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Abstract

The double-perovskite transition-metal oxide Ba2YIrO6 (electronic configu-
ration 5d4) shows fascinating magnetic properties which cannot be explained
by simple atomic-picture Hund’s rules. In this material, the ground-state
properties are driven by a delicate interplay between spin-orbit coupling and
electronic correlations under a strong cubic crystal-field. There is yet no sci-
entific consensus as why its magnetic state is realized and whether long-range
magnetic ordering occurs for this material.

In this work, the electronic and magnetic properties of Ba2YIrO6 were
investigated using a combination of density-functional theory (DFT) and
dynamic mean-field theory (DMFT). The calculations were performed both
for the paramagnetic phase as well as for a Type I (fcc) anti-ferromagnetic
phase. In the paramagnetic phase a clear breakdown of the atomic Jeff = 0
state was observed. This effect is driven by a combination of low-enough
spin-orbit coupling and large-enough bandwidth, leading to an overlap of
the Jeff = 1/2 and Jeff = 3/2 orbitals before the Mott transition. After
the Mott transition, the lower Hubbard band of the Jeff = 1/2 orbital lies
below the Fermi energy and thus a magnetic moment is present. In our
calculations for a possible anti-ferromagnetic phase no long-range ordering
was observed down to 100 K. The used QMC solver limited the investigation
of lower temperatures and a different solver needs to be employed to make a
convincing argument for or against long-range ordering.
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Kurzfassung

Das Doppelperowskit-Übergangsmetalloxid Ba2YIrO6 (Elektronenkonfigura-
tion 5d4) zeigt faszinierende magnetische Eigenschaften, die sich nicht durch
die einfachen Hund’schen Regeln erklären lassen. In diesem Material wer-
den die physikalischen Eigenschaften durch ein empfindliches Zusammenspiel
von Spin-Orbit-Kopplung und elektronischen Korrelationen unter einer star-
ken kubischen Kristallfeldaufspaltung bestimmt. Es gibt noch keinen wissen-
schaftlichen Konsens darüber, warum in diesem Material ein magnetischer
Zustand realisiert wird und ob für dieses Material eine weitreichende magne-
tische Ordnung vorliegt.

In dieser Arbeit wurden die elektronischen und magnetischen Eigenschaf-
ten von Ba2YIrO6 mit einer Kombination aus Dichtefunktionaltheorie (DFT)
und dynamischer Molekularfeld-Theorie (DMFT) untersucht. Die Berech-
nungen wurden sowohl für die paramagnetische Phase als auch für eine an-
tiferromagnetische Phase des Typs I (fcc) durchgeführt. In der paramagne-
tischen Phase wurde ein deutlicher Zusammenbruch des Jeff = 0 Zustandes
beobachtet. Dieser Effekt wird durch eine Kombination aus einer genügend
schwachen Spin-Orbit-Kopplung und einer ausreichend großen Bandbreite
ausgelöst, was zu einer Überlappung der Jeff = 1/2 und Jeff = 3/2 Orbitale
vor dem Mott-Übergang führt. Nach dem Mott-Übergang liegt das untere
Hubbard-Band des Jeff = 1/2 Orbitals unterhalb der Fermi-Energie, womit
ein magnetisches Moment vorhanden ist. In unseren Berechnungen für ei-
ne mögliche antiferromagnetische Phase wurde keine magnetische Ordnung
bis zu 100 K beobachtet. Der verwendete QMC-Solver schränkte die Untersu-
chung niedrigerer Temperaturen ein und es muss ein anderer Solver eingesetzt
werden, um ein überzeugendes Argument für oder gegen eine magnetische
Ordnung zu liefern.
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Chapter 1

Introduction

1.1 Strongly Correlated Materials

Strongly correlated materials are a fascinating topic in modern solid state
physics. In this class of materials, the electrons cannot be seen as non-
interacting any more, leading to interesting physical phenomena such as
Mott-Insulator transitions [1], charge- and spin-density wave physics [2] and
high Tc superconductivity [3]. As electron-electron interactions drive these
phenomena, it usually is not sufficient to describe the system in a simple
mean field approach (such as DFT) and one has to switch to more sophisti-
cated methods (e.g. DMFT) which include quantum many-body effects.

One vast playground to investigate these phenomena are transition-metals
and their oxides, with their strongly localized 3d, 4d and 5d electron orbitals.
For many of these TMOs a density-based approach in the context of DFT
results in a metallic behavior. However, upon introducing a Coulomb repul-
sion between the electrons in the form of a interaction-parameter U , the DOS
at the Fermi energy splits up into two Hubbard bands, rendering the system
insulating.

1.1.1 Strong correlations and SOC

For a long time 5d materials were considered weakly correlated, as their
spatially more extended orbitals would lead to a lower interaction parameter
U , pushing them out of the Mott-insulating region of U ≈ W (W being
the bandwidth) [4]. It was shown by Kim et al. [4], that including spin-
orbit coupling (SOC) for Sr2IrO4 (5d5) the t2g band is split into a fully filled
Jeff = 3/2 and a half-filled Jeff = 1/2 band. The Jeff = 1/2 band is then split
into two Hubbard bands, creating a Jeff = 1/2 Mott-insulator.

1



CHAPTER 1. INTRODUCTION

Taking the same approach for 5d4 systems, one would expect a non-
magnetic Jeff = 0 ground state with fully filled Jeff = 3/2 orbitals and empty
Jeff = 1/2 orbitals. While this non-magnetic state is realized in NaIrO3 [5,6,
7], we will see in section 1.2 that this is apparently not the case for Ba2YIrO6.
The cause of this shall be investigated in this thesis and will be discussed in
section 4.

CF Int. SOC

full d

dt2g

deg

Jeff 1/2

Jeff 3/2
J 3/2

J 5/2

full d

Figure 1.1 – Energy splittings of d-orbitals under spin-orbit coupling (SOC)
and crystal field (CF). For the material considered in this work, we find our-
selves in the intermediate region (Int.). [4]

1.2 Double perovskite Iridates - Ba2YIrO6

Soon after unexpected magnetic behaviour was first observed in Sr2YIrO6 [8],
research also focused on Ba2YIrO6 (BYIO) with its distortion-free crys-
tal structure (see Fig. 1.2). BYIO crystalizes in a cubic double perovskite
structue [5, 9] without any tilting of the oxygen octahedra and an electron
configuration of 5d4. This double perovskite structure with large Ir-Ir dis-
tances of 5.9 Å [9] and the corresponding small Ir-Ir exchange interaction
together with the increased SOC due to a strict cubic symmetry was thought
to lead to a non-magnetic ground state [10].

Surprisingly, different experimental [5,10,11] and theoretical [12,13] stud-
ies showed that BYIO exhibits an exotic magnetic ground state with Jeff 6= 0.
However, the explanations as why this happens are ambiguous. While Fuchs
et al. [14] attribute their observed magnetism solely on Ir4+ and Ir6+ defects
within non-magnetic Ir5+ sites, the other publications cited above claim an
observation of magnetism even for the Ir5+ ions (e.g. Dey et al. [5] observed

2



1.2. Double perovskite Iridates - Ba2YIrO6

magnetism even after annealing their sample under 700 bar oxygen at 500 ◦C
for 2 days).

Terzic et al. [11] laid out three possible explanations for the stabilization
of the magnetic moment in Ir5+: (1) Overlap of the Jeff = 1/2 and Jeff = 3/2
bands caused by an increase in bandwidth due to hopping. (2) Excitonic
magnetism [15,16]. (3) Band structure effects [8].

Pajskr et al. [12] suspect orbitally polarized and gapped bands rather
than excitons to be responsible for the magnetic ground state.

It is also unclear whether BYIO undergoes a phase transition into an
ordered state at low temperatures. While Terzic et al. [11] observed long-
range magnetic ordering below 1.7 K, Dey et al. [5] claim an absence of
long-range magnetic order down to 0.4 K.

Figure 1.2 – Double perovskite crystal structure of Ba2YIrO6.
In green the Ba atoms, grey the Y atoms, red the O atoms and yellow the Ir
atoms with their oxygen-octahedra are shown.

3
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Chapter 2

Theoretical foundations

2.1 Basics

In solid state physics, we are primarily interested in solving the Schroedinger
equation for atoms in a crystal lattice. This means, if we can diagonalize the
system’s Hamiltonian, we can find all the interesting physics of the system.

The non-relativistic Hamiltonian for a system consisting of nuclei (greek
indices and captial coordinates Rα, nuclear charges Zα) and electrons (latin
indices and small coordinates ri) can be formally written down as (h̄ = 1):

H = −1

2

∑
i

∇2
i −

1

2

∑
α

1

mα

∇2
α +

1

2

∑
ij,i6=j

1

|ri − rj|
+

+
1

2

∑
αβ,α 6=β

ZαZβ
|Rα −Rβ|

−
∑
iα

Zα
|ri −Rα|

(2.1)

However, equation (2.1) is impossible to solve for all real systems apart
from the Hydrogen atom. To tackle this problem, one usually starts by
taking the Born-Oppenheimer approximation, thus decoupling the movement
of electrons and nuclei. For the relevant energy scale in solid state physics,
we can neglect the dynamics of the nuclei and concentrate on the electrons
moving in the Coulomb potential created by the nuclei (the crystal potential
vc(r)):

HBO = −1

2

∑
i

∇2
i +

1

2

∑
ij,i6=j

1

|ri − rj|
−
∑
iα

Zα
|ri −Rα|︸ ︷︷ ︸∑
i vc(ri)

(2.2)

Still, the electron-electron interaction term (the second term in equa-
tion (2.2)) remains problematic. To avoid this problem, one option is to re-

5



CHAPTER 2. THEORETICAL FOUNDATIONS

Figure 2.1 – Perovskite crystal structure
In grey the transition metal ion, in red the oxygen octahedron, in blue the
other positive ions are shown.

place the many-body electron-electron interaction by an effective one-particle
potential in the scope of Density Functional Theory (DFT).

DFT will be introduced in section 2.2.1, in the following section 2.1.1
we will first look at crystal symmetry effects (symmetries in vc(r)) on the
resulting wave functions, and then in section 2.1.2 derive the relativistic spin-
orbit terms.

2.1.1 Crystal field splitting

As an atom is rotationally symmetric, all atomic electron wave functions
have to be rotationally invariant. Of course this is no longer valid when
considering electrons in a crystal. Depending on the crystal structure, the
symmetry will be lower, which can lead to splitting of originally degenerated
energy levels.

2.1.1.1 Crystal field splitting of d-orbitals in octahedral symmetry

In perovskite and double perovskite transition metal oxides, the (positivly
charged) transition metal ion sits inside an octahedron of surrounding (nega-
tive) oxygen atoms and inside a cubic cage of other positive ions (see Fig. 2.1).

We can model the Coulomb potential acting on the electrons of the tran-
sition metal ion as

vc(r) =
∑
i

qi
|Ri − r|

(2.3)

6



2.1. Basics

full d

dxy dxz dyz

dx2−y2 dz2

(t2g)

(eg)

Figure 2.2 – Crystal-field splitting of d orbitals under octahedral crystal field

The octahedral oxygen atoms (with charge qo) are located at (±a, 0, 0),
(0,±a, 0) and (0, 0,±a) (with a being half the lattice constant). Expanding
equation (2.3) around r = 0 leads in first order to [17]

voct(r) =
35qo
4a5

(x4 + y4 + z4 − 3

5
r4) (2.4)

Doing the same for the cubic cage of ions at (±a,±a,±a) leads to a
similar result

vcub(r) = −8

9

qion
qo
voct(r) (2.5)

However, qion/qo < 0 as the ionic cage is positivly charged. Thus, the
ionic cage has the same effect as the octahedral oxygen atoms surrounding
our transition metal ion.

The derivation of the actual form of the splitting can be found e.g. in [17].
As a deep dive into the required group theoretical basics for this derivation
would be too much for the scope of this work, we will just look at the well-
known result [17]:

Γd = e⊕ t2 (2.6)

Thus the d orbitals split up into a threefold degenerate t2g and a twofold
degenerate eg manifold. It can be further shown [17] that the eg orbitals
lie higher in energy, which makes sense as they point towards the negativly
charged oxygen atoms and thus should have a higher Coulomb repulsion. An
orbital diagram showing this behaviour can be found in Fig. 2.2.

2.1.1.2 Angular momentum and T-P equivalence

Taking the crystal-field splitting between the eg and t2g orbitals into consider-
ation, one can find an interesting effect on the angular momentum operators
of the d orbitals.

7



CHAPTER 2. THEORETICAL FOUNDATIONS

The angular momentum operators are defined as [18]

Lz |l,ml〉 = h̄ml |l,ml〉
L± |l,ml〉 = h̄

√
l(l + 1)−ml(ml ± 1) |l,ml ± 1〉 (2.7)

with L± = Lx ± iLy

With the convention h̄ = 1, this leads to the following matrix represen-
tations in the spherical basis for p (l = 1) and d (l = 2) orbitals:

Lp, sph
x =

1√
2

0 1 0
1 0 1
0 1 0

 Lp, sph
y =

1√
2

 0 i 0
−i 0 i
0 −i 0


Lp, sph
z =

−1 0 0
0 0 0
0 0 1

 (2.8)

Ld, sph
x =


0 1 0 0 0

1 0
√

3/2 0 0

0
√

3/2 0
√

3/2 0

0 0
√

3/2 0 1
0 0 0 1 0



Ld, sph
y = i


0 −1 0 0 0

1 0 −
√

3/2 0 0

0
√

3/2 0 −
√

3/2 0

0 0
√

3/2 0 −1
0 0 0 1 0



Ld, sph
z =


−2 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2



(2.9)

We will define a convention for basis transformations more rigorously in
section 3.2.2. For now we take for any matrix M (in basis A or B):

MB = (TA→B)MA(TA→B)† (2.10)

We then introduce a cubic basis for the d orbitals with the following

8



2.1. Basics

transformation matrix1:

T l=2
sph→cub =


0 0 1 0 0

1/
√

2 0 0 0 1/
√

2

−1/
√

2 0 0 0 1/
√

2

0 1/
√

2 0 −1/
√

2 0

0 1/
√

2 0 1/
√

2 0

 (2.11)

Transforming the spherical Ld matrices (2.9) to this cubic basis leads to
the Ld matrices in cubic basis (the horizontal and vertical lines separating
the eg and t2g blocks):

Ld, cub
x =


0 0 0 0

√
3

0 0 0 0 1
0 0 0 −1 0
0 0 −1 0 0√
3 1 0 0 0



Ld, cub
y = i


0 0 0 −

√
3 0

0 0 0 1 0
0 0 0 0 −1√
3 −1 0 0 0

0 0 1 0 0



Ld, cub
z =


0 0 0 0 0
0 0 2 0 0
0 2 0 0 0
0 0 0 0 −1
0 0 0 −1 0



(2.12)

Under strong crystal fields one can assume the eg and t2g blocks to be decou-
pled. As the eg block has no entries in the L matrices, the spin orbit coupling
L·S has no effect on these orbitals in this approximation (see section 2.1.2.2).

We can further look at the Lp matrices under a transformation to the
cubic basis2:

T l=1
sph→cub =

 0 1 0

1/
√

2 0 1/
√

2

−1/
√

2 0 1/
√

2

 (2.13)

1This is the convention used in Wien2k and dmftproj.
2Same as for the l = 2 cubic harmonics, there are many different ways to define these

transformations. Using this real valued transformation matrix leads to the T-P equivalence
for the real valued T l=2 (2.11) used by Wien2k.

9
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Transforming the Lp, sph from (2.8), we get:

Lp, cub
x =

0 1 0
1 0 0
0 0 0

 Lp, cub
y = i

 0 0 1
0 0 0
−1 0 0

 Lp, cub
z =

0 0 0
0 0 1
0 1 0


(2.14)

Comparing the matrices in (2.12) and (2.14), it can be seen that the part
of the Ld operator acting on the t2g block is equal to the negative Lp operator.
This is called the T-P equivalence, and is often written as

L(t2g) = −L(p) (2.15)

This means the t2g orbitals have an effective angular momentum of leff = 1
due to the quenching of the eg orbitals.

2.1.2 Spin-orbit coupling

The effect of the spin-orbit coupling has a relativistic origin, which we will
derive in section 2.1.2.1. However, even from a semi-classical picture of an
electron moving in a circular orbit around a positivly charged nucleus, an
almost correct term can be derived.

As the (semi-classical) electron moves in the electric field of the nucleus,
it experiences a magnetic field:

B = −(v×E)/c2 (2.16)

With the electron having an intrinsic magnetic moment3 µ = −e/me s, the
interaction with the magnetic field B leads to an energy shift ∆E:

∆E = −µ ·B = − e

mec2
s · (v×E) =

e

m2
ec

2
s · (E × p) (2.17)

Using the radial symmetry of the nucleus’ electric field E = −∇φ(r) = r
r
∂φ
∂r

equation (2.17) can be further transformed to:

∆E =
e

m2
ec

2
s ·
(
∂φ

∂r

1

r
r× p

)
=

eh̄

2m2
ec

2

1

r

∂φ

∂r
σ ·L (2.18)

Thus ∆E ∝ L ·S, the expected result for the spin-orbit coupling. In the
next section, we will see that the proportionality constant in equation (2.18)
only differs from the relativistic result by a factor of 1/2. This factor comes
from the lack of a full Lorentz transformation in this simple derivation [19].
However, it is still astonishing that this crude approximation yields such a
good result.

3This has to be introduced ad-hoc in this semi-classical approach.

10
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2.1.2.1 Relativistic origin

The following derivations follow mainly [19,20,21].

Relativistic Quantum Mechanics: As the spin-orbit coupling is a rel-
ativistic effect, we will first have to take a look at relativistic quantum me-
chanics.

As the Schroedinger equation ih̄∂tψ = −h̄2/2m ∇2ψ is of different order
in derivatives ∂t and ∂x it cannot be Lorentz invariant and thus cannot be a
relativistic wave equation.

By looking at the dispersion relation from Einstein’s special theory of
relativity

E2 = m2c4 + c2p2 (2.19)

Paul Dirac postulated the Dirac equation (1928) as the relativistic counter-
part to the Schroedinger equation:

ih̄
∂

∂t
ψ =

(
−ih̄c αk∂k + βmc2

)
ψ = Hψ (2.20)

It can be shown that α and β have to fulfill the following equations, for
the Dirac equation to fulfill Lorentz invariance [19]:

αiαj + αjαi = 2δij (2.21)

αiβ + βαi = 0 (2.22)

(αi)2 = β2 = 1 (2.23)

Thus, αi and β are not numbers but N × N matrices (they have to
anticommute) and the ’wave function’ ψ from equation (2.20) is a N -sized
column vector ψ = (ψ1 . . . ψN)T .

It can be further shown, that the smallest matrices fulfilling equation
(2.21)-(2.23) are of size 4 × 4. They can be represented as:

αk =

(
0 σk

σk 0

)
, β =

(
12×2 0

0 −12×2

)
(2.24)

with 12×2 being the 2 × 2 unity matrix and σk being the well-known
Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.25)

Introducing new Dirac matrices γ0 = β, γi = βαi, the Dirac equation
can be further brought into its covariant form:(

−iγµ∂µ +
mc

h̄

)
ψ = 0 (2.26)

11
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Fouldy-Wouthuysen transformation: In the weakly relativistic limit,
the 4-component spinor ψ can be decomposed into two parts

ψ =

(
ϕ

χ

)
(2.27)

It can be shown that ϕ/χ ∼ O(c/v), thus ϕ is called the ’large component’
and χ the ’small component’ of ψ. Our goal is now to find a transformation
that decouples the large and small component.

Without going too much into detail (the interested reader is best referred
to [19]), this so-called Fouldy-Wouthuysen transformation together with a
series expansion in 1/m leads to the following form of the Dirac equation for
electrons (large components) in an electromagnetic field (H = α · (p−eA)+
βm+ eφ):

i
∂

∂t
ϕ =

{
m+ eφ+

1

2m
(p− eA)2 − e

2m
σ ·B

− p4

8m3
− e

4m2
σ · [E × (p− eA)]− e

8m2
∇ ·E

}
ϕ (2.28)

The first line in equation (2.28) is exactly the Pauli equation4, which is
the result of the non relativistic expansion of the Dirac equation. The second
line in (2.28) are three relativistic correction terms, namely the mass term,
spin-orbit coupling and Darwin correction.

The spin-orbit term can be put into a more common form using the same
method as in going from equation (2.17) to (2.18). The three correction terms
then read:

H1 = −(p2)2

8m3
. . . relativistic mass correction (2.29)

H2 =
e

4m2

1

r

∂φ

∂r
σ ·L . . . spin-orbit coupling (2.30)

H3 = − e

8m2
∇2φ(x) . . .Darwin term (2.31)

For Hydrogen-like atoms (φ ∝ −Z/r) it is obvious that 1
r
∂φ
∂r
∝ Z/r3 and

thus it can be shown that the spin-orbit coupling is especially important for
heavier atoms (like Ir with Z = 77):

〈H2〉 ∝ Z
〈
1/r3

〉
∝ Z4/n3 (2.32)

4Plus the rest energy term mc2ϕ in natural units (c = 1).
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2.1. Basics

2.1.2.2 SOC in t2g orbitals

We now want to evaluate the L ·S term in the t2g subspace of the d-orbitals.
As shown in section 2.1.1, we can use the T-P equivalence (2.15). Thus,
starting from the Lp, cub operators from equation (2.14) and introducing spin-
operators S = h̄σ/2 (with σ being the Pauli matrices) we get (again h̄ = 1,
order of basis px↑, py↑, pz↑, px↓, py↓, pz↓,):

Lp,cub · S =
1

2


0 0 0 0 1 1
0 0 1 1 0 0
0 1 0 −1 0 0
0 1 −1 0 0 0
1 0 0 0 0 −1
1 0 0 0 −1 0

 (2.33)

When considering the t2g subspace, we must not forget the minus-sign
from the TP-equivalence. However, this just changes all the signs in ma-
trix (2.33). Diagonalizing the resulting matrix leads to the eigenvalues 1
(2-fold degenerate) and −1/2 (4-fold degenerate). The matrix of eigenvec-
tors is 

0 1/
√

3 0 1/
√

6 0 1/
√

2

−1/
√

3 0 2/
√

6 0 0 0

1/
√

3 0 1/
√

6 0 1/
√

2 0

1/
√

3 0 1/
√

6 0 −1/
√

2 0

0 −1/
√

3 0 2/
√

6 0 0

0 −1/
√

3 0 −1/
√

6 0 1/
√

2


(2.34)

This eigenbasis corresponds to the so-called effective j-basis, in which J2

and Jz are diagonal and thus good quantum numbers (J = L + S). The
same matrix can be calculated, when using the Clebsch-Gordan coefficients
for 1× 1

2
(l× s) together with our definition of the cubic harmonics for l = 1

(2.14).
It can also be seen in equation (2.34) that by rearranging the basis order,

the matrix actually decomposes into a block-diagonal form consisting of two
3×3 blocks (with mixed spin). It can be shown that this decomposition into
two blocks is also valid for the full d-shell [22]. This is used by TRIQS to
decompose the Green’s function into smaller blocks (see section 3.2.2.2).

2.1.2.3 LS and jj Coupling

For isolated atoms the Hund’s rules describe the arrangement of spins and
angular momenta in the ground state. Firstly, the total spin S =

∑
ms is

13



CHAPTER 2. THEORETICAL FOUNDATIONS

maximized, then the orbital angular momentum L =
∑
ml is minimized.

Thirdly, the total angular momentum J is chosen depending on the orbital’s
filling. For less than half-filling J = |L− S|, for more than half-filling J =
(L+ S).

One has to take care when using this last rule in conjunction with TP-
equivalence: As the third Hund’s rule comes from minimizing spin-orbit cou-
pling energies, the minus-sign in the TP-equivalence (2.15) flips the behaviour
of this rule: For less than half-filled t2g orbitals J = (L + S), for more than
half-filled t2g orbitals J = |L− S|.

However, Hund’s rules are only valid if JH � λ. In this regime it is
assumed that the spins of the single atoms si couple to a total spin S =

∑
i si

and the orbital angular momenta li to a total orbital angular momentum L =∑
i li. These momenta then couple to a total angular momentum J = L+S,

which is why this regime is commonly called LS coupling.
For larger SOC λ the individual momenta si and li are no longer good

quantum numbers, as the operators S and L no longer commute with the
Hamiltonian. In this regime the individual electron’s angular momenta ji
couple to a total angular momentum J =

∑
i ji, thus it is called jj coupling.

2.1.3 Ordered spin structures

2.1.3.1 Exchange Interaction

The ordering of spins in a system is a process driven by exchange interactions.
To see what this means, we will first focus on a simple system, consisting
of two electrons interacting with each other (neglecting spin-orbit coupling).
The Hamiltonian can thus be written as

H = H0(r1) +H0(r2) +
e2

|r1 − r2|
(2.35)

Using Slater-determinants as an ansatz, we come to the well known result
of a singlet state and a triply degenerate triplet state, with the corresponding
energies Es and Et [23]:

Es = E1 + E2 +K12 + J12 (2.36)

Et = E1 + E2 +K12 − J12 (2.37)

with the density-density energy K12 and the exchange energy J12 defined as:

K12 =

∫
dr1 dr2

e2

r12

|ϕ1(r1)|2|ϕ2(r2)|2 (2.38)

J12 =

∫
dr1 dr2ϕ

∗
1(r1)ϕ∗2(r2)

e2

r12

ϕ2(r1)ϕ1(r2) (2.39)
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2.1. Basics

Dirac showed [24] that the same eigenvalue problem is obtained when con-
sidering just spins interacting with each other. This leads to a Hamiltionian
of the form H = const− 1

4
Jσ1σ2. Extending the approach above to multiple

electrons on multiple atoms and introducing Wannier functions (to make the
wavefunctions orthogonal again) leads to the well known Heisenberg model
(an in-depth calculation can be found e.g. in [23]):

H = −1

4

∑
i 6=j

Jijσi · σj (2.40)

2.1.3.2 (Anti-) ferromagnetism of localized interacting moments

We are now looking at a system of localized moments driven by an external
magnetic field. The external field can be split into Fourier components and
we can look at the response to one single component:

H(r) = Hez cos qr (2.41)

With the Fourier transform of the Spin operators Si

S(q) =

∫
dre−iqrS(r) =

∑
i

e−iqRiSi (2.42)

the total Hamiltonian can be written as a sum of the two contributions
(2.40) and H · S:

H = −
∑
i 6=j

JijSiSj + gµBH
∑
i

Szi cos qRi =

= −
∑
q′

J(−q′)S(q′)S(−q′) +
1

2
gµBH[Sz(q) + Sz(−q)] (2.43)

with

J(−q′) =
1

N

∑
i 6=j

Jije
−iq′(Ri−Rj) (2.44)

Taking a mean-field approach in equation (2.43) is called Random-Phase
approximation (RPA). After some calculations (the full derivation can be
again found in [23]) it yields the system’s susceptibility and critical temper-
ature:

χRPA(q) =
C

T − J(q)CΩ/(gµB)2
(2.45)

Tc =
J(Q)CΩ

(gµB)2
(2.46)
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CHAPTER 2. THEORETICAL FOUNDATIONS

In equation (2.46) Q is the wave-vector which yields the maximal J(q).
As J(q) contains information about the crystal structure (see equation (2.44)),
different (anti-) ferromagnetic solutions are possible, depending on the prob-
lem at hand.

2.1.4 Green’s functions

Here just a brief overview of the broad field of Green’s functions relevant
for this thesis is given. For the derivation of the listed properties of these
functions, the interested reader is referred to literature (e.g. [25]).

We will limit ourselves to fermionic Green’s functions as they will be
applied to a system of electrons in the scope of this work.

Retarded Green’s function: Green’s functions are introduced in the con-
text of linear response theory as the correlation function between two (for
now arbitrary) operators. The Retarded Green’s function (in real time) for
a system of fermions is defined as:

Gr
AB(t) = 〈〈A(t), B(0)〉〉t := −iΘ(t) 〈{A(t), B(0)}〉 (2.47)

Imaginary time: When considering expectation values of the form

C = 〈A(t)B(t′)〉 =
1

Z
Tr
{
e−βHA(t)B(t′)

}
(2.48)

one runs into the problem of e−βH being real, while the time evolution op-
erator e−iHt is complex, preventing them from being treated in the same
manner. One tackles this problem by introducing the imaginary time τ = it
with the corresponding Matsubara Green’s function:

GAB(τ, τ ′) = −
〈
Tτ (A(τ)B†(τ ′))

〉
(2.49)

This imaginary time Green’s function (for τ ′ = 0) is defined on the interval
−β ≤ τ < β and is antiperiodic (for fermions), meaning GAB(τ + β) =
−GAB(τ). Thus, a Fourier transformation can be performed, leading to a
Green’s function defined on the discrete Matsubara frequencies ωn = (2n +
1)π/β:

GAB(iωn) =

∫ β

0

eiωnτGAB(τ) dτ (2.50)

It can be shown that GAB(iωn) and the Fourier transform Gr
AB(ω) of

Gr
AB(t) (2.47) are in fact two special cases of a Green’s function GAB(z)
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2.2. Band structure calculations

defined in the complex plane:

GAB(z = iωn) = GAB(iωn) (2.51)

GAB(z = ω + i0+) = Gr
AB(ω + i0+) (2.52)

It can be shown that G(z) is analytic in the upper half of the complex plane.
Thus it is possible to analytically continue the function from values on the
Matsubara axis down to the real axis (see section 4.1.3.5).

Hermitian Symmetry: In this paragraph, we will see an interesting sym-
metry property of Matsubara Green’s functions. Starting with the definition
of an imaginary-time Green’s function (2.49) we can prove:

GAB(τ) = −
〈
A(τ)B†(0)

〉
=

= −Tr
{
ρ e−τHAeτHB†

}
=

= −Tr
{
BeτHA†e−τHρ

}∗
=

= −Tr
{
ρ e−τHBeτHA†

}∗
= G∗BA(τ) (2.53)

Now, to go over to imaginary frequencies we take the Fourier transform
of GAB(τ):

GAB(iωn) =

∫
dτ GAB(τ)e−iωnτ =

=

∫
dτ G∗BA(τ)e−iωnτ =

=

[∫
dτ GBA(τ)eiωnτ

]∗
= G∗BA(−iωn) (2.54)

2.2 Band structure calculations

2.2.1 DFT

As mentioned in the beginning of section 2.1, the electron-electron interac-
tion term is still problematic in the Born-Oppenheimer Hamiltonian. As it
couples every electron with every other electron, one would have to consider a
many-particle wave function ψ(r1, r2, . . . rN), depending on the coordinates
of every electron in the system. For most real materials, the number of elec-
trons in the unit cell easily exceeds the critical Nmax ≈ O(10) for which a
many-particle approach can be handled [26].
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CHAPTER 2. THEORETICAL FOUNDATIONS

2.2.1.1 Hohenberg-Kohn theorems

The Hohenberg-Kohn theorems [27] justify the use of the electron density
n(r) instead of the many-particle wave function ψ(r1, r2, . . . rN) when cal-
culating ground state properties.

Electron density as base variable: The first Hohenberg-Kohn theorem
states that in a system of electrons in an external potential v(r), the ground-
state electron density n(r) uniquely identifies this potential (apart from an
additive constant) [27]. As the system’s Hamiltonian is dependent on v(r),
the electron density also defines the Hamiltonian and thus the ground state
wave function.

Variational principle: The ground state energy of a system can be calcu-
lated from the Rayleigh-Ritz variational principle, with Ψ̃ being a trial wave-
function with the corresponding density ñ(r):

E = minΨ̃

〈
Ψ̃
∣∣∣H∣∣∣Ψ̃〉 (2.55)

The second Hohenberg-Kohn theorem states, that the correct electron den-
sity n(r) minimizes equation (2.56) and returns the ground state energy
E0 [27].

E[n(r)] =

∫
v(r)n(r)dr + F [n(r)] (2.56)

F [n(r)] is an universal functional, independent on the number of particles
and the external potential. It contains the kinetic energy of the electrons as
well as the potential energy of the electron-electron interaction.

As the electron-electron repulsion through Coulomb interaction is known,
it can be separated out of F [n(r)] [27]:

F [n(r)] =
1

2

∫∫
n(r)n(r ′)

|r − r ′|
drdr ′ +G[n(r)] (2.57)

2.2.1.2 Kohn-Sham equations

In the Kohn-Sham equations one considers (in analogy to the Hartree equa-
tion) a set of non-interacting, independent particles in an effective ’Kohn-
Sham’ potential VKS(r) [28]. For those particles the - now non-interacting -
Schroedinger equation reads as follows:[

−1

2
∇2 + VKS(r)

]
ϕj(r) = εjϕj(r) (2.58)
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2.2. Band structure calculations

As a constraint, the Kohn-Sham potential VKS(r) has to be chosen in a
way that the ground state density resembles the ground state density of the
interacting system:

nKS(r) =
∑
j

|ϕj(r)|2 !
= n(r) (2.59)

For these non-interacting Kohn-Sham particles the energy can be simply
written as (T0[nKS(r)] being the kinetic energy):

EKS[nKS(r)] = T0[nKS(r)] +

∫
VKS(r)nKS(r)dr (2.60)

Looking at interacting electrons, we can now formally rewrite equations
(2.56) and (2.57) [28], leading to:

E[n(r)] =

∫
v(r)n(r)dr +

1

2

∫∫
n(r)n(r′)

|r − r′|
drdr′ + Exc[n(r)] + T0[n(r)]

(2.61)
In this equation, T0[n(r)] is again the kinetic energy of the non-interacting

system and Exc[n(r)] the so-called Exchange-Correlation energy, in which we
have put all unknown interaction terms of the system.

Comparing equations (2.60) and (2.61) under the constraint of equation
(2.59), one finds the following form of the Kohn-Sham potential:

VKS(r) = v(r) + VH(r) + Vxc(r) (2.62)

with VH being the Hartree potential and Vxc the Exchange-Correlation po-
tential:

Vxc(r) =
δExc[n

′(r)]

δn′(r)

∣∣∣∣
n(r)

(2.63)

As n(r) is in turn dependent on Vxc, one has to solve the Kohn-Sham equa-
tions iteratively in a self-consistent manner. A simple overview of this
DFT cycle is shown in Figure 2.3.

2.2.1.3 Exchange-Correlation potential

Until now, no approximation has been taken and DFT is an exact theory up
to this point. However, we have done this by just taking all unknown terms
and putting them inside Vxc(r). The exact analytic form of Vxc(r) (and thus
Eex) remains unknown and approximations have to be taken at this point to
make DFT usable for actual calculations.
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Initial n(r)

Calculate Vxc[n(r)]

Solve Kohn Sham eqns:[
−1

2
∇2 + VKS(r)

]
ϕj(r) = εjϕj(r)

Calculate new density:
n(r) =

∑
j |ϕj(r)|2

Converged?

Done

N

Y

Figure 2.3 – DFT loop

As the most important approximations in Exc are quasi-local [26], we can
look at it in the following form:

Exc[n(r)] =

∫
exc(r, [n(r̃)])n(r)dr (2.64)

In this general form, the energy density exc(r, [n(r̃)]) at the point r de-
pends on the electron density n(r̃) in the whole space. However, in real
systems exc primarily depends on the density n(r̃) at points r̃ near5 r.

Two classes of the most widespread Exchange-Correlation potentials are
the Local-Density approximation (LDA), where the energy is only depen-
dent on the density at the same point, and the GGA approximations (most
famously the PBE potential [29]), where also the gradient of the density is
taken into account.

ELDA
xc [n(r)] =

∫
exc[n(r)]n(r)dr (2.65)

EGGA
xc [n(r)] =

∫
exc[n(r),∇n(r)]n(r)dr (2.66)

One common further approximation is to replace the energy functional
exc[n(r)] by the energy density of the homogeneous electron gas eHEG

xc (n)

5’Near’ in the order of the Fermi wavelength or the Thomas-Fermi screening length [26].

20



2.2. Band structure calculations

which is not a functional anymore. Thus, the LDA-Exchange-Correlation en-
ergy can be written as:

ELDA
xc [n(r)] =

∫
eHEG
xc (n)n(r)dr (2.67)

2.2.2 DMFT

While DFT gives good results in comparison with experiments for many
applications in physics and chemistry, its (local) density-based approach fails
for strongly localized electrons (such as d- and f -shell electrons of transition
metals). For these strongly-correlated materials (see section 1.1), a different
approach has to be taken to take into account interactions which lead to
interesting many-body phenomena.

The dynamical mean-field theory (DMFT) [30] is one way to tackle this
problem by mapping the interacting lattice problem to a single-site effective
problem with less degrees of freedom [30]. Due to similarities with DMFT
(both being self-consistent mean-field theories), let’s first review the classical
mean-field theroy of the well known Ising-model.

2.2.2.1 Classical mean-field

Using classical MF theory, we try to solve the Ising Hamiltonian:

HIsing = −
∑
<ij>

JijSiSj − h
∑
i

Si (2.68)

We map this (interacting) Hamiltonian onto a non-interacting auxiliary
problem, with independent spins in an effective field heff:

Heff = −
∑
i

heff
i Si (2.69)

In this effective model, we can easily calculate the magnetization mMF

[31]:
mMF = tanh (βheff) (2.70)

We need to chose heff in a way so that the desired expectation values (the
magnetization in the case of the Ising model) in the effective model (2.70)
reproduces the values of the original model (mi = 〈Si〉). To do so, we have
to take an approximation by neglecting the fluctuation terms

(Si − 〈Si〉)(Sj − 〈Sj〉) = SiSj − Si 〈Sj〉 − Sj 〈Si〉+ 〈Si〉 〈Sj〉︸ ︷︷ ︸
neglectable

!
= 0 (2.71)
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which, after some simple calculations, leads to the known self-consistency
condition for ferromagnetic systems (z being the coordination number):

heff = Jzm− h (2.72)

mMF = tanh (βh+ zβJm) (2.73)

As mMF is dependent on m, which in turn is approximated by mMF , this
equation can be solved iteratively6. The resulting mean-field loop is shown in
Fig. 2.4 in a simplified manner. In actual calculations, such forward iterative
methods can lead to instabilities, which can be improved by mixing the results
from earlier iterations (damping).

Initial guess for mj

SC condition
heff =

∑
j Jijmj

m(n) ?
= m(n−1)

Solve eff. model
Heff = −heffS

Converged

N

Weiss field
heff

Y

mMF

Figure 2.4 – Simplified mean field loop for the Ising model

2.2.2.2 DMFT basics

Lattice- and Impurity model: Following the derivation in [31], we will
look at a single-band Hubbard model:

H = −
∑
ij,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ + ε0

∑
iσ

niσ (2.74)

6For the Ising model, equation (2.73) can be solved graphically. As this is not possible
in general, it will not be discussed here in detail.
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As mentioned above, we will map the lattice problem (2.74) onto an
Anderson-Impurity model of a single site coupled to a bath (see Fig. 2.5). In
the impurity model (2.75), new fermionic bath operators alσ are introduced
as additional degrees of freedom:

HAIM = Hatom +Hbath +Hcoupling (2.75)

Hatom = Unc↑n
c
↓ − µ(nc↑ + nc↓) (2.76)

Hbath =
∑
lσ

ε̃la
†
lσalσ (2.77)

Hcoupling =
∑
lσ

Vl(a
†
lσcσ + alσc

†
σ) (2.78)

BATH

Figure 2.5 – Mapping of a lattice problem onto an impurity problem

Our goal now is to find the bath energies ε̃l and the hopping amplitudes
Vl of the AIM (2.75) in a way so that the impurity’s Green’s function Gimp

resembles the local lattice Green’s function Gloc:

Gimp
!

= Gloc = Gii,lat (2.79)

Lattice and Impurity Green’s functions: Using an action-based for-
malism (Z =

∫
Dc†DceS), the effective action Seff of the AIM (bath degrees

of freedom integrated out) can be written as [31]:

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

c†σ(τ)G−1
0,imp(τ − τ ′)cσ(τ ′) + U

∫ β

0

dτn↑(τ)n↓(τ)

(2.80)
With G0,imp being the Weiss field of DMFT, defined as

G0,imp(iωn) = [iωn + µ− ε0 −∆(iωn)]−1 (2.81)
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and the hybridisation function ∆(iωn) containing the AIM parameters from
equation (2.75):

∆(iωn) =
∑
l

|Vl|2

iωn − ε̃l
(2.82)

For the lattice Green’s function, one starts from the usual definition of
an interacting Green’s function with the self-energy Σ(k, iωn):

Glat(k, iωn) = [iωn + µ− εk − Σ(k, iωn)]−1 (2.83)

2.2.2.3 DMFT loop

DMFT, as its name suggests, is a mean-field theory (the ’dynamic’ meaning
that the Weiss feld is a function of frequency). Looking at the analogies
between MF theroy and DMFT, it is obvious that our effective model will be
the AIM (2.75). The Weiss field is, as mentioned above, the non-interacting
impurity Green’s function G0,imp from equation (2.81).

Solving the AIM (for details on how to do that see section 2.2.2.5) with
a given G0,imp gives us the interacting impurity Green’s function Gimp as
well as the impurity self-energy Σimp (connected via the Dyson equation
G = [G−1

0 − Σ]−1). We now approximate the lattice self-energy Σlat by the
impurity self-energy:

Σlat(k, iωn) ≡ Σlat(iωn) ≈ Σimp(iωn) (2.84)

Taking the definition of an interacting Green’s function (2.83), we can
write the local part of the lattice Green’s function in terms of Σimp:

Gloc(iωn) := Gii,lat(iωn) =
∑
k

1

iωn + µ− εk − Σimp

!
= Gimp(iωn) (2.85)

In this equation, the
!

= on the right side is again our MF self-consistency con-
dition (2.79). This will become more obvious when we insert the definition
of the Weiss field (2.81) into (2.85):∑

k

1

∆(iωn) +G−1
imp(iωn)− εk

= Gimp(iωn) (2.86)

In analogy to equation (2.73) from classical mean-field we now have an ex-
pression where we ’just’ have to find the right ∆(iωn) that fulfills the equation
for our given εk from the original model. Again, this is done self-consistenty,
the resulting DMFT loop can be found in Fig. 2.6. Furthermore, Tab. 2.1
summarizes the similarities between MFT and DMFT outlined in this para-
graph.
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Initial guess for Σloc

SC condition
Gloc =

∑
k(iωn − εk + µ− Σloc)

−1

Gloc
?
= Gimp

Weiss field
Gimp

0 = (Σloc +G−1
loc)
−1

Solve AIM Σloc ≈ Σimp

Converged

N

Y

Gimp, Σimp

Σloc

Σloc

Gimp

Figure 2.6 – DMFT loop

2.2.2.4 Exact limits of DMFT

DMFT becomes exact in three limits. As the atomic limit (tij = 0) and
the non-interacting limit (U = 0) lie on the two different ends of possible
parameters, DMFT can be seen as an interpolation for the parameters in
between.

Non-interacting limit: In the non-interacting limit U = 0, the self-energy
becomes zero:

Σ(iωn) = 0 (2.87)

→ G0,imp(iωn) = Gimp(iωn) (2.88)

and equation (2.85) becomes trivial:

Gloc(iωn) =
∑
k

1

iωn + µ− εk
(2.89)

Atomic limit: In the atomic limit tij = 0 we are considering a model of
isolated atoms. Thus εk = 0 (no k-dependence) and Σij(iωn) = 0 (i 6= j)
becomes local.

With εk = 0 it can be seen from equation (2.86) that in that case the
hybridization also becomes zero ∆(iωn) = 0. Thus the bath completely
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2.2. Band structure calculations

decouples from the system (isolated atom) and the DMFT-approximation
becomes exact [31].

Infinite coordination: In the limit of infinite coordination number z →∞
DMFT, like classical mean field theory, becomes exact and the self-energy
Σ(iωn) becomes local. This is not trivial to show, the reader is best referred
to [31] and [33].

2.2.2.5 Impurity solvers

Now the question that remains is how to actually solve the impurity model.
Unfortunately, no analytical solution is known for the AIM, so one has to
rely on numerical methods. While methods such as iterative pertubation the-
ory (ITP), exact diagonalization and renomalization group methods do exist,
today’s state-of-the-art methods are in general quantum Monte-Carlo algo-
rithms [34].

Algorithms such as Hirsch-Fye [35] use a discretization of the (imaginary)
time interval into small slices ∆τ (Suzuki-Trotter decomposition) and then
applying a Hubbard-Stratonivich transformation to each slice [34, 35]. The
problem when considering (strongly) interacting systems and measuring their
Green’s functions lies within this discretization. As the Green’s function
rapidly goes to zero, as τ increases, discretization errors may become large
[34].

Continuous time quantum Monte-Carlo algorithms: CT-QMC meth-
ods use a partition function that does not need time discretization. Thus any
discretization errors can be avoided. To do so, one starts by splitting up the
Hamiltonian into two parts H = Ha + Hb. One then writes the partition
function with respect to Ha and expands it in terms of Hb [34]:

Z = Tr

[
Tτe

−βHa exp

{
−
∫ β

0

dτHb(τ)

}]
=

=
∑
k

(−1)k
∫ β

0

dτ1· · ·
∫ β

τk−1

dτk Tr
[
e−βHaHb(τk)Hb(τk−1) . . . Hb(τ1)

]
(2.90)

As the splitting in Ha and Hb is arbitrary, different expansions are pos-
sible (and implemented in various codes). For the scope of this work, a
hybridization-expansion based solver was used (the actual solver will be intro-
duced in more detail in section 3.1.3.2). This means Hb = HHyb (≡ Hcoupling

from eqn. (2.75)), meaning the expansion from equation (2.90) is taken in
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the hybridization. This leads to the following expression for the partition
function, which will be sampled using QMC [36]:

Z =
∑
k

∫ k∏
i=1

dτi dτi′
∑
αjαj′

w(k, {αj, α′j, τj, τ ′j}) (2.91)

With Monte-Carlo weights w(k, {αj, α′j, τj, τ ′j}) defined as

w(k, {αj, α′j, τj, τ ′j}) =

det
1≤i,j≤k

[∆αi,α′j
(τi − τ ′j)] ∗ Tr

[
T e−βHloc

k∏
i=1

c†αi(τi)cα′i(τ
′
i)

]
(2.92)

Sign problem: As with all fermionic QMC calculation, the sign problem
can be a limiting factor. To see where this sign problem comes from, we will
follow the derivation from [37]. We start by looking at the expectation value
of an arbitrary physical observable O:

〈O〉 =

∑
xO(x)ρ(x)∑

x ρ(x)
(2.93)

If ρ(x) is positive definite, it can be associated with a probability and the
r.h.s. of equation (2.93) can be Monte-Carlo sampled [37]. However in
fermionic systems negative signs can appear due to the Pauli principle (when
two fermions are exchanged the configuration picks up a negative sign [38]).

One usually tackles this problem by splitting up ρ(x) into its absolute
value and a sign function S(x) = sign ρ(x), allowing Monte-Carlo sampling
in the now positive definite distribution |ρ(x)| (expectation values in this
distribution are marked with a prime):

〈O〉 =

∑
xO(x)|ρ(x)|S(x)∑

x |ρ(x)|S(x)
∗
∑

x |ρ(x)|∑
x |ρ(x)|

=
〈OS〉′

〈S〉′
(2.94)

However, if 〈S〉′ becomes too small, small (statistical) fluctuations in 〈S〉′
can lead to large fluctuations in 〈O〉, rendering exact calculations impos-
sible [37]. It can further be shown [38, 39] that the average sign goes like
〈S〉′ = exp{−βV∆f}, meaning the average sign quickly goes to zero for in-
creasing problem size (V ) and smaller temperature (1/β). This poses a limit
for the applicability of QMC algorithms and is a yet unsolved problem.
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2.2. Band structure calculations

2.2.3 DFT+DMFT

Our goal now is to combine well-established DFT calculations with DMFT
for the interactions introduced by (for example) the Hubbard U -term. The
motivation behind this DFT+DMFT approach is, as mentioned in the in-
troduction and in section 2.2.1, that for transition metals and other strongly
correlated materials DFT does not correctly describe the Mott-Insulator tran-
sition.

Note that in literature this approach is often also called ’LDA+DMFT’,
however that does not mean it is strictly limited to LDA-based exchange-
correlation potentials and can also be used with GGA potentials.

2.2.3.1 From Bloch states to Wannier states

From our DFT calculation, we get the Kohn-Sham energies and wave-functions
(see also equation (2.58), here k is the wave-vector in the first Brillouin-zone,
σ the spin, ν the band index):

HKS |ϕσkν〉 = εσkν |ϕσkν〉 (2.95)

The basis spanned by all the |ϕσkν〉 is referred to as the Bloch basis. In
this basis we have delocalized electron bands and the basis spans the whole
Hilbert space. The exact form of the basis functions is dependent on the
used DFT code package. For details on the LAPW basis from Wien2k and
its projection with dmftproj see sections 3.1.1 and 3.1.2 respectively.

Regardless of the used Bloch basis, for DMFT calculations we need to go
over to a basis of localized Wannier-orbitals |χασlm〉, with α being the atom in-
dex, σ the spin and (l,m) the orbital indices. As the l quantum-number is
a static parameter of the problem at hand (for d-orbitals l = 2), it will be
ommited in the orbitals’ names. These Wannier-orbitals |χασm 〉 span the cor-
related subspace C of the Hilbert space. We can formally define a projection
operator P Cα onto this subspace [40]:

P Cα =
∑
|χασm 〉∈C

|χασm 〉 〈χασm | (2.96)

However, as C is just a subspace of the full Hilbert space, the sum in equa-
tion (2.96) is truncated at a certain point. One thus has to orthonormalize
the resulting projectors.

29



CHAPTER 2. THEORETICAL FOUNDATIONS

2.2.3.2 Projection of the Green’s function

In the Bloch basis we can write down the Green’s function as (εσkν being the
Kohn-Sham energies from equation (2.95)):

Gσ
νν′(k, iωn) = [(iωn + µ− εσkν)δνν′ − Σσ

νν′(k, iωn)]−1 (2.97)

Coming from the (non-interacting) DFT calculation, Σσ
νν′(k, iωn) is of course

zero in the first step. To obtain the local Green’s function we employ the
projection defined in equation (2.96) and sum over the whole Brillouin zone
[41]:

Gασ
loc,mm′(iωn) =

∑
k,νν′

Pασ
m,ν(k)Gσ

νν′(k, iωn)[Pασ
m,ν(k)]∗ (2.98)

with Pασ
m,ν(k) being the matrix elements of the projectors from equation (2.96)

when multiplied with the Bloch basis-functions:

Pασ
m,ν(k) = 〈χασm |ϕσkν〉 (2.99)

With equation (2.98) we have a way to calculate the local Green’s function
from our DFT calculation. This will be the starting point of our DMFT
calculation. However, to close the DMFT loop, we will have to introduce the
AIM self energy back into equation (2.97).

2.2.3.3 Self energy and double counting

The process of transforming the impurity self-energy Σασ
imp,mm′(iωn) back into

Bloch-basis Σσ
νν′(k, iωn) is called upfolding. Using the projectors from equa-

tion (2.98) in the ’other direction’ yields:

Σσ
νν′(k, iωn) =

∑
α,mm′

[Pασ
m,ν(k)]∗Σ

′ασ
mm′(iωn)Pασ

m,ν(k) (2.100)

With Σ
′ασ
mm′(iωn) being the double-counting corrected self-energy:

Σ
′ασ
mm′(iωn) = Σασ

imp,mm′(iωn)− ΣDC,mm′ (2.101)

This correction has to be taken, as some interaction effects are already
accounted for in DFT (in form of the exchange-correlation potential) [42].
However, there is no analytic solution of how to exactly calculate this double-
counting correction, but there are different approaches how to approximate
it - three of which are implemented in the TRIQS/dfttools [43] package and
shall be introduced briefly here:
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2.2. Band structure calculations

Fully localized limit (FLL): The fully localized limit method [44] is
based on the idea that LDA yields correct results for integer occupation
numbers of orbitals (nmσ = 0 or 1) [45]. This leads to the following formula
for the double-counting self-energy:

[ΣFLL]σmm′ = δmm′

[
U · (Nimp −

1

2
)− J · (Nσ

imp −
1

2
)

]
(2.102)

with U and J being the Coulomb interaction and Hund’s coupling, and N
(σ)
imp

the (spin-resolved) average occupancy of the correlated site (impurity).

Around mean field (AMF): The around mean field method [46] is based
on the opposite idea: correlation effects are accounted for in LDA, but only
in an orbitally averaged manner [45]. The corresponding self-energy can be

written (using Ñσ
imp = Nσ

imp/#dim) as:

[ΣAMF]σmm′ = δmm′
[
U · (Nimp − Ñσ

imp)− J · (Nσ
imp − Ñσ

imp)
]

(2.103)

Held’s formula: Held’s convention [47] is implemented in TRIQS/dfttools
as a mean-field formula for Kanamori-Hamiltonians [43]. It can be written
as [40]:

[ΣHeld]σmm′ = δmm′(U − 2J)(Nimp − 1) (2.104)
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Chapter 3

Implementation Details

3.1 Used code packages

Here the various code packages used in this work are briefly introduced. The
calculations were run partly on computers of the Institute of Theoretical and
Computational Physics (ITP) at the TU Graz and partly on the Vienna Sci-
entific Cluster (VSC).

3.1.1 Wien2k

The DFT calculations were performed using Wien2k [48]. It features a fully
linearized augmented plane wave (LAPW) basis set, splitting up the space
into so called muffin-tin spheres SαMT around the atoms (atomic indices α,
the radii of the spheres are set during the initialization) and a remaining
interstitial region I.

Inside the muffin-tin spheres, the wave functions are expanded in radial
functions times spherical harmonics around the nucleus, in the interstitial
region plane waves are used. This means in the simplest case the basis can
be written as (omitting spin indices):

φkn(r) =

{
1√
ω
eiknr r ∈ I∑
l,m [Almul(r, El) +Blmu̇(r, El)]Ylm(r̂α) r ∈ SαMT

(3.1)

In this equation, the u(r, E) are the solutions for the radial Schroedinger
equation for the energy E. Other possible basis sets are added local orbitals
(LO) for semicore bands, or APW(+lo). Regardless of the choice of basis,
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the wave functions can always be expressed as (now with spin explicit) [41]:

ψσk,ν(r) =


1√
ω

∑
|K|≤Kmax

cσKν(k)ei(k+K)r r ∈ I∑
lm[Aναlmu

ασ
l (rα, Eα

1l) +Bνα
lm u̇

ασ
l (rα, Eα

1l)+

+Cνα
lmu

ασ
l (rα, Eα

2l)]Ylm(r̂α) r ∈ SαMT

(3.2)

3.1.1.1 SOC in Wien2k

Wien2k includes the relativistic terms differently for core and valence states.
For the (fully occupied) core states a full relativistic treatment is possible.
The valence states are first calculated in the scalar relativistic approximation,
meaning that the SOC is ignored - making l and s good quantum numbers.

The spin-orbit coupling is then introduced using second variational treat-
ment. For valence electrons inside the muffin-tin spheres, this means [49]:

H1 |ψ〉 = ε |ψ〉 (lapw1) (3.3)

(H1 +Hso) |Ψ〉 = ε |Ψ〉 (lapwso) (3.4)

Where the second equation is then expanded in the eigenbasis of the first
equation (spin implicitly in the index i):

N∑
i

(δijεj + 〈ψj|Hso|ψi〉) 〈ψi|Ψ〉 = ε 〈ψj|Ψ〉 (3.5)

The number N is usually much smaller than the size of the original basis
size, resulting in a smaller eigenvalue problem for Hso [50].

3.1.2 dmftproj

The projection onto the localized Wannier orbitals is done using dmftproj [41].
Its core functionality was already introduced in section 2.2.3.

For the calculations in the scope of this work, the cubic basis option
was chosen. Furthermore it was necessary to perform the DFT calculation
spin-polarized, as dmftproj does not support spin-orbit coupled calculations
without spin-polarization (the calculation was performed spin-polarized but
with fixed zero magnetic moment - all polarization effects are the accounted
for in DMFT).

3.1.3 TRIQS

The DMFT calculations as well as the analysis were performed in TRIQS
(Toolbox for research on interacting quantum systems) [51].
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TRIQS offers an easy way to manipulate and store matrix-valued Green’s
functions and put them together into block Green’s functions for block-
diagonal problems. It also offers methods for second quantization operators,
Hamiltonians and Monte-Carlo calculations.

For an in-depth introduction to TRIQS, one is best referred to its docu-
mentation 1, in section 3.2 an overview of the necessary functionalities used
in this work is presented.

3.1.3.1 DFTTools

The DFTTools package [43] offers functionality for DFT-based material cal-
culations in TRIQS. It allows to generate Green’s functions out of the DFT data
projected by dmftproj by performing the k-sum from equation (2.98) and has
methods implemented to deal with double counting corrections and the up-
folded self energy (see section 2.2.3.3).

3.1.3.2 CTHYB Solver

To solve the impurity model in the DMFT loop, a continous time hybridisation-
expansion Monte-Carlo solver (CTHYB) [36] is used. Apart from doing the
Monte-Carlo calculation in the hybridisation expansion, the CTHYB solver
also tries to partition the Hilbert space by finding symmetries, thus minimiz-
ing the size of the matrices being multiplied [36].

3.1.3.3 MaxEnt

For the analytic continuation of the imaginary-frequency Green’s function
down to the real axis (see section 4.1.3.5), a MaxEnt-based algorithm [52]
was used. As no off-diagonal elements had to be considered, the TauMaxEnt

class from [52] could be used.

1https://triqs.github.io/triqs/2.1.x/reference.html, Accessed 26.2.2019
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3.2 DMFT in TRIQS

In this section a brief overview of the computational tools used during this
work is given, focusing on the technical aspects and problems one might
encounter when running similar calculations.

All calculations below were performed using TRIQS version 1.4 [51] and
dfttools version 1.4 [43].

3.2.1 From dmftproj to TRIQS

After generating the almblm files in Wien2k (x lapw2 −alm) dmftproj is called
to generate the ctqmcout, symqmc, parproj, sympar and oubwin files. From
these files, the HDF-archive is generated, using2:

import p y t r i q s . a p p l i c a t i o n s . d f t . c onve r t e r s . w ien2k converte r as
↪→ wico

conv = wico . Wien2kConverter ( f i l ename = f i lename , hd f f i l ename=
↪→ hd f f i l ename )

conv . c o n v e r t d f t i n p u t ( )

Listing 3.1 – Generation of HDF archive

Now all the information needed for the DMFT calculation is stored in
this one HDF-file. One way to check whether the projection was successful
is to plot the DOS in the Wannier basis. This is best done in a separate
subdirectory (as it generates lots of files) and is done by:

from p y t r i q s . a p p l i c a t i o n s . d f t import SumkDFTTools

SK = SumkDFTTools ( ’MY HDF ARCHIVE. h5 ’ )

# mesh in eV
# broadening ( a d d i t i o n a l Lorenz broadening ) , approx . 2∗

↪→ deltaOmega
SK. do s wann i e r ba s i s ( mesh=(−2 ,5 ,200) , broadening =0.07 ,

↪→ with Sigma = False , with dc = False )

Listing 3.2 – Calculating the DOS in Wannier basis

The resulting dos wann ud projX Y Z.dat files (X being the number of
correlated shell, Y,Z the orbital indices) can then be plotted to show the
DOS3.

2Also there exists a Python-script from Gernot Kraberger named w2kconv, capable of
doing this plus other things (e.g. conversion for band calculations).

3This is best done using the plot cid grid script, which gives images like Fig. 4.4.
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3.2.2 Basis transformations

As there are different ways to define basis transformations and the corre-
sponding transformation matrices (for example where they are daggered),
this paragraph introduces the conventions used in this thesis.

We define a unitary transformation matrix TA→B (which we, for now,
will just call T for simplicity) going from basis A to basis B such that a
Green’s function transforms like 4

GB = TGAT † (3.6)

For second quantization creation and anihilation operators (a ∈ A and
b ∈ B) this means:

bi =
∑

j
Tijaj ai =

∑
j
T ∗jibj

b†i =
∑

j
T ∗ija

†
j a†i =

∑
j
Tjib

†
j

For the transformation of a two-particle operator (such as the interaction
part of the Hamiltonian) one starts from the definition:

Ô =
∑
ijkl

UAijkla
†
ia
†
jalak (3.7)

Transforming to the B basis one finds the transformation of the U tensor:

Ô =
∑
mnop

∑
ijkl

TmiTnjU
A
ijklT

∗
plT
∗
ok︸ ︷︷ ︸

=:UBmnop

b†mb
†
nbpbo (3.8)

3.2.2.1 Cubic basis

Our starting point for the DMFT calculation in TRIQS are the Wannier-
projected Green’s functions created by dmftproj. Thus our initial basis is set
in .indmftpr file. For the scope of this work, the option cubic was chosen,
so our starting basis is further on referred to as cubic basis. However, it is
important to know that the definition of this basis follows a convention, such

4Of course T † ≡ T †
A→B = TB→A
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that:

dz2 = Y 0
2

dx2−y2 =
1√
2

(Y −2
2 + Y 2

2 )

dxy =
1√
2

(Y 2
2 − Y −2

2 )

dxz =
1√
2

(Y −1
2 − Y 1

2 )

dyz =
1√
2

(Y 1
2 + Y −1

2 )

Note that unlike other common definitions, all of the basis functions are
real valued, leading to a real valued transformation matrix T (from spherical
to cubic)5:

Tsph→cub =


0 0 1 0 0

1/
√

2 0 0 0 1/
√

2

−1/
√

2 0 0 0 1/
√

2

0 1/
√

2 0 −1/
√

2 0

0 1/
√

2 0 1/
√

2 0

 (3.9)

It is also important to note that the only difference between the dx2−y2
and dxy basis function is a minus sign (ergo a phase factor). Therefore, after
projecting using dmftproj, one should check which basis function represents
the t2g orbitals.

3.2.2.2 Cubic basis with spin

In the presence of spin-orbit coupling and thus the removal of spin degeneracy,
one has to consider ten basis functions with spin explicitely:

d↑z2 , d
↑
x2−y2 , d

↑
xy, d

↑
xz, d

↑
yz and d↓z2 , d

↓
x2−y2 , d

↓
xy, d

↓
xz, d

↓
yz

However, one can show (see section 2.1.2.2 and [22]) that under L ·S cou-
pling those ten basis functions decouple into two 5×5 blocks again (but now
with mixed spin):

d↑z2 , d
↑
x2−y2 , d

↑
xy, d

↓
xz, d

↓
yz︸ ︷︷ ︸

=:ud 0

and d↓z2 , d
↓
x2−y2 , d

↓
xy, d

↑
xz, d

↑
yz︸ ︷︷ ︸

=:ud 1

5This can be found in the HDF archive under ar[’dft input’][’T’][# of corr

shell]
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SumkDFT can automatically find these blocks and sets the block structure
accordingly:

SK = SumkDFT( m y hd f f i l e , u s e d f t b l o c k s = True ) # e i t h e r with
↪→ u s e d f t b l o c k s

SK. a n a l y s e b l o c k s t r u c t u r e ( ) # or with a n a l y s e b l o c k s t r u c t u r e

Listing 3.3 – Finding the block structure in SumkDFT

3.2.2.3 Reduced cubic basis

When the eg orbitals lie significantly above the Fermi energy, one can take
the approximation of doing the DMFT calculation using only the t2g orbitals.

This can be done by changing the sumk to solver mapping in SumkDFT (thus
not affecting any data in the HDF archive):

SK = SumkDFT( m y h d f f i l e )
i n t e r e s t i n g i n d i c e s n o = [ 2 , 3 , 4 , 7 , 8 , 9 ] # i n d i c e s o f t2g o r b i t a l s

SK. b l o c k s t r u c t u r e . p i c k g f s t r u c t s u m k ( [ { ’ ud ’ :
↪→ i n t e r e s t i n g i n d i c e s n o } ] )

Listing 3.4 – Picking only t2g orbitals in SumkDFT

Note however that this is of course not a unitary transformation. This
will become especially important later on, when transforming operators for
observables (see section 3.2.2.5).

3.2.2.4 Diagonal basis

As stated in section 2.2.2.5, the sign problem can be a limiting factor in
QMC calculations. However, as the average value of the sign is no physical
expectation value, it does not have to be invariant under a basis transforma-
tion. This can be exploited if one can find a basis in which the average sign
is maximized [22].

One good guess for such a basis is the eigenbasis of the problem’s local
Hamiltonian - which will be called diagonal basis on the following pages. To
find this basis, the local Hamiltonian is diagonalized prior to the first DMFT
iteration and the transformation matrix is stored in the HDF file.

Gernot Kraberger has written a python module called matrix dict with
which the diagonalization of Hloc and, further on, the transformation of
Green’s functions can be implemented very easily:
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from mat r i x d i c t import ∗

Hloc = e f f a t o m i c l e v e l s s o l v e r ( i n v e r s e ( f i r s t S i g m a c u b +
↪→ i n v e r s e ( f i r s t G l o c ) ) ) # e x t r a c t i n g non in t e r a c t i ng Hloc
↪→ from G0

e ,V = Hloc . d i a g o n a l i z e ( )
V f u l l = V. t o f u l l m a t r i x ( g f s cub . sumk to so lve r [ 0 ] )

Listing 3.5 – Diagonalizing Hloc

3.2.2.5 Transformations in TRIQS

Transformation of the interaction tensor: With all transformation
matrices defined, the question arises of how to actually transform Green’s
functions and other objects in TRIQS.

Starting with the interaction tensor Uijkl for two-particle operators, TRIQS
offers the function transform U matrix(U matrix, T) (found in pytriqs .operators.

↪→ util ). However, the implementation of this function6 differs from our
chosen convention in equation (3.8). To be consistent with our definitions,
we have to call this method with the conjugated transformation matrix.

from p y t r i q s . ope ra to r s . u t i l import ∗

# Generate i n t e r a c t i o n tenso r in s p h e r i c a l b a s i s
U sph = U matrix ( l =2, U int=U, J hund=J ) # 5x5
# Blow up to two sp in s
U sph = np . kron (np . reshape (np . eye (2 ) , ( 1 , 2 , 1 , 2 ) ) , np . kron (np .

↪→ reshape (np . eye (2 ) , ( 2 , 1 , 2 , 1 ) ) , U sph ) ) # 10x10

U cub = transform U matr ix ( U sph , SK.T [ 0 ] . conjugate ( ) ) # c a l l
↪→ with T. conjugate ( )

U dia = transform U matr ix ( U cub , V f u l l . con jugate ( ) )

Listing 3.6 – Transformation of U matrix

Transformation of Green’s functions: When transforming Green’s func-
tions two things have to be considered: The transformation itself, defined by
the transformation matrix T , but also a possible change in the Green’s func-
tion’s structure. This might be the case when one wants to approximate the
Green’s function as diagonal7 (turning the two 5 × 5 blocks into ten 1 × 1
blocks, removing all off-diagonal elements) in the diagonal basis.

6np.einsum(”ij,kl ,jlmo,mn,op”,np.conj(T),np.conj(T),U matrix,np.transpose(T),np.
↪→ transpose(T))

7This can be easily done with SK.block structure.approximate as diagonal()
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Gernot Kraberger’s matrix dict module offers the method rotate and convert gf

↪→ that can do both in one step:

from mat r i x d i c t import ∗

S . G iw << r o t a t e a n d c o n v e r t g f ( Gloc , T, g f s cub , g f s d i a g , beta
↪→ =beta )

Listing 3.7 – Transformation of Green’s functions

Transformation of operators: For the transformation of second quan-
tization operators there is (as of TRIQS 1.4) no preexisting method. The
author of this thesis has implemented such a method (see Listing 3.9) and it
will be commited to the TRIQS repository soon.

With this method, operators can be transformed like this:

# fops d e f i n e the order o f e lements regard ing rows and columns
↪→ o f the T matrix

fops sph = [ [ ’UP ’ , ’ sp−2 ’ ] , . . . , [ ’DN’ , ’ sp+2 ’ ] ]
f o p s d i a = [ [ ’ ud 0 ’ , 0 ] , . . . , [ ’ ud 9 ’ , 0 ] ]

L2 d iagona l = t rans f o rm opera to r ( L2 sphe r i ca l , T, fops sph ,
↪→ f o p s d i a )

Listing 3.8 – Transformation of operators

3.2.3 ”Hermitian Symmetrization” of Sigma

As introduced in section 2.1.4, equation (2.54), Matsubara Green’s functions
obey the symmetry relation

Gij(iω) = G∗ji(−iω) (3.10)

However, this is not accounted for in the result of the CTHYB solver8.
One can manually symmetrize the calculated Green’s functions to avoid nu-
merical errors. This turned out to be crucial, as otherwise small deviations
in Sigma exaggerated themselves and no convergence could be reached.

f o r block , g f in S . Sigma iw :
g f . data [ : , : , : ] = ( g f . data [ : , : , : ] + g f . data [ : : − 1 ] . t ranspose
↪→ ( [ 0 , 2 , 1 ] ) . con jugate ( ) ) /2

Listing 3.10 – ”Hermitian Symmetrization” of Sigma

8In fact it has been implemented in the latest version (2.1) of TRIQS in form of the
fit hermitian tail () function at least for the tail of the Green’s function.
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r ”””
Transform an operator from one b a s i s to another .

. . math : : \hat O’ = T \hat O Tˆ\ dagger

Parameters
−−−−−−−−−−
O in : Operator

Operator to be transformed
T : r e a l /complex numpy array

Unitary t rans fo rmat ion matrix ( accord ing to O’ = T O Tˆ\
↪→ dagger

Order o f rows and columns accord ing to fops f rom and
↪→ f o p s t o
fops f rom : L i s t o f l i s t s

Fundamental operator s e t in the o r i g i n a l
↪→ operator , e . g . [ [ ’ up ’ , 0 ] , [ ’ up ’ , 1 ] , [ ’ dn ’ , 0 ] , [ ’ dn ’ , 1 ] ]
f o p s t o : L i s t o f l i s t s

Fundamental operator s e t in the transformed
↪→ operator

Returns
−−−−−−−
O out : Operator

The transformed operator
”””

de f t rans f o rm opera to r ( O in , T, fops from , f o p s t o ) :
O out = Operator (0 )

f o r monomial in O in :
c o e f f i c i e n t = monomial [−1]
new monomial = Operator (1 )

f o r s i n g l e o p e r a t o r in monomial [ 0 ] :
n e w s i n g l e o p e r a t o r = Operator (0 )
daggered = s i n g l e o p e r a t o r [ 0 ]
i = fops f rom . index ( s i n g l e o p e r a t o r [ 1 ] )
f o r j in range ( l en ( f o p s t o ) ) :

n e w s i n g l e o p e r a t o r += (T[ j , i ] ∗ c dag (∗ f o p s t o
↪→ [ j ] ) ) i f daggered e l s e (T[ j , i ] . con jugate ( ) ∗ c (∗ f o p s t o [ j
↪→ ] ) )

new monomial ∗= n e w s i n g l e o p e r a t o r

O out += new monomial ∗ c o e f f i c i e n t
re turn O out

Listing 3.9 – transform operator() method
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3.2.4 DMFT Loop

Having defined all basis transformations, the DMFT loop itself is just going
back and forth between the cubic basis (for SumkDFT) and the diagonal basis
(for the solver). Instead of checking convergence after every loop, our calcu-
lations are set such that they run a pre-defined number of iterations, after
which convergence should be checked manually. The corresponding flowchart
can be found in Fig. 3.1.

Start

Initialize Σ with DC

Diagonalize Hloc

Calculate Hint

SumkDFT

S.G0 iw << inverse

↪→ (S.Sigma iw +

↪→ inverse(Gloc))

Solver

DC

Gloc

Gimp

Σimp

Gimp

Σloc ≈ Σimp

Vdiag

Hint

Figure 3.1 – Flowchart of the DMFT loop in TRIQS.
The small circles indicate basis transformations, the darker blue color indicates
the diagonal basis.
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3.2.5 Observables and expectation values

The expectation value of an operator can be calculated from the density
matrix ρ using the known relation〈

Ô
〉

= Tr
{
ρ̂ · Ô

}
(3.11)

The many-body density matrix of the systen can be measured during a
DMFT loop by the CTHYB solver. As the solver searches for symmetries to
reduce Hilbert space dimension, the density matrix falls apart into various
blocks of different size (the density matrix object is a list of length #Symmetries

with list entries being n×n arrays, the density matrices of the single blocks).
The structure of the blocks is stored in a h loc diagonalization object that is
also created by the solver. Equation (3.11) can then be evaluated using
trace rho op(density matrix, O, h loc diag).

from p y t r i q s . a p p l i c a t i o n s . i m p u r i t y s o l v e r s . cthyb import ∗

p [ ” measure dens i ty matr ix ” ] = True
p [ ” use norm as weight ” ] = True

S = So lve r ( . . . )
S . s o l v e ( h i n t = H, ∗∗p)

rho = S . dens i ty mat r ix
h l o c = S . h l o c d i a g o n a l i z a t i o n

expval = t r a c e r h o o p ( rho , my operator , h l o c )

Listing 3.11 – Measurement of density matrix and exp. values in CTHYB

3.2.5.1 Orbital angular momentum

TRIQS offers methods to implement the orbital angular momentum oper-
ators introduced in equation (2.7). For the general usage of the methods
L op( . . . ) and L2 op( . . . ) one is best referred to the TRIQS documenta-
tion. In this paragraph some special considerations when using these meth-
ods in the scope of the reduced cubic basis (introduced in section 3.2.2) are
presented.

As we neglect the eg orbitals for the calculations in this work, the angular
momentum operators for the t2g manifold (l = 2) can be calculated from the
p operators (l = 1) using the T-P equivalence (introduced in section 2.1.1.2)

Note that the spherical to cubic ( l=1) function does not use the same con-
vention as introduced in equation (2.13). To get the right transformation
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matrix, one has to multiply it with the swap indizes matrix from listing 3.12
(or simply type in the matrix from (2.13) by hand).

xyz = [ ’ x ’ , ’ y ’ , ’ z ’ ]
L p = map( lambda k : L op ( xyz [ k ] , [ ’UP ’ , ’DN’ ] , [ −1 , 0 , 1 ] , o f f d i a g =

↪→ True , b a s i s = ’ s p h e r i c a l ’ ) , ( 0 , 1 , 2 ) )

T f u l l = np . kron (np . eye ( 2 , 2 , ) , s p h e r i c a l t o c u b i c ( l =1) )
swap ind i z e s = np . kron (np . eye (2 , 2 ) , np . matrix ( [ [ 0 , 0 , 1 j

↪→ ] , [ 0 , 1 , 0 ] , [ −1 j , 0 , 0 ] ] ) )
U tp = np . dot ( swap ind izes , T f u l l )

fops tp SPH = [ [ ’UP ’ , −1 ] , [ ’UP ’ , 0 ] , [ ’UP ’ , 1 ] , [ ’DN’ , −1 ] , [ ’DN’ , 0 ] , [ ’
↪→ DN’ , 1 ] ]

f op s tp cub = [ ( ’ ud 0 ’ , 0 ) , ( ’ ud 1 ’ , 0 ) , ( ’ ud 1 ’ , 1 ) , ( ’ ud 1 ’ , 2 ) , ( ’
↪→ ud 0 ’ , 1 ) , ( ’ ud 0 ’ , 2 ) ]

L tp = map( lambda k : −t rans f o rm opera to r ( L p [ k ] , U tp ,
↪→ fops tp SPH , f op s tp cub ) , ( 0 , 1 , 2 ) ) # note the minus s i gn

Listing 3.12 – L operator via T-P equivalence

The same result can be achieved by removing the eg operators from the
full l = 2 orbital angular momentum operator. However, as mentioned in
section 3.2.2.3 (reduced cubic basis), this is no unitary transformation, so
one has to take care at which point the operators are removed.

In fact, the eg operators have to be removed in the components of the
L operator (Lx, Ly, Lz), before being multiplied together for the L2 = L2

x +
L2
y + L2

z operator, as in the second case TRIQS automatically simplifies the

expression by evaluating terms such as cic
†
i = 1− c†ici.

When comparing these operators, one can look at the diagonal elements
of the L2 operator: The full-d operator has diagonal values of 6 (as expected
for a l = 2 operator9) whereas the t2g-only operator has diagonal values of 2
(like a l = 1 operator).

f ops sph = [ [ ’UP ’ , ’ sp−2 ’ ] , [ ’UP ’ , ’ sp−1 ’ ] , [ ’UP ’ , ’ sp0 ’ ] , [ ’UP ’ , ’ sp+1
↪→ ’ ] , [ ’UP ’ , ’ sp+2 ’ ] , [ ’DN’ , ’ sp−2 ’ ] , [ ’DN’ , ’ sp−1 ’ ] , [ ’DN’ , ’ sp0 ’
↪→ ] , [ ’DN’ , ’ sp+1 ’ ] , [ ’DN’ , ’ sp+2 ’ ] ]

f ops cub = [ ( ’ eg1 ’ , 0 ) , ( ’ eg2 ’ , 0 ) , ( ’ ud 0 ’ , 0 ) , ( ’ ud 1 ’ , 0 ) , ( ’ ud 1 ’ , 1 )
↪→ , ( ’ eg3 ’ , 0 ) , ( ’ eg4 ’ , 0 ) , ( ’ ud 1 ’ , 2 ) , ( ’ ud 0 ’ , 1 ) , ( ’ ud 0 ’ , 2 ) ]

L sph = {}
L cub = {}

xyz = [ ’ x ’ , ’ y ’ , ’ z ’ ]

9L2 |l,ml〉 = h̄2l(l + 1) |l,ml〉
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f o r comp in xyz :
L sph [ comp ] = L op (comp , spin names =[ ’UP ’ , ’DN’ ] , orb names=[ ’
↪→ sp−2 ’ , ’ sp−1 ’ , ’ sp0 ’ , ’ sp+1 ’ , ’ sp+2 ’ ] , o f f d i a g=True )
L cub [ comp ] = trans f o rm opera to r ( L sph [ comp ] , T fu l l ,
↪→ fops sph , fops cub )

# Remove the eg ope ra to r s f o r every component
L cub [ comp ] = r e m o v e a l l e g o p e r a t o r s ( L cub [ comp ] )

Listing 3.13 – L operator with removed eg orbitals

The remove all eg operators() method used above has to be implemented to
fit the orbital and spin naming convention of the problem at hand. One
example for the convention used above can be found in Listing 3.14.

de f r e m o v e a l l e g o p e r a t o r s ( o p e r a t o r i n ) :
n e w to ta l op e r a t o r = Operator (0 )
f o r op part in o p e r a t o r i n :

new part operator = Operator (1 )
c o e f f i c i e n t = op part [−1]

f o r s i n g l e o p e r a t o r in op part [ 0 ] :
daggered = s i n g l e o p e r a t o r [ 0 ]

# This l i n e has to be changed
# depending on naming convent ion
i f s i n g l e o p e r a t o r [ 1 ] [ 0 ] . s t a r t s w i t h ( ’ eg ’ ) :

new part operator = Operator (0 )
cont inue

new part operator ∗= c dag (∗ s i n g l e o p e r a t o r [ 1 ] ) i f
↪→ daggered e l s e c (∗ s i n g l e o p e r a t o r [ 1 ] )

new part operator ∗= c o e f f i c i e n t
ne w to ta l op e r a to r += new part operator

re turn ne w to ta l op e r a to r

Listing 3.14 – remove all eg operators() method

3.2.5.2 Spin angular momentum

The spin angular momentum operators are easy to calculate in a basis where
the blocks correspond to the physical spins. However, as we have seen in
section 3.2.2.2 (cubic basis with spin), this is not the case for our cubic basis
with SOC, as the blocks ud 0 and ud 1 mix the physical spins (UP and DN).

However, as there is no ’real’ transformation done in section 3.2.2.2 (just a
renaming and reordering of the basis), we can simply ’transform’ the operator
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by choosing suitable fundamental operator sets as can be seen in the following
listing:

comps = [ ’ z ’ , ’ x ’ , ’ y ’ ]

f o p s s p i n = [ [ ’UP ’ , 0 ] , [ ’UP ’ , 1 ] , [ ’UP ’ , 2 ] , [ ’UP ’ , 3 ] , [ ’UP ’ ,
↪→ 4 ] , [ ’DN’ , 0 ] , [ ’DN’ , 1 ] , [ ’DN’ , 2 ] , [ ’DN’ , 3 ] , [ ’DN’ , 4 ] ]

f ops = [ [ ’ eg1 ’ , 0 ] , [ ’ eg2 ’ , 0 ] , [ ’ ud 0 ’ , 0 ] , [ ’ ud 1 ’ , 0 ] , [ ’ ud 1 ’ , 1 ] , [ ’
↪→ eg3 ’ , 0 ] , [ ’ eg4 ’ , 0 ] , [ ’ ud 1 ’ , 2 ] , [ ’ ud 0 ’ , 1 ] , [ ’ ud 0 ’ , 2 ] ]

f o r comp in comps :
Sop [ comp ] = S op (comp , spin names =[ ’UP ’ , ’DN’ ] , orb names
↪→ =[0 , 1 , 2 , 3 , 4 ] , o f f d i a g=True )
Sop cub [ comp ] = trans f o rm opera to r ( Sop [ comp ] , np . eye (10 ,10) ,
↪→ f op s sp in , f ops ) # renaming the spin−b locks
Sop cub [ comp ] = r e m o v e a l l e g o p e r a t o r s ( Sop cub [ comp ] )

Listing 3.15 – S operator

3.2.5.3 Total angular momentum

The total angular momentum J is given by

J = L+ S (3.12)

As known from basic quantum mechanics (e.g. [18]), for a system of mul-
tiple spins, one can find the ”good” quantum numbers J2, Jz, L2, S2. Of
course, for J2 follows

J2 = (L+ S)2 = L2 + S2 + 2(L · S) (3.13)

When using the T-P equivalence from equation (2.15), one has to consider
just the threefold dt2g subspace (sixfold with spin), which corresponds to the
p orbitals:

J eff ≡ Jp = Lp + S =
T-P equiv.

−Lt2g + S (3.14)

For the J2 operator, this means:

J2
eff = L2

t2g + S2 − 2(Lt2g · S) (3.15)

Thus, the sign of the L · S term has to be changed when using the T-
P equivalence.
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3.2.6 AFM calculations

3.2.6.1 Transformation of the inequivalent sites

As both inequivalent magnetic sites are in fact equivalent in absence of mag-
netic ordering, a transformation can be found to calculate GB

loc from GA
loc (A,

B being the two different sites).
However, there can be an arbitrary phase shift between the two sites [53]

introduced during the projection in dmftproj. One can either try finding a
”simple” transformation by hand (by comparing the two G0s), or use Gernot
Kraberger’s analyse deg shells script to automatically find a transformation
from one site to the other.

Such a transformation T can be written in block-diagonal form, as it
does not mix spins (here ↑ and ↓ indicate the different decoupled spin-blocks,
which do not have to coincide with the physical spins):

GB
loc = TGA

locT
† (3.16)

T =

[
T ↑ 0
0 T ↓

]
(3.17)

In the same manner, one can find a transformation linking the two de-
coupled spin-blocks with each other. For a paramagnetic system (G↑ ≡ G↓)
in a suitable basis, this transformation S can be trivially written as

S =

[
0 1

1 0

]
(3.18)

Once both of these transformations are found, the anti-ferromagnetic
model can be calculated by just solving one impurity and then transforming
the result to the second impurity using a product of spin-flip transformation
S (3.18) and site transformation T (3.17):

GB
imp = (TS)GA

imp(TS)† (3.19)

TS =

[
0 T ↑

T ↓ 0

]
(3.20)

3.2.6.2 AFM DMFT loop

With all of the above in the back of our head, we can now go ahead and ex-
tend the TRIQS DMFT-loop (Fig. 3.1) to anti-ferromagnetic systems. The
changes to be made are initializing Σ with a polarization in the spins (oth-
erwise, one would run into a meta-stable paramagnetic solution), solve the
AIM for one site, calculating the second site using equation (3.19) and finally
calculate DC for both sites. The resulting anti-ferromagnetic DMFT loop can
be found in Fig. 3.2.
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Start

Initialize Σ with DC +
afm polarization

Diagonalize HA
loc

Calculate Hint

SumkDFT

S.G0 iw << inverse

↪→ (S.Sigma iw +

↪→ inverse(Gloc))

Solver

DCGA
loc

(GB
loc not used)

Gimp

Σimp

GA
imp, G

B
imp

ΣA
loc ≈ ΣA

imp

ΣB
loc ≈ ΣB

imp

Vdiag

Hint

Figure 3.2 – Flowchart of the AFM DMFT loop in TRIQS.
The small circles indicate basis transformations, the darker blue color indicates
the diagonal basis, red diamonds indicate doubling of the Green’s function
(Eqn. (3.19)).
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Chapter 4

Application to Ba2YIrO6

The tools laid out in the previous chapters are now applied to Ba2YIrO6

(BYIO) introduced in section 1.2. First its paramagnetic behaviour is inves-
tigated, then possible long-range ordering of magnetic moments is analyzed.

4.1 Paramagnetic System

4.1.1 Structure

The struct files for the DFT calculations were taken from [9] via the ICSD
database (see Fig. 4.1). However, upon inspection it became obvious that
the coordinates of the Ir and Y atoms were mistaken one for another in [9]
(otherwise the Ir-O and Y-O distances given in [9] were not correct and did
not correspond to the atom’s ionic radii).

To confirm this suspicion, the DFT calculations were run both with the
(wrong) ICSD struct file and the corrected struct file (where the coordinates
for the Ir and Y atoms were exchanged). The corrected struct file led to a
lower ground state energy.

4.1.2 DFT + dmftproj

4.1.2.1 DFT band structure

The DFT calculations were performed using Wien2k [48] and the PBE poten-
tial [29]. The calculations were run spin-polarized and both with and without
spin-orbit coupling. The number of k-points in the full Brillouin zone was
chosen at 10.000 (see section 4.2.1 for info about k-point convergence). The
resulting band structure plot can be found in Fig. 4.2.
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Figure 4.1 – Double perovskite crystal structure of Ba2YIrO6.
In green the Ba atoms, grey the Y atoms, red the O atoms and yellow the Ir
atoms with their oxygen-octahedra are shown.

The DFT results clearly show a metallic behaviour, which will be lifted
when introducing interactions via DMFT. A orbital character plot (Fig. 4.3)
of the calculation including spin-orbit coupling shows mainly Ir-t2g character
around the Fermi level. It is also apparent that the crystal-field splitting
∆CF ≈ 3 eV is quite large, allowing the approximation of considering t2g and
eg to be decoupled.

4.1.2.2 Magnetic moment

First, a regular spin-polarized calculation was done to determine the mag-
netic moment in DFT. The results can be found in Tab. 4.1. The total
magnetic moment coincides with the results found in [13] (the partial mag-
netic moments of the atom’s muffin-tin-spheres depend on the chosen basis
and muffin-tin-radii and thus cannot be compared).

Table 4.1 – Magnetic moment of BYIO in DFT
(Int. = Interstitial)

Int. Ba Y Ir O total
µ / µb 0.157 0.005 -0.003 0.538 0.117 1.07
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Figure 4.2 – DFT band structure for BYIO
In yellow the chosen projection window W.
The apparent metallic behaviour will be lifted with the introduction of inter-
actions in the framework of DMFT (metal-insulator transition).
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Figure 4.3 – DFT orbital character plot for BYIO with spin-orbit coupling.

4.1.2.3 dmftproj

As basis for the DMFT calculation a spin-polarized calculation with forced
zero magnetic moment was performed both with and without SOC. Then
dmftproj was used on the calculation including SOC, projecting the Bloch
bands onto the localized Wannier orbitals of the Ir atoms. For this, a win-
dow containing the full Ir d-shell was chosen (W = [−0.09, 0.33] Ry =
[−1.2, 4.5] eV, see Fig. 4.2b), as a ’cut’ through the d-bands (in between
t2g and eg ) and thus a projection of just the t2g manifold would throw away
small hybridisation elements introduced by the SOC (see next paragraph and
Fig. 4.4). This presence of SOC also made a splitting into ireps impossible.

The DOS in the projected basis (including the off-diagonal elements in-
troduced by the spin-orbit coupling) for the paramagnetic structure can be
found in Fig. 4.4. It can be seen that while the off-diagonal elements be-
tween t2g and eg are small, they are in fact not zero. However, they are of
order O(10) smaller than the elements within the t2g manifold, so we will
approximate t2g and eg to be decoupled.
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CHAPTER 4. APPLICATION TO BA2YIRO6

4.1.3 DMFT

Due to the large crystal-field splitting in the order of 3 eV, the eg orbitals were
omitted for the calculation. For the interaction a full Slater-type Hamiltonian
with U = 2 eV and J = 0.3 eV was chosen (cRPA calculations [12] lead to
U = 1.8 eV and J = 0.4 eV for their d-model). For the first calculations the
temperature was set at β = 40 eV−1 (≈ 290 K).

4.1.3.1 Diagonalizing Hloc

To improve the average sign of the QMC solver, the calculations were per-
formed in the diagonal basis (where Hloc is diagonal, see section 3.2.2.4). The
corresponding transformation matrix from cubic to diagonal basis was found
to be (eg orbitals omitted, order of basis d↑xy, d

↑
xz, d

↑
yz, d

↓
xy, d

↓
xz, d

↓
yz):

Tcub→dia =


≈ 0 0 0 0 0.707 −0.707
0 0.707 0.707 ≈ 0 0 0
0 −0.409 0.409 −0.816 0 0
0 −0.577 0.577 0.578 0 0

0.816 0 0 0 0.409 0.409
−0.578 0 0 0 0.577 0.577

 (4.1)

In other literature, this basis (where Hloc is diagonal) is often referred to
as numerical j-basis. What is surprising is that in our case this basis matches
with the effective j-basis introduced in equation (2.34) (apart from numerical
inaccuracies - ’≈ 0’ meaning O(10−6) and order of basis).

Transforming the local DFT Green’s function in real frequencies Gloc(ω)
into this diagonal basis leads to vanishing off-diagonal elements (see Fig. 4.5).
As Hloc, per definition, is diagonal in our chosen basis, the same holds true
for the hybridisation function ∆(ω) = ω −G−1

loc(ω)−Hloc, as can be seen in
Fig. 4.6. As we are using a hybridisation-expansion based solver (CTHYB),
this means we are effectively calculating in a completely decoupled basis
consisting of six 1 × 1 blocks with no off-diagonal elements in between.

4.1.3.2 Tail fitting

As the error in CTHYB-calculated self-energies scales roughly with |ωn|2 [22],
the MC data is only reliable for small frequencies. For higher frequencies one
commonly used method is to fit the (noisy) data with a Laurent expansion
up to a certain order.

One way to do so is to chose a fitting window F = [n1, n2] in which the
fit is performed. Data for Matsubara fequencies lower than ωn1 is not noisy
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4.1. Paramagnetic System

Figure 4.5 – Gloc(ω) in the diagonal basis before the first iteration.
Real part in orange, imaginary part in blue.
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CHAPTER 4. APPLICATION TO BA2YIRO6
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4.1. Paramagnetic System

and does not follow the declining behavior of the fit [22]. Data above ωn2 is
too noisy to perform a meaningful fit. Thus the quality and results of the fit
depends on the chosen n1, n2.

In order to get rid of at least the dependence on n2, one can exploit that
the error in Σ(iωn) increases quadratically. Therefore one can omit the upper

bound of the fitting window, by minimizing χ2 =
∑

n(f(iωn)−Σ(iωn)
|(iωn)2| )2 which

goes to zero for high frequencies [22]. This is the approach taken for this
work. The fit was performed up to 4th order, starting at the 20th Matsub-
ara frequency.

4.1.3.3 Metal-Insulator transition

The DMFT loop was run for 25 iterations, however after 10 iterations no
more significant changes in the resulting self-energy were observed.

As Im{G(iωn → 0)} ∝ A(ω = 0), by looking at the imaginary part of the
impurity’s Green’s function Gimp(iωn) a clear metal-insulator transition can
be observed (see Fig. 4.7).

Figure 4.7 – Im[Gimp(iωn)]ii on the first six Matsubara frequencies from the
first iteration (red) and 25th iteration (black). The dashed lines are polynomial
fits (of fourth order) over the first 10 Matsubara frequencies. A clear Metal-
Insulator transition can be seen.
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CHAPTER 4. APPLICATION TO BA2YIRO6

4.1.3.4 Observables

After convergence was reached, one more iteration was calculated, this time
measuring the density matrix (see section 3.2.5). With this, the expectation
values of 〈L2〉, 〈S2〉, 〈LS〉 and 〈J2〉 were calculated. For comparison the
same expectation values were calculated using an atomic limit solver (TRIQS’
AtomDiag solver). The results can be found in Tab. 4.2.

Table 4.2 – Expectation values of the different observables for DMFT calcu-
lation at β = 40 eV−1 (with CTHYB) and atomic model (AD)
U = 2 eV, JHund = 0.3 eV
J2 = L2 + S2 − 2LS (see section 3.2.5.3)

〈N〉 〈L2〉 〈S2〉 〈LS〉 〈J2〉
DMFT 3.97 1.85 1.85 1.76 0.19

AD 3.99 1.86 1.86 1.86 0.00

To investigate the temperature stability of the DMFT results, calculations
at various values of β were performed. For each values of β, 15 iterations
were calculated to reach convergence. The results can be found in Tab. 4.3.
It can be seen that the expectation value for 〈J2〉 does not change in the
considered temperature range. Regardless of temperature, the Jeff = 0 state
is not achieved for the DMFT lattice model.

Furthermore, the influence of the interaction parameter U was investi-
gated. Therefore the calculations were performed at three different values of
U = {1, 2, 6} eV with JHund = 0.15 · U . For each value of U the occupations
of the Jeff = 1/2 and Jeff = 3/2 orbitals as well as the expectation values of
〈J2〉 were measured. The results can be found in Tab. 4.4.

4.1.3.5 Spectral function

From the imaginary-frequency Green’s function Gloc(iωn) the real-frequency
Green’s function Gloc(ω) and thus the spectral function

A(ω) = −1/π Im{Gloc(ω)} (4.2)

Table 4.3 – Temperature dependence of
〈
J2
〉

in DMFT
U = 2, JHund = 0.3

β / eV−1 40 60 80 100 120
T / K 290 193 145 116 97
〈J2〉 0.19 0.19 0.19 0.19 0.19
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4.1. Paramagnetic System

Table 4.4 – U-dependence of
〈
J2
〉

and densities

U n3/2 n1/2 〈J2〉DMFT 〈J2〉AD
1 0.96 0.07 0.36 0.00
2 0.94 0.11 0.19 0.00
6 0.88 0.23 0.08 0.00

can be calculated using analytic continuation [54]. However, as this poses an
ill-defined problem, this is not straightforward and different computational
methods have been developed. Here, a MaxEnt-based formalism [52] was
used on the Green’s function in the diagonal basis (thus no off-diagonal el-
ements had to be considered). Also the DFT DOS in the Wannier basis
(Fig. 4.4) was transformed into the (numerical) j-basis, giving the densities
of the (non-interacting) DFT Jeff = 1/2 and Jeff = 3/2 orbitals. The effect of
the interaction parameter U = 2 eV (coming from the cRPA calculations) on
the DFT DOS can be found in Fig. 4.8, the influence of a varying interaction
parameter in Fig. 4.9.

Figure 4.8 – Influence of the interaction parameter U = 2 (JHund = 0.3) on
the DOS of BYIO.

Looking at Fig. 4.8 it can be seen that both with and without interactions
the Jeff = 1/2 orbital gets partly occupied. For the DFT result this can also
be seen in Fig. 4.2b as the highest t2g band intersects the Fermi level. Thus
it can be said, that the SOC is not strong enough to completely split the
Jeff = 1/2 and Jeff = 3/2 manifolds in the band-structure picture. The
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CHAPTER 4. APPLICATION TO BA2YIRO6

Figure 4.9 – Influence of various interaction parameters U (JHund = 0.15 ·U)
on the spectral function.

observed metal-insulator transition is then a Mott transition happening in
both orbitals.

In the limit of large interaction parameters U the calculation goes towards
a Jeff = 0 state both for the atomic model as well as the DMFT model. This
can be interpreted as a Van Vleck type magnet, where both L = 1 and S = 1
however J = 0 (the measured expectation values are 〈L2〉 = 〈S2〉 = 1.97,
〈J2〉 = 0.08 for U = 6 eV).
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4.2. Antiferromagnetic System

4.2 Antiferromagnetic System

To investigate the possible long-range magnetic ordering observed by Terzic et
al. (”Long-range magnetic order below 1.7 K is confirmed.”) [11] and discon-
firmed by Dey et al. (”For temperatures down to 0.4 K long-range magnetic
order is absent.”) [5] an anti-ferromagnetic DMFT calculation was performed.

4.2.1 Structure

The Ir atoms in BYIO’s double perovskite structure are aligned in an fcc-like
structure. Thus, different anti-ferromagnic configurations can be realized.
The supplementary material of [13] suggests that ”Type I” (see Fig. 4.10)
has the lowest energy, therefore only this structure has been investigated.
The antiferromagnetic struct file for the DFT calculation was generated by
blowing up the simple paramagnetic struct file intruduced in section 4.1.1,
creating a bigger supercell with two (magnetically) inequivalent Ir atoms.

Figure 4.10 – Anti-ferromagnetic configurations for fcc-like structures. The
circles represent the magnetic atoms (Ir). For this calculations Type I (a) has
been chosen.
Taken from [13, Suppl. Material].

4.2.2 DFT

Out of curiosity, a k-point convergence calculation was performed1, showing
that the energy did not change significantly anymore after reaching about

1As our DFT calculations are computationally far less expensive as the following
DMFT calculations, k-point convergence is normally skipped and a sufficiently large num-
ber of k-points is chosen.
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CHAPTER 4. APPLICATION TO BA2YIRO6

1.000 k-points. Thus a k-point number well above that value (10.000) was
chosen. It was also necessary to significantly tighten the convergence criterion
of the DFT loop to gain equivalence of the non-magnetic Green’s functions on
the two Ir atoms. For this purpose, Wien2k’s charge convergence parameter
was set at −cc 0.00000001 (10−8).

First a spin-polarized DFT calculation was performed, the resulting (spin-
resolved) DOS can be found in Fig. 4.11. As basis for the DMFT calculation
the magnetic moment was forced to be zero in a second calculation, so all
magnetic effects can be included on DMFT level. On this forced zero mag-
netic moment calculation dmftproj was employed to calculated the localized
Wannier orbitals for the DMFT calculation. As this forced zero moment
calculation is basically paramagnetic, the projection was done exactly like in
section 4.1 - the only difference being that one ends up with two impurities
for the two (magnetically) inequivalent sites.

Figure 4.11 – Spin-resolved DFT-DOS of anti-ferromagnetic BYIO.

4.2.3 DMFT

As introduced in section 3.2.6 it is sufficient to solve the impurity problem for
one site, as long as one finds a transformation between the two (magnetically)
inequivalent sites. For BYIO this transformation was found by looking at the
two site’s Gloc(iωn)s, resulting in the simple transformation matrix (acting
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4.2. Antiferromagnetic System

on the t2g manifold):

T =


−1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

 (4.3)

Together with the spin-flip matrix from equation (3.18) the DMFT loop
introduced in Fig. 3.2 can be implemented and performed. However, the
used CTHYB solver limits the temperature range to finite, not-too-low tem-
peratures. The calculations were performed in a range of 100 − 290 K
(β = 120 − 40 eV−1). A plot of the densities in cubic basis over the it-
erations can be found in Fig. 4.12.

Figure 4.12 – Densities in cubic basis over the iteration. The calculation
starts initialized in a anti-ferromagnetic state, however it goes to paramagnetic
almost immediately. The dashed lines represent the densities from the local
Green’s functions, the slower convergence compared to the densities of the
impurity’s Green’s functions comes from mixing.
The calculation was performed at β = 40 eV−1 (≈ 290 K).

Looking at Fig. 4.12 it is obvious that the anti-ferromagnetic state is not
achieved for β = 40 eV−1. The result does not change down to β = 120 eV−1

(≈ 100 K). Of course we are still (far) away from the proposed transition
temperature of 1.7 K [11] and it is no big surprise that the material goes into
a paramagnetic state at these temperatures.
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CHAPTER 4. APPLICATION TO BA2YIRO6

4.3 Summary and Outlook

Paramagnetic system: The paramagnetic calculation (section 4.1) clearly
confirms the breakdown of the Jeff = 0 picture for Ba2YIrO6. The reason
for this seems to be combination of band-structure effect and small enough
SOC, leading to a overlap of the Jeff = 1/2 and Jeff = 3/2 bands in the DFT
results (see Fig. 4.2b and 4.8). The addition of an interaction U = 2 eV then
leads to Mott transitions in both bands, resulting in an insulating state with
some electrons remaining in the Jeff = 1/2 lower Hubbard-band (below the
Fermi level).

One possible further research topic would be to introduce the SOC not on
DFT level, but in form of a ζL ·S term in the interaction Hamiltonian. Thus
it would be possible to tweak the value of ζ and to investigate its influence
on the magnetic behaviour.

Anti-ferromagnetic system: The anti-ferromagnetic calculations (sec-
tion 4.2) showed an absence of long-range ordering down to 100 K. However,
this is not surprising, considering we are still far above the proposed transi-
tion temperature of 1.7 K [11]. Further research with a different solver (e.g.
a MPS T = 0 K solver [55]) needs to be done to make a convincing argument
for or against long-range ordering in Ba2YIrO6.

Sr2YIrO6: The framework laid out in this thesis might also be applied to
Sr2YIrO6, thus investigating the influence of non-cubic crystal fields on the
magnetic behaviour of Iridium double perovskites.
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“On the possibility of excitonic magnetism in Ir double perovskites,”
Physical Review B, vol. 93, no. 3, p. 035129, 2016. (Cit. on pp. 2, 3,

and 56.)

[13] S. Bhowal, S. Baidya, I. Dasgupta, and T. Saha-Dasgupta, “Breakdown
of j = 0 nonmagnetic state in d4 iridate double perovskites: A first-
principles study,” Phys. Rev. B, vol. 92, p. 121113, Sep 2015. (Cit. on

pp. 2, 52, and 63.)

[14] S. Fuchs, T. Dey, G. Aslan-Cansever, A. Maljuk, S. Wurmehl,
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