
S C I E N C E P A S S I O N T E C H N O L O G Y

Maria Eichlseder

Differential Cryptanalysis
of Symmetric Primitives

PhD Thesis

Supervised by Florian Mendel and Christian Rechberger

Maria Eichlseder

Differential Cryptanalysis
of Symmetric Primitives

Doctoral Thesis

to achieve the university degree of
Doktorin der technischen Wissenschaften

submitted to
Graz University of Technology

Advisor: Florian Mendel

Assessors: Christian Rechberger
Graz University of Technology

Joan Daemen
Radboud University Nijmegen

Institute of Applied Information Processing and Communications
Graz University of Technology

Graz, March 2018

Abstract

We cryptanalyze several symmetric encryption and hashing algorithms. A
central factor in the security of symmetric cryptographic algorithms is the
resistance of their core building block, the primitive, against cryptanalytic
attacks such as differential, linear, and algebraic cryptanalysis. The funda-
mental idea of differential cryptanalysis is to extract secret information or
forge malicious messages by investigating the behavior of the primitive for
two related, slightly different inputs, and has proven both very powerful
and highly versatile since its inception in the 1990s. Resistance against
such attacks is thus one of the cornerstones in the design of block ciphers.

More recently, alternative symmetric primitives have risen to general
attention: Permutations and tweakable block ciphers in particular have
shown the potential to rival block ciphers in their role as the ideal primitive
for efficient and elegant schemes. However, the available cryptanalytic
tools and theory on the design and analysis of these alternative primitives
are arguably less mature than for block ciphers.

We investigate the security of these primitives against differential crypt-
analysis. Compared to classic block ciphers, adversaries who target permu-
tations or tweakable block ciphers can take advantage of known, chosen,
or related round-key material. We find that in some cases, the designers’
block-cipher-based design strategies do not sufficiently protect against
variations of the classical differential strategy. In particular, we break
the full security claims of the tweakable block cipher MANTIS-5 and
the permutation Simpira v1. We provide a key recovery attack for the
round-reduced block cipher LowMC and analyze the authenticated cipher
Prøst in a related-key setting. We also develop techniques to improve the
computer-aided differential analysis of unkeyed primitives, leading to the
best practical collision attacks on the round-reduced hash standard SHA-2.

v

Acknowledgements

It is my pleasure to thank everyone who helped make this thesis possible.

First and foremost, I would like to thank my advisors Florian Mendel
and Christian Rechberger for their support throughout my PhD studies.
Florian, thank you for your guidance when I began this quest, and for
providing me with the opportunity to collaborate on many interesting
questions in the past years. Your cryptanalytic intuition is inspiring.
Thanks for your patience, encouragement, and the occasional board gaming
evening. Christian, thank you for your support, for introducing me to
interesting new design challenges, and giving me the freedom to pursue
my research interests. Also thanks to Stefan Mangard for the enjoyable
time in the SESYS group.

I am grateful to Joan Daemen for agreeing to assess my thesis and coming
to Graz to join the defense committee, as well as valuable comments and
interesting discussions at past conferences.

Thanks to all my coauthors for giving me the opportunity to collaborate
on many interesting ideas. In particular, I owe thanks to Florian Mendel,
Christoph Dobraunig, Martin Schläffer, Daniel Kales, Ange Albertini, Jean-
Philippe Aumasson, Tomislav Nad, and Vincent Rijmen, with whom I
collaborated on papers discussed in this thesis. Thank you for many fruitful
discussions and not losing your nerves during the usual five-minutes-to-
midnight submissions. I also want to thank Christian Rechberger, Lorenzo
Grassi, Stefan Mangard, Thomas Korak, Robert Primas, Thomas Unter-
luggauer, Andrey Bogdanov, Virginie Lallemand, Martin M. Lauridsen,
Gregor Leander, Eik List, Victor Lomné, Elmar Tischhauser, and Andreas
Hülsing & the Sphincs+ team. Thanks for widening my horizon.

To Florian, Christian, Christoph, and Daniel, thanks for taking the time to
provide feedback on drafts of this thesis, and for your valuable comments.

My time at IAIK would not have been as enjoyable without my former
and current colleagues. Thanks for an amazing time. Christoph, I really
enjoyed working with you – thank you for both thoughtful discussions and
entertaining coffee breaks. Thanks to Martin Schläffer, Mario Lamberger,
and Elisabeth Oswald for introducing me to cryptography by supervising
my master’s thesis, bachelor’s thesis, and student internships, respectively.

vii

I would like to (again!) express my thanks to the Ascon team, Christoph,
Florian, and Martin, for great ideas, inspiring discussions, and enjoyable
cryptanalysis sessions both before and after the CAESAR deadline. Special
thanks to Hannes Groß for a veritable zoo of efficient implementations.

Finally, I want to thank my fiancé Daniel Gruß, my family, and my friends
for all the good times shared throughout the years. Danke Mama, Papa,
und Michi für eure Unterstützung. Thank you, Daniel – for everything.

Maria Eichlseder
Graz, March 2018

viii

Contents

Abstract v

Acknowledgements vii

Contents xii

List of Figures xiv

List of Tables xv

1. Introduction 1

1.1. Motivation . 2

1.1.1. Challenges . 3

1.1.2. Directions . 5

1.2. Contributions . 8

Publication List 13

Journal Articles . 13

Conference Proceedings . 13

Miscellaneous . 16

2. Preliminaries 17

2.1. A Brief Anatomy of Symmetric Cryptology 18

2.1.1. Basic Operations 18

2.1.2. Cryptographic Primitives 22

2.1.3. Cryptographic Schemes 29

2.2. Differential Cryptanalysis 43

2.2.1. Basic Operations: A Differential View 44

2.2.2. Cryptographic Primitives: A Differential View . . . 49

2.2.3. Searching and Bounding Characteristics 55

2.2.4. Generalizations and Related Concepts 60

ix

Contents

I. Differential Cryptanalysis of Novel Designs 65

3. Key Recovery for MANTIS 69

3.1. Introduction . 69

3.2. Description of MANTIS 73

3.2.1. The Tweakable Block Cipher MANTIS 73

3.2.2. The Round Functions Ri and R−1
i 73

3.3. A Family of Differential Characteristics 75

3.3.1. Bounds and Security Claim 75

3.3.2. Finding an Optimal Differential Characteristic . . 76

3.3.3. Clustering Good Differential Characteristics 81

3.3.4. Exploiting Semi-Truncated Characteristics 87

3.4. Practical Key Recovery Attack on MANTIS5 90

3.4.1. Generating and Filtering Enough Pairs 90

3.4.2. Recovering the Key Step-by-Step 92

3.5. Discussion . 96

3.5.1. Practical Verification 96

3.5.2. Applicability to MANTIS6 and MANTIS7 97

3.5.3. Applicability to QARMA 98

3.5.4. S-box properties of MANTIS and QARMA 99

3.6. Conclusion . 104

4. Collisions for Simpira v1 105

4.1. Introduction . 105

4.2. Description of Simpira v1 108

4.2.1. Permutation and Round Function 108

4.2.2. F -Function . 109

4.2.3. Permutation-based Hashing 110

4.3. Revisiting the Differential Bounds 110

4.3.1. Observation on Designers’ Analysis 111

4.3.2. Adapted MILP Model of Differential Characteristics 112

4.3.3. A 2-Round Characteristic with 5 Active S-Boxes . 114

4.4. Collision Attacks on Full-Round Hash 116

4.4.1. Collision Attack on 16 Rounds 116

4.4.2. Collision Attack on 15 Rounds with Truncation . . 121

4.5. Discussion . 124

4.5.1. Rønjom’s Distinguisher 124

4.5.2. Simpira v2 . 124

4.6. Conclusion . 126

x

Contents

5. Key Recovery for LowMC 127

5.1. Introduction . 127

5.2. Description of LowMC . 130

5.2.1. The LowMC Family of Block Ciphers 130

5.2.2. The LowMC Round Function 131

5.3. Higher-Order Differential Distinguisher 132

5.3.1. Designers’ Considerations 132

5.3.2. Direct-Sum Construction 134

5.3.3. Exploiting the Incomplete S-Box Layer 135

5.3.4. Partial Zero-Sums 138

5.4. Key Recovery Attack . 139

5.4.1. Basic Zero-Sum Key Recovery for 8 Rounds 139

5.4.2. Key Recovery with Linear Masks for 9 Rounds . . 140

5.5. Discussion . 144

5.5.1. Application to Other Parameter Sets 144

5.5.2. Dinur et al.’s Interpolation attacks 145

5.6. Conclusion . 146

6. Related-Key Forgeries for Prøst 147

6.1. Introduction . 147

6.2. Description of Prøst . 150

6.2.1. The Prøst Family of Authenticated Ciphers 150

6.2.2. Prøst-OTR-n . 151

6.3. Forgery Attack . 153

6.3.1. Forging the Ciphertext 153

6.3.2. Forging the Tag . 155

6.4. Remarks and Attack Variants 157

6.4.1. Remarks on the Message Length 157

6.4.2. Unknown Messages 157

6.4.3. Multiple Forgeries 158

6.4.4. Almost Universal Forgery with Related-Key Queries 159

6.5. Discussion . 160

6.5.1. Applicability to Other Modes 160

6.5.2. Karpman’s Key Recovery Attack 161

6.6. Conclusion . 162

xi

Contents

II. Automating Differential Cryptanalysis 163

7. Practical Collision Search for Round-Reduced SHA-2 165
7.1. Introduction . 166
7.2. Background . 170

7.2.1. Description of SHA-2 170
7.2.2. Published Analysis of SHA-2 173
7.2.3. Collision Attack Strategy for SHA-2 175
7.2.4. Dedicated Guess-and-Determine Search Tools . . . 178

7.3. Improving Deductions with Linear Propagation 181
7.3.1. Linear Propagation Approach 181
7.3.2. Discussion . 184

7.4. Improving Decisions with Branching Heuristics 187
7.4.1. Branching Heuristics in SAT Solvers 187
7.4.2. The Look-Ahead Branching Heuristic 189

7.5. Application to the SHA-2 Family 193
7.5.1. Starting Points . 193
7.5.2. Collision Attacks on SHA-512 and its Variants . . 195
7.5.3. Search Strategy and Configuration 201

7.6. Application to Design of Malicious SHA-1 212
7.6.1. Background on Backdoors and Malicious Hashing . 213
7.6.2. Background on SHA-1 214
7.6.3. Malicious SHA-1 216
7.6.4. Meaningful Collisions for Malicious SHA-1 220

8. Conclusions 225

References 227

Affidavit 275

xii

List of Figures

2.1. AES’ cell-oriented operations. 21

2.2. Symmetric cryptographic primitives as permutation families. 23

2.3. Collision probability among N queries to an ideal t-bit
compression function F or t-bit permutation P 25

2.4. Constructing primitives by iterating a keyed round function. 26

2.5. Constructing invertible, keyed round functions RPi 27

2.6. Constructing primitives from other primitives. 28

2.7. Encryption modes based on a block cipher EK 32

2.8. Encryption modes based on a permutation P 33

2.9. Hashing using a compression function F or permutation P . 35

2.10. Message authentication codes based on a block cipher EK . 38

2.11. Generic compositions for authenticated encryption. 40

2.12. Authenticated encryption modes based on permutation P . 42

3.1. Design of the tweakable block cipher MANTIS-r. 73

3.2. Transformations of the MANTIS round function Ri. . . . 74

3.3. Differential properties of MANTIS transformations. 75

3.4. MILP variables for truncated differential model of MANTIS-r. 76

3.5. Approximations of the truncated DDT of MixColumns. . . 77

3.6. Truncated differential MILP model of MANTIS-r. 79

3.7. Two truncated differential characteristics for MANTIS-5. . 80

3.8. Family of differential characteristics for MANTIS-5. 82

3.9. Initial structure with 8 · 4 pairs from 2 · 8 queries per cell. 91

3.10. Probability of last-round transitions for key-recovery. . . . 93

3.11. S-boxes of MANTIS and QARMA. 100

3.12. Algebraic normal forms of MANTIS and QARMA S-boxes. 101

3.13. Degree matrix D of MANTIS and QARMA S-boxes. 101

3.14. Differential distribution of MANTIS and QARMA S-boxes. 102

3.15. Transition subgraphs of MANTIS and QARMA S-boxes. . 103

3.16. Differential invariance of MANTIS and QARMA S-boxes. . 104

4.1. Round function for round i of Simpira-b for b ≥ 4, b 6= 6, 8. 108

4.2. AES-based F -function Fc,b of Simpira-b. 109

4.3. Differential description of Simpira-4 for new MILP model. 112

4.4. Iterative 2-round characteristic for Simpira-4 with 5 inde-
pendently active S-boxes. 114

4.5. Characteristic for the F -function with 5 active S-boxes. . 114

xiii

List of Figures

4.6. Characteristic for the F -function with probability 2−30. . 115
4.7. Differential for F -function with probability 2−27.54. 115
4.8. 16-round collision attacks on Simpira-4 hash using 8-round

initial structure. 118
4.9. Collisions for truncated 15-round Simpira-4 hash. 122
4.10. Invariant coset of dimension 49, similar to Rønjom. 124
4.11. Simpira-b v2: New AddConstant and GFS constructions. . 125

5.1. The round function of LowMC: f (i) = f
(i)
K ◦ f

(i)
L ◦ fS 131

5.2. Zero-sum of size 233 for r = 6 rounds of LowMC-80. 134
5.3. Zero-sum of size 22r−2 ≤ 211 for r ≤ 5 rounds of LowMC-80. 135
5.4. Zero-sum of size 233 for r = 7 rounds of LowMC-80. 136
5.5. Partial zero-sum of size 233 for r = 8 rounds of LowMC-80. 138
5.6. Key recovery for r = 8 rounds of LowMC-80 with |S| = 233. 139
5.7. Key recovery for r = 9 rounds of LowMC-80 with |S| = 233,

based on 1-bit sums
⊕

a =
⊕

i〈a, xi〉 and
⊕

b =
⊕

i〈b, yi〉. 140
5.8. Interpolation attack for 10-round LowMC-80 with |V | = 232.145

6.1. Encrypting 2m message blocks Mj with Prøst-OTR-n under
key K and nonce N . 152

6.2. Encrypting the original message blocks Mj under a related
key K ⊕∆ and nonce. 154

6.3. Encrypting modified message blocks M̃j under the original
key K and nonce N . 154

6.4. CCM encryption. 161

7.1. SHA-2’s mode of operation of the block cipher E. 171
7.2. The state update transformation of SHA-2. 172
7.3. Update rules to compute Ai, Ei, and Wi. 176
7.4. SHA-256 starting points. 177
7.5. Comparison of propagation methods: IB − IL for different

linear functions. 185
7.6. SHA-256 and SHA-512 starting points. 194
7.7. SHA-512/t free-start starting points. 197
7.8. Stages of the 27-step collision search. 199
7.9. The step function of SHA-1. 214
7.10. Malicious SHA-1 instance with colliding sh-script file pair. 221
7.11. Malicious SHA-1 instances and meaningful colliding pairs. 223

xiv

List of Tables

3.1. Recovering 14 bits of k0 and k1. 95

5.1. Upper bounds for the algebraic degree d
(n,m)
r after r rounds

of the LowMC permutation. 133
5.2. Recommended number of rounds for LowMC. 133
5.3. Key recovery attacks for different LowMC-kn,m variants. . 144
5.4. Optimized interpolation attacks by Dinur et al. 146

7.1. Best published collision attacks on the SHA-2 family. . . 174
7.2. Linear representation of generalized conditions ∇(zj , z

∗
j). . 182

7.3. Performance evaluation of linear and bit-sliced propagation. 186
7.4. Basic guessing and backtracking strategy. 201
7.5. Starting point for semi-free-start collision of 39 steps of

SHA-512 and SHA-512/t. 202
7.6. Characteristic for semi-free-start collision of 39 steps of

SHA-512 and SHA-512/t. 203
7.7. Characteristic for free-start collision of 44 steps of SHA-

512/224. 204
7.8. Starting point for collision of 27 steps of SHA-512 and

SHA-512/t. 205
7.9. Characteristic for collision of 27 steps of SHA-512 and

SHA-512/t. 206
7.10. Results for SHA-224. 207
7.12. Results for SHA-512/224. 208
7.14. Results for SHA-512/256. 209
7.16. Results for SHA-384. 210
7.18. Results for SHA-512. 211
7.20. Differential probability of suitable characteristics. 217
7.21. Characteristic with jpeg/rar polyglot collision constraints. 218
7.22. List of message differences suitable for the attack 220

xv

1
Introduction

Differential cryptanalysis is one of the central techniques for analyzing
the security of symmetric cryptographic algorithms such as block ciphers.
The fundamental idea to extract secret information or forge malicious
messages by investigating the behavior of the algorithm for two related,
slightly different inputs has proven both very powerful and highly versatile.
Resistance against such differential attacks has been one of the cornerstones
in the design of block ciphers since the first published attack in 1990.

The art of designing and using block ciphers has long been the primary
focus of symmetric cryptography. However, more recently, alternative
symmetric primitives have risen to general attention: Permutations and
tweakable block ciphers in particular have shown the potential to rival
block ciphers in their role as the ideal primitive for efficient and elegant
schemes. However, the available theory on the design and analysis of these
alternative primitives is arguably less mature than for block ciphers.

In this thesis, we analyze the security of several recently designed primitives
against variants of differential cryptanalysis. We show that several of
them can be broken in spite of the designers’ claim of resistance against
differential cryptanalysis. In addition, we develop techniques to improve
the computer-aided differential analysis of unkeyed primitives.

This work lead to contributions in 18 peer-reviewed publications and
several informal publications, of which 8 are partially or completely covered
in this thesis.

In this chapter, we provide an introduction to the main goals and results
of this thesis. Section 1.1 introduces the general context to motivate the
goals and contributions. We discuss the individual contributions in more
detail and provide an outline of the thesis in Section 1.2. Finally, we
provide a list of all co-authored publications.

1

1. Introduction

1.1. Motivation

Symmetric cryptography is concerned with solutions for the classic appli-
cation scenario of information security that we encounter ubiquitously in
communication networks and information storage systems: A small “team
of insiders” (typically the two notorious secret-mongers Alice and Bob)
wants to protect their communication from the wide world of potentially
malicious outsiders. For this purpose, they use a symmetric cryptographic
scheme to process their plaintext communication data before transmission.
The insiders share similar preconditions; that is, they may share access to
the same secret keys, and they cooperate towards a mutual goal.

Two types of symmetric schemes cover the lion’s share of applications:
hash functions and authenticated ciphers. Hash functions map a message
of arbitrary length to a short, fixed-size fingerprint, which can serve as
placeholder, identifier, or commitment of this message. Authenticated
ciphers map a message to an authenticated ciphertext for transmission
based on a shared secret key, which protects the message’s confidentiality
(no outsider can derive information about the message) and authenticity
(no outsider can manipulate the communicated data without detection).

Under the hood, these schemes operate a central primitive, classically a
block cipher such as AES. The scheme’s security is rooted in the security
of this primitive, which is operated by both communication partners in
similar ways and with the same secret key material.

This is in contrast to asymmetric cryptography, where the two commu-
nicating parties have fundamentally different roles, which manifests in
different key material and interfaces. This allows the definition of complex
and subtle interfaces, roles, and security goals, and there seems to be an
inexhaustible stream of newly emerging types of cryptographic primitives
and schemes in this field. For symmetric cryptography, on the other hand,
the functional requirements for schemes like (authenticated) encryption
schemes and hash functions, as well as the underlying primitives and
basic operations, have remained comparably stable for years and decades.
Thus, it is valid to ask why there is still demand for new designs, why
symmetric cryptography is not “solved and done”. In the following, we
discuss some factors and challenges that drive the ongoing evolution of
symmetric cryptography.

2

1.1. Motivation

1.1.1. Challenges

Security. The security of symmetric schemes and primitives is evaluated
through cryptanalysis, and is as such never finally asserted. Every year, new
attack angles, new techniques and methods, new scenarios are proposed.
Even for designs like AES, which have been extensively studied for 20
years, new insights and observations are still being made [GRR17].

In addition to algorithmic advances, it may become necessary to consider
stronger attackers, and adapt both security parameters and security no-
tions accordingly. For example, networks are now easily fast enough to
breach the birthday bound for 64-bit block ciphers like 3DES in everyday
applications [BL16]. Attack scenarios previously presumed moot, such
as related-key and known-key attacks, can become more relevant with
the rise of new constructions, such as permutations and tweakable block
ciphers constructed from block ciphers [JNP14a]. Further requirements
and questions arise when considering very-long-term security, for example,
related to post-quantum security.

Efficiency. While the attackers’ computational capabilities continuously
increase, the same cannot necessarily be said for users’ available resources.
Cryptographic implementations are increasingly deployed in previously
unprotected applications, where individual resource parameters can be
strictly constrained (energy and power, code and state area, latency and
throughput, bandwidth and format, randomness and statefulness, . . .).
Additionally, novel application scenarios and implementation security
requirements may introduce new efficiency metrics that determine, for
example, the computational overhead for side-channel resistance of the im-
plementation, or the cost in very specialized circuit frameworks [ARS+15].

Usability. The practical suitability of a cryptographic scheme is often
not only (or not even primarily) a question of efficiency, but of usability
and developer-friendliness. Usability aspects include, but are not limited
to, availability of secure implementations with simple, suitable, high-level
interfaces, clear documentation and user guidance, and robustness in the
face of sub-optimal implementations or misuse.

For example, the most prominent standards in symmetric cryptography
have previously focused on relatively low-level primitives, in particular,
block ciphers. The higher-level constructions, such as modes of operation

3

1. Introduction

and their generic compositions, were treated more as second thoughts,
and thus sometimes designed and used less carefully than the primitives.
More recently, the situation has however improved considerably. Protocols
like TLS v1.3 and standardization efforts are beginning to consider higher-
level schemes such as authenticated ciphers, rather than primitives, as the
lowest level of modularity. Moreover, higher-level schemes are increasingly
being designed with a focus on clear, useful interfaces in terms of both
functionality (such as intermediate tags) and robustness (such as clear
guidance on nonce use and decryption, or discussion of side-channels).

Transparency. Besides its technical challenges, cryptography is also
often a balancing act between political, commercial, and public interests.
This raises the question who can be trusted to design such schemes, and
who can be trusted to evaluate how reliable the security expectations
are. The question has become increasingly more pressing with the rise of
internet services for every imaginable purpose. For most of its history, and
up to the late 1960s, cryptography was the almost exclusive domain of
military and governmental research. The early 1970s saw the first demands
for cryptography for public, commercial applications, such as securing
banking or pay-TV connections. From internal documents that surfaced
only much later [Joh09], it can be seen that the NSA was rather opposed
to this idea, and feared that “a competent industry standard could spread
into undesirable areas, like Third World government”. Nevertheless, they
finally acceded to the standardization of IBM’s DES algorithm, though not
without modifications, which caused some heated reactions. Even today,
many commercial applications concoct their own, secret crypto schemes,
rather than relying on publicly verifiable schemes.

Cryptographic competitions aim to increase the trust in symmetric schemes
by focusing the academic community’s efforts on the transparent design and
analysis of particularly central schemes. The most prominent examples of
this approach are the AES and SHA-3 competitions organized by NIST, but
also some European efforts, like NESSIE and eStream. The most recent
incarnation is the CAESAR competition, with the goal of identifying
efficient and interesting new authenticated encryption algorithms.

Curiosity. Last but far from least, many developments are simply re-
sults of curiosity. Criteria in this context include elegance, provability,
minimalism, or feasibility.

4

1.1. Motivation

1.1.2. Directions

Novel Primitives. Block ciphers have long been the workhorses of
information security, and their design and proper use the central research
topic of symmetric cryptography. They seem to be the perfect primitive
to securely process data in reasonably-sized portions (the block size of
typically 128 bits) with a reasonably-sized security level (the key size of
typically 128 bits).

However, when we consider a mode of operation to turn a block cipher
into an (authenticated) encryption scheme or a hash function, it soon
becomes apparent that there is one piece of information that does not
quite seem to fit: the context. For encryption, this context defines the
meaning of a particular chunk of plaintext by positioning it in space and
time, for example by its memory address or message number. For authenti-
cation purposes, the context additionally corresponds to the accumulated
information so far. An adversary must not be able to subvert this context,
for example by repositioning or dropping plaintext blocks, or by observing
equal plaintext chunks in different contexts. Modes of operation have to
jump through hoops in order to squeeze this extra bit of information into
the limited block-cipher interface.

Two alternative approaches have surfaced in the past years. The first is
to explicitly account for the context with an additional input parameter
to the block cipher which “tweaks” the resulting mapping. In other words,
the tweak and the key together select the permutation that maps the
plaintext to the ciphertext and vice-versa. The resulting primitive is termed
a tweakable block cipher, and can be constructed either as a dedicated
primitive or in a generic way from a block cipher or other building blocks.
This approach is particularly intuitive for pure encryption schemes, but
has also been shown to be useful for authentication [Rog04a].

The second approach is to drop all barriers between key, context, and
plaintext information, and use a public permutation with a sufficiently
large block size to accumulate this information implicitly. The resulting
modes share aspects not only with block cipher modes like CBC, but also
with classical stream cipher and hashing modes. Such permutation-based
designs work most naturally for hashing and authentication purposes, as
illustrated by the keyed and unkeyed sponge constructions, but have also
proven popular for (authenticated) encryption [BDPV07; BDPV11b].

5

1. Introduction

The adoption of alternative primitives is connected with several of the
previously discussed challenges: It partially answers some of the questions,
but raises different new ones. In terms of efficiency, different improve-
ments are possible: both permutation-based and tweak-based constructions
may have fewer calls to the primitive and may require a lower effective
state size than classic block-cipher constructions. Tweak-based construc-
tions appear particularly suitable for parallelized implementations and
random-access encryption, whereas permutation-based constructions seem
naturally suited for high-throughput serialized processing of data; they
also scale well for different security levels and state size constraints.

In terms of usability, several schemes based on alternative primitives intro-
duce flexible, clean and stream-compatible interfaces. The permutation-
based schemes of the extended sponge family in particular have shown
remarkable flexibility with cleanly integrated features such as sessions
with intermediate tags, alternating authenticate-only and authenticated-
encryption inputs, and more. Finally, many classical block cipher modes
suffer from restrictive query limits due to indexing limits or due to the
quadratic security loss with an increasing number and length of queries
with respect to the message block size (the “birthday bound”). This
can be circumvented in tweak-based and permutation-based schemes by
expanding relevant parts of the internal state with the tweak or context.

For the security analysis, on the other hand, alternative primitives come
with new challenges. On a higher level, this includes the definition of
proper security models for the primitives that are both realistic and useful
for proofs, particularly for the keyless permutations. The positive side
is that these modes are usually comparably clean and elegant and thus
lend themselves well to both intuitive and rigorous security arguments.
On a lower level, the design of primitives is a delicate task that has so far
been mostly studied with respect to block ciphers. Permutations are often
characterized as block ciphers without a key (schedule). However, this is not
necessarily a constructive approach for designing permutations, for several
reasons: Permutation-based modes require permutations with significantly
larger input sizes than block ciphers and may thus favor different word sizes
and operations; the known-key security of block ciphers is not particularly
well-studied, since many classical attacks target key recovery and assume
a “randomizing” effect in every round due to the key; and distinguishing
attacks may use inside-out computations or similar techniques. Similarly,
the analysis of dedicated tweakable block ciphers can be compared to the
related-key analysis of block ciphers.

6

1.1. Motivation

Tools for Analysis. Designing symmetric primitives and schemes is a
complex and often laborious task and relies on extensive cryptanalysis
efforts both before and after publishing the result. Cryptographic compe-
titions have emerged as a popular means to foster such efforts in a focused
way, to identify the most promising candidates, and to increase the general
confidence in their security. An organizing body such as the United States
National Institute of Standards and Technology (NIST) or ECRYPT, a
Network of Excellence funded by the European Union, announces such a
public competition for a particular type of cryptographic schemes, and the
international cryptographic research community can both propose candi-
date ciphers and collectively evaluate them over a few years. The most
prominent examples of this approach are the AES (1997–2000) and SHA-3
(2007–2012) competitions organized by NIST, but also European efforts
like NESSIE (2000–2003) and eSTREAM (2004–2008). The most recent
incarnation is the CAESAR competition (2014–ongoing), with the goal of
identifying efficient and interesting authenticated encryption algorithms.
The result is then either a single winner that is subsequently standardized
in the NIST competitions, or a portfolio of recommendations.

The success of these competitions depends crucially on a thorough analysis
of all competitors. With the increasing number of candidates in the more
recent competitions (such as the 57 first-round submissions to CAESAR),
this has become more and more of a challenge. Hardly any of the candi-
dates will receive as much manual attention as the purportedly more than
a dozen person-years invested in the design of DES, though this is hard to
measure for community-driven analysis. The complex definition of some
of the candidates, coupled with design approaches that are less than opti-
mally suited for manual cryptanalysis, have made it necessary to leave a
significant amount of effort to (semi-)automated cryptanalysis tools. They
can serve as both heuristic indicators (e.g., finding easily verifiable differen-
tial characteristics, but without any guarantee that these are the strongest
possible solutions), and perform a sort of exhaustive proofs for certain
categories of cryptanalysis – anything that is computationally expensive,
but can be easily defined in terms of a search or optimization problem,
and can then be solved either with existing tools like satisfiability (SAT)
and mixed-integer linear programming (MILP) solvers or with dedicated
tools using techniques from related fields. Popular applications include
differential cryptanalysis, linear cryptanalysis, the division property, and
more. Alternative primitives are a particularly interesting target where
manual or straightforward approaches often fail for reasons such as large
state sizes, missing or related round keys, and weakly aligned operations.

7

1. Introduction

1.2. Contributions

Outline

The contributions of this thesis can be grouped into two main parts.

In Part I (Chapters 3, 4, 5, 6), we cryptanalyze several recently published
designs of primitives and schemes: the tweakable block cipher MANTIS, the
permutation Simpira, the block cipher LowMC, and the permutation-based
authenticated cipher Prøst. We show that the security margin of the first
three primitives against variants of differential cryptanalysis is smaller
than expected, including full breaks of the designers’ security claims
for Simpira-4 v1 and MANTIS-5. Our analysis highlights the challenges
of designing unkeyed, tweakable, or otherwise atypical novel primitives.
Among others, we exploit properties caused by dependencies in the unkeyed
rounds of a permutation, the tweak schedule, or unkeyed inner rounds.

In Part II (Chapter 7), we target primitives that are very hard to analyze
by hand by improving and applying tools for automated cryptanalysis. We
extend a dedicated search tool for differential characteristics with several
techniques to improve the efficiency of the search for larger primitives.
We apply the tool to find practical semi-free-start collisions for the round-
reduced hash standard SHA-512 and its truncated variants. Additionally,
we show how the tool can be used to insert collision backdoors in malicious
variants of SHA-1 with a few modified round constants.

We introduce the relevant background, notation, and other preliminaries
for these two parts in Chapter 2, and conclude in Chapter 8.

In the following, we give a more detailed outline of the main part of this
thesis. We summarize the individual contributions of each part and the
associated publications.

In addition to the work presented in this document, we also contributed
to other lines of research in the area of cryptanalysis and implementation
security for symmetric cryptography. In particular, we had the opportu-
nity to join the Ascon team in designing the authenticated cipher Ascon
currently competing as a finalist in the CAESAR competition, which
connects with several topics of this thesis.

We provide a list of all 18 co-authored peer-reviewed publications and
some informal reports at the end of this chapter.

8

1.2. Contributions

Part I: Differential Cryptanalysis of Novel Designs

In Chapter 3, we analyze the tweakable block cipher MANTIS, published
at CRYPTO 2016 [BJK+16]. We develop an approach for clustering
a large number of differential characteristics in a related-tweak setting.
The approach is inspired by truncated characteristics, but by applying
a more fine-grained analysis that takes the linear tweak schedule into
consideration, we obtain much higher estimated differential probabilities
than either standard or truncated differential cryptanalysis. With this
approach, we can show that MANTIS’ lightweight round function does not
interact well with its α-reflective construction and tweakey schedule. We
also identify some additional differential properties of the S-box that impact
the analysis. We derive an attack on MANTIS-5 using about 230 chosen
plaintexts to recover the full 128-bit key in less than 238 computational
complexity, or about an hour in practice, which is less than 296 as claimed
by the designers. The attack was published at FSE 2017 (Tokyo) and
selected among the best three papers; as part of subsequent follow-up
work, we further refined and generalized the analysis:

C. Dobraunig, M. Eichlseder, D. Kales, and F. Mendel. Practical
Key-Recovery Attack on MANTIS5. In: IACR Transactions on
Symmetric Cryptology 2016.2 (2017), pp. 248–260. doi: 10.13154/
tosc.v2016.i2.248-260. iacr: 2016/754.

M. Eichlseder and D. Kales. Clustering Related-Tweak Characteris-
tics: Application to MANTIS-6. IACR Cryptology ePrint Archive,
Report 2017/1136. 2017. iacr: 2017/1136.

In Chapter 4, we analyze the permutation Simpira v1 [GM16a]. We show
that the designers’ computer-aided security analysis does not take into
consideration several dependencies between intermediate variables of the
permutation, which invalidates their conclusions on the maximum proba-
bility of differential characteristics based on the minimum number of 75
differentially active AES S-boxes. With about 2110 computational complex-
ity, we find differential fixed-points for the full-round 512-bit permutation
Simpira-4, corresponding to collisions after a feed-forward. Our result illus-
trates how unpredictable the effective security margin can be for unkeyed
primitives due to dependencies and the attacker’s capability of controlling
intermediate values. The attacks violate the designers’ security claims
that there are no structural distinguishers below 2128. In response, the
designers published an updated Simpira v2 at ASIACRYPT 2016 [GM16b].
Our attack was published at SAC 2016 (St John’s):

9

https://doi.org/10.13154/tosc.v2016.i2.248-260
https://doi.org/10.13154/tosc.v2016.i2.248-260
https://eprint.iacr.org/2016/754
https://eprint.iacr.org/2017/1136

1. Introduction

C. Dobraunig, M. Eichlseder, and F. Mendel. Cryptanalysis of Sim-
pira v1. In: Selected Areas in Cryptography – SAC 2016. Ed. by R.
Avanzi and H. M. Heys. Vol. 10532. LNCS. Springer, 2016, pp. 284–
298. doi: 10.1007/978-3-319-69453-5_16. iacr: 2016/244.

In Chapter 5, we analyze the block cipher LowMC published at EURO-
CRYPT 2015 [ARS+15]. The goal of LowMC’s designers is to have a
particularly low multiplicative complexity, measured in the total number
and longest chain length of binary multiplications in the encryption circuit.
This is achieved with incomplete S-box layers and dense, unstructured
linear layers. We exploit these properties in a higher-order differential
attack, and show how to extend the basic zero-sum distinguishers such as
discussed by the designers by up to 4 rounds (out of a 5-round security
margin). To achieve this result, we construct and chain different invariant
subspaces of the S-box layer, and optimize the key recovery with FFT
summation. We propose round-reduced attacks for different recommended
parameter sets, such as 10 out of 11 or 12 rounds of the 128-bit security
variant LowMC-128512,86 with about 267 complexity. The designers have
since proposed an updated version LowMC v2 [ARS+16]. Our attack was
published at ICISC 2015 (Seoul):

C. Dobraunig, M. Eichlseder, and F. Mendel. Higher-Order Crypt-
analysis of LowMC. In: Information Security and Cryptology – ICISC
2015. Ed. by S. Kwon and A. Yun. Vol. 9558. LNCS. Springer, 2015,
pp. 87–101. doi: 10.1007/978-3-319-30840-1_6. iacr: 2015/407.

In Chapter 6, we propose a related-key forgery attack on the permutation-
based CAESAR Round-1 candidate Prøst-OTR [KLL+14]. We showed how
for this mode, observing any two messages encrypted under any two related
keys with some known xor difference allows an attacker to forge a tag for
a third message, with negligible complexity. This property is an effect of
the combination of different secure constructions (Even-Mansour cipher
in OTR mode of operation), and is completely independent of the Prøst
permutation. The observation is unexpected but does not threaten the
security of Prøst-OTR in the single-key setting. Our result was published
at FSE 2015 (Istanbul):

C. Dobraunig, M. Eichlseder, and F. Mendel. Related-Key Forgeries
for Prøst-OTR. In: Fast Software Encryption – FSE 2015. Ed. by
G. Leander. Vol. 9054. LNCS. Springer, 2015, pp. 282–296. doi:
10.1007/978-3-662-48116-5_14. iacr: 2015/091.

10

https://doi.org/10.1007/978-3-319-69453-5_16
https://eprint.iacr.org/2016/244
https://doi.org/10.1007/978-3-319-30840-1_6
https://eprint.iacr.org/2015/407
https://doi.org/10.1007/978-3-662-48116-5_14
https://eprint.iacr.org/2015/091

1.2. Contributions

Part II: Automating Differential Cryptanalysis

In Chapter 7, we improve and apply a practical collision search tool for
the round-reduced hash standard SHA-2, with a special focus on SHA-512.

This work builds on an existing dedicated heuristic search tool developed
for SHA-256 by Mendel, Nad, and Schläffer [MNS11b; MNS13b], based
on an earlier tool for SHA-1 by De Cannière and Rechberger [DR06].
This tool takes as input the specification of a compression function or
other primitive, a specification of initial constraints, and a specification of
search heuristics. Based on these bitwise specifications and constraints,
the tool successively finds a compatible and consistent assignment of
differences or values for all variables required in the respective phase.
The search algorithm itself is an instance of the guess-and-determine
approach widely used in combinatorial constraint solvers, such as SAT
solvers: It repeatedly picks an undetermined variable, assigns a tentative
value (“guess”), and applies a form of constraint propagation to derive
the implications of this assignment, as well as potential contradictions
(“determine”). Mendel, Nad, and Schläffer [MNS13b] successfully applied
this tool to find semi-free-start collisions for up to 38 out of 64 rounds
(“steps”) of SHA-256.

We adapted several aspects of the search tool in order to improve the
performance for primitives with larger state sizes, such as those of SHA-512
and SHA-3/Keccak. Two particular problems when applying the previous
search algorithm to larger primitives are related to detecting contradictions
soon enough: First, the search algorithm has to select and guess the critical
bits that reveal the contradiction within a much larger search space; and
second, it has to determine the resulting contradiction in a larger circuit.
We developed, implemented, and evaluated several techniques to address
these two problems. The first is a look-ahead branching heuristic that aims
to identify critical bits by peeking at the implications of several candidate
bits and picking the most impactful bit. The second is an approach for
efficiently propagating partial information through large linear layers.
Together, they significantly decrease the time spent in “dead ends” of the
search space.

This allows tackling SHA-512 collision challenges with comparable round
numbers as SHA-256. The best results include semi-free-start collisions for
up to 39 out of 80 steps of SHA-512. We also show how to extend these
results to even more steps of the truncated, wide-pipe variants SHA-512/t.
Finally, we explore how this tool can be used not only by a cryptanalyst,

11

1. Introduction

but by a malicious designer who wishes to include a collision backdoor in
a malicious SHA-1 variant with tweaked round constants.

This part includes contributions published as parts of papers at WCC 2013
(Bergen), FSE 2014 (London), SAC 2014 (Montréal), and ASIACRYPT
2015 (Auckland), as well as a technical report for the CRYPTREC project,
an evaluation and recommendation effort driven by the National Institute
of Information and Communication Technology (NICT) in Japan:

M. Eichlseder, F. Mendel, T. Nad, V. Rijmen, and M. Schläffer.
Linear Propagation in Efficient Guess-and-Determine Attacks. In:
International Workshop on Coding and Cryptography – WCC 2013,
Preproceedings. Ed. by L. Budaghyan, T. Helleseth, and M. G.
Parker. 2013, pp. 193–202. isbn: 978-82-308-2269-2. url: http :

//www.selmer.uib.no/WCC2013/.

M. Eichlseder, F. Mendel, and M. Schläffer. Branching Heuristics in
Differential Collision Search with Applications to SHA-512. In: Fast
Software Encryption – FSE 2014. Ed. by C. Cid and C. Rechberger.
Vol. 8540. LNCS. Springer, 2014, pp. 473–488. doi: 10.1007/978-3-
662-46706-0_24. iacr: 2014/302.

A. Albertini, J.-P. Aumasson, M. Eichlseder, F. Mendel, and M.
Schläffer. Malicious Hashing: Eve’s Variant of SHA-1. In: Selected
Areas in Cryptography – SAC 2014. Ed. by A. Joux and A. M.
Youssef. Vol. 8781. LNCS. Springer, 2014, pp. 1–19. doi: 10.1007/
978-3-319-13051-4_1. iacr: 2014/694.

C. Dobraunig, M. Eichlseder, and F. Mendel. Analysis of SHA-
512/224 and SHA-512/256. In: Advances in Cryptology – ASIA-
CRYPT 2015. Ed. by T. Iwata and J. H. Cheon. Vol. 9453. LNCS.
Springer, 2015, pp. 612–630. doi: 10.1007/978-3-662-48800-3_25.
iacr: 2016/374.

C. Dobraunig, M. Eichlseder, and F. Mendel. Security Evalua-
tion of SHA-224, SHA-512/224, and SHA-512/256. Tech. Report
CRYPTREC. 2015. url: http://www.cryptrec.go.jp/estimation/
techrep_id2401.pdf.

12

http://www.selmer.uib.no/WCC2013/
http://www.selmer.uib.no/WCC2013/
https://doi.org/10.1007/978-3-662-46706-0_24
https://doi.org/10.1007/978-3-662-46706-0_24
https://eprint.iacr.org/2014/302
https://doi.org/10.1007/978-3-319-13051-4_1
https://doi.org/10.1007/978-3-319-13051-4_1
https://eprint.iacr.org/2014/694
https://doi.org/10.1007/978-3-662-48800-3_25
https://eprint.iacr.org/2016/374
http://www.cryptrec.go.jp/estimation/techrep_id2401.pdf
http://www.cryptrec.go.jp/estimation/techrep_id2401.pdf

Publication List

Journal Articles

tosc’ C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel,
and T. Unterluggauer. ISAP – Towards Side-Channel Se-
cure Authenticated Encryption. In: IACR Transactions
on Symmetric Cryptology 2017.1 (2017), pp. 80–105.
doi: 10.13154/tosc.v2017.i1.80-105. iacr: 2016/952.

tosc’ C. Dobraunig, M. Eichlseder, D. Kales, and F. Mendel.
Practical Key-Recovery Attack on MANTIS5. In: IACR
Transactions on Symmetric Cryptology 2016.2 (2017),
pp. 248–260. doi: 10.13154/tosc.v2016.i2.248-260.
iacr: 2016/754.

Conference Proceedings

cosade’ C. Dobraunig, M. Eichlseder, T. Korak, and F. Mendel.
Side-Channel Analysis of Keymill. In: Constructive Side-
Channel Analysis and Secure Design – COSADE 2017.
Ed. by S. Guilley. Vol. 10348. LNCS. Springer, 2017,
pp. 138–152. doi: 10.1007/978-3-319-64647-3_9. iacr:
2016/793.

asiacrypt’ C. Dobraunig, M. Eichlseder, T. Korak, V. Lomné, and
F. Mendel. Statistical Fault Attacks on Nonce-Based Au-
thenticated Encryption Schemes. In: Advances in Cryp-
tology – ASIACRYPT 2016. Ed. by J. H. Cheon and T.
Takagi. Vol. 10031. LNCS. Springer, 2016, pp. 369–395.
doi: 10.1007/978-3-662-53887-6_14. iacr: 2016/616.

sac’ C. Dobraunig, M. Eichlseder, and F. Mendel. Cryptanal-
ysis of Simpira v1. In: Selected Areas in Cryptography –
SAC 2016. Ed. by R. Avanzi and H. M. Heys. Vol. 10532.
LNCS. Springer, 2016, pp. 284–298. doi: 10.1007/978-
3-319-69453-5_16. iacr: 2016/244.

13

https://doi.org/10.13154/tosc.v2017.i1.80-105
https://eprint.iacr.org/2016/952
https://doi.org/10.13154/tosc.v2016.i2.248-260
https://eprint.iacr.org/2016/754
https://doi.org/10.1007/978-3-319-64647-3_9
https://eprint.iacr.org/2016/793
https://doi.org/10.1007/978-3-662-53887-6_14
https://eprint.iacr.org/2016/616
https://doi.org/10.1007/978-3-319-69453-5_16
https://doi.org/10.1007/978-3-319-69453-5_16
https://eprint.iacr.org/2016/244

Conference Proceedings

acns’ C. Dobraunig, M. Eichlseder, and F. Mendel. Square
Attack on 7-Round Kiasu-BC. In: Applied Cryptography
and Network Security – ACNS 2016. Ed. by M. Man-
ulis, A.-R. Sadeghi, and S. Schneider. Vol. 9696. LNCS.
Springer, 2016, pp. 500–517. doi: 10.1007/978-3-319-
39555-5_27. iacr: 2016/326.

fse’ C. Dobraunig, M. Eichlseder, and F. Mendel. Analysis
of the Kupyna-256 Hash Function. In: Fast Software
Encryption – FSE 2016. Ed. by T. Peyrin. Vol. 9783.
LNCS. Springer, 2016, pp. 575–590. doi: 10.1007/978-
3-662-52993-5_29. iacr: 2015/956.

icisc’ C. Dobraunig, M. Eichlseder, and F. Mendel. Higher-
Order Cryptanalysis of LowMC. In: Information Security
and Cryptology – ICISC 2015. Ed. by S. Kwon and A.
Yun. Vol. 9558. LNCS. Springer, 2015, pp. 87–101. doi:
10.1007/978-3-319-30840-1_6. iacr: 2015/407.

asiacrypt’ C. Dobraunig, M. Eichlseder, and F. Mendel. Analysis of
SHA-512/224 and SHA-512/256. In: Advances in Cryp-
tology – ASIACRYPT 2015. Ed. by T. Iwata and J. H.
Cheon. Vol. 9453. LNCS. Springer, 2015, pp. 612–630.
doi: 10.1007/978-3-662-48800-3_25. iacr: 2016/374.

asiacrypt’ C. Dobraunig, M. Eichlseder, and F. Mendel. Heuris-
tic Tool for Linear Cryptanalysis with Applications to
CAESAR Candidates. In: Advances in Cryptology –
ASIACRYPT 2015. Ed. by T. Iwata and J. H. Cheon.
Vol. 9453. LNCS. Springer, 2015, pp. 490–509. doi: 10.
1007/978-3-662-48800-3_20. iacr: 2015/1200.

ct-rsa’ C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer.
Cryptanalysis of Ascon. In: Topics in Cryptology – CT-
RSA 2015. Ed. by K. Nyberg. Vol. 9048. LNCS. Springer,
2015, pp. 371–387. doi: 10.1007/978-3-319-16715-2_20.
iacr: 2015/030.

fse’ C. Dobraunig, M. Eichlseder, and F. Mendel. Related-
Key Forgeries for Prøst-OTR. In: Fast Software Encryp-
tion – FSE 2015. Ed. by G. Leander. Vol. 9054. LNCS.
Springer, 2015, pp. 282–296. doi: 10.1007/978-3-662-
48116-5_14. iacr: 2015/091.

14

https://doi.org/10.1007/978-3-319-39555-5_27
https://doi.org/10.1007/978-3-319-39555-5_27
https://eprint.iacr.org/2016/326
https://doi.org/10.1007/978-3-662-52993-5_29
https://doi.org/10.1007/978-3-662-52993-5_29
https://eprint.iacr.org/2015/956
https://doi.org/10.1007/978-3-319-30840-1_6
https://eprint.iacr.org/2015/407
https://doi.org/10.1007/978-3-662-48800-3_25
https://eprint.iacr.org/2016/374
https://doi.org/10.1007/978-3-662-48800-3_20
https://doi.org/10.1007/978-3-662-48800-3_20
https://eprint.iacr.org/2015/1200
https://doi.org/10.1007/978-3-319-16715-2_20
https://eprint.iacr.org/2015/030
https://doi.org/10.1007/978-3-662-48116-5_14
https://doi.org/10.1007/978-3-662-48116-5_14
https://eprint.iacr.org/2015/091

Conference Proceedings

sac’ C. Dobraunig, M. Eichlseder, and F. Mendel. Forgery
Attacks on Round-Reduced ICEPOLE-128. In: Selected
Areas in Cryptography – SAC 2015. Ed. by O. Dunkel-
man and L. Keliher. Vol. 9566. LNCS. Springer, 2015,
pp. 479–492. doi: 10.1007/978-3-319-31301-6_27. iacr:
2015/392.

cardis’ C. Dobraunig, M. Eichlseder, S. Mangard, and F. Mendel.
On the Security of Fresh Re-keying to Counteract Side-
Channel and Fault Attacks. In: Smart Card Research
and Advanced Applications – CARDIS 2014. Ed. by M.
Joye and A. Moradi. Vol. 8968. LNCS. Springer, 2014,
pp. 233–244. doi: 10.1007/978-3-319-16763-3_14. iacr:
2015/033.

sac’ A. Albertini, J.-P. Aumasson, M. Eichlseder, F. Mendel,
and M. Schläffer. Malicious Hashing: Eve’s Variant of
SHA-1. In: Selected Areas in Cryptography – SAC 2014.
Ed. by A. Joux and A. M. Youssef. Vol. 8781. LNCS.
Springer, 2014, pp. 1–19. doi: 10.1007/978- 3- 319-

13051-4_1. iacr: 2014/694.

latincrypt’ A. Bogdanov, C. Dobraunig, M. Eichlseder, M. M. Lau-
ridsen, F. Mendel, M. Schläffer, and E. Tischhauser. Key
Recovery Attacks on Recent Authenticated Ciphers. In:
Progress in Cryptology – LATINCRYPT 2014. Ed. by
D. F. Aranha and A. Menezes. Vol. 8895. LNCS. Springer,
2014, pp. 274–287. doi: 10.1007/978-3-319-16295-9_15.

fse’ M. Eichlseder, F. Mendel, and M. Schläffer. Branching
Heuristics in Differential Collision Search with Applica-
tions to SHA-512. In: Fast Software Encryption – FSE
2014. Ed. by C. Cid and C. Rechberger. Vol. 8540. LNCS.
Springer, 2014, pp. 473–488. doi: 10.1007/978-3-662-
46706-0_24. iacr: 2014/302.

wcc’ M. Eichlseder, F. Mendel, T. Nad, V. Rijmen, and M.
Schläffer. Linear Propagation in Efficient Guess-and-De-
termine Attacks. In: International Workshop on Coding
and Cryptography – WCC 2013, Preproceedings. Ed. by
L. Budaghyan, T. Helleseth, and M. G. Parker. 2013,
pp. 193–202. isbn: 978-82-308-2269-2. url: http://www.
selmer.uib.no/WCC2013/.

15

https://doi.org/10.1007/978-3-319-31301-6_27
https://eprint.iacr.org/2015/392
https://doi.org/10.1007/978-3-319-16763-3_14
https://eprint.iacr.org/2015/033
https://doi.org/10.1007/978-3-319-13051-4_1
https://doi.org/10.1007/978-3-319-13051-4_1
https://eprint.iacr.org/2014/694
https://doi.org/10.1007/978-3-319-16295-9_15
https://doi.org/10.1007/978-3-662-46706-0_24
https://doi.org/10.1007/978-3-662-46706-0_24
https://eprint.iacr.org/2014/302
http://www.selmer.uib.no/WCC2013/
http://www.selmer.uib.no/WCC2013/

Miscellaneous

Miscellaneous

eprint’ C. Dobraunig, M. Eichlseder, L. Grassi, V. Lallemand, G.
Leander, E. List, F. Mendel, and C. Rechberger. Rasta:
A cipher with low ANDdepth and few ANDs per bit.
IACR Cryptology ePrint Archive, Report 2018/181. 2018.
iacr: 2018/181.

eprint’ C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F.
Mendel, and R. Primas. Exploiting Ineffective Fault In-
ductions on Symmetric Cryptography. IACR Cryptology
ePrint Archive, Report 2018/071. 2018. iacr: 2018/071.

eprint’ D. Kales, M. Eichlseder, and F. Mendel. Note on the
Robustness of CAESAR Candidates. IACR Cryptology
ePrint Archive, Report 2017/1137. 2017. iacr: 2017/

1137.

eprint’ M. Eichlseder and D. Kales. Clustering Related-Tweak
Characteristics: Application to MANTIS-6. IACR Cryp-
tology ePrint Archive, Report 2017/1136. 2017. iacr:
2017/1136.

pq’ D. J. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer,
S.-L. Gazdag, A. Hülsing, P. Kampanakis, S. Kölbl, T.
Lange, M. M. Lauridsen, F. Mendel, R. Niederhagen, C.
Rechberger, J. Rijneveld, and P. Schwabe. SPHINCS+.
Submission to NIST’s Post-Quantum Crypto Project
(Round 1). See https://sphincs.org/. 2017. url: https:
//csrc.nist.gov/CSRC/media/Projects/Post-Quantum-

Cryptography/documents/round-1/submissions/SPHINCS_

Plus.zip.

caesar’ C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer.
Ascon v1.2. Submission to CAESAR: Competition for
Authenticated Encryption. Security, Applicability, and
Robustness (Round 3). See http://ascon.iaik.tugraz.

at/. 2016. url: http://competitions.cr.yp.to/round3/
asconv12.pdf.

cryptrec’ C. Dobraunig, M. Eichlseder, and F. Mendel. Security
Evaluation of SHA-224, SHA-512/224, and SHA-512/256.
Tech. Report CRYPTREC. 2015. url: http : / / www .

cryptrec.go.jp/estimation/techrep_id2401.pdf.

16

https://eprint.iacr.org/2018/181
https://eprint.iacr.org/2018/071
https://eprint.iacr.org/2017/1137
https://eprint.iacr.org/2017/1137
https://eprint.iacr.org/2017/1136
https://sphincs.org/
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SPHINCS_Plus.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SPHINCS_Plus.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SPHINCS_Plus.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SPHINCS_Plus.zip
http://ascon.iaik.tugraz.at/
http://ascon.iaik.tugraz.at/
http://competitions.cr.yp.to/round3/asconv12.pdf
http://competitions.cr.yp.to/round3/asconv12.pdf
http://www.cryptrec.go.jp/estimation/techrep_id2401.pdf
http://www.cryptrec.go.jp/estimation/techrep_id2401.pdf

2
Preliminaries

In this chapter, we provide the necessary background in symmetric cryp-
tography and differential cryptanalysis for the main part of this thesis.

In the first half of the chapter, we present a brief anatomy of symmetric
cryptographic schemes and their functional goals. To achieve security
goals such as confidentiality and authenticity of communicated messages,
cryptographic schemes transform the plaintext messages into an encrypted
ciphertext and/or append an authentication tag. Since messages can
be (almost) arbitrarily long, cryptographic schemes usually chop the
message down into blocks, which are iteratively processed by cryptographic
primitives such as block ciphers or compression functions. Internally,
primitives repeat a high number of very basic mathematic operations. We
give a bottom-up overview of these different construction levels.

In the second half of this chapter, we introduce methods to analyze
the security of symmetric cryptographic schemes. Since most results in
this thesis are based on ideas from and generalizations of differential
cryptanalysis, this is our main focus. Additionally, we cover some related
terminology and results, such as higher-order differentials, which will star
in guest appearances later.

Both parts together provide the foundations for the main part of this thesis,
and introduce the necessary terminology and concepts. We assume that
the reader is somewhat familiar with mathematical concepts from abstract
algebra and probability theory, such as finite fields or discrete probability
distributions. For a general introduction to the design and analysis of
symmetric primitives and an overview of the state-of-the-art in block
cipher design, we refer the interested reader to books such as Daemen and
Rijmen’s [DR02], Knudsen and Robshaw’s [KR11a], or Avanzi’s [Ava16].

17

2. Preliminaries

2.1. A Brief Anatomy of Symmetric Cryptology

In this first half of the chapter, we introduce the ingredients necessary
to build symmetric cryptographic schemes bottom-up. In Section 2.1.1,
we start with the elementary operations and their most basic properties,
which as such are not sufficient yet to define any kind of cryptographic
security properties. In Section 2.1.2, we define the smallest building blocks
that do provide a quantifiable security level, but are not yet directly
practically applicable: cryptographic primitives such as block ciphers or
compression functions. Finally, in Section 2.1.3, we provide a brief overview
of cryptographic schemes for variable-length data, such as hash functions
and authenticated ciphers, and their security notions.

2.1.1. Basic Operations

Symmetric and asymmetric cryptography differ significantly not only
in their key-distribution setting, but also in how they achieve secure
cryptographic primitives. Whereas asymmetric schemes typically rely on
the difficulty of solving a concise, high-level mathematical problem, such
as the discrete logarithm problem in a very large finite group, symmetric
schemes do the opposite. They decompose the inputs into very small units
and apply a large number of small operations over small mathematical
structures, such as byte-sized finite fields, register-sized finite groups, or
even individual bits – usually a mix of several structures. The security is
then derived from the large network of small operations, whose interaction
prevents the successful application of statistical analysis.

Shannon [Sha49] identified the two main goals of the operations as confu-
sion (making the relation between secret key and published ciphertext as
complex as possible) and diffusion (spreading the effects of each input bit
over the whole output). Shannon’s definitions do not exactly reflect mod-
ern concepts of cryptographic security – for instance, he puts considerable
emphasis on the inherent redundancy within the plaintexts – and have thus
been re-interpreted in several different ways. They are often mapped to the
design of modern ciphers as follows. The first goal, confusion, is achieved
primarily with local, nonlinear operations, such as S-boxes or bit-sliced
Boolean functions. The latter goal, diffusion, can be achieved with larger,
but usually linear operations, such as bit permutations or multiplications
with a constant matrix. In the following, we briefly introduce the two most
popular families of operations, whose exact boundaries are blurry.

18

2.1. A Brief Anatomy of Symmetric Cryptology

Register-oriented operations, ARX: Software-oriented schemes such
as the MD5/SHA hash family [Dan12] split the data blocks into the most
natural size for their target platform: the CPU register size b, e.g., 32 bits.
These register words serve as operands for various operations:

(A) Modular Addition x� y: Adds two registers as integers mod 2b.

(R) Rotate x ≫ r, Shift x � r: Permutes the register’s bits by a
cyclic right/left rotation or shift by r bit positions.

(X) Xor x⊕ y, And x ∧ y, etc.: Applies Boolean operation to each bit
position in two input registers to compute one output register.

Here, (A,R) can contribute to diffusion within register words and (X)
across words; (A) (or nonlinear bitwise operations) contribute to confusion.

The following Boolean functions and the corresponding word-oriented,
bitwise Boolean function versions will be used in the following chapters.
For a b-bit word x ∈ {0, 1}b, we denote by xi the i-th coordinate starting
from the least significant bit (LSB) x0 to the most significant bit (MSB)
xb−1. We also write (xi) or (xi)i for x = (xi)i=0,...,b−1, and identify x with

the corresponding integer x =
∑b−1

i=0 xi2
i ∈ Z2b .

• Unary and associative binary bitwise Boolean functions zi = f(xi, yi):
¬xi (not), xi ∧ yi (and), xi ∨ yi (or), xi ⊕ yi (xor).

• Ternary bitwise Boolean functions with zi = f(wi, xi, yi):

z = eq(w, x, y) : zi = (¬wi ⊕ xi) ∧ (¬wi ⊕ yi) , (eq)

z = if(w, x, y) : zi = (wi ∧ xi)⊕ (¬wi ∧ yi) , (if)

z = maj(w, x, y) : zi = (wi ∧ xi)⊕ (wi ∧ yi)⊕ (xi ∧ yi) . (maj)

• Unary rotation ≪ r,≫ r and shift � r,� r functions z = fr(x):

x≪r : zi = xi−r (mod b), x≫r : zi = xi+r (mod b), (rot)

x�r : zi =

{
xi−r i ≥ r,
0 else,

x�r : zi =

{
xi+r i < b− r,
0 else.

(sh)

• Modular addition z = x� y in Z2b with carry c:

c = carry(x, y) : ci =

{
maj(xi−1, yi−1, ci−1) i ≥ 1 ,
0 i = 0 ,

(carry)

z = x� y : zi = xi ⊕ yi ⊕ ci . (sum)

19

2. Preliminaries

Besides a symbolic representation of Boolean functions as above, we also
use representations in truth tables and algebraic normal forms (ANF).
The ANF is a canonical representation of Boolean functions f(v1, . . . , vn)
that writes the output bit as a sum (xor) of distinct products (and) of
distinct input bits, or in other words, as a multivariate polynomial in
F2[v1, . . . , vn]/(v2

1 ⊕ v1, . . . , v
2
n ⊕ vn), with terms ‘monomial’, ‘coefficient’,

‘degree’, etc., defined accordingly [Gég27]. The coefficients of the ANF can
be efficiently computed from the value vector of the function’s truth table
(and vice versa) via the binary Möbius transform.

Modern schemes of this type range from pure ARX designs like ChaCha
[Ber08] (�,≫,⊕) and generalized ARX designs like SHA-2 [Dan12] (ARX
plus nonlinearity from bitwise Boolean ∧) to more hardware-friendly,
‘purely Boolean’ designs [AJN16] (without �).

When such designs include vectorial, purely Boolean nonlinear functions
with multiple input and output bits (coordinates) and thus define bit-sliced
S-boxes, they cross the boundary towards SPN designs.

Cell-oriented operations, SPN: The term substitution-permutation
network (SPN) originally referred to a construction that alternates be-
tween a bricklayer cell-substitution layer (S-box) for confusion and a bit
permutation between cells for diffusion (P-box), but is now variably used
in a more general sense to include other linear P-boxes, such as strongly
aligned linear layers as in AES.

Compared to ARX designs, SPNs tend to have a clearer separation of
duties between the individual building blocks: An S-box ensures that
local changes at its input cause “confusing” effects at the output; and a
P-box diffuses these effects to the inputs of the S-boxes of the next round.
The desired effect – that flipping a single input bit causes (essentially
unpredictable) changes in each output bit – has been classically quantified
by properties like completeness [KD79] and the (strict) avalanche criterion
[Fei73; WT85]. These definitions already carry a foretaste of the ideas of
differential cryptanalysis. Kam and Davida [KD79] also propose a general
approach for constructing bit permutations that achieve completeness
after one or several rounds: Tree-Structured SPNs. Later designs gradually
introduced P-boxes using binary linear operations over F2b or Z2b for
b-bit cells [Mas93], and started representing the P-box as a matrix-vector
multiplication over some ring. Perfect diffusion is achieved if the matrix is
MDS or, more generally, a multipermutation [Vau94; Dae95].

20

2.1. A Brief Anatomy of Symmetric Cryptology

For quantifying the confusion provided by S-boxes or by their component
functions, a number of different metrics have been proposed. These include
the algebraic degree of the component functions’ ANFs, their nonlinearity
that measures the number of times that the best affine approximation
over F2 produces a different output, and more.

The most notable and most widely re-used approach is the design of
the block cipher Rijndael/AES by Daemen and Rijmen [DR98; DR02;
DBN+01], which splits each block S into a 4× 4 matrix of byte-sized cells
(bundles) S = (si,j), identified with field elements in F28 . All operations
are aligned to these cells:

S =

s0,0

s1,0

s2,0

s3,0

s0,1

s1,1

s2,1

s3,1

s0,2

s1,2

s2,2

s3,2

s0,3

s1,3

s2,3

s3,3

.

(S) AddRoundKey adds the round key K(r) of round r to the state,
SubBytes substitutes each byte element si,j with the output of the
same nonlinear function, the S-box S:

∀ i, j : si,j 7→ si,j ⊕K(r)
i,j , (AddRoundKey)

∀ i, j : si,j 7→ S(si,j). (SubBytes)

(P) ShiftRows permutes the four elements si,· of each matrix row i with
a cyclic left-shift by i positions to achieve inter-column diffusion,
MixColumns multiplies the MDS matrix M over F4

28 to (each column
j of) the state matrix to achieve intra-column diffusion:

∀ i : (si,j)j 7→ (si,j)j≪ i = (si,j+i mod 4)j , (ShiftRows)

∀ j : (si,j)i 7→M · (si,j)i. (MixColumns)

S()

(a) SubBytes (b) ShiftRows

M ·

(c) MixColumns

K⊕
(d) AddRoundKey

Figure 2.1.: AES’ cell-oriented operations.

21

2. Preliminaries

2.1.2. Cryptographic Primitives

Cryptographic primitives are the smallest building blocks of a crypto-
graphic system that already have meaningful cryptographic claims for a
specified security level. Like the basic operations, they operate on one or
more fixed-size inputs. However, their size is not defined by implementation
requirements, but rather by the targeted security level. Typical security
claims refer to the hardness of recovering certain inputs to the primitive
given its other inputs and outputs, or the hardness of distinguishing the
primitive from an idealized primitive, and quantify the minimum workload
to solve these problems.

Note that this notion of cryptographic primitives differs somewhat from
some textbooks and introductions, which often include some schemes with
arbitrary input sizes, like hash functions or MACs, in the list of primitives,
but inexplicably exclude others, such as encryption modes. This does not
reflect the fact that most cryptographic schemes in use for arbitrary-sized
inputs are essentially modes of operation for one of the primitives discussed
below, and often reduce their security claims to claims for this primitive.

This thesis focuses on the following four symmetric primitives.

Block ciphers: A b-bit block cipher with k-bit key is a function

E : Fk2 × Fb2 → Fb2,
K,M 7→ C,

called the encryption function, which maps k-bit key K and b-bit plaintext
block M to a b-bit ciphertext block C such that EK = E(K, ·) is a family
of efficiently computable permutations (Figure 2.2). Its inverse is the
decryption function E−1

K = DK such that DK(EK(x)) = x for all x ∈ Fb2:

D : Fk2 × Fb2 → Fb2,
K,C 7→M.

Practically speaking, the block cipher protects the confidentiality of both
the plaintext M (for unknown key K) and of the key K (even if many
plaintext-ciphertext pairs Ci = EK(Mi) are known): An adversary must
not be able to learn any function of either the plaintext or the key with
success probability higher than random guessing and computational effort
significantly lower than 2s operations for some specified security level of s
bits. Here, s is at most equal to the key size in bits, k, due to the generic
approach of exhaustively testing all 2k possible keys.

22

2.1. A Brief Anatomy of Symmetric Cryptology

Most cryptanalytic attacks on block ciphers aim to recover (parts of)
the fixed secret key K. They differ in the data resources that they grant
the adversary: These range from known ciphertexts only, over quantities
of known plaintext-ciphertext pairs, to allowing the adversary adaptively
chosen queries to encryption and/or decryption oracles. In addition, some
applications use block ciphers in ways not covered by the standard fixed-
key security notion, which motivates alternative security notions. Most
prominently, related-key attacks give the adversary additional query ac-
cess to oracles for different keys with a known or chosen relation to the
secret target key. Thus, different attacks can be compared based on their
computational complexity, data or query complexity (qualitatively and
quantitatively), and their objective, such as key recovery.

When block ciphers are employed as primitives in a cryptographic scheme,
their assumed security needs to be phrased in a more concise way that
serves as assumption for the security proof. The standard model for block
ciphers is the pseudo-random permutation (PRP) assumption: to assume
that for any fixed, but unknown keyK that has been randomly selected, the
permutation EK is indistinguishable from a permutation truly randomly
selected from the set of all (2b)! permutations. In this notion, the adversary
can make queries to EK (and DK) for the fixed, unknown key, within
the complexity limits defined by the security level. However, in many
constructions, this model is not useful since the value K used for EK is
not such a fixed, unknown value. Then, a stronger notion such as the ideal
cipher model [Sha49] is necessary to argue the security of the scheme: It
models EK for different keys as independent pseudo-random permutations.
In other words, E(·, ·) is assumed to be picked uniformly at random from

among all (2b!)2k block ciphers. This sounds intuitive, but many practical
ciphers are easily distinguishable in this setting; furthermore, any practical
instantiation can essentially void security proofs in this model [Bla06].

P

x

y

(a) Permutation

E

x

y

K ↔ EK

x

y

(b) Block cipher

Ẽ

x

y

K T ↔ ẼK,T

x

y

(c) Tweakable block cipher

Figure 2.2.: Symmetric cryptographic primitives as permutation families.

23

2. Preliminaries

Tweakable block ciphers: A b-bit tweakable block cipher with k-bit
key and t-bit tweak is a function

Ẽ : Fk2 × Ft2 × Fb2 → Fb2,
K, T,M 7→ C,

which maps a k-bit key K, a t-bit public tweak T , and a b-bit plaintext
M to a b-bit ciphertext C such that ẼK,T = Ẽ(K,T, ·) is a family of effi-
ciently computable permutations (Figure 2.2). Its inverse is the decryption
function Ẽ−1

K,T = D̃K,T .

Tweakable block ciphers generalize the concept of block ciphers by adding
an additional public input, the tweak. This tweak plays a role similar
to the nonces or initialization values of higher-level modes of operation,
and provides additional variation of the individual instances of the cipher
family. The concept was formally introduced by Liskov et al. [LRW02;
LRW11], who argue that it is more naturally suited as a building block for
higher-level modes of operation than block ciphers. Some designs combine
the key and tweak into a k + t-bit “tweakey” that can flexibly be part-
secret, part-public [JNP14b]. The security notions are similar to block
ciphers, except for the tweak T , which is generally under full control of
the adversary.

Cryptographic permutations: A cryptographic b-bit permutation P
is a bijective function

P : Fb2 → Fb2,
x 7→ y,

such that P (and, if required, its inverse P−1) is easy to evaluate.

Due to the lack of a key, it is not easy to define a clear security notion for
unkeyed cryptographic permutations. To be considered secure for cryp-
tographic applications, P must not permit any structural distinguishers.
This includes any properties that are not expected for a randomly chosen
permutation. In particular, P must resist cryptanalysis approaches as
applied to block ciphers, such as linear and differential analysis. A gen-
eral property of particular relevance for permutations is the hardness of
constrained-input constrained-output (CICO) problems defined by Bertoni
et al. [BDPV11a]: Given two sets X ⊆ Fb2 and Y ⊆ Fb2, it should be no
easier than for generic permutations to find an input-output pair (x, y)
such that y = P (x) and x ∈ X , y ∈ Y.

24

2.1. A Brief Anatomy of Symmetric Cryptology

Compression functions: A t-bit (or b+ t-to-t-bit) compression function
is an efficiently computable function

F : Ft2 × Fb2 → Ft2,
Hi−1,Mi 7→ Hi,

which maps a t-bit input chaining value Hi−1 and b-bit message block Mi

to a t-bit output chaining value Hi.

F is generally required to be a one-way function: Given a fixed t-bit output
chaining value Hi, it should be infeasible to find a preimage, that is, an
input chaining value Hi−1 and message Mi such that F (Hi−1,Mi) = Hi.
Additionally, given a solution (Hi−1,Mi), it should be infeasible to find
a second preimage (H ′i−1,M

′
i) 6= (Hi−1,Mi) such that F (H ′i−1,M

′
i) =

F (Hi−1,Mi) = Hi. The generic complexity for finding a preimage or
second preimage for a t-bit compression function is about 2t.

In addition, F is often required to be collision-resistant : It should be infea-
sible to find a collision, that is, a pair of inputs (Hi−1,Mi) 6= (H ′i−1,M

′
i)

such that F (Hi−1,Mi) = F (H ′i−1,M
′
i). The generic complexity for find-

ing a collision for a t-bit compression function is about
√

2t = 2t/2 due
to the birthday paradox [Yuv79]. More specifically, the probability that
there is a collision among q random queries can be approximated by
1− exp(−q2/2t+1) [FO89], as illustrated in Figure 2.3.

0

0.5

1

1 2
t
2
−2 2

t
2 2

t
2
+2 2t−4 2t−2 2t· · · · · ·

Number of queries N

P
ro
b
ab

il
it
y
p

preimage P preimage F collision F

Figure 2.3.: Probability p of a collision or a preimage among N dif-
ferent random queries to an ideal t-bit compression function F or t-bit
permutation P .

25

2. Preliminaries

Constructing primitives. Since cryptographic primitives are the small-
est building blocks that are associated with a cryptographic security level,
they need to be constructed by assembling basic operations. This assem-
bly needs to be both simple enough to allow efficient descriptions and
implementations, but also complicated enough to ensure diffusion and
confusion. To achieve both goals, primitives define a reasonably simple
transformation, the round function, and iteratively repeat this round
function reasonably often with only minor variations. The result is what
Shannon [Sha49] calls a product cipher, combining weak components to
build a strong whole. The concept and design of round functions for
block-based primitives builds on the work of Feistel [Fei70; Fei73; FNS75].
The primary challenge in symmetric cryptography is to make qualified
statements about the security of a function assembled this way.

Each application of the round function Ri updates an internal state of
the primitive from its previous value Xi−1 to a new value Xi. This state
is initialized with an initial state X0, containing (some of) the inputs of
the primitive, such as the plaintext, while (part of) the final output Xr

after r rounds serves as output of the primitive.

For invertible, keyed primitives like block ciphers, the state is usually
further subdivided into a round-key part Ki that is initialized with the
key K and updated by a key schedule function RKi (·) and a data part Xi

that is initialized with the plaintext or permutation input and updated
by a keyed round permutation RPi (·,Ki) for 1 ≤ i ≤ r:

K0 = K, Ki = RKi (Ki−1), (Key schedule)

X0 = M, Xi = RPi (Xi−1,Ki). (Round function)

For tweakable block ciphers, the key schedule K0 may be initialized with
both the key K and the tweak T [JNP14b] or a derived value, or the state
X0 may be initialized with a masked (whitened) plaintext [Rog04a]. For
permutations, the key schedule is reduced to a constant schedule.

K

M

K0

X0

RK
1

RP
1

K1

X1

RK
2

RP
2

K2

X2

· · ·

· · ·

RK
r

RP
r

Kr

Xr
C

EK

Figure 2.4.: Constructing primitives by iterating a keyed round function.

26

2.1. A Brief Anatomy of Symmetric Cryptology

Two of the most useful constructions for invertible, keyed primitives from
round functions are illustrated in Figure 2.5. They represent two different
ideas to construct efficiently invertible round functions, which are necessary
in many constructions using invertible primitives.

The first is the key-alternating construction with a round permutation
Pi. It updates the state with a round key addition of Ki and a bijective
transformation Pi. If the inverse of Pi needs to be efficiently implementable,
Pi is typically an SPN that applies several copies of a small nonlinear
substitution transformation in parallel for confusion and a (sparse) linear
layer for diffusion. For decryption, each layer needs to be individually
inverted, and all layers applied in reverse order.

An alternative construction that avoids inverting layers is the Feistel net-
work, analyzed theoretically by Luby and Rackoff [LR88], and popularized
by the block cipher DES [US 77]. It applies only a half-sized, key-dependent,
not necessarily bijective function Fi to one half of the state and adds the
result to the other half, before swapping halves. Since both the addition
step (using xor) and the swap are involutions, it is easy to invert the
(iterated) round transformation by applying the same operations in re-
verse order. For other addition operations, such as modular addition, the
addition step is no longer involutive, but inversion is similarly simple using
subtraction. In case Fi(X,K) = F̃i(X ⊕K), this can be seen as a special
case of the key-alternating construction. The Feistel construction can be
generalized in several ways for mixed addition operations (as in many
ARX designs), for more than two branches, including parallel addition
steps, expanding and contracting F -functions, and more.

Pi

Xi−1

Xi

Ki

=

(a) Key-alternating SPN

Fi

Xi−1,L Xi−1,R

Xi,L Xi,R

Ki

(b) Feistel network

Figure 2.5.: Constructing invertible, keyed round functions RPi .

27

2. Preliminaries

Besides building primitives from scratch by iterating weak round functions,
there are also a number of generic constructions to build primitives from
other primitives. Ideally, this allows a security reduction to assert the
security of the new primitive under the assumption that the old primitive
is secure. However, such security reductions unfortunately often come with
a considerable security loss.

Figure 2.6 illustrates two prime examples which we will revisit later
in Chapter 6 and Chapter 7, respectively. The first example is due to
Even and Mansour [EM91; EM97] and was refined by Dunkelman et al.
[DKS12]. They propose to build a block cipher E : K,M 7→ C from a
public permutation P with the same block size by adding the key K as a
whitening key before and after applying the permutation to the plaintext:

C = EK(M) := P (M ⊕K)⊕K.

Similar to other constructions that merge a public and a secret input, such
as the XE/XEX construction of a tweakable block cipher from a block
cipher [Rog04a], this only offers birthday-level security [Dae91]. A closely
related idea is the FX construction as proposed in DESX by Rivest in
order to increase the key size, with related problems [KR96; KR01].

The second construction, proposed by Davies and Meyer and proven secure
by Winternitz [Win84], is one of several notable approaches [PGV93b] to
build an n-bit compression function F from an n-bit block cipher EK (or
permutation P , for b = 0):

Hi = F (Hi−1,Mi) := EMi(Hi−1)⊕Hi−1.

P

M

C

K

EK

(a) Even-Mansour: EK from P

E

Hi−1 Mi

Hi

F

(b) Davies-Meyer: F from EK

Figure 2.6.: Constructing primitives from other primitives.

28

2.1. A Brief Anatomy of Symmetric Cryptology

The separation between constructions of primitives from (weak) round
functions and other (strong) primitives is not always as clear as outlined
above. For example, there is a significant body of literature analyzing the
security of Feistel networks (Figure 2.5b) assuming idealized, independent
functions Fi. Similarly, idealizing the permutations Pi in key-alternating
constructions (Figure 2.5a) leads to an iterated generalization of the
Even-Mansour construction (Figure 2.6a), which has in turn been studied
intensively.

2.1.3. Cryptographic Schemes

Cryptographic schemes provide cryptographically well-defined security
levels not only for small, fixed-size artificial units like blocks, but for
practically relevant inputs. They process arbitrary-length inputs such
as they naturally occur in applications, and may consider additional
implementation constraints, such as inputs whose full value or even length
is not yet known when computation starts. To achieve this, schemes build
on top of cryptographic primitives and iteratively apply them to process
subsequent parts of the input. Ideally, the scheme will provide a reduction
proof or convincing arguments that show that the scheme preserves (part
of) the security level of the underlying primitives (up to some security
degradation, which may depend for example on the number of processed
message blocks or the bitsize of each block).

Encryption schemes: A symmetric encryption scheme with k-bit key
and n-bit nonce is a function

E∗ : Fk2 × Fn2 × F∗2 → F∗2,
K,N,M 7→ C,

called the encryption function, which maps a k-bit key K, n-bit nonce N ,
and plaintext M of arbitrary length m to a ciphertext C of arbitrary length
c = c(m) such that E∗NK = E∗(K,N, ·) is a family of efficiently computable
injective functions. Its inverse is the decryption function (E∗NK)−1 = D∗NK
such that D∗NK(E∗NK(x)) = x for all x ∈ F∗2:

D∗ : Fk2 × Fn2 × F∗2 → F∗2,
K,N,C 7→M.

29

2. Preliminaries

Note that E∗ may impose a (generous) limit on the length of M ∈ F∗2,
and that E∗ is not necessarily surjective, so some values in F∗2 may not be
valid ciphertexts and cause an error ⊥ when decrypting. For simplicity of
notation and to avoid confusion with cryptographic verification of integrity,
we nevertheless use F∗2 to denote both the domain and the codomain of
ENK for any K,N .

Intuitively, an encryption mode extends the security notion of block ci-
phers from fixed-length messages to arbitrary-length messages. Like block
ciphers, encryption schemes protect the confidentiality of the plaintext M
and key K. An additional input, the nonce N (or initial value IV), serves
to randomize the ciphertext and thus hide plaintext equality. Schemes
usually require that the nonce never repeats (“nonce-based”), and may
impose additional requirements, such as random, unpredictable nonces
(“IV-based”, for example in CBC). The above definition of (nonce-based)
encryption schemes surfaces this nonce as an input to the encryption
function E∗, as suggested by Rogaway [Rog04b], thus making E∗ a de-
terministic, stateless algorithm. A more classic approach, inspired from
analogy with asymmetric schemes [GM82; BDJR97], is to let E∗ = E∗$
be a probabilistic algorithm that generates N by itself using internal coin
tosses and explicitly or implicitly yields it as an output as part of the
ciphertext C:

E∗$: Fk2 × F∗2
$→ F∗2,

K,M
$7→ C.

Several security notions have been proposed to formalize and generalize
the requirements for a secure encryption scheme, starting with the seminal
work of Goldwasser and Micali [GM82; GM84] on the semantic security of
probabilistic asymmetric encryption schemes. This central concept requires
that an adversary cannot efficiently extract any partial information about
the message from a ciphertext that she could not obtain without the
ciphertext. While semantic security captures the intuitive requirements
well, it is typically very hard to prove for a specific construction. Fur-
thermore, the original notion only considered passive adversaries which
cannot obtain other plaintext-ciphertext pairs. Instead, it has proven more
useful to consider notions based on indistinguishability (IND), where the
adversary interacts with one of two oracles and has to decide which one it
is. The advantage of an adversary is the difference between her success
probability and the success probability 1

2 of a random guess, and should
be negligible for an adversary with reasonable resources.

30

2.1. A Brief Anatomy of Symmetric Cryptology

The adversary has to distinguish an oracle that encrypts one or more
plaintexts of the adversary’s choice from one which responds with ran-
dom strings (IND$ [RBBK01]), which encrypts random strings (Real-or-
Random [BDJR97]), or which encrypts a second provided chosen plaintext
(Find-then-Guess [GM84; BDJR97], Left-or-Right [BDJR97]). The oracle
may provide different levels of access to the encryption and decryption
functions, ranging from no access to fully adaptive access, except queries
that would lead to a trivial win. For example, the following levels are
usually considered for a Find-then-Guess adversary, who has to decide
whether a challenge ciphertext C encrypts plaintext M0 or M1: IND-CPA
(chosen plaintexts) allows queries to the encryption function E∗·K ; IND-
CCA1 (chosen ciphertexts) allows the queries of IND-CPA, plus queries
to the decryption function D∗·K , although these queries need to be made
before receiving C; and IND-CCA2 (adaptive chosen ciphertexts) allows
the queries of IND-CCA1, plus queries for any ciphertext except C after
receiving C. Several authors have categorized and analyzed the relations
between different access levels [KY00a] and indistinguishability games
[BDJR97; Rog11]. Cryptanalysis efforts, on the other hand, have focused
primarily on key recovery and, to a lesser degree, on plaintext recovery.

Two popular modes to construct an encryption scheme from a block cipher
are illustrated in Figure 2.7, and two modes for permutations in Figure 2.8.
In the remainder of this thesis, they will primarily make an appearance
as building blocks of authenticated encryption modes, such as GCM and
CCM in Chapter 6. To process messages M of arbitrary length, all modes
chop the message into blocks M = M1‖M2‖ · · · ‖M` of a predefined length,
such as the block length of the underlying block cipher. Note that the
descriptions below are simplified and omit details of the original schemes,
such as padding rules or detailed considerations about block lengths.

• Cipher Block Chaining mode (CBC) was introduced in a patent
by Ehrsam et al. [EMST76] and standardized by the US National
Bureau of Standards [US 80] as one of the modes recommended for
encryption with DES. Messages are encrypted block by block, but
each message block Mi is modified by adding the previous ciphertext
block Ci−1 (or the nonce C0 = N for the first block) before the block
cipher call:

Ci = EK(Mi ⊕ Ci−1), C0 = N, (Encryption)

Mi = DK(Ci)⊕ Ci−1. (Decryption)

31

2. Preliminaries

EK EK · · · EK

M1

C1

M2

C2

M`

C`

N

· · ·

· · ·
(a) Cipher block chaining (CBC)

EK EK · · · EK

N‖1

M1

C1

N‖2

M2

C2

N‖`

M`

C`

· · ·

· · ·
(b) Counter (CTR)

Figure 2.7.: Encryption modes based on a block cipher EK .

Note that CBC requires a random, unpredictable initial value N
(or some algorithmic changes, such as C0 = EK(N)) in order to
achieve IND-CPA security and similar notions when instantiated
with an idealized version of EK [BDJR97], and that it does not
achieve IND-CCA2. Notable properties of CBC include its paralleliz-
able decryption (though encryption is strictly sequential), and the
necessity of padding the message of original length m to a multiple
m∗ = ` · b ≥ m of the block cipher’s message block length b, which
will also be the length c = m∗ of the ciphertext C. Padding and the
ensuing ciphertext expansion can be avoided by a variety of tech-
niques such as ciphertext stealing (CTS), also standardized by NIST
[Dwo10], but these may introduce their own complications regarding
domain separation and similar issues [RWZ12]. Other frequently
cited properties of CBC, such as its “error propagation” and its
self-synchronization, are somewhat less relevant for contemporary
protocols, since these aspects are usually handled on a different layer
in the protocol stack.

• Counter mode (CTR) was first discussed by Diffie and Hellman
[DH79] and later standardized as one of the recommended modes for
AES [Dwo01]. Counter mode produces a key-stream by encrypting
successive nonce-dependent counter values, and adds this key-stream
to the plaintext to produce the ciphertext blocks:

Ci = EK(N‖i)⊕Mi, (Encryption)

Mi = EK(N‖i)⊕ Ci. (Decryption)

In contrast to CBC, both encryption and decryption are fully par-
allelizable, and the inverse block cipher DK is not necessary for

32

2.1. A Brief Anatomy of Symmetric Cryptology

P P · · · P
0

0

K‖N

M1

C1

M2

C2

M`

C`

(a) Sponge stream cipher

P P · · · P
0

0

K‖N M1 C1 M2 C2 M` C`

(b) Duplex sponge encryption

Figure 2.8.: Encryption modes based on a permutation P .

implementing decryption. Furthermore, there is no need to pad the
message to a multiple of the block length, since the key-stream can
be truncated to arbitrary plaintext length m. If N is random and
unpredictable, the concatenation N‖i can be replaced by N ⊕ i or
similar while maintaining IND-CPA security.

• Sponge-based stream ciphers were proposed by Bertoni et al. [BDPV07;
BDPV08]. In these constructions, an internal state is initialized with
the key K and nonce N , as in classical stream ciphers, and iteratively
updated by applying an unkeyed permutation P . The key-stream is
generated by extracting part of this state (the outer part), whereas
the rest (the inner part) remains internal. Like other stream ciphers,
this mode does not require the inverse of the internal primitive, and
no message padding is required. Unlike CBC and CTR, N can be
implemented as a counter or a similarly predictable unique value
without affecting IND-CPA security.

• Duplex sponge encryption schemes were introduced by Bertoni et
al. [BDPV11b] as a useful building block for authenticated ciphers.
Unlike the stream cipher construction, the state is updated to depend
on all previous message blocks, which allows re-using the final state
to derive an authentication tag.

33

2. Preliminaries

Hash functions: A t-bit hash function is a function

H : F∗2 → Ft2,
M 7→ T,

which is efficiently computable and maps a message M of arbitrary length
m to a t-bit hash digest T . Like encryption schemes E∗, hash functions
H may impose a (generous) limit on the length of M ∈ F∗2.

Intuitively, a hash function extends the security notion of compression
functions from fixed-length messages to arbitrary-length messages, and
protects the integrity of the message M . Necessary conditions for a secure
hash function are specified by Rabin [Rab78] and Merkle [Mer79]: Preimage
resistance requires that, given H and a digest T , it must be infeasible to
find a message M such that H(M) = T . Here, depending on the author,
the challenge T is either sampled uniformly from all possible digests, or by
hashing a uniformly sampled message, or can also be any fixed value such as
0 (sometimes called zero-resistance). Second-preimage resistance requires
that, given H and a message M , it must be infeasible to find a different
message M ′ 6= M such that H(M ′) = H(M). Collision resistance requires
that, given H, it must be infeasible to find any two different messages
M and M ′ 6= M such that H(M) = H(M ′). These three conditions are
clearly necessary for the primary applications of hash functions, such as
the hash-then-sign paradigm. Other, related requirements have been put
forth in the meantime to support a variety of applications, such as the
construction of keyed message authentication codes (MACs) from hash
functions. For example, the SHA-3 call [Kay07] requires that candidate
submissions must be resistant to length-extension attacks, and that the
three basic requirements also hold for any k-bit subset of the hash digest
(with the definition of “infeasible” adapted accordingly).

Formal security notions, on the other hand, are harder to come by, since
notions like “collision resistance” are hard to formalize in absence of a key
or function family. Indeed, treating hash functions as families of functions
in spite of practical reality is the preferred view both in some theory papers
(e.g., for studying the basic security notions) and in some more application-
oriented papers (e.g., to prevent the security degradation of preimage
resistance in a multi-target setting, similar to salting). Formalized versions
of the three intuitive security requirements and implications between these
notions have been studied, among others, by Stinson [Sti06] and Rogaway
and Shrimpton [RS04]. The idealized version of hash functions is the
(truncated) random oracle, which consistently returns a random digest for

34

2.1. A Brief Anatomy of Symmetric Cryptology

any queried message. While random oracles are useful as a tool for proofs,
they can unfortunately not be substituted with any fully specified hash
function without risking total loss of security [CGH04]. The indifferentia-
bility notion [MRH04] provides a useful framework to prove the soundness
of a hash construction by showing its indistinguishability from a random
oracle even for an adversary who can additionally query the underlying
public primitives, such as compression functions or permutations.

Two constructions for hash functions from either compression functions
or permutations are sketched in Figure 2.9, omitting details like padding.

H0=0 F F · · · F H`=T

M1 M2 M`· · ·

(a) Merkle-Damg̊ard

P P · · · P
SA
0 =0

SC
0 =0

SA
` =T1

M1 M2 M`· · ·

(b) Sponge

Figure 2.9.: Hashing using a compression function F or permutation P .

• The Merkle-Damg̊ard (MD) construction (Figure 2.9a) was originally
proposed by Merkle [Mer79] and later proved secure independently
by Damg̊ard [Dam89] and Merkle [Mer89]. Implemented in MD5,
SHA-1, and SHA-2 variants, it is currently the most widely used hash
construction. To compute the t-bit hash value T , this construction
iteratively updates a chaining value Hi using a (t+ b)-to-t-bit com-
pression function F and the b-bit message blocks Mi. H0 is initialized
with a constant initial value (IV), denoted by 0 in the following.
Then, T is derived from the final H` with a finalization function τ
(usually the identity mapping, or truncation if |T | < |H`|):

H0 = 0,

Hi = F (Hi−1,Mi), 1 ≤ i ≤ `,
T = τ(H`).

35

2. Preliminaries

The MD construction allows lifting several properties of the com-
pression function F , most notably its collision resistance, to the
hash function H. A necessary prerequisite is that M is padded to
M1‖ · · · ‖M` by appending an MD-compliant padding, i.e., two mes-
sages of the same length must be padded to the same length; and
for two messages M , M ′ with different length, M` 6= M ′`′ [GB08,
p. 145]. The classical padding scheme, also called Merkle-Damg̊ard
strengthening, is to append a fixed-size representation of the length
of M , preceded by a 1-bit plus the necessary number of zeros to fill
to the next multiple of the block size b.

Note that conversely, finding a collision for F , that is, a pair
(Hi−1,Mi) 6= (H ′i−1,M

′
i) such that F (Hi−1,Mi) = F (H ′i−1,M

′
i),

does not necessarily imply finding a collision for H, that is, a pair
M 6= M ′ such that H(M) = H(M ′). A collision for F is also called
a free-start collision for H (if Hi−1 6= H ′i−1), or a semi-free-start
collision (if Hi−1 = H ′i−1 6= 0 or the specified IV) [LM92]. While
(semi-)free-start collisions usually do not directly threaten the secu-
rity of H, they can be a useful indicator to judge how the security
margin of H holds up to cryptanalytic advances.

The original, “narrow-pipe” MD construction updates an internal
state Hi of the same size t as the final hash value. However, this
approach has some shortcomings, and inner collisions in Hi can be
exploited in several generic attacks that target both the classical
security requirements and additional properties. Examples include
multicollisions [Jou04] and related results, such as second preimages
for long messages [Dea99; KS05] and chosen-target forced-prefix
preimages [KK06].

An obvious countermeasure is to increase the size of the chaining
variable and to use, for example, a “wide-pipe” 2t-bit compression
function and to obtain the t-bit hash value by compressing or trun-
cating H` accordingly [Luc05; CDMP05]. However, this invalidates
the reduction proof of the original construction. The approach is
illustrated, for example, by the SHA-512/t members of the SHA-2
family, which implement the chop-MD construction [CDMP05]. It
is worth noting that while all these attacks are faster than the cor-
responding generic attacks on a random oracle, they are no faster
than collision attacks, and simply show that more applications than
previously expected require collision-resistant hash functions.

36

2.1. A Brief Anatomy of Symmetric Cryptology

• The sponge construction (Figure 2.9b) was originally introduced as a
theoretical model for hash functions [BDPV07] and proved indifferen-
tiable by Bertoni et al. [BDPV08], but the design and standardization
of Keccak/SHA-3 [BDPV11d; Dwo15] have also demonstrated its
value for practical designs. Unlike the Merkle-Damg̊ard construction
or block-cipher–based encryption schemes, the sponge does not try
to lift specific security properties, such as collision-resistance, from
the underlying primitive to the scheme. Instead, it builds on the
most generic primitives: random permutations P (P-sponge) or ran-
dom arbitrary transformations (T-sponge). The input and output
space of P are each written as the direct product A× C of an outer
part A (r bits, the rate) and an inner part C (c bits, the capacity).
The state Si = (SAi , S

C
i) is updated as follows to produce the tag

T = T1‖T2‖ · · · , which can be truncated to the desired length t:

S0 = (0, 0) (Initialization)

Si = P (SAi−1 ⊕Mi, S
C
i−1), 1 ≤ i ≤ ` (Absorbing)

S`+i = P (S`+i−1), 1 ≤ i (Squeezing)

Ti = SA`+i−1

Distinguishing this construction from a random oracle requires the
detection of inner collisions in C. This is reflected in the flat sponge
claim, which states that “the success probability of any attack should
be smaller than or equal to the maximum of that for a random
oracle and 1− exp(22y−(c+1)), with N = 2y the number of calls to
the round function (or its inverse)” [BDPV07]; in other words, the
sponge provides the expected security up to about 2c/2 queries.

Authentication schemes: A t-bit message authentication code (MAC)
is an efficiently computable function H which maps k-bit key K and a
message M of arbitrary length m to a t-bit tag T :

H : Fk2 × F∗2 → Ft2,
K,M 7→ T.

The MAC protects the authenticity of messages: To confirm that a received
message M and tag T were produced by an owner of key K, the MAC is
recomputed as T ′ = HK(M), and the resulting tag checked for equality
T = T ′. We refer to this use of the function H as an authentication
scheme, which provides an authentication function A∗ : M 7→ (M,T)
and the verification function V ∗ : (M,T) 7→ M or ⊥ as defined above,

37

2. Preliminaries

where ⊥ signifies the failure event T 6= T ′. In contrast to encryption,
authentication schemes require no nonce N to achieve their security goals,
but may support nonces to enable composition with encryption schemes.

The expected security for an authentication scheme can be described in
similar terms as that of a signature scheme [BKR94], and is captured by
the (strong) unforgeability (SUF-CMA) notion: An adversary who can
obtain A∗(M) for adaptively chosen messages M of her choice should
be unable to produce a pair (M,T) that was not obtained from A∗ as a
reply to a query, but is nevertheless accepted by V ∗ (with non-negligible
probability). Note that if HK is a probabilistic function, then the adversary
even succeeds if she can produce a new, different tag T ′ 6= T for a previous
query response (M,T) such that (M,T ′) is accepted by V ∗.

We very briefly illustrate two well-known example constructions in Fig-
ure 2.10 due to their role as building blocks for authenticated encryption.

• Plain CBC-MAC (Figure 2.10a) [Nat85] is based on CBC encryption,
but returns only the last ciphertext block as tag. Note that the plain
version is insecure and needs to be tweaked, e.g., by prepending the
message length, or additional processing of the tag [BKR94].

• GMAC (Figure 2.10b) [MV04; Dwo07] is an example of a very
different approach. The underlying iterative construction is the
universal hash function with final nonce-based mask introduced
by Carter and Wegman [CW77; WC81]. This function essentially
evaluates a polynomial in the secret variable EK(0) using Horner’s
scheme, with polynomial coefficients given by the (length-padded)
message M , plus a constant coefficient EK(N) that depends on a
nonce N .

EK EK · · · EK

M1 M2 M`

T

0

· · ·

(a) Plain CBC-MAC

M1 M2 M`· · ·

· · ·

· · ·

0

EK

EK

N

T

(b) GMAC

Figure 2.10.: Message authentication codes based on a block cipher EK
and finite-field multiplications ⊗.

38

2.1. A Brief Anatomy of Symmetric Cryptology

Authenticated encryption schemes: An authenticated encryption sche-
me with associated data (AEAD) is a function

E : Fk2 × Fn2 × F∗2 × F∗2 → F∗2 × Ft2,
K,N,A,M 7→ C, T

which maps a k-bit key K, n-bit nonce N , associated data A of arbitrary
length a, and a message M of arbitrary length m to a ciphertext C of
length c = c(m) and a t-bit tag T such that EN,AK = E(K,N,A, ·) is a

family of efficiently computable, injective functions. Its inverse (EN,AK)−1 =

DN,AK = D(K,N,A, ·, ·) for each K,N,A defines the corresponding verified

decryption function such that DN,AK (EN,AK (M)) = M for all plaintexts M ,

and DN,AK (·, ·) = ⊥ for all other inputs:

D : Fk2 × Fn2 × F∗2 × F∗2 × Ft2 → F∗2 ∪ {⊥},
K,N,A,C, T 7→M or ⊥.

An authenticated encryption scheme meaningfully combines an encryption
scheme and an authentication scheme, thus protecting both confidentiality
and authenticity of data. In fact, it has been repeatedly suggested to use
authenticated encryption instead of pure encryption even when confiden-
tiality is (or seems to be) the only security goal [BU02; DP07; Rog11].
For example, schemes that only provide IND-CPA are highly sensitive
to innocent implementation decisions, like error messages [Vau02]. On
the other hand, an encryption scheme that is also unforgeable provides
security against adaptive chosen ciphertext attacks [KY00b].

Like pure encryption schemes, authenticated encryption schemes and
their security notions were originally formalized in terms of probabilistic
algorithms [BN00; KY00b]. The explicit, user-controlled nonce [RBBK01;
Rog04b] and associated data [Rog02] are later additions. The CAESAR
call proposes an additional optional input, the secret message number,
but this has not yet found widespread adoption [CAE13; NRS13].

The confidentiality notions of indistinguishability extend quite naturally
from encryption to authenticated encryption. For authenticity, the unforge-
ability notions need to be adapted such that a forgery consists either of a
ciphertext plus the corresponding tag for a new, not previously queried
message (integrity of plaintexts, INT-PTXT), or of a new ciphertext with
tag that was not previously returned as a result to any query (integrity of
ciphertexts, INT-CTXT).

39

2. Preliminaries

A succinct all-in-one security notion that covers both properties was
proposed by Rogaway and Shrimpton [RS06]: The adversary is given
access either to a pair of authenticated encryption and verified decryption
oracles (EK ,DK), or to a pair of oracles ($,⊥), where $(·) returns a
random string of the correct length, and ⊥(·) returns ⊥ on every input.
The distinguishing advantage is defined as the difference between the
adversary’s success probabilities (i.e., probabilities of returning 1) in
these two cases. It should be negligible for any adversary with reasonable
resources as long as the queries to the first oracle are nonce-respecting and
no outputs of the first oracle are forwarded to the second oracle. While
originally proposed to formalize misuse-resistant authenticated encryption
(MRAE), where the adversary is not limited to nonce-respecting queries,
the notion works just as well for nonce-based schemes.

From a cryptanalysis perspective, the adversary’s goal is to forge valid
ciphertexts with tag or recover the key (or, more rarely, learn information
about the plaintext). Attacks are quantified in terms of the number, type
and size of required queries, computational complexity, and success proba-
bility, but also in terms of damage potential, with key recovery the worst
case. While any forgery breaks the cipher’s authenticity, forgery attacks are
sometimes further subclassified into existential (the attacker may not even
know the plaintext), selective or chosen-plaintext (the attacker adaptively
chooses the plaintext during the attack), almost universal (meaningful
plaintexts), and universal or random-plaintext forgeries (the attacker can
forge for all plaintexts, a total break) [KY00b].

A general approach for obtaining authenticated ciphers is by functional
composition of an encryption scheme E∗ and an authentication scheme A∗

(or MAC). Figure 2.11 illustrates the three classic generic compositions:
Encrypt-then-Authenticate (EtA), Encrypt-and-Authenticate (E&A), and
Authenticate-then-Encrypt (AtE). In all three variants, associated data
can be included as an additional (properly domain-separated) input to A∗,
and both E∗ and A∗ may be probabilistic algorithms or include a nonce.

E∗
K A∗

K′M
C

C

T

(a) Encrypt-then-Auth.

E∗
KA∗

K′M
M

C

T

(b) Encrypt-and-Auth.

A∗K′
E∗K

M
M

T ′
C

T

(c) Auth.-then-Encrypt

Figure 2.11.: Generic compositions for authenticated encryption.

40

2.1. A Brief Anatomy of Symmetric Cryptology

Krawczyk [Kra01] and Bellare and Namprempre [BN00; BN08] analyzed
the generic security of these constructions for probabilistic E∗K and found
that only EtA is generally secure for secure A∗K′ and E∗K with independent
keys K,K ′. The security of AtE and E&A depends on details of A∗ and E∗

beyond the usual security notions. Namprempre et al. [NRS14] revisit the
question for nonce-based E∗K , which is much more relevant for practical
schemes, and show more differentiated results. Several of the most popular
authenticated ciphers are instances of such generic compositions:

• Counter-with-CBC-MAC mode (CCM) was designed by Whiting et al.
[WHF03] and standardized by NIST [Dwo04]. It essentially combines
CBC-MAC (Figure 2.10a) of the nonce N and message length m,
followed by data A and message M , in an Authenticate-then-Encrypt
construction with CTR encryption (Figure 2.7b) of the message M
and tag T . Possible disadvantages include the need for two block
cipher calls per block and knowing m and N in advance.

• Galois/Counter mode (GCM) by McGrew and Viega [MV04; Dwo07]
is an Encrypt-then-Authenticate construction using CTR encryption
of M (Figure 2.7b) and GMAC of A and C (Figure 2.10b). It fixes
some criticized properties of CCM by processing a,m,N after A,C,
and replacing block cipher calls with finite-field multiplications.

More recent designs, including several of the CAESAR round-3 candidates
[CAE16], show that dedicated constructions can be very competitive both
in terms of efficiency and in terms of simplicity:

• Tweakable block cipher (TBC) variants of standard modes, such
as TAE [LRW02; LRW11] and ΘCB3 [KR11b] of OCB, may permit
simpler proofs than the original block cipher (BC) variants. Dedi-
cated TBC modes like SCT [PS16] address one of the main issues
of BC modes by providing beyond-birthday security, besides other
features. On the downside, generic constructions for TBCs from BCs
like XE/XEX [Rog04a] either need more than one BC call, or provide
only birthday-level security [Men15; WGZ+16].

• Duplex schemes as proposed by Bertoni et al. [BDPV11b] achieve
authenticated encryption with almost no overhead compared to
encryption (Figure 2.8b) by squeezing the tag from the sponge state
after the final ciphertext block (Figure 2.12a). The approach is easily
adapted to accommodate intermediate tags, variable-length variants
of (K,N,A) (SUV: secret unique value), etc., as illustrated by round-
3 CAESAR candidates Keyak [BDP+16b] and Ketje [BDP+16a].

41

2. Preliminaries

Keyed sponges like the KeyedSponge [BDPV11c] and keyed Duplex
[BDPV11b] can process data more efficiently than unkeyed sponges.
The first reason is that a dedicated proof not based on sponge indif-
ferentiability reveals that keyed sponges can provide security beyond
the birthday bound on the capacity c, as long as the online data
complexity remains well below this birthday bound 2c/2 [BDPV11c;
JLM14]. In particular, Andreeva et al. [ADMV15] show that the
time complexity is at least min{2k, 2c/µ}, where µ is the multiplicity
[BDPV10b], which is usually very small for nonce-based schemes.

The second reason is that keyed sponges can securely absorb more
data per permutation call by using not just the outer part, but
also the inner part to absorb. First proposed for the DonkeySponge
MAC by Bertoni et al. [BDPV12], this idea was also generalized to
associated data in duplex sponges by Sasaki and Yasuda [SY15]. The
most general variant is FSW, the Full-state SpongeWrap variant (Fig-
ure 2.12b), specified and proved secure by Mennink et al. [MRV15].
It concurrently absorbs associated data blocks Ai in the inner part
and message blocks Mi in the outer part, or, if the number of Ai
blocks is larger than of Mi, absorbs A in both the inner and outer
part (minus a few frame bits for padding and domain separation).

P · · · P · · · P · · · P · · ·0

K‖N

Initialize

Ai

Process A

Mi Ci

Process M

Ti

Produce T

(a) MonkeyDuplex (SpongeWrap with N , simplified)

P · · · P · · · P · · · P · · ·0

K‖N

Initialize

Mi Ci

Ai

Process A,M
concurrently

A`+i

Process A

Ti

Produce T

(b) FSW (Full-state SpongeWrap, simplified)

Figure 2.12.: Authenticated encryption modes based on permutation P .

42

2.2. Differential Cryptanalysis

2.2. Differential Cryptanalysis

Differential cryptanalysis is one of the most effective and most versatile
cryptanalytic techniques for analyzing symmetric primitives. The approach
was introduced for the analysis of DES by Biham and Shamir [BS90; BS91;
BS93], culminating in the first attack faster than brute-force for full-
round DES [BS92] (given sufficient amounts of chosen plaintexts). The
latter result is particularly noteworthy in the light of later revelations
regarding the design criteria of DES [Cop94], which show that IBM and
NSA were already aware of elements of this attack as early as 1974,
and strengthened the cipher accordingly. Since then, defending against
differential cryptanalysis has been one of the primary security requirements
for new designs. However, differential cryptanalysis has proven to be
exceptionally versatile, which means that variants and generalizations of
the attack may succeed even when the original attack does not.

In the most general sense, differential cryptanalysis considers pairs of
inputs with some fixed relation or “input difference”, and analyzes the re-
sulting difference relation of the outputs produced by the (round-reduced)
cryptographic primitive. This can be done by tracing the effect of each
internal operation on the differences in intermediate variables of the com-
putation. The resulting statistical information about the output difference,
such as particular differences with very high probability, can then be used
to thwart the security aims of the primitive, for example by recovering
the secret key or finding collisions.

In Section 2.2.1, we introduce the necessary notation and background
to investigate the effect of local operations and their composition, such
as a network of S-boxes, with respect to differences. In Section 2.2.2, we
show how the differential behavior of several rounds can be exploited
to thwart the security aims of different primitives, in particular block
ciphers and compression functions. This motivates Section 2.2.3, where we
discuss approaches to identify (as an attacker) or prevent (as a designer)
exploitable differential behavior. Finally, in Section 2.2.4, we discuss
generalizations of and concepts related to differential cryptanalysis, such
as truncated and higher-order differentials, which may be applicable even
when a primitive appears secure against standard differential attacks.

43

2. Preliminaries

2.2.1. Basic Operations: A Differential View

In differential cryptanalysis, we consider pairs of two variables x and x∗,
and evaluate our knowledge of the relation, or difference ∆x, between
these values. Usually, for bitstrings x, x∗ ∈ Fn2 , this difference is defined in
terms of the bitwise exclusive-or operation ⊕ and is thus itself a bitstring:

∆x = x∗ ⊕ x.

If x and x∗ are inputs to two instances of some cryptographic function f ,
we are interested in the resulting difference ∆y of the two outputs y, y∗:

∆y = y∗ ⊕ y = f(x⊕∆x)⊕ f(x).

The analysis of DES by Biham and Shamir [BS90] laid the foundations
for systematically analyzing ∆y and its dependency of ∆x, as well as
possibilities to exploit information on ∆y. Similarly defined differences
also appear in the analysis of FEAL [Boe88; Mur90]. This difference notion
is also easily generalized to other groups [LMM91]; one example of interest
is the modular difference x∗ � x := x∗ � x− induced by modular addition
� of x, x∗ ∈ Z2n with corresponding additive inverse (·)−, as used in
the attacks on the MD4/MD5 family [Dob96]. Unless noted otherwise,
difference refers to exclusive-or in the remainder of this section.

Derivation of Boolean functions

Let f be some operation, written as a (vectorial) Boolean function f :
Fn2 → Fm2 . For a fixed input difference ∆x, the output difference ∆y
depends on the value x. Thus, for any fixed α = ∆x ∈ Fn2 , this induces
another function on Fn2 , the forward directional derivative by α:

∆αf(x) := f(x⊕ α)⊕ f(x).

One reason for the success of differential cryptanalysis is that these deriva-
tives ∆αf may be more amenable to analysis than the initial function
f . This derivation operator shares many properties with the derivations
of differential calculus, including its linearity (“sum rule”) and a variant
of Leibniz’s rule (“product rule”, with respect to bitwise multiplication)
[Lai94]. In particular, if f is a Boolean function and deg f denotes its
algebraic degree, then

deg ∆αf ≤ deg f − 1.

44

2.2. Differential Cryptanalysis

Differential cardinality, probability, and propagation

Even if the value x is unknown, we can still derive some statistical informa-
tion about the possible values of ∆αf(x). We refer to a pair of candidate
values for the input difference α = ∆x ∈ Fn2 and the output difference
β = ∆y ∈ Fm2 as a differential δ = (α 7→ β). The solution set S(α, β) of
the differential with cardinality s(α, β) := |S(α, β)| is then

S(α, β) := {x ∈ Fn2 : ∆αf(x) = f(x⊕ α)⊕ f(x) = β} .

We call the differential impossible if s(α, β) = 0, and possible otherwise.
For example, for α = 0, only the trivial differential (0 7→ 0) is possible.
Pairs (x, x⊕ α) with x ∈ S(α, β) are called valid. Note that some authors
count the cardinality of the set of unordered pairs {x, x⊕α} = {x⊕α, x},
leading to an alternative cardinality notion s̃ = s/2 (if α 6= 0) [DR07].

If n,m are not too large, all values (s(α, β))α∈Fn
2 \{0},β∈Fm

2
can be computed

and stored in a table, the differential distribution table (DDT) [BS90]. The
multiset of values in this table is referred to as the differential spectrum
of f , and its maximum as the differential uniformity duf of f [Nyb93]:

duf := max
α 6=0,β

s(α, β).

Cardinalities s(α, β) are even, so duf ≥ 2. Furthermore,
∑

β s(α, β) = 2n,
so if n ≤ m, then for any α, s(α, β) = 0 for at least half of all values β.
Functions with m = n and duf = 2 are called almost perfect nonlinear
(APN) and have been proposed for designing ciphers resistant against
differential cryptanalysis [NK92; NK95]. Unfortunately, all known APN
S-boxes have an odd number of input bits, with the exception of one 6-bit
S-box due to Dillon [BDMW10].

We denote the corresponding probability that f maps an input difference
∆x = α to an output difference ∆y = β for uniformly random x by

dp(α, β) = Px[α
f7→ β] := Px [f(x⊕ α)⊕ f(x) = β] =

s(α, β)

2n
≤ duf

2n
.

The logarithm of a non-zero differential probability is referred to as the
weight, cost, or sometimes as the number of conditions of this differential:

dw(α, β) := − log2(dp(α, β)) ∈ {0, . . . , n− 1} .

Where not clear from the context, we also write Sf (α, β), dpf (α, β), etc.

45

2. Preliminaries

In many cases, it is infeasible to explicitly list the full DDT because n is
too large. It may nevertheless be easy to find dp(α, β) for given α, β. For
example, if f is an F2-affine function f(x) = `(x)⊕ c with linear part `(x)
and the input difference is α = ∆x, then we know that the only one value
β with non-zero probability is β = `(α) = ∆αf(x).

A particularly relevant case is that of addition modulo 2w, w ∈ {32, 64}.
The probability of a differential (α1, α2) 7→ β, with α1, α2, β ∈ Fw2 , was
shown by Lipmaa and Moriai [LM01] to be efficiently computable as

dp(α1, α2, β) = Px1,x2
[
((x1 ⊕ α1)� (x2 ⊕ α2))⊕ (x1 � x2) = β

]
(2.1)

=

{
0, if eq(α1�1, α2�1, β�1) ∧ (α1 ⊕ α2 ⊕ β ⊕ α1�1) 6= 0,

2−hw
(

(¬eq(α1,α2,β))�1

)
else,

where eq(w, x, y) is defined as in Section 2.1.1 and hw(x) denotes the
Hamming weight of x ∈ Fw2 .

In SPN constructions, we encounter another type of function f with large
inputs x = (x1, . . . , xk) ∈ (Fs2)k: A parallel application of several small
s-bit S-boxes Si : Fs2 → Fs2, followed by a linear function ` : Fsk2 → Fsk2 (or
vice-versa). Based on the DDTs of the individual S-boxes, it is very easy
to derive the differential properties of f for any differential δ = (α 7→ β).
Assume f is a permutation and γ = (γ1, . . . , γk) = `−1(β), then

Sf (α, β) = SS1(α1, γ1)× · · · × SSk(αk, γk) ,

dpf (α, β) =
k∏

i=1

dpSi(αi, γi) . (2.2)

We refer to the S-boxes Si with αi 6= 0 as active S-boxes for this differential,
and to the others as inactive. Clearly, only the properties of the active
S-boxes contribute to the overall differential properties of f .

Since many transitions α
f7→ β are impossible, knowing α = ∆x allows

deterministically deriving some information about ∆y without knowing
x, x∗. We refer to this as propagation of information. An explicit char-
acterization of possible α, β such as given above for modular addition is
particularly useful for propagation.

46

2.2. Differential Cryptanalysis

Differential characteristics: Keying and composing components

The notions described so far are useful for functions that are both simple
and known. However, cryptographic targets are usually neither of those. If
we pick a function f : Fn2 → Fm2 uniformly at random from all such func-
tions, then the differential probability dp(α, β) (and, similarly, s(α, β) and
dw(α, β)) of any non-trivial differential δ = (α, β) becomes a stochastic
variable. Daemen and Rijmen [DR07] showed that this variable is dis-
tributed according to a (scaled) binomial distribution 21−n · B(2n−1, 2−m):

Pf
[

dp(α, β) =
k

2n−1

]
= (2−m)k(1− 2−m)2n−1−k

(
2n−1

k

)
,

Ef [dp(α, β)] = 2−m.

For cryptanalysis, we are interested in dp(α, β) for a fixed function, but
this function is selected uniformly at random from a set of functions {fK}
by an unknown key K. Since we cannot compute dp(α, β), we can instead
consider the expected differential probability of the set {fK} [LMM91]:

edp(α, β) := EK [dp(α, β)] = PK,x[α
fK7→ β] = PK,x[fK(x⊕α)⊕fK(x) = β] ,

and hope dp(α, β) ≈ edp(α, β): the hypothesis of stochastic equivalence.
We call α 7→ β an impossible differential of the set {fK} if edp(α, β) = 0.

But how to estimate edp(α, β) for a (large) family of (large) functions? We
are particularly interested in a certain class of function families {fK}: the
key-alternating construction, which iteratively updates the state xi using
a round function xi = Ri(xi−1 ⊕Ki−1) with a round key Ki produced
by the key schedule. This round function is iterated r times to compute
y = fK(x) = fK(x0) = xr ⊕Kr. For simplicity, we also write xi = Ri(x).

The round function Ri(· ⊕Ki) is much simpler than fK , so we assume it
is very easy to characterize the differential behavior of Ri, but very hard
for fK . Then, instead of differentials δ = (α, β) for y = fK(x), we can
consider differential characteristics χ for fK [BS90], in some contexts also
referred to as trails or paths. A characteristic χ is a consistent sequence of
differentials δi for each round function Ri:

χ = (α = χ0, χ1, . . . , χr = β) ,

δi = (χi−1, χi), 1 ≤ i ≤ r .

47

2. Preliminaries

We can now define analoga of the concepts for differentials δ also for
characteristics χ. This includes the fixed-key properties like solution set
S(χ), cardinality s(χ), differential probability dp(χ), and weight dw(χ),
as well as the family property of expected differential probability edp(χ).
All properties are defined as before with respect to the solution set

S(χ) :=
{
x ∈ Fn2 :

∧r
i=1 ∆αRi(x) = Ri(x⊕ α)⊕Ri(x) = χi

}
.

While the fixed-key properties usually remain elusive for the cryptanalyst,
we can derive some family properties under reasonable assumptions. In
particular, if all round keys are independent and uniformly random, then

edp(χ) =
r∏

i=1

edp(δi) . (2.3)

More generally, Lai et al. [LMM91] call any family {fK} of iterated
functions with rounds Ri(·,Ki) a Markov cipher if its round function
satisfies the following property: The probability that a uniformly random
round key Ki maps an input difference χi−1 to an output difference χi is
independent of the input x, i.e., for any x, the family {Ri(·,K)}K satisfies

PK [Ri(x⊕ χi−1,K)⊕Ri(x,K) = χi] = edp(χi−1, χi).

The (expected) probability of a characteristic χ gives a lower bound for
the (expected) differential probability of δ = (χ0, χr), as

edp(χ0, χr) =
∑

χ1

· · ·
∑

χr−1

edp(χ0, χ1, . . . , χr) .

Summarizing, we use the following assumptions and abstractions. First,
we characterize the differential behavior of the unkeyed round function.
The required differential weight dw(χi−1, χi) for any differential can be
obtained, for example, from the DDTs of all active S-boxes for SPN (2.2) or
by counting bitwise conditions for ARX (2.1). Then, we implicitly assume
a key-alternating construction with independent and uniformly random
round keys to replace the key/round-constant schedule and thus obtain
the associated “long-key cipher” [DR07]. We can compute the expected
differential properties of characteristics for this long-key cipher by adding
the differential weights of all round functions (2.3), and hope that this
gives a good approximation for fixed-key properties of most keys. Finally,
if we have found a characteristic χ for the iterated function this way with
probability significantly higher than the generically expected differential
probability 2−m (or 1/(2m− 1) for permutations) of (χ0, χr), we may have
found a useful distinguisher that can be further used in different ways to
break the function’s security properties, as discussed next.

48

2.2. Differential Cryptanalysis

2.2.2. Cryptographic Primitives: A Differential View

Differential characteristics are a remarkably flexible tool for analyzing
the security of various primitives. If we find good characteristics for a
primitive, we can recover confidential information or inject forged data.

Block ciphers

In block ciphers EK : Fb2 → Fb2,M 7→ C, the attacker’s main goal is
to recover the fixed, secret key K by observing or querying plaintext-
ciphertext combinations for this key. There are two primary key recovery
methods, sometimes referred to as 0R and 1R (or 1+R) attacks. Both are
chosen-plaintext attacks and target the last few (or first few) round keys
for an r-round cipher, but they are based on slightly different assumptions.

0R attacks. For 0R attacks [BS90], we require a full r-round charac-
teristic χ with probability dp(χ)� 2−b. We consider the corresponding
differential δ = (χ0, χr). We query the ciphertexts for a large number of
chosen plaintext pairs (M,M∗) with ∆M = χ0 and keep only the pairs
that follow the differential, i.e., those with ∆C = χr. Assuming that the
remaining pairs that follow δ also follow χ, and in particular the last
round follows (χr−1, χr), we can derive the individual differentials (αi, βi)
of the S-boxes (or other nonlinear operations) of the last round. Under
this assumption, the set of possible values for the intermediate variables
at the input and output of each S-box is then limited to the solution set
S(αi, βi). By combining this information with the observed ciphertext
values (C,C∗), we learn a set of possible values for the last round key Kr

and thus reduce the possible key-space. If possible, this process can be
iterated recursively for more than one final round of the characteristic.
Note that the approach will usually produce at least two equivalent key
candidates per S-box due to the structure of the solution sets.

The underlying assumption is that χ is the dominating characteristic for
δ, so if we observe δ, it was most likely produced by χ. To this end, it is
usually assumed that EK behaves like a random function for all inputs
except for the right pairs that follow χ, so the probability that a wrong
pair produces δ is 2−b, and the overall differential probability of δ is about
dp(χ)+2−b. If dp(χ)� 2−b, the necessary data complexity is proportional
to dp(χ)−1 = 2dw(χ) chosen-plaintext pairs to find one or a few right pairs.

49

2. Preliminaries

1+R attacks. For 1R (or 2R, 3R, . . .) attacks [BS90] on an r-round
cipher, we use differentials δ = (α, β) with probability dp(δ) � 2−b

for r − 1 (or r − 2, r − 3, . . .) rounds, instead of characteristics for r
rounds. Such differentials are in practice often found by discovering a
single good characteristic χ for differential (α, β) = (χ0, χr−1) and using it
as a lower bound dp(δ) ≥ dp(χ), but this is no necessity. We again query
the ciphertexts for a large number of chosen plaintext pairs (M,M∗) with
∆M = α, hoping to hit several right pairs that follow δ. We will test this
for every ciphertext pair (C,C∗). Let γ = ∆C. If the differential (β, γ)
is impossible, this is definitely a wrong pair and can be filtered. If (β, γ)
is possible, its solution set S(β, γ) will suggest several candidates for the
last round key, similar to the 0R attack. For a truly right pair, the correct
key will be among these; for an unfiltered wrong pair, it might or might
not be. To efficiently enumerate the candidates, we only guess the relevant
parts of the round key, partially decrypt the last round for both C and C∗,
and upvote the partial key candidate if the resulting difference matches
β. When all data has been processed, we accept the most upvoted key
candidate and brute-force the remaining reduced key-space.

The underlying assumption is the wrong-key randomization hypothesis:
After decrypting the last round of a pair with a wrong key candidate, the
observed difference is uniformly random. In particular, the target difference
β will not stand out, so the associated counter of each wrong key will be
similarly low. The right key, on the other hand, will be suggested by each
of several right pairs in addition to this noise, and the resulting higher
counter will be distinguishable.

The data complexity depends primarily on the expected necessary number
of queries to find one right pair, given by the inverse probability dp(δ)−1,
but several additional parameters must also be taken into account. Unlike
the 0R attack, we cannot eliminate all wrong pairs, so we need enough
data to find several right pairs to ensure that the correct key indeed ends
up as the candidate with the highest counter. A relevant metric in this
context is the signal-to-noise ratio SNR of the key recovery approach,
which gives the ratio between the number of right pairs (a lower bound
for the counter of the correct candidate) and the average counter of the
incorrect candidates. If the number of pairs is N , the number of tested
key candidates is 2k, the average number of suggested key candidates per
pair is A, and the fraction of pairs that survive filtering is B, then [BS90]

SNR =
N · pr

N · pw
=

dp(δ)

A ·B · 2−k .

50

2.2. Differential Cryptanalysis

Based on experiments, Biham and Shamir [BS90] propose to use enough
data for about 20 to 40 right pairs if 1 < SNR ≤ 2, and about 3 to 4 right
pairs if SNR is “much higher”.

Selçuk [SB02; Sel08] analyzes the success probability and its dependency
on the invested data complexity in more detail. He considers a more general
setting where the attack is successful if the correct candidate is among
the top 2k−a out of 2k candidate counters, where a is the advantage of the
attack. Assuming that the counters are independently and approximately
normally distributed with mean and variance µr = (pr + pw)N , σ2

r ≈ µr

(for the right key) and µw = pwN , σ2
w ≈ µw (for each wrong key), he

shows that the necessary number of pairs to succeed with probability p is

N =

(√
SNR + 1 · Φ−1(p) + Φ−1(1− 2−a)

)2

SNR
· dp(δ)−1,

where Φ(·) is the cumulative distribution function of the standard normal
distribution. However, a comparison with experimental data shows that
the theoretical model overestimates the success probability [Sel08].

The overall attack complexity is the sum of this analysis phase on the
one hand, and the effort of the brute-force phase for recovering the rest
of the key on the other hand. The analysis phase requires data and time
proportional to N = c · dp(δ)−1 for obtaining and filtering the ciphertexts,
plus time for testing B ·N ·2k differences (possibly in a structured and more
efficient way) and storing the results in a memory of 2k counters. For the
brute-force phase, the time is a fraction of 2−a of the time for exhaustively
enumerating the full key candidates, assuming that the candidates for the
missing bits can be enumerated efficiently.

Variants. Many variants of this basic key-recovery approach have been
proposed to address different performance bottlenecks, or to exploit differ-
ent statistical distinguishers (see Section 2.2.4). Examples of performance-
oriented improvements in Biham and Shamir’s DES attacks include an
approach to generate pairs from known, rather than chosen, plaintexts
[BS93], initial structures to produce more pairs per queried plaintexts
[BS91; BS92], and a memoryless variant that tests candidates immediately
without storing many counters [BS92]. Albrecht and Cid [AC09] proposed
an alternative approach to identify right pairs and recover the key based
on observed runtimes of an algebraic solver. Its runtime is hard to predict
and usually not better than the standard approach, but it may succeed
with lower data complexity [WSMP11].

51

2. Preliminaries

Tweakable block ciphers

For tweakable block ciphers ẼK,T : Fb2 → Fb2,M 7→ C, the attacker’s goal
is the same as for block ciphers: to recover the fixed key K. However, in
addition to querying Ẽ with different plaintexts, the attacker also has
control over the tweak T . This has several important implications for
differential cryptanalysis.

First, it requires an adaptation of the concept of differentials and char-
acteristics compared to Section 2.2.1. Any observed plaintext-ciphertext
differential δ is with respect to a fixed key K and with respect to two fixed,
possibly different tweaks T and T ∗. Differences can be introduced not only
in the plaintext (which is processed by the permutation ẼK,T), but also
in the tweak (which defines the permutation ẼK,T). Thus, it makes sense
to consider the differential probability of the function ẼK(T, P) for an
input difference (∆T,∆P) = (τ, α) and output difference ∆C = β:

dp(τ, α, β) = PT,P [τ, α
ẼK7→ β] = PT,P [ẼK(T + τ, P + α)⊕ ẼK(T, P) = β] .

We are interested in tweakable block ciphers where each permutation ẼK,T
“looks like” an instance of a closely related block cipher. For example, in ad-
hoc constructions like the TWEAKEY framework [JNP14b], the tweak T is
absorbed via the key schedule. Every round key addition may introduce (or
cancel) additional differences, and this additional freedom may decrease the
minimum number of active S-boxes for the best differential characteristics.
The effect is similar to differential characteristics in a related-key scenario
for block ciphers [Bih93; Bih94a]. For example, 4 rounds of AES-128 have
25 active S-boxes, but in a related-key scenario, characteristics with 13
and truncated characteristics with 9 active S-boxes can be found [BN10].
A derived tweakable block cipher, KIASU-BC [JNP14a], has a minimum of
8 active S-boxes for 4 rounds, or even 0 active S-boxes for 2 rounds.

Second, the tweak input increases the size of the full codebook from
2b plaintexts to 2b+t plaintext-tweak combinations, whereas the generic
probability of a differential remains about 2−b. This may render attacks
feasible for tweakable block ciphers even though the data requirements
2·c·dp(δ)−1 > 2b would be too large to apply to block ciphers, in particular
if the block size b is smaller than the key size k.

We revisit the practical implications in Chapter 3 for the attack on
MANTIS.

52

2.2. Differential Cryptanalysis

Compression functions

For compression functions F : Ft2×Fb2 → Fb2, both the attacker’s goals and
methods differ significantly from keyed primitives. Instead of recovering
secret information, we want to craft message inputs with certain properties.
We focus on the goal of creating collisions, that is, inputs with non-
zero input difference (∆Hi−1,∆Mi) 6= (0, 0) and zero output difference
∆Hi = 0. The applicability of differential cryptanalysis for finding collisions
was already noted by Biham and Shamir [BS90], including first practical
examples. We can consider several subtypes of collisions which are relevant
in the context of iterated Merkle-Damg̊ard hash functions [LM92]:

• Free-start collisions (∆Hi−1,∆Mi) 6= (0, 0) or compression function
collisions, where any differences are allowed both for the chaining
value and the message. This most general case is the easiest to find
and violates the preconditions for the MD proof [Mer89], but usually
cannot be extended to an actual attack on the hash function.

• Semi-free-start collisions ∆Mi 6= 0, ∆Hi−1 = 0, where the input
chaining value is required to have zero difference.

• Collisions ∆Mi 6= 0, ∆Hi−1 = 0, Hi−1 = H∗i−1 = 0 (IV), where
the input chaining value matches the hash function’s initial value
and the compression function collision thus implies a hash function
collision.

If the compression function is built in a generic construction from a block
cipher, such a collision corresponds to a pair of block cipher inputs with non-
zero difference in the plaintext or key and a suitable ciphertext difference.
For example, a free-start collision for a Davies-Meyer compression function
(Figure 2.6b) corresponds to a solution for a related-key differential with
(∆M,∆K) 6= (0, 0) and ∆M = ∆C. Similar to tweakable block ciphers,
this means we also need to consider a characteristic that covers the
key schedule, but unlike the case of tweakable block ciphers, we do not
have a random, unknown key to justify probability estimates based on a
round-by-round evaluation. The latter can still give useful estimates for
the complexity of an attack, but is much less suited for quantifying the
function’s security margin.

To qualify as a successful attack on the compression function, the complex-
ity of the differential attack must be less than the roughly 2b/2 function
evaluations of the generic attack [Yuv79] or its memoryless variants [Bre80].

53

2. Preliminaries

Generally, a differential collision attack on a compression function is loosely
divided into two phases: First, identify a differential characteristic for the
full-round function with reasonably high probability whose differential
implies a collision. Second, find a solution for this characteristic. In practice,
these two phases are often less clearly separated than for keyed primitives.

While the first phase of finding a characteristic can be more difficult than
for keyed differences due to the additional requirements for the differential,
the second phase is often significantly easier. Preneel et al. [PGV93a]
identified several important differences between keyed and unkeyed primi-
tives for the second phase. All inputs are known to and under control of
the attacker, which implies several advantages: All computations can be
performed offline and in parallel, without the bottleneck of impractical
data requirements. A single right pair is often sufficient for an attack and is
easily detected without any statistical evaluation. For the first few rounds,
the attacker can actively modify the inputs to deterministically satisfy the
conditions of the characteristic (message modification [WLF+05; WY05]).
For the later rounds, the attacker hopes that the conditions of the charac-
teristic are probabilistically satisfied; an early-abort approach can detect
contradictions before the full function is evaluated. Inside-out approaches
like the rebound attack [MRST09; LMS+15] similarly find many solutions
for part of the characteristic, and some probabilistically satisfy the rest.

In Chapter 7, we improve the automatic search for such collisions.

Cryptographic permutations

For permutations P : Fb2 → Fb2, the attacker’s goal and approach depend
on the intended (keyed or unkeyed) use. Many attack scenarios require
either a good characteristic (keyed) or a single right pair (unkeyed) for
any differential where parts of the input and output difference are fixed to
zero difference. For example, consider a (keyed or unkeyed) sponge mode
with rate r and capacity c = b− r. If we find a good characteristic whose
input and output difference is zero on the c-bit inner part, we can try to
build a two-block forgery or collision by introducing the input difference
with the first block and cancelling the output difference with the second
block. In the unkeyed case, we can take advantage of similar effects as for
(semi-free-start) collisions of compression functions.

In Chapter 4, we illustrate how unpredictable the effective security margin
is for unkeyed applications by providing an attack on full-round Simpira.

54

2.2. Differential Cryptanalysis

2.2.3. Searching and Bounding Characteristics

Both the designer and the attacker are interested in good characteristics
in order to achieve their goals: The attacker wants to find a differential
whose probability is high enough for an attack, usually by finding a single
good characteristic. The designer wants to show that no such differential
can be practically found (or, ideally, that none exists), usually by showing
that even the best characteristic is by far not good enough for an attack.
In the following, we briefly discuss different approaches to search for good
characteristics (attacker’s perspective) or to bound the probability of the
best characteristic or differential (designer’s perspective).

Designer’s perspective

The first proposals of ciphers with “provable security” against differential
cryptanalysis emerged quickly after the attack became public [Ada92].
Nyberg and Knudsen [NK92; NK95] proposed CRADIC (aka KN cipher),
whose Feistel round function uses a single large APN S-box such that
(under some independence assumptions) the probability of any r-round
differential is within 21−n ± 21−n and thus not sufficiently different from
the random case to be exploitable for key recovery. Matsui [Mat96; Mat97]
proposed the block cipher MISTY as a practical instantiation of this
approach. Both proposals prove that no differential with reasonably high
expected probability exists, so standard differential cryptanalysis is not
applicable. However, they do not necessarily prevent the application of
all of its variants, such as higher-order differential cryptanalysis [JK97].
Another approach in a similar vein is decorrelation theory [Vau98].

A different, more practically inspired approach that may lead to more
balanced designs is to bound the expected probability of the best charac-
teristic, rather than the best differential. This is only a necessary, not a
sufficient criterion for resistance against differential cryptanalysis, but such
ciphers are often considered “practically secure” [Knu93]. This approach
is more easily applicable to a wider range of designs, in particular to
Substitution-Permutation Networks with higher number of less compu-
tationally expensive rounds [HT94; HT96]. According to the previous
assumptions (2.2,2.3), the maximum expected probability (or minimum
weight) of any characteristic can be bounded based on (a) the minimum
number of active S-boxes (bundle weight [DR01]) in any characteristic,
and (b) the maximum differential probability (or minimum weight) of

55

2. Preliminaries

any non-trivial S-box differential. Since the latter is easy to compute, the
problem is reduced to bounding the number of active S-boxes. This can
be achieved either by enumerating candidate characteristics (see below)
or, if the design permits, by higher-level arguments.

The wide-trail strategy by Daemen and Rijmen [Dae95; DR01] is a general
approach for designing primitives with strong bounds by design. Whereas
the “provably secure” designs discussed so far focus on maximizing the
minimum S-box weight to obtain very strong rounds with large S-boxes, the
wide-trail approach focuses on maximizing the minimum number of active
S-boxes over multiple rounds. The authors introduce the branch number
B [Dae95] as a metric for the diffusion achieved by the round function.
They consider key-alternating SP constructions for m · n = b-bit blocks
where the linear transformation (“permutation”) λ is defined as any linear
function of the m-bit S-box outputs (n bundles or cells), usually as n linear
combinations over Fm2 . The branch number B(λ) ≤ n+ 1 of such a linear
transformation λ : (Fm2)n → (Fm2)n (and the resulting round function) is
the minimum total number of active bundles in the input and output of the
transformation, or equivalently, the minimum number of active S-boxes
over 2 rounds. Transformations λ which attain the maximum branch
number B(λ) = n + 1 are referred to as multipermutations and can be
constructed using the matrices of MDS codes, as suggested by Vaudenay
[Vau94] and implemented for instance by SHARK [RDP+96]. This also
allows bounding the maximum probability of differentials of ≥ 2 rounds by
dunS [HLL+00] based on the S-box S, but the resulting bounds are usually
not sufficiently tight to be useful. An alternative approach that may lead
to a more balanced, efficient design is to subdivide the state into columns
of n′ bundles, choose locally MDS intra-column transformations with
B = n′ + 1, and combine with a complementary inter-column dispersion
function to get B2 active S-boxes after 4 rounds [DR01], as in AES [DR98].

Attacker’s perspective

If a cipher was not designed according to such a bound-based strategy,
or when we want to obtain actual characteristics for an attack, it is
usually necessary to ask a computer for help. More specifically, we need a
search algorithm that can quickly enumerate many potentially relevant
characteristics, and outputs optimal (or reasonably good) characteristics
as a result. There are two primary directions to create such an algorithm:
Developing dedicated tools, and applying general-purpose tools.

56

2.2. Differential Cryptanalysis

General-purpose tools. An alternative direction is to leverage existing
general-purpose search tools and optimization frameworks. This means
that the cryptanalytic task must be translated to an instance of the general
problem framework that the tool solves, such as Boolean satisfiability. A
primary advantage of this approach is that the cryptographer can profit
from the intensive efforts invested by the solver’s developers, which are
sometimes based on decades of research and have produced sophisticated
heuristics and finely tuned, carefully optimized implementations. The task
is reduced to mere translation. On the downside, the cryptographer is
limited by the expressiveness of the solver’s problem framework. Crypto-
graphic insights or heuristics that would help the search can be hard to
translate. If the cryptographic task can only be artificially translated to a
problem instance, the solver’s heuristics may be less efficient.

The two most popularly used general-purpose search tools in differential
cryptanalysis are SAT solvers and MILP optimizers. While SAT models
approach the search problem from the logical, Boolean, combinatoric point
of view, MILP models take a less obvious approach originally grounded in
mathematical methods for continuous, real-valued optimization problems.

Boolean satisfiability (SAT) solvers find a satisfying assignment (or “in-
terpretation”) in Fn2 for a set of Boolean variables {vi}ni=1 such that a
given Boolean function (or “propositional logic formula”), specified in
Conjunctive Normal Form (CNF), evaluates to 1:

S∧

s=1

T∨

t=1

`s,t = 1, `s,t ∈ {vi}ni=1 ∪ {¬vi}ni=1 .

The decisional SAT problem is NP-hard [Coo71], but modern SAT solvers
can solve practical problem instances of surprising size and complex-
ity thanks to important developments in search heuristics and problem
preprocessing. The core search algorithm underlying most modern SAT
solvers, such as Lingeling and Glucose, is the Davis–Putnam–Logemann–
Loveland (DPLL) [DLL62] algorithm and its variants, like Conflict-Driven
Clause Learning (CDCL) [SS96]. SAT problems are commonly encoded in
DIMACS-CNF format.

In the context of differential cryptanalysis, the most common approach
is to encode the bitwise differential behavior as Boolean constraints and
then either query for the (non-)existence of characteristics subject to
additional differential constraints like zero output difference, or query for
characteristics with a fixed weight or cost. The latter requires to model an

57

2. Preliminaries

integer counter to accumulate the cost of active S-boxes or active modular
additions. In the last few years, there has been a veritable explosion of
such papers, most popularly targeting lightweight SPN ciphers with 4-bit
S-boxes or ARX ciphers [MP13]. Advantages of a SAT-based approach
include the wide range of openly available, efficient and (more or less)
accessible SAT solvers and natural suitability of propositional logic for
modeling differential behavior. Disadvantages arise from the relatively
inefficient models of linear functions, in particular long chains of xors in
the linear layers and the integer summation of costs. Furthermore, most
SAT solvers are optimized for finding solutions of satisfiable formulas, not
for proving unsatisfiability, which is necessary when proving bounds.

Satisfiability problems in other higher-level domains with more human-
readable descriptions are often solved by translating (parts of) the problem
to an equisatisfiable SAT instance. When cryptanalytic problems are solved
with SAT solvers, it is usually via such higher-level domains. Commonly
used terms for higher-level domain search problems include Satisfiability
Modulo Theories (SMT) and Constraint Programming (CP), with input
languages like CVC or SMTLibv2 and solvers like STP, Z3, Choco, IBM
ILOG CP, and many more. Dedicated tools for cryptanalysis include the
solver CryptoMiniSAT [Soo16] and the higher-level interfaces CryptoSAT
[Laf13] and CryptoSMT [Köl14].

Mixed-Integer Linear Programming (MILP) is an optimization problem
for a linear objective function and linear constraints over the real numbers,
where some variables may be constrained to integers. For decision variables
{xi}ni=1, the goal is to find an assignment x ∈ Zk × Rn−k that minimizes

min cx =

n∑

i=1

cixi s.t. Ax ≤ b

for coefficients c ∈ Rn, A ∈ RM×n, b ∈ RM . MILP problems are often
encoded in LP syntax, which is widely supported by solvers such as IBM

ILOG CPLEX or Gurobi.

The application of MILP solvers in differential cryptanalysis was first
proposed for easily finding the minimal number of active S-boxes in wide-
trail designs [MWGP11; WW11]. In their model, the activity of each S-box
is represented by a binary decision variable. Then, for AES and AES-like
designs, the constraints for valid activity patterns can be easily described
by modeling solely the differential branch number of the MixColumns-step
with the help of one binary column activity helper variable per column.

58

2.2. Differential Cryptanalysis

The approach has since been successfully adapted to bitwise differences in
lightweight ciphers with 4-bit S-boxes [SHW+14a; SHW+14b] (or even
8-bit S-boxes [AST+17]) and ARX designs [FWG+16]. Compared to
SAT models, MILP models are naturally suited for accounting the cost
of a characteristic by summing and bounding partial costs; on the other
hand, the description of Boolean constraints in the form of tables, or the
highly combinatorial nature of cryptographic problems in general, are less
well-suited for MILP solvers. Translating a given relation table such as
the DDT to a set of linear inequalities is referred to as converting the
V-representation (vertex representation) of a convex point set to the H-
representation (half-space representation), and can be done with existing
tools, but often requires heuristic optimizations to become solvable Sun
et al. [SHW+14a; SHW+14b].

Dedicated tools. Before the wide-spread adoption of comfortable off-
the-shelf general-purpose solvers for cryptanalysis, characteristics and
solutions were usually either found by hand or by dedicated tools. In
this context, we refer to software tools as “dedicated” if the most time-
consuming parts of the software are not off-the-shelf libraries such as SAT
solvers, but code written by the cryptanalyst for this specific application,
with the particular requirements and structures of cryptanalytic attacks in
mind. Prominent examples include the widely-reused branch-and-bound
algorithm of Matsui [Mat94] for finding the best linear approximations and
differential characteristics of DES-like ciphers, more recently also extended
to related-key characteristics [BN10] and ARX designs [BV14; BVL16].
Even now, dedicated tools often have significant advantages compared to
general-purpose tools and may succeed in solving problems infeasible for
the latter, at the cost of a higher implementation effort.

A particularly active area is the differential analysis of hash functions
and unkeyed primitives. One reason is that the lack of keys allows the
cryptanalyst to better steer the process of developing characteristics and
solving the resulting equations. Additionally, practical results such as
practical collisions for currently-used hash functions are (unfortunately)
both within computational grasp [SBK+17] and of global impact due to
their reusability, without repeating expensive computations. Examples
include several tools developed for the analysis of the primitives underlying
the MD5/SHA-1/SHA-2 family [SO06; DR06; SLW07; MNS11b; MNS13b],
competitors in the SHA-3 competition [Leu12; Leu13], and SHA-3/Keccak
[DV12; MDV17].

59

2. Preliminaries

2.2.4. Generalizations and Related Concepts

So far, we focused on classical differential cryptanalysis close to the original
approach of Biham and Shamir. However, none of the attacks presented
in this thesis directly follows this classical approach. One of the main
factors contributing to the lasting success and popularity of differential
cryptanalysis in cryptographic research is the generality and flexibility of
the underlying ideas. Indeed, by generalizing and varying different aspects
of the approach, many fundamental ideas in symmetric cryptanalysis can
be (naturally or artificially) cast in the light of differential cryptanalysis.
In the following, we briefly discuss some related concepts that are relevant
for the main part of this thesis.

Difference notions and partial knowledge

In Section 2.2.1, we already saw that the notion of differences can be
defined with respect to other group operations [LMM91]. In addition, it
has proven fruitful to consider not only one or all individual characteristics
for one fixed differential, but more general collections of characteristics.

Truncated differences and multiple differentials. The idea to use
several characteristics for an attack is almost as old as differential crypt-
analysis itself. In the simplest case, all characteristics contribute to the
same differential [BS91], and the differential’s probability is estimated
based on the sum of the characteristics’ probabilities. Blondeau and Gérard
[BG11] and Blondeau et al. [BGN12] analyze a more complex setup with
characteristics for multiple (different) differentials, where the attacker
essentially efficiently performs several differential attacks in parallel.

Knudsen [Knu94] observed that it can often be much easier and similarly
useful to consider differences that are not fully specified, but only specified
for selected bits, while the exact difference in the remaining bits is disre-
garded: truncated differentials. This is particularly useful if the selected
bits can be evaluated deterministically due to incomplete diffusion, but
the approach also applies to probabilistic transitions.

In practice, the most successful application of this concept is to strongly
aligned ciphers, where the truncation is done on cell level: Each multi-bit
cell is either required by the truncated characteristic to have zero difference
or it can have arbitrary difference (which may or may not include zero).

60

2.2. Differential Cryptanalysis

Truncated characteristics are not only useful as a distinguisher based
on their estimated probability, but also as an intermediate step when
optimizing the number of active S-boxes while searching or bounding
individual characteristics (Section 2.2.3). Consequently, there are two
relevant probability metrics associated with a truncated characteristic
of this kind: First, (bounds on) the probability of the best individual
characteristic that is compatible with the truncated constraints, based on
the number of active S-boxes and compared with the generic probability
of observing a fixed output difference; and second, (estimates for) the
collective probability of all compatible characteristics, averaged over all
compatible input differences. The latter usually depends on transitions of
the linear layer (such as MixColumns in AES) and is compared with the
generic probability of the truncated output difference.

Modular differences, signed differences, and generalizations. If
a cryptographic primitive features integer additions modulo 2b, it is natural
to consider the modular difference x∗ � x ∈ Z2b . A prime example is
the analysis of hash functions of the MD/SHA family, starting with the
cryptanalysis of MD4 by Dobbertin [Dob96; Dob98]. However, modular
differences are inconvenient when considering the other bitwise operations
of the primitive, since a modular difference can correspond to one of
several different bitwise xor differences, and vice versa. For example, for
b = 8, a modular difference of ∆� = +1 = 01 may correspond to any
xor difference ∆⊕ ∈ {01, 03, 07, . . . , FF}. Conversely, an xor difference of
∆⊕ = 01 corresponds to a modular difference ∆� ∈ {±1} = {01, FF}.

Wang et al. [WY05; WLF+05] introduced signed differences as a convenient
generalization that uniquely determines both modular and xor differences:
For each bit position i, the signed difference ∆± ∈ {0,+1,−1}b specifies
if the corresponding bit pair is equal with (x∗i , xi) ∈ {(0, 0), (1, 1)}, or
has a positive ((x∗i , xi) = (1, 0)) or negative ((x∗i , xi) = (0, 1)) difference.
The signed difference ∆± implies an xor difference of ∆⊕ = (|∆±i |)i and a

modular difference of ∆� =
∑

i 2∆±i (mod 2b).

This notion was further generalized for the context of dedicated search
tools for characteristics of ARX primitives. There it is useful on the one
hand to capture additional constraints across bits (e.g., two-bit conditions
[MNS11b]); on the other hand, one can consider less constrained descrip-
tions of a family of characteristics as an intermediate result on the way to
a fully specified characteristic or pair (e.g., generalized conditions [DR06]).

61

2. Preliminaries

Distinguishing differences

Classical differential cryptanalysis is interested in differentials for almost
the full cipher with an unusually high probability, and recommends the
key candidate with the highest observed incidence of the output difference.

Impossible differential cryptanalysis, introduced by Knudsen [Knu98] and
Biham et al. [BBS99a; BBS05], does the opposite and rejects all key
candidates that lead to an output difference known to be impossible. Such
impossible differentials can be found, for instance, with the miss-in-the-
middle approach [BBS99b] by concatenating two inconsistent probability-1
characteristics (one forward, one backward). Evaluating the complexity
of such an attack is however non-trivial and apparently error-prone, and
generic complexity estimates have been proposed and discussed recently
[BNS14; Der16; Blo17]. As a generalization of both classical and impossible
differentials, as well as sets like in truncated or multiple differentials,
Albrecht and Leander [AL12] propose to analyze and distinguish the entire
multi-dimensional distribution of output differences for a set of input
differences, which is only feasible for ciphers with a very small block size.

Higher-order differentials consider the difference of more than two paired
messages. The idea was first introduced by Lai [Lai94] and follows nat-
urally from the definition of the derivative ∆αf(x) (Section 2.2.1) by
iteratively applying this differential operator. The d-th order derivative of
the (vectorial) Boolean function f : Fn2 → Fm2 by α1, . . . , αd ∈ Fn2 is

∆(d)
α1,...,αd

f(x) := ∆αd
· · ·∆α1f(x) =

⊕

α∈A
f(x⊕ α) ,

where the sum ranges over all 2d elements of the span

A = 〈α1, . . . , αd〉 = {λ1α1 ⊕ . . .⊕ λdαd | λ ∈ Fd2} .

As a consequence of the product rule, the algebraic degree of ∆(d)f is

deg ∆(d)
α1,...,αd

f(x) ≤ deg f − d .

In particular, if d ≥ deg f + 1, then for any offset x,
⊕

α∈A f(x⊕ α) = 0.

This property has given rise to several different cryptanalytic approaches.
Knudsen [Knu94] applies it to break the cipher CRADIC and thus already
demonstrates that a cipher with excellent properties with respect to classic
differentials can be very susceptible to higher-order differential attacks.

62

2.2. Differential Cryptanalysis

Another direct application is in building zero-sum (partition) distinguishers
for cryptographic primitives with a relatively low algebraic degree, i.e.,
sets of inputs (x⊕A) such that both the input set and the resulting output
set sum to zero [AM09]. If the complexity is less than generic approaches
[BDPV10a], then these can either serve directly as distinguishers for
unkeyed or known-key functions, or as a basis for key recovery.

Cube attacks as proposed by Dinur and Shamir [DS09] and related attacks
[Vie07] use a different key recovery approach. Instead of considering the
case that (deterministically) ∆(d) = 0, they target the case that ∆(d) is
(probably) a linear function that depends on some key bits. This linear
function is first recovered in a precomputation phase and then evaluated
in an offline phase to learn one bit per cube (A, x). While the first cube
attacks focused on classical stream ciphers, more recent improvements like
dynamic, conditional, or borderline cube attacks frequently target Keccak
and related schemes due to its degree-2 S-box.

Another notable, but very different second-order approach is the boomerang
attack by Wagner [Wag99], which uses classical differential characteris-
tics to obtain a second-order differential property. Its first victim was
another cipher, COCONUT’98, based on decorrelation theory [Vau98], with
“provable security” against classic differential cryptanalysis. Differential
characteristics can not only be chained with other differential characteris-
tics as in boomerang attacks, but for example with linear characteristics
as in the differential-linear attack of Langford and Hellman [LH94], later
applied to the same cipher [BDK02]. The approach was recently analyzed
more closely [BLN14; BLN17] based on the known duality results be-
tween differential and linear cryptanalysis [CV94]. More generally, this
duality [Mat94; Bih94b; CV94; DGV94a] pervades much of the history of
symmetric design and analysis of the past two-and-a-half decades.

Other distantly related attacks that work with (Λ-, δ-)sets of plaintexts
and their collective characteristics include the Square [DKR97] and integral
attacks [KW02] as well as some meet-in-the-middle attacks [DS08]. An-
other example related to higher-order differentials is (impossible) polytopic
analysis [Tie16].

The fact that an observed differential (partially) determines the correspond-
ing solutions for a fixed, known permutation with whitening keys has gen-
erally been widely used, from theoretical generic attacks on permutation-
based primitives [Dae91] down to practical, non-cryptanalytic “cheating”
attacks like differential fault attacks [BS97].

63

Part I.

Differential Cryptanalysis of
Novel Designs

65

Introduction to Part I

Since the original publication of differential cryptanalysis by Biham and
Shamir [BS90; BS91; BS93], intense research has led to a common under-
standing of how to secure a block cipher against this attack vector. An
important result of these efforts is the wide-trail design strategy, applied
in the design of AES, by Daemen [Dae95; DR01]. It provides a way to
make rigorous statements about a cipher’s security against certain attacks
based on two statistics: The maximum differential probability of its S-box,
and the minimum number of active S-boxes over several rounds.

This classical approach has proven reliable and efficient for general-purpose
block ciphers. However, new challenges for symmetric design arise from
novel requirements and application scenarios. For example, there is an
increasing demand for permutations and tweakable block ciphers instead of
block ciphers, since they appear better suited for some higher-level modes
of operation. In addition, applications with severe performance constraints
call for very lightweight primitives with reduced security margins and
non-ideal building blocks. To benefit from the large corpus of existing
analysis, novel designs may also re-use existing building blocks in new
configurations, and try to borrow the corresponding security arguments.

In this part, we analyze the impact of these constraints and design trends
on the ciphers’ security. We present four attacks on novel designs that show
how challenging the design of modern symmetric primitives can be. The
first two attacks on the tweakable block cipher MANTIS (Chapter 3) and
the permutation Simpira (Chapter 4) show the difficulties of extending the
wide-trail design strategy to these primitives: We demonstrate differential
attacks that break the designers’ security claims, even though both ciphers
come with provable bounds against differential cryptanalysis. Third, we
present a higher-order differential attack on the (slightly) round-reduced
block cipher LowMC (Chapter 5). The final result targets not the primitive,
but the permutation-based mode of operation of the authenticated cipher
Prøst-OTR (Chapter 6), which permits simple related-key attacks. While
this result does not threaten the cipher’s security, it shows an unexpected
consequence of composing existing, well-analyzed building blocks, similar
to the first two attacks. All our results underline the need for intense
individual scrutiny of the security margin of novel designs, even if bounds
or existing analysis are available.

67

3
Key Recovery for MANTIS

In this chapter, we analyze the tweakable block cipher MANTIS, published
at CRYPTO 2016 by Beierle et al. [BJK+16]. We show that its lightweight
round function does not interact well with the α-reflective construction
and tweakey schedule. This allows us to cluster many good differential
characteristics and thus achieve much higher differential probabilities. A
practical implementation recovers the full 128-bit key of family member
MANTIS5 in about an hour with 230 chosen plaintexts, which violates the
designers’ security claim.

The results in this chapter are based on joint work with Christoph Do-
braunig, Daniel Kales, and Florian Mendel. I am the main author and
proposed the central cluster of characteristics, significant parts of the key
recovery approach, and the details of the analysis. The following text is a
significantly extended version of the paper published and selected among
the best three papers at FSE 2017 [DEKM17]. Some of the additional
analysis is also part of an online preprint with followup work, which
extends the attack to MANTIS6 [EK17].

3.1. Introduction

Tweakable block ciphers generalize the concept of block ciphers by adding
an additional public input, the tweak. This tweak plays a role similar to
the nonces or initialization values of higher-level modes of operation, and
provides additional variation of the individual instances of the cipher family.
The concept was formally introduced by Liskov et al. [LRW02], who defined
it as a family of permutations Ẽ : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n.
Ẽ maps a k-bit key K, t-bit tweak T and n-bit plaintext M to an n-bit
ciphertext C, such that Ẽ(K,T, ·) is a permutation. The recent popularity
of tweakable block ciphers, for instance in the CAESAR competition, shows

69

3. Key Recovery for MANTIS

that tweakable block ciphers may be more naturally suited as building
blocks for higher-level modes of operation than block ciphers.

A particularly relevant application area for tweakable block ciphers is
memory and disk encryption, where the address of each data item defines
the tweak. However, generic constructions to turn block ciphers E(K,M)
into secure tweakable block ciphers Ẽ(K,T,M) are often not well-suited for
such applications, since they incur a significant latency overhead compared
to a plain block cipher call and/or come with considerable security loss due
to the birthday bound. This motivates the design of dedicated tweakable
block ciphers with low latency.

Compared to generic constructions that use some block cipher as a black
box, dedicated constructions try to provide more efficient designs with
full security by integrating the tweak in the core primitive design. With
the TWEAKEY framework, Jean, Nikolić, and Peyrin [JNP14b] propose
to treat the tweak in almost the same way as the key in a key-alternating
construction. This approach, and in particular the special case STK with its
linear tweak schedule, has been adopted in several CAESAR candidates
(Deoxys, Joltik, KIASU), as well as standalone tweakable block cipher
designs like SKINNY and MANTIS [BJK+16] or QARMA [Ava17].

Regarding the cryptanalytic implications of this approach, one central
aspect is the possibility of related-tweak attacks. The tweak is usually
assumed to be under the attacker’s control, although in practice, the
definition of the mode of operation that uses the cipher may impose some
constraints. In particular, this means that the attacker can introduce
differences via the key schedule, similar to related-key attacks on classical
block ciphers. This increases the number of rounds necessary for security
against differential cryptanalysis, as well as certain other attacks [DEM16b],
such as integral distinguishers or Meet-in-the-Middle attacks.

For designers, this means that they must analyze bounds for the differen-
tial probability in the related-key model. Standard search approaches for
finding or lower-bounding the best characteristics, such as mixed-integer
linear programming (MILP), satisfiability (SAT) or constraint program-
ming (CP) solvers, can usually be adapted to the related-tweak case. The
output of such a search is either an optimal differential characteristic
or, more often, a truncated differential characteristic with the minimum
number of active S-boxes, referred to as “minimal characteristic” in the
following. For standard strongly aligned block ciphers in the fixed-key
model, the bounds derived from such a minimal characteristic are usually

70

3.1. Introduction

both reasonably tight and reasonably reliable to estimate the security
margin. However, several recent papers have discussed issues which indi-
cate that the bounds obtained from minimal characteristics of STK-based
tweakable block ciphers can be less useful. The main reason for this is the
deterministic behavior of the linear tweak schedule with respect to the
input tweak difference. For example, Cid et al. [CHP+17] show that if
this is not considered in the search, the resulting minimal characteristics
are often invalid, and that tighter bounds can be obtained by adapting
the search model accordingly.

MANTIS is a TWEAKEY/STK-based tweakable block cipher published
at CRYPTO 2016 by Beierle, Jean, Kölbl, Leander, Moradi, Peyrin,
Sasaki, Sasdrich and Sim [BJK+16]. To optimize the design for low-
latency implementations, the designers use the same α-reflective structure
as PRINCE [BCG+12; BCKL17], but combine it with the round function
of Midori [BBI+15]. According to their analysis [BJK+16], this improves
both the latency and the security compared to the original PRINCE, since
Midori’s variant of ShiftRows is designed to provide a higher bound on the
minimum number of active S-boxes.

The recommended version MANTIS7 has 14 + 2 rounds (7 forward, 7
backward, 2 reduced inner rounds), but the authors also give a reduced
security claim for the 10 + 2-round version, MANTIS5. They claim security
against practical attacks, which they define as related-tweak attacks
with data complexity 2d less than 230 chosen plaintexts (or 240 known
plaintexts), and computational complexity at most 2126−d block cipher
calls based on the underlying FX construction with whitening keys [KR96;
KR01], similar to PRINCE [BCG+12].

Our contributions

We propose a key-recovery attack against MANTIS5 with 228 chosen
plaintexts and a computational complexity of about 238 block cipher calls,
which violates this security claim. We verified the validity of the attack in
a practical implementation. The implementation revealed an additional
differential property of the Midori S-box that complicates some steps of
the attack due to differentially equivalent keys. An adapted version of
the attack recovers the full key in about 1 core hour using 230 chosen
plaintexts.

71

3. Key Recovery for MANTIS

The attack exploits several specific properties of the MANTIS design,
but the general approach is relatively generic and may be useful for the
analysis of other tweakable block ciphers. Specific properties of MANTIS
that we exploit include the lightweight near-MDS mixing layer and certain
differential properties of the involutive S-box, both inherited from Midori.
These properties make it relatively easy to find a differential characteristic
with the claimed optimal probability in the related-tweak setting. Using
the same properties, this differential characteristic can then be expanded
to a family of characteristics with a corresponding initial structure that
makes efficient use of the low data complexity limit of only 230 chosen
plaintexts. Furthermore, the choice to keep the original Midori order of
linear operations (first permute, then mix) makes the PRINCE-like middle
rounds differentially less effective than the ordering used by PRINCE (first
mix, then permute). Midori’s order preserves a ‘Superbox’ structure over 4
S-box layers in the middle rounds, instead of 2.

The general approach explores the middle ground between classical differ-
ential characteristics and truncated differential characteristics. Our aim is
to pick the best of both worlds for the context of tweakable block ciphers
with a linear tweak schedule. We consider not only one, but many clustered
characteristics to improve the overall probability and generate pairs more
efficiently compared to the single best differential characteristic. On the
other hand, a straightforward truncated approach cannot take advantage
of the high-probability transitions in the S-box, incurs significant costs
from the linear constraints imposed by the tweak schedule, and does
not provide a fixed output difference that can be used, for instance, for
boomerang attacks.

Outline

In Section 3.2, we provide a brief description of the tweakable block cipher
MANTIS and some of its cryptographic properties. In Section 3.3, we
introduce a family of differential characteristics and a corresponding initial
structure of messages for MANTIS5 that lead to a good filter after 9.5
rounds. In Section 3.4, we use this initial structure and filter to mount
a multi-staged key recovery attack on MANTIS5. Finally, we discuss the
results of a practical implementation of the attack and its applicability to
MANTIS7 in Section 3.5.

72

3.2. Description of MANTIS

3.2. Description of MANTIS

3.2.1. The Tweakable Block Cipher MANTIS

MANTIS was published at CRYPTO 2016 by Beierle et al. [BJK+16].
The designers propose several variants MANTISr that differ only in the
number of rounds. All variants operate on a 64-bit message block M =
M0‖M1‖ · · · ‖M15 and work with a 64-bit tweak T = T0‖T1‖ · · · ‖T15 and
(64 + 64)-bit key K = (k0, k1). All 64-bit values are mapped to 4× 4 states
S of 4-bit cells Sj , where S0, . . . , S3 is the first row, etc.

The cipher’s structure is similar to PRINCE, with r forward rounds Ri and
r backward rounds R2r+1−i = R−1

i , separated by an involutive, unkeyed
middle layer S ◦M ◦ S. The 64-bit subkey k1 is used as round key for the
outer forward and backward rounds, while the other 64-bit subkey k0 and
the derived k′0 = (k0 ≫ 1)+(k0 � 63) serve as whitening keys. The tweak
T is added together with k1 in every round according to the TWEAKEY
construction, with a simple cell permutation h as a tweak schedule. The
construction is illustrated in Figure 3.1a.

M

T

C

k1

k1+α

k0

k′0

R1

R−1
1

h

R2

R−1
2

h

Rr

R−1
r

h

S

M

S

· · ·

· · ·

· · ·
(a) PRINCE-like α-reflective cipher structure

Ri = S P M

Ci + hi(T) + k1

R−1
i

= M P−1 S

Ci + hi(T) + k1 + α

(b) Midori-like round function

Figure 3.1.: Design of the tweakable block cipher MANTISr.

3.2.2. The Round Functions Ri and R−1
i

The round function Ri is very closely related to that of Midori [BBI+15].
It updates the 4 × 4 state of 4-bit cells by means of the sequences of
transformations Ri and R−1

i , as illustrated in Figure 3.1b. Its S-box
layer (SubCells) and linear layer (PermuteCells, MixColumns) are directly
inherited from Midori [BBI+15]. In the following, we briefly describe the
individual operations. For a more detailed description of the MANTIS
family, we refer to the design paper [BJK+16].

73

3. Key Recovery for MANTIS

S S() S 0 1 2 3 4 5 6 7 8 9 a b c d e f

c a d 3 e b f 7 8 9 1 5 0 2 4 6

(a) SubCells (S)

0 61 52 143 15

4 05 16 27 3

8 79 1210 1311 4

12 813 914 1015 11

h

(b) Tweak permutation h.

0 01 112 63 13

4 105 16 127 7

8 59 1410 311 8

12 1513 414 915 2

P

(c) PermuteCells (P).

M




0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


·

(d) MixColumns (M).

Figure 3.2.: Transformations of the MANTIS round function Ri.

• SubCells (S) applies the involutive 4-bit S-box S given in Figure 3.2a
to each state cell. For our attack, we are primarily interested in the
differential behavior of S. The differential distribution table (DDT)
in Figure 3.3a shows that S has 24 differential transitions with a
probability of 2−2; for two of the input differences, 2 and a, each
of the four possible output differences is observed with probability
2−2. This is due to the algebraic properties of S: only 12 of the 15
component functions have algebraic degree 3.

We also define the set transition function σ : 2X → 2X to describe
the differential behavior of S for sets X ⊆ X = {0, . . . , f} of input
differences: σ(X) := {y ∈ X | ∃x ∈ X : DDT[x, y] > 0}.

In addition to the first derivative Sa(x) := S(x) + S(x+a) of the
S-box, as tabulated in the DDT, we will also refer to some properties
of the second derivative Sa,τ (x) := Sa(x) + Sa(x+τ), in particular
the case Sa,τ = 0 as tabulated in the differential invariance table
(DIT) in Figure 3.3b.

• AddTweakeyi (A) and AddConstanti (C) add the round constant Ci,
the subkey k1 (for Ri) or k1 + α (for R−1

i), and the round tweakey
hi(T) to the state. The tweakey update function h simply permutes
the order of cells as specified in Figure 3.2b.

• PermuteCells (P) permutes the state cells as specified in Figure 3.2c.

• MixColumns (M) multiplies columns with involutive near-MDS matrix
M over F24 given in Figure 3.2d, whose truncated differential behavior
per column is illustrated in Figure 3.3c.

74

3.3. A Family of Differential Characteristics

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f prob.
1

2−2

2−3

(a) SubCells: DDT[a, b]
Px[Sa(x) = b]

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f prob.
1

2−1

2−2

(b) SubCells: DIT[a, τ]
Px[Sa(x) = Sa(x+τ)]

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f prob.≈
1
1−2−4

1−2−2

2−4

2−8

(c) MixColumns: DDT
(Truncated)

Figure 3.3.: Differential properties of MANTIS transformations.

3.3. A Family of Differential Characteristics

We first revisit the designers’ security analysis and then propose a family
of single-key, related-tweak differential characteristics for MANTIS5.

3.3.1. Bounds and Security Claim

The designers of MANTIS analyze the security of the cipher against
differential cryptanalysis by modeling the differential behavior (truncated
to state cells) as a mixed-integer linear program [BJK+16]. They analyzed
the minimum number of active S-boxes for different round numbers, both
in a fixed-tweak and a related-tweak setting. The design document provides
lower bounds for full and round-reduced MANTIS.

For MANTIS5, the minimum number of active S-boxes in the related-tweak
setting is 34 (for the full MANTIS7: 50), and the maximum differential
probability of the S-box is 2−2. The designers conclude that “no related
tweak linear or differential distinguisher based on a characteristics is
possible for MANTIS5” [BJK+16]. In particular, they claim that MANTIS5

is secure against “practical attacks”, here defined as related-tweak attacks
with data complexity 2d at most 230 chosen plaintexts (or 240 known
plaintexts), and computational complexity at most 2126−d.

Our attack is based on a truncated differential characteristic for the related-
tweak setting that meets this lower bound of 34 active S-boxes, and on
an optimal differential characteristic whose differential probability meets
the corresponding upper bound. However, instead of considering only a
single fixed input difference and differential characteristic, we will cluster
several related differential characteristics following the same truncated
differential characteristic, thus obtaining a much better probability.

75

3. Key Recovery for MANTIS

3.3.2. Finding an Optimal Differential Characteristic

To find optimal differential characteristics, we first model the truncated
differential behavior of MANTIS in a related-tweak setting as a mixed-
integer linear program (MILP). Then, we take advantage of the differential
properties of SubCells and MixColumns to find differential characteristics
that follow this truncated differential characteristic.

MILP models of truncated differential characteristics

The MILP model uses the following decision variables for r-round MANTISr,
indexed by their round i ∈ R = {1, . . . , r}, forward or backward direction
± ∈ {+,−}, where i± ∈ R± is shorthand for (i,±) ∈ R × {+,−}, and
cell position b ∈ B = {0, . . . , 15}, or state row x ∈ X = {0, . . . , 3} and
column y ∈ Y = {0, . . . , 3}, such that b = 4x+ y (Figure 3.4):

• α±i [b] ∈ {0, 1} for i± ∈ (R ∪ {0})±, b ∈ B: Truncated difference of
cell Sb of the input and output state of SubCells in forward round
Ri or backward round R−1

i .

• β±i [b] ∈ {0, 1} for i± ∈ R±, b ∈ B: Truncated difference of cell Sb of
the output state of AddTweakeyi in forward round Ri (or the input
state in backward round R−1

i).

• τ [b] ∈ {0, 1} for b ∈ B: Truncated difference of cell Sb of the tweak T .
Note that we do not need to model the differences in the plaintext
m and in the ciphertext c to optimize the number of active S-boxes.

M

C

T

i

11-i

*

*

m

k0+k1

α+
0 · · · α+

i−1

k1

β+
i α+

i

S P M · · · α+
r

S

c

k′0+k1+α

α−0 · · · α−i−1

k1+α

β−i α−i
S P M · · · α−r

S

τ hi(τ) M

Figure 3.4.: MILP variables for a truncated differential model of for-
ward/backward rounds Ri/R−1

i , 1 ≤ i ≤ r and inner rounds of MANTISr.

76

3.3. A Family of Differential Characteristics

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f
∆

in
∆out

(a) Branch number model

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

∆
in

∆out

(b) Xor model

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

∆
in

∆out

(c) Exact model

Figure 3.5.: Approximations of the truncated DDT of MixColumns.

In addition, we need helper variables to model the behavior of the linear
functions AddTweakey and MixColumns. Note that the MILP model must
be linear over R (+ denotes integer addition in the MILP inequalities),
whereas the linear layers are linear over F2 (+ or ⊕ denotes xor).

The easiest approach is to reduce the behavior of all relevant linear building
blocks to their differential branch numbers, in particular the 8-variable
MixColumns to its branch number 4 and its bijectivity, and 3-variable
AddTweakey to its branch number 2. A corresponding helper variable for
each such linear function denotes whether the individual linear functions
are differentially active, i.e., if any of the involved cells is active:

• χ±i [b] ∈ {0, 1} for i± ∈ R±, b ∈ B: Activity helper variable for
truncated xor additions β±i = α±i−1 ⊕ hi(τ).

• µ±i,y, µ
∗
y ∈ {0, 1} for i± ∈ R±, y ∈ Y: Activity helper variables for

MixColumns of column y in rounds Ri and R−1
i (helpers µ±i,y) and

in the inner round (helpers µ∗y).

However, as illustrated in Figure 3.5a, this would allow many impossible
transitions. In particular, a large proportion of the transitions with ex-
actly 4 active cells are impossible for MixColumns. To restrict the MILP
solver to the relevant transitions, we need to add more linear inequali-
ties to our model of MixColumns. In general, translating a given relation
table such as the DDT to a set of linear inequalities is also referred to
as converting the V-representation (vertex representation) of a convex
point set to the H-representation (half-space representation). Sun et al.
[SHW+14b; SHW+14a] discuss general approaches to solve this problem
or approximate it efficiently. In our simple case of binary MixColumns,
efficient solutions can easily be found by hand.

77

3. Key Recovery for MANTIS

A possible solution is to explicitly write down the 8-variable matrix
multiplication as a set of 4 xor additions with 4 variables each, modeled
in turn by their branch number. The resulting approximation of the
truncated DDT is illustrated in Figure 3.5b. However, this is still not a
precise model, since it allows transitions from 2 to 3 active cells. Due
to the binary coefficients, these transitions are impossible. To obtain an
exact model, observe that the valid MixColumns transitions from truncated
difference a = (ax)x∈X to b = (bx)x∈X are exactly those that satisfy one
of the following two constraints C1 ∨ C2 (Figure 3.5c):

∑

x∈X
ax +

∑

x∈X
bx ≥ 6 ∨ ∀x ∈ X : ax ⊕ bx =

⊕

x′∈X
ax′ .

Here, + again denotes addition in R, whereas ⊕ is xor addition in F2

and thus needs to be modeled by separate constraints. Additional helper
variables denote which of all these constraints are satisfied:

• ν±i,y,c, ν
∗
y,c ∈ {0, 1} for i± ∈ R±, y ∈ Y, and 0 ≤ c ≤ 10: Various

condition helper variables for the exact model of MixColumns of
column y in rounds Ri and R−1

i (helpers ν±i,y,c) and in the inner
round (helpers ν∗y,c). Indices c ∈ {0, . . . , 3} indicate if condition C2

is partially satisfied for x = c. Indices c ∈ {4, . . . , 7} are activity
helper variables for the corresponding xor equations. Index c = 8
indicates if condition C1 is satisfied. Indices c ∈ {9, 10} are helper
variables for the right-hand side of condition C2.

Using this exact model of MixColumns, the truncated differential behavior
of MANTISr in related-tweak settings can be modeled by the constraints
and objective function given in Figure 3.6.

For MANTIS5, the final model has 1025 variables and 1056 inequalities
(excluding bounds for binary variables). Solving this optimization problem
for MANTIS5 yields several truncated differential characteristics matching
the lower bound of 34 active S-boxes as claimed by the designers. Two
examples, one with 34 and one with 36 active S-boxes, are given in
Figure 3.7. A noteworthy property of both solutions is that every active
MixColumns exactly matches its branch number of 4 and thus satisfies
constraint C2. Furthermore, in each addition of active tweak cells to
the state in AddTweakey, two active cells always cancel. The xors of the
truncated model thus all behave like bit xors. We will take advantage of
this property in the following. Although the solution of Figure 3.7a has
fewer active S-boxes, it is the solution of Figure 3.7b that we will use in
the remaining chapter.

78

3.3. A Family of Differential Characteristics

min
∑

i±∈(R∪{0})±

∑

b∈B
α±i [b] (active S-boxes)

s.t. ∀b ∈ B, i± ∈ R± : (AddTweakeyi)

2χ±i [b] ≤ α±i−1[b] + hi(τ)[b] + β±i [b] ≤ 3χ±i [b]

∀y ∈ Y, i± ∈ R± : (PermuteCellsi, MixColumnsi)

4µ±i,y ≤
∑

x∈X

(
P(β±i)[4x+ y] + α±i [4x+ y]

)
≤ 8µ±i,y

µ±i,y ≤
∑

x∈X
P(β±i)[4x+ y], µ±i,y ≤

∑

x∈X
α±i [4x+ y]

4 ≤ 4ν±i,y,8 +
∑

x∈X
ν±i,y,x

6ν±i,y,8 ≤
∑

x∈X

(
P(β±i)[4x+ y] + α±i [4x+ y]

)

2ν±i,y,8 =
∑

x∈X
P(β±i)[4x+ y]− 2ν±i,y,9 − ν±i,y,10

ν±i,y,10 = 2ν±i,y,x+4 + 1− ν±i,y,x − P(β±i)[4x+ y]− α±i [4x+ y] ∀x ∈ X

∀y ∈ Y : (Inner MixColumns)

4µ∗y ≤
∑

x∈X

(
α+
r [4x+ y] + α−r [4x+ y]

)
≤ 8µ∗y

µ∗y ≤
∑

x∈X
α+
r [4x+ y], µ∗y ≤

∑

x∈X
α−r [4x+ y]

4 ≤ 4ν∗y,8 +
∑

x∈X
ν∗y,x

6ν∗y,8 ≤
∑

x∈X

(
α+
r [4x+ y] + α−r [4x+ y]

)

2ν∗y,8 =
∑

x∈X
α+
r [4x+ y]− 2ν∗y,9 − ν∗y,10

ν∗y,10 = 2ν∗y,x+4 + 1− ν∗y,x − α+
r [4x+ y]− α−r [4x+ y] ∀x ∈ X

1 ≤
∑

b∈B
α+

0 [b] +
∑

b∈B
τ [b] (Non-triviality)

Figure 3.6.: Truncated differential MILP model of MANTISr.

79

3. Key Recovery for MANTIS

M

C

T

k0

k′0

1

10

k1

k1+α

2

9

S

S

h ◦ C

k1

k1+α

P

P

M

M

S

S

h ◦ C

k1

k1+α

P

P

M

M

. . .

. . .

. . .h ◦ C

. . .

. . .

. . .

3

8

S

S

k1

k1+α

P

P

M

M

4

7

S

S

h ◦ C

k1

k1+α

P

P

M

M

5

6

S

S

?

?

*

*

M

(a) 34 active S-boxes

M

C

T

k0

k′0

1

10

k1

k1+α

2

9

S

S

h ◦ C

k1

k1+α

P

P

M

M

S

S

h ◦ C

k1

k1+α

P

P

M

M

. . .

. . .

. . .h ◦ C

. . .

. . .

. . .

3

8

S

S

k1

k1+α

P

P

M

M

4

7

S

S

h ◦ C

?

?

5

6

k1

k1+α

P

P

M

M

*

*

S

S

M

(b) 36 active S-boxes

Figure 3.7.: Two truncated differential characteristics for MANTIS5.

80

3.3. A Family of Differential Characteristics

An optimal differential characteristic.

We can now find (bitwise) differential characteristics that follow the
previously found truncated differential characteristics. Since MixColumns
only has binary coefficients, all transitions that match the branch number
of 4 for MixColumns (1 → 3, 2 → 2, 3 → 1) and 2 for AddTweakey are
possible when all active cells have the same fixed difference. For SubCells,
this means we need a high-probability differential fixed point. There
are 4 candidates with probability 1

4 : {a, b, e, f} (Figure 3.3a). We pick
a and obtain a differential characteristic with the optimal probability
2−34·2 = 2−68 from the truncated characteristics with 34 active S-boxes,
and 2−36·2 = 2−72 with 36 (Figure 3.8).

3.3.3. Clustering Good Differential Characteristics

We will now relax some of these constraints, and also consider charac-
teristics with cell differences other than a in selected sections of the
characteristic. Our goal is to generalize the (near-)optimal differential
characteristic into a family of characteristics that is similarly easy to
use for key recovery but can take much better advantage of the limited
available data.

As an example, consider the inner round S ◦M ◦ S between Rounds 5, 6
(Figure 3.8). We want to find other differential characteristics compatible
with the given truncated differential characteristic and the fixed tweak
difference. AddTweakey in Rounds 5 and 6 implies that any compatible
characteristic must have a difference of (a, 0, 0, a)> in column 2 of the
input and output of S◦M◦S. So far, we only considered one characteristic
with probability 2−8 for S ◦M ◦ S:

(a, 0, 0, a)> S−→ (a, 0, 0, a)> M−→ (a, 0, 0, a)> S−→ (a, 0, 0, a)>.

Based on the DDT of SubCells and the definition of MixColumns, any of
the following 4 characteristics with x ∈ σ({a}) = {5, a, d, f} can be used
equivalently:

(a, 0, 0, a)> S−→ (x, 0, 0, x)> M−→ (x, 0, 0, x)> S−→ (a, 0, 0, a)>.

In a similar way, we can describe the family of all possible characteristics
consistent with the previous truncated differential characteristic with 36
active S-boxes and with the fixed tweakey difference. Due to the linear

81

3. Key Recovery for MANTIS

M

C

T

k0

k′0

1

10

a
a

k1

k1+α

a
a

a1

1
2
2
2

a

6
6
6

7
7

7

8

8

S

S

·2−8

·1

a

a
a

1

1
2
2
2

6
6
6

7
7

7

8

8

a

a
h ◦ C

k1

k1+α

a
a
a

1
1

2
2
2

6
6
6

7
7
7

8
8

P

P

M

M

·2−7.11

·1

2

9

a1
1

2

6

7

a
a
3

3

a
a
5

5

S

S

·2−4.23

·1

3

3

5

5

a
ah ◦ C

k1

k1+α

3
3

5
5

P

P

M

M

·2−2

·2−2

. . .

. . .

. . .h ◦ C

3
3

5
5

. . .

. . .

. . .

3

8

3
3

5
5

a
a

a
a

S

S

·2−4

·1

a

a

a

a

a
a

k1

k1+α

a
a

a
a

P

P

M

M

·1

·1

4

7

a
a

a
a

a
a

a
a

S

S

·2−4

·2−4

a
ah ◦ C

?

?

5

6

a
a

a
a

a
a

k1

k1+α

a

a

a

a

P

P

M

M

·1

·1

*

*

a

a

a

a

4

4

4

4

S

S

M·2−4

a ∆ ∈ {a}
1 3 4 5 ∆ ∈ σ({a}) = {a, f, d, 5}

2 6 7 ∆ ∈ σ(σ({a}))
∆↔ ∆ + a

i ∆ identical
8 other sets

Figure 3.8.: Family of differential characteristics for MANTIS5.

tweakey schedule, all round-tweakey differences are also fixed, which
imposes many constraints on the active cells. Whenever the round tweakey
cancels or introduces a difference in the state, it forces an active cell
to a (marked a). This is further propagated by SubCells to {5, a, d, f}
(marked) and by MixColumns, which requires equality of all differences
in transitions that match the branch number (marked with identical
identifiers i). All characteristics for Rounds 2 to 9 enumerated this way
are possible and have optimal probability (see Figure 3.8).

More generally speaking, we specified a semi-truncated characteristic
[EK17]. This is a family of characteristics that is characterized by a
set χi ⊆ X of possible cell-wise differences for each active state cell Si,
0 ≤ i ≤ 15, based on a truncated differential characteristic, plus some

82

3.3. A Family of Differential Characteristics

intra-state and inter-state equality constraints. Then the semi-truncated
characteristic is the subset of characteristics in the Cartesian product of
all χi that satisfy the equality constraints.

First and last rounds.

For a concrete attack, we can configure the sets χM of the message input
state M and χC of the ciphertext output state C, and adapt the states of
the neighboring first and last rounds accordingly. In particular, it can be
helpful to slightly adapt the truncated characteristic and allow slightly
more active S-boxes. The goal of this configuration is to balance the trade-
off between the costs of different attack phases, which are influenced by
the number of characteristics, their average probability, and the structure
of χM and χC .

For the output C, we define the sets of Round 10 such that all operations
starting from SubCells of Round 9 follow the family deterministically.

For the input M , we choose a trade-off with 4 differences per cell in 8
input cells. For Round 1, this selection permits all differences that are also
compatible with the previously defined sets for Round 2 and the truncated
characteristic.

In summary, our final semi-truncated characteristic is a set of characteris-
tics that contains (a superset of) all differential characteristics that

• have non-zero expected differential probability,
• comply with the starting truncated characteristic with 36 active

S-boxes, except for modifications in the message M , Round 10, and
the ciphertext C,

• comply with the fixed difference for the tweak T with active cells
(a, a), and

• start with an input difference in the reduced specified set χM .

It should be noted the final semi-truncated characteristic no longer includes
only possible, optimal characteristics, but also many with lower or zero
probability. In the following, we assume that all sets χi are reduced to
contain only differences that are reachable from both neighboring states
[EK17]. Compared to the original characteristic [DEKM17], Figure 3.8 is
slightly improved accordingly: Rounds 1 and 2 permit more differences,
whereas the sets in Round 10 are refined to exclude a few unreachable
differences.

83

3. Key Recovery for MANTIS

Probability of the family of characteristics.

The probability of a semi-truncated characteristic is defined as the sum of
probabilities of all compatible differential characteristics for a fixed input
difference, averaged over all compatible input differences. Similarly, the
probability of a semi-truncated differential is defined as the probability that
any compatible output difference is observed for a fixed input difference,
averaged over all compatible input differences. As usual, we will assume
that the probability of an individual differential characteristic (for the fixed
target key) can be estimated based on the expected differential probability
(across all long-keys), which is in turn computed by multiplying the
differential probabilities of each round for a Markov cipher.

Instead of enumerating all individual characteristics, we want to estimate
the probability directly round by round based on the semi-truncated de-
scription. The relevant round operations for evaluating the semi-truncated
probability are SubCells (as for individual characteristics) and MixColumns
(as for truncated characteristics); the other operations are trivial if the
semi-truncated characteristic is reduced [EK17].

In the original paper [DEKM17], we estimated the probability of the
family of characteristics cell-by-cell for each round independently. For each
round, we consider all differentials and average their probabilities. For
example, in Round 2, the individual probability of the SubCells transitions
in S2, S3, S6, S12 is 2−2 · 1 · 2−2 · (2−1−0 + 2−1−1) ≈ 2−4.4. The individual
probability of the MixColumns transition in Round 2 depends on the
number of active input cells and set size, and is 2−2. Overall, with the
original characteristic, we estimated an overall probability of 2−40.51. In
this straightforward computation we made two Markovian assumptions:

(a) Uniformity of values: For each individual characteristic, we make
the usual Markov assumption that the input values to SubCells are
uniformly distributed; and

(b) Uniformity of differences: By using the definition of the proba-
bility of a semi-truncated differential and averaging over all input
differences, we make a similar uniformity and independence assump-
tion regarding the distribution of the differences in each round among
the compatible characteristics.

In the case of MANTIS, the first assumption seems reasonable except in
the inner part, which features two successive SubCells layers without a key
addition in between. For the specific semi-truncated characteristic used

84

3.3. A Family of Differential Characteristics

for MANTIS5, the second assumption is also well-justified in most rounds,
for example due to the uniform distribution of the message input or the
most frequent transitions with 4 equiprobable differentials. However, in
general – and in Round 2 in particular – this assumption does not apply.

To obtain a more accurate estimate, we consider not only the set of differ-
ences at each step, but their expected distribution among all compatible,
consistent differential characteristics that contribute to the probability.
Consider an intermediate state S with semi-truncated characteristic χ.
The difference in this state for a random compatible plaintext pair is
a random variable ∆ = (∆0, . . . ,∆15). We write ∆ ∈ χ for the event
∆i ∈ χi for all i, and ∆ ∈ χ to state that all intermediate differences in the
steps up to and including S follow the semi-truncated characteristic for a
particular input pair. We are interested in the distribution of ∆ in case
∆ ∈ χ, and specifically, in the cell-wise conditional distribution defined
by the probability mass function ϕi:

ϕi : X → [0, 1], δ 7→ P
[
∆i = δ | ∆ ∈ χ

]
.

Now consider an operation f ∈ {S,A,P,M} that is applied to the input
state S to produce the output state Sf := f(S). We want to derive the

conditional distribution ϕfi of ∆f and estimate the probability pf of the
semi-truncated characteristic up to this state:

pf = P
[
∆
f ∈ χf | ∆ ∈ χ

]
, pf = P

[
∆
f ∈ χf

]
= pf · P

[
∆ ∈ χ

]
.

As an intermediate step, we consider the distribution of ∆f without the
constraints χf , i.e., ϕ̃fi under the condition ∆ ∈ χ instead of ϕfi under

∆
f ∈ χf (so ϕfi (δ) = 0 for δ /∈ χfi):

ϕ̃fi : X → [0, 1], δ 7→ P
[
∆f
i = δ | ∆ ∈ χ

]
.

For AddTweakey and PermuteCells, we trivially get pf = 1, and ϕ̃fi = ϕfi is

a permuted ϕi. For SubCells, let P[α
S→ δ] denote the differential probability

of (α, δ) obtained from the DDT of S-box S. Furthermore, let 1χi denote
the indicator function of χi: If δ ∈ χi then 1χi(δ) = 1, else 1χi(δ) = 0. If
we assume that the distributions ϕi are independent, then

ϕ̃S
i (δ) =

∑

α∈χi

ϕi(α) · P
[
α
S→ δ
]
, pSi =

∑

δ∈χS
i

ϕ̃S
i (δ) ,

ϕS
i (δ) = 1χS

i
(δ) · ϕ̃

S
i (δ)

pSi
, pS =

∏

i

pSi .

85

3. Key Recovery for MANTIS

For MixColumns, the distribution needs to be evaluated column by col-
umn for each I ∈ I. Then, assuming the input distributions ϕi are
independent, we get the following distribution ϕM

I of column differences
∆I = (∆I0 , . . . ,∆I3):

ϕ̃M
I (δI) = ϕI(M · δI) =

∏

j

ϕIj ([M · δI]j) , pMI =
∑

δI∈χM
I

ϕ̃M
I (δI) ,

ϕM
I (δI) = 1χM

I
(δI) ·

ϕ̃M
I (δI)

pMI
, pM =

∏

I

pMI .

Based on the column-wise distribution for all differences δI = (δI0 , . . . , δI3),
we obtain the (dependent) cell distributions ϕM

Ij
:

ϕM
Ij (δ) =

∑

[δI]j=δ

ϕM
I (δI) .

For the special case of meeting the branch number bound with a ∈ {1, 2, 3}
active input cells and 4− a active output cells, all active cells share the
same set χ∗. Then, all active output cells will also share an identical
(dependent) distribution ϕM

∗ . For example, in the simplest case that the
input cells are also identically (independently) distributed by ϕ∗:

pMI =
∑

δ∈χ∗
[ϕ∗(δ)]a , ϕM

∗ (δ) = 1χ∗(δ) ·
[ϕ∗(δ)]a

pMI
.

Clearly, the independence assumptions required at each step will usually
not be satisfied. On the other hand, maintaining a full-state distribution
ϕ for each state is not practicable. As a practical compromise, we consider
the dependencies ϕM

I introduced by MixColumns in the next SubCells, but
assume that the following PermuteCells “clears” the dependencies [EK17]:

ϕ̃S
I (δI) =

∑

αI∈χI

ϕI(αI) ·
∏

j

P
[
[αI]j

S→ [δI]j
]
, pSI =

∑

δI∈χS
I

ϕ̃S
I (δI) .

When applying the approach to the MANTIS5 characteristic in Figure 3.8,
the overall probability is p = 2−39.34.

The most accurate result would, of course, be obtained with a distribution
of full-state differences [CFG+14; Leu15; BDP15]. For example, Canteaut
et al. [CFG+14] consider a very structured cluster for PRINCE and derive
a closed form for its probability. Leurent [Leu15] gives a general approach
using transition probabilities for full-state differences, but this is only
feasible with a very low number of active S-boxes per step to keep the
number of considered differences per step sufficiently small.

86

3.3. A Family of Differential Characteristics

3.3.4. Exploiting Semi-Truncated Characteristics

Data Collection

Once we have fixed a semi-truncated characteristic and determined an
estimate for its probability, we need to consider how to efficiently generate
message pairs with a compatible input difference, and how to evaluate the
resulting output differences. All these considerations depend on the size of
the semi-truncated difference set relative to the total number of possible
differences. For this purpose, we identify the semi-truncated difference
χ = (χ0, . . . , χ15) with the corresponding expanded set of differences
χ0 × · · · × χ15 ⊆ X 16. We then denote the number |χ| of differences
compatible with the semi-truncated difference χ, and their ratio (or filter)
ρ(χ) among all differences, by

|χ| := |χ0 × · · · × χ15| =
∏

i

|χi| ∈
[
1, |X |16]

ρ(χ) :=
|χ|
|X 16| =

∏

i

ρ(χi) ∈
[
2−16|X |, 1

]
.

We consider a semi-truncated characteristic with probability p and denote
its plaintext-ciphertext differential and tweak difference by (χM , χC) and
χT , respectively. Note that the tweak difference is fixed, so

∣∣χT
∣∣ =

∣∣{δT }
∣∣ =

1, whereas
∣∣χM

∣∣ ,
∣∣χC

∣∣ ≥ 1.

Plaintext pairs can be generated efficiently with initial structures similar
to the case of multiple and truncated differentials: We fix a base plaintext
M and base tweak T . Then, we query the ciphertexts for the set M×T
of plaintext-tweak combinations, where the message set M and tweak set
T are defined as follows:

T = T ⊕
〈
χT
〉

= {T, T ⊕ δT }, M = M ⊕
〈
χM
〉
,

where 〈S〉 denotes the linear span generated by a set S, i.e., the set
of all linear combinations of elements in S. For each queried message
in the first half T ⊕ M of this set, there is a corresponding queried
message in the second half (T ⊕ δT)⊕M for any compatible difference
δM ∈ χM . Thus, with 2 ·

∣∣〈χM 〉
∣∣ chosen-plaintext queries, we obtained∣∣〈χM 〉

∣∣ ·
∣∣χM

∣∣ compatible plaintext pairs. Among this set of compatible
pairs, all message differences compatible with χM (and each χMi) appear
equally often, consistent with the uniform starting distribution we assumed

87

3. Key Recovery for MANTIS

in Section 3.3.3. We can repeat this procedure several more times with
different base inputs M and T to generate pairs at a constant rate of∣∣χM

∣∣ /2 pairs per query. This is independent of the structure of the sets
χMi and the resulting size of 〈χMi 〉, except for the obtained granularity of
the number of pairs.

If we want to generate enough pairs to expect R valid pairs compatible
with the full semi-truncated characteristic, the necessary number of queries
NQ is

NQ = R · 2

|χM | · p
in case p−1 is an integer multiple of

∣∣〈χM 〉
∣∣·
∣∣χM

∣∣, or slightly more otherwise.
The resulting NP = R/p ciphertext pairs can be filtered down to a much
smaller number of candidates that still contains about R valid pairs based
on the ciphertext difference, which must be in χC , resulting in a number
of filtered ciphertext pairs NF of

NF = R · ρ(χC)

p
.

This filtering can usually be done efficiently without the need to enumerate
all R/p ciphertext pairs. For example, we can select the cell positions Si
with the smallest sets χCi , and repeat the following for each base input
(T,M): Store the first half of the ciphertexts with tweak T in a hash table
indexed by the values of the ciphertext cells Ci. Then, for each ciphertext
in the second half with tweak T ⊕ δT , only check the relevant hash table
entries according to χCi for matches on the full output difference χC . Ideally,
if there are sufficiently many cells with

∣∣χCi
∣∣ = 1 (depending on the size∣∣χM

∣∣), then each filtered ciphertext pair can be identified with minimal
amortized cost. In this ideal case, the total complexity is dominated either
by the number of queries NQ or the number of filtered ciphertext pairs
NF, both of which can be significantly smaller than NP = R/p.

Key Recovery

Different approaches to key recovery are possible depending on the prop-
erties of the semi-truncated characteristic, such as

∣∣χM
∣∣ ,
∣∣χC

∣∣ , p, and the
cardinalities in the initial and final intermediate rounds. The details also
depend heavily on the target cipher and in particular its key schedule. In
the remaining paper, we focus on an approach that combines elements of

88

3.3. A Family of Differential Characteristics

classical 0-round and 1+-round key recovery using standard differential
characteristics or differentials. Below, we summarize the basic approach
and possible trade-offs, but refer to Section 3.4 for a detailed description
of a practical application.

We recover the full key in three phases, where the first phase usually
dominates the attack complexity. Note that in this paper, we target a
cipher with a key size twice as large as the block size, and also essentially
more than twice as large as the key size that the attacker can brute-force,
so it is not sufficient to just recover a few key bits and brute-force the
rest. We assume we have generated a set of NF filtered ciphertext pairs
that contains at least one valid pair compatible with the semi-truncated
characteristic, as described above.

In the first phase, we will try to identify this valid pair and recover parts
of the initial and final round keys in the process. To this end, we guess
parts of the initial and final round key and test for each filtered pair if the
resulting intermediate values are compatible with the characteristic. We
only keep round key candidates that produce valid intermediate values
for at least one characteristic. To estimate how many partial key guesses
produce valid intermediate values for a fixed pair, we will assume that
the filtered differentials are distributed uniformly among (χM , χC). Then,
we use the same methods as in Section 3.3.3 for estimating probabilities:
for the initial rounds, we reuse the probability estimates for the relevant
parts of the characteristics; for the final rounds, we compute estimates in
essentially the same way, but based on the inverse round function. This
phase reduces the space of key candidates for each cell or column, and
can be repeated to (almost) uniquely determine the relevant round key
values, as well as identify the valid pair.

In the second phase, we repeat a similar approach to test more conditions
of the characteristic and recover more key material. Since we only need to
test for one or a few valid pairs instead of all NF filtered pairs, we can
simultaneously guess larger parts of the key and thus cover more initial
and final rounds. Finally, in the third phase, we brute-force the remaining
key-space.

As a trade-off to balance the complexities arising from NQ and NF, we
can consider minor adjustments of the semi-truncated characteristic. If
NF dominates the complexity, we can restrict χM in order to exclude
the lowest-probability characteristics in the set and thus increase p. As
an effect, the product

∣∣χM
∣∣ · p will slightly decrease (since we excluded

89

3. Key Recovery for MANTIS

several previously valid pairs), leading to a slight increase in the data
complexity NQ. Another negative effect is that the first rounds of the
cipher will provide a slightly less effective filter for key recovery. On the
other hand, NF and the resulting complexity costs for key recovery will
be significantly decreased.

3.4. Practical Key Recovery Attack on MANTIS5

We can now use the family of characteristics from Section 3.3 to recover
the two 64-bit secret keys k0 and k1 of MANTIS5. We first discuss how
to collect filtered pairs efficiently in 3.4.1, propose a step-by-step key
recovery approach in 3.4.2, and finally verify the attack with a practical
implementation in 3.5.1.

3.4.1. Generating and Filtering Enough Pairs

In this section, we will generate 242 plaintext pairs for the differential
family of Figure 3.8 and filter the ciphertext pairs down to about 218.55

candidates using 227 chosen-plaintext queries and about 230 operations.

Initial Structure

We now want to generate enough message pairs to expect at least one
valid pair, while staying well below the data complexity limit of 230 chosen
plaintexts. Obviously, the characteristic’s probability is not good enough
for a straightforward solution with 229 suitable pairs. However, we can
use the set {a, f, d, 5} of valid differences for each cell to our advantage.

We consider a random base plaintext-tweak pair and query two sets of
derived plaintext-tweak pairs: one for the base tweak, and one for the
modified tweak with a difference of a in two cells, as specified by the
truncated differential characteristic in Figure 3.8. The first set for the
base tweak contains the following 88 modified messages. Each of the 8
active cells (,) varies over 8 values: the base plaintext plus differences
{0, a, f, 5, d, 8, 7, 2}. The second set for the modified tweak contains the
same 88 messages. In total, the number of chosen plaintext-tweak pairs
we query is

2 ·
∣∣〈χM

〉∣∣ = 2 · 88 = 225.

90

3.4. Practical Key Recovery Attack on MANTIS5

Thus, we could repeat this up to 25 = 32 times and still stay below the
data complexity limit.

Set 1

Set 2

0

0

5

5

a

a

f

f

d

d

8

8

7

7

2

2

(a) Differences {a, f, d, 5} ().

Set 1

Set 2

0

0

5

5

a

a

f

f

d

d

8

8

7

7

2

2

(b) Differences {0, 5, 7, f} ().

Figure 3.9.: Initial structure with 8 · 4 pairs from 2 · 8 queries per cell.

To see how many suitable pairs we can generate from these queries, note
that for each value of a cell in the first set, there are exactly 4 (out of 8)
values for this cell in the second set that give a valid difference {a, f, d, 5}
() or {0, 5, 7, f} (), as illustrated in Figure 3.9. Here, we exploited that
a + 5 = f, where all these three values are suitable for our family of
characteristics. Thus, the number of pairs we get is

∣∣〈χM
〉∣∣ ·
∣∣χM

∣∣ = 88 · 48 = 240,

and the expected number of valid pairs is at least

240 · 2−39.34 = 20.66 ≈ 1.58 .

We expect that the probability of observing at least one valid pair in this
set is roughly 80 % [EK17].

In the following, we will use 4 repetitions r = 1, . . . , 4 of the initial
structure. Thus, we need to query 4 · 225 = 227 chosen plaintexts with
chosen tweaks in order to generate the 4 · 240 = 242 plaintext pairs. This
is well below the complexity limit of 230 chosen plaintexts for MANTIS5.

Pre-Filtering Ciphertexts for Wrong Pairs

Before we start guessing any keys, we can filter for pairs which definitely do
not follow the family of characteristics given in Figure 3.8. The necessary
conditions for valid ciphertext pairs are that 5 cells (S1, S4, S11, S13, S15)
have a zero difference (marked), while the difference in cell S14 is in
{a, f, d, 5} after removing the last tweak addition, marked), plus some
minor constraints from the other cells. If we assume that plaintext pairs
which do not follow our family of characteristics produce a uniformly

91

3. Key Recovery for MANTIS

random difference for corresponding ciphertext pairs, these conditions are
fulfilled with a probability of

ρ(χC) ≈ 2−5×4 · 2−1×2 · 2−2×0.299 · 2−5×0.093 · 2−2×0.193 · 2−1×0 ≈ 2−23.45.

Hence, we reduce the set of NP = 240 pairs per repetition r from the initial
structure to a set Ir of about NF = 240−23.45 = 216.55 pairs. Each set Ir
is still expected to contain 20.66 > 1 valid pairs that follow the family of
characteristics of Figure 3.8.

Complexity and optimizations. A naive implementation of gener-
ating and pre-filtering pairs costs 4 · 240 state xor operations. However,
instead of enumerating all valid pairs and then filtering for matches on 5
cells, it is much more efficient to reverse the process and only generate the
relevant pairs as follows. Store each plaintext-tweak-ciphertext of Set 1 in
a data structure of 220 partitions, partitioned according to the value of the
5 pre-filter cells S1, S4, S11, S13, S15. The expected size of each partition
is about 24. Then, for each plaintext-tweak-ciphertext of Set 2, iterate
only over the 24 candidates in the correct partition, and check whether
the input difference is valid and the difference of output cell S14 is valid.
The set Ir of remaining filtered pairs is the same, but the computational
complexity is reduced to less than 230 state xor operations.

3.4.2. Recovering the Key Step-by-Step

Recovery of 44-bit k′0 + k1

Using these filtered pairs, we can now recover the full key in several steps.
The first step of the attack is the partial recovery of 44 bits of the final
whitening key k′0 + k1. We want to check our key guesses against the
characteristic after AddTweakey in Round 10 (see Figure 3.10):

(C1) Cell S14 (marked a) must have difference a.

(C2) Cells S0, S5, S10 (marked 8) must have the same difference.

(C3) So do cells S2, S7, S8 (marked 9) after compensating for the tweak.

(C4) Cells S6 and S12 (marked 6 , 7) must have differences {a, f, 5, d},
and additionally, due to the properties of MixColumns, cells S3 and
S9 (marked =) will have the same difference, which is the sum of
the differences of S6, S12.

92

3.4. Practical Key Recovery Attack on MANTIS5

C

T

k′0 10

a
a

k1

a

6
6
6

7
7

7

8

8

S

·2−8.73

6
6
6

7
7

7

8

8

a

a
h ◦ C

k1

6
6
6

7
7
7

8
8

P M

·2−20.42

6

7

a ∆ ∈ {a}
∆ ∈ σ({a}) = {a, f, d, 5}

6 7 ∆ ∈ σ(σ({a}))
∆↔ ∆ + a

i ∆ identical
8 other sets

Figure 3.10.: Probability of last-round transitions for key-recovery.

The probability that a random pre-filtered ciphertext pair satisfies these
constraints under a 44-bit key guess can be estimated with the same
approach as in Section 3.3.3 as 2−8.73 · 2−20.42 = 2−29.15.

If we now decrypt one ciphertext pair i ∈ Ir backward for one SubCells
layer under 211·4 = 244 key guesses, we expect that 244−29.15 = 214.85 key
guesses will remain which satisfy all these conditions for this ciphertext pair
i. We expect the correct key guess to satisfy the conditions for at least one
of the ciphertext pairs i ∈ Ir, which follows the family of characteristics in
Figure 3.8. Thus, we repeat the procedure for all 216.55 pairs and consider
the union of all resulting potential key candidates. We expect at most
214.85 · 216.55 = 231.4 candidates for the right key guess, which effectively
reduces our keyspace by 2−12.6. So, repeating the attack a total of 4 times
with fresh initial structures is sufficient to recover the correct value of 44
bits of k′0 + k1.

Complexity and optimizations. To get the possible key candidates
per ciphertext pair, we need 2 · (216 · 4 + 2 · 212 · 3 + 24) ≈ 219.13 S-box look-
ups, which corresponds roughly to 211.54 MANTIS5 encryptions (based on
the total number of 16 · 12 S-boxes in MANTIS5). In total, we have to
generate key candidates for 4 · 216.55 pairs, corresponding to a total of
about 230.09 MANTIS5 encryptions.

In a straightforward implementation, we get 4 lists, each containing 231.4

key candidates, which dominates our memory requirements. We need to
find matches between the 4 lists, which adds a computational complexity
of roughly 231.4 operations, depending on the implementation.

93

3. Key Recovery for MANTIS

Note that it is not necessary to guess all 44 bit of the subkey at once
per ciphertext pair i ∈ Ir. Instead, we can split up the key guesses
condition-wise into a 4-bit subkey for condition (C1) (with a set of valid

subkey candidates of expected size |C(r,i)
14 | = 22), a 12-bit subkey for (C2)

(|C(r,i)
0,5,10| = 24), a 12-bit subkey for (C3) (|C(r,i)

2,7,8| = 24), and a 16-bit subkey

for (C4) (|C(r,i)
3,6,9,12| = 24). The expected set of 214 full key candidates per

pair i is then the product set of these sub-candidates. We refer to this
structured set of key candidates from repetition r and pair i ∈ Ir as a
bundle B(r,i), where

B(r,i) = C(r,i)
0,5,10 × C

(r,i)
14 × C(r,i)

3,6,9,12 × C
(r,i)
2,7,8.

Storing all bundles requires only about 4 · 216.55 · 10.25 < 225 MANTIS
states. To find the correct value of all 44 bits, we now need to compute

4⋂

r=1

⋃

i∈Ir
|Ir|≈216.55

C(r,i)
0,5,10 × C

(r,i)
14 × C(r,i)

3,6,9,12 × C
(r,i)
2,7,8.

The computational complexity of matching the bundles of key candidates
is similar to before if the list of bundles per repetition is indexed efficiently
per subkey candidate. Then, the bundles can be intersected subkey by

subkey, starting with the most restrictive subkey, C(r,i)
3,6,9,12.

Recovery of 32-bit k0 + k1

With the help of the recovered 44 bits of k′0 +k1, we can filter our plaintext
pairs i ∈ Ir so that only the valid plaintext pairs following the family of
characteristics in Figure 3.8 remain. The probability that the right key
mis-identifies a pair as false positive is 2−29.15. Therefore, it is likely that
only correct pairs (approximately 4) remain after filtering 4 · 216.55 pairs.
We now use those 4 valid pairs to recover 32 bits of the initial whitening
key k0 + k1 as follows. We guess the key bits for all plaintext cells with
differences, S0, S5, S6, S7, S8, S10, S12, S14. Then we can compute forward
through the SubCells layer of Round 1, and check if the resulting difference
pattern matches the family of characteristics. A wrong key matches the
pattern with a false positive probability of about 2−15.11, or for all 4 correct
pairs with about 2−60.44. Therefore, we expect that only the correct subkey
remains out of the 232 possible candidates.

94

3.4. Practical Key Recovery Attack on MANTIS5

Complexity. We make a 32-bit key guess for each of 4 pairs, leading to
a total of 2 · 4 · 8 · 232 = 238 S-box look-ups. This corresponds to about
230.42 MANTIS5 encryptions.

Recovery of k0 and k1

Up to this point, we have recovered 32 bits of information about k0 + k1

and 44 bits of information about k′0 + k1 = (k0 ≫ 1) + (k0 � 63) + k1.
This gives us a system of 76 linearly independent linear equations for k0

and k1. To recover the full key, we have to guess 52 remaining bits and
identify the right key using trial encryptions. Alternatively, we can also
use the SubCells layers of Rounds 2 and 3 (or 9 and 8) to first recover
more bits of k1, based on the previously recovered information. Similar to
recovering k0 + k1, we can apply a guess-and-determine approach to only
the 4 valid pairs, for example as summarized in Table 3.1.

Complexity. The guess-and-determine approach recovers 14 of the
missing 52 bits of the original 64-bit keys k0 and k1 with negligible
computational efforts. Completing the key requires 238 trial encryptions,
which dominates our attack complexity.

Table 3.1.: Recovering 14 bits of k0 and k1.

Recovered key bits Targeted S-box transitions

S0 + S5 + S10 of k1 (1 bit) S12 in R 2 (2 → 3)
and/or R 9 (8 ← 5)

S6 + S12 of k1 (1 bit) S2, S6 in R 2 (1 → a)
S2 + S7 + S8 of k1 (4 bits) S3 in R 9 (9 ← 5)
S2, S5, S6, S7, S8, S12 of k0, k1 Guess 1 bit
S3 of k1 (4 bits) S6, S10 in R 3 (3 → a)

and/or R 8 (5 → a)
S9 of k1 (4 bits) S2, S6 in R 9 (6 , 7 → a)

Summary. In summary, the computational attack complexity is dom-
inated by the final 238 trial encryptions. The query complexity with
the parameters used above is 227 chosen-plaintext related-tweak queries
(with many queries per tweak value), and results in an estimated success
probability of 40 % of at least one valid pair per repetition.

95

3. Key Recovery for MANTIS

3.5. Discussion

3.5.1. Practical Verification

A practical implementation of the key recovery attack is provided in the
original paper [DEKM17] in order to verify the probability estimates
and attack complexity. A first straightforward implementation revealed
some additional structural properties of MANTIS that negatively affect
the success probability of the attack. For this reason, we adapted some
aspects of the attack in order to obtain a higher success probability in
practice.

The first issue reported in the paper [DEKM17] is that the observed
number of valid pairs per repetition is on average higher than expected,
but the variance is relatively high: We observed several repetitions with
no valid pairs, while other repetitions produced a dozen or more pairs.
The first part is partially explained with the improved characteristic and
more precise probability evaluation presented in this chapter, which results
in numbers closer to (though still slightly below) the observed averages.
The variance is a problem for the 44-bit key recovery of Section 3.4.2,
which relies on finding at least 1 valid pair per repetition, but the success
probability observed in practice was even worse than the estimated 40 %.
There are several options to compensate for this. If memory requirements
and higher runtime are not an issue, we can simply expand all bundles of
key candidates and count the number of occurrences of each candidate,
as done in classical key-recovery attacks using ranking statistics [SB02],
which will reveal the correct candidate with very high probability. A more
practical alternative is to change the initial structures per repetition to
contain more structures for different plaintexts, but with fewer queries
per structure, in order to decrease the variance. For example, if we use
25 different base plaintexts per repetition, but vary only 7 instead of 8
cells, the resulting number of pairs per repetition remains the same at
25 ·87 ·47 = 240, but the data complexity increases slightly to 2·25 ·87 = 227,
or 4 · 227 = 229 in total for all repetitions. Additionally or alternatively,
we can slightly further increase this number to raise the estimated success
probability above 40 %.

The second issue is that during the 32-bit key recovery of Section 3.4.2,
we always find at least 28 possible key candidates instead of just 1, and 2
key candidates for the 44-bit subkey. Both this and the previous issue are
connected to the same structural property of the MANTIS S-box. We filter

96

3.5. Discussion

our keys by checking whether the valid pairs follow the correct differential
S-box transitions in Round 1, that is, {a, f, d, 5} 7→ {a, f} for each cell.
However, it turns out that whenever a pair of cells (x, x′) follows one
of these transitions, then so does (x + a, x′ + a). This means that for
each cell k of the correct subkey, there is an equivalent value k + a which
also satisfies all the constraints of Round 1, leading to a total of at least
28 candidates. This would also increase the complexity of Section 3.4.2
accordingly. Instead of this expensive brute-force approach, we encoded the
recovery of the remaining key as a Boolean satisfiability (SAT) problem.

The final adapted attack successfully recovered the full key for several
tested random challenges with the original characteristic [DEKM17] in
about 1 hour on a single core. The step dominating the computational
complexity on paper, performing 238 trial encryptions, was solved by a
SAT solver in 1.5 minutes.

3.5.2. Applicability to MANTIS6 and MANTIS7

MANTIS5 is the most aggressive of the proposed MANTIS family members.
For their performance comparison with PRINCE, the designers list the vari-
ants MANTIS5 through MANTIS8, though only MANTIS5 beats PRINCE in
terms of area and latency. Explicit security claims are given for MANTIS7

(security against related-tweak attacks with data complexity ≤ 2n chosen
plaintexts/ciphertexts and computational complexity ≤ 2126−n calls) and
MANTIS5 (similar, for ≤ 230 chosen or ≤ 240 known plaintexts).

The characteristic of Figure 3.8 can be extended to a 6-round characteristic
by appending an initial and final round [EK17]. With a careful choice of
conditions in the first and last two rounds, it is possible to recover the
key for MANTIS6 with about 255 chosen plaintexts and computational
complexity 255.5 ≤ 2126−55. It is worth noting that the attack is based
on a full-round characteristic with a probability of only 2−67.37, which is
less than the generic expected probability of the (family of) differentials.
To compensate for this, the key recovery process is intertwined with the
characteristic over the final 2.5 rounds.

We did not analyze the MANTIS7 proposal. Many of the observations
and methods for MANTIS5 also apply to MANTIS7, which certainly casts
some doubt on the design’s security margin. It is relatively easy to find
a very similar optimal differential characteristic with probability 2−100

(compared to 2−68 for MANTIS5 and 2−88 for MANTIS6), and to apply

97

3. Key Recovery for MANTIS

the same observations for clustering characteristics and improving the
probability. However, a straightforward adaptation of the full key recovery
attack is made more difficult by several factors. For example, it is hard to
find characteristics for MANTIS7 which on the one hand have a sufficiently
low number of active S-boxes, and, on the other hand have enough active
cells at the input and output to be useful for key recovery. Also, due to
the small state size, the probability must be relatively high to avoid false
positives among the seemingly valid pairs.

3.5.3. Applicability to QARMA

QARMA is a tweakable block cipher published by Avanzi [Ava17] around
the same time as MANTIS. Despite its very recent academic publication
date, it has already been announced as the standard algorithm for pointer
authentication in the new ARMv8-A architecture [Bra16]. Pointer au-
thentication is a new security feature of this architecture intended to
prevent exploits based on Return-Orientated-Programming (ROP) or
Jump-Orientated-Programming (JOP) [Bra16].

QARMA comes in two block sizes, QARMA-64 and QARMA-128, where
QARMA-64 is strikingly similar to MANTIS: It shares the same high-level
α-reflective structure (Figure 3.1a), round function structure (Figure 3.1b),
and even the same permutations P and h (Figure 3.2). The security claims
for 5 and 7 rounds of the construction are also the same as for MANTIS.
However, noting some peculiar properties of MANTIS like the Superbox
structure of the inner rounds, Avanzi also strengthens some of the other
operations. In particular, the inner round of QARMA is strengthened with
two additional applications of P and a key addition, and the tweak schedule
is extended with an LFSR. The S-box and MixColumns matrix are also
more carefully selected. While the building blocks appear stronger than
those of MANTIS, they also have their downsides: The MixColumns matrix
of QARMA permits related-tweak truncated-differential characteristics
with fewer active S-boxes than the matrix of MANTIS, with only 30
(instead of 34 for the MANTIS matrix in either the MANTIS or) active
S-boxes for 5 rounds, and 48 (instead of 52) for the full 7 rounds.

The only available third-party analysis so far was presented by Zong and
Dong [ZD16]. The authors propose a meet-in-the-middle attack on 4-round
QARMA (corresponds to 10 S-box layers) with 253 chosen plaintexts and

98

3.5. Discussion

a computational complexity of about 270 encryptions, which does not
threaten the security of QARMA.

The QARMA design fixes several of the issues that we exploited for the
attack on MANTIS5: The strengthened inner round permits no Superbox
property, and the new S-box, MixColumns matrix and tweak schedule do
not display the same differential fixed points. This means that neither
the simple optimal differential characteristic, nor the clustering effects
observed in Section 3.3.3 seem applicable. On the other hand, the best
truncated differential characteristic has fewer active S-boxes to begin with.

3.5.4. S-box properties of MANTIS and QARMA

In the following, we discuss some properties of the 4-bit MANTIS and
QARMA S-boxes relevant for the attack. The four relevant S-boxes are spec-
ified in Figure 3.11 and include the involutive MANTIS S-box [BJK+16]
borrowed from Midori [BBI+15], as well as the three proposed S-boxes
for QARMA [Ava17]: Two involutive S-boxes (the first slightly more
“lightweight”, the second with slightly better cryptographic properties) and
a third non-involutive S-box borrowed from PRINCE [BCG+12]. Some of
these properties have also been discussed by the respective designers or
in the context of attacks on other primitives, like the invariant subspace
attack against Midori64 by Guo et al. [GJN+16].

Figure 3.11 already gives the first indication that QARMA-S1 and QARMA-
S2 might have cryptographically better properties than QARMA-S0 and
MANTIS-S: The latter has a rather high number of 4 fixed-points (3, 7, 8, 9),
QARMA-S0 has 2 fixed-points (0, 2), the others have none.

Figure 3.12 lists the algebraic normal forms (ANF) for all S-boxes. The
attack on MANTIS does not explicitly depend on these ANFs; however,
some of the algebraic properties are directly linked to the relevant differen-
tial properties we discuss below. Note that all four S-boxes were designed
to have the algebraic degree 3, but differ in important details.

This is most obvious when considering the algebraic degree of the indi-
vidual output bits, or, more generally, of the 24 − 1 component functions.
Figure 3.13 lists which output bits depend on which degree-3 monomials
x̄j =

∏
6̀=j x`, and reveals several sub-optimal properties of MANTIS-S:

(a) y2 only has degree 2,

99

3. Key Recovery for MANTIS

MANTIS-S 0 1 2 3 4 5 6 7 8 9 a b c d e f

c a d 3 e b f 7 8 9 1 5 0 2 4 6

(a) Involutive Sb0 of MANTIS [BJK+16] and Midori [BBI+15].

QARMA-S0
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 e 2 a 9 f 8 b 6 4 3 7 d c 1 5

(b) Involutive σ0 of QARMA [Ava17].

QARMA-S1
0 1 2 3 4 5 6 7 8 9 a b c d e f

a d e 6 f 7 3 5 9 8 0 c b 1 2 4

(c) Involutive σ1 of QARMA [Ava17].

QARMA-S2
0 1 2 3 4 5 6 7 8 9 a b c d e f

b 6 8 f c 0 9 e 3 7 4 5 d 2 1 a

(d) Non-involutive σ2 of QARMA, affine equivalent to S6 of PRINCE [BCG+12].

Figure 3.11.: S-boxes of MANTIS and QARMA.

(b) y2 does not depend on x2,

(c) x̄2 = x0x1x3 does not appear in any output bit, and

(d) D only has rank 2, i.e., there are only 2 linearly independent degree-3
terms involved: x̄1 + x̄3 and x̄0 + x̄1 + x̄3.

Together, and when combined with the binary linear layer of MANTIS,
properties (a) and (c) have a direct influence on the maximum possible
degree of multiple rounds: After 1, 2, 3, 4 rounds with a binary MixColumns,
degrees in the four output bits of each S-box are limited by (3, 3, 2, 3),
(8, 8, 6, 8) (instead of 9), (22, 22, 16, 22) (instead of 27), and (60, 60, 44, 60)
(instead of 63), respectively.

Properties (a), (b), (c) also hold in a similar way for (x1, x̄1, y1) of QARMA-
S0. In contrast, both QARMA-S1 and QARMA-S2 have full rank and thus
involve all degree-3 monomials; each output bit has degree 3 and depends
nonlinearly on each input bit. This difference – in particular regarding the
optimal or non-optimal rank – is also reflected in the second derivatives
of each S-box as discussed below.

100

3.5. Discussion

y0 = x0x1x2 + x0x2x3 + x0x1 + x0x2 + x2x3 + 1

y1 = x0x1x2 + x0x2x3 + x1x2x3 + x0x3 + x0 + x3 + 1

y2 = x0x1 + x0x3 + x1x3 + x1 + x3

y3 = x0x1x2 + x0x2x3 + x1x2x3 + x0x3 + x1x3 + x2

(a) MANTIS-S

y0 = x0x1x2 + x0x1x3 + x0x3 + x1x3 + x1 + x3

y1 = x0x2 + x0x3 + x2x3 + x0 + x3

y2 = x0x1x2 + x0x1x3 + x1x2x3 + x0x1 + x0x2 + x1x2 + x2x3 + x0 + x2 + x3

y3 = x0x1x3 + x1x2x3 + x0x2 + x1x2 + x1

(b) QARMA-S0

y0 = x0x1x2 + x0x2 + x1x2 + x1x3 + x2x3 + 1

y1 = x0x1x3 + x0x1 + x0x2 + x0x3 + x1x3 + x2x3 + x1 + x2 + x3

y2 = x0x2x3 + x0x1 + x0x3 + x1x3 + x2x3 + x0 + x3 + 1

y3 = x1x2x3 + x0x1 + x0x2 + x1x3 + x2x3 + x0 + x1 + x3

(c) QARMA-S1

y0 = x0x1x2 + x0x1x3 + x0x2x3 + x0x1 + x0x3 + x2x3 + x0 + x3 + 1

y1 = x0x1x2 + x0x2x3 + x0x2 + x1x2 + x1 + x3

y2 = x0x1x3 + x0x2x3 + x1x2 + x2x3 + x1 + x2 + 1

y3 = x0x1x2 + x0x2x3 + x1x2x3 + x0x1 + x0x3 + x1x3 + x1 + x2 + x3 + 1

(d) QARMA-S2

Figure 3.12.: Algebraic normal forms of MANTIS and QARMA S-boxes,
with input bits (x0, x1, x2, x3) and outputs (y0, y1, y2, y3) (MSB to LSB).

x̄0

y0

x̄1

y1

x̄2

y2

x̄3

y3

X X
X X X

X X X
rankD = 2

(a) MANTIS-S

x̄0

y0

x̄1

y1

x̄2

y2

x̄3

y3

X X

X X X
X X

rankD = 3

(b) QARMA-S1

x̄0

y0

x̄1

y1

x̄2

y2

x̄3

y3

X
X

X
X

rankD = 4

(c) QARMA-S1

x̄0

y0

x̄1

y1

x̄2

y2

x̄3

y3

X X X
X X
X X

X X X
rankD = 4

(d) QARMA-S2

Figure 3.13.: Degree matrix D of MANTIS and QARMA S-boxes, where
D[yi, x̄j] denotes whether the ANF of yi contains monomial x̄j =

∏
`6=j x`.

101

3. Key Recovery for MANTIS

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 a b c d e f

a
Sa(x)

(a) MANTIS-S

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 a b c d e f

a

Sa(x)

(b) QARMA-S0

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 a b c d e f

a

Sa(x)

(c) QARMA-S1

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 a b c d e f

a

Sa(x)

(d) QARMA-S2

Figure 3.14.: Differential distribution of MANTIS and QARMA S-boxes,
DDT[a, b] = Px[Sa(x) := S(x) + S(x+a) = b]. Legend: 1 1

4
1
8 .

Figure 3.14 gives the differential distribution table for each S-box. By
design, all S-boxes have a maximum differential probability (and maximum
absolute linear bias) of 1

4 , though the number of high-probability transitions
ranges from 24 (MANTIS-S) to 15 (QARMA-S1,S2). All S-boxes except
QARMA-S0 have high-probability differential fixed-points. MANTIS-S
even has two differences with only high-probability transitions (2, a).

Figure 3.15 highlights two interesting subgraphs of the differential-transition
graphs. The first, for MANTIS-S, is the one used in the attack of Chap-
ter 3. It covers the set A = {a, f, d, 5} of all possible transitions from
and to a, which includes the two high-probability fixed points {a, f} as
well as the sum a+5 = f. The latter two properties are relevant due to
their interactions with the binary MixColumns, trivial tweak schedule, and
initial structures. Overall, the probability that a starting difference chosen
uniformly random from A is mapped by MANTIS-S to A is 50 %, but the
output distribution will not be uniform. If we restrict the output to A
and consider the corresponding random walk on the state space A, the
distribution will converge to approximately 40.3 % a, 27.2 % f, and 16.2 %
each of d, 5. The corresponding probability to map back to A for the first
few steps is about 50 %, 68.8 %, 59.1 %, . . . , and converges to 62.0 %.

The second subgraph, for QARMA-S1, covers the set A1 = {3, c, f=3+c}
and converges to a uniform distribution and constant probability 50 %.

In addition to the first derivative Sa(x) := S(x) + S(x+a) of the S-boxes,
as tabulated in Figure 3.14, the attack of Chapter 3 also depends on
properties of the second derivative,

Sa,b(x) := S(x) + S(x+a) + S(x+b) + S(x+a+b).

102

3.5. Discussion

This is most significant for the first S-box layer due to the definition of the
initial structure (Figure 3.9), which chooses a set of related input pairs

{
(x0 + τ, x0 + τ + a) | a ∈ {a, f, d, 5}, τ ∈ {0, 5, a, f, d, 8, 7, 2}

}
.

The structure of the output of the first S-box layer also influences the
following S-box layers to a certain extent; and finally, the key recovery
part is also based on a similar structure, rather than a fixed difference.

Figure 3.16 illustrates the most relevant property of the second derivatives:
For any input difference a and offset τ , it gives the probability that adding
offset τ to both values of a pair of inputs with difference a does not
change the resulting output difference, i.e., the differential behavior of S
is invariant under translation by τ . In terms of the second derivative, this
is the probability that, for fixed a and τ , Sa,τ (x) = 0.

The column (or row) sums in this table for any τ depend on the number of
high-probability (4

16) entries in the DDT for τ , so only MANTIS-S has two
non-trivial values τ ∈ {2, a} with high overall probability Px,a[Sa,τ (x) = 0].
The most noteworthy entries are those for a, τ ∈ A5 = {0, 5, a, f=5+a}
and a, τ ∈ Ad = {0, d, a, 7 = d+a}, which are all ≥ 1

2 . In other words,
for any a ∈ A5 or Ad, and any of the at least two differences b with
DDT[a, b] = 4

16 , these 4 solutions are given by x0 + A5 or x0 + Ad for
some x0. Furthermore, for a ∈ {1, 3, 4, 6, 9, b, c, e}, and the only b with
DDT[a, b] = 4

16 , these 4 solutions are given by x0 + {0, a, 2, a+ 2}.

d

a

5

f

1⁄4 1⁄4
1⁄4

1⁄41⁄4

(a+ 5 = f)

1⁄2∗

(a) MANTIS-S

f

3 c

1⁄4 1⁄4

1⁄4

1⁄8

1⁄81⁄8

(3+ c = f)

1⁄2

(b) QARMA-S1

Figure 3.15.: Transition subgraphs of MANTIS and QARMA S-boxes.
1⁄2∗ only if input differences are uniformly selected, else converges to 62 %.

103

3. Key Recovery for MANTIS

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 a b c d e f

a
τ

(a) MANTIS-S

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 a b c d e f

a

τ

(b) QARMA-S0

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 a b c d e f

a

τ

(c) QARMA-S1

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 a b c d e f

a

τ

(d) QARMA-S2

Figure 3.16.: Differential invariance of MANTIS and QARMA S-boxes,
DIT[a, τ] = Px[Sa(x) = Sa(x+τ)] = Px[Sa,τ (x) = 0]. Legend: 1 1

2
1
4 .

3.6. Conclusion

We recover the full 128-bit key for MANTIS5 with a computational complex-
ity of about 238 encryptions, memory requirements of about 225 MANTIS
states, and a data complexity of about 227 to 230 chosen plaintexts with
chosen tweaks. A practical implementation recovered the correct key in
about an hour based on 230 chosen plaintexts. This violates the security
claim for MANTIS5: The designers claim resistance against attacks with
computational complexity less than 2126−30 = 296 encryptions based on
this data complexity.

Our attack takes advantage of several very lightweight building blocks
of MANTIS, most of them inherited from the Midori block cipher. This
includes the involutive S-box with its high-probability differential fixed
points a and f, the lightweight near-MDS matrix with its binary coeffi-
cients, and the lightweight tweakey schedule. Throughout the analysis, the
symmetries of the PRINCE-like design facilitate the repeated exploitation
of these properties. Another major issue is the interaction of the Midori-
inspired round function with the PRINCE-inspired inner rounds, which
leads to a Superbox structure over 4 S-box layers in the inner rounds.
Considering all these properties, the security margin of MANTIS may be
too optimistic.

104

4
Collisions for Simpira v1

In this chapter, we analyze the permutation Simpira v1 by Gueron and
Mouha [GM16a]. We show that the designers’ computer-aided security
analysis does not take into consideration several dependencies between in-
termediate variables of the permutation. This invalidates their conclusions
on the maximum probability of differential characteristics, and allows us to
mount distinguishing and collision attacks on the full-round permutation.
In response to the attack, the designers proposed an updated version of the
design, Simpira v2, which was published at ASIACRYPT 2016 [GM16b].

The results in this chapter are based on joint work with Christoph Dobrau-
nig and Florian Mendel. I am the main author of this contribution, pointed
out the flaws in the designers’ analysis, and developed the following attacks
to exploit the resulting dependencies. The following text is an extended
and restructured version of the paper published at SAC 2016 [DEM16a].

4.1. Introduction

The Advanced Encryption Standard AES and its underlying wide-trail
design strategy are among the most popular building blocks for new
symmetric designs. There are several good reasons for this. New AES-like
designs profit both from the insights in efficient implementations and
from the extensive cryptanalysis and well-understood security bounds
of AES. In particular, if new designs not only reuse the general design
ideas, but the AES block cipher itself or its round function, then Intel’s
AES-NI instruction set can provide high software performance on modern
CPUs. However, while block ciphers are a versatile building block for
other cryptographic primitives, the fixed block size of AES of 128 bits
implies a certain limitation. Modern designs often require larger states for
efficiency or security. Examples include permutation-based cryptography,

105

4. Collisions for Simpira v1

wide-block encryption, security beyond 264 inputs without resorting to
beyond-birthday-security schemes, and more.

These considerations have motivated the design of numerous cryptographic
algorithms based on the AES round function. Notable recent examples of
dedicated designs include several authenticated encryption algorithms with
excellent software performance, such as the CAESAR round-2 candidates
AEGIS [WP14] and Tiaoxin [Nik15], but also more specialized primitives
like the Haraka hash function for short inputs [KLMR16b]. Very recently,
Jean and Nikolić [JN16] analyzed a more general family of AES-round-
based building blocks that generalizes several of the previous dedicated
designs. However, except for the last work, these dedicated designs target
only specific state sizes, and do not offer scalable, easily reusable building
blocks for other cryptographic applications.

Simpira is a recently proposed family of permutations designed by Gueron
and Mouha [GM16a] that aims to fill this gap. The design goal is to provide
very efficient permutations for arbitrarily large input sizes of b× 128 bits,
b ∈ N+, while taking advantage of the Intel AES-NI instruction set for
optimized software implementations. To achieve these goals, Simpira plugs
the AES round function into a generalized Feistel construction. Addi-
tionally, the designers provide computer-aided bounds for the minimum
number of active S-boxes, and argue that these bounds provide security
against a wide range of attack vectors. To showcase the versatility of
the Simpira permutations, the designers propose a number of application
scenarios, including Even-Mansour block cipher constructions, or a keyless
Davies-Meyer variant for hash functions with limited-length inputs. Other
applications of Simpira for beyond-birthday-bound secure authenticated
encryption were proposed by Forler et al. [FLLW16].

Our contributions

We analyze members of the original Simpira v1 family [GM16a]. We show
that the underlying assumptions of independence, and thus the bounds
derived from the minimum number of active S-boxes, are incorrect. We
focus our analysis on the family member Simpira-4 with its 512-bit state,
but similar observations also apply to other family members with larger
state sizes. For Simpira-4, we provide differential characteristics with only
40 (instead of 75) independently active S-boxes for the recommended 15
rounds. Based on these characteristics, we propose collision attacks on the

106

4.1. Introduction

proposed Simpira-4 Davies-Meyer hash construction. For 16 rounds of the
permutation, we obtain collisions for the full 512-bit hash output with
complexity 2110.16. We also adapt the attack to the originally recommended
15 rounds, providing second-order collisions and truncated collisions. We
consider several truncation variants, and obtain, among others, collisions
on the truncated 384-bit output with complexity 2110.16, or collisions
on the 256-bit output with complexity 282.62 – the details depend on
the implemented truncation variant. These attacks violate the designers’
security claims that there are no structural distinguishers below 2128.

Related work

Rønjom [Røn16] independently analyzed Simpira v1, and identified invari-
ant subspaces for any even number of rounds of Simpira-4. Both attacks on
Simpira v1 exploit properties of the underlying Type-1.x Generalized Feis-
tel Structure by Yanagihara and Iwata [YI14] and the sparse, structured
round constants. In response to Rønjom’s and our attacks, Gueron and
Mouha proposed a new version of the design, Simpira v2 [GM16b], which
replaces both the Feistel construction and the round constant schedule.
In the remaining document, Simpira always refers to Simpira v1.

Simpira is not the first AES-round-based design with problematic round
constants. Other examples include the analysis of the hash function Haraka
[KLMR16a] by Jean [Jea16], the analysis of the withdrawn CAESAR
round-1 candidate PAES [YWH+14] by Jean et al. [JNSW14; JNSW16], or
the analysis of SHAvite-3 [BD09; DB09] by Peyrin [Pey09] and SHAMATA
[AKKM08] by Indesteege et al. [IMPS09]. In most cases, the round con-
stants failed to break the symmetry properties of the unkeyed AES round
function. Our attack exploits different properties, such as an incomplete
diffusion of differences in the structured round constants.

Outline

We first describe the Simpira family of permutations in Section 4.2, and
discuss the designers’ analysis in Section 4.3.1 and 4.3.2. As a result,
we describe an iterative truncated differential characteristic with fewer
independently active S-boxes than expected in Section 4.3.3, which serves
as the basis for an 8-round differential characteristic with probability
2−110.16 in Section 4.3.3. Based on this, we propose collision attacks on

107

4. Collisions for Simpira v1

the 15- and 16-round Simpira-4 hash construction in Section 4.4.1 and
Section 4.4.2. Finally, we discuss Rønjom’s analysis and the tweaked
version Simpira v2 in Section 4.5, and conclude in Section 4.6.

4.2. Description of Simpira v1

Simpira is a family of permutations by Gueron and Mouha [GM16a]. By
using the AES round function in a generalized Feistel construction, it can
be adapted to any input size of b× 128 bits, b ∈ N+. We refer to Simpira
family members as Simpira-b.

4.2.1. Permutation and Round Function

The permutation Simpira-b keeps a state of b× 128 bits. The generalized
Feistel round function for b ≥ 4, where b 6= 6, 8, is illustrated in Figure 4.1.
The final output of Simpira-b for b ≥ 4, b 6= 6, 8, is the state after 6b− 9
such rounds. Note that if the number of rounds is not a multiple of b, the
state words are output in a permuted order to allow for more efficient
implementations.

Ai

Ai+1

Bi

Bi+1

Ci

Ci+1

Di

Di+1

Ei

Ei+1

· · ·

· · ·

· · ·

· · ·

F2i−1,b F2i,b · · ·• •

Figure 4.1.: Round function for round i of Simpira-b for b ≥ 4, b 6= 6, 8.

In case of Simpira-4, we denote the 4 state words before round i ≥ 1 by
Ai, Bi, Ci, Di, so the state update rule corresponds to

Ai+1 = F2i−1,4(Ai)⊕Bi,
Bi+1 = F2i,4(Di)⊕ Ci,
Ci+1 = Di,

Di+1 = Ai.

The recommended number of rounds for Simpira-4 is 15, with output words
(B16, C16, D16, A16).

108

4.2. Description of Simpira v1

4.2.2. F -Function

The Feistel update function F = Fc,b applies two rounds of AES, where
the Simpira family member b and the round counter c define the round
constants, as illustrated in Figure 4.2.

SB SR MCSB SR MCS Fc,b(S)

Cc,b

Figure 4.2.: AES-based F -function Fc,b of Simpira-b.

Like for AES, the 128-bit intermediate state of F is represented as a
4× 4-matrix of bytes, labelled s0, . . . , s15:

S =

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

.

We also refer to the value at byte position si in state S as S[i].

The operations SubBytes, ShiftRows, and MixColumns are defined identically
to AES, whereas AddConstant adds counters that define an invocation
counter and the value b:

• SubBytes (SB): Applies the 8-bit AES S-box S to each state byte.

• ShiftRows (SR): Rotates row i of the state, 0 ≤ i ≤ 3, left by i bytes.

• MixColumns (MC): Multiplies each byte column of the state by the
MDS-matrix M over K = F2[α]/(α8 + α4 + α3 + α+ 1),

M =




α α+ 1 1 1
1 α α+ 1 1
1 1 α α+ 1

α+ 1 1 1 α


 =




02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02


 .

• AddConstant (AC): In the cth invocation of F for Simpira-b, xors the
following round constant Cc,b to the state:

Cc,b =

c0 b0 0 0
c1 b1 0 0
c2 b2 0 0
c3 b3 0 0

.

109

4. Collisions for Simpira v1

In the remaining chapter, we focus on Simpira-4, so b0 = 04 and
b1 = b2 = b3 = 00. Also, since the number of invocations of F is
limited to 30 in Simpira-4, c1 = c2 = c3 = 00. This constant is only
added in the first of the two AES rounds of F , while the second
round adds nothing.

To refer to intermediate states of F for an input S, we denote with
SSB1, SSR1, SMC1 the outputs of first-round SB,SR,MC, respectively, SAC

the output of first-round AC, and SSB2, SSR2, SMC2 the outputs of second-
round SB,SR,MC.

4.2.3. Permutation-based Hashing

Simpira’s designers identify several application areas for the Simpira per-
mutation, such as block ciphers via an Even-Mansour construction. One
particular suggested application is permutation-based hashing for short
inputs, where “short” means the state size of any Simpira variant. The
proposal is to use a single-block, keyless Davies-Meyer-like construction
with a feed-forward, and compute the hash h(x) of x as

h(x) = Simpira-b(x)⊕ x.

This approach provides an efficient construction for hashing inputs of
limited length, which is required by many applications, such as hash-based
signatures [Lam79; BHH+15].

4.3. Revisiting the Differential Bounds

In this section, we revisit the designers’ security analysis of Simpira.
We show that their bounds on the minimum number of differentially
active S-boxes are too optimistic. In particular, we provide an iterative
2-round differential characteristic for Simpira-4 with probability 2−27.54.
For Simpira-4 reduced to 8 out of 15 rounds, this yields a differential
characteristic with probability 2−110.16, compared to the designers’ claim
of probability ≤ 2−25·6 = 2−150 already after 5 rounds. These results are
also relevant when round-reduced Simpira-4 is used in a keyed construction,
for example as an Even-Mansour block cipher, but they do not threaten the
full 15-round variant. While our analysis is focused primarily on Simpira-4,
the basic observations also apply to the larger Simpira variants with the
same construction approach, that is, Simpira-b with b ≥ 4, b 6= 6, 8.

110

4.3. Revisiting the Differential Bounds

4.3.1. Observation on Designers’ Analysis

The analysis performed by Simpira’s designers [GM16a] relies on two basic
bounds: full bit diffusion, and minimum number of active S-boxes. The
recommended number of rounds for each variant is selected as 3 times
the number of rounds necessary to prove full bit diffusion and a minimum
number of 25 differentially or linearly active S-boxes. While the proofs for
full bit diffusion are based on generic results on the underlying generalized
Feistel construction by Yanagihara and Iwata [YI14], the bounds for active
S-boxes were obtained with a Mixed-Integer Linear Programming (MILP)
model [MWGP11]. For Simpira-4, both full bit diffusion and at least 25
active S-boxes are claimed to be provided by 5 rounds of the round function.
For the full number of 15 rounds, this method would imply at least 75
active S-boxes.

The bound is derived under the assumption that all F -function inputs
are processed independently. Of course, in an unkeyed primitive like a
permutation or a hash function, the S-boxes are not really independent,
since there are no random, independent round keys. Nevertheless, it is
usually a reasonable assumption that the differential probabilities be-
have as if the values were independently random. We thus count S-boxes
as independently active when it can reasonably be expected that their
multiplied differential probabilities give a good estimate for the overall
differential probability of the characteristic.

However, for all instances of Simpira-b with b ≥ 4, b 6= 6, 8, this indepen-
dence is violated by the generalized Feistel construction, and the particular
definition of F . Consider the inputs to the left and right F -functions in
rounds i and i+ b− 3, respectively, that is, the inputs Ai to F2i−1,b and
Di+b−3 to F2(i+b−3),b. It is easy to see that these values are in fact identical,
since Di+b−3 = Ei+b−4 = . . . = Ai+b−b = Ai. Now consider a differential
characteristic where some bytes of these inputs are active. Obviously, the
characteristic is only consistent if the two input differences are identical.
Now recall the definition of F = Fc,b, in our case F2i−1,b and F2(i+b−3),b.
The only difference between F2i−1,b and F2(i+b−3),b is the round-constant
addition at the end of the first AES round. This means that the inputs
and outputs of the S-boxes of the first AES round must be identical as
well, i.e., AMC1

i = DMC1
i+b−3. The round constant only differs in state byte s0

for small i, so this means the S-box transitions in the second AES round
will also be identical except in s0. In fact, the outputs AMC2

i of F2i−1,b an
DMC2
i+b−3 of F2(i+b−3),b will have identical values except for the first column.

111

4. Collisions for Simpira v1

4.3.2. Adapted MILP Model of Differential Characteristics

According to the original designers’ analysis, Simpira-4 has at least 75
active S-boxes over 15 rounds. The previous observation shows that this
number might be double-counting S-boxes that operate on identical inputs.
To get a more accurate bound for the number of independently active
S-boxes, we adapt the MILP model of the truncated differential behavior
of Simpira-4. In the adapted model, identical values will be represented by
the same variable, thus avoiding both double-counting and certain incon-
sistent characteristics. We use an alternative description of the Simpira-4
permutation which stores only words Ai and Bi in each round i, using
Ci = Ai−2 and Di = Ai−1, as illustrated in Figure 4.3.

i
αi

•
SB
SR
MC

µ1
i

AC
SB
SR
MC

µ2
i

βi αi−2

µ′2i−1
SB
SR
MC

AC µ1
i−1

SB
SR
MC

αi−1

•

αi+1 βi+1 αi−1 αi

Figure 4.3.: Differential description of Simpira-4 for new MILP model.

The truncated differential model reduces the behavior of all relevant linear
building blocks to their differential branch numbers, in particular the
8-variable MixColumns to its branch number 5, and 3-variable Feistel-⊕ to
its branch number 2. A corresponding helper variable for each such linear
function denotes whether the individual linear functions are differentially
active or not. As a cost function, we only count the activity of the left-hand
F -functions, and only S-box s0 for the right-hand F -functions, except in
the first round.

The new MILP model uses the following variables for R-round Simpira-4,
indexed by their round i ∈ R = {1, . . . , R} or R0 = R ∪ {0}, byte
position b ∈ B = {0, . . . , 15}, or state row x ∈ X = {0, . . . , 3} and column
y ∈ Y = {0, . . . , 3}, such that b = 4y + x:

• αi[b] ∈ {0, 1} for i ∈ R0 ∪ {−1, R+ 1}, b ∈ B: Truncated difference
of state byte Ai[b] = Di+1[b] = Ci+2[b].

• βi[b] ∈ {0, 1} for i ∈ R ∪ {R + 1}, b ∈ B: Truncated difference of
state byte Bi[b].

112

4.3. Revisiting the Differential Bounds

• µ1
i [b] ∈ {0, 1} for i ∈ R0, b ∈ B: Truncated difference of state byte
AMC1
i [b] = DMC1

i+1 [b].

• µ2
i [b] ∈ {0, 1} for i ∈ R0, b ∈ B ∪ {16, . . . , 19}: Truncated difference

of state byte AMC2
i [b] = DMC2

i+1 [b] if 4 ≤ b ≤ 15. The first column
differs, so we denote the first column of AMC2

i by 0 ≤ b ≤ 3 (or word
µ2
i), and the first column of DMC2

i+1 by 16 ≤ b ≤ 19 (or word µ′2i).

• χαi [b], χβi [b] ∈ {0, 1} for i ∈ R, b ∈ B: Helper variables for truncated
xor additions αi+1 = µ2

i ⊕ βi (helper χαi) and βi+1 = µ′2i−1 ⊕ αi−2

(helper χβi).

• ν1
i,y, ν

2
i,y ∈ {0, 1} for i ∈ R0, y ∈ Y (for ν1

i,y) or y ∈ Y ∪ {4} (ν2
i,y):

Helper variables for MixColumns, indexed like µ, where column y = 4
corresponds to bytes b ∈ {16, . . . , 19}.

Using these binary variables, the truncated differential behavior of R-
round Simpira-4 can be modeled by the following constraints and objective
function:

min
∑

i∈R0

∑

b∈B

(
αi[b] + µ1

i [b]
)

+
∑

i∈R\{R}
µ1
i [0] (active S-boxes)

s.t. 5ν1
i,y ≤

∑

x∈X

(
SR(αi)[4y + x] + µ1

i [4y + x]
)
≤ 8ν1

i,y ∀y ∈ Y, i ∈ R0

5ν2
i,y ≤

∑

x∈X

(
SR(µ1

i)[4y + x] + µ2
i [4y + x]

)
≤ 8ν2

i,y ∀y ∈ Y, i ∈ R0

5ν2
i,4 ≤

∑

x∈X

(
SR(µ1

i)[0 + x] + µ2
i [16 + x]

)
≤ 8ν2

i,4 ∀i ∈ R \ {R}

(ShiftRows, MixColumns)

2χαi [b] ≤ µ2
i [b] + βi[b] + αi+1[b] ≤ 3χαi [b] ∀b ∈ B, i ∈ R

2χβi [b] ≤ µ′2i−1[b] + αi−2[b] + βi+1[b] ≤ 3χβi [b] ∀b ∈ B, i ∈ R
(Feistel-⊕)

1 ≤
∑

i∈{−2,−1,0}

∑

b∈B
αi[b] +

∑

b∈B
β0[b] (Non-triviality)

Solving this optimization problem for different round numbers reveals that
the number of independently active S-boxes is significantly lower than
estimated by the designers. For the full 15 rounds of Simpira-4, the new
model gives a bound of 40 active S-boxes, rather than the original estimate
of at least 75. The minimum number of rounds necessary to achieve 25
active S-boxes according to the new model is 9 instead of 5.

113

4. Collisions for Simpira v1

4.3.3. A 2-Round Characteristic with 5 Active S-Boxes

An iterative characteristic that can be expanded to an optimal solution
both for the new and the designers’ original MILP model is given in
Figure 4.4. It is possible to construct similar iterative characteristics with
fewer active S-boxes than the designers’ bounds for any b > 4, b 6= 6, 8.

1 •
SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

•

A1 B1 C1 D1

2 •
SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

•

A2 B2 C2 D2

A3 B3 C3 D3

Figure 4.4.: Iterative 2-round characteristic for Simpira-4 with 5 inde-
pendently active S-boxes. Notation: inactive, active

If the F -functions were indeed independent functions, as assumed in the
original model, then this 2-round differential characteristic would contain
10 independently active S-boxes. Since the characteristic is iterative, and
adds 5 active S-boxes per round, this characteristic demonstrates the
tightness of the original 15-round bound under the designers’ assumptions.

To evaluate the cost in the new model, consider an internal differential
view between the two active F -functions, as illustrated in Figure 4.5. Up
to AddConstant, they process exactly the same data. In the second AES
round, S-box s0 is not active, and the differential behavior of MixColumns
is independent of the actual values of s0. This means that the entire output
difference of F2i−1,4 will be identical to that of F2(i+1),4 with probability
1. Consequently, if we fix all full-state, single-byte, and column-wise
differences to the same bitwise difference pattern, respectively, the actual
cost of the iterative characteristic of Figure 4.4 is equivalent to only 5
active S-boxes per 2 rounds, or 40 S-boxes for the recommended 15 rounds.

SB SR MC AC
c

SB
c

SR
c

MC
c
c
c
c

Figure 4.5.: Characteristic for the F -function with 5 active S-boxes.
Notation: inactive, active, c internal difference due to round constants

114

4.3. Revisiting the Differential Bounds

A 2-Round characteristic with probability 227.54

We now want to fix the bitwise difference patters of Figure 4.4 suitably to
optimize the probability of the characteristic for random input messages.
Recall that the AES S-box has maximum differential probability 4

256 = 2−6.
For each non-zero input difference, there is exactly one output difference
with this probability (and vice versa), while the other probabilities are
either 2

256 = 2−7 or 0. We can easily choose difference patterns so that all S-
box transitions have this optimal probability, at least for uniformly random
round constants. For example, if we fix the one-byte input difference to
75, the characteristic illustrated in Figure 4.6 satisfies our requirements.
The probability of the differential for the F -function is then at least 2−30.


00 00 00 75

00 00 00 00

00 00 00 00

00 00 00 00

 SB7−−→


00 00 00 fe

00 00 00 00

00 00 00 00

00 00 00 00


SR
MC
AC7−−→


00 00 00 e7

00 00 00 fe

00 00 00 fe

00 00 00 19

 SB7−−→


00 00 00 f7

00 00 00 d8

00 00 00 d8

00 00 00 b7

 SR
MC7−−→


b7 d8 73 f5

b7 73 ab f7

c2 ab d8 f7

75 d8 d8 02


2−6 2−6×4

Figure 4.6.: Characteristic for the F -function with probability 2−30.

Note that we are not interested in the probability of the characteristic
within the F -function, but rather in the fixed 1 → 16 differential. Its
probability is higher than that of the characteristic, since several charac-
teristics can contribute to the same differential. In the case of 2-round
AES, Keliher and Sui [KS07] proved that for a random round constant, the
probability of the differential in Figure 4.6 is 2−30 + 74× 2−35 ≈ 2−28.272.

If we consider additionally that the round constant is not random, but
in our case fixed to (00, 00, 00, 00)> for the relevant bytes, the transition
probabilities can increase even further. For example, the differential in
Figure 4.7 is satisfied with probability 22×2−32 ≈ 2−27.54. Expanded to an
8-round Simpira-4 characteristic, we get a probability of 24×27.54 = 2−110.16.


00 00 00 40

00 00 00 00

00 00 00 00

00 00 00 00

 SB7−−→


00 00 00 ??

00 00 00 00

00 00 00 00

00 00 00 00


SR
MC
AC7−−→


00 00 00 ??

00 00 00 ??

00 00 00 ??

00 00 00 ??

 SB7−−→


00 00 00 2b

00 00 00 61

00 00 00 61

00 00 00 cd

 SR
MC7−−→


cd 61 a3 56

cd a3 c2 2b

4c c2 61 2b

81 61 61 7d


22× 2−32 ≈ 2−27.54

Figure 4.7.: Differential for F -function with probability 2−27.54.

115

4. Collisions for Simpira v1

4.4. Collision Attacks on Full-Round Hash

In this section, we show that the number of rounds recommended by the
designers is not sufficient to obtain a secure permutation. In particular, we
provide collisions for full-round Simpira-4 when used in the permutation-
based hash construction suggested by the designers. We first propose
collisions for 16 rounds and the full 512-bit hash, then consider the
proposed 15-round permutation and a truncated hash output of 256 bits,
which is more natural for the 128-bit security claim of the permutation.

Recall that in this short-input Davies-Meyer construction, the b× 128-bit
message is used as input to the Simpira permutation, and finally added
as a feed-forward to the permutation output to produce the untruncated
b× 128-bit hash value:

h(x) = Simpira-b(x)⊕ x.

Our iterative differential characteristic of Figure 4.4 is incidentally very
well suited to produce collisions for this feed-forward construction. Observe
that if we fix all state differences to the same patterns as discussed in
Section 4.3.3, the feed-forward will cancel out the message difference with
probability 1 for any even number of rounds. To cover more than 8 rounds
while keeping the complexity under the claimed 128-bit security level
claimed against permutation distinguishers, we can exploit the absence of
any secret keys in this setting.

4.4.1. Collision Attack on 16 Rounds

Since the permutation involves no round keys, we can try to satisfy the
conditions for some active F -functions with message modification. We will
try to find messages (or rather, initial structures for intermediate Simpira
states) such that the conditions for several rounds are satisfied “for free”
with probability 1, and append the previous 8-round characteristics of Sec-
tion 4.3.3 to be satisfied probabilistically. We first propose a simple initial
structure covering 6 rounds, and then improve it to satisfy all conditions
over 8 rounds, thus extending the previous 8-round characteristic to a
16-round characteristic in the keyless setting with the same probability.

116

4.4. Collision Attacks on Full-Round Hash

Initial structure for 6 rounds

It is sufficient to set the 4 bytes s1, s6, s11, s12 of a state Ai to a suit-
able assignment in order to follow the characteristic for this F -function
deterministically. We will refer to these 4 bytes as the diagonal in the
following, and to a valid assignment as a valid diagonal. We can reuse one
precomputed valid diagonal for all necessary diagonals.

We want to fix the values of the diagonals in A1, A3, and A5 to the
valid diagonal. Observe that A1 = C3, and A3 = C5. Thus, by fixing
the diagonals of A5 and C5, we have already satisfied 2 F -characteristics.
The remaining 12 + 16 + 12 bytes of A5, B5, C5 can be filled arbitrarily,
which will immediately determine the value of D3 and thus DMC2

3 . If we
now set the diagonal of C3 to the valid diagonal, and fill its remaining 12
bytes with arbitrary values, we completely determine D5 via B4 and A4,
and thus complete the state after 4 rounds. By varying the 52 arbitrary
byte values, we can obtain the necessary 2110.16 candidates to satisfy
the 8-round characteristic. The approach is illustrated in rounds 1–6 of
Figure 4.8, where and mark the 52 arbitrary bytes.

Initial structure for 8 rounds by matching diagonals

With some additional effort, we can find initial structures that also satisfy
the F -characteristic in round 7. We will again initialize the values of
A5, B5, C5, C3 as in the previous 6-round initial structure. However, we
can use the 12+12 arbitrary bytes of A5 and C5 to obtain a valid diagonal
in A7. This will provide us with a 16-round collision attack with the same
computational complexity as the 8-round characteristic in Section 4.3.3.

Our goal is to obtain a match between the diagonals of DMC2
5 and AMC2

6 , as
illustrated in Figure 4.8. If these two diagonals sum to zero, the diagonal
of A7 will take the exact same value as that of C5, which is the valid
diagonal. For this purpose, we want to initialize part of the initial structure
to generate random values in AMC2

6 , and independently a different part
of the initial structure, to independently get random values in DMC2

5 .
Then, any match between the two corresponds to an initial structure that
satisfies 4 F -characteristics.

Assume that C3 and B5 are already fixed to some arbitrary constants, with
the valid diagonal in C3. We first use the free bytes of A5 to randomize
AMC2

6 . Any complete assignment of A5 will directly determine AMC2
6 via

117

4. Collisions for Simpira v1

1 •
SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

•

A1 B1 C1 D1

3 •
SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

•

A3 B3 C3 D3

5 •
SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

•

A5 B5 C5 D5

7 •
SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

•

A7 B7 C7 D7

2 •
SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

•

A2 B2 C2 D2

4 •
SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

•

A4 B4 C4 D4

6 •
SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

•

A6 B6 C6 D6

8 •
SB
SR
MC

AC
SB
SR
MC

SB
SR
MC

AC
SB
SR
MC

•

A8 B8 C8 D8

?
?
?

?

?
?
?

?

A9 B9 C9 D9

...
...9–16 (probability 2−110.16)

A17 B17 C17 D17

Figure 4.8.: 16-round collision attacks on Simpira-4 hash using 8-round
initial structure. Notation: fixed difference, valid diagonal, arbitrary
bytes, matching inputs, ? match

118

4.4. Collision Attacks on Full-Round Hash

AMC2
5 and A6. We can assume the values are distributed reasonably close

to uniformly random since the values are processed by 4 AES rounds, and
only 4 input bytes are fixed.

Independently, we can vary the 12 bytes of C5 to randomize the diagonal of
DMC2

5 . To see the independence of the values in A5, consider the diagonal
of AMC2

4 . Its values will always be identical to that of DMC2
5 , except for

the first column, which is influenced by the round constant and will be
considered separately in a moment. Since the diagonals of A5 and C3 are
fixed and predetermined, these values can further be traced back right to
DMC2

3 . Thus, knowing the diagonal of DMC2
3 is equivalent to knowing the

target diagonal of DMC2
5 , except for 1 byte in s1. This equivalent diagonal

is derived easily from C5, again by 4 AES rounds via D4, D
MC2
4 , C4.

Evaluating the missing match byte s1 of DMC2
5 . Now we still need

to account for the missing byte s1. Fortunately, with some minor modifi-
cations of our guessing strategy, this value can also be computed directly
from DMC2

3 . Instead of varying all 12 arbitrary bytes of A5 to produce our
matching candidates, we will keep the first column (bytes s0, s2, s3) fixed.
In fact, for simplicity, we will set them to the exact same values as the
first column of C3:

A5[0, . . . , 3] = C3[0, . . . , 3].

This implies that the values of the first column and diagonal (bytes
s0, . . . , s3, s6, s11, s12) must be identical between DMC2

3 and AMC2
4 . By

partially inverting the last few steps of F , we can also easily verify that
this means that

DAC
3 [0] = AAC

4 [0].

To determine our target value s1 in DMC2
5 , consider a differential view of the

intermediate variables in the computations F (A4) and F (D5). The input
values are identical, but a difference in s0 is introduced by AddConstant.
We are interested in how this difference ∆SAC propagates to the target
byte in ∆SMC2. Since we only introduced a single-byte difference before
the final MixColumns, we get

∆SMC2[1] = 01 ·∆SSB2[0]

= S
(
AAC

4 [0]
)
⊕ S

(
AAC

4 [0]⊕∆SAC[0]
)
.

119

4. Collisions for Simpira v1

By using the previously established identities between F (A4) and F (D3),
and observing ∆SAC[0] = 07⊕ 0A = 0D, we finally obtain all our target
match bytes in DMC2

5 directly from F (D3):

DMC2
5 [1] = AMC2

4 [1]⊕∆SMC2[1]

= AMC2
4 [1]⊕ S

(
AAC

4 [0]
)
⊕ S

(
AAC

4 [0]⊕ 0D
)

= DMC2
3 [1]⊕ S

(
DAC

3 [0]
)
⊕ S

(
DAC

3 [0]⊕ 0D
)
,

DMC2
5 [6] = DMC2

3 [6],

DMC2
5 [11] = DMC2

3 [11],

DMC2
5 [12] = DMC2

3 [12].

Complexity of generating initial structures. Summarizing, we can
now generate a large number of initial structures as follows. First, fix the
diagonals in C3 and C5 to any valid diagonal. Fix all remaining bytes of C3

and B5 to arbitrary values. Copy the valid diagonal and first column of C3

to A5. Vary the remaining 9 bytes of A5, storing the resulting values of the
diagonal of AMC2

6 in a list. Independently vary the 12 bytes of C5, derive
the diagonal of DMC2

5 , and store it in a second list. Any match between
the two lists gives a valid initial structure that follows the differential
characteristic up to round 8.

If we only wanted one match on the 4 bytes of the diagonal, we could try 216

values each for A5 and C5, and would expect roughly 22×16−32 = 1 match
due to the birthday effect. However, consider using 232 values each instead.
The expected number of 4-byte matches is roughly 22×32−32 = 232. Now
we evaluate the complexity for generating these 232 solutions. Computing
the match bytes requires evaluating 2×2×232 = 234 F -functions. Since 16-
round Simpira-4 evaluates more than 16 = 24 F -functions, this corresponds
to a complexity of about 232−4 = 230 Simpira-4 evaluations. Thus, we were
able to produce solutions with amortized complexity less than 1. With
this initial structure, we obtain a 16-round collision with computational
complexity about 24×27.54 = 2110.16. The memory requirements are only
about 232 × 2 AES states.

120

4.4. Collision Attacks on Full-Round Hash

4.4.2. Collision Attack on 15 Rounds with Truncation

In Section 4.4.1, we attacked more than the recommended number of 15
rounds for Simpira-4. In the following, we discuss the applicability of the
analysis to the original 15-round design.

Permutation distinguisher

Clearly, the 16-round characteristic of Figure 4.8 also immediately leads to
a 15-round permutation distinguisher. With a computational complexity
of 2110.16, we can find pairs of inputs with a fixed input difference such
that the permutation outputs collide in 62 of 64 bytes, or actually in 510
of 512 bits, since we use the 1-byte differences of Figure 4.7. This property
implies, for example, second-order collisions for the hash construction with
complexity 2× 2110.16, whereas the generic complexity bound is at least
about 2512/4 = 2128. This distinguisher violates the security claims for
Simpira-4.

Furthermore, if we impose no constraints on the active F -function in
round 15 by allowing arbitrary constraints in AMC2

15 and thus in A16, we
still get a collision on at least 46 of 64 bytes, or in at least 382 of 512
bits, with a fixed input difference. Then, only the 3 active F -functions in
rounds 9, 11, and 13 need to be satisfied probabilistically. The probability
for this characteristic is 2−3×27.54 = 2−82.62.

Truncated collisions

The characteristic no longer automatically leads to full-state collisions
for the hash construction, since the 2 active state words we get after an
odd number of rounds cannot cancel all 3 active state words at the input.
However, we can consider truncated versions of the hash construction.
Since the permutation-based Simpira-4 hash construction claims only 128-
bit security, but the state size is 512 bits, Simpira’s designers comment
that “truncation of the output of Simpira may be required [. . .] to match
the intended application”. An obvious choice would be to truncate the
state to 256 bits, so that the security claim matches the generic bound.
The details and complexity of the collision attack then vary depending
on the implementation of this truncation. Below, we consider 3 natural
choices for truncation.

121

4. Collisions for Simpira v1

A1 B1 C1 D1

...
...1–15

A16 B16 C16 D16

A B C D

• • • •

(1R with 2−27.54 + 8R + 6R with 2−3×27.54)

384-bit (or 256-bit) hash

(a) Truncation variant 1: 384-bit collisions with complexity 2110.16

A1 B1 C1 D1

...
...1–14

15 •
SB
SR
MC

?
?
?
?

AC
SB
SR
MC

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

SB
SR
MC

AC
SB
SR
MC

•

A15 B15 C15 D15

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

A16 B16 C16 D16

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

A B C D

• • • •

(8R structure + 6R with 2−3×27.54)

256-bit hash

(b) Truncation variant 2: 256-bit collisions with complexity 282.62

A1 B1 C1 D1

...
...1–15

A16 B16 C16 D16

A B C D

• • • •

(8R structure + 7R with probability 2−110.16)

256-bit hash

(c) Truncation variant 3: 256-bit collisions with complexity 2110.16

Figure 4.9.: Collisions for truncated 15-round Simpira-4 hash.

122

4.4. Collision Attacks on Full-Round Hash

Truncation variant 1: Left/right half. The most intuitive choice is
to simply truncate to the right (or left) half of the final state. Consider
the rightmost 256 bits. If we re-use the previous 16-round characteristic
of Figure 4.8 and simply cut the last round, as illustrated in Figure 4.9c,
then the permutation of the output words means that this conveniently
corresponds to a hash output of

(C1 ⊕D16, D1 ⊕A16) =
(

⊕ , ⊕
)

=
(

,
)
.

The complexity for finding such collisions is 2110.16, as before.

In fact, we can extend this to collisions up to the rightmost 384 bits if we
just shift our iterative characteristic down by 1 round, as illustrated in
Figure 4.9a. The probabilistic part of the characteristic is then moved to
rounds 1 (input D1) and rounds 10, 12, and 14 (inputs A). For the same
complexity of 2110.16, we get a 384-bit hash collision of the output

(B1 ⊕ C16, C1 ⊕D16, D1 ⊕A16).

Truncation variant 2: Every second word. Assume the truncation
function selects every second word, that is, the 256-bit hash output is

(A1 ⊕B16, C1 ⊕D16).

Then, we can even take advantage of the improved permutation distin-
guisher with complexity 282.62, as in Figure 4.9b.

Truncation variant 3: Updated words. In the previous truncation
variants, we took advantage of the fact that the output of one of the
last round’s two F -functions was truncated. Consequently, another good
candidate for a truncation function is to select exactly the words that
depend on the last round’s F -outputs, A16 and B16, so the hash output is

(A1 ⊕B16, D1 ⊕A16).

Nevertheless, the characteristic of Figure 4.9c still provides hash collisions
with complexity 2110.16.

123

4. Collisions for Simpira v1

4.5. Discussion

Since the first publication of the results in this chapter, there have been
some noteworthy updates regarding Simpira, in particular another attack
by Rønjom exploiting similar properties and, in response, Simpira v2.

4.5.1. Rønjom’s Distinguisher

Rønjom [Røn16] independently analyzed Simpira-4 v1 and similarly ex-
ploits the Feistel structure and F -function. He describes invariant sub-
spaces for any even number of rounds by partitioning the input space into
invariant cosets of dimension 56 over F64

28 . In fact, his result assumes that
the round constants differ randomly in 8 bytes, when in reality, only byte
s0 differs for Simpira-4. With this in mind, we actually get invariant cosets
of dimension 49. More simply speaking, assume the input state satisfies
Di = Bi⊕λ ·MC(E0,0) for some λ ∈ F28 , where E0,0 is the standard matrix
with 1 in position s0 and 0 else. Then, after two rounds of Simpira-4, these
two words will again be identical except for the first column, or more
precisely, Di+2 = Bi+2 ⊕ λ′ ·MC(E0,0) for some λ′ ∈ F28 . More generally,
any even number of Simpira-4 rounds preserves any difference ∆ ∈ F28 : If
Di = Bi ⊕∆⊕ λ ·MC(E0,0), then Di+2 = Bi+2 ⊕∆⊕ λ′ ·MC(E0,0).

Ai

Ai+2

Bi

Bi+2

Ci

Ci+2

Di

Di+2

= Bi ⊕∆⊕ λ ·MC(E0,0)

= Bi+2 ⊕∆⊕ λ′ ·MC(E0,0)

F• F •

F• F •

Figure 4.10.: Invariant coset of dimension 49, similar to Rønjom [Røn16].

4.5.2. Simpira v2

In response to these two attacks, Simpira’s designers proposed a new
version of the design, Simpira v2, which was published at ASIACRYPT
2016 [GM16b]. Functional changes include new round constants and
different Generalized Feistel Networks.

124

4.5. Discussion

Compared to Simpira v1, the round constants Cc,b of the F -functions are
changed to the denser, less structured values given in Figure 4.11a, where
c = (c3, c2, c1, c0) is a counter for F -function calls and b = (b3, b2, b1, b0)
specifies the Simpira family member. As before, only the first state row
will vary for reasonably small b. This means that on identical inputs to
two different F -functions, 3 to 4 (out of 32) S-boxes will receive differ-
ent input values, and 3 to 4 columns of the function output will differ
accordingly due to MixColumns. If these constants were combined with the
network of Simpira v1, they would only slightly influence the previously
described attacks: The differential probability would decrease slightly, and
the invariant subspace would grow to dimension 52.

Additionally, to prevent easily exploitable identical inputs entirely, the
affected Feistel constructions for Simpira-b with b ≥ 4, b 6= 6, 8 are replaced
by different constructions. The new constructions evaluate the same overall
number of F -functions for each b. For b = 4, the Type-1.x GFS is replaced
by the much more well-established Type-2 GFS by Zheng et al. [ZMI89]
in Figure 4.11b, the same as used for example in the block cipher CLEFIA
by Shirai et al. [SSA+07]. For b > 4, b 6= 6, 8, the designers propose a
novel network construction that is not strictly round-based but scales

b0 b0 b0 b0
b1 b1 b1 b1
b2 b2 b2 b2
b3 b3 b3 b3

⊕
c0 c0 c0 c0
c1 c1 c1 c1
c2 c2 c2 c2
c3 c3 c3 c3

⊕
00
00
00
00

10
00
00
00

20
00
00
00

30
00
00
00

(a) Cc,b for AddConstant

Ai

Ai+1

Bi

Bi+1

Ci

Ci+1

Di

Di+1

F• F•

(b) b = 4 (1 ≤ i ≤ 15)

Ai

Ai+1

Bi

Bi+1

Ci

Ci+1

Di

Di+1

Ei

Ei+1

F •

F•

F•

F •

F•

F •

F •

F•

F•

F •

F•

F •

F •

F•

(c) b = 5, similarly b ≥ 7 (1 ≤ i ≤ 3)

Figure 4.11.: Simpira-b v2: New AddConstant and GFS constructions.

125

4. Collisions for Simpira v1

easily for different b. This core network is repeated three times for any
b. An example of the core network for the smallest variant with b = 5 is
illustrated in Figure 4.11c. Each new variant executes a total of 12b− 18
F -functions, the same as in Simpira v1. The new constructions prevent the
straightforward re-use of F -inputs. However, the novel network for b ≥ 5
would profit from more detailed analysis. For example, by choosing the
input differences of the two leftmost or rightmost input words similar to
the 1→ 16 differential of Figure 4.7, it is possible to differentially bypass
all except 3 of the 4 leftmost or rightmost F -functions with a probability
of less than 230, even if random round keys were used.

4.6. Conclusion

In this chapter, we analyzed the permutations Simpira-b, b ≥ 4, b 6= 6, 8,
of the Simpira v1 family, with a focus on Simpira-4. Due to properties
of the underlying Type-1.x Generalized Feistel Structure and the sparse
round constants, the computer-aided bounds given by the designers for
the minimum number of active S-boxes are invalid. The count includes
many pairs of S-boxes whose inputs are not independent, in particular,
many actually share identical inputs. Based on differential characteristics
that exploit this property, we present full-round collision attacks on the
proposed Simpira-4 Davies-Meyer hash construction, with complexities
down to 282.62 for the recommended full 15 rounds and the truncated
256-bit hash value, depending on the truncation rule, and complexity
2110.16 for 16 rounds and the full 512-bit hash value.

The attacks exploit Generalized Feistel Structures which apply multiple
F -functions to a Feistel branch without xoring other F -outputs in between,
as would be the case in a standard Feistel construction. While it is not
clear whether this property could be exploited in general for independent
F , it certainly becomes a problem when the F -functions differ only by
using different, sparse round constants. In Simpira v1, this is the case for
all family members b ≥ 4, b 6= 6, 8. The consequence is that two branches
of the state will be updated with two closely related F -outputs.

To address the problems described in this chapter and by Rønjom [Røn16],
Gueron and Mouha subsequently tweaked their design [GM16b]. The new
Simpira v2, published at ASIACRYPT 2016, fixes the issue by replacing
both the Feistel construction, to ensure disjoint F -inputs, and the round
constants with denser values.

126

5
Key Recovery for LowMC

In this chapter, we analyze the block cipher LowMC, published at EURO-
CRYPT 2015 by Albrecht et al. [ARS+15]. The designers aim to minimize
the multiplicative complexity of the cipher by using incomplete S-box
layers and small, low-degree S-boxes, but compensate with dense and
unstructured linear layers. We show that the linear layers alone cannot
adequately protect against higher-order attacks, and find that the design-
ers’ analysis of the necessary number of rounds, which proposes a 5-round
security margin, is too optimistic. In particular, we demonstrate that basic
zero-sum distinguishers based on higher-order differential properties can
be extended by 4 rounds. We construct structured subspaces to bridge
the incomplete S-box layers of initial and final rounds at little additional
cost. This allows us to recover the secret key for almost the full number
of rounds, with complexities significantly below the security claim. In re-
action to this attack and results by Dinur et al. [DLMW15], the designers
informally proposed an updated LowMC v2 [ARS+16].

The results in this chapter are based on joint work with Christoph Dobrau-
nig and Florian Mendel. I am the main author and developed significant
parts of the attack, in particular the analysis to exploit the incomplete
S-box layer with suitable linear subspaces. The following text is a modified,
restructured version of the paper published at ICISC 2015 [DEM15c].

5.1. Introduction

Block ciphers are not only the workhorse at the core of most cryptographic
protocols for classical two-party communication. More recently, they have
also been discovered as a valuable cryptographic primitive to improve the
efficiency of complex cryptosystems in modern public-key cryptography.

127

5. Key Recovery for LowMC

For example, in a fully homomorphic cryptosystem, homomorphic cipher-
texts are usually subject to significant ciphertext expansion, which makes
the transmission of homomorphic ciphertexts to the cloud a bottleneck in
practice. A much more efficient approach is to encrypt a long plaintext
symmetrically with a random key, then encrypt only the key homomor-
phically. The recipient can then homomorphically evaluate the symmetric
decryption algorithm and recover the homomorphically encrypted plain-
text [NLV11]. In a similar vein, block ciphers can be evaluated in a secure
multi-party communication (SMC) or zero-knowledge proof (ZK) setting.

In all these applications, the block cipher’s operations are not executed
“bare-metal”, but rather in a complex computational framework. The
computational cost of evaluating a circuit in these frameworks typically
depends primarily on the number of nonlinear operations (e.g., Boolean
“and”) or the corresponding circuit depth, whereas linear operations (e.g.,
Boolean “xor”) are essentially for free. Moreover, the overall computational
cost can be so high that the question of nonlinear complexity of a block
cipher is not one of competitive efficiency, but of practicability.

One of the first symmetric designs to address this need is the block
cipher LowMC, which was published at EUROCRYPT 2015 by Albrecht,
Rechberger, Schneider, Tiessen, and Zohner [ARS+15]. The designers aim
for a low nonlinear complexity, both in terms of circuit depth and number
of operations. To achieve low depth, they choose an SP network with a
relatively low number of rounds with S-boxes of degree 2. To minimize the
number of nonlinear operations, the S-box layer is incomplete and applies
S-boxes only to part of the state. A very strong, unstructured linear layer
compensates for the weak S-box layer. To determine the necessary number
of rounds, the designers derive probabilistic bounds against differential
and linear cryptanalysis. These bounds also serve as estimates for the
security margin against other attacks, in particular higher-order attacks.

Our contributions

We propose a key-recovery attack for 9 out of 11 (or 10) rounds of
LowMC-80 with complexity 258.2, and also target close to the full number
of rounds for several other LowMC variants. Our attacks build on higher-
order differential distinguishers, as introduced by Lai [Lai94] and Knudsen
[Knu94]. By exploiting the low degree of the LowMC S-boxes, we can
define a vector space of input values such that the corresponding outputs

128

5.1. Introduction

after several rounds of LowMC are balanced, that is, they will sum to
zero [KR07; AM09]. The designers analyze the number of rounds that can
be covered with such distinguishers without violating the data complexity
limits of LowMC, but conclude that an additional security margin of 5
rounds is sufficient.

We show that the incomplete S-box layers facilitate the extension of the
basic higher-order differential over several more rounds. In particular, we
construct carefully structured subspaces and linear relations to bridge the
incomplete S-box layers of initial and final rounds at little additional cost.
Since we do not exploit any specific properties of the linear layers, the
attacks are applicable even for strong, randomly chosen linear layers. For
several recommended LowMC variants, we can extend the basic distin-
guisher by up to 4 rounds, so the designers’ security margin seems too
optimistic. We conclude that more analysis is necessary to fully understand
the security of such novel design approaches.

Related work

In independent research, Dinur et al. [DLMW15] also investigated the secu-
rity of LowMC against high-order differential cryptanalysis. By developing
an optimized variation of interpolation attacks for key recovery, they can
identify large classes of weak keys for LowMC-80, and also demonstrate at-
tacks on up to 10 of 11 rounds of LowMC-80 and on full-round LowMC-128.
In reaction to this attack and our results, the designers informally proposed
an updated LowMC v2 [ARS+16].

Following the publication of LowMC, several other ciphers were proposed
for related settings. Canteaut et al. [CCF+16] highlight the potential of
IV-based stream ciphers, and show that well-analyzed stream ciphers like
Trivium and its 128-bit variant Kreyvium can compete with the perfor-
mance of LowMC. Méaux et al. [MJSC16] proposed FLIP to combine the
advantages of block ciphers and stream ciphers, but Duval et al. [DLR16]
quickly identified security flaws in the design. Albrecht et al. [AGR+16]
aim to minimize the number of multiplications over a prime field Fp, but
ignore the multiplicative depth in their design MiMC.

Other cipher designs have also targeted similar optimization goals, though
in a different context. A low number of nonlinear binary operations reduces
the cost of side-channel countermeasures, such as masking. Most notably,
the block cipher Zorro by Gérard et al. [GGNS13] also implements the idea

129

5. Key Recovery for LowMC

of partial nonlinear layers in an AES-like cipher. In contrast to LowMC,
Zorro features a highly structured linear layer, which was subsequently
exploited in a full-round break [WWGY14]. Bar-On et al. [BDD+15]
conclude that this is not an inherent flaw of the design approach, and
propose a tweaked version of Zorro.

Outline

We briefly describe the LowMC family of block ciphers in Section 5.2.
In Section 5.3, we propose a higher-order differential distinguisher that
exploits the low degree and the incomplete S-box layer to extend the
straightforward zero-sum by 3 rounds. In Section 5.4, we turn this distin-
guisher into a key-recovery attack and extend it by another round, for a
total of 9 rounds of LowMC-80. Finally, we discuss the applicability of our
approach to other parameter sets of LowMC, and briefly show how Dinur
et al. attack even more rounds with interpolation attacks in Section 5.5.

5.2. Description of LowMC

5.2.1. The LowMC Family of Block Ciphers

LowMC is a family of block ciphers published at EUROCRYPT 2015 by
Albrecht et al. [ARS+15]. The algorithms of the family are parametrized
by a wide range of block sizes n, key sizes k, and number of rounds r,
but also by a more unusual parameter: the number m of S-boxes per
substitution layer, which is independent of the block size. Additionally,
neither the concrete instantiation of the linear layers fL, nor the linear
key derivation functions used in fK are fixed, but both are to be selected
pseudorandomly for each family member. We will denote LowMC with key
size k, state size n and m S-boxes per round as LowMC-kn,m. The target
security level of each family member is k bits, subject to a (logarithmic)
data complexity limit d.

The designers propose two primarily recommended instances, as well as a
number of secondary suggestions [ARS+15]. The first instance is intended
to provide “PRESENT-like” security using an 80-bit key, while the second
targets “AES-like” security using a 128-bit key. Table 5.2 (p. 133) lists the
primary recommendations. We abbreviate the recommended parameter
sets as LowMC-80 = LowMC-80256,49 and LowMC-128 = LowMC-128256,63.

130

5.2. Description of LowMC

5.2.2. The LowMC Round Function

LowMC is a key-alternating cipher and iteratively applies r keyed rounds
to the initial n-bit message block. Encryption starts with a whitening key

addition f
(0)
K , followed by r applications of the round function

f (i) = f
(i)
K ◦ f

(i)
L ◦ fS , 1 ≤ i ≤ r,

which applies an incomplete substitution layer fS (identical for each round),

a dense, unstructured linear layer f
(i)
L , and the round-key addition f

(i)
K ,

as illustrated in Figure 5.1.

fS S S· · · · · ·

f
(i)
L Li

f
(i)
K

Ki· · · · · ·

Figure 5.1.: The round function of LowMC: f (i) = f
(i)
K ◦ f

(i)
L ◦ fS .

• fS : The substitution layer applies the 3-bit S-box S, where

S(a, b, c) = (a⊕ b · c, a⊕ b⊕ a · c, a⊕ b⊕ c⊕ a · b).

However, to minimize the number of multiplications, this layer is
incomplete and only applies S to the 3m rightmost (least significant)
bits of the n-bit state. The other n − 3m bits remain unchanged.
The maximum differential and linear probability of S are 2−2, and
the algebraic degree is 2, which is optimal for a 3-bit S-box.

• f
(i)
L : The linear layer multiplies the n-bit state with a pseudorandom,

round-dependent invertible n× n matrix over F2.

• f
(i)
K : The key layer adds an n-bit round key Ki, which is derived

from the k-bit master key by a pseudorandom affine linear function.

131

5. Key Recovery for LowMC

5.3. Higher-Order Differential Distinguisher

In this section, we propose distinguishers for up to 8 rounds of the cipher.
More specifically, we will focus on (families of) zero-sum distinguishers:
finding sets of inputs to the permutation such that both the sum (over
Fn2) of the inputs, as well as the sum of their outputs, equal zero. We will
start with a straightforward distinguisher based on the low degree, which
is also discussed by LowMC’s designers. Then, we exploit the incomplete
S-box layer and guess a few key bits in order to extend the zero-sum by
up to 3 rounds.

5.3.1. Designers’ Considerations

A well-known result from the theory of Boolean functions is that if the
algebraic degree of a vectorial Boolean function (like a permutation) is d,
then the sum over the outputs of the function applied to all elements of
a vector space of dimension ≥ d+ 1 is zero [Lai94] (as is the sum of all
inputs, i.e., the elements of the vector space). The same property holds for
affine vector spaces of the form V + c = {v + c | v ∈ V } for some vector
space V and constant c. Therefore, in the remaining text, we also refer to
affine vector spaces as vector spaces for simplicity. This property allows
exploiting a low algebraic degree of cryptographic functions to create zero-
sum distinguishers and has been applied, for example, to Keccak [BC10;
BCD11].

For this reason, the design paper of LowMC [ARS+15] includes (upper)
bounds for the algebraic degree of multiple rounds of the permutation.
Their analysis is based on the bounds by Boura et al. [BCD11]. One round
of LowMC has degree d1 = 2. So, if the degree after r rounds (with m

S-boxes per round of the n-bit permutation) is d
(n,m)
r , then the degree

d
(n,m)
r+1 after r + 1 rounds is upper-bounded by

dr+1 ≤ min
{

2 · dr, m+ dr,
1
2 · (n+ dr)

}
.

The resulting bounds for up to 15 rounds are given in Table 5.1.

Based on these numbers, the designers recommend that the number of
rounds r satisfies r ≥ rdeg + router, where rdeg is the number of rounds
necessary for a sufficiently high degree (drdeg ≥ d− 1 for the logarithmic
data complexity limit d), and router = 5 is a heuristic estimate for the

132

5.3. Higher-Order Differential Distinguisher

Table 5.1.: Upper bounds for the algebraic degree d
(n,m)
r after r rounds

of the LowMC permutation on n = 256 bits with m ∈ {49, 63} S-boxes.

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d
(256,49)
r 2 4 8 16 32 64 113 162 209 232 244 250 253 254 255

d
(256,63)
r 2 4 8 16 32 64 127 190 223 239 247 251 253 254 255

number of rounds that can be “peeled off” in the beginning and end of
the cipher, based on the bounds for linear and differential cryptanalysis.
This leads to the round numbers stated in Table 5.2 for the recommended
parameter sets.

Table 5.2.: Recommended number of rounds r ≥ rdeg + router for LowMC
with key size k, block size n, m S-boxes, data limit 2d [ARS+15].

Cipher k n m d rdeg router r

LowMC-80 80 256 49 64 6 5 11
LowMC-128 128 256 63 128 7 5 12

The degree bounds from Table 5.1 show that 11 or 12 rounds of the
unkeyed round function cannot be considered an ideal random permutation,
although the complexity of a straightforward zero-sum distinguisher is
far beyond the claimed security level. Let f denote one (keyed) round of
LowMC-80 (resp. LowMC-128). If we choose any subspace V ≤ F256

2 with
dimension ≥ 245 (resp. ≥ 252), we get

⊕

v∈V
v =

⊕

v∈V
f11(v) = 0 (resp.

⊕

v∈V
f12(v) = 0).

Conversely, if we want to stay strictly below the data complexity limit of
2d queries, we can target up to 5 (resp. 7) rounds with V of dimension
33 (resp. 128) with the bounds from Table 5.1. However, we will show
that we can obtain distinguishers with a much lower complexity. In the
following, we focus on LowMC-80.

133

5. Key Recovery for LowMC

5.3.2. Direct-Sum Construction

We want to add a free round in the beginning of the distinguisher by
choosing an input vector space V of a particular structure as a starting
point. Assume that V is the direct sum of any subspace Vid ≤ F256−3·m

2 ,
and m special subspaces Vs ≤ F3

2 for each 1 ≤ s ≤ m:

V = Vid × V1 × V2 × · · · × Vm.

If we choose each special subspace Vs ≤ F3
2 such that

S(Vs) = {S(v) | v ∈ Vs} = Vs,

then the entire space V is invariant under fS , that is, fS(V) = V . For
example, the bijective 3-bit S-box maps any trivial subspace Vs of F3

2 to
itself, that is, Vs = F3

2 or Vs = {(0, 0, 0)}.

More generally, if Vs is such that S maps any coset Vs + c to another
affine space V ′s + c′ of the same dimension, then the entire first round f
(with or without initial key whitening layer fK) will map the structured
space V to another space V ′′ of the same dimension. We refer to any
such Vs as S-compatible, and to any V with fS(V + c) = V ′ + c′ for all c
as fS-compatible. Note that not only the trivial subspaces satisfy these
requirements, but also all one-dimensional spaces Vs + c = {c, v+ c}, since

S(Vs + c) = {v′1, v′2} = {v′1, (v′2 − v′1) + v′1} = V ′s + v′1.

Thus, any such structured initial space V of dimension ≥ 33 with subspaces
Vs, dimVs ∈ {0, 1, 3} for 1 ≤ s ≤ m, is fS-compatible and allows extending
the zero-sum distinguisher for LowMC-80 by one round (Figure 5.2), since

⊕

v∈V
v =

⊕

v′∈V ′=fS◦fK(V)

(f5 ◦ fK ◦ fL)(v′) = 0.

V

fK

V

fS

V ′

f5 ◦ fK ◦ fL
deg ≤ 32

⊕
=0

Figure 5.2.: Zero-sum of size 233 for r = 6 rounds of LowMC-80.

134

5.3. Higher-Order Differential Distinguisher

5.3.3. Exploiting the Incomplete S-Box Layer

In addition to the generic attack strategy applied so far, we can take
advantage of the special structure of LowMC’s S-box layer to add another
round. This is easy for low-dimensional zero-sums, but building higher-
dimensional zero-sums will incur some (pre-)computational overhead.

Constructing f2-compatible spaces by solving equations

We will now try to define an f2-compatible initial structure that yields an
affine space after the initial 2 rounds of LowMC-80, or more precisely, after
fS◦fK◦fL◦fS◦fK . We need to find spaces V and V ′ = f(V) such that both
V and V ′ are fS-compatible. Let W = F109

2 × {(0, . . . , 0)} ≤ F256
2 . Clearly,

any subspace V ≤W is invariant under fS and thus fS-compatible. The
input space V ′ = f(V) to the second fS is then an affine transformation of
V , V ′ = (fK ◦ fL)(V). We will try to identify sets of linear equations that
define the subspace V ≤W and guarantee that V ′ is also fS-compatible.

In the simplest case, V ′ would also be a subspace of W . However, this
requirement would impose 147 linear constraints (one for each S-box
input bit) on the 109-dimensional space W , so we cannot expect any
nontrivial solution space V . Fortunately, an observation similar to the
case dimVs = 1 in Section 5.3.2 allows us to reduce the number of
equations without violating fS-compatibility. Assume we drop one of the
147 constraints for V ′, so the input to one S-box S is no longer constant,
but one input bit may take different values in different elements of V ′

(though V ′ is not necessarily a direct sum). This will also toggle some
of the output bits of S, that is, the behavior of S is linear with respect
to the one input bit. Thus, if we drop one equation per S-box, V ′ is
still fS-compatible, and we get an f2-compatible solution space V with
dimension at least 109− 2 · 49 = 11 (Figure 5.3).

V ≤W

fK fS

V

fL fK

V ′

fS

V ′′

solve

f r−2 ◦ fK ◦ fL
deg ≤ 2r−2

⊕
=0

Figure 5.3.: Zero-sum of size 22r−2 ≤ 211 for r ≤ 5 rounds of LowMC-80.

135

5. Key Recovery for LowMC

V can be precomputed and depends only on the matrix of the linear layer
of the first round of LowMC-80. Note that due to the key addition fK just
before the second S-box layer, we cannot know or control the exact values
of the two constant input bits per S-box, and thus do not know the linear
behavior of S or the structure of V ′′. Unfortunately, the dimension of 11
is only sufficient for zero-sums up to 1 + 1 + 3 = 5 rounds with size 29,
and additional considerations are necessary for our target size of 233 for
1 + 1 + 5 = 7 rounds.

Increasing the dimension by guessing key bits

To attack 6 or 7 rounds, we would require input spaces of 217 and 233

elements, respectively. To increase the dimension of V accordingly, we need
to allow for more freedom either in the first or in the second substitution
layer fS . First, consider the first substitution layer. If we want to choose
our inputs so as to ensure a specific vector space structure after the first
substitution layer, we can achieve this trivially if the target vectors are
non-constant only in the identity part. If we want specific values at the
output of an S-box, we need to guess the corresponding 3 bits of the
first whitening key, which is added right before the substitution layer.
By guessing these 3 bits, we can increase the dimension of V by 3. Note
that if we “activate” an S-box this way, the required message input set
S to produce V is no longer necessarily a vector space. In particular, its
elements no longer necessarily sum to zero. However, this will not be
required for our following key recovery attacks, so the loss of the input
zero-sum property is not a problem. To apply the technique to attack 6
rounds with dimV = 17, we need to activate 2 S-boxes and thus guess 6
key bits. This increases the attack complexity to 217 · 26 = 223. To attack
7 rounds, we need dimV = 33 and thus need to activate 8 S-boxes with
24 guessed key bits, leading to an attack complexity of 233 · 224 = 257

(Figure 5.4).

S

fK

guess 3·8

fS

V

fL fK

V ′

fS

V ′′

solve

f5 ◦ fK ◦ fL
deg ≤ 32

⊕
=0

Figure 5.4.: Zero-sum of size 233 for r = 7 rounds of LowMC-80.

136

5.3. Higher-Order Differential Distinguisher

Reducing the complexity by being lucky (or precomputation)

We can decrease the necessary number of activated S-boxes in the first
fS-layer a bit by considering additional freedom in the second fS-layer.
We previously chose a fixed bit per S-box of the second fS which was
allowed to toggle, while the other two bits needed to remain constant.
But this is not actually necessary: we have the freedom to choose any
of the 3 bit positions of each S-box as the toggle-bit, so we have a total
of 349 ≈ 277.7 options to choose the 98 (out of the total 147) constraints
imposed by the second layer. The 147 available constraints are specified by
the (roughly uniformly randomly generated) rows of the linear layer matrix.
In addition, we have the freedom to select the activated S-boxes of the
first layer. For each option, we have a very small chance that the selection
of 98 constraints is redundant (with respect to the 109+3s-dimensional V ,
if we guess s S-box keys in the first substitution layer), and the remaining
solution space has a dimension larger than 11 + 3s.

Consider again the 7-round attack, with its required input space of 233 =
211 · 222 elements. To increase the dimension by 22, we had to activate
s = 8 S-boxes. We only needed 1 bit of freedom from the last of the 8
S-boxes, but still had to guess all the corresponding 3 key bits. There
is a reasonable chance that if we activate only s = 7 S-boxes (and start
with V of dimension 109 + 7 · 3 = 130) and add the 98 constraints of the
second layer, the remaining solution space has the required dimension 33
instead of the expected 130− 98 = 32. This is equivalent to the event that
a randomly selected 130× 98 matrix over F2 has rank 97. The probability
of picking a rank-r matrix uniformly random from Fn×m2 , n ≥ m [vW92]
is given by

P (n,m, r) =

∏r−1
i=0 (2m − 2i) ·∏r−1

i=0 (2n − 2i)∏r−1
i=0 (2r − 2i) · 2n·m

,

so our success chance for one try is at least P (130, 98, 97) ≈ 2−32.0.

Even though the available selections of constraints are not independent,
we verified experimentally that the measured distribution of the rank of
random selections closely matches the theoretic expectations. Thus, it is
reasonable to expect that a suitable selection exists among the available
choices, and that it can be efficiently found (e.g., after trying about 232

random selections). Since the selection depends only on the corresponding
matrix of the linear layer, it can be precomputed in advance. The final
attack complexity for 8 rounds is about 233 · 221 = 254.

137

5. Key Recovery for LowMC

5.3.4. Partial Zero-Sums

Finally, we can add another round at the end of the distinguisher by again
taking advantage of the incomplete S-box layer, at the cost of a slightly
weaker distinguishing property. For this purpose, we need to rewrite the
last round f = fK ◦ fL ◦ fS using an equivalent round key K ′ = f−1

L (K).
Then, we can swap the order of fK and fL to f = fL ◦ fK′ ◦ fS . If we
use the input set S of size 233 as defined in Section 5.3.3, we know that
the output of f7 sums to zero in each output bit. Consider the output
of fK′ ◦ fS ◦ f7 (Figure 5.5). The first ` = n − 3 ·m = 109 bits of the
output state are unaffected by the S-boxes of the final fS , so they will still
sum to zero even after fK′ . The result is a generalized partial zero-sum
property on some fixed (linearly independent) linear combinations of the
cipher’s output bits as summarized in Algorithm 1, where {e0, . . . , e255} is
the standard basis of F256

2 , and bxcid denotes the ` = 109 most significant
bits of x. Since ` is relatively large (` > k for LowMC-80), even a zero-sum
distinguisher only for ` bits of the linearly combined output gives us a
detectable distinguishing property that we can then use for key recovery.

S

fK

guess 3·7

fS

V

fL fK

V ′

fS

V ′′

solve

f5 ◦ fK ◦ fL
deg ≤ 32

⊕
=0

fS fK′

b⊕cid=0

fL

Figure 5.5.: Partial zero-sum of size 233 for r = 8 rounds of LowMC-80.

Algorithm 1 Partial zero-sum distinguisher for 8 rounds of LowMC-80.

Output: Initial structure S of size 233 with partial zero-sum property
repeat

Choose {i0, . . . , i6} ⊆ Z49 and (o0, . . . , o48) ∈ Z49
3

Ci =
{
e109+3·i+j | i ∈ Z49 \ {i0, . . . , i6}, j ∈ Z3

}

Co =
{
f−1
L (e109+3·i+j) | i ∈ Z49, j ∈ Z3 \ {oi}

}

V = ker(Ci) ∩ ker(Co)
until dimV ≥ 33
for all 23·7 key guesses κ of the active S-boxes {i0, . . . , i6} do
S ← f−1

κ (f−1
S (V)) + c

if
⌊⊕

s∈S f
−1
L

(
LowMC-80(s)

)⌋
id

= 0 then
return S, κ

138

5.4. Key Recovery Attack

5.4. Key Recovery Attack

In this section, we use the 8-round distinguisher of Section 5.3 to construct
8-round and 9-round key recovery attacks on LowMC-80.

5.4.1. Basic Zero-Sum Key Recovery for 8 Rounds

The zero-sums and partial zero-sums of Section 5.3.3 and 5.3.4 already
give rise to straightforward 8-round key-recovery attacks. In Algorithm 1,
we already guessed 3 · 7 bits of the initial whitening key. The correct value
of these bits is necessary to construct a suitable vector space V , which
we can detect by checking the partial zero-sum property after the final
key addition layer. If we recover the remaining 80− 21 = 59 bits of key
information by brute-force testing, the overall complexity is dominated by
about 259 trial encryptions, and we need at most 221 · 233 = 254 queries.

Alternatively, the zero-sum property after r− 1 = 7 rounds can be used to
recover the final round key Kr in 3-bit chunks after identifying the correct
set S and initial round key bits, which in turn allows to easily recover the

original key K. Let C
(r−1)
i denote the state after r − 1 rounds applied to

input Pi ∈ S, and C
(r)
i = Ci the corresponding ciphertext obtained by

the attacker, so Ci = (f
(r)
L ◦ fS)(C

(r−1)
i)⊕Kr (Figure 5.6). Since the key

addition f
(r)
K and linear layer f

(r)
L can be swapped (replacing the original

Kr with a transformed K ′r), the zero-sum property translates to

⊕233

i=1C
(r−1)
i =

⊕233

i=1 f
−1
S

(
K ′r ⊕ f (r)

L
−1(Ci)

)
= 0.

For each of the m = 49 S-boxes, this property can be checked independently
for each possible value of the corresponding 3 bits of K ′r. Since we expect
to require about 80− 21 = 59 bits of K ′r to recover Kr and consequently
K, we guess the keys for 20 S-boxes, which leads to an overall complexity
dominated by the 254 queries for identifying the correct initial key bits.

S

fK

guess 3·7

fS

V

f6 ◦ fK ◦ fL
V : Algorithm 1

⊕
=0

fS fK′

guess 3·20

b⊕cid =0

fL

Figure 5.6.: Key recovery for r = 8 rounds of LowMC-80 with |S| = 233.

139

5. Key Recovery for LowMC

5.4.2. Key Recovery with Linear Masks for 9 Rounds

We extend the previous key recovery attack to 9 rounds of LowMC-80
by combining the higher-order differential zero-sum approach with linear
masks for an additional round. This combination will allow us to derive 1
bit of key information per input set, and can be repeated to learn more.

For an attack on r rounds, assume we have constructed a zero-sum
attack for r − 2 rounds, that is, we can generate sets of inputs such that
their corresponding outputs after r − 2 rounds sum to zero. We name the
intermediate states and rearrange the key addition layer as in Section 5.4.1:

Ci = C
(r)
i =

(
f

(r)
L ◦ f

(r)
K′ ◦ fS ◦ f

(r−1)
L ◦ f (r−1)

K′ ◦ fS
)(
C

(r−2)
i

)
.

Since
⊕

iC
(r−2)
i = 0, we also get the partial zero-sum as in Section 5.3.4,

⌊⊕233

i=1

(
f

(r−1)
K′ ◦ fS

)(
C

(r−2)
i

)⌋
id

= 0,

where bxcid is the value x truncated to the most significant ` = 109 bits,
i.e., the identity part of the S-box layer. Let xi and yi denote the states
right before and after the linear layer of the second-to-last round,

xi =
(
f

(r−1)
K′ ◦fS

)(
C

(r−2)
i

)
, yi =

(
f−1
S ◦f

(r)
K′
−1◦f (r)

L
−1
)(
Ci
)

= f
(r−1)
L (xi).

Now let (a, b) be a pair of consistent linear masks for f
(r−1)
L , that is,

〈a, x〉 = 〈b, f (r−1)
L (x)〉 ∀x ∈ F256

2 .

We will call the mask pair (a, b) suitable if a is zero on its 147 least
significant bits (i.e., all bits except the identity part of fS), and b is zero
on (most of) its 147 least significant bits. We refer to the S-boxes where b
is non-zero on at least one of the corresponding 3 input bits as active.

S

fK

guess 3·7

fS

V

f6 ◦ fK ◦ fL
V : Algorithm 1

⊕
=0

fS fK′

⊕
a=

fL

⊕
b=0

find a, b

fS fK′ fL

guess 3·6

Figure 5.7.: Key recovery for r = 9 rounds of LowMC-80 with |S| = 233,
based on 1-bit sums

⊕
a =

⊕
i〈a, xi〉 and

⊕
b =

⊕
i〈b, yi〉.

140

5.4. Key Recovery Attack

Bitwise key recovery with suitable masks

We target mask pairs (a, b) with at most 6 active S-boxes. For a random
matrix, the probability that an input mask a is mapped to an output mask
b in which at most 6 of 49 S-boxes are active is given by the cumulative
distribution of a Binomial distribution with p = 1− 2−3 and n = 49 as

P [≤ 6 S-boxes active] =
6∑

i=0

(
49

i

)
·
(
1− 2−3

)i ·
(
2−3
)49−i ≈ 2−106.4.

Since we have a total of 2109 possible input masks a available, we expect
several suitable mask pairs that can be found easily by solving at most(

49
6

)
≈ 223.7 linear equation systems. In practical experiments, we were

able to find masks with 6 or even fewer active S-boxes in reasonable time.

Observe that if (a, b) is a suitable mask pair, then

⊕
i〈b, yi〉 =

⊕
i

〈
b, f

(r−1)
L (xi)

〉
=
⊕

i〈a, xi〉 =
〈
a,
⊕

i xi

〉
= 0,

since a only selects from the 109 most significant bits, and the xi have the
partial zero-sum property b⊕i xicid = 0. This modified zero-sum property
of the yi depends only on the last-round key bits (of the equivalent key
K ′) added to the active S-boxes, i.e., for 6 active S-boxes, on 18 key bits.
The other key bits are either not selected by b (inactive S-boxes), or cancel
out during summation (identity part), see Figure 5.7. The probability of
the 1-bit property to hold for a random key guess is 1

2 , so applying the
attack to one zero-sum input set will eliminate half of the key guesses for
the 18 key bits, or win 1 bit of key information. By repeating the attack
for 18 input sets S (e.g., by adding 18 different constants to the original
input set), we expect to recover all 18 round key bits.

To learn more key bits, we need to find more linear mask pairs (a, b), with
different active S-boxes. Since the previously active S-boxes with previously
recovered key bits can now be active for free, finding such masks becomes
easier. In addition, we can re-use the same ciphertexts for different masks,
so the data complexity does not increase. In summary, after precomputing
suitable mask pairs, this attack described so far allows recovering the
complete key for r instead of r − 1 rounds at an additional cost factor
of 18 ≈ 24.2 data complexity and about 218 · 59 ≈ 224 computational
complexity. The overall complexity for 9 rounds is 254 · 24.2 = 258.2 queries
and about 254 · 224 = 278 round computations.

141

5. Key Recovery for LowMC

Reducing the complexity with FFT summation

The computational complexity can be further reduced by optimizing the
repeated evaluation of the modified zero-sum check. Instead of summing
over all inputs for each of the 218 key guesses, we can precompute partial
bit sums, and only combine those to compute the final sum for each of
the 218 key candidates. The idea is to decompose the target sum into its
S-box-wise components as

⊕
i〈b, yi〉 =

⊕
i

〈⊕49
s=0 bs, yi

〉
=
⊕49

s=0

⊕
i〈bs, yi〉,

where bs equals b on the 3 bit positions corresponding to S-box s, 1 ≤ s ≤
49 (or the 109 bits of the identity part for s = 0), and is zero otherwise.
Then

⊕
i〈bs, yi〉 depends only on the 3 round key bits corresponding to

S-box s (and 3 bits of f−1
L (Ci), see the definition of yi), and can be

precomputed in a first phase for all 23 possible values of these key bits, for
each active S-box s. Then, in the second phase, to determine the test bit
for each of the 218 key candidates, it suffices to sum the 6 corresponding
partial sums (of the active S-boxes). Considering that each linear layer
alone needs about 216 xor operations, the complexity of both phases is
significantly smaller compared to the computational effort of generating
all the required ciphertexts Ci. This step can be repeated 4 times with
different mask pairs (a, b) to recover about 4 · 18 = 72 key bits; the
remaining bits can easily be determined by brute force testing.

The final key recovery attack is summarized in Algorithm 2. The notation
is similar to Algorithm 1 in Section 5.3.4: {e0, . . . , e255} is the standard
basis of F256

2 . Parts of the state 256-bit state x ∈ F256
2 are addressed by bxc,

where bxcid denotes the ` = 109 most significant bits of x that correspond
to the identity part of the S-box layer, and bxcs the 3 bits that correspond
to S-box index s (bits 109 + 3 · s, . . . , 109 + 3 · s+ 2). For any set C ⊆ F256

2 ,
ker(C) denotes the set of solutions {x ∈ F256

2 | ∀c ∈ C : 〈x, c〉 = 0}.
The offline phase is expected to require solving roughly 232 binary linear
equation systems over the state size to find the space V , and another
roughly 225 to find the masks (am, bm). Overall, the complexity of the
offline phase is expected to be practical.

The online phase is dominated by querying about 221 ·18·233 ≈ 258.2 chosen
plaintexts, and computing the values σb,κ′s with 221 · 18 · 24 · 23 · 233 ≈ 265.8

S-box lookups, equivalent to computing about 265.8/(49 · 9) ≈ 257 9-round
encryptions of LowMC-80.

142

5.4. Key Recovery Attack

Algorithm 2 Key recovery attack for 9 rounds of LowMC-80.

Offline phase: Find vector space V and masks (am, bm)

repeat {Find spaces (V, V ′) for f
(1)
L }

Choose {i0, . . . , i6} ⊆ Z49 and (o0, . . . , o48) ∈ Z49
3

Ci ←
{
e109+3·i+j | i ∈ Z49 \ {i0, . . . , i6}, j ∈ Z3

}

Co ←
{
f

(1)−1
L (e109+3·i+j) | i ∈ Z49, j ∈ Z3 \ {oi}

}

V ← ker(Ci) ∩ ker(Co)
until dimV ≥ 33
B0 = ∅
for m = 1 to 4 do

repeat {Find masks (am, bm) for f
(r−1)
L }

Choose Bm = {o0, . . . , o5} ⊆ Z49 \Bm−1

Ci ←
{
e109+3·i+j | i ∈ Z49, j ∈ Z3

}

Co ←
{
f

(r−1)−1
L (e109+3·i+j) | i ∈ Z49 \Bm, j ∈ Z3

}

Am ← ker(Ci) ∩ ker(Co)
until dimAm ≥ 1
Bm ← Bm−1 ∪ {o0, . . . , o5}
Select am ∈ Am and let bm ← f

(r−1)
L (am)

Online phase: Recover 80-bit key K

for all 23·7 initial key guesses κ of the active S-boxes {i0, . . . , i6} do
for b = 1 to 18 do {Query and precompute partial sums}
Sb ← f−1

κ (f−1
S (V)) + cb

Query ciphertext set Cb ← LowMC-80(Sb)

σb,id ←
⌊⊕

c∈Cb
f

(r)−1
L (c)

⌋
id

for all s ∈ Bm do
for all 23 last-round key guesses κ′s of the active S-box s do

σb,κ′s ←
⌊⊕

c∈Cb

(
f−1
S ◦ f

(r)−1
κ′s

◦ f (r)−1
L

)
(c)
⌋
s

for m = 1 to 4 do {Recover last-round key}
K ′m ← set of 23·6 last-round key guesses κ′ =

⊕
s∈Bm

κ′s
for b = 1 to 18 do

for all κ′ ∈ K ′m do
if 〈σb,id, bbmcid〉 ⊕

⊕
s∈Bm

〈σb,κ′s , bbmcs〉 6= 0 then
K ′m ← K ′m \ {κ′}

Fix values of 18 bits κ′s, s ∈ Bm \Bm−1, according to K ′m
if κ′ (72 bits) and κ (21 bits) are compatible then

return recovered K from κ′ and κ

143

5. Key Recovery for LowMC

5.5. Discussion

5.5.1. Application to Other Parameter Sets

Besides the recommended versions LowMC-80 and LowMC-128, the de-
signers also propose several alternative parameter sets for the 80-bit and
128-bit security level. For 128-bit security, the design document discusses
the performance of LowMC-128256,63 (r = 12 rounds, main variant) and
LowMC-128512,86 (r = 11 or 12 rounds), all with data complexity limit
d = 128; for 80-bit security, LowMC-80256,49 (r = 11 rounds, main variant,
or r = 10) and LowMC-80128,34 (r = 11 rounds), all with data complexity
limit d = 64. Below, we discuss the applicability of our attack techniques
to the individual instances. The results are summarized in Table 5.3.

Table 5.3.: Key recovery attacks for different LowMC-kn,m variants.

Variant Rounds dimV κ κ′ Data, Time

LowMC-80256,49 9 / 10, 11 33 21-bit 4×18-bit 258.2

LowMC-80128,34 8 / 11 33 — 42-bit 238.4

LowMC-128256,63 9 / 12 65 — 72-bit 271.2

LowMC-128512,86 10 / 11, 12 65 0-bit 24×3-bit 266.6

For LowMC-128256,63, the basic 7-round key recovery with direct-sum
inputs as in Section 5.3.2 and partial zero-sum key recovery as in Sec-
tion 5.4.1 applies for the same number of rounds, with the same complexity.
Furthermore, due to the increased logarithmic data complexity limit, an
additional round can be added here (for a total of 8 rounds), and the
data complexity increased accordingly. However, the size of the identity
part, ` = 67, is too small to append rounds with initial-key-guessing as
in Section 5.3.3: the necessary number of about 3 · 40 guessed s-box key
bits becomes prohibitive. Final-key-guessing as in Section 5.4.2, on the
other hand, is applicable in a similar way. Again, the smaller identity part
increases the complexity: instead of masks b with 6 active S-boxes, about
24 active S-boxes are necessary for a reasonably high probability. If the
correct 3 · 24-bit subkey is recovered as described in Section 5.4.2, the
computational complexity is about 271.2 encryptions (for up to 9 rounds).
however, it is possible to optimize this step at the cost of a slightly higher
data complexity.

144

5.5. Discussion

For LowMC-128512,86, on the other hand, the size of the identity part
` = 254 is almost as large as the s-box part of 3 · m = 258 bits. This
allows the application of initial-key-guessing for free, and 1 active S-box
is expected to be sufficient for final-key-guessing. Additionally, due to
the higher logarithmic data complexity limit of d = 128, the core cube
degree can be increased to 64 (f6) to add another round, for a total of 10
attacked rounds (out of 11 or 12).

For LowMC-80128,34, ` = 26, so the same problems as for LowMC-128256,63

apply. For the final-key-guessing, about 14 active S-boxes would be required
to find suitable a, b, to attack a total of 8 rounds.

We want to stress that all described attacks are generic for the design of
LowMC, without requiring specific instances of the linear layer fL or the
key schedule matrices. For specific “weak” choices of the random matrices,
it is likely that attacks on more rounds are feasible.

5.5.2. Dinur et al.’s Interpolation attacks

In independent research, Dinur et al. [DLMW15] also investigate the
security of LowMC against high-order differential cryptanalysis. They start
with a similar basic 5-round higher-order differential distinguisher with
232 chosen plaintexts for LowMC-80 (or 6-round LowMC-128), similarly
extended by 1 initial round and 1 final round that exploit the incomplete
S-box layer, as illustrated in Figure 5.8. In Section 5.3.3 and Section 5.4.2,
we showed how V and linear masks can be carefully constructed such that
guessing a handful of S-box keys allows bridging two additional rounds
to attack a total of 9 rounds. Dinur et al. [DLMW15] propose a different
approach that allows covering several more final rounds during the key
recovery. They apply the interpolation attack by Jakobsen and Knudsen
[JK97], which recovers the key by interpolating the algebraic normal form
of a bit b in terms of the ciphertext and key bits. The low degree of

v

fK fS

v

f5 ◦ fK ◦ fL
zero-sum

⊕
=0

fS

b=0

f3 ◦ fK ◦ fL
interpolate b

Figure 5.8.: Interpolation attack for 10-round LowMC-80 with |V | = 232.

145

5. Key Recovery for LowMC

2 of the inverse round function f−1 and the incomplete S-box layer of
LowMC allow to combine the advantages of the two dual variants of the
interpolation attack. This gives rise to an optimized interpolation attack
with significantly fewer variables that can cover up to 3 (for LowMC-80)
or 4 rounds (for LowMC-128). In total, this approach can cover up to 10
rounds of LowMC-80 and the full 12 rounds for LowMC-128, see Table 5.4.

If additionally the linear layer fL right after the output of the zero-sum
distinguisher is “weak” for the specific instance of LowMC, the attacks can
be extended by 1 round for LowMC-80, or be optimized for LowMC-128
by interpolating only 3 rounds. A linear layer is called weak if there is
a linear dependency between the ` bits of the identity part at the input
and output. This corresponds to linear masks as in Section 5.4.2 with zero
activated S-boxes. The probability that a random linear layer is weak is
2−38 for LowMC-80, and 2−122 for LowMC-128.

Table 5.4.: Optimized interpolation attacks by Dinur et al. [DLMW15].

Variant Weak Rounds dimV Data Time

LowMC-80256,49 all 10 / 10, 11 32 239 257

LowMC-80256,49 2−38 11 / 10, 11 32 239 257

LowMC-128256,63 all 12 / 12 64 273 2118

LowMC-128256,63 2−122 12 / 12 64 270 286

5.6. Conclusion

We analyzed LowMC, which targets applications from asymmetric cryp-
tography with its low multiplicative complexity. Our analysis shows that
the dense linear layers are not sufficient to compensate for the incomplete
3-bit S-box layer and its low degree in both directions. By combining
higher-order differential attacks with carefully constructed vector spaces,
we can recover the secret key for up to 9 (out of 11 or 10) rounds of
LowMC-80, and show that the security margin is similarly small for the
other proposed LowMC variants. Our attacks are more efficient for the
variants with larger identity parts of the incomplete S-box layers, even if
these also feature larger state sizes and more S-boxes in total. Dinur et al.
[DLMW15] demonstrated that higher-order differential attacks can even
be extended to full-round LowMC with optimized interpolation attacks for
key recovery. The designers proposed an updated LowMC v2 [ARS+16].

146

6
Related-Key Forgeries for Prøst

In this chapter, we analyze the authenticated cipher Prøst, submitted
to Round 1 of the CAESAR competition by Kavun et al. [KLL+14].
We show that using a permutation in Even-Mansour construction as a
block cipher in higher-level constructions, as proposed in Prøst-OTR, can
lead to significant problems in simple related-key settings. Such settings
are not covered by the security notions of the building blocks’ security
proofs, but we argue that they may nevertheless be relevant in practical
implementations. We propose relatively generic forgery attacks that work
for almost any message, key K, and permutation, assuming that the
attacker knows some ciphertext encrypted under a different key K ′ with
known difference ∆ = K ⊕K ′.

The results in this chapter are based on joint work with Christoph Dobrau-
nig and Florian Mendel. I am the main author and developed significant
parts of the attack. The following text is a version with minor modifications
of the paper published at FSE 2015 [DEM15d].

6.1. Introduction

The Even-Mansour scheme [EM91; EM97] is one of the earliest and
simplest proposals for permutation-based cryptography, that is, creating
different cryptographic primitives from a publicly known building block,
a permutation. The scheme creates a block cipher EK(M) from a public
pseudorandom permutation P as EK1‖K2

(M) = P (M⊕K1)⊕K2. Since its
original proposal, its security has been studied extensively [Dae91; BW00;
GR04], and several more [DKS12] or less [BKL+12] simple variants have
been proposed and analyzed as well. However, it has also been criticized
for its non-ideal properties, such as its birthday-level security [Dae91].

147

6. Related-Key Forgeries for Prøst

Prøst, designed by Kavun, Lauridsen, Leander, Rechberger, Schwabe, and
Yalçın [KLL+14], is one of the candidates submitted to Round 1 of the
CAESAR competition for authenticated encryption [CAE13]. It combines
a newly designed permutation, the Prøst permutation, with several modes
of operation. The resulting Prøst family of authenticated ciphers consists
of three variants: Prøst-COPA, Prøst-OTR, and Prøst-APE, each with
its own advantages and features. The Prøst-OTR variant uses the Prøst
permutation in a single-key Even-Mansour construction [DKS12] as a
block cipher in Minematsu’s provably secure, Feistel-based OTR mode of
operation [Min14].

We present a forgery attack on Prøst-OTR in a related-key setting. The
scenario is that an attacker is given ciphertexts and tags of two messages:
one under the target key K, and one under a related key K ⊕∆ for some
arbitrary ∆. Both keys are secret, but their difference ∆ is known to
the attacker. The nonces used for encrypting the two messages are also
related in a similar way. Then, with negligible computational complexity,
the attacker can forge the ciphertext and authentication tag for a third
message under the target key K. In fact, depending on the length of the
original messages, forgeries for a large number of fake messages can be
obtained. In addition, in case the attacker has control over one of the
two originally encrypted messages, he can even control the content of the
third, forged message.

Our attack is generic and exploits the combination of the OTR mode of
operation with an Even-Mansour block cipher construction. It is inde-
pendent of the used permutation, and thus does not use any particular
properties or weaknesses of the Prøst permutation. Consequently, the other
members of the Prøst family, Prøst-COPA and Prøst-APE, are not affected
or endangered by the attack. However, the attack demonstrates the pos-
sible complications of using an Even-Mansour construction as a block
cipher in otherwise secure modes of operation. Although this construction
has been studied extensively and proven secure under different notions
of security, it is inherently susceptible to related-key attacks. The OTR
mode of operation allows lifting this property to the full encryption and
authentication scheme and thus create forgeries. Karpman [Kar15] showed
how to extend such observations to key recovery attacks. This unfortunate
combination of otherwise secure building blocks shows two things: that the
Even-Mansour construction should only be used cautiously in higher-level
constructions, and that related-key properties are not well covered by the
classical security notions, although they can lead to powerful attacks in

148

6.1. Introduction

practically relevant scenarios. Cogliati and Seurin [CS15] and Farshim
and Procter [FP15] investigated under which conditions variants of the
Even-Mansour construction with several rounds or nonlinear key schedule
can be proved secure in the related-key model.

Related-key attacks, introduced independently by Knudsen [Knu91] and
Biham [Bih93], are a relatively strong attack setting. They allow an
attacker to query not only encryptions under the target key K, but also
under related keys K ′ = ϕ(K) for relations chosen by (or known to)
the attacker from some set ϕ ∈ Φ [BK03]. A prominent example is the
related-key attack on AES by Biryukov et al. [BKN09], which makes very
strong assumptions about the relations between subkeys. Nevertheless,
depending on the exact requirements and set Φ, they can be quite relevant
in practical scenarios. In particular, scenarios where only a known (but
arbitrary) xor difference ∆ = K ⊕K ′ between any two unknown keys is
required, like in our attack, are quite realistic, and occur as side effects of
several published protocols. The only limitation that our attack imposes
on ∆ is that it does not affect the less significant half of the key bits. For
compatibility with the nonce difference, the modified part of the key must
not be longer than the nonce length (half the key size in Prøst-OTR).

As an example for related keys in practice, consider the WEP stan-
dard [IEE97]. There, the keys for the individual communication links
are derived by concatenating (public, random) IVs with the fixed secret
WEP key. Clearly, any two keys constructed this way have a publicly
known differential relation. Another example for the relevance of security
against related-key attacks using only two keys related via a fixed known
xor difference is the corrected security proof for the 3GPP schemes f8
and f9, which requires the underlying block cipher to be secure in this
setting [IK04]. Similar scenarios could be imagined in any other network
of resource-constrained devices (e.g., of sensor nodes), where individual
encryption keys need to be derived in a cheap way from some master
secret (e.g., by xoring individual IDs, nonces or challenge values to the key).
Despite its inherent susceptibility to birthday attacks, the idea to “xor
nonce to key” was proposed as a generic approach to building tweakable
block ciphers, and is also incorporated in several CAESAR candidates,
such as Round-1 submissions AVALANCHE [Alo14] and Calico [Tay14].
A completely different scenario is that related keys might be caused by
injecting faults in stored key material.

The additional requirement of related nonces is not as strong as the related
keys. In many applications, nonces are generated in a very predictable

149

6. Related-Key Forgeries for Prøst

pattern (typically a simple counter as a message sequence number). In
some cases, the attacker may even be able to influence the nonce counter:
a simple example is by triggering encryptions until the nonce counter
arrives at the desired value, or by somehow causing the device to jump
the unwanted nonce values. For this reason, standard security notions for
authenticated ciphers assume the nonce to be under full control of the
attacker, except that they must not be repeated [Rog04b]. We note that
our attack does not require “nonce misuse” in the sense that the attacker
requests repeated encryptions under the same nonce. The combination
of related keys with related nonces has previously been applied primarily
to stream ciphers, in particular in the context of the eSTREAM project.
Examples include the key recovery attacks on Grain-v1 and Grain-128
by Lee et al. [LJSH08], or the analysis of generic chosen-IV attacks with
applications to Trivium by Pasalic and Wei [PW13].

Outline

We first describe the Prøst family of authenticated ciphers in Section 6.2.
In Section 6.3, we derive a first basic related-key attack on Prøst-OTR. In
Section 6.4, we propose a few possible improvements to the attack and
extended attack scenarios. Finally, in Section 6.5, we conclude with a dis-
cussion of the applicability of the Prøst-OTR attack to other authenticated
encryption modes.

6.2. Description of Prøst

6.2.1. The Prøst Family of Authenticated Ciphers

Prøst is a family of authenticated encryption algorithms. Kavun et al.
[KLL+14] proposed the cipher family as a candidate in the currently
ongoing CAESAR competition [CAE13] for authenticated ciphers. Prøst
comes in three flavors: Prøst-COPA, Prøst-OTR, and Prøst-APE. All flavors
share the same core permutation Prøst, designed by Kavun et al. [KLL+14],
but use it in different modes of operation.

Prøst-APE uses the Prøst permutation in Andreeva et al.’s sponge-based
APE mode [ABB+14]. The other two flavors, Prøst-OTR and Prøst-COPA,
use modes of operation that are originally not permutation-based, but

150

6.2. Description of Prøst

block-cipher-based: Andreeva et al.’s COPA mode [ABL+13], and Mine-
matsu’s OTR mode [Min14]. In these variants, the Prøst permutation is
used in a single-key Even-Mansour construction [DKS12] to provide the
required block cipher.

Each of the three flavors is available in two security levels, specified by
a parameter n ∈ {128, 256}, resulting in a total of six proposed cipher
family members. The designers rank the COPA variants as their primary
recommendations, the OTR variants second, and the APE variants last.

Throughout this paper, we use essentially the same notation as Prøst’s
designers [KLL+14]. Unless noted otherwise, all operations are performed
in F22n with respect to Prøst’s irreducible polynomial, where n ∈ {128, 256}
defines the security level. For convenience of notation, elements in F22n

are often represented interchangeably as elements of F2n
2 .

6.2.2. Prøst-OTR-n

Prøst-OTR-n uses the block cipher P̃K , built from the permutation P in
a single-key Even-Mansour construction [DKS12], in Minematsu’s OTR
mode of operation [Min14]. The result is a nonce-based authenticated
encryption scheme with online encryption and decryption that is fully
parallelizable [KLL+14]. Prøst-OTR-n is proposed in two security levels,
n ∈ {128, 256}. The security level defines the permutation size 2n and
block size 2n, the key size 2n and nonce size n, and the tag size n. The
claimed security for Prøst-OTR-n is n

2 bits (confidentiality and integrity
of plaintext and integrity of associated data). No particular claims are
made for or against the related-key security of the cipher.

Since our attack does not exploit any particular properties of the Prøst
permutation P : F2n

2 → F2n
2 , we do not include the definition of P in

this description. The design of the permutation-based block cipher P̃K ,
however, is essential for the attack. For a key K ∈ F2n

2 , the block cipher
P̃K : F2n

2 → F2n
2 is defined as follows:

P̃K(x) = K ⊕ P (x⊕K).

In OTR, message blocks Mj are encrypted in pairs in 2-round Feistel
networks to get the ciphertext blocks Cj . The Feistel round function
first adds a counter-like value, then applies the block cipher P̃k. For the
counter-like value, a helper value ` is computed in an initialization phase

151

6. Related-Key Forgeries for Prøst

N‖10∗

PK •

`

(a) Initialization

M2i M2i+1

P

K
•

2i+2`

•

P

K
•

(2i+2⊕1)`

•

C2i C2i+1

(b) Encrypting M2i,M2i+1, 0 ≤ i < m

Σ =
⊕m−1

i=0 M2i+1

Σ⊕(3(2m+2⊕1)⊕1)`

PK •

msbn

T

(c) Finalization

Figure 6.1.: Encrypting 2m message blocks Mj with Prøst-OTR-n under
key K and nonce N . All values are 2n bits, with n ∈ {128, 256}, except
the n-bit tag T .

by encrypting the padded nonce N‖10∗ under P̃K . After processing all
block pairs, the tag T is finally computed by encrypting a function of the
checksum Σ, which is the xor of all odd-indexed message blocks M2i+1. The
detailed algorithm is listed in Algorithm 3 and illustrated in Figure 6.1.
For simplicity, we only describe the mode for empty associated data, and
only for padded messages with an even (rather than odd) number of
message blocks.

Algorithm 3 Prøst-OTR-n encryption

Input: padded message M‖01∗ = M0 · · ·M2m−1, padded nonce N‖10∗

Output: ciphertext C = C0 · · ·C2m−1, tag T
Σ← 0

`← P̃K(N‖10∗)
for i = 0, . . . ,m− 1 do
C2i ← P̃K(2i+2`⊕M2i)⊕M2i+1

C2i+1 ← P̃K(2i+2`⊕ `⊕ C2i)⊕M2i

Σ← Σ⊕M2i+1

T ← msbn(P̃K(3(2m+2`⊕ `)⊕ `⊕ Σ))

152

6.3. Forgery Attack

6.3. Forgery Attack

In this section, we describe our basic forgery attack on Prøst-OTR. The
attack exploits the combination of the OTR mode with the Even-Mansour
block cipher construction, and is independent of the concrete permutation
P used. We consider a related-key scenario where encrypted messages of
two different keysK andK ′ can be observed. BothK andK ′ are secret, but
we assume the attacker knows the difference ∆ = K⊕K ′ (i.e., K ′ = K⊕∆).
In addition, we assume that the attacker can observe encrypted messages
for related nonces N,N ′, such that ∆ = (N‖10∗)⊕ (N ′‖10∗). Since the
last n bits of the padded nonces are identical, this means that the n least
significant bits of ∆ must be 0.

The basic idea of the proposed forgery attack is to combine information
from the encryption of the same message M under the two related keys
K,K ′ to forge a ciphertext and tag for a modified message M∗ under
one of the two keys, K. More specifically, we will first show how to use
the ciphertext from the related key K ′ = K ⊕∆ to forge ciphertexts for
modified messages under the target key K. Then, we will combine original
and forged ciphertexts in a way such that the original tag remains valid
for the resulting modified plaintext under K. The attack works for any
plaintext of sufficient length (≥ 514 message blocks for Prøst-OTR-128,
≥ 1026 blocks for Prøst-OTR-256).

6.3.1. Forging the Ciphertext

Assume that the attacker obtains the ciphertext for the same message
M = M0 · · ·M2m−1 (from Figure 6.1) under a related key K ′ = K ⊕∆
and a related nonce N ′‖10∗ = (N‖10∗)⊕∆, as illustrated in Figure 6.2.
Note that since the nonce only has length n (instead of 2n like the other
values), ∆ must only modify the most significant n bits, i.e., ∆ = ∆n‖0n.
Then, in the initialization phase illustrated in Figure 6.2a, the differences
in K ′ and N ′ cancel out right before the call to the permutation P in the
initialization. Thus, we receive a related counter value `′ with a simple
relation to the original `:

`′ = PK′(N
′‖10∗) = K ⊕∆⊕ P (K ⊕∆⊕ (N‖10∗)⊕∆) = `⊕∆.

Now consider the encryption of a modified message with message blocks

M̃j = Mj ⊕ (2bj/2c+2 ⊕ 1)∆

153

6. Related-Key Forgeries for Prøst

(N‖10∗)⊕∆

PK⊕∆ •

`⊕∆

(a) Initialization

M2i M2i+1

P

K⊕∆
•

2i+2(`⊕∆)

α
•

P

K⊕∆
•

(2i+2⊕1)(`⊕∆)

γ
•

C ′
2i C ′

2i+1

(b) Message blocks M2i,M2i+1, 0 ≤ i < m

Figure 6.2.: Encrypting the original message blocks Mj under a related
key K ⊕∆ and nonce.

N‖10∗

PK •

`

(a) Initialization

M̃2i=M2i⊕(2i+2⊕1)∆ M̃2i+1=M2i+1⊕(2i+2⊕1)∆

P

K
•

2i+2`

α
•

P

K
•

(2i+2⊕1)`

γ
•

C̃2i=C ′
2i⊕2i+2∆ C̃2i+1=C ′

2i+1⊕2i+2∆

(b) Message blocks M̃2i, M̃2i+1, 0 ≤ i < m

Figure 6.3.: Encrypting modified message blocks Mj⊕ (2bj/2c+2⊕1)∆ =

M̃j under the original key K and nonce N .

154

6.3. Forgery Attack

under the original key K and nonce N . As Figure 6.3 illustrates, the
message differences “cancel out” with the corresponding difference in the
` values from the encryption under the related key in Figure 6.2. Thus, in
both Figure 6.2 and Figure 6.3, the inputs α and γ to the permutations
are the same:

α = M̃2i ⊕ 2i+2`⊕K = M2i ⊕ 2i+2`⊕ 2i+2∆⊕∆⊕K,
γ = M̃2i+1 ⊕ P (α)⊕ (2i+2⊕1)` = M2i+1 ⊕ P (α)⊕ 2i+2`⊕ 2i+2∆⊕`⊕∆.

For this reason, the ciphertext C̃j of the modified message block M̃j under
the original key K can be derived from the ciphertexts C ′j of the original
message Mj under the related key K ⊕∆:

C̃2i = M̃2i+1 ⊕ P (α)⊕K = C ′2i ⊕ 2i+2∆,

C̃2i+1 = M̃2i ⊕ P (γ)⊕K = C ′2i+1 ⊕ 2i+2∆,

since

C ′2i = M2i+1 ⊕ P (α)⊕K ⊕∆,

C ′2i+1 = M2i ⊕ P (γ)⊕K ⊕∆.

Now, we know the correct ciphertexts for a modified message. However,
we still need to find the corresponding authentication tag. We will try to
re-use the original tag T for our forged message.

6.3.2. Forging the Tag

For a fixed key K and nonce N , the authentication tag only depends on
the xor sum of all message blocks with odd index,

Σ =

m−1⊕

i=0

M2i+1.

Thus, if we want to re-use the original tag T for our forged message, we
need to make sure that any induced differences cancel out when summing
up the message blocks. We want to combine original and modified message
M and M̃ to construct the final forged message M∗ that satisfies this
property.

155

6. Related-Key Forgeries for Prøst

For each message block pair M∗2i,M
∗
2i+1 of the forged message M∗, we

can decide to use either the original message block pair M2i,M2i+1, or
the modified blocks M̃2i, M̃2i+1. Let λi denote whether we use the original
(λi = 0) or modified (λi = 1) block pair for 0 ≤ i < m. Then, we get the
message sum

Σ∗ =
m−1⊕

i=0

M∗2i+1 = Σ⊕
m−1⊕

i=0

λi(2
i+2 ⊕ 1)∆.

Note that if Σ would sum up all message blocks (not only every second),
then any choice of λi would create a successful forgery, since M2i⊕M2i+1 =
M̃2i⊕M̃2i+1. As it is, however, we need to select suitable coefficients λi ∈ F2

such that at least one coefficient λi∗ is non-zero and

m−1⊕

i=0

λi(2
i+2 ⊕ 1)∆ = 0 ⇔

m−1⊕

i=0

λi(2
i+2 ⊕ 1) = 0. (6.1)

Since {(2i+2 ⊕ 1)∆} ⊆ F2n
2 , a vector space with dimension 2n, any 2n+ 1

such vectors are linearly dependent, and suitable coefficients λi exist. Thus,
for any given key difference ∆ and known plaintext M with 2m ≥ 4n+ 2
message blocks, we can solve this system of equations to find suitable
coefficients λi. The ciphertext blocks C∗ for the resulting forged message
M∗ can be computed as in Section 6.3.1, while the correct tag T ∗ = T
can be copied from M .

As an example that can be easily verified with the reference implementation,
we target Prøst-OTR-128 with n = 128 and field modulus f(x) = x256 +
x10 + x5 + x2 + 1. Assume any message M with at least 514 blocks of 256
bits was encrypted under K and nonce N to ciphertext C and tag T , and
under K ′ and N ′ to C ′ and T ′ for any ∆ = ∆n‖0n. We can now forge tag
T ∗ and ciphertext C∗ for the modified message M∗, which differs from M
in blocks indices j ∈ J :

J = {4, 5, 6, 7, 10, 11, 16, 17, 20, 21, 508, 509, 512, 513},

M∗j =

{
Mj ⊕ (2b

j
2
c+2⊕1)∆ j ∈ J,

Mj else;

C∗j =

{
C ′j ⊕ 2b

j
2
c+2∆ j ∈ J,

Cj else;

T ∗ = T.

156

6.4. Remarks and Attack Variants

Summarizing, from observing the ciphertext and tag for encryptions of the
same message M under two related keys K and K ′ = K ⊕∆, the attacker
has forged the ciphertext C∗ and tag T ∗ for a different message M∗ of
the same block length with negligible computational effort. The attacker
knows this forged message but has almost no control over its contents.
The attack nonce is the same as the original nonce N . We discuss some
remarks and improvements to this attack in Section 6.4.

6.4. Remarks and Attack Variants

6.4.1. Remarks on the Message Length

If an attacker carries out the basic attack as in Section 6.3, the modified
message may have a slightly modified bit length. This is because the
modification can shift the last non-zero bit, which marks the beginning of
the message padding. This is not a problem since the message bit-length
is not encoded anywhere else in the encryption process – except in the
rare case that the last non-zero bit moves to the second-to-last block or
earlier, which is not a valid format for the padded plaintext. This can be
avoided by not including the last block pair in the modification process.

The attack is also applicable to messages M = M0 · · ·M2m−1M2m with
an odd number of blocks: simply do not include the last block M2m in
the modification process, and copy it directly to M∗2m. The same holds
true for messages that include associated data A: simply copy the same
associated data to the forged message.

6.4.2. Unknown Messages

The description in Section 6.3 assumes that the same message M is
encrypted under both keys, K and K ′ = K ⊕∆, and that M is known
to the attacker. This is, however, not necessarily required. Even without
knowing M , the attacker can compute forged ciphertext blocks and the
tag. In this case, he will not know the modified message M∗, but only the
induced difference M∗ ⊕M .

Neither is it necessary that the same message M be encrypted under
both K and K ⊕∆. In fact, it is sufficient that the attacker has access
to the ciphertexts for any two (not necessarily known, not necessarily

157

6. Related-Key Forgeries for Prøst

equal-length) messages M (under K) and M ′ (under K ′ = K ⊕∆), and
knows the difference M2i+1 ⊕M ′2i+1 for at least 2n+ 1 values of i. Let I
be the set of indices i with known message differences, with |I| ≥ 2n+ 1.
Then, the attacker solves

⊕

i∈I
λi
(
M2i+1 ⊕M ′2i+1 ⊕ (2i+2 + 1)∆

)
= 0.

The forged message M∗ (not known to the attacker, same block length as
M), ciphertext C∗ and tag T ∗ are then given by

(M∗2i,M
∗
2i+1) =

{
(M ′2i ⊕ (2i+2 + 1)∆,M ′2i+1 ⊕ (2i+2 + 1)∆) λi = 1,

(M2i,M2i+1) else;

(C∗2i, C
∗
2i+1) =

{
(C ′2i ⊕ 2i+2∆, C ′2i+1 ⊕ 2i+2∆) λi = 1,

(C2i, C2i+1) else;

T ∗ = T.

6.4.3. Multiple Forgeries

As described in Section 6.3 and 6.4.2, an attacker can forge one message
from 4n+2 original message blocks. This can be extended to 2s−1 different
forgeries from 4n+ 2s blocks (i.e., |I| ≥ 2n+ s). Then, the homogeneous
linear system

⊕

i∈I
λi
(
M2i+1 ⊕M ′2i+1 ⊕ (2i+2 + 1)∆

)
= 0

is underdetermined with ≥ 2n+ s variables for 2n equations. Thus, the
solution space has dimension ≥ s, containing ≥ 2s − 1 different non-zero
solutions for λ.

In the case Mj = M ′j , different values λ, λ′ produce different plaintexts as
long as

max{i ∈ I : λi 6= λ′i} < ord(2)− 2,

where ord(2) denotes the multiplicative order of 2 in F∗22n . For Prøst’s
irreducible polynomials, ord(2) = 2256−1 for n = 128 and ord(2) = 2512−1
for n = 256. In general, if

M2i+1 ⊕M ′2i+1 ⊕ (2i+2 + 1)∆ 6= 0 ∀i ∈ I,

then all different λ produce different forgeries.

158

6.4. Remarks and Attack Variants

6.4.4. Almost Universal Forgery with Related-Key Queries

Assume that the attacker can query the encryption of a chosen message
under one of the two keys, K ′ = K ⊕∆. He wants to forge the ciphertext
and tag for a meaningful message M∗ (chosen beforehand or provided
externally) under the original key K. He can achieve this goal if (a) M∗

has an even number of blocks, (b) he has access to the tag T of a known
message M with the same number of blocks as M∗ under the key K, and
(c) he can modify one 2n-bit block with odd index of M∗ (or, alternatively,
of M). The attack works as follows:

1. Fix the target message length |M∗| = 2m (in blocks).

2. Obtain tag T for any known message M with |M | = 2m under key
K and any nonce N .

3. Fix the preliminary target (challenge) message M∗.

4. Let j∗ = 2i∗ + 1 be the modifiable block of M∗. Modify

M∗2i∗+1 = M2i∗+1 ⊕
⊕

i 6=i∗

(
M2i+1 ⊕M∗2i+1

)
.

5. Construct the query message M ′ for i = 0, . . . ,m− 1 as

(M ′2i,M
′
2i+1) = (M∗2i ⊕ (2i+1 ⊕ 1)∆,M∗2i+1 ⊕ (2i+1 ⊕ 1)∆).

6. Request the ciphertext C ′ for the query message M ′ under K ′ =
K ⊕∆ with nonce N ′‖10∗ = (N‖10∗)⊕∆.

7. The forged ciphertext C∗ and tag T ∗ for message M∗ and nonce
N∗ = N can be computed as

(C∗2i, C
∗
2i+1) = (C ′2i ⊕ 2i+2∆, C ′2i+1 ⊕ 2i+2∆) i = 0, . . . ,m− 1,

T ∗ = T.

This is essentially the same strategy as in Section 6.4.2, except that instead
of using fixed M,M ′ and adapting M∗, we fix M,M∗ and adapt M ′. To
avoid solving the equation system for the correct λi (which would require
relatively long message lengths 2m, and force us to have M∗j = Mj for
many j), we modify one block M∗j∗ to make ∀i : λi = 1 a valid solution.

159

6. Related-Key Forgeries for Prøst

6.5. Discussion

6.5.1. Applicability to Other Modes

The core of our attack is the following observation: If an authenticated
encryption mode applies the block cipher to variable (controllable) inputs,
an attacker can lift the inherent related-key weaknesses of the Even-
Mansour construction to the entire mode. Then, he can use information
from encryptions under a related key to forge ciphertext and tag for the
target key.

A question that suggests itself is whether similar attacks are possible on
other Prøst modes. In addition, other authenticated encryption modes
might display similar problems when combined with an Even-Mansour
block cipher.

Prøst-APE does not use the Even-Mansour construction at all, but plugs
the permutation into a sponge construction. Thus, the attack is clearly
not applicable. Prøst-COPA does use the permutation in an Even-Mansour
construction. However, it seems to defy the attack by including EK(0), the
encryption of the value 0, in the definition of the helper value L (which
plays a role similar to ` in Prøst-OTR). Since a constant instead of the
variable nonce N serves as input to the encryption, the input cannot be
controlled to produce (differentially) predictable outputs of L. In fact,
Mennink [Men16] proves that Prøst-COPA uses an instance of XPX, a
generalized tweakable Even-Mansour construction, and is thus secure in
related-key settings. The situation is similar, for example, for the OCB
mode of operation [KR14]: while the message could be used to cancel out
differences in the helper counter value, this value is also derived from the
encryption EK(0) of the zero value and thus unpredictable.

On the other hand, other popular modes show significant weaknesses when
combined with Even-Mansour ciphers. Of course, unlike Prøst, these modes
are usually not recommended for use with an Even-Mansour block cipher,
but with AES. Consider, for example, the CCM mode of operation [Dwo04;
WHF03], an ISO/IEC-standardized combination of CBC-MAC with CTR
encryption, as illustrated in Figure 6.4. CCM allows a much simpler related-
key attack. Assume that an attacker knows the ciphertext (including the
tag) C = C1 · · ·C`C`+1 of a message M = M1 · · ·M` under key K ⊕∆
and padded nonce (N‖0) ⊕ ∆ (in the format used as counter input to

160

6.5. Discussion

· · ·EK EK EKEK

M1 M2 M` TN‖(16 · `)
N‖1 N‖2 N‖` N‖`+1

EK EK EK EK

C1 C2 C` C`+1

Figure 6.4.: CCM encryption.

the CTR encryption). Then, the ciphertext C ′ for M under key K and
padded nonce N‖0 is simply

C ′i =

{
Ci ⊕∆ 1 ≤ i ≤ `,
Ci i = `+ 1.

As can be observed from Figure 6.4, all differences ∆ during the CCM
computation cancel out either with the nonce difference fed to the Even-
Mansour block encryptions EK⊕∆, or with neighboring block cipher calls
in the CBC-MAC computation. The final differences in the block cipher
outputs from the CTR encryption can simply be added to the ciphertext
blocks.

6.5.2. Karpman’s Key Recovery Attack

Karpman [Kar15] shows how a related-key distinguisher on an Even-
Mansour construction can be converted to a related-key key-recovery
attack for a different class of relations. He illustrates the approach by
converting the same distinguisher we use for our forgeries into a key-
recovery attack on Prøst-OTR.

The approach is based on the work of Bellare and Kohno [BK03], who show
the impossibility of achieving related-key security against certain classes of
key relations, in particular Φ+ ∪ Φ⊕, where Φ+ modifies keys by modular
addition of constants, whereas Φ⊕ adds them with bitwise xor. The reason
for this is that relations in Φ+ and Φ⊕ collide on certain inputs, depending
on the exact bit values, and detecting these collisions allows deriving
the corresponding bit values. The same idea can be applied by testing

161

6. Related-Key Forgeries for Prøst

our Φ⊕-based distinguisher systematically for Φ+-related keys. This way,
the more significant half of the key bits can be recovered. Recovering
the less significant half is a bit more challenging since the corresponding
padded nonce bits are always free of differences. By taking advantage
of carry-propagation and knowledge of the more significant half, the full
key can be recovered with a number of related-key queries linear in the
number of key bits.

Overall, this leads to a much more powerful key recovery attack. The
downside is that the attack scenario also comes with stronger requirements
for the attacker’s capabilities, who needs to be able to query chosen
messages under many adaptively chosen Φ+-related keys.

6.6. Conclusion

In this chapter, we analyzed the related-key security of the authenticated
cipher Prøst-OTR. The design is an example of how even more complex
modes can allow some undesirable properties of the Even-Mansour con-
struction to be lifted to the complete authentication mode, in this case,
to generate related-key forgeries. The Even-Mansour construction is not
well-suited as a general-purpose block cipher construction for all modes of
operation. The rising popularity of sponge modes, and permutation-based
encryption in general, may lead to interesting new observations in this
direction.

We stress again that the presented attack only concerns the OTR variant
of Prøst. The security of the other modes, Prøst-COPA and Prøst-APE, and
in particular of the Prøst permutation itself, remains unaffected. However,
Prøst did not advance to Round 2 of the CAESAR competition. It may
be possible to tweak OTR to prevent the specific attack, for example by
adapting the initialization of ` to include P̃K(0), similar to COPA and
OCB. However, the general interactions of modes like OTR or CCM with
the single-key Even-Mansour construction remains a reason for concern.

162

Part II.

Automating Differential
Cryptanalysis

163

7
Practical Collision Search for

Round-Reduced SHA-2

In this chapter, we propose techniques to improve the automated, practical
collision search for round-reduced SHA-2. We focus in particular on the
challenges of applying previous methods developed for SHA-256 [MNS11b;
MNS13b] to SHA-512, which arise from the increased state size of the
compression function. We extend a dedicated search tool for differential
characteristics with several techniques for faster propagation and more
targeted search heuristics to improve the efficiency of the search for larger
primitives. With the improved tool, we can find practical semi-free-start
collisions for the round-reduced hash standard SHA-512 and its truncated
variants, including collisions for 27 (out of 80) steps and semi-free-start
collisions for 39 steps of all SHA-512 variants, as well as free-start collisions
for up to 44 steps of selected truncated SHA-512 variants. Additionally, we
show how the tool can be used to insert collision backdoors in malicious
variants of SHA-1 with a few modified round constants.

The results in this chapter are based on several collaborations with Florian
Mendel, Christoph Dobraunig, Martin Schläffer, Tomislav Nad, Vincent
Rijmen, Ange Albertini, and Jean-Philippe Aumasson. They also build
substantially on previous work of these authors. The following text covers
the main contributions of papers published at WCC 2013 [EMN+13],
FSE 2014 [EMS14], and ASIACRYPT 2015 [DEM15a], as well as selected
aspects of a paper at SAC 2014 [AAE+14] and a report for CRYPTREC
[DEM15e]. I am the main author of the first three texts, developed the
proposed search techniques [EMN+13; EMS14], and conducted some of
the practical searches building on previous strategies by Florian Mendel.

165

7. Practical Collision Search for Round-Reduced SHA-2

7.1. Introduction

Cryptographic hash functions are one of the essential building blocks in
cryptography with applications in many higher-level security protocols.
They are used to map any message of arbitrary length to a short, fixed-
length fingerprint, the hash value. This fingerprint can be used as a
placeholder for the full input message in applications where processing
the full message would be inefficient (such as electronic signatures), or
where storing the full message would incur security risks or defeat the
security purpose entirely (for example as a preliminary commitment to a
secret value, or for password systems), or, most prominently, as a short
cryptographic checksum for verifying integrity. In order to serve in these
applications, cryptographic hash functions must on the one hand be very
efficient to evaluate, and on the other hand satisfy three essential security
properties: Preimage resistance (infeasibility of finding a message that
hashes to a given hash value), second-preimage resistance (infeasibility of
producing a second message with the same hash value as a given message),
and collision resistance (infeasibility of finding two messages that will hash
to the same hash value).

The lack of secret inputs for hash functions that can serve, for example, as
round keys or whitening keys is a significant additional design challenge.
Compared to the steady advances in research on block ciphers and other
keyed primitives, hash functions were relatively neglected and significantly
less well understood at the end of the last century. While the academic
efforts in analyzing the block cipher DES had lead to systematic analysis
approaches like differential [BS91] and linear [Mat93; MY92; TG91] crypt-
analysis, only few results were published around hash functions – in spite
of the widespread use of the standards MD5 and SHA-1.

The situation changed with the breakthrough results of Wang et al. in
2005 [WY05; WYY05b], who were able to demonstrate practical col-
lision attacks on the hash standard MD5. Their attack technique was
closely related to the differential cryptanalysis of block ciphers, but re-
quired sophisticated (and less-than-well understood) manual work. The
success of their approach inspired significant advances in the analysis of
hash functions, in particular for several other widely-deployed members
of the extensive MD4 family, like RIPEMD [WLF+05; LP13; MNSS12],
SHA-1 [WYY05b; Ste13; KPS15; SKP16; SBK+17], and also the current
standard SHA-2. The fact that SHA-2 may be significantly stronger than

166

7.1. Introduction

MD4 and relatives, but is still based on the same general skeleton struc-
ture and the same design approaches, motivated the SHA-3 competition.
The resulting standard SHA-3/Keccak [BDPV11d; Dwo15] did not yet
replace SHA-2, but rather complements it by providing much more flexible
interface and implementation options [Dwo15; KCP16], and serves as a
safe backup in case the analysis of SHA-2 should advance too drastically.
It is likely that the SHA-2 family will remain as ubiquitously deployed in
the foreseeable future as it is now. Therefore, the continuous application
of state-of-the-art cryptanalytic techniques for quantifying the security
margin of the SHA-2 family is of significant practical importance.

Due to the more complex definition of SHA-2, compared to MD5 and
other family members, manually-found differential attacks like those by
Wang no longer seem to be feasible beyond a certain number of rounds.
As a consequence, several automated search techniques have been pro-
posed to apply search strategies similar to Wang et al.’s to newer hash
functions [SO06; DR06; Leu13; Leu12; MNS11b; MNS13b].

One of the most successful approaches for finding practical hash colli-
sions is the guess-and-determine search tool nltool developed by Mendel,
Nad, and Schläffer [MNS11b] for practical collision attacks on round-
reduced SHA-256 [MNS11b; MNS13b] and other targets [MNS11a; MNS12;
MNSS12; KMNS13; MNS13a; MPS+13; DEM15b; DEMS15]. It is based
on a method proposed for automatically finding characterstics for SHA-1
by De Cannière and Rechberger [DR06]. This tool takes as input the
specification of a compression function or other primitive, a specification
of initial constraints, and a specification of strategic search phases. Based
on these bitwise specifications and constraints, the tool successively finds
a compatible and consistent assignment of differences and/or values for
all variables required in the respective phase. The search algorithm itself
is an instance of the guess-and-determine approach widely used in com-
binatorial constraint solvers, such as DPLL-based SAT solvers [DLL62]:
It repeatedly picks an undetermined variable, assigns a tentative value
(“guess”), and applies a form of constraint propagation based on the circuit
of basic operations to derive the implications of this assignment, as well
as potential contradictions (“determine”). In terms of SAT solvers, the
basic circuit operations play a role similar to the clauses of SAT formulas,
the bit position selected for guessing would be referred to as branching
literal, and the propagation is a generalization of SAT unit propagation
for general Boolean functions.

167

7. Practical Collision Search for Round-Reduced SHA-2

So far, the practical results on SHA-2 are mostly on the family member
SHA-256. The best previous practical collisions found for SHA-512 are
those for 24 of 80 steps, proposed independently by Sanadhya and Sarkar
[SS08] and Indesteege et al. [IMPR08], together with 24-step collisions
for SHA-256. While the results for SHA-256 have since been improved to
collisions on 27 [MNS11b], 28 [MNS13b] (both practical), and finally 31
steps [MNS13b] (theoretical attack with almost practical complexity), as
well as semi-free-start collisions on up to 38 of 64 steps found by Mendel,
Nad, and Schläffer [MNS13b], no such improvements have been proposed
for SHA-512 so far. The main reason for this seems to be the doubling
in state size from SHA-256 to SHA-512; this larger search space increases
the difficulty of the problem for the search tools. In summary, SHA-512
was a much less popular analysis target, even though in practice, there
are many situations where SHA-512 and its variants may be a better
choice than SHA-256. In particular, SHA-512 is significantly faster than
both SHA-256 and SHA-3/Keccak on many 64-bit platforms [BL11]. For
these reasons, it has been suggested to use a truncated version of SHA-512
even for 256-bit hash values [GJW11]. NIST also defines this variant,
called SHA-512/256, in FIPS 180-4 [Dan12]. In addition to performance
advantages, unlike the narrow-pipe Merkle-Damg̊ard structure of SHA-256,
the generic security of SHA-512/256 profits from the wide-pipe structure
of this chop-MD [CDMP05] design with is wide-pipe structure, which
prohibits generic attacks like Joux’ multicollision attack [Jou04], Kelsey
and Kohno’s herding and Nostradamus attacks [KK06], and Kelsey and
Schneier’s second preimages for long messages [KS05]. However, no dedi-
cated cryptanalysis of SHA-512/224 and SHA-512/256 has been published
before those summarized in this chapter.

Our contributions

We adapted several aspects of the search tool in order to improve the
performance for primitives with larger state sizes, such as those of SHA-512
and SHA-3/Keccak. Two particular problems when applying the previous
search algorithm to larger primitives are related to detecting contradictions
soon enough: First, the search algorithm has to select and guess the critical
bits that reveal the contradiction within a much larger search space; and
second, it has to determine the resulting contradiction in a larger circuit.
We developed, implemented, and evaluated several techniques to address
these two problems. The first is a look-ahead branching heuristic that

168

7.1. Introduction

aims to identify critical bits by peeking at the implications of several
candidate bits and picking the most impactful bit [EMS14]. The second is
an approach for efficiently propagating partial information through large
linear layers [EMN+13]. Together, they significantly decrease the time
spent in “dead ends” of the search space. This allows tackling SHA-512
collision challenges with comparable or even higher round numbers than
SHA-256. The best results include semi-free-start collisions for up to 39
out of 80 steps of SHA-512. We also show how to extend these results to
even more steps of the truncated, wide-pipe variants SHA-512/t.

In some cases, it is even easier to find results for the wide-pipe variants
SHA-512/224 and SHA-512/256 compared to the narrow-pipe designs
SHA-224 and SHA-256: If characteristics with very sparse constraints are
available, the higher available degrees of freedom from the larger message
space may permit solutions where none exist in the narrow-pipe case.
Additionally, in a free-start collision setting, the truncation of parts of the
state in the wide-pipe variants allows extending characteristics by a few
steps and “hide” the resulting differences [DEM15a; DEM15e].

We show that due to this truncation, practical free-start collision for 43-step
SHA-512/256 and 44-step SHA-512/224 are possible. Moreover, we improve
upon the previous best collisions for 24-step SHA-512 [IMPR08; SS08] and
show collisions for 27 steps of SHA-512, SHA-512/224, and SHA-512/256.
We also include results for the older truncated SHA-2 variants, SHA-224
and SHA-384. Since all of our results are practical, we provide examples
of colliding message pairs for every attack. Our results are summarized in
Table 7.1 together with previously published collision attacks.

Finally, we explore how this tool can be used not only by a cryptanalyst,
but by a malicious designer who wishes to include a collision backdoor in a
malicious SHA-1 variant with tweaked round constants, and give examples
of meaningful collisions for such a backdoored hash function [AAE+14].

Outline. In Section 7.2, we describe the SHA-2 family and provide an
overview of the existing analysis of this hash family, in particular the
tool for guess-and-determine attacks that we build on. In Section 7.3 and
Section 7.4, we introduce and evaluate possible approaches to improve this
search tool. We present the resulting collision attacks on SHA-512 variants
in Section 7.5. Finally, in Section 7.6, we show a different application for
a malicious designer with backdoored variants of SHA-1.

169

7. Practical Collision Search for Round-Reduced SHA-2

7.2. Background

7.2.1. Description of SHA-2

The SHA-2 family of hash functions is specified by NIST as part of
the Secure Hash Standard (SHS) [Dan12]. The standard defines two
main algorithms, SHA-256 and SHA-512, with truncated variants SHA-224
(based on SHA-256) and SHA-512/224, SHA-512/256, and SHA-384 (based
on SHA-512). In addition, NIST defines a general truncation procedure
for arbitrary output lengths up to 512 bits. Below, we first describe the
two main variants SHA-256 and SHA-512, followed by a brief discussion
of the truncated variants.

SHA-256 and SHA-512. The two main SHA-2 variants follow the design
principles established in the previous designs of the family, such as MD4,
MD5, and SHA-1, but increase the state size and complexity of the round
update function. They instantiate a narrow-pipe Merkle-Damg̊ard mode
[Dam89; Mer89] with a compression function obtained from a Davies-
Meyer construction with a dedicated block cipher. The block ciphers of
SHA-256 and SHA-512 are closely related, but differ in their word sizes of
w = 32 and w = 64 bits, respectively, and their resulting interface sizes.

The Merkle-Damg̊ard mode of SHA-2 pads the input message M to ` mes-
sage blocks mj , 0 ≤ j < `, of b = 16w bits. The appended padding consists
of the bit “1”, as many bits “0” as necessary to fill the length (mod b) to
b−2w bits, and finally the bit-length of the original input message encoded
as a 2w-bit integer. The final t-bit hash value T = SHA-2(M) = h` is then
computed by iterative application of the compression function F to these
message blocks and the intermediate chaining variables hi, starting from
a pre-defined, constant initial value IV. SHA-256 operates on message
blocks mj of b = 16 × 32 = 512 bits and produces chaining variables hj
and a hash output T of t = 8 × 32 = 256 bits. SHA-512 uses message
blocks of b = 16 × 64 = 1024 bits and produces t = 8 × 64 = 512 bits.
The compression function F is essentially a block cipher EK(·) used in a
Davies-Meyer construction, with the 8w-bit chaining value hj as plaintext
and feed-forward, and the 16w-bit message block mj as key (Figure 7.1):

h0 = IV,

hi+1 = F (hj ,mj) = Emj (hj)� hj for 0 ≤ j < `,

T = h` .

170

7.2. Background

H0=IV F · · · · · · F H`=T

M1 Mi M`· · · · · ·

Figure 7.1.: SHA-2’s mode of operation of the block cipher E (dashed).

Below, we first describe the padding and message expansion of F (i.e., the
key schedule of E), followed by the state update transformation of F . A
full specification, including the round constants, initial values, and other
details, is given in the standard document [Dan12]. We use the notation
of Section 2.1.1 for word-oriented operations on w-bit words.

Padding and message expansion. The message expansion of SHA-2
splits each message block mj into 16 w-bit words Mi, i = 0, . . . , 15, where
w = 32 (SHA-256) or w = 64 (SHA-512), and expands these words into
R = 64 (SHA-256) or R = 80 (SHA-512) expanded message words Wi:

Wi =

{
Mi 0 ≤ i < 16,

σ1(Wi−2)�Wi−7 � σ0(Wi−15)�Wi−16 16 ≤ i < R.
(7.1)

The F2-linear functions σ0(x) and σ1(x) depend on the word size w:

σ0(x) =

{
(x≫ 7)⊕ (x≫ 18)⊕ (x� 3) for w = 32,

(x≫ 1)⊕ (x≫ 8)⊕ (x� 7) for w = 64,

σ1(x) =

{
(x≫ 17)⊕ (x≫ 19)⊕ (x� 10) for w = 32,

(x≫ 19)⊕ (x≫ 61)⊕ (x� 6) for w = 64.

State update transformation. The intermediate state of SHA-2 con-
sists of 8 w-bit words (Ai, Bi, . . . ,Hi). In each step, the state is updated
by a generalized Feistel construction, where two of these words, Ai and
Ei, are updated with new values, while the other words are shifted. We
use the alternative description of the state update function introduced by
Mendel, Nad, and Schläffer [MNS11b] and illustrated in Figure 7.2.

171

7. Practical Collision Search for Round-Reduced SHA-2

Ai

Ai−1

Ai−1

Ai−2

Ai−2

Ai−3

Ai−3

Ai−4

Ei

Ei−1

Ei−1

Ei−2

Ei−2

Ei−3

Ei−3

Ei−4

Σ
1

if

Ki

Wi

−
+Σ

0
m
aj

Figure 7.2.: The state update transformation of SHA-2 [MNS11b].

The state update transformation starts from the previous 8w-bit chaining
value hj = (A−1, . . . , A−4, E−1, . . . , E−4) and updates it by applying the
step functions R ∈ {64, 80} times. In each step i, 0 ≤ i < R, the expanded
message word Wi is used to update the two state words Ei and Ai:

Ei = Ai−4 � Ei−4 � Σ1(Ei−1)� if(Ei−1, Ei−2, Ei−3)�Ki �Wi, (7.2)

Ai = Ei �Ai−4 � Σ0(Ai−1)�maj(Ai−1, Ai−2, Ai−3), (7.3)

where the step constants Ki are defined as nothing-up-my-sleeve numbers
using the fractional part of 3

√
pi, where pi is the i-th prime number [Dan12],

and the F2-linear functions Σ0 and Σ1 are defined as follows:

Σ0(x) =

{
(x≫ 2)⊕ (x≫ 13)⊕ (x≫ 22) for w = 32,

(x≫ 28)⊕ (x≫ 34)⊕ (x≫ 39) for w = 64,

Σ1(x) =

{
(x≫ 6)⊕ (x≫ 11)⊕ (x≫ 25) for w = 32,

(x≫ 14)⊕ (x≫ 18)⊕ (x≫ 41) for w = 64.

After the last step of the state update transformation, the previous chaining
value is added as feed-forward to the output of the state update to produce
the next chaining value hj+1 (or the final hash value h`):

hj+1 = (AR−1 �A−1, . . . , AR−4 �A−4, ER−1 � E−1, . . . , ER−4 � E−4).

SHA-224, SHA-512/224, SHA-512/256, SHA-384, and SHA-512/t
The truncated variants differ from the main variants only in their initial
values IV and by truncating the final hash output h` to the first t bits.

172

7.2. Background

7.2.2. Published Analysis of SHA-2

The main focus of cryptanalytic attacks so far was on the main family mem-
bers SHA-256 and, to a much lesser extent, on SHA-512. Only few results
are available on the original truncated variants SHA-224, SHA-384, and
to the best of our knowledge, no dedicated cryptanalysis of SHA-512/224,
SHA-512/256 was published before the results discussed in this chapter.

Generic attacks. The main SHA-2 variants, SHA-256 and SHA-512,
are susceptible to several generic attacks on the narrow-pipe Merkle-
Damg̊ard [Dam89; Mer89] structure. This includes Joux’ multicollision at-
tack [Jou04], Kelsey and Kohno’s herding and Nostradamus attacks [KK06],
and Kelsey and Schneier’s second preimages for long messages [KS05]. The
chop-MD [CDMP05] structure of the new truncated variants SHA-512/224
and SHA-512/256 with its wide-pipe structure, on the other hand, pro-
hibits such attacks.

For the sake of completeness, we mention that generic quantum preimage
attacks on SHA-256 were analyzed by Amy et al. [AMG+16] to cost 2166.4

logical-qubit-cycles, or about 2128 black-box queries.

Dedicated attacks. The security of SHA-2 against preimage attacks
was first studied by Isobe and Shibutani [IS09], who presented attacks on
24-step SHA-256. This was drastically improved and extended to SHA-512
by Aoki et al. [AGM+09], who presented MitM preimage attacks on 43-
step SHA-256 and 46-step SHA-512, which were later improved by Guo
et al. [GLRW10] and then further extended using bicliques to 45-step
SHA-256 and 50-step SHA-512 by Khovratovich et al. [KRS12]. Due to
their wide-pipe structure, these MitM preimage attacks do not carry over
to SHA-512/224 and SHA-512/256. Li et al. [LIS12] showed that particular
preimage attacks can also be used to construct a free-start collision attack
for up to 57 steps of SHA-512 and 40-step SHA-384. The attacks are only
slightly faster than the respective generic attack complexities. In a MAC
setting, Yu and Wang [YW09] provide distinguishers for 39-step SHA-256.

Practical attacks. Local collisions as a basis for collision attacks on
SHA-2 were first studied for simplified variants of SHA-2, starting with
9-step local collisions [GH03; HPR04; SS07]. This was adapted to find
a first 18-step collision for unmodified step-reduced SHA-256 by Mendel

173

7. Practical Collision Search for Round-Reduced SHA-2

et al. [MPRR06a]. Nikolić and Biryukov [NB08] first worked with modular
differences and proposed 9-step local collisions which can be extended
to attacks on 24 steps of SHA-256 and SHA-512, found independently by
Indesteege et al. [IMPR08] and by Sanadhya and Sarkar [SS08; SS09]. For
SHA-256, these results were significantly improved by constructing longer
local collisions spanning up to 18 steps with the help of an automatic
search tool by Mendel, Nad, and Schläffer [MNS11b], resulting in 27-step
collisions and 32-step semi-free-start collisions [MNS11b] and later 28-step
collisions and 38-step semi-free-start collisions for SHA-256 [MNS13b].

Furthermore, practical second-order differential collisions were demon-
strated for 46-step SHA-256 by Lamberger and Mendel [LM11], 47-step
SHA-256 by Biryukov et al. [BLMN11], and for up to 48-step SHA-512
by Yu et al. [YB14; YHB16], who evaluated the security margin of the
SHA-256 and SHA-512 compression functions against boomerang attacks.

Table 7.1.: Best published collision attacks on the SHA-2 family, including
semi-free-start (sfs) and free-start (fs) collisions without padding (wp).
[EMS14; DEM15a] are covered in this thesis.

SHA-b / t Type Steps Complexity Reference

SHA-512

all
collision 24/80 — [IMPR08; SS08]
collision 27/80 — [DEM15a]
sfs collision 38/80 — [EMS14]
sfs collision 39/80 — [DEM15a]

512 fs collision 57/80 2255.5 [LIS12]

384
fs collision 40/80 2183.0 [LIS12]
fs collision wp 41/80 — [DEM15a]

256 fs collision wp 43/80 — [DEM15a]

224 fs collision wp 44/80 — [DEM15a]

SHA-256

all
collision 28/64 — [MNS13b]
collision 31/64 265.5 [MNS13b]
sfs collision 38/64 — [MNS13b]

256 fs collision 52/64 2127.5 [LIS12]

224
fs collision 40/64 2110.0 [LIS12]
fs collision wp 39/64 — [DEM15a]

174

7.2. Background

7.2.3. Collision Attack Strategy for SHA-2

Since the ground-breaking results of Wang et al. [WYY05b; WY05;
WLF+05], the search techniques used for practical collisions have been
significantly improved, but the top-level attack strategy has remained
essentially the same. We start from a suitable starting point which usually
specifies a selection of active words in the expanded message to define a lo-
cal collision. The starting point defines the search space for the (automatic
or manual) search. The search itself is divided into two phases:

• Find a differential characteristic

1. Construct the high-probability part of a characteristic
2. Determine the low-probability part of a characteristic

• Find a conforming message pair

3. Use message modification in low-probability part
4. Perform random trials in high-probability part

Constructing the differential characteristic for the low-probability part is
one of the most difficult tasks in a differential attack. The main reason is
that such low-probability characteristics are usually very dense and have
many (hidden) relations which need to be taken into account. Wang et al.
found the dense low-probability characteristics for the attacks on MD4,
MD5, RIPEMD, SHA-0 and SHA-1 mostly by hand [WY05; WYY05b;
WLF+05]. However, for more complex hash functions, such an approach is
infeasible. We use the heuristic guess-and-determine search tool previously
developed for SHA-256 by Mendel, Nad, and Schläffer [MNS11b; MNS13b],
which we briefly describe in the following. Before, we discuss the choice of
suitable starting points in Section 7.5.1.

Finding starting points for SHA-2

To model SHA-2 as a satisfiability problem for the search tool, we need
to introduce suitable intermediate variables. Based on the alternative
description given in Section 7.2.1, we only use the words Ai and Ei of the
state, plus the words Wi of the message expansion. Figure 7.3 illustrates
the update rules for A, E and W given in equations (7.3), (7.2), (7.1) by
highlighting the input words for updating each word: Each row represents
one of the R ∈ {64, 80} step iterations, with its three state words Ai, Ei,
and Wi.

175

7. Practical Collision Search for Round-Reduced SHA-2

i

i−2

i−7

i−15i−16

Ai Ei Wi

(a) Updating Wi (7.1)

i
i−1i−2i−3i−4

Ai Ei Wi

(b) Updating Ei (7.2)

i
i−1i−2i−3i−4

Ai Ei Wi

(c) Updating Ai (7.3)

Figure 7.3.: Update rules to compute Ai, Ei, and Wi () recursively from
other state words ().

Local collisions. All our results are based on “local collisions” in the
message expansion: by carefully selecting (expanded) message words in the
middle steps so that the differences can cancel out in as many consecutive
steps as possible in the forward and backward expansion, i.e., the first and
last few expanded message words contain no differences. The t middle steps
with differences can induce differences in the Ai and Ei words. However,
the Wi words can be used to achieve zero difference in the last 4 of the t
words Ei, and in the last 8 of the t words Ai. This is necessary to obtain
words with zero difference in the very last 4 steps of the state update and
thus in the output chaining value.

As an example, the starting point used to find a 27-step collisions for
SHA-256 [MNS11b] allows differences in the five expanded message words
W7,W8,W12,W15,W17 and state words E7, . . . , E13 and A7, . . . , A10. The
exact bitwise signed differences are chosen during the search such that
any potential differences in W19,W22,W23,W24, as well as E14, . . . , E17

and A10, . . . , A13 cancel out. The resulting starting point is illustrated in
Figure 7.4a. We show in Section 7.5.2 how the same starting point can be
used for SHA-512. In addition, we use the closely related starting point for
28-step SHA-256 collisions [MNS13b], illustrated in Figure 7.6b (p. 194),
to also find collisions for SHA-224.

The semi-free-start collision starting point covering the most steps before
the results covered in this chapter is for 38 steps of SHA-256 [MNS13b]
with a local collision spanning t = 18 steps, as illustrated in Figure 7.4b.
Considering the large number of steps, the number of expanded message
words with differences and cancellations is remarkably low: only 6 words
with differences, and 6 words imposing cancellation conditions.

176

7.2. Background

-4

-1
0

7
8
9

10

12
13
14
15

17

19

22
23
24

26

IV(A) IV(E)

Ai Ei Wi

t=11

(a) 27-step collision [MNS11b].

-4

-1
0

7
8

10

15
16
17

20
21

23
24
25
26

30
31

37

IV(A) IV(E)

Ai Ei Wi

t=18

(b) 38-step sfs collision [MNS13b].

Figure 7.4.: SHA-256 starting points: Differences and cancellations .

Semi-free-start collisions and collisions. The discussed starting
points are targeted to find semi-free-start collisions, that is, different
messages m,m′ and an IV h0 such that f(h0,m) = f(h0,m

′). However,
they can also be used for hash function collisions with the original IV h0

by trading the freedom of the IV for freedom in the message words.

In order to find hash function collisions, the first few message words Wi

must retain sufficient freedom (i.e., they should not be constrained by
conditions from the message expansion for cancelling differences) to allow
to match the correct IV value. Ideally, this means that the first 8 message
words W0, . . . ,W7 are free of any conditions (no differences, but also not
constrained by conditions from other message words connected via the
message expansion). If the Wi differences are sparse enough overall, it can
also be sufficient to have at least 5 words W0, . . . ,W4 free of conditions by
providing the remaining freedom with a two-block approach [MNS13b].

After a starting point has been fixed, we need to find a suitable differential
characteristic for the active words such that the cancellations actually
work out. The core of the local collision in the first active words Ai and Ei
is usually very dense and only has low differential probability. In Wang et
al.’s original attacks [WY05; WYY05b; WLF+05], these conditions were
analyzed manually, but this is infeasible for SHA-2.

177

7. Practical Collision Search for Round-Reduced SHA-2

7.2.4. Dedicated Guess-and-Determine Search Tools

As a result, (semi-)automatic approaches to find such dense characteristics
were published soon afterwards, first for Wang et al.’s original targets
like MD4 [SO06] and SHA-1 [DR06] and later refinements to target more
complex hash functions such as SHA-256 and related ciphers [MNS11b;
MNSS12; MNS13b; MNS13a; LP13] or ARX-based SHA-3 candidates
[Leu12; Leu13]. All these approaches essentially follow the guess-and-
determine constraint-propagation strategy.

Differential model. As discussed in Section 2.2.4, the natural difference
notion for generalized ARX designs with Boolean functions is the signed
difference introduced by Wang et al. [WY05; WLF+05]. A bitwise signed
difference ∆± ∈ {0,+1,−1}w for w-bit words uniquely determines both

the modular difference ∆� =
∑

i 2∆±i ∈ Z2w as used for MD4 by Dobbertin
[Dob96; Dob98] and the bitwise xor difference ∆⊕ = (|∆±i |)i.

The aim of the search is to find first a consistent signed characteristic
and then a confirming message pair. In order to represent all stages of
the evolution from a starting point (where only some zero-differences
are fixed) via the characteristic (of signed differences) to the message
pair (of fixed bit values), De Cannière and Rechberger [DR06] introduced
generalized bit conditions in their analysis of SHA-1. Let (xj , x

∗
j) be a

pair of bits. The generalized condition ∇(xj , x
∗
j) constrains the possible

values of (xj , x
∗
j) to a subset of all pairs {(0, 0), (0, 1), (1, 0), (1, 1)}, i.e.,

it specifies an element of the power set G = P({0, 1}2) . In total, we
get 16 possible generalized conditions. We use the same notation [DR06],
which denotes each condition by a descriptive character (see Table 7.2 on
p. 182). For instance, xor differences can be denoted by - (for xj = x∗j)
and x (for xj 6= x∗j). For a pair of w-bit words x, x∗ ∈ {0, 1}w with gen-
eralized conditions ∇(x, x∗) = ∇(xw−1, x

∗
w−1) · · · ∇(x0, x

∗
0) = cw−1 · · · c0,

we denote the number of solutions to these generalized conditions by
|∇(x, x∗)| = ∏w−1

i=0 |ci|.

For any set S ⊆ ({0, 1}w)2 of pairs of w-bit words, we can consider the
minimal w-bit generalized condition ∇(x, x∗) ∈ Gw that covers S, i.e.,
S ⊆ ∇(x, x∗). We say that any strict subset of ∇(x, x∗) in Gw constrains
(or refines) ∇(x, x∗) (and also S). We can describe the differential behav-
ior of operations (or other relations) with some input and output words
x, y, . . . with generalized conditions ∇(x, x∗),∇(y, y∗), . . . by considering

178

7.2. Background

all pairs covered by the generalized condition, testing which ones are
consistent with the definition of the operation (or relation), and constrain-
ing ∇(x, x∗),∇(y, y∗), . . . accordingly to the minimal condition in G that
covers the solutions. We refer to this as (perfect) propagation for this
operation. In practice, if w and ∇(x, x∗),∇(y, y∗), . . . are large, this cannot
be implemented efficiently, and the differential behavior must be modeled
on a smaller granularity, for example on bit-slices with one output bit and
a few input bits (“bit-sliced propagation”) [DR06].

Guess-and-determine search. The search process aims to refine a
starting point given in generalized input conditions (usually -,?) first to
a signed characteristic (output conditions u, n, -) and then a confirming
message pair (u, n, 0, 1). We refer to the desired output conditions as
“determined”, and the other input conditions as “undetermined”. The
guess-and-determine search approach iteratively picks and guesses (con-
strains) bits, and propagates the constraints to neighboring bits via the
connected operations. If an inconsistency occurs, the algorithm backtracks
to an earlier state of the search and tries to correct it. [MNS11b] denote
these three parts of the search by decision, deduction, and backtracking
(Algorithm 4). This procedure can be visualized by a search tree, which is
traversed by depth-first search. The guessing strategy defines the tree’s
shape and which branches are visited first. The backtracking algorithm
can skip parts of the tree to improve exploration. We discuss some more
detailed considerations on the individual steps in the following.

Algorithm 4 Guess-and-determine search algorithm

while there are undetermined bits do
Decision (Guessing)

1. Pick an undetermined bit

2. Constrain this bit

Deduction (Propagating)

3. Propagate the new information to other variables and equations

4. if no inconsistency is detected, goto step 1

Correction (Backtracking)

5. if possible, apply a different constraint to this bit, goto step 3

6. else undo guesses until this critical bit can be resolved

179

7. Practical Collision Search for Round-Reduced SHA-2

The guessing step needs to select and constrain the target bits. The
strategy applied in this step crucially influences the shape of the resulting
characteristic, as well as the search effort necessary to complete the result.
On a high level, this strategy must be defined by the cryptanalyst in order
to determine which parts of the characteristic should be sparse to fulfill
probabilistically, which parts are dense and should be determined first,
and in which order related bits should be guessed (e.g., ordered guesses
from LSB to MSB for modular additions). This is done by specifying
several “phases” that define which general parts of the characteristic and
which generalized conditions (input and desired output conditions) are
targeted to determine next [MNS11b]. A phase may cover several “settings”
to choose from randomly. On a lower level, within the set of candidates
defined this way, the target bit may be predetermined (for ordered guesses),
selected uniformly at random, or selected based on a heuristic such as the
number of two-bit conditions [MNS11b].

The propagation step needs to identify contradictions and make implicit
constraints explicit by propagation. For bitwise Boolean functions (if,
maj), bit-sliced propagation is perfect and can be efficiently applied by
pre-computing the propagation result for any generalized input condi-
tion. For modular sum with two or more summands, the same approach
was successfully applied [DR06; MNS11a; MNS11b] and extended with
multi-bit checks by Leurent [Leu12; Leu13]. For SHA-2, additional, more
expensive checks can be performed at the end of phase, including linear
2-bit conditions - and “complete” checks [MNS11b]. These 2-bit conditions
are particularly relevant for the linear functions σi,Σi in SHA-2, where
input bits are shared between several bit-slices each. Generally speaking,
bit-sliced propagation is not well-suited for typical linear diffusion layers,
in particular with large state sizes as, e.g., in SHA-3/Keccak.

The backtracking step needs to recover after detecting an inconsistency
in the current characteristic. If all alternatives for constraining a target
bit fail, one of the previous guesses must already have been inconsistent,
so the last few guesses are iteratively undone and alternative constraints
for the previous bits are tested. It is useful to mark the original target bit
as critical and undo guesses until it can be constrained without detecting
any more inconsistencies. For undoing guesses, snapshots of previous
characteristics and lists of intermediate guesses since then are kept. After
a certain threshold of contradictions, the entire search tree is discarded
and the search restarted from scratch [MNS11b].

The tool is publicly available: https://github.com/iaikkrypto/nltool.

180

https://github.com/iaikkrypto/nltool

7.3. Improving Deductions with Linear Propagation

7.3. Improving Deductions with Linear
Propagation

Bitsliced propagation and the extensions discussed in Section 7.2.4 work
well for modular sum and the bitwise Boolean functions in SHA-2: The
approach is both computationally very efficient and effective in detecting
contradictions and propagated information. However, for classical linear
diffusion layers, this method is not ideal.

As an example, consider the Σi functions in the state update function
of SHA-2 (Section 7.2.1). Each output bit yi, 0 ≤ i < w is computed as
the xor of three input bits xi+r1 , xi+r2 , xi+r3 (indices mod w), i.e., Σi is
an example of an invertible linear shift-invariant transformation based
on cellular automata [DGV94b; Dae95, Chapter 6]. It is thus easy to
model with bit-sliced propagation steps; however, this approach does not
model the implicit conditions arising from shared input variables between
bit-slices. As a simple example, if we start with conditions ∇(x, x∗) = ?w

and ∇(y, y∗) = -w, bit-sliced propagation will be unable to refine this to
∇(x, x∗) = -w. Adding a bit-sliced model of the inverse Σ−1

i could help
in this specific example, but as in many cases, the inverse has a higher
implementation footprint and requires significantly larger bit-slices to
compute xi from y.

For this reason, we suggest to combine bit-sliced propagation with linear
propagation based on Gaussian elimination. With an incremental solving
approach and a suitable matrix layout for extraction of partial information,
the linear propagation approach integrates efficiently with the existing
search procedure. We evaluate the improved propagation quality for the
linear layers of SHA-2 and SHA-3/Keccak. The approach was used by Kölbl
et al. [KMNS13] to find 4-round differential characteristics for Keccak.

7.3.1. Linear Propagation Approach

Linear constraints

Let f : Fm2 → Fn2 , x 7→ y be an affine function, with y = F · x⊕ a for some
matrix F ∈ Fn×m2 and a = f(0) ∈ Fn2 . We rewrite this using the n × n
identity matrix I in block matrix notation as

y = f(x) ⇔
[
I F

]
·
[
y
x

]
=
[
a
]
.

181

7. Practical Collision Search for Round-Reduced SHA-2

When considering input pairs x and x∗, the same affine function is applied
to both inputs. We denote the combined, interleaved system with F̄ , z̄, ā
defined using the Kronecker product ⊗ by

F̄ · z̄ = ā : (7.4)

F̄ =
[
I F

]
⊗
(

1 0
0 1

)
∈ F2n×(2n+2m)

2

z̄ =

([
y
x

]
⊗
(

1
0

))
⊕
([
y∗

x∗

]
⊗
(

0
1

))
∈ F2n+2m

2

ā =
[
a
]
⊗
(

1
1

)
∈ F2n

2 .

Consider the generalized condition ∇(zj , z
∗
j) for some bit zj of z = [y x]T .

We call ∇(zj , z
∗
j) a linear generalized condition if the set of bit pairs

constitutes an affine space over F2, i.e., if it is any generalized condition
except 7, B, D, E with 3 possible pairs each. Any linear generalized condition

can be defined by kj ∈ {0, 1, 2} affine equations with Cj ∈ Fkj×2
2 , cj ∈ Fkj2 :

Cj ·
(
zj
z∗j

)
= cj .

Table 7.2 lists the matrices (Cj |cj) for all conditions. We denote the
combined generalized condition system with k =

∑
j kj rows by

C̄ · z̄ = c̄ : C̄ = diag(Cj) ∈ Fk×(2n+2m)
2 (7.5)

c̄ =
[
c0 · · · cn+m−1

]T ∈ Fk2 .

Table 7.2.: Linear representation of generalized conditions ∇(zj , z
∗
j) ∈ G.

∇(zj , z
∗
j) given wrt. {(1, 1), (0, 1), (1, 0), (0, 0)}. •, = 1 and ◦, = 0.

∇(zj , z
∗
j) (Cj |cj) ∇(zj , z

∗
j) (Cj |cj)

0 = ◦◦◦• 3 = ◦◦••
u = ◦◦•◦ 5 = ◦•◦•
n = ◦•◦◦ A = •◦•◦
1 = •◦◦◦ C = ••◦◦
- = •◦◦• 7 = ◦••• —
x = ◦••◦ B = •◦•• —
= ◦◦◦◦ D = ••◦• —
? = •••• — E = •••◦ —

182

7.3. Improving Deductions with Linear Propagation

Linear propagation of information

To propagate linear information, we perform the following three steps:

1. Construct the combined (2n+ k)× (2m+ 2n) system of (7.4),(7.5):
[
L̄
C̄

]
· z̄ =

[
ā
c̄

]
.

2. Apply Gauss-Jordan elimination to create sparse equations.

3. Convert equations only on zj and z∗j back to generalized conditions:
If the system is inconsistent, we know that the generalized conditions
at the input and output of the affine function contradict each other.
If the system is consistent, we can extract new information in the
form of generalized conditions. Since a generalized condition consists
of equations involving only zj and z∗j , we get this information by a
linear combination of at most two adjacent rows with pivot elements
zj , z

∗
j , so we can simply linearly scan the final matrix row by row.

Incremental elimination. During a guess-and-determine attack, the
equation system for a particular linear layer is processed many times with
only slightly different generalized conditions. In particular, most changes
only consist of refining generalized conditions, i.e., adding simple individual
equations with at most two set bits to the system. For this reason, we
do not implement a full Gaussian elimination procedure, but maintain
the entire system in reduced row echelon form and only implement an
incremental “ε-Gauß” step that adds a row with at most two set bits to
the system. Note that the initial system L̄ · z̄ = ā is already in reduced
row echelon form, and during runtime, we only add individual rows from
C̄ · z̄ = c̄ to the system. Furthermore, we know that within one branch
of the search tree, conditions will only be refined and thus constraints
added, never changed. Thus, those new rows are not actually added, but
only used to eliminate one or two columns. By storing meta-information
about which rows were recently updated, it is possible to minimize the
complexity of adding and extracting new, updated information.

If the input contains nonlinear conditions (7, B, D, E), these are ignored (i.e.,
treated as ?) in the equation system. After extracting updated conditions
from the equation system, recombining the results with the original input
may induce another update. For example, if the input 7 was treated as ?,
but propagated to -, this information is combined to propagate to 0.

183

7. Practical Collision Search for Round-Reduced SHA-2

7.3.2. Discussion

To compare and evaluate the different propagation methods, we need to
measure how well they propagate. Propagation corresponds to narrow-
ing down the solution space, or gaining information about the solution.
Let ∇(z, z∗)′ denote the generalized conditions obtained by propagating
∇(z, z∗) by means of propagation method M . Then we take as figure of
merit for M :

IM (z) = log2

|∇(z, z∗)|
|∇(z, z∗)′| .

If ∇(z, z∗) is a contradiction, then |∇(z, z∗)| = |∇(z, z∗)′| = 0 and we set
IM (z) = 0. If |∇(z, z∗)′| = 0 but |∇(z, z∗)| 6= 0, then IM (z) is undefined,
which we denote by IM (z) = #. To compare the two propagation methods
and measure the gain of the linear method (L) over the bit-sliced method
(B) for one specific condition ∇(z, z∗), we use

Idiff(z) = IB(z)− IL(z) .

If IL(z) = # but IB(z) 6= #, the linear method detects the contradiction
but the bit-sliced method does not, and we set Idiff(z) = #L. If IL(z) 6= #
but IB(z) = # we set Idiff(z) = #B. If both are #, we set Idiff(z) = 0.

Results. We evaluated the propagation methods for different functions
f by computing Idiff(z) for many sample inputs ∇(z, z∗). We compare
exhaustive search on bit-slices (B) with the linear propagation method
(L) and, where possible, with optimal propagation (O). For the linear
propagation, inputs with nonlinear condition are ignored but added again
to the propagation result for computing IL. We target the Σi, σi functions
of SHA-2 for w ∈ {32, 64}, plus a toy variant with w = 4, and the linear
layer of Keccak-f with lane sizes w ∈ {8, 16, 32, 64}.
Figure 7.5a illustrates the results for SHA-2’s Σi, σi. For the 4-bit toy case,
it is possible to exhaustively test all 158 generalized conditions without
and also compare with optimal propagation. For w = 4, in about a
third of all samples, linear propagation performed better than bit-sliced
propagation (x < 0 and IL > IB). In a very small number of cases, the bit-
sliced approach is better due to nonlinear conditions (x > 0 and IL < IB).
For w ∈ {32, 64}, for representative results, we used input conditions
sampled from a practical search with the tool. The advantage of linear
propagation appears quite limited, in particular for the Σi functions in
the state update.

184

7.3. Improving Deductions with Linear Propagation

−64 −32 0

0

0.5

1

#L64 #L32 #L4 #B

C
u

m
u

la
ti

ve
p

ro
b

ab
il
it

y
B (reference)
O 4-bit Σ
L 4-bit Σ
L 32-bit σ0
L 32-bit Σ0

L 64-bit σ0
L 64-bit Σ0

(a) Distribution of IB − IL for Σi, σi of SHA-2.

80 160−80−160 0

0

0.5

1

#L #B

C
u
m
u
la
ti
ve

p
ro
b
.

B (reference)
L 8-bit
L 16-bit
L 32-bit
L 64-bit

(b) Distribution of IB − IL for linear layer of Keccak-f .

Figure 7.5.: Comparison of propagation methods: IB − IL for different
linear functions. Higher values correspond to better propagation. Results
for 4-bit Σ are exhaustive, the others are sampled during a search.

Figure 7.5b shows the results for the Keccak round function [BDPV11d]
with different lane sizes. The linear layer updates 25 lanes, each of length
w = {8, 16, 32, 64}. We observed that choosing uniformly random general-
ized conditions at the input and output results in impossible characteristics
with a very high probability. Since this is probably not representative for
an actual attack, we also extracted the samples from a 16-hour practical
search with the tool. For w = 64, the linear approach performs better
in more than 97 % of the samples, and almost 50 % of the samples were
contradictions detected by linear, but not by bit-sliced propagation.

Performance Evaluation. Beside the propagation quality, the overall
performance of each propagation strategy implemented in a practical

185

7. Practical Collision Search for Round-Reduced SHA-2

Table 7.3.: Performance evaluation of linear and bit-sliced propagation
for round-reduced Keccak in terms of propagation complexity (iterations
per second) and overall success (collisions found after 24 hours).

Rounds Lane size Hash size Capacity Propagation Iter/s Found

2
32 bits 128 bits 256 bits

bit-sliced 2828 538
linear 770 1517

64 bits 256 bits 512 bits
bit-sliced 1679 6
linear 352 316

3
32 bits 128 bits 256 bits

bit-sliced 2094 0
linear 365 113

64 bits 256 bits 512 bits
bit-sliced 1165 0
linear 182 42

search algorithm is significant. An improvement of the propagation quality
needs to outweigh an expected increase in the runtime complexity of
the propagation step. Bitsliced propagation for small bit-slices can be
implemented very efficiently by a single table lookup per bit-slice, whereas
linear propagation requires iterations of the incremental Gauss elimination
and extraction of the generalized conditions from the equation system. To
judge the practical impact of the propagation, it is necessary to evaluate
the whole search process.

Table 7.3 shows the results of a naive collision search for Keccak with lane
sizes w = 32, 64 for r = 2, 3 rounds, and a search runtime of 24 hours on a
single CPU. The starting point for each search run was an undetermined
state with only IV, zero difference in the output bits, and a difference in
one bit of the input fixed. The results show that linear propagation takes 3
to 7 times longer per propagation iteration, but still performs far superior
in terms of overall search performance. While the performance is still
comparable for simpler problems like 2 rounds with w = 32, the bit-sliced
approach becomes inefficient for larger problems. In case of the 3-round
experiments, bit-sliced propagation had not progressed much further after
24 hours than linear propagation had reached after seconds. Note that
the search strategy used for these results was optimized for bit-sliced
propagation, which is a lot more sensitive to different parameters of the
search algorithm. The results for the bit-sliced version quickly deteriorate
in less optimal configurations, while linear propagation is more robust.

186

7.4. Improving Decisions with Branching Heuristics

7.4. Improving Decisions with Branching
Heuristics

Branching rules are one of the essential ingredients for guess-and-determine
attacks. They define how the search algorithm selects the next variable to
guess, and which guess values to try first for this variable. The branching
rule aims to keep the search runtime as short as possible. Depending
on whether the current partial assignment is correct (satisfiable) or con-
tradictory, this means either that a satisfying solution is found as soon
as possible, or that the contradiction is detected quickly. In the latter
case, this corresponds to identifying a conflicting subset of unassigned
variables and branching on these first in order to prune the search tree.
The search trees traversed by different branching rules can vary drastically
in size, from constant (for unsatisfiable problems) or linear (for satisfiable
problems) to exponential in the number of variables [Ouy98].

To handle the larger search space of SHA-512, we propose a new branching
heuristic for the guess-and-determine strategy used in these attacks. Our
approach is inspired from related ideas in SAT solvers [LA97; HM09].
The heuristic performs a randomized look-ahead selection of candidates
which should be guessed first. Our aim in using this approach is to detect
contradictions earlier and reduce the search space faster. The actual effect
varies significantly with the problem instance. As a relevant example, we
speed up the search for 27-step SHA-512 by a factor of about 220, and
are thus for the first time able to find practical semi-free-start collisions
for 38-step (and later 39-step) SHA-512, with an exemplary runtime
corresponding to about 240.5 compression function evaluations.

In the following, we discuss branching heuristics used in SAT solvers and
then propose a look-ahead branching heuristic for differential cryptanalysis.

7.4.1. Branching Heuristics in SAT Solvers

Most general-purpose SAT solvers are based on extensions of the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm [DLL62], a guess-and-
determine approach for satisfiability problems given in conjunctive normal
form (CNF). The problem of choosing optimal branching variables and
corresponding assignments for DPLL algorithms has been proven to be
both NP-hard and coNP-hard [Lib00]. However, there is a variety of
commonly implemented branching rules based on different heuristics to

187

7. Practical Collision Search for Round-Reduced SHA-2

evaluate the urgency or relevance of potential branching variables. In
addition, meta-rules to select different branching rules depending on the
situation and search history have been proposed [HB03].

SAT branching rules can be categorized according to their target heuristic
(current properties, look-ahead or history analysis), their output (a single
branching variable/literal or a preselection of candidate variables) and their
randomness (deterministic or randomized). Popular heuristics include:

• Uniformly random. This computationally cheapest approach picks
an unassigned variable uniformly at random. Many modern SAT
solvers apply this rule with a small probability and otherwise use a
more informed choice. In differential analysis, this is the default.

• Small clauses. The earliest heuristics greedily favor variables that
appear in many small clauses. The rationale for this choice is twofold.
First, smaller clauses need to be fulfilled “more urgently” since there
are fewer options left that avoid contradictions. Second, even if the
guessed literal evaluates to false in binary clauses, unit propaga-
tion ensues and curtails the search tree. Examples include Böhm’s
rule [BK93], MOM [Fre95], and the Jeroslaw-Wang rules [JW90]
where variables score according to the sum of weights inversely ex-
ponential in the clause length they appear in. Small clauses have
also been used as a preselection heuristic for more expensive look-
ahead rules. In differential guess-and-determine attacks, two-bit
conditions [MNS11b] play a related role.

• Literal count. Heuristics like DLCS and DLIS [SS96; Sil99] simply
count clauses irrespective of their lengths. This is useful in CNF
problems, where satisfying one literal resolves the complete clause,
but counterproductive for the xor-chains in hash functions. There,
this heuristic would create a large number of hidden dependencies
and reduce the freedom without useful propagation.

• Conflict-driven. A more popular variation of literal counting is
VSIDS, first implemented in Chaff [MMZ+01] and later included
in MiniSAT [ES03] and others. Here, the initial literal score of each
variable decays over time, but scores are refreshed (bumped) by
occurrences in newly learned clauses from the CDCL process. Effec-
tively, critical variables with many recent contradictions are guessed
first. The BerkMin solver extends this concept to bump not only
variables from learned clauses, but from any clauses involved in the

188

7.4. Improving Decisions with Branching Heuristics

resolution process [GN02]. In differential attacks, the backtracking
strategy [MNS11b] provides a similar behavior.

• Look-ahead. Instead of judging current properties of the formula
or the previous search history, look-ahead heuristics analyse the ac-
tual effects of branching in a candidate variable [LA97; HM09]. For
example, the Satz solver performs Unit Propagation Look-Ahead:
both possible assignments for each free variable are tested for conse-
quences of this decision and the caused unit propagations. If one of
two assignments causes a contradiction, the other is fixed; if both are
contradictory, backtracking is started; and if both seem valid, the
variable v is assigned scoreM(v) = w(¬v)·w(v)·1024+w(¬v)+w(v),
where w(`) is typically the number of new binary clauses caused by
the propagation of literal ` ∈ {v,¬v}.

• Locality. To limit the candidates for expensive look-ahead calcula-
tions, the candidate variables can be limited to those occurring in
recently changed clauses, as implemented in marchdl [HM06].

Not all of these rules are suitable for general Boolean satisfiability problems
that are not given in CNF format, as already indicated in the list above.
In particular, if the propagation and learning process differs from the
standard SAT case, the above rules can be counterproductive. On the
positive side, dedicated solvers for specific applications can apply domain-
specific knowledge to guide the search process.

7.4.2. The Look-Ahead Branching Heuristic

The branching strategy is one of the most promising areas for optimization
in differential cryptanalysis tools based on tree search. Ideally, the branch-
ing strategy quickly navigates towards a valid assignment of variables
and avoids subtrees without solutions. For detecting invalid subtrees, the
branching strategy relies on the propagation method to detect contradic-
tions as soon as possible. However, the propagation procedure can not
only be used to decide whether previous guesses were contradictory. In
addition, we also want to apply it to guide the branching strategy. The
goal of this interaction is to minimize the size of the search tree in order
to find solutions faster. The intuition of our approach can be summarized
as follows.

189

7. Practical Collision Search for Round-Reduced SHA-2

• Productive propagation is good. Guessing a variable where prop-
agation of the value determines many other variables can have
multiple advantages compared to variables with less propagation.
The most immediate effect is that the remaining search space is
reduced. If more variables are determined right now, they will not
create unnecessary subtrees for guessing later. The overall tree size
and thus the complexity of the remaining search is reduced. On the
downside, limiting the search space at the same time reduces the
remaining degrees of freedom. If one value assigned to a specific bit
propagates better than the second possible value, then, intuitively
speaking, the probability for a solution in the remaining search space
for the first option is lower than for the second value.

• Contradictions are even better. Of course, the overall search aims
to find non-contradictory assignments. Nevertheless, discovering
contradictory value assignments in the current subtree is consistently
helpful for the remaining search. If only one of two possible value
assignments is contradictory, the variable certainly needs to be fixed
to the other value. If both values are contradictory, we must already
have made an error with a previous guess and need to backtrack
immediately. In both cases, it is better to address the conflicting bit
sooner rather than later.

Implementation

In order to implement the criteria above in a practical branching heuristic,
we use a look-ahead approach related to the Unit-Propagation Look-Ahead
(UPLA) used in some SAT solvers. When the branching rule needs to
select the next variable to guess, each candidate is in turn evaluated.
For each candidate, a value is tentatively assigned and the propagation
method is applied to determine the consequences of this assignment. If a
contradiction occurs, this candidate is selected immediately. Otherwise,
the number of propagated variables is calculated. If it is better than the
previously favorite candidate, this variable becomes the new favorite.

There are two performance-related problems with this basic approach.
First, performing the look-ahead propagation for all free variables is very
costly. Second, the basic UPLA approach includes no randomization.
However, we need randomization since a complete search of the tree is
typically computationally infeasible in differential cryptanalysis. Instead,

190

7.4. Improving Decisions with Branching Heuristics

large tree parts are skipped and the search is restarted regularly. To
avoid becoming lost in the same search branches over and over again, it is
essential that the branching strategy is sufficiently randomized. We address
both problems at once by selecting only a random subset of variables for
closer evaluation. Our branching heuristic is summarized in Algorithm 5.

Algorithm 5 Look-ahead branching heuristic

Input: Set U of undetermined bits, Look-ahead limit smax

Output: Branching variable v to use in Steps 1 and 2 of Algorithm 4
L is an empty list
while U 6= ∅ and |L| < smax do

Decision (Guessing)

1. Pick a bit v ∈ U randomly

2. Constrain this bit v

Deduction (Propagation)

3. Propagate the new information to other variables and equations

4. if an inconsistency is detected, return v as the decision bit

5. Dv := {bits determined in Step 3}. Store (v, |Dv|) in L.

Update

5. Update U := U \Dv

6. Undo all changes to restore the original assignment

return v∗ from L with the highest score |Dv∗ |

The size of the randomly selected subset is an essential parameter for
the success of the heuristic. To limit the look-ahead costs, we limit the
maximum subset size by a constant number smax that is chosen in the
beginning of the search procedure, depending on the specific problem
instance. In order to also provide sufficient randomization, we additionally
bound the size smax relative to the current number of unguessed variables.

Beside the subset size, the decision which individual variables to select
for look-ahead plays a role. UPLA-based solvers use a pre-selection of
interesting candidates, for example by locality criteria. We use similar
pre-selection criteria as in the original Step 1 of Algorithm 4, based on
the defined strategy, favoring bits with more two-bit conditions, and
bits involved in recent conflicts [MNS11b]. The selection must remain
sufficiently randomized.

191

7. Practical Collision Search for Round-Reduced SHA-2

Additionally, we do not explicitly evaluate variables that were already
determined by the propagation procedure of one of the previous candidates.
We mark these as evaluated without calculating a separate look-ahead,
since their score is at most as good as the bit that triggered their propa-
gation (at least with respect to one of the assignment options).

We have evaluated different variants of the heuristic and get the best
results for a limit of smax = 16. Larger values of smax further reduce the
tree depth, but due to the additional cost for evaluating more candidates,
this does not improve the overall runtime. Additionally, with larger subset
sizes, the search tends to visit very similar subtrees again and again after
each restart. This is particularly critical if the search space is limited
to a few words, as in the focused search strategy described below. For
other hash functions with larger states sizes or less focused strategies, the
optimal value for smax may be very different.

Results

Using the improvements in the branching heuristic proposed in the pre-
vious section together with the starting point and an adapted search
strategy from the semi-free-start collision on 38-step SHA-256 [MNS13b],
it is possible to find semi-free-start collisions for SHA-512 on up to 38
steps. Finding a differential characteristic together with a conforming
message pair took 5441 seconds (≈ 1.5h) on a cluster with 40 CPUs. This
corresponds to a complexity of about 240.5 evaluations of the SHA-512
compression function.

To show the benefit of our new look-ahead branching heuristic, we have
performed some comparisons. Without look-ahead branching, we were
able to find a semi-free-start collision for 27 steps of SHA-512 using 4
days on a cluster with 40 nodes, which corresponds to a complexity of
about 246.5. Using look-ahead branching with smax = 16 we can find
differential characteristics with conforming message pairs within seconds
on a standard PC (complexity 226.5).

The heuristic can also be used to improve the search complexity for primi-
tives with a smaller state to a certain extent. For example, experiments
show a speedup of more than an order of magnitude for attacks on 27 or 38
steps of SHA-256. However, due to the heuristic nature of the improvement
and the general sensitivity of the search procedure to different parameters,
the effects are hard to quantify.

192

7.5. Application to the SHA-2 Family

7.5. Application to the SHA-2 Family

We target SHA-512 and its truncated variants, in particular SHA-512/224
and SHA-512/256. The hash functions SHA-512/224 and SHA-512/256
differ from SHA-512 in their IV and a final processing step, which truncates
the 512-bit state to 224 or 256 bits, respectively. Consequently, the semi-
free-start collisions demonstrated for SHA-512 based on the SHA-256
starting points [EMS14] are also valid for these truncated versions (since
the IV is non-standard anyway in this attack scenario). In this section, we
first improve these results by providing 39-step semi-free-start collisions for
SHA-512 and its variants. We then extend this result to free-start collisions
for 43-step SHA-512/256 and 44-step SHA-512/224. By free-start collisions,
we mean two messages m,m′ and two IVs h0, h

′
0 such that the hash values

of m (under IV h0) and m′ (under IV h′0) collide. Note that free-start
collisions are not equivalent to collisions of the compression function
for truncated SHA-2 versions, since the truncated output bits of the last
compression function call may contain differences. Additionally, we present
collisions for 27 steps of SHA-512, SHA-512/224, and SHA-512/256.

7.5.1. Starting Points

To find candidates for a higher number of steps, we enumerated all pos-
sible selections of active message words (more precisely, of some t ≤ 20
intermediate expanded message words, the “core words” of the local colli-
sion) and investigated the forward and backward expansion under certain
assumptions: the t core words are chosen freely, according to the message
expansion rule; in the forward and backward expansion, if at least 2 of
the input words have differences, they are assumed to cancel out, while a
single input word with difference never cancels out. Criteria for selecting
suitable candidates then include a low number t of spanned steps and
a low number of required cancellation constraints. The best (consistent)
result for 39 steps, spanning t = 19 steps with 9 cancellations, is given in
Figure 7.6d.

Semi-free-start collisions and collisions. The starting points of Fig-
ure 7.6a and Figure 7.6d both have at least 7 message words free of
differences in the beginning. However, the local collision shown in Fig-
ure 7.6d spans over t = 19 steps. Thus, the first message words are
constrained by many conditions, leaving not enough freedom to match

193

7. Practical Collision Search for Round-Reduced SHA-2

-4

-1
0

7
8
9

10

12
13
14
15

17

19

22
23
24

26

IV(A) IV(E)

Ai Ei Wi

t=11

(a) 27-step collision [MNS11b]:
SHA-256 [MNS11b], SHA-512 [DEM15a]

t=11

-4

-1
0

8
9

10
11

13
14
15
16

18

20

23
24
25

27

IV(A) IV(E)

Ai Ei Wi

(b) 28-step collision [MNS13b]:
SHA-256 [MNS13b], SHA-224 [DEM15a]

-4

-1
0

7
8

10

15
16
17

20
21

23
24
25
26

30
31

37

IV(A) IV(E)

Ai Ei Wi

t=18

(c) 38-step sfs collision [MNS13b]:
SHA-256 [MNS13b], SHA-512 [EMS14]

-4

-1
0

8
9

10
11
12

16
17
18
19

22
23
24
25
26
27
28

31
32
33

38

IV(A) IV(E)

Ai Ei Wi

t=19

(d) 39-step sfs collision [DEM15a]:
SHA-512 [DEM15a]

Figure 7.6.: SHA-2 starting points: Differences and cancellations , .

the correct IV. The starting point with t = 18 in Figure 7.6c is similarly
unsuitable for IV matching. In contrast, the 11-step local collision shown
in Figure 7.6a provides enough freedom in the first 7 message words to be
used in a single-block collision attack [MNS11b].

194

7.5. Application to the SHA-2 Family

7.5.2. Collision Attacks on SHA-512 and its Variants

Semi-free-start collisions

We use the 39-step starting point from Figure 7.6d. Previous work showed
that sparse differences particularly in the Ai words are essential for the
success probability of the message modification phase. For this reason,
we additionally require that in 6 words between A8 and A18, namely
A11, A12, A13, A14, A15, and A17, differences also cancel out. The five con-
secutive zero-difference words in Ai also force E15 to zero difference. These
additional requirements are already marked in Figure 7.6d (hatched area).

The first task for the search procedure with the solving tool is to fix
a suitable signed characteristic. Compared to the previously published
38-step SHA-512 semi-free-start collision [EMS14], the local collision for
our starting point spans 19 steps (compared to previously 18) and has
9 (previously 6) active expanded message words. Cancellations are also
required in 9 (previously 6) expanded message words. This increases the
necessity for very sparse differences in Ai and Wi in steps 16–26. For this
reason, we require a single-bit difference in W26,W17 and A18, and very low
Hamming weights for the other words. We finally found a characteristic
with at most two active bits in almost all words of Ai and Wi (except
A9, A10,W11,W12), given in ?? in Table 7.6.

After the characteristic is fixed, we need to find a complying message
pair. We start by guessing the dense parts in Ai and Ei, hoping that the
sparser conditions in the later steps are fulfilled probabilistically. Since
the dense parts are already almost fully determined by the characteristics
and the sparse parts pose only so few conditions, a message pair is easily
found. The result is a semi-free-start collision valid for all SHA-512 variants
reduced to 39 rounds. We give an example in ?? in Table 7.19a.

Free-start collisions

Free-start collisions are a generalization of semi-free-start collisions, so
the 39-step results obtained in the previous section give a first result for
SHA-512/224 and SHA-512/256. However, we can take advantage of the
truncated output bits to add several more steps. If we add another step
in the beginning or in the end, the existing difference pattern remains
unchanged, but there will be differences in the word W0 (computable via

195

7. Practical Collision Search for Round-Reduced SHA-2

backward expansion, which includes Wi+9 = W9, the previous W8 from
Figure 7.6d) or in the new word W39 (via the normal forward expansion,
which includes W39−15 = W24), respectively. These, in turn, can imply
differences in E−4 or in A39 and E39, which translates to differences in
the IV (turning semi-free-start into free-start results, and included in the
hash value via the feed-forward) or directly in the compression function
output, respectively.

The advantage of adding steps in the beginning is that it is possible
to limit the additional differences in the state update words to E, and
keep A free of differences. Any differences in E−1, . . . , E−4 will be added
to the compression function output with the final feed-forward, but the
corresponding words of the result are truncated, so the hash still collide.

Free-start collisions for 43-step SHA-512/256. Since SHA-512/256
truncates the last 4 output words of the compression function call (E79 +
E−1, E78 +E−2, E77 +E−3, and E76 +E−4), differences in E−1, . . . , E−4

are acceptable for a free-start collision. This observation allows us to add
4 additional steps in the beginning of the 39-step starting point from
Figure 7.6d. Shifting the characteristic “downwards” by 4 steps causes
the previous message words W12, . . . ,W15 to turn into new expanded
message words W16, . . . ,W19; in particular, this affects the difference in
the previous word W12. To determine a compatible difference pattern for
the new first 4 words, the message expansion can be computed backwards
from the new words W4, . . . ,W19 via

Wi = Wi+16 − σ1(Wi+14)−Wi+9 − σ0(Wi+1).

It turns out that all 4 new words will contain differences (W3 from W3+9 =
W12; W2 from W2+1 = W3 and W2+14 = W16; W1 from W1+1 = W2 and
W1+14 = W15; andW0 fromW0+1 = W1,W0+14 = W14 andW0+16 = W16).
However, similar to steps 27–30, the state words Ai and Ei can be kept
free of differences for 4 steps. To achieve this, the search tool needs
to find differences in the IV words E−4, . . . , E−1 to cancel out those in
W0, . . . ,W3 when computing E0, . . . , E3. The resulting starting point is
given in Figure 7.7a.

For the search procedure with the solving tool, we fixed the signed dif-
ferences of steps 12–30 to the same values as the 39-step SHA-512 semi-
free-start collision of Section 7.5.2. Then, to complete the characteristic,
we first search for a valid solution for the dense part of the middle steps

196

7.5. Application to the SHA-2 Family

-4

-1
0

3

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

35
36
37

42

IV(A) IV(E)

Ai Ei Wi

(a) 43-step SHA-512/256.

-4

-1
0
1

4

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

36
37
38

43

IV(A) IV(E)

Ai Ei Wi

(b) 44-step SHA-512/224.

Figure 7.7.: Free-start starting points: Differences , cancellations , .

(Ai and Ei in steps 13–16, and Ei in steps 17–27), and finally fix the
corresponding message words Wi in steps 13–17, which determines the
complete state, including dense differences in the prepended steps and IV.

The search only takes seconds on a standard computer; an example
for a free-start collision is given in ?? in Table 7.15a. We also give a
free-start collision for 41-step SHA-384 obtained with the same method
(with 2 instead of 4 additional steps) in Table 7.17a, as well as one for
39-step SHA-224 (with 1 additional step added to the 38-step SHA-256
characteristic [MNS13b]) in Table 7.11a.

Free-start collisions for 44-step SHA-512/224. A very similar strat-
egy can be employed to extend the previous 43-step free-start collision by
another step for SHA-512/224. Prepending an additional step shifts the
difference of previous word E−1 to E0, which in turn requires a cancellation
in A0 and a difference in A−4, as illustrated in Figure 7.7b. However, only
the least significant 32 bits of the corresponding compression function
output word are truncated. Furthermore, this output word is computed
from A−4 via modular addition, so even differences only in the lower 32
bits can possibly cause differences in the untruncated output bits.

197

7. Practical Collision Search for Round-Reduced SHA-2

Fortunately, the underlying characteristic of signed differences as used
for the 39-step SHA-512 semi-free-start collision is well compatible with
our constraints: The difference in A−4 needs to cancel that in W4 in a
modular addition (via E0, by equations (7.3) and (7.2) or Figure 7.3, since
all other involved words have zero difference). This difference of W4, in
turn, is dictated by that in W13 (by the update rule for W20, where again
all other involved words have zero difference). None of these equalities
involves any of the bitwise functions σ,Σ,maj or if. Thus, the modular
difference in A−4 must be the same as that in W13, which is already fixed
by the underlying characteristic to a modular difference of +32. Written
as bitwise differences, this will translate to a single-bit difference (in the
sixth least significant bit) with probability 1

2 (which does not carry over to
the untruncated bits of the final output with overwhelming probability).
Indeed, the example for a free-start collision given in ?? in Table 7.13a
only displays this single-bit difference in A−4 (and no carries in the output
bits).

Collisions

Starting point for SHA-512. Since the message expansion is essen-
tially the same for all SHA-2 variants (except for different word sizes and
rotation values, of course), the SHA-256 starting points can theoretically
also be used for SHA-512. However, the resulting search complexity is
different. For our results, we used the 27-step starting point (based on a
local collision over the t = 11 steps 7–17), as illustrated in Figure 7.6a.
Just as the 39-step semi-free-start starting point (Figure 7.6d), it requires
that differences cancel in E in 4 of the t steps (E14, . . . , E17) and in A
in the 4 previous steps (A10, . . . , A13), as well as in several steps of the
message expansion.

Finding a solution from this starting point requires significantly more
effort than for SHA-256. Of course, we also tried to expand our search
to the closely related 28-step starting point, which adds an additional
step in the beginning of the 27-step version. However, with the additional
constraints imposed on the message expansion by this added step we could
not find any suitable (reasonably sparse) characteristics.

In contrast to the results from Section 7.5.2, since the IV needs to exactly
match the original IV, we were not able to take advantage of the final
truncation to simplify the search process, or add additional steps. We first

198

7.5. Application to the SHA-2 Family

7
8
9

10
11
12
13

15

17

IV(A) IV(E)

Ai Ei Wi

(a) Stage 1a (characteristic).

3
4
5
6
7
8
9

10
11
12
13

15

17

IV(A) IV(E)

Ai Ei Wi

(b) Stage 1b (dense part).

-4

-1

1
2

7
8

11

IV(A) IV(E)

Ai Ei Wi

(c) Stage 2a (match IV).

12
13
14
15

26

IV(A) IV(E)

Ai Ei Wi

(d) Stage 2b (sparse part).

Figure 7.8.: Stages of the 27-step collision search: guessed values and
differences , derived values , previously fixed values and differences

search a characteristic for SHA-512, and then try to use it to match the
different IVs for SHA-512/224, SHA-512/256, SHA-384, and SHA-512.

Search strategy. The search progresses in several stages (Figure 7.8):

1. Fix signed characteristic:

a) Find candidate characteristic (Figure 7.8a): First fix the
signed differences of the message expansion W (5 words) and
state update A (3 words). Since the word W17 poses conditions
on the first few message words, whose freedom we will later
need to match the IV, we focus on keeping its signed difference
as sparse as possible, with only few difference bits. With much

199

7. Practical Collision Search for Round-Reduced SHA-2

lower priority, also determine the differences in the state update
words E (7 words) to complete the signed characteristic. The
characteristic is very dense in E, but this only has limited
influence on the success of the IV matching phase.

b) Verify dense parts (Figure 7.8b): Fully determine the values
of A and E in the densest steps 7–9 to verify the validity of the
candidate characteristic. If necessary, fix any remaining free bits
of A and E in steps 10–11. This fully determines A3, . . . , A11,
E7, . . . , E11 and W11.

To maneuver the search process in the large search space and de-
tect contradictions as soon as possible, we need to apply the look-
ahead strategies previously employed for semi-free-start collisions
on SHA-512 [EMS14] in this stage (with 16 look-ahead candidates
per guess).

2. Message modification to match IV: Starting from the best
signed characteristics of the previous stage, with the correct IV
inserted, find a solution message pair step by step:

a) Match IV (Figure 7.8c): Fix the values in the more difficult,
heavily constrained words first (W10,W9,W8,W7). Choosing
W10 and W9 also determines A2 and A1 (via E6 and E5).
Together with W7, W8, and the IV, this determines all values
in steps 0–11.

b) Finalize message for sparse parts (Figure 7.8d): choosing
the 4 remaining message words W12, . . . ,W15 allows satisfying
the remaining, sparse parts of the characteristic in steps 12–26
with high probability.

Unlike the other stages, guesses are not made randomly here, but
systematically word-by-word. Since most conditions are from mod-
ular additions, we always start from the least significant bits and
proceed towards the more significant bits. This last stage needs to
be repeated for each IV separately, which takes some hours on a
single CPU per target IV.

Results. Our results for collisions for 27-step SHA-512/224, SHA-512/256,
SHA-384, and SHA-512 are given in ?? in Table 7.13b, 7.15b, 7.17b, and
7.19b, respectively. We also include a 28-step collision for SHA-224, based
on the SHA-256 characteristic [MNS13b], in Table 7.11b.

200

7.5. Application to the SHA-2 Family

7.5.3. Search Strategy and Configuration

Below, we list all search parameters defining the respective search strategy.
Each strategy is listed as an enumeration of several phases, and the
algorithm only switches to the next phase when all bits of the current
phase have been fixed (according to the defined settings). In each step,
the algorithm selects one of the settings of the current phase randomly,
distributed according to their specified weights w (e.g., a weight-5 setting
is selected with 5 times the probability of a weight-1 setting). Each setting
specifies which constraints of which words can be selected for guessing,
and according to which guess pattern they are refined. In addition, it
specifies whether (with which probability p) the choice is stored in the
search tree for backtracking (i.e., on conflicts during backtracking, the
alternative guess will be considered; otherwise, backtracking skips the
alternative and proceeds resolving with the previous stored guess).

The sets of “undetermined” bits are defined by the settings of each
phase as specified in the search strategy below. For picking the next
bit of this set, we first randomly select one of the settings, and then
either select the next least significant bit (if the setting specifies ordered
guesses), or apply Algorithm 5 for look-ahead (in Phase I only), or pick a
random bit (otherwise). The new constraints for the selected decision bit
are also assigned probabilistically, as specified by the setting. We apply
Algorithm 5 only in Phase I, with smax = 16, and the same settings in
the Guessing and Propagation steps that are currently active in the main
search in Algorithm 4. The basic settings follow [MNS13b; MNS11b] and
are summarized in Table 7.4.

Table 7.4.: Basic guessing and backtracking strategy.

G Bit pairs Description Guessed to Stack

? Any No constraints - (100 %) p = 0
-, - (0, 0), (1, 1) Equal (- 2-bit c.) 0 (50 %), 1 (50 %) p = 1
0 (0, 0) Fixed, equal bits
1 (1, 1) Fixed, equal bits

x (0, 1), (1, 0) Different bits

{
u (20 %), n (80 %)

u (50 %), n (50 %)
p = 1

u (1, 0) Fixed, different bits
n (0, 1) Fixed, different bits

201

7. Practical Collision Search for Round-Reduced SHA-2

T
a
b

le
7
.5

.:
S

ta
rtin

g
p

o
in

t
fo

r
sem

i-free-start
collision

of
39

step
s

of
S

H
A

-512
an

d
S

H
A

-512
/t.

i
A
i

E
i

W
i

−
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

−
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

−
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

−
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

9
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

1
0

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

1
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

1
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

1
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
6

-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

1
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-

1
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-

2
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-

2
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

202

7.5. Application to the SHA-2 Family

T
a
b

le
7
.6

.:
C

h
ar

ac
te

ri
st

ic
fo

r
se

m
i-

fr
ee

-s
ta

rt
co

ll
is

io
n

of
39

st
ep

s
of

S
H

A
-5

12
an

d
S

H
A

-5
12

/
t.

i
A
i

E
i

W
i

−
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

−
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

−
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

−
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
0
-
-
-
-
-
-
-
1
-
1
0
0
-
0
0
-
-
-
-
-
1
0
1
-
-
-
1
-
-
-
-
-
0
-
-
n
u
-
-
-
1
-

-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-
-
-

9
-
-
-
u
u
u
u
-
u
-
-
-
u
-
-
-
-
-
-
-
-
-
-
u
u
u
u
u
u
-
-
-
-
u
n
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
n
n
n
-
n
n
-
-
-
-

n
n
n
1
-
0
1
n
n
1
1
u
n
1
-
-
-
-
-
-
-
0
-
-
0
0
-
-
1
0
1
n
u
u
u
n
0
0
-
-
-
-
0
0
0
-
-
-
0
-
1
-
-
-
-
-
-
u
0
u
1
-
-
-

-
-
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-
-

1
0

n
u
n
-
u
u
u
-
u
-
u
-
u
-
n
u
-
-
-
-
-
u
u
n
-
-
n
-
-
-
n
-
-
-
-
-
-
u
u
u
-
n
-
n
u
-
-
-
n
-
u
-
n
-
-
n
u
n
-
u
u
-
n
-

1
0
1
-
-
-
0
n
0
0
1
1
1
0
0
0
n
1
n
-
0
n
u
-
0
0
-
-
1
n
1
1
1
u
0
u
n
-
1
0
0
-
n
n
n
-
-
0
u
-
0
u
1
0
-
1
1
0
u
-
1
-
0
-

-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-
-
-
-
-

1
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

n
1
1
-
-
-
1
u
1
u
n
0
0
u
u
1
0
0
0
n
0
u
0
0
1
0
-
-
1
n
u
0
1
1
u
1
0
1
-
0
0
n
0
1
n
1
-
0
1
-
n
-
1
n
n
0
0
1
1
n
1
u
1
0

-
-
-
-
-
-
-
-
-
n
n
n
n
n
n
-
-
-
-
-
-
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
u
u
u
u
u
u
-
-
-
-
-
-
n

1
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1
0
1
n
n
n
0
n
1
1
1
n
1
0
u
0
1
0
0
0
1
0
0
n
n
1
n
n
1
u
0
1
1
0
1
n
1
1
u
1
0
1
1
0
-
0
1
0
1
1
0
1
n
1
u
1
0
n
1
n
0
0
0

-
-
n
u
u
u
u
u
u
u
u
u
u
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
u
0
-
-
1
1
1
1
-

1
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0
-
1
1
0
n
1
u
0
0
n
n
0
0
n
1
0
0
0
1
1
1
1
0
1
0
0
n
1
1
1
0
0
0
1
u
u
1
1
n
1
n
n
0
1
1
1
1
0
1
1
1
u
u
u
u
u
0
u
1
0
1
1

-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
n
1
n
1
0
n
0
u
u
0
n
n
0
0
n
0
0
0
1
0
u
0
u
0
1
n
0
0
1
n
0
0
0
0
0
u
1
0
n
1
n
0
1
n
1
0
1
n
1
u
n
u
0
1
n
0
u
u
0
n
n
u
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-

1
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
0
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
0
1
1
-
-
1
-
0
1
1
-
-
-
-
-
-
1
0
1
1
0
1
1
0
-
-
-
0
1
0
0
0
-
-
-
1
0
0
1
0
0
0
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
6

-
-
-
-
-
-
-
-
-
-
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-
-
-

1
1
-
1
-
-
1
-
-
-
u
-
-
-
1
0
-
-
-
-
-
1
0
0
-
-
1
-
-
0
0
-
-
1
1
-
-
1
0
0
0
0
-
-
0
-
-
0
1
0
0
1
0
0
0
1
1
u
n
n
n
1
1
-

-
-
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-
-

1
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1
1
1
1
1
0
0
1
1
1
-
1
0
1
-
-
0
-
-
0
0
u
n
n
1
0
1
0
n
u
0
1
1
n
u
n
u
u
0
0
0
-
-
u
-
-
0
0
u
0
0
0
0
0
1
1
1
1
0
0
0
1
1

-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-
-
-
-
-

1
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-
-
-
-
-

0
1
1
1
1
0
0
0
0
0
n
-
0
0
-
-
0
1
-
-
0
0
1
-
-
-
-
-
1
1
1
0
1
u
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
u
1
0
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
u
u
u
u
u
u
u
u
u
u
-
n
u
u
u
u
u
u
u
u
u
u
0
0
1
-
0
u
u
n
n
n
n
0
1
0
0
0
0
1
1
0
0
0
1
0
n
u
u
u
u
u
u
u
u
u
u
u
0
n
0
1
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
1
0
1
1
1
1
u
0
-
-
1
0
0
0
0
0
0
0
0
-
-
-
-
-
0
-
-
0
1
1
-
-
-
1
0
1
1
1
1
1
0
1
1
0
1
1
0
1
n
u
u
u
u
u
u
1
u
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1
1
1
1
1
1
1
1
1
-
-
1
1
1
1
1
1
1
1
1
1
1
-
-
-
-
-
1
1
1
1
1
1
-
-
-
1
0
1
1
1
1
1
0
1
1
0
0
0
0
0
0
1
1
1
1
1
0
-
1
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
-
0
-
0
-
0
-
0
-
1
-
1
-
0
-
0
-
1
-
-
-
-
-
-
-
-
-
-
-
-
0
-
0
u
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-
0
-
0
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-

2
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-
-
-

2
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

203

7. Practical Collision Search for Round-Reduced SHA-2

T
a
b

le
7
.7

.:
C

h
a
ra

cteristic
for

free-start
collision

of
44

step
s

of
S

H
A

-512/224.

i
A
i

E
i

W
i

−
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-
-
-

n
u
-
u
n
n
-
u
-
-
u
-
-
n
-
-
-
-
n
-
-
-
-
n
n
n
-
n
-
-
n
-
-
u
-
-
n
n
-
u
u
-
n
-
-
n
n
-
n
n
n
u
n
n
u
-
-
n
n
-
u
-
u
-

−
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
-
n
u
u
u
u
u
-
-
u
u
n
n
u
-
-
-
n
n
-
1
u
1
-
-
n
-
-
u
0
-
0
n
u
-
n
-
u
n
-
-
-
-
-
n
n
u
u
-
n
1
u
u
-
-
-
u
u
1
u
n
n
-

−
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
-
u
0
-
n
-
n
-
u
u
-
u
-
n
n
-
-
u
-
-
u
u
n
-
-
-
-
n
-
1
n
n
-
-
n
-
n
n
-
-
-
-
-
-
-
-
u
-
-
u
0
n
-
-
n
u
n
0
u
-
n
u
-

−
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
n
u
0
n
1
n
-
0
-
1
u
u
n
u
n
-
0
u
u
n
n
u
-
u
u
u
1
1
u
0
n
1
0
1
1
-
-
0
-
-
1
-
1
0
1
-
0
0
u
n
1
n
n
n
n
n
n
n
n
0
u
u

0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
-
1
0
-
-
-
-
-
-
-
-
-
1
-
0
0
0
0
0
1
0
1
0
-
0
0
0
1
-
0
0
-
-
-
0
-
1
1
-
-
-
-
-
-
-
-
1
-
-
-
0
0
1
1
-
1
n
u
0
0
1
0
1

-
-
u
-
-
n
-
-
-
-
-
u
u
-
n
-
u
u
-
-
-
u
-
-
n
u
-
n
n
n
n
-
u
-
n
-
-
-
-
u
-
u
n
-
-
-
n
-
n
n
-
n
-
u
u
-
u
-
n
-
-
-
n
n

1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
0
1
-
0
-
0
-
-
-
-
1
1
1
0
1
-
-
0
1
1
0
1
-
1
0
1
-
-
1
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
0
0
1
0
-
0
1
0
-
1
0

n
n
-
n
n
n
-
u
-
-
u
n
u
-
-
u
-
-
-
-
u
n
u
-
n
n
n
-
-
-
n
-
n
-
-
-
u
-
-
n
-
-
-
-
u
n
-
-
u
-
u
n
n
n
-
-
n
n
0
-
u
u
1
n

2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-

n
0
1
u
n
1
u
n
u
u
n
0
1
n
n
-
-
n
0
1
u
u
u
n
0
n
u
u
n
u
n
1
1
-
-
u
-
u
u
-
-
-
-
-
-
-
n
-
u
u
u
u
-
n
u
u
u
0
u
-
1
n
n
n

3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
u
u
n
-
u
-
-
-
n
u
n
u
-
n
-
-
n
n
u
-
u
n
u
n
n
-
n
u
-
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-
-
-
-
-
n
1
n
n

4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-
-
-
-
-

5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1

1
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
0
-
-
-
-
-
-
-
1
-
1
0
0
-
0
0
-
-
-
-
-
1
0
1
-
-
-
1
-
-
-
-
-
0
-
-
n
u
-
-
-
1
-

-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-
-
-

1
4

-
-
-
u
u
u
u
-
u
-
-
-
u
-
-
-
-
-
-
-
-
-
-
u
u
u
u
u
u
-
-
-
-
u
n
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
n
n
n
-
n
n
-
-
-
-

n
n
n
1
-
0
1
n
n
1
1
u
n
1
-
-
-
-
-
-
-
0
-
-
0
0
-
-
1
0
1
n
u
u
u
n
0
0
-
-
-
-
0
0
0
-
-
-
0
-
1
-
-
-
-
-
-
u
0
u
1
-
-
-

-
-
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-
-

1
5

n
u
n
-
u
u
u
-
u
-
u
-
u
-
n
u
-
-
-
-
-
u
u
n
-
-
n
-
-
-
n
-
-
-
-
-
-
u
u
u
-
n
-
n
u
-
-
-
n
-
u
-
n
-
-
n
u
n
-
u
u
-
n
-

1
0
1
-
-
-
0
n
0
0
1
1
1
0
0
0
n
1
n
-
0
n
u
-
0
0
-
-
1
n
1
1
1
u
0
u
n
-
1
0
0
-
n
n
n
-
-
0
u
-
0
u
1
0
-
1
1
0
u
-
1
-
0
-

-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-
-
-
-
-

1
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

n
1
1
-
-
-
1
u
1
u
n
0
0
u
u
1
0
0
0
n
0
u
0
0
1
0
-
-
1
n
u
0
1
1
u
1
0
1
-
0
0
n
0
1
n
1
-
0
1
-
n
-
1
n
n
0
0
1
1
n
1
u
1
0

0
0
-
-
-
-
-
-
0
n
n
n
n
n
n
-
-
-
-
-
-
n
0
0
-
-
-
-
-
-
0
0
0
-
-
-
-
-
-
-
-
-
-
1
1
1
1
1
1
1
n
u
u
u
u
u
u
-
-
-
-
-
-
n

1
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1
0
1
n
n
n
0
n
1
1
1
n
1
0
u
0
1
0
0
0
1
0
0
n
n
1
n
n
1
u
0
1
1
0
1
n
1
1
u
1
0
1
1
0
-
0
1
0
1
1
0
1
n
1
u
1
0
n
1
n
0
0
0

-
-
n
u
u
u
u
u
u
u
u
u
u
u
1
-
-
0
1
0
1
-
-
-
-
-
0
1
1
1
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
1
1
0
-
-
-
1
u
0
-
-
1
1
1
1
-

1
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0
-
1
1
0
n
1
u
0
0
n
n
0
0
n
1
0
0
0
1
1
1
1
0
1
0
0
n
1
1
1
0
0
0
1
u
u
1
1
n
1
n
n
0
1
1
1
1
0
1
1
1
u
u
u
u
u
0
u
1
0
1
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
n
1
n
1
0
n
0
u
u
0
n
n
0
0
n
0
0
0
1
0
u
0
u
0
1
n
0
0
1
n
0
0
0
0
0
u
1
0
n
1
n
0
1
n
1
0
1
n
1
u
n
u
0
1
n
0
u
u
0
n
n
u
0

-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-

2
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
0
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
0
1
1
-
-
1
-
0
1
1
-
-
-
-
-
-
1
0
1
1
0
1
1
0
-
-
-
0
1
0
0
0
-
-
-
1
0
0
1
0
0
0
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
1

-
-
-
-
-
-
-
-
-
-
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-
-
-

1
1
-
1
-
-
1
-
-
-
u
-
-
-
1
0
-
-
-
-
-
1
0
0
-
-
1
-
-
0
0
-
-
1
1
-
-
1
0
0
0
0
-
-
0
-
-
0
1
0
0
1
0
0
0
1
1
u
n
n
n
1
1
-

-
-
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-
-

2
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1
1
1
1
1
0
0
1
1
1
-
1
0
1
-
-
0
-
-
0
0
u
n
n
1
0
1
0
n
u
0
1
1
n
u
n
u
u
0
0
0
-
-
u
-
-
0
0
u
0
0
0
0
0
1
1
1
1
0
0
0
1
1

-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-
-
-
-
-

2
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-
-
-
-
-

0
1
1
1
1
0
0
0
0
0
n
-
0
0
-
-
0
1
-
-
0
0
1
-
-
-
-
-
1
1
1
0
1
u
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
u
1
0
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
u
u
u
u
u
u
u
u
u
u
-
n
u
u
u
u
u
u
u
u
u
u
0
0
1
-
0
u
u
n
n
n
n
0
1
0
0
0
0
1
1
0
0
0
1
0
n
u
u
u
u
u
u
u
u
u
u
u
0
n
0
1
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
1
0
1
1
1
1
u
0
-
-
1
0
0
0
0
0
0
0
0
-
-
-
-
-
0
-
-
0
1
1
-
-
-
1
0
1
1
1
1
1
0
1
1
0
1
1
0
1
n
u
u
u
u
u
u
1
u
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1
1
1
1
1
1
1
1
1
-
-
1
1
1
1
1
1
1
1
1
1
1
-
-
-
-
-
1
1
1
1
1
1
-
-
-
1
0
1
1
1
1
1
0
1
1
0
0
0
0
0
0
1
1
1
1
1
0
-
1
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
-
0
-
0
-
0
-
0
-
1
-
1
-
0
-
0
-
1
-
-
-
-
-
-
-
-
-
-
-
-
0
-
0
u
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-
0
-
0
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-

3
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-
-
-

3
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

204

7.5. Application to the SHA-2 Family

T
a
b

le
7
.8

.:
S

ta
rt

in
g

p
oi

n
t

fo
r

co
ll

is
io

n
of

27
st

ep
s

of
S

H
A

-5
12

an
d

S
H

A
-5

12
/t

.

i
A
i

E
i

W
i

−
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

−
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

−
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

−
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

6
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

7
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

8
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

9
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
2

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

1
3

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
4

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
5

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

1
6

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
7

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
x

1
8

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
9

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
0

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
1

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
2

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

205

7. Practical Collision Search for Round-Reduced SHA-2

T
a
b

le
7
.9

.:
C

h
a
ra

cteristic
for

collision
of

27
step

s
of

S
H

A
-512

an
d

S
H

A
-512/t.

i
A
i

E
i

W
i

−
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

−
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

−
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

−
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
0
-
-
-
0
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
0
-
-
1
0
0
1
1
-
-
1
-
-
-
1
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

7
u
-
-
-
u
-
n
-
-
-
-
n
-
-
-
-
-
-
-
-
n
u
-
u
u
u
u
-
-
-
-
-
-
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
n
n
n
n
-
n
1
-
-
1
n
-
-
-
-
1
-
1
1
-
-
n
1
1
0
n
0
1
1
-
1
-
u
0
-
-
0
0
-
-
-
-
-
1
-
1
1
1
-
0
-
-
-
1
-
-
-
0
0
-
1
-
-

u
-
u
n
n
n
u
-
-
n
u
u
-
-
-
-
-
-
-
-
-
n
u
n
u
u
u
-
-
-
-
-
-
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
0
0
1
-

8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
n
-
-
-
-
-
u
u
u
n
-
-
-
-
u
-
-
-
-
u
-
-
-
u
-
u
-
-
u
u
-
-
u

-
0
u
0
u
0
0
0
n
-
1
u
-
-
-
-
0
1
0
u
n
-
n
u
u
n
u
0
-
u
-
-
-
u
1
-
-
u
u
u
u
u
u
u
1
u
0
0
0
-
n
1
u
-
1
-
-
0
1
0
-
0
-
0

-
-
-
-
u
u
u
u
u
u
-
-
-
-
-
-
n
-
u
n
n
n
n
n
n
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
u

9
-
-
u
n
-
-
-
-
-
n
-
-
-
-
-
-
n
-
-
-
-
-
-
-
u
n
-
-
u
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

0
n
1
n
0
0
1
0
0
u
n
n
0
u
1
1
n
-
n
1
0
0
0
0
1
1
0
u
1
0
0
1
-
0
1
u
1
1
1
0
0
1
1
1
1
1
n
u
u
u
u
0
1
0
n
1
-
1
u
-
-
1
-
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0
0
0
1
0
0
1
0
0
1
1
0
1
1
-
1
0
0
0
0
1
u
1
1
u
0
u
1
1
0
u
u
u
u
1
1
0
0
n
n
1
1
0
u
0
0
0
0
0
u
u
0
1
u
1
u
n
0
0
-
-
1
u

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
1
u
1
n
-
n
1
-
0
1
n
-
1
0
1
0
-
1
1
1
n
0
u
u
u
u
-
u
-
-
1
1
-
-
0
0
0
-
0
u
u
-
-
0
-
-
1
0
0
-
1
0
0
0
0
1
-
-
-
1
0
1
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

n
u
u
u
0
-
0
1
-
-
1
1
-
0
0
1
0
-
u
n
n
n
n
n
n
n
1
0
0
-
0
1
0
0
-
-
-
-
-
1
0
0
-
0
0
0
-
1
1
1
0
1
0
-
0
1
1
0
-
-
-
-
0
0

n
-
-
-
-
-
u
-
-
u
-
-
-
-
u
-
u
u
-
u
u
u
u
-
-
-
-
-
u
-
-
u
-
-
-
n
-
-
-
-
-
-
-
-
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
-
-

1
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
u
1
-
1
-
n
-
u
u
u
u
u
u
u
-
-
-
-
-
-
-
u
n
1
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
u

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1

1
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1
1
-
-
-
-
-
0
-
0
0
1
0
0
1
1
-
1
1
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
0
-
-
-
-
1
-
1
1
1
1
1
1
1
-
-
-
-
-
-
-
1
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1

n
n
u
n
u
u
n
-
-
-
-
-
-
u
u
u
-
n
n
n
-
-
-
-
-
-
n
n
u
-
-
-
-
-
-
-
-
-
-
n
u
n
-
-
-
-
0
0
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
n
-
-
-
-
-
u
-
-
-
-
-
-
u
-
-
-
-
-
-
-
-
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n

1
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

206

7.5. Application to the SHA-2 Family

SHA-512/t 39-step semi-free-start collision: We follow the strategy
in Section 7.5.2 to find the signed characteristic (Phase I) and pair; results
are given below:

• Phase I: Guess ?, x in W (w = 5) or E,A (w = 1) (final 2-bit-
condition check; look-ahead with smax = 16; biased guesses in x)

• Phase II: Guess - in A9...12,E9...12 (ordered guesses LSB→MSB)
• Phase III: Guess - in E13...24 (ordered guesses LSB→MSB)
• Phase IV: Guess - in W9...12 (ordered guesses LSB→MSB)

For the truncated free-start collisions of Section 7.5.2 for SHA-512/t, we
can use essentially the same strategy, shifted by the right number of steps.

SHA-512/t 27-step collision: We use the strategy of Section 7.5.2:

• Phase I, Step 1(a): Guess ?, x in W17 (w = 20) or A,W (w = 5)
or A,E,W (w = 1) (final 2-bit check; smax = 16; fair guesses for x)

• Phase II, Step 1(b): Guess - in A7...9,E7...9 (o.g. LSB→MSB)
• Phase IIIa, Step 2(a): Guess - in A2 (ordered guesses LSB→MSB)
• Phase IIIb, Step 2(a): Guess - in A1 (ordered guesses LSB→MSB)
• Phase IIIc, Step 2(a): Guess - in W8 (ordered guesses LSB→MSB)
• Phase IIId, Step 2(a): Guess - in W7 (ordered guesses LSB→MSB)
• Phase IV, Step 2(b): Guess - in W12...15 (o.guesses LSB→MSB)

Table 7.10.: Results for SHA-224.

h0 5594e74a 2234bcbd 635966b5 97a9e488 4a6a7d63 7c28ca05 f1384c84 d2c9753a

h∗0 5594e74a 2234bcbd 635966b5 97a9e488 4a6a7d63 7c28ca05 f1384c84 d2c97532

∆h0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008

m
949722de 48501dcc 7fe48849 ba821c7a 5b5a1e6f 30c487c8 401134e4 2d9eacc7

dd15d12f 9079b000 37c75e69 a47f0dde 8baaf91a d348cc06 2b64ef59 011f91be

m∗
949722e6 48501dcc 7fe48849 ba821c7a 5b5a1e6f 30c487c8 401134e4 2d9eacc7

e373cfef 9079affc 37c75e69 a4808dde 8baaf91a d348cc06 2b64ef59 011f91be

∆m
00000038 00000000 00000000 00000000 00000000 00000000 00000000 00000000

3e661ec0 00001ffc 00000000 00ff8000 00000000 00000000 00000000 00000000

h1 1d6d980a 2aa5f9c0 9843296b da4f8baa 09c36608 7e2bdad9 cb0f1654

(a) Example of a free-start collision for 39 steps of SHA-224.

m
a3e2972c 73ba31f5 e9f85a00 c2cb8cbc 4dd15d27 d240b6f6 0c1243ec 07504bfd

134d0e53 fb839dcc e14f2cbc 53c3c1c6 6ac516a7 a19b112f d844f621 939e7e53

m∗
a3e2972c 73ba31f5 e9f85a00 c2cb8cbc 4dd15d27 d240b6f6 0c1243ec 07504bfd

e3f85ef3 f75b9934 e14f2cbc 53c3c1c6 6ac516a7 a3db19bf d844f621 939e7e53

∆m
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

f0b550a0 0cd804f8 00000000 00000000 00000000 02400890 00000000 00000000

h1 869fd0b5 fb96d20b 28177d1e c7af4885 06ecb162 88332da4 5022b6c7

(b) Example of a collision for 28 steps of SHA-224.

207

7. Practical Collision Search for Round-Reduced SHA-2

Table 7.12.: Results for SHA-512/224.

h0
fef65b64d3694995 959fbfb82ed84eb1 1d9e855642e62ef2 335cc6d027695d91

921d197e5cfa2803 e26c6eb26163a692 9ff3cf4d26f1de78 5323942861d9139a

h∗0
fef65b64d3694995 959fbfb82ed84eb1 1d9e855642e62ef2 335cc6d027695db1

a712860cdcfa1ff8 470749bbf7628f44 20cdfd694df67216 8e07b5fa2c7fedf0

∆h0
0000000000000000 0000000000000000 0000000000000000 0000000000000020

350f9f72800037fb a56b2709960129d6 bf3e32246b07ac6e dd2421d24da6fe6a

m

7a19df6089d00684 03ed2a0d0c29e00e 36c91e35f681fbb8 bb2b47428aeff294

dce94ccc981d39a3 44230f73cf56d9ef e9d46b26b44950c8 550bed4b9419741c

58a98894206e00de f3448a6f761d384d 9ae59f3a3bcc5bba ece85d5c77be431b

6e3cf817e9376cc7 b74a2a43c0b96c93 7c5b51d6fe2a0c26 5a9868e5bf2e422d

m∗
5e031bbe28b2d027 ded424ef85255cc3 ad2f514be0830c1f a635dab40aeffa9f

dce94ccc981d3983 44230f73cf56d9ef e9d46b26b44950c8 550bed4b9419741c

58a98894206e00de f3448a6f761d384d 9ae59f3a3bcc5bba ece85d5c77be431b

6e3cf817e9376cc7 b74a2a43c0b96cb3 5c5b51d6fe2a0c36 5a9868e5bf2e420d

∆m

241ac4dea162d6a3 dd390ee2890cbccd 9be64f7e1602f7a7 1d1e9df68000080b

0000000000000020 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000020 2000000000000010 0000000000000020

h1 e309edf68f4d89b8 5c356e0359eb0dab 76b4a45ec3c2cd25 8bd0955d

(a) Example of a free-start collision for 44 steps of SHA-512/224.

m

20dbf13a352116a9 295506e205afd435 abfe4826742c1a1a 279f07c7813dd9be

47da77c701a98858 25aec1349d486501 37a992a15616ea31 e2b122ecf19e90d3

2fff6025dc03dd67 032c261d740f459e 2e2599bd6e7e74df d490bd22815eb494

72fedf1f607df6e3 87fc91fcfb7397fd e647b1b499eee17f 2dff8e493cbc8a4c

m∗
20dbf13a352116a9 295506e205afd435 abfe4826742c1a1a 279f07c7813dd9be

47da77c701a98858 25aec1349d486501 37a992a15616ea31 5cc1250cb19e90d3

203fdfe5dc03dd66 032c261d740f459e 2e2599bd6e7e74df d490bd22815eb494

f0bc01167075f6eb 87fc91fcfb7397fd e647b1b499eee17f d3f8fe713d7c8a4c

∆m

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 be7007e040000000

0fc0bfc000000001 0000000000000000 0000000000000000 0000000000000000

8242de0910080008 0000000000000000 0000000000000000 fe07703801c00000

h1 65b11e66e48da563 1b70d12da92e2dba 8f338768bb95601b 60b995bb

(b) Example of a collision for 27 steps of SHA-512/224.

208

7.5. Application to the SHA-2 Family

Table 7.14.: Results for SHA-512/256.

h0
159b52516f10f30d 546b2042f240afee f25339b24c441edf d62c698666558242

e5a9e39861fbd81d d2138eacc20d5224 a332c16df23609fb 73f78341dfd7a4e5

h∗0
159b52516f10f30d 546b2042f240afee f25339b24c441edf d62c698666558242

e5a9e39861fbd83d 72e259ce420d5a0f 4db37906cc361264 ae579d9e0275b446

∆h0
0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000020 a0f1d7628000082b ee81b86b3e001b9f dda01edfdda210a3

m

cfbec86f1cf6821e dd3343c25aad835a 2a08612b753f3d6b b328d40d2c624ef7

b3e51f8a3a63bd6f 4abdf96375bbf609 a8c5c1f784672e86 a78e2aa625830d4b

169dcb5039bf3d9f fbcc43ffebd8ae47 1b3eaefccf5c6a46 f668a2a728851b4e

374601ea44422bdb 2ca290d26a23a02f 6685babbfdcb5e22 e000111457201fd4

m∗
ee37d77210586a56 b2a4122800ad72cf 89399609f53f3560 b328d40d2c624ed7

b3e51f8a3a63bd6f 4abdf96375bbf609 a8c5c1f784672e86 a78e2aa625830d4b

169dcb5039bf3d9f fbcc43ffebd8ae47 1b3eaefccf5c6a46 f668a2a728851b4e

374601ea44422bfb 0ca290d26a23a03f 6685babbfdcb5e02 e07e151457202055

∆m

21891f1d0caee848 6f9751ea5a00f195 a331f7228000080b 0000000000000020

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000020 2000000000000010 0000000000000020 007e040000003f81

h1 1d7041bbbffa676a 03d8c440d9246b9d 20ce2d17c5b0b2c4 7e6e4d33a7f54afd

(a) Example of a free-start collision for 43 steps of SHA-512/256.

m

306b0c2ebe7c1341 c8b55d4df1c5f4fe b91a173aeceb818a 33b5977f9b46e58b

6c6d5a4f87f1364f 1b7e33249d4acf4f b7f784ecdcaefc1f a33edafe7afc0452

dfc0200932c2b9df faec7d05e3518e56 ec2e19a7ee867396 d490bd22815eb494

72fedf1f887df303 f95891f08483da25 c327d0afa2c4f902 2c5f0c0806a4e298

m∗
306b0c2ebe7c1341 c8b55d4df1c5f4fe b91a173aeceb818a 33b5977f9b46e58b

6c6d5a4f87f1364f 1b7e33249d4acf4f b7f784ecdcaefc1f 1d4edd1e3afc0452

d0009fc932c2b9de faec7d05e3518e56 ec2e19a7ee867396 d490bd22815eb494

f0bc01169875f30b f95891f08483da25 c327d0afa2c4f902 d2587c300764e298

∆m

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 be7007e040000000

0fc0bfc000000001 0000000000000000 0000000000000000 0000000000000000

8242de0910080008 0000000000000000 0000000000000000 fe07703801c00000

h1 fcba5c8faf05fd68 c676b8f17b5daae3 6233801174b7fd01 0ff72ab4a869c54f

(b) Example of a collision for 27 steps of SHA-512/256.

209

7. Practical Collision Search for Round-Reduced SHA-2

Table 7.16.: Results for SHA-384.

h0
500c5f3c4787ba7d a068fcb4011d5bf3 42e5d7f8a8b5379a 7e74fdcc5a87935c

f5f415efc47d32d6 26dd61b02c6d0535 c7db5e89eefe94b2 428c2357ed063d18

h∗0
500c5f3c4787ba7d a068fcb4011d5bf3 42e5d7f8a8b5379a 7e74fdcc5a87935c

f5f415efc47d32d6 26dd61b02c6d0535 c7db5e89eefe94d2 a76a0e166d06354d

∆h0
0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000060 e5e62d4180000855

m

e13bb65dd3648429 0c1f502f0462116a 537195824dd4d9c3 a79d8323b63058ee

88821d5bb67c9042 d37ee7690e0f79f2 ebefa3e85f97bc7b e9e2ac55d87d9d51

881ea963df122650 210c7bf69ef999c7 b1e4fdb6c5e209ca 3eee8c4a06d943c4

484835ab03c4a2ff 2001ba37b3a01fd8 5ffd223aff721f3f 398994124514202b

m∗
7c5dcb9f53648c14 0c1f502f0462114a 537195824dd4d9c3 a79d8323b63058ee

88821d5bb67c9042 d37ee7690e0f79f2 ebefa3e85f97bc7b e9e2ac55d87d9d51

881ea963df122650 210c7bf69ef999c7 b1e4fdb6c5e209ea 1eee8c4a06d943d4

484835ab03c4a2df 207fbe37b3a02059 6001223aff721e3f 398994124514202b

∆m

9d667dc28000083d 0000000000000020 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000020 2000000000000010

0000000000000020 007e040000003f81 3ffc000000000100 0000000000000000

h1
667b472d680391c2 9c41c2626b95724d 3e537e772da88bed cfbd5a3b5037bfef

e6d7e0d6b53df84d f9667a25301c99e4

(a) Example of a free-start collision for 41 steps of SHA-384.

m

3e7553f2cfb535ab c6b10da716e10303 dacfae5c546a644d f583858a09a07330

80f9a52d3920a14d 5cdc569b9d21b864 b1a502c28b3d61d8 e2b122ece7ac4b72

dfc0201101b358e7 8166c65680a5ac4f ab8499afe6873554 d490bd22815eb494

76fedf1f605ff2d3 d88056eb1a397147 aefff39c56655d5b 2d9f834e6cb4f200

m∗
3e7553f2cfb535ab c6b10da716e10303 dacfae5c546a644d f583858a09a07330

80f9a52d3920a14d 5cdc569b9d21b864 b1a502c28b3d61d8 5cc1250ca7ac4b72

d0009fd101b358e6 8166c65680a5ac4f ab8499afe6873554 d490bd22815eb494

f4bc01167057f2db d88056eb1a397147 aefff39c56655d5b d398f3766d74f200

∆m

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 be7007e040000000

0fc0bfc000000001 0000000000000000 0000000000000000 0000000000000000

8242de0910080008 0000000000000000 0000000000000000 fe07703801c00000

h1
dc3c054014ee5e3b 4da7c81dba383c4e d9997f5a26fe5f59 d987d2e5bc2f7e83

46ba52d79f525f95 90c5db2cc94e87ee

(b) Example of a collision for 27 steps of SHA-384.

210

7.5. Application to the SHA-2 Family

Table 7.18.: Results for SHA-512.

h0
eccf3da189dd9668 b1ec21a4fd53b8d8 609ce4465f772770 adf4e7738e2978f6

8edd237ea50eebc9 231b3af0102a926d db45e613e8d2fd52 ad384433420073f6

m

a0ec9872cfffe63c df5c6a2b59f4c453 f2bea3763fc8fa7a 6a47e8ff0a995116

fa59232e8b617048 4c9690984c084498 28bee8f5701eab16 8d57686ecbdce623

3879318f901ff782 72644b0ca55a6142 6cb281dab11480b4 4a8198441f401ff2

5ffd956ed11a2b5f 9a640988d68287d3 74942df792f2637f b2819dc61f772d4f

m∗
a0ec9872cfffe63c df5c6a2b59f4c453 f2bea3763fc8fa7a 6a47e8ff0a995116

fa59232e8b617048 4c9690984c084498 28bee8f5701eab16 8d57686ecbdce623

3879318f901ff7a2 52644b0ca55a6152 6cb281dab1148094 4aff9c441f402073

6001956ed11a2a5f 9a640988d68287d3 74942df792f2637f b2819dc61f772d4f

∆m

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000020 2000000000000010 0000000000000020 007e040000003f81

3ffc000000000100 0000000000000000 0000000000000000 0000000000000000

h1
3aa73bfae7b82789 711f2024cf0f636e 0c6965f707279a53 8227fba8617aa955

fdd9e2ca8c4d0038 57db244560d7b70b 08ec5698343353c0 9e9b739ee307ea92

(a) Example of a semi-free-start collision for 39 steps of SHA-512.

m

537e7a4986aa2fce 11206ad0306c752b 90124a9e1c9b0ce2 8c14e0356fd26f5f

fd3ef90ea3e4366f 35d8c2ba58abd92f b23e476632eca1fd e2b122ef46649b73

dfc020070e628f37 7acf74d1d1007558 6c6359a6fe7fe2f0 d490bd22815eb494

72fedf1f807df6f3 a8585af19b6dd9d1 3d2053b0c295522b 2d970e0e52a49081

m∗
537e7a4986aa2fce 11206ad0306c752b 90124a9e1c9b0ce2 8c14e0356fd26f5f

fd3ef90ea3e4366f 35d8c2ba58abd92f b23e476632eca1fd 5cc1250f06649b73

d0009fc70e628f36 7acf74d1d1007558 6c6359a6fe7fe2f0 d490bd22815eb494

f0bc01169075f6fb a8585af19b6dd9d1 3d2053b0c295522b d3907e3653649081

∆m

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 be7007e040000000

0fc0bfc000000001 0000000000000000 0000000000000000 0000000000000000

8242de0910080008 0000000000000000 0000000000000000 fe07703801c00000

h1
d838f1d2ae4bf185 3fc837ae9bbc28d4 6b2f2977f58a9697 99c48839f0e8bdca

c9c0a86fed1d921a 2f823b1fa1913751 3ba170b902c6da30 9c4e5807be51a7e7

(b) Example of a collision for 27 steps of SHA-512.

211

7. Practical Collision Search for Round-Reduced SHA-2

7.6. Application to Design of Malicious SHA-1

As the recent NSA revelations have shown, it is not sufficient to only
demonstrate that it is hard for a malicious third-party attacker to break
a cryptographic scheme. In fact, the designers themselves might be con-
sidered an even greater threat, since it is possible for them to embed
backdoors that only they can exploit with some secret backdoor key – and
it might be very hard to even detect that there is such a backdoor.

We present collisions for a version of SHA-1 with modified constants,
where the colliding payloads are valid binary files (executables, archives,
images). These collisions can readily be exploited in applications that
use custom hash functions (e.g., for customers’ segmentation) to ensure
that a legitimate application or file can surreptitiously be replaced with a
malicious one, while still passing the integrity checks such as secure boot
or application code signing. In terms of Aumasson’s malicious hashing
framework [Aum11; AAE+14], Malicious SHA-1 is an instance of a static
collision backdoor. Our malicious SHA-1 instances have round constants
that differ from the original ones in about 40 bits on average. Modified
versions of cryptographic standards are typically used on closed systems
such as media platforms and aim to differentiate cryptographic components
across customers or services. Our proof-of-concept thus demonstrates the
exploitability of custom SHA-1 versions for malicious purposes, such as
the injection of user surveillance features.

SHA-1 is an interesting target because it was one of the most widely
deployed hash function and because of its background as an NSA/NIST
design. We exploit the freedom of the four 32-bit round constants of SHA-1
to efficiently construct 1-block collisions such that two valid executables
collide for this malicious SHA-1. Such a backdoor could be trivially added
if a new constant is used in every step of the hash function. However, in
SHA-1 only four different 32-bit round constants are used within its 80
steps, which significantly reduces the freedom of adding a backdoor. Our
approach modifies at most 80 (or, on average, 40) bits of the constants.

This demonstrates not only the power of backdoors, but also shows how
important it is to question the values and reasons behind every element in
a cryptographic design. Unfortunately, national standards do not always
follow these recommendations – for instance, the Russian hash standard
Streebog comes filled with seemingly “high-entropy” constants and linear
functions, without any further justification [AY15].

212

7.6. Application to Design of Malicious SHA-1

7.6.1. Background on Backdoors and Malicious Hashing

The NSA revelations of 2013 highlighted the apparent interest of intel-
ligence agencies in cryptographic backdoors. A cryptographic backdoor
aims to allow selected entities, such as the designer or parameter selector,
to subvert the security goals of a cryptographic algorithm, whereas the
algorithm is (relatively) secure against third-party cryptanalysis. The most
prominent example is the easily backdoorable random number generator
Dual EC DRBG [BK12]. Even since then, only relatively few academic
publications have targeted this topic, for example with a formal treat-
ment of backdoored pseudorandom generators [DGG+15] and proposals
of “trustworthy” designs [LW17]. Schneier et al. [SFKR] provide a survey
of attempts at surreptitiously weakening cryptographic systems.

Aumasson [Aum11; AAE+14] provides first definitions for different types
of backdoor properties in hash functions. All definitions refer to the
adversary, Eve, in terms of two algorithms: a malicious generator and
an exploit algorithm. The first is essentially the malicious hash function
designer who, after executing a probabilistic algorithm, returns a hash
function (to be published) plus an additional piece of information to
unlock the backdoor (secret). The second is a potentially separate entity
that runs another algorithm using the backdoor information as input
and attacks some security property of the hash function. If this exploit
algorithm is essentially deterministic, the backdoor is said to be static,
else for a probabilistic algorithm it is dynamic. Backdoor adversaries
are further categorized according to their undetectability, referring to the
hardness of detecting that there is a backdoor and recovering the according
exploit algorithm, and their undiscoverability, referring to the hardness of
recovering the backdoor information necessary for the exploit algorithm
for an adversary who knows the exploit algorithm and H.

In particular, Aumasson defines a static collision adversary as a backdoor
adversary where the probabilistic malicious generator returns a hash
function H and backdoor information b, and the deterministic exploit
algorithm, upon input of H and b, returns one colliding message pair m 6=
m′ with H(m) = H(m′). A dynamic collision adversary ’s probabilistic
exploit algorithm samples such a pair (m,m′) from a larger space.

We propose an undiscoverable static collision adversary for a modified,
Malicious SHA-1. Since the first publication of Malicious SHA-1 [AAE+14],
other designs of backdoored hash functions with modified round constants
have been proposed [AY15; Mor15].

213

7. Practical Collision Search for Round-Reduced SHA-2

7.6.2. Background on SHA-1

SHA-1 is a hash function designed by the NSA and standardized by NIST
in 1995 [Dan12]. The design is similar to, but simpler than SHA-2; we give
a summary in the following. SHA-1 processes 512-bit message blocks mj

and produces a 160-bit hash value by iterating the compression function f
with a similar Davies-Meyer construction as SHA-2. The 160-bit internal
state is divided into 5× 32-bit words Ai, Bi, Ci, Di, Ei.

SHA-1’s state update transformation consists of 4 rounds of 20 steps each.
The step function is illustrated in Figure 7.9, where the bitwise Boolean
function fr and the round constant Kr depend on the round r, 1 ≤ r ≤ 4:

f1 = if(B,C,D) K1 = b
√

2 · 230c = 5a827999 for 0 ≤ i ≤ 19

f2 = xor(B,C,D) K2 = b
√

3 · 230c = 6ed9eba1 for 20 ≤ i ≤ 39

f3 = maj(B,C,D) K3 = b
√

5 · 230c = 8f1bbcdc for 40 ≤ i ≤ 59

f4 = xor(B,C,D) K4 = b
√

10 · 230c = ca62c1d6 for 60 ≤ i ≤ 79

The expanded message word Wi for step i is derived from the 16× 32-bit
words Mi of message block mj with the F2-linear message expansion:

Wi =

{
Mi for 0 ≤ i ≤ 15,

(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16)≪ 1 for 16 ≤ i ≤ 79 .

Ai

Ai−1

Bi

Bi−1

Ci

Ci−1

Di

Di−1

Ei

Ei−1

Kr

Wi

fr

≫ 2

≪ 5

Figure 7.9.: The step function of SHA-1.

214

7.6. Application to Design of Malicious SHA-1

Analysis of SHA-1

SHA-1 has been considered theoretically broken since 2005, when Wang
et al. [WYY05b] presented the first collision attack on full SHA-1 with an
estimated complexity of about 269. Although deprecated, SHA-1 is still
widely used in a variety of applications, such as GIT, and was accepted in
SSL certificates by major browsers until 2017.

Wang et al. [WYY05b] included a practical collision example for round-
reduced SHA-1 with 58 out of 80 steps with cost about 233 SHA-1 calls.
More practical round-reduced examples were published for 64 steps with
235 [DR06], 70 steps with 244 [DMR07], 73 steps with 250.7 [Gre10], and 75
steps with 257.7 [AG12]. Furthermore, practical semi-free-start collisions
for and free-start collisions for 76-step [KPS15] and full SHA-1 [SKP16]
were presented. The theoretical complexity for full SHA-1 collisions was
improved to 263 [WYY05a; Coc07] and later 261 [Ste13].

Finally, in 2017, Stevens et al. [SBK+17] presented the first practical full-
round collision example with a complexity of about 263.1 SHA-1 evaluations
(6500 CPU years and 110 GPU years).

All attacks are based on the differential attack strategy by Wang et al.
[WYY05b] and its improvements: We first construct a high-probability dif-
ferential characteristic that yields a zero (or nearly zero) output difference,
i.e., a collision or near-collision. In the second stage, we probabilistically
try to find a confirming message pair for this differential characteristic
using message modification. The characteristic is divided into a denser,
low-probability part at the beginning of the compression function (first
round of SHA-1), referred to as “nonlinear (NL)” characteristic, and a
sparse, high-probability “linear (L)” part covering the remaining rounds.

The high-probability part of the differential characteristic for SHA-1 covers
Rounds 2 to 4. It has been shown [CJ98; WYY05b; Man11; Ste13] that
for SHA-1, the best way to construct these high-probability characteristics
is to interleave local collisions (one disturbing and a set of correcting
differences). These characteristics can be constructed by using a linearized
variant of the hash function and tools from coding theory [RO05; PRR05].
The probability of this characteristic determines the complexity of the
attack. The low-probability part and message modification in Round 1 can
be performed using automated non-linear equation solving tools [DR06].

For SHA-1, the best attacks construct two-block collisions whose first
block produces a near-collision canceled by the second block [WYY05b].

215

7. Practical Collision Search for Round-Reduced SHA-2

7.6.3. Malicious SHA-1

We present an example of a static collision backdoor : The backdoor
adversary Eve constructs a custom variant of SHA-1 that differs from
the standardized specification only in the values of some of the round
constants (up to 80 bits). Eve can use the additional freedom gained from
choosing only part of the 4× 32-bit constants to find a practical collision
for the full modified SHA-1 function during its design. We show that Eve
even has enough freedom to construct a meaningful collision block pair
which she can, at a later point, use to build multiple colliding file pairs of a
particular format (e.g., executable or archive format) with almost arbitrary
content. This is stronger than required by a static collision backdoor, and
possible due to the narrow-pipe Merkle-Damg̊ard design of SHA-1.

The backdoor does not exploit any particular “weaknesses” of specific
round constants, nor does it weaken the logical structure of the hash
function. Instead, it only relies on the designer’s freedom to choose the
constants during the attack. This freedom can be used to improve the
complexity of previous attacks [Ste13; WYY05b] and thus makes it feasible
to find collisions for the full hash function.

For an attacker who only knows the modified constants but cannot choose
them, collisions are as hard to find as for the original SHA-1.Thus, in terms
of the definitions of the previous section, this backdoor is undiscoverable.
It is, however, detectable since constants in hash functions are normally
expected to be identifiable as nothing-up-your-sleeve numbers. This is not
achievable in our attack.

SHA-1 uses only four round constants K1, . . . ,K4 of 32 bits each, one in
each of the four 20-step rounds. In our malicious collision attack, we use
the freedom of these four constants to reduce the complexity of the attack.
Mendel and Schläffer suggested the following attack strategy [AAE+14].
Similar to message modification, we choose the constants during the search
for a confirming message pair. We modify the constants in a round-by-
round strategy, always selecting a round constant such that the differential
characteristic for the steps of the current round can be satisfied. Since we
have to choose the constants when processing the first block, we can only
improve the complexity of this block. Hence, we need to use a differential
characteristic that results in a single-block collision. Note that all the
collisions attacks on SHA-1 so far use a 2-block characteristic.

216

7.6. Application to Design of Malicious SHA-1

To find the high-probability part of a differential characteristic for Rounds
2 to 4 resulting in a 1-block collision, a linearized variant of the hash
function can be used. However, using algorithms from coding theory, we
only find differential characteristics that maximize the overall probability
and do not take the additional freedom we have in the choice of the
constants in SHA-1 into account. Therefore, to minimize the overall attack
complexity, we did not use these differential characteristics. Instead, we
are interested in a differential characteristic such that the minimum of the
three probabilities for Rounds 2, 3, and 4 is maximized. To find such a
characteristic, we start with the best overall characteristic and modify it
to suit our needs.

In previous attacks on SHA-1, the best differential characteristics for
Rounds 2 to 4 have differences only at bit position 2 for some 16 consecutive
state words Ai [Man11]. We assume that the best differential characteristic
has the same property in our case. Hence, we only need to determine all
216 possible differential characteristics with differences only at bit position
2 in 16 consecutive state words Ai and linearly expand them backward and
forward. A similar approach has also been used to attack SHA-0 [CJ98]
and SHA-1 [WYY05b; Man11] .

For each of these 216 differential characteristics, we estimate the cost of
finding a malicious single-block collision. These costs are roughly deter-
mined by the number of differences (disturbances) in Ai in each round. For
details on the cost computations, we refer to the analysis of Pramstaller
et al. [PRR05] and Mendel et al. [MPRR06b]. The estimated costs for the
best differential characteristics suited for our attack are given in Table 7.20,
and the corresponding message differences are given in Table 7.22 (on
p. 220).

The high-probability differential characteristic with message difference
∆m(1) is best suitable for our intended file formats (see Section 7.6.4), so
we use it as the starting point to search for a low-probability differential

Table 7.20.: Differential probability of suitable characteristics.

Candidate r = 2 r = 3 r = 4 Total

∆m(1) 2−40 2−40 2−15 2−95

∆m(2) 2−39 2−42 2−13 2−94

∆m(3) 2−39 2−42 2−11 2−92

217

7. Practical Collision Search for Round-Reduced SHA-2

T
a
b

le
7
.2

1
.:

C
h

a
ra

cteristic
fo

r
m

essage
d

iff
eren

ce
∆
m

(1
),

w
ith

con
strain

ts
for

j
p
e
g
/
r
a
r

p
oly

glot
collision

.

i
A
i

W
i

0
1
0
0
1
1
1
1
1
1
0
0
0
1
1
0
1
1
0
0
1
1
0
0
0
1
0
0
1
0
1
0
n

1
1
1
1
1
1
1
1
1
1
0
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
n
u

1
0
0
u
1
1
0
1
0
0
1
1
0
0
-
-
-
-
-
-
-
-
0
0
1
1
1
1
u
0
n
0
0

1
1
u
0
0
0
1
0
0
0
0
0
0
0
0
0
-
-
-
-
-
0
1
0
0
u
n
u
0
n
0
0

2
n
1
1
1
n
0
0
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
u
u
0
0
0
u
n
0
0

u
0
1
1
n
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
0
0
1
0
0
0

3
0
u
u
u
u
1
1
1
-
-
0
-
-
-
0
-
-
-
u
u
-
-
-
0
-
0
u
n
1
1
n
n

n
n
u
-
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
n
0
0
0
u
1

4
1
n
0
1
u
1
1
1
0
-
-
-
u
-
n
-
-
-
-
-
-
-
u
0
0
1
1
0
0
1
n
0

u
u
1
-
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
u
0
0
1
1
u
u

5
0
0
1
1
0
1
1
n
1
n
0
0
-
-
0
-
u
n
0
1
0
1
-
1
0
n
1
u
0
n
0
0

1
0
u
0
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
0
1
u
1
1

6
n
1
n
1
n
1
n
0
1
0
0
0
-
-
1
-
1
0
0
1
0
1
-
0
0
n
0
0
0
0
1
1

1
u
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-
0
0
1
u
0

7
n
u
1
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
0
0
0
n
1

0
n
1
0
u
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
0
0
0
n
n
1

8
1
0
1
1
1
1
-
1
0
0
1
1
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
n
u
0
u
1

n
0
0
1
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
u
1

9
0
-
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
u
n
0
0
1

1
0
1
1
0
1
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
u
1
u
0
0

1
0

u
1
n
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
u

1
0
1
1
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
-
0
0
n
1

1
1

-
0
0
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
0
0
0
0
1

u
0
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
1
n
0
n
0
0

1
2

-
0
0
1
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
-
1

u
0
1
-
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
0
n
0

1
3

-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
0
0

n
0
1
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
0
1
1

1
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n

u
1
u
-
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
0
n
n

1
5

-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
-
-
-

n
1
u
-
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
u
n
1
0
0
1
0

1
6

-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-

1
1
1
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
0
0
u
n

1
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-

n
n
0
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
1
1
1
u
1

1
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n

n
n
0
0
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-
0
1
0
n
u

1
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
n
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
n
1
1
1
n
1

2
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

n
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
1
1
n
u

2
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-

0
u
0
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
1
1
0
n
1

2
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n

0
u
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
1
1
0
0
n
u

2
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

n
n
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
n
0
0
1
n
1

2
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

n
0
1
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
0
u
n

2
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-

1
n
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
1
0
0
1
n
0

2
6

-
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u

0
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-
1
1
0
u
n

2
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

n
n
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
u
0
u
0
n
0

2
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-

n
n
1
0
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
0
0
1
u

2
9

n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-

u
u
1
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
0
1
0
1
n
0

3
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
n
1
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
1
u
0
1
u
0

3
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
u
0
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
0
1
u
0

3
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u

0
1
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
1
1
0
u
n

3
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
1
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
n
u
0
0
0
0
1

3
4

u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
1
0
0
n
u

3
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-

n
u
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
0
1
n
1
1
n
1

3
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-

1
n
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
0
1
1
1
n
0

3
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

n
u
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
u
1
1
0
0
u
0

3
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-

n
0
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
0
0
0
1

3
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0
n
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
n
0
1
0
1
1
1

i
A
i

W
i

4
0

n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
0
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
0
0
0
n
0

4
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
u
1
0
0
1

4
2

u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u

u
1
0
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
1
1
u
n

4
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

n
0
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
n
u
n
0
0
1
0

4
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

n
1
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
0
0
0
n
u

4
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-

n
u
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
1
1
1
n
1

4
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-

u
u
u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
1
1
1
1
u
1

4
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
u
n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
n
0
0
0
0
u
0

4
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-

n
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
1
0
1
1
0
0

4
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
n
0
1
0
1
0
0

5
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-

0
1
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
0
1
0
0
0
1
0

5
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
1
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
n
1
0
0
0
1
0

5
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
0
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
0
0
n
0

5
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
0
1
1
0
1
0
1

5
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n

n
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
1
1
0
0
n

5
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
0
u
1
1
0
0
0

5
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-

1
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
1
1
u
u

5
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-

1
u
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
n
1
0
1
1
u
0

5
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u

1
u
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
0
0
1
0
1
n

5
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

n
u
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
n
u
0
0
1
n
1

6
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
0
0
0
0
n
u

6
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-

u
n
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
1
0
0
0
0
n
1

6
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-

1
n
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
u
0
1
1
1
n
1

6
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
u
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
u
0
1
1
1
u
0

6
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
1
0
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
0
0
0
0
0
n
0

6
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
0
0
0
1
0
1
1

6
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
n
-

1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
-
0
0
0
0
1
1
n
1

6
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
1
0
u
1
0
0
1
0
0

6
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-

-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
1
0
0
0
1
0
0

6
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
1
n
0
0
0
0
1
0

7
0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-

n
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
0
1
1
1
0
1

7
1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
0
0
n
0
1
1
0
0
-

7
2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-

u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
0
0
1
1
1
0

7
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
1
1
n
1
1
1
0
1
1

7
4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
u
-

n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
1
1
1
1
-
-

7
5

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
0
n
0
1
1
1
0
1

7
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

u
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
0
0
0
1
u
-

7
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0
1
0
0
0
-
-
1

7
8

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
0
1
1
1
0
1
-

7
9

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

n
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
0
0
0
1
0
1
-
-

218

7.6. Application to Design of Malicious SHA-1

characteristic for the first round of SHA-1. We use the same tool as in
Section 7.5 to find the low-probability part of the characteristic. The
resulting signed characteristic (with a few additional constraints from
Section 7.6.4) is illustrated in Table 7.21. We show how to find a colliding
message pair using malicious constants for this differential characteristic
with roughly 248 complexity in the following.

After the differential characteristic is fixed, we probabilistically search
for a confirming message pair. We start with only the first constant K1

fixed (e.g., to the standard value) and search for a message pair that
confirms at least Round 1 (steps 0 ≤ i < 20) of the characteristic, and is
compatible with any additional constraints in case of meaningful collisions.
This is easier than finding a message pair that works for all four rounds
(with fixed constants), since fewer constraints need to be satisfied. The
complexity of this step is negligible.

Now, we can exhaustively search through all 232 options for K2 until we
find one that confirms Round 2. If no such constant is found, we backtrack
and modify the message words. Since the differential characteristic for
message difference ∆m(1) holds with probability 2−40 in Round 2 and
we can test 232 options for K2, this step of the attack will succeed with
probability 2−8. Completing this step thus has a complexity of about 240.

Once we have found a candidate for K2 such that the differential charac-
teristic holds in Round 2, we proceed in the same way with K3. Again,
the differential characteristic will hold with only a probability of 2−40 in
Round 3 and we can test only 232 options for K3. Therefore, we need
to repeat the previous steps of the attack 28 times to find a solution.
Including the expected 28 tries for the previous step to reach the current
one, completing this step has an expected complexity of roughly 248.

Finally, we need to find K4. Since the last round of the characteristic has a
high probability, such a constant is very likely to exist and the additional
cost of this step is negligible. In summary, we need about 248 tries and
freely choose 32-bit K2, 32-bit K3, and about 16 bits of K4, or about
80 bits in total. On average, half of those 80 bits are different from the
original constants.

With fixed constants, an attacker would have to backtrack in the case
of a contradiction in the later steps. Eve as the designer, on the other
hand, has a chance that choosing a different constant might repair any
contradictions. This significantly improves the complexity of the differential
attack compared to 295 in the case of fixed constants.

219

7. Practical Collision Search for Round-Reduced SHA-2

7.6.4. Meaningful Collisions for Malicious SHA-1

To demonstrate the backdoor attack, we want to create meaningful colli-
sions where both colliding messages m,m′ are valid files in some file format.
The format specification of file formats imposes additional constraints on
both the characteristic and the confirming pairs. In particular, most file
formats specify a fixed “magic signature” for the first few bytes of the file,
which consequently needs to be free of differences. The signature is used
to identify the type of binary, and often followed by various metadata
such as format version or size information.

Constraints. Based on the attack strategy of Section 7.6.3, the two
colliding files must each start with a 512-bit collision block with relatively
fixed differences and little control over the contents, followed by an ar-
bitrarily long common suffix with identical content. If the two files are
to be semantically significantly different, these differences must either be
encoded in or triggered from this first block. Due to the lack of freedom
when choosing the first block, in our examples the bulk of the meaningful
content of both files is contained in the later identical blocks. The dif-
ferences in the first block only select the relevant parts using jumps or
similar. Due to these limitations, for example, the method that was used
to find colliding PostScript files with common prefixes for MD5 [DL05]
cannot be applied here.

For the exact values of the first block, the attack allows a certain freedom
and the attacker can fix the values of a few bits in advance. However,
fixing too many bits will increase the attack complexity. Additionally,
choosing the bits is constrained by the fixed message difference, which can
be selected from a few candidate starting points listed in Table 7.22. In all
our example files, we use message difference ∆m(1), which offers a slightly
better expected attack complexity than ∆m(2) and ∆m(3). All available
message differences have a difference in both the first and the last byte.

∆m(1) 00000003 20000074 88000000 e8000062 c8000043 28000004 40000042 48000046

88000002 00000014 08000002 a0000054 88000002 80000000 a8000003 a8000060

∆m(2) 20000074 88000000 e8000062 c8000043 28000004 40000042 48000046 88000002

00000014 08000002 a0000054 88000002 80000000 a8000003 a8000060 00000003

∆m(3) 88000000 e8000062 c8000043 28000004 40000042 48000046 88000002 00000014

08000002 a0000054 88000002 80000000 a8000003 a8000060 00000003 c0000002

Table 7.22.: List of message differences suitable for the attack

220

7.6. Application to Design of Malicious SHA-1

Script formats. A first simple example of an executable file collision
is two Unix shell scripts that each execute an arbitrary program, and
only differ in the first 64-byte block. The trick used is to introduce the
colliding block as a comment in the script (that is, a line starting with a
“#” character, and excluding new line characters 0a). Although the block
contains non-printable characters, it is interpreted as valid comment by
the command-line interpreter, and thus ignored in the program execution.
After the first block, we can append a newline character to end the
comment and then arbitrary commands.

To achieve a different behavior for the two files, we include a command
that reads the shell script file itself. Depending on whether the read value
corresponds to the first or second file, we can execute arbitrary different
commands. An example can be found in Figure 7.10.

A limitation of colliding shell scripts is that the malicious behavior is
straightforward to detect, given the execution conditioned to the value
of the first block. The actual malicious code executed by one of the
two colliding scripts may be arbitrarily obfuscated, since the script can
call any external binary file rather than executing as a sequence of shell
commands. A similar trick can be used to produce colliding scripts in
arbitrary languages: JavaScript, Python, Perl, etc.

> hd file0.sh

00000000 23 de eb 7c 8a 8a 34 ee 8d 60 3f 3e 38 9c 31 3c |#..|..4..‘?>8.1<|

00000010 12 69 7f a2 e9 ad b8 d4 dc 8f 9f b2 b7 9d 1d c8 |.i..............|

00000020 d0 01 5f 70 87 cf e8 fa 99 68 3e ca 46 a1 cc d8 |.._p.....h>.F...|

00000030 1f a8 f0 2b f8 7e 06 1a b5 82 07 45 c5 bc 7d 52 |...+.~.....E..}R|

00000040 0a 0a 69 66 20 5b 20 60 6f 64 20 2d 74 20 64 49 |..if [‘od -t dI|

00000050 20 2d 6a 33 20 2d 4e 31 20 2d 41 6e 20 22 24 7b | -j3 -N1 -An "${|

00000060 30 7d 22 60 20 2d 65 71 20 22 31 32 34 22 20 5d |0}"‘ -eq "124"]|

00000070 3b 20 74 68 65 6e 20 0a 20 20 65 63 68 6f 20 22 |; then . echo "|

00000080 67 6f 6f 64 2e 22 3b 0a 65 6c 73 65 0a 20 20 65 |good.";.else. e|

00000090 63 68 6f 20 22 65 76 69 6c 2e 22 3b 0a 66 69 0a |cho "evil.";.fi.|

000000a0

> hd file1.sh

00000000 23 de eb 7f aa 8a 34 9a 05 60 3f 3e d0 9c 31 5e |#.....4..‘?>..1^|

00000010 da 69 7f e1 c1 ad b8 d0 9c 8f 9f f0 ff 9d 1d 8e |.i..............|

00000020 58 01 5f 72 87 cf e8 ee 91 68 3e c8 e6 a1 cc 8c |X._r.....h>.....|

00000030 97 a8 f0 29 78 7e 06 1a 1d 82 07 46 6d bc 7d 32 |...)x~.....Fm.}2|

(...)

000000a0

K1...4 5a827999 82b1c71a 5141963a a664c1d6

h(m) 3da8361d ae9ed92d ff98735b a4e95869 cbbc3945

Figure 7.10.: Instance with colliding sh-script file pair (see Table 7.21).

221

7. Practical Collision Search for Round-Reduced SHA-2

Polyglots. Albertini investigated the suitability of a variety of file for-
mats with these constraints [AAE+14; Alb17]. Most file formats start with
4-byte signatures and are thus not compatible with the message differences
in Table 7.22. Due to the constraints of the attack, the most suitable
formats are those without magic signatures, such as master boot records
(mbr) and DOS executables (com), and those with variable starting offsets
for the signature, such as archive formats (rar, 7z). For headerless code
formats, the initial differences of the characteristic can be used to encode
jump instructions to different offsets. For archive formats that start at the
first occurrence of the signature at an arbitrary position, the difference
can be used to place this first signature at different offsets.

In particular, some of the file format constraints are not mutually exclusive;
for example, a valid rar file can at the same time be a valid jpg file. This
allows us to prepare initial 512-bit collision blocks that can later be
extended to colliding files of different formats (or even one same file of
several formats). It is worth noting that the latter – a single file with
multiple meaningful interpretations – can be a security problem in itself,
and can only be handled on an application layer, not with cryptographic
approaches.

Using the attack strategy from Section 7.6.3, we constructed several
Malicious SHA-1 instances each suitable for several file formats. Examples
of colliding (and polyglot) proof-of-concept files created by Albertini are
given in Figure 7.11.

For a polyglot collision that can later be filled with virtually arbitrary
data in jpeg image format and rar archive format, we require a collision
block that starts with ffd8 ffe? (for jpeg) and ends with 52 in one of
the two files (for rar) ∆m(1) is the only one of the message differences in
Table 7.22 for this format. Using these constraints as a starting point, we
can search for a differential characteristic. The result is given in Table 7.21.
Note that at this point, the first round constant K1 is fixed to an arbitrary
value (we use the original constant), while K2,K3,K4 are still free. They
are determined together with the full first 64-byte block in the next phase.
The result is the message pair already given in Figure 7.11a. The Malicious
SHA-1 variant differs from the standardized SHA-1 in the values of 45 bits
of the round constants. Now, we can append suitable followup blocks to
create valid jpeg or rar file pairs, both with arbitrary content. As an
example, both images in Figure 7.11a hash to the same digest.

222

7.6. Application to Design of Malicious SHA-1

file0.jpg

file1.jpg

good

.txt

“good”

file0.rar

evil

.txt

“evil”

file1.rar

=

=

collision

K1...4 5a827999 4eb9d7f7 bad18e2f d79e5877

m
ffd8ffe1 e2001250 b6cef608 34f4fe83 ffae884f afe56e6f fc50fae6 28c40f81

1b1d3283 b48c11bc b1d4b511 a976cb20 a7a929f0 2327f9bb ecde01c0 7dc00852

m∗
ffd8ffe2 c2001224 3ecef608 dcf4fee1 37ae880c 87e56e6b bc50faa4 60c40fc7

931d3281 b48c11a8 b9d4b513 0976cb74 2fa929f2 a327f9bb 44de01c3 d5c00832

∆m
00000003 20000074 88000000 e8000062 c8000043 28000004 40000042 48000046

88000002 00000014 08000002 a0000054 88000002 80000000 a8000003 a8000060

h(m) 1896b202 394b0aae 54526cfa e72ec5f2 42b1837e

(a) Instance with colliding polyglot jpeg/rar file pair.

good!

file0.mbr

evil!

file1.mbr

good.

file0.sh

evil.

file1.sh

good
0090

90. . .

file0.rar

evil
“evil

.txt”

file1.rar

= =

= =

collision

K1...4 5a827999 82b1c71a 5141963a a664c1d6

m
23deeb7c 8a8a34ee 8d603f3e 389c313c 12697fa2 e9adb8d4 dc8f9fb2 b79d1dc8

d0015f70 87cfe8fa 99683eca 46a1ccd8 1fa8f02b f87e061a b5820745 c5bc7d52

m∗
23deeb7f aa8a349a 05603f3e d09c315e da697fe1 c1adb8d0 9c8f9ff0 ff9d1d8e

58015f72 87cfe8ee 91683ec8 e6a1cc8c 97a8f029 787e061a 1d820746 6dbc7d32

∆m
00000003 20000074 88000000 e8000062 c8000043 28000004 40000042 48000046

88000002 00000014 08000002 a0000054 88000002 80000000 a8000003 a8000060

h(m) 0c426a87 6b6e8e42 f0558066 2ddd5a85 939db8b9

(b) Instance with colliding polyglot mbr/sh/rar file pair.

Figure 7.11.: Malicious SHA-1 instances and meaningful colliding pairs.

223

7. Practical Collision Search for Round-Reduced SHA-2

In a similar fashion, we were able to construct another example block
pair for a different set of SHA-1 constants that is suitable for master boot
records, shell scripts and rar archives, as illustrated in Figure 7.11b. The
constants differ from the original values by 41 (of 128) bits. Both files can
be and executed as a shell script, booted as a master boot record, (or
emulated using qemu-system-i386 -fda file0.mbr), and extracted as
a rar archive.

The characteristic already specifies the necessary format fragments required
in Figure 7.11a: The first 28 bits of word W0 are set to ffd8ffe to
accommodate the JPEG format, and the last 8 bits of word W15 are fixed
as 52 (in one message m, for the rar header) or 32 (in the other message
m∗). Additionally, the first round constant is already fixed to the original
value K1 = 5a827999, while K2,K3,K4 are still free to be chosen during
message modification.

All example file pairs and code for verification can be found online at
http://malicioussha1.github.io/.

The recently published practical attack on full SHA-1 [SBK+17] provides
a pair of colliding pdf files based on similar considerations. Compared
to Malicious SHA-1, the differential constraints are however different and
less restrictive: the collision blocks can be placed arbitrarily within the
file [Alb17]. On the other hand, the comparably low computational cost
of Malicious SHA-1 leaves significantly more freedom and room for retries
and experiments: Whereas new Malicious SHA-1 instances and collisions
can be created in the equivalent of much less than 248 SHA-1 computations
(40 hours on 80 CPUs), the actual SHA-1 collisions later required over 263

SHA-1 evaluations (6500 CPU years and 110 GPU years) [SBK+17].

224

http://malicioussha1.github.io/

8
Conclusions

Permutations and tweakable block ciphers have shown the potential to
rival block ciphers in their role as the ideal primitive for efficient and
elegant schemes. However, modes for these primitives require different
state geometries than the classic 128-bit key, 128-bit state block ciphers.
In addition, the known, chosen, or related round-key material of these
primitives may in some cases further complicate their security analysis
and make it more difficult to evaluate their security margin. This is
particularly challenging for lightweight designs and otherwise constrained
environments.

In this thesis, we analyzed the security of several different primitives
using methods based on differential cryptanalysis, in a very broad sense.
For two strongly aligned designs, we broke the designers’ security claims:
The tweakable block cipher MANTIS-5 in Chapter 3 and the permutation
Simpira-4 v1 in Chapter 4. Properties we exploited in these attacks include
differential clustering in a related-tweak setting due to the first-order
and second-order differential properties of the S-box, the simple key
schedule and FX construction, suitable initial structures for related-tweak
or keyless settings, and properties of the generalized Feistel network. For
two more, weakly aligned designs, we provided attacks on the round-
reduced primitive: The block cipher LowMC in Chapter 5, by exploiting
higher-order differential properties, and the compression function of the
hash standard SHA-2 in Chapter 7, by improving an automatic search tool
to obtain practical collision for a significantly higher number of rounds
of SHA-512 and its truncated variants SHA-512/t than previous analysis.
Finally, for two primitives, we showed results outside the standard security
claim: A related-key attack on the authenticated cipher Prøst in Chapter 6,
and a backdoor collision attack on the hash function SHA-1 with malicious
round constants in Chapter 7.

225

8. Conclusions

Automated search tools play an increasingly important role in this context:
In contrast to established block-cipher design approaches like the wide-trail
design strategy, the analysis of these primitives often requires the help of
a computer. In particular, characteristics for related-tweakey setups and
for weakly aligned designs with large state sizes are often too complex
for manual analysis. We observed that tools like SAT solvers or dedicated
search tools can be surprisingly effective but still require significant work
from the cryptanalyst for best results (Chapter 7). This includes judging
the result of an automated search for bounds, characteristics, or other
properties with caution (Chapter 3, Chapter 4).

The most important research questions arising from this thesis concern
suitable design approaches to tackle these challenges for different primitives.
The analysis we presented offers starting points to consider: For tweakable
block ciphers, it is essential to factor the properties of the tweakey schedule
into the analysis of any attack. For example, we suggest to extend the
analysis of the differential behaviour to semi-truncated differences in order
to detect differential clusters for fixed tweak differences (Chapter 3). In
the case of unkeyed primitives, the adversary can profit from starting
computations in the middle of the primitive and using techniques like
inside-out computations and message modification to satisfy constraints
in a suitable order (Chapter 4, Chapter 5, Chapter 7), whereas in regular
use, the primitive is typically only evaluated in forward direction. This
motivates the use of operations whose inverse is harder to compute. In the
absence of randomizing round keys, the careful choice of the linear layer
is particularly important to ensure indepence of differential conditions
(Chapter 3, Chapter 4).

In conclusion, block-cipher alternatives offer interesting new directions in
both design and analysis.

226

References

[AAE+14] A. Albertini, J.-P. Aumasson, M. Eichlseder, F. Mendel,
and M. Schläffer. Malicious Hashing: Eve’s Variant of SHA-
1. In: Selected Areas in Cryptography – SAC 2014. Ed. by
A. Joux and A. M. Youssef. Vol. 8781. LNCS. Springer,
2014, pp. 1–19. doi: 10.1007/978-3-319-13051-4_1. iacr:
2014/694 (pp. 165, 169, 212, 213, 216, 222).

[ABB+14] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, B. Men-
nink, N. Mouha, and K. Yasuda. APE: Authenticated
Permutation-Based Encryption for Lightweight Cryptog-
raphy. In: Fast Software Encryption – FSE 2014. Ed. by
C. Cid and C. Rechberger. Vol. 8540. LNCS. Springer, 2014,
pp. 168–186. doi: 10.1007/978-3-662-46706-0_9 (p. 150).

[ABL+13] E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, E. Tis-
chhauser, and K. Yasuda. Parallelizable and Authenticated
Online Ciphers. In: Advances in Cryptology – ASIACRYPT
2013. Ed. by K. Sako and P. Sarkar. Vol. 8269. LNCS.
Springer, 2013, pp. 424–443. doi: 10.1007/978- 3- 642-

42033-7_22 (p. 151).

[AC09] M. R. Albrecht and C. Cid. Algebraic Techniques in Differ-
ential Cryptanalysis. In: Fast Software Encryption – FSE
2009. Ed. by O. Dunkelman. Vol. 5665. LNCS. Springer,
2009, pp. 193–208. doi: 10.1007/978-3-642-03317-9_12.
iacr: 2008/177 (p. 51).

[Ada92] C. M. Adams. On Immunity Against Biham and Shamir’s
“Differential Cryptanalysis”. In: Information Processing Let-
ters 41.2 (1992), pp. 77–80. doi: 10.1016/0020-0190(92)

90258-W (p. 55).

[ADMV15] E. Andreeva, J. Daemen, B. Mennink, and G. Van Assche.
Security of Keyed Sponge Constructions Using a Modu-
lar Proof Approach. In: Fast Software Encryption – FSE
2015. Ed. by G. Leander. Vol. 9054. LNCS. Springer, 2015,
pp. 364–384. doi: 10.1007/978-3-662-48116-5_18. url:
https : / / www . esat . kuleuven . be / cosic / publications /

article-2502.pdf (p. 42).

227

https://doi.org/10.1007/978-3-319-13051-4_1
https://eprint.iacr.org/2014/694
https://doi.org/10.1007/978-3-662-46706-0_9
https://doi.org/10.1007/978-3-642-42033-7_22
https://doi.org/10.1007/978-3-642-42033-7_22
https://doi.org/10.1007/978-3-642-03317-9_12
https://eprint.iacr.org/2008/177
https://doi.org/10.1016/0020-0190(92)90258-W
https://doi.org/10.1016/0020-0190(92)90258-W
https://doi.org/10.1007/978-3-662-48116-5_18
https://www.esat.kuleuven.be/cosic/publications/article-2502.pdf
https://www.esat.kuleuven.be/cosic/publications/article-2502.pdf

References

[AG12] A. V. Adinetz and E. A. Grechnikov. Building a Collision
for 75-Round Reduced SHA-1 Using GPU Clusters. In:
Parallel Processing – Euro-Par 2012. Ed. by C. Kaklamanis,
T. S. Papatheodorou, and P. G. Spirakis. Vol. 7484. LNCS.
Springer, 2012, pp. 933–944. doi: 10.1007/978- 3- 642-

32820-6_91. iacr: 2011/641 (p. 215).

[AGM+09] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang.
Preimages for Step-Reduced SHA-2. In: Advances in Cryp-
tology – ASIACRYPT 2009. Ed. by M. Matsui. Vol. 5912.
LNCS. Springer, 2009, pp. 578–597. doi: 10.1007/978-3-
642-10366-7_34. iacr: 2009/479 (p. 173).

[AGR+16] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T.
Tiessen. MiMC: Efficient Encryption and Cryptographic
Hashing with Minimal Multiplicative Complexity. In: Ad-
vances in Cryptology – ASIACRYPT 2016. Ed. by J. H.
Cheon and T. Takagi. Vol. 10031. LNCS. 2016, pp. 191–
219. doi: 10.1007/978-3-662-53887-6_7. iacr: 2016/492
(p. 129).

[AJN16] J.-P. Aumasson, P. Jovanovic, and S. Neves. NORX v3.
Submission to CAESAR: Competition for Authenticated
Encryption. Security, Applicability, and Robustness (Round
3). 2016. url: http://competitions.cr.yp.to/round3/

norxv30.pdf (p. 20).

[AKKM08] A. Atalay, O. Kara, F. Karakoç, and C. Manap. SHAMATA
Hash Function Algorithm Specifications. Submission to
NIST’s SHA-3 Competition (Round 1). 2008. url: http://
csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/

SHAMATA.zip (p. 107).

[AL12] M. R. Albrecht and G. Leander. An All-In-One Approach
to Differential Cryptanalysis for Small Block Ciphers. In:
Selected Areas in Cryptography – SAC 2012. Ed. by L. R.
Knudsen and H. Wu. Vol. 7707. LNCS. Springer, 2012, pp. 1–
15. doi: 10.1007/978-3-642-35999-6_1. iacr: 2012/401

(p. 62).

[Alb17] A. Albertini. Exploiting (identical prefix) hash collisions.
BlackAlps 2017. 2017. url: https://www.blackalps.ch/

files/2017/talks/BlackAlps17-Albertini.pdf (pp. 222,
224).

228

https://doi.org/10.1007/978-3-642-32820-6_91
https://doi.org/10.1007/978-3-642-32820-6_91
https://eprint.iacr.org/2011/641
https://doi.org/10.1007/978-3-642-10366-7_34
https://doi.org/10.1007/978-3-642-10366-7_34
https://eprint.iacr.org/2009/479
https://doi.org/10.1007/978-3-662-53887-6_7
https://eprint.iacr.org/2016/492
http://competitions.cr.yp.to/round3/norxv30.pdf
http://competitions.cr.yp.to/round3/norxv30.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/SHAMATA.zip
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/SHAMATA.zip
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/SHAMATA.zip
https://doi.org/10.1007/978-3-642-35999-6_1
https://eprint.iacr.org/2012/401
https://www.blackalps.ch/files/2017/talks/BlackAlps17-Albertini.pdf
https://www.blackalps.ch/files/2017/talks/BlackAlps17-Albertini.pdf

References

[Alo14] B. Alomair. AVALANCHE v1. Submission to CAESAR:
Competition for Authenticated Encryption. Security, Ap-
plicability, and Robustness (Round 1). 2014. url: http://
competitions.cr.yp.to/round1/avalanchev1.pdf (p. 149).

[AM09] J.-P. Aumasson and W. Meier. Zero-Sum Distinguishers
for Reduced Keccak-f and for the core functions of Luffa
and Hamsi. Presented at the rump session of Cryptographic
Hardware and Embedded Systems – CHES 2009. 2009. url:
https://131002.net/data/papers/AM09.pdf (pp. 63, 129).

[AMG+16] M. Amy, O. D. Matteo, V. Gheorghiu, M. Mosca, A. Parent,
and J. M. Schanck. Estimating the Cost of Generic Quantum
Pre-image Attacks on SHA-2 and SHA-3. In: Selected Areas
in Cryptography – SAC 2016. Ed. by R. Avanzi and H. M.
Heys. Vol. 10532. LNCS. Springer, 2016, pp. 317–337. doi:
10.1007/978-3-319-69453-5_18. iacr: 2016/992 (p. 173).

[ARS+15] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen,
and M. Zohner. Ciphers for MPC and FHE. In: Advances in
Cryptology – EUROCRYPT 2015. Ed. by E. Oswald and M.
Fischlin. Vol. 9056. LNCS. Springer, 2015, pp. 430–454. doi:
10.1007/978-3-662-46800-5_17. iacr: 2016/687 (pp. 3, 10,
127, 128, 130, 132, 133).

[ARS+16] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen,
and M. Zohner. Ciphers for MPC and FHE. IACR Cryptol-
ogy ePrint Archive, Report 2016/687. 2016. iacr: 2016/687
(pp. 10, 127, 129, 146).

[AST+17] A. Abdelkhalek, Y. Sasaki, Y. Todo, M. Tolba, and A. M.
Youssef. MILP Modeling for (Large) S-boxes to Optimize
Probability of Differential Characteristics. In: IACR Trans-
actions on Symmetric Cryptology 2017.4 (2017), pp. 99–129.
doi: 10.13154/tosc.v2017.i4.99-129 (p. 59).

[Aum11] J.-P. Aumasson. Eve’s SHA3 candidate: malicious hashing.
ECRYPT II Hash Workshop 2011. 2011. url: http://www.
ecrypt.eu.org/hash2011/proceedings/hash2011_18.pdf

(pp. 212, 213).

[Ava16] R. Avanzi. A Salad of Block Ciphers. IACR Cryptology
ePrint Archive, Report 2016/1171. 2016. url: 2016/1171
(p. 17).

229

http://competitions.cr.yp.to/round1/avalanchev1.pdf
http://competitions.cr.yp.to/round1/avalanchev1.pdf
https://131002.net/data/papers/AM09.pdf
https://doi.org/10.1007/978-3-319-69453-5_18
https://eprint.iacr.org/2016/992
https://doi.org/10.1007/978-3-662-46800-5_17
https://eprint.iacr.org/2016/687
https://eprint.iacr.org/2016/687
https://doi.org/10.13154/tosc.v2017.i4.99-129
http://www.ecrypt.eu.org/hash2011/proceedings/hash2011_18.pdf
http://www.ecrypt.eu.org/hash2011/proceedings/hash2011_18.pdf
2016/1171

References

[Ava17] R. Avanzi. The QARMA Block Cipher Family – Almost
MDS Matrices Over Rings With Zero Divisors, Nearly Sym-
metric Even-Mansour Constructions With Non-Involutory
Central Rounds, and Search Heuristics for Low-Latency
S-Boxes. In: IACR Transactions on Symmetric Cryptology
2017.1 (2017), pp. 4–44. doi: 10.13154/tosc.v2017.i1.4-44.
iacr: 2016/444 (pp. 70, 98–100).

[AY15] R. AlTawy and A. M. Youssef. Watch your constants: ma-
licious Streebog. In: IET Information Security 9.6 (2015),
pp. 328–333. doi: 10 . 1049 / iet - ifs . 2014 . 0540. iacr:
2014/879 (pp. 212, 213).

[BBI+15] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari,
T. Akishita, and F. Regazzoni. Midori: A Block Cipher for
Low Energy. In: Advances in Cryptology – ASIACRYPT
2015. Ed. by T. Iwata and J. H. Cheon. Vol. 9453. LNCS.
Springer, 2015, pp. 411–436. doi: 10.1007/978- 3- 662-

48800-3_17. iacr: 2015/1142 (pp. 71, 73, 99, 100).

[BBS05] E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of
Skipjack Reduced to 31 Rounds Using Impossible Differen-
tials. In: Journal of Cryptology 18.4 (2005), pp. 291–311.
doi: 10.1007/s00145-005-0129-3 (p. 62).

[BBS99a] E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of
Skipjack Reduced to 31 Rounds Using Impossible Differ-
entials. In: Advances in Cryptology – EUROCRYPT 1999.
Ed. by J. Stern. Vol. 1592. LNCS. Springer, 1999, pp. 12–23.
doi: 10.1007/3-540-48910-X_2 (p. 62).

[BBS99b] E. Biham, A. Biryukov, and A. Shamir. Miss in the Middle
Attacks on IDEA and Khufu. In: Fast Software Encryption –
FSE 1999. Ed. by L. R. Knudsen. Vol. 1636. LNCS. Springer,
1999, pp. 124–138. doi: 10.1007/3-540-48519-8_10 (p. 62).

[BC10] C. Boura and A. Canteaut. Zero-Sum Distinguishers for
Iterated Permutations and Application to Keccak-f and
Hamsi-256. In: Selected Areas in Cryptography – SAC 2010.
Ed. by A. Biryukov, G. Gong, and D. R. Stinson. Vol. 6544.
LNCS. Springer, 2010, pp. 1–17. doi: 10.1007/978-3-642-
19574-7_1 (p. 132).

230

https://doi.org/10.13154/tosc.v2017.i1.4-44
https://eprint.iacr.org/2016/444
https://doi.org/10.1049/iet-ifs.2014.0540
https://eprint.iacr.org/2014/879
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-48800-3_17
https://eprint.iacr.org/2015/1142
https://doi.org/10.1007/s00145-005-0129-3
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48519-8_10
https://doi.org/10.1007/978-3-642-19574-7_1
https://doi.org/10.1007/978-3-642-19574-7_1

References

[BCD11] C. Boura, A. Canteaut, and C. De Cannière. Higher-Order
Differential Properties of Keccak and Luffa. In: Fast Soft-
ware Encryption – FSE 2011. Ed. by A. Joux. Vol. 6733.
LNCS. Springer, 2011, pp. 252–269. doi: 10.1007/978-3-
642-21702-9_15. iacr: 2010/589 (p. 132).

[BCG+12] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M.
Knezevic, L. R. Knudsen, G. Leander, V. Nikov, C. Paar,
C. Rechberger, P. Rombouts, S. S. Thomsen, and T. Yalçın.
PRINCE – A Low-Latency Block Cipher for Pervasive Com-
puting Applications. In: Advances in Cryptology – ASIA-
CRYPT 2012. Ed. by X. Wang and K. Sako. Vol. 7658.
LNCS. Springer, 2012, pp. 208–225. doi: 10.1007/978-3-
642-34961-4_14. iacr: 2012/529 (pp. 71, 99, 100).

[BCKL17] C. Boura, A. Canteaut, L. R. Knudsen, and G. Leander.
Reflection ciphers. In: Designs, Codes and Cryptography
82.1-2 (2017), pp. 3–25. doi: 10.1007/s10623-015-0143-x
(p. 71).

[BD09] E. Biham and O. Dunkelman. The SHAvite-3 Hash Function.
Submission to NIST’s SHA-3 Competition (Round 2). 2009.
url: http : / / csrc . nist . gov / groups / ST / hash / sha - 3 /

Round2/documents/SHAvite-3_Round2.zip (p. 107).

[BDD+15] A. Bar-On, I. Dinur, O. Dunkelman, V. Lallemand, N.
Keller, and B. Tsaban. Cryptanalysis of SP Networks with
Partial Non-Linear Layers. In: Advances in Cryptology –
EUROCRYPT 2015. Ed. by E. Oswald and M. Fischlin.
Vol. 9056. LNCS. Springer, 2015, pp. 315–342. doi: 10.1007/
978-3-662-46800-5_13. iacr: 2014/228 (p. 130).

[BDJR97] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete
Security Treatment of Symmetric Encryption. In: Founda-
tions of Computer Science – FOCS 1997. IEEE Computer
Society, 1997, pp. 394–403. doi: 10.1109/SFCS.1997.646128
(pp. 30–32).

[BDK02] E. Biham, O. Dunkelman, and N. Keller. Enhancing Diffe-
rential-Linear Cryptanalysis. In: Advances in Cryptology
– ASIACRYPT 2002. Ed. by Y. Zheng. Vol. 2501. LNCS.
Springer, 2002, pp. 254–266. doi: 10.1007/3-540-36178-

2_16 (p. 63).

231

https://doi.org/10.1007/978-3-642-21702-9_15
https://doi.org/10.1007/978-3-642-21702-9_15
https://eprint.iacr.org/2010/589
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://eprint.iacr.org/2012/529
https://doi.org/10.1007/s10623-015-0143-x
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/documents/SHAvite-3_Round2.zip
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/documents/SHAvite-3_Round2.zip
https://doi.org/10.1007/978-3-662-46800-5_13
https://doi.org/10.1007/978-3-662-46800-5_13
https://eprint.iacr.org/2014/228
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1007/3-540-36178-2_16
https://doi.org/10.1007/3-540-36178-2_16

References

[BDMW10] K. A. Browning, J. F. Dillon, M. T. McQuistan, and A. J.
Wolfe. An APN Permutation in Dimension Six. In: Finite
Fields: Theory and Applications – Fq9. Ed. by G. McGuire,
G. L. Mullen, D. Panario, and I. E. Shparlinski. Vol. 518.
Contemporary Mathematics. American Mathematical Soci-
ety, 2010, pp. 33–42. doi: 10.1090/conm/518/10194 (p. 45).

[BDP+16a] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R.
Van Keer. Ketje v2. Submission to CAESAR: Competition
for Authenticated Encryption. Security, Applicability, and
Robustness (Round 3). 2016. url: http://competitions.

cr.yp.to/round3/ketjev2.pdf (p. 41).

[BDP+16b] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and
R. Van Keer. Keyak v2.2. Submission to CAESAR: Com-
petition for Authenticated Encryption. Security, Applica-
bility, and Robustness (Round 3). 2016. url: http : / /

competitions.cr.yp.to/round3/keyakv22.pdf (p. 41).

[BDP15] A. Biryukov, P. Derbez, and L. Perrin. Differential Analysis
and Meet-in-the-Middle Attack Against Round-Reduced
TWINE. In: Fast Software Encryption – FSE 2015. Ed. by
G. Leander. Vol. 9054. LNCS. Springer, 2015, pp. 3–27. doi:
10.1007/978-3-662-48116-5_1. iacr: 2015/240 (p. 86).

[BDPV07] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche.
Sponge functions. Ecrypt Hash Workshop 2007. 2007. url:
http://sponge.noekeon.org/SpongeFunctions.pdf (pp. 5,
33, 37).

[BDPV08] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche.
On the Indifferentiability of the Sponge Construction. In:
Advances in Cryptology – EUROCRYPT 2008. Ed. by N. P.
Smart. Vol. 4965. LNCS. Springer, 2008, pp. 181–197. doi:
10.1007/978- 3- 540- 78967- 3_11. url: http://sponge.

noekeon.org/SpongeIndifferentiability.pdf (pp. 33, 37).

[BDPV10a] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Note
on zero-sum distinguishers of Keccak-f . Public comment
on the NIST Hash competition. 2010. url: http://keccak.
noekeon.org/NoteZeroSum.pdf (p. 63).

[BDPV10b] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche.
Sponge-Based Pseudo-Random Number Generators. In:
Cryptographic Hardware and Embedded Systems – CHES

232

https://doi.org/10.1090/conm/518/10194
http://competitions.cr.yp.to/round3/ketjev2.pdf
http://competitions.cr.yp.to/round3/ketjev2.pdf
http://competitions.cr.yp.to/round3/keyakv22.pdf
http://competitions.cr.yp.to/round3/keyakv22.pdf
https://doi.org/10.1007/978-3-662-48116-5_1
https://eprint.iacr.org/2015/240
http://sponge.noekeon.org/SpongeFunctions.pdf
https://doi.org/10.1007/978-3-540-78967-3_11
http://sponge.noekeon.org/SpongeIndifferentiability.pdf
http://sponge.noekeon.org/SpongeIndifferentiability.pdf
http://keccak.noekeon.org/NoteZeroSum.pdf
http://keccak.noekeon.org/NoteZeroSum.pdf

References

2010. Ed. by S. Mangard and F.-X. Standaert. Vol. 6225.
LNCS. Springer, 2010, pp. 33–47. doi: 10.1007/978-3-642-
15031-9_3. url: http://sponge.noekeon.org/SpongePRNG.
pdf (p. 42).

[BDPV11a] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche.
Cryptographic sponge functions. 2011. url: http://sponge.
noekeon.org/CSF-0.1.pdf (p. 24).

[BDPV11b] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Du-
plexing the Sponge: Single-Pass Authenticated Encryption
and Other Applications. In: Selected Areas in Cryptography
– SAC 2011. Ed. by A. Miri and S. Vaudenay. Vol. 7118.
LNCS. Springer, 2011, pp. 320–337. doi: 10.1007/978-3-
642-28496-0_19. iacr: 2011/499 (pp. 5, 33, 41, 42).

[BDPV11c] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On
the security of the keyed sponge construction. In: Symmetric
Key Encryption Workshop – SKEW 2011. 2011. url: http:
//sponge.noekeon.org/SpongeKeyed.pdf (p. 42).

[BDPV11d] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The
Keccak reference. Submission to NIST’s SHA-3 Competition
(Round 3). 2011. url: http://keccak.noekeon.org/Keccak-
reference-3.0.pdf (pp. 37, 167, 185).

[BDPV12] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche.
Permutation-based encryption, authentication and authen-
ticated encryption. Workshop Records of DIAC 2012. 2012.
url: http://www.hyperelliptic.org/djb/diac/record.pdf
(p. 42).

[Ber08] D. J. Bernstein. ChaCha, a variant of Salsa20. 2008. url:
http://cr.yp.to/chacha/chacha-20080128.pdf (p. 20).

[BG11] C. Blondeau and B. Gérard. Multiple Differential Crypt-
analysis: Theory and Practice. In: Fast Software Encryption
– FSE 2011. Ed. by A. Joux. Vol. 6733. LNCS. Springer,
2011, pp. 35–54. doi: 10.1007/978-3-642-21702-9_3. iacr:
2011/115 (p. 60).

[BGN12] C. Blondeau, B. Gérard, and K. Nyberg. Multiple Differen-
tial Cryptanalysis Using LLR and χ2 Statistics. In: Security
and Cryptography for Networks – SCN 2012. Ed. by I. Vis-
conti and R. D. Prisco. Vol. 7485. LNCS. Springer, 2012,

233

https://doi.org/10.1007/978-3-642-15031-9_3
https://doi.org/10.1007/978-3-642-15031-9_3
http://sponge.noekeon.org/SpongePRNG.pdf
http://sponge.noekeon.org/SpongePRNG.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-642-28496-0_19
https://eprint.iacr.org/2011/499
http://sponge.noekeon.org/SpongeKeyed.pdf
http://sponge.noekeon.org/SpongeKeyed.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://www.hyperelliptic.org/djb/diac/record.pdf
http://cr.yp.to/chacha/chacha-20080128.pdf
https://doi.org/10.1007/978-3-642-21702-9_3
https://eprint.iacr.org/2011/115

References

pp. 343–360. doi: 10.1007/978-3-642-32928-9_19. iacr:
2012/360 (p. 60).

[BHH+15] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R.
Niederhagen, L. Papachristodoulou, M. Schneider, P. Schwabe,
and Z. Wilcox-O’Hearn. SPHINCS: Practical Stateless Hash-
Based Signatures. In: Advances in Cryptology – EURO-
CRYPT 2015. Ed. by E. Oswald and M. Fischlin. Vol. 9056.
LNCS. Springer, 2015, pp. 368–397. doi: 10.1007/978-3-
662-46800-5_15. iacr: 2014/795 (p. 110).

[Bih93] E. Biham. New Types of Cryptanalytic Attacks Using re-
lated Keys (Extended Abstract). In: Advances in Cryptology
– EUROCRYPT 1993. Ed. by T. Helleseth. Vol. 765. LNCS.
Springer, 1993, pp. 398–409. doi: 10.1007/3-540-48285-

7_34 (pp. 52, 149).

[Bih94a] E. Biham. New Types of Cryptanalytic Attacks Using Re-
lated Keys. In: Journal of Cryptology 7.4 (1994), pp. 229–
246. doi: 10.1007/BF00203965 (p. 52).

[Bih94b] E. Biham. On Matsui’s Linear Cryptanalysis. In: Advances
in Cryptology – EUROCRYPT 1994. Ed. by A. D. Santis.
Vol. 950. LNCS. Springer, 1994, pp. 341–355. doi: 10.1007/
BFb0053449 (p. 63).

[BJK+16] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T.
Peyrin, Y. Sasaki, P. Sasdrich, and S. M. Sim. The SKINNY
Family of Block Ciphers and Its Low-Latency Variant MAN-
TIS. In: Advances in Cryptology – CRYPTO 2016. Ed. by
M. Robshaw and J. Katz. Vol. 9815. LNCS. Springer, 2016,
pp. 123–153. doi: 10.1007/978-3-662-53008-5_5. iacr:
2016/660 (pp. 9, 69–71, 73, 75, 99, 100).

[BK03] M. Bellare and T. Kohno. A Theoretical Treatment of
Related-Key Attacks: RKA-PRPs, RKA-PRFs, and Ap-
plications. In: Advances in Cryptology – EUROCRYPT
2003. Ed. by E. Biham. Vol. 2656. LNCS. Springer, 2003,
pp. 491–506. doi: 10.1007/3-540-39200-9_31 (pp. 149,
161).

[BK12] E. Barker and J. Kelsey. NIST SP 800-90A: Recommenda-
tion for Random Number Generation Using Deterministic
Random Bit Generators (Revised). National Institute of

234

https://doi.org/10.1007/978-3-642-32928-9_19
https://eprint.iacr.org/2012/360
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-662-46800-5_15
https://eprint.iacr.org/2014/795
https://doi.org/10.1007/3-540-48285-7_34
https://doi.org/10.1007/3-540-48285-7_34
https://doi.org/10.1007/BF00203965
https://doi.org/10.1007/BFb0053449
https://doi.org/10.1007/BFb0053449
https://doi.org/10.1007/978-3-662-53008-5_5
https://eprint.iacr.org/2016/660
https://doi.org/10.1007/3-540-39200-9_31

References

Standards and Technology (NIST) Special Publication (SP).
2012. doi: 10.6028/NIST.SP.800-90A (p. 213).

[BK93] M. Buro and H. Kleine Büning. Report on a SAT Competi-
tion. In: Bulletin of the EATCS 49 (1993), pp. 143–151. url:
https://skatgame.net/mburo/ps/satreport.pdf (p. 188).

[BKL+12] A. Bogdanov, L. R. Knudsen, G. Leander, F.-X. Standaert,
J. P. Steinberger, and E. Tischhauser. Key-Alternating
Ciphers in a Provable Setting: Encryption Using a Small
Number of Public Permutations – (Extended Abstract). In:
Advances in Cryptology – EUROCRYPT 2012. Ed. by D.
Pointcheval and T. Johansson. Vol. 7237. LNCS. Springer,
2012, pp. 45–62. doi: 10.1007/978- 3- 642- 29011- 4_5

(p. 147).

[BKN09] A. Biryukov, D. Khovratovich, and I. Nikolić. Distinguisher
and Related-Key Attack on the Full AES-256. In: Advances
in Cryptology – CRYPTO 2009. Ed. by S. Halevi. Vol. 5677.
LNCS. Springer, 2009, pp. 231–249. doi: 10.1007/978-3-
642-03356-8_14 (p. 149).

[BKR94] M. Bellare, J. Kilian, and P. Rogaway. The Security of Ci-
pher Block Chaining. In: Advances in Cryptology – CRYPTO
1994. Ed. by Y. Desmedt. Vol. 839. LNCS. Springer, 1994,
pp. 341–358. doi: 10.1007/3-540-48658-5_32. url: https:
//cseweb.ucsd.edu/~mihir/papers/cbc.pdf (p. 38).

[BL11] D. J. Bernstein and T. Lange. eBASH: ECRYPT Bench-
marking of All Submitted Hashes. 2011. url: http://bench.
cr.yp.to/ebash.html (p. 168).

[BL16] K. Bhargavan and G. Leurent. On the Practical (In-)Security
of 64-bit Block Ciphers: Collision Attacks on HTTP over
TLS and OpenVPN. In: Computer and Communications
Security – CCS 2016. Ed. by E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi. ACM, 2016, pp. 456–
467. doi: 10.1145/2976749.2978423. iacr: 2016/798 (p. 3).

[Bla06] J. Black. The Ideal-Cipher Model, Revisited: An Uninstan-
tiable Blockcipher-Based Hash Function. In: Fast Software
Encryption – FSE 2006. Ed. by M. J. B. Robshaw. Vol. 4047.
LNCS. Springer, 2006, pp. 328–340. doi: 10.1007/11799313_
21. iacr: 2005/210 (p. 23).

235

https://doi.org/10.6028/NIST.SP.800-90A
https://skatgame.net/mburo/ps/satreport.pdf
https://doi.org/10.1007/978-3-642-29011-4_5
https://doi.org/10.1007/978-3-642-03356-8_14
https://doi.org/10.1007/978-3-642-03356-8_14
https://doi.org/10.1007/3-540-48658-5_32
https://cseweb.ucsd.edu/~mihir/papers/cbc.pdf
https://cseweb.ucsd.edu/~mihir/papers/cbc.pdf
http://bench.cr.yp.to/ebash.html
http://bench.cr.yp.to/ebash.html
https://doi.org/10.1145/2976749.2978423
https://eprint.iacr.org/2016/798
https://doi.org/10.1007/11799313_21
https://doi.org/10.1007/11799313_21
https://eprint.iacr.org/2005/210

References

[BLMN11] A. Biryukov, M. Lamberger, F. Mendel, and I. Nikolić.
Second-Order Differential Collisions for Reduced SHA-256.
In: Advances in Cryptology – ASIACRYPT 2011. Ed. by
D. H. Lee and X. Wang. Vol. 7073. LNCS. Springer, 2011,
pp. 270–287. doi: 10.1007/978-3-642-25385-0_15. iacr:
2011/037 (p. 174).

[BLN14] C. Blondeau, G. Leander, and K. Nyberg. Differential-Linear
Cryptanalysis Revisited. In: Fast Software Encryption –
FSE 2014. Ed. by C. Cid and C. Rechberger. Vol. 8540.
LNCS. Springer, 2014, pp. 411–430. doi: 10.1007/978-3-
662-46706-0_21 (p. 63).

[BLN17] C. Blondeau, G. Leander, and K. Nyberg. Differential-Linear
Cryptanalysis Revisited. In: Journal of Cryptology 30.3
(2017), pp. 859–888. doi: 10.1007/s00145- 016- 9237- 5

(p. 63).

[Blo17] C. Blondeau. Accurate Estimate of the Advantage of Im-
possible Differential Attacks. In: IACR Transactions on
Symmetric Cryptology 2017.3 (2017), pp. 169–191. doi:
10.13154/tosc.v2017.i3.169-191 (p. 62).

[BN00] M. Bellare and C. Namprempre. Authenticated Encryp-
tion: Relations among Notions and Analysis of the Generic
Composition Paradigm. In: Advances in Cryptology – ASIA-
CRYPT 2000. Ed. by T. Okamoto. Vol. 1976. LNCS. Springer,
2000, pp. 531–545. doi: 10.1007/3-540-44448-3_41. iacr:
2000/025 (pp. 39, 41).

[BN08] M. Bellare and C. Namprempre. Authenticated Encryption:
Relations among Notions and Analysis of the Generic Com-
position Paradigm. In: Journal of Cryptology 21.4 (2008),
pp. 469–491. doi: 10.1007/s00145-008-9026-x (p. 41).

[BN10] A. Biryukov and I. Nikolić. Automatic Search for Related-
Key Differential Characteristics in Byte-Oriented Block
Ciphers: Application to AES, Camellia, Khazad and Others.
In: Advances in Cryptology – EUROCRYPT 2010. Ed. by H.
Gilbert. Vol. 6110. LNCS. Springer, 2010, pp. 322–344. doi:
10.1007/978-3-642-13190-5_17. iacr: 2010/248 (pp. 52,
59).

236

https://doi.org/10.1007/978-3-642-25385-0_15
https://eprint.iacr.org/2011/037
https://doi.org/10.1007/978-3-662-46706-0_21
https://doi.org/10.1007/978-3-662-46706-0_21
https://doi.org/10.1007/s00145-016-9237-5
https://doi.org/10.13154/tosc.v2017.i3.169-191
https://doi.org/10.1007/3-540-44448-3_41
https://eprint.iacr.org/2000/025
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/978-3-642-13190-5_17
https://eprint.iacr.org/2010/248

References

[BNS14] C. Boura, M. Naya-Plasencia, and V. Suder. Scrutinizing
and Improving Impossible Differential Attacks: Applications
to CLEFIA, Camellia, LBlock and Simon. In: Advances in
Cryptology – ASIACRYPT 2014. Ed. by P. Sarkar and T.
Iwata. Vol. 8873. LNCS. Springer, 2014, pp. 179–199. doi:
10.1007/978-3-662-45611-8_10. iacr: 2014/699 (p. 62).

[Boe88] B. den Boer. Cryptanalysis of F.E.A.L. In: Advances in
Cryptology – EUROCRYPT ’88. Ed. by C. G. Günther.
Vol. 330. LNCS. Springer, 1988, pp. 293–299. doi: 10.1007/
3-540-45961-8_27 (p. 44).

[Bra16] D. Brash. ARMv8-A architecture – 2016 additions. ARM
Community. 2016. url: https : / / community . arm . com /

processors/b/blog/posts/armv8- a- architecture- 2016-

additions (p. 98).

[Bre80] R. P. Brent. An improved Monte Carlo factorization algo-
rithm. In: BIT Numerical Mathematics 20.2 (1980), pp. 176–
184. doi: 10.1007/BF01933190 (p. 53).

[BS90] E. Biham and A. Shamir. Differential Cryptanalysis of DES-
like Cryptosystems. In: Advances in Cryptology – CRYPTO
1990. Ed. by A. Menezes and S. A. Vanstone. Vol. 537. LNCS.
Springer, 1990, pp. 2–21. doi: 10.1007/3-540-38424-3_1
(pp. 43–45, 47, 49–51, 53, 67).

[BS91] E. Biham and A. Shamir. Differential Cryptanalysis of DES-
like Cryptosystems. In: Journal of Cryptology 4.1 (1991),
pp. 3–72. doi: 10.1007/BF00630563 (pp. 43, 51, 60, 67, 166).

[BS92] E. Biham and A. Shamir. Differential Cryptanalysis of the
Full 16-Round DES. In: Advances in Cryptology – CRYPTO
1992. Ed. by E. F. Brickell. Vol. 740. LNCS. Springer, 1992,
pp. 487–496. doi: 10.1007/3-540-48071-4_34 (pp. 43, 51).

[BS93] E. Biham and A. Shamir. Differential Cryptanalysis of the
Data Encryption Standard. Springer, 1993. isbn: 978-1-
4613-9316-0. doi: 10.1007/978-1-4613-9314-6 (pp. 43, 51,
67).

[BS97] E. Biham and A. Shamir. Differential Fault Analysis of
Secret Key Cryptosystems. In: Advances in Cryptology
– CRYPTO 1997. Ed. by B. S. K. Jr. Vol. 1294. LNCS.
Springer, 1997, pp. 513–525. doi: 10 . 1007 / BFb0052259

(p. 63).

237

https://doi.org/10.1007/978-3-662-45611-8_10
https://eprint.iacr.org/2014/699
https://doi.org/10.1007/3-540-45961-8_27
https://doi.org/10.1007/3-540-45961-8_27
https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions
https://doi.org/10.1007/BF01933190
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/3-540-48071-4_34
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/BFb0052259

References

[BU02] J. Black and H. Urtubia. Side-Channel Attacks on Sym-
metric Encryption Schemes: The Case for Authenticated
Encryption. In: USENIX Security Symposium 2002. Ed.
by D. Boneh. USENIX, 2002, pp. 327–338. url: http :

//www.usenix.org/publications/library/proceedings/

sec02/black.html (p. 39).

[BV14] A. Biryukov and V. Velichkov. Automatic Search for Differ-
ential Trails in ARX Ciphers. In: Topics in Cryptology – CT-
RSA 2014. Ed. by J. Benaloh. Vol. 8366. LNCS. Springer,
2014, pp. 227–250. doi: 10.1007/978-3-319-04852-9_12.
iacr: 2013/853 (p. 59).

[BVL16] A. Biryukov, V. Velichkov, and Y. Le Corre. Automatic
Search for the Best Trails in ARX: Application to Block
Cipher Speck. In: Fast Software Encryption – FSE 2016.
Ed. by T. Peyrin. Vol. 9783. LNCS. Springer, 2016, pp. 289–
310. doi: 10.1007/978-3-662-52993-5_15. iacr: 2016/409
(p. 59).

[BW00] A. Biryukov and D. Wagner. Advanced Slide Attacks. In:
Advances in Cryptology – EUROCRYPT 2000. Ed. by B.
Preneel. Vol. 1807. LNCS. Springer, 2000, pp. 589–606. doi:
10.1007/3-540-45539-6_41 (p. 147).

[CAE13] CAESAR Committee. CAESAR: Competition for Authen-
ticated Encryption: Security, Applicability, and Robustness.
Call for Submissions. 2013. url: http://competitions.cr.
yp.to/caesar-call.html (pp. 39, 148, 150).

[CAE16] CAESAR Committee. CAESAR submissions: Third-round
candidates. 2016. url: http://competitions.cr.yp.to/

caesar-submissions.html (p. 41).

[CCF+16] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-
Plasencia, P. Paillier, and R. Sirdey. Stream Ciphers: A
Practical Solution for Efficient Homomorphic-Ciphertext
Compression. In: Fast Software Encryption – FSE 2016.
Ed. by T. Peyrin. Vol. 9783. LNCS. Springer, 2016, pp. 313–
333. doi: 10.1007/978-3-662-52993-5_16. iacr: 2015/113
(p. 129).

[CDMP05] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-
Damg̊ard Revisited: How to Construct a Hash Function.
In: Advances in Cryptology – CRYPTO 2005. Ed. by V.

238

http://www.usenix.org/publications/library/proceedings/sec02/black.html
http://www.usenix.org/publications/library/proceedings/sec02/black.html
http://www.usenix.org/publications/library/proceedings/sec02/black.html
https://doi.org/10.1007/978-3-319-04852-9_12
https://eprint.iacr.org/2013/853
https://doi.org/10.1007/978-3-662-52993-5_15
https://eprint.iacr.org/2016/409
https://doi.org/10.1007/3-540-45539-6_41
http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
https://doi.org/10.1007/978-3-662-52993-5_16
https://eprint.iacr.org/2015/113

References

Shoup. Vol. 3621. LNCS. Springer, 2005, pp. 430–448. doi:
10.1007/11535218_26 (pp. 36, 168, 173).

[CFG+14] A. Canteaut, T. Fuhr, H. Gilbert, M. Naya-Plasencia, and
J.-R. Reinhard. Multiple Differential Cryptanalysis of Round-
Reduced PRINCE. In: Fast Software Encryption – FSE 2014.
Ed. by C. Cid and C. Rechberger. Vol. 8540. LNCS. Springer,
2014, pp. 591–610. doi: 10.1007/978-3-662-46706-0_30.
iacr: 2014/089 (p. 86).

[CGH04] R. Canetti, O. Goldreich, and S. Halevi. The random oracle
methodology, revisited. In: Journal of the ACM 51.4 (2004),
pp. 557–594. doi: 10.1145/1008731.1008734. iacr: 1998/11
(p. 35).

[CHP+17] C. Cid, T. Huang, T. Peyrin, Y. Sasaki, and L. Song. A Se-
curity Analysis of Deoxys and its Internal Tweakable Block
Ciphers. In: IACR Transactions on Symmetric Cryptology
2017.3 (2017), pp. 73–107. doi: 10.13154/tosc.v2017.i3.
73-107. iacr: 2017/693 (p. 71).

[CJ98] F. Chabaud and A. Joux. Differential Collisions in SHA-0.
In: Advances in Cryptology – CRYPTO 1998. Ed. by H.
Krawczyk. Vol. 1462. LNCS. Springer, 1998, pp. 56–71. doi:
10.1007/BFb0055720 (pp. 215, 217).

[Coc07] M. Cochran. Notes on the Wang et al. 263 SHA-1 Differential
Path. IACR Cryptology ePrint Archive, Report 2007/474.
2007. iacr: 2007/474 (p. 215).

[Coo71] S. A. Cook. The Complexity of Theorem-Proving Proce-
dures. In: Symposium on Theory of Computing – STOC
1971. Ed. by M. A. Harrison, R. B. Banerji, and J. D. Ull-
man. ACM, 1971, pp. 151–158. doi: 10.1145/800157.805047
(p. 57).

[Cop94] D. Coppersmith. The Data Encryption Standard (DES) and
its strength against attacks. In: IBM Journal of Research
and Development 38.3 (1994), pp. 243–250. doi: 10.1147/
rd.383.0243 (p. 43).

[CS15] B. Cogliati and Y. Seurin. On the Provable Security of
the Iterated Even-Mansour Cipher Against Related-Key
and Chosen-Key Attacks. In: Advances in Cryptology –
EUROCRYPT 2015. Ed. by E. Oswald and M. Fischlin.

239

https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/978-3-662-46706-0_30
https://eprint.iacr.org/2014/089
https://doi.org/10.1145/1008731.1008734
https://eprint.iacr.org/1998/11
https://doi.org/10.13154/tosc.v2017.i3.73-107
https://doi.org/10.13154/tosc.v2017.i3.73-107
https://eprint.iacr.org/2017/693
https://doi.org/10.1007/BFb0055720
https://eprint.iacr.org/2007/474
https://doi.org/10.1145/800157.805047
https://doi.org/10.1147/rd.383.0243
https://doi.org/10.1147/rd.383.0243

References

Vol. 9056. LNCS. Springer, 2015, pp. 584–613. doi: 10.1007/
978-3-662-46800-5_23. iacr: 2015/069 (p. 149).

[CV94] F. Chabaud and S. Vaudenay. Links Between Differential
and Linear Cryptanalysis. In: Advances in Cryptology –
EUROCRYPT 1994. Ed. by A. D. Santis. Vol. 950. LNCS.
Springer, 1994, pp. 356–365. doi: 10 . 1007 / BFb0053450

(p. 63).

[CW77] L. Carter and M. N. Wegman. Universal Classes of Hash
Functions (Extended Abstract). In: Symposium on Theory
of Computing – STOC 1977. Ed. by J. E. Hopcroft, E. P.
Friedman, and M. A. Harrison. ACM, 1977, pp. 106–112.
doi: 10.1145/800105.803400 (p. 38).

[Dae91] J. Daemen. Limitations of the Even-Mansour Construction.
In: Advances in Cryptology – ASIACRYPT 1991. Ed. by
H. Imai, R. L. Rivest, and T. Matsumoto. Vol. 739. LNCS.
Springer, 1991, pp. 495–498. doi: 10.1007/3-540-57332-

1_46 (pp. 28, 63, 147).

[Dae95] J. Daemen. Cipher and Hash Function Design. Strategies
based on linear and differential cryptanalysis. PhD the-
sis. Katholieke Universiteit Leuven, 1995. url: https://

www.esat.kuleuven.be/cosic/publications/thesis-6.pdf

(pp. 20, 56, 67, 181).

[Dam89] I. Damg̊ard. A Design Principle for Hash Functions. In:
Advances in Cryptology – CRYPTO 1989. Ed. by G. Bras-
sard. Vol. 435. LNCS. Springer, 1989, pp. 416–427. doi:
10.1007/0-387-34805-0_39 (pp. 35, 170, 173).

[Dan12] Q. H. Dang. NIST FIPS PUB 180-4: Secure Hash Stan-
dard (SHS). National Institute of Standards and Technology
(NIST) Federal Information Processing Standards (FIPS)
Publication. 2012. doi: 10.6028/NIST.FIPS.180-4 (pp. 19,
20, 168, 170–172, 214).

[DB09] O. Dunkelman and E. Biham. The SHAvite-3 – A New Hash
Function. In: Symmetric Cryptography. Ed. by H. Hand-
schuh, S. Lucks, B. Preneel, and P. Rogaway. Vol. 09031.
Dagstuhl Seminar Proceedings. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Germany, 2009. url: http://drops.
dagstuhl.de/opus/volltexte/2009/1947/ (p. 107).

240

https://doi.org/10.1007/978-3-662-46800-5_23
https://doi.org/10.1007/978-3-662-46800-5_23
https://eprint.iacr.org/2015/069
https://doi.org/10.1007/BFb0053450
https://doi.org/10.1145/800105.803400
https://doi.org/10.1007/3-540-57332-1_46
https://doi.org/10.1007/3-540-57332-1_46
https://www.esat.kuleuven.be/cosic/publications/thesis-6.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-6.pdf
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.6028/NIST.FIPS.180-4
http://drops.dagstuhl.de/opus/volltexte/2009/1947/
http://drops.dagstuhl.de/opus/volltexte/2009/1947/

References

[DBN+01] M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti,
L. E. Bassham, E. Roback, and J. F. Dray Jr. NIST FIPS
PUB 197: Advanced Encryption Standard (AES). National
Institute of Standards and Technology (NIST) Federal In-
formation Processing Standards (FIPS) Publication. 2001.
doi: 10.6028/NIST.FIPS.197. url: http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf (p. 21).

[Dea99] R. D. Dean. Formal Aspects of Mobile Code Security. PhD
thesis. Princeton University, 1999. url: http://sip.cs.

princeton.edu/pub/ddean-thesis.pdf (p. 36).

[DEKM17] C. Dobraunig, M. Eichlseder, D. Kales, and F. Mendel. Prac-
tical Key-Recovery Attack on MANTIS5. In: IACR Transac-
tions on Symmetric Cryptology 2016.2 (2017), pp. 248–260.
doi: 10.13154/tosc.v2016.i2.248-260. iacr: 2016/754

(pp. 69, 83, 84, 96, 97).

[DEM15a] C. Dobraunig, M. Eichlseder, and F. Mendel. Analysis of
SHA-512/224 and SHA-512/256. In: Advances in Cryp-
tology – ASIACRYPT 2015. Ed. by T. Iwata and J. H.
Cheon. Vol. 9453. LNCS. Springer, 2015, pp. 612–630. doi:
10.1007/978-3-662-48800-3_25. iacr: 2016/374 (pp. 165,
169, 174, 194).

[DEM15b] C. Dobraunig, M. Eichlseder, and F. Mendel. Forgery At-
tacks on Round-Reduced ICEPOLE-128. In: Selected Areas
in Cryptography – SAC 2015. Ed. by O. Dunkelman and L.
Keliher. Vol. 9566. LNCS. Springer, 2015, pp. 479–492. doi:
10.1007/978-3-319-31301-6_27. iacr: 2015/392 (p. 167).

[DEM15c] C. Dobraunig, M. Eichlseder, and F. Mendel. Higher-Order
Cryptanalysis of LowMC. In: Information Security and
Cryptology – ICISC 2015. Ed. by S. Kwon and A. Yun.
Vol. 9558. LNCS. Springer, 2015, pp. 87–101. doi: 10.1007/
978-3-319-30840-1_6. iacr: 2015/407 (p. 127).

[DEM15d] C. Dobraunig, M. Eichlseder, and F. Mendel. Related-Key
Forgeries for Prøst-OTR. In: Fast Software Encryption –
FSE 2015. Ed. by G. Leander. Vol. 9054. LNCS. Springer,
2015, pp. 282–296. doi: 10.1007/978-3-662-48116-5_14.
iacr: 2015/091 (p. 147).

241

https://doi.org/10.6028/NIST.FIPS.197
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://sip.cs.princeton.edu/pub/ddean-thesis.pdf
http://sip.cs.princeton.edu/pub/ddean-thesis.pdf
https://doi.org/10.13154/tosc.v2016.i2.248-260
https://eprint.iacr.org/2016/754
https://doi.org/10.1007/978-3-662-48800-3_25
https://eprint.iacr.org/2016/374
https://doi.org/10.1007/978-3-319-31301-6_27
https://eprint.iacr.org/2015/392
https://doi.org/10.1007/978-3-319-30840-1_6
https://doi.org/10.1007/978-3-319-30840-1_6
https://eprint.iacr.org/2015/407
https://doi.org/10.1007/978-3-662-48116-5_14
https://eprint.iacr.org/2015/091

References

[DEM15e] C. Dobraunig, M. Eichlseder, and F. Mendel. Security Eval-
uation of SHA-224, SHA-512/224, and SHA-512/256. Tech.
Report CRYPTREC. 2015. url: http://www.cryptrec.go.
jp/estimation/techrep_id2401.pdf (pp. 165, 169).

[DEM16a] C. Dobraunig, M. Eichlseder, and F. Mendel. Cryptanalysis
of Simpira v1. In: Selected Areas in Cryptography – SAC
2016. Ed. by R. Avanzi and H. M. Heys. Vol. 10532. LNCS.
Springer, 2016, pp. 284–298. doi: 10.1007/978- 3- 319-

69453-5_16. iacr: 2016/244 (p. 105).

[DEM16b] C. Dobraunig, M. Eichlseder, and F. Mendel. Square At-
tack on 7-Round Kiasu-BC. In: Applied Cryptography and
Network Security – ACNS 2016. Ed. by M. Manulis, A.-R.
Sadeghi, and S. Schneider. Vol. 9696. LNCS. Springer, 2016,
pp. 500–517. doi: 10.1007/978-3-319-39555-5_27. iacr:
2016/326 (p. 70).

[DEMS15] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer.
Cryptanalysis of Ascon. In: Topics in Cryptology – CT-RSA
2015. Ed. by K. Nyberg. Vol. 9048. LNCS. Springer, 2015,
pp. 371–387. doi: 10.1007/978-3-319-16715-2_20. iacr:
2015/030 (p. 167).

[Der16] P. Derbez. Note on Impossible Differential Attacks. In:
Fast Software Encryption – FSE 2016. Ed. by T. Peyrin.
Vol. 9783. LNCS. Springer, 2016, pp. 416–427. doi: 10.1007/
978-3-662-52993-5_21. iacr: 2016/349 (p. 62).

[DGG+15] Y. Dodis, C. Ganesh, A. Golovnev, A. Juels, and T. Risten-
part. A Formal Treatment of Backdoored Pseudorandom
Generators. In: Advances in Cryptology – EUROCRYPT
2015. Ed. by E. Oswald and M. Fischlin. Vol. 9056. LNCS.
Springer, 2015, pp. 101–126. doi: 10.1007/978- 3- 662-

46800-5_5. iacr: 2016/306 (p. 213).

[DGV94a] J. Daemen, R. Govaerts, and J. Vandewalle. Correlation
Matrices. In: Fast Software Encryption – FSE 1994. Ed. by
B. Preneel. Vol. 1008. LNCS. Springer, 1994, pp. 275–285.
doi: 10.1007/3-540-60590-8_21 (p. 63).

[DGV94b] J. Daemen, R. Govaerts, and J. Vandewalle. Invertible Shift-
invariant Transformations on Binary Arrays. In: Journal
of Applied Mathematics and Computation 62.2–3 (1994),
pp. 259–277. doi: 10.1016/0096-3003(94)90087-6 (p. 181).

242

http://www.cryptrec.go.jp/estimation/techrep_id2401.pdf
http://www.cryptrec.go.jp/estimation/techrep_id2401.pdf
https://doi.org/10.1007/978-3-319-69453-5_16
https://doi.org/10.1007/978-3-319-69453-5_16
https://eprint.iacr.org/2016/244
https://doi.org/10.1007/978-3-319-39555-5_27
https://eprint.iacr.org/2016/326
https://doi.org/10.1007/978-3-319-16715-2_20
https://eprint.iacr.org/2015/030
https://doi.org/10.1007/978-3-662-52993-5_21
https://doi.org/10.1007/978-3-662-52993-5_21
https://eprint.iacr.org/2016/349
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-46800-5_5
https://eprint.iacr.org/2016/306
https://doi.org/10.1007/3-540-60590-8_21
https://doi.org/10.1016/0096-3003(94)90087-6

References

[DH79] W. Diffie and M. E. Hellman. Privacy and authentication:
An introduction to cryptography. In: Proceedings of the
IEEE 67.3 (1979), pp. 397–427. doi: 10.1109/PROC.1979.
11256 (p. 32).

[DKR97] J. Daemen, L. R. Knudsen, and V. Rijmen. The Block
Cipher Square. In: Fast Software Encryption – FSE 1997.
Ed. by E. Biham. Vol. 1267. LNCS. Springer, 1997, pp. 149–
165. doi: 10.1007/BFb0052343 (p. 63).

[DKS12] O. Dunkelman, N. Keller, and A. Shamir. Minimalism in
Cryptography: The Even-Mansour Scheme Revisited. In:
Advances in Cryptology – EUROCRYPT 2012. Ed. by D.
Pointcheval and T. Johansson. Vol. 7237. LNCS. Springer,
2012, pp. 336–354. doi: 10.1007/978-3-642-29011-4_21

(pp. 28, 147, 148, 151).

[DL05] M. Daum and S. Lucks. Hash Collisions (The Poisoned
Message Attack). CRYPTO 2005 rump session. 2005. url:
http://th.informatik.uni-mannheim.de/people/lucks/

HashCollisions/ (p. 220).

[DLL62] M. Davis, G. Logemann, and D. W. Loveland. A machine
program for theorem-proving. In: Commununications of the
ACM 5.7 (1962), pp. 394–397. doi: 10.1145/368273.368557.
url: http://doi.acm.org/10.1145/368273.368557 (pp. 57,
167, 187).

[DLMW15] I. Dinur, Y. Liu, W. Meier, and Q. Wang. Optimized In-
terpolation Attacks on LowMC. In: Advances in Cryp-
tology – ASIACRYPT 2015. Ed. by T. Iwata and J. H.
Cheon. Vol. 9453. LNCS. Springer, 2015, pp. 535–560. doi:
10.1007/978-3-662-48800-3_22. iacr: 2015/418 (pp. 127,
129, 130, 145, 146).

[DLR16] S. Duval, V. Lallemand, and Y. Rotella. Cryptanalysis
of the FLIP Family of Stream Ciphers. In: Advances in
Cryptology – CRYPTO 2016. Ed. by M. Robshaw and J.
Katz. Vol. 9814. LNCS. Springer, 2016, pp. 457–475. doi:
10.1007/978-3-662-53018-4_17. iacr: 2016/271 (p. 129).

[DMR07] C. De Cannière, F. Mendel, and C. Rechberger. Collisions
for 70-Step SHA-1: On the Full Cost of Collision Search.
In: Selected Areas in Cryptography – SAC 2007. Ed. by
C. M. Adams, A. Miri, and M. J. Wiener. Vol. 4876. LNCS.

243

https://doi.org/10.1109/PROC.1979.11256
https://doi.org/10.1109/PROC.1979.11256
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-642-29011-4_21
http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
https://doi.org/10.1145/368273.368557
http://doi.acm.org/10.1145/368273.368557
https://doi.org/10.1007/978-3-662-48800-3_22
https://eprint.iacr.org/2015/418
https://doi.org/10.1007/978-3-662-53018-4_17
https://eprint.iacr.org/2016/271

References

Springer, 2007, pp. 56–73. doi: 10.1007/978-3-540-77360-
3_4 (p. 215).

[Dob96] H. Dobbertin. Cryptanalysis of MD4. In: Fast Software
Encryption – FSE 1996. Ed. by D. Gollmann. Vol. 1039.
LNCS. Springer, 1996, pp. 53–69. doi: 10.1007/3- 540-

60865-6_43 (pp. 44, 61, 178).

[Dob98] H. Dobbertin. Cryptanalysis of MD4. In: Journal of Cryptol-
ogy 11.4 (1998), pp. 253–271. doi: 10.1007/s001459900047
(pp. 61, 178).

[DP07] J. P. Degabriele and K. G. Paterson. Attacking the IPsec
Standards in Encryption-only Configurations. In: Security
and Privacy – S&P 2007. IEEE Computer Society, 2007,
pp. 335–349. doi: 10.1109/SP.2007.8. iacr: 2007/125

(p. 39).

[DR01] J. Daemen and V. Rijmen. The Wide Trail Design Strategy.
In: Cryptography and Coding – IMACC 2001. Ed. by B.
Honary. Vol. 2260. LNCS. Springer, 2001, pp. 222–238. doi:
10.1007/3-540-45325-3_20 (pp. 55, 56, 67).

[DR02] J. Daemen and V. Rijmen. The Design of Rijndael: AES –
The Advanced Encryption Standard. Information Security
and Cryptography. Springer, 2002. isbn: 3-540-42580-2. doi:
10.1007/978-3-662-04722-4 (pp. 17, 21).

[DR06] C. De Cannière and C. Rechberger. Finding SHA-1 Charac-
teristics: General Results and Applications. In: Advances
in Cryptology – ASIACRYPT 2006. Ed. by X. Lai and
K. Chen. Vol. 4284. LNCS. Springer, 2006, pp. 1–20. doi:
10.1007/11935230_1 (pp. 11, 59, 61, 167, 178–180, 215).

[DR07] J. Daemen and V. Rijmen. Probability distributions of
correlation and differentials in block ciphers. In: Journal
of Mathematical Cryptology 1.3 (2007), pp. 221–242. doi:
10.1515/JMC.2007.011. iacr: 2005/212 (pp. 45, 47, 48).

[DR98] J. Daemen and V. Rijmen. The Block Cipher Rijndael. In:
Smart Card Research and Applications – CARDIS 1998.
Ed. by J.-J. Quisquater and B. Schneier. Vol. 1820. LNCS.
Springer, 1998, pp. 277–284. doi: 10.1007/10721064_26

(pp. 21, 56).

244

https://doi.org/10.1007/978-3-540-77360-3_4
https://doi.org/10.1007/978-3-540-77360-3_4
https://doi.org/10.1007/3-540-60865-6_43
https://doi.org/10.1007/3-540-60865-6_43
https://doi.org/10.1007/s001459900047
https://doi.org/10.1109/SP.2007.8
https://eprint.iacr.org/2007/125
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/11935230_1
https://doi.org/10.1515/JMC.2007.011
https://eprint.iacr.org/2005/212
https://doi.org/10.1007/10721064_26

References

[DS08] H. Demirci and A. A. Selçuk. A Meet-in-the-Middle Attack
on 8-Round AES. In: Fast Software Encryption – FSE 2008.
Ed. by K. Nyberg. Vol. 5086. LNCS. Springer, 2008, pp. 116–
126. doi: 10.1007/978-3-540-71039-4_7 (p. 63).

[DS09] I. Dinur and A. Shamir. Cube Attacks on Tweakable Black
Box Polynomials. In: Advances in Cryptology – EURO-
CRYPT 2009. Ed. by A. Joux. Vol. 5479. LNCS. Springer,
2009, pp. 278–299. doi: 10.1007/978-3-642-01001-9_16.
iacr: 2008/385 (p. 63).

[DV12] J. Daemen and G. Van Assche. Differential Propagation
Analysis of Keccak. In: Fast Software Encryption – FSE
2012. Ed. by A. Canteaut. Vol. 7549. LNCS. Springer, 2012,
pp. 422–441. doi: 10.1007/978-3-642-34047-5_24. iacr:
2012/163 (p. 59).

[Dwo01] M. J. Dworkin. NIST SP 800-38A: Recommendation for
Block Cipher Modes of Operation: Methods and Techniques.
National Institute of Standards and Technology (NIST)
Special Publication (SP). 2001. doi: 10.6028/NIST.SP.800-
38A (p. 32).

[Dwo04] M. J. Dworkin. NIST SP 800-38C: Recommendation for
Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality. National Institute of
Standards and Technology (NIST) Special Publication (SP).
2004. doi: 10.6028/NIST.SP.800-38C (pp. 41, 160).

[Dwo07] M. J. Dworkin. NIST SP 800-38D: Recommendation for
Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC. National Institute of Standards and
Technology (NIST) Special Publication (SP). 2007. doi:
10.6028/NIST.SP.800-38D (pp. 38, 41).

[Dwo10] M. J. Dworkin. NIST SP 800-38A Addendum: Recommen-
dation for Block Cipher Modes of Operation: Three Variants
of Ciphertext Stealing for CBC Mode. National Institute
of Standards and Technology (NIST) Special Publication
(SP). 2010. doi: 10.6028/NIST.SP.800-38A-Add (p. 32).

[Dwo15] M. J. Dworkin. NIST FIPS PUB 202: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions.
National Institute of Standards and Technology (NIST) Fed-
eral Information Processing Standards (FIPS) Publication.

245

https://doi.org/10.1007/978-3-540-71039-4_7
https://doi.org/10.1007/978-3-642-01001-9_16
https://eprint.iacr.org/2008/385
https://doi.org/10.1007/978-3-642-34047-5_24
https://eprint.iacr.org/2012/163
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38C
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38A-Add

References

2015. doi: https://dx.doi.org/10.6028/NIST.FIPS.202

(pp. 37, 167).

[EK17] M. Eichlseder and D. Kales. Clustering Related-Tweak Char-
acteristics: Application to MANTIS-6. IACR Cryptology
ePrint Archive, Report 2017/1136. 2017. iacr: 2017/1136
(pp. 69, 82–84, 86, 91, 97).

[EM91] S. Even and Y. Mansour. A Construction of a Cipher From
a Single Pseudorandom Permutation. In: Advances in Cryp-
tology – ASIACRYPT 1991. Ed. by H. Imai, R. L. Rivest,
and T. Matsumoto. Vol. 739. LNCS. Springer, 1991, pp. 210–
224. doi: 10.1007/3-540-57332-1_17 (pp. 28, 147).

[EM97] S. Even and Y. Mansour. A Construction of a Cipher from a
Single Pseudorandom Permutation. In: Journal of Cryptol-
ogy 10.3 (1997), pp. 151–162. doi: 10.1007/s001459900025
(pp. 28, 147).

[EMN+13] M. Eichlseder, F. Mendel, T. Nad, V. Rijmen, and M.
Schläffer. Linear Propagation in Efficient Guess-and-De-
termine Attacks. In: International Workshop on Coding
and Cryptography – WCC 2013, Preproceedings. Ed. by L.
Budaghyan, T. Helleseth, and M. G. Parker. 2013, pp. 193–
202. isbn: 978-82-308-2269-2. url: http://www.selmer.uib.
no/WCC2013/ (pp. 165, 169).

[EMS14] M. Eichlseder, F. Mendel, and M. Schläffer. Branching
Heuristics in Differential Collision Search with Applications
to SHA-512. In: Fast Software Encryption – FSE 2014. Ed.
by C. Cid and C. Rechberger. Vol. 8540. LNCS. Springer,
2014, pp. 473–488. doi: 10.1007/978-3-662-46706-0_24.
iacr: 2014/302 (pp. 165, 169, 174, 193–195, 200).

[EMST76] W. F. Ehrsam, C. H. W. Meyer, J. L. Smith, and W. L.
Tuchman. Message verification and transmission error de-
tection by block chaining. US Patent 4074066. 1976 (p. 31).

[ES03] N. Eén and N. Sörensson. An Extensible SAT-solver. In:
Theory and Applications of Satisfiability Testing – SAT
2003. Ed. by E. Giunchiglia and A. Tacchella. Vol. 2919.
LNCS. Springer, 2003, pp. 502–518. doi: 10.1007/978-3-
540-24605-3_37 (p. 188).

246

https://doi.org/https://dx.doi.org/10.6028/NIST.FIPS.202
https://eprint.iacr.org/2017/1136
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/s001459900025
http://www.selmer.uib.no/WCC2013/
http://www.selmer.uib.no/WCC2013/
https://doi.org/10.1007/978-3-662-46706-0_24
https://eprint.iacr.org/2014/302
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37

References

[Fei70] H. Feistel. Cryptographic Coding for Data-Bank Privacy.
Tech. rep. IBM Research Report RC 2827. IBM Corp., 1970
(p. 26).

[Fei73] H. Feistel. Cryptography and Computer Privacy. In: Sci-
entific American 228.5 (1973), pp. 15–23. doi: 10.1038/

scientificamerican0573-15 (pp. 20, 26).

[FLLW16] C. Forler, E. List, S. Lucks, and J. Wenzel. Efficient Beyond-
Birthday-Bound-Secure Deterministic Authenticated En-
cryption with Minimal Stretch. In: Information Security
and Privacy – ACISP 2016. Ed. by J. K. Liu and R. Ste-
infeld. Vol. 9723. LNCS. Springer, 2016, pp. 317–332. doi:
10.1007/978-3-319-40367-0_20. iacr: 2016/395 (p. 106).

[FNS75] H. Feistel, W. A. Notz, and J. L. Smith. Some Cryptographic
Techniques for Machine-to-Machine Data Communications.
In: Proceedings of the IEEE 63.11 (1975), pp. 1545–1554.
doi: 10.1109/PROC.1975.10005 (p. 26).

[FO89] P. Flajolet and A. M. Odlyzko. Random Mapping Statistics.
In: Advances in Cryptology – EUROCRYPT ’89. Ed. by J.-J.
Quisquater and J. Vandewalle. Vol. 434. LNCS. Springer,
1989, pp. 329–354. doi: 10.1007/3-540-46885-4_34 (p. 25).

[FP15] P. Farshim and G. Procter. The Related-Key Security of It-
erated Even-Mansour Ciphers. In: Fast Software Encryption
– FSE 2015. Ed. by G. Leander. Vol. 9054. LNCS. Springer,
2015, pp. 342–363. doi: 10.1007/978-3-662-48116-5_17.
iacr: 2014/953 (p. 149).

[Fre95] J. W. Freeman. Improvements to Propositional Satisfiability
Search Algorithms. PhD thesis. Philadelphia: Departement
of computer and Information science, University of Pennsyl-
vania, 1995. url: ftp://ftp.cis.upenn.edu/pub/freeman/
thesis.ps.gz (p. 188).

[FWG+16] K. Fu, M. Wang, Y. Guo, S. Sun, and L. Hu. MILP-Based
Automatic Search Algorithms for Differential and Linear
Trails for Speck. In: Fast Software Encryption – FSE 2016.
Ed. by T. Peyrin. Vol. 9783. LNCS. Springer, 2016, pp. 268–
288. doi: 10.1007/978-3-662-52993-5_14. iacr: 2016/407
(p. 59).

247

https://doi.org/10.1038/scientificamerican0573-15
https://doi.org/10.1038/scientificamerican0573-15
https://doi.org/10.1007/978-3-319-40367-0_20
https://eprint.iacr.org/2016/395
https://doi.org/10.1109/PROC.1975.10005
https://doi.org/10.1007/3-540-46885-4_34
https://doi.org/10.1007/978-3-662-48116-5_17
https://eprint.iacr.org/2014/953
ftp://ftp.cis.upenn.edu/pub/freeman/thesis.ps.gz
ftp://ftp.cis.upenn.edu/pub/freeman/thesis.ps.gz
https://doi.org/10.1007/978-3-662-52993-5_14
https://eprint.iacr.org/2016/407

References

[GB08] S. Goldwasser and M. Bellare. Lecture Notes on Cryptog-
raphy. Lecture Notes. 2008. url: http://cseweb.ucsd.edu/

~mihir/papers/gb.pdf (p. 36).

[Gég27] J. J. Gégalkine. Sur le calcul des propositions dans la logique
symbolique. In: Matematicheskii Sbornik 34.1 (1927), pp. 9–
28. url: http://mi.mathnet.ru/msb7433 (p. 20).

[GGNS13] B. Gérard, V. Grosso, M. Naya-Plasencia, and F.-X. Stan-
daert. Block Ciphers That Are Easier to Mask: How Far
Can We Go? In: Cryptographic Hardware and Embed-
ded Systems – CHES 2013. Ed. by G. Bertoni and J.-S.
Coron. Vol. 8086. LNCS. Springer, 2013, pp. 383–399. doi:
10.1007/978-3-642-40349-1_22. iacr: 2013/369 (p. 129).

[GH03] H. Gilbert and H. Handschuh. Security Analysis of SHA-
256 and Sisters. In: Selected Areas in Cryptography – SAC
2003. Ed. by M. Matsui and R. J. Zuccherato. Vol. 3006.
LNCS. Springer, 2003, pp. 175–193. doi: 10.1007/978-3-
540-24654-1_13 (p. 173).

[GJN+16] J. Guo, J. Jean, I. Nikolić, K. Qiao, Y. Sasaki, and S. Sim.
Invariant Subspace Attack Against Midori64 and The Re-
sistance Criteria for S-box Designs. In: IACR Transactions
on Symmetric Cryptology 2016.1 (2016), pp. 33–56. doi:
10.13154/tosc.v2016.i1.33-56. iacr: 2016/973 (p. 99).

[GJW11] S. Gueron, S. Johnson, and J. Walker. SHA-512/256. In:
Information Technology: New Generations – ITNG 2011.
Ed. by S. Latifi. IEEE Computer Society, 2011, pp. 354–358.
doi: 10.1109/ITNG.2011.69. iacr: 2010/548 (p. 168).

[GLRW10] J. Guo, S. Ling, C. Rechberger, and H. Wang. Advanced
Meet-in-the-Middle Preimage Attacks: First Results on
Full Tiger, and Improved Results on MD4 and SHA-2.
In: Advances in Cryptology – ASIACRYPT 2010. Ed. by
M. Abe. Vol. 6477. LNCS. Springer, 2010, pp. 56–75. doi:
10.1007/978-3-642-17373-8_4. iacr: 2010/16 (p. 173).

[GM16a] S. Gueron and N. Mouha. Simpira: A Family of Efficient
Permutations Using the AES Round Function. IACR Cryp-
tology ePrint Archive, Report 2016/122. 2016. iacr: 2016/
122/20160214:005409 (pp. 9, 105, 106, 108, 111).

248

http://cseweb.ucsd.edu/~mihir/papers/gb.pdf
http://cseweb.ucsd.edu/~mihir/papers/gb.pdf
http://mi.mathnet.ru/msb7433
https://doi.org/10.1007/978-3-642-40349-1_22
https://eprint.iacr.org/2013/369
https://doi.org/10.1007/978-3-540-24654-1_13
https://doi.org/10.1007/978-3-540-24654-1_13
https://doi.org/10.13154/tosc.v2016.i1.33-56
https://eprint.iacr.org/2016/973
https://doi.org/10.1109/ITNG.2011.69
https://eprint.iacr.org/2010/548
https://doi.org/10.1007/978-3-642-17373-8_4
https://eprint.iacr.org/2010/16
https://eprint.iacr.org/2016/122/20160214:005409
https://eprint.iacr.org/2016/122/20160214:005409

References

[GM16b] S. Gueron and N. Mouha. Simpira v2: A Family of Efficient
Permutations Using the AES Round Function. In: Advances
in Cryptology – ASIACRYPT 2016. Ed. by J. H. Cheon and
T. Takagi. Vol. 10031. LNCS. Springer, 2016, pp. 95–125.
doi: 10.1007/978-3-662-53887-6_4. iacr: 2016/122 (pp. 9,
105, 107, 124, 126).

[GM82] S. Goldwasser and S. Micali. Probabilistic Encryption and
How to Play Mental Poker Keeping Secret All Partial
Information. In: Symposium on Theory of Computing –
STOC 1982. Ed. by H. R. Lewis, B. B. Simons, W. A.
Burkhard, and L. H. Landweber. ACM, 1982, pp. 365–377.
doi: 10.1145/800070.802212 (p. 30).

[GM84] S. Goldwasser and S. Micali. Probabilistic Encryption. In:
Journal of Computer and System Sciences 28.2 (1984),
pp. 270–299. doi: 10.1016/0022-0000(84)90070-9 (pp. 30,
31).

[GN02] E. I. Goldberg and Y. Novikov. BerkMin: A Fast and Robust
Sat-Solver. In: Design, Automation, and Test in Europe –
DATE 2002. IEEE Computer Society, 2002, pp. 142–149.
doi: 10.1109/DATE.2002.998262 (p. 189).

[GR04] C. Gentry and Z. Ramzan. Eliminating Random Permuta-
tion Oracles in the Even-Mansour Cipher. In: Advances in
Cryptology – ASIACRYPT 2004. Ed. by P. J. Lee. Vol. 3329.
LNCS. Springer, 2004, pp. 32–47. doi: 10.1007/978-3-540-
30539-2_3 (p. 147).

[Gre10] E. A. Grechnikov. Collisions for 72-step and 73-step SHA-
1: Improvements in the Method of Characteristics. IACR
Cryptology ePrint Archive, Report 2010/413. 2010. iacr:
2010/413 (p. 215).

[GRR17] L. Grassi, C. Rechberger, and S. Rønjom. A New Structural-
Differential Property of 5-Round AES. In: Advances in
Cryptology – EUROCRYPT 2017. Ed. by J.-S. Coron and
J. B. Nielsen. Vol. 10211. LNCS. 2017, pp. 289–317. doi:
10.1007/978-3-319-56614-6_10. iacr: 2017/118 (p. 3).

[HB03] M. Herbstritt and B. Becker. Conflict-Based Selection of
Branching Rules. In: Theory and Applications of Satisfia-
bility Testing – SAT 2003. Ed. by E. Giunchiglia and A.

249

https://doi.org/10.1007/978-3-662-53887-6_4
https://eprint.iacr.org/2016/122
https://doi.org/10.1145/800070.802212
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1109/DATE.2002.998262
https://doi.org/10.1007/978-3-540-30539-2_3
https://doi.org/10.1007/978-3-540-30539-2_3
https://eprint.iacr.org/2010/413
https://doi.org/10.1007/978-3-319-56614-6_10
https://eprint.iacr.org/2017/118

References

Tacchella. Vol. 2919. LNCS. Springer, 2003, pp. 441–451.
doi: 10.1007/978-3-540-24605-3_33 (p. 188).

[HLL+00] S. Hong, S. Lee, J. Lim, J. Sung, D. H. Cheon, and I. Cho.
Provable Security against Differential and Linear Cryptanal-
ysis for the SPN Structure. In: Fast Software Encryption –
FSE 2000. Ed. by B. Schneier. Vol. 1978. LNCS. Springer,
2000, pp. 273–283. doi: 10.1007/3-540-44706-7_19 (p. 56).

[HM06] M. Heule and H. van Maaren. March dl: Adding Adaptive
Heuristics and a New Branching Strategy. In: JSAT 2.1-
4 (2006), pp. 47–59. url: http://jsat.ewi.tudelft.nl/

content/volume2/JSAT2_3_Heule.pdf (p. 189).

[HM09] M. Heule and H. van Maaren. Look-Ahead Based SAT
Solvers. In: Handbook of Satisfiability. Ed. by A. Biere,
M. Heule, H. van Maaren, and T. Walsh. Vol. 185. Fron-
tiers in Artificial Intelligence and Applications. IOS Press,
2009, pp. 155–184. doi: 10.3233/978-1-58603-929-5-155
(pp. 187, 189).

[HPR04] P. Hawkes, M. Paddon, and G. G. Rose. On Corrective
Patterns for the SHA-2 Family. IACR Cryptology ePrint
Archive, Report 2004/207. 2004. iacr: 2004/207 (p. 173).

[HT94] H. M. Heys and S. E. Tavares. The Design of Substitution-
Permutation Networks Resistant to Differential and Linear
Cryptanalysis. In: Computer Communications Security –
CCS 1994. Ed. by D. E. Denning, R. Pyle, R. Ganesan,
and R. S. Sandhu. ACM, 1994, pp. 148–155. doi: 10.1145/
191177.191206 (p. 55).

[HT96] H. M. Heys and S. E. Tavares. Substitution-Permutation
Networks Resistant to Differential and Linear Cryptanalysis.
In: Journal of Cryptology 9.1 (1996), pp. 1–19. doi: 10.1007/
BF02254789 (p. 55).

[IEE97] IEEE 802.11 Working Group. IEEE Std 802.11-1997: Wire-
less LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications. Institute of Electrical and Elec-
tronics Engineers (IEEE) Standard for Information Tech-
nology. 1997. doi: 10.1109/IEEESTD.1997.85951 (p. 149).

250

https://doi.org/10.1007/978-3-540-24605-3_33
https://doi.org/10.1007/3-540-44706-7_19
http://jsat.ewi.tudelft.nl/content/volume2/JSAT2_3_Heule.pdf
http://jsat.ewi.tudelft.nl/content/volume2/JSAT2_3_Heule.pdf
https://doi.org/10.3233/978-1-58603-929-5-155
https://eprint.iacr.org/2004/207
https://doi.org/10.1145/191177.191206
https://doi.org/10.1145/191177.191206
https://doi.org/10.1007/BF02254789
https://doi.org/10.1007/BF02254789
https://doi.org/10.1109/IEEESTD.1997.85951

References

[IK04] T. Iwata and T. Kohno. New Security Proofs for the 3GPP
Confidentiality and Integrity Algorithms. In: Fast Software
Encryption – FSE 2004. Ed. by B. K. Roy and W. Meier.
Vol. 3017. LNCS. Springer, 2004, pp. 427–445. doi: 10.1007/
978-3-540-25937-4_27. iacr: 2004/019 (p. 149).

[IMPR08] S. Indesteege, F. Mendel, B. Preneel, and C. Rechberger.
Collisions and Other Non-random Properties for Step-Re-
duced SHA-256. In: Selected Areas in Cryptography – SAC
2008. Ed. by R. M. Avanzi, L. Keliher, and F. Sica. Vol. 5381.
LNCS. Springer, 2008, pp. 276–293. doi: 10.1007/978-3-
642-04159-4_18. iacr: 2008/131 (pp. 168, 169, 174).

[IMPS09] S. Indesteege, F. Mendel, B. Preneel, and M. Schläffer.
Practical Collisions for SHAMATA-256. In: Selected Areas
in Cryptography – SAC 2009. Ed. by M. J. J. Jr., V. Rijmen,
and R. Safavi-Naini. Vol. 5867. LNCS. Springer, 2009, pp. 1–
15. doi: 10.1007/978-3-642-05445-7_1 (p. 107).

[IS09] T. Isobe and K. Shibutani. Preimage Attacks on Reduced
Tiger and SHA-2. In: Fast Software Encryption – FSE 2009.
Ed. by O. Dunkelman. Vol. 5665. LNCS. Springer, 2009,
pp. 139–155. doi: 10.1007/978-3-642-03317-9_9 (p. 173).

[Jea16] J. Jean. Cryptanalysis of Haraka. In: IACR Transactions
on Symmetric Cryptology 2016.1 (2016), pp. 1–12. doi:
10.13154/tosc.v2016.i1.1-12. iacr: 2016/396 (p. 107).

[JK97] T. Jakobsen and L. R. Knudsen. The Interpolation Attack
on Block Ciphers. In: Fast Software Encryption – FSE 1997.
Ed. by E. Biham. Vol. 1267. LNCS. Springer, 1997, pp. 28–
40. doi: 10.1007/BFb0052332 (pp. 55, 145).

[JLM14] P. Jovanovic, A. Luykx, and B. Mennink. Beyond 2c/2

Security in Sponge-Based Authenticated Encryption Modes.
In: Advances in Cryptology – ASIACRYPT 2014. Ed. by
P. Sarkar and T. Iwata. Vol. 8873. LNCS. Springer, 2014,
pp. 85–104. doi: 10.1007/978-3-662-45611-8_5. iacr:
2014/373 (p. 42).

[JN16] J. Jean and I. Nikolic. Efficient Design Strategies Based on
the AES Round Function. In: Fast Software Encryption –
FSE 2016. Ed. by T. Peyrin. Vol. 9783. LNCS. Springer,
2016, pp. 334–353. doi: 10.1007/978-3-662-52993-5_17.
iacr: 2016/299 (p. 106).

251

https://doi.org/10.1007/978-3-540-25937-4_27
https://doi.org/10.1007/978-3-540-25937-4_27
https://eprint.iacr.org/2004/019
https://doi.org/10.1007/978-3-642-04159-4_18
https://doi.org/10.1007/978-3-642-04159-4_18
https://eprint.iacr.org/2008/131
https://doi.org/10.1007/978-3-642-05445-7_1
https://doi.org/10.1007/978-3-642-03317-9_9
https://doi.org/10.13154/tosc.v2016.i1.1-12
https://eprint.iacr.org/2016/396
https://doi.org/10.1007/BFb0052332
https://doi.org/10.1007/978-3-662-45611-8_5
https://eprint.iacr.org/2014/373
https://doi.org/10.1007/978-3-662-52993-5_17
https://eprint.iacr.org/2016/299

References

[JNP14a] J. Jean, I. Nikolić, and T. Peyrin. KIASU v1. Submission
to CAESAR: Competition for Authenticated Encryption.
Security, Applicability, and Robustness (Round 1). 2014.
url: http://competitions.cr.yp.to/round1/kiasuv1.pdf
(pp. 3, 52).

[JNP14b] J. Jean, I. Nikolić, and T. Peyrin. Tweaks and Keys for
Block Ciphers: The TWEAKEY Framework. In: Advances
in Cryptology – ASIACRYPT 2014. Ed. by P. Sarkar and T.
Iwata. Vol. 8874. LNCS. Springer, 2014, pp. 274–288. doi:
10.1007/978-3-662-45608-8_15. iacr: 2014/831 (pp. 24,
26, 52, 70).

[JNSW14] J. Jean, I. Nikolić, Y. Sasaki, and L. Wang. Practical Crypt-
analysis of PAES. In: Selected Areas in Cryptography –
SAC 2014. Ed. by A. Joux and A. M. Youssef. Vol. 8781.
LNCS. Springer, 2014, pp. 228–242. doi: 10.1007/978-3-
319-13051-4_14 (p. 107).

[JNSW16] J. Jean, I. Nikolić, Y. Sasaki, and L. Wang. Practical Forg-
eries and Distinguishers against PAES. In: IEICE Transac-
tions 99-A.1 (2016), pp. 39–48. url: http://search.ieice.
org/bin/summary.php?id=e99-a_1_39 (p. 107).

[Joh09] T. R. Johnson. American Cryptology during the Cold War,
1945–1989. Book III: Retrenchment and Reform, 1972–1980.
National Security Agency. Retrieved via Cryptome FOIA
request. 2009. url: http://cryptome.org/0001/nsa-meyer.
htm (p. 4).

[Jou04] A. Joux. Multicollisions in Iterated Hash Functions. Applica-
tion to Cascaded Constructions. In: Advances in Cryptology
– CRYPTO 2004. Ed. by M. K. Franklin. Vol. 3152. LNCS.
Springer, 2004, pp. 306–316. doi: 10.1007/978- 3- 540-

28628-8_19 (pp. 36, 168, 173).

[JW90] R. G. Jeroslow and J. Wang. Solving Propositional Satis-
fiability Problems. In: Ann. Math. Artif. Intell. 1 (1990),
pp. 167–187. doi: 10.1007/BF01531077 (p. 188).

[Kar15] P. Karpman. From Distinguishers to Key Recovery: Im-
proved Related-Key Attacks on Even-Mansour. In: Infor-
mation Security – ISC 2015. Ed. by J. Lopez and C. J.
Mitchell. Vol. 9290. LNCS. Springer, 2015, pp. 177–188.

252

http://competitions.cr.yp.to/round1/kiasuv1.pdf
https://doi.org/10.1007/978-3-662-45608-8_15
https://eprint.iacr.org/2014/831
https://doi.org/10.1007/978-3-319-13051-4_14
https://doi.org/10.1007/978-3-319-13051-4_14
http://search.ieice.org/bin/summary.php?id=e99-a_1_39
http://search.ieice.org/bin/summary.php?id=e99-a_1_39
http://cryptome.org/0001/nsa-meyer.htm
http://cryptome.org/0001/nsa-meyer.htm
https://doi.org/10.1007/978-3-540-28628-8_19
https://doi.org/10.1007/978-3-540-28628-8_19
https://doi.org/10.1007/BF01531077

References

doi: 10.1007/978- 3- 319- 23318- 5_10. iacr: 2015/134

(pp. 148, 161).

[Kay07] R. F. Kayser. Announcing Request for Candidate Algorithm
Nominations for a New Cryptographic Hash Algorithm
(SHA-3) Family. In: Federal Register Notice 72.212 (2007),
pp. 62212–62220. url: http://csrc.nist.gov/groups/ST/
hash/documents/FR_Notice_Nov07.pdf (p. 34).

[KCP16] J. Kelsey, S.-j. Chang, and R. Perlner. NIST SP 800-185:
SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash,
and ParallelHash. National Institute of Standards and Tech-
nology (NIST) Special Publication (SP). 2016. doi: 10.

6028/NIST.SP.800-185 (p. 167).

[KD79] J. B. Kam and G. I. Davida. Structured Design of Substi-
tution-Permutation Encryption Networks. In: IEEE Trans-
actions on Computers 28.10 (1979), pp. 747–753. doi: 10.
1109/TC.1979.1675242 (p. 20).

[KK06] J. Kelsey and T. Kohno. Herding Hash Functions and the
Nostradamus Attack. In: Advances in Cryptology – EU-
ROCRYPT 2006. Ed. by S. Vaudenay. Vol. 4004. LNCS.
Springer, 2006, pp. 183–200. doi: 10.1007/11761679_12

(pp. 36, 168, 173).

[KLL+14] E. B. Kavun, M. M. Lauridsen, G. Leander, C. Rechberger,
P. Schwabe, and T. Yalçın. Prøst v1. Submission to CAE-
SAR: Competition for Authenticated Encryption. Security,
Applicability, and Robustness (Round 1). 2014. url: http:
//competitions.cr.yp.to/round1/proestv1.pdf (pp. 10,
147, 148, 150, 151).

[KLMR16a] S. Kölbl, M. M. Lauridsen, F. Mendel, and C. Rechberger.
Haraka – Efficient Short-Input Hashing for Post-Quantum
Applications. IACR Cryptology ePrint Archive, Report
2016/98. 2016. iacr: 2016/098 (p. 107).

[KLMR16b] S. Kölbl, M. M. Lauridsen, F. Mendel, and C. Rechberger.
Haraka v2 - Efficient Short-Input Hashing for Post-Quantum
Applications. In: IACR Transactions on Symmetric Cryp-
tology 2016.2 (2016), pp. 1–29. doi: 10.13154/tosc.v2016.
i2.1-29. iacr: 2016/098 (p. 106).

253

https://doi.org/10.1007/978-3-319-23318-5_10
https://eprint.iacr.org/2015/134
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.1109/TC.1979.1675242
https://doi.org/10.1109/TC.1979.1675242
https://doi.org/10.1007/11761679_12
http://competitions.cr.yp.to/round1/proestv1.pdf
http://competitions.cr.yp.to/round1/proestv1.pdf
https://eprint.iacr.org/2016/098
https://doi.org/10.13154/tosc.v2016.i2.1-29
https://doi.org/10.13154/tosc.v2016.i2.1-29
https://eprint.iacr.org/2016/098

References

[KMNS13] S. Kölbl, F. Mendel, T. Nad, and M. Schläffer. Differential
Cryptanalysis of Keccak Variants. In: Cryptography and
Coding – IMACC 2013. Ed. by M. Stam. Vol. 8308. LNCS.
Springer, 2013, pp. 141–157. doi: 10.1007/978- 3- 642-

45239-0_9 (pp. 167, 181).

[Knu91] L. R. Knudsen. Cryptanalysis of LOKI. In: Advances in
Cryptology – ASIACRYPT 1991. Ed. by H. Imai, R. L.
Rivest, and T. Matsumoto. Vol. 739. LNCS. Springer, 1991,
pp. 22–35. doi: 10.1007/3-540-57332-1_2 (p. 149).

[Knu93] L. R. Knudsen. Practically Secure Feistel Ciphers. In: Fast
Software Encryption – FSE 1993. Ed. by R. J. Anderson.
Vol. 809. LNCS. Springer, 1993, pp. 211–221. doi: 10.1007/
3-540-58108-1_26 (p. 55).

[Knu94] L. R. Knudsen. Truncated and Higher Order Differentials.
In: Fast Software Encryption – FSE 1994. Ed. by B. Preneel.
Vol. 1008. LNCS. Springer, 1994, pp. 196–211. doi: 10.1007/
3-540-60590-8_16 (pp. 60, 62, 128).

[Knu98] L. Knudsen. DEAL – A 128-bit Block Cipher. Tech. rep.
Technical Report 151. University of Bergen, Department of
Informatics, 1998. url: http://www2.mat.dtu.dk/people/
Lars.R.Knudsen/papers/deal.pdf.gz (p. 62).

[Köl14] S. Kölbl. CryptoSMT: An easy to use tool for cryptanalysis
of symmetric primitives. 2014. url: https://github.com/
kste/cryptosmt (p. 58).

[KPS15] P. Karpman, T. Peyrin, and M. Stevens. Practical Free-
Start Collision Attacks on 76-step SHA-1. In: Advances
in Cryptology – CRYPTO 2015. Ed. by R. Gennaro and
M. Robshaw. Vol. 9215. LNCS. Springer, 2015, pp. 623–
642. doi: 10.1007/978-3-662-47989-6_30. iacr: 2015/530
(pp. 166, 215).

[KR01] J. Kilian and P. Rogaway. How to Protect DES Against
Exhaustive Key Search (an Analysis of DESX). In: Jour-
nal of Cryptology 14.1 (2001), pp. 17–35. doi: 10.1007/

s001450010015 (pp. 28, 71).

[KR07] L. R. Knudsen and V. Rijmen. Known-Key Distinguish-
ers for Some Block Ciphers. In: Advances in Cryptology –
ASIACRYPT 2007. Ed. by K. Kurosawa. Vol. 4833. LNCS.

254

https://doi.org/10.1007/978-3-642-45239-0_9
https://doi.org/10.1007/978-3-642-45239-0_9
https://doi.org/10.1007/3-540-57332-1_2
https://doi.org/10.1007/3-540-58108-1_26
https://doi.org/10.1007/3-540-58108-1_26
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
http://www2.mat.dtu.dk/people/Lars.R.Knudsen/papers/deal.pdf.gz
http://www2.mat.dtu.dk/people/Lars.R.Knudsen/papers/deal.pdf.gz
https://github.com/kste/cryptosmt
https://github.com/kste/cryptosmt
https://doi.org/10.1007/978-3-662-47989-6_30
https://eprint.iacr.org/2015/530
https://doi.org/10.1007/s001450010015
https://doi.org/10.1007/s001450010015

References

Springer, 2007, pp. 315–324. doi: 10.1007/978- 3- 540-

76900-2_19 (p. 129).

[KR11a] L. R. Knudsen and M. Robshaw. The Block Cipher Compan-
ion. Information Security and Cryptography. Springer, 2011.
isbn: 978-3-642-17341-7. doi: 10.1007/978-3-642-17342-4
(p. 17).

[KR11b] T. Krovetz and P. Rogaway. The Software Performance of
Authenticated-Encryption Modes. In: Fast Software Encryp-
tion – FSE 2011. Ed. by A. Joux. Vol. 6733. LNCS. Springer,
2011, pp. 306–327. doi: 10.1007/978-3-642-21702-9_18

(p. 41).

[KR14] T. Krovetz and P. Rogaway. IETF RFC 7253: The OCB
Authenticated-Encryption Algorithm. Internet Engineering
Task Force (IETF) Request for Comments (RFC). 2014.
doi: 10.17487/RFC7253 (p. 160).

[KR96] J. Kilian and P. Rogaway. How to Protect DES Against Ex-
haustive Key Search. In: Advances in Cryptology – CRYPTO
1996. Ed. by N. Koblitz. Vol. 1109. LNCS. Springer, 1996,
pp. 252–267. doi: 10.1007/3-540-68697-5_20 (pp. 28, 71).

[Kra01] H. Krawczyk. The Order of Encryption and Authentication
for Protecting Communications (or: How Secure Is SSL?)
In: Advances in Cryptology – CRYPTO 2001. Ed. by J.
Kilian. Vol. 2139. LNCS. Springer, 2001, pp. 310–331. doi:
10.1007/3-540-44647-8_19. iacr: 2001/045 (p. 41).

[KRS12] D. Khovratovich, C. Rechberger, and A. Savelieva. Bicliques
for Preimages: Attacks on Skein-512 and the SHA-2 Family.
In: Fast Software Encryption – FSE 2012. Ed. by A. Can-
teaut. Vol. 7549. LNCS. Springer, 2012, pp. 244–263. doi:
10.1007/978-3-642-34047-5_15 (p. 173).

[KS05] J. Kelsey and B. Schneier. Second Preimages on n-Bit
Hash Functions for Much Less than 2n Work. In: Ad-
vances in Cryptology – EUROCRYPT 2005. Ed. by R.
Cramer. Vol. 3494. LNCS. Springer, 2005, pp. 474–490. doi:
10.1007/11426639_28 (pp. 36, 168, 173).

[KS07] L. Keliher and J. Sui. Exact maximum expected differential
and linear probability for two-round Advanced Encryp-
tion Standard. In: IET Information Security 1.2 (2007),

255

https://doi.org/10.1007/978-3-540-76900-2_19
https://doi.org/10.1007/978-3-540-76900-2_19
https://doi.org/10.1007/978-3-642-17342-4
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.17487/RFC7253
https://doi.org/10.1007/3-540-68697-5_20
https://doi.org/10.1007/3-540-44647-8_19
https://eprint.iacr.org/2001/045
https://doi.org/10.1007/978-3-642-34047-5_15
https://doi.org/10.1007/11426639_28

References

pp. 53–57. doi: 10.1049/iet-ifs:20060161. iacr: 2005/321
(p. 115).

[KW02] L. R. Knudsen and D. Wagner. Integral Cryptanalysis. In:
Fast Software Encryption – FSE 2002. Ed. by J. Daemen
and V. Rijmen. Vol. 2365. LNCS. Springer, 2002, pp. 112–
127. doi: 10.1007/3-540-45661-9_9 (p. 63).

[KY00a] J. Katz and M. Yung. Complete characterization of security
notions for probabilistic private-key encryption. In: Sym-
posium on Theory of Computing – STOC 2000. Ed. by
F. F. Yao and E. M. Luks. ACM, 2000, pp. 245–254. doi:
10.1145/335305.335335 (p. 31).

[KY00b] J. Katz and M. Yung. Unforgeable Encryption and Chosen
Ciphertext Secure Modes of Operation. In: Fast Software
Encryption – FSE 2000. Ed. by B. Schneier. Vol. 1978.
LNCS. Springer, 2000, pp. 284–299. doi: 10.1007/3-540-
44706-7_20 (pp. 39, 40).

[LA97] C. M. Li and Anbulagan. Heuristics Based on Unit Propa-
gation for Satisfiability Problems. In: Artificial Intelligence –
IJCAI 1997. Morgan Kaufmann, 1997, pp. 366–371 (pp. 187,
189).

[Laf13] F. Lafitte. CryptoSAT. 2013. url: https://qualsec.ulb.
ac.be/people/frederic-lafitte/cryptosat/ (p. 58).

[Lai94] X. Lai. Higher Order Derivatives and Differential Crypt-
analysis. In: Communications and Cryptography: Two Sides
of One Tapestry. Ed. by R. E. Blahut, D. J. Costello Jr., U.
Maurer, and T. Mittelholzer. Vol. 276. International Series
in Engineering and Computer Science. Kluwer Academic
Publishers, 1994, pp. 227–233. doi: 10.1007/978-1-4615-
2694-0_23 (pp. 44, 62, 128, 132).

[Lam79] L. Lamport. Constructing digital signatures from a one-
way function. Tech. rep. SRI-CSL-98. SRI International
Computer Science Laboratory, 1979. url: http://research.
microsoft.com/en-us/um/people/lamport/pubs/dig-sig.

pdf (p. 110).

[Leu12] G. Leurent. Analysis of Differential Attacks in ARX Con-
structions. In: Advances in Cryptology – ASIACRYPT 2012.
Ed. by X. Wang and K. Sako. Vol. 7658. LNCS. Springer,

256

https://doi.org/10.1049/iet-ifs:20060161
https://eprint.iacr.org/2005/321
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1145/335305.335335
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-44706-7_20
https://qualsec.ulb.ac.be/people/frederic-lafitte/cryptosat/
https://qualsec.ulb.ac.be/people/frederic-lafitte/cryptosat/
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-1-4615-2694-0_23
http://research.microsoft.com/en-us/um/people/lamport/pubs/dig-sig.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/dig-sig.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/dig-sig.pdf

References

2012, pp. 226–243. doi: 10.1007/978-3-642-34961-4_15

(pp. 59, 167, 178, 180).

[Leu13] G. Leurent. Construction of Differential Characteristics
in ARX Designs Application to Skein. In: Advances in
Cryptology – CRYPTO 2013. Ed. by R. Canetti and J. A.
Garay. Vol. 8042. LNCS. Springer, 2013, pp. 241–258. doi:
10.1007/978-3-642-40041-4_14 (pp. 59, 167, 178, 180).

[Leu15] G. Leurent. Differential Forgery Attack Against LAC. In:
Selected Areas in Cryptography – SAC 2015. Ed. by O.
Dunkelman and L. Keliher. Vol. 9566. LNCS. Springer,
2015, pp. 217–224. doi: 10.1007/978-3-319-31301-6_13

(p. 86).

[LH94] S. K. Langford and M. E. Hellman. Differential-Linear
Cryptanalysis. In: Advances in Cryptology – CRYPTO
1994. Ed. by Y. Desmedt. Vol. 839. LNCS. Springer, 1994,
pp. 17–25. doi: 10.1007/3-540-48658-5_3 (p. 63).

[Lib00] P. Liberatore. On the complexity of choosing the branching
literal in DPLL. In: Artif. Intell. 116.1-2 (2000), pp. 315–326.
doi: 10.1016/S0004-3702(99)00097-1 (p. 187).

[LIS12] J. Li, T. Isobe, and K. Shibutani. Converting Meet-In-
The-Middle Preimage Attack into Pseudo Collision Attack:
Application to SHA-2. In: Fast Software Encryption – FSE
2012. Ed. by A. Canteaut. Vol. 7549. LNCS. Springer, 2012,
pp. 264–286. doi: 10.1007/978-3-642-34047-5_16 (pp. 173,
174).

[LJSH08] Y. Lee, K. Jeong, J. Sung, and S. Hong. Related-Key Chosen
IV Attacks on Grain-v1 and Grain-128. In: Information
Security and Privacy – ACISP 2008. Ed. by Y. Mu, W.
Susilo, and J. Seberry. Vol. 5107. LNCS. Springer, 2008,
pp. 321–335. doi: 10.1007/978-3-540-70500-0_24 (p. 150).

[LM01] H. Lipmaa and S. Moriai. Efficient Algorithms for Comput-
ing Differential Properties of Addition. In: Fast Software
Encryption – FSE 2001. Ed. by M. Matsui. Vol. 2355. LNCS.
Springer, 2001, pp. 336–350. doi: 10.1007/3-540-45473-

X_28. iacr: 2001/001 (p. 46).

[LM11] M. Lamberger and F. Mendel. Higher-Order Differential
Attack on Reduced SHA-256. IACR Cryptology ePrint
Archive, Report 2011/37. 2011. iacr: 2011/037 (p. 174).

257

https://doi.org/10.1007/978-3-642-34961-4_15
https://doi.org/10.1007/978-3-642-40041-4_14
https://doi.org/10.1007/978-3-319-31301-6_13
https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1016/S0004-3702(99)00097-1
https://doi.org/10.1007/978-3-642-34047-5_16
https://doi.org/10.1007/978-3-540-70500-0_24
https://doi.org/10.1007/3-540-45473-X_28
https://doi.org/10.1007/3-540-45473-X_28
https://eprint.iacr.org/2001/001
https://eprint.iacr.org/2011/037

References

[LM92] X. Lai and J. L. Massey. Hash Function Based on Block
Ciphers. In: Advances in Cryptology – EUROCRYPT 1992.
Ed. by R. A. Rueppel. Vol. 658. LNCS. Springer, 1992,
pp. 55–70. doi: 10.1007/3-540-47555-9_5 (pp. 36, 53).

[LMM91] X. Lai, J. L. Massey, and S. Murphy. Markov Ciphers and
Differential Cryptanalysis. In: Advances in Cryptology –
EUROCRYPT 1991. Ed. by D. W. Davies. Vol. 547. LNCS.
Springer, 1991, pp. 17–38. doi: 10.1007/3- 540- 46416-

6_2. url: http://www.isg.rhul.ac.uk/~sean/xuejia.pdf
(pp. 44, 47, 48, 60).

[LMS+15] M. Lamberger, F. Mendel, M. Schläffer, C. Rechberger, and
V. Rijmen. The Rebound Attack and Subspace Distinguish-
ers: Application to Whirlpool. In: Journal of Cryptology
28.2 (2015), pp. 257–296. doi: 10.1007/s00145-013-9166-5
(p. 54).

[LP13] F. Landelle and T. Peyrin. Cryptanalysis of Full RIPEMD-
128. In: Advances in Cryptology – EUROCRYPT 2013.
Ed. by T. Johansson and P. Q. Nguyen. Vol. 7881. LNCS.
Springer, 2013, pp. 228–244. doi: 10.1007/978- 3- 642-

38348-9_14 (pp. 166, 178).

[LR88] M. Luby and C. Rackoff. How to Construct Pseudorandom
Permutations from Pseudorandom Functions. In: SIAM
Journal on Computing 17.2 (1988), pp. 373–386. doi: 10.
1137/0217022 (p. 27).

[LRW02] M. Liskov, R. L. Rivest, and D. Wagner. Tweakable Block
Ciphers. In: Advances in Cryptology – CRYPTO 2002. Ed.
by M. Yung. Vol. 2442. LNCS. Springer, 2002, pp. 31–46.
doi: 10.1007/3-540-45708-9_3 (pp. 24, 41, 69).

[LRW11] M. Liskov, R. L. Rivest, and D. Wagner. Tweakable Block
Ciphers. In: Journal of Cryptology 24.3 (2011), pp. 588–613.
doi: 10.1007/s00145-010-9073-y (pp. 24, 41).

[Luc05] S. Lucks. A Failure-Friendly Design Principle for Hash Func-
tions. In: Advances in Cryptology – ASIACRYPT 2005. Ed.
by B. K. Roy. Vol. 3788. Lecture Notes in Computer Science.
Springer, 2005, pp. 474–494. doi: 10.1007/11593447_26

(p. 36).

258

https://doi.org/10.1007/3-540-47555-9_5
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/3-540-46416-6_2
http://www.isg.rhul.ac.uk/~sean/xuejia.pdf
https://doi.org/10.1007/s00145-013-9166-5
https://doi.org/10.1007/978-3-642-38348-9_14
https://doi.org/10.1007/978-3-642-38348-9_14
https://doi.org/10.1137/0217022
https://doi.org/10.1137/0217022
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/s00145-010-9073-y
https://doi.org/10.1007/11593447_26

References

[LW17] A. K. Lenstra and B. Wesolowski. Trustworthy public ran-
domness with sloth, unicorn, and trx. In: International Jour-
nal of Applied Cryptography (IJACT) 3.4 (2017), pp. 330–
343. doi: 10.1504/IJACT.2017.10010315. iacr: 2015/366

(p. 213).

[Man11] S. Manuel. Classification and generation of disturbance
vectors for collision attacks against SHA-1. In: Designs,
Codes and Cryptography 59.1-3 (2011), pp. 247–263. doi:
10.1007/s10623-010-9458-9. iacr: 2008/469 (pp. 215, 217).

[Mas93] J. L. Massey. SAFER K-64: A Byte-Oriented Block-Cipher-
ing Algorithm. In: Fast Software Encryption – FSE 1993.
Ed. by R. J. Anderson. Vol. 809. LNCS. Springer, 1993,
pp. 1–17. doi: 10.1007/3-540-58108-1_1 (p. 20).

[Mat93] M. Matsui. Linear Cryptanalysis Method for DES Cipher.
In: Advances in Cryptology – EUROCRYPT 1993. Ed. by
T. Helleseth. Vol. 765. LNCS. Springer, 1993, pp. 386–397.
doi: 10.1007/3-540-48285-7_33 (p. 166).

[Mat94] M. Matsui. On Correlation Between the Order of S-boxes
and the Strength of DES. In: Advances in Cryptology – EU-
ROCRYPT 1994. Ed. by A. D. Santis. Vol. 950. LNCS.
Springer, 1994, pp. 366–375. doi: 10 . 1007 / BFb0053451

(pp. 59, 63).

[Mat96] M. Matsui. New Structure of Block Ciphers with Provable
Security against Differential and Linear Cryptanalysis. In:
Fast Software Encryption – FSE 1996. Ed. by D. Gollmann.
Vol. 1039. LNCS. Springer, 1996, pp. 205–218. doi: 10.1007/
3-540-60865-6_54 (p. 55).

[Mat97] M. Matsui. New Block Encryption Algorithm MISTY. In:
Fast Software Encryption – FSE 1997. Ed. by E. Biham.
Vol. 1267. LNCS. Springer, 1997, pp. 54–68. doi: 10.1007/
BFb0052334 (p. 55).

[MDV17] S. Mella, J. Daemen, and G. Van Assche. New techniques for
trail bounds and application to differential trails in Keccak.
In: IACR Transactions on Symmetric Cryptology 2017.1
(2017), pp. 329–357. doi: 10.13154/tosc.v2017.i1.329-357.
iacr: 2017/181 (p. 59).

259

https://doi.org/10.1504/IJACT.2017.10010315
https://eprint.iacr.org/2015/366
https://doi.org/10.1007/s10623-010-9458-9
https://eprint.iacr.org/2008/469
https://doi.org/10.1007/3-540-58108-1_1
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/BFb0053451
https://doi.org/10.1007/3-540-60865-6_54
https://doi.org/10.1007/3-540-60865-6_54
https://doi.org/10.1007/BFb0052334
https://doi.org/10.1007/BFb0052334
https://doi.org/10.13154/tosc.v2017.i1.329-357
https://eprint.iacr.org/2017/181

References

[Men15] B. Mennink. Optimally Secure Tweakable Blockciphers. In:
Fast Software Encryption – FSE 2015. Ed. by G. Leander.
Vol. 9054. LNCS. Springer, 2015, pp. 428–448. doi: 10.1007/
978-3-662-48116-5_21. iacr: 2015/363 (p. 41).

[Men16] B. Mennink. XPX: Generalized Tweakable Even-Mansour
with Improved Security Guarantees. In: Advances in Cryp-
tology – CRYPTO 2016. Ed. by M. Robshaw and J. Katz.
Vol. 9814. LNCS. Springer, 2016, pp. 64–94. doi: 10.1007/
978-3-662-53018-4_3. iacr: 2015/476 (p. 160).

[Mer79] R. C. Merkle. Secrecy, Authentication, and Public Key
Systems. PhD thesis. California: Departement of electrical
engineering, Stanford University, 1979. url: http://www.
merkle.com/papers/Thesis1979.pdf (pp. 34, 35).

[Mer89] R. C. Merkle. One Way Hash Functions and DES. In: Ad-
vances in Cryptology – CRYPTO 1989. Ed. by G. Bras-
sard. Vol. 435. LNCS. Springer, 1989, pp. 428–446. doi:
10.1007/0-387-34805-0_40 (pp. 35, 53, 170, 173).

[Min14] K. Minematsu. Parallelizable Rate-1 Authenticated En-
cryption from Pseudorandom Functions. In: Advances in
Cryptology – EUROCRYPT 2014. Ed. by P. Q. Nguyen and
E. Oswald. Vol. 8441. LNCS. Springer, 2014, pp. 275–292.
doi: 10.1007/978-3-642-55220-5_16 (pp. 148, 151).

[MJSC16] P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet.
Towards Stream Ciphers for Efficient FHE with Low-Noise
Ciphertexts. In: Advances in Cryptology – EUROCRYPT
2016. Ed. by M. Fischlin and J.-S. Coron. Vol. 9665. LNCS.
Springer, 2016, pp. 311–343. doi: 10.1007/978- 3- 662-

49890-3_13. iacr: 2016/254 (p. 129).

[MMZ+01] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an Efficient SAT Solver.
In: Design Automation Conference – DAC 2001. ACM,
2001, pp. 530–535. doi: 10.1145/378239.379017. url: http:
//doi.acm.org/10.1145/378239.379017 (p. 188).

[MNS11a] F. Mendel, T. Nad, and M. Schläffer. Cryptanalysis of
Round-Reduced HAS-160. In: Information Security and
Cryptology – ICISC 2011. Ed. by H. Kim. Vol. 7259. LNCS.
Springer, 2011, pp. 33–47. doi: 10.1007/978-3-642-31912-
9_3 (pp. 167, 180).

260

https://doi.org/10.1007/978-3-662-48116-5_21
https://doi.org/10.1007/978-3-662-48116-5_21
https://eprint.iacr.org/2015/363
https://doi.org/10.1007/978-3-662-53018-4_3
https://doi.org/10.1007/978-3-662-53018-4_3
https://eprint.iacr.org/2015/476
http://www.merkle.com/papers/Thesis1979.pdf
http://www.merkle.com/papers/Thesis1979.pdf
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/978-3-642-55220-5_16
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-662-49890-3_13
https://eprint.iacr.org/2016/254
https://doi.org/10.1145/378239.379017
http://doi.acm.org/10.1145/378239.379017
http://doi.acm.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-642-31912-9_3
https://doi.org/10.1007/978-3-642-31912-9_3

References

[MNS11b] F. Mendel, T. Nad, and M. Schläffer. Finding SHA-2 Char-
acteristics: Searching through a Minefield of Contradictions.
In: Advances in Cryptology – ASIACRYPT 2011. Ed. by
D. H. Lee and X. Wang. Vol. 7073. LNCS. Springer, 2011,
pp. 288–307. doi: 10.1007/978-3-642-25385-0_16 (pp. 11,
59, 61, 165, 167, 168, 171, 172, 174–180, 188, 189, 191, 194,
201).

[MNS12] F. Mendel, T. Nad, and M. Schläffer. Collision Attacks
on the Reduced Dual-Stream Hash Function RIPEMD-
128. In: Fast Software Encryption – FSE 2012. Ed. by A.
Canteaut. Vol. 7549. LNCS. Springer, 2012, pp. 226–243.
doi: 10.1007/978-3-642-34047-5_14 (p. 167).

[MNS13a] F. Mendel, T. Nad, and M. Schläffer. Finding Collisions for
Round-Reduced SM3. In: Topics in Cryptology – CT-RSA
2013. Ed. by E. Dawson. Vol. 7779. LNCS. Springer, 2013,
pp. 174–188. doi: 10.1007/978-3-642-36095-4_12 (pp. 167,
178).

[MNS13b] F. Mendel, T. Nad, and M. Schläffer. Improving Local
Collisions: New Attacks on Reduced SHA-256. In: Advances
in Cryptology – EUROCRYPT 2013. Ed. by T. Johansson
and P. Q. Nguyen. Vol. 7881. LNCS. Springer, 2013, pp. 262–
278. doi: 10.1007/978-3-642-38348-9_16 (pp. 11, 59, 165,
167, 168, 174–178, 192, 194, 197, 200, 201).

[MNSS12] F. Mendel, T. Nad, S. Scherz, and M. Schläffer. Differential
Attacks on Reduced RIPEMD-160. In: Information Security
– ISC 2012. Ed. by D. Gollmann and F. C. Freiling. Vol. 7483.
LNCS. Springer, 2012, pp. 23–38. doi: 10.1007/978-3-642-
33383-5_2 (pp. 166, 167, 178).

[Mor15] P. Morawiecki. Malicious Keccak. In: IACR Cryptology
ePrint Archive, Report 2015/1085 (2015). iacr: 2015/1085
(p. 213).

[MP13] N. Mouha and B. Preneel. Towards Finding Optimal Dif-
ferential Characteristics for ARX: Application to Salsa20.
IACR Cryptology ePrint Archive, Report 2013/328. 2013.
iacr: 2013/328 (p. 58).

[MPRR06a] F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen.
Analysis of Step-Reduced SHA-256. In: Fast Software En-
cryption – FSE 2006. Ed. by M. J. B. Robshaw. Vol. 4047.

261

https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-34047-5_14
https://doi.org/10.1007/978-3-642-36095-4_12
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-33383-5_2
https://doi.org/10.1007/978-3-642-33383-5_2
https://eprint.iacr.org/2015/1085
https://eprint.iacr.org/2013/328

References

LNCS. Springer, 2006, pp. 126–143. doi: 10.1007/11799313_
9. iacr: 2008/130 (p. 173).

[MPRR06b] F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen.
The Impact of Carries on the Complexity of Collision At-
tacks on SHA-1. In: Fast Software Encryption – FSE 2006.
Ed. by M. J. B. Robshaw. Vol. 4047. LNCS. Springer, 2006,
pp. 278–292. doi: 10.1007/11799313_18 (p. 217).

[MPS+13] F. Mendel, T. Peyrin, M. Schläffer, L. Wang, and S. Wu.
Improved Cryptanalysis of Reduced RIPEMD-160. In: Ad-
vances in Cryptology – ASIACRYPT 2013. Ed. by K. Sako
and P. Sarkar. Vol. 8270. LNCS. Springer, 2013, pp. 484–
503. doi: 10.1007/978-3-642-42045-0_25. iacr: 2013/600
(p. 167).

[MRH04] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentia-
bility, Impossibility Results on Reductions, and Applications
to the Random Oracle Methodology. In: Theory of Cryp-
tography – TCC 2004. Ed. by M. Naor. Vol. 2951. LNCS.
Springer, 2004, pp. 21–39. doi: 10.1007/978-3-540-24638-
1_2. iacr: 2003/161 (p. 35).

[MRST09] F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen.
The Rebound Attack: Cryptanalysis of Reduced Whirlpool
and Grøstl. In: Fast Software Encryption – FSE 2009. Ed. by
O. Dunkelman. Vol. 5665. LNCS. Springer, 2009, pp. 260–
276. doi: 10.1007/978-3-642-03317-9_16 (p. 54).

[MRV15] B. Mennink, R. Reyhanitabar, and D. Vizár. Security of
Full-State Keyed Sponge and Duplex: Applications to Au-
thenticated Encryption. In: Advances in Cryptology – ASIA-
CRYPT 2015. Ed. by T. Iwata and J. H. Cheon. Vol. 9453.
LNCS. Springer, 2015, pp. 465–489. doi: 10.1007/978-3-
662-48800-3_19. iacr: 2015/541 (p. 42).

[Mur90] S. Murphy. The Cryptanalysis of FEAL-4 with 20 Chosen
Plaintexts. In: Journal of Cryptology 2.3 (1990), pp. 145–
154. doi: 10.1007/BF00190801. url: http://www.isg.rhul.
ac.uk/~sean/feal.pdf (p. 44).

[MV04] D. A. McGrew and J. Viega. The Security and Perfor-
mance of the Galois/Counter Mode (GCM) of Operation.
In: Progress in Cryptology – INDOCRYPT 2004. Ed. by A.
Canteaut and K. Viswanathan. Vol. 3348. LNCS. Springer,

262

https://doi.org/10.1007/11799313_9
https://doi.org/10.1007/11799313_9
https://eprint.iacr.org/2008/130
https://doi.org/10.1007/11799313_18
https://doi.org/10.1007/978-3-642-42045-0_25
https://eprint.iacr.org/2013/600
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://eprint.iacr.org/2003/161
https://doi.org/10.1007/978-3-642-03317-9_16
https://doi.org/10.1007/978-3-662-48800-3_19
https://doi.org/10.1007/978-3-662-48800-3_19
https://eprint.iacr.org/2015/541
https://doi.org/10.1007/BF00190801
http://www.isg.rhul.ac.uk/~sean/feal.pdf
http://www.isg.rhul.ac.uk/~sean/feal.pdf

References

2004, pp. 343–355. doi: 10.1007/978-3-540-30556-9_27.
iacr: 2004/193 (pp. 38, 41).

[MWGP11] N. Mouha, Q. Wang, D. Gu, and B. Preneel. Differential and
Linear Cryptanalysis Using Mixed-Integer Linear Program-
ming. In: Information Security and Cryptology – Inscrypt
2011. Ed. by C. Wu, M. Yung, and D. Lin. Vol. 7537. LNCS.
Springer, 2011, pp. 57–76. doi: 10.1007/978-3-642-34704-
7_5 (pp. 58, 111).

[MY92] M. Matsui and A. Yamagishi. A New Method for Known
Plaintext Attack of FEAL Cipher. In: Advances in Cryptol-
ogy – EUROCRYPT 1992. Ed. by R. A. Rueppel. Vol. 658.
LNCS. Springer, 1992, pp. 81–91. doi: 10.1007/3- 540-

47555-9_7 (p. 166).

[Nat85] National Institute of Standards and Technology. NIST FIPS
PUB 113: Computer Data Authentication. National In-
stitute of Standards and Technology (NIST) Federal In-
formation Processing Standards (FIPS) Publication. 1985.
url: http://csrc.nist.gov/publications/fips/fips113/
fips113.html (p. 38).

[NB08] I. Nikolić and A. Biryukov. Collisions for Step-Reduced
SHA-256. In: Fast Software Encryption – FSE 2008. Ed. by
K. Nyberg. Vol. 5086. LNCS. Springer, 2008, pp. 1–15. doi:
10.1007/978-3-540-71039-4_1 (p. 174).

[Nik15] I. Nikolić. Tiaoxin v2. Submission to CAESAR: Competition
for Authenticated Encryption. Security, Applicability, and
Robustness (Round 2). 2015. url: http://competitions.

cr.yp.to/round2/tiaoxinv2.pdf (p. 106).

[NK92] K. Nyberg and L. R. Knudsen. Provable Security Against
Differential Cryptanalysis. In: Advances in Cryptology –
CRYPTO 1992. Ed. by E. F. Brickell. Vol. 740. LNCS.
Springer, 1992, pp. 566–574. doi: 10.1007/3-540-48071-

4_41 (pp. 45, 55).

[NK95] K. Nyberg and L. R. Knudsen. Provable Security Against
a Differential Attack. In: Journal of Cryptology 8.1 (1995),
pp. 27–37. doi: 10.1007/BF00204800 (pp. 45, 55).

263

https://doi.org/10.1007/978-3-540-30556-9_27
https://eprint.iacr.org/2004/193
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/3-540-47555-9_7
https://doi.org/10.1007/3-540-47555-9_7
http://csrc.nist.gov/publications/fips/fips113/fips113.html
http://csrc.nist.gov/publications/fips/fips113/fips113.html
https://doi.org/10.1007/978-3-540-71039-4_1
http://competitions.cr.yp.to/round2/tiaoxinv2.pdf
http://competitions.cr.yp.to/round2/tiaoxinv2.pdf
https://doi.org/10.1007/3-540-48071-4_41
https://doi.org/10.1007/3-540-48071-4_41
https://doi.org/10.1007/BF00204800

References

[NLV11] M. Naehrig, K. E. Lauter, and V. Vaikuntanathan. Can
homomorphic encryption be practical? In: Cloud Computing
Security – CCSW 2011. Ed. by C. Cachin and T. Ristenpart.
ACM, 2011, pp. 113–124. doi: 10.1145/2046660.2046682.
iacr: 2011/405 (p. 128).

[NRS13] C. Namprempre, P. Rogaway, and T. Shrimpton. AE5 Se-
curity Notions: Definitions Implicit in the CAESAR Call.
IACR Cryptology ePrint Archive, Report 2013/242. 2013.
iacr: 2013/242 (p. 39).

[NRS14] C. Namprempre, P. Rogaway, and T. Shrimpton. Recon-
sidering Generic Composition. In: Advances in Cryptology
– EUROCRYPT 2014. Ed. by P. Q. Nguyen and E. Os-
wald. Vol. 8441. LNCS. Springer, 2014, pp. 257–274. doi:
10.1007/978-3-642-55220-5_15. iacr: 2014/206 (p. 41).

[Nyb93] K. Nyberg. Differentially Uniform Mappings for Cryptogra-
phy. In: Advances in Cryptology – EUROCRYPT 1993. Ed.
by T. Helleseth. Vol. 765. LNCS. Springer, 1993, pp. 55–64.
doi: 10.1007/3-540-48285-7_6 (p. 45).

[Ouy98] M. Ouyang. How Good Are Branching Rules in DPLL? In:
Discrete Applied Mathematics 89.1-3 (1998), pp. 281–286.
doi: 10.1016/S0166-218X(98)00045-6 (p. 187).

[Pey09] T. Peyrin. Chosen-salt, chosen-counter, pseudo-collision for
the compression function of SHAvite-3. NIST mailing list.
2009. url: http://ehash.iaik.tugraz.at/uploads/e/ea/
Peyrin-SHAvite-3.txt (p. 107).

[PGV93a] B. Preneel, R. Govaerts, and J. Vandewalle. Differential
Cryptanalysis of Hash Functions Based on Block Ciphers.
In: Computer and Communications Security – CCS 1993.
Ed. by D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu,
and V. Ashby. ACM, 1993, pp. 183–188. doi: 10.1145/

168588.168611 (p. 54).

[PGV93b] B. Preneel, R. Govaerts, and J. Vandewalle. Hash Func-
tions Based on Block Ciphers: A Synthetic Approach. In:
Advances in Cryptology – CRYPTO 1993. Ed. by D. R.
Stinson. Vol. 773. LNCS. Springer, 1993, pp. 368–378. doi:
10.1007/3- 540- 48329- 2_31. url: https://www.esat.

kuleuven.be/cosic/publications/article-48.pdf (p. 28).

264

https://doi.org/10.1145/2046660.2046682
https://eprint.iacr.org/2011/405
https://eprint.iacr.org/2013/242
https://doi.org/10.1007/978-3-642-55220-5_15
https://eprint.iacr.org/2014/206
https://doi.org/10.1007/3-540-48285-7_6
https://doi.org/10.1016/S0166-218X(98)00045-6
http://ehash.iaik.tugraz.at/uploads/e/ea/Peyrin-SHAvite-3.txt
http://ehash.iaik.tugraz.at/uploads/e/ea/Peyrin-SHAvite-3.txt
https://doi.org/10.1145/168588.168611
https://doi.org/10.1145/168588.168611
https://doi.org/10.1007/3-540-48329-2_31
https://www.esat.kuleuven.be/cosic/publications/article-48.pdf
https://www.esat.kuleuven.be/cosic/publications/article-48.pdf

References

[PRR05] N. Pramstaller, C. Rechberger, and V. Rijmen. Exploiting
Coding Theory for Collision Attacks on SHA-1. In: Cryp-
tography and Coding – IMA 2005. Ed. by N. P. Smart.
Vol. 3796. LNCS. Springer, 2005, pp. 78–95. doi: 10.1007/
11586821_7 (pp. 215, 217).

[PS16] T. Peyrin and Y. Seurin. Counter-in-Tweak: Authenticated
Encryption Modes for Tweakable Block Ciphers. In: Ad-
vances in Cryptology – CRYPTO 2016. Ed. by M. Robshaw
and J. Katz. Vol. 9814. LNCS. Springer, 2016, pp. 33–63.
doi: 10.1007/978- 3- 662- 53018- 4_2. iacr: 2015/1049

(p. 41).

[PW13] E. Pasalic and Y. Wei. Generic related-key and induced
chosen IV attacks using the method of key differentiation.
IACR Cryptology ePrint Archive, Report 2013/586. 2013.
iacr: 2013/586 (p. 150).

[Rab78] M. O. Rabin. Digitalized Signatures. In: Foundations of
Secure Computation. Ed. by R. A. DeMillo, R. J. Lipton,
D. P. Dobkin, and A. K. Jones. Academic Press, 1978,
pp. 155–168. isbn: 0122103505. url: https://smartech.

gatech.edu/handle/1853/40598 (p. 34).

[RBBK01] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a
block-cipher mode of operation for efficient authenticated
encryption. In: Computer and Communications Security –
CCS 2001. Ed. by M. K. Reiter and P. Samarati. ACM, 2001,
pp. 196–205. doi: 10.1145/501983.502011. iacr: 2001/026.
url: http : / / web . cs . ucdavis . edu / ~rogaway / ocb / ocb -

full.pdf (pp. 31, 39).

[RDP+96] V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. D.
Win. The Cipher SHARK. In: Fast Software Encryption –
FSE 1996. Ed. by D. Gollmann. Vol. 1039. LNCS. Springer,
1996, pp. 99–111. doi: 10.1007/3-540-60865-6_47 (p. 56).

[RO05] V. Rijmen and E. Oswald. Update on SHA-1. In: Topics in
Cryptology – CT-RSA 2005. Ed. by A. Menezes. Vol. 3376.
LNCS. Springer, 2005, pp. 58–71. doi: 10.1007/978-3-540-
30574-3_6. iacr: 2005/10 (p. 215).

[Rog02] P. Rogaway. Authenticated-encryption with associated-data.
In: Computer and Communications Security – CCS 2002.
Ed. by V. Atluri. ACM, 2002, pp. 98–107. doi: 10.1145/

265

https://doi.org/10.1007/11586821_7
https://doi.org/10.1007/11586821_7
https://doi.org/10.1007/978-3-662-53018-4_2
https://eprint.iacr.org/2015/1049
https://eprint.iacr.org/2013/586
https://smartech.gatech.edu/handle/1853/40598
https://smartech.gatech.edu/handle/1853/40598
https://doi.org/10.1145/501983.502011
https://eprint.iacr.org/2001/026
http://web.cs.ucdavis.edu/~rogaway/ocb/ocb-full.pdf
http://web.cs.ucdavis.edu/~rogaway/ocb/ocb-full.pdf
https://doi.org/10.1007/3-540-60865-6_47
https://doi.org/10.1007/978-3-540-30574-3_6
https://doi.org/10.1007/978-3-540-30574-3_6
https://eprint.iacr.org/2005/10
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125

References

586110.586125. url: http://web.cs.ucdavis.edu/~rogaway/
papers/ad.pdf (p. 39).

[Rog04a] P. Rogaway. Efficient Instantiations of Tweakable Block-
ciphers and Refinements to Modes OCB and PMAC. In:
Advances in Cryptology – ASIACRYPT 2004. Ed. by P. J.
Lee. Vol. 3329. LNCS. Springer, 2004, pp. 16–31. doi: 10.
1007/978-3-540-30539-2_2. url: http://web.cs.ucdavis.
edu/~rogaway/papers/offsets.pdf (pp. 5, 26, 28, 41).

[Rog04b] P. Rogaway. Nonce-Based Symmetric Encryption. In: Fast
Software Encryption – FSE 2004. Ed. by B. K. Roy and
W. Meier. Vol. 3017. LNCS. Springer, 2004, pp. 348–359.
doi: 10.1007/978-3-540-25937-4_22 (pp. 30, 39, 150).

[Rog11] P. Rogaway. Evaluation of Some Blockcipher Modes of
Operation. Tech. Report CRYPTREC. 2011. url: https:
//www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf

(pp. 31, 39).

[Røn16] S. Rønjom. Invariant subspaces in Simpira. IACR Cryptol-
ogy ePrint Archive, Report 2016/248. 2016. iacr: 2016/248
(pp. 107, 124, 126).

[RS04] P. Rogaway and T. Shrimpton. Cryptographic Hash-Function
Basics: Definitions, Implications, and Separations for Preim-
age Resistance, Second-Preimage Resistance, and Collision
Resistance. In: Fast Software Encryption – FSE 2004. Ed.
by B. K. Roy and W. Meier. Vol. 3017. LNCS. Springer,
2004, pp. 371–388. doi: 10.1007/978-3-540-25937-4_24.
iacr: 2004/35 (p. 34).

[RS06] P. Rogaway and T. Shrimpton. A Provable-Security Treat-
ment of the Key-Wrap Problem. In: Advances in Cryptology
– EUROCRYPT 2006. Ed. by S. Vaudenay. Vol. 4004. LNCS.
Springer, 2006, pp. 373–390. doi: 10.1007/11761679_23.
iacr: 2006/221 (p. 40).

[RWZ12] P. Rogaway, M. Wooding, and H. Zhang. The Security of
Ciphertext Stealing. In: Fast Software Encryption – FSE
2012. Ed. by A. Canteaut. Vol. 7549. LNCS. Springer, 2012,
pp. 180–195. doi: 10.1007/978-3-642-34047-5_11 (p. 32).

266

https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
http://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf
https://doi.org/10.1007/978-3-540-25937-4_22
https://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf
https://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf
https://eprint.iacr.org/2016/248
https://doi.org/10.1007/978-3-540-25937-4_24
https://eprint.iacr.org/2004/35
https://doi.org/10.1007/11761679_23
https://eprint.iacr.org/2006/221
https://doi.org/10.1007/978-3-642-34047-5_11

References

[SB02] A. A. Selçuk and A. Biçak. On Probability of Success in
Linear and Differential Cryptanalysis. In: Security in Com-
munication Networks – SCN 2002. Ed. by S. Cimato, C.
Galdi, and G. Persiano. Vol. 2576. LNCS. Springer, 2002,
pp. 174–185. doi: 10.1007/3-540-36413-7_13 (pp. 51, 96).

[SBK+17] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y.
Markov. The First Collision for Full SHA-1. In: Advances
in Cryptology – CRYPTO 2017. Ed. by J. Katz and H.
Shacham. Vol. 10401. LNCS. Springer, 2017, pp. 570–596.
doi: 10.1007/978-3-319-63688-7_19. iacr: 2017/190. url:
https://shattered.io (pp. 59, 166, 215, 224).

[Sel08] A. A. Selçuk. On Probability of Success in Linear and
Differential Cryptanalysis. In: Journal of Cryptology 21.1
(2008), pp. 131–147. doi: 10.1007/s00145- 007- 9013- 7

(p. 51).

[SFKR] B. Schneier, M. Fredrikson, T. Kohno, and T. Ristenpart.
Surreptitiously Weakening Cryptographic Systems. iacr:
2015/097 (p. 213).

[Sha49] C. E. Shannon. Communication Theory of Secrecy Systems.
In: Bell System Technical Journal 28.4 (1949), pp. 656–715.
doi: 10.1002/j.1538-7305.1949.tb00928.x (pp. 18, 23, 26).

[SHW+14a] S. Sun, L. Hu, M. Wang, P. Wang, K. Qiao, X. Ma, D. Shi,
L. Song, and K. Fu. Towards Finding the Best Character-
istics of Some Bit-oriented Block Ciphers and Automatic
Enumeration of (Related-key) Differential and Linear Char-
acteristics with Predefined Properties. IACR Cryptology
ePrint Archive, Report 2014/747. 2014. iacr: 2014/747

(pp. 59, 77).

[SHW+14b] S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song. Au-
tomatic Security Evaluation and (Related-key) Differential
Characteristic Search: Application to SIMON, PRESENT,
LBlock, DES(L) and Other Bit-Oriented Block Ciphers.
In: Advances in Cryptology – ASIACRYPT 2014. Ed. by
P. Sarkar and T. Iwata. Vol. 8873. LNCS. Springer, 2014,
pp. 158–178. doi: 10.1007/978-3-662-45611-8_9 (pp. 59,
77).

267

https://doi.org/10.1007/3-540-36413-7_13
https://doi.org/10.1007/978-3-319-63688-7_19
https://eprint.iacr.org/2017/190
https://shattered.io
https://doi.org/10.1007/s00145-007-9013-7
https://eprint.iacr.org/2015/097
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://eprint.iacr.org/2014/747
https://doi.org/10.1007/978-3-662-45611-8_9

References

[Sil99] J. P. M. Silva. The Impact of Branching Heuristics in Propo-
sitional Satisfiability Algorithms. In: Progress in Artificial
Intelligence – EPIA 1999. Ed. by P. Barahona and J. J.
Alferes. Vol. 1695. LNCS. Springer, 1999, pp. 62–74. doi:
10.1007/3-540-48159-1_5 (p. 188).

[SKP16] M. Stevens, P. Karpman, and T. Peyrin. Freestart Collision
for Full SHA-1. In: Advances in Cryptology – EUROCRYPT
2016. Ed. by M. Fischlin and J.-S. Coron. Vol. 9665. LNCS.
Springer, 2016, pp. 459–483. doi: 10.1007/978- 3- 662-

49890-3_18. iacr: 2015/967 (pp. 166, 215).

[SLW07] M. Stevens, A. K. Lenstra, and B. de Weger. Chosen-Prefix
Collisions for MD5 and Colliding X.509 Certificates for
Different Identities. In: Advances in Cryptology – EURO-
CRYPT 2007. Ed. by M. Naor. Vol. 4515. LNCS. Springer,
2007, pp. 1–22. doi: 10.1007/978-3-540-72540-4_1 (p. 59).

[SO06] M. Schläffer and E. Oswald. Searching for Differential Paths
in MD4. In: Fast Software Encryption – FSE 2006. Ed. by
M. J. B. Robshaw. Vol. 4047. LNCS. Springer, 2006, pp. 242–
261. doi: 10.1007/11799313_16 (pp. 59, 167, 178).

[Soo16] M. Soos. CryptoMiniSat 5: An advanced SAT solver. 2016.
url: https://github.com/msoos/cryptominisat (p. 58).

[SS07] S. K. Sanadhya and P. Sarkar. New Local Collisions for the
SHA-2 Hash Family. In: Information Security and Cryptol-
ogy – ICISC 2007. Ed. by K.-H. Nam and G. Rhee. Vol. 4817.
LNCS. Springer, 2007, pp. 193–205. doi: 10.1007/978-3-
540-76788-6_16. iacr: 2007/352 (p. 173).

[SS08] S. K. Sanadhya and P. Sarkar. New Collision Attacks against
Up to 24-Step SHA-2. In: Progress in Cryptology – IN-
DOCRYPT 2008. Ed. by D. R. Chowdhury, V. Rijmen, and
A. Das. Vol. 5365. LNCS. Springer, 2008, pp. 91–103. doi:
10.1007/978-3-540-89754-5_8. iacr: 2008/270 (pp. 168,
169, 174).

[SS09] S. K. Sanadhya and P. Sarkar. A combinatorial analysis of
recent attacks on step reduced SHA-2 family. In: Cryptog-
raphy and Communications 1.2 (2009), pp. 135–173. doi:
10.1007/s12095-009-0011-5. iacr: 2008/271 (p. 174).

268

https://doi.org/10.1007/3-540-48159-1_5
https://doi.org/10.1007/978-3-662-49890-3_18
https://doi.org/10.1007/978-3-662-49890-3_18
https://eprint.iacr.org/2015/967
https://doi.org/10.1007/978-3-540-72540-4_1
https://doi.org/10.1007/11799313_16
https://github.com/msoos/cryptominisat
https://doi.org/10.1007/978-3-540-76788-6_16
https://doi.org/10.1007/978-3-540-76788-6_16
https://eprint.iacr.org/2007/352
https://doi.org/10.1007/978-3-540-89754-5_8
https://eprint.iacr.org/2008/270
https://doi.org/10.1007/s12095-009-0011-5
https://eprint.iacr.org/2008/271

References

[SS96] J. P. M. Silva and K. A. Sakallah. GRASP – a new search
algorithm for satisfiability. In: ICCAD. 1996, pp. 220–227.
doi: 10.1109/ICCAD.1996.569607 (pp. 57, 188).

[SSA+07] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata.
The 128-Bit Blockcipher CLEFIA (Extended Abstract). In:
Fast Software Encryption – FSE 2007. Ed. by A. Biryukov.
Vol. 4593. LNCS. Springer, 2007, pp. 181–195. doi: 10.1007/
978-3-540-74619-5_12 (p. 125).

[Ste13] M. Stevens. New Collision Attacks on SHA-1 Based on
Optimal Joint Local-Collision Analysis. In: Advances in
Cryptology – EUROCRYPT 2013. Ed. by T. Johansson
and P. Q. Nguyen. Vol. 7881. LNCS. Springer, 2013, pp. 245–
261. doi: 10.1007/978-3-642-38348-9_15 (pp. 166, 215,
216).

[Sti06] D. R. Stinson. Some Observations on the Theory of Cryp-
tographic Hash Functions. In: Designs, Codes and Cryptog-
raphy 38.2 (2006), pp. 259–277. doi: 10.1007/s10623-005-
6344-y. iacr: 2001/20 (p. 34).

[SY15] Y. Sasaki and K. Yasuda. How to Incorporate Associated
Data in Sponge-Based Authenticated Encryption. In: Topics
in Cryptology – CT-RSA 2015. Ed. by K. Nyberg. Vol. 9048.
LNCS. Springer, 2015, pp. 353–370. doi: 10.1007/978-3-
319-16715-2_19 (p. 42).

[Tay14] C. Taylor. Calico v8. Submission to CAESAR: Competition
for Authenticated Encryption. Security, Applicability, and
Robustness (Round 1). 2014. url: http://competitions.

cr.yp.to/round1/calicov8.pdf (p. 149).

[TG91] A. Tardy-Corfdir and H. Gilbert. A Known Plaintext At-
tack of FEAL-4 and FEAL-6. In: Advances in Cryptology
– CRYPTO 1991. Ed. by J. Feigenbaum. Vol. 576. LNCS.
Springer, 1991, pp. 172–181. doi: 10.1007/3-540-46766-

1_12 (p. 166).

[Tie16] T. Tiessen. Polytopic Cryptanalysis. In: Advances in Cryp-
tology – EUROCRYPT 2016. Ed. by M. Fischlin and J.-S.
Coron. Vol. 9665. LNCS. Springer, 2016, pp. 214–239. doi:
10.1007/978-3-662-49890-3_9. iacr: 2016/160 (p. 63).

269

https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-642-38348-9_15
https://doi.org/10.1007/s10623-005-6344-y
https://doi.org/10.1007/s10623-005-6344-y
https://eprint.iacr.org/2001/20
https://doi.org/10.1007/978-3-319-16715-2_19
https://doi.org/10.1007/978-3-319-16715-2_19
http://competitions.cr.yp.to/round1/calicov8.pdf
http://competitions.cr.yp.to/round1/calicov8.pdf
https://doi.org/10.1007/3-540-46766-1_12
https://doi.org/10.1007/3-540-46766-1_12
https://doi.org/10.1007/978-3-662-49890-3_9
https://eprint.iacr.org/2016/160

References

[US 77] US National Bureau of Standards. NIST FIPS PUB 46:
Data Encryption Standard (DES). National Institute of
Standards and Technology (NIST) Federal Information Pro-
cessing Standards (FIPS) Publication. 1977 (p. 27).

[US 80] US National Bureau of Standards. NIST FIPS PUB 81:
DES Modes of Operation. National Institute of Standards
and Technology (NIST) Federal Information Processing
Standards (FIPS) Publication. 1980 (p. 31).

[Vau02] S. Vaudenay. Security Flaws Induced by CBC Padding –
Applications to SSL, IPSEC, WTLS . . . In: Advances in
Cryptology – EUROCRYPT 2002. Ed. by L. R. Knudsen.
Vol. 2332. LNCS. Springer, 2002, pp. 534–546. doi: 10.1007/
3-540-46035-7_35 (p. 39).

[Vau94] S. Vaudenay. On the Need for Multipermutations: Crypt-
analysis of MD4 and SAFER. In: Fast Software Encryption
– FSE 1994. Ed. by B. Preneel. Vol. 1008. LNCS. Springer,
1994, pp. 286–297. doi: 10.1007/3-540-60590-8_22 (pp. 20,
56).

[Vau98] S. Vaudenay. Provable Security for Block Ciphers by Decor-
relation. In: Theoretical Aspects of Computer Science –
STACS 1998. Ed. by M. Morvan, C. Meinel, and D. Krob.
Vol. 1373. LNCS. Springer, 1998, pp. 249–275. doi: 10.1007/
BFb0028566 (pp. 55, 63).

[Vie07] M. Vielhaber. Breaking ONE.FIVIUM by AIDA an Al-
gebraic IV Differential Attack. IACR Cryptology ePrint
Archive, Report 2007/413. 2007. iacr: 2007/413 (p. 63).

[vW92] J. H. van Lint and R. M. Wilson. A course in combinatorics.
Cambridge University Press, 1992. isbn: 978-0-521-41057-1
(p. 137).

[Wag99] D. A. Wagner. The Boomerang Attack. In: Fast Software
Encryption – FSE 1999. Ed. by L. R. Knudsen. Vol. 1636.
LNCS. Springer, 1999, pp. 156–170. doi: 10.1007/3-540-
48519-8_12 (p. 63).

[WC81] M. N. Wegman and L. Carter. New Hash Functions and
Their Use in Authentication and Set Equality. In: Journal
of Computer and System Sciences 22.3 (1981), pp. 265–279.
doi: 10.1016/0022-0000(81)90033-7 (p. 38).

270

https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1007/3-540-60590-8_22
https://doi.org/10.1007/BFb0028566
https://doi.org/10.1007/BFb0028566
https://eprint.iacr.org/2007/413
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1016/0022-0000(81)90033-7

References

[WGZ+16] L. Wang, J. Guo, G. Zhang, J. Zhao, and D. Gu. How to
Build Fully Secure Tweakable Blockciphers from Classical
Blockciphers. In: Advances in Cryptology – ASIACRYPT
2016. Ed. by J. H. Cheon and T. Takagi. Vol. 10031. LNCS.
2016, pp. 455–483. doi: 10.1007/978-3-662-53887-6_17.
iacr: 2016/876 (p. 41).

[WHF03] D. Whiting, R. Housley, and N. Ferguson. IETF RFC 3610:
Counter with CBC-MAC (CCM). Internet Engineering Task
Force (IETF) Request for Comments (RFC). 2003. doi:
10.17487/RFC3610 (pp. 41, 160).

[Win84] R. S. Winternitz. A Secure One-Way Hash Function Built
from DES. In: IEEE Symposium on Security and Privacy
1984. IEEE Computer Society, 1984, pp. 88–90. doi: 10.

1109/SP.1984.10027 (p. 28).

[WLF+05] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Crypt-
analysis of the Hash Functions MD4 and RIPEMD. In:
Advances in Cryptology – EUROCRYPT 2005. Ed. by R.
Cramer. Vol. 3494. LNCS. Springer, 2005, pp. 1–18. doi:
10.1007/11426639_1 (pp. 54, 61, 166, 175, 177, 178).

[WP14] H. Wu and B. Preneel. AEGIS v1. Submission to CAE-
SAR: Competition for Authenticated Encryption. Security,
Applicability, and Robustness (Round 2). 2014. url: http:
//competitions.cr.yp.to/round1/aegisv1.pdf (p. 106).

[WSMP11] M. Wang, Y. Sun, N. Mouha, and B. Preneel. Algebraic
Techniques in Differential Cryptanalysis Revisited. In: In-
formation Security and Privacy – ACISP 2011. Ed. by U.
Parampalli and P. Hawkes. Vol. 6812. LNCS. Springer, 2011,
pp. 120–141. doi: 10.1007/978-3-642-22497-3_9 (p. 51).

[WT85] A. F. Webster and S. E. Tavares. On the Design of S-Boxes.
In: Advances in Cryptology – CRYPTO 1985. Ed. by H. C.
Williams. Vol. 218. LNCS. Springer, 1985, pp. 523–534. doi:
10.1007/3-540-39799-X_41 (p. 20).

[WW11] S. Wu and M. Wang. Security Evaluation against Differ-
ential Cryptanalysis for Block Cipher Structures. IACR
Cryptology ePrint Archive, Report 2011/551. 2011. iacr:
2011/551 (p. 58).

271

https://doi.org/10.1007/978-3-662-53887-6_17
https://eprint.iacr.org/2016/876
https://doi.org/10.17487/RFC3610
https://doi.org/10.1109/SP.1984.10027
https://doi.org/10.1109/SP.1984.10027
https://doi.org/10.1007/11426639_1
http://competitions.cr.yp.to/round1/aegisv1.pdf
http://competitions.cr.yp.to/round1/aegisv1.pdf
https://doi.org/10.1007/978-3-642-22497-3_9
https://doi.org/10.1007/3-540-39799-X_41
https://eprint.iacr.org/2011/551

References

[WWGY14] Y. Wang, W. Wu, Z. Guo, and X. Yu. Differential Cryptanal-
ysis and Linear Distinguisher of Full-Round Zorro. In: Ap-
plied Cryptography and Network Security – ACNS 2014. Ed.
by I. Boureanu, P. Owesarski, and S. Vaudenay. Vol. 8479.
LNCS. Springer, 2014, pp. 308–323. doi: 10.1007/978-3-
319-07536-5_19. iacr: 2013/775 (p. 130).

[WY05] X. Wang and H. Yu. How to Break MD5 and Other Hash
Functions. In: Advances in Cryptology – EUROCRYPT
2005. Ed. by R. Cramer. Vol. 3494. LNCS. Springer, 2005,
pp. 19–35. doi: 10.1007/11426639_2 (pp. 54, 61, 166, 175,
177, 178).

[WYY05a] X. Wang, A. C. Yao, and F. Yao. Cryptanalysis on SHA-1.
CRYPTO 2005 rump session and NIST – First Crypto-
graphic Hash Workshop 2005. 2005. url: http://csrc.

nist . gov / groups / ST / hash / documents / Wang _ SHA1 - New -

Result.pdf (p. 215).

[WYY05b] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the
Full SHA-1. In: Advances in Cryptology – CRYPTO 2005.
Ed. by V. Shoup. Vol. 3621. LNCS. Springer, 2005, pp. 17–
36. doi: 10.1007/11535218_2 (pp. 166, 175, 177, 215–217).

[YB14] H. Yu and D. Bai. Boomerang Attack on Step-Reduced SHA-
512. In: Information Security and Cryptology – Inscrypt
2014. Ed. by D. Lin, M. Yung, and J. Zhou. Vol. 8957.
LNCS. Springer, 2014, pp. 329–342. doi: 10.1007/978-3-
319-16745-9_18. iacr: 2014/945 (p. 174).

[YHB16] H. Yu, Y. Hao, and D. Bai. Evaluate the security margins
of SHA-512, SHA-256 and DHA-256 against the boomerang
attack. In: SCIENCE CHINA Information Sciences 59.5
(2016), 052110:1–052110:14. doi: 10.1007/s11432-015-5389-
4 (p. 174).

[YI14] S. Yanagihara and T. Iwata. Type 1.x Generalized Feistel
Structures. In: IEICE Transactions 97-A.4 (2014), pp. 952–
963. url: http://search.ieice.org/bin/summary.php?id=
e97-a_4_952 (pp. 107, 111).

[Yuv79] G. Yuval. How to swindle Rabin. In: Cryptologia 3.3 (1979),
pp. 187–191. doi: 10.1080/0161-117991854025 (pp. 25, 53).

272

https://doi.org/10.1007/978-3-319-07536-5_19
https://doi.org/10.1007/978-3-319-07536-5_19
https://eprint.iacr.org/2013/775
https://doi.org/10.1007/11426639_2
http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf
http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf
http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/978-3-319-16745-9_18
https://doi.org/10.1007/978-3-319-16745-9_18
https://eprint.iacr.org/2014/945
https://doi.org/10.1007/s11432-015-5389-4
https://doi.org/10.1007/s11432-015-5389-4
http://search.ieice.org/bin/summary.php?id=e97-a_4_952
http://search.ieice.org/bin/summary.php?id=e97-a_4_952
https://doi.org/10.1080/0161-117991854025

References

[YW09] H. Yu and X. Wang. Distinguishing Attack on the Secret-
Prefix MAC Based on the 39-Step SHA-256. In: Information
Security and Privacy – ACISP 2009. Ed. by C. Boyd and
J. M. G. Nieto. Vol. 5594. LNCS. Springer, 2009, pp. 185–
201. doi: 10.1007/978-3-642-02620-1_13 (p. 173).

[YWH+14] D. Ye, P. Wang, L. Hu, L. Wang, Y. Xie, S. Sun, and P.
Wang. PAES v1. Submission to CAESAR: Competition
for Authenticated Encryption. Security, Applicability, and
Robustness (Round 1). 2014. url: http://competitions.

cr.yp.to/round1/paesv1.pdf (p. 107).

[ZD16] R. Zong and X. Dong. Meet-in-the-Middle Attack on QAR-
MA Block Cipher. IACR Cryptology ePrint Archive, Report
2016/1160. 2016. url: 2016/1160 (p. 98).

[ZMI89] Y. Zheng, T. Matsumoto, and H. Imai. On the Construc-
tion of Block Ciphers Provably Secure and Not Relying
on Any Unproved Hypotheses. In: Advances in Cryptol-
ogy – CRYPTO 1989. Ed. by G. Brassard. Vol. 435. LNCS.
Springer, 1989, pp. 461–480. doi: 10.1007/0-387-34805-

0_42 (p. 125).

273

https://doi.org/10.1007/978-3-642-02620-1_13
http://competitions.cr.yp.to/round1/paesv1.pdf
http://competitions.cr.yp.to/round1/paesv1.pdf
2016/1160
https://doi.org/10.1007/0-387-34805-0_42
https://doi.org/10.1007/0-387-34805-0_42

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present doctoral thesis.

275

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Challenges
	Directions

	Contributions

	Publication List
	Journal Articles
	Conference Proceedings
	Miscellaneous

	Preliminaries
	A Brief Anatomy of Symmetric Cryptology
	Basic Operations
	Cryptographic Primitives
	Cryptographic Schemes

	Differential Cryptanalysis
	Basic Operations: A Differential View
	Cryptographic Primitives: A Differential View
	Searching and Bounding Characteristics
	Generalizations and Related Concepts

	Differential Cryptanalysis of Novel Designs
	Key Recovery for MANTIS
	Introduction
	Description of MANTIS
	The Tweakable Block Cipher MANTIS
	The Round Functions

	A Family of Differential Characteristics
	Bounds and Security Claim
	Finding an Optimal Differential Characteristic
	Clustering Good Differential Characteristics
	Exploiting Semi-Truncated Characteristics

	Practical Key Recovery Attack on MANTIS-5
	Generating and Filtering Enough Pairs
	Recovering the Key Step-by-Step

	Discussion
	Practical Verification
	Applicability to MANTIS6 and MANTIS7
	Applicability to QARMA
	S-box properties of MANTIS and QARMA

	Conclusion

	Collisions for Simpira v1
	Introduction
	Description of Simpira v1
	Permutation and Round Function
	F-Function
	Permutation-based Hashing

	Revisiting the Differential Bounds
	Observation on Designers' Analysis
	Adapted MILP Model of Differential Characteristics
	A 2-Round Characteristic with 5 Active S-Boxes

	Collision Attacks on Full-Round Hash
	Collision Attack on 16 Rounds
	Collision Attack on 15 Rounds with Truncation

	Discussion
	Rønjom's Distinguisher
	Simpira v2

	Conclusion

	Key Recovery for LowMC
	Introduction
	Description of LowMC
	The LowMC Family of Block Ciphers
	The LowMC Round Function

	Higher-Order Differential Distinguisher
	Designers' Considerations
	Direct-Sum Construction
	Exploiting the Incomplete S-Box Layer
	Partial Zero-Sums

	Key Recovery Attack
	Basic Zero-Sum Key Recovery for 8 Rounds
	Key Recovery with Linear Masks for 9 Rounds

	Discussion
	Application to Other Parameter Sets
	Dinur et al.'s Interpolation attacks

	Conclusion

	Related-Key Forgeries for Prøst
	Introduction
	Description of Prøst
	The Prøst Family of Authenticated Ciphers
	Prøst-OTR-n

	Forgery Attack
	Forging the Ciphertext
	Forging the Tag

	Remarks and Attack Variants
	Remarks on the Message Length
	Unknown Messages
	Multiple Forgeries
	Almost Universal Forgery with Related-Key Queries

	Discussion
	Applicability to Other Modes
	Karpman's Key Recovery Attack

	Conclusion

	Automating Differential Cryptanalysis
	Practical Collision Search for Round-Reduced SHA-2
	Introduction
	Background
	Description of SHA-2
	Published Analysis of SHA-2
	Collision Attack Strategy for SHA-2
	Dedicated Guess-and-Determine Search Tools

	Improving Deductions with Linear Propagation
	Linear Propagation Approach
	Discussion

	Improving Decisions with Branching Heuristics
	Branching Heuristics in SAT Solvers
	The Look-Ahead Branching Heuristic

	Application to the SHA-2 Family
	Starting Points
	Collision Attacks on SHA-512 and its Variants
	Search Strategy and Configuration

	Application to Design of Malicious SHA-1
	Background on Backdoors and Malicious Hashing
	Background on SHA-1
	Malicious SHA-1
	Meaningful Collisions for Malicious SHA-1

	Conclusions
	References
	Affidavit

