of hardware faults, and mitigate security attacks. Furthermore we have the target of making
control devices smarter in order to recognize anomalies in the data they receive from their environment. These targets
are explained in detail in7 where we show how the determinism found in industrial control systems can be used to
increase resilience for the areas hardware faults, security attacks, misconfiguration, faults in the physical device envi-
ronment, and software bugs. In the following, we briefly describe the relevant properties of Scari in order to explain
the contribution of this work. A more detailed explanation of Scari can be found in5 6.

4 J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000

Fig. 2 illustrates the adaptive loop of Scari. It consists of 5 parts, which are Observe, Orient, Decide, Act, and a
common Knowledge Base.

The Observe part consists of Monitors that are specialized in discovering and measuring specific anomalies, such
as for example a drift in data. These monitors notify an arbitrary number of interested Syndrome Processors, residing
in the Orient part. The Syndrome Processors implement a specific detection mechanism e.g. for hardware faults or
security attacks. Technically, they can use any viable method for detection like machine-learning or simple thresholds.
If one or several Syndrome Processors diagnose a problem, they recommend plan types for handling a situation. For
instance a hardware fault Syndrome Processor may recommend circumventing a damaged module, while a security
Syndrome Processor may recommend isolating a device. Following on from this the Recommendation Decision Maker
selects the best recommendation on the basis of a definable prioritization for the covered events and chosen plan types.
The selected recommendation is then forwarded to the Plan Maker that creates the actions for the plan type. Some
plan types can be implemented in different ways, we thus added a Plan Decision Maker that selects the plan with the
least affected systems/resources and the lowest number of used actions. In the final part, the plan is executed by an
Action Handler, and the system is adapted. Each of the entities of the Decide and Act parts feed back their states as
events. This enables the Syndrome Processors to log the state of their recommendations and to be notified in turn
that the system has adapted. The Knowledge Base provides support for the other four parts. It contains the deployed
models from design time and additional run time information. It serves as a source of knowledge for the Observe,
Orient and Decide parts, while the Act part stores the executed changes of the system there.

In our approach we combine MAPE-K13 14 with John Boyd’s OODA loop15 16. This leads in our opinion to the
best of both concepts. MAPE-K consists of the steps Monitor, Analyze, Plan, Execute, and a shared part representing
Knowledge, while OODA stands for Observe, Orient, Decide and Act. The Analyze and Plan steps of MAPE-K are
subsumed within OODA as Orient. Furthermore, MAPE-K introduces the Knowledge Base as a common information
source for the different steps. OODA adds an explicit Decide part which is useful for the selection of recommenda-
tions. The Plan step of MAPE-K is distributed over several loosely coupled Syndrome Processors. We also take over
from OODA the capability of each step for giving feedback in the form of notifications to Monitors and Syndrome
Processors. This allows them to consider what happened with their notifications and recommendations.

In our industrial setting, Scari runs on all devices and is organized in a hierarchical manner. For instance CCPU
loops are supervised by a Scari loop executed on network level. This hierarchical organization of Scari has two
advantages: One is that a Knowledge Base only needs to know its subgraphs. If a World Model on a node changes,
information is only propagated up to the parent nodes. The second advantage is that an adaptive loop only needs to
handle its subgraph. A loop does not need to manage other parts of the overall control system which also eases the
configuration of Scari. If it is not possible to adapt to an event occurring on a node, it can be escalated to a parent
node that has more knowledge, more resources and can therefore leverage more powerful adaption mechanisms. In
our hydropower setting, it is conceivable that these adaption layers are even laid over different hydropower plants,
where they are acting on a greater time scale.

Technically, we implement Scari in C++ together with the Qt framework 1. The Knowledge Base uses a C++
modeling framework developed by us and inspired by the Eclipse Modeling Framework 2. It leverages the libgit2
library 3 for distributing models. Scari itself with its different adaptive layers is intended to be statically configured in
advance. Furthermore, the architecture allows the dynamic addition of monitors, syndrome processors, plan creation
mechanisms and actions in run time.

4. Approach

The goal of our approach is to restore the functionality of a device after memory failures by masking out the faulty
memory areas and continuing to operate with the still functional memory. In order to do this, we observe datapoints,
perform memory tests on the addresses of the affected datapoints and mask the faulty areas with the Linux kernel boot

1 https://www.qt.io/
2 http://www.eclipse.org/modeling/emf/
3 https://libgit2.github.com/

216

8. Publications

396 Johannes Iber et al. / Procedia Computer Science 130 (2018) 392–399
J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000 5

parameter memmap17. memmap enables to mark specific memory addresses as reserved and thus are not assigned by
Linux. The physical memory addresses can be obtained in Linux by using the pagemap functionality18.

The whole process runs through several adaption cycles which react on the results of the previous adaption. Upon
finding an error we immediately activate the hot standby device to buy time for the adaption and guarantee uninter-
rupted functionality for the overall control system. Now that we have relaxed the time constraints on the device, the
monitoring level is increased to obtain a more detailed error description. Using this description a detailed memory
test for the affected memory locations is carried out and if faulty memory locations are found, these are masked as
reserved in the operating system. Subsequently the system can be restarted and can act as a new hot-standby device.

In the following subsections we present the self-adaptive process by using BPMN as a graphical notation. We
chose BPMN because it fits the event-based and multicomponent architecture of Scari. We split the process into
sections representing the Scari self-adaptive loop: Observe, Orient and Decide & Act. The Observe step is explained
in Subsection 4.1 which explains the detection of permanent memory faults in detail. The Orient Step and Decide &
Act steps are described in Subsections 4.2 and 4.3 which outline the different adaption mechanisms and how they work
together in the self-adaptive system. Subsection 4.4 explains how we evaluate our mechanism. Finally, Subsection
4.5 discusses the pros, cons and tradeoffs of our approach.

4.1. Detection: datapoint monitor
Ob

se
rv

e:
Da

ta
po

in
tM

on
ito

r
Ob

se
rv

e:
Da

ta
po

in
tM

on
ito

r

Detect Errors

Error
found

Increase Monitoring

Set Monitoring
to High

Decrease Monitoring

Set Monitoring
to Low

Datapoint
Error

Datapoints
Correct

End

End

Fig. 3: Observe. The datapoint monitor periodically checks
datapoints for correctness.

The first step is the detection of memory faults. We de-
tect memory faults by using a comparison-based approach. We
implemented a datapoint monitor component for this purpose
which periodically compares the data values of a running task in
the system with a model which resembles the task functionality.
This monitor has multiple monitoring levels to minimize the im-
pact during normal operations. In its “low” monitoring level, the
monitor is run every few seconds and simply compares the in-
put and output values of our function plans, while in the “high”
monitoring state all available datapoints are compared (even dat-
apoints inside the FUPs). Tasks internally may consist of many
function blocks with individual inputs and outputs and interme-
diate variables. The reading of these requires a long time period
and this exhaustive comparison thus induces a much higher im-
pact on the system performance, which is the reason why it is
only applied if really needed. We introduced these monitoring
levels to make sure that the detection mechanism has as little impact as possible on the production system during
normal operation.

Fig. 3 shows the process definition for the datapoint monitor. It consists basically of three parts: Periodically
checking for datapoint errors, increasing, and decreasing the monitoring level.

4.2. Adaption: Orient Phase

After a faulty datapoint is found by the monitor the datapoint syndrome processor has the task of recommending a
possible solution to resolve this fault. This is implemented via several adaption loops, escalating more and more until
the functionality can either be restored or the device must be shut down and repaired using other means, e.g. escalating
the problem to maintenance teams. The datapoint syndrome processor listens for datapoint errors and recommends
different actions in order to solve the errors. To run through these different escalation steps we implemented it as a state
machine which advances its internal state according to defined conditions. The internal state is only changed when the
Decide & Act steps actually decided to go for the given recommendation. This allows for other syndrome processors
to intervene with higher prioritized recommendations if needed. If another recommendation is chosen which changes
the world state, the escalation level has to be reset to 0 because the problem could be solved in the mean time and it
would not make sense to continue based on old world information. Fig. 4 shows the process definition for the orient
phase and the datapoint syndrome processor.

6 J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000

Or
ie

nt
:

Da
ta

po
in

tS
yn

dr
om

eP
ro

ce
ss

or
Or

ie
nt

:
Da

ta
po

in
tS

yn
dr

om
eP

ro
ce

ss
or

Escalation Level?

0

1

2

Recommendation:
Test Memory

Recommendation:
Mask Memory

Recommendation:
Safestate

Yes Set Next
Escalation Level

Reset Escalation
Level (to 0)

Recommendation:
Increase Monitoring

Plan Success
(Test Memory)

Datapoint Error

Fault
found

No fault
found

Plan Success
(Mask Memory)

Failed

Success

Datapoints Correct Recommendation:
Decrease Monitoring

Datapoint Error Wait for
„Decide & Act“

Was own
Recommend.

selected?

No

Datapoint ErrorTimeout

3
Action
Result?

Action
Result?

Wait for „Datapoint“
Notifications

Own Recommended
Plan failed

Legend:
Receive Signal

Send Signal

Timer

End

Condition

Event-Condition

Legend:
Receive Signal

Send Signal

Timer

End

Condition

Event-Condition

World Version
changed?

Set Next Escalation Level:
(State Machine)

00 1

23

Increase
Monitoring

Test
Memory

Mask
Memory

Decrease
Monitoring

Set Next Escalation Level:
(State Machine)

0 1

23

Increase
Monitoring

Test
Memory

Mask
Memory

Decrease
Monitoring

No

Yes

Fig. 4: Orient. Depending on the current state the datapoint syndrome processor expects specific signals and gives recommendations based on
them. Only after a recommendation has been chosen and the respective plan was executed is the state advanced further.

De
cid

e
an

d
Ac

t
(D

ec
isi

on
 M

ak
er

, P
la

n
M

ak
er

, A
ct

io
n

Ha
nd

le
r)

De
cid

e
an

d
Ac

t
(D

ec
isi

on
 M

ak
er

, P
la

n
M

ak
er

, A
ct

io
n

Ha
nd

le
r)

Set Self as Hot Standby Device

Decrease Monitoring

Activate Hot Standby Device

Increase Monitoring

Test Memory Plan Success (Test Memory)

Mask Memory Reboot ACPU

Notify Upper Level: Device Shutdown

Pause Device

Plan Failed (Test Memory)On Error

Plan Failed
(Mask Memory)

Selected Recommendation: Test Memory

Recommendation:
Test Memory

Recommendation:
Mask Memory

Recommendation:
Safestate

Recommendation:
Increase Monitoring

Recommendation:
Decrease Monitoring

Selected Recommendation: Increase Monitoring

Selected Recommendation: Mask Memory

Selected Recommendation: Safestate

Selected Recommendation: Decrease Monitoring

Plan Success
(Mask Memory)

On Error

Legend:
Receive Signal

Send Signal

Timer

End
Complex
Condition

Legend:
Receive Signal

Send Signal

Timer

End
Complex
Condition

Decide for
Highest Prio

Recommendation
and Best Plan

Fig. 5: Decide and Act. The Decisions Makers and Plan Makers react on the given recommendations and enact the best known plan for them.

217

Paper 7 - ANT 2018

 Johannes Iber et al. / Procedia Computer Science 130 (2018) 392–399 397
J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000 5

parameter memmap17. memmap enables to mark specific memory addresses as reserved and thus are not assigned by
Linux. The physical memory addresses can be obtained in Linux by using the pagemap functionality18.

The whole process runs through several adaption cycles which react on the results of the previous adaption. Upon
finding an error we immediately activate the hot standby device to buy time for the adaption and guarantee uninter-
rupted functionality for the overall control system. Now that we have relaxed the time constraints on the device, the
monitoring level is increased to obtain a more detailed error description. Using this description a detailed memory
test for the affected memory locations is carried out and if faulty memory locations are found, these are masked as
reserved in the operating system. Subsequently the system can be restarted and can act as a new hot-standby device.

In the following subsections we present the self-adaptive process by using BPMN as a graphical notation. We
chose BPMN because it fits the event-based and multicomponent architecture of Scari. We split the process into
sections representing the Scari self-adaptive loop: Observe, Orient and Decide & Act. The Observe step is explained
in Subsection 4.1 which explains the detection of permanent memory faults in detail. The Orient Step and Decide &
Act steps are described in Subsections 4.2 and 4.3 which outline the different adaption mechanisms and how they work
together in the self-adaptive system. Subsection 4.4 explains how we evaluate our mechanism. Finally, Subsection
4.5 discusses the pros, cons and tradeoffs of our approach.

4.1. Detection: datapoint monitor

Ob
se

rv
e:

Da
ta

po
in

tM
on

ito
r

Ob
se

rv
e:

Da
ta

po
in

tM
on

ito
r

Detect Errors

Error
found

Increase Monitoring

Set Monitoring
to High

Decrease Monitoring

Set Monitoring
to Low

Datapoint
Error

Datapoints
Correct

End

End

Fig. 3: Observe. The datapoint monitor periodically checks
datapoints for correctness.

The first step is the detection of memory faults. We de-
tect memory faults by using a comparison-based approach. We
implemented a datapoint monitor component for this purpose
which periodically compares the data values of a running task in
the system with a model which resembles the task functionality.
This monitor has multiple monitoring levels to minimize the im-
pact during normal operations. In its “low” monitoring level, the
monitor is run every few seconds and simply compares the in-
put and output values of our function plans, while in the “high”
monitoring state all available datapoints are compared (even dat-
apoints inside the FUPs). Tasks internally may consist of many
function blocks with individual inputs and outputs and interme-
diate variables. The reading of these requires a long time period
and this exhaustive comparison thus induces a much higher im-
pact on the system performance, which is the reason why it is
only applied if really needed. We introduced these monitoring
levels to make sure that the detection mechanism has as little impact as possible on the production system during
normal operation.

Fig. 3 shows the process definition for the datapoint monitor. It consists basically of three parts: Periodically
checking for datapoint errors, increasing, and decreasing the monitoring level.

4.2. Adaption: Orient Phase

After a faulty datapoint is found by the monitor the datapoint syndrome processor has the task of recommending a
possible solution to resolve this fault. This is implemented via several adaption loops, escalating more and more until
the functionality can either be restored or the device must be shut down and repaired using other means, e.g. escalating
the problem to maintenance teams. The datapoint syndrome processor listens for datapoint errors and recommends
different actions in order to solve the errors. To run through these different escalation steps we implemented it as a state
machine which advances its internal state according to defined conditions. The internal state is only changed when the
Decide & Act steps actually decided to go for the given recommendation. This allows for other syndrome processors
to intervene with higher prioritized recommendations if needed. If another recommendation is chosen which changes
the world state, the escalation level has to be reset to 0 because the problem could be solved in the mean time and it
would not make sense to continue based on old world information. Fig. 4 shows the process definition for the orient
phase and the datapoint syndrome processor.

6 J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000
Or

ie
nt

:
Da

ta
po

in
tS

yn
dr

om
eP

ro
ce

ss
or

Or
ie

nt
:

Da
ta

po
in

tS
yn

dr
om

eP
ro

ce
ss

or

Escalation Level?

0

1

2

Recommendation:
Test Memory

Recommendation:
Mask Memory

Recommendation:
Safestate

Yes Set Next
Escalation Level

Reset Escalation
Level (to 0)

Recommendation:
Increase Monitoring

Plan Success
(Test Memory)

Datapoint Error

Fault
found

No fault
found

Plan Success
(Mask Memory)

Failed

Success

Datapoints Correct Recommendation:
Decrease Monitoring

Datapoint Error Wait for
„Decide & Act“

Was own
Recommend.

selected?

No

Datapoint ErrorTimeout

3
Action
Result?

Action
Result?

Wait for „Datapoint“
Notifications

Own Recommended
Plan failed

Legend:
Receive Signal

Send Signal

Timer

End

Condition

Event-Condition

Legend:
Receive Signal

Send Signal

Timer

End

Condition

Event-Condition

World Version
changed?

Set Next Escalation Level:
(State Machine)

00 1

23

Increase
Monitoring

Test
Memory

Mask
Memory

Decrease
Monitoring

Set Next Escalation Level:
(State Machine)

0 1

23

Increase
Monitoring

Test
Memory

Mask
Memory

Decrease
Monitoring

No

Yes

Fig. 4: Orient. Depending on the current state the datapoint syndrome processor expects specific signals and gives recommendations based on
them. Only after a recommendation has been chosen and the respective plan was executed is the state advanced further.

De
cid

e
an

d
Ac

t
(D

ec
isi

on
 M

ak
er

, P
la

n
M

ak
er

, A
ct

io
n

Ha
nd

le
r)

De
cid

e
an

d
Ac

t
(D

ec
isi

on
 M

ak
er

, P
la

n
M

ak
er

, A
ct

io
n

Ha
nd

le
r)

Set Self as Hot Standby Device

Decrease Monitoring

Activate Hot Standby Device

Increase Monitoring

Test Memory Plan Success (Test Memory)

Mask Memory Reboot ACPU

Notify Upper Level: Device Shutdown

Pause Device

Plan Failed (Test Memory)On Error

Plan Failed
(Mask Memory)

Selected Recommendation: Test Memory

Recommendation:
Test Memory

Recommendation:
Mask Memory

Recommendation:
Safestate

Recommendation:
Increase Monitoring

Recommendation:
Decrease Monitoring

Selected Recommendation: Increase Monitoring

Selected Recommendation: Mask Memory

Selected Recommendation: Safestate

Selected Recommendation: Decrease Monitoring

Plan Success
(Mask Memory)

On Error

Legend:
Receive Signal

Send Signal

Timer

End
Complex
Condition

Legend:
Receive Signal

Send Signal

Timer

End
Complex
Condition

Decide for
Highest Prio

Recommendation
and Best Plan

Fig. 5: Decide and Act. The Decisions Makers and Plan Makers react on the given recommendations and enact the best known plan for them.

218

8. Publications

398 Johannes Iber et al. / Procedia Computer Science 130 (2018) 392–399
J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000 7

After the recommendation is selected and the respective plan is executed, the escalation level of the syndrome
processor is changed. Here the 4 escalation levels from the process definition are described:

• Escalation Level 0: On the first notification of a fault, the syndrome processor recommends to activate the hot-
standby device to buy time for further actions and to increase the monitoring level for a more detailed analysis.
The syndrome processor goes to escalation level 1.
• Escalation Level 1: If the error is still persistent, a memory test of the affected memory regions is recommended

and the syndrome processor goes to escalation level 2.
• Escalation Level 2: When the memory test detected faulty memory locations, masking of those locations and

going to escalation level 3 is recommended, otherwise the syndrome processor recommends going to a safe
state and escalating the problem to a higher Scari hierarchy level, because it does not know of any other means
to repair this fault.
• Escalation Level 3: After the faulty memory areas are masked the device should work again as expected, but if

this is not the case, going to a safe state and escalating the problem to higher levels is recommended. This step
waits for successful notification that all datapoints are correct, before returning to escalation level 0.

4.3. Adaption: Decide & Act Phase

In this phase Scari decides on the most important recommendation and creates a plan based on the component
structure provided by the world model. In this phase the actual adaption takes place and all waiting syndrome proces-
sors thus also have the task of subsequently changing the internal states (depending on the outcome of the actions).
The defined recommendations and the resulting actions are described in the following table:

Recommendation Actions Description
Increase monitoring Activate hot standby

Increase monitoring
We know an error of some kind has occurred and immedi-
ately activate the hot-standby system. For further analysis
we increase the monitoring level to obtain more detailed
information about the fault.

Test memory Test memory A test memory routine is enacted on the memory locations
of the faulty datapoints.

Mask memory Mask memory
Reboot ACPU

If we find defect memory cells we mask them in the oper-
ating system, which demands a reboot to become effective.

Safestate Notify upper level
Pause device

If the error in the datapoints still occurs even after masking
the memory we must go into safe state (shut down the sys-
tem) and escalate to the next upper level in the Scari loop
hierarchy.

Decrease monitoring Hot standby
Decrease monitoring

We set the repaired device in hot standby mode and de-
crease the monitoring.

4.4. Evaluation

To evaluate our approach we implemented a memory-injection mechanism in QEMU19 to change memory content
during runtime. By injecting a stuck-at error we are able to simulate our use-case and see if the adaption really works as
intended. Our test setting consists of a Raspberry Pi 3 Model B running Scari and the PLC software running in QEMU
on a desktop PC. In order to evaluate the correctness of our approach we first start by running the PLC software under
normal conditions. Then we inject a stuck-at error at a known memory location. Finally, we observe Scari repairing
the permanent error. The first recommendation Increase monitoring takes in average 73 ms from the decision to the
successful execution. The second recommendation Test memory needs 630 ms. The third recommendation Mask
memory lasts one and a half minutes. The last recommendation Decrease monitoring takes 72 ms.

8 J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000

4.5. Discussion

Many of the design decisions are guided by the aspect of performance and satisfying real time constraints. That
is why we immediately activate a hot-standby device to guarantee seamless functionality. By only testing suspected
faulty memory locations we also save much time and effort, compared to that which is required for a full memory test.
After a successful adaption we do not deactivate the hot-standby device to avoid further interruption of operations, but
instead simply switch the role of the device to be available as a new hot-standby. This results in continued functionality
and fault-tolerance of the system. In such a way even a permanent memory error does not shift or disturb operations
and maintenance plans and allows for the usage of commercial off- the-shelf hardware components.

5. Conclusion and future work

In this work we presented a self-adaptive mechanism in Scari for adapting to permanent memory faults in the
context of control systems for hydropower plants. The novelty of this work is that we propose a mechanism for
PLCs where permanent memory faults influencing datapoints are recognized and repaired during the operation of a
control system. The faulty memory area is blacklisted by using memmap a Linux kernel boot parameter. To verify our
proposed mechanism we use a customized version of QEMU19 in order to artificially inject memory-faults.

We are investigating ways of taking the physical layout of a DRAM memory into account in our future work.
Collocated and physically connected memory cells are also likely to be affected and as pointed out by12, based on the
knowledge how multi-bit errors occur, a system could take proactive measures to protect against errors. In the context
of the monitoring levels we plan to implement more intelligent ways of finding the faulty datapoints by deriving a data
flow graph from the function plans and applying a graph search for finding the faults. Furthermore, we are planning
to expand the presented approach to network level to detect permanent hardware faults.

References

1. H. Muccini, M. Sharaf, D. Weyns, Self-adaptation for Cyber-physical Systems: A Systematic Literature Review, in: SEAMS ’16, ACM
Press, 2016. doi:10.1145/2897053.2897069.

2. M. S. Alhakeem, P. Munk, R. Lisicki, H. Parzyjegla, H. Parzyjegla, G. Muehl, A Framework for Adaptive Software-Based Reliability in
COTS Many-Core Processors, in: ARCS 2015.

3. A. Höller, B. Spitzer, T. Rauter, J. Iber, C. Kreiner, Diverse Compiling for Software-Based Recovery of Permanent Faults in COTS Processors,
in: 46th Annual DSN-W, IEEE, 2016. doi:10.1109/DSN-W.2016.34.

4. I. Stefanovici, A. Hwang, B. Schroeder, Battling borked bits, IEEE Spectrum 52 (12). doi:10.1109/MSPEC.2015.7335798.
5. J. Iber, T. Rauter, C. Kreiner, A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems, in:

Solutions for Cyber-Physical Systems Ubiquity, IGI Global, 2017. doi:10.4018/978-1-5225-2845-6.ch009.
6. J. Iber, T. Rauter, M. Krisper, C. Kreiner, An integrated approach for resilience in industrial control systems, in: 47th Annual DSN-W, 2017.

doi:10.1109/DSN-W.2017.23.
7. J. Iber, T. Rauter, M. Krisper, C. Kreiner, The Potential of Self-Adaptive Software Systems in Industrial Control Systems, Springer Interna-

tional Publishing, 2017. doi:10.1007/978-3-319-64218-5 12.
8. Website of the Xenomai Project, https://xenomai.org/ (2018).
9. K. H. John, M. Tiegelkamp, IEC 61131-3: Programming Industrial Automation Systems, Springer Berlin Heidelberg, 2010. doi:10.1007/978-

3-642-12015-2.
10. B. Schroeder, E. Pinheiro, W.-D. Weber, DRAM errors in the wild, Communications of the ACM 54 (2). doi:10.1145/1897816.1897844.
11. V. Sridharan, D. Liberty, A study of DRAM failures in the field, in: 2012 International Conference for High Performance Computing,

Networking, Storage and Analysis, IEEE, 2012. doi:10.1109/SC.2012.13.
12. A. A. Hwang, I. A. Stefanovici, B. Schroeder, Cosmic rays don’t strike twice, in: Proceedings of the seventeenth international confer-

ence on Architectural Support for Programming Languages and Operating Systems - ASPLOS ’12, ASPLOS XVII, ACM Press, 2012.
doi:10.1145/2150976.2150989.

13. J. Kephart, D. Chess, The vision of autonomic computing, Computer 36 (1). doi:10.1109/MC.2003.1160055.
14. Y. Brun, R. Desmarais, K. Geihs, M. Litoiu, A. Lopes, M. Shaw, M. Smit, A Design Space for Self-Adaptive Systems, Springer Berlin

Heidelberg, 2013. doi:10.1007/978-3-642-35813-5 2.
15. J. R. Boyd, The Essence of Winning and Losing, http://dnipogo.org/john-r-boyd/ (1996).
16. A. Chandra, P. R. Lewis, K. Glette, S. C. Stilkerich, Reference Architecture for Self-aware and Self-expressive Computing Systems, Springer

International Publishing, 2016. doi:10.1007/978-3-319-39675-0 4.
17. Memmap documentation, https://www.kernel.org/doc/html/v4.14/admin-guide/kernel-parameters.html (2018).
18. Pagemap documentation, https://github.com/torvalds/linux/blob/v4.14/Documentation/vm/pagemap.txt (2018).
19. Website of Scari QEMU, https://github.com/jib218/scari-qemu (2018).

219

Paper 7 - ANT 2018

 Johannes Iber et al. / Procedia Computer Science 130 (2018) 392–399 399
J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000 7

After the recommendation is selected and the respective plan is executed, the escalation level of the syndrome
processor is changed. Here the 4 escalation levels from the process definition are described:

• Escalation Level 0: On the first notification of a fault, the syndrome processor recommends to activate the hot-
standby device to buy time for further actions and to increase the monitoring level for a more detailed analysis.
The syndrome processor goes to escalation level 1.
• Escalation Level 1: If the error is still persistent, a memory test of the affected memory regions is recommended

and the syndrome processor goes to escalation level 2.
• Escalation Level 2: When the memory test detected faulty memory locations, masking of those locations and

going to escalation level 3 is recommended, otherwise the syndrome processor recommends going to a safe
state and escalating the problem to a higher Scari hierarchy level, because it does not know of any other means
to repair this fault.
• Escalation Level 3: After the faulty memory areas are masked the device should work again as expected, but if

this is not the case, going to a safe state and escalating the problem to higher levels is recommended. This step
waits for successful notification that all datapoints are correct, before returning to escalation level 0.

4.3. Adaption: Decide & Act Phase

In this phase Scari decides on the most important recommendation and creates a plan based on the component
structure provided by the world model. In this phase the actual adaption takes place and all waiting syndrome proces-
sors thus also have the task of subsequently changing the internal states (depending on the outcome of the actions).
The defined recommendations and the resulting actions are described in the following table:

Recommendation Actions Description
Increase monitoring Activate hot standby

Increase monitoring
We know an error of some kind has occurred and immedi-
ately activate the hot-standby system. For further analysis
we increase the monitoring level to obtain more detailed
information about the fault.

Test memory Test memory A test memory routine is enacted on the memory locations
of the faulty datapoints.

Mask memory Mask memory
Reboot ACPU

If we find defect memory cells we mask them in the oper-
ating system, which demands a reboot to become effective.

Safestate Notify upper level
Pause device

If the error in the datapoints still occurs even after masking
the memory we must go into safe state (shut down the sys-
tem) and escalate to the next upper level in the Scari loop
hierarchy.

Decrease monitoring Hot standby
Decrease monitoring

We set the repaired device in hot standby mode and de-
crease the monitoring.

4.4. Evaluation

To evaluate our approach we implemented a memory-injection mechanism in QEMU19 to change memory content
during runtime. By injecting a stuck-at error we are able to simulate our use-case and see if the adaption really works as
intended. Our test setting consists of a Raspberry Pi 3 Model B running Scari and the PLC software running in QEMU
on a desktop PC. In order to evaluate the correctness of our approach we first start by running the PLC software under
normal conditions. Then we inject a stuck-at error at a known memory location. Finally, we observe Scari repairing
the permanent error. The first recommendation Increase monitoring takes in average 73 ms from the decision to the
successful execution. The second recommendation Test memory needs 630 ms. The third recommendation Mask
memory lasts one and a half minutes. The last recommendation Decrease monitoring takes 72 ms.

8 J. Iber, M. Krisper, J. Dobaj and C. Kreiner / Procedia Computer Science 00 (2016) 000–000

4.5. Discussion

Many of the design decisions are guided by the aspect of performance and satisfying real time constraints. That
is why we immediately activate a hot-standby device to guarantee seamless functionality. By only testing suspected
faulty memory locations we also save much time and effort, compared to that which is required for a full memory test.
After a successful adaption we do not deactivate the hot-standby device to avoid further interruption of operations, but
instead simply switch the role of the device to be available as a new hot-standby. This results in continued functionality
and fault-tolerance of the system. In such a way even a permanent memory error does not shift or disturb operations
and maintenance plans and allows for the usage of commercial off- the-shelf hardware components.

5. Conclusion and future work

In this work we presented a self-adaptive mechanism in Scari for adapting to permanent memory faults in the
context of control systems for hydropower plants. The novelty of this work is that we propose a mechanism for
PLCs where permanent memory faults influencing datapoints are recognized and repaired during the operation of a
control system. The faulty memory area is blacklisted by using memmap a Linux kernel boot parameter. To verify our
proposed mechanism we use a customized version of QEMU19 in order to artificially inject memory-faults.

We are investigating ways of taking the physical layout of a DRAM memory into account in our future work.
Collocated and physically connected memory cells are also likely to be affected and as pointed out by12, based on the
knowledge how multi-bit errors occur, a system could take proactive measures to protect against errors. In the context
of the monitoring levels we plan to implement more intelligent ways of finding the faulty datapoints by deriving a data
flow graph from the function plans and applying a graph search for finding the faults. Furthermore, we are planning
to expand the presented approach to network level to detect permanent hardware faults.

References

1. H. Muccini, M. Sharaf, D. Weyns, Self-adaptation for Cyber-physical Systems: A Systematic Literature Review, in: SEAMS ’16, ACM
Press, 2016. doi:10.1145/2897053.2897069.

2. M. S. Alhakeem, P. Munk, R. Lisicki, H. Parzyjegla, H. Parzyjegla, G. Muehl, A Framework for Adaptive Software-Based Reliability in
COTS Many-Core Processors, in: ARCS 2015.

3. A. Höller, B. Spitzer, T. Rauter, J. Iber, C. Kreiner, Diverse Compiling for Software-Based Recovery of Permanent Faults in COTS Processors,
in: 46th Annual DSN-W, IEEE, 2016. doi:10.1109/DSN-W.2016.34.

4. I. Stefanovici, A. Hwang, B. Schroeder, Battling borked bits, IEEE Spectrum 52 (12). doi:10.1109/MSPEC.2015.7335798.
5. J. Iber, T. Rauter, C. Kreiner, A Self-Adaptive Software System for Increasing the Reliability and Security of Cyber-Physical Systems, in:

Solutions for Cyber-Physical Systems Ubiquity, IGI Global, 2017. doi:10.4018/978-1-5225-2845-6.ch009.
6. J. Iber, T. Rauter, M. Krisper, C. Kreiner, An integrated approach for resilience in industrial control systems, in: 47th Annual DSN-W, 2017.

doi:10.1109/DSN-W.2017.23.
7. J. Iber, T. Rauter, M. Krisper, C. Kreiner, The Potential of Self-Adaptive Software Systems in Industrial Control Systems, Springer Interna-

tional Publishing, 2017. doi:10.1007/978-3-319-64218-5 12.
8. Website of the Xenomai Project, https://xenomai.org/ (2018).
9. K. H. John, M. Tiegelkamp, IEC 61131-3: Programming Industrial Automation Systems, Springer Berlin Heidelberg, 2010. doi:10.1007/978-

3-642-12015-2.
10. B. Schroeder, E. Pinheiro, W.-D. Weber, DRAM errors in the wild, Communications of the ACM 54 (2). doi:10.1145/1897816.1897844.
11. V. Sridharan, D. Liberty, A study of DRAM failures in the field, in: 2012 International Conference for High Performance Computing,

Networking, Storage and Analysis, IEEE, 2012. doi:10.1109/SC.2012.13.
12. A. A. Hwang, I. A. Stefanovici, B. Schroeder, Cosmic rays don’t strike twice, in: Proceedings of the seventeenth international confer-

ence on Architectural Support for Programming Languages and Operating Systems - ASPLOS ’12, ASPLOS XVII, ACM Press, 2012.
doi:10.1145/2150976.2150989.

13. J. Kephart, D. Chess, The vision of autonomic computing, Computer 36 (1). doi:10.1109/MC.2003.1160055.
14. Y. Brun, R. Desmarais, K. Geihs, M. Litoiu, A. Lopes, M. Shaw, M. Smit, A Design Space for Self-Adaptive Systems, Springer Berlin

Heidelberg, 2013. doi:10.1007/978-3-642-35813-5 2.
15. J. R. Boyd, The Essence of Winning and Losing, http://dnipogo.org/john-r-boyd/ (1996).
16. A. Chandra, P. R. Lewis, K. Glette, S. C. Stilkerich, Reference Architecture for Self-aware and Self-expressive Computing Systems, Springer

International Publishing, 2016. doi:10.1007/978-3-319-39675-0 4.
17. Memmap documentation, https://www.kernel.org/doc/html/v4.14/admin-guide/kernel-parameters.html (2018).
18. Pagemap documentation, https://github.com/torvalds/linux/blob/v4.14/Documentation/vm/pagemap.txt (2018).
19. Website of Scari QEMU, https://github.com/jib218/scari-qemu (2018).

220

8. Publications

Separation of processing and coordination in computer systems
Johannes Iber, Michael Krisper, Jürgen Dobaj and Christian Kreiner

Institute of Technical Informatics
Graz University of Technology

Austria

ABSTRACT
Systems are built for a purpose. The purpose transacted is usually
handled by the processing part of a system and is observed and ad-
justed by coordination parts. In principle, these two kinds of system
parts share the same target resource; the thing that is controlled by
processing and indirectly by coordination subsystems. This leads
to mutual influences, which can result in timing and priorities vio-
lations as well as performance degradations. The presented pattern,
SEPARATION OF PROCESSING AND COORDINATION, provides
an architectural solution which shows how processing subsystems
can be observed and adjusted by coordination subsystems. We show
this pattern in the context of self-adaptive software systems, indus-
trial control devices, a real-time operating system, and a hardware
architecture for wireless embedded platforms.

CCS CONCEPTS
• Software and its engineering→ Patterns; Designing software;

KEYWORDS
system design, processing, coordination, design pattern
ACM Reference Format:
Johannes Iber, Michael Krisper, Jürgen Dobaj and Christian Kreiner. 2018.
Separation of processing and coordination in computer systems. In 23rd
European Conference on Pattern Languages of Programs (EuroPLoP ’18), July
4–8, 2018, Irsee, Germany. ACM, New York, NY, USA, 5 pages. https://doi.
org/10.1145/3282308.3282322

1 INTRODUCTION
A well-known engineering practice is to divide a system into sub-
parts in which each part is specialized for a task [6]. The presented
pattern, SEPARATION OF PROCESSING AND COORDINATION, is
based on this Divide & Conquer principle and extends it to integrat-
ing coordination and processing parts of systems. With the term
processing we mean a part of a system that executes the intended
purpose of a system. Usually, processing parts have exclusive access
to a resource which can be data or a physical mechanism. With the
term coordination we mean parts of a system that observe, adjust
and protect processing parts. This pattern presents an architectural
solution showing how coordination and processing subsystems can
coexist and interact with each other. The application context of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP ’18, July 4–8, 2018, Irsee, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6387-7/18/07. . . $15.00
https://doi.org/10.1145/3282308.3282322

the pattern is widespread and not limited to a specific domain. We
present it in the context of self-adaptive software systems, indus-
trial control systems, a real-time operating system and a hardware
architecture for wireless embedded platforms. System and software
architects are the primary target audience of this work. In the fol-
lowing Section, we present the design pattern in detail. Finally,
Section 3 concludes this work.

2 PATTERN: SEPARATION OF PROCESSING
AND COORDINATION

Context

CoordinationCoordinationProcessingProcessing

Resource

Figure 1: Illustration of the context.

The context of this pattern are systems that consist of at least one
subsystem that processes a resource, while other arbitrary coor-
dinating subsystems that need to observe, adjust and protect the
processing subsystems or target resource also exist. Figure 1 illus-
trates this situation in an abstract manner. Note that processing and
coordination may have distinct timing requirements. For instance
in an industrial control system [3], a controller (processing) needs
to control a physical process (resource) while also being observable
and adjustable by a supervisory computer (coordination). The pri-
mary purpose of such a controller is to control the physical process
within a defined time span. Additionally, the controller needs to
distribute data to other devices or receive adjustments from higher
ranking supervisory computers. All of these coordination tasks
need to be done while supporting the physical process in real time.
The supervisory computer may not be bound to specific real time
requirements. This situation roughly describes the problem the
presented pattern aims to solve.

Problem
In a situation such as that given in Figure 1, the essential problem
is that the target resource is shared between the processing and

c©2018 Authors. Reprinted, with permission. The definitive version was published in Proceedings of the 23rd European Conference
on Pattern Languages of Program (EuroPLoP 18), July 2018.

221

Paper 8 - EuroPLoP 2018

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany J. Iber et al.

coordination subsystems. Processing needs to operate on the re-
source, while coordination needs to observe, adjust and protect the
processing subsystem or resource. These distinct objectives lead to
interferences between processing and coordination. In this pattern,
we provide a solution for how subsystems of these kinds can be
successfully put together.

Forces
• Goals: Coordination and processing pursue different goals.
Coordination aims to observe, adjust and protect, while pro-
cessing is focused on executing tasks. This leads to unavoid-
able interferences, because coordination needs to disrupt
processing. Seen the other way around, processing may need
to shift information in time to coordination.

• Testing: Ideally, both kinds of subsystems can be developed
and tested independently from each other in order to verify
their diverse goals. This is complicated if the coordination
and processing parts are mixed with each other within a
monolithic architecture.

• Time scales: The processing subsystem needs to act within
a specific time frame. The coordination subsystem seeks
to interfere at arbitrary points in time. This interference
of coordination could lead to a serious delay within the
processing subsystem.

• Security: Coordination and processing subsystems may face
distinct attack vectors.

• Execution environments: Due to different time scales, goals
and security requirements, it is desirable to deploy coordi-
nation and processing in distinct execution environments.
For instance, processing may need to meet real time require-
ments, which demand a corresponding operating system.
Coordination subsystems may not be bound to such require-
ments and can be deployed on arbitrary platforms. Deploy-
ing both on the same technical platform could restrict the
capabilities of one subsystem.

• Priorities: Actions, performed by processing and coordina-
tion, can have different priorities. For instance, coordination
could cause an emergency stop, which might have a higher
priority than anything processing is doing. This could be
an exception and usually processing needs to perform more
important activities.

Solution
Simply put, processing needs to be isolated from coordination, com-
munication channels enable interaction between processing and
coordination, and processing needs to deal with interactions from
coordination at certain points in time. The target resource is sup-
posed to be accessed by processing. In detail the solution consists of
the following three parts, namely isolation, communication channels,
and synchronization points, that need to be applied together.

Isolation: Processing and coordination need to be executed in
strict isolation to ensure that they cannot interfere each other func-
tionally or in the context of non-functional properties such as tim-
ing, memory usage or security. Figure 2 illustrates three alternative
methods of isolating processing and coordination. Figure 2a shows
that coordination and processing can be realized as distinct devices

Resource

Device
Coordination

Device Processing

(a)

CPU

Core
C

Core
P

Core
P

Core
PR R

R

(b)

Operating System

App

C

App

P

R

(c)

Figure 2: Three alternative ways of isolating processing and
coordination.

that are connected. The target resource is managed by the process-
ing device. Figure 2b shows how processing and coordination are
executed on the same hardware but within distinct software exe-
cution spaces e.g. by leveraging a hypervisor or by executing the
software on different CPU cores. Figure 2c only isolates processing
and coordination on software level. This can be accomplished by
leveraging the operating system where the coordination and pro-
cessing software run as different processes or inside one software
application by creating threads. Each of these alternative ways has
different pros and cons. In general, coordination and processing
are less isolated from each other by the second and especially the
third method. This part of the pattern solution deals with the forces
goals, security, testing and execution environments. In the context of
goals, it enables the two kinds of subsystems to be executed without
disturbing each other. This also supports security because it limits
the attack possibilities between these subsystems. The testing of
such a system should become easier because the subsystems can
be tested independently from each other. Depending on the way
processing and coordination are isolated, the subsystems can be
deployed on diverse hardware and software stacks.

Resource
CoordinationCoordinationProcessingProcessing

Actions

Information

Figure 3: Communication channels are a necessary part of
the pattern.

Communication channels: As mentioned above processing and
coordination need to be isolated. However, coordination naturally
needs to observe and adjust the processing subsystem. In order
to do this in a synchronized manner, processing needs to provide
communication channels for coordination. Figure 3 illustrates a
simplified version of this concept. Communication channels of
this kind should allow the queuing of actions for the coordination
subsystems to enable the subsequent part of the solution, the syn-
chronization points. Furthermore, information about the resource
can be transferred from processing to coordination in a uniform
manner and through explicit communication channels. Technically,

222

8. Publications

Separation of processing and coordination in computer systems EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

communication channels could be realized for instance as remote
procedure calls, message queues, or RESTful web services. This part
of the pattern solution supports the force goals by coordinating the
way subsystems communicate. Furthermore, testing becomes easier
because the interactions are explicit. Additionally, this part deals
with the force priorities if a realization differentiates communication
channels according to their importance.

Processing Timeline

Coordination Timeline

Figure 4: Synchronization points enable to set properties
and exchange information between processing and coordi-
nation at specific points in time.

Synchronization points: Processing commonly executes actions
that are atomic. For instance an update of a database may need
to be performed with an atomic transaction, otherwise the data-
base could be left inconsistent if the transaction is aborted. The
situation is similar to this if a processing device alters a physical
process where the intermediate state might be unknown to the
device. It is necessary for the processing to include synchronization
points during execution in which the observations and adjustments
of coordination are handled. Corresponding with this, coordina-
tion may utilize synchronization points for receiving information
from the processing subsystem. Figure 4 illustrates this concept.
Processing can now perform atomic actions without interruption
until it encounters synchronization points. Within these points it
may be necessary to copy and send data or the flow of execution
may be adapted. Ideally, processing can perform atomic actions
where coordination has a chance to apply observations and adjust-
ments between the actions. Depending on the purpose and domain
these synchronization points need to be bound by a time limit. This
part of the pattern deals with the force time scales because it pre-
vents coordination to disrupt processing at arbitrary points in time.
Coordination can also deal with information from processing at
distinct synchronization points. Furthermore, this part of the solu-
tion supports the force priorities because processing can prioritize
the coordination actions within the synchronization points.

Consequences
+ Goals: Data flows between processing and coordination be-
come explicit. This helps to prevent unintended interfer-
ences.

+ Goals: The communication channels become explicit in the
system architecture which also happens to separate the goals
of the subsystems.

+ Testing: Processing and coordination become simpler to test
because they offer defined communication channels.

+ Time scales: Processing and coordination can act in different
time scales through isolated execution spaces.

+ Priorities: The priorities of the actions can be handled within
the synchronization points of processing.

+ Execution environments: Processing and coordination can be
executed in different environments. Both only need to deal
with the communication channels.

+ Security: Through the separation and communication chan-
nels, processing and coordination are also isolated from a
security point of view. The communication channels and
the synchronization points allow the limiting of the attack
surfaces.

- Testing: Isolating processing and coordination introduces the
need for integration tests.

- Time scales: Binding the time of a coordination action may
be complicated.

- Time scales: Communication channels introduce latency be-
tween coordination and processing.

- Priorities: Exceptional actions, such as an emergency stop of
an industrial system may need to circumvent the processing
synchronization points.

Related patterns
Eloranta et al. [2] describe in their work a pattern language for dis-
tributed industrial control systems consisting of 45 single patterns.
The central pattern of this language is the ISOLATE FUNCTION-
ALITIES pattern. It proposes dividing a system into subsystems
according to functionalities and to connect the subsystems with
a bus. This reflects two parts of our solution namely isolation and
communication channels. The MESSAGE QUEUE pattern proposes
the utilizing of a queue at each node to enable the receiving node
to read messages as soon as it has time to process them. This corre-
sponds to the third part of our solution, namely, synchronization
points. Finally, the SEPARATE REAL-TIME pattern proposes divid-
ing a control system into different levels with different real-time
requirements. This corresponds to the isolation part.

Known Uses
Xenomai. Xenomai [1] is a patch for Linux that introduces real-
time capabilities. Figure 5 shows the basic concept of Xenomai. The
patch places a so-called Ipipe between an interrupt from the hard-
ware and the Linux interrupt handler. The Xenomai Ipipe checks
whether a real time task is registered for the specific interrupt and
subsequently calls the Xenomai Cobalt Core. The Xenomai Cobalt
Core has access to own device drivers. Furthermore, it calls up the
real time tasks and ensures their execution. After the real time tasks
have been executed, the real Linux kernel with the generic tasks are
carried out. Xenomai offers special socket types in order to enable
the communication between the real time and non-real time tasks.

Xenomai itself incorporates the solution of this pattern. It sepa-
rates the real time processing part strictly from the coordination
part residing in ordinary Linux tasks. This corresponds to the third
(Figure 2c) isolation method presented in the solution. It offers com-
munication channels between these subsystems and synchronizes
them through the Ipipe. The last part with synchronization points,
however, needs to be implemented by the domain-specific real time
processing tasks.

Self-adaptive software systems. Self-adaptive software systems are
typically realized through an external (architecture) approach [7].
An internal approach interweaves application and adaptation logic

223

Paper 8 - EuroPLoP 2018

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany J. Iber et al.

Kernel

Hardware

Userspace

CPU Ethernet Flash

Interrupts
Real Time

Drivers
Ethernet

Driver
eMMc Driver

Ipipe
Xenomai

Cobalt Core
Network
Routing

Block Layer

Interrupt
Handler

TCP/UDP, IP VFS

RT Task 1 RT Task 2 Task 1 Task2

libcobalt glibc

Figure 5: Illustration of Xenomai and where it intercepts in-
terrupts.

Self-Adaptive Software System

Managing Subsystem

Managed Subsystem

Environment
Non-controllable software, hardware, network, physical context

monitor

monitor

monitor

adapt

affect

Figure 6: Parts of a self-adaptive software system (adapted
from [9].

based on programming language features such as exceptions, condi-
tions, and parametrization. The issue with an internal self-adaptive
software system is that sensors, actuators, parallel adaptation pro-
cesses and the actual purpose of an application are complicated to
engineer within one single software design. This further leads to
notable drawbacks, e.g. with respect to scalability, testability and
maintainability.

In an external approach, as illustrated in Figure 6 [9], the pro-
cessing part is isolated from the coordinating (adaptive) part. The
domain-specific application logic, which is termed Managed Sub-
system is monitored by a Managing Subsystem. The Managing Sub-
system contains the adaptation logic. It additionally monitors the
Environment that may consist of other software, hardware, net-
work, or the physical context (including humans). On the basis of

monitored data and analyzed problems, the Managing Subsystem
itself decides whether and what to adapt inside the Managed Sub-
system. Additionally, communication channels are necessary for
observing and adjusting a Managed Subsystem. These adjustments
cannot occur at arbitrary points in time because the Managed Sub-
system needs to be in a known state. As a result synchronization
points of some kind are needed. An exemplary self-adaptive sys-
tem that realizes this pattern is Scari [4, 5]. It targets increasing
the resilience of industrial cyber-physical systems against faults
originating from hardware failures, security attacks, software bugs
or misconfiguration.

Processor (A)

Tasks Bolt API

Receive
Buffer

BOLT

Message Controller

Non-volatile
Memory

......

... ...

Control

Data

Control

Data

Processor (C)

TasksBolt API

Receive
Buffer

Figure 7: Overview of Bolt processor interconnect (adapted
from [8]).

Bolt. Bolt is an ultra-low-power processor interconnect for the
compositional construction of heterogeneous wireless embedded
platforms [8]. Figure 7 illustrates this concept. Processor A is respon-
sible for application tasks, while processor C is used for communi-
cation tasks. In the domain of wireless sensor networks, processor
A would deal with sensing, e.g.
temperature, humidity, light, etc. Processor C would communi-
cate the sensed data over a wireless communication channel with
low power consumption. Bolt is a processor with a non-volatile
memory that sits between these two processors and provides two
message queues, one for each direction, in order to transfer data.
The interface consists of a control and a data channel with a cor-
responding API for the application and communication tasks. The
control channel coordinates the data channel and indicates the
availability of data to the target processor. The Bolt benefit is that
it solves the problem of processor A and C having different timing
and power requirements which demand different wake up times
and hardware power consumptions. For instance, processor A may
continuously aggregate the environment temperature and proces-
sor C only wakes up once a day at a specific time to transmit it.
Bolt eases the design and development of such an embedded device
because it decouples these domains and reduces their potential
interferences with each other.

The entire Bolt architecture represents an application of the
presented pattern. The terms processing and coordination corre-
spond to the application and communication tasks. The isolation
part of the solution is realized through the separate application and
communication processors. The communication channels part is
applied by using the Bolt interface which allows the application
and communication processors to be interchangeable and standard-
izes the communication channel. The message queues based on
non-volatile memory enable the implementation of synchronization
points where tasks can deal with data and adjustments fitting their
timing and power requirements.

224

8. Publications

Separation of processing and coordination in computer systems EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

3 CONCLUSION
In this work we have presented a pattern that tackles the challenge
of dealing with the processing and coordination parts of a system.
In principle, it is applicable where a subsystem carries out the main
purpose, while other arbitrary subsystems also exist that need to
observe, adjust and protect the system. By applying this pattern,
a system becomes simpler to develop, maintain and test. More
importantly, it decreases negative impacts of subsystems on each
other, e.g. concerning performance or security.

ACKNOWLEDGMENTS
We thank our shepherd Peter Scupelli for his inspiring and helpful
comments. Furthermore, we thank our EuroPLoP 2018 focus group
for giving very helpful hints and suggestions.

REFERENCES
[1] 2018. Website of the Xenomai Project. https://xenomai.org/.
[2] Veli-Pekka Eloranta, Johannes Koskinen, Marko Leppänen, and Ville Reijonen.

2010. A pattern language for distributed machine control systems. Tampere
University of Technology, Department of Software Systems (2010).

[3] Brendan Galloway and Gerhard P. Hancke. 2013. Introduction to Industrial Control
Networks. IEEE Communications Surveys & Tutorials 15, 2 (2013), 860–880. https:
//doi.org/10.1109/SURV.2012.071812.00124

[4] Johannes Iber, Michael Krisper, Jürgen Dobaj, and Christian Kreiner. 2018. Dy-
namic Adaption to Permanent Memory Faults in Industrial Control Systems. In
Proceedings of the 9th International Conference on Ambient Systems, Networks and
Technologies (ANT ’18). Elsevier. https://doi.org/10.1016/j.procs.2018.04.058

[5] Johannes Iber, Tobias Rauter, and Christian Kreiner. 2017. A Self-Adaptive Software
System for Increasing the Reliability and Security of Cyber-Physical Systems. In
Solutions for Cyber-Physical Systems Ubiquity. IGI Global. https://doi.org/10.4018/
978-1-5225-2845-6.ch009

[6] M Douglas McIlroy, J Buxton, Peter Naur, and Brian Randell. 1968. Mass-produced
software components. In Proceedings of the 1st International Conference on Software
Engineering, Garmisch Pattenkirchen, Germany. 88–98.

[7] Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive software: Landscape
and research challenges. ACM Transactions on Autonomous and Adaptive Systems
4, 2 (may 2009), 1–42. https://doi.org/10.1145/1516533.1516538

[8] Felix Sutton, Marco Zimmerling, Reto Da Forno, Roman Lim, Tonio Gsell, Georgia
Giannopoulou, Federico Ferrari, Jan Beutel, and Lothar Thiele. 2015. Bolt: A
Stateful Processor Interconnect. In Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems (SenSys ’15). ACM, New York, NY, USA,
267–280. https://doi.org/10.1145/2809695.2809706

[9] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola,
Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese, and Karl M.
Göschka. 2013. On Patterns for Decentralized Control in Self-Adaptive Systems.
In Software Engineering for Self-Adaptive Systems II. https://doi.org/10.1007/
978-3-642-35813-5_4

225

8. Publications

Poster: Towards a Secure, Resilient, and Distributed
Infrastructure for Hydropower Plant Unit Control

Andrea Höller, Johannes Iber, Tobias Rauter, and Christian Kreiner
Graz University of Technology

{firstname.lastname}@tugraz.at

Abstract
Today, there are ever increasing demands on hydro-

electrical power plant controllers. They have to deal with
a power grid that becomes ever more unpredictable due to
renewable energies. Furthermore, power plants represent a
critical infrastructure that have to provide a full operation,
even in the presence of cyber-attacks and internal faults.

Here, we present an approach towards tackling these chal-
lenges by integrating the knowledge of multiple research do-
mains such as security, fault tolerance and modeling. We
propose a distributed infrastructure that provides resilience
via an assured dynamic self-adaption. Further, we show the
integration into an existing hydropower plant unit control.

1 Introduction
For nearly a century the electrical protection, the gener-

ator voltage regulation and synchronization with the power
grid of hydropower plant units was done by specialized me-
chanical and electromechanical devices. This is currently
changing, because other renewable energy sources like wind
or solar are integrated into the power grid on a grand scale
[4]. Their complicated predictability concerning energy con-
version has an impact on the technology of hydropower plant
unit control systems because nowadays these have to react on
power grid changes in time to achieve overall grid stability.
At the same time, these power plants represent critical in-
frastructures that have to be protected against cyber-security
attacks. Furthermore, a shutdown of the plant due to faults
in the control device can lead to economic losses, and even
large scale blackouts.

To tackle this challenge, we perform research together
with our industrial partner on how to create future resilient
and secure power plant controllers. As far as the authors of
this work know, self-adaptability has not been applied in this
domain so far. We combine research from different fields like

Hydropower
Plant Unit

Control Device

TCP/IP

Sensors

Actuators

Interface
Module

Supervisor
System

Central Module

Communication CPU

Application CPU

Controls and Monitors

Secure Communication

IFCPU

IMIM

Runs on

Inspired by IEC 61131

Offers Values as Datapoints

Hardware
View

Software
View

Cyclic
Task

Component

Component

Composition

Component

Control
Device

Control
Device

Network
View

Composition

Composition Component Component

Figure 1. Overview of the existing system

security, fault tolerance, and models@run.time to enhance
the resilience of an existing control system. These proposed
principles are also applicable for cyber-physical systems in
other domains.
2 Existing Hydropower Plant Control System

Figure 1 illustrates the existing target system of our pro-
posed infrastructure. On network level the control devices
are operated by a so-called supervisor system and connected
by wire. The supervisor system is mainly responsible for de-
ploying tasks on devices and collecting data from the single
hydropower plant control devices.

The control devices are connected to hydropower plant
units. Their functional responsibility is to operate hy-
dropower plant units through the different phases excitation,
synchronization, protection and turbine control.

Technically, these control devices have a programmable
logic controller (PLC) architecture. Concerning the hard-
ware, a control device is build out of central modules and
interface modules. A central module consists of a commu-
nication CPU and an application CPU. The communication
CPU is responsible for network connections and control-
ling/monitoring the application CPU, and runs a customized
Linux. From the security point of view it also acts as gateway
for the application CPU. The application CPU is a multi-core

253

International Conference on Embedded Wireless
Systems and Networks (EWSN) 2016
15–17 February, Graz, Austria
© 2016 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-0-7

c©2016 Authors. Reprinted, with permission. The definitive version was published in Proceedings of the 2016 International Con-
ference on Embedded Wireless Systems and Networks (EWSN 2016), February 2016.

227

Paper 9 - EWSN 2016

processor and executes the actual logic. It runs a real-time
operating system in order to ensure guaranteed cycle times.
The interface modules are connecting the control device with
sensors and actuators of the hydropower plant unit.

The software executed by the application CPU of a central
module is component-based and inspired by the IEC 61131
standard for programmable controllers. Basically, the soft-
ware is hierarchically build out of components, compositions
and tasks. Components are coded with the C-programming
language and stored as binaries on the devices. Such com-
ponents implement basic function blocks, e.g. simple logic
gates, or complex control algorithms. Based on these com-
ponents, compositions are designed that implement the spe-
cific control logic for a hydropower plant unit. Finally, such
compositions are called by cyclic tasks.

The compositions operate on so-called datapoints that are
set and read by the interface modules. At the start of a cyclic
task the necessary datapoints are collected, the compositions
are executed, and subsequently the calculated datapoints are
written back.

From the plant engineer’s point of view this system is
configured with model-driven techniques. Domain-specific
modeling languages (DSL) are used to describe tasks, com-
positions, and components. As well, resources consisting
of modules, control devices, networks, and connected hy-
dropower plant units are modeled. Finally, deployment of
tasks onto control devices is specified by yet another DSL.
Concerning extra-functional properties (e.g. timing, security,
memory consumption, . . .), we rely on contract-based design
[3]. All these models are traditionally used at design time.
Additionally, we are going to leverage them at runtime for
the infrastructure proposed.

3 Proposed Infrastructure
We enhance the control device with security and hard-

ware fault monitoring. Observed anomalies are forwarded to
the supervisor running a reasoner application that interprets
these anomalies and executes mitigation strategies.

3.1 Control Device
The control device has to fulfill high performance require-

ments, since a lot of sensor data has to be processed in short
time. However, the nature of the control application is well-
suited for tuning the performance with parallelization. Con-
sidering dependability, the use of highly integrated multi-
core is a double-edged sword: future semiconductor tech-
nologies are expected to be very susceptible to hardware er-
rors due to small structures, however additional processing
units also allow the integration of additional fault tolerance
techniques.

More precisely, we exploit the unused computing capacity
to enhance the diagnostic features regarding hardware faults
with spatial redundancy. Cores that are not needed to realize
the main functionality are used to perform partial redundant
calculations, cross-checking the achieved results, and ana-
lyzing the trend of observed errors. This error trend is used
to distinguish between transient and permanent faults.

In order to increase the diagnostic capabilities, the re-
dundant calculations are done in a diverse way. For intro-
ducing the diversity in the redundant replicas, we use cost-

efficient ways to automatically introduce diversity in exe-
cution as proposed in [2]. For example, different compiler
and compiler flags can be used to generate several binaries
that perform the same calculations, but show different execu-
tion characteristics (e.g. timing, hardware resource usage).
We have shown that this approach is well-suited to detect
common-cause faults such as memory-related software bugs,
or hardware faults in shared resources [1].

Furthermore, we enhance the resilience regarding mali-
cious security attacks. First, the diverse redundancy concept
expenses the required effort to attack the functional applica-
tion, since all redundant executions have to be attacked si-
multaneously. Anomaly-detection is performed on the com-
munication CPU. This includes checking the plausibility of
sensor data, network anomalies, and the integrity of other
devices in the network [5].
3.2 Reasoner

The reasoner manages a model of the system that includes
functional and extra-functional properties of the target ap-
plication [3]. Furthermore, it receives information about de-
tected anomalies from the control device. By analyzing these
data, the reasoner decides, whether and how to reconfigure
the system. For example, if hardware or software faults af-
fect the control device a fault recovery strategy is executed.
This fault recovery is realized by updating the component
binaries with diverse binary versions [2]. The system model
is used to assure that the extra-functional requirements (e.g.
timing/memory constraints) are still fulfilled after the update.

If these strategies are not successful, the system is recon-
figured in such a way that the faulty device is isolated or
the control logic is redistributed. Again, the system model
is used to assure a correct reconfiguration. Furthermore, the
reasoner includes a detection mechanism that distinguishes
between non-malicious faults (e.g. software- or hardware
faults) and malicious faults. If it is possible to identify the
attacked part of the system, this part is isolated. Every re-
configuration alarms the power plant operator.
4 Conclusions

The primary aim of our work is to enhance the security
and resilience of hydropower plant unit controls. We propose
a distributed infrastructure which reconfigures itself based
on the observed hardware faults or security violations. This
mechanism is going to leverage models at runtime which are
a product of the design-time configuration.
5 References
[1] A. Höller, N. Kajtazovic, K. Römer, and C. Kreiner. Evaluation of

Diverse Compiling for Software Fault Tolerance. In DATE, 2015.
[2] A. Höller, T. Rauter, J. Iber, and C. Kreiner. Software-Based Fault

Recovery via Adaptive Diversity for COTS Multi-Core Processors. In
ADAPT Workshop, 2016.

[3] J. Iber, A. Höller, T. Rauter, and C. Kreiner. Towards a Generic Mod-
eling Language for Contract-Based Design. In ModComp Workshop
(MoDELS), 2015.

[4] M. Liserre, T. Sauter, and J. Hung. Future Energy Systems: Integrating
Renewable Energy Sources into the Smart Power Grid Through Indus-
trial Electronics. IEEE Industrial Electronics Magazine, 4, 2010.

[5] T. Rauter, A. Höller, J. Iber, and C. Kreiner. Thingtegrity: A Scalable
Trusted Computing Architecture for Resource Constrained Devices. In
EWSN, 2016. to appear.

254

228

A. Appendix

Listing A.1: The ScariObject of type Entity serialized to a JSON file.
{

"containerName": "",
"containerType": "",
"objectName": "{48853f35−d575−429c−ae8a−a1881b6dba38}",
"objectType": "Entity",
"properties": [

{
"dataType": "bool",
"nameInfo": "active",
"typeInfo": "ATTRIBUTE_ONE",
"value": "true"

},
{

"dataType": "int",
"nameInfo": "values",
"typeInfo": "ATTRIBUTE_N",
"value": [

"42"
]

},
{

"dataType": "Entity",
"nameInfo": "otherEntity",
"typeInfo": "REFERENCE_ONE",
"value": "{4598d07e−9c5c−4e33−9893−b3683e1e3dc1}"

},
{

"dataType": "Entity",
"nameInfo": "otherEntities",
"typeInfo": "REFERENCE_N",
"value": [

"{4598d07e−9c5c−4e33−9893−b3683e1e3dc1}"
]

},
{

"dataType": "Entity",
"nameInfo": "ownedEntity",
"typeInfo": "COMPOSITION_ONE",
"value": {

"containerName": "{48853f35−d575−429c−ae8a−a1881b6dba38}",
"containerType": "Entity",
"objectName": "{7ab7144d−bf8a−47ce−9d50−768c1c894d6c}",
"objectType": "Entity",
"properties": [

{
"dataType": "bool",

229

An Approach for Adding Resilience to Industrial Control Systems

"nameInfo": "active",
"typeInfo": "ATTRIBUTE_ONE",
"value": "false"

},
{

"dataType": "int",
"nameInfo": "values",
"typeInfo": "ATTRIBUTE_N",
"value": [
]

},
{

"dataType": "Entity",
"nameInfo": "otherEntity",
"typeInfo": "REFERENCE_ONE",
"value": ""

},
{

"dataType": "Entity",
"nameInfo": "otherEntities",
"typeInfo": "REFERENCE_N",
"value": [
]

},
{

"dataType": "Entity",
"nameInfo": "ownedEntity",
"typeInfo": "COMPOSITION_ONE",
"value": {
}

},
{

"dataType": "Entity",
"nameInfo": "ownedEntities",
"typeInfo": "COMPOSITION_N",
"value": [
]

}
]

}
},
{

"dataType": "Entity",
"nameInfo": "ownedEntities",
"typeInfo": "COMPOSITION_N",
"value": [

{
"containerName": "{48853f35−d575−429c−ae8a−a1881b6dba38}",
"containerType": "Entity",
"objectName": "{7b525b5e−7e6e−41ee−abc1−b65a5fd22b12}",
"objectType": "Entity",
"properties": [

{
"dataType": "bool",
"nameInfo": "active",
"typeInfo": "ATTRIBUTE_ONE",
"value": "false"

},

230

A. Appendix

{
"dataType": "int",
"nameInfo": "values",
"typeInfo": "ATTRIBUTE_N",
"value": [
]

},
{

"dataType": "Entity",
"nameInfo": "otherEntity",
"typeInfo": "REFERENCE_ONE",
"value": ""

},
{

"dataType": "Entity",
"nameInfo": "otherEntities",
"typeInfo": "REFERENCE_N",
"value": [
]

},
{

"dataType": "Entity",
"nameInfo": "ownedEntity",
"typeInfo": "COMPOSITION_ONE",
"value": {
}

},
{

"dataType": "Entity",
"nameInfo": "ownedEntities",
"typeInfo": "COMPOSITION_N",
"value": [
]

}
]

}
]

}
]

}

231

Bibliography

[1] I Crnkovic. Building Reliable Component-Based Software Systems. Ed. by M Lars-
son. Artech House, Inc., 2002. isbn: 1580533272.

[2] IE Commission et al. “IEC 61131-3.” In: Programmable Controllers-Part 3 (2013).

[3] R Mackiewicz. “Overview of IEC 61850 and Benefits.” In: 2005/2006 PES TD.
IEEE. isbn: 0-7803-9194-2. doi: 10.1109/TDC.2006.1668522.

[4] M Liserre; T Sauter; and J Hung. “Future Energy Systems: Integrating Renewable
Energy Sources into the Smart Power Grid Through Industrial Electronics.” In:
IEEE Industrial Electronics Magazine 4 (2010). issn: 1932-4529. doi: 10.1109/
MIE.2010.935861.

[5] S Yin and O Kaynak. “Big Data for Modern Industry: Challenges and Trends
[Point of View].” In: Proceedings of the IEEE 103.2 (2015). issn: 0018-9219. doi:
10.1109/JPROC.2015.2388958.

[6] K Stouffer; V Pillitteri; S Lightman; M Abrams; and A Hahn. Guide to Industrial
Control Systems (ICS) Security. Tech. rep. National Institute of Standards and
Technology, 2015. doi: 10.6028/NIST.SP.800-82r2.

[7] National Cybersecurity and Communications Integration Center and Industrial
Control Systems Cyber Emergency Response Team. NCCIC / ICS-CERT Year
in Review. Tech. rep. 2010.

[8] National Cybersecurity and Communications Integration Center and Industrial
Control Systems Cyber Emergency Response Team. NCCIC / ICS-CERT Year
in Review. Tech. rep. 2016.

[9] J-C Laprie. “From dependability to resilience.” In: International Conference on
Dependable Systems and Networks. 2008. isbn: 1471-2490. doi: http://dx.doi.
org/10.1016/j.yexcr.2010.06.008.

[10] M Brambilla; J Cabot; and M Wimmer. “Model-Driven Software Engineering in
Practice.” In: Synthesis Lectures on Software Engineering 1.1 (2012). issn: 2328-
3319. doi: 10.2200/S00441ED1V01Y201208SWE001.

[11] J Bézivin. “In search of a basic principle for model driven engineering.” In: Novatica
Journal, Special Issue 5.2 (2004).

233

https://doi.org/10.1109/TDC.2006.1668522
https://doi.org/10.1109/MIE.2010.935861
https://doi.org/10.1109/MIE.2010.935861
https://doi.org/10.1109/JPROC.2015.2388958
https://doi.org/10.6028/NIST.SP.800-82r2
https://doi.org/http://dx.doi.org/10.1016/j.yexcr.2010.06.008
https://doi.org/http://dx.doi.org/10.1016/j.yexcr.2010.06.008
https://doi.org/10.2200/S00441ED1V01Y201208SWE001

An Approach for Adding Resilience to Industrial Control Systems

[12] AG Kleppe; J Warmer; and W Bast. MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., 2003.
isbn: 032119442X.

[13] J Hutchinson; J Whittle; M Rouncefield; and S Kristoffersen. “Empirical assessment
of MDE in industry.” In: Proceeding of the 33rd international conference on Software
engineering - ICSE ’11. ICSE ’11. ACM Press, 2011. isbn: 9781450304450. doi:
10.1145/1985793.1985858.

[14] J Whittle and J Hutchinson. “Mismatches between Industry Practice and Teaching
of Model-Driven Software Development.” In: Models in Software Engineering SE -
6. Ed. by J Kienzle. Vol. 7167. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012. isbn: 978-3-642-29644-4. doi: 10.1007/978-3-642-29645-1_6.

[15] J Whittle; J Hutchinson; and M Rouncefield. “The State of Practice in Model-
Driven Engineering.” In: IEEE Software 31.3 (2014). issn: 0740-7459. doi: 10.
1109/MS.2013.65.

[16] T Kühne. “Matters of (Meta-) Modeling.” English. In: Software & Systems Modeling
5.4 (July 2006). issn: 1619-1366. doi: 10.1007/s10270-006-0017-9.

[17] Object Management Group (OMG). OMG UML, Infrastructure Version 2.4.1.
2011. url: http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/.

[18] Object Management Group (OMG). OMG Meta Object Facility (MOF) Core Spec-
ification Version 2.4.1. 2013. url: http://www.omg.org/spec/MOF/2.4.1/PDF/.

[19] A Sangiovanni-Vincentelli; W Damm; and R Passerone. “Taming Dr. Frankenstein:
Contract-Based Design for Cyber-Physical Systems.” In: European Journal of Con-
trol 18.3 (Jan. 2012). issn: 09473580. doi: 10.3166/ejc.18.217-238.

[20] P Nuzzo; Huan Xu; N Ozay; JB Finn; AL Sangiovanni-Vincentelli; RM Murray; A
Donze; and SA Seshia. “A Contract-Based Methodology for Aircraft Electric Power
System Design.” In: IEEE Access 2 (2014). issn: 2169-3536. doi: 10.1109/ACCESS.
2013.2295764.

[21] A Benveniste; B Caillaud; A Ferrari; L Mangeruca; R Passerone; and C Sofronis.
“Multiple Viewpoint Contract-Based Specification and Design.” In: 2008. doi: 10.
1007/978-3-540-92188-2_9.

[22] B Meyer. “Applying ’design by contract’.” In: Computer 25.10 (Oct. 1992). issn:
0018-9162. doi: 10.1109/2.161279.

[23] A Benveniste; B Caillaud; D Nickovic; R Passerone; J-B Raclet; P Reinkemeier;
AL Sangiovanni-Vincentelli; W Damm; T Henzinger; and K Larsen. Contracts for
Systems Design. Tech. rep. INRIA, 2012.

234

https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1007/978-3-642-29645-1_6
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1007/s10270-006-0017-9
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.omg.org/spec/MOF/2.4.1/PDF/
https://doi.org/10.3166/ejc.18.217-238
https://doi.org/10.1109/ACCESS.2013.2295764
https://doi.org/10.1109/ACCESS.2013.2295764
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1109/2.161279

Bibliography

[24] N Kajtazovic. “A Component-based Approach for Managing Changes in the En-
gineering of Safety-critical Embedded Systems.” PhD thesis. Graz University of
Technology, 2014.

[25] A Rajan and T Wahl, eds. CESAR - Cost-efficient Methods and Processes for
Safety-relevant Embedded Systems. Springer Vienna, 2013. isbn: 978-3-7091-1386-
8. doi: 10.1007/978-3-7091-1387-5.

[26] A Benveniste; B Caillaud; D Nickovic; R Passerone; J-B Raclet; P Reinkemeier;
A Sangiovanni-Vincentelli; W Damm; T Henzinger; and KG Larsen. Contracts for
Systems Design: Theory. Research Report RR-8759. Inria Rennes Bretagne Atlan-
tique ; INRIA, 2015.

[27] K Vanherpen. “A contract-based approach for multi-viewpoint consistency in the
concurrent design of cyber-physical systems.” PhD thesis. University of Antwerp,
2018.

[28] J Kephart and D Chess. “The vision of autonomic computing.” In: Computer 36.1
(2003). issn: 0018-9162. doi: 10.1109/MC.2003.1160055.

[29] S Dobson; R Sterritt; P Nixon; and M Hinchey. “Fulfilling the Vision of Autonomic
Computing.” In: Computer 43.1 (2010). issn: 0018-9162. doi: 10.1109/MC.2010.
14.

[30] M Salehie and L Tahvildari. “Self-adaptive software: Landscape and research chal-
lenges.” In: ACM Transactions on Autonomous and Adaptive Systems 4.2 (2009).
issn: 15564665. doi: 10.1145/1516533.1516538.

[31] P Oreizy; M Gorlick; R Taylor; D Heimhigner; G Johnson; N Medvidovic; A Quilici;
D Rosenblum; and A Wolf. “An architecture-based approach to self-adaptive soft-
ware.” In: IEEE Intelligent Systems 14.3 (1999). issn: 1094-7167. doi: 10.1109/
5254.769885.

[32] R Laddaga. “Active Software.” In: Self-Adaptive Software: First International Work-
shop, IWSAS 2000 Oxford, UK, April 17–19, 2000 Revised Papers. Ed. by P
Robertson; H Shrobe; and R Laddaga. Springer Berlin Heidelberg, 2001. isbn:
978-3-540-44584-5. doi: 10.1007/3-540-44584-6_2.

[33] D Weyns; B Schmerl; V Grassi; S Malek; R Mirandola; C Prehofer; J Wuttke; J
Andersson; H Giese; and KM Göschka. “On Patterns for Decentralized Control
in Self-Adaptive Systems.” In: Software Engineering for Self-Adaptive Systems II.
2013. doi: 10.1007/978-3-642-35813-5_4.

[34] M Hinchey and R Sterritt. “Self-Managing Software.” In: Computer 39.2 (2006).
issn: 0018-9162. doi: 10.1109/MC.2006.69.

235

https://doi.org/10.1007/978-3-7091-1387-5
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2010.14
https://doi.org/10.1109/MC.2010.14
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1109/5254.769885
https://doi.org/10.1109/5254.769885
https://doi.org/10.1007/3-540-44584-6_2
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1109/MC.2006.69

An Approach for Adding Resilience to Industrial Control Systems

[35] H Muccini; M Sharaf; and D Weyns. “Self-adaptation for Cyber-physical Systems: A
Systematic Literature Review.” In: Proceedings of the 11th International Workshop
on Software Engineering for Adaptive and Self-Managing Systems - SEAMS ’16.
ACM Press, 2016. isbn: 9781450341875. doi: 10.1145/2897053.2897069.

[36] JP Müller and K Fischer. “Application Impact of Multi-agent Systems and Tech-
nologies: A Survey.” In: Agent-Oriented Software Engineering. Springer Berlin Hei-
delberg, 2014. doi: 10.1007/978-3-642-54432-3_3.

[37] M Jelasity; O Babaoglu; R Laddaga; R Nagpal; F Zambonelli; E Sirer; H Chaouchi;
and M Smirnov. “Interdisciplinary Research: Roles for Self-Organization.” In: IEEE
Intelligent Systems 21.2 (2006). issn: 1541-1672. doi: 10.1109/MIS.2006.30.

[38] Y Brun; R Desmarais; K Geihs; M Litoiu; A Lopes; M Shaw; and M Smit. “A
Design Space for Self-Adaptive Systems.” In: Software Engineering for Self-Adaptive
Systems II: International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010
Revised Selected and Invited Papers. Ed. by R de Lemos; H Giese; HA Müller; and
M Shaw. Springer Berlin Heidelberg, 2013. isbn: 978-3-642-35813-5. doi: 10.1007/
978-3-642-35813-5_2.

[39] Wikimedia Commons. OODA loop. 2014. url: https://commons.wikimedia.
org/wiki/File:OODA.Boyd.svg.

[40] JR Boyd. The Essence of Winning and Losing. 1996. url: http://dnipogo.org/
john-r-boyd/.

[41] S Grenander; K Simpson; and O Sindiy. “The Autonomy System Architecture.” In:
AIAA Infotech@Aerospace Conference. Infotech@Aerospace Conferences. American
Institute of Aeronautics and Astronautics, 2009. isbn: 978-1-60086-979-2. doi: 10.
2514/6.2009-1884.

[42] A Chandra; PR Lewis; K Glette; and SC Stilkerich. “Reference Architecture for Self-
aware and Self-expressive Computing Systems.” In: Self-aware Computing Systems:
An Engineering Approach. Ed. by PR Lewis; M Platzner; B Rinner; J Tørresen;
and X Yao. Springer International Publishing, 2016. isbn: 978-3-319-39675-0. doi:
10.1007/978-3-319-39675-0_4.

[43] S Dobson; F Zambonelli; S Denazis; A Fernández; D Gäıti; E Gelenbe; F Massacci; P
Nixon; F Saffre; and N Schmidt. “A survey of autonomic communications.” In: ACM
Transactions on Autonomous and Adaptive Systems 1.2 (2006). issn: 15564665. doi:
10.1145/1186778.1186782.

[44] BHC Cheng; R de Lemos; H Giese; P Inverardi; J Magee; J Andersson; B Becker;
N Bencomo; Y Brun; B Cukic; G Di Marzo Serugendo; S Dustdar; A Finkelstein;
C Gacek; K Geihs; V Grassi; G Karsai; HM Kienle; J Kramer; M Litoiu; S Malek;

236

https://doi.org/10.1145/2897053.2897069
https://doi.org/10.1007/978-3-642-54432-3_3
https://doi.org/10.1109/MIS.2006.30
https://doi.org/10.1007/978-3-642-35813-5_2
https://doi.org/10.1007/978-3-642-35813-5_2
https://commons.wikimedia.org/wiki/File:OODA.Boyd.svg
https://commons.wikimedia.org/wiki/File:OODA.Boyd.svg
http://dnipogo.org/john-r-boyd/
http://dnipogo.org/john-r-boyd/
https://doi.org/10.2514/6.2009-1884
https://doi.org/10.2514/6.2009-1884
https://doi.org/10.1007/978-3-319-39675-0_4
https://doi.org/10.1145/1186778.1186782

Bibliography

R Mirandola; HA Müller; S Park; M Shaw; M Tichy; M Tivoli; D Weyns; and J
Whittle. “Software Engineering for Self-Adaptive Systems: A Research Roadmap.”
In: Software Engineering for Self-Adaptive Systems. Ed. by BHC Cheng; R de
Lemos; H Giese; P Inverardi; and J Magee. Springer Berlin Heidelberg, 2009. doi:
10.1007/978-3-642-02161-9_1.

[45] G Blair; N Bencomo; and RB France. “Models@ run.time.” In: Computer 42.10
(2009). issn: 0018-9162. doi: 10.1109/MC.2009.326.

[46] Object Management Group (OMG). Website of the Unified Modeling Language.
2018. url: http://uml.org/.

[47] H Giese; N Bencomo; L Pasquale; AJ Ramirez; P Inverardi; S Wätzoldt; and
S Clarke. “Living with Uncertainty in the Age of Runtime Models.” In: Mod-
els@run.time: Foundations, Applications, and Roadmaps. Ed. by N Bencomo; R
France; BHC Cheng; and U Aßmann. Springer International Publishing, 2014. isbn:
978-3-319-08915-7. doi: 10.1007/978-3-319-08915-7_3.

[48] M Maasoumy; P Nuzzo; and A Sangiovanni-Vincentelli. “Smart Buildings in the
Smart Grid: Contract-Based Design of an Integrated Energy Management System.”
In: Cyber Physical Systems Approach to Smart Electric Power Grid. Springer Berlin
Heidelberg, 2015. doi: 10.1007/978-3-662-45928-7_5.

[49] P Nuzzo; A Sangiovanni-Vincentelli; Xuening Sun; and A Puggelli. “Methodology
for the Design of Analog Integrated Interfaces Using Contracts.” In: IEEE Sensors
Journal 12.12 (Dec. 2012). issn: 1530-437X. doi: 10.1109/JSEN.2012.2211098.

[50] N Kajtazovic; C Preschern; A Höller; and C Kreiner. “Constraint-Based Verifica-
tion of Compositions in Safety-Critical Component-Based Systems.” In: Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Comput-
ing. Studies in Computational Intelligence. Springer International Publishing, 2015.
isbn: 978-3-319-10388-4. doi: 10.1007/978-3-319-10389-1_9.

[51] T Amorim; D Ratasich; G Macher; A Ruiz; D Schneider; M Driussi; and R Grosu.
“Runtime Safety Assurance for Adaptive Cyber-Physical Systems: ConSerts M and
Ontology-Based Runtime Reconfiguration Applied to an Automotive Case Study
Runtime Safety Assurance for Adaptive Cyber-Physical Systems: ConSerts M and
Ontology-Based Runtime Reconfiguration Applied to an Automotive Case Study.”
In: Solutions for Cyber-Physical Systems Ubiquity. Ed. by N Druml; A Genser; A
Krieg; M Menghin; and A Höller. IGI Global, 2018. doi: 10.4018/978-1-5225-
2845-6.ch006.

[52] P Nuzzo and A Sangiovanni-Vincentelli. “Let’s Get Physical: Computer Science
Meets Systems.” In: From Programs to Systems. The Systems perspective in Com-

237

https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1109/MC.2009.326
http://uml.org/
https://doi.org/10.1007/978-3-319-08915-7_3
https://doi.org/10.1007/978-3-662-45928-7_5
https://doi.org/10.1109/JSEN.2012.2211098
https://doi.org/10.1007/978-3-319-10389-1_9
https://doi.org/10.4018/978-1-5225-2845-6.ch006
https://doi.org/10.4018/978-1-5225-2845-6.ch006

An Approach for Adding Resilience to Industrial Control Systems

puting. Springer Berlin Heidelberg, 2014. isbn: 978-3-642-54847-5, 978-3-642-54848-
2. doi: 10.1007/978-3-642-54848-2_13.

[53] F Warg; B Vedder; M Skoglund; and A Soderberg. “Safety ADD: A Tool for
Safety-Contract Based Design.” In: 2014 IEEE International Symposium on Soft-
ware Reliability Engineering Workshops. Nov. 2014. isbn: 978-1-4799-7377-4. doi:
10.1109/ISSREW.2014.18.

[54] M Sievers and AM Madni. “A flexible contracts approach to system resiliency.” In:
2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC).
IEEE, 2014. isbn: 978-1-4799-3840-7. doi: 10.1109/SMC.2014.6974044.

[55] Object Management Group (OMG). OMG SysML Version 1.3. 2012. url: http:
//www.omg.org/spec/SysML/1.3/.

[56] M Grabowski; B Kaiser; and Y Bai. “Systematic Refinement of CPS Requirements
using SysML, Template Language and Contracts.” In: Modellierung 2018. Ed. by
I Schaefer; D Karagiannis; A Vogelsang; D Méndez; and C Seidl. Gesellschaft für
Informatik e.V., 2018.

[57] The CHESS Project. Website of the CHESS Project. 2018. url: http://www.
chess-project.org.

[58] Object Management Group (OMG). UML Profile for MARTE: Modeling and Anal-
ysis of Real-Time Embedded Systems Version 1.1. 2011. url: http://www.omg.
org/spec/MARTE/.

[59] PolarSys. CHESS Toolset User Guide. 2018. url: https://www.polarsys.org/
chess/publis/CHESSToolset_UserGuide.pdf.

[60] T Amorim; A Ruiz; C Dropmann; and D Schneider. “Multidirectional Modular
Conditional Safety Certificates.” In: 2015. doi: 10.1007/978-3-319-24249-1_31.

[61] T Amorim; D Ratasich; G Macher; A Ruiz; D Schneider; M Driussi; and R Grosu.
“Runtime Safety Assurance for Adaptive Cyber-Physical Systems: ConSerts M and
Ontology-Based Runtime Reconfiguration Applied to an Automotive Case Study.”
In: Solutions for Cyber-Physical Systems Ubiquity. IGI Global, 2018. doi: 10.4018/
978-1-5225-2845-6.ch006.

[62] B Zimmer; S Bürklen; M Knoop; J Höfflinger; and M Trapp. “Vertical Safety In-
terfaces – Improving the Efficiency of Modular Certification.” In: 2011. doi: 10.
1007/978-3-642-24270-0_3.

[63] C Krupitzer; FM Roth; S VanSyckel; G Schiele; and C Becker. “A survey on engi-
neering approaches for self-adaptive systems.” In: Pervasive and Mobile Computing
17 (2015). issn: 15741192. doi: 10.1016/j.pmcj.2014.09.009.

238

https://doi.org/10.1007/978-3-642-54848-2_13
https://doi.org/10.1109/ISSREW.2014.18
https://doi.org/10.1109/SMC.2014.6974044
http://www.omg.org/spec/SysML/1.3/
http://www.omg.org/spec/SysML/1.3/
http://www.chess-project.org
http://www.chess-project.org
http://www.omg.org/spec/MARTE/
http://www.omg.org/spec/MARTE/
https://www.polarsys.org/chess/publis/CHESSToolset_UserGuide.pdf
https://www.polarsys.org/chess/publis/CHESSToolset_UserGuide.pdf
https://doi.org/10.1007/978-3-319-24249-1_31
https://doi.org/10.4018/978-1-5225-2845-6.ch006
https://doi.org/10.4018/978-1-5225-2845-6.ch006
https://doi.org/10.1007/978-3-642-24270-0_3
https://doi.org/10.1007/978-3-642-24270-0_3
https://doi.org/10.1016/j.pmcj.2014.09.009

Bibliography

[64] C Krupitzer; FM Roth; M Pfannemüller; and C Becker. Comparison of approaches
for self-improvement in self-adaptive systems (extended version). Englisch. 2017.

[65] FD Maćıas-Escrivá; R Haber; R del Toro; and V Hernandez. “Self-adaptive systems:
A survey of current approaches, research challenges and applications.” In: Expert
Systems with Applications 40.18 (2013). issn: 09574174. doi: 10.1016/j.eswa.
2013.07.033.

[66] JP Loyall; DE Bakken; RE Schantz; JA Zinky; DA Karr; R Vanegas; and KR
Anderson. “QoS Aspect Languages and Their Runtime Integration.” In: 1998. doi:
10.1007/3-540-49530-4_22.

[67] K Appleby; S Fakhouri; L Fong; G Goldszmidt; M Kalantar; S Krishnakumar;
D Pazel; J Pershing; and B Rochwerger. “Oceano-SLA based management of a
computing utility.” In: 2001 IEEE/IFIP International Symposium on Integrated
Network Management Proceedings. Integrated Network Management VII. Integrated
Management Strategies for the New Millennium (Cat. No.01EX470). IEEE. isbn:
0-7803-6719-7. doi: 10.1109/INM.2001.918085.

[68] S-W Cheng. “Rainbow: Cost-effective Software Architecture-based Self-adaptation.”
PhD thesis. 2008. isbn: 978-0-549-52525-7.

[69] S Tuttle; V Batchellor; MB Hansen; and M Sethuraman. “Centralized risk man-
agement using tivoli risk manager 4.2.” In: IBM Redbooks (2003).

[70] G Kaiser; J Parekh; P Gross; and G Valetto. “Kinesthetics eXtreme: an exter-
nal infrastructure for monitoring distributed legacy systems.” In: 2003 Autonomic
Computing Workshop. IEEE Comput. Soc. isbn: 0-7695-1983-0. doi: 10.1109/
ACW.2003.1210200.

[71] Hua Liu; M Parashar; and S Hariri. “A Component Based Programming Framework
for Autonomic Applications.” In: International Conference on Autonomic Comput-
ing, 2004. Proceedings. IEEE. isbn: 0-7695-2114-2. doi: 10.1109/ICAC.2004.
1301341.

[72] G Candea; E Kiciman; S Kawamoto; and A Fox. “Autonomous recovery in compo-
nentized Internet applications.” In: Cluster Computing 9.2 (2006). issn: 1386-7857.
doi: 10.1007/s10586-006-7562-4.

[73] SM Sadjadi; PK McKinley; BHC Cheng; and REK Stirewalt. “TRAP/J: Transpar-
ent Generation of Adaptable Java Programs.” In: 2004. doi: 10.1007/978-3-540-
30469-2_28.

[74] J Dowling. “The Decentralised Coordination of Self-Adaptive Components for Au-
tonomic Distributed Systems.” PhD thesis. Trinity College, 2004.

239

https://doi.org/10.1016/j.eswa.2013.07.033
https://doi.org/10.1016/j.eswa.2013.07.033
https://doi.org/10.1007/3-540-49530-4_22
https://doi.org/10.1109/INM.2001.918085
https://doi.org/10.1109/ACW.2003.1210200
https://doi.org/10.1109/ACW.2003.1210200
https://doi.org/10.1109/ICAC.2004.1301341
https://doi.org/10.1109/ICAC.2004.1301341
https://doi.org/10.1007/s10586-006-7562-4
https://doi.org/10.1007/978-3-540-30469-2_28
https://doi.org/10.1007/978-3-540-30469-2_28

An Approach for Adding Resilience to Industrial Control Systems

[75] P Robertson and R Laddaga. “Model Based Diagnosis and Contexts in Self Adap-
tive Software.” In: 2005. doi: 10.1007/11428589_8.

[76] A Mukhija and M Glinz. “Runtime Adaptation of Applications Through Dynamic
Recomposition of Components.” In: 2005. doi: 10.1007/978-3-540-31967-2_9.

[77] J White; DC Schmidt; and A Gokhale. “Simplifying autonomic enterprise Java
Bean applications via model-driven engineering and simulation.” In: Software &
Systems Modeling 7.1 (2007). issn: 1619-1366. doi: 10.1007/s10270-007-0057-9.

[78] A Lapouchnian; S Liaskos; J Mylopoulos; and Y Yu. “Towards requirements-driven
autonomic systems design.” In: ACM SIGSOFT Software Engineering Notes 30.4
(2005). issn: 01635948. doi: 10.1145/1082983.1083075.

[79] J Floch; S Hallsteinsen; E Stav; F Eliassen; K Lund; and E Gjorven. “Using ar-
chitecture models for runtime adaptability.” In: IEEE Software 23.2 (2006). issn:
0740-7459. doi: 10.1109/MS.2006.61.

[80] V Kumar; BF Cooper; Z Cai; G Eisenhauer; and K Schwan. “Middleware for enter-
prise scale data stream management using utility-driven self-adaptive information
flows.” In: Cluster Computing 10.4 (2007). issn: 1386-7857. doi: 10.1007/s10586-
007-0040-9.

[81] Y Al-Nashif; AA Kumar; S Hariri; Y Luo; F Szidarovsky; and G Qu. “Multi-
Level Intrusion Detection System (ML-IDS).” In: 2008 International Conference
on Autonomic Computing. IEEE, 2008. doi: 10.1109/ICAC.2008.25.

[82] H Tajalli; J Garcia; G Edwards; and N Medvidovic. “PLASMA: a plan-based lay-
ered architecture for software model-driven adaptation.” In: Proceedings of the
IEEE/ACM international conference on Automated software engineering - ASE
’10. ACM Press, 2010. isbn: 9781450301169. doi: 10.1145/1858996.1859092.

[83] P Brittenham; RR Cutlip; C Draper; BA Miller; S Choudhary; and M Perazolo.
“IT service management architecture and autonomic computing.” In: IBM Systems
Journal 46.3 (2007). issn: 0018-8670. doi: 10.1147/sj.463.0565.

[84] B Morin; O Barais; J-M Jezequel; F Fleurey; and A Solberg. “Models@ Run.time to
Support Dynamic Adaptation.” In: Computer 42.10 (2009). issn: 0018-9162. doi:
10.1109/MC.2009.327.

[85] G Jung; MA Hiltunen; KR Joshi; RD Schlichting; and C Pu. “Mistral: Dynamically
Managing Power, Performance, and Adaptation Cost in Cloud Infrastructures.”
In: 2010 IEEE 30th International Conference on Distributed Computing Systems.
IEEE, 2010. isbn: 978-1-4244-7261-1. doi: 10.1109/ICDCS.2010.88.

240

https://doi.org/10.1007/11428589_8
https://doi.org/10.1007/978-3-540-31967-2_9
https://doi.org/10.1007/s10270-007-0057-9
https://doi.org/10.1145/1082983.1083075
https://doi.org/10.1109/MS.2006.61
https://doi.org/10.1007/s10586-007-0040-9
https://doi.org/10.1007/s10586-007-0040-9
https://doi.org/10.1109/ICAC.2008.25
https://doi.org/10.1145/1858996.1859092
https://doi.org/10.1147/sj.463.0565
https://doi.org/10.1109/MC.2009.327
https://doi.org/10.1109/ICDCS.2010.88

Bibliography

[86] D Cooray; E Kouroshfar; S Malek; and R Roshandel. “Proactive Self-Adaptation
for Improving the Reliability of Mission-Critical, Embedded, and Mobile Software.”
In: IEEE Transactions on Software Engineering 39.12 (2013). issn: 0098-5589. doi:
10.1109/TSE.2013.36.

[87] E Albassam; J Porter; H Gomaa; and DA Menasce. “DARE: A Distributed Adap-
tation and Failure Recovery Framework for Software Systems.” In: 2017 IEEE In-
ternational Conference on Autonomic Computing (ICAC). IEEE, 2017. isbn: 978-
1-5386-1762-5. doi: 10.1109/ICAC.2017.12.

[88] D Weyns; MU Iftikhar; D Hughes; and N Matthys. “Applying Architecture-Based
Adaptation to Automate the Management of Internet-of-Things.” In: 2018. doi:
10.1007/978-3-030-00761-4_4.

[89] Google. Website of the Kubernetes Project. 2018. url: https://kubernetes.io.

[90] D Weyns and T Ahmad. “Claims and Evidence for Architecture-Based Self-adapt-
ation: A Systematic Literature Review.” In: European Conference on Software Ar-
chitecture. Springer Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-39031-
9_22.

[91] D Weyns; MU Iftikhar; S Malek; and J Andersson. “Claims and Supporting Ev-
idence for Self-adaptive Systems: A Literature Study.” In: Proceedings of the 7th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems. SEAMS ’12. IEEE Press, 2012. isbn: 978-1-4673-1787-0.

[92] KH John and M Tiegelkamp. IEC 61131-3: Programming Industrial Automation
Systems. Springer Berlin Heidelberg, 2010. isbn: 978-3-642-12014-5. doi: 10.1007/
978-3-642-12015-2.

[93] J Bézivin; F Jouault; and P Valduriez. “On the need for megamodels.” In: Proceed-
ings of the OOPSLA/GPCE: Best Practices for Model-Driven Software Develop-
ment workshop, 19th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications. 2004.

[94] R Langner. “Stuxnet: Dissecting a Cyberwarfare Weapon.” In: IEEE Security &
Privacy Magazine 9.3 (2011). issn: 1540-7993. doi: 10.1109/MSP.2011.67.

[95] N Falliere; LO Murchu; and E Chien. “W32. stuxnet dossier.” In: White paper,
Symantec Corp., Security Response 5.6 (2011).

[96] Eclipse Foundation. Website of the EMF Project. 2018. url: http://www.eclipse.
org/modeling/emf/.

[97] Eclipse Foundation. Website of the Xtext Project. 2018. url: http://www.eclipse.
org/Xtext/.

241

https://doi.org/10.1109/TSE.2013.36
https://doi.org/10.1109/ICAC.2017.12
https://doi.org/10.1007/978-3-030-00761-4_4
https://kubernetes.io
https://doi.org/10.1007/978-3-642-39031-9_22
https://doi.org/10.1007/978-3-642-39031-9_22
https://doi.org/10.1007/978-3-642-12015-2
https://doi.org/10.1007/978-3-642-12015-2
https://doi.org/10.1109/MSP.2011.67
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/

An Approach for Adding Resilience to Industrial Control Systems

[98] C Schneider; M Spönemann; and R von Hanxleden. “Just model! Putting automatic
synthesis of node-link-diagrams into practice.” In: IEEE Symposium on Visual Lan-
guages and Human Centric Computing. 2013. doi: 10.1109/VLHCC.2013.6645246.

[99] R Henia; A Hamann; M Jersak; R Racu; K Richter; and R Ernst. “System level
performance analysis – the SymTA/S approach.” In: IEE Proceedings - Computers
and Digital Techniques 152.2 (2005). issn: 13502387. doi: 10 . 1049 / ip - cdt :
20045088.

[100] K Marriott; PJ Stuckey; and PJ Stuckey. Programming with constraints: an intro-
duction. MIT press, 1998.

[101] J Iber; A Höller; T Rauter; and C Kreiner. “Patterns for Designing Configurability
into Domain-Specific Language Elements.” In: Proceedings of the 21st European
Conference on Pattern Languages of Programs. EuroPlop ’16. ACM, 2016. isbn:
978-1-4503-4074-8. doi: 10.1145/3011784.3011785.

[102] J Iber; T Rauter; M Krisper; and C Kreiner. “The Potential of Self-Adaptive Soft-
ware Systems in Industrial Control Systems.” In: Proceedings of the 24th European
Conference on Software Process Improvement. EuroAsiaSPI ’17. Springer Interna-
tional Publishing, 2017. isbn: 978-3-319-64218-5.

[103] A Höller; T Rauter; J Iber; and C Kreiner. “Patterns for Automated Software
Diversity to Support Security and Reliability.” In: EuroPLoP ’15. ACM, 2015.
isbn: 978-1-4503-3847-9. doi: 10.1145/2855321.2855360.

[104] H Hadeli; R Schierholz; M Braendle; and C Tuduce. “Leveraging determinism in
industrial control systems for advanced anomaly detection and reliable security
configuration.” In: 2009 IEEE Conference on Emerging Technologies & Factory
Automation. IEEE, 2009. isbn: 978-1-4244-2727-7. doi: 10 . 1109 / ETFA . 2009 .
5347134.

[105] SD Anton; S Kanoor; D Fraunholz; and HD Schotten. “Evaluation of Machine
Learning-based Anomaly Detection Algorithms on an Industrial Modbus/TCP
Data Set.” In: Proceedings of the 13th International Conference on Availability,
Reliability and Security - ARES 2018. ACM Press, 2018. isbn: 9781450364485.
doi: 10.1145/3230833.3232818.

[106] M Kylänpää and A Rantala. “Remote Attestation for Embedded Systems.” In:
Security of Industrial Control Systems and Cyber Physical Systems. Ed. by A Bécue;
N Cuppens-Boulahia; F Cuppens; S Katsikas; and C Lambrinoudakis. Springer
International Publishing, 2016, pp. 79–92. isbn: 978-3-319-40385-4.

242

https://doi.org/10.1109/VLHCC.2013.6645246
https://doi.org/10.1049/ip-cdt:20045088
https://doi.org/10.1049/ip-cdt:20045088
https://doi.org/10.1145/3011784.3011785
https://doi.org/10.1145/2855321.2855360
https://doi.org/10.1109/ETFA.2009.5347134
https://doi.org/10.1109/ETFA.2009.5347134
https://doi.org/10.1145/3230833.3232818

Bibliography

[107] B Galloway and GP Hancke. “Introduction to Industrial Control Networks.” In:
IEEE Communications Surveys & Tutorials 15.2 (2013). issn: 1553-877X. doi:
10.1109/SURV.2012.071812.00124.

[108] U Aßmann; S Götz; J-M Jézéquel; B Morin; and M Trapp. “A Reference Architec-
ture and Roadmap for Models@run.time Systems.” In: Models@run.time: Founda-
tions, Applications, and Roadmaps. 2014. doi: 10.1007/978-3-319-08915-7_1.

[109] F Hayes-Roth. “Rule-based systems.” In: Communications of the ACM 28.9 (1985).
issn: 00010782. doi: 10.1145/4284.4286.

[110] I Fette and A Melnikov. The WebSocket Protocol. RFC 6455. RFC Editor, 2011.

[111] A Höller; G Schönfelder; N Kajtazovic; T Rauter; and C Kreiner. “FIES: A Fault In-
jection Framework for the Evaluation of Self-Tests for COTS-Based Safety-Critical
Systems.” In: 2014 15th International Microprocessor Test and Verification Work-
shop. IEEE, 2014. isbn: 978-1-4673-6858-2. doi: 10.1109/MTV.2014.27.

[112] J Iber; M Krisper; J Dobaj; and C Kreiner. “Dynamic Adaption to Permanent
Memory Faults in Industrial Control Systems.” In: Proceedings of the 9th Inter-
national Conference on Ambient Systems, Networks and Technologies. ANT ’18.
Elsevier, 2018. doi: 10.1016/j.procs.2018.04.058.

[113] J Iber; T Rauter; M Krisper; and C Kreiner. “Patterns Grasping the Trade-off
Between Distributing Data and Information.” In: Proceedings of the 22nd European
Conference on Pattern Languages of Programs. EuroPLoP ’17. ACM, 2017. isbn:
978-1-4503-4848-5. doi: 10.1145/3147704.3147724.

[114] J Iber; M Krisper; J Dobaj; and C Kreiner. “Separation of processing and coor-
dination in computer systems.” In: Proceedings of the 23rd European Conference
on Pattern Languages of Programs. EuroPLoP ’18. ACM, 2018. isbn: 978-1-4503-
6387-7/18/07. doi: 10.1145/3282308.3282322.

[115] B Selić and S Gérard. Modeling and Analysis of Real-Time and Embedded Systems
with UML and MARTE. 2014. isbn: 9780124166196. doi: 10.1016/B978-0-12-
416619-6.00008-0.

243

https://doi.org/10.1109/SURV.2012.071812.00124
https://doi.org/10.1007/978-3-319-08915-7_1
https://doi.org/10.1145/4284.4286
https://doi.org/10.1109/MTV.2014.27
https://doi.org/10.1016/j.procs.2018.04.058
https://doi.org/10.1145/3147704.3147724
https://doi.org/10.1145/3282308.3282322
https://doi.org/10.1016/B978-0-12-416619-6.00008-0
https://doi.org/10.1016/B978-0-12-416619-6.00008-0

	Acknowledgments
	Abstract
	Kurzfassung
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Motivation
	Hypothesis and Contributions
	Structure

	Background
	Model Driven Engineering
	Contract-based Design
	Self-Adaptive Software Systems
	Hierarchy of Self-* Properties
	Adaptation Loops
	MAPE-K
	OODA
	CADA
	Discussion of the Adaptation Loops

	Design Patterns for Decentralized Control in Self-Adaptive Systems
	Models@Run.time

	Related Work
	Contract-Based Design
	Self-Adaptive Software Systems

	Overview
	Industrial Control System
	Approach
	Design Time
	Run Time
	Transformation

	Use Case
	Design Time
	Run Time

	Design Time
	Motivation
	Requirements
	Modeling Languages
	Constraint
	Contract
	Data Point
	Resource
	Component
	Deployment
	System Configuration

	Technical Implementation
	Utilization of Models and Contracts
	Meeting Requirements
	Discussion of Limitations
	Design Patterns

	Run Time
	Motivation
	Potential of Self-Adaptive Software Systems
	Requirements
	Scari
	Knowledge Base
	Monitor
	Syndrome Processor
	Recommendation Decision Maker
	Plan Maker
	Plan Decision Maker
	Action Handler

	Technical Implementation
	Scari Core Library
	Decide Phase
	Act Phase
	Scari Modeling Framework
	Knowledge Base
	Networking

	Experiments
	Proprietary PLC Memory Fault
	Remote Attestation
	Remote Attestation Higher Layer
	Data Point Mismatch

	Meeting Requirements
	Discussion of Limitations
	Hierarchical Control
	Utilizing Architectural Models
	Syndrome Processors
	Adaptations
	Configuration of Scari
	Waiting Time
	Real-Time
	Human Intervention
	Security of Scari
	Git

	Design Patterns

	Conclusion and Future Work
	Publications
	Appendix
	Bibliography

