
Enhancements for Group Signatures

and

Side-Channel Attacks on Mobile Devices

by

Raphael Spreitzer

A PhD Thesis
Presented to the Faculty of Computer Science in Partial Fulfillment of the

Requirements for the PhD Degree

Assessors

Prof. Stefan Mangard (TU Graz, Austria)
Prof. Bart Preneel (KU Leuven, Belgium)

April 2017

Institute for Applied Information Processing and Communications (IAIK)
Faculty of Computer Science

Graz University of Technology, Austria

Abstract

In this thesis, we address important challenges in terms of privacy as well as
security in mobile ecosystems. In the first part we focus on group signature
schemes, which allow individuals to anonymously sign messages on behalf of
a group. Although group signature schemes have already been proposed for
various applications, the practical applicability of such mechanisms still faces
delicate challenges and sometimes requires enhanced anonymity management
mechanisms. In order to address these challenges, we propose a generic approach
that adds controllable linkability to group signature schemes. This feature al-
lows an authorized entity to determine whether two group signatures have been
issued by the same anonymous signer. Based on this feature we also propose
a novel revocation mechanism that can be generically applied to existing group
signature schemes. Our proposed revocation mechanism is transparent for sign-
ers and allows immediate revocation of group members. Overall our revocation
mechanism extends the existing portfolio of revocation mechanisms and aims to
deal with the major bottleneck of revocation in group signature schemes.

Besides privacy-enhancing technologies, we also consider the platform secu-
rity of mobile devices in this thesis. As mobile devices are extensively used for
many different purposes, the information stored and processed must be protected
properly. Even though dedicated protection mechanisms are implemented on all
software layers, side-channel attacks often allow to bypass such protection mecha-
nisms. We analyze and propose different side-channel attacks on mobile devices.
Thereby, we aim to improve the understanding of security and privacy impli-
cations of specific components and features on these multi-purpose platforms.
More specifically, we propose enhancements for cache-timing attacks that signif-
icantly reduce the effective key size of the Advanced Encryption Standard. We
also propose a novel sensor-based attack that exploits the ambient-light sensor
to infer user input on touchscreen devices. Our practical investigations confirm
that not only motion sensors (accelerometer and gyroscope), but also ambient
sensors can be used to reliably infer a user’s PIN input. In addition, we show
that seemingly harmless information provided by the operating system, such
as the data-usage statistics that capture the amount of incoming and outgoing
network traffic, allow to infer sensitive information. We demonstrate a practical
attack that exploits the data-usage statistics to infer a user’s browsing behavior
with a high accuracy, even when the traffic is routed through the Tor network.

iii

Acknowledgements

I would like to thank all people who supported me in writing this thesis. First of
all, I would like to thank my supervisor Stefan Mangard for his valuable input
and insightful discussions on side-channel attacks throughout my PhD studies.
Special thanks also go to Daniel Slamanig for sharing his knowledge on privacy-
enhancing technologies and public key cryptography in general. As supervisors,
mentors, and co-authors, Stefan and Daniel deserve special credit for sharing
their expertise as well as for their guidance and patience. In addition, I would
like to thank my assessor Bart Preneel for giving important feedback.

Furthermore, I would like to thank Jörn-Marc Schmidt for providing me with
the required freedom to explore and find a proper research topic in the beginning,
and I would also like to thank Thomas Plos for accompanying my first research
steps and for teaching me how to write a research paper. In addition, I am also
very grateful for the manifold discussions with Karl-Christian Posch.

Besides I would like to thank all people who influenced this thesis, either
through discussions or even as co-authors. Especially I want to thank David
Derler and Thomas Unterluggauer for fruitful collaborations and writing papers
on group signatures. I would also like to thank Benôıt Gérard, Simone Gries-
mayr, Daniel Gruss, Thomas Korak, Clémentine Maurice, and Veelasha Moon-
samy for the interesting discussions and their collaborations in various papers
on side-channel attacks.

I am also very grateful for lots of interesting discussions with all members
of the former SEnSE group, Christoph Dobraunig, Maria Eichlseder, Michael
Hutter, Mario Kirschbaum, Florian Mendel, Tomislav Nad, Martin Schläffer, and
Erich Wenger, as well as all members of the Secure Systems group, Hannes Gross,
Patrick Klampfl, Moritz Lipp, Peter Peßl, Robert Schilling, Michael Schwarz,
Samuel Weiser, and Mario Werner. Without these discussions, both private as
well as research related, this thesis would not have been possible.

Last but not least, finishing a PhD thesis requires more than just a great
environment for being productive. Hence, I would like to express my sincere
gratitude to my whole family and friends. Especially my parents Christian and
Jutta as well as my two brothers Gabriel and Michael who always supported
me in any possible way. Fortunately, I was able to convince many of my friends
that privacy is important and, hence, I want to honor all of them anonymously.
Cheers!

Raphael Spreitzer
Graz, April 2017

v

Table of Contents

Abstract iii

Acknowledgements v

List of Tables xi

List of Figures xiii

Acronyms xv

1 Introduction 1
1.1 Contributions and Outline . 3

1.1.1 Enhancements for Group Signature Schemes 3
1.1.2 Side-Channel Attacks on Mobile Devices 4

1.2 Other Contributions . 5

I Enhancements for Group Signature Schemes 7

2 Group Signature Schemes 9
2.1 Introduction . 10
2.2 Mathematical Preliminaries . 11
2.3 Public Key Encryption . 12
2.4 Digital Signature Scheme . 13
2.5 Zero-Knowledge Proofs and Σ Protocols 14
2.6 Model for Dynamic Group Signatures 15
2.7 Sign-and-Encrypt-and-Prove Paradigm 17
2.8 Threshold Secret Sharing . 17

3 Controllable Linkability 19
3.1 Introduction . 20
3.2 Model for GSs with Controllable Linkability 21
3.3 Public Key Encryption and Equality Tests 22

3.3.1 Public Key Encryption in GSSs 22
3.3.2 Trapdoor Equality Test for Public-Key Encryption 23
3.3.3 Modified All-Or-Nothing PKE with Equality Tests 24

3.4 Adding Controllable Linkability to PB-GSSs 28

vii

viii Table of Contents

3.4.1 Security Analysis . 30
3.5 Comparison with Other Approaches 35

3.5.1 Linkable Group Signatures 35
3.5.2 Traceable Signatures . 35
3.5.3 Public Key Anonymous Tag Systems 36
3.5.4 Verifier Local Revocation 37
3.5.5 Comparison . 37

4 Linking-Based Revocation 39
4.1 Introduction . 40
4.2 State-of-the-Art in Revocation 41
4.3 Building Blocks for GSs with LBR 45

4.3.1 High-Level Idea of GSs with LBR 46
4.3.2 Constant-Time Revocation Checks 46
4.3.3 Distributed Controllable Linkability 47

4.4 GSs with Linking-Based Revocation 49
4.4.1 Discussion and Security 49

4.5 Applying Linking-Based Revocation 52
4.6 Conclusion . 54

II Side-Channel Attacks on Mobile Devices 55

5 Taxonomy of Side-Channel Attacks on Mobile Devices 57
5.1 Introduction . 58
5.2 Background and Taxonomy . 60

5.2.1 A Primer on Smartphone Security 60
5.2.2 Concept of Side-Channel Attacks 60
5.2.3 Types of Side-Channel Information Leaks 61
5.2.4 Software-only Side-Channel Attacks 62

5.3 A New Categorization System . 62
5.4 Local Side-Channel Attacks . 62

5.4.1 Passive Attacks . 63
5.4.2 Active Attacks . 65

5.5 Vicinity Side-Channel Attacks . 66
5.5.1 Passive Attacks . 67
5.5.2 Active Attacks . 68

5.6 Remote Side-Channel Attacks . 68
5.6.1 Passive Attacks . 68
5.6.2 Active Attacks . 72

5.7 Trend Analysis . 73
5.8 Discussion of Countermeasures 75

5.8.1 Local Side-Channel Attacks 75
5.8.2 Vicinity Side-Channel Attacks 76
5.8.3 Remote Side-Channel Attacks 76

5.9 Conclusion . 78

Table of Contents ix

6 Time-Driven Cache Attacks 79
6.1 Introduction . 80
6.2 Background . 81

6.2.1 Advanced Encryption Standard 81
6.2.2 CPU Caches . 81
6.2.3 Seminal Work: Bernstein’s Timing Attack 82

6.3 Analysis of the Divide Part . 82
6.3.1 Attacking Different Key-Chunk Sizes 83
6.3.2 Minimum Timing Information 84

6.4 Analysis of the Conquer Part . 85
6.4.1 Combining Information from the Divide Part 85
6.4.2 Evaluating the Key-Search Complexity 86
6.4.3 Choosing Thresholds and Combination Functions 86

6.5 Experimental Results . 87
6.5.1 Setup and Methodology 87
6.5.2 Attacking Different Key-Chunk Sizes 88
6.5.3 Minimum Timing Information 90
6.5.4 Summary of Practical Results 91

6.6 Conclusion . 92

7 Exploiting the Ambient-Light Sensor 93
7.1 Introduction . 94
7.2 Ambient-Light Sensor . 94
7.3 RGB(W) Sensor . 97
7.4 Attack Scenario . 97

7.4.1 Training Phase . 98
7.4.2 Exploitation Phase . 98
7.4.3 Security Implications . 99
7.4.4 Observations and Assumptions 99

7.5 Attack Approach . 100
7.5.1 Gathering the Required Data 100
7.5.2 Detecting PIN Inputs . 101
7.5.3 Determining the Unknown PIN 102

7.6 Evaluation and Results . 102
7.6.1 Comparison of Classification Algorithms 103
7.6.2 Comparison of Feature Vectors 105
7.6.3 Guessing PINs Based on Their Probability 105
7.6.4 Impact of Different Input Methods 106
7.6.5 Impact of the Sampling Frequency 108

7.7 Limitations . 108
7.8 Countermeasures . 109

7.8.1 UI and API Modifications 109
7.8.2 Rethinking the Permission Model 110
7.8.3 Application Analysis . 110
7.8.4 User Behavior . 111

7.9 Comparison With Related Work 111

x Table of Contents

7.10 Conclusion and Future Work . 112

8 Exploiting the Data-Usage Statistics 113
8.1 Introduction . 114
8.2 Background and Related Work 115

8.2.1 On the Wire . 115
8.2.2 Shared Resources and Software Execution 116

8.3 Android Data-Usage Statistics 116
8.3.1 Usage Statistics in a Controlled Scenario 117
8.3.2 Usage Statistics for Real Websites 118
8.3.3 Usage Statistics in the Tor Setting 118
8.3.4 Usage Statistics for Mobile Connections 119
8.3.5 API and /proc Support 120

8.4 Adversary Model and Scenario 121
8.4.1 Possible Attack Scenarios 122
8.4.2 Assumptions . 122

8.5 Attack Description . 123
8.5.1 Gathering Traffic Signatures 123
8.5.2 Classification . 124

8.6 Evaluation and Results . 125
8.6.1 Intra-Day Classification Rate 126
8.6.2 Classification Rate for Tor 127
8.6.3 Inter-Day Classification Rate 129
8.6.4 Scalability for Larger World Sizes 130
8.6.5 Comparison with Related Work 130

8.7 Discussion of Countermeasures 133
8.7.1 Existing Countermeasures 133
8.7.2 Discussion . 134

8.8 Conclusion . 135

9 Conclusions 137

Bibliography 139

Index 167

Author Index 169

Author’s CV 179

List of Tables

3.1 Applicability of related concepts to achieve controllable linkability. 38

4.1 Comparison of revocation mechanisms. 44

6.1 Device specifications of the test devices. 87
6.2 Sample results on the Samsung Galaxy SII. 91
6.3 Sample results on the Google Nexus S. 92

7.1 Sampling rates on the Samsung Galaxy SIII. 95
7.2 Input methods of three users. 107
7.3 Comparison of related work targeting a set of 50 PINs. 111

8.1 Test devices and configurations. 120
8.2 Google websites that have been merged. 127
8.3 Websites with the worst classifications in the inter-day setting. . 130
8.4 Comparison of website fingerprinting attacks in the closed-world

setting. 132

xi

List of Figures

3.1 Experiment for LO-linkability. 32

3.2 Experiment for JP-unforgeability. 32

3.3 Experiment for E-linkability. 33

4.1 Naive instantiation of linking-based revocation. 46

4.2 Schematic of our secure instantiation of linking-based revocation. 51

5.1 Scope of attacks for smart cards, cloud infrastructures, and smart-
phones. 59

5.2 General notion of passive (−→) and active (L99) side-channel
attacks. 61

5.3 Categorization of side-channel information leaks. 61

5.4 Classification of side-channel attacks: (1) active vs passive, (2)
logical vs physical, (3) local vs vicinity vs remote. 74

6.1 Possibilities to combine different key chunks: combination of
bytes within a row (left) and combination of bytes within a col-
umn (right). 83

6.2 Rank evolution for one-byte key chunks. 88

6.3 Rank evolution for two-byte key chunks. 88

6.4 One-byte chunk signatures for the study phase of one run. . . . 89

6.5 One-byte chunk signatures for the attack phase of one run. . . . 89

6.6 Two-byte chunk signatures for the study phase of one run. . . . 89

6.7 Two-byte chunk signatures for the attack phase of one run. . . . 89

7.1 (1) Proximity and ambient-light sensor as well as (2) front camera. 94

7.2 PIN input mask to gather test samples. 95

7.3 Light-sensor information for five consecutive PIN inputs (1-5-9-0). 96

7.4 Schematic illustrating the tilts and turns of the smartphone. . . 96

7.5 RGB(W)-sensor information for five consecutive PIN inputs (1-
7-3-0). 97

7.6 Average classification rate over multiple runs with a set of 15
PINs each. 104

7.7 Average classification rate over multiple runs with a set of 50
PINs each. 104

xiii

xiv List of Figures

7.8 Average classification rate over multiple runs with a set of 15
PINs each. 105

7.9 Average classification rate over multiple guesses on a set of 50
PINs. 106

7.10 Average classification rate for different input methods on 15 PINs. 107
7.11 Average classification rate for three specific users on a set of 30

PINs. 108
7.12 Average classification rate for different sampling rates on a set

of 15 PINs. 109

8.1 TCP packet lengths according to tcpdump on the server and
data-usage statistics on the smartphone. 118

8.2 Data-usage statistics for the inbound traffic of three samples per
website. 119

8.3 Traditional website fingerprinting attack considering a network
attacker. 121

8.4 Client-side website fingerprinting attack exploiting a local side
channel. 121

8.5 Confusion matrix for the 15 most popular websites in the US. . 126
8.6 Confusion matrix for the 100 most popular websites globally with

google*.* pages merged. 127
8.7 Classification rates considering the k most probable websites re-

turned from the classifier. 128
8.8 Decreasing accuracy for samples captured ∆ days after the train-

ing data. 129

Glossary

ADB Android Debug Bridge
AES Advanced Encryption Standard
AoN-PKEET All-or-Nothing Public Key Encryption with

Equality Tests
ATM Automated Teller Machine

BBS Boneh Boyen Shacham
BSZ Bellare Shi Zhang
BYOD Bring Your Own Device

CDH Computational Diffie-Hellman Assumption
CL Camenisch Lysyanskaya
co-CDH Computational co-Diffie-Hellman Assumption
CSS Cascading Style Sheets

DAA Direct Anonymous Attestation
DDH Decisional Diffie-Hellman Assumption
DLIN Decision LINear Problem
DS Digital Signature

EM Electromagnetic
EUF-CMA Existentially Unforgeable under Chosen Mes-

sage Attacks

FAPI Fixed Argument Pairing Inversion Problem

GM Group Manager
GS Group Signature
GSS Group Signature Scheme

HTML Hypertext Markup Language

IND-CCA Indistinguishable under Chosen Ciphertext At-
tacks

IND-CPA Indistinguishable under Chosen Plaintext At-
tacks

xv

xvi Glossary

IoT Internet of Things
IP Internet Protocol
ISP Internet Service Provider

KNN K-Nearest Neighbor

LA Linking Authority
LBR Linking-Based Revocation
LED Light-Emitting Diode

NIZKPK Non-Interactive Zero-Knowledge Proof of
Knowledge

OCSP Online Certificate Status Protocol
OS Operating System
OW-CCA One-Wayness under Chosen Ciphertext Attacks
OW-CPA One-Wayness under Chosen Plaintext Attacks

PB-GSS Pairing-Based Group Signature Scheme
PET Privacy-Enhancing Technology
PKE Public Key Encryption
PKEET Public Key Encryption with Equality Tests
PPT Probabilistic Polynomial Time

q-SDH q-Strong Diffie-Hellman Assumption

RA Revocation Authority
RGBW Red, Green, Blue, and White
RIG Runtime-Information Gathering
RL Revocation List

SEP Sign-and-Encrypt-and-Prove
SoK Signature of Knowledge
SSH Secure Shell
SSL Secure Sockets Layer
SXDH Symmetric eXternal Diffie-Hellman Assumption

TLS Transport Layer Security

UID User Identifier
URL Uniform Resource Locator

VLR Verifier Local Revocation

WEP Wired Equivalent Privacy

Glossary xvii

WPA Wi-Fi Protected Access

XSGS eXtremely Short Group Signature

1
Introduction

For me, privacy and security are really important.
We think about it in terms of both: You can’t have privacy without security.

— Larry Page

Mobile devices, such as smartphones and tablet computers, are already widely
employed and represent an integral part of our everyday lives. Due to this tight
integration of mobile devices into our lives, both private and business, these
devices inevitably store and process sensitive information. Hence, appropriate
mechanisms must be implemented in order to protect this data as well as our
privacy against a wide variety of stakeholders and, in the worst case, even adver-
saries. In addition, besides protecting the data on mobile devices, there is also
the urgent need to protect our privacy when interacting with service providers of
any kind via the Internet but also in less obvious scenarios that involve electronic
devices, for example, when using public transport systems.

In order to cope with these challenges and to reduce the amount of re-
vealed information, so-called privacy-enhancing technologies have gained increas-
ing attention among the scientific community. For example, in some scenar-
ios there is no need that a service provider is able to identify specific users.
Instead, a service provider should only be convinced that a user is indeed
a genuine user of the system. Therefore, concepts such as group signature
schemes [CvH91, BMW03, BSZ05, KY05] have been introduced, which allow
a user to prove affiliation to a specific group without revealing further informa-
tion. Such privacy-preserving mechanisms enable interesting applications like,
for example, to prove possession of a valid ticket for a public transport system
without revealing any identifying information [IVP+13]. The service provider
can then verify that passengers are in possession of valid tickets and are indeed

1

2 Chapter 1. Introduction

allowed to use the service, but in general the service provider is not able to iden-
tify specific passengers. Such privacy-preserving mechanisms in transportation
systems are also envisioned by the European Union within the EU Directive
2010/40 [Eur10] by encouraging “the use of anonymous data”, anonymization,
and data minimization.1

The proliferation of such privacy-preserving mechanisms, however, leads to
new challenges for specific stakeholders such as service providers. For example,
even though users are anonymous among a group of people, service providers
might want to ensure that users can be held accountable for inappropriate ac-
tions. Therefore, group signature schemes employ an authorized entity that is
able to identify a group member in case of misbehavior. Furthermore, in practi-
cal applications the need for revocation mechanisms arises in case of misbehavior,
meaning the possibility to prevent specific users from proving membership affil-
iation again. However, revocation in the context of group signature schemes is
a non-trivial task as the privacy of users should be protected and the revocation
of one specific user should neither affect the privacy nor the signing capabilities
of other users. In fact, revocation has been identified as the major bottleneck of
state-of-the-art group signature schemes [MFG+12].

Besides accountability and revocation, service providers are also interested
in enhancing the efficiency of their services while still preserving the privacy of
single users. For instance, service providers of public transport systems might be
interested in analyzing the traveling patterns without compromising the privacy
of passengers. In order to deal with these open challenges and to enable privacy-
preserving data mining applications, so-called enhanced anonymity management
mechanisms need to be researched and improved. We address these issues within
the first part of this thesis.

Nevertheless, considering the implementation of privacy-preserving mecha-
nisms, the system security of the employed platforms must also be taken into
account. As history has taught us, even though specific mechanisms or primitives
are considered as being secure and privacy preserving in theory, we have to cope
with specific challenges in practice. A prominent example of such challenges are
so-called side-channel attacks [Koc96] that exploit unintended information leak-
age of specific implementations or devices in order to extract secret information
such as cryptographic keys.

Traditional side-channel attacks [MOP07] targeting smart cards usually re-
quire expensive equipment in order to gather the leaking information and to
extract the secret information of these computing devices. In contrast, the
ever increasing number of features present in today’s mobile devices, such as
smartphones and tablet computers, already represent a plethora of side chan-
nels posing a significant threat to the users’ privacy and security. Even though
modern operating systems employ specific mechanisms, such as sandboxing and

1“Anonymous data” seems to be hard to achieve. For instance, Narayanan and
Shmatikov [NS06a] impressively demonstrated the de-anonymization of an individual’s record
from an “anonymized” dataset of movie ratings published by Netflix. They conclude that
any anonymized dataset can be de-anonymized again by relying on auxiliary information of
individuals.

1.1. Contributions and Outline 3

permission systems, to protect applications against each other and to protect
sensitive resources, specific features as well as shared resources can be exploited
to steal sensitive information from other applications (cf. [JS12, ZDH+13]).

Although platform security itself is already a well-studied topic, it must be
noted that smartphone security is different from traditional platform security as,
for example, platform security in the context of personal desktop computers or
smart cards. First, due to the mobility and portability of these devices, they are
always turned on and carried around at all times and, thus, are also tightly inte-
grated into our everyday lives. Second, additional software can be installed easily
by means of established application markets and, hence, malware can also be
spread easily and extremely fast. Third, these devices include far more features
and sensors, such as an accelerometer, a gyroscope, a GPS sensor etc., which
are not present on traditional platforms. Fourth, in order to decrease the overall
number of devices carried around, employees tend to use their private devices
to process corporate data and to access corporate infrastructure—also known as
bring your own device (BYOD)—which clearly demonstrates the importance of
secure computing platforms.

In a world where mobile and smart devices are tightly integrated into our
everyday lives, we need to advance both privacy as well as security in order
to pave the way for an environment that can be considered secure and privacy
preserving. More specifically, in order to preserve the privacy of individuals
we need to advance the field of privacy-preserving mechanisms. However, at
the same time we also need to thoroughly study and understand security and
privacy implications of the corresponding computing platforms. For instance,
understanding security and privacy implications of specific features of smart
and mobile devices is crucial.

1.1 Contributions and Outline

In this thesis, we aim to tackle the challenges of privacy and security. In Part I,
we present an enhanced anonymity management mechanism for group signature
schemes that also lends itself for an efficient revocation mechanism. In Part II,
we perform investigations regarding the platform security of today’s smartphones
by focusing on side-channel attacks.

1.1.1 Enhancements for Group Signature Schemes

Chapter 2 provides an introduction to group signature schemes and outlines
the principle of group signature schemes as well as the required preliminaries.

Chapter 3 introduces a promising generalization of a feature for group signa-
tures denoted as controllable linkability, which has been published together with
Daniel Slamanig and Thomas Unterluggauer [SSU14]. Controllable linkability
allows an entity in possession of a trapdoor to link two signatures, i.e., to deter-
mine whether two signatures have been produced by the same signer but it does
not allow to identify the signers. In this paper [SSU14] we proposed a generic

4 Chapter 1. Introduction

construction that allows to extend group signature schemes with controllable
linkability. In order to enable such an extension we introduce a modification of
all-or-nothing public key encryption with equality tests.

Chapter 4 demonstrates how to employ the concept of controllable linkability
to implement the most efficient and flexible revocation mechanism for group
signature schemes. The idea is that an always-online revocation authority can
be contacted for the revocation check. The revocation authority performs the
revocation check by anonymously linking a given signature against a revocation
list. Furthermore, we introduce distributed controllable linkability such that
multiple authorities must cooperate to link signatures, which reduces the trust
assumption in these authorities. This work has been done together with Daniel
Slamanig and Thomas Unterluggauer [SSU16].

1.1.2 Side-Channel Attacks on Mobile Devices

Chapter 5 starts with a general introduction to side-channel attacks. In an
attempt to enable a more systematic investigation of side-channel attacks, we
also refine the existing classification system in order to be applicable for modern
side-channel attacks. Based on this classification system we survey existing side-
channel attacks. This work has been done together with Veelasha Moonsamy,
Thomas Korak, and Stefan Mangard [SMKM16].

Chapter 6 introduces our practical investigations of cache-based side-channel
attacks on mobile devices. We investigate specific enhancements for Bernstein’s
cache-timing attack [Ber05] and we show that cache-based side-channel attacks
indeed represent a real threat for today’s smartphones and mobile platforms.
More specifically, these enhancements demonstrate that cache-timing attacks can
be used to significantly reduce the effective key size of the Advanced Encryption
Standard (AES) on mobile devices. These investigations have been published
together with Benôıt Gérard [SG14].

Chapter 7 introduces a novel sensor-based attack that exploits the ambient-
light sensor to infer a user’s personal identification number (PIN) input. This is
the first work demonstrating that—besides motion sensors—also ambient sensors
can be used to infer sensitive user input. This work has been published in [Spr14].

Chapter 8 demonstrates how the official Android API and the /proc file system
can be exploited in order to infer a user’s browsing behavior. More specifically,
we exploit the information leakage of the publicly available data-usage statistics
on Android. While these statistics seem to be innocuous at first glance, we
show that this information can be used to infer a user’s visited websites even
if the network traffic is routed through the anonymity network Tor. This work
has been done together with Simone Griesmayr, Thomas Korak, and Stefan
Mangard [SGKM16].

Chapter 9 concludes this thesis.

1.2. Other Contributions 5

1.2 Other Contributions

Other scientific contributions and papers that were published during the PhD
studies, but are not incorporated in this thesis, are as follows.

Group Signature Schemes and Privacy-Preserving Protocols

• Model and concrete instantiation for group signature schemes with verifi-
able controllable linkability [BDSS16]

• Considerations for a privacy-preserving protocol for automatic fare collec-
tion systems [ZGS+15, ZSG+16]

• Privacy-preserving authentication mechanism for IoT devices [GHSS15]

• Practical investigation of group signatures on resource-constrained de-
vices [SS14]

Cache Attacks

• Investigation of Flush+Reload attacks on ARM [LGS+16]

• Automated approach to launch Flush+Reload attacks [GSM15]

• Investigation of time-driven cache attacks on ARM [SP13b]

• Attack against disaligned AES T-tables on ARM [SP13a]

Part I

Enhancements for Group
Signature Schemes

7

2
Group Signature Schemes

Birds of a feather flock together.

— Lewis Carrol, Alice in Wonderland

In this chapter, we introduce some background knowledge on group signa-
tures. We start with an introduction to group signatures in Section 2.1 and dis-
cuss mathematical preliminaries in Section 2.2. Furthermore, we discuss public
key encryption in Section 2.3, digital signatures in Section 2.4, and the principle
of zero-knowledge proofs in Section 2.5. We recall the most popular security
model for group signatures in Section 2.6, and the sign-and-encrypt-and-prove
paradigm used to construct group signatures in Section 2.7. Finally, we recall
the concept of threshold secret sharing in Section 2.8. Parts of this chapter are
taken verbatim from [SSU14, SSU16].

Publication Data and Contribution

Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer. Adding
Controllable Linkability to Pairing-Based Group Signatures for Free. In
Information Security – ISC 2014, volume 8783 of LNCS, pages 388–400.
Springer, 2014
Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer. Group
Signatures with Linking-Based Revocation: A Pragmatic Approach for Ef-
ficient Revocation Checks. In Conference on Cryptology & Malicious Secu-
rity – Mycrypt 2016, 2016. In press
Contribution: Main author; Initial idea together with Thomas Unterlug-
gauer; Security proofs mainly developed by Daniel Slamanig.

9

10 Chapter 2. Group Signature Schemes

2.1 Introduction

Two developments among today’s society lead to two contrary requirements. On
the one hand, users need to authenticate when interacting with service providers.
In particular, service providers want to ensure that only genuine users can use
their services. On the other hand, users want to protect their privacy and, thus,
aim to reduce the amount of revealed personal information.1 Indeed, in many
scenarios like public transport or subscription-based services there is no need for
a service provider to uniquely identify single users but only to ensure that they
are allowed to use the respective service. In such scenarios, privacy-enhancing
technologies (PETs) can be employed. One such popular cryptographic PET
are group signature schemes.

The concept of group signature schemes (GSSs) has been introduced by
Chaum and van Heyst [CvH91] and allows members within a predefined group
to sign messages on behalf of the group anonymously. Thereby, signers implic-
itly prove membership affiliation anonymously. Verifiers in turn can determine
whether a signature indeed has been produced by a member of the group, but
are not able to determine the actual identity of a signer. However, in case of dis-
pute the so-called group manager (GM) is able to open a given group signature
(GS) in order to determine the identity of the actual signer.2

Early works of GSSs considered only a static setting [BMW03], where the
group is fixed at the setup time, whereas more recent constructions consider dy-
namic groups [BSZ05, KY05], i.e., new members can be added to the group and
removed from the group over time. For both, the static as well as the dynamic
setting, there exist constructions based on the sign-and-encrypt-and-prove (SEP)
paradigm [CS97]. In schemes following this paradigm, a user on joining a group
receives a signature from the GM, which is known as the membership certificate.
A group signature produced by a user is then an encryption of the membership
certificate of the user under the GM’s public key and a non-interactive zero-
knowledge proof of knowledge of well-formedness of the respective values.

Today, pairing-based group signature schemes (PB-GSSs) are prevalent, since
they are far more efficient in terms of bandwidth and computational complexity
than earlier constructions based on the strong RSA assumption. In the follow-
ing subsections we introduce the required preliminaries for pairing-based group
signature schemes following the SEP paradigm.

1Gürses [Gür10] defined three privacy paradigms: privacy as confidentiality, privacy as
control, and privacy as practice. According to these definitions, we refer to privacy as “confi-
dentiality” since users want to hide specific information from service providers.

2The role of the GM can be considered in the context of “privacy as control” [Gür10]
because of the ability to define what happens with the data, i.e., revealing the actual identity
is possible. Although in this case it is the concept of group signatures that restricts access to
this “confidential” data, i.e., the identity of users, rather than the users themselves.

2.2. Mathematical Preliminaries 11

2.2 Mathematical Preliminaries

Let G1 = 〈g1〉, G2 = 〈ĝ2〉, and GT be cyclic groups of prime order p. We write

elements in G1 as g, h, etc., and we write elements in G2 as ĝ, ĥ, etc. A bilinear
map e : G1 ×G2 → GT is a map, such that the following properties hold:

1. Bilinearity: e(ua, v̂b) = e(u, v̂)ab for all u ∈ G1, v̂ ∈ G2, and a, b ∈ Z∗p.

2. Non-degeneracy: e(g1, ĝ2) 6= 1.

3. Computability: e is efficiently computable.

Usually, G1 and G2 are subgroups of points on elliptic curves defined over
a finite field Fq and an extension field Fqk , respectively. GT usually represents
a subgroup of the multiplicative group F∗qk . The parameter q denotes the size

of the underlying field and k denotes the embedding degree such that p|qk − 1,
with k minimal.

If G1 = G2, then e is called symmetric (Type 1) and asymmetric (Type 2 or
Type 3) otherwise. For Type 2 pairings there exists an efficiently computable
isomorphism ψ : G2 → G1, whereas for Type 3 pairings no such efficient isomor-
phism is known.

Furthermore, a function ε : N→ R+ is called negligible if for all c > 0 there
is a k0 such that ε(k) < 1/kc for all k > k0. In the remainder of this thesis, we
use ε to denote such a negligible function.

For the sake of completeness, we state the following cryptographic assump-
tions that are referred to throughout this thesis.

Definition 1 (Computational Diffie-Hellman Assumption (CDH)). Let G = 〈g〉
be a cyclic group of prime order p, such that log2 p = κ, and g a generator. We
say that the CDH assumption holds, if for all probabilistic polynomial time (PPT)
adversaries A there exists a negligible function ε(·) such that:

Pr
[
r, s←R Zp, h← A(g, gr, gs) : h = grs

]
≤ ε(κ).

Definition 2 (Computational co-Diffie-Hellman Assumption (co-CDH)). Let
G1 = 〈g〉, and G2 = 〈ĝ〉 be two cyclic groups of prime order p, such that log2 p =
κ, and g and ĝ their respective generators. We say that the co-CDH assumption
holds, if for all PPT adversaries A there exists a negligible function ε(·) such
that:

Pr
[
r ← Zp, ĥ← A(g, gr, ĝ) : ĥ = ĝr

]
≤ ε(κ).

Definition 3 (Computational co-Diffie-Hellman Assumption (co-CDH∗) [CM11]).
Let G1 = 〈g〉, and G2 = 〈ĝ〉 be two cyclic groups of prime order p, such that
log2 p = κ, and g and ĝ their respective generators. We say that the co-CDH∗

assumption holds, if for all PPT adversaries A there exists a negligible function
ε(·) such that:

Pr [r ← Zp, k ← A(h, g, gr, ĝ, ĝr) : k = hr] ≤ ε(κ).

12 Chapter 2. Group Signature Schemes

Definition 4 (Decisional Diffie-Hellman Assumption (DDH)). Let G = 〈g〉 be
a cyclic group of prime order p, such that log2 p = κ, and g a generator. We
say that the DDH assumption holds, if for all PPT adversaries A there exists a
negligible function ε(·) such that:

Pr

 b←R {0, 1},
r, s, t←R Zp,
b∗ ← A(g, gr, gs, gb·(rs)+(1−b)·t)

: b = b∗

 ≤ 1

2
+ ε(κ).

Definition 5 (q-Strong Diffie-Hellman Assumption (q-SDH) [BB08]). Let G1 =
〈g〉, and G2 = 〈ĝ〉 be two cyclic groups of prime order p, such that log2 p = κ,
and g and ĝ their respective generators in a Type 3 pairing setting. We say
that the q-SDH assumption holds, if for all PPT adversaries A there exists a
negligible function ε(·) such that:

Pr

[
γ←R Zp,
(x, h)← A(g, gγ , gγ

2

, . . . , gγ
q

, ĝ, ĝγ)
: h = g

1
γ+x

]
≤ ε(κ).

Definition 6 ((Symmetric) eXternal Diffie-Hellman Assumption ((S)XDH)).
Let G1, G2, and GT be three distinct cyclic groups of prime order p and e :
G1 × G2 → GT a bilinear map. We say that the (S)XDH assumption holds, if
the DDH assumption holds in G1 (and G2).

Definition 7 (Decision LINear Assumption (DLIN) [BBS04]). Let G1 = 〈u〉 =
〈v〉 = 〈h〉 be a cyclic group of prime order p, such that log2 p = κ, and u, v, h three
generators. We say that the DLIN assumption holds, if for all PPT adversaries
A there exists a negligible function ε(·) such that:

Pr

 b←R {0, 1},
r, s, t←R Zp,
b∗ ← A(u, v, h, ur, vs, hb·(r+s)+(1−b)·t)

: b = b∗

 ≤ 1

2
+ ε(κ).

2.3 Public Key Encryption

In a public key encryption (PKE) scheme, any entity can encrypt a message for
a specific receiver by using the receiver’s public key. In order to decrypt the
message the receiver makes use of the corresponding private key. A conventional
public key encryption scheme consists of the following PPT algorithms:

KeyGen(1κ): The key generation algorithm takes a security parameter κ, and
generates a public-private key pair (pk, sk) used for encryption and decryp-
tion operations.

Enc(pk,m): The encryption algorithm takes the public key pk, and a message
m, and returns the encryption c of m under pk.

Dec(sk, c): The decryption algorithm takes the private key sk, and a ciphertext
c, and returns the message m.

2.4. Digital Signature Scheme 13

Correctness of a public key encryption scheme is defined as follows.

Definition 8 (Correctness). A PKE scheme is correct, if it holds that:

Pr

[
(pk, sk)← KeyGen(1κ),
m←RM : m = Dec(sk,Enc(pk,m))

]
= 1

where M represents the message space.

Weak security notions that we will refer to in this thesis are one-wayness un-
der chosen plaintext attacks (OW-CPA) or one-wayness under chosen ciphertext
attacks (OW-CCA). A stronger security notion requires a PKE scheme to be
either indistinguishable under chosen plaintext attacks (IND-CPA) or indistin-
guishable under chosen ciphertext attacks (IND-CCA2).

Definition 9 (OW-CPA/OW-CCA security). A PKE scheme is OW-CPA/OW-
CCA secure, if for all PPT adversaries A and security parameters κ there is a
negligible function ε(·) such that:

Pr

 (pk, sk)← KeyGen(1κ),
m←RM, c← Enc(pk,m),
m∗ ← AO(pk, c)

: m∗ = m

 ≤ ε(κ)

where A is restricted in case of OW-CPA security, i.e., O(·) = ⊥, and A is
unrestricted in case of OW-CCA security, i.e., O(·) = ODec, and A has not
queried the decryption oracle for the challenge ciphertext c.

Definition 10 (IND-CPA/IND-CCA2 security). A PKE scheme is IND-CPA/IND-
CCA2 secure, if for all PPT adversaries A and security parameters κ there is a
negligible function ε(·) such that:

Pr

(pk, sk)← KeyGen(1κ),
(m0,m1, s)← AO(pk),
b←R {0, 1}, c← Enc(pk,mb)
b∗ ← AO(pk, c, s)

: b∗ = b

 ≤ 1

2
+ ε(κ)

where m0,m1 ∈M, with M representing the message space, and

O(·) = ⊥ for IND-CPA
O(·) = ODec for IND-CCA2

and ODec represents the decryption oracle, and A has not queried the decryption
oracle for the challenge ciphertext c.

2.4 Digital Signature Scheme

In a digital signature (DS) scheme, entities can sign messages by using their
private keys and any entity can verify the validity of a resulting signature by
relying on the corresponding public key. A conventional digital signature scheme
consists of the following PPT algorithms:

14 Chapter 2. Group Signature Schemes

KeyGen(1κ): The key generation algorithm takes a security parameter κ, and
generates a public-private key pair (pk, sk) used for signature verification
and generation operations.

Sign(sk,m): The sign algorithm takes the private key sk, and a message m, and
returns the signature s of m under sk.

Verify(pk, s,m): The verification algorithm takes the public key pk, a signature
s, and the corresponding message m, and returns 1 if s is a valid signature
of m under sk and 0 otherwise.

Correctness of a digital signature scheme is defined as follows.

Definition 11 (Correctness). A DS scheme is said to be correct, if it holds that:

Pr

[
(pk, sk)← KeyGen(1κ),
m←RM : Verify(pk,Sign(sk,m),m) = 1

]
= 1

where M represents the message space.

We require a DS scheme to be existentially unforgeable under chosen message
attacks, i.e., a DS scheme must be EUF-CMA secure.

Definition 12 (EUF-CMA security). A DS scheme is EUF-CMA secure, if for
all PPT adversaries A and security parameters κ there is a negligible function
ε(·) such that:

Pr

[
(pk, sk)← KeyGen(1κ),
(m, s)← AOSign(pk),

: Verify(pk, s,m) = 1

]
≤ ε(κ)

where OSign represents the signing oracle, and A has not queried the signing
oracle for message m.

2.5 Zero-Knowledge Proofs and Σ Protocols

A zero-knowledge proof is an interactive proof where a prover P convinces a
verifier V of the validity of some statement, with the additional property that
V does not learn any other information apart from the truth of the statement.
Besides proving the truth of a statement x, we sometimes also want P to prove
knowledge of the corresponding witness w, which is denoted as zero-knowledge
proof of knowledge. For an element x ∈ L, w represents a witness if (x,w) ∈ R,
where L = {x | ∃w : (x,w) ∈ R} represents the corresponding language and R
some relation.

In general, zero-knowledge proofs of knowledge considered in this thesis follow
a 3-move protocol (also denoted as Σ protocol) between P and V as follows. Both
P and V are given x, and P additionally knows a witness w such that (x,w) ∈ R.
P sends an initial message a ← P(x,w), V responds with a challenge c, and P
responds with z ← P(x,w, a, c). Finally, V decides whether or not to accept the

2.6. Model for Dynamic Group Signatures 15

proof based on the transcript (a, c, z) for x. Σ protocols yield highly efficient
zero-knowledge proofs of knowledge. We recall the definition of a Σ protocol
below (cf. [HL10]).

Definition 13 (Σ protocol). A 3-move protocol Π is called a Σ protocol for
relation R if the following requirements hold:

Completeness: If P and V follow the protocol on input x and private input w
to P such that (x,w) ∈ R, then V always accepts.

Special soundness: There exists a polynomial-time extractor E that given any
x and any pair of accepting transcripts (a, c, z), (a, c′, z′) for x, where
c 6= c′, outputs w such that (x,w) ∈ R.

Special honest verifier zero knowledge: There exists a PPT simulator S
that given x and c outputs a transcript (a, c, z) with the same probability
distribution as transcripts between honest P and V on common input x.

The above defined property of special soundness implies soundness, i.e., a
verifier cannot be tricked into accepting false statements. The group signature
schemes considered in this thesis rely on non-interactive versions of Σ protocols.
By relying on the Fiat-Shamir transform [FS86], where the challenge c sent by the
verifier V is replaced with the evaluation of a cryptographic hash function on the
first message a of the prover (and potentially x as well as other information), such
honest verifier zero-knowledge proofs can be made non-interactive. Additionally,
Σ protocols made non-interactive via the Fiat-Shamir paradigm are simulation
sound [FKMV12], i.e., soundness holds even after seeing simulated proofs for
true as well as false statements.

2.6 Model for Dynamic Group Signatures

Bellare, Shi, and Zhang [BSZ05] presented a formal model for dynamic group
signature schemes—denoted as BSZ model—that also includes formal security
properties for such schemes. The BSZ model defines two different authorities:
(1) an opening authority who can open signatures, and (2) an issuing authority
who is capable of issuing signing keys to group members. We denote the keys
of these authorities as master opening key (mok), and master issuing key (mik),
respectively. Other involved parties are group members and verifiers.

GSSs usually refer to the group manager as an authority in charge of issuing
new certificates and opening signatures. However, the secret key for issuing
certificates (mik) and the secret key for opening signatures (mok) are separated
and, thus, the group manager is just a logical authority whose responsibilities
might be split across two physical authorities, e.g., the issuing authority and the
opening authority.

A dynamic GSS is a tuple GS = (GkGen, UkGen, Join, Issue, GSig, GVf, Open,
Judge) of PPT algorithms which are defined as follows (cf. [BSZ05]):

16 Chapter 2. Group Signature Schemes

GkGen(1κ): On input a security parameter κ, the algorithm generates the public
parameters, and outputs a tuple (gpk, mok, mik) representing the group
public key, the master opening key, and the master issuing key.

UkGen(1κ): On input a security parameter κ, the algorithm generates a user’s
key pair (uski, upki).

Join(uski, upki): On input a user’s key pair (uski, upki), the algorithm interacts
with the Issue algorithm and outputs the group signing key gski of user i.

Issue(gpk,mik, reg): On input of the group public key gpk, the master issuing
key mik, and the registration table reg, the algorithm interacts with the
Join algorithm in order to add user i to the group by adding an entry for
user i to the registration table reg.

GSig(gpk,M, gski): On input of the group public key gpk, a message M , and a
user’s secret key gski, the algorithm outputs a group signature σ.

GVf(gpk,M, σ): On input of the group public key gpk, a message M , and a
signature σ, the algorithm verifies whether the signature σ is valid with
respect to the message M and the group public key gpk, and outputs true
if the verification succeeds and false otherwise.

Open(gpk, reg,M, σ,mok): On input of the group public key gpk, the registra-
tion table reg, a message M , a valid signature σ, and the master opening
key mok, the algorithm accesses the registration table reg to find the
unique ID of the corresponding signer of σ. If a signer has been identified,
the algorithm returns the ID of the signer and a publicly verifiable proof τ
for the corresponding claim. Otherwise the algorithm claims that no group
member produced σ.

Judge(gpk,M, σ, ID, upk, τ): On input of the group public key gpk, a message
M , a valid signature σ, the claimed ID of the corresponding signer of σ as
well as the corresponding public key upk, and a proof τ that the claimed
ID is indeed the signer of σ, the algorithm determines whether or not the
proof τ holds. It outputs true if it holds and false otherwise.

Security Properties for GSSs. For a GSS to be secure according to the
BSZ model it needs to satisfy the following properties. For a formal description
of the properties defined in the BSZ model we refer to [BSZ05].

• Correctness: Signatures generated by honest group members should be
valid according to the GVf algorithm, and the Open algorithm should cor-
rectly identify the signer. Furthermore, the proof returned by the Open
algorithm should be accepted by the Judge algorithm.

• Anonymity: The identity of the signer can only be determined by the
authority in possession of the master opening key mok.

2.7. Sign-and-Encrypt-and-Prove Paradigm 17

• Traceability: An adversary should not be able to produce a signature
that either cannot be opened by the opening authority, or the opening
authority identifies a signer but cannot generate a correct proof for this
claim.

• Non-frameability: No entity should be able to produce a correct proof
that an honest user generated a signature unless this entity indeed pro-
duced this signature.

2.7 Sign-and-Encrypt-and-Prove Paradigm

Group signature schemes following the sign-and-encrypt-and-prove (SEP) [CS97,
BSZ05, KY05] paradigm consist of the following three building blocks.

1. A secure public key encryption scheme AE = (KeyGene,Enc,Dec).

2. A secure digital signature scheme DS = (KeyGens,Sign,Verify).

3. Non-interactive zero-knowledge proofs of knowledge (NIZKPKs), e.g., hon-
est verifier zero-knowledge proofs of knowledge made non-interactive using
the Fiat-Shamir transform [FS86] in the random oracle model (denoted as
signatures of knowledge (SoK) subsequently).

The group public key gpk consists of the public encryption key pke, and the
signature verification key pks. The master opening key mok is the decryption key
ske, and the master issuing key mik is the signing key sks. During the execution
of the Join protocol, a user i generates a secret xi and sends f(xi) to the issuer,
where f(·) is a one-way function applied to a secret xi. The issuer returns a
signature cert ← Sign(sks, f(xi)) as the user’s certificate by signing f(xi) with
the signing key sks.

A group signature σ = (T, π) for a message M consists of a ciphertext T ←
Enc(pke, cert) and the following SoK π:

π ← SoK{(xi, cert) : cert = Sign(sks, f(xi)) ∧ T = Enc(pke, cert)}(M).

This notation for signatures of knowledge has been introduced by Camenisch
and Stadler [CS97], i.e., SoK denotes a signature of knowledge of a pair (xi, cert),
which satisfies the relations after the colon, on the message M .

The membership certificate typically refers to the issuer’s signature (cert)
but might also be a commitment to a user’s secret that has been signed by the
issuer. Nevertheless, we always refer to T as an encryption of the membership
certificate.

2.8 Threshold Secret Sharing

A (t, n)-threshold secret sharing scheme allows to distribute a secret s to n
parties in a way such that it requires the cooperation of at least t parties to

18 Chapter 2. Group Signature Schemes

recover s, while any set of up to t− 1 parties learns nothing about s. A simple
and famous (t, n)-threshold scheme based on polynomial interpolation has been
proposed by Shamir [Sha79]. Here, to share a secret s, one chooses a random

polynomial F (x) = s +
∑t−1
`=1 a` · x` of degree t − 1 over some finite field such

that F (0) = s. Shares are of the form (i, F (i)) and any subset of size at most
t − 1 will learn no information about s. Given shares (i, F (i)) ∈ I such that
|I| ≥ t, s can however be efficiently recovered via s = F (0) =

∑
i∈I ci · F (i),

where ci =
∏
j∈I,j 6=i

j
j−i are the corresponding Lagrange coefficients. We will

use this scheme to share a group element from a prime order group (cf. [BZ04]).

3
Controllable Linkability

Great results, can be achieved with small forces.

— Sun Tzu, The Art of War

In this chapter, we show how PB-GSSs based on the SEP paradigm that are
secure in the BSZ model can be generically transformed to support controllable
linkability. Basically, this transformation replaces the public key encryption
scheme used for identity escrow within a group signature scheme with a mod-
ified all-or-nothing public key encryption with equality tests scheme (denoted
AoN-PKEET∗), instantiated from the respective public key encryption scheme.
Our suggested AoN-PKEET∗ mechanism may also be of independent interest
for other applications, but we use it to achieve controllable linkability. The cor-
responding trapdoor is given to the linking authority as a linking key, which
allows to perform trapdoor-equality tests on the ciphertexts (being part of the
group signature) without learning the respective plaintexts. If the underlying
encryption scheme is IND-CCA2 secure, controllable linkability can be added for
free, i.e., it neither influences the signature size nor the computational costs for
signers and verifiers in comparison to the scheme without this feature.

We start with a motivation for controllable linkability in Section 3.1 and we
recall an adapted security model for this feature in Section 3.2. We propose our
AoN-PKEET∗ scheme in Section 3.3 and we show how to apply it to GSSs in
Section 3.4. We compare controllable linkability to similar enhanced anonymity
management mechanisms in Section 3.5. Parts of this chapter are taken verbatim
from [SSU14].

19

20 Chapter 3. Controllable Linkability

Publication Data and Contribution

Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer. Adding
Controllable Linkability to Pairing-Based Group Signatures for Free. In
Information Security – ISC 2014, volume 8783 of LNCS, pages 388–400.
Springer, 2014
Contribution: Main author; Initial idea together with Thomas Unter-
luggauer; Daniel Slamanig suggested to generalize this concept; Security
proofs mainly developed by Daniel Slamanig.

3.1 Introduction

Over the years, various approaches for enhanced anonymity management mech-
anisms for group signatures, besides the standard opening feature, have been
proposed. For example, in various applications and scenarios such as direct
anonymous attestation (DAA) [BCC04] or data mining applications it may be
desirable to link different signatures of the same anonymous signer under certain
circumstances. Clearly, a naive approach to realize such a feature is to contact
the group manager, who can, given two signatures, open both signatures and
decide whether they have been produced by the same signer. However, involv-
ing the group manager for such tasks may not be desirable and, thus, extensions
are required that allow to answer such questions without the group manager.
Such an extension might allow to link signatures either publicly or by means
of another dedicated but less powerful entity, i.e., an entity that does not need
to be in possession of the secret key of the group manager. More specifically,
some schemes allow to publicly link signatures of users without identifying them
[NFW99], or even allow the public tracing of signers who have produced a num-
ber of signatures above a certain threshold [Wei05].

Besides these authority-free linking approaches, there also exist schemes, and
in particular the schemes proposed by Hwang et al. [HLC+11, HLC+13] that
support controllable linkability. In these schemes, there exist dedicated linking
authorities (LAs), i.e., parties in possession of a so-called linking key, who are
able to link two signatures by means of this key, whereas others are not able to
do so. A LA thereby can only decide whether two given signatures have been
issued by the same unknown signer and, thus, signers stay anonymous.

Hwang et al. [HLC+11, HLC+13] argued that the concept of controllable link-
ability might be useful in vehicular ad hoc networks (VANETs), for example,
to prevent Sybil attacks by detecting multiple signatures from the same entity.
Furthermore, this concept can be beneficial in the context of data mining, such
that service providers can establish statistics regarding buying patterns, while
still preserving the privacy of customers. Besides, controllable linkability can
also be useful in the context of smart cities. For example, public transport sys-
tems can support anonymous traveling where a valid group signature represents
showing of a valid ticket. However, service providers might also be interested
in analyzing traveling patterns and to perform some kind of flow control analy-

3.2. Model for GSs with Controllable Linkability 21

sis. Thereby, the concept of controllable linkability allows the service provider
to efficiently link signatures (ticket showings), while passengers of the public
transport system still remain anonymous.

The techniques which are the basis for our generic approach to controllable
linkability have been inspired by the works of Hwang et al. [HLC+11, HLC+13],
who realize controllable linkability for their variation of the BBS+ GSS, i.e., a
membership certificate is a BBS+ signature [ASM06]. However, their approach
is tailored towards their variation of the BBS+ GSS, meaning that they nei-
ther make their design intuition explicit nor do they rely on a general building
block. In contrast, our approach relies on the general building block of the newly
introduced AoN-PKEET∗ and is independent from a particular GSS.

3.2 Model for GSs with Controllable Linkability

Hwang et al. [HLC+11, HLC+13] introduced a model for GSSs with controllable
linkability that builds upon the well-established BSZ model (cf. Section 2.6).
Although, Hwang et al. use a weaker notion of anonymity where the adversary
does not have access to an open oracle.

While the BSZ model logically splits the group manager into (1) an opening
authority, and (2) an issuing authority, Hwang et al. add (3) a linking authority
capable of linking signatures. This linking authority can determine whether
or not two signatures have been issued by the same anonymous signer. We
denote the keys of these authorities as master opening key (mok), master issuing
key (mik), and master linking key (mlk), respectively. A GSS with controllable
linkability is specified as a tuple GS = (GkGen, UkGen, Join, Issue, GSig, GVf,
Open, Judge, Link). Subsequently, we present the GkGen algorithm, as it changes
due to these modifications, as well as the additional Link algorithm.

GkGen(1κ): On input a security parameter κ, the algorithm generates the public
parameters and outputs a tuple (gpk, mok, mik, mlk), representing the
group public key, the master opening key, the master issuing key, and the
master linking key.

Link(gpk,M, σ,M ′, σ′,mlk): On input of the group public key gpk, a message M
and a corresponding signature σ, another message M ′ and a corresponding
signature σ′, as well as the master linking key mlk, the algorithm verifies
both signatures by calling GVf(gpk, M , σ) and GVf(gpk, M ′, σ′). If both
signatures are valid for messages M and M ′ under the group public key
gpk, the algorithm uses mlk to determine whether σ and σ′ have been
produced by the same unknown signer. If both signatures are valid and
can be linked to the same unknown signer, the algorithm returns true and
false otherwise.

Properties for GSSs with Controllable Linkability. Hwang et al. also
adapt the correctness property (cf. Section 2.6) and introduce new properties to
model the newly introduced feature of controllable linkability.

22 Chapter 3. Controllable Linkability

• Correctness: Signatures generated by honest group members should be
valid, the Open algorithm should correctly identify the signer, and the proof
returned by the Open algorithm should be accepted by the Judge algorithm.
Furthermore, the Link algorithm should correctly link two signatures from
the same unknown signer.

• Linkability: The authority in possession of the master linking key mlk
should neither be able to gain any useful information for opening a signa-
ture (link-only linkability) nor for generating a Judge proof τ (judge-proof
unforgeability). Furthermore, colluding parties—including users, the link-
ing authority, and/or the opening authority—should not be able to gener-
ate pairs of messages and signatures (M,σ) and (M ′, σ′) that violate the
correctness property mentioned above (enforced linkability).

3.3 Public Key Encryption and Equality Tests

In Section 3.3.1, we discuss how public key encryption is used in GSSs following
the SEP paradigm. In Section 3.3.2, we recall existing public key encryption
schemes supporting trapdoor equality tests. Finally, we introduce our modified
primitive to be applicable for controllable linkability in Section 3.3.3.

3.3.1 Public Key Encryption in GSSs

In PB-GSSs following the SEP paradigm, the used encryption scheme depends on
the bilinear map setting, i.e., the type of the pairing, and whether the construc-
tion targets to achieve weak or full anonymity. The former issue is concerned
with the DDH problem in the used groups. If one assumes the XDH assumption
to hold in the group used for encryption, i.e., DDH is assumed to be hard in the
group G1, then one can use standard IND-CPA secure ElGamal encryption. If
one assumes the DDH problem to be easy in G1 and G2, then one usually relies
on linear encryption variants [BBS04, HLC+13] of ElGamal encryption that are
IND-CPA secure under the DLIN (or some related) assumption.

Whether the construction targets weak or full anonymity depends on whether
or not the adversary is allowed to access an Open oracle, i.e., a decryption oracle.
Weak anonymity means that anonymity is guaranteed as long as the adversary
does not have access to an Open oracle. Hence, the use of IND-CPA secure encryp-
tion schemes yields weak anonymous group signatures (CPA-full-anonymity).
For full anonymity (CCA-full-anonymity), i.e., anonymity that holds even in
case the adversary has access to an Open oracle, one needs to rely on IND-CCA2
secure encryption schemes. For example, Delerablée and Pointcheval [DP06]
tweak the weak anonymous BBS variant [BBS04] by replacing linear ElGamal
with standard IND-CPA secure ElGamal (relying on the XDH assumption) and
turn IND-CPA secure ElGamal into an IND-CCA2 secure encryption scheme using
the twin encryption paradigm [NY90, RS91] to achieve CCA-full-anonymity.

3.3. Public Key Encryption and Equality Tests 23

3.3.2 Trapdoor Equality Test for Public-Key Encryption

At the heart of our generic construction to achieve controllable linkability is a
means to extend IND-CPA/IND-CCA2 secure public key encryption schemes with
a feature that allows a dedicated party (holding a trapdoor) to check whether two
ciphertexts under the same public key contain the same message, but without
being able to decrypt ciphertexts, i.e., still providing one-wayness (OW) against
trapdoor holders. A naive approach would be to give away the private key as a
trapdoor and for two given ciphertexts one could simply decrypt and compare
the plaintexts. However, this would allow to recover encrypted messages, which
is not desired as it would give too much power to the linking authority.

Our idea is related to the concept of probabilistic public key encryption with
equality tests (PKEET) [YTHW10], but differs in that their equality tests are
public, i.e., not only feasible for one holding a trapdoor, and need to work
for ciphertexts under different public keys. Consequently, their construction
does not satisfy any meaningful notion of indistinguishability. However, in our
approach indistinguishability supported by the underlying encryption scheme
still needs to hold for all parties except the one holding the trapdoor, who
clearly can test against any possible message. However, if the messages are
not guessable, i.e., the messages are randomly sampled from a message space
that has large enough min entropy, messages can still be hidden from the party
holding the trapdoor and, thus, provide OW-CPA security.

Tang [Tan12b] added an authorization mechanism to PKEET—denoted as
all-or-nothing PKEET (AoN-PKEET)—in order to authorize entities to per-
form plaintext equality tests. This idea is related to our idea, but their focus
is on allowing a semi-trusted proxy to compare ciphertexts for two distinct par-
ties by obtaining a trapdoor from each party. This approach also works if the
two users are identical, in which case only one trapdoor is required. However,
firstly they target applications for searchable encryption and consequently their
Type-I adversary (representing the proxy holding the trapdoor(s)) is very pow-
erful, i.e., they require OW-CCA security, and also for an outsider who does
not know the trapdoor(s) (Type-II adversary), they always require IND-CCA2
security. Secondly, due to their focus on comparison of ciphertexts from distinct
users, their construction is quite involved and requires a quite costly variant of
double encryption for each user. Besides inefficiency, the most important differ-
ence between the AoN-PKEET construction and our approach is that we need
compatibility with efficient proofs of knowledge of encrypted messages, which
are not possible in [Tan12a, Tan12b] as these instantiations involve encrypting
hashes of messages. Thus, these approaches are not applicable to our setting as
it cannot be efficiently proven that the correct hash of the message (membership
certificate) has been included by the user and thus identity escrow is not that
efficiently possible [JKO13] to be of practical relevance for GSSs.

24 Chapter 3. Controllable Linkability

3.3.3 Modified All-Or-Nothing PKE with Equality Tests

In brief, our approach can be seen as a restricted version of AoN-PKEET, as we
only allow comparison of ciphertexts of the same user, i.e., under the same public
key. Furthermore, against a Type-I adversary (the trapdoor holder) we do not
require OW-CCA but OW-CPA security1 and against Type-II adversaries (out-
siders) either IND-CPA or IND-CCA2 security (depending on the underlying pub-
lic key encryption scheme). Additionally, our construction requires efficient zero-
knowledge proofs of knowledge about messages encrypted in ciphertexts, which
is clearly true for all encryption schemes used in PB-GSSs following the SEP
paradigm. As already mentioned, the constructions by Tang [Tan12a, Tan12b]
do not allow such efficient proofs of knowledge of encrypted messages, and thus
renders these approaches not applicable to our setting.

We denote our modified scheme as an AoN-PKEET∗ scheme. Subsequently,
we first present the formal model, and then discuss possible instantiations.

Formal Model

An AoN-PKEET∗ scheme (KeyGen,Enc,Dec,Aut,Com) is a conventional public
key encryption scheme augmented by two PPT algorithms (Aut,Com) as follows.

Aut(sk): The authorization algorithm takes a private key sk, and outputs a trap-
door tk that allows to perform the equality tests.

Com(c,c’,tk): The comparison algorithm takes two ciphertexts c and c′ (of two
messages m and m′) produced under pk, and a trapdoor tk produced with
the corresponding sk, and outputs true if m = m′ and false otherwise.

Security Definition

For our modified setting, the soundness definition of [Tan12b] reduces to the fact
that besides correctness of the public key encryption scheme, we have that for all
(pk, sk) ← KeyGen(1κ) we require that Com(Enc(pk,m),Enc(pk,m′),Aut(sk)) =
true if and only if m = m′. Against a Type-I adversary, we require OW-CPA
security, which is defined as follows.

Definition 14 (OW-CPA security). An AoN-PKEET∗ scheme is OW-CPA se-
cure, if for all PPT adversaries A and security parameters κ there is a negligible
function ε(·) such that:

Pr

 (pk, sk)← KeyGen(1κ), tk← Aut(sk),
m←RM, c← Enc(pk,m),
m∗ ← A(pk, tk, c)

: m∗ = m

 ≤ ε(κ).

Against a Type-II adversary, we require either IND-CPA or IND-CCA2 secu-
rity (depending on the used public key encryption scheme) as it is defined for
conventional public key encryption schemes.

1Assuming that the opener cannot be used as a decryption oracle is reasonable, however,
we may also extend the approach to OW-CCA security.

3.3. Public Key Encryption and Equality Tests 25

Definition 15 (IND-CPA/IND-CCA2 security). An AoN-PKEET∗ scheme is
IND-CPA/IND-CCA2 secure, if for all PPT adversaries A and security parame-
ters κ there is a negligible function ε(·) such that:

Pr

(pk, sk)← KeyGen(1κ), tk← Aut(sk),
(m0,m1, s)← AO(pk),
b←R {0, 1}, c← Enc(pk,mb)
b∗ ← AO(pk, c, s)

: b∗ = b

 ≤ 1

2
+ ε(κ)

where m0,m1 ∈M, and

O(·) = ⊥ for IND-CPA
O(·) = ODec for IND-CCA2

and ODec represents the decryption oracle, and A has not queried the decryption
oracle for the challenge ciphertext c.

Definition 16. An AoN-PKEET∗ scheme is called secure if it is sound, provides
OW-CPA security against Type-I adversaries (trapdoor holders) and if the under-
lying encryption scheme provides IND-CPA/IND-CCA2 security against Type-II
adversaries (outsiders).

Constructions

Subsequently, we elaborate how an AoN-PKEET∗ scheme can be instantiated
with various public key encryption schemes that are often used in PB-GSSs.

ElGamal Encryption. We consider ElGamal encryption in G1 in a bilinear
map setting e : G1×G2 → GT such that the DDH assumption holds in G1. Let
the private key be ξ ∈ Z∗p, the public key be h ← gξ ∈ G1, and a ciphertext
for a message m ∈ G1 be (T1, T2) ← (gα,mhα) ∈ G2

1 for random α ∈ Z∗p.
Decryption works by computing m ← T2/(T

ξ
1). The algorithms Aut and Com

work as follows.

Aut(ξ): Given the secret key ξ, the trapdoor is computed as tk← (r̂, t̂ = r̂ξ) for
a random r̂ ∈ G2.

Com(T, T ′, tk): Given a ciphertext (T1, T2) = (gα,mhα), another ciphertext
(T ′1, T

′
2) = (gα

′
,m′hα

′
), and a trapdoor tk = (r̂, t̂ = r̂ξ) check:

e(T2, r̂)

e(T1, t̂)

?
=
e(T ′2, r̂)

e(T ′1, t̂)
.

If the check holds, i.e., we have e(m, r̂) = e(m′, r̂), then return true and
false otherwise.

26 Chapter 3. Controllable Linkability

Linear Encryption. We consider linear encryption [BBS04] in G1 in a bilinear
map setting e : G1 ×G2 → GT such that the DDH problem may be easy in G1

as well as G2 but the DLIN assumption holds. Let the private key be (ξ, µ) ∈
(Z∗p)2 and the public key be (u, v, h) ∈ G3

1 such that uξ = vµ = h. Therefore,

choose a random h and compute u ← h1/ξ and v ← h1/µ. A ciphertext for a
message m ∈ G1 is (T1, T2, T3) ← (uα, vβ ,mhα+β) ∈ G3

1 for random α, β ∈ Z∗p.
Decryption works in G1 by computing m ← T3/(T

ξ
1 T

µ
2). The algorithms Aut

and Com work as follows.

Aut(ξ, µ): Given the secret key (ξ, µ), the trapdoor is computed as tk← (r̂, ŝ =
r̂ξ, t̂ = r̂µ) for a random r̂ ∈ G2.

Com(T, T ′, tk): Given a ciphertext (T1, T2, T3) = (uα, vβ ,mhα+β), another ci-
phertext (T ′1, T

′
2, T

′
3) = (uα

′
, vβ

′
,m′hα

′+β′
), and a trapdoor tk = (r̂, ŝ =

r̂ξ, t̂ = r̂µ) check:

e(T3, r̂)

e(T1, ŝ) · e(T2, t̂)
?
=

e(T ′3, r̂)

e(T ′1, ŝ) · e(T ′2, t̂)
.

If the check holds, i.e., we have e(m, r̂) = e(m′, r̂), then return true and
false otherwise.

Security of the Constructions

We analyze AoN-PKEET∗ instantiated with ElGamal encryption under the
(S)XDH assumption and with linear encryption under the DLIN assumption
below. We rely on the use of Type 2 pairings (G1 6= G2 with an efficient
isomorphism ψ : G2 → G1), Type 3 pairings (G1 6= G2 without an efficient
isomorphism), and Type 1 pairings (G1 = G2), respectively.

Lemma 1. AoN-PKEET∗ based on ElGamal in G1 in an XDH setting (Type 2
setting) is secure under the co-CDH assumption.

Proof (Lemma 1). Obviously, AoN-PKEET∗ based on ElGamal encryption sat-
isfies the soundness property and is IND-CPA secure against Type-II adversaries.
What remains to be argued about is the OW-CPA security against Type-I ad-
versaries. Given an adversary A that breaks OW-CPA security, we show how to
construct an adversary B against the co-CDH problem. Let (g1, g

a
1 , ĝ2, ĝ2

b) be a
co-CDH problem instance given to B. B sets pk← ψ(ĝ2

b) and tk← (ĝ2
w, (ĝ2

b)w)
for a random w ∈ Z∗p, chooses a random h ∈ G1, and runs A on pk and

c ← (ga1 , h) ∈ G2
1. If A manages to output m∗ = h/gab1 , then B outputs

h/m∗ = gab1 which is a valid solution to the co-CDH problem instance.

Lemma 2. AoN-PKEET∗ based on ElGamal in G1 in an SXDH setting (Type 3
setting) is secure under the co-CDH∗ assumption.

Proof (Lemma 2). Again, AoN-PKEET∗ based on ElGamal encryption satis-
fies the soundness property and is IND-CPA secure against Type-II adversaries.

3.3. Public Key Encryption and Equality Tests 27

What remains to be argued about is the OW-CPA security against Type-I adver-
saries. Given an adversary A that breaks OW-CPA security, we show how to con-
struct an adversary B against the co-CDH∗ problem. Let (g1, g

a
1 , g

b
1, ĝ2, ĝ2

b) be
a co-CDH∗ problem instance given to B. B sets pk← gb1 and tk← (ĝ2

w, (ĝ2
b)w)

for a random w ∈ Z∗p, chooses a random h ∈ G1, and runs A on pk and

c ← (ga1 , h) ∈ G2
1. If A manages to output m∗ = h/gab1 , then B outputs

h/m∗ = gab1 which is a valid solution to the co-CDH∗ problem instance.

In addition, for the security of this construction we also need to consider
the value t = e(m, r̂) where r̂ = ĝ2

w is available to A. Therefore, note that
computing m ∈ G1 when given the values t ∈ GT and r̂ ∈ G2 is the fixed
argument pairing inversion 2 (FAPI-2) problem and an adversary against the
FAPI-2 problem implies an adversary against the CDH problem [GHV08] and
the co-CDH problem in the ElGamal-based Type 2 setting above.

Lemma 3. AoN-PKEET∗ based on linear encryption in G1 is secure under the
CDH assumption.

Proof (Lemma 3). Obviously, AoN-PKEET∗ based on linear encryption satis-
fies the soundness property and is IND-CPA secure against Type-II adversaries.
What remains to be argued about is the OW-CPA security against Type-I ad-
versaries. Given an adversary A that breaks OW-CPA security, we show how
to construct an adversary B against the CDH problem in G1. Let (g, ga, gb)
be a CDH problem instance given to B. Unlike the ElGamal case, A can ver-
ify whether pk = (u, v, h) and tk = (r̂, r̂ξ, r̂µ) are consistent, i.e., by check-
ing whether e(u, r̂ξ) = e(v, r̂µ) = e(h, r̂) holds. Thus, B randomly chooses
x, y, z ∈ Z∗p and sets pk← (u, v, h) = (gx, gy, gb) as well as tk← (gz, hz/x, hz/y),

chooses a random k ∈ G1 and runs A on pk and c ← ((ga)x, vβ , k) for random
β ∈ Z∗p. Note that for A this simulation is indistinguishable from the real game.

If A manages to output m∗ = k/hα+β , then B outputs (k/m∗)/(hβ) = hα = gab

which is a valid solution to the CDH problem instance.

Below we briefly mention other schemes that may also be used as the under-
lying encryption scheme for AoN-PKEET∗ schemes.

Double ElGamal Encryption: Some GSSs [NS04b, DP06] rely on double
ElGamal encryption, which relies on the Naor-Yung paradigm [NY90]
to transform IND-CPA secure ElGamal into an IND-CCA2 secure vari-
ant in the random oracle model. The idea is to encrypt a message m
twice under two independent public keys (h1 = gξ1) and (h2 = gξ2) us-
ing independent random coins α and β to obtain (T1, T2) ← (gα,mhα1)

and (T3, T4) ← (gβ ,mhβ2). Then, one computes a non-interactive zero-
knowledge proof of knowledge (via Fiat-Shamir) that the two ciphertexts
(T1, T2) and (T3, T4) contain the same message m, which can be realized
by providing the following proof of knowledge (PoK) of the values (α, β):

PoK{(α, β) : T1 = gα ∧ T3 = gβ ∧ T2/T4 = hα1 /h
β
2}.

28 Chapter 3. Controllable Linkability

When used in a bilinear map setting (and assuming XDH as done in
[DP06]), the trapdoor equality test works analogously to standard ElGa-
mal and the trapdoor can either be tk = (r̂, t̂ = r̂ξ1) or tk = (r̂, t̂ = r̂ξ2).

Double Linear Encryption: The same approach used to turn standard El-
Gamal into an IND-CCA2 secure variant in the random oracle model can
also be applied to linear encryption (when one does not want to rely on
the XDH assumption) and the trapdoor equality test works analogously.

Cramer-Shoup Encryption: Our trapdoor equality test also works for the
IND-CCA2 secure Cramer-Shoup encryption scheme [CS98], as the first and
the third element of the ciphertext form a standard ElGamal ciphertext.

3.4 Adding Controllable Linkability to PB-GSSs

In order to generically add controllable linkability to PB-GSSs following the
SEP paradigm, we replace the used public key encryption scheme with its AoN-
PKEET∗ version. Then, the additionally required linking key mlk is the trapdoor
tk computed by Aut, which is given to the LA. When given two message-signature
pairs (M,σ) and (M ′, σ′), where the signatures σ = (T, π) and σ′ = (T ′, π′)
contain ciphertexts T and T ′ as well as the non-interactive proofs π and π′,
the LA runs Com(T, T ′,mlk) to decide whether the two signatures have been
produced by the same unknown signer.

In order to convert a PB-GSS GS = (GkGen, UkGen, Join, Issue, GSig, GVf,
Open, Judge) following the SEP paradigm into a PB-GSS with controllable linka-
bility, we have to add a linking authority (LA) as well as an additional algorithm
Link (cf. Section 3.2). Below we present the required modifications to the GkGen
algorithm as well as the Link algorithm:

GkGen(1κ): On input a security parameter κ, the algorithm generates the public
parameters and outputs a tuple (gpk,mok,mik,mlk). Therefore, it runs
(pke, ske)← KeyGen(1κ) of the AoN-PKEET∗ scheme, sets mok = ske, and
integrates pke into gpk. Finally, it computes the trapdoor tk← Aut(mok),
and sets mlk = tk. All remaining steps remain unchanged.

Link(gpk,M, σ,M ′, σ′,mlk): On input of the group public key gpk, a message M
and a corresponding signature σ, another message M ′ and a corresponding
signature σ′, as well as the master linking key mlk, the algorithm first veri-
fies both signatures via the GVf algorithm. If any of these two verifications
fails, the algorithm outputs false. Otherwise, the algorithm extracts the
ciphertexts T and T ′ from σ and σ′, runs Com(T, T ′,mlk), and outputs
whatever Com outputs.

Irrespective of the actual value that is being encrypted in the context of group
signatures, we always refer to this value as an encryption of the membership
certificate. In order to prevent the LA from efficiently guessing messages and
thereby to link the ciphertexts of (guessed) messages against unknown ciphertext
messages, we rely on the following assumption.

3.4. Adding Controllable Linkability to PB-GSSs 29

Assumption 1. Honestly computed membership certificates (used for identity
escrow) of users are uniformly distributed over the respective group and are un-
known to the linking authority.2

For all GSSs based on BBS variants [BBS04], membership certificates are

of the form A = g
1

xi+mik

1 where g1 may be the product of other group elements
representing a BB signature [BB04]. In [DY05] it is shown that this represents
a verifiable random function (VRF). Basically, in such a setting an adversary
controlling the input should not be able to distinguish the output of the VRF
from uniformly sampled strings of equal size. However, in our setting we do
not want to realize a pseudo-random function, but we only require that A is
uniformly distributed over the group for uniformly at random sampled messages
(that are not known to the linking authority). In case of BB signatures, A will
be a random element of the group if the unknown value of xi is chosen uniformly
at random from the integers in the order of the group.

The CL GSS proposed by Camenisch and Lysyanskaya [CL04] uses Cramer-
Shoup encryption in GT as they rely on Type 1 pairings, which would not
work with our approach. However, it can be adapted to asymmetric pairings
(cf. [PS16]) such that the encryption scheme no longer needs to work on ele-
ments in GT , and the scheme must also be lifted to the BSZ model. Irrespective
of the used paring setting the membership certificate to be encrypted is not a
signature (as in BBS variants), but a commitment to a user’s secret is encrypted.
As this secret is chosen uniformly at random, our assumption also holds.

Relation to Hwang et al.: The feature of controllable linkability for group
signature schemes proposed by Hwang et al. [HLC+11, HLC+13] inspired us
to our general transformation, but their construction differs in the following as-
pects. They use two ciphertexts (sharing the same randomness), one for opening
and one for linking, and consequently they require an additional ciphertext in
the group signature. Recall, that in the BBS scheme a membership certificate

is of the form Ai = g
1

xi+mik

1 for xi randomly chosen by the issuer and when

requiring non-frameability (strong exculpability) A = (g1h
−zi)

1
xi+mik where zi

is randomly chosen by the user and given in the form of a commitment h−zi

to the issuer. The construction of Hwang et al. [HLC+11] requires an addi-
tional issuer-chosen element yi and their membership certificates are of the form

A = (g1h
−zih′−yi)

1
xi+mik . In order to realize controllable linkability, a user en-

crypts gyi and provides an additional non-interactive zero-knowledge proof of
knowledge that the unrevealed value yi in the second ciphertext is included in
the membership certificate and linking basically represents a plaintext equality
check based on ElGamal encryption. The construction in [HLC+13] works anal-
ogously but uses another encryption scheme. Consequently, they apply their

2The latter case rules out trivial cases where the membership certificate that is encrypted
is a well known public key. In this case the user could always commit to his secret using a
base different from that in the public key and prove the equality of the respective discrete
logarithms during joining.

30 Chapter 3. Controllable Linkability

equality test to allow for controllable linkability not directly on the member-
ship certificate but on the second ciphertext that encrypts gyi and, thus, they
do not require Assumption 1 as they satisfy this by construction. The use
of an additional ciphertext as well as an additional non-interactive proof of
knowledge, however, makes the group signature more expensive from a com-
putational as well as a bandwidth perspective. Hence, similar as in case of
some IND-CCA2 secure encryption schemes the GSSs get more complex, al-
though the schemes by Hwang et al. still only support weak anonymity, i.e.,
(CPA-full-anonymity), whereas IND-CCA2 secure encryption schemes support
full anonymity, i.e., (CCA-full-anonymity). Thus, although their construction
may also be converted into a generic transformation, it seems more natural to
us to use a single ciphertext (which is already available in group signatures) as
in our proposed generic transformation and also base the linking decision on the
encryption of the membership certificate.

3.4.1 Security Analysis

A nice feature of our generic transformation is that the linking key mlk is indepen-
dent from the issuing key mik that is required to issue membership certificates.
Hence, the linking key does not constitute any danger in the sense that the LA
may impersonate the issuer. Since mlk is only related to mok, i.e., the public
key encryption scheme used to encrypt membership certificates, we only need
to ensure that LAs are not able to trace users, although LAs are able to check
whether two signatures have been issued by the same unknown group member.
Consequently, all proofs of the security properties of PB-GSSs not related to the
property of linkability remain valid as well as untouched by our generic trans-
formation. Thus, we only need to investigate the security properties related to
linkability that have been introduced by Hwang et al. [HLC+11, HLC+13].

Security Notions for Controllable Linkability. In GSSs with controllable
linkability [HLC+11, HLC+13], the related security issues are covered by the
linkability property that consists of three separate security notions. For the
subsequent discussion we define the following sets and oracles. CU, HU, and
GSet represent the sets of corrupted users, honest users, and the set of message-
signature pairs generated via queries to the challenge oracle, respectively. Fur-
thermore, reg denotes the list of transcripts generated by the Join process. Be-
sides, the following oracles are used (cf. [BSZ05]).

AddU(i): The add user oracle allows to add a user i to the group of honest users
(HU). Therefore, it executes UkGen, Join, and Issue. In the end, user
i is in possession of a key pair (uski, upki), and a signing key gski. The
registration information is recorded in reg, and upki is published.

CrptU(i, upk): The corrupt user oracle allows to set a user’s identifiable infor-
mation, i.e., the public key corresponding to the user’s private key, and
the user is added to CU.

3.4. Adding Controllable Linkability to PB-GSSs 31

SndToU(i, M): The send to user oracle (by a corrupted issuer) allows an adversary
to interact with an honest user i through the (not necessarily honest)
execution of the Issue algorithm.

USK(i): The user secret key oracle allows to retrieve the private keys (uski, gski)
of a user i and thereby turns this user into a corrupted user by adding her
to CU.

RReg(i): The read registration table oracle allows to read a registration table
entry for user i.

WReg(i, M): The write registration table oracle allows to overwrite a registration
table entry for user i with M .

GSig(i, M): The group signing oracle allows to query a group signature for a
given (honest) user i and a given message M .

Open(M, σ): The open oracle allows to retrieve the signer of a given message-
signature pair (M,σ), unless the given signature has been generated via
the challenge oracle.

Chb(i0, i1, M): The challenge oracle receives two honest users (i0, i1) and a mes-
sage M , and returns a group signature for one of the two users, who is
randomly chosen by bit b. The challenge signature is recorded in GSet.

In the following we present the ideas as well as the formal properties required
for controllable linkability, namely link-only linkability (LO-linkability), judge-
proof unforgeability (JP-unforgeability), and enforced linkability (e-linkability)
as defined in [HLC+11, HLC+13].

LO-linkability: LO-linkability captures that a linking key should be used only
for linking signatures, not for gaining useful information for opening.

JP-unforgeability: JP-unforgeability captures that a linking key cannot be
used for generating a judge proof.

E-linkability: E-linkability captures that colluding users should not be able to
generate two message-signature pairs satisfying any of the following two
conditions (even with the help of the linking authority or the opening au-
thority): (1) Open yields identical identities which are successfully judged,
while Link outputs false or (2) identities output by Open are different and
both are successfully judged, while Link outputs true.

Definition 17 (LO-Linkability). A group signature scheme GS with control-
lable linkability is said to provide link-only linkability (LO-linkability) if for any
adversary A and any κ ∈ N, Pr[ExpLO−linkGS,A (κ) = 1] ≤ ε(κ), where the experiment
is defined in Figure 3.1.

32 Chapter 3. Controllable Linkability

Experiment ExpLO−linkGS,A (κ):

(gpk,mok,mik,mlk)← GkGen(1κ), CU← ∅, HU← ∅, GSet← ∅;
(i0, i1,M)← ASndToU,AddU,GSig,Open,USK,CrptU(gpk,mik,mlk);
b←R {0, 1}, σ ← Chb(i0, i1,M);
b′ ← ASndToU,AddU,GSig,Open,USK,CrptU(gpk,mik, i0, i1,M, σ);
If all of the following conditions hold, then return 1 and 0 otherwise
i0, i1 ∈ HU;
GSig(i0, ·), GSig(i1, ·), and Open(M,σ) have not been queried;
b′ = b

Figure 3.1: Experiment for LO-linkability.

Definition 18 (JP-unforgeability). A group signature scheme GS with control-
lable linkability is said to provide judge-proof unforgeability (JP-unforgeability)
if for any adversary A and any κ ∈ N, Pr[ExpJP−UFGS,A (κ) = 1] ≤ ε(κ), where the
experiment is defined in Figure 3.2.

Experiment ExpJP−UFGS,A (κ):

(gpk,mok,mik,mlk)← GkGen(1κ), CU← ∅, HU← ∅, GSet← ∅;
(i,M)← ASndToU,AddU,WReg,GSig,Open,USK,CrptU(gpk,mik,mlk);
σ ← GSig(gpk, i,M);
τ ← ASndToU,WReg,GSig,Open,USK,CrptU(gpk,mik,mlk, i,M, σ);
If all of the following conditions hold, then return 1 and 0 otherwise
i ∈ HU and gsk[i] 6= ∅;
Open(M,σ) has not been queried;
Judge(gpk,upk[i],M, σ, τ) = true

Figure 3.2: Experiment for JP-unforgeability.

Definition 19 (E-Linkability). A group signature scheme GS with controllable
linkability is said to provide enforced linkability (E-linkability) if for any adver-
sary A and any κ ∈ N, Pr[ExpE−linkGS,A (κ) = 1] ≤ ε(κ), where the experiment is
defined in Figure 3.3.

The definitions provided above have been slightly adapted. More specifi-
cally, we corrected some minor flaws in the definitions provided by Hwang et
al. [HLC+11, HLC+13]. In particular, in the LO-unlinkability experiment the
adversary A is additionally required to have access to the AddU(·) oracle as
otherwise there cannot be any honest user in the experiment and the winning
condition can never be satisfied. Furthermore, in the JP-unforgeability experi-
ment, we find it more natural to write that A is not allowed to query GSig(i0, ·)
and GSig(i1, ·) in the second phase, which seems to be implicitly equivalent to
their condition of not being allowed to query GSig(ib, ·). Moreover, in their
E-linkability experiment upk[i] should be upk[i0] and upk[j] should be upk[i1].

3.4. Adding Controllable Linkability to PB-GSSs 33

Experiment ExpE−linkGS,A (κ):

(gpk,mok,mik,mlk)← GkGen(1κ), CU← ∅, HU← ∅, GSet← ∅;
(M0, σ0,M1, σ1)← ASndToU,AddU,RReg,GSig,USK,CrptU(gpk,mok,mlk);
If GVf(gpk,M0, σ0) = false or GVf(gpk,M1, σ1) = false then

return 0;
(i0, τi0)← Open(gpk, reg,M0, σ0,mok);
(i1, τi1)← Open(gpk, reg,M1, σ1,mok);
If Judge(gpk,M0, σ0, i0,upk[i0], τi0) = false or
Judge(gpk,M1, σ1, i0,upk[i1], τi1) = false then

return 0;
If i0 6= i1 and Link(gpk,M0, σ0,M1, σ1,mlk) = true then

return 1;
else if i0 = i1 and Link(gpk,M0, σ0,M1, σ1,mlk) = false then

return 1;
else return 0;

Figure 3.3: Experiment for E-linkability.

Our construction does not change the security arguments from [HLC+11,
HLC+13]. The argumentation in the proofs is nearly identical whereas we re-
quire a more abstract level of argumentation for our generic transformation.
Subsequently, we assume that AoN-PKEET∗ is based on the encryption scheme
used in the respective PB-GSS.

Lemma 4. If AoN-PKEET∗ is secure, PB-GSS is secure and Assumption 1
holds, the PB-GSS with controllable linkability obtained from the PB-GSS pro-
vides LO-linkability.

PB-GSSs following the SEP paradigm that are secure in the BSZ model
require an IND-CCA2 secure encryption scheme to simulate the Open oracle. In
case of our AoN-PKEET∗ scheme that allows for efficient zero-knowledge proofs
of knowledge of encrypted messages, we assume an IND-CCA2 secure encryption
scheme resulting from the application of the twin encryption paradigm [NY90,
RS91, FP01] on an IND-CPA secure encryption scheme. This assumption clearly
holds for all existing GSSs following the SEP paradigm that are secure in the
BSZ model as these schemes employ the twin encryption paradigm. Recall that
the twin encryption paradigm uses two independent public keys of the same
encryption scheme to encrypt a message under both keys, and uses a simulation
sound non-interactive zero-knowledge proof of knowledge system (cf. [RS91]) Π
to prove plaintext knowledge and equality. Now we prove LO-Linkability under
the IND-CPA/IND-CCA2 security of the used AoN-PKEET∗ scheme. The idea
is to obtain one public key from a challenger of an AoN-PKEET∗ instance, and
to generate another independent public key which will be used to generate the
linking trapdoor during the experiment. To properly answer oracle queries, we
use the simulator of Π to produce false proofs which allow us to embed the
challenge ciphertext into the challenge signature.

34 Chapter 3. Controllable Linkability

Proof (Lemma 4). An adversary A that is able to determine whether a challenge
signature has been issued by i0 or i1 has done so without calling Open for the
challenge signature, not knowing gsk0 and gsk1 as well as not having issued any
signature query for i0 or i1 to the GSig oracle, can be turned into an adversary
against the ciphertext indistinguishability of the underlying public key encryp-
tion scheme. We set up the environment for A by obtaining a public key pk0 from
an AoN-PKEET∗ challenger. In case of an IND-CCA2 secure twin encryption
scheme we simply take the first key. We choose sk1 in the simulation, compute
mlk ← Aut(sk1), and give mlk to the adversary A. During the first phase we
can simulate all oracle queries for A as in the real game. Eventually A outputs
(i0, i1,M) and the environment queries the AoN-PKEET∗ challenger with the
two certificates corresponding to i0 and i1 in order to obtain a challenge cipher-
text. Under the IND-CPA security (real-or-random) of the encryption scheme,
the simulator encrypts some random message with the second public key pk1.
Note that the adversary A does not have access to mlk in the second phase any-
more. The environment uses the simulator of Π to produce a simulated proof and
generates the final challenge signature σ. If A is able to win the experiment, A
can be turned into an adversary against the ciphertext indistinguishability of the
AoN-PKEET∗ scheme, which contradicts the assumption that AoN-PKEET∗ is
secure.

Lemma 5. If AoN-PKEET∗ is secure and PB-GSS is secure, the PB-GSS with
controllable linkability obtained from the PB-GSS provides JP-Unforgeability.

Proof (Lemma 5). In PB-GSSs following the SEP paradigm, the proof τ out-
put by the Open algorithm represents a non-interactive zero-knowledge proof of
knowledge of equality of the returned certificate and the certificate within the
ciphertext (which is usually a simple proof of equality of discrete logarithms).
An efficient adversary A that wins the JP -unforgeability experiment can be
used to extract the private key corresponding to the public key encryption key
in gpk and mlk. The reduction can embed the problem instance into the public
key in gpk and mlk and simulating the proofs required by the Open queries (by
programming the random oracle). The private key can then be extracted from A
by using the extractor (e.g., standard rewinding techniques when in the random
oracle model) for the proof of knowledge in the reduction.

Lemma 6. If AoN-PKEET∗ is secure and PB-GSS is secure, the PB-GSS with
controllable linkability obtained from the PB-GSS provides E-linkability.

Proof (Lemma 6). If an adversary A outputs two pairs of messages and signa-
tures (M0, σ0) and (M1, σ1) such that (ib, τb)← Open(gpk, reg,Mb, σb,mok) and
true← Judge(gpk,Mb, σb, ib, upkib , τb) for b = 0, 1, then we have two cases:

Case 1: In the first case we have that i0 = i1 but the two signatures do not
link, i.e., false ← Link(gpk,M0, σ0,M1, σ1,mlk). This means that for
σ0 = (T0, π0) and σ1 = (T1, π1) both ciphertexts T0 and T1 are encryptions
of the membership certificate of the same user (i0 = i1 follows from Open),

3.5. Comparison with Other Approaches 35

but false ← Com(T0, T1,mlk). This, however, contradicts the soundness
of the AoN-PKEET∗ scheme.

Case 2: In the second case we have that i0 6= i1 but the two signatures link, i.e.,
true ← Link(gpk,M0, σ0,M1, σ1,mlk). This means that for σ0 = (T0, π0)
and σ1 = (T1, π1) the ciphertexts T0 and T1 are encryptions of distinct
certificates of the users i0 6= i1. However, as true← Com(T0, T1,mlk), this,
again, contradicts the soundness of the AoN-PKEET∗ scheme.

Since all other properties remain unaffected by the feature of controllable
linkability, we obtain the following theorem from the above lemmas.

Theorem 1. If AoN-PKEET∗ is secure, the PB-GSS is secure, and Assumption
1 holds, then the generic transformation yields a secure PB-GSS with controllable
linkability.

3.5 Comparison with Other Approaches

In this section, we discuss enhanced anonymity management mechanisms for
GSs with respect to their capability of realizing controllable linkability.

3.5.1 Linkable Group Signatures

Tracing-by-linking (TbL) group signatures are group signatures where, in con-
trast to the SEP paradigm (tracing-by-escrowing), the signer’s anonymity cannot
be revoked by any combination of authorities. Only if a group member signs
twice (or more general k ≥ 2 times), then her identity can be traced publicly
without any trapdoor (cf. [TFS04]). Another direction are link-but-not-trace
GSs [NFW99], where signatures contain a tag such that double signing can be
detected but without the help of each member (disavowing stage) the signer can-
not be identified. In the disavowing stage each user needs to prove that a specific
signature has not been produced by her, where the actual signer cannot produce
a valid proof. These approaches cannot be compared to controllable linkability,
since in these approaches linking is a public operation to detect double signing
by the same entity (or more general k-time signing) while controllable linkability
requires that only a dedicated party can perform the linking operation.

3.5.2 Traceable Signatures

Traceable signatures [KTY04, CPY06, LY09] are GSs extending the opening fea-
ture by (1) user tracing, meaning that the group manager can publish a tracing
trapdoor which allows to trace all signatures of the respective user, and (2) signa-
ture claiming, meaning that the signer of a signature can provably claim that the
signature has been produced by her. Hence, traceable signatures allow selective
traceability, where an authority can compute a tracing trapdoor for every user

36 Chapter 3. Controllable Linkability

such that only signatures produced by this user can be linked using this trac-
ing trapdoor, but signatures from other users remain unlinkable. Consequently,
this functionality could be used to implement controllable linkability by giving a
tracing trapdoor for every user to a linking authority. Given two signatures, the
linking authority can take every user trapdoor and check this relation for both
signatures. If the relation is satisfied for the same trapdoor, the signatures are
from the same anonymous group member and from different anonymous group
members otherwise. Obviously, linking requires computational costs linear in the
number of group members, which can soon become impractical for larger groups
and additionally the group manager needs to communicate tracing trapdoors of
newly joined users frequently (and in time) to the linking authority.

Chow [Cho09] employs the idea of “join once, spend many” from an e-cash
scheme to propose real traceable signatures. He argues that all previous trace-
able signatures are not optimal since checking whether a signature has been
issued by the user corresponding to a given tracing trapdoor requires additional
computations. The idea behind his alternative construction is that a tracing
trapdoor allows to deterministically recompute every tag of a user’s signature
(the tracing trapdoor is the seed for a verifiable random function [DY05]) and
thus to trace. Consequently, the tracing authority can compute a list of tags and
send them to every verifier who can then check if the tag of the signature can
be found in the given list. However, the drawback of this approach is that only
` unlinkable signatures can be issued by every user and every signature requires
an additional zero-knowledge range proof, i.e., that the used value for the tag is
less than `, where ` is a fixed parameter in the system. Consequently, signatures
get more expensive the larger ` is and so does the size of the list of tags per user.
When used to realize controllable linkability, lists of tags for every member of the
group may be precomputed and given to the linking authority and the linking of
two signatures would then require a check whether the tags of the two signatures
in question can be found on the same list. For large groups and large ` the size
of the collection of lists for all users can be quite significant and, as in case of
traceable signatures, for every joining user such a list for the new user has to be
communicated to the linking authority. Moreover, we consider the application
of this approach not suitable for controllable linkability, as the respective group
signature scheme only supports ` unlinkable group signatures and consequently
does not constitute a standard GSS.

3.5.3 Public Key Anonymous Tag Systems

Abe et al. [ACHO11] further generalized the approach of Chow [Cho09] to a
primitive denoted as public key anonymous tag system which can be used to
construct traceable signatures. Essentially, Abe et al. use so-called link tokens,
where an authority with a dedicated link key can compute these link tokens for
specific users that should be traceable. Given such a token for a specific member,
signatures produced by this member can be publicly traced by anyone. Further-
more, their scheme allows all members to compute their link tokens without
knowledge of the link key. Thus, signers can always link their own signatures

3.5. Comparison with Other Approaches 37

which might not be desirable in some scenarios. An additional zero-knowledge
proof based on this link token and the user’s private key allows signers to claim
and non-signers to deny being the signer of a message. While this property might
be useful in some applications, it also leads to the unavoidable attack that N−1
colluding members can reveal the signer of a message by proving that they did
not sign a specific message. Again, controllable linkability can be implemented
with public key anonymous tag systems, but the linking requires costs linear
in the size of the number of group members and cannot be precomputed (as it
is the case with traceable signatures). In addition, the link tokens required to
perform this linking must be distributed to the linking authority as soon as new
members join the group.

3.5.4 Verifier Local Revocation

Verifier local revocation (VLR) for group signatures has been proposed by Boneh
and Shacham [BS04]. In such schemes verifiers are given a revocation list in
order to determine whether a signature stems from an already revoked member.
More precisely, the verifier needs to check signatures against all entries on this
revocation list, which means that the computational effort for the verifier grows
linearly in the number of revoked users. Similar to how traceable signatures
could be used for controllable linkability, the group manager could give a list
with tokens for all group members to the linking authority. For two given
signatures, the linking authority can test each of the signatures against the list
and if the match happens on the same position in the two runs then the signature
has been produced by the same anonymous signer. Consequently, this approach
also requires costs linear in the number users. Furthermore, as it is also the
case for traceable signatures, it requires to deliver a user token to the linking
authority after every joining operation of a user.

3.5.5 Comparison

Table 3.1 provides a comparison of the above outlined concepts. Although there
exist concepts that sound quite similar, i.e., tracing-by-linking as well as link-
but-not-trace GSs, the intention of these mechanisms is different, namely to
prevent signers from signing more than a predefined number of messages. Thus,
these two concepts cannot be employed for the implementation of controllable
linkability. The other concepts can be employed to achieve controllable linka-
bility, but are rather inefficient in terms of communication overhead (commu-
nication of trapdoors to the linking authority) every time a new user joins the
group, in terms of additional costs for the actual linking of signatures as well as
in terms of memory requirements to achieve the desired functionality of linking.

To conclude, when requiring controllable linkability in GSSs, the proposed
generic construction to convert PB-GSSs based on the SEP paradigm into GSSs
with controllable linkability is superior to “emulating” controllable linkability
by means of features provided by other constructions. As the linking authority
holds a single trapdoor in the form of a linking key, there is no necessity to

38 Chapter 3. Controllable Linkability

Table 3.1: Applicability of related concepts to achieve controllable linkability (CL). N
denotes the number of group members. l denotes the number of signatures
that can be issued by a signer before signatures become publicly linkable.

Mechanism
Suitable Overhead for LA

for CL Update on Join Link Memory

Tracing-by-linking group signatures [TFS04] 8 - - -
Link-but-not-trace group signatures [NFW99] 8 - - -
Traceable signatures [KTY04] 3 3 O(N) O(N)
Real traceable signatures [Cho09] 3 3 O(N) O(` ·N)
Public key anonymous tag systems [ACHO11] 3 3 O(N) O(N)
Verifier local revocation [BS04] 3 3 O(N) O(N)
Controllable linkability 3 8 O(1) O(1)

communicate user specific trapdoors from the group manager to the linking
authority on every joining of a new user. Thus, compared to other approaches
that have a different goal but still may be used to achieve controllable linkability,
our generic approach is more efficient and simple when only requiring controllable
linkability and no other traceability feature.

4
Linking-Based Revocation

Quickness is the essence of the war.

— Sun Tzu, The Art of War

The applicability of GSs is still restricted due to inefficiencies of existing
membership revocation mechanisms that place a computational burden and com-
munication overhead on signers and verifiers. In particular, it seems that the
general belief (or unwritten law) of avoiding online authorities by all means ar-
tificially and unnecessarily restricts the efficiency and practicality of revocation
mechanisms in GSSs. While a mindset of preventing online authorities might
have been appropriate more than 10 years ago, today the availability of highly
reliable cloud infrastructures could be employed to solve open challenges.

In order to overcome the inefficiencies of existing revocation mechanisms, we
propose an alternative approach denoted as linking-based revocation (LBR). The
novelty of LBR is its transparency for signers and verifiers that spares additional
computations as well as updates. We introduce dedicated revocation authorities
(RAs) that can be contacted for efficient (constant time) revocation checks. In
order to protect these RAs and to reduce the trust in these authorities, we also
introduce distributed controllable linkability such that RAs need to cooperate
with multiple authorities to compute the required linking/revocation tokens.
Besides efficiency, an appealing benefit of LBR is its generic applicability to
PB-GSSs secure in the BSZ model and GSSs with controllable linkability.

We provide a motivation for LBR in Section 4.1 and discuss state-of-the-art
revocation mechanisms in Section 4.2. We recall the basic building blocks in
Section 4.3 and introduce LBR in Section 4.4. We demonstrate the ease of ap-
plicability in Section 4.5. Parts of this chapter are taken verbatim from [SSU16].

39

40 Chapter 4. Linking-Based Revocation

Publication Data and Contribution

Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer. Group
Signatures with Linking-Based Revocation: A Pragmatic Approach for Ef-
ficient Revocation Checks. In Conference on Cryptology & Malicious Secu-
rity – Mycrypt 2016, 2016. In press
Contribution: Main author; Initial idea together with Thomas Unterlug-
gauer; Idea for token indistinguishability developed by Daniel Slamanig.

4.1 Introduction

Membership revocation in GSSs is a non-trivial task as (1) users are anonymous
and their privacy should be protected even in case of revocation, and (2) the
revocation of one user should not affect the signing capabilities of other users.
Although membership revocation has gained increasing attention in the last
decade [BS04, NF05, FHM11, AEHS14, EMO14, KLP+15], existing revocation
mechanisms place a computational burden and communication overhead on sign-
ers and verifiers. While existing concepts seem to prevent online authorities by
all means, we show that a transition towards online authorities—which we will
protect by means of threshold cryptography—allows for the most efficient (con-
stant time), and most generic revocation mechanism for existing GSSs. Given
a signature in question and a revocation list, a revocation authority determines
the revocation status of a signer by using a dedicated trapdoor to (anonymously)
link the signature against a list of revoked members. Hence, this authority still
preserves the signers’ anonymity. Our somewhat unconventional proposal of us-
ing an online revocation authority overcomes many issues of existing revocation
mechanisms and, thus, we believe that our revocation mechanism represents a
valuable addendum to the portfolio of revocation mechanisms.

Online Requirement. Although our approach relies on an online authority
for revocation checks, we argue that today many devices are already connected to
the Internet permanently and rely on the availability of cloud computing infras-
tructures. Especially the establishment of the Internet of Things (IoT) requires
devices being connected to the Internet, either via WiFi or even embedded SIM
cards, for various (sometimes dubious) reasons. Nevertheless, irrespective of
whether existing IoT devices provide any useful features, the point is that many
devices are already interconnected among each other and also extensively use
Internet services based on cloud computing infrastructures and, thus, we con-
sider an online RA as absolutely reasonable. In cases where network connectivity
and availability are not an issue, our proposed revocation mechanism provides
dedicated advantages, e.g., immediate revocation without the need to distribute
revocation information to signers or verifiers. Further, since signature verifica-
tion is decoupled from the online revocation checks, these revocation checks can
also be postponed in case the revocation authority might not be available. Be-
sides, as we will discuss later, we protect the trapdoor key by means of threshold
cryptography in order to reduce the risk of attacks.

4.2. State-of-the-Art in Revocation 41

4.2 State-of-the-Art in Revocation

Below we discuss efficiency considerations of existing revocation mechanisms
using the metric of additional computations and updates required for signers as
well as verifiers. Subsequently, R denotes the number of revoked members and
N the number of group members.

Basic Approaches. The most basic approach is reissuance-based revocation
[AST02] that requires all non-revoked members to receive new credentials. Sim-
ilarly, credential-update revocation (CUR) [BBS04] requires non-revoked mem-
bers to update their credentials on every revocation. Both mechanisms suffer
from additional communication and computation overhead in case of frequent
revocations. In particular, O(R) (multi-)exponentiations for signers.

Blacklist Revocation. Certificate-based blacklist revocation (BR-C) [BS01]
requires signers to provide a zero-knowledge proof that they are not listed on a
revocation list (RL), which means that signers/verifiers need to perform O(R)
computations for every sign/verify operation and the signature size also in-
creases linearly in R. Accumulator-based blacklist revocation (BR-A) [CL02,
ATSM09, FHM11] applies (universal) cryptographic accumulators to allow for a
compact and constant-size representation of RL as well as constant-size proofs to
prove (non-)membership. Blacklists of ordered credential-identifier pairs (BR-
ID) [NFHF09] also lead to constant costs for signers and verifiers, but signers
need to fetch an updated RL in the size of O(R) (and O(N) in predecessor
schemes [NS04a, NKHF05]) on each revocation, and the public key size is O(N)
(or O(

√
N) with higher signing costs).

Verifier-Local Revocation. In verifier-local revocation (VLR) [BS04, NF05,
NF06, ZL06], verifiers test for a given signature whether a certain relation
holds for each entry on RL, which indicates that the signer has been revoked.
Consequently, verifiers need to update RL on every revocation and a check
costs O(R) group operations or even pairing evaluations. Although Boneh and
Shacham [BS04] propose a constant-time revocation check, it only works if the
same message and the same randomness is used for all signatures. This, how-
ever, is only reasonable for specific applications like the DAA setting described
in [BS04]. Other disadvantages of VLR are that signatures of revoked members
become linkable for all verifiers, i.e., it lacks backward unlinkability, and that
anyone in possession of RL can link signatures of revoked users. Although this
can be fixed and backward unlinkability can be added, e.g., by introducing time
intervals [NF05], this still adds additional non-trivial overhead.

Besides, Emura and Hayashi [EH15] proposed time-token dependent linking
which can also be applied for VLR. However, signatures become publicly linkable
(without any trapdoor information) if users sign more than once per time period,
a separate RL must be maintained for each time period, and RLs need to be
recomputed entirely for each time period since the revocation tokens of users

42 Chapter 4. Linking-Based Revocation

change in each time period. While one could encrypt these revocation tokens to
be decryptable by revocation authorities only, i.e., to prevent public linkability,
this would increase the signature size in part due to additional zero-knowledge
proofs. In contrast, our approach preserves the privacy of signers and does
not increase the signature size as it relies on the information already available in
standard GSSs. Chow et al. [CSY06] proposed a similar concept for membership
revocation in ID-based ring signatures, a related but different concept.

Group signatures with probabilistic revocation (GSPR) [KLP+15] allow for
constant-time revocation checks at the expense of probabilistic revocation guar-
antees. However, in contrast to VLR the signer has to perform O(m) expensive
operations, where m is a fixed value representing the number of signatures that
can be issued by a signer before signatures become publicly linkable. Conse-
quently, there is a trade-off between the storage/computational requirements for
signers and the requirement for performing the group setup phase again. More-
over, the size of the group public key is O(m) and the GM needs to process
O(m) user-specific tokens in order to update RL.

Revocation Mechanisms for Standard Model GS. Revocation mecha-
nisms have also been proposed for GSSs with security in the standard model.
These mechanisms are designed to be compatible with the Groth-Sahai proof
system [GS08], instead of relying on Σ-protocols and the random oracle model.
State-of-the-art mechanisms have been proposed by Libert, Peters, and Yung
(LPY) [LPY12b], which rely on the ciphertext of a broadcast encryption scheme
as a RL. Later, LPY [LPY12a] has been improved to achieve constant size group
signing keys. Attrapadung et al. (AEHS) [AEHS14] further reduced the revo-
cation list to a constant size. However, signature sizes for LPY are about 100
and 144 group elements respectively, and AEHS produces even larger signatures.
Thus, we exclude these revocation mechanisms from our comparison below, since
we put a focus on GSSs that allow signers to be executed in resource-constrained
environments as will be discussed in our motivating example later in this section.

Our Proposal (GS-LBR). Existing revocation mechanisms are often too
inefficient to be implemented in practical scenarios and especially in resource-
constrained environments, which is why revocation has been identified as the
major bottleneck of state-of-the-art GSSs [MFG+12]. We address this problem
by introducing linking-based revocation (LBR). LBR can be generically applied
to existing GSSs, and in particular PB-GSSs [NS04b, DP06, HLC+11, HLC+13,
Int13, HCCN15] following the SEP paradigm. Essentially, we rely on the feature
of controllable linkability as introduced in Chapter 3. The idea of LBR is that,
in analogy to the online certificate status protocol (OCSP) [SMA+13] which is
used for certificate revocation checks in the PKIX setting1, an online party can
be contacted for the revocation check. To prevent attackers from compromising
online RAs, we introduce the feature of distributed controllable linkability which

1OCSP is the most popular approach for revocation checks in the PKIX setting [Pon15].

4.2. State-of-the-Art in Revocation 43

may be of independent interest. When applying distributed controllable linka-
bility to revocation, it allows RAs to anonymously link a signature—with the
cooperation of at least two linking authorities—against anonymous revocation
tokens on RL. An additional optimization allows for constant-time revocation
checks.

In contrast to existing revocation mechanisms, our mechanism is transpar-
ent for signers and verifiers. Most importantly, LBR is efficient in the sense
that (1) no key updates or additional computations are required for signers,
(2) no expensive local revocation checks are required for verifiers, and (3) nei-
ther the signature size nor the key size increases. This allows us to support
membership revocation even in applications that require resource-constrained
environments for signature generation. While all existing revocation approaches
require signers and/or verifiers to fetch (possibly large) RLs from time to time,
our mechanism relies on an always-online authority that is available for revoca-
tion checks. Although an online authority for such tasks might be considered
as being unconventional or impractical at first, we believe that such an always-
online requirement for specific authorities is absolutely reasonable and a similar
approach has also been discussed in the context of anonymous credential systems
(cf. [Ver16]). In order to protect these RAs against attacks, we distribute the
linking trapdoor required for the revocation checks to multiple entities. Con-
sequently, an attacker would have to corrupt multiple entities to recover the
linking trapdoor.

Comparison. Table 4.1 compares existing revocation mechanisms for practi-
cal group signature schemes secure in the random oracle model regarding their
efficiency and practicality. For each mechanism, we compare the memory over-
head for the group public key and the signature as well as the computational
overhead for updating keys/credentials, signature generation, and signature ver-
ification. Furthermore, we indicate the amount of information that needs to be
fetched by signers and verifiers in case of revocation. As some schemes require
both signers and verifiers to fetch updates, we also indicate whether these up-
dates must be synchronized, i.e., whether both parties need to have the same
update-version as otherwise valid signatures cannot be computed and verified.
Last but not least, we indicate whether signers and verifiers must be online for
the revocation mechanism to work, where ♦ means semi-online, i.e., signers and
verifiers can decide when to go online to fetch the necessary updates.

Although VLR seems to provide similar advantages and features as LBR,
our approach of LBR only allows RAs to link signatures, which is not the case
within VLR where users can link signatures themselves. Thus, LBR overcomes
the delicate issue of revoked members losing their anonymity. In addition, our
proposed revocation mechanism can be generically applied to many PB-GSSs
following the SEP paradigm, which covers a large class of state-of-the-art and
practically efficient GSSs. As we will see below, our approach of LBR provides
dedicated advantages and superior features for specific scenarios.

44
C

h
ap

ter
4.

L
in

k
in

g-B
ased

R
evo

cation

Table 4.1: Comparison of revocation mechanisms. N denotes the number of group members, R denotes the number of revoked members,
and m denotes the number of signatures that can be issued by a signer before signatures become publicly linkable. ♦ means
semi-online, i.e., signers and verifiers can decide when to go online to fetch the necessary updates.

Type
Overhead memory Overhead time Updates

Synchronized
Online

GPK Signature Update (signer) Sign Verify Signers Verifiers Signers Verifiers

CUR [BBS04, HLC+11] − − O(R) − − O(R) O(1) 3 ♦ ♦
BR-C [BS01] − O(R) − O(R) O(R) O(R) O(R) 3 ♦ ♦
BR-ID [NFHF09] O(

√
N) O(1) − O(1) O(1) O(R) O(1) 3 ♦ ♦

BR-A [FHM11] − O(1) − O(1) O(1) O(1) O(1) 3 ♦ ♦
VLR [BS04] − − − − O(R) − O(R) − 8 ♦
GSPR [KLP+15] O(m) O(1) − O(m) O(1) − O(1) − 8 ♦
LBR − − − − O(1) − − − 8 3

4.3. Building Blocks for GSs with LBR 45

Motivating Example. As pairing-based cryptography has been optimized for
resource-constrained devices [CCdMP10, CDDT12, GAL+12, PWH+13, UW14,
IiRPP15], PB-GSSs have become entirely practical, at least when considering
the performance of signature generation only. For example, GSSs have been pro-
posed as a privacy-preserving mechanism for public transport systems [IVP+13].
Their application allows passengers to anonymously prove possession of a valid
ticket, but the service provider cannot identify passengers. Still, revocation of
misbehaving passengers by invalidating tickets must be possible and these re-
vocations should not affect other tickets in any way. Clearly, frequent updates
through authenticated channels between tickets and service providers are imprac-
tical, as they would affect the valid tickets. Besides, performance is a crucial
issue and, hence, the invalidation of one ticket should not lead to additional
computations for the remaining (valid) tickets.

While VLR might be a possible solution to overcome these problems, public
transport systems usually support tickets with a limited validity, i.e., 1-hour
tickets, daily tickets, monthly tickets, and yearly tickets. Such tickets must
be immediately revoked as soon as their validity ends and, thus, immediate
revocation of tickets must be efficiently possible. Hence, VLR still faces the
following problems. (1) RLs lead to O(R) computational effort for verifiers which
is especially daunting in case of large RLs, and (2) RLs change frequently and
must be distributed in a timely manner, i.e., immediately after the revocation
of one ticket, to many verifiers. Clearly, LBR overcomes these issues as it gets
rid of the computational overhead for signers as well as verifiers and the need
to communicate any revocation updates to signers and verifiers. Applying LBR
allows the service provider to implement an existing PB-GSS (e.g., [NS04b,
DP06, HLC+11, HLC+13, Int13, HCCN15]) as a means to prove possession of a
valid ticket. Turnstiles and gates that check the validity of a ticket are connected
to the revocation authority. For each ticket to be verified, turnstiles request the
revocation check via specifically deployed RAs and depending on the returned
decision, access is either granted or denied.

Considering some of the biggest metro systems around the world with several
hundred millions of served passengers per year, e.g., Beijing, Moscow, and NY
City, the efficiency of the used revocation mechanism is of utmost importance.
Besides, also the European Union demands for privacy protection of individuals
and the principle of data minimization in transportation systems within the EU
Directive 2010/40. Hence, GSSs will likely play an important role in the future
and efficient revocation mechanisms will be required.

4.3 Building Blocks for GSs with LBR

Subsequently, we briefly outline the high-level idea of our proposed revocation
mechanism. Afterwards, we introduce the necessary building blocks and modi-
fications, i.e., we show how to achieve constant-time revocation checks and we
also introduce the feature of distributed controllable linkability.

46 Chapter 4. Linking-Based Revocation

RA1 (mlk, RL) ... RAn (mlk, RL)

Verifier1 Verifier2 Verifier3 Verifier4 Verifier5

σ

0/
1

Link(gpk, ·, σ, ·, σi,mlk) for 0 ≤ i < |RL|

Figure 4.1: Naive instantiation of linking-based revocation.

4.3.1 High-Level Idea of GSs with LBR

Recall that our generic compiler introduced in Chapter 3 allows to add con-
trollable linkability to PB-GSS following the SEP paradigm that are secure in
the BSZ model. The dedicated approaches to construct group signatures with
controllable linkability in [HLC+11, HLC+13, HCCN15] implicitly use the same
idea and thus can also be used in combination with our revocation approach.

Based on the concept of controllable linkability, the idea of linking-based
revocation is as follows. A dedicated RA is given the master linking key, a
revocation list, e.g., a list of signatures of revoked members, and a signature for
which the revocation status should be determined. For the revocation check,
the RA links the given signature against all entries on RL. If the given signature
can be linked to any of these signatures, the corresponding signer has been
revoked, otherwise the signer has not been revoked. Figure 4.1 illustrates this
basic approach, which is, however, rather naive for the following reasons.

1. The revocation check is linear in the size of RL, i.e., the check requires
O(R) computations.

2. If an attacker compromises the RA and steals the linking key, she would
be able to link any two signatures which is clearly not desired.

Subsequently, we deal with these issues and gradually introduce the necessary
modifications to achieve (1) constant-time revocation checks, and (2) to remove
the single point of attack by distributing the linking key among multiple entities.

4.3.2 Constant-Time Revocation Checks

To obtain constant-time revocation checks, we modify the Com(T, T ′, tk) al-
gorithm of the AoN-PKEET∗ scheme such that it no longer decides whether
two ciphertexts encrypt the same message, but instead returns a value—the re-
vocation token—computed from a given ciphertext T and the trapdoor tk. For
example, for ElGamal encryption we have a ciphertext T = (T1, T2) = (gα,mhα)
and a trapdoor tk = (r̂, r̂ξ), which yields revocation tokens of the form e(T2, r̂) ·
e(T1, ŝ)

−1 = e(m, r̂). We denote such an invocation as t← Com(T,⊥, tk).

4.3. Building Blocks for GSs with LBR 47

Security Definition. In order to reason about the security of such a mecha-
nism when applied to revocation, we introduce the notion of token indistinguisha-
bility. Token indistinguishability considers an adversary that does not know the
trapdoor tk but for a ciphertext T = (T1, T2) on any message m observes tokens
t of the form e(T2, r̂) · e(T1, t̂)−1 = e(m, r̂). This information, however, does not
allow the adversary to reason about any tokens seen in the future.

Definition 20 (Token Indistinguishability). An AoN-PKEET∗ scheme is T-
IND, if for all PPT adversaries A and security parameters κ there is a negligible
function ε such that:

Pr

(pk, sk)← KeyGen(1κ), tk← Aut(sk),
s← AORMsg(pk),m←RM, c← Enc(pk,m),
b←R {0, 1}, t0 ← Com(c,⊥, tk), t1←R T
b∗ ← AORMsg(pk,m, tb, s)

: b∗ = b

 ≤ 1/2 + ε(κ)

whereM represents the message space, T represents the token space, and ORMsg

represents the oracle to generate random messages and corresponding tokens
(mi, ti), such that mi←RM and ti ← Com(Enc(pk,mi),⊥, tk).

Lemma 7. Under the DDH assumption, AoN-PKEET∗ based on ElGamal in
G1 in an XDH setting is T-IND.

Proof (Lemma 7). Given an adversaryA that breaks the T-IND of AoN-PKEET∗,
we show how to construct an adversary B against DDH. Let (g, ga, gb, gc) be a
DDH instance given to B. B randomly generates a private key sk and corre-
sponding public key pk, and sets tk ← Aut(sk), i.e., B implicitly sets r̂ = ĝb.
A is now allowed to query ORMsg, which B answers as (gmi , e((gb)mi , ĝ)) for a
random mi ∈ Zp. Eventually, A receives the challenge (ga, e(gc, ĝ)) and outputs
its guess. It is clear that if the DDH instance is valid, then the challenge rep-
resents a valid message-token tuple and is an independent and random element
otherwise. Thus, we perfectly simulate the T-IND game for A and it is clear that
whenever A breaks T-IND we can break DDH with the same probability.

4.3.3 Distributed Controllable Linkability

Due to the fact that our proposed revocation mechanism relies on an always-
online revocation authority, the attack potential is significantly higher than in
case of an offline authority. Essentially, we want to ensure that an attacker can-
not steal the master linking key mlk by compromising such an authority. In order
to prevent such a single point of failure, we introduce threshold AoN-PKEET∗.
This in turn allows us to realize distributed controllable linkability. Thereby,
we reduce the trust in the linking authority and also obtain more robustness.
In a similar manner Ghadafi [Gha14] introduced distributed tracing, such that
multiple opening authorities must cooperate in order to open a signature.

The idea is to distribute the trapdoor tk ← Aut(sk) of an AoN-PKEET∗

primitive among n entities using a (t, n)-secret sharing scheme. Then, the co-
operation of at least t authorities is required to recover the trapdoor tk or to
employ the trapdoor to perform equality tests on encrypted data.

48 Chapter 4. Linking-Based Revocation

Formal Model. We define threshold AoN-PKEET∗ as a tuple of algorithms
T -PKEQ∗ = (KeyGen,Enc,Dec,Aut,DKAut,TShare,TSCom). DKAut computes
the shares for the trapdoor key, TShare computes the trapdoor shares for given
ciphertexts, and TSCom performs the equality test based on a given set of shares.

DKAut(tk, t, n): Takes a trapdoor key tk, a threshold t, and a number of total
shares n, and returns trapdoor shares (tki)

n
i=1, such that a subset of at

least t entities is required to perform equality tests.

TShare(T, T ′, tki): Takes two ciphertexts (T , T ′) and a trapdoor share tki, and
returns corresponding shares Ci and C ′i for the equality test.

TSCom({Ci, C ′i}i∈I): Takes a set of shares {Ci, C ′i}i∈I with |I| ≥ t, and com-
bines the shares to perform the plaintext equality test. It returns true if
T and T ′ encrypt the same (unknown) message and false otherwise.

We adapt TShare and TSCom to return appropriate shares and the corre-
sponding revocation token, respectively. We denote an invocation that returns
the corresponding shares as {Ci,⊥} ← TShare(T,⊥, tki) and an invocation that
combines the shares to compute the revocation token as t← TSCom({Ci,⊥}).

Instantiation based on ElGamal and Shamir’s secret sharing. Again,
we assume a conventional ElGamal-based AoN-PKEET∗ scheme in a bilinear
group setting, where the private key is sk = ξ ∈ Zp and the trapdoor for plaintext
equality tests is tk = (r̂, ŝ = r̂ξ) ∈ G2

2. We omit the KeyGen, Enc, Dec algorithms
for the sake of brevity and only present the relevant algorithms below.

DKAut(tk, t, n): Given a trapdoor key tk = (r̂, ŝ = r̂ξ), a threshold t, and a
total number of shares n, it computes the shares (tki)

n
i=1. Therefore, it

computes a polynomial F (x) = r̂ ·
∏t−1
`=1 f̂

x`

` for random f̂` ∈ G2. Similarly,

it computes a polynomial G(x) = ŝ ·
∏t−1
`=1 ĝ

x`

` for random ĝ` ∈ G2. Finally,
it returns the shares (tki = (i, r̂i ← F (i), ŝi ← G(i)))ni=1.

TShare(T, T ′, tki): Given two ciphertexts (T, T ′) = ((T1, T2), (T ′1, T
′
2)) and a

trapdoor share tki = (r̂i, ŝi), it returns the comparison shares Ci = e(T2, r̂i)
and Di = e(T1, ŝi) as well as C ′i = e(T ′2, r̂i) and D′i = e(T ′1, ŝi).

TSCom({Ci, Di, C
′
i, D

′
i}i∈I): Given a set of comparison shares {Ci, Di, C

′
i, D

′
i}i∈I

with |I| ≥ t, the algorithm combines the shares to perform the plaintext
equality test. Therefore, it computes S and S′ as follows:

S =
∏
i∈I

CLii ·

(∏
i∈I

DLi
i

)−1
S′ =

∏
i∈I

C ′Lii ·

(∏
i∈I

D′Lii

)−1
where Li =

∏
j∈I

j
j−i for j 6= i are the Lagrange coefficients. Finally, it

returns true if S = S′ and false otherwise.

The correctness of the above construction can be seen by inspection. Further-
more, the notion of token indistinguishability (T-IND) as defined in Section 4.3.2
also holds for the threshold variant of AoN-PKEET∗.

4.4. GSs with Linking-Based Revocation 49

4.4 GSs with Linking-Based Revocation

We now specify a GSS with linking-based revocation as a tuple GS-LBR =
(GkGen, UkGen, Join, Issue, GSig, GVf, Open, Judge, CheckStatus, Revoke). The
algorithms that change due to our modifications as well as the additional algo-
rithms CheckStatus and Revoke are as follows.

GkGen(1κ, t, n): On input a security parameter κ, a threshold t, and a total num-
ber of shares n, the algorithm outputs a tuple (gpk,mok,mik,mlk, (mlki)

n
i=1).

It runs (pke, ske) ← KeyGen(1κ) of the (t, n)-threshold AoN-PKEET∗

scheme, sets mok = ske, and adds pke to gpk. Then, it runs (tkpub, tkpriv)←
Aut(mok), sets the master linking key mlk = (tkpub, tkpriv), and adds tkpub
to mik. Furthermore, it generates the shares mlki ← DKAut(mlk, t, n) for
the n distributed linking authorities. The rest remains unchanged.

GVf(gpk,M, σ): On input the group public key gpk, a message M , and a sig-
nature σ, the algorithm determines whether the signature σ is valid with
respect to the message M and the group public key gpk. It returns true

if the signature is valid and false otherwise.

CheckStatus(RL,L, σ): On input a revocation list RL containing anonymous re-
vocation tokens, a set of linking authorities L, and a signature σ, this
algorithm determines the revocation status of the signer corresponding to
signature σ. Therefore, it interacts with t linking authorities Li ∈ L via the
TShare algorithm and retrieves the corresponding shares for the computa-
tion of the revocation token. Afterwards, it uses the TSCom algorithm to
combine these shares and to retrieve the final revocation token. If the re-
vocation token exists on the RL, the signer has been revoked and it returns
true. Otherwise, it has not been revoked and it returns false.

Revoke(gpk,mik, reg,RL, i): On input of the group public key gpk, the master
issuing key mik, the registration table reg, the current revocation list RL,
and a user i to be revoked, the algorithm computes the anonymous revo-
cation token ti corresponding to user i and adds it to the revocation list.
It returns the updated revocation list RL = RL ∪ {ti}.2

4.4.1 Discussion and Security

Computation of Revocation Tokens. Considering our conventional ElGa-
mal example with revocation tokens of the form e(T2, r̂) · e(T1, ŝ)−1 = e(m, r̂),
we observe that these tokens can be computed in two different ways.

Given m and r̂: Given a message m, e.g., a user’s certificate, and r̂ allows to
compute revocation tokens t = e(m, r̂). Thus, if the issuer is given access
to r̂, the revocation token t can be computed with the information available
during the Issue algorithm and added to the registration table reg.

2Note that revocation can also be done based on a user’s signature by means of mlk in
which case the user’s identity will not be required.

50 Chapter 4. Linking-Based Revocation

Given σ = (T, π) and mlk = (r̂, r̂ξ): Given a signature σ = (T, π) and the mas-
ter linking key mlk, such a revocation token t can also be computed on the
fly, i.e., t← Com(T,⊥,mlk). Thus, such a token can be computed directly
from a given signature which allows for anonymous revocation of users as
signatures need not be opened before revocation.

Note that if the revocation tokens are precomputed and stored in the reg-
istration table reg, then an attacker who manages to get in possession of the
registration table reg and RL (but not necessarily the mlk) can conceptually
identify (open) all signers on RL as the same tokens can be found in reg. This
is not possible in case the revocation tokens are computed on the fly as in this
case the attacker cannot link entries on RL to entries in the registration table
reg since the revocation tokens do not yield any useful information (cf. T-IND).

Revocation and Revocation Check. Eventually, in case of a revocation,
the token—that can either be computed (1) by opening a signature first or (2)
from the signature directly—is added to RL. The revocation check for a signa-
ture σ = (T, π) then requires the computation of the token t← Com(T,⊥,mlk)
and a simple look-up operation, i.e., checking whether or not t ∈ RL, and con-
sequently can be performed in time O(1).3 Also note that, except for the party
in possession of mlk, the anonymous revocation token does not yield any useful
information and also does not endanger the privacy of signers.

Revocation Check with Threshold AoN-PKEET∗. In case of threshold
AoN-PKEET∗, the RA does not hold the linking key mlk but always needs to
contact at least t linking authorities (over authenticated and confidential chan-
nels) to compute the required tokens. Thereby, we assume that no t linking
authorities can be compromised. Consequently, in contrast to the naive ap-
proach, breaking into the (always-online) RA does not reveal mlk. The only
information that an attacker gains by compromising RAs is a list of revocation
tokens ti (and possibly the corresponding messages mi and ciphertexts ci). How-
ever, as argued in Section 4.3.2, this does not allow the attacker to compromise
the overall anonymity of the scheme as this information does not allow her to
distinguish other tokens t from random. Although we only cover passive attacks,
this is a reasonable model because in case a RA gets compromised, the corre-
sponding authentication key will be revoked and replaced and the adversary can
only behave passive.

Figure 4.2 illustrates the idea of our secure instantiation of linking-based
revocation. A verifier first verifies a given signature σ = (T, π) via the GVf
algorithm and afterwards it interacts with a RA by means of CheckStatus.
The RA interacts with t LAs to retrieve the corresponding shares by means
of {Ci,⊥} ← TShare(T,⊥,mlki) and uses the t ← TSCom({Ci,⊥}i∈I) algo-
rithm to compute the revocation token t. After checking whether or not t exists
on RL, the RA returns the corresponding decision via CheckStatus.

3Hash tables allow to check whether or not t ∈ RL in constant time. For instance, employing
cuckoo hashing [PR04] allows for a worst-case complexity of O(1).

4.4. GSs with Linking-Based Revocation 51

LA1 (mlk1) LA2 (mlk2) LA3 (mlk3) ... LAn (mlkn)

RA1 (RL) ... RAn (RL)

Verifier1 Verifier2 Verifier3 Verifier4 Verifier5

Ch
ec
kS
ta
tu
s

T
Share T

Sh
ar
e

TSCom

Figure 4.2: Schematic of our secure instantiation of linking-based revocation.

Since the RL as well as the tokens t do not endanger the privacy of group
members (cf. T-IND), the role of RAs can be distributed over multiple cloud
services. Besides, we assume that no t LAs can be compromised at once and
since the trapdoor shares mlki do not endanger the privacy of group members,
these trapdoor shares mlki can also be safely distributed over multiple cloud
services. Similar to traditional OCSP responses, the response from RAs must
be signed. Although one could use the feature of verifiable controllable linka-
bility [BDSS16] to prove that a given signature has or has not been revoked,
this would add additional overhead for the verifier. If the signer has been re-
voked, the RA needs to perform a proof that the given signature can be linked
to one specific entry on RL. If the signer has not been revoked, the RA needs to
prove that the given signature has not been produced by any entity on RL and,
hence, a naive instantiation of verifiable controllable linkability means that the
proof increases linearly with the size of RL. In addition, a naive instantiation of
verifiable controllable linkability would break backward unlinkability as verifiers
would receive a proof that a specific signature links to a specific entry on RL
(that must be publicly available in this case), which means that verifiers could
link all signatures of revoked members. Although backward unlinkability can be
achieved by using disjunctive zero-knowledge proofs (OR proofs), such proofs
also introduce non-trivial overhead for the involved entities. Thus, we suggest
that RAs sign the response. In order to reduce the communication and compu-
tational costs one could employ distributed OCSP (D-OCSP) [KS04], such that
all RAs have a different signing key although they share the same public key.

Security Model. In contrast to other revocation mechanisms, the RA in our
setting only returns a boolean decision, i.e., whether or not the signer has been
revoked. Thus, unlike other revocation mechanisms for group signatures, the RA
does not reveal additional revocation-related information which would require
to integrate the revocation feature into the formal security model of the GSS.
Basically, LBR is an application of the feature of controllable linkability and,

52 Chapter 4. Linking-Based Revocation

thus, we do not need to formally model our revocation mechanism in the security
model. In fact, the role of the RA is already covered by the security model of
group signatures with controllable linkability. Consequently, we also do not
modify the security properties listed in Section 3.2. In addition, correctness of
revocation follows from correctness of the GSS with controllable linkability.

4.5 Applying Linking-Based Revocation

For illustration purposes, we apply linking-based revocation to the eXtremely
Short Group Signature scheme (XSGS) [DP06]. Using our generic compiler
(cf. Chapter 3), XSGS can be turned into a GSS with controllable linkability for
free (without any overhead) as the underlying encryption scheme is IND-CCA2
secure. Since LBR is transparent for signers, we only need to modify the GkGen
algorithm and we add CheckStatus and Revoke according to the model for GSs
with controllable linkability. The scheme is as follows (cf. [DP06]):

GkGen(1κ, t, n): The master opening key is mok = (ξ1, ξ2) for randomly cho-
sen elements ξ1, ξ2 ∈ Zp. The master linking key is mlk = (r̂, ŝ = r̂ξ1)
for a randomly chosen element r̂ ∈ G2. The master issuing key con-
sists of mik = (γ, r̂) for a randomly chosen element γ ∈ Zp. The mas-
ter linking key mlk is distributed among n linking authorities via mlki =
(r̂i, ŝi) ← DKAut(mlk, t, n). The group public key is gpk = (g1, k, h =
kξ1 , g = kξ2 , ĝ2, ŵ = ĝγ2) ∈ G4

1 ×G2
2.

Issue(gpk,mik, reg): The Issue algorithm interacts with Join to add a user to
the group. A user receives a membership certificate (Ai, x, y), such that
Ax+γi = g1h

y, where y ∈ Zp is known to the user only. The issuing
authority adds the relevant information to the registration table reg.

GSig(gpk,M, gski): Given the group public key gpk, a message M , and a user’s
signing key gski = (A, x, y) ∈ G1 × Z2

p, a signature is computed as follows.
It randomly selects α, β ∈ Zp and encrypts the membership certificate:

T1 = kα T2 = Ahα T3 = kβ T4 = Agβ

Then it sets z = xα+ y and computes the non-interactive zero-knowledge
proof of knowledge (α, β, x, z). It picks blinding values rα, rβ , rx, rz ∈ Zp
and computes the following values:

R1 = krα R3 = krβ R4 = hrα/grβ

R2 = e(T2, g2)rx · e(h,w)−rα · e(h, g2)−rz

c = H(M,T1, T2, T3, T4, R1, R2, R3, R4)

sα = rα + cα sβ = rβ + cβ

sx = rx + cx sz = rz + cz

Finally, output the signature σ = (T1, T2, T3, T4, c, sα, sβ , sx, sz).

4.5. Applying Linking-Based Revocation 53

GVf(gpk,M, σ): Given the group public key gpk, a message M and a corre-
sponding signature σ, verification is performed by checking the following
relations:

ksα = R1 · T c1 ksβ = R3 · T c3 hsα/gsβ = R4 ·
(
T2

T4

)c
e(T2, g2)sx · e(h,w)−sα · e(h, g2)−sz = R2 ·

(
e(g1,g2)
e(T2,w)

)c
If all of the above relations hold, the algorithm returns true and false

otherwise.

CheckStatus(RL,L, σ): Given a revocation list RL consisting of revocation tokens
of revoked members, a list of available linking authorities L, and a signature
σ, it determines the revocation status of the signatory corresponding to
the signature σ in question. Therefore, it interacts with a subset of at least
t linking authorities I ⊆ L, i.e., |I| ≥ t, to retrieve t comparison shares
{Ci, Di,⊥,⊥} ← TShare((T1, T2),⊥,mlki) as follows:

Ci = e(T2, r̂i) Di = e(T1, ŝi).

Based on these comparison shares, it computes the revocation token t via
t = TSCom({Ci, Di,⊥,⊥}i∈I) as follows:

Li =
∏

j∈I,j 6=i

j

j − i
t =

∏
i∈I

CLii ·

(∏
i∈I

DLi
i

)−1

Return true (revoked) if t ∈ RL and false (not revoked) otherwise.

Revoke(gpk,mik, reg,RL, i): Given the group public key gpk, the master issuing
key mik, the registration table reg, the current revocation list RL, and a
user i to be revoked, the algorithm computes the revocation token ti =
e(Ai, r̂) for user i and adds it to the revocation list, i.e., RL = RL ∪ {ti}.4

Security Analysis. In order to apply linking-based revocation to the XSGS
scheme we replaced the initially employed twin ElGamal encryption scheme with
its AoN-PKEET∗ version according to our generic compiler (cf. Chapter 3). This
transformation of the XSGS scheme into a GSS with controllable linkability is
secure in the corresponding model described in Section 3.2 (cf. Theorem 1 in
Section 3.4.1). Furthermore, token indistinguishability, as defined and shown for
standard ElGamal in Section 4.3.2, also holds for twin ElGamal and consequently
an adversary cannot learn anything from the anonymous revocation tokens on
RL. Thus, the application of controllable linkability for revocation yields a secure
revocation mechanism.

4Again, revocation can also be done based on a user’s signature σ = (T, π) by means of
mlk in which case the user’s identity will not be required.

54 Chapter 4. Linking-Based Revocation

4.6 Conclusion

Revocation mechanisms represent the major bottleneck [MFG+12] in group sig-
nature schemes. However, the general belief that any online authority must be
prevented unnecessarily restricts the efficiency and practicality of revocation in
group signature schemes. In this chapter, we showed that the major drawbacks of
existing revocation mechanisms, e.g., additional computations/updates for sign-
ers and verifiers, can be overcome by relying on an online revocation authority.
Since many applications and services already rely on always-connected devices
that permanently interact with cloud computing infrastructures, the introduc-
tion of such an online revocation authority is absolutely reasonable. Considering
(1) the significant performance gain (constant-time revocation checks), (2) the
transparency for signers as well as verifiers, and (3) the general applicability
to well-established PB-GSSs, we claim that our approach advances the open
issue of efficient membership revocation in the context of GSSs. Hence, linking-
based revocation represents a valuable contribution to the existing portfolio of
revocation mechanisms.

Part II

Side-Channel Attacks on
Mobile Devices

55

5
Taxonomy of Side-Channel Attacks on

Mobile Devices

For, you see, so many out-of-the-way things had happened lately, that Alice
had begun to think that very few things indeed were really impossible.

— Lewis Carrol, Alice in Wonderland

Side-channel attacks on mobile devices have gained increasing attention since
their introduction in 2007. While traditional side-channel attacks, such as power
analysis attacks and electromagnetic analysis attacks, required physical presence
of the attacker as well as expensive equipment, an (unprivileged) application is
all it takes to exploit the leaking information on modern mobile devices. Given
the vast amount of sensitive information that are stored on smartphones, the
ramifications of side-channel attacks affect both the security and privacy of users.

In this chapter, we propose a new categorization system for side-channel
attacks on mobile devices, which is necessary since side-channel attacks have
evolved significantly since their extensive investigation during the smart card era
in the 1990s. Besides this new categorization system, the extensive overview of
existing attacks and attack strategies provides valuable insights on the evolving
field of side-channel attacks on mobile devices.

We start with an introduction and motivation in Section 5.1. We discuss
background information on side-channel attacks in Section 5.2 and we propose
our new classification system in Section 5.3. We survey existing attacks in Sec-
tions 5.4–5.6, and we discuss observed trends in Section 5.7 and countermeasures
in Section 5.8. Parts of this chapter are taken verbatim from [SMKM16].

57

58 Chapter 5. Taxonomy of Side-Channel Attacks on Mobile Devices

Publication Data and Contribution

Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan Man-
gard. Systematic Classification of Side-Channel Attacks: A Case Study
for Mobile Devices. arXiv ePrint Archive, Report 1611.03748, 2016. In
submission
Contribution: Main author; Veelasha Moonsamy contributed to survey
on wearables, IoT, and code analysis tools. Thomas Korak contributed to
survey on side-channel attacks against smart cards.

5.1 Introduction

Side-channel attacks exploit (unintended) information leakage of computing de-
vices or implementations to infer sensitive information. Starting with the seminal
works of Kocher [Koc96], Kocher et al. [KJJ99], Quisquater and Samyde [QS01],
and Mangard et al. [MOP07], many papers considered attacks against crypto-
graphic implementations to exfiltrate key material from smart cards by means
of timing information, power consumption, or electromagnetic (EM) emanation.
These attacks have been classified along two orthogonal axes:

1. Active vs passive: Depending on whether the attacker actively influences
the behavior of the device or only passively observes leaking information.

2. Invasive vs semi-invasive vs non-invasive: Depending on whether or not
the attacker removes the passivation layer of the chip, depackages the chip,
or does not manipulate the packaging at all.

With the era of cloud computing, the scope and the scale of side-channel at-
tacks have changed significantly in the early 2000s. While early attacks required
attackers to be in physical possession of the device, newer side-channel attacks
are conducted remotely by executing software in the targeted cloud environment.
With the advent of mobile devices, even more sophisticated side-channel attacks
have been proposed since around the year 2010. Especially the following key
enablers allow for more devastating attacks on mobile devices.

1. Always-on and portability : Mobile devices are always turned on and due
to their mobility they can be easily carried around at all times. Thus, they
are tightly integrated into our everyday lives.

2. Bring your own device (BYOD): To decrease the number of devices carried
around, employees use private devices to process corporate data and to
access corporate infrastructure, which clearly indicates the importance of
secure computing platforms.

3. Ease of software installation: Due to the appification [ABB+16] of mobile
devices, i.e., where there is an app for almost everything, additional soft-
ware can be installed easily by means of established app markets. Hence,
malware can also be spread easily and at a fast pace.

5.1. Introduction 59

What?
HW (physical)

SW (logical)

How?
Physical
presence
(local)

SW only
(remote)

Smart cards
Cloud
Smartphones

Figure 5.1: Scope of attacks for smart cards, cloud infrastructures, and smartphones.

4. OS based on Linux kernel : Modern mobile operating systems (OS), for
example, Android, are based on the Linux kernel. The Linux kernel, how-
ever, has initially been designed for desktop machines and information or
features that are considered harmless on these platforms turn out to be an
immense security and/or privacy threat on mobile devices (cf. [ZYN+15]).

5. Features and sensors: Last but not least, mobile devices include many
features and sensors, e.g., accelerometer and GPS sensor, which are not
present on traditional platforms. Due to the inherent nature of mobile
devices (always-on and carried around, inherent input methods, etc.), such
features often allow for devastating side-channel attacks [CC11, ZDH+13].

High-Level Categorization. Considering these developments, we observe
that the existing classification system does not meet these new attack settings
anymore. Figure 5.1 illustrates a high-level view of our proposed categorization
system and how existing side-channel attacks against smart cards, cloud com-
puting infrastructures, and smartphones relate to it. We indicate the exploited
information (What?) and how the adversary learns the information (How?)
on the y-axis and x-axis, respectively. For instance, attackers exploit hardware-
based information leakage (physical properties) [MOP07] of smart cards by mea-
suring, for example, the power consumption with an oscilloscope. In contrast,
side-channel attacks against cloud infrastructures do not (necessarily) require
the attacker to be physically present as the attacker is able to remotely exe-
cute software. Usually, these attacks exploit microarchitectural behavior (like
cache attacks [GYCH16]) or software features to infer secret information from
co-located processes. Even more manifold and diverse side-channel attacks have
been proposed for smartphones, as indicated by the larger area in Figure 5.1.

60 Chapter 5. Taxonomy of Side-Channel Attacks on Mobile Devices

5.2 Background and Taxonomy

In this section, we provide an introduction to mobile security, define the general
notion of side-channel attacks and we establish the boundaries between side-
channel attacks and other attacks on mobile devices. Furthermore, we also
discuss how smartphones allow for so-called software-only attacks.

5.2.1 A Primer on Smartphone Security

Modern mobile operating systems rely on two fundamental security concepts,
i.e., the concept of application sandboxing and the concept of permission sys-
tems. On Android the Linux kernel ensures the concept of sandboxed applica-
tions. Each application is assigned a unique user ID (UID), which allows the
kernel to prevent applications from accessing resources of other applications. The
permission system on the other hand allows applications to request access to spe-
cific resources outside of its sandbox, which typically includes resources that are
considered as being sensitive. Besides these basic security concepts on the OS
level, applications themselves rely on cryptographic primitives, cryptographic
protocols, and dedicated security mechanisms to protect sensitive resources.

5.2.2 Concept of Side-Channel Attacks

Passive Side-Channel Attacks. The general notion of passive side-channel
attacks can be described by means of three components, i.e., target, side-channel
vector, and attacker. A target represents anything of interest to possible attack-
ers. During the computation or operation of a target, it influences a side-channel
vector and thereby emits potential sensitive information. An attacker who is
able to observe these side-channel vectors potentially learns useful information
related to the computations or operations performed by the target.

Active Side-Channel Attacks. An active attacker tries to tamper with the
device or to modify/influence the targeted device via a side-channel vector, e.g.,
via an external interface or via environmental conditions. Thereby, the attacker
aims to influence computations/operations in a way that leads to malfunctioning,
which in turn allows for attacks either indirectly via the leaking side-channel
information or directly via the (erroneous) output of the targeted device.

Figure 5.2 illustrates the general notion of side-channel attacks. A target
emits specific side-channel information as it influences specific side-channel vec-
tors. For example, physically operating a smartphone via the touchscreen, i.e.,
the touchscreen input represents the target, causes the smartphone to undergo
specific movements and accelerations in all three dimensions. In this case, one
possible side-channel vector is the acceleration of the device, which can be ob-
served via the embedded accelerometer sensor and accessed by an app via the
official Sensor API. The relations defined via the solid arrows, i.e., target −→
side-channel vector −→ attacker, represent a passive side-channel attack. The
relations defined via the dashed arrows, i.e., target L99 side-channel vector L99

5.2. Background and Taxonomy 61

Target
(e.g., crypto,

keyboard,
privacy, location)

Side-channel
vector

(e.g., power, timing,
procfs, sensors)

influences

influences

Attacker
(e.g., device, chip,

wire, software)

is observed

modifies/influences

Figure 5.2: General notion of passive (−→) and active (L99) side-channel attacks.

Side-channel information leaks

,Unintended
information leaks

,Information published
on purpose

,Execution time

,Power consumption

,EM emanation

,Memory footprint

,Sensor information

,Data consumption

Figure 5.3: Categorization of side-channel information leaks.

attacker, represent an active side-channel attack where the attacker tries to ac-
tively influence or manipulate the target via a side-channel vector. Thereby,
the attacker either tries (1) to enforce behavior that allows to bypass security
mechanisms directly, or (2) to observe leaking side-channel information or the
(sometimes erroneous) output of the targeted device.

5.2.3 Types of Side-Channel Information Leaks

Considering modern side-channel attacks, we identify two categories of infor-
mation leaks, i.e., unintended information leaks and information published on
purpose, which are depicted in Figure 5.3. Side-channel attacks exploiting un-
intended information leaks are considered as “traditional” side-channel attacks.
This type of information leak is considered as unintended because designers did
not plan to leak this information on purpose. The second category of information
leaks (information published on purpose) results from the ever-increasing number
of features. For instance, specific features require the device to share (seemingly
harmless) information and resources with all applications. Although this infor-
mation is used by many legitimate applications for benign purposes, it sometimes
turns out to leak sensitive information, e.g., the memory footprint [JS12] and
the data-usage statistics (cf. Chapter 8).

62 Chapter 5. Taxonomy of Side-Channel Attacks on Mobile Devices

5.2.4 Software-only Side-Channel Attacks

Irrespective of whether a physical property or a software feature are exploited,
smartphones allow many of these information leaks to be exploited by means
of software-only attacks, i.e., without additional equipment like an oscilloscope.
Besides, an attack scenario that requires the user to install an (unprivileged)
application is entirely reasonable in an appified ecosystem.

SW-only side-channel attacks can be considered as runtime-information gath-
ering (RIG) attacks [ZYN+15], which refer to attacks that require a malicious
app to run side-by-side with a victim app in order to collect runtime informa-
tion of the victim. However, RIG attacks also include non side-channel attacks,
where apps request a permission that is exploited for more obvious attacks, e.g.,
requesting access to the microphone in order to eavesdrop on conversations.

Similarly, we do not consider buffer overflow attacks as a means to launch
active side-channel attacks because buffer overflow attacks represent a software
vulnerability. Side-channel attacks, however, attack targets that are secure from
a software perspective and still leak information unintentionally. Furthermore,
software vulnerabilities, e.g., buffer overflow attacks, can be fixed easily, whereas
side-channel attacks usually cannot be fixed or prevented that easily.

5.3 A New Categorization System

Our new categorization system classifies side-channel attacks along three axes:

1. Passive vs active: This category distinguishes between attackers that pas-
sively observe leaking side-channel information and attackers that also ac-
tively influence the target via any side-channel vector.

2. Physical properties vs logical properties: This category classifies side-channel
attacks according to the exploited information, i.e., whether the attack ex-
ploits physical properties or logical properties (software features).

3. Local attackers vs vicinity attackers vs remote attackers: Side-channel
attacks are classified depending on whether or not attackers must be in
physical proximity/vicinity of the target. Local attackers clearly must be in
(temporary) possession of the device or at least in close proximity. Vicinity
attackers are able to wiretap or eavesdrop the network communication
of the target or to be somewhere in the vicinity of the target. Remote
attackers only rely on software execution on the targeted device.

5.4 Local Side-Channel Attacks

In this section, we survey side-channel attacks that rely on local adversaries.
This includes attacks that break cryptographic implementations, but also attacks
that target the user’s interaction with the device, i.e., attacks resulting from the
inherent nature of mobile devices. The surveyed attacks will show that the

5.4. Local Side-Channel Attacks 63

transition between local and vicinity attacks is seamless as the distance between
victim and attacker can be increased, especially in the case of passive attacks.

5.4.1 Passive Attacks

Power Analysis Attacks. The power consumption of a computing device or
implementation depends on the processed data and the executed instructions.
Power analysis attacks exploit this information leak to infer sensitive informa-
tion. Depending on whether a single measurement trace or multiple traces are
required, we distinguish between simple power analysis (SPA) attacks and dif-
ferential power analysis (DPA) attacks as defined by Kocher et al. [KJJ99].

Attacks. Traditional side-channel attacks that measure the power consump-
tion via the voltage drop across a resistor inserted in the supply line are not that
popular on smartphones. Nevertheless, a coarse-grained power-consumption
monitoring allows to identify running applications, as shown in [YGCM15].

Electromagnetic Analysis Attacks. Another possibility to attack the leaking
power consumption of devices is to exploit electromagnetic emanations, which
are easier to obtain as there is no need to access the power line.

Attacks. Side-channel attacks exploiting the electromagnetic emanations of
smart cards have also been applied on mobile devices. Gebotys et al. [GHT05]
demonstrated attacks on software implementations of the Advanced Encryption
Standard (AES) and Elliptic Curve Cryptography (ECC) on Java-based PDAs.
Later on, Nakano et al. [NSN+14a] attacked ECC and RSA implementations
of the default crypto provider (JCE) on Android smartphones, and Belgarric et
al. [BFMT16] attacked the ECDSA implementation of Android’s Bouncy Castle.

Differential Computation Analysis. The idea of white-box crypto imple-
mentations is to embed the secret key into the software implementation in a
way that prevents an attacker from extracting the key, even if the adversary has
access to the source code itself. Therefore, the key and the algorithm itself are
merged such that the key is hidden inside the code and cannot be separated
easily. The white-box attack model assumes that the adversary has full control
over the device and the execution environment.

Attacks. Bos et al. [BHMT16] showed that binary instrumentation can be
used to observe and control the intermediate state of white-box crypto imple-
mentations. The instrumentation allows to precisely monitor the execution of
the program and the observation of, e.g., the intermediate state and read/write
accesses to memory, allow to profile program behavior. Based on the similarity
to DPA attacks, these attacks are denoted as differential computation analysis
(DCA) attacks. Although such attacks have not been applied on mobile devices
so far, such an attack scenario works for these devices as well.

Smudge Attacks. The most common input method on mobile devices is the
touchscreen, i.e., users tap and swipe on the screen with their fingers. Due to

64 Chapter 5. Taxonomy of Side-Channel Attacks on Mobile Devices

the inherent nature of touchscreens, users always leave residues in the form of
fingerprints and smudges on the screen.

Attacks. Aviv et al. [AGM+10] pointed out that side-channel attacks can be
launched due to interactions with the smartphone or touchscreen-based devices
in general. More specifically, forensic investigations of smudges (oily residues
from the user’s fingers) on the touchscreen allow to infer unlock patterns. Even
after cleaning the phone or placing the phone into the pocket, smudges seem
to remain most of the time. Follow-up work considering an attacker who em-
ploys fingerprint powder to infer keypad inputs has been presented by Zhang et
al. [ZXL+12] and also an investigation of the heat traces—left on the screen due
to finger touches—by means of thermal cameras has been performed [ATOY13].

Shoulder Surfing and Reflections. Touchscreens of mobile devices as well as
displays in general optically/visually emanate the displayed content. Often these
visual emanations are reflected by objects in the users’ environment [BDU08].

Attacks. Maggi et al. [MGB11] observed that touchscreen input can be re-
covered by observing the visual feedback (pop-up characters) on soft keyboards
during the user input. Therefore, they rely on cameras that are pointed di-
rectly on the targeted screen. Raguram et al. [RWG+11, RWX+13] observed
that reflections, e.g., on the user’s sunglasses, can also be used to recover input
typed on touchscreens. However, the attacker needs to point the camera, used
to capture the reflections, directly on the targeted user. Subsequently, they rely
on computer vision techniques and machine learning techniques to infer the user
input from the captured video stream. Xu et al. [XHW+13] extended the range
of reflection-based attacks by considering reflections of reflections. Although,
they do not rely on the visual feedback of the soft keyboard but instead track
the user’s fingers on the smartphone while interacting with the device.

By increasing the distance between the attacker and the victim, e.g., by
relying on more expensive and sophisticated cameras, some of these attacks
might as well be considered as vicinity attacks.

Hand/Device Movements. Many input methods on various devices rely on
the user operating the device with her hands and fingers. For instance, users
tend to hold the device in their hands while operating it with their fingers.

Attacks. Similar to reflections, Shukla et al. [SKSP14] proposed to monitor
hand movements as well as finger movements—without directly pointing the
camera at the targeted screen—in order to infer entered PIN inputs. Similarly,
Sun et al. [SJC+16] monitored the backside of tablets during user input and
detected subtle motions that allow to infer keystrokes. Yue et al. [YLF+14]
proposed an attack where the input on touch-enabled devices can be estimated
from a video of a victim tapping on a touch screen.

Again, by increasing the distance between the attacker and the victim these
attacks might also be considered as vicinity attacks, which demonstrates the
seamless transition from local attacks to vicinity attacks.

5.4. Local Side-Channel Attacks 65

5.4.2 Active Attacks

Active attacks against cryptographic implementations date back to the works of
Boneh et al. [BDL97] (a.k.a. Bellcore attack) who attacked RSA crypto systems,
especially implementations based on the Chinese Remainder Theorem (CRT),
by relying on random hardware faults that result in the output of an erroneous
signature. Later, Biham and Shamir [BS97] coined the term differential fault
analysis (DFA) attacks and demonstrated that the introduction of faults and
the observation of differences in the output ciphertext allow to recover the secret
key of symmetric primitives. The principle of these attacks is to solve algebraic
equations based on erroneous outputs (and valid outputs), which allows to break
the crypto implementation.

Clock/Power Glitching. Varying the clock signal, e.g., overclocking, repre-
sents an effective method for fault injection attacks on embedded devices. One
prerequisite for this attack is an external clock source. However, processors
applied in smartphones typically have an internal clock generator making clock
tampering impossible. Besides clock tampering, intended variations of the power
supply represent an additional method for fault injection. With minor hardware
modifications, power-supply tampering can be applied on most platforms.

Attacks. In [New16] it is shown how to disturb the program execution of an
ARM CPU on a Raspberry PI by underpowering, i.e., the supply voltage is set
to GND for a short time. O’Flynn [O’F16] demonstrated that by shorting the
power supply of an off-the-shelf Android smartphone a fault can be introduced
that leads to an incorrect loop count.

Electromagnetic Fault Injection (EMFI). Transistors placed on microchips
can be influenced by electromagnetic emanation. EMFI attacks take advantage
of this fact. These attacks use short (in the range of nanoseconds), high-energy
EM pulses to, e.g., change the state of memory cells resulting in erroneous cal-
culations. In contrast to voltage glitching, where the injected fault is typically
global, EMFI allows to target specific regions of a microchip by precisely placing
the EM probe, e.g., on the instruction cache, the data memory, or CPU registers.
Compared to optical fault injection, EMFI attacks do not necessarily require a
decapsulation of the chip, which makes them more practical.

Attacks. Ordas et al. [OGSM16] demonstrate EMFI attacks targeting the
AES hardware module of a 32 bit ARM processor. Rivière et al. [RNR+15] use
EMFI attacks to force instruction skips and instruction replacements on modern
ARM microcontollers. Considering the fact that ARM processors are applied in
modern smartphones, EMFI attacks represent a serious threat for such devices.

Laser/Optical Faults. Optical fault attacks are another effective fault-injection
technique. These attacks exploit the fact that a focused laser beam can change
the state of a transistor resulting in, e.g., bit flips in memory cells. Compared to
other fault-injection techniques (voltage glitching, EMFI), the effort for optical
fault injection is high. First, decapsulation of the chip is a prerequisite to access

66 Chapter 5. Taxonomy of Side-Channel Attacks on Mobile Devices

the silicon with the laser beam. Second, finding the correct location for the laser
beam to induce exploitable faults is also not a trivial task.

Attacks. First optical fault-injection attacks targeting an 8 bit microcon-
troller have been published by Skorobogatov and Anderson [SA02]. Inspired by
their work, several optical fault-injection attacks have been published in the fol-
lowing years, most of them targeting smart cards or low-resource embedded de-
vices (e.g. [vWWM11], [RSDT13]). The high decapsulation effort makes optical
fault injection difficult to apply on modern microprocessors used in smartphones.

Temperature Variation. Operating a device outside of its specified tempera-
ture range allows to cause faulty behavior. Heating up a device can cause faults
in memory cells. Cooling down the device has an effect on the speed RAM
content fades away after power off (remanence effect of RAM).

Attacks. Hutter and Schmidt [HS13] present heating fault attacks targeting
RSA implementations on AVR microcontrollers. FROST [MS13], on the other
hand, is a tool for recovering disc encryption keys from RAM on Android devices
by means of cold-boot attacks. Here the authors take advantage of the increased
time data in RAM remains valid after power off due to low temperature.

Differential Computation Analysis. As an attacker in the white-box model
has full control over the execution environment, she can produce erroneous or
faulty outputs by manipulating intermediate values during the computation.

Attacks. Sanfelix et al. [SMdH15] showed that attackers with full control
over the execution environment and the executed binary can also manipulate
data during the program execution or manipulate the control flow. Similar to
other fault attacks, the idea is to observe differences between normal outputs
and erroneous outputs in order to break the cryptographic implementations.

NAND Mirroring. Data mirroring refers to the replication of data storage
between different locations. Such techniques are used to recover critical data
after disasters but also allow to restore a previous system state.

Attacks. The Apple iPhone uses a passcode and a hardware-based key to
derive encryption keys. As a dedicated hardware-based key is used to derive
these keys, brute-force attempts must be done on the attacked device. Further,
brute-force attempts are discouraged by gradually increasing the waiting time
between wrongly entered passcodes up to the point where the phone is wiped.
NAND mirroring [Sko16] can be used to reset the phone state and, thus, can be
used to brute-force the passcode. As the attacker influences (resets) the state of
the device, this represents an active attack.

5.5 Vicinity Side-Channel Attacks

In this section, we briefly survey attacks that require the attacker to be in
the vicinity of the targeted user/device. Thereby, the attacker, for example,
compromises any infrastructure facility within the user’s environment.

5.5. Vicinity Side-Channel Attacks 67

5.5.1 Passive Attacks

Network Traffic Analysis. Although the encryption of messages transmitted
between two parties hides the actual content, meta data like the overall amount
of data is not protected. This information can be used to infer information about
the transmitted content and about the communicating parties.

Attacks. Network traffic analysis has been extensively studied in the con-
text of website fingerprinting attacks. These attacks [PNZE11, CZJJ12, WG13,
JAA+14, PLP+16] wiretap network connections to observe traffic signatures,
e.g., unique packet lengths, and inter-packet timings, in order to infer visited
websites. While these attacks target the network communication in general,
attacks explicitly targeting mobile devices also exist. Stöber et al. [SFSM13]
showed that eavesdropping the UMTS transmission allows to fingerprint smart-
phones due to the background traffic generated by installed apps. Conti et
al. [CMSV16] consider an adversary who controls WiFi access points and, thereby,
infer specific app actions like sending mails. In a similar setting, the feasibil-
ity to fingerprint apps and actions performed in apps based on traffic analysis
techniques has been demonstrated (cf. [WYKH15, MLLB15, TSCM16, AK16]).

While the above presented attacks exploit logical properties, i.e., the fact that
encrypted packets do not hide meta data, a recent work by Schulz et al. [SKH+16]
showed that also hardware properties can be exploited. They exploit the electro-
magnetic emanation of Ethernet cables to eavesdrop on transmitted packets on
the wire, which allow them to observe parts of the transmitted Ethernet frames.

USB Power Analysis. Similar to power analysis attacks, researchers have
shown that modified charging stations can be used to collect power traces that
allow to infer sensitive information about users and mobile devices.

Attacks. Conti et al. [CNRS16] demonstrated that wall-socket smart meters
that capture the power consumption of plugged devices can be used to identify
specific users/notebooks. Although Conti et al. demonstrated the power of their
attack by using notebooks, it is likely that the same attack works for smartphones
as well. In a similar setting, Yang et al. [YGZ+16] successfully demonstrated
that power traces collected via USB charging stations can be used to infer visited
websites. Such attacks even work in case dedicated protection mechanisms, e.g.,
adapters that block data pins on the USB cable, are in place.

WiFi Signal Monitoring. WiFi devices continuously monitor the wireless
channel (channel state information (CSI)) to efficiently transmit data. This is
necessary as environmental changes cause the CSI values to change.

Attacks. Ali et al. [ALWS15] observed that even finger motions impact wire-
less signals and cause unique patterns in the time-series of CSI values. In a
setting with a sender (notebook) and a receiver (WiFi router), they showed that
keystrokes on an external keyboard cause distortions in the WiFi signal. By
monitoring how the CSI values change, they are able to infer the entered keys.
Later on, Zhang et al. [ZZT+16] inferred unlock patterns on smartphones via a

68 Chapter 5. Taxonomy of Side-Channel Attacks on Mobile Devices

notebook that is connected to the wireless hotspot provided by the smartphone.
Li et al. [LML+16] further improved these attacks by considering an attacker
controlling only a WiFi access point. They infer the PIN input on smartphones
and also analyze network packets to determine when the sensitive input starts.

5.5.2 Active Attacks

Network Traffic Analysis. Network traffic analysis has already been discussed
in the context of passive side-channel attacks. However, active attackers might
learn additional information by actively influencing the transmitted packets, e.g.,
by delaying packets.

Attacks. He et al. [HYG+14] demonstrated that an active attacker, e.g., rep-
resented by an Internet Service Provider (ISP), could delay HTTP requests from
Tor users in order to increase the performance of website fingerprinting attacks.
The idea is that instead of observing the generated traffic for all resources on a
webpage in parallel, i.e., the response packets from multiple requests in parallel
overlap, an attacker delays the packet requesting a resource until the response
from the previous request has been fully retrieved.

5.6 Remote Side-Channel Attacks

The attacks surveyed in this section can be executed remotely and target devices
at a much larger scale.

5.6.1 Passive Attacks

Linux-inherited procfs Leaks. The Linux kernel releases information that is
considered as being harmless via the procfs. For example, the memory footprint
(total virtual/physical memory size) of each application via /proc/[pid]/statm,
CPU utilization times via /proc/[pid]/stat, number of context switches via
/proc/[pid]/status, and also system-wide information like interrupt counters
via /proc/interrupts and context switches via /proc/stat.

Attacks. Jana and Shmatikov [JS12] observed that the memory footprint
of the browser correlates with the rendered website and, thus, allows to infer
a user’s browsing behavior. Chen et al. [CQM14] exploited this information to
detect Activity transitions within Android apps. They observed that the shared
memory size increases by the size of the graphics buffer in both processes, i.e.,
the app process and in the window compositor process, due to the IPC commu-
nication between the app and the window manager. Besides, they consider CPU
utilization and network activity in order to infer the exact activity later on.

Simon et al. [SXA16] exploit the number of interrupts and context switches
to infer text entered via swipe input methods. They observed that the num-
ber of interrupts and context switches correlates with the user’s finger move-
ments across the keyboard when transitioning from letter to letter. Diao et
al. [DLLZ16] inferred unlock patterns and apps running in the foreground by

5.6. Remote Side-Channel Attacks 69

exploiting interrupt time series of the touchscreen controller. Besides, also the
power consumption is released via the procfs, which allows to infer the number
of entered characters on the soft keyboard [YGCM15].

Data-Usage Statistics. Android keeps track of the amount of incoming and
outgoing network traffic on a per-application basis. These statistics allow users
to keep an eye on the data consumption of any app.

Attacks. Data-usage statistics are captured with a fine-grained granularity,
i.e., packet lengths of single TCP packets can be observed. Zhou et al. [ZDH+13]
demonstrated that by monitoring the data-usage statistics an adversary can
infer disease conditions accessed via WebMD, the financial portfolio via Yahoo!
Finance, and also a user’s identity by observing the data-usage statistics of the
Twitter app and exploiting the public Twitter API. Later, we showed [SGKM16]
(cf. Chapter 8) that the data-usage statistics can also be exploited to fingerprint
websites even though the traffic is routed through the anonymity network Tor.

Page Deduplication. To reduce the overall memory footprint of a system,
(some) operating systems1 search for identical pages within the physical memory
and merge them—even across different processes—which is called page dedupli-
cation. As soon as one process intends to write onto such a deduplicated page,
a copy-on-write fault occurs and the process gets its own copy of the previously
shared memory region again.

Attacks. Copy-on-write faults have been exploited by Suzaki et al. [SIYA11]
and recently Gruss et al. [GBM15] demonstrated the possibility to measure the
timing differences between normal write accesses and copy-on-write faults from
JavaScript code. Based on these timings they suggest to fingerprint visited
websites by allocating memory that stores images found on websites. If the
user browses the website with the corresponding image, then at some point
the OS detects the identical content in the pages and deduplicates these pages.
By continuously writing to the allocated memory, the attacker might observe a
copy-on-write fault indicating that the user browses the corresponding website.

Microarchitectural Attacks. Modern computer architectures include many
components that aim to improve the overall effectiveness and performance. For
instance, CPU caches bridge the gap between the latency of main memory ac-
cesses and the fast CPU clock frequencies. Microarchitectural attacks exploit
specific effects like the timing behavior of these components, e.g., branch predic-
tion units and CPU caches, in order to learn sensitive information about executed
instructions, code paths, etc. As CPU caches have been shown to represent a
powerful source of information leaks, we focus on cache attacks.

Attacks. Cache-timing attacks against the AES have already been investi-
gated on Android-based mobile devices. For instance, Bernstein’s cache-timing
attack [Ber05] has been launched on development boards [WHS12, WWAS14,
ZMHS16] and we [SP13b, SG14] (cf. Chapter 6) also investigated these attacks

1For instance, the Android-based CyanogenMod OS allows to enable page deduplication.

70 Chapter 5. Taxonomy of Side-Channel Attacks on Mobile Devices

on Android smartphones. In addition, we also demonstrated [SP13a] more fine-
grained attacks like, e.g., Evict+Time [TOS10], against the AES on smart-
phones. These attacks relied on privileged access to precise timing measure-
ments, but as stated by Oren et al. [OKSK15] cache attacks can also be ex-
ploited via JavaScript and, thus, do not require native code execution anymore.
They even demonstrated the possibility to track user behavior including mouse
movements as well as browsed websites via JavaScript-based cache attacks. In
a recently co-authored paper by Lipp et al. [LGS+16] we even show that all ex-
isting cache attacks, including the effective Flush+Reload attack [YF14], can be
applied on modern Android-based smartphones without any privileges. While
early attacks on smartphones exclusively targeted cryptographic implementa-
tions, more recent work also shows that user interactions (touch actions and
swipe actions) can be inferred through this side channel. Similar investigations
of Flush+Reload on ARM have also been conducted by Zhang et al. [ZXZ16].

As some of these attacks actively influence the behavior of the victim, e.g., the
execution time, some of these microarchitectural attacks can also be considered
as active attacks. For a more detailed survey about microarchitectural attacks
we refer to the recent survey paper by Ge et al. [GYCH16].

Sensor-based Keyloggers. Cai et al. [CMC09] and Raij et al. [RGKS11] were
one of the first to discuss possible privacy implications resulting from mobile
devices equipped with cameras, microphones, GPS sensors, and motion sensors
in general. Nevertheless, a category of attacks that received the most attention
are sensor-based keyloggers. These attacks are based on two observations. First,
smartphones are equipped with lots of sensors—both, motion sensors as well as
ambient sensors—that can be accessed without any permission, and second, these
devices are operated with fingers while being held in the users’ hands. Hence, the
following attacks are all based on the observation that users tap/touch/swipe the
touchscreen and that the device is slightly tilt and turned during the operation.

Attacks. In 2011, Cai and Chen [CC11] observed a correlation between en-
tered digits on touchscreens and accelerometer sensor readings that can be ex-
ploited for motion-based keylogging attacks. Following this work, Owusu et
al. [OHD+12] extended the attack to infer single characters and Aviv [Avi12,
ASBS12] investigated the accelerometer to attack PIN and pattern inputs. Sub-
sequent publications [CC12, MVBC12, XBZ12] also considered the combination
of the accelerometer and the gyroscope in order to improve the performance as
well as to infer even longer text inputs [PSM15]. Since these sensors can also
be accessed from JavaScript, motion-based keylogging attacks have even been
successfully demonstrated via websites [MTSH16a, MTSH16b]. Some browsers
even continue to execute JavaScript code, although the user closed the browser.

While the above surveyed attacks exploit different types of motion sensors,
e.g., accelerometer and gyroscope, keylogging attacks can also be launched by
exploiting ambient sensors. To the best of our knowledge, we [Spr14] (cf. Chap-
ter 7) currently presented the only attack that exploits an ambient sensor,
namely the ambient-light sensor, in order to infer a user’s touch actions.

5.6. Remote Side-Channel Attacks 71

As demonstrated by Simon and Anderson [SA13], PIN inputs on smartphones
can also be inferred by continuously taking pictures via the front camera and
investigating the relative changes of objects in subsequent pictures that correlate
with the entered digits. Fiebig et al. [FKH14] demonstrated that the front
camera can also be used to capture the screen reflections in the user’s eyeballs,
which also allows to infer user input. In a similar manner, Narain et al. [NSN14b]
and Gupta et al. [GSAV16] showed that tap sounds (inaudible to the human ear)
recorded via smartphone stereo-microphones can be used to infer typed text on
the touchscreen. However, these attacks require dedicated permissions to access
the camera and the microphone, which might raise the user’s suspicion during
the installation. In contrast, the above presented motion and ambient sensors
can be accessed without any permission.

For a more complete overview of sensor-based keylogging attacks we refer to
the survey papers by Hussain et al. [HAZ+16] and Nahapetian [Nah16]. Consid-
ering the significant number of papers that have been published in this context,
user awareness about such attacks should be raised. Especially since a recent
study by Mehrnezhad et al. [MTSH16a] found that the perceived risk of motion
sensors, and especially ambient sensors, among users is very low.

Fingerprinting Devices/Users. The identification of smartphones (and users)
without a user’s awareness is considered a privacy risk. While obvious identifi-
cation mechanisms like device IDs and web cookies can be thwarted, hardware
imperfections of different components as well as software features can also be
employed to stealthily fingerprint and identify devices and users, respectively.

Attacks. Bojinov et al. [BMNB14] and Dey et al. [DRX+14] observed that
unique variations of sensor readings (e.g., of the accelerometer) can be used to
fingerprint devices. These variations are a result of the manufacturing process
and are persistent throughout the life of the sensor/device. As these sensors
can also be accessed via JavaScript, it is possible to fingerprint devices via web-
sites [DBC16]. Similarly, such imperfections also affect the microphones and
speakers [DBC14, ZDLZ14], which also allow to fingerprint devices. In addition,
by combining multiple sensors even higher accuracies can be achieved [HHH16].

Kurtz et al. [KGB+16] demonstrated that users can also be identified by
fingerprinting mobile device configurations, e.g., device names, language set-
tings, installed apps, etc. Hence, their fingerprinting approach exploits software
properties (i.e., configurations) only. Hupperich et al. [HMK+15] proposed to
combine hardware as well as software features to fingerprint mobile devices.

Location Inference. As smartphones are always carried around, information
about a phone’s location inevitably reveals the user’s location/position. Hence,
resources that obviously can be used to determine a user’s location, e.g., the
GPS sensor, require a dedicated permission. Yet, even without permissions,
side-channel attacks allow to infer precise location information about users.

Attacks. More specifically, Han et al. [HON+12], Nawaz et al. [NM14], and
Narain et al. [NVBN16] demonstrated that the accelerometer and the gyroscope

72 Chapter 5. Taxonomy of Side-Channel Attacks on Mobile Devices

can be used to infer car driving routes. Similarly, Hemminki et al. [HNT13]
showed that the transportation mode, e.g., train, bus, metro, etc., can be inferred
via the accelerometer readings of smartphones. Besides the accelerometer and
the gyroscope also ambient sensors can be used to infer driving routes. Ho et
al. [HMSS15] exploit the correlation between sensor readings of the barometer
sensor and the geographic elevation to infer driving routes.

Even less obvious side-channels that allow to infer driving routes and loca-
tions are the speaker status (e.g., speaker on/off) and the power consumption
(available via the procfs). Zhou et al. [ZDH+13] observed that the Android API
allows to query whether or not the speaker is currently active, i.e., boolean infor-
mation that indicates whether or not any app is playing sound on the speakers.
They exploit this information to attack the turn-by-turn voice guidance of nav-
igation systems. By continuously querying this API, they determine how long
the speaker is active, which allows to infer the speech length of voice direction
elements, e.g., the length of “Turn right onto East Main Street”. As driving
routes consist of many such turn-by-turn voice guidances, they use this infor-
mation to fingerprint driving routes. Michalevsky et al. [MSV+15] showed that
the power consumption is related to the strength of the cellular signal, which
depends on the distance to the base station and allows to infer a user’s location.

Speech Recognition. Eavesdropping conversations represents a severe privacy
threat. Thus, a dedicated permission protects the access to the microphone.
However, acoustic signals in the vicinity of a mobile device also influence the
gyroscope measurements of this device, which also holds for human speech.

Attacks. Michalevsky et al. [MBN14] exploited the gyroscope sensor to mea-
sure acoustic signals in the vicinity of the phone and to recover speech infor-
mation. Although they only consider a small set of vocabulary, i.e., digits only,
their work demonstrates the immense power of gyroscope sensors.

Soundcomber. Customer service departments often rely on automated menu
services to interact with customers over the phone. A well-known example are
interactive voice response systems supported by telephone services that use dual-
tone multi-frequency (DTMF) signaling to transmit entered numbers, i.e., an
audio signal is transmitted for each key.

Attacks. As DTMF tones are also played locally, they can be recored and
used to infer private information, e.g., credit card numbers entered while inter-
acting with interactive voice response systems of credit card companies [SZZ+11].

5.6.2 Active Attacks

An area of research that gains increasing attention among the scientific commu-
nity are active side-channel attacks that can be exploited via SW-only attacks.

Rowhammer. The increasing density of memory cells within the DRAM re-
quires the size of these cells to decrease, which in turn decreases the charging of
single cells but also causes electromagnetic coupling effects between cells.

5.7. Trend Analysis 73

Attacks. Kim et al. [KDK+14] demonstrated that these observations can be
used to induce hardware faults, i.e., bit flips in neighboring cells, via frequent
memory accesses to the main memory. Seaborn and Dullien [SD15] demonstrated
how to possibly exploit these bit flips from native code and Gruss et al. [GMM16]
showed that such bit flips can even be induced via JavaScript code. A recent
paper [vdVFL+16] successfully demonstrates the exploitation of the Rowhammer
bug to gain root privileges on Android smartphones.

5.7 Trend Analysis

Figure 5.4 classifies the attacks surveyed in Section 5.4–5.6 according to our
new classification system. We indicate passive attacks with blue dots and active
attacks with red triangles. The red (grid pattern) and green (diagonal lines)
areas illustrate the scope of smart card attacks and cloud attacks, respectively.
Based on this classification system we observe specific trends in modern side-
channel attacks that will be discussed within the following paragraphs.
From Local to Remote Attacks. In contrast to the smart card era, the
smartphone era faces a shift towards remote side-channel attacks that focus on
both hardware properties and software features. The shift from local attacks
towards remote attacks can be addressed to the fact that the attack scenario as
well as the attacker have changed significantly. More specifically, side-channel
attacks against smart cards have been conducted to reveal sensitive information
that should be protected from being accessed by benign users. For example, in
case of pay-TV cards the secret keys must be protected against benign users, i.e.,
users who bought these pay-TV cards in the first place. In contrast, smartphones
are used to store and process sensitive information and attackers interested in
this information are usually not the users themselves but rather criminals, im-
posters, and other malicious entities that aim to steal this sensitive informa-
tion from users. Especially the appification of the mobile ecosystem provides
tremendous opportunities for attackers to exploit identified side-channel leaks
via software-only attacks. Hence, this shift also significantly increases the scale
at which attacks are conducted. While local attacks only target a few devices,
remote attacks can be conducted on millions of devices at the same time.
From Active to Passive Attacks. While fault injection attacks have been
quite popular on smart cards, (local) fault attacks are not that widely investi-
gated on smartphones, at least at the moment. Consequently, we also observe
that the variety of fault attacks conducted in the smart card era has decreased
significantly in the smartphone era, which can be addressed to the following
observations. First, the targeted device itself, e.g., a smartphone, is far more ex-
pensive than a smart card and, hence, fault attacks that potentially permanently
break the device are only acceptable for very targeted attacks. Even in case of
highly targeted attacks (cf. Apple vs FBI dispute) zero-day vulnerabilities might
be chosen instead. Second, remote fault attacks seem to be harder to conduct
as such faults are harder to induce via software execution. Currently, the only
remote fault attack (software-induced fault attack) is the Rowhammer attack.

74
C

h
ap

ter
5.

T
ax

on
o
m

y
of

S
id

e-C
h

an
n

el
A

ttack
s

on
M

ob
ile

D
ev

ices

Chip Device Wire/Communication Software Web

P
h
y
si

ca
l

P
ro

p
er

ti
es

(H
W

)

L
o
g
ic

a
l

P
ro

p
er

ti
es

(S
W

)

L
o
g
ic

a
l

P
ro

p
er

ti
es

(S
W

)

P
h
y
si

ca
l

P
ro

p
er

ti
es

(H
W

)

Attacker

S
id
e
-c
h
a
n
n
e
l
v
e
c
t
o
r

Local RemoteVicinity

A
ct

iv
e

P
a
ss

iv
e

Differential computation analysis [BHMT16]

Smudges [AGM+10]

Reflections/hands [RWG+11]

EM analysis [GHT05]

Power analysis [BFMT16]

EM analysis [SKH+16]

Sensor-based keyloggers [CC11]

Speech recognition [MBN14]

Fingerprinting devices [DRX+14]

Soundcomber [SZZ+11]

Location inference [HON+12]

Microarchitectural attacks [LGS+16]

procfs leaks [JS12]

Page deduplication [GBM15]

Fingerprinting devices [KGB+16]

Data-usage statistics [ZDH+13]

Network traffic analysis [TSCM16]

USB power analysis [CNRS16]

WiFi signal monitoring [ZZT+16]

Laser/optical [SA02]

Clock/power glitch [TML+13]

Temperature variation [HS14]

EMFI [OGSM16]

NAND mirroring [Sko16]

Network traffic analysis [HYG+14]
Differential computation analysis [SMdH15]

Rowhammer [vdVFL+16]

Microarchitectural attacks [GYCH16] M
o
d
e
o
f
a
t
t
a
c
k

Figure 5.4: Classification of side-channel attacks: (1) active vs passive, (2) logical vs physical, (3) local vs vicinity vs remote.

5.8. Discussion of Countermeasures 75

Some microarchitectural attacks can also be considered as active attacks
because the attacker influences the behavior of the victim. For example, cache
attacks can be used to slow down the execution of the victim due to cache
contention. However, this does not introduce a fault in the computation and,
hence, Rowhammer currently represents the only software-induced fault attack.

Exploiting Physical and Logical Properties. In contrast to physical prop-
erties, logical properties do not result from any physical interaction with the
device, but due to dedicated features provided via software. While traditional
side-channel attacks mostly exploited physical properties and required dedicated
equipment, more recent side-channel attacks exploit physical properties as well
as logical properties. Although the majority of attacks on mobile devices still
exploits physical properties, the exploitation of logical properties also receives
increasing attention. Especially the procfs seems to provide an almost inex-
haustible source for possible information leaks.

Empty Areas. As can be observed, a few areas in this categorization system are
not (yet) covered. For instance, there is currently no active side-channel attack
that exploits logical properties (software features) to induce faults. However,
by considering existing passive attacks, one could come up with more advanced
attacks by introducing an active attacker. Such an active attacker might, for
example, block/influence a shared resource in order to cause malfunctioning of
the target. For instance, considering the passive attack exploiting the speaker
status (on/off) to infer a user’s driving routes [ZDH+13], one could easily induce
faults by playing inaudible sounds in the right moment in order to prevent the
turn-by-turn voice guidance from accessing the speaker. Thereby, the active
attacker prevents the target (victim) from accessing the shared resource, i.e.,
the speaker, and based on these induced “faults” an active attacker might gain
an advantage compared to a passive attacker.

5.8 Discussion of Countermeasures

In this section, we discuss countermeasures against side-channel attacks. Overall
we aim to shed light onto possible pitfalls of existing countermeasures and to
stimulate future research for more generic countermeasures.

5.8.1 Local Side-Channel Attacks

Protecting Crypto Implementations. Masking of sensitive values, i.e., the
randomization of key-dependent values during cryptographic operations, or ex-
ecution randomization are countermeasures for hardening the implementation
against passive attacks like power analysis or EM analysis [MOP07]. Execut-
ing critical calculations twice allows to detect faults that are injected during an
active side-channel attack [LRT12].

76 Chapter 5. Taxonomy of Side-Channel Attacks on Mobile Devices

Protecting User Input. Mitigation techniques to prevent attackers from in-
ferring user input on touchscreens are not that thoroughly investigated yet.
Proposed countermeasures include, for example, randomly starting the vibra-
tor to prevent attacks that monitor the backside of the device [SJC+16], or to
randomize the layout of the soft keyboard each time a user provides input to
prevent smudge attacks [Avi12] as well as attacks that monitor the hand move-
ment [SKSP14]. Aviv [Avi12] also proposes to align PIN digits in the middle of
the screen and after each authentication the user needs to swipe down across all
digits in order to hide smudges. Besides, Kwon and Na [KN14] introduce a new
authentication mechanism denoted as TinyLock that should prevent smudge
attacks against pattern unlock mechanisms. Krombholz et al. [KHH16] pro-
posed an authentication mechanism for devices with pressure-sensitive screens
that should prevent smudge attacks and shoulder surfing attacks. Raguram et
al. [RWG+11, RWX+13] suggest to decrease the screen brightness, to disable
visual feedback (e.g., pop-up characters) on soft keyboards, and to use anti-
reflective coating in eyeglasses to prevent attackers from exploiting reflections.

5.8.2 Vicinity Side-Channel Attacks

Preventing Network Traffic Analysis. Countermeasures to prevent attack-
ers from performing traffic analysis techniques on wiretapped network connec-
tions have been extensively considered in the context of website fingerprinting
attacks. The main idea of these obfuscation techniques is to hide information
that allows attackers to uniquely identify, for example, visited websites. Pro-
posed countermeasures include [WCM09, LZC+11, DCRS12, CNJ14, NCJ14]
which, however, require the application as well as the remote server to coop-
erate. Furthermore, we already pointed out in [SGKM16] (cf. Chapter 8) that
these countermeasures add overhead in terms of bandwidth and data consump-
tion which might not be acceptable in case of mobile devices.

5.8.3 Remote Side-Channel Attacks

Permissions. A possible approach always discussed as a means to prevent
specific side-channel attacks is to protect the exploited information or resource
by means of dedicated permissions. However, studies [FHE+12] have shown
that permission-based approaches are not quite convincing. Some users do not
understand the exact meaning of specific permissions, and others do not care
about requested permissions. Acar et al. [ABB+16] even attest that the Android
permission system “has failed in practice”. Despite these problems it seems to be
nearly impossible to add dedicated permissions for every exploited information.

Keyboard Layout Randomization. In order to prevent sensor-based key-
logging attacks that exploit the correlation between user input and the device
movements observed via sensor readings, the keyboard layout of soft keyboards
could be randomized [OHD+12]. For instance, the Android-based Cyanogen-
Mod OS allows to enable such a feature for PIN inputs optionally. However, it

5.8. Discussion of Countermeasures 77

remains an open question how this would affect usability in case of QWERTY
keyboards and, intuitively, it might make keyboard input nearly impossible.

Limiting Access or Sampling Frequency. It has also been suggested to
disable access to sensor readings during sensitive input or to reduce the sampling
frequency of sensors. This, however, would prevent applications that heavily rely
on sensor readings, e.g., pedometers. Specific resources, e.g., the ambient-light
sensor, could be restricted to the OS exclusively (cf. Chapter 7).

Noise Injection. Shrestha et al. [SMS16] proposed a tool named Slogger that
injects noise into sensor readings as soon as the soft keyboard is running. There-
fore, Slogger relies on ADB capabilities in order to inject events into the files
corresponding to the accelerometer and the gyroscope located in /dev/input/.
In order to do so, Slogger relies on a tool that needs to be started via the ADB
shell (in order to be executed with ADB capabilities). Das et al. [DBC16] also
suggest to add noise to sensor readings in order to prevent device fingerprinting
via hardware imperfections of sensors.

Preventing Microarchitectural Attacks. Although specific cryptographic
implementations can be protected against cache attacks, e.g., bit-sliced imple-
mentations or dedicated hardware instructions to protect AES implementations,
generic countermeasures against cache attacks represent a non-trivial challenge.
However, we consider it of utmost importance to spur further research in the
context of countermeasures, especially since cache attacks do not only pose a
risk for cryptographic algorithms, but also for other sensitive information like
keystroke logging [GSM15, LGS+16].

App Guardian. While the above presented countermeasures aim to prevent
specific attacks, App Guardian [ZYN+15] represents a more general approach to
defend against software-only attacks. App Guardian is a third party application
that runs in user mode and employs side-channel information to detect RIG
attacks (including software-only side-channel attacks). The principle of App
Guardian is to stop the malicious application while the app to be protected is
being executed and to resume the (potentially malicious) application later on.
Although App Guardian still faces challenges it is a novel idea to cope with such
side-channel attacks.

App Guardian seems to be a promising research project to cope with side-
channel attacks on smartphones at a larger scale. However, an unsolved issue of
App Guardian is the problem that it still struggles with the proper identification
of applications to be protected. The effectiveness of App Guardian should be
further evaluated against existing side-channel attacks and it might be interest-
ing to extend it to cope with side-channel attacks conducted from within the
browser, i.e., to mitigate side-channel attacks via JavaScript.

78 Chapter 5. Taxonomy of Side-Channel Attacks on Mobile Devices

5.9 Conclusion

In this chapter, we proposed a new categorization system for modern side-
channel attacks on mobile devices. Although side-channel attacks are studied by
the research community since the 1990s, the scope as well as the scale of such
attacks has changed dramatically with the introduction of mobile devices in the
last few years. One of the main key enablers of modern side-channel attacks is
the immense number of sensors and features that can be exploited in order to
conduct side-channel attacks remotely and without any additional equipment.
Based on this observation, we aimed to categorize existing attacks according to
our new classification system.

Considering the immense threat arising from side-channel attacks on mobile
devices, a thorough understanding of information leaks and possible exploita-
tion techniques is necessary. Based on this open issue, we surveyed existing
side-channel attacks and identified commonalities of these attacks in order to
systematically categorize existing attacks. With the presented classification sys-
tem we aim to provide a thorough understanding of information leaks and hope
to spur further research in the context of side-channel attacks as well as coun-
termeasures and, thereby, to pave the way for secure computing platforms.

6
Time-Driven Cache Attacks

If I had an hour to solve a problem
I’d spend 55 minutes thinking about the problem

and 5 minutes thinking about solutions.

— Albert Einstein

Side-channel attacks usually rely on the divide-and-conquer approach. In
the divide step, leaking information is collected for parts of the key. In the
conquer step, this information is exploited to recover the full key. Focusing
on both of these steps, we discuss potential enhancements of Bernstein’s cache-
timing attack against the Advanced Encryption Standard. Concerning the divide
part, we analyze the impact of attacking different key-chunk sizes aiming at
the extraction of more information from the overall encryption time under a
secret key. Furthermore, we analyze an improvement of this attack presented
by Aly and ElGayyar at AFRICACRYPT 2013—who suggest to exploit the
minimum encryption time—according to its applicability on ARM Cortex-A
platforms. For the conquer part, we use the optimal key-enumeration algorithm
proposed by Veyrat-Charvillon et al. in order to reduce the exhaustive key-search
phase compared to the current threshold-based approach. Our experimental
results show that the optimal key-enumeration algorithm leads to more practical
attacks. For instance, on a Samsung Galaxy SII, the remaining key bits to be
searched can be reduced from 128 bits to 46 bits.

We motivate the investigation of cache-timing attacks on mobile devices in
Section 6.1. We introduce the basics of Bernstein’s timing attack in Section 6.2.
We analyze possible improvements of the divide part in Section 6.3 and possi-
ble improvements of the conquer part in Section 6.4. We present experimental
results in Section 6.5. Parts of this chapter are taken verbatim from [SG14].

79

80 Chapter 6. Time-Driven Cache Attacks

Publication Data and Contribution

Raphael Spreitzer and Benôıt Gérard. Towards More Practical Time-Driven
Cache Attacks. In Information Security Theory and Practice – WISTP
2014, volume 8501 of LNCS, pages 24–39. Springer, 2014
Contribution: Main author; Implementation of attacks on smartphones,
and analysis of divide part; Initial idea and analysis of conquer part con-
tributed by Benôıt Gérard.

6.1 Introduction

Kocher [Koc96] and Kelsey et al. [KSWH98] first mentioned the cache memory
as a potential side channel, followed by Page [Pag02] who performed more de-
tailed investigations of cache-based side channel attacks. Cache attacks against
cryptographic primitives are separated into three categories: time-driven at-
tacks, access-driven attacks, and trace-driven attacks. Time-driven cache at-
tacks [TSS+03, Ber05] rely on the overall encryption time to recover the secret
key via statistical methods. In contrast, access-driven1 attacks [NS06b, TOS10,
GBK11] and trace-driven attacks [AK06, GKT10, GK11] rely on more detailed
knowledge about the implementation and the targeted hardware architecture.
However, access-driven and trace-driven attacks require far less measurement
samples than their time-driven counterpart. In short, there is a trade-off between
the required knowledge and the required number of measurement samples.

An attack that has gained particular attention among the scientific commu-
nity is Bernstein’s [Ber05] cache-timing attack against T-table implementations
of the Advanced Encryption Standard (AES). For instance, Neve [Nev06] and
Neve et al. [NSW06] performed a detailed analysis of Bernstein’s timing attack.
Weiß et al. [WHS12] performed this attack against an AES implementation run-
ning in a trusted execution environment, and we [SP13b] investigated the ap-
plicability of Bernstein’s attack on Android devices. Aly and ElGayyar [AE13]
also investigated this timing attack and suggested to exploit the minimum en-
cryption time, instead of the average encryption time. Saraswat et al. [SFKD14]
investigated the applicability of Bernstein’s timing attack against remote servers.

These investigations of Bernstein’s cache-timing attack against AES T-table
implementations emphasize the general applicability of this attack. However,
especially on the ARM Cortex-A platform—the most commonly used archi-
tecture in modern mobile devices—investigations showed that timing informa-
tion is leaking, but the complexity of the remaining key-search phase is usually
very high. For instance, Weiß et al. [WHS12] presented a remaining key-search
complexity of about 65 bits and we [SP13b] confirmed such an order of mag-
nitude. While this might be within the range of sophisticated attackers, e.g.,

1Note that we did not consider the powerful Flush+Reload attack [YF14] back in 2014 as
a dedicated flush instruction was not available on ARMv7 CPUs, e.g., on our targeted ARM
Cortex-A8 and Cortex-A9 processors. Nevertheless, in a co-authored work [LGS+16] published
in 2016 we demonstrated that Flush+Reload also works without a dedicated flush instruction.

6.2. Background 81

state institutions—that have far more efficient techniques to recover information
anyway—such attacks may not be possible for less sophisticated attackers.

Our motivation is to investigate potential improvements of time-driven cache
attacks and to determine if such attacks could be performed on a broader scale.
We propose and investigate multiple enhancements to the cache-based timing
attack of Bernstein. Our practical experiments on ARM-based smartphones
demonstrate that the number of key bits to be searched exhaustively can be
reduced significantly, i.e., from 128 bits to 46 bits, by applying the optimal key-
enumeration algorithm. This confirms our initial proposition: timing attacks
are within the range of less-powerful attackers.

6.2 Background

This section details the principle of the Advanced Encryption Standard, CPU
caches, as well as the principle of Bernstein’s cache attack.

6.2.1 Advanced Encryption Standard

The Advanced Encryption Standard (AES) [Nat01] is a block cipher that oper-
ates on 128-bit states—denoted as S = (s0, . . . , s15)—and supports key lengths
of 128, 192, and 256 bits.2 The initial state is computed as S0 = P⊕K0, with
P = (p0, . . . ,p15) being the plaintext and K0 =

(
k0
0, . . . ,k

0
15

)
the initial round

key. After the initial key addition, the round transformations (1) SubBytes, (2)
ShiftRows, (3) MixColumns, and (4) AddRoundKey are applied multiple times,
whereas the last round omits the MixColumns transformation. The number of
rounds depends on the key length, e.g., 10 in case of a 128-bit key.

In the context of cache attacks the details of these round transformations
are mostly irrelevant, since software implementations usually employ so-called
T-tables, denoted as Ti. These T-tables hold the precomputed round transfor-
mations and are composed of 256 4-byte elements. In every round the state bytes
si are used to retrieve the precomputed 4-byte values which are then combined
with a simple XOR operation to form the new state. The resulting state after
the last round represents the ciphertext.

6.2.2 CPU Caches

The purpose of the CPU cache—a small and fast memory between the CPU and
the main memory—is to buffer frequently used data and, thus, to enhance the
performance of memory accesses. Today, most caches are divided into equally
sized cache sets, each consisting of multiple cache lines. Contiguous bytes of the
main memory are mapped to a specific cache set and can be placed in any cache
line of this cache set. A dedicated replacement policy determines the cache line

2Although we consider a key length of 128 bits in this work, the outlined concepts can be
applied to other key lengths analogously.

82 Chapter 6. Time-Driven Cache Attacks

within a cache set where new data should be placed. ARM Cortex-A platforms
employ a random-replacement policy.

6.2.3 Seminal Work: Bernstein’s Timing Attack

Bernstein’s [Ber05] timing attack against AES T-table implementations relies on
the correlation of timing information of different plaintexts under a known key
K and an unknown key K̃. The attack consists of the following four phases.

Study Phase. The attacker measures the encryption time of multiple plain-
texts P under a known key K. Without loss of generality, we assume that
the zero-key is used. The information is stored in t[j][b] which holds the
sum of all encryption times observed for plaintexts where pj = b, and
n[j][b] which counts the number of encrypted plaintexts where pj = b.

Attack Phase. The attacker collects the exact same information as in the study
phase, but this time under an unknown key K̃ that she wants to recover.
The gathered information is stored in t̃[j][b] and ñ[j][b], respectively.

Correlation Phase. After gathering the required measurement samples, the
attacker computes the so-called plaintext-byte signature (cf. [Nev06]) of
the study phase as shown in Equation 6.1. The plaintext-byte signature of
the attack phase is computed analogously, except that v[j][b], t[j][b], and
n[j][b] are replaced with ṽ[j][b], t̃[j][b], and ñ[j][b], respectively.

v[j][b] =
t[j][b]

n[j][b]
−
∑
j

∑
b t[j][b]∑

j

∑
b n[j][b]

(6.1)

Afterwards, the correlations of the plaintext-byte signature within the
study phase and the attack phase are computed as outlined in Equation 6.2.

c[j][b] =

255∑
i=0

v[j][i] · ṽ[j][i⊕ b] (6.2)

The correlations are sorted in a decreasing order and, based on a predefined
threshold, a list of potential values for each key byte kj is obtained.

Key-Search Phase. Usually, more than one value per byte is selected in the
correlation phase (due to the selected threshold). Thus, the attacker per-
forms an exhaustive search over all possible key candidates that can be
formed from the selected values using a known plaintext-ciphertext pair.

6.3 Analysis of the Divide Part

In this section, we detail potential improvements regarding the gathering of the
required timing information. Experimental results can be found in Section 6.5.

6.3. Analysis of the Divide Part 83

Figure 6.1: Possibilities to combine different key chunks: combination of bytes within
a row (left) and combination of bytes within a column (right).

6.3.1 Attacking Different Key-Chunk Sizes

Bernstein [Ber05] considered the leaking timing information for exactly one key
byte. We investigate the possibility to attack different key-chunk sizes. To this
end, we briefly analyze the main concept of this idea as well as potential pitfalls.

Let us denote by nkc the number of key chunks the whole key is comprised of,
and by skc the size of each key chunk, i.e., the number of possible values each key
chunk might take. If we attack each key byte separately (nkc = 16, skc = 256),
then t[j][b] holds the total of all encryption times where plaintext byte pj = b
and n[j][b] counts the number of plaintexts where pj = b, for 0 ≤ j < nkc and
0 ≤ b < skc. Hence, attacking larger parts of the key at once leads to fewer
key chunks nkc, but a larger number of possible values per key chunk skc. In
contrast, attacking smaller parts of the key leads to an increasing number of key
chunks nkc with fewer possible values skc for each of these key chunks.

Considering the plaintext as a 4×4 matrix, we observe that larger blocks can
be formed in different ways. Figure 6.1 (left) illustrates the gathering of timing
information for two consecutive plaintext bytes in one specific row. In contrast,
Figure 6.1 (right) illustrates the combination of two plaintext bytes within one
column. In case of the OpenSSL T-table implementation, the former approach
collects timing information of two bytes accessing two different T-tables and the
latter collects timing information of two bytes accessing the same T-table.

In our practical evaluation we gather timing information of two bytes access-
ing the same T-table. This case reduces the eventuality of corrupting key chunks
with noise that might affect a specific T-table, e.g., in case many memory ac-
cesses of different processes compete for the same cache lines (cache thrashing).
This can be illustrated as follows. Recall that look-up indices si access T-table
Tj , with i ≡ j mod 4. If noise affects T-table T0, then in case of attacking two-
byte key chunks that access the same T-table (e.g., T0), only two key chunks
are affected by this noise. If we attack two-byte key chunks that access different
T-tables (e.g., T0 and T1), four key chunks are affected by this noise.

Below we investigate potential pitfalls of attacking different key-chunk sizes.

Memory Requirements. The memory consumption of this timing attack de-
pends on the number of key chunks nkc, the size of each key chunk skc, and
the size sd of the used data type in bytes. Assuming the size of the data
type sd = 8, then for attacking each key byte separately (nkc = 16, skc =
256) the size of one such data structure is 32 KB. Attacking two bytes at

84 Chapter 6. Time-Driven Cache Attacks

once (nkc = 8, skc = 2562) would result in 4 MB for each data structure and
attacking four bytes at once (nkc = 4, skc = 2564) would result in 128 GB
for each data structure. Thus, attacking more than two bytes at once is
not applicable for devices with limited resources, e.g., mobile devices.

Number of Measurement Samples. The key-chunk size also has an impact
on the noise reduction of the timing information. First, the larger the key
chunks are, the smaller should be the algorithmic noise in the gathered
encryption times. This positive effect of large chunks is counterbalanced
by the fact that the larger the chunks are, the smaller is the number of
samples obtained for a specific chunk value. For instance, let N be the
number of encrypted plaintexts, then each possible value b of a specific
block pj is encrypted approximately N

skc
times. Thus, there is a trade-off

between the algorithmic noise and the number of samples per value.

Indistinguishable Key Bits. The cache-line size determines the number of
contiguous T-table elements to be loaded at once in the event of a cache
miss. In case of a cache-line size of 32 (resp. 64) bytes, each cache line
holds 8 (resp. 16) T-table elements. This in turn means that in general
one cannot distinguish between accessed elements in one specific cache line
and, therefore, the number of recoverable key bits is limited. Let us denote
by sc the cache-line size in bytes and by st the size of a T-table element
in bytes. Then, according to Tromer et al. [TOS10] the number of non-
recoverable key bits per key byte—at least for attacks considering only the
first round of the AES—is given as log2

sc
st

. In case of a cache-line size of
32 (resp. 64) bytes, each cache line holds 8 (resp. 16) T-table elements,
and the number of non-recoverable key bits per key byte are 3 (resp. 4).
However, this is just a theoretical observation since in practice more ad-
vanced features of the architecture like critical word first3 or early restart4,
as well as particular properties of the implementation, i.e., disaligned T-
tables [SP13a, TFAF13], usually lead to more information leakage.

6.3.2 Minimum Timing Information

Recently, Aly and ElGayyar [AE13] suggested to compute the correlation of the
minimum encryption time within the study phase and the minimum encryption

time within the attack phase. Therefore, tmin and t̃min hold the overall min-
imum encryption time of all encrypted plaintexts in the study phase and the
attack phase, respectively. In addition, the data structure umin[j][b] holds the
minimum encryption time of all plaintexts p where pj = b. The same holds for

the attack phase, except that umin[j][b] and p are replaced by ũmin[j][b] and p̃,
respectively. The computation of the correlation is based on umin[j][b]− tmin

3Critical word first means that in case of a cache miss the missed word is loaded first and
then the CPU continues its work while the remaining words are loaded into the cache.

4Early restart means that as soon as the critical word arrives, the CPU continues its work.
In practice this would impose a serious side channel.

6.4. Analysis of the Conquer Part 85

and ũmin[j][b]− t̃min. Combining the timing information initially proposed by
Bernstein and the minimum timing information, they claim to recover the whole
secret key without a single exhaustive key-search computation.

We assume that the attacker computes the correlation with the timing infor-
mation initially proposed by Bernstein and the correlation with the minimum
timing information. So for each key byte ki the attacker retrieves two sets of
potential key candidates. Afterwards the attacker combines the sets of potential
key candidates with the lowest cardinalities.

6.4 Analysis of the Conquer Part

In the conquer part, the information obtained during the divide step is exploited
to recover the full key.

6.4.1 Combining Information from the Divide Part

We briefly describe two possible approaches to recover the full key. The first one
is the one currently used in timing attacks, and the second one overcomes some
of the mentioned shortcomings of the first one.

Threshold Approach. Currently, timing attacks rely on a threshold-based
approach. This means that one fixes a threshold on the computed correlations
and considers sub-key values as potential candidates if the corresponding corre-
lation is larger than the threshold. Notice that one may use different thresholds
for the different sub-keys, either because a profiling phase has shown different
behaviors for different sub-keys or because they are dynamically computed.

The threshold approach is simple to implement but has two major drawbacks.
The first one is that the actual key may not be found. If one of the sub-key values
led to a small correlation, the key will never be tested in the search-phase and,
thus, the attack will provide no advantage over exhaustive search. The second
drawback is a loss of information since the order of sub-key values is not exploited
in the search phase. Though Neve [Nev06, p 58] suggested that the key search
“could start by the most probable key candidates”, no indication is given how
this should be accomplished.

Optimal Enumeration Approach. Veyrat-Charvillon et al. [VGRS12] re-
cently proposed an optimal key-enumeration algorithm that solves the afore-
mentioned problems at the cost of additional computations for generating the
next full key to be tested. The algorithm requires a combination function that
computes the score of the concatenation of two key chunks based on the scores
of each chunk. Using such a combination function, a global score can be com-
puted for each full key by combining the sub-key scores. The “optimal” notion
comes from the fact that the algorithm ensures that keys will be generated in a
decreasing order of global scores.

86 Chapter 6. Time-Driven Cache Attacks

6.4.2 Evaluating the Key-Search Complexity

Threshold Approach. The lower bound on the key-search complexity is easy
to obtain. Assuming that the attacker dynamically chooses a threshold for each
targeted sub-key, it will, for a given sub-key, keep at least all values with a score
larger than the correct one. The cardinality of the set of keys to be tested is
then equal to the product of sub-key ranks. This lower bound, however, is very
optimistic as such a magic threshold choice does not exist. Concerning the upper
bound, it will depend on the allowed probability of missing the correct key. For
given threshold(s), upper bounds on the key-search complexity and estimates of
the missing-key probability can be obtained by simulating attacks. The upper
bound being the size of the key-search space and the success probability being
the probability that the actual key belongs to this space.

Optimal Enumeration Approach. Following the proposition of the key-
enumeration algorithm in [VGRS12], Veyrat-Charvillon et al. [VGS13] proposed
a key-rank estimation algorithm that estimates the key-search complexity of
the optimal key-enumeration algorithm for a given combination function. More
precisely, the algorithm requires the combination function, the scores obtained
for one attack, and the correct key. When stopped, the program provides an
interval [2x; 2x+ε] ensuring that the key rank lies in this range.

6.4.3 Choosing Thresholds and Combination Functions

Choosing Thresholds. After performing the correlation of the timing infor-
mation from the study phase and the attack phase one retrieves a correlation
vector c[j][b]. The elements are sorted in a decreasing order and byte values b
with a correlation value above a predefined threshold are considered as potential
key candidates. Bernstein suggested a threshold based on the standard error
of the mean. The idea is to take a key candidate b for a key byte kj only into
consideration if the difference of the byte value providing the highest correlation
and the correlation of b is smaller than the established threshold.

Choosing Combination Functions. Ideally a combination function turns
scores into sub-key probabilities that can be combined by multiplication. The
so-called Bayesian extension in [VGRS12] uses Bayes’ relation and a theoretical
model of obtained scores to compute sub-key probabilities. In the context of tim-
ing attacks the scores obtained are similar to correlations. A minor modification
of Bernstein’s scoring function turns the scores into actual correlations without
modifying the ordering of sub-key values. The modified formula for computing
scores according to Pearson’s correlation coefficient is outlined in Equation 6.3.

c’[j][b] =

∑skc−1
i=0 v[j][i] · ṽ[j][i⊕ b]√∑skc−1

i=0 v[j][i]2 ·
√∑skc−1

i=0 ṽ[j][i⊕ b]2
(6.3)

6.5. Experimental Results 87

Table 6.1: Device specifications of the test devices.

Google Nexus S Samsung Galaxy SII

Processor Cortex-A8 Cortex-A9
L1 cache size/associativity 32 KB/4 way 32 KB/4 way
L1 cache-line size 64 byte 32 byte
L1 cache sets 128 256
Critical word first yes yes
Operating system Android 2.3.6 Android 2.3.4

Then, using a Bayesian extension similar to the one in [GS13] (based on
Fisher transform of correlation coefficients) we are able to estimate sub-key
probabilities. The idea is that f[j][b] = arctanh(c’[j][b]) follows a Gaussian
distribution of variance σ2 = 1

skc−3 and with mean µc = 1 if kj = b and µw = 0
otherwise. The estimated likelihood ratio between the probabilities of the j-th
key chunk to be equal to b or not is then:

l[j][b] = exp

(
(skc − 3)(f[j][b]− 0)2

2
− (skc − 3)(f[j][b]− 1)2

2

)
= exp ((skc − 3) (f[j][b]− 0.5)) .

The score of a full-key candidate k will be given by

SBayes =
∏
j

l[j][kj]. (6.4)

To investigate the relevance of such Bayesian extension, Section 6.5 also
contains data obtained with a different combination function that does not use
Fisher transform. Natural combinations of correlation coefficients are operators
+ and ×. The latter one is not relevant here since two values with correlation
−1 will combine to a key with correlation 1, which is not desirable. We thus
propose results obtained using + as a combination function to complement our
evaluation. In that case, the score of a full-key candidate k will be given by

SAdd =
∑
j

c’[j][kj]. (6.5)

6.5 Experimental Results

In this section, we present the measurement setup and our practical evaluation.

6.5.1 Setup and Methodology

For the practical investigation of the suggested enhancements we employed two
Android-based smartphones as shown in Table 6.1. Both devices are rooted to
allow precise timing measurements via the ARM cycle counter register [ARM10].

88 Chapter 6. Time-Driven Cache Attacks

Figure 6.2: Rank evolution for
one-byte key chunks.

Figure 6.3: Rank evolution for
two-byte key chunks.

Definitions. We define the gathering of the measurement samples under a
known key and the gathering of the measurement samples under an unknown key
as one run. Thus, one run of the attack application constitutes the gathering of
the measurement samples for both of these phases. The number of measurement
samples denotes the number of gathered samples in each of these two phases.

6.5.2 Attacking Different Key-Chunk Sizes

We launched Bernstein’s attack multiple times on both devices, targeting either
four bits, one byte, or two bytes of the key. Figures 6.2 and 6.3 illustrate the rank
evolution for a specific number of measurement samples on the Samsung Galaxy
SII. These plots show the average range (bounds) of key bits to be searched with
the optimal key-enumeration algorithm after a specific number of measurement
samples has been gathered. We clearly see that below 221 measurement samples
hardly any information leaks. Targeting four-bit chunks we observed a similar
rank evolution as for one-byte chunks. Hence, we omitted this figure here.

According to Figure 6.3, the noise induced by the small number of samples
per chunk value is significantly larger than the noise reduction obtained by con-
sidering larger chunks. The problem can be illustrated as follows. Figure 6.4
shows the plaintext-byte signature for one specific key byte for the study phase.
The x-axis shows the possible chunk values of a plaintext byte and the y-axis
shows the average encryption time for this specific byte subtracted by the overall
average encryption time, after gathering 230 samples. Figure 6.5 illustrates this
information for the attack phase. We observe a visible pattern in both plots and
the correlation yields a few possible key candidates. We also point out that most
of the values lie in the range [−0.5; 0.5] with peaks up to 2.5.

In contrast, Figure 6.6 and Figure 6.7 illustrate the chunk signatures for an
attack targeting two-byte key chunks. Again, after gathering 230 measurement

6.5. Experimental Results 89

Figure 6.4: One-byte chunk signatures
for the study phase of one

run.

Figure 6.5: One-byte chunk signatures
for the attack phase of one

run.

Figure 6.6: Two-byte chunk signatures
for the study phase of one

run.

Figure 6.7: Two-byte chunk signatures
for the attack phase of one

run.

samples. Since the pattern is not that clearly visible we marked the similar
peaks appropriately. Neve [Nev06] also performed an investigation of such sig-
nature plots for one-byte chunks. In accordance with his terminology, we note
that both plots show rather noisy profiles with most values lying in the range
[−25; 25]. Due to these noisy profiles the correlation does not reduce the key
space significantly and the sub-key value for this specific key chunk cannot be
determined. Though we also observed rather noisy profiles for attacks targeting
one-byte chunks, most of the profiles established for one-byte chunks showed a
clear pattern. In contrast, for two-byte key chunks we mostly observed plots
where we could not find any specific pattern.

Our observations showed that attacking smaller key chunks works, while at-
tacking larger key chunks seems to leak less information for the same (realistic)
number of measurement samples. Targeting more than 230 samples is not realis-

90 Chapter 6. Time-Driven Cache Attacks

tic anymore, at least for mobile devices, since a running time of more than eight
hours does not represent a realistic scenario anymore.

6.5.3 Minimum Timing Information

Aly and ElGayyar [AE13] argue that noise usually increases the encryption time
and, thus, the exploitation of the minimum timing information should signifi-
cantly improve the timing attack. Their idea is to capture only one single mea-
surement sample without noise, which is then stored and used for the correlation
later on. They successfully launched their attack against a Pentium Dual-Core
and a Pentium Core 2 Duo processor. However, contrary to their conclusion that
this approach significantly improves the timing attack on Pentium processors,
our results indicate that this approach does not work at all on ARM Cortex-A
series processors. The reasons for this approach to fail are potentially manifold.

First, the OpenSSL implementation itself might be the reason. Aly and
ElGayyar [AE13] attacked an implementation of OpenSSL that employs 4 T-
tables. In contrast, we attacked an implementation that employs 5 T-tables.

Second, according to our understanding, gathering the minimum encryption
time misses potential useful information. As Neve et al. [NSW06] put it, Bern-
stein’s timing attack implicitly searches for cache evictions due to work done
on the attacked device. Such cache evictions lead to cache misses within the
encryption function and, thus, to slower encryptions. As a result, not only noise
in terms of measurement noise increases the encryption time, but also cache
misses increase the encryption time. While noisy encryption times do not carry
useful information, encryption times where a cache miss occurred definitely do
so. However, gathering the minimum timing information does not capture this
information because the minimum timing information seeks for encryption times
where a cache hit occurred. The problem is that once we observe a cache hit,
i.e., a fast encryption, we store this timing information. So this approach only
searches for the cache hits and in the worst case, after a certain number of mea-
surement samples, we observe a cache hit for all possible key bytes due to the
random-replacement policy on ARM processors.

Furthermore, in the long run, the local minimum as well as the global min-
imum might become equal in which case these timings do not carry any in-
formation at all. Our practical evaluation showed that after a certain number
of measurement samples on the Google Nexus S the minimum timing informa-
tion umin[j][b] − tmin equals 0 for most of the key bytes. Additionally, the
random-replacement policy implemented on ARM Cortex-A series processors
strengthens this reasoning. Though Aly and ElGayyar implemented this ap-
proach on Pentium processors that usually rely on a deterministic replacement
policy, we consider the gathering of the minimum timing information also risky
on such processors.

Concluding the investigation of the minimum timing information we point
out that instead of using the minimum timing information, we stick to the ex-
ploitation of the timing information as proposed by Bernstein and only take

6.5. Experimental Results 91

Table 6.2: Sample results on the Samsung Galaxy SII.

Run Key-Chunk Samples
Bernstein Minimum

Size Optimal Threshold Threshold Key Enumeration Optimal Threshold

(6.4) (6.5)

1 4 bits 230 50 bits 102 bits 79.3 - 104.4 86.5 - 112.3 84 bits
2 4 bits 231 32 bits 87 bits 58.9 - 82.4 62.1 - 92.6 88 bits
3 1 byte 227 42 bits 84 bits 59.3 - 80.3 58.4 - 81.8 107 bits
4 1 byte 228 41 bits 93 bits 55.7 - 77.7 56.2 - 79.2 104 bits
5 1 byte 230 23 bits 64 bits 36.6 - 44.9 36.4 - 46.5 100 bits
6 1 byte 230 32 bits 92 bits 49.1 - 70.1 49.1 - 70.3 100 bits
7 1 byte 231 24 bits 65 bits 37.4 - 52.5 37.6 - 53.6 99 bits
8 1 byte 230 20 bits 74 bits 36.5 - 45.6 36.0 - 46.4 105 bits
9 1 byte 230 32 bits 70 bits 43.9 - 64.1 44.0 - 66.6 106 bits
10 2 bytes 230 107 bits 123 bits 118.9 - 125.3 118.9 - 125.3 104 bits
11 2 bytes 230 96 bits 128 bits 115.5 - 122.2 115.0 - 123.2 114 bits
12 2 bytes 230 90 bits 124 bits 110.5 - 119.7 110.5 - 119.9 118 bits
13 2 bytes 230 110 bits 126 bits 120.2 - 126.7 120.3 - 126.7 115 bits

encryption times below a specific threshold into consideration. This approach
also reduces the impact of noise if the threshold is selected properly.

6.5.4 Summary of Practical Results

Table 6.2 summarizes the results of our practical investigations on the Android-
based Samsung Galaxy SII smartphone. For different runs, we provide the at-
tacked key-chunk size as well as the number of samples acquired. The rest of the
columns contain different log2 time complexities of the key-search phase depend-
ing on the exploited information, e.g., either Bernstein’s timing information or
the minimum timing information from [AE13], and depending on the conquer-
phase technique. For the threshold-based conquer phase we provide the remain-
ing key space for: (1) an optimal threshold choice, such that for each chunk the
threshold is chosen in a way that only values with better scores than the correct
one are selected (cf. Section 6.4.2), and (2) a threshold based on the standard
error of the mean as suggested by Bernstein. The key-enumeration column con-
tains bounds of the obtained key rank if the optimal key-enumeration algorithm
from [VGRS12] is used. In Table 6.2 this column is separated into two, the first
one being the result of the use of the Bayesian extension (cf. Equation 6.4) the
second being obtained by addition of correlations (cf. Equation 6.5). We observe
that using the optimal key-enumeration algorithm instead of the threshold-based
approach has a positive impact on the key-search complexity. For instance, in
case of run 5 and run 8—that require far more than 260 keys to be tested in
case of the threshold-based approach—the optimal key-enumeration algorithm
recovers the key in less than 246 tests. Considering the improvement of using the
Bayesian extension, we observe that it is small when attacking one-byte chunks
but becomes more significant when attacking four-bit chunks.

Furthermore, for ARM Cortex-A processors we cannot confirm that the min-
imum timing information improves the timing attack. The last column in Ta-
ble 6.2 shows that the minimum timing information hardly leaks any informa-
tion. Table 6.3 summarizes the exact same information for the Google Nexus

92 Chapter 6. Time-Driven Cache Attacks

Table 6.3: Sample results on the Google Nexus S.

Run Key-Chunk Size Samples
Bernstein Minimum

Optimal Threshold Threshold Key Enumeration Optimal Threshold

1 1 byte 231 64 bits 108 bits 83.5 - 109.1 bits 105 bits
2 1 byte 230 62 bits 119 bits 77.6 - 104.9 bits 95 bits
3 1 byte 226 66 bits 101 bits 79.0 - 101.3 bits 104 bits
4 1 byte 230 67 bits 96 bits 77.6 - 104.4 bits 108 bits
5 1 byte 230 58 bits 91 bits 69.6 - 90.5 bits 107 bits
6 1 byte 228 82 bits 95 bits 105.3 - 115.2 bits 110 bits
7 1 byte 230 61 bits 97 bits 84.0 - 99.0 bits 97 bits
8 2 bytes 227 121 bits 128 bits 127.8 - 128.0 bits 121 bits
9 2 bytes 228 116 bits 128 bits 125.0 - 127.8 bits 124 bits
10 2 bytes 230 118 bits 128 bits 126.1 - 127.2 bits 121 bits

S smartphone. Since we observed only minor differences between the usage of
the Bayesian extension (Equation 6.4) and the usage of addition as a correlation
function, we only provide the bounds based on the former approach.

6.6 Conclusion

In this chapter, we analyzed multiple improvements of Bernstein’s timing attack.
Based on the “divide-and-conquer” strategy we investigated different improve-
ments for both of these two phases. Considering these improvements we also
provide practical insights on two devices employing an ARM Cortex-A proces-
sor. We performed theoretical investigations of attacking smaller (resp. larger)
chunks of the key and presented potential pitfalls. Our practical investigations
on ARM-based smartphones showed that attacking one-byte chunks seems to
be the best choice for resource-constrained devices. Furthermore, these investi-
gations showed that the minimum timing information, as proposed by Aly and
ElGayyar, does not improve the cache timing attack on the ARM Cortex-A
devices at all.

The most important contribution of this work is the shift from the threshold-
based approach for the selection of potential key candidates towards the applica-
tion of the optimal key-enumeration algorithm. Instead of selecting potential key
candidates on a threshold basis, we iterate over potential keys according to their
probability for being the correct key. As our practical observation showed, this
approach significantly reduces the complexity of the remaining key-search phase,
which brings this attack to a complexity that can be considered as practical.

7
Exploiting the Ambient-Light Sensor

When you have a smartphone,
the things that it can do are kind of ridiculous and terrifying.

— Jonathan Nolan

In this chapter, we propose a new side-channel attack based on the ambient-
light sensor. While recent advances in this area of research focused on the motion
sensors and the camera as well as the sound, we investigate a less obvious source
of information leakage, namely the ambient light. We successfully demonstrate
that minor tilts and turns of mobile devices cause variations of the ambient-light
sensor information. Furthermore, we show that these variations leak enough
information to infer a user’s personal identification number (PIN) input based
on a set of known PINs. Our results show that we are able to determine the
correct PIN—out of a set of 50 random PINs—within the first ten guesses about
80% of the time. In contrast, the chance of finding the right PIN by randomly
guessing ten PINs would be 20%. Since the light-sensor information can be
gathered without any specific permissions or privileges, the presented attack
seriously jeopardizes the security and privacy of mobile-device owners.

We start with a short introduction in Section 7.1 and provide background
information on the ambient-light sensor as well as the RGB(W) sensor in Sec-
tions 7.2 and 7.3, respectively. We discuss the attack scenario in Section 7.4
and our attack approach in Section 7.5. We provide an evaluation of our attack
in Section 7.6 and discuss limitations in Section 7.7. We discuss possible mit-
igation techniques in Section 7.8 and compare our attack to similar attacks in
Section 7.9. Parts of this chapter are taken verbatim from [Spr14].

93

94 Chapter 7. Exploiting the Ambient-Light Sensor

Publication Data and Contribution

Raphael Spreitzer. PIN Skimming: Exploiting the Ambient-Light Sensor in
Mobile Devices. In Security and Privacy in Smartphones & Mobile Devices
– SPSM@CCS, pages 51–62. ACM, 2014
Contribution: Main author.

7.1 Introduction

Besides providing useful information, sensors employed in mobile devices also
represent a threat to the users’ security and privacy. Although Android employs
a permission system to prevent malicious access to specific device resources,
many sensors can be accessed without any permission. This exacerbates the
severity of information leaks since applications without any specific permission
are able to exploit these side channels, which has already been demonstrated
impressively. For instance, Aviv et al. [ASBS12] inferred the PIN input and
the unlock pattern by exploiting the accelerometer sensor of smartphones. In
addition, Miluzzo et al. [MVBC12] showed how to infer pressed keys from the
accelerometer sensor readings in combination with the gyroscope sensor readings.

We investigate a less obvious source of information leakage, i.e., the ambient-
light sensor. Due to minor tilts and turns during the operation of the device, the
sensor information allows an attacker to infer the input provided by the user.

7.2 Ambient-Light Sensor

Figure 7.1 illustrates the proximity and ambient-light sensor as well as the front
camera on a Samsung Galaxy SIII. The ambient-light sensor measures the in-
tensity of illumination of a surface and the information reported is given in SI
lux units. This information is used to adapt the screen brightness. For instance,
outside in direct sunlight the screen brightness must be increased, whereas in
darker surroundings the screen is dimmed to reduce eye fatigue [Sam13].

Figure 7.1: (1) Proximity and ambient-light sensor as well as (2) front camera.

The ambient-light sensor can be accessed via the Android Sensor API and
a rate parameter determines how fast the events should be reported. Table 7.1
shows the sampling frequencies for the different rate parameters on a Samsung
Galaxy SIII running Android 4.3. We also observed a sensor resolution of 1 lux.

7.2. Ambient-Light Sensor 95

Table 7.1: Sampling rates on the Samsung Galaxy SIII.

Rate parameter Sample rate

SENSOR DELAY FASTEST (0) ∼ 750 Hz
SENSOR DELAY GAME (1) ∼ 49 Hz
SENSOR DELAY UI (2) ∼ 15 Hz
SENSOR DELAY NORMAL (3) ∼ 5 Hz

Figure 7.2: PIN input mask to gather test samples.

In order to determine the exploitability of the light-sensor information, we
need to determine whether operating the smartphone leads to changes in the
sensor readings. Therefore, we developed an Android application that prompts
the user to enter a random 4-digit PIN. Figure 7.2 illustrates a screenshot of
this application. While the user enters the PIN, the app collects the light sensor
information. We collected this information for five consecutive PIN inputs and
visualized the gathered information in Figure 7.3. For the sake of clarity we
also plotted the single digits of the PIN and, as can be seen, a recurring pattern
for the PIN (1-5-9-0) can be observed. These differences in the light intensity
during the PIN input occur inevitably due to slight tilts and turns.

Figure 7.4 illustrates the tilts and turns leading to variations of the sensor
values. For instance, assuming the light bulb being the main source of light, then
tilting the device to the left causes a decrease of the reported lux value. Although
we illustrate a point-like light source, the attack also works for environments that
are uniformly lit via tube lights. Note that the PIN input mask can be aligned
on the top or on the bottom of the screen. However, our observations showed
that the alignment does not influence the information leakage.

96 Chapter 7. Exploiting the Ambient-Light Sensor

0 2 4 6 8

x 10
9

0

100

200

300

400

500

600

700

1

5

9
0

1

5

9
0

1

5

9

0

1

5

9
0

1

5

9
0

L
ig

h
t−

s
e

n
s
o

r
in

fo
rm

a
ti
o

n
 [

lx
]

Time [ns]

Figure 7.3: Light-sensor information for five consecutive PIN inputs (1-5-9-0).

Figure 7.4: Schematic illustrating the tilts and turns of the smartphone.

7.3. RGB(W) Sensor 97

0 2 4 6 8

x 10
9

0

50

100

150

200

250

300

350

400

1
7 3

0

1
7 3 0

1 7 3 0

1
7

3

0

1
7

3
0

L
ig

h
t−

s
e

n
s
o

r
in

fo
rm

a
ti
o

n

Time [ns]

Lux
Red
Green
Blue
White

Figure 7.5: RGB(W)-sensor information for five consecutive PIN inputs (1-7-3-0).

7.3 RGB(W) Sensor

More recent smartphones, e.g., the Samsung Galaxy SIII [Samb] and the Sam-
sung Galaxy S4 [Sama], also employ an RGB(W) sensor. This sensor reports the
red, green, blue, and white (RGBW) intensities of the ambient light and is used
to optimize the screen brightness and sharpness to prevent eye fatigue [Sam13].

The Android API, including Android 7.0, does not support RGB(W) sensors
(yet), but sensor values can be read from the virtual file system directly. For
instance, on the Samsung Galaxy SIII the RGBW values are publicly available
via /sys/devices/virtual/sensors/light sensor/raw data.

Figure 7.5 illustrates the data of the same experiment as mentioned before,
but this time we also include the information provided by the RGB(W) sensor.
Due to reasons of readability, we plotted only every 10-th value of the RGBW
intensities. We observe that all values show a similar curve, but the intensity of
the blue light seems to provide a smoother curve than the other four values. Our
observations show that the RGBW information provides additional information
that can be exploited, i.e., additional features to be used for the machine-learning
algorithm later on.

7.4 Attack Scenario

Since the light-sensor information reflects the ambient-light conditions, we con-
sider a scenario where the training data for the classification algorithm is gath-
ered in the same environmental setting as the data which is to be classified. A
generic attack requires further investigations and is considered as future work.

98 Chapter 7. Exploiting the Ambient-Light Sensor

7.4.1 Training Phase

A hand-crafted application is used to gather the light-sensor information during
the user’s interaction with the smartphone. The application tricks the user into
operating the smartphone in a way that is similar to the input of multiple PINs.
For example, a game where the user is supposed to solve mathematical puzzles
could be used. In this case, the entered numbers can be interpreted as PINs.

We assume that users play such games in the living room while watching
TV, or in a waiting room while waiting for an appointment. A study performed
by the UK’s Office of Communications [UK 13] coined the term media stacking,
which refers to the fact that about half of UK’s adults conduct their smartphone
or tablet computer while watching TV. Thus, our assumption is reasonable.

As the game, as outlined above, might only be able to capture a limited
number of training samples (PINs), the attacker might take the users’ tendency
to choose PINs into consideration. For instance, Bonneau et al. [BPA12] as well
as Jakobsson and Liu [JL13] found that people tend to choose specific PINs like
dates or PINs that represent common four-digit words, e.g., “love” (5683).

In case computing power for the machine-learning algorithm is required, the
app transmits the data to a powerful server. Nevertheless, convincing the user
that the application requires Internet access should be easy and since Android
Marshmallow (6.0), the INTERNET permission is even granted automatically.
Thus, the proposed attack can be performed without raising the user’s suspicion.

7.4.2 Exploitation Phase

After gathering enough samples, the application tricks the user into restarting
the device or starting the desired application, e.g., the banking application, to
capture the light-sensor information during the input of the authentication PIN.
If one considers to attack the smartphone’s PIN, a service can be implemented
to be started on boot time. Afterwards the sensor information captured during
the game play is used to deduce the unknown PIN input by means of machine
learning. The game might also trick the user into buying a specific add-on, a
“new level”, or a “new stage”. When the user performs the in-app billing via
Google Wallet, the game skims the corresponding authentication PIN.

Now one might question whether the revealed PIN is of any value for the
attacker. In fact, if the attacker later gains physical access to the mobile device,
she might gain access to the mobile device by unlocking the phone or might cause
financial damage by authenticating herself to the corresponding application using
the correct PIN. Furthermore, Aviv et al. [ASBS12] argued that the learned PIN
might be valuable in case users reuse the PIN, for instance, as the ATM PIN. In
addition, Simon and Anderson [SA13] predict that the number of smartphone
applications requiring an authentication PIN will increase over time. Hence,
users might be tempted to reuse one PIN across different applications, which
exacerbates PIN-skimming vulnerabilities.

7.4. Attack Scenario 99

7.4.3 Security Implications

Simon and Anderson [SA13] state that sensor-based side-channel attacks are
capable to overcome strong separation mechanisms like Samsung KNOX [Samc].
Samsung KNOX tries to separate the “private” world from the “business” world
in order to provide better protection of corporate data on smartphones. However,
based on the leaking sensor information, an unprivileged application running in
the “private” world of the smartphone could learn sensitive information entered
in the “business” world.

7.4.4 Observations and Assumptions

Considering a PIN-input mask as illustrated in Figure 7.2, and a user operating
the smartphone with only one hand, using the thumb to enter the digits, we make
the following observations. Left-handed persons tilt the smartphone slightly to
the left side when entering PIN digits in the middle and right column of the key
pad, i.e., 2, 3, 5, 6, 8, 9. In contrast, right-handed persons tilt the smartphone
slightly to the right side when entering PIN digits in the left and middle column,
i.e., 1, 2, 4, 5, 7, 8. This can be attributed to the fact that people slightly push
the display towards the thumb. These tilts of the device cause the variations in
the captured light-sensor information. Similarly, we expect fewer tilts and turns
of the mobile device if it is held with one hand and operated with the index
finger of the other hand or a stylus pen. Based on these observations we make
the following assumptions in order for the outlined attack scenario to work.

Assumption 1: We assume that the targeted user is holding the mobile device
in her hands rather than laying it onto a flat surface while operating it.
If we would assume the mobile device is lying on a stable surface, i.e., a
table, the light-sensor information would not change during the operation
of the device, unless the user’s hand causes the light-sensor changes.

Assumption 2: Furthermore, we assume that the PIN is entered on a key
pad similar to the one illustrated in Figure 7.2 rather than a QWERTY
keyboard with a single row of numbers. Examples of applications that are
“protected” with an authentication PIN are, for instance, AppLock [DoM],
Evernote [Eve], and KeepSafe [Kee], as well as mobile banking applications,
e.g., Barclays [Bar], and NAB [NAB], just to name a few of them. Screen-
shots of these applications—provided by the corresponding developers—
show that the authentication PIN is entered on a key pad as illustrated in
Figure 7.2. Hence, this seems to be a rather fair assumption which does
not have a negative impact on the attack scenario.

Assumption 3: We also assume that the user operates the mobile device in an
environment where the light sensor faces a sufficiently large variance of the
ambient light. This is not the case in completely dark environments. How-
ever, also rather gloomy environments, i.e., a room in the late afternoon
without any artificial light source (rather diffuse light), can be considered

100 Chapter 7. Exploiting the Ambient-Light Sensor

for potential attack scenarios, if the lux values vary slightly during the
handling of the device.

7.5 Attack Approach

In this section, we detail the steps for the exploitation of the light-sensor in-
formation. As outlined in the scenario above, we perform a matching of sensor
values captured during the input of an unknown PIN to the sensor values of
known PINs. In terms of machine learning this represents a classification prob-
lem, where a so-called feature vector is mapped to a finite number of labels or
categories, i.e., PINs in our case. The required steps are as follows: (1) gathering
the sensor values under known PINs as well as the sensor values under unknown
PINs, and (2) employing machine-learning techniques to determine the unknown
PINs based on the set of known PINs.

In order to perform the classification, sensor values and the corresponding
PINs are used to train the machine-learning algorithm. This data is referred to
as training data. The data that is to be classified is known as test data. We
stick to the notation of Alpaydin [Alp10] and Bishop [Bis06], i.e., bold letters
denote vectors that are assumed to be column vectors by default, a superscript
T denotes the transpose of a vector, and uppercase bold letters denote matrices.

7.5.1 Gathering the Required Data

The gathering of the required training data during game play can be formalized
as follows. The malicious application captures a list of tuples (t, L,R,G,B,W),
with t being the timestamp and L, R, G, B, and W representing scalars of
the lux information, as well as the red, green, blue, and white intensities of the
ambient light. Furthermore, we capture a list of tuples (tp, d), with tp being the
timestamp of a pressed digit d ∈ {0, . . . , 9} of the p-th PIN, which will act as
the ground truth. One PIN consists of four consecutive tuples in this list.

For each PIN we extract the sequence of sensor values (consisting of l tuples)
within the time period defined by the timestamp of the first digit and the times-
tamp of the last digit of the PIN. In addition, one might consider a timeframe
of a few milliseconds before and after the input of the first and the last digit of
one PIN, which covers additional information. The resulting matrix M for one
PIN (consisting of four digits) is as follows.

M =

(t, L,R,G,B,W)1
...

(t, L,R,G,B,W)l

Each column in matrix M represents the sensor information during the input

of one specific PIN, except the first one which represents the timestamp at which
the information was captured. Before the gathered information can be exploited,
we normalize the sensor values appropriately. This normalization of the data is

7.5. Attack Approach 101

done either by dividing each value (L, R, G, B, W) in one column by the
norm of the corresponding column vector, or by rescaling the values via, e.g.,
Li = (Li −min(L)) / (max(L)−min(L)). This data is then used to derive the
feature vectors, which are briefly outlined within the following paragraphs.

Lux Values Only. The first set of feature vectors we consider are the exact
lux values during the input of each specific digit of the PIN. We represent
these values as a vector x = [L1, L2, L3, L4]

T
, where the subscript refers

to the corresponding digit of the entered PIN.

Lux Values Including RGBW Values. The second set of features are the
exact lux values as well as the red, green, blue, and white (RGBW) inten-
sities during the input of each digit for one specific PIN. We represented
these values as a vector x = [L1, R1, G1, B1,W1, . . . , L4, R4, G4, B4,W4]

T
.

In the following we refer to the feature vector comprised of these five fea-
tures as LRGBW.

Polynomial of Degree 3. The third possibility we consider is fitting a poly-
nomial of degree 3 through the second column of M, i.e., through all
lux values during one PIN input. The coefficients of this polynomial
f (x) = ax3 + bx2 + cx+ d are then considered as the features of a specific

PIN, i.e., x = [a, b, c, d]
T

. The coefficients for the red, green, blue, and
white intensities—the remaining columns of M—are obtained in the same
manner and appended to x.

After gathering the data as outlined above, any set of the above outlined
feature vectors is then combined into a matrix Fn with n rows, i.e., one row for
each PIN. Furthermore, a class vector cn = [(d1, d2, d3, d4)1, . . . , (d1, d2, d3, d4)n]
of tuples corresponding to the PIN-digits (d1, d2, d3, d4) can be derived.

Fn =

x1

...
xn

 , cn =

(d1, d2, d3, d4)1
...

(d1, d2, d3, d4)n

The matrix Fn containing the feature vectors as well as the label vector cn

are then used to train the classifier.

7.5.2 Detecting PIN Inputs

Capturing the training data allows to capture the timestamp of each digit input.
However, during the input of the unknown PIN, the timestamp of single digit
inputs is not known and hence we need a mechanism to determine the PIN input
on a continuous sequence of sensor values. Therefore, we could use other sensors,
e.g., the accelerometer, to reliably detect the input. Simon and Anderson [SA13]
suggest to use the microphone to capture the vibrations of the haptic feedback
to determine when a button has been pressed. Thus, we consider the detection
of PIN inputs on a continuous sequence of sensor values as solved.

102 Chapter 7. Exploiting the Ambient-Light Sensor

7.5.3 Determining the Unknown PIN

After we gathered the required light-sensor information for all the PINs (Fn and
cn) to be used for the training phase of the machine-learning algorithm, we start
the training phase. For this purpose, we use Matlab’s Statistics Toolbox [Mat]
with its extensive features and machine-learning algorithms. We perform the
outlined attack by employing a supervised learning algorithm, which tries to
learn a function and its parameters based on labeled training data. This function
is later on used to determine the label of unseen data. More formally, given a set
of tuples (xi, ci), with xi ∈ Rn being a feature vector and ci the corresponding
label of the observation, the algorithm tries to infer a function f : X → C, where
X ∈ Rn represents the feature vector of an observation and C the inferred label.

We investigate three classification algorithms—which have also been used in
related work [ASBS12, MVBC12]—and compare their results afterwards. We
briefly outline the chosen classification algorithms in the following paragraphs
(cf. Alpaydin [Alp10] and Bishop [Bis06]).

Multiclass Logistic Regression. The classifier tries to learn parameters wk

for every class label k ∈ C, such that a vector x is assigned to label k in
case p(k|x) > p(j|x) for all j 6= k, with p defined as below.

p(k|x) =
exp

(
wT
k · x

)∑
i exp(wi

T · x)

Discriminant Analysis. The classifier tries to learn parameters wk for every
class label k ∈ C, such that a vector x is assigned to label k in case
fk(x) > fj(x) for all j 6= k, with f defined as below.

fk(x) = wT
k · x + wk0

When talking about discriminant analysis, we refer to linear discriminant
analysis where classes are separated linearly.

K-Nearest Neighbor. The algorithm assigns the input vector x a label which
is determined by the majority of the K nearest neighbors. We use K = 5
and the Euclidean distance to determine the distance between two vectors.

7.6 Evaluation and Results

We engaged ten users to evaluate this information leakage. Each user was asked
to enter at least one set of random PINs with cardinality k ∈ {15, 30, 50}, each
PIN for a specific number of times N ∈ {3, . . . , 10}. If a PIN was entered
incorrectly, we ignore the corresponding input and prompt the user to enter the
PIN again. We follow the approach of Aviv et al. [ASBS12] who also measured
the performance of their attack on a set of 50 PINs. In total we use the data of
29 test runs, i.e., one test run consists of test data for a specific set of k PINs
repeated N times by one user.

7.6. Evaluation and Results 103

Evaluation Methodology. We apply k-fold cross validation to estimate the
success rate of a classifier. Compared to the performance based solely on specific
test data, cross validation provides more reliable estimations [Bis06].

Setup. We performed the experiments in office rooms that were uniformly
illuminated via tube lights, in a living room with a standard ceiling lamp, and
in rooms where the only light source was a window. We even considered different
daytimes, e.g., during the day and in the late afternoon in order to test diffuse
light conditions without a direct source of light rays. We asked the users not to
walk around, which is compliant with our attack scenario. Furthermore, we did
not insist on a specific input method, but only that the users hold the device
during the PIN input. We observed the following input methods:

1. Holding the smartphone in one hand and entering the digits with the thumb
of the same hand.

2. Holding the smartphone in one hand and entering the digits with the thumb
of the other hand.

3. Holding the smartphone in one hand and entering the digits with the index
finger of the other hand.

Subsequently, we analyze the gathered data with the above mentioned machine-
learning algorithms and the proposed feature vectors to determine whether the
secret PIN input can be recovered based on a set of known PINs.

7.6.1 Comparison of Classification Algorithms

First, we determine the overall classification rate based on the different classifica-
tion mechanisms: (1) multiclass logistic regression (logistic regression), (2) linear
discriminant analysis (discriminant analysis), and (3) k-nearest neighbor clas-
sification (KNN). These classifiers are fed with the feature vectors: (a) the lux
values only (L), and (b) the lux values including the RGBW values (LRGBW).

We applied a 10-fold cross validation on all three classifiers and evaluated the
performance of the suggested features for different numbers of samples (repeti-
tions) per PIN. Figure 7.6 illustrates the average rate of correctly classified PINs
out of a set of 15 known PINs for the different classifiers and the proposed fea-
ture vectors. The y-axis represents the average rate of correctly classified PINs,
and the x-axis illustrates the number of gathered samples (repetitions) per PIN.
We observe that the additional information leaked through the RGB(W) sensor
leads to a better attack performance.

In addition, we also observe that the linear discriminant analysis provides
better results than the other two classifiers, and that the average rate of correctly
classified PINs increases with the number of samples per PIN. For instance,
if we perform a linear discriminant analysis with a training set of 15 PINs,
each repeated 8 times, then we are able to classify more than 80% of the PINs

104 Chapter 7. Exploiting the Ambient-Light Sensor

3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Number of samples per PIN

R
a

te
 o

f
c
o

rr
e

c
tl
y
 c

la
s
s
if
ie

d
 P

IN
s

Logistic regression (L)
Logistic regression (LRGBW)
Discriminant analysis (L)
Discriminant analysis (LRGBW)
KNN (L)
KNN (LRGBW)

Figure 7.6: Average classification rate over multiple runs with a set of 15 PINs each.

3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Number of samples per PIN

R
a

te
 o

f
c
o

rr
e

c
tl
y
 c

la
s
s
if
ie

d
 P

IN
s

Logistic regression (L)
Logistic regression (LRGBW)
Discriminant analysis (L)
Discriminant analysis (LRGBW)
KNN (L)
KNN (LRGBW)

Figure 7.7: Average classification rate over multiple runs with a set of 50 PINs each.

correctly. In contrast, the chance of correctly guessing the right PIN from a set
of 15 PINs randomly is 1

15 = 6.7%.

Figure 7.7 illustrates the average rate of correctly classified PINs out of a set
of 50 PINs. Again, the linear discriminant analysis outperforms the other two
classifiers and the additional information from the RGB(W) sensor increases the
performance compared to the lux value only. At first glance, an average rate of
correctly classified PINs of 40 to 50% seems to be quite moderate. However, the
chance of correctly guessing the right PIN from a set of 50 PINs is 1

50 = 2%.
Thus, our attack outperforms random guessing by a factor of 20 to 25.

7.6. Evaluation and Results 105

3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Number of samples per PIN

R
a

te
 o

f
c
o

rr
e

c
tl
y
 c

la
s
s
if
ie

d
 P

IN
s

Logistic regression (LRGBW)
Logistic regression (poly LRGBW)
Discriminant analysis (LRGBW)
Discriminant analysis (poly LRGBW)
KNN (LRGBW)
KNN (poly LRGBW)

Figure 7.8: Average classification rate over multiple runs with a set of 15 PINs each.

7.6.2 Comparison of Feature Vectors

We now compare the feature vector comprised of the plain sensor values and
the feature vector comprised of degree 3 polynomials fitted through all sensor
values (e.g., lux and RGBW values) during one PIN input. Figure 7.8 illustrates
the average rate of correctly classified PINs for these feature vectors based on a
10-fold cross validation over multiple runs with a set of 15 PINs. Both feature
vectors, i.e., the plain sensor values as well as the approximated sensor values,
yield a similar performance for the different classification algorithms. Again,
the linear discriminant analysis performs better than the other two classifiers.
Based on this observation we only focus on the linear discriminant analysis in
the following investigations.

7.6.3 Guessing PINs Based on Their Probability

An interesting approach is to consider the fact that an attacker can enter PINs
for a specific number of times, i.e., to guess possible PINs according to their
probability for being the correct one. In this case the probability of finding the
correct PIN increases with every tested PIN. Thus, we instruct the classifier
to return a probabilistic ranking of the inferred PINs. Afterwards, we sort
the potential PINs according to their probability for being the correct one and
illustrate the rate of correctly classified PINs after a specific number of guesses.

Figure 7.9 shows the average rate of correctly guessing a PIN out of a set of
50 random PINs for a specific number of guesses. The additional information
provided by the RGB(W) sensor yields better results and increases the success
rate by about 10 percentage points compared to the lux value only feature vector.
We also illustrate the success rate if one were trying to guess PINs randomly,
which clearly shows the advantage of our attack compared to random guessing.

Comparing our results to the work of Aviv et al. [ASBS12], we observe that

106 Chapter 7. Exploiting the Ambient-Light Sensor

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of guesses

R
a

te
 o

f
c
o

rr
e

c
tl
y
 c

la
s
s
if
ie

d
 P

IN
s

Discriminant analysis (L)

Discriminant analysis (LRGBW)

Random guessing

Figure 7.9: Average classification rate over multiple guesses on a set of 50 PINs.

the ambient-light sensor provides results at least as good as those achieved by
exploiting the accelerometer sensor. Comparing our results to the work of Simon
and Anderson [SA13], we observe that the ambient-light sensor provides even
better results than the approach of exploiting the camera. For instance, Simon
and Anderson claim to infer more than 30% of the PINs after two guesses and
more than 50% of the PINs after five guesses. In contrast, the ambient-light
sensor allows us to infer about 50% of the PINs after two guesses and about
65% of the PINs after five guesses.

Our results indicate that guessing PINs according to their probability for
being the correct one provides an effective means of finding the correct one. On
average we are able to infer the correct PIN with a probability of 80% when
considering the ten most probable PINs. In contrast, guessing PINs randomly
from a set of 50 PINs would result in a success rate of 20% after ten guesses.

7.6.4 Impact of Different Input Methods

We also investigate the impact of an input method on the classification rate. To
this end, we compare the three input methods observed during our experiments:

1. Holding the device in one hand and using the thumb of the same hand to
operate it.

2. Holding the device in one hand and operating it with the thumb of the
other hand.

3. Holding the device in one hand and using the index finger of the other
hand to operate it.

Figure 7.10 illustrates the average rate of correctly classified PINs for the
three different input methods after guessing a specific number of the most prob-
able PINs. The plot is based on a 10-fold cross validation considering a linear

7.6. Evaluation and Results 107

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of guesses

R
a

te
 o

f
c
o

rr
e

c
tl
y
 c

la
s
s
if
ie

d
 P

IN
s

Index finger

Left hand and right thumb

Right hand and right thumb

Random guessing

Figure 7.10: Average classification rate for different input methods on 15 PINs.

Table 7.2: Input methods of three users.

User Input method

User 1 Left hand and index finger
User 2 Right hand and right thumb
User 3 Left hand and index finger

discriminant analysis on the LRGBW values. Each of the underlying sets of
PINs had a cardinality of 15. According to this plot the two input methods
involving the thumb, i.e., left hand and right thumb as well as right hand and
right thumb, seem to be more vulnerable to this attack than the one with the
index finger. This is due to the fact that the mobile device usually undergoes
only minor movements when the index finger is used, because one hand is solely
used to hold the mobile device. However, this is not entirely correct because
also for the input method involving the left hand and the right thumb one hand
is solely used to hold the mobile device.

To gain further insight into factors affecting the rate of correctly classified
PIN inputs, we compare the data of three different users. All three users entered
30 × 3 PINs, i.e., each of the 30 PINs was entered 3 times, in the same room,
and with the same environmental conditions regarding the ambient light. The
corresponding input methods of these users are illustrated in Table 7.2.

Figure 7.11 illustrates the result of the 10-fold cross validation for the three
data sets provided by User 1, User 2, and User 3, respectively. The input
method of User 2 seems to leak the most information. This appears to be due
to the fact that she rested her upper arm against her upper body in a relaxed
manner and operated the smartphone in a very comfortable way, which caused
significant tilts and turns. User 1 placed her elbows on her knees and also
operated the device in a very relaxed way. In contrast, User 3 tightly pressed

108 Chapter 7. Exploiting the Ambient-Light Sensor

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of guesses

R
a

te
 o

f
c
o

rr
e

c
tl
y
 c

la
s
s
if
ie

d
 P

IN
s

User 1

User 2

User 3

Random guessing

Figure 7.11: Average classification rate for three specific users on a set of 30 PINs.

her upper arm against the upper body and held the device very firmly in her
hand while entering digits with the index finger.

Based on the investigations of these three users, we observe that though the
input method seems to have an impact on the classification rate, a general state-
ment regarding the security or insecurity of a specific input method is difficult
to make. Nevertheless, the tighter and more firmly one holds the device, the less
information is leaked. To put it more generally, the more movements the mobile
device undergoes during the operation, the more information is leaked.

7.6.5 Impact of the Sampling Frequency

As outlined in Section 7.2, the ambient-light sensor can be configured to operate
with different sampling frequencies. With a sampling frequency of 750 Hz, the
Samsung Galaxy SIII provides an immense number of measurement samples per
second, far more than what is necessary for a successful attack. Although we
performed successful attacks with all possible sampling frequencies, most of our
attacks were performed with sampling frequencies between 5 and 50 Hz.

As illustrates in Figure 7.12, the lowest sampling frequency supported by our
device (5 Hz) is enough to perform the attack. In fact, the plot illustrates that
the performance does not even decrease when sampling with the lowest frequency
of 5 Hz. However, even lower sampling frequencies should prevent this attack
as for sampling frequencies below 5 Hz too few measurement samples might be
gathered if one enters the PIN too fast.

7.7 Limitations

The presented attack also has some limitations. First, our model does not con-
sider mistyped PINs. If a user deletes an incorrect digit and enters the correct

7.8. Countermeasures 109

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of guesses

R
a

te
 o

f
c
o

rr
e

c
tl
y
 c

la
s
s
if
ie

d
 P

IN
s

Discriminant analysis (LRGBW 5Hz)

Discriminant analysis (LRGBW 50Hz)

Random guessing

Figure 7.12: Average classification rate for different sampling rates on a set of 15
PINs.

digit afterwards, we are not able to infer the correct PIN anymore. Second, we
did not evaluate our attack outside under sunny, foggy, or cloudy light condi-
tions. However, we evaluated the attack in a room—where the only light source
was a window—during different daytimes. Furthermore, the data used to train
the classifier is currently gathered in the same environment as the data that
should be classified. Future work, however, might investigate whether a more
general model can be established in order to decouple the training phase from
the attack phase. For instance, a “calibration” phase might be used to determine
the overall light conditions in the user’s environment. This might allow to reuse
training data from different environments as in case of motion-based keyloggers
and might reduce the overall effort of the training phase. Third, the presented
attack is based on the ambient-light sensor and thus it does not work in case the
user operates the mobile device in completely dark environments.

7.8 Countermeasures

In this section, we discuss potential mitigation techniques to prevent the ex-
ploitation of sensor information.

7.8.1 UI and API Modifications

Aviv et al. [ASBS12] argue that an effective security mechanism would be to
prevent untrusted applications from accessing motion sensors, at least during
the input of sensitive information. However, the crucial question is: When is
an input considered as being sensitive? Clearly, the input of an authentication
PIN or a password represents sensitive input, but also the input while writing an
e-mail or the data entered in forms on websites can be considered as sensitive.

110 Chapter 7. Exploiting the Ambient-Light Sensor

From this perspective, sensors should be disabled as soon as the virtual keyboard
is displayed. This, however, renders applications that rely on these sensors
useless as is also stated in [ASBS12]. Owusu et al. [OHD+12] suggest to vary
the keyboard layout by rearranging the buttons on the virtual keyboard prior
to every sensitive input. The drawback of such countermeasures is the dramatic
decrease of usability. While this might be applicable for a PIN pad, it would
definitely undermine the usability of the QWERTY keyboard layout.

Reducing the sampling frequency to 1–2 Hz should suffice for the task of
adapting the screen brightness and to mitigate the presented attack. Further-
more, since only the OS performs the task of adapting the screen brightness,
access to this sensor might be restricted to the OS exclusively.

7.8.2 Rethinking the Permission Model

A quite sophisticated countermeasure might be a fine-grained permission sys-
tem in mobile operating systems.1 Felt et al. [FEF+12] evaluated different
permission-granting mechanisms, including automatic granting, trusted UIs (cf.
[RKM+12]), runtime consent dialogs, and install-time warnings. After consid-
ering their model we conclude that an effective countermeasure would be an
install-time warning, i.e., to pause the installation process and to explicitly in-
form or warn the user about the requested permission.

Specific risks that arise from permissions must be communicated to the
user, especially since the manifold permissions confuse many users [FHE+12,
KCC+12]. However, excessive warnings lose effectiveness and might cause users
to ignore these warnings again. In order to overcome this problem, Peng et
al. [PGS+12] suggest to rank applications according to their risks. This ranking
decision is based on the requested permissions of applications that are known to
be malware. Based on such a ranking users might make more deliberate deci-
sions regarding the installation of applications. However, such rankings are only
applicable if the motion sensors as well as the ambient-light sensor are considered
within the permission system of the OS.

7.8.3 Application Analysis

A similar approach might be achieved by extending AppGuard [BGH+13]—an
application to enforce security policies—to support the detection of possibly
unwanted sensor accesses by malicious applications. AppGuard could scan ap-
plications during the installation and inform the user about sensor accesses that
potentially leak sensitive information. Other malware-analysis applications such
as static analyzers, e.g., Stowaway [FCH+11] or AndroidLeaks [GCEC12], or
applications like VirusTotal [Vir] could also be extended to check applications
for malicious sensor accesses.

1Recently Google “simplified the permission system” [Goo14]. Now users are informed
about rather coarse-grained permission groups during the installation of applications.

7.9. Comparison With Related Work 111

Table 7.3: Comparison of related work targeting a set of 50 PINs.

Aviv et al. [ASBS12]
Simon and
Anderson [SA13]

Ours

Sensor Accelerometer Camera Ambient-light sensor
Permissions Internet Camera, Internet Internet

Training
Independent of
user/location

For each user
individually

For each
user/environment
individually

Drawbacks -
LED and shutter
sound on non-rooted
devices

Does not work in
completely dark
environments

Input method No constraints
Thumb of holding
hand

No constraints

Accuracy
43% within 5
guesses

50% within 5
guesses

65% within 5
guesses

7.8.4 User Behavior

Another countermeasure might be to enter sensitive data in environments with-
out any light source and by using the index finger or a stylus pen. However, in
this case other sensors, e.g., motion sensors, might still be exploitable. So, for
really sensitive data, the user might cover the ambient-light sensor as well as the
camera, e.g., with her finger, and place the mobile device on a flat surface.

Encouraging users to choose longer PINs and passwords might also increase
the security [SA13]. However, some applications do not even allow PINs with
more than 4–5 digits. Last but not least, awareness must be raised amongst
users and users must be encouraged to be wary when installing applications.

7.9 Comparison With Related Work

Table 7.3 provides a comprehensive comparison of related work that is similar
to ours, i.e., attacks targeting a specific set of PINs. The main drawback of our
attack is that users are not allowed to walk around while entering the PINs be-
cause currently the data is only exploitable for one specific environment. Hence,
the data cannot be reused for multiple attacks as in case of the accelerometer
sensor (cf. [ASBS12]). Nevertheless, their results indicate a rather low success
rate of 20% within 5 guesses when inferring PINs that were entered while walking
around. Furthermore, their attack also works in completely dark environments
which does not hold for the ambient-light sensor. However, our results indicate a
slightly better accuracy of 65% within 5 guesses when inferring unknown PINs.

The work of Simon and Anderson [SA13] requires the CAMERA permission
which potentially gains the user’s suspicion and their attack must deal with
the audio-visual feedback, e.g., the shutter sound or the LED, while capturing
the required data. Compared to their work we do not restrict our study to
specific input methods as long as the user holds the device while operating it.

112 Chapter 7. Exploiting the Ambient-Light Sensor

Furthermore, they need to transfer image data to the server, which cannot be
represented as compact as sensor values. While this first investigation showed
that the ambient-light sensor might not be superior to existing sensor-based
attacks, we have shown that this sensor leaks sensitive information that can be
exploited effectively. Besides, we are the first to show that an ambient sensor
can also be exploited to infer user input.

7.10 Conclusion and Future Work

In this chapter, we investigated a new type of side channel which is based on the
ambient-light sensor. We developed a proof-of-concept application that allows
us to infer PIN inputs, which clearly demonstrates that the leaked information
represents a viable side channel for compromising a user’s privacy and security.
Since no specific permission is required to access this sensor, an adversary is able
collect sensitive inputs from mobile-device owners without raising any suspicion.

There are many different dimensions among the information leakage of sen-
sors can be investigated. Examples of factors affecting the applicability and
performance of sensor-based side-channel attacks are, for example, the sensor
hardware itself, the screen dimension, the device orientation, the keyboard lay-
out, the user’s behavior and typing style, the different classification algorithms
and the employed feature vectors, the environment (e.g., indoor and outdoor),
etc. These examples demonstrate that further research is necessary to evaluate
the performance of available sensors under different settings in order to deter-
mine the best sensor for a specific attack scenario. However, the intention of
this work was to provide a first feasibility study. By comparing three classi-
fication algorithms, different feature vectors, different input methods, different
environments, and the impact of different sampling frequencies, we showed that
the ambient-light sensor provides a viable side channel.

Related work on the leakage of motion sensors claimed that access to these
sensors must be limited with a fine-grained permission system. As shown in this
work, access to the ambient-light sensor must also be protected through such a
permission system and, thus, operating-system developers need to deal with this
problem. Probably even more important is the fact that users need to be aware
of such threats and to be wary when installing applications.

8
Exploiting the Data-Usage Statistics

The amount of control you have over somebody
if you can monitor Internet activity is amazing.

— Tim Berners-Lee

The browsing behavior of a user allows to infer personal details, such as
political interests, sexual orientation, etc. In order to protect this sensitive
information, defense mechanisms like SSH tunnels and anonymity networks (e.g.,
Tor) have been established. A known shortcoming of these defenses is that
website fingerprinting attacks allow to infer a user’s browsing behavior based
on traffic analysis techniques. However, website fingerprinting typically assumes
access to the client’s network. We propose a client-side attack that overcomes
several limitations and assumptions of network-based fingerprinting attacks, e.g.,
network conditions and traffic noise, expensive training phases, etc. Thereby,
we present a practical attack that can be implemented easily and deployed on
a large scale. In fact, we show that an unprivileged application can infer the
browsing behavior by exploiting the unprotected access to the Android data-
usage statistics. We are able to infer 97% of 2 500 page visits out of a set of 500
monitored pages correctly. Even if the traffic is routed through Tor, we can infer
95% of 500 page visits out of a set of 100 monitored pages correctly. Thus, our
attack bypasses the READ HISTORY BOOKMARKS permission.

We start with an introduction in Section 8.1 and discuss the concept of web-
site fingerprinting in Section 8.2. We investigate the data-usage statistics in Sec-
tion 8.3, propose possible attack scenarios in Section 8.4, and describe our attack
in Section 8.5. We evaluate our attack in Section 8.6 and discuss countermea-
sures in Section 8.7. Parts of this chapter are taken verbatim from [SGKM16].

113

114 Chapter 8. Exploiting the Data-Usage Statistics

Publication Data and Contribution

Raphael Spreitzer, Simone Griesmayr, Thomas Korak, and Stefan Man-
gard. Exploiting Data-Usage Statistics for Website Fingerprinting Attacks
on Android. In Security and Privacy in Wireless and Mobile Networks –
WISEC 2016, pages 49–60. ACM, 2016
Contribution: Main author; Initial prototype implemented by Simone
Griesmayr.

8.1 Introduction

Android tracks the amount of incoming and outgoing network traffic on a per-
application basis. This information is used by data-usage monitoring appli-
cations to inform users about the traffic consumption. However, while this
feature might be helpful to stick to one’s data plan and to identify excessive
data consumptions of applications, we show that this seemingly innocuous in-
formation allows to infer a user’s visited websites. We demonstrate that the
READ HISTORY BOOKMARKS permission, which is intended to protect this sensitive
information, is actually useless as any application without any permission is able
to infer visited websites rather accurately.

The exploitation of observed traffic information to infer visited websites is
known as website fingerprinting [Hin02, SSW+02]. Thereby, an attacker aims to
match observed traffic information to a previously established mapping of web-
sites and their corresponding traffic information. Most of these investigations
consider an attacker who sniffs the traffic information “on the wire”. This means
that the attacker needs to be located on the client’s network or on the ISP’s
router near the client. However, as Android allows an attacker to capture the re-
quired data directly on the smartphone without any permission, we show that an
attacker is not required to be located somewhere on the victim’s network. Hence,
the rather strong assumption of a network-based attacker is not required for web-
site fingerprinting attacks. Furthermore, our attack is invariant to traffic noise
of other applications—one of the major drawbacks of network-based attacks—as
Android captures these statistics on a per-application basis. Compared to ex-
isting website fingerprinting attacks, we significantly reduce the computational
complexity of classifying websites as we do not require a dedicated training phase,
which sometimes requires several hundred CPU hours [WG13, WCN+14].

Based on our observations, we developed a proof-of-concept application that
captures the data-usage statistics of the browser application. With the acquired
information in a closed-world setting of 500 monitored websites of interest, we
are able to classify 97% of 2 500 visits to these pages correctly. The fact that not
even Tor on Android (e.g., the Orbot1 proxy in combination with the Orweb2

browser) is able to protect a user’s page visits clearly demonstrates the rather

1https://guardianproject.info/apps/orbot
2https://guardianproject.info/apps/orweb

https://guardianproject.info/apps/orbot
https://guardianproject.info/apps/orweb

8.2. Background and Related Work 115

delicate issue of this fundamental design flaw.

Further Security Implications. The presented attack can be combined with
related studies for even more sophisticated attack scenarios. For instance, in
combination with sensor-based keyloggers (cf. Chapter 7), our attack would allow
an adversary to determine when a user visits a specific website and to gather
login credentials for specific websites. Such an attack does not only endanger
the users’ privacy but also allows for large-scale identity theft attacks.

8.2 Background and Related Work

Website fingerprinting can be considered as a supervised machine-learning prob-
lem, namely a classification problem. The idea is to capture the “traffic signa-
ture” for specific websites—which are known to the attacker—during a training
phase. The “traffic signature” consists of specifically chosen features like unique
packet lengths, packet length frequencies, packet ordering, inter-packet timings,
etc. In order to capture this information, the attacker loads different websites
and observes the resulting “traffic signature”, which is usually done somewhere
on the network. During the attack phase, an observed “traffic signature” can be
classified according to the previously trained classifier.

Most related work in the context of website fingerprinting attacks operate in
the closed-world setting, which, in contrast to the open-world setting, assumes
that the victim only visits a specific set of monitored websites. Furthermore,
most fingerprinting attacks assume a passive attacker, where the attacker cannot
influence the transmitted packets, e.g., by delaying specific packets [HYG+14].

Subsequently, we summarize related work according to the exploited infor-
mation and how this information is gathered. We start with attacks that require
access to the victim’s network or to the ISP’s router near the victim. Then, we
continue with attacks that exploit shared resources on the victim’s device, which
is the category of attacks our work belongs to.

8.2.1 On the Wire

Hintz [Hin02] mentioned that encrypted traffic does not prevent an adversary
from inferring a user’s visited website. The simple observation of the amount of
transferred data—which is not protected by means of SSL/TLS (cf. [MHJT14])—
allows an adversary to infer visited websites. Similarly, Sun et al. [SSW+02]
mentioned that the observation of the total number of objects and their corre-
sponding lengths allows to identify websites, even if the content is encrypted.

While early studies [Hin02, SSW+02] exploited the actual size of web objects,
a more recent study by Liberatore and Levine [LL06] focused on the exploitation
of individual packet sizes. Such fingerprinting attacks have also been demon-
strated to work against the anonymity network Tor [PNZE11, CZJJ12, WG13]
and also against WEP/WPA encrypted communication as well as communica-
tion protected by means of IPsec and SSH tunnels [BLJL05, LCC10]. Instead of

116 Chapter 8. Exploiting the Data-Usage Statistics

inferring visited websites, Chen et al. [CWWZ10] extracted illnesses and medi-
cations by observing the sequence of packet sizes.

Gong et al. [GKB10, GBKS12] even demonstrated that fingerprinting can
be done remotely when given the victim’s IP address. Therefore, the attacker
sends ping requests to the user’s router and computes the round-trip time, which
correlates with the victim’s HTTP traffic.

8.2.2 Shared Resources and Software Execution

Timing attacks on the browser cache [FS00, LYL+14] can be used to infer
whether or not a user visited a specific website before. More specifically, by
measuring the loading time of a specific resource, an attacker can determine
whether it was served from the browser’s cache or not. Similarly, CSS styles of
visited URLs can be used to determine the browsing behavior [JO10].

Another timing attack has been demonstrated by Oren et al. [OKSK15], who
showed that JavaScript-based cache attacks (cf. Section 5.6) allow to infer page
visits to a set of 8 websites. Similarly, Gruss et al. [GBM15] exploited so-called
page-deduplication attacks to infer page visits to a set of 10 websites.

Jana and Shmatikov [JS12] demonstrated the possibility to fingerprint web-
sites based on the browser’s memory footprint, which is available via the /proc

file system. In addition, Zhou et al. [ZDH+13] demonstrated that the data-
usage statistics of Android applications can be used to infer the user’s activities
within three Android applications, namely Twitter, WebMD, and Yahoo! Fi-
nance. Later, Zhang et al. [ZYN+15] exploited the data-usage statistics of an
Android-based Wi-Fi camera to determine when a user’s home is empty.

Even though Zhou et al. [ZDH+13] and Zhang et al. [ZYN+15] started inves-
tigations of the information leakage through the data-usage statistics on Android
devices for specific applications, a detailed study regarding the applicability of
this information leakage to infer websites has not been done yet. Compared
to the work of Jana and Shmatikov [JS12] who exploit the memory footprint
of the browser application for website fingerprinting attacks, we demonstrate a
significantly more accurate attack by exploiting the data-usage statistics.

8.3 Android Data-Usage Statistics

Android keeps track of the data usage in order to allow users to stick to their
data plan. This accounting information is available through the public API as
well as through the /proc file system. More specifically, the TrafficStats API
as well as /proc/uid stat/[UID]/{tcp rcv|tcp snd} provide detailed informa-
tion about the network traffic statistics on a per-UID basis. Since every Android
application is assigned a unique UID, these traffic statistics are gathered on a per-
application level. In order to observe the data-usage statistics of an application,
e.g., the browser, the corresponding UID is required. The ActivityManager

API can be used to retrieve the UID for all running processes.

8.3. Android Data-Usage Statistics 117

Subsequently, we study the information leakage for browser applications in a
standard setting and in case the traffic is routed through the Tor network. Fur-
thermore, we also investigate the information leakage depending on the network
connection. Finally, we discuss the API support for the data-usage statistics
as well as a mechanism to circumvent the REAL GET TASKS permission, which is
required on Android Lollipop to retrieve the list of running applications.

8.3.1 Usage Statistics in a Controlled Scenario

In a first experiment, we set up a server hosting a website and we launched
tcpdump to dump the TCP packets on this server. In addition, we launched
the browser application on one of our test devices (a Samsung Galaxy SIII), re-
trieved its UID, and navigated to the website hosted on our server and monitored
tcp snd and tcp rcv for ten seconds with a sampling frequency of 50 Hz.

Figure 8.1 illustrates the accumulated TCP packet lengths (left) and the
data-usage statistics on the Android smartphone (right). We indicate the out-
going traffic on our server as well as the incoming traffic on the smartphone above
the x-axis. Similarly, we indicate the incoming traffic on our server as well as the
outgoing traffic on the smartphone below the x-axis. For the sake of readabil-
ity, we removed consecutive samples where the tcp rcv and tcp snd values did
not change. Furthermore, we labeled each TCP packet with the corresponding
packet length in both plots. The left plot shows the generated TCP packets
according to our website. The first three outgoing packets (1448, 1448, 1417)
correspond to the HTML page itself and the following packets (1448, 1448, 1448,
71) correspond to the embedded image. Interestingly, the data-usage statistics
on the Android smartphone (right) corresponds to these TCP packet lengths,
except for the last two packets (1448, 71), which are observed as one “large”
packet (1519=1448+71) instead of two separate packets. The same observa-
tion also holds for the incoming traffic on the server and the outgoing traffic on
the smartphone, which are indicated below the x-axis. The corresponding TCP
packet lengths can be observed in the outgoing data-usage statistics (366, 364).

The plots in Figure 8.1 illustrate the TCP packet lengths when loading the
website for the first time, i.e., without any data being cached. When visiting
the website for the second time, the traffic signature slightly changes. More
specifically, the second part of the packet sequence (1448, 1448, 1448, 71) is
missing as the embedded image is not requested anymore. However, some packet
lengths remain the same, regardless of whether the website is cached or not.

Sampling Frequency. Zhou et al. [ZDH+13] reported to be able to observe
single TCP packet lengths with a sampling frequency of 10 Hz most of the time.
We performed experiments with higher sampling frequencies but also observed
the aggregation of multiple TCP packet lengths as one “larger” packet from time
to time. A more detailed investigation of specific browser implementations—
which is considered as future work—might reveal further insights and might
allow to pick up every single TCP packet properly. Nevertheless, even with some
TCP packet lengths being accumulated into one observation, we can successfully
exploit this side channel with a sampling frequency between 20 Hz and 50 Hz.

118 Chapter 8. Exploiting the Data-Usage Statistics

0 5 10 15
−2000

0

2000

4000

6000

8000

10000

TCP packet sequence

T
ra

ff
ic

 a
c
c
o
rd

in
g
 t
o
 T

C
P

 p
a
c
k
e
ts

 [
b
y
te

]

1448

1448

1417

1448

1448

1448 71

366
364

Outgoing traffic on server

Incoming traffic on server

0 10 20
−2000

0

2000

4000

6000

8000

10000

TCP packet sequence

T
ra

ff
ic

 a
c
c
o
rd

in
g
 t
o
 d

a
ta

−
u
s
a
g
e
 s

ta
ti
s
ti
c
s
 [
b
y
te

]

1448

1448

1417

1448

1448

1519

366
364

tcp_rcv on smartphone

tcp_snd on smartphone

Figure 8.1: TCP packet lengths according to tcpdump on the server and data-usage
statistics on the smartphone.

8.3.2 Usage Statistics for Real Websites

In order to investigate the information leakage for real websites, we developed an
application that performs the following actions. First, we launch the browser and
retrieve its UID. Then, we load three different websites (google.com, facebook.
com, and youtube.com) and monitor tcp snd and tcp rcv for a period of ten
seconds. The resulting plots can be seen in Figure 8.2. According to the notion of
Jana and Shmatikov [JS12], these measurements are stable, meaning that these
observations are similar across visits to the same page, and also diverse, meaning
that these observations are dissimilar for visits to different pages. Hence, this
plot confirms our previous observation that the data-usage statistics can be used
to distinguish websites. A similar plot can be obtained from the tcp snd file,
i.e., the outbound network traffic.

8.3.3 Usage Statistics in the Tor Setting

Background on Tor. Before we investigate the information leakage of the
data-usage statistics in case the network traffic is routed through the Tor net-
work, we start with some background information on Tor. The major design goal
of Tor [DMS04] is “to frustrate attackers from linking communication partners”
by considering an attacker who can, for instance, observe the network traffic.
Therefore, a user runs a so-called onion proxy that is responsible for handling
connections from user applications (e.g., the browser), fetching directories (e.g.,
known onion routers), and establishing circuits (paths) through the network.
Such circuits consist of multiple onion routers—which are connected by means
of a TLS connection—and are updated periodically. However, establishing such
circuits is a costly action that takes some time, which is why multiple TCP
streams share one circuit. The onion proxy accepts TCP streams from user ap-

google.com
facebook.com
facebook.com
youtube.com

8.3. Android Data-Usage Statistics 119

0 10 20 30 40 50
0

1

2

3

4

5

6
x 10

5

Packet sequence

D
a
ta

−
u
s
a
g
e
 s

ta
ti
s
ti
c
s
 [
b
y
te

]

google.com

facebook.com

youtube.com

Figure 8.2: Data-usage statistics for the inbound traffic of three samples per website.

plications (browsers) and forwards the data in fixed-size cells (512 bytes) through
the TLS connection to the Tor network.

Information Leakage. In order to investigate the information leakage for
traffic routed through the Tor network, we installed the Orweb browser and the
corresponding Orbot proxy. The Orweb browser represents the user application
and the Orbot proxy represents the onion proxy that handles connections from
the Orweb browser and forwards the data to the Tor network. Since websites
take longer to load, we increased the time for sampling the data-usage statistics
to 20 seconds. As Tor on Android relies on two different applications, i.e., the
Orweb browser and the Orbot proxy, we investigated the information leakage
for both applications. While the Orweb browser communicates with the Orbot
proxy only, the Orbot proxy communicates with the browser as well as the Tor
network. Thus, the data-usage statistics for the Orbot proxy are slightly higher.
However, both applications revealed the exact same behavior, i.e., the data-
usage statistics yield stable and diverse plots, which can be exploited for website
fingerprinting attacks. We also installed Firefox 42.0 and configured it to use the
Orbot proxy. Repeating the experiment yields the same result, i.e., the data-
usage statistics gathered for Firefox allow us to perform website-fingerprinting
attacks even if Firefox is configured to route the network traffic through the Tor
network. We stress that this is not a vulnerability of Tor or any browser but a
fundamental weakness of the Android OS.

8.3.4 Usage Statistics for Mobile Connections

The above performed experiments have been carried out with WLAN connec-
tions. For the sake of completeness, we also performed experiments with mobile
data connections to be sure that we observe the same information leakage when

120 Chapter 8. Exploiting the Data-Usage Statistics

Table 8.1: Test devices and configurations.

Device OS Browser/Orbot

Acer Iconia A510 Android 4.1.2 Chrome 44.0
Alcatel One Touch Pop 2 Android 4.4.4 Browser 4.4.4 (default browser)
Nexus 9 Android 5.1.1 Chrome 40.0
Samsung Galaxy SII Android 2.3.4 Internet 2.3.4 (default browser)
Samsung Galaxy SII Android 2.3.4 Orweb 0.7 and Orbot 13.0.4a
Samsung Galaxy SII Android 2.3.4 Firefox 42.0 and Orbot 13.0.4a
Samsung Galaxy SIII Android 4.3 Internet 4.3 (default browser)

the device is connected, e.g., via the 3G wireless network. The results confirmed
our initial observations regarding the data-usage statistics also for mobile con-
nections. Irrespective of the actual Internet connection, the data-usage statistics
can be exploited for website fingerprinting attacks.

8.3.5 API and /proc Support

Table 8.1 summarizes our test devices and their corresponding configurations.
On most of these devices, we accessed the corresponding files within the /proc

file system to retrieve the data-usage statistics. However, on the Alcatel One
Touch Pop 2, the uid stat file does not exist within the /proc file system,
yet the TrafficStats API allows to retrieve the accumulated bytes received
(getUidRxBytes([uid])) and transmitted (getUidTxBytes([uid])) for a given
UID. Similarly, on the Samsung Galaxy SIII, we always retrieved 0 when query-
ing the TrafficStats API, but still we were able to read the data-usage statistics
from the /proc file system. To summarize our investigations, on some devices
an attacker needs to rely on the /proc file system, while on others the attacker
needs to rely on the TrafficStats API. However, all test devices showed the
same information leakage through the data-usage statistics.

REAL GET TASKS Permission in Lollipop. Since Android Lollipop
(5.0), the REAL GET TASKS permission is required to retrieve all running appli-
cations via the ActivityManager.getRunningAppProcesses() API. However,
one can bypass this permission by retrieving a list of installed applications
via PackageManager.getInstalledApplications(). The returned informa-
tion also contains the UID for each application. Now, instead of relying on
getRunningAppProcesses(), the malicious application can also wait for the
tcp rcv file to be created, which indicates that the application with the cor-
responding UID has been started. Another alternative to retrieve all running
applications is the unprivileged ps command. Thus, even on Android Lollipop,
our malicious service can be implemented without any suspicious permission and
is still able to wait in the background for the browser application to start.

8.4. Adversary Model and Scenario 121

Internet
SSH tunnel

Attacker

Figure 8.3: Traditional website fingerprinting attack considering a network attacker.

Tor

Attacker Browser

Proxy

Figure 8.4: Client-side website fingerprinting attack exploiting a local side channel.

8.4 Adversary Model and Scenario

Figure 8.3 illustrates a traditional website fingerprinting attack, where the ad-
versary observes the encrypted communication between a client and a proxy
(or the encrypted communication between a client and the Tor network). In
contrast, we consider a malicious application running in unprivileged mode that
observes the incoming and outgoing traffic statistics for the targeted application,
e.g., the browser. Figure 8.4 illustrates this scenario.

According to the notion of Diaz et al. [DSCP02], our attacker is passive as it
cannot add, drop, or change packets. However, this also means that our attacker
is lightweight in terms of resource usage as it runs in the background and waits for
the browser application to start. Below we describe two possible attack scenarios,
one where the training data is gathered on dedicated devices and another one
where the attack application gathers the training data directly on the device
under attack. Note that the INTERNET permission is not required at all due to the
following reasons. Since Android Marshmallow (6.0), the INTERNET permission

122 Chapter 8. Exploiting the Data-Usage Statistics

is granted automatically3 and below Android 6.0, ACTION VIEW4 Intents can be
used to access the Internet via the browser without this permission.

Since the application neither requires any suspicious permission nor exploits
specific vulnerabilities except accesses to publicly readable files and the Android
API, the application can be spread easily via available app markets. Based on
the presented adversary model and the low effort to spread such a malicious
application, there is a significantly higher attack potential than in previous fin-
gerprinting attacks.

8.4.1 Possible Attack Scenarios

In order to exploit the information leakage, we consider two attack scenarios.
Scenario 1. For this scenario we assume that the malicious application does

not capture the required training data on the device itself. Instead, a more pow-
erful adversary gathers the training data on specifically deployed devices. The
application only waits for the browser to start, gathers the traffic information,
and sends the gathered data to the remote server that infers the visited web-
sites. In order to match the device name of the attacked device with the training
devices, the android.os.Build API can be used.

Scenario 2. For this scenario we assume that the malicious application cap-
tures the required training data directly on the device. Therefore, it triggers
the browser to load a list of websites, one after each other, via the ACTION VIEW

Intent. While the browser loads the website, the malicious application cap-
tures the traffic statistics via tcp rcv and tcp snd, which then acts as training
data. After collecting the required training data, the application waits in the
background until the unsuspecting user opens the browser and starts browsing
the web. Then, the application gathers the traffic statistics from tcp rcv and
tcp snd again, and matches the collected information against the previously
established training data to infer the visited websites.

A technicality that needs to be solved in case of scenario 2 is that users
should not notice the gathering of training data. Therefore, we note that Zhou et
al. [ZDH+13] demonstrated the possibility to (1) wait for the screen to dim before
launching the browser, and (2) to close the browser after loading a website.
Thereby, the user does not observe any suspicious behavior, even though the
application launches the browser in the foreground. However, the main drawback
of this approach is that the device might switch to sleep mode and pause all
activities, which means that gathering the training data takes some time.

8.4.2 Assumptions

According to Wang et al. [WCN+14], existing fingerprinting attacks rely on two
assumptions. We briefly summarize these assumptions and argue why our attack
approach is more realistic than existing fingerprinting attacks.

3http://developer.android.com/guide/topics/security/normal-permissions.html
4http://www.leviathansecurity.com/blog/zero-permission-android-applications

http://developer.android.com/guide/topics/security/normal-permissions.html
http://www.leviathansecurity.com/blog/zero-permission-android-applications

8.5. Attack Description 123

1. The attacker knows the start and the end of a packet trace. This assump-
tion is based on the observation that users take some time to load the
next webpage. We justify this assumption by arguing that we are able to
determine when the browser starts. Thus, we are able to observe the trace
of the first webpage. Afterwards, we assume that the user takes some time
to load the next page.

2. The client does not perform any other activity that can be confused with
page-loading activities, for example, a file download. Hayes and Danezis
[HD15] pointed out that it is highly unlikely that an attacker will be able
to gather traffic information without background traffic, which limits the
applicability of existing website fingerprinting attacks. However, Android
captures the data-usage statistics on a per-application basis and, thus,
our approach is invariant to network activities of other applications. For
instance, our attack also works in case an e-Mail app, WhatsApp, or any
other app fetches updates in the background while the user browses the
web. In contrast, it is highly unlikely that the network traffic on the wire
does not contain any background traffic.

Another thing that needs to be clarified is the browser’s caching behavior.
For our experiments, we do not clean the cache before loading a page as we
assume that adversaries might be interested in identifying frequently visited
websites of a user. If users frequently visit specific websites, then these sites are
most probably already cached. Still, specific parts of the TCP packets are equal
between cached and non-cached pages, as has been discussed in Section 8.3.1.
Our experiments with the Orweb browser use the default settings, meaning that
caching of websites is disabled. Thus, we provide insights for both settings of
the caching behavior.

8.5 Attack Description

Based on the presented adversary model and attack scenarios, we now describe
the attack in more detail. First, we discuss how to gather the required traffic
statistics for a set of monitored websites. Afterwards, we describe the employed
classifier to infer the visited websites.

8.5.1 Gathering Traffic Signatures

The list of monitored websites might, for example, be chosen according to specific
interests like political interests, sexual orientation, illnesses, or websites that are
supposed to be blocked. For our evaluation, we decided to use popular websites
among different categories according to alexa.com. The fact that Tor browsers,
e.g., Orweb, do not cache pages, leads to the realistic scenario that an adversary
wants to monitor landing pages (cf. [HD15]). Thus, we consider our chosen
setting for the evaluation as being realistic.

alexa.com

124 Chapter 8. Exploiting the Data-Usage Statistics

Algorithm 1 summarizes the steps to establish the required training data de-
noted as traffic signature database T . The algorithm is given a list of monitored
websites W , the desired number of samples per website n, a profiling time τ ,
and a sampling frequency f . For each website wi ∈W , the algorithm loads this
website within the browser. While the browser application loads the website wi,
we gather the data-usage statistics f times per second for a period of τ seconds.
Each tuple (wi, ti), which is denoted as one sample for a specific website wi, is
added to T . These steps are repeated until n samples have been gathered for
each website. Finally, the algorithm returns the traffic signature database T .

Algorithm 1: Gathering training samples.

Input: List of monitored websites W , number of samples per website n,
profiling time τ , sampling frequency f

Output: Traffic signature database T

Launch browser application and retrieve its UID
repeat n times

foreach website wi in W do
simultaneously
Launch website wi in browser
while profiling time τ not passed do

f times per second
read tcp rcv and append to tIN
read tcp snd and append to tOUT

end
ti ← {tIN , tOUT }
Add tuple (wi, ti) to T

end

end

8.5.2 Classification

The traffic signature database T requires only minor pre-processing before the
classification. More specifically, we removed samples of websites that did not
load, i.e., we removed tuples (wi, ti) from T where all entries in ti are 0. Fur-
thermore, if n − 1 samples for a specific website are removed, we remove the
remaining sample as well. We justify this as follows. If this single remaining
sample of a specific website is used for training, then it cannot be used for eval-
uation purposes. Similarly, if we do not have a single sample for training, then
this site will never be classified correctly.

We use the Jaccard index as a metric to determine the similarity between two
websites. In case of our measurement samples, the Jaccard index as defined in
Equation 8.1 compares two traces t1 and t2 based on unique and distinguishable

8.6. Evaluation and Results 125

packet lengths.

Jaccard(t1, t2) =
|t1 ∩ t2|
|t1 ∪ t2|

(8.1)

Our classifier aims to find the maximum similarity for a given trace tA =
{tINA , tOUTA} compared to all traces ti = {tINi , tOUT i} within the previously
established traffic signature database T . We illustrate this similarity measure in
Equation 8.2.

Sim(tA = {tINA , tOUTA}, ti = {tINi , tOUT i}) =

Jaccard(tINA , tINi) + Jaccard(tOUTA , tOUT i)
(8.2)

Based on this similarity metric, we implemented our classifier as outlined in
Algorithm 2. The algorithm is given a list of monitored websites W , a traffic
signature database T , and the signature t to be classified. As T contains multiple
samples (wi, ti) for one website, we compute the similarity of t with all these
traffic signatures tj with 1 ≤ j ≤ n corresponding to a specific website wi.
Afterwards, we compute the average similarity with all these traces for this
specific website wi. Finally, we return the website wi with the highest average
similarity si compared to the given trace t.

Algorithm 2: Classification algorithm.

Input: List of monitored websites W , traffic signature database T , traffic
signature t

Output: Website w

foreach website wi in W do
Retrieve all samples (wi, t1), . . . , (wi, tn) ∈ T
si = avg(Sim(t1, t) + · · ·+ Sim(tn, t))
S ← {S, (wi, si)}

end
Return (wi, si) ∈ S, s.t. si is maximized

Compared to network-based fingerprinting attacks, our attack relies on a
simple yet efficient classifier. More specifically, we do not need a dedicated
training phase that requires several hundred CPU hours in case of some network-
based fingerprinting attacks (cf. [WG13, WCN+14]). Still, the testing time of
our implemented classifier, i.e., the actual time to classify a traffic trace, is
comparable to the testing time of existing fingerprinting attacks and yields highly
accurate results as will be discussed in Section 8.6.5.

8.6 Evaluation and Results

We now evaluate the classification rate for a setting where a standard browser
application connects to websites directly. We use this setting to evaluate the
intra-day classification rate, i.e., when gathering training data and test data on

126 Chapter 8. Exploiting the Data-Usage Statistics

am
az

on
.c
om

bi
ng

.c
om

cr
ai
gs

lis
t.o

rg

eb
ay

.c
om

fa
ce

bo
ok

.c
om

go
og

le
.c
om

im
gu

r.c
om

lin
ke

di
n.

co
m

liv
e.

co
m

ne
tfl
ix
.c
om

re
dd

it.
co

m

tw
itt
er

.c
om

w
ik
ip
ed

ia
.o

rg

ya
ho

o.
co

m

yo
ut

ub
e.

co
m

amazon.com
bing.com

craigslist.org
ebay.com

facebook.com
google.com
imgur.com

linkedin.com
live.com

netflix.com
reddit.com
twitter.com

wikipedia.org
yahoo.com

youtube.com
0

0.2

0.4

0.6

0.8

1

Figure 8.5: Confusion matrix for the 15 most popular websites in the US.

the same day. Subsequently, we perform a similar investigation in a setting where
the traffic is routed through the Tor network. In addition, we also investigate how
the classification rate decreases over time, i.e., in case the test data is gathered
a few days after gathering the training data, and we evaluate the scalability
of our attack for larger sets of monitored websites. Finally, we compare our
results to related work. All experiments in this section have been performed
with data-usage statistics captured via WLAN connections.

8.6.1 Intra-Day Classification Rate

For our first experiment, we aim for a standard browser setting and gather the
training data and the test data on the same day. Therefore, we took the 15
most popular websites in the US according to alexa.com and we gathered n = 5
samples for each of these websites to establish the signature database T . In order
to estimate the performance of our classifier, we performed a leave-one-out cross
validation. Thus, for each sample (wi, ti) ∈ T , we removed this sample (one
at a time) from the traffic signature database T , and called the classification
algorithm (Algorithm 2) with the traffic signature database T \ (wi, ti) and the
traffic signature ti to be classified.

Figure 8.5 shows the resulting confusion matrix. We indicate the ground
truth along the y-axis and the inferred website along the x-axis. Since all page
visits to each of the 15 websites have been classified correctly, we achieve a success
rate of 100%. More formally, each sample (wi, ti) has been classified correctly
considering the signature database T \ (wi, ti) for training the classifier.

If we have a look at the 100 most popular websites globally, then we observe
a classification rate of 89% for a total of 500 page visits. After further investiga-
tions of the resulting confusion matrix, we noticed that several misclassifications
occur because google*.* pages have been misclassified among each other. For
example, google.es has been misclassified as either google.fr, google.it, or

alexa.com
google*.*
google.es
google.fr
google.it

8.6. Evaluation and Results 127

Table 8.2: Google websites that have been merged.

google.co.in google.co.jp google.de
google.co.uk google.com.br google.fr
google.ru google.it google.es
google.ca google.com.mx google.com.hk
google.com.tr google.co.id google.pl
google.com.au google.co.kr googleadservices.com

20 40 60 80

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

Figure 8.6: Confusion matrix for the 100 most popular websites globally with
google*.* pages merged.

google.pl. Nevertheless, we do not aim for a detailed classification of different
Google domains and, hence, we merged all Google websites listed in Table 8.2
to be classified as google.com.

Performing the classification again, we achieve a classification rate of 98%
for these 500 page visits. The corresponding confusion matrix can be seen in
Figure 8.6. Merging these Google websites leads to a total of 9 misclassified
websites among these 500 page visits, with mail.ru at index 36 being the most
commonly misclassified website (4 times).

8.6.2 Classification Rate for Tor

We also evaluated our attack in the intra-day setting for traffic routed through
Tor. Therefore, we gathered n = 5 samples for the top 100 websites in the US by
capturing the data-usage statistics of the Orweb browser, but we used a profiling
time of 20 seconds as websites accessed via Tor take more time to load. Again,
we performed a leave-one-out cross validation resulting in a classification rate of
95% for these 500 page visits.

google.pl
google.com
mail.ru

128 Chapter 8. Exploiting the Data-Usage Statistics

1 2 4 6 8 10
0.95

0.96

0.97

0.98

0.99

1

C
la

s
s
if
ic

a
ti
o

n
 r

a
te

k

Standard browser

Orweb browser

Figure 8.7: Classification rates considering the k most probable websites returned
from the classifier.

If we instruct the classifier to return a set of k possible websites, which are
sorted according to their probability for being the correct one, then the success
rate steadily increases with the number of websites k taken into consideration.
As can be seen in Figure 8.7, taking the two most probable websites (k = 2) into
consideration, we achieve a classification rate of 97% and taking the three most
probable websites (k = 3) into consideration yields a classification rate of 98%.
Similar classification rates can be observed for the standard Android browser
where the traffic is not routed through Tor. Although the standard browser
yields slightly better classification rates, we did not observe significant differences
between the classification rates of a browser accessing websites directly and a
browser accessing websites via Tor.

Security Implications. Even though browsers (e.g., the Orweb browser)
or specific browser modes (e.g., “private/incognito” modes) do not store the
browsing history and the network traffic is protected against specific attacks
while being routed through the Tor network, an unprivileged application can
infer the users’ browsing behavior for monitored websites. Thus, as our exper-
iments demonstrate, the READ HISTORY BOOKMARKS permission does not protect
the users’ privacy and even routing the network traffic through Tor provides a
false sense of privacy for Android users. Furthermore, given the fact that Or-
web disables JavaScript and Flash by default, users do not use Orweb to access
sites that heavily rely on these techniques. Hence, attackers explicitly targeting
Tor users can significantly reduce the set of monitored websites, which increases
the success rate. However, we do not blame the browsers for these security
implications but the Android OS.

8.6. Evaluation and Results 129

0 1 2 3 4 5 6 7
0.8

0.85

0.9

0.95

1

C
la

s
s
if
ic

a
ti
o
n
 r

a
te

Days between gathering training data and test data (∆)

Figure 8.8: Decreasing accuracy for samples captured ∆ days after the training data.

8.6.3 Inter-Day Classification Rate

We also performed experiments with an outdated training set, which allows
us to investigate whether an attacker’s workload can be reduced by relying on
the same training data for several days. In order to do so, we used Orweb
to collect measurement samples for the top 100 websites in the US a few days
after gathering the training data. The evaluation in Figure 8.8 shows that the
accuracy decreases rather slowly. For test data gathered on the same day as the
training data (∆ = 0), 95% of all page visits can be inferred. Using the same
data to classify 500 page visits captured two days later (∆ = 2) still yields a
classification accuracy of 93%. Testing measurement samples captured after five
days (∆ = 5) yields a classification accuracy of 91%. Even data gathered one
week later (∆ = 7) achieves a classification rate of 85%. Hence, even slightly
outdated training data allows to infer websites accurately. This slowly decreasing
classification rate allows an adversary to keep the traffic signature database T
for some time, meaning that the adversary does not need to update the database
for the monitored websites on a daily basis. Thereby, the attacker’s effort and
workload can be reduced significantly, which leads to more practical attacks.
Furthermore, this also indicates that training samples can be gathered after the
attack samples, which represents another advantage for the attacker (cf. [LL06]).

Table 8.3 holds the worst websites (according to their classification accuracy)
in case the attack samples are captured ∆ days after the training data. As news
sites tend to change frequently, it is not surprising that the classification rate
decreases for such websites. Based on this observation, an attacker can selectively
rebuild the training set for frequently changing websites like news portals, while
the training data for more static websites can be kept for a longer period.

We point out that we did not employ any measures to ensure that we exit
Tor with a specific country IP address. Instead, every time we gathered new

130 Chapter 8. Exploiting the Data-Usage Statistics

Table 8.3: Websites with the worst classifications in the inter-day setting.

∆ Website # misclassifications

2 days ask.com 5 times
2 days twitch.tv 5 times
2 days cnn.com 3 times

5 days bbc.com 5 times
5 days indeed.com 5 times
5 days nytimes.com 5 times
5 days twitch.tv 5 times
5 days espn.go.com 4 times

6 days bbc.com 5 times
6 days indeed.com 5 times
6 days nytimes.com 5 times
6 days twitch.tv 5 times
6 days espn.go.com 4 times

7 days bbc.com 5 times
7 days bleacherreport.com 5 times
7 days indeed.com 5 times
7 days nytimes.com 5 times
7 days twitch.tv 5 times
7 days xfinity.com 5 times
7 days homedepot.com 4 times

test samples, we reconnected to the Tor network by restarting the Orbot proxy.
Nevertheless, the classification rates indicate a high success rate even with a
training set that is not completely up to date.

8.6.4 Scalability for Larger World Sizes

In order to investigate the scalability of our attack for a larger set of monitored
websites, we consider the top 500 websites. However, we did not route the
network traffic through Tor as this would have taken significantly longer. Our
results indicate that we are able to classify 97% of 2 500 page visits out of a set
of 500 monitored websites.

8.6.5 Comparison with Related Work

As our attack only requires an unprivileged Android app that can be easily
deployed via available app markets, it is easier to conduct than wiretapping
attacks where the attacker observes TCP packets on the victim’s network. Due
to the ease of applicability, the computational performance of the classifier, and
the classification rates, our attack outperforms existing fingerprinting attacks.

Table 8.4 provides a comprehensive comparison of website fingerprinting at-
tacks in the closed-world setting. For each attack, we present the attacker or

ask.com
twitch.tv
cnn.com
bbc.com
indeed.com
nytimes.com
twitch.tv
espn.go.com
bbc.com
indeed.com
nytimes.com
twitch.tv
espn.go.com
bbc.com
bleacherreport.com
indeed.com
nytimes.com
twitch.tv
xfinity.com
homedepot.com

8.6. Evaluation and Results 131

the exploited information in column 2. Column 3 indicates the caching behav-
ior of the browser. Column 4 shows the employed classifier. For the sake of
brevity, we do not list the exact features that are used for classification pur-
poses, but we refer the interested reader to the corresponding works. Column 5
shows the attacked countermeasure, where “none” refers to no specific counter-
measure, “SSH tunnel” means that the client hides its network traffic through
a proxy where the encrypted communication between the client and the proxy
is observed, and “Tor” means that the traffic is routed through the anonymity
network Tor. As most website fingerprinting attacks consider a closed-world
setting, we state the number of monitored websites in column 6. Furthermore,
we indicate the accuracy within the last column.

The only works in Table 8.4 that exploit client-side side-channel information
are the work of Jana and Shmatikov [JS12] as well as ours. To be more precise,
Jana and Shmatikov do not exploit information that relates to the TCP packet
lengths. Instead, they exploit the memory footprint of the browser while render-
ing the monitored website. However, our approach of exploiting the data-usage
statistics allows a significantly more accurate inference of visited websites.

Compared to wiretapping attacks against the anonymity network Tor, we ob-
serve that our approach of exploiting client-side information leaks yields mostly
better results. Though, the works of Wang and Goldberg [WG13] and Wang et
al. [WCN+14] achieve a rather similar classification accuracy, i.e., they achieve a
classification accuracy of 91% [WG13] and 95% [WCN+14] on a set of 100 mon-
itored websites. However, training their classifiers, which are based on the opti-
mal string alignment distance and a weighted k-NN, takes a significant amount
of time (608 000 CPU seconds [WG13]). This, however, is not feasible for every
attacker. As our classifier does not require a training phase, we significantly
reduce the computational effort. Our test algorithm scales linearly with the
number of monitored websites and the corresponding samples, i.e., O(|W | · n).
A naive implementation of our classifier (Algorithm 2) in Matlab—without any
specific optimizations—takes a testing time of about 0.4 seconds on an Intel Core
i7-5600U CPU for a set of 100 monitored websites and 5 samples per website.
This testing time is comparable to the testing time of 0.7 seconds reported by
Wang and Goldberg [WG13], but in contrast to their work we do not require an
expensive training phase.

Wiretapping vs. Side-Channel Observations. The subtle difference be-
tween observing traffic information on the wire and the side-channel information
of the data-usage statistics requires further considerations. In the wiretapping
scenario it is impossible to miss single packets, whereas in the side-channel sce-
nario the attacker might miss single packets which are then observed as one
“large” packet due to the accumulation of TCP packets within the data-usage
statistics. However, wiretapping attacks against Tor need to rely on the obser-
vation of padded packets only, whereas we also observe unpadded packets due
to the separation of the browser and proxy application on the smartphone.

132
C

h
ap

ter
8.

E
x
p
loitin

g
th

e
D

ata-U
sage

S
tatistics

Table 8.4: Comparison of website fingerprinting attacks in the closed-world setting.

Work Exploited information Caching Classifier Countermeasure # websites Accuracy

Ours Client-side data-usage statistics Enabled Jaccard index None 500 97%
Jana and
Shmatikov [JS12]

Client-side memory footprint Enabled?a Jaccard index None 100 35%

Cai et al. [CZJJ12] TCP packets captured via tshark Disabled Damerau-Levenshtein distance SSH tunnel 100 92%
Herrmann et
al. [HWF09]

Client-side tcpdump Disabled Naive-Bayes classifier SSH tunnel 775 96%

Liberatore and
Levine [LL06]

Client-side tcpdump Disabled Jaccard index SSH tunnel 500 79%

Liberatore and
Levine [LL06]

Client-side tcpdump Disabled Naive-Bayes classifier SSH tunnel 500 75%

Ours Client-side data-usage statistics Disabled Jaccard index Tor 100 95%
Herrmann et
al. [HWF09]

Client-side tcpdump Disabled Multinomial Naive-Bayes classifier Tor 775 3%

Cai et al. [CZJJ12] TCP packets captured via tshark Disabled Damerau-Levenshtein distance Tor 100 84%
Panchenko et
al. [PNZE11]

Client-side tcpdump Disabled Support vector machines Tor 775 55%

Wang and
Goldberg [WG13]

TCP packetsb Disabled Optimal string alignment distancec Tor 100 91%

Wang and
Goldberg [WG13]

TCP packetsb Disabled Levenshtein distance Tor 100 70%

Wang et
al. [WCN+14]

TCP packetsd Disabled k-nearest neighbore Tor 100 95%

aWe are not sure whether caching has been disabled for the Android browser.
bThey parsed TCP packets to obtain the underlying Tor cells but did not specify how to obtain the TCP packets.
cTraining took 608 000 CPU seconds.
dThey used the same data set as in [WG13].
eThe computational complexity of the training phase is similar to [WG13] (cf. footnote c).

8.7. Discussion of Countermeasures 133

To summarize this comparison, we consider it easier to deploy an application
than to wiretap a victim’s network, but we trade the exact observation of single
TCP packet lengths (or padded packets in case of Tor) for a slightly less accurate
side-channel observation. The most significant advantage of our attack is that
it only requires an unprivileged Android application and a simple (yet efficient)
classifier, which allows to deploy this attack on a large scale. In addition, our
client-side attack overcomes many limitations and assumptions of network-based
fingerprinting attacks that are considered unrealistic, i.e., our attack is invariant
to background traffic and does not require expensive training phases.

8.7 Discussion of Countermeasures

We now provide an overview of existing countermeasures. However, most of
these countermeasures have been proposed to mitigate wiretapping attacks and,
thus, we discuss the relevance of these defense mechanisms against our attack.

8.7.1 Existing Countermeasures

Traffic Morphing. Wright et al. [WCM09] suggested traffic morphing, which
requires the cooperation of the target web server or proxy as well as the browser.
Each packet from a website is padded or split in such a way that the traffic
information of the actual website matches the traffic information of a different
website. As a result, an attacker observing the traffic information will most
likely misclassify this website.

HTTPOS. Luo et al. [LZC+11] proposed a browser-based defense mechanism
denoted as HTTP or HTTPS with Obfuscation (HTTPOS). HTTPOS focuses
on changing packet sizes and packet timings, which can be done, for instance, by
adding bytes to the referer header or by using the HTTP range option to fetch
specific portions of websites.

BuFLO. Dyer et al. [DCRS12] presented Buffered Fixed-Length Obfuscator
(BuFLO) that sends fixed-length packets at fixed intervals for a fixed amount
of time. While the authors claim that BuFLO significantly reduces the attack
surface, it is rather inefficient in terms of bandwidth overhead. Again, BuFLO
requires the cooperation of the involved proxies. Cai et al. [CNJ14] proposed
an extension denoted as Congestion-Sensitive Buffered Fixed-Length Obfuscator
(CS-BuFLO).

Glove. Nithyanand et al. [NCJ14] proposed Glove that tries to cluster similar
websites according to pre-selected features. Based on these clusters, transcripts
of packet sizes (denoted as super-traces) are computed, which are later trans-
mitted whenever a page in the corresponding cluster is loaded. This super-trace
is obtained by inserting, merging, splitting, and delaying packets. The major
drawback of Glove is that the traces must be updated regularly, which is rather
expensive.

134 Chapter 8. Exploiting the Data-Usage Statistics

8.7.2 Discussion

The above mentioned countermeasures aim at preventing website fingerprinting
attacks. Nevertheless, network-level defenses do not provide effective counter-
measures against client-side attacks. For instance, if the traffic is routed through
the Tor network, then the traffic might be protected on the network. How-
ever, unless the browser application itself is actively involved in these defense
mechanisms, these countermeasures do not provide protection against client-
side attackers. We demonstrated this by exploiting the data-usage statistics of
browser applications that route the traffic through the Tor network. Further-
more, application-level defenses like HTTPOS might prevent such attacks at first
glance, but Cai et al. [CNJ14] already demonstrated that a network attacker is
able to circumvent this countermeasure. Besides, many network-level defenses
add a significant overhead in terms of bandwidth and data consumption, which
is impractical for mobile devices with a limited data plan. We consider further
investigations regarding the effectiveness of countermeasures against client-side
attacks as an interesting open research problem. Furthermore, new proposals
for countermeasures should consider mobile devices.

Client-Side Countermeasures. Besides these proposed countermeasures,
which mostly target network-level attackers, fixing fundamental design flaws of
Android should be considered as absolutely necessary. Zhou et al. [ZDH+13]
suggested two permission-based approaches. The first one is a new permission
that allows applications to monitor the data-usage statistics. The second one
is to let applications define how data-usage statistics should be published. We,
however, do not consider these two approaches as viable countermeasures for the
following reasons. First, many users either do not pay attention to the requested
permissions during the installation or they do not understand the meaning of
these permissions (cf. [FHE+12, KCC+12]). Second, the permission system also
confuses developers which leads to overprivileged applications (cf. [FCH+11]).
Besides, developers might not be aware that the data-usage statistics of their
application leaks sensitive information and that their applications should impose
restrictions on how to publish these statistics.

A more general approach to prevent such side-channel attacks at a larger scale
has been suggested by Zhang et al. [ZYN+15]. The idea of their approach is that
an application (App Guardian) pauses/stops suspicious background processes
when the application to be protected (principal) is executed. This idea sounds
quite appealing but still struggles with unsolved issues like a proper identification
of malicious processes.

A first solution to defend against such attacks would be to update these statis-
tics according to a more coarse-grained granularity. We stress that data-usage
statistics capturing single TCP packet lengths represents a significant threat.
Updating data-usage statistics in a more coarse-grained interval, e.g., on a daily
basis, should suffice for users to keep an eye on their data consumption. Future
work might come up with more advanced countermeasures and the above out-
lined approach of App Guardian [ZYN+15] definitely follows the right direction
towards the prevention of such attacks.

8.8. Conclusion 135

8.8 Conclusion

In this chapter, we investigated a new type of client-side website fingerprint-
ing attack that exploits the data-usage statistics published by the Android
OS. We argue that the private browsing mode (incognito mode) of browsers,
the READ HISTORY BOOKMARKS permission, and even routing the network traf-
fic through Tor provides a false sense of privacy for smartphone users. Even
though the browser application itself does not store any information about
visited websites and the traffic is protected while being routed through the
anonymity network Tor, the data-usage statistics leak sensitive information.
We demonstrated that any application is able to accurately infer a user’s vis-
ited websites without any suspicious permission. Hence, the Android permission
READ HISTORY BOOKMARKS—which is supposed to protect the browsing behavior—
is actually irrelevant as it does not provide protection.

Compared to existing website fingerprinting attacks, our attack can be de-
ployed significantly easier and allows for a more accurate classification of web-
sites. The ease of applicability allows even less sophisticated attackers to perform
accurate website fingerprinting attacks on a large scale, which clearly proves the
immense threat arising from this information leak. As a user’s browsing behavior
reveals rather sensitive information, we urge the need to address this issue on the
operating system level. Furthermore, due to the simple (yet accurate) classifica-
tion algorithm, real-time detection of a user’s browsing behavior in combination
with sensor-based keyloggers allows for large-scale identity theft attacks which
must be prevented by all means.

9
Conclusions

You have to fight for your privacy or you lose it.

— Eric Schmidt

In this thesis, we argued that privacy and security are inevitably tied to each
other and, thus, both aspects must be addressed to ensure a future environment
that can be considered as secure and privacy preserving. Although privacy-
preserving mechanisms such as group signature schemes have already been pro-
posed, the practical applicability of such mechanisms is somehow limited due
to specific deficiencies or missing features. In the first part of this thesis we
addressed challenges of group signature schemes that arise when implementing
group signature schemes in practice. We proposed a generic compiler that adds
controllable linkability to group signature schemes. While this feature might
be interesting for privacy-preserving data mining applications, it also allows us
to propose an efficient solution to the open problem of membership revocation
in group signatures, which overcomes several limitations of existing revocation
mechanisms. The proposed revocation mechanism represents the most flexible
and efficient approach for membership revocation at the cost of an always-online
revocation authority. Nevertheless, such a transition from offline/semi-online re-
vocation mechanisms towards always-online revocation authorities seems to be
reasonable due to the availability of reliable cloud infrastructures today. Overall
the proposed revocation mechanism represents a valuable addendum to the ex-
isting portfolio of revocation mechanisms as it provides dedicated features and
advantages compared to other existing revocation mechanisms.

In the second part of this thesis we aimed to advance the field of mobile se-
curity and to foster a thorough understanding of side-channel attacks on mobile
devices. Especially the five key enablers identified in this thesis (cf. Chapter 5)

137

138 Chapter 9. Conclusions

allow for devastating side-channel attacks that can be conducted remotely and,
thus, target an immense number of devices and users at the same time. We
demonstrated the immense threat resulting from resources and seemingly harm-
less information being shared among all processes on multi-purpose devices by
proposing new attacks and enhancements to existing attacks. Unfortunately, we
expect the situation to become worse as the combination of multiple information
leaks allows to launch even more powerful attacks, e.g., when combining cache
attacks with sensor-based keyloggers, or when combining sensor-based keylog-
ging with website fingerprinting attacks.

Although we put a strong focus on smartphones in this thesis, we stress that
wearables in general must be considered in future research. Especially with the
ever increasing number of smart devices, e.g., smartwatches, and the increasing
number of devices in the IoT network being inter-connected and accessible via
the Internet, the threat of side-channel attacks increases and will lead to new
and even more sophisticated attacks. For instance, attacks exploiting accelerom-
eter sensors embedded in smartwatches and attacks exploiting publicly available
information on Android-based IoT devices have already been conducted. For
example, Zhang et al. [ZYN+15] demonstrated that due to the communication
between a WiFi camera and an Android smartphone, a side-channel attack on
Android-based smartphone allows to determine whether or not the user’s home
is empty. This example demonstrates that side-channel leaks do not only pose a
threat to a user’s privacy and security from a system security point of view, but
also pose a threat to smart home appliances and security systems, such as smart
thermostats, cameras, and alarm systems. Although this sounds dystopian at
first, side-channel leaks (on smartphones) also pose a threat to IoT appliances
and even put users’ physical possessions at risk.

At this point we do not know how to cope with side-channel attacks appro-
priately, but clearly countermeasures need to be researched. Proposed coun-
termeasures, however, also need to take the mobile ecosystem of Android into
consideration, which might impede a large-scale deployment of many defense
mechanisms. Even if Google would apply defense mechanisms and patch vul-
nerabilities, multiple device manufacturers as well as carriers also need to apply
these patches to deploy countermeasures in practice. Hence, chances are that
such countermeasures will never be deployed in practice. Therefore, more generic
countermeasures that (1) aim to prevent software-based side-channel attacks in
general and (2) can be deployed at a larger scale are needed. We expect the
situation to become worse, as side-channel attacks work on other platforms as
well, and the popularity of HTML5 apps and the increasing availability of web
APIs to access native resources from JavaScript significantly increases the scale
of side-channel attacks as specific attacks possibly target multiple platforms at
the same time.

Bibliography

[ABB+16] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl,
Patrick Drew McDaniel, and Matthew Smith. SoK: Lessons
Learned from Android Security Research for Appified Software
Platforms. In IEEE Symposium on Security and Privacy – S&P
2016, pages 433–451. IEEE, 2016.

[ACHO11] Masayuki Abe, Sherman S. M. Chow, Kristiyan Haralambiev, and
Miyako Ohkubo. Double-Trapdoor Anonymous Tags for Traceable
Signatures. In Applied Cryptography and Network Security – ACNS
2011, volume 6715 of LNCS, pages 183–200, 2011.

[AE13] Hassan Aly and Mohammed ElGayyar. Attacking AES Using Bern-
stein’s Attack on Modern Processors. In Progress in Cryptology
– AFRICACRYPT 2013, volume 7918 of LNCS, pages 127–139.
Springer, 2013.

[AEHS14] Nuttapong Attrapadung, Keita Emura, Goichiro Hanaoka, and
Yusuke Sakai. A Revocable Group Signature Scheme from Identity-
Based Revocation Techniques: Achieving Constant-Size Revocation
List. In Applied Cryptography and Network Security – ACNS 2014,
volume 8479 of LNCS, pages 419–437. Springer, 2014.

[AGM+10] Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt Blaze,
and Jonathan M. Smith. Smudge Attacks on Smartphone Touch
Screens. In Workshop on Offensive Technologies – WOOT 2010.
USENIX Association, 2010.

[AK06] Onur Aciiçmez and Çetin Kaya Koç. Trace-Driven Cache Attacks
on AES (Short Paper). In Information and Communications Secu-
rity – ICICS 2006, volume 4307 of LNCS, pages 112–121. Springer,
2006.

[AK16] Hasan Faik Alan and Jasleen Kaur. Can Android Applications
Be Identified Using Only TCP/IP Headers of Their Launch Time
Traffic? In Security and Privacy in Wireless and Mobile Networks
– WISEC 2016, pages 61–66. ACM, 2016.

[Alp10] Ethem Alpaydin. Introduction to Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2nd edi-
tion, 2010.

139

140 Bibliography

[ALWS15] Kamran Ali, Alex X. Liu, Wei Wang, and Muhammad Shahzad.
Keystroke Recognition Using WiFi Signals. In Mobile Computing
and Networking – MOBICOM 2015, pages 90–102. ACM, 2015.

[ARM10] ARM Ltd. ARM Technical Reference Manual, Cortex-A8, Revision:
r3p2, May 2010.

[ASBS12] Adam J. Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M.
Smith. Practicality of Accelerometer Side Channels on Smart-
phones. In Annual Computer Security Applications Conference –
ACSAC 2012, pages 41–50. ACM, 2012.

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. Constant-Size Dynamic
k -TAA. In Security and Cryptography for Networks – SCN 2006,
volume 4116 of LNCS, pages 111–125. Springer, 2006.

[AST02] Giuseppe Ateniese, Dawn Xiaodong Song, and Gene Tsudik. Quasi-
Efficient Revocation in Group Signatures. In Financial Cryptogra-
phy – FC 2002, volume 2357 of LNCS, pages 183–197. Springer,
2002.

[ATOY13] Panagiotis Andriotis, Theo Tryfonas, George C. Oikonomou, and
Can Yildiz. A Pilot Study on the Security of Pattern Screen-Lock
Methods and Soft Side Channel Attacks. In Security and Privacy
in Wireless and Mobile Networks – WISEC 2013, pages 1–6. ACM,
2013.

[ATSM09] Man Ho Au, Patrick P. Tsang, Willy Susilo, and Yi Mu. Dynamic
Universal Accumulators for DDH Groups and Their Application
to Attribute-Based Anonymous Credential Systems. In Topics in
Cryptology – CT-RSA 2009, volume 5473 of LNCS, pages 295–308.
Springer, 2009.

[Avi12] Adam J. Aviv. Side Channels Enable By Smartphone Interaction.
PhD thesis, University of Pennsylvania, 2012.

[Bar] Barclays PLC. Mobile Banking Services. http://www.

barclays.co.uk/Mobile/BarclaysPingit/P1242603570446. Ac-
cessed: November 2013.

[BB04] Dan Boneh and Xavier Boyen. Short Signatures Without Random
Oracles. In Advances in Cryptology – EUROCRYPT 2004, volume
3027 of LNCS, pages 56–73. Springer, 2004.

[BB08] Dan Boneh and Xavier Boyen. Short Signatures Without Random
Oracles and the SDH Assumption in Bilinear Groups. J. Cryptology,
21:149–177, 2008.

http://www.barclays.co.uk/Mobile/BarclaysPingit/P1242603570446
http://www.barclays.co.uk/Mobile/BarclaysPingit/P1242603570446

Bibliography 141

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short Group Sig-
natures. In Advances in Cryptology – CRYPTO 2004, volume 3152
of LNCS, pages 41–55. Springer, 2004.

[BCC04] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct Anony-
mous Attestation. In Conference on Computer and Communica-
tions Security – CCS, pages 132–145. ACM, 2004.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Im-
portance of Checking Cryptographic Protocols for Faults (Extended
Abstract). In Advances in Cryptology – EUROCRYPT 1997, vol-
ume 1233 of LNCS, pages 37–51. Springer, 1997.

[BDSS16] Olivier Blazy, David Derler, Daniel Slamanig, and Raphael Spre-
itzer. Non-Interactive Plaintext (In-)Equality Proofs and Group
Signatures with Verifiable Controllable Linkability. In Topics in
Cryptology – CT-RSA 2016, volume 9610 of LNCS, pages 127–143.
Springer, 2016.

[BDU08] Michael Backes, Markus Dürmuth, and Dominique Unruh. Com-
promising Reflections-or-How to Read LCD Monitors around the
Corner. In IEEE Symposium on Security and Privacy – S&P 2008,
pages 158–169. IEEE Computer Society, 2008.

[Ber05] Daniel J. Bernstein. Cache-Timing Attacks on AES. Available on-
line at http://cr.yp.to/antiforgery/cachetiming-20050414.

pdf, 2005.

[BFMT16] Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, and
Mehdi Tibouchi. Side-Channel Analysis of Weierstrass and Koblitz
Curve ECDSA on Android Smartphones. In Topics in Cryptology
– CT-RSA 2016, volume 9610 of LNCS, pages 236–252. Springer,
2016.

[BGH+13] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo
Maffei, and Philipp von Styp-Rekowsky. AppGuard – Enforcing
User Requirements on Android Apps. In Tools and Algorithms for
the Construction and Analysis of Systems – TACAS 2013, volume
7795 of LNCS, pages 543–548. Springer, 2013.

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen.
Differential Computation Analysis: Hiding Your White-Box De-
signs is Not Enough. In Cryptographic Hardware and Embedded Sys-
tems – CHES 2016, volume 9813 of LNCS, pages 215–236. Springer,
2016.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, 2006.

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

142 Bibliography

[BLJL05] George Dean Bissias, Marc Liberatore, David Jensen, and
Brian Neil Levine. Privacy Vulnerabilities in Encrypted HTTP
Streams. In Privacy Enhancing Technologies – PET 2005, volume
3856 of LNCS, pages 1–11. Springer, 2005.

[BMNB14] Hristo Bojinov, Yan Michalevsky, Gabi Nakibly, and Dan Boneh.
Mobile Device Identification via Sensor Fingerprinting. arXiv
ePrint Archive, Report 1408.1416, 2014.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foun-
dations of Group Signatures: Formal Definitions, Simplified Re-
quirements, and a Construction Based on General Assumptions.
In Advances in Cryptology – EUROCRYPT 2003, volume 2656 of
LNCS, pages 614–629. Springer, 2003.

[BPA12] Joseph Bonneau, Sören Preibusch, and Ross J. Anderson. A Birth-
day Present Every Eleven Wallets? The Security of Customer-
Chosen Banking PINs. In Financial Cryptography – FC 2012, vol-
ume 7397 of LNCS, pages 25–40. Springer, 2012.

[BS97] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret
Key Cryptosystems. In Advances in Cryptology – CRYPTO 1997,
volume 1294 of LNCS, pages 513–525. Springer, 1997.

[BS01] Emmanuel Bresson and Jacques Stern. Efficient Revocation in
Group Signatures. In Public Key Cryptography – PKC 2001, vol-
ume 1992 of LNCS, pages 190–206. Springer, 2001.

[BS04] Dan Boneh and Hovav Shacham. Group Signatures with Verifier-
Local Revocation. In Conference on Computer and Communica-
tions Security – CCS, pages 168–177. ACM, 2004.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of Group
Signatures: The Case of Dynamic Groups. In Topics in Cryptology
– CT-RSA 2005, volume 3376 of LNCS, pages 136–153. Springer,
2005.

[BZ04] Joonsang Baek and Yuliang Zheng. Identity-Based Threshold De-
cryption. In Public Key Cryptography – PKC 2004, volume 2947 of
LNCS, pages 262–276. Springer, 2004.

[CC11] Liang Cai and Hao Chen. TouchLogger: Inferring Keystrokes on
Touch Screen from Smartphone Motion. In USENIX Workshop on
Hot Topics in Security – HotSec. USENIX Association, 2011.

[CC12] Liang Cai and Hao Chen. On the Practicality of Motion Based
Keystroke Inference Attack. In Trust and Trustworthy Computing
– TRUST 2012, volume 7344 of LNCS, pages 273–290. Springer,
2012.

Bibliography 143

[CCdMP10] Sébastien Canard, Iwen Coisel, Giacomo de Meulenaer, and Olivier
Pereira. Group Signatures are Suitable for Constrained Devices. In
Information Security and Cryptology – ICISC 2010, volume 6829
of LNCS, pages 133–150. Springer, 2010.

[CDDT12] Sébastien Canard, Nicolas Desmoulins, Julien Devigne, and
Jacques Traoré. On the Implementation of a Pairing-Based Crypto-
graphic Protocol in a Constrained Device. In Pairing-Based Cryp-
tography – Pairing 2012, volume 7708 of LNCS, pages 210–217.
Springer, 2012.

[Cho09] Sherman S. M. Chow. Real Traceable Signatures. In Selected Areas
in Cryptography – SAC 2009, volume 5867 of LNCS, pages 92–107.
Springer, 2009.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic Accumulators
and Application to Efficient Revocation of Anonymous Credentials.
In Advances in Cryptology – CRYPTO 2002, volume 2442 of LNCS,
pages 61–76. Springer, 2002.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature Schemes and
Anonymous Credentials from Bilinear Maps. In Advances in Cryp-
tology – CRYPTO 2004, volume 3152 of LNCS, pages 56–72.
Springer, 2004.

[CM11] Sanjit Chatterjee and Alfred Menezes. On Cryptographic Proto-
cols Employing Asymmetric Pairings – The Role of Ψ Revisited.
Discrete Applied Mathematics, 159:1311–1322, 2011.

[CMC09] Liang Cai, Sridhar Machiraju, and Hao Chen. Defending Against
Sensor-Sniffing Attacks on Mobile Phones. In Workshop on Net-
working, Systems, and Applications for Mobile Handhelds – Mobi-
Held, pages 31–36. ACM, 2009.

[CMSV16] Mauro Conti, Luigi Vincenzo Mancini, Riccardo Spolaor, and
Nino Vincenzo Verde. Analyzing Android Encrypted Network Traf-
fic to Identify User Actions. IEEE Trans. Information Forensics
and Security, 11:114–125, 2016.

[CNJ14] Xiang Cai, Rishab Nithyanand, and Rob Johnson. CS-BuFLO: A
Congestion Sensitive Website Fingerprinting Defense. In Workshop
on Privacy in the Electronic Society – WPES 2014, pages 121–130.
ACM, 2014.

[CNRS16] Mauro Conti, Michele Nati, Enrico Rotundo, and Riccardo Spo-
laor. Mind The Plug! Laptop-User Recognition Through Power
Consumption. In Workshop on IoT Privacy, Trust, and Security –
IoTPTS@AsiaCCS, pages 37–44. ACM, 2016.

144 Bibliography

[CPY06] Seung Geol Choi, Kunsoo Park, and Moti Yung. Short Traceable
Signatures Based on Bilinear Pairings. In International Workshop
on Security – IWSEC 2006, volume 4266 of LNCS, pages 88–103.
Springer, 2006.

[CQM14] Qi Alfred Chen, Zhiyun Qian, and Zhuoqing Morley Mao. Peeking
into Your App without Actually Seeing It: UI State Inference and
Novel Android Attacks. In USENIX Security Symposium 2014,
pages 1037–1052. USENIX Association, 2014.

[CS97] Jan Camenisch and Markus Stadler. Efficient Group Signature
Schemes for Large Groups (Extended Abstract). In Advances in
Cryptology – CRYPTO 1997, volume 1294 of LNCS, pages 410–
424. Springer, 1997.

[CS98] Ronald Cramer and Victor Shoup. A Practical Public Key Cryp-
tosystem Provably Secure Against Adaptive Chosen Ciphertext At-
tack. In Advances in Cryptology – CRYPTO 1998, volume 1462 of
LNCS, pages 13–25. Springer, 1998.

[CSY06] Sherman S. M. Chow, Willy Susilo, and Tsz Hon Yuen. Escrowed
Linkability of Ring Signatures and Its Applications. In Progress
in Cryptology – VIETCRYPT 2006, volume 4341 of LNCS, pages
175–192. Springer, 2006.

[CvH91] David Chaum and Eugène van Heyst. Group Signatures. In Ad-
vances in Cryptology – EUROCRYPT 1991, volume 547 of LNCS,
pages 257–265. Springer, 1991.

[CWWZ10] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-
Channel Leaks in Web Applications: A Reality Today, a Challenge
Tomorrow. In IEEE Symposium on Security and Privacy – S&P
2010, pages 191–206. IEEE Computer Society, 2010.

[CZJJ12] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson.
Touching From a Distance: Website Fingerprinting Attacks and
Defenses. In Conference on Computer and Communications Secu-
rity – CCS 2012, pages 605–616. ACM, 2012.

[DBC14] Anupam Das, Nikita Borisov, and Matthew Caesar. Do You Hear
What I Hear?: Fingerprinting Smart Devices Through Embedded
Acoustic Components. In Conference on Computer and Communi-
cations Security – CCS 2014, pages 441–452. ACM, 2014.

[DBC16] Anupam Das, Nikita Borisov, and Matthew Caesar. Tracking Mo-
bile Web Users Through Motion Sensors: Attacks and Defenses.
In Network and Distributed System Security Symposium – NDSS
2016. The Internet Society, 2016.

Bibliography 145

[DCRS12] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas
Shrimpton. Peek-a-Boo, I Still See You: Why Efficient Traffic Anal-
ysis Countermeasures Fail. In IEEE Symposium on Security and
Privacy – S&P 2012, pages 332–346. IEEE Computer Society, 2012.

[DLLZ16] Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang. No Pardon
for the Interruption: New Inference Attacks on Android Through
Interrupt Timing Analysis. In IEEE Symposium on Security and
Privacy – S&P 2016, pages 414–432. IEEE, 2016.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor:
The Second-Generation Onion Router. In USENIX Security Sym-
posium 2004, pages 303–320. USENIX, 2004.

[DoM] DoMobile. AppLock. https://play.google.com/store/apps/

details?id=com.domobile.applock. Accessed: November 2013.

[DP06] Cécile Delerablée and David Pointcheval. Dynamic Fully Anony-
mous Short Group Signatures. In Progress in Cryptology – VI-
ETCRYPT 2006, volume 4341 of LNCS, pages 193–210. Springer,
2006.

[DRX+14] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury,
and Srihari Nelakuditi. AccelPrint: Imperfections of Accelerom-
eters Make Smartphones Trackable. In Network and Distributed
System Security Symposium – NDSS 2014. The Internet Society,
2014.

[DSCP02] Claudia Dı́az, Stefaan Seys, Joris Claessens, and Bart Preneel. To-
wards Measuring Anonymity. In Privacy Enhancing Technologies
– PET 2002, volume 2482 of LNCS, pages 54–68. Springer, 2002.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A Verifiable Random
Function with Short Proofs and Keys. In Public Key Cryptography
– PKC 2005, volume 3386 of LNCS, pages 416–431. Springer, 2005.

[EH15] Keita Emura and Takuya Hayashi. A Light-Weight Group Signa-
ture Scheme with Time-Token Dependent Linking. In Lightweight
Cryptography for Security and Privacy – LightSec 2015, volume
9542 of LNCS, pages 37–57. Springer, 2015.

[EMO14] Keita Emura, Atsuko Miyaji, and Kazumasa Omote. An r-Hiding
Revocable Group Signature Scheme: Group Signatures with the
Property of Hiding the Number of Revoked Users. J. Applied Math-
ematics, 2014:983040:1–983040:14, 2014.

[Eur10] European Parliament and Council. Directive 2010/40 on the De-
ployment of Intelligent Transport Systems in the Field of Road
Transport and for Interfaces with Other Modes of Transport, July
2010.

https://play.google.com/store/apps/details?id=com.domobile.applock
https://play.google.com/store/apps/details?id=com.domobile.applock

146 Bibliography

[Eve] Evernote Corporation. Evernote. https://play.google.com/

store/apps/details?id=com.evernote. Accessed: November
2013.

[FCH+11] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and
David Wagner. Android Permissions Demystified. In Conference
on Computer and Communications Security – CCS 2011, pages
627–638. ACM, 2011.

[FEF+12] Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Devdatta
Akhawe, and David Wagner. How to Ask for Permission. In
USENIX Workshop on Hot Topics in Security – HotSec. USENIX
Association, 2012.

[FHE+12] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney,
Erika Chin, and David Wagner. Android Permissions: User At-
tention, Comprehension, and Behavior. In Symposium On Usable
Privacy and Security – SOUPS 2012, page 3. ACM, 2012.

[FHM11] Chun-I Fan, Ruei-Hau Hsu, and Mark Manulis. Group Signature
with Constant Revocation Costs for Signers and Verifiers. In Cryp-
tology and Network Security – CANS 2011, volume 7092 of LNCS,
pages 214–233. Springer, 2011.

[FKH14] Tobias Fiebig, Jan Krissler, and Ronny Hänsch. Security Impact of
High Resolution Smartphone Cameras. In Workshop on Offensive
Technologies – WOOT 2014. USENIX Association, 2014.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and
Daniele Venturi. On the Non-malleability of the Fiat-Shamir Trans-
form. In Progress in Cryptology – INDOCRYPT 2012, volume 7668
of LNCS, pages 60–79. Springer, 2012.

[FP01] Pierre-Alain Fouque and David Pointcheval. Threshold Cryptosys-
tems Secure against Chosen-Ciphertext Attacks. In Advances in
Cryptology – ASIACRYPT 2001, volume 2248 of LNCS, pages 351–
368. Springer, 2001.

[FS86] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical
Solutions to Identification and Signature Problems. In Advances in
Cryptology – CRYPTO 1986, volume 263 of LNCS, pages 186–194.
Springer, 1986.

[FS00] Edward W. Felten and Michael A. Schneider. Timing Attacks on
Web Privacy. In Conference on Computer and Communications
Security – CCS 2000, pages 25–32. ACM, 2000.

[GAL+12] Gurleen Grewal, Reza Azarderakhsh, Patrick Longa, Shi Hu, and
David Jao. Efficient Implementation of Bilinear Pairings on ARM

https://play.google.com/store/apps/details?id=com.evernote
https://play.google.com/store/apps/details?id=com.evernote

Bibliography 147

Processors. In Selected Areas in Cryptography – SAC 2012, volume
7707 of LNCS, pages 149–165. Springer, 2012.

[GBK11] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache
Games – Bringing Access-Based Cache Attacks on AES to Prac-
tice. In IEEE Symposium on Security and Privacy – S&P 2011,
pages 490–505. IEEE Computer Society, 2011.

[GBKS12] Xun Gong, Nikita Borisov, Negar Kiyavash, and Nabil Schear.
Website Detection Using Remote Traffic Analysis. In Privacy En-
hancing Technologies – PET 2012, volume 7384 of LNCS, pages
58–78. Springer, 2012.

[GBM15] Daniel Gruss, David Bidner, and Stefan Mangard. Practical Mem-
ory Deduplication Attacks in Sandboxed Javascript. In European
Symposium on Research in Computer Security – ESORICS 2015,
volume 9326 of LNCS, pages 108–122. Springer, 2015.

[GCEC12] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen.
AndroidLeaks: Automatically Detecting Potential Privacy Leaks in
Android Applications on a Large Scale. In Trust and Trustworthy
Computing – TRUST 2012, volume 7344 of LNCS, pages 291–307.
Springer, 2012.

[Gha14] Essam Ghadafi. Efficient Distributed Tag-Based Encryption and Its
Application to Group Signatures with Efficient Distributed Trace-
ability. In Progress in Cryptology – LATINCRYPT 2014, volume
8895 of LNCS, pages 327–347. Springer, 2014.

[GHSS15] Hannes Gross, Marko Hölbl, Daniel Slamanig, and Raphael Spre-
itzer. Privacy-Aware Authentication in the Internet of Things. In
Cryptology and Network Security – CANS 2015, volume 9476 of
LNCS, pages 32–39. Springer, 2015.

[GHT05] Catherine H. Gebotys, Simon Ho, and C. C. Tiu. EM Analysis of
Rijndael and ECC on a Wireless Java-Based PDA. In Cryptographic
Hardware and Embedded Systems – CHES 2005, volume 3659 of
LNCS, pages 250–264. Springer, 2005.

[GHV08] Steven D. Galbraith, Florian Hess, and Frederik Vercauteren. As-
pects of Pairing Inversion. IEEE Transactions on Information The-
ory, 54:5719–5728, 2008.

[GK11] Jean-François Gallais and Ilya Kizhvatov. Error-Tolerance in Trace-
Driven Cache Collision Attacks. In Constructive Side-Channel
Analysis and Secure Design – COSADE, pages 222–232, 2011.

148 Bibliography

[GKB10] Xun Gong, Negar Kiyavash, and Nikita Borisov. Fingerprinting
Websites Using Remote Traffic Analysis. In Conference on Com-
puter and Communications Security – CCS 2010, pages 684–686.
ACM, 2010.

[GKT10] Jean-François Gallais, Ilya Kizhvatov, and Michael Tunstall. Im-
proved Trace-Driven Cache-Collision Attacks against Embedded
AES Implementations. In Information Security Applications –
WISA 2010, volume 6513 of LNCS, pages 243–257. Springer, 2010.

[GMM16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In
Detection of Intrusions and Malware & Vulnerability Assessment
– DIMVA 2016, volume 9721 of LNCS, pages 300–321. Springer,
2016.

[Goo14] Google. Simplified Permissions on Google Play. https://support.
google.com/googleplay/answer/6014972, 2014.

[GS08] Jens Groth and Amit Sahai. Efficient Non-interactive Proof Sys-
tems for Bilinear Groups. In Advances in Cryptology – EURO-
CRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer,
2008.

[GS13] Benôıt Gérard and François-Xavier Standaert. Unified and Opti-
mized Linear Collision Attacks and Their Application in a Non-
Profiled Setting: Extended Version. J. Cryptographic Engineering,
3:45–58, 2013.

[GSAV16] Haritabh Gupta, Shamik Sural, Vijayalakshmi Atluri, and Jaideep
Vaidya. Deciphering Text from Touchscreen Key Taps. In Data
and Applications Security and Privacy – DBSec 2016, volume 9766
of LNCS, pages 3–18. Springer, 2016.

[GSM15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In USENIX Security Symposium 2015, pages 897–912. USENIX As-
sociation, 2015.

[Gür10] Fahriye Seda Gürses. Multilateral Privacy Requirements Analysis in
Online Social Network Services. PhD thesis, Katholieke Universiteit
Leuven, 2010.

[GYCH16] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Sur-
vey of Microarchitectural Timing Attacks and Countermeasures on
Contemporary Hardware. Journal of Cryptographic Engineering,
pages 1–27, 2016.

https://support.google.com/googleplay/answer/6014972
https://support.google.com/googleplay/answer/6014972

Bibliography 149

[HAZ+16] Muzammil Hussain, Ahmed Al-Haiqi, A. A. Zaidan, B. B. Zaidan,
M. L. Mat Kiah, Nor Badrul Anuar, and Mohamed Abdulnabi.
The Rise of Keyloggers on Smartphones: A Survey and Insight
Into Motion-Based Tap Inference Attacks. Pervasive and Mobile
Computing, 25:1–25, 2016.

[HCCN15] Jung Yeon Hwang, Liqun Chen, Hyun Sook Cho, and DaeHun
Nyang. Short Dynamic Group Signature Scheme Supporting Con-
trollable Linkability. IEEE Trans. Information Forensics and Se-
curity, 10:1109–1124, 2015.

[HD15] Jamie Hayes and George Danezis. Better Open-World Website Fin-
gerprinting. arXiv ePrint Archive, Report 1509.00789, 2015.

[HHH16] Thomas Hupperich, Henry Hosseini, and Thorsten Holz. Lever-
aging Sensor Fingerprinting for Mobile Device Authentication. In
Detection of Intrusions and Malware & Vulnerability Assessment
– DIMVA 2016, volume 9721 of LNCS, pages 377–396. Springer,
2016.

[Hin02] Andrew Hintz. Fingerprinting Websites Using Traffic Analysis.
In Privacy Enhancing Technologies – PET 2002, volume 2482 of
LNCS, pages 171–178. Springer, 2002.

[HL10] Carmit Hazay and Yehuda Lindell. Sigma Protocols and Efficient
Zero-Knowledge, pages 147–175. Information Security and Cryp-
tography. Springer, 2010.

[HLC+11] Jung Yeon Hwang, Sokjoon Lee, Byung-Ho Chung, Hyun Sook Cho,
and DaeHun Nyang. Short Group Signatures with Controllable
Linkability. In Lightweight Security & Privacy: Devices, Protocols
and Applications – LightSec, pages 44–52, March 2011.

[HLC+13] Jung Yeon Hwang, Sokjoon Lee, Byung-Ho Chung, Hyun Sook Cho,
and DaeHun Nyang. Group Signatures With Controllable Linka-
bility for Dynamic Membership. Inf. Sci., 222:761–778, 2013.

[HMK+15] Thomas Hupperich, Davide Maiorca, Marc Kührer, Thorsten Holz,
and Giorgio Giacinto. On the Robustness of Mobile Device Finger-
printing: Can Mobile Users Escape Modern Web-Tracking Mech-
anisms? In Annual Computer Security Applications Conference –
ACSAC 2015, pages 191–200. ACM, 2015.

[HMSS15] Bo-Jhang Ho, Paul D. Martin, Prashanth Swaminathan, and
Mani B. Srivastava. From Pressure to Path: Barometer-based Ve-
hicle Tracking. In Embedded Systems for Energy-Efficient Built
Environments – BuildSys, pages 65–74. ACM, 2015.

150 Bibliography

[HNT13] Samuli Hemminki, Petteri Nurmi, and Sasu Tarkoma.
Accelerometer-Based Transportation Mode Detection on Smart-
phones. In Conference on Embedded Network Sensor Systems –
SenSys 2013, pages 13:1–13:14. ACM, 2013.

[HON+12] Jun Han, Emmanuel Owusu, Le T. Nguyen, Adrian Perrig, and
Joy Zhang. ACComplice: Location Inference Using Accelerometers
on Smartphones. In International Conference on Communication
Systems and Networks – COMSNETS 2012, pages 1–9. IEEE, 2012.

[HS13] Michael Hutter and Jörn-Marc Schmidt. The Temperature Side
Channel and Heating Fault Attacks. In Smart Card Research and
Advanced Applications – CARDIS 2013, volume 8419 of LNCS,
pages 219–235. Springer, 2013.

[HS14] Michael Hutter and Jörn-Marc Schmidt. The Temperature Side
Channel and Heating Fault Attacks. IACR Cryptology ePrint
Archive, Report 2014/190, 2014.

[HWF09] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Web-
site Fingerprinting: Attacking Popular Privacy Enhancing Tech-
nologies with the Multinomial Näıve-Bayes Classifier. In Cloud
Computing Security Workshop – CCSW, pages 31–42. ACM, 2009.

[HYG+14] Gaofeng He, Ming Yang, Xiaodan Gu, Junzhou Luo, and Yuanyuan
Ma. A Novel Active Website Fingerprinting Attack Against Tor
Anonymous System. In Computer Supported Cooperative Work in
Design – CSCWD 2014, pages 112–117. IEEE, 2014.

[IiRPP15] Andreu Pere Isern-Deyà, Llorenç Huguet i Rotger, Magdalena
Payeras-Capellà, and Macià Mut Puigserver. On the Practicability
of Using Group Signatures on Mobile Devices: Implementation and
Performance Analysis on the Android Platform. Int. J. Inf. Sec.,
14:335–345, 2015.

[Int13] International Organization for Standardization (ISO). ISO/IEC
20008-2: Information Technology – Security Techniques – Anony-
mous Digital Signatures – Part 2: Mechanisms Using a Group Pub-
lic Key, November 2013.

[IVP+13] Andreu Pere Isern-Deyà, Arnau Vives-Guasch, Macià Mut
Puigserver, Magdalena Payeras-Capellà, and Jordi Castellà-Roca.
A Secure Automatic Fare Collection System for Time-Based or
Distance-Based Services with Revocable Anonymity for Users.
Comput. J., 56:1198–1215, 2013.

[JAA+14] Marc Juárez, Sadia Afroz, Gunes Acar, Claudia Dı́az, and Rachel
Greenstadt. A Critical Evaluation of Website Fingerprinting At-
tacks. In Conference on Computer and Communications Security
– CCS 2014, pages 263–274. ACM, 2014.

Bibliography 151

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
Knowledge Using Garbled Circuits: How to Prove Non-Algebraic
Statements Efficiently. In Conference on Computer and Communi-
cations Security – CCS 2013, pages 955–966. ACM, 2013.

[JL13] Markus Jakobsson and Debin Liu. Your Password is Your New
PIN. In Mobile Authentication — Problems and Solutions, pages
25–36. Springer, 2013.

[JO10] Artur Janc and Lukasz Olejnik. Web Browser History Detection as
a Real-World Privacy Threat. In European Symposium on Research
in Computer Security – ESORICS 2010, volume 6345 of LNCS,
pages 215–231. Springer, 2010.

[JS12] Suman Jana and Vitaly Shmatikov. Memento: Learning Secrets
from Process Footprints. In IEEE Symposium on Security and Pri-
vacy – S&P 2012, pages 143–157. IEEE Computer Society, 2012.

[KCC+12] Patrick Gage Kelley, Sunny Consolvo, Lorrie Faith Cranor, Jaeyeon
Jung, Norman M. Sadeh, and David Wetherall. A Conundrum of
Permissions: Installing Applications on an Android Smartphone.
In Financial Cryptography and Data Security Workshops – USEC
and WECSR, volume 7398 of LNCS, pages 68–79. Springer, 2012.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping Bits in Memory Without Accessing Them: An Experi-
mental Study of DRAM Disturbance Errors. In International Sym-
posium on Computer Architecture – ISCA 2014, pages 361–372.
IEEE Computer Society, 2014.

[Kee] KeepSafe. KeepSafe. https://play.google.com/store/apps/

details?id=com.kii.safe. Accessed: November 2013.

[KGB+16] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck, and
Felix C. Freiling. Fingerprinting Mobile Devices Using Personalized
Configurations. PoPETs, 2016:4–19, 2016.

[KHH16] Katharina Krombholz, Thomas Hupperich, and Thorsten Holz. Use
the Force: Evaluating Force-Sensitive Authentication for Mobile
Devices. In Symposium On Usable Privacy and Security – SOUPS
2016, pages 207–219. USENIX Association, 2016.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power
Analysis. In Advances in Cryptology – CRYPTO 1999, volume 1666
of LNCS, pages 388–397. Springer, 1999.

https://play.google.com/store/apps/details?id=com.kii.safe
https://play.google.com/store/apps/details?id=com.kii.safe

152 Bibliography

[KLP+15] Vireshwar Kumar, He Li, Jung-Min ”Jerry” Park, Kaigui Bian,
and Yaling Yang. Group Signatures with Probabilistic Revoca-
tion: A Computationally-Scalable Approach for Providing Privacy-
Preserving Authentication. In Conference on Computer and Com-
munications Security – CCS 2015, pages 1334–1345. ACM, 2015.

[KN14] Taekyoung Kwon and Sarang Na. TinyLock: Affordable Defense
Against Smudge Attacks on Smartphone Pattern Lock Systems.
Computers & Security, 42:137–150, 2014.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In Advances in Cryptology
– CRYPTO 1996, volume 1109 of LNCS, pages 104–113. Springer,
1996.

[KS04] Satoshi Koga and Kouichi Sakurai. A Distributed Online Certificate
Status Protocol with a Single Public Key. In Public Key Cryptog-
raphy – PKC 2004, volume 2947 of LNCS, pages 389–401. Springer,
2004.

[KSWH98] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side
Channel Cryptanalysis of Product Ciphers. In European Sympo-
sium on Research in Computer Security – ESORICS 1998, volume
1485 of LNCS, pages 97–110. Springer, 1998.

[KTY04] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable Sig-
natures. In Advances in Cryptology – EUROCRYPT 2004, volume
3027 of LNCS, pages 571–589. Springer, 2004.

[KY05] Aggelos Kiayias and Moti Yung. Group Signatures with Efficient
Concurrent Join. In Advances in Cryptology – EUROCRYPT 2005,
volume 3494 of LNCS, pages 198–214. Springer, 2005.

[LCC10] Liming Lu, Ee-Chien Chang, and Mun Choon Chan. Website Fin-
gerprinting and Identification Using Ordered Feature Sequences.
In European Symposium on Research in Computer Security – ES-
ORICS 2010, volume 6345 of LNCS, pages 199–214. Springer, 2010.

[LGS+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In USENIX Security Symposium 2016, pages 549–564.
USENIX Association, 2016.

[LL06] Marc Liberatore and Brian Neil Levine. Inferring the Source of
Encrypted HTTP Connections. In Conference on Computer and
Communications Security – CCS, pages 255–263. ACM, 2006.

[LML+16] Mengyuan Li, Yan Meng, Junyi Liu, Haojin Zhu, Xiaohui Liang,
Yao Liu, and Na Ruan. When CSI Meets Public WiFi: Inferring

Bibliography 153

Your Mobile Phone Password via WiFi Signals. In Conference on
Computer and Communications Security – CCS 2016, pages 1068–
1079. ACM, 2016.

[LPY12a] Benôıt Libert, Thomas Peters, and Moti Yung. Group Signatures
with Almost-for-Free Revocation. In Advances in Cryptology –
CRYPTO 2012, volume 7417 of LNCS, pages 571–589. Springer,
2012.

[LPY12b] Benôıt Libert, Thomas Peters, and Moti Yung. Scalable Group
Signatures with Revocation. In Advances in Cryptology – EU-
ROCRYPT 2012, volume 7237 of LNCS, pages 609–627. Springer,
2012.

[LRT12] Victor Lomné, Thomas Roche, and Adrian Thillard. On the Need
of Randomness in Fault Attack Countermeasures – Application to
AES. In Fault Diagnosis and Tolerance in Cryptography – FDTC
2012, pages 85–94. IEEE Computer Society, 2012.

[LY09] Benôıt Libert and Moti Yung. Efficient Traceable Signatures in the
Standard Model. In Pairing-Based Cryptography – Pairing 2009,
volume 5671 of LNCS, pages 187–205. Springer, 2009.

[LYL+14] Bin Liang, Wei You, Liangkun Liu, Wenchang Shi, and Mario Hei-
derich. Scriptless Timing Attacks on Web Browser Privacy. In De-
pendable Systems and Networks – DSN 2014, pages 112–123. IEEE
Computer Society, 2014.

[LZC+11] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky
K. C. Chang, and Roberto Perdisci. HTTPOS: Sealing Information
Leaks with Browser-Side Obfuscation of Encrypted Flows. In Net-
work and Distributed System Security Symposium – NDSS 2011.
The Internet Society, 2011.

[Mat] MathWorks. Statistics Toolbox. http://www.mathworks.com/

products/statistics/. Accessed: November 2013.

[MBN14] Yan Michalevsky, Dan Boneh, and Gabi Nakibly. Gyrophone: Rec-
ognizing Speech from Gyroscope Signals. In USENIX Security Sym-
posium 2014, pages 1053–1067. USENIX Association, 2014.

[MFG+12] Mark Manulis, Nils Fleischhacker, Felix Günther, Franziskus Kiefer,
and Bertram Poettering. Group Signatures: Authentication with
Privacy. Technical report, BSI – Federal Office for Information
Security, 2012.

[MGB11] Federico Maggi, Simone Gasparini, and Giacomo Boracchi. A Fast
Eavesdropping Attack Against Touchscreens. In Information As-
surance and Security – IAS 2011, pages 320–325. IEEE, 2011.

http://www.mathworks.com/products/statistics/
http://www.mathworks.com/products/statistics/

154 Bibliography

[MHJT14] Brad Miller, Ling Huang, Anthony D. Joseph, and J. D. Tygar.
I Know Why You Went to the Clinic: Risks and Realization of
HTTPS Traffic Analysis. In Privacy Enhancing Technologies – PET
2014, volume 8555 of LNCS, pages 143–163. Springer, 2014.

[MLLB15] Stanislav Miskovic, Gene Moo Lee, Yong Liao, and Mario Baldi.
AppPrint: Automatic Fingerprinting of Mobile Applications in
Network Traffic. In Passive and Active Measurement – PAM 2015,
volume 8995 of LNCS, pages 57–69. Springer, 2015.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
Analysis Attacks – Revealing the Secrets of Smart Cards. Springer,
2007.

[MS13] Tilo Müller and Michael Spreitzenbarth. FROST – Forensic Re-
covery of Scrambled Telephones. In Applied Cryptography and Net-
work Security – ACNS 2013, volume 7954 of LNCS, pages 373–388.
Springer, 2013.

[MSV+15] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapan-
dian, Dan Boneh, and Gabi Nakibly. PowerSpy: Location Tracking
Using Mobile Device Power Analysis. In USENIX Security Sympo-
sium 2015, pages 785–800. USENIX Association, 2015.

[MTSH16a] Maryam Mehrnezhad, Ehsan Toreini, Siamak Fayyaz Shahan-
dashti, and Feng Hao. Stealing PINs via Mobile Sensors: Ac-
tual Risk versus User Perception. arXiv ePrint Archive, Report
1605.05549, 2016.

[MTSH16b] Maryam Mehrnezhad, Ehsan Toreini, Siamak Fayyaz Shahan-
dashti, and Feng Hao. TouchSignatures: Identification of User
Touch Actions and PINs Based on Mobile Sensor Data via
JavaScript. J. Inf. Sec. Appl., 26:23–38, 2016.

[MVBC12] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan,
and Romit Roy Choudhury. Tapprints: Your Finger Taps Have
Fingerprints. In Mobile Systems – MobiSys 2012, pages 323–336.
ACM, 2012.

[NAB] NAB. NAB. https://play.google.com/store/apps/details?

id=au.com.nab.mobile. Accessed: November 2013.

[Nah16] Ani Nahapetian. Side-Channel Attacks on Mobile and Wearable
Systems. In Consumer Communications & Networking Conference
– CCNC 2016, pages 243–247. IEEE, 2016.

[Nat01] National Institute of Standards and Technology (NIST). FIPS-197:
Advanced Encryption Standard, November 2001.

https://play.google.com/store/apps/details?id=au.com.nab.mobile
https://play.google.com/store/apps/details?id=au.com.nab.mobile

Bibliography 155

[NCJ14] Rishab Nithyanand, Xiang Cai, and Rob Johnson. Glove: A Be-
spoke Website Fingerprinting Defense. In Workshop on Privacy in
the Electronic Society – WPES 2014, pages 131–134. ACM, 2014.

[Nev06] Michael Neve. Cache-based Vulnerabilities and SPAM Analysis.
PhD thesis, UCL, 2006.

[New16] NewAE Technology Inc. Fault Injection Raspberry PI. https:

//wiki.newae.com, 2016. Accessed: August 2016.

[NF05] Toru Nakanishi and Nobuo Funabiki. Verifier-Local Revocation
Group Signature Schemes with Backward Unlinkability from Bilin-
ear Maps. In Advances in Cryptology – ASIACRYPT 2005, volume
3788 of LNCS, pages 533–548. Springer, 2005.

[NF06] Toru Nakanishi and Nobuo Funabiki. A Short Verifier-Local Revo-
cation Group Signature Scheme with Backward Unlinkability. In
International Workshop on Security – IWSEC 2006, volume 4266
of LNCS, pages 17–32. Springer, 2006.

[NFHF09] Toru Nakanishi, Hiroki Fujii, Yuta Hira, and Nobuo Funabiki. Re-
vocable Group Signature Schemes with Constant Costs for Signing
and Verifying. In Public Key Cryptography – PKC 2009, volume
5443 of LNCS, pages 463–480. Springer, 2009.

[NFW99] Toru Nakanishi, Toru Fujiwara, and Hajime Watanabe. A Linkable
Group Signature and Its Application to Secret Voting. Trans. of
Information Processing Society of Japan, 40(7), 1999.

[NKHF05] Toru Nakanishi, Fumiaki Kubooka, Naoto Hamada, and Nobuo
Funabiki. Group Signature Schemes with Membership Revocation
for Large Groups. In Information Security and Privacy – ACISP
2005, volume 3574 of LNCS, pages 443–454. Springer, 2005.

[NM14] Sarfraz Nawaz and Cecilia Mascolo. Mining Users’ Significant Driv-
ing Routes With Low-Power Sensors. In Conference on Embed-
ded Network Sensor Systems – SenSys 2014, pages 236–250. ACM,
2014.

[NS04a] Toru Nakanishi and Yuji Sugiyama. A Group Signature Scheme
with Efficient Membership Revocation for Reasonable Groups. In
Information Security and Privacy – ACISP 2004, volume 3108 of
LNCS, pages 336–347. Springer, 2004.

[NS04b] Lan Nguyen and Reihaneh Safavi-Naini. Efficient and Provably Se-
cure Trapdoor-Free Group Signature Schemes from Bilinear Pair-
ings. In Advances in Cryptology – ASIACRYPT 2004, volume 3329
of LNCS, pages 372–386. Springer, 2004.

https://wiki.newae.com
https://wiki.newae.com

156 Bibliography

[NS06a] Arvind Narayanan and Vitaly Shmatikov. How To Break
Anonymity of the Netflix Prize Dataset. arXiv ePrint Archive,
Report 0610105, 2006.

[NS06b] Michael Neve and Jean-Pierre Seifert. Advances on Access-Driven
Cache Attacks on AES. In Selected Areas in Cryptography – SAC
2006, volume 4356 of LNCS, pages 147–162. Springer, 2006.

[NSN+14a] Yuto Nakano, Youssef Souissi, Robert Nguyen, Laurent Sauvage,
Jean-Luc Danger, Sylvain Guilley, Shinsaku Kiyomoto, and Yutaka
Miyake. A Pre-processing Composition for Secret Key Recovery on
Android Smartphone. In Information Security Theory and Practice
– WISTP 2014, volume 8501 of LNCS, pages 76–91. Springer, 2014.

[NSN14b] Sashank Narain, Amirali Sanatinia, and Guevara Noubir. Single-
Stroke Language-Agnostic Keylogging Using Stereo-Microphones
and Domain Specific Machine Learning. In Security and Privacy
in Wireless and Mobile Networks – WISEC 2014, pages 201–212.
ACM, 2014.

[NSW06] Michael Neve, Jean-Pierre Seifert, and Zhenghong Wang. A Refined
Look at Bernstein’s AES Side-Channel Analysis. In Conference on
Computer and Communications Security – CCS 2006, page 369.
ACM, 2006.

[NVBN16] Sashank Narain, Triet D. Vo-Huu, Kenneth Block, and Guevara
Noubir. Inferring User Routes and Locations Using Zero-Permission
Mobile Sensors. In IEEE Symposium on Security and Privacy –
S&P 2016, pages 397–413. IEEE, 2016.

[NY90] Moni Naor and Moti Yung. Public-key Cryptosystems Provably
Secure against Chosen Ciphertext Attacks. In Symposium on the
Theory of Computing – STOC, pages 427–437. ACM, 1990.

[O’F16] Colin O’Flynn. Fault Injection using Crowbars on Embedded Sys-
tems. IACR Cryptology ePrint Archive, Report 2016/810, 2016.

[OGSM16] S. Ordas, L. Guillaume-Sage, and P. Maurine. Electromagnetic
Fault Injection: The Curse of Flip-Flops. Journal of Cryptographic
Engineering, pages 1–15, 2016.

[OHD+12] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy
Zhang. ACCessory: Password Inference Using Accelerometers on
Smartphones. In Mobile Computing Systems and Applications –
HotMobile 2012, page 9. ACM, 2012.

[OKSK15] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and An-
gelos D. Keromytis. The Spy in the Sandbox: Practical Cache At-
tacks in JavaScript and their Implications. In Conference on Com-

Bibliography 157

puter and Communications Security – CCS 2015, pages 1406–1418.
ACM, 2015.

[Pag02] Dan Page. Theoretical Use of Cache Memory as a Cryptanalytic
Side-Channel. IACR Cryptology ePrint Archive, Report 2002/169,
2002.

[PGS+12] Hao Peng, Christopher S. Gates, Bhaskar Pratim Sarma, Ninghui
Li, Yuan Qi, Rahul Potharaju, Cristina Nita-Rotaru, and Ian Mol-
loy. Using Probabilistic Generative Models for Ranking Risks of
Android Apps. In Conference on Computer and Communications
Security – CCS 2012, pages 241–252. ACM, 2012.

[PLP+16] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel,
Andreas Zinnen, Martin Henze, and Klaus Wehrle. Website Fin-
gerprinting at Internet Scale. In Network and Distributed System
Security Symposium – NDSS 2016. The Internet Society, 2016.

[PNZE11] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas
Engel. Website Fingerprinting in Onion Routing Based Anonymiza-
tion Networks. In Workshop on Privacy in the Electronic Society
– WPES 2011, pages 103–114. ACM, 2011.

[Pon15] Ponemon Institute LLC. 2015 PKI Global Trends Study, 2015.

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J.
Algorithms, 51:122–144, 2004.

[PS16] David Pointcheval and Olivier Sanders. Short Randomizable Sig-
natures. In Topics in Cryptology – CT-RSA 2016, volume 9610 of
LNCS, pages 111–126. Springer, 2016.

[PSM15] Dan Ping, Xin Sun, and Bing Mao. TextLogger: Inferring Longer
Inputs on Touch Screen Using Motion Sensors. In Security and
Privacy in Wireless and Mobile Networks – WISEC 2015, pages
24:1–24:12. ACM, 2015.

[PWH+13] Klaus Potzmader, Johannes Winter, Daniel M. Hein, Christian
Hanser, Peter Teufl, and Liqun Chen. Group Signatures on Mobile
Devices: Practical Experiences. In Trust and Trustworthy Comput-
ing – TRUST 2013, volume 7904 of LNCS, pages 47–64. Springer,
2013.

[QS01] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic
Analysis (EMA): Measures and Counter-Measures for Smart Cards.
In Smart Card Programming and Security – E-smart 2001, volume
2140 of LNCS, pages 200–210. Springer, 2001.

158 Bibliography

[RGKS11] Andrew Raij, Animikh Ghosh, Santosh Kumar, and Mani B. Sri-
vastava. Privacy Risks Emerging From the Adoption of Innocuous
Wearable Sensors in the Mobile Environment. In Conference on
Human Factors in Computing Systems – CHI 2011, pages 11–20.
ACM, 2011.

[RKM+12] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan
Parno, Helen J. Wang, and Crispin Cowan. User-Driven Access
Control: Rethinking Permission Granting in Modern Operating
Systems. In IEEE Symposium on Security and Privacy – S&P
2012, pages 224–238. IEEE Computer Society, 2012.

[RNR+15] Lionel Rivière, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger,
Julien Bringer, and Laurent Sauvage. High Precision Fault In-
jections on the Instruction Cache of ARMv7-M Architectures. In
Hardware Oriented Security and Trust – HOST 2015, pages 62–67.
IEEE Computer Society, 2015.

[RS91] Charles Rackoff and Daniel R. Simon. Non-Interactive Zero-
Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In
Advances in Cryptology – CRYPTO 1991, volume 576 of LNCS,
pages 433–444. Springer, 1991.

[RSDT13] Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and As-
sia Tria. Fault Model Analysis of Laser-Induced Faults in SRAM
Memory Cells. In Fault Diagnosis and Tolerance in Cryptography
– FDTC 2013, pages 89–98. IEEE Computer Society, 2013.

[RWG+11] Rahul Raguram, Andrew M. White, Dibyendusekhar Goswami,
Fabian Monrose, and Jan-Michael Frahm. iSpy: Automatic Recon-
struction of Typed Input From Compromising Reflections. In Con-
ference on Computer and Communications Security – CCS 2011,
pages 527–536. ACM, 2011.

[RWX+13] Rahul Raguram, Andrew M. White, Yi Xu, Jan-Michael Frahm,
Pierre Georgel, and Fabian Monrose. On the Privacy Risks of Vir-
tual Keyboards: Automatic Reconstruction of Typed Input from
Compromising Reflections. IEEE Trans. Dependable Sec. Comput.,
10:154–167, 2013.

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induc-
tion Attacks. In Cryptographic Hardware and Embedded Systems –
CHES 2002, volume 2523 of LNCS, pages 2–12. Springer, 2002.

[SA13] Laurent Simon and Ross Anderson. PIN Skimmer: Inferring PINs
Through the Camera and Microphone. In Security and Privacy in
Smartphones & Mobile Devices – SPSM@CCS, pages 67–78. ACM,
2013.

Bibliography 159

[Sama] Samsung. Samsung Galaxy S4 Specifications. http://www.

samsung.com/global/microsite/galaxys4/. Accessed: Novem-
ber 2013.

[Samb] Samsung. Samsung Galaxy SIII Specifications. http://

www.samsung.com/global/galaxys3/specifications.html. Ac-
cessed: November 2013.

[Samc] Samsung. Samsung KNOX. http://www.samsung.com/global/

business/mobile/solution/security/samsung-knox. Accessed:
November 2013.

[Sam13] Samsung. What You May Not Know About GALAXY S4. http:

//global.samsungtomorrow.com/?p=23610, 2013. Accessed:
November 2013.

[SD15] Mark Seaborn and Thomas Dullien. Exploiting the DRAM
Rowhammer Bug to Gain Kernel Privileges, 2015. Blackhat.

[SFKD14] Vishal Saraswat, Daniel Feldman, Denis Foo Kune, and Satyajit
Das. Remote Cache-Timing Attacks Against AES. In Cryptography
and Security in Computing Systems – CS2@HiPEAC, pages 45–48.
ACM, 2014.

[SFSM13] Tim Stöber, Mario Frank, Jens B. Schmitt, and Ivan Martinovic.
Who Do You Sync You Are?: Smartphone Fingerprinting via Appli-
cation Behaviour. In Security and Privacy in Wireless and Mobile
Networks – WISEC 2013, pages 7–12. ACM, 2013.

[SG14] Raphael Spreitzer and Benôıt Gérard. Towards More Practical
Time-Driven Cache Attacks. In Information Security Theory and
Practice – WISTP 2014, volume 8501 of LNCS, pages 24–39.
Springer, 2014.

[SGKM16] Raphael Spreitzer, Simone Griesmayr, Thomas Korak, and Stefan
Mangard. Exploiting Data-Usage Statistics for Website Finger-
printing Attacks on Android. In Security and Privacy in Wireless
and Mobile Networks – WISEC 2016, pages 49–60. ACM, 2016.

[Sha79] Adi Shamir. How to Share a Secret. Commun. ACM, 22:612–613,
1979.

[SIYA11] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and Cyrille Artho.
Memory Deduplication as a Threat to the Guest OS. In European
Workshop on System Security – EUROSEC 2011, pages 1–6. ACM,
2011.

[SJC+16] Jingchao Sun, Xiaocong Jin, Yimin Chen, Jinxue Zhang, Yanchao
Zhang, and Rui Zhang. VISIBLE: Video-Assisted Keystroke In-
ference from Tablet Backside Motion. In Network and Distributed

http://www.samsung.com/global/microsite/galaxys4/
http://www.samsung.com/global/microsite/galaxys4/
http://www.samsung.com/global/galaxys3/specifications.html
http://www.samsung.com/global/galaxys3/specifications.html
http://www.samsung.com/global/business/mobile/solution/security/samsung-knox
http://www.samsung.com/global/business/mobile/solution/security/samsung-knox
http://global.samsungtomorrow.com/?p=23610
http://global.samsungtomorrow.com/?p=23610

160 Bibliography

System Security Symposium – NDSS 2016. The Internet Society,
2016.

[SKH+16] Matthias Schulz, Patrick Klapper, Matthias Hollick, Erik Tews, and
Stefan Katzenbeisser. Trust The Wire, They Always Told Me!: On
Practical Non-Destructive Wire-Tap Attacks Against Ethernet. In
Security and Privacy in Wireless and Mobile Networks – WISEC
2016, pages 43–48. ACM, 2016.

[Sko16] Sergei Skorobogatov. The Bumpy Road Towards iPhone 5c NAND
Mirroring. arXiv ePrint Archive, Report 1609.04327, 2016.

[SKSP14] Diksha Shukla, Rajesh Kumar, Abdul Serwadda, and Vir V. Phoha.
Beware, Your Hands Reveal Your Secrets! In Conference on Com-
puter and Communications Security – CCS 2014, pages 904–917.
ACM, 2014.

[SMA+13] Stefan Santesson, Michael Myers, Rich Ankney, Ambarish Malpani,
Slava Galperin, and Carlisle Adams. X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol – OCSP. RFC
6960, Internet Engineering Task Force (IETF), June 2013. https:
//www.ietf.org/rfc/rfc6960.txt.

[SMdH15] Eloi Sanfelix, Cristofaro Mune, and Job de Haas. Unboxing the
White-Box: Practical Attacks Against Obfuscated Ciphers, 2015.
Blackhat.

[SMKM16] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Ste-
fan Mangard. Systematic Classification of Side-Channel Attacks:
A Case Study for Mobile Devices. arXiv ePrint Archive, Report
1611.03748, 2016. In submission.

[SMS16] Prakash Shrestha, Manar Mohamed, and Nitesh Saxena. Slog-
ger: Smashing Motion-based Touchstroke Logging with Transpar-
ent System Noise. In Security and Privacy in Wireless and Mobile
Networks – WISEC 2016, pages 67–77. ACM, 2016.

[SP13a] Raphael Spreitzer and Thomas Plos. Cache-Access Pattern Attack
on Disaligned AES T-Tables. In Constructive Side-Channel Anal-
ysis and Secure Design – COSADE 2013, volume 7864 of LNCS,
pages 200–214. Springer, 2013.

[SP13b] Raphael Spreitzer and Thomas Plos. On the Applicability of Time-
Driven Cache Attacks on Mobile Devices. In Network and Sys-
tem Security – NSS 2013, volume 7873 of LNCS, pages 656–662.
Springer, 2013.

[Spr14] Raphael Spreitzer. PIN Skimming: Exploiting the Ambient-Light
Sensor in Mobile Devices. In Security and Privacy in Smartphones
& Mobile Devices – SPSM@CCS, pages 51–62. ACM, 2014.

https://www.ietf.org/rfc/rfc6960.txt
https://www.ietf.org/rfc/rfc6960.txt

Bibliography 161

[SS14] Raphael Spreitzer and Jörn-Marc Schmidt. Group-Signature
Schemes on Constrained Devices: The Gap Between Theory and
Practice. In Cryptography and Security in Computing Systems –
CS2@HiPEAC, pages 31–36. ACM, 2014.

[SSU14] Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer.
Adding Controllable Linkability to Pairing-Based Group Signatures
for Free. In Information Security – ISC 2014, volume 8783 of LNCS,
pages 388–400. Springer, 2014.

[SSU16] Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer.
Group Signatures with Linking-Based Revocation: A Pragmatic
Approach for Efficient Revocation Checks. In Conference on Cryp-
tology & Malicious Security – Mycrypt 2016, 2016. In press.

[SSW+02] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell,
Venkata N. Padmanabhan, and Lili Qiu. Statistical Identification of
Encrypted Web Browsing Traffic. In IEEE Symposium on Security
and Privacy – S&P 2002, pages 19–30. IEEE Computer Society,
2002.

[SXA16] Laurent Simon, Wenduan Xu, and Ross Anderson. Don’t Interrupt
Me While I Type: Inferring Text Entered Through Gesture Typing
on Android Keyboards. PoPETs, 2016:136–154, 2016.

[SZZ+11] Roman Schlegel, Kehuan Zhang, Xiao-yong Zhou, Mehool Intwala,
Apu Kapadia, and XiaoFeng Wang. Soundcomber: A Stealthy and
Context-Aware Sound Trojan for Smartphones. In Network and
Distributed System Security Symposium – NDSS 2011. The Internet
Society, 2011.

[Tan12a] Qiang Tang. Public Key Encryption Schemes Supporting Equality
Test with Authorisation of Different Granularity. IJACT, 2:304–
321, 2012.

[Tan12b] Qiang Tang. Public Key Encryption Supporting Plaintext Equality
Test and User-Specified Authorization. Security and Communica-
tion Networks, 5:1351–1362, 2012.

[TFAF13] Junko Takahashi, Toshinori Fukunaga, Kazumaro Aoki, and Hi-
toshi Fuji. Highly Accurate Key Extraction Method for Access-
Driven Cache Attacks Using Correlation Coefficient. In Informa-
tion Security and Privacy – ACISP 2013, volume 7959 of LNCS,
pages 286–301. Springer, 2013.

[TFS04] Isamu Teranishi, Jun Furukawa, and Kazue Sako. k-Times Anony-
mous Authentication (Extended Abstract). In Advances in Cryp-
tology – ASIACRYPT 2004, volume 3329 of LNCS, pages 308–322.
Springer, 2004.

162 Bibliography

[TML+13] Karim Tobich, Philippe Maurine, Pierre-Yvan Liardet, Mathieu
Lisart, and Thomas Ordas. Voltage Spikes on the Substrate to Ob-
tain Timing Faults. In Digital System Design – DSD 2013, pages
483–486. IEEE Computer Society, 2013.

[TOS10] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient Cache
Attacks on AES, and Countermeasures. J. Cryptology, 23:37–71,
2010.

[TSCM16] Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Marti-
novic. AppScanner: Automatic Fingerprinting of Smartphone Apps
from Encrypted Network Traffic. In IEEE European Symposium on
Security and Privacy – EURO S&P 2016, pages 439–454. IEEE,
2016.

[TSS+03] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and
Hiroshi Miyauchi. Cryptanalysis of DES Implemented on Comput-
ers with Cache. In Cryptographic Hardware and Embedded Systems
– CHES 2003, volume 2779 of LNCS, pages 62–76. Springer, 2003.

[UK 13] UK Office of Communications. Communications Market
Report 2013. http://media.ofcom.org.uk/2013/08/01/

the-reinvention-of-the-1950s-living-room-2/, 2013.

[UW14] Thomas Unterluggauer and Erich Wenger. Efficient Pairings and
ECC for Embedded Systems. In Cryptographic Hardware and Em-
bedded Systems – CHES 2014, volume 8731 of LNCS, pages 298–
315. Springer, 2014.

[vdVFL+16] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer,
Daniel Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos,
Kaveh Razavi, and Cristiano Giuffrida. Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms. In Conference on Com-
puter and Communications Security – CCS 2016, pages 1675–1689.
ACM, 2016.

[Ver16] Eric R. Verheul. Practical Backward Unlinkable Revocation in
FIDO, German e-ID, Idemix and U-Prove. IACR Cryptology ePrint
Archive, Report 2016/217, 2016.

[VGRS12] Nicolas Veyrat-Charvillon, Benôıt Gérard, Mathieu Renauld, and
François-Xavier Standaert. An Optimal Key Enumeration Algo-
rithm and Its Application to Side-Channel Attacks. In Selected
Areas in Cryptography – SAC 2012, volume 7707 of LNCS, pages
390–406. Springer, 2012.

[VGS13] Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier
Standaert. Security Evaluations Beyond Computing Power. In Ad-
vances in Cryptology – EUROCRYPT 2013, volume 7881 of LNCS,
pages 126–141. Springer, 2013.

http://media.ofcom.org.uk/2013/08/01/the-reinvention-of-the-1950s-living-room-2/
http://media.ofcom.org.uk/2013/08/01/the-reinvention-of-the-1950s-living-room-2/

Bibliography 163

[Vir] VirusTotal. VirusTotal. https://play.google.com/store/apps/
details?id=com.virustotal. Accessed: November 2013.

[vWWM11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Federico
Menarini. Practical Optical Fault Injection on Secure Microcon-
trollers. In Fault Diagnosis and Tolerance in Cryptography – FDTC
2011, pages 91–99. IEEE Computer Society, 2011.

[WCM09] Charles V. Wright, Scott E. Coull, and Fabian Monrose. Traffic
Morphing: An Efficient Defense Against Statistical Traffic Analysis.
In Network and Distributed System Security Symposium – NDSS
2009. The Internet Society, 2009.

[WCN+14] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian
Goldberg. Effective Attacks and Provable Defenses for Website
Fingerprinting. In USENIX Security Symposium 2014, pages 143–
157. USENIX Association, 2014.

[Wei05] Victor K. Wei. Tracing-by-Linking Group Signatures. In Informa-
tion Security – ISC 2005, volume 3650 of LNCS, pages 149–163.
Springer, 2005.

[WG13] Tao Wang and Ian Goldberg. Improved Website Fingerprinting on
Tor. In Workshop on Privacy in the Electronic Society – WPES
2013, pages 201–212. ACM, 2013.

[WHS12] Michael Weiß, Benedikt Heinz, and Frederic Stumpf. A Cache Tim-
ing Attack on AES in Virtualization Environments. In Financial
Cryptography – FC 2012, volume 7397 of LNCS, pages 314–328.
Springer, 2012.

[WWAS14] Michael Weiß, Benjamin Weggenmann, Moritz August, and Georg
Sigl. On Cache Timing Attacks Considering Multi-core Aspects
in Virtualized Embedded Systems. In International Conference on
Trusted Systems – INTRUST 2014, volume 9473 of LNCS, pages
151–167. Springer, 2014.

[WYKH15] Qinglong Wang, Amir Yahyavi, Bettina Kemme, and Wenbo He. I
Know What You Did on Your Smartphone: Inferring App Usage
Over Encrypted Data Traffic. In Communications and Network
Security – CNS 2015, pages 433–441. IEEE, 2015.

[XBZ12] Zhi Xu, Kun Bai, and Sencun Zhu. TapLogger: Inferring User
Inputs on Smartphone Touchscreens Using On-Board Motion Sen-
sors. In Security and Privacy in Wireless and Mobile Networks –
WISEC 2012, pages 113–124. ACM, 2012.

[XHW+13] Yi Xu, Jared Heinly, Andrew M. White, Fabian Monrose, and Jan-
Michael Frahm. Seeing Double: Reconstructing Obscured Typed

https://play.google.com/store/apps/details?id=com.virustotal
https://play.google.com/store/apps/details?id=com.virustotal

164 Bibliography

Input From Repeated Compromising Reflections. In Conference on
Computer and Communications Security – CCS 2013, pages 1063–
1074. ACM, 2013.

[YF14] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX
Security Symposium 2014, pages 719–732. USENIX Association,
2014.

[YGCM15] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. A Study on
Power Side Channels on Mobile Devices. In Symposium on Inter-
netware – Internetware 2015, pages 30–38. ACM, 2015.

[YGZ+16] Qing Yang, Paolo Gasti, Gang Zhou, Aydin Farajidavar, and Ki-
ran S. Balagani. On Inferring Browsing Activity on Smartphones
via USB Power Analysis Side-Channel. IEEE Trans. Information
Forensics and Security, 14, 2016. In press.

[YLF+14] Qinggang Yue, Zhen Ling, Xinwen Fu, Benyuan Liu, Kui Ren, and
Wei Zhao. Blind Recognition of Touched Keys on Mobile Devices.
In Conference on Computer and Communications Security – CCS
2014, pages 1403–1414. ACM, 2014.

[YTHW10] Guomin Yang, Chik How Tan, Qiong Huang, and Duncan S. Wong.
Probabilistic Public Key Encryption with Equality Test. In Topics
in Cryptology – CT-RSA 2010, volume 5985 of LNCS, pages 119–
131. Springer, 2010.

[ZDH+13] Xiao-yong Zhou, Soteris Demetriou, Dongjing He, Muhammad
Naveed, Xiaorui Pan, XiaoFeng Wang, Carl A. Gunter, and Klara
Nahrstedt. Identity, Location, Disease and More: Inferring Your
Secrets From Android Public Resources. In Conference on Com-
puter and Communications Security – CCS 2013, pages 1017–1028.
ACM, 2013.

[ZDLZ14] Zhe Zhou, Wenrui Diao, Xiangyu Liu, and Kehuan Zhang. Acous-
tic Fingerprinting Revisited: Generate Stable Device ID Stealthily
with Inaudible Sound. In Conference on Computer and Communi-
cations Security – CCS 2014, pages 429–440. ACM, 2014.

[ZGS+15] Lukas Zoscher, Jasmin Grosinger, Raphael Spreitzer, Ulrich
Muehlmann, Hannes Gross, and Wolfgang Bösch. Concept for a
Security Aware Automatic Fare Collection System Using HF/UHF
Dual Band RFID Transponders. In European Solid State Device Re-
search Conference – ESSDERC 2015, pages 194–197. IEEE, 2015.

[ZL06] Sujing Zhou and Dongdai Lin. Shorter Verifier-Local Revocation
Group Signatures from Bilinear Maps. In Cryptology and Net-
work Security – CANS 2006, volume 4301 of LNCS, pages 126–143.
Springer, 2006.

Bibliography 165

[ZMHS16] Andreas Zankl, Katja Miller, Johann Heyszl, and Georg Sigl. To-
wards Efficient Evaluation of a Time-Driven Cache Attack on Mod-
ern Processors. In European Symposium on Research in Computer
Security – ESORICS 2016, volume 9879 of LNCS, pages 3–19.
Springer, 2016.

[ZSG+16] Lukas Zoscher, Raphael Spreitzer, Hannes Gross, Jasmin Grosinger,
Ulrich Muehlmann, Dominik Amschl, Hubert Watzinger, and Wolf-
gang Bösch. HF/UHF Dual Band RFID Transponders for an
Information-Driven Public Transportation System. Elektrotechnik
und Informationstechnik, 133:163–175, 2016.

[ZXL+12] Yang Zhang, Peng Xia, Junzhou Luo, Zhen Ling, Benyuan Liu,
and Xinwen Fu. Fingerprint Attack Against Touch-Enabled De-
vices. In Security and Privacy in Smartphones & Mobile Devices –
SPSM@CCS, pages 57–68. ACM, 2012.

[ZXZ16] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. Return-Oriented
Flush-Reload Side Channels on ARM and Their Implications for
Android Devices. In Conference on Computer and Communications
Security – CCS 2016, pages 858–870. ACM, 2016.

[ZYN+15] Nan Zhang, Kan Yuan, Muhammad Naveed, Xiao-yong Zhou, and
XiaoFeng Wang. Leave Me Alone: App-Level Protection against
Runtime Information Gathering on Android. In IEEE Symposium
on Security and Privacy – S&P 2015, pages 915–930. IEEE Com-
puter Society, 2015.

[ZZT+16] Jie Zhang, Xiaolong Zheng, Zhanyong Tang, Tianzhang Xing, Xi-
aojiang Chen, Dingyi Fang, Rong Li, Xiaoqing Gong, and Feng
Chen. Privacy Leakage in Mobile Sensing: Your Unlock Passwords
Can Be Leaked through Wireless Hotspot Functionality. Mobile
Information Systems, 2016:8793025:1–8793025:14, 2016.

Index

Σ protocols, 14

Active side-channel attacks, 60
Advanced Encryption Standard (AES),

81
All-or-Nothing Public Key Encryption

with Equality Tests, 23
Ambient-light sensor, 94

BSZ model, see group signature scheme
(GSS)

Cache attacks, 69
Bernstein’s timing attack, 82

CCA-full-anonymity, 22
CDH, 11
co-CDH, 11
co-CDH∗, 11
Controllable linkability, 20, 21

E-linkability, 31
JP-unforgeability, 31
LO-linkability, 31

CPA-full-anonymity, 22

Data-usage statistics, 69, 116
DDH, 12
Digital signature

EUF-CMA, 14
Digital signature scheme, 13
DLIN, 12

Group signature scheme (GSS), 10
BSZ model, 15
Group manager (GM), 10
Linking-based revocation, 39
Verifier local revocation, 41

Microarchitectural attacks, 69

Passive side-channel attacks, 60

procfs leaks, 68
Public key encryption, 13

IND-CCA, 13
IND-CPA, 13
OW-CCA, 13
OW-CPA, 13

Public key encryption with equality tests
(PKEET), 23

q-SDH, 12

RGB(W) sensor, 97

Sensor-based keyloggers, 70
based on ambient-light sensor, 93

Side-channel classification system, 62
Side-channel information leaks, 61
Sign-and-encrypt-and-prove (SEP) paradigm,

17
Software-only side-channel attack, 62
SXDH, 12

Threshold secret sharing, 17

Website fingerprinting
based on client-side side-channel in-

formation, 113
based on wiretapping, 67, 115

167

Author Index

Abdulnabi, Mohamed 71
Abe, Masayuki 36, 38
Acar, Gunes 67
Acar, Yasemin 58, 76
Aciiçmez, Onur 80
Adams, Carlisle 42
Afroz, Sadia 67
Akhawe, Devdatta 110
Al-Haiqi, Ahmed 71
Alan, Hasan Faik 67
Ali, Kamran 67
Alpaydin, Ethem 100, 102
Aly, Hassan 80, 84, 90, 91
Amschl, Dominik 5
Anderson, Ross 68, 71, 98, 99, 101,

106, 111
Anderson, Ross J. 66, 74, 98
Andriotis, Panagiotis 64
Ankney, Rich 42
Anuar, Nor Badrul 71
Aoki, Kazumaro 84
ARM Ltd. 87
Artho, Cyrille 69
Ateniese, Giuseppe 41
Atluri, Vijayalakshmi 71
Attrapadung, Nuttapong 40, 42
Au, Man Ho 21, 41
August, Moritz 69
Aviv, Adam J. 64, 70, 74, 76, 94, 98,

102, 105, 109–111
Azarderakhsh, Reza 45

Backes, Michael 58, 64, 76, 110
Baek, Joonsang 18
Bai, Kun 70
Balagani, Kiran S. 67

Balakrishnan, Suhrid 70, 94, 102
Baldi, Mario 67
Bangerter, Endre 80
Barclays PLC 99
Becker, Tobias 71, 74
Belgarric, Pierre 63, 74
Bellare, Mihir 1, 10, 15–17, 30
Bernstein, Daniel J. 4, 69, 80, 82, 83
Bian, Kaigui 40, 42, 44
Bidner, David 69, 74, 116
Biham, Eli 65
Bishop, Christopher M. 100, 102, 103
Bissias, George Dean 115
Blaze, Matt 64, 70, 74, 94, 98, 102,

105, 109–111
Blazy, Olivier 5, 51
Block, Kenneth 71
Bojinov, Hristo 71
Boneh, Dan 12, 22, 26, 29, 37, 38, 40,

41, 44, 65, 71, 72, 74
Bonneau, Joseph 98
Boracchi, Giacomo 64
Borisov, Nikita 71, 77, 116
Bos, Herbert 73, 74
Bos, Joppe W. 63, 74
Bösch, Wolfgang 5
Boyen, Xavier 12, 22, 26, 29, 41, 44
Bresson, Emmanuel 41, 44
Brickell, Ernest F. 20
Bringer, Julien 65
Bugiel, Sven 58, 76

Caesar, Matthew 71, 77
Cai, Liang 59, 70, 74
Cai, Xiang 67, 76, 114, 115, 122, 125,

131–134

169

170 Author Index

Camenisch, Jan 10, 17, 20, 29, 41
Canard, Sébastien 45
Castellà-Roca, Jordi 1, 45
Chan, Edmond W. W. 76, 133
Chan, Mun Choon 115
Chang, Ee-Chien 115
Chang, Rocky K. C. 76, 133
Chatterjee, Sanjit 11
Chaum, David 1, 10
Chen, Feng 67, 74
Chen, Hao 59, 70, 74, 110
Chen, Liqun 20, 42, 45, 46
Chen, Qi Alfred 68
Chen, Shuo 116
Chen, Xiangqun 63, 69
Chen, Xiaojiang 67, 74
Chen, Yimin 64, 76
Chin, Erika 76, 110, 134
Cho, Hyun Sook 20–22, 29–33, 42,

44–46
Choi, Seung Geol 35
Choudhury, Romit Roy 70, 71, 74, 94,

102
Chow, Sherman S. M. 36, 38, 42
Chung, Byung-Ho 20–22, 29–33, 42,

45, 46
Claessens, Joris 121
Cock, David 59, 70, 74
Coisel, Iwen 45
Consolvo, Sunny 110, 134
Conti, Mauro 67, 74
Coull, Scott E. 76, 133
Cowan, Crispin 110
Cramer, Ronald 28
Cranor, Lorrie Faith 110, 134
Crussell, Jonathan 110

Daly, Ross 73
Danezis, George 123
Danger, Jean-Luc 63, 65
Das, Anupam 71, 77
Das, Satyajit 80
Das, Sauvik 70, 76, 110
de Haas, Job 66, 74
de Meulenaer, Giacomo 45

Delerablée, Cécile 22, 27, 28, 42, 45,
52

Demetriou, Soteris 3, 59, 69, 72, 74,
75, 116, 117, 122, 134

DeMillo, Richard A. 65
Derler, David 5, 51
Desmoulins, Nicolas 45
Devigne, Julien 45
Dey, Sanorita 71, 74
Diao, Wenrui 68, 71
Dı́az, Claudia 67, 121
Dingledine, Roger 118
Dodis, Yevgeniy 29, 36
DoMobile 99
Dullien, Thomas 73
Dürmuth, Markus 64
Dutertre, Jean-Max 66
Dyer, Kevin P. 76, 133

Egelman, Serge 76, 110, 134
ElGayyar, Mohammed 80, 84, 90, 91
Emura, Keita 40–42
Engel, Thomas 67, 115, 132
Erickson, Jeremy 110
European Parliament and Council 2
Evernote Corporation 99

Fahl, Sascha 58, 76
Falkner, Katrina 70, 80
Fallin, Chris 73
Fan, Chun-I 40, 41, 44
Fang, Dingyi 67, 74
Farajidavar, Aydin 67
Faust, Sebastian 15
Federrath, Hannes 132
Feldman, Daniel 80
Felt, Adrienne Porter 76, 110, 134
Felten, Edward W. 116
Fiat, Amos 15, 17
Fiebig, Tobias 71
Finifter, Matthew 110
Fleischhacker, Nils 2, 42, 54
Fouque, Pierre-Alain 33, 63, 74
Frahm, Jan-Michael 64, 74, 76
Frank, Mario 67
Fratantonio, Yanick 73, 74

Author Index 171

Freiling, Felix C. 71, 74
Fu, Xinwen 64
Fuji, Hitoshi 84
Fujii, Hiroki 41, 44
Fujiwara, Toru 20, 35, 38
Fukunaga, Toshinori 84
Funabiki, Nobuo 40, 41, 44
Furukawa, Jun 35, 38

Galbraith, Steven D. 27
Gallais, Jean-François 80
Gallais, Jean-François 80
Galperin, Slava 42
Gascon, Hugo 71, 74
Gasparini, Simone 64
Gasti, Paolo 67
Gates, Christopher S. 110
Ge, Qian 59, 70, 74
Gebotys, Catherine H. 63, 74
Georgel, Pierre 64, 76
Gérard, Benôıt 4, 69, 79, 85–87, 91
Gerling, Sebastian 110
Ghadafi, Essam 47
Ghosh, Animikh 70
Giacinto, Giorgio 71
Gibler, Clint 110
Gibson, Katherine 64, 74
Giuffrida, Cristiano 73, 74
Goldberg, Ian 67, 114, 115, 122, 125,

131, 132
Gong, Xiaoqing 67, 74
Gong, Xun 116
Google 110
Goswami, Dibyendusekhar 64, 74, 76
Greenstadt, Rachel 67
Grewal, Gurleen 45
Griesmayr, Simone 4, 69, 76, 113
Grosinger, Jasmin 5
Gross, Hannes 5
Groth, Jens 42
Gruss, Daniel 5, 69, 70, 73, 74, 77, 80,

116
Gu, Xiaodan 68, 74, 115
Guillaume-Sage, L. 65, 74
Guilley, Sylvain 63
Gullasch, David 80

Gunter, Carl A. 3, 59, 69, 72, 74, 75,
116, 117, 122, 134

Günther, Felix 2, 42, 54
Guo, Yao 63, 69
Gupta, Haritabh 71
Gürses, Fahriye Seda 10

Ha, Elizabeth 76, 110, 134
Hall, Chris 80
Hamada, Naoto 41
Hammer, Christian 110
Han, Jun 70, 71, 74, 76, 110
Hanaoka, Goichiro 40, 42
Haney, Ariel 76, 110, 134
Hanna, Steve 110, 134
Hänsch, Ronny 71
Hanser, Christian 45
Hao, Feng 70, 71
Haralambiev, Kristiyan 36, 38
Hayashi, Takuya 41
Hayes, Jamie 123
Hazay, Carmit 15
He, Dongjing 3, 59, 69, 72, 74, 75,

116, 117, 122, 134
He, Gaofeng 68, 74, 115
He, Wenbo 67
Heiderich, Mario 116
Hein, Daniel M. 45
Heinly, Jared 64
Heinz, Benedikt 69, 80
Heiser, Gernot 59, 70, 74
Hemminki, Samuli 72
Henze, Martin 67
Herrmann, Dominik 132
Hess, Florian 27
Heyszl, Johann 69
Hintz, Andrew 114, 115
Hira, Yuta 41, 44
Ho, Bo-Jhang 72
Ho, Simon 63, 74
Hölbl, Marko 5
Hollick, Matthias 67, 74
Holz, Thorsten 71, 76
Hosseini, Henry 71
Hsu, Ruei-Hau 40, 41, 44
Hu, Shi 45

172 Author Index

Huang, Ling 115
Huang, Qiong 23
Hubain, Charles 63, 74
Hupperich, Thomas 71, 76
Hussain, Muzammil 71
Hutter, Michael 66, 74
Hwang, Jung Yeon 20–22, 29–33, 42,

44–46

i Rotger, Llorenç Huguet 45
Iijima, Kengo 69
International Organization for

Standardization (ISO) 42, 45
Intwala, Mehool 72, 74
Isern-Deyà, Andreu Pere 1, 45

Jaffe, Joshua 58, 63
Jakobsson, Markus 98
Jana, Suman 3, 61, 68, 74, 116, 118,

131, 132
Janc, Artur 116
Jao, David 45
Jawurek, Marek 23
Jensen, David 115
Jin, Xiaocong 64, 76
Johnson, Rob 67, 76, 114, 115, 122,

125, 131–134
Joseph, Anthony D. 115
Joshi, Brijesh 67, 115, 132
Juárez, Marc 67
Jun, Benjamin 58, 63
Jung, Jaeyeon 110, 134

Kapadia, Apu 72, 74
Katzenbeisser, Stefan 67, 74
Kaur, Jasleen 67
KeepSafe 99
Kelley, Patrick Gage 110, 134
Kelsey, John 80
Kemerlis, Vasileios P. 70, 116
Kemme, Bettina 67
Keromytis, Angelos D. 70, 116
Kerschbaum, Florian 23
Kiah, M. L. Mat 71
Kiayias, Aggelos 1, 10, 17, 35, 38
Kiefer, Franziskus 2, 42, 54

Kim, Jeremie 73
Kim, Yoongu 73
Kiyavash, Negar 116
Kiyomoto, Shinsaku 63
Kizhvatov, Ilya 80
Klapper, Patrick 67, 74
Koç, Çetin Kaya 80
Kocher, Paul C. 2, 58, 63, 80
Koga, Satoshi 51
Kohlweiss, Markulf 15
Kohno, Tadayoshi 110
Korak, Thomas 4, 57, 69, 76, 113
Krenn, Stephan 80
Krissler, Jan 71
Krombholz, Katharina 76
Kubooka, Fumiaki 41
Kührer, Marc 71
Kumar, Rajesh 64, 76
Kumar, Santosh 70
Kumar, Vireshwar 40, 42, 44
Kune, Denis Foo 80
Kurtz, Andreas 71, 74
Kwon, Taekyoung 76

Lai, Konrad 73
Lanze, Fabian 67
Lee, Donghyuk 73
Lee, Gene Moo 67
Lee, Ji-Hye 73
Lee, Sokjoon 20–22, 29–33, 42, 44–46
Lee, Wenke 76, 133
Levine, Brian Neil 115, 129, 132
Li, He 40, 42, 44
Li, Mengyuan 68
Li, Ninghui 110
Li, Rong 67, 74
Li, Zhou 68
Liang, Bin 116
Liang, Xiaohui 68
Liao, Yong 67
Liardet, Pierre-Yvan 74
Liberatore, Marc 115, 129, 132
Libert, Benôıt 35, 42
Lin, Dongdai 41
Lindell, Yehuda 15
Lindorfer, Martina 73, 74

Author Index 173

Ling, Zhen 64
Lipp, Moritz 5, 70, 74, 77, 80
Lipton, Richard J. 65
Lisart, Mathieu 74
Liu, Alex X. 67
Liu, Benyuan 64
Liu, Debin 98
Liu, Junyi 68
Liu, Liangkun 116
Liu, Xiangyu 68, 71
Liu, Yao 68
Lomné, Victor 75
Longa, Patrick 45
Lu, Liming 115
Luo, Junzhou 64, 68, 74, 115
Luo, Xiapu 76, 133
Lysyanskaya, Anna 29, 41

Ma, Yuanyuan 68, 74, 115
Macario-Rat, Gilles 63, 74
Machiraju, Sridhar 70
Maffei, Matteo 110
Maggi, Federico 64
Maiorca, Davide 71
Malpani, Ambarish 42
Mancini, Luigi Vincenzo 67
Mangard, Stefan 2, 4, 5, 57–59, 69, 70,

73–77, 80, 113, 116
Manulis, Mark 2, 40–42, 44, 54
Mao, Bing 70
Mao, Zhuoqing Morley 68
Marson, Giorgia Azzurra 15
Martin, Paul D. 72
Martinovic, Ivan 67, 74
Mascolo, Cecilia 71
Mathewson, Nick 118
MathWorks 102
Maurice, Clémentine 5, 70, 73, 74, 77,

80
Maurine, P. 65, 74
Maurine, Philippe 74
McDaniel, Patrick Drew 58, 76
Mehrnezhad, Maryam 70, 71
Mei, Hong 63, 69
Menarini, Federico 66
Menezes, Alfred 11

Meng, Yan 68
Micciancio, Daniele 1, 10
Michalevsky, Yan 71, 72, 74
Michiels, Wil 63, 74
Miller, Brad 115
Miller, Katja 69
Miluzzo, Emiliano 70, 94, 102
Miskovic, Stanislav 67
Miyaji, Atsuko 40
Miyake, Yutaka 63
Miyauchi, Hiroshi 80
Mohamed, Manar 77
Molloy, Ian 110
Monrose, Fabian 64, 74, 76, 133
Moonsamy, Veelasha 4, 57
Moshchuk, Alexander 110
Mossop, Evan 64, 74
Mu, Yi 21, 41
Muehlmann, Ulrich 5
Müller, Tilo 66
Mune, Cristofaro 66, 74
Mutlu, Onur 73
Myers, Michael 42

Na, Sarang 76
NAB 99
Nahapetian, Ani 71
Nahrstedt, Klara 3, 59, 69, 72, 74, 75,

116, 117, 122, 134
Najm, Zakaria 65
Nakanishi, Toru 20, 35, 38, 40, 41, 44
Nakano, Yuto 63
Nakibly, Gabi 71, 72, 74
Naor, Moni 22, 27, 33
Narain, Sashank 71
Narayanan, Arvind 2
Nati, Michele 67, 74
National Institute of Standards and

Technology (NIST) 81
Naveed, Muhammad 3, 59, 62, 69, 72,

74, 75, 77, 116, 117, 122, 134, 138
Nawaz, Sarfraz 71
Nelakuditi, Srihari 71, 74
Neve, Michael 80, 82, 85, 89, 90
NewAE Technology Inc. 65
Nguyen, Lan 27, 42, 45

174 Author Index

Nguyen, Le T. 71, 74
Nguyen, Robert 63
Niessen, Lukas 67, 115, 132
Nita-Rotaru, Cristina 110
Nithyanand, Rishab 76, 114, 122, 125,

131–134
Noubir, Guevara 71
Nurmi, Petteri 72
Nyang, DaeHun 20–22, 29–33, 42,

44–46

O’Flynn, Colin 65
Ohkubo, Miyako 36, 38
Oikonomou, George C. 64
Olejnik, Lukasz 116
Omote, Kazumasa 40
Ordas, S. 65, 74
Ordas, Thomas 74
Oren, Yossef 70, 116
Orlandi, Claudio 23
Osvik, Dag Arne 70, 80, 84
Oswald, Elisabeth 2, 58, 59, 75
Owusu, Emmanuel 70, 71, 74, 76, 110

Padmanabhan, Venkata N. 114, 115
Page, Dan 80
Pagh, Rasmus 50
Pan, Xiaorui 3, 59, 69, 72, 74, 75, 116,

117, 122, 134
Panchenko, Andriy 67, 115, 132
Park, Jung-Min ”Jerry” 40, 42, 44
Park, Kunsoo 35
Parno, Bryan 110
Payeras-Capellà, Magdalena 1, 45
Peng, Hao 110
Pennekamp, Jan 67
Perdisci, Roberto 76, 133
Pereira, Olivier 45
Perrig, Adrian 70, 71, 74, 76, 110
Peters, Thomas 42
Phoha, Vir V. 64, 76
Ping, Dan 70
Plos, Thomas 5, 69, 70, 80, 84
Poettering, Bertram 2, 42, 54
Pointcheval, David 22, 27–29, 33, 42,

45, 52

Ponemon Institute LLC 42
Popp, Thomas 2, 58, 59, 75
Potharaju, Rahul 110
Potzmader, Klaus 45
Preibusch, Sören 98
Preneel, Bart 121
Puigserver, Macià Mut 1, 45

Qi, Yuan 110
Qian, Zhiyun 68
Qiu, Lili 114, 115
Quisquater, Jean-Jacques 58

Rackoff, Charles 22, 33
Raguram, Rahul 64, 74, 76
Raij, Andrew 70
Rauzy, Pablo 65
Razavi, Kaveh 73, 74
Ren, Kui 64
Renauld, Mathieu 85, 86, 91
Rieck, Konrad 71, 74
Ristenpart, Thomas 76, 133
Rivière, Lionel 65
Roche, Thomas 75
Rodler, Flemming Friche 50
Roesner, Franziska 110
Roscian, Cyril 66
Rotundo, Enrico 67, 74
Roy, Nirupam 71, 74
Ruan, Na 68
Russell, Wilf 114, 115

Sadeh, Norman M. 110, 134
Safavi-Naini, Reihaneh 27, 42, 45
Sahai, Amit 42
Saito, Teruo 80
Sakai, Yusuke 40, 42
Sako, Kazue 35, 38
Sakurai, Kouichi 51
Samsung 97, 99
Samyde, David 58
Sanatinia, Amirali 71
Sanders, Olivier 29
Sanfelix, Eloi 66, 74
Santesson, Stefan 42

Author Index 175

Sapp, Benjamin 70, 94, 98, 102, 105,
109–111

Sarafianos, Alexandre 66
Saraswat, Vishal 80
Sarma, Bhaskar Pratim 110
Sauvage, Laurent 63, 65
Saxena, Nitesh 77
Schear, Nabil 116
Schlegel, Roman 72, 74
Schmidt, Jörn-Marc 5, 66, 74
Schmitt, Jens B. 67
Schneider, Michael A. 116
Schneier, Bruce 80
Schulman, Aaron 72
Schulz, Matthias 67, 74
Seaborn, Mark 73
Seifert, Jean-Pierre 80, 90
Serwadda, Abdul 64, 76
Sethumadhavan, Simha 70, 116
Seys, Stefaan 121
Shacham, Hovav 12, 22, 26, 29, 37, 38,

40, 41, 44
Shahandashti, Siamak Fayyaz 70, 71
Shahzad, Muhammad 67
Shamir, Adi 15, 17, 18, 65, 70, 80, 84
Shi, Haixia 1, 10, 15–17, 30
Shi, Wenchang 116
Shigeri, Maki 80
Shmatikov, Vitaly 2, 3, 61, 68, 74,

116, 118, 131, 132
Shoup, Victor 28
Shrestha, Prakash 77
Shrimpton, Thomas 76, 133
Shukla, Diksha 64, 76
Sigl, Georg 69
Simon, Daniel R. 22, 33, 114, 115
Simon, Laurent 68, 71, 98, 99, 101,

106, 111
Skorobogatov, Sergei 66, 74
Skorobogatov, Sergei P. 66, 74
Slamanig, Daniel 3–5, 9, 19, 39, 51
Smith, Jonathan M. 64, 70, 74, 94, 98,

102, 105, 109–111
Smith, Matthew 58, 76
Song, Dawn 110, 134

Song, Dawn Xiaodong 41
Souissi, Youssef 63
Spolaor, Riccardo 67, 74
Spreitzenbarth, Michael 66
Spreitzer, Raphael 3–5, 9, 19, 39, 51,

57, 69, 70, 74, 76, 77, 79, 80, 84, 93,
113

Srivastava, Mani B. 70, 72
Stadler, Markus 10, 17
Standaert, François-Xavier 85–87, 91
Stern, Jacques 41, 44
Stöber, Tim 67
Stumpf, Frederic 69, 80
Sugiyama, Yuji 41
Sun, Jingchao 64, 76
Sun, Qixiang 114, 115
Sun, Xin 70
Sural, Shamik 71
Susilo, Willy 21, 41, 42
Suzaki, Kuniyasu 69
Suzaki, Tomoyasu 80
Swaminathan, Prashanth 72
Syverson, Paul F. 118

Takahashi, Junko 84
Tan, Chik How 23
Tang, Qiang 23, 24
Tang, Zhanyong 67, 74
Tarkoma, Sasu 72
Taylor, Vincent F. 67, 74
Teranishi, Isamu 35, 38
Teufl, Peter 45
Teuwen, Philippe 63, 74
Tews, Erik 67, 74
Thillard, Adrian 75
Tibouchi, Mehdi 63, 74
Tiu, C. C. 63, 74
Tobich, Karim 74
Toreini, Ehsan 70, 71
Traoré, Jacques 45
Tria, Assia 66
Tromer, Eran 70, 80, 84
Tryfonas, Theo 64
Tsang, Patrick P. 41
Tsiounis, Yiannis 35, 38
Tsudik, Gene 41

176 Author Index

Tsunoo, Yukiyasu 80
Tunstall, Michael 80
Tygar, J. D. 115

UK Office of Communications 98
Unruh, Dominique 64
Unterluggauer, Thomas 3, 4, 9, 19, 39,

45

Vaidya, Jaideep 71
van der Veen, Victor 73, 74
van Heyst, Eugène 1, 10
van Woudenberg, Jasper G. J. 66
Varshavsky, Alexander 70, 94, 102
Veerapandian, Gunaa Arumugam 72
Venturi, Daniele 15
Vercauteren, Frederik 27
Verde, Nino Vincenzo 67
Verheul, Eric R. 43
Veyrat-Charvillon, Nicolas 85, 86, 91
Vigna, Giovanni 73, 74
VirusTotal 110
Vives-Guasch, Arnau 1, 45
Vo-Huu, Triet D. 71
von Styp-Rekowsky, Philipp 110

Wagner, David 76, 80, 110, 134
Wang, Helen J. 110
Wang, Qinglong 67
Wang, Rui 116
Wang, Tao 67, 114, 115, 122, 125, 131,

132
Wang, Wei 67
Wang, XiaoFeng 3, 59, 62, 69, 72, 74,

75, 77, 116, 117, 122, 134, 138
Wang, Yi-Min 114, 115
Wang, Zhenghong 80, 90
Warinschi, Bogdan 1, 10
Watanabe, Hajime 20, 35, 38
Watzinger, Hubert 5
Weggenmann, Benjamin 69
Wehrle, Klaus 67
Wei, Victor K. 20
Weiß, Michael 69, 80
Wendolsky, Rolf 132
Wenger, Erich 45

Wetherall, David 110, 134
White, Andrew M. 64, 74, 76
Wilkerson, Chris 73
Winter, Johannes 45
Witteman, Marc F. 66
Wong, Duncan S. 23
Wright, Charles V. 76, 133

Xia, Peng 64
Xiao, Yuan 70
Xing, Tianzhang 67, 74
Xu, Wenduan 68
Xu, Wenyuan 71, 74
Xu, Yi 64, 76
Xu, Zhi 70

Yagi, Toshiki 69
Yahyavi, Amir 67
Yampolskiy, Aleksandr 29, 36
Yan, Lin 63, 69
Yang, Guomin 23
Yang, Ming 68, 74, 115
Yang, Qing 67
Yang, Yaling 40, 42, 44
Yarom, Yuval 59, 70, 74, 80
Yildiz, Can 64
You, Wei 116
Yuan, Kan 59, 62, 77, 116, 134, 138
Yue, Qinggang 64
Yuen, Tsz Hon 42
Yung, Moti 1, 10, 17, 22, 27, 33, 35,

38, 42

Zaidan, A. A. 71
Zaidan, B. B. 71
Zankl, Andreas 69
Zhang, Chong 1, 10, 15–17, 30
Zhang, Jie 67, 74
Zhang, Jinxue 64, 76
Zhang, Joy 70, 71, 74, 76, 110
Zhang, Kehuan 68, 71, 72, 74, 116
Zhang, Nan 59, 62, 77, 116, 134, 138
Zhang, Rui 64, 76
Zhang, Xiaokuan 70
Zhang, Xin Cheng 67, 115, 132
Zhang, Yanchao 64, 76

Author Index 177

Zhang, Yang 64
Zhang, Yinqian 70
Zhao, Wei 64
Zheng, Xiaolong 67, 74
Zheng, Yuliang 18
Zhou, Gang 67
Zhou, Peng 76, 133
Zhou, Sujing 41

Zhou, Xiao-yong 3, 59, 62, 69, 72, 74,
75, 77, 116, 117, 122, 134, 138

Zhou, Zhe 71

Zhu, Haojin 68

Zhu, Sencun 70

Zinnen, Andreas 67, 115, 132

Zoscher, Lukas 5

About the Author

Author information as of April 2017.

Personal Information

Name: Raphael Spreitzer
Date of birth: December 17, 1986
Place of birth: Friesach, Austria.

Education

• 2013/01 – present: Doctoral programme in Technical Sciences at Graz
University of Technology, Austria

• 2012/10/25: Graduated to Dipl.-Ing. (corresponds to MSc) with distinc-
tion at Graz University of Technology, Austria

• 2011 – 2012: Master’s programme in Software Development and Business
Management at Graz University of Technology, Austria.

• 2007 – 2011: Bachelor’s programme in Software Development and Busi-
ness Management at Graz University of Technology, Austria

Professional and Academic Experience

• 08/2012 – present: Research assistant at the Institute for Applied Infor-
mation Prcessing and Communications (IAIK), Graz University of Tech-
nology, Austria.

• Summer 2010: Software developer, Institute for Applied Information
Processing and Communications (IAIK), Graz University of Technology,
Austria.

• Summer 2009: Software developer, FERK Systems, Graz, Austria.

• Summer 2008: Software developer, ITS Immobilien Treuhand Software
GmbH, Graz, Austria.

• 02/2007 – 11/2007: Software developer, GTL-Data GmbH, Klagenfurt,
Austria.

179

180 Author Index

Author’s Publications

Author’s publications as of April 2017 mapped to the corresponding chapters.

Chapter 2

• Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer. Adding
Controllable Linkability to Pairing-Based Group Signatures for Free. In
Information Security – ISC 2014, volume 8783 of LNCS, pages 388–400.
Springer, 2014

• Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer. Group
Signatures with Linking-Based Revocation: A Pragmatic Approach for Ef-
ficient Revocation Checks. In Conference on Cryptology & Malicious Se-
curity – Mycrypt 2016, 2016. In press

Chapter 3

• Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer. Adding
Controllable Linkability to Pairing-Based Group Signatures for Free. In
Information Security – ISC 2014, volume 8783 of LNCS, pages 388–400.
Springer, 2014

Chapter 4

• Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer. Group
Signatures with Linking-Based Revocation: A Pragmatic Approach for Ef-
ficient Revocation Checks. In Conference on Cryptology & Malicious Se-
curity – Mycrypt 2016, 2016. In press

Chapter 5

• Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan Man-
gard. Systematic Classification of Side-Channel Attacks: A Case Study
for Mobile Devices. arXiv ePrint Archive, Report 1611.03748, 2016. In
submission

Chapter 6

• Raphael Spreitzer and Benôıt Gérard. Towards More Practical Time-
Driven Cache Attacks. In Information Security Theory and Practice –
WISTP 2014, volume 8501 of LNCS, pages 24–39. Springer, 2014

Chapter 7

• Raphael Spreitzer. PIN Skimming: Exploiting the Ambient-Light Sensor in
Mobile Devices. In Security and Privacy in Smartphones & Mobile Devices
– SPSM@CCS, pages 51–62. ACM, 2014

Author Index 181

Chapter 8

• Raphael Spreitzer, Simone Griesmayr, Thomas Korak, and Stefan Man-
gard. Exploiting Data-Usage Statistics for Website Fingerprinting Attacks
on Android. In Security and Privacy in Wireless and Mobile Networks –
WISEC 2016, pages 49–60. ACM, 2016

Further Contributions

Conference Publications

• Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and
Stefan Mangard. ARMageddon: Cache Attacks on Mobile Devices. In
USENIX Security Symposium 2016, pages 549–564. USENIX Association,
2016

• Olivier Blazy, David Derler, Daniel Slamanig, and Raphael Spreitzer. Non-
Interactive Plaintext (In-)Equality Proofs and Group Signatures with Ver-
ifiable Controllable Linkability. In Topics in Cryptology – CT-RSA 2016,
volume 9610 of LNCS, pages 127–143. Springer, 2016

• Lukas Zoscher, Jasmin Grosinger, Raphael Spreitzer, Ulrich Muehlmann,
Hannes Gross, and Wolfgang Bösch. Concept for a Security Aware Auto-
matic Fare Collection System Using HF/UHF Dual Band RFID Transpon-
ders. In European Solid State Device Research Conference – ESSDERC
2015, pages 194–197. IEEE, 2015

• Hannes Gross, Marko Hölbl, Daniel Slamanig, and Raphael Spreitzer. Privacy-
Aware Authentication in the Internet of Things. In Cryptology and Network
Security – CANS 2015, volume 9476 of LNCS, pages 32–39. Springer, 2015

• Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX
Security Symposium 2015, pages 897–912. USENIX Association, 2015

• Raphael Spreitzer and Jörn-Marc Schmidt. Group-Signature Schemes on
Constrained Devices: The Gap Between Theory and Practice. In Cryptog-
raphy and Security in Computing Systems – CS2@HiPEAC, pages 31–36.
ACM, 2014

• Raphael Spreitzer and Thomas Plos. Cache-Access Pattern Attack on Dis-
aligned AES T-Tables. In Constructive Side-Channel Analysis and Secure
Design – COSADE 2013, volume 7864 of LNCS, pages 200–214. Springer,
2013

• Raphael Spreitzer and Thomas Plos. On the Applicability of Time-Driven
Cache Attacks on Mobile Devices. In Network and System Security – NSS
2013, volume 7873 of LNCS, pages 656–662. Springer, 2013

182 Author Index

Journal Publications

• Lukas Zoscher, Raphael Spreitzer, Hannes Gross, Jasmin Grosinger, Ulrich
Muehlmann, Dominik Amschl, Hubert Watzinger, and Wolfgang Bösch.
HF/UHF Dual Band RFID Transponders for an Information-Driven Public
Transportation System. Elektrotechnik und Informationstechnik, 133:163–
175, 2016

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Contributions and Outline
	Enhancements for Group Signature Schemes
	Side-Channel Attacks on Mobile Devices

	Other Contributions

	I Enhancements for Group Signature Schemes
	Group Signature Schemes
	Introduction
	Mathematical Preliminaries
	Public Key Encryption
	Digital Signature Scheme
	Zero-Knowledge Proofs and Protocols
	Model for Dynamic Group Signatures
	Sign-and-Encrypt-and-Prove Paradigm
	Threshold Secret Sharing

	Controllable Linkability
	Introduction
	Model for GSs with Controllable Linkability
	Public Key Encryption and Equality Tests
	Public Key Encryption in GSSs
	Trapdoor Equality Test for Public-Key Encryption
	Modified All-Or-Nothing PKE with Equality Tests

	Adding Controllable Linkability to PB-GSSs
	Security Analysis

	Comparison with Other Approaches
	Linkable Group Signatures
	Traceable Signatures
	Public Key Anonymous Tag Systems
	Verifier Local Revocation
	Comparison

	Linking-Based Revocation
	Introduction
	State-of-the-Art in Revocation
	Building Blocks for GSs with LBR
	High-Level Idea of GSs with LBR
	Constant-Time Revocation Checks
	Distributed Controllable Linkability

	GSs with Linking-Based Revocation
	Discussion and Security

	Applying Linking-Based Revocation
	Conclusion

	II Side-Channel Attacks on Mobile Devices
	Taxonomy of Side-Channel Attacks on Mobile Devices
	Introduction
	Background and Taxonomy
	A Primer on Smartphone Security
	Concept of Side-Channel Attacks
	Types of Side-Channel Information Leaks
	Software-only Side-Channel Attacks

	A New Categorization System
	Local Side-Channel Attacks
	Passive Attacks
	Active Attacks

	Vicinity Side-Channel Attacks
	Passive Attacks
	Active Attacks

	Remote Side-Channel Attacks
	Passive Attacks
	Active Attacks

	Trend Analysis
	Discussion of Countermeasures
	Local Side-Channel Attacks
	Vicinity Side-Channel Attacks
	Remote Side-Channel Attacks

	Conclusion

	Time-Driven Cache Attacks
	Introduction
	Background
	Advanced Encryption Standard
	CPU Caches
	Seminal Work: Bernstein's Timing Attack

	Analysis of the Divide Part
	Attacking Different Key-Chunk Sizes
	Minimum Timing Information

	Analysis of the Conquer Part
	Combining Information from the Divide Part
	Evaluating the Key-Search Complexity
	Choosing Thresholds and Combination Functions

	Experimental Results
	Setup and Methodology
	Attacking Different Key-Chunk Sizes
	Minimum Timing Information
	Summary of Practical Results

	Conclusion

	Exploiting the Ambient-Light Sensor
	Introduction
	Ambient-Light Sensor
	RGB(W) Sensor
	Attack Scenario
	Training Phase
	Exploitation Phase
	Security Implications
	Observations and Assumptions

	Attack Approach
	Gathering the Required Data
	Detecting PIN Inputs
	Determining the Unknown PIN

	Evaluation and Results
	Comparison of Classification Algorithms
	Comparison of Feature Vectors
	Guessing PINs Based on Their Probability
	Impact of Different Input Methods
	Impact of the Sampling Frequency

	Limitations
	Countermeasures
	UI and API Modifications
	Rethinking the Permission Model
	Application Analysis
	User Behavior

	Comparison With Related Work
	Conclusion and Future Work

	Exploiting the Data-Usage Statistics
	Introduction
	Background and Related Work
	On the Wire
	Shared Resources and Software Execution

	Android Data-Usage Statistics
	Usage Statistics in a Controlled Scenario
	Usage Statistics for Real Websites
	Usage Statistics in the Tor Setting
	Usage Statistics for Mobile Connections
	API and /proc Support

	Adversary Model and Scenario
	Possible Attack Scenarios
	Assumptions

	Attack Description
	Gathering Traffic Signatures
	Classification

	Evaluation and Results
	Intra-Day Classification Rate
	Classification Rate for Tor
	Inter-Day Classification Rate
	Scalability for Larger World Sizes
	Comparison with Related Work

	Discussion of Countermeasures
	Existing Countermeasures
	Discussion

	Conclusion

	Conclusions
	Bibliography
	Index
	Author Index
	Author's CV

