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Abstract

The purpose of this Master’s Thesis was to numerically investigate the aeroa-
coustic sources produced by an orifice inside a straight cylindrical pipe. The flow
through the orifice was investigated using computational fluid dynamics (CFD)
based on the numerical solution of the Reynolds averaged Navier-Stokes (RANS)
equations and Large-Eddy Simulation (LES).

In the CFD software AVL FIRE™ a computational aeroacoustics (CAA) tool is
included, which is based on a hybrid CAA approach, where linearized Euler equa-
tions (LEE) are solved. In this Master’s Thesis, the acoustic analogy based on
the LEE, and the accordingly appearing aeroacoustic source terms were derived.

The primary aim of this Master’s Thesis was to compute aeroacoustic source
terms, as input into the LEE, from LES and to compare them to the mod-
eled aeroacoustic source terms obtained from the unstructured kinematic source
generator (UKSG), which is already implemented in FIRE™. This alterna-
tive RANS-based concept computationally models an isotropic turbulence spec-
trum using a stochastic random based algorithm, which faces severe limitations
in highly sheared flow fields with anisotropic turbulence, as considered in this
Master’s Thesis. Additionally, the aeroacoustic source terms obtained from the
LES solution are supposed to be more realistic, because they are computed di-
rectly from a resolved turbulent fluctuating velocity field, which is better pre-
dicted by LES in comparison to RANS simulations, since less turbulence modeling
is involved.

In most previous related work, it has become a standard procedure to center
the obtained aeroacoustic source terms by subtracting their temporal averages,
to avoid the generation of unphysical acoustic noise induced by large vortical
structures. A further aim of this Master’s Thesis was therefore to investigate
the influence of large low-frequency vortical structures on the aeroacoustic source
terms by applying temporal filters based on different turbulence time-scales.

Furthermore, this Master’s Thesis investigated the possible contribution of the,
often neglected, cross-terms, which arise from the linearization of the Euler equa-
tions, and are constituted by contributions from the mean and turbulent flow
field. These cross-terms appeared as similarly intense as the other generally in-
cluded aeroacoustic source terms.
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Kurzfassung

Der Zweck dieser Masterarbeit war die numerische Untersuchung von aeroakusti-
schen Quelltermen, welche von einer durchströmten Blende in einem zylindri-
schem Rohr erzeugt werden. Der mathematischen Beschreibung der Quellter-
me wurden dabei alternativ auf Basis der Reynolds gemittelten Navier-Stokes
(RANS) Gleichungen und Large-Eddy Simulationen (LES) berechnete Strömungs-
felder zu Grunde gelegt.

In der Strömungssimulationssoftware AVL FIRE™ ist ein Aeroakustikmodul
(CAA) implementiert, welches auf Basis eines hybriden Ansatzes linearisierte
Euler Gleichungen löst. In dieser Masterarbeit wurde die akustische Analogie
für die linearisierten Euler Gleichungen und die entsprechenden aeroakustischen
Quellterme hergeleitet.

Das primäre Ziel dieser Masterarbeit war die direkte Berechnung der aeroakus-
tischen Quellterme unter Verwendung des instationären turbulenten Geschwin-
digkeitsfeldes einer LES Lösung, sowie deren Vergleich mit den entsprechenden ae-
roakustischen Quelltermen, welche mittels des im Aeroakustikmodul von FIRE™
implementierten „Unstrukturierten Kinematischen Qelltermgenerators“(UKSG)
modelliert wurden. Dieses auf RANS basierende alternative Konzept modelliert
die aeroakustischen Quellterme mit einem Zufallsgenerator unter Annahme eines
isotropen Turbulenzspektrums. Die aus LES erhaltenen aeroakustischen Quellter-
me sind deshalb grundsätzlich realistischer, weil einerseits das turbulente Strö-
mungsfeld im Vergleich zur RANS Lösung, vor allem bei anisotroper turbulenter
Strömung, besser beschrieben wird, und andererseits bei einer gut aufgelösten
LES generell weniger Modellierungsunsicherheit besteht.

Oftmals werden die aeroakustischen Quellterme durch Abzug ihres zeitlichen
Mittelwerts statistisch zentriert, was die Vorhersage des akustischen Schallfeldes
durch die Elimination nicht akustisch relevanter großen turbulenter Wirbelstruk-
turen verbessern soll. In diesem Zusammenhang wurde in dieser Masterarbeit
überdies der konkrete Einfluss von großen niederfrequenten wirbelnden Struk-
turen, welche durch Anwendung von speziellen zeitlichen Filterungsmethoden
basierend auf bestimmten turbulenten Zeitskalen determiniert wurden, auf die
resultierenden aeroakustischen Quellterme, untersucht.

Ein weiteres Ziel dieser Masterarbeit war es, den Anteil der sehr oft vernachläs-
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sigten, gemischten aeroakustischen Quellterme, nicht-linear zusammengesetzt aus
einer statistisch gemittelten und einer turbulenten Komponente zu untersuchen.
Die aus der LES-Lösung berechneten gemischten aeroakustischen Quellterme wie-
sen generell eine ähnliche Intensität auf wie jene aus der Interaktion turbulent-
turbulent hervorgerufenen, als alleinige Schallquelle berücksichtigte, Terme.
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Nomenclature

List of Symbols

Latin symbols

Symbol Unit Description

𝐴 [m2] area

𝐴𝑅 [−] Aspect Ratio of a computational cell

𝑐𝑝 [J/kgK] specific heat capacity at constant pressure

𝑐𝑣 [J/kgK] specific heat capacity at constant volume

𝒸 [m/s] speed of sound

𝐶𝑖𝑗 [m2/s2] Cross stresses

𝐶SGS,𝜇 [−] SGS model parameter

𝐶𝓀𝜁𝑓 [−] 𝓀-𝜁-𝑓 model parameter

𝒹 [m] hydraulic diameter

𝐷I [m] inner diameter of cylindrical pipe

𝑒 [J/kg] internal energy per unit of mass

𝑒tot [J/kg] total energy per unit of mass

ℰVKS [m2/s2] Von Kármán spectrum

𝒻 [Hz] frequency

𝑓 [1/s] elliptic relaxation function of the 𝓀-𝜁-𝑓
turbulence model

𝐹CSM [−] SGS modelling function for CSM

ℎO [m] orifice gap height

ℎ [J/kg] specific enthalpy

𝐻 [J] total enthalpy

k [W/mK] heat conductivity of the fluid

𝓀 [m2/s2] turbulence kinetic energy
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Nomenclature

Symbol Unit Description

𝓁 [m] length-scale

𝐿𝑖𝑗 [m2/s2] Leonard stresses

𝐿𝑝 [dB] sound pressure level

�̇� [kg/s] mass flow rate

𝑛 [−] time-step iteration counter

𝑁 [−] number of sth.

𝑁poly [−] degree of polynomial base-function

𝑝 [Pa] pressure

𝒫 [−] logarithmic pressure

𝑃𝑗𝑖 [Pa] fluid stress tensor

𝑃𝓀 [m2/s3] production term of 𝓀

𝑞𝑗 [W] conductive heat flux, described by Fourier’s
law

𝑟 [m] radial coordinate in a cylindrical coordinate
system

ℛ [J/kgK] specific gas constant

𝑅I [m] inner radius of a cylindrical pipe

𝑅𝑖𝑗 [m2/s2] Reynolds stresses

𝑠 [J/kgK] specific entropy

𝑆𝑖𝑗 [1/s] symmetric rate of strain tensor

𝑆𝑓,𝑖 [N/m3] external force source term per unit of
volume

𝑆�̇� [kg/m3s] mass source term per unit of volume

𝑆𝑝 [Pa/s2] acoustic source term for the wave equation
dependent on the acoustic pressure

𝑆𝜃 [W/m3] heat source term per unit of volume

𝑆𝜌 [kg/m3s2] acoustic source term for the wave equation
dependent on the acoustic density

𝒮 [m/s2] aeroacoustic turbulent momentum source
term

𝑡 [s] time

Δ𝑡 [s] time-step

𝓉 [s] time-scale

𝓉𝓀𝜀 [s] integral time-scale, eddy turnover time
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List of Symbols

Symbol Unit Description

𝓉ST [s] time-scale based on the temporal averaged
rate of strain tensor || ⟨𝑆⟩ ||−1

𝓉SW [s] sweeping time-scale

𝑇 [s] time-frame, time-period

Tij [kg/ms2] Lighthill stress tensor

𝑈 [m] circumference

𝑣 [m/s] velocity

𝓋 [m/s] velocity-scale

𝑉 [m3] volume
̇𝑉 [m3/s] volume flow rate

𝑊𝑖𝑗 [1/s] asymmetric vorticity tensor

𝑥, 𝑦, 𝑧 [m] Cartesian coordinates

Δ𝓍 [m] characteristic length of the computational
cell

𝑦+ [−] dimensionless normal wall distance

Δ𝑦BL [m] normal thickness of the boundary layer cell

Greek symbols

Symbol Unit Description

𝛼B [−] blending factor between temporal and
spatial discretization schemes

𝛼UR [−] under-relaxation factor

𝛽𝒸,𝜃,water [m/sK] parameter for calculating the speed of
sound in water

𝛽𝒸,𝑝,water [m/sPa] parameter for calculating the speed of
sound in water

𝛽SK [−] skewness of a computational cell

𝛾 [−] isentropic coefficient

𝛿𝑖𝑗 [−] Kronecker delta

𝜀 [m2/s3] turbulence dissipation rate

𝜁 [−] model parameter of the 𝓀-𝜁-𝑓 turbulence
model

𝜅 [1/m] wave-number
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Nomenclature

Symbol Unit Description

𝜆 [−] parameter

Λ [m/s2] aeroacoustic momentum source cross-term

𝜇 [Pas] molecular viscosity of the fluid

𝜈 [m2/s] kinematic viscosity of the fluid

𝜈SGS [m2/s] SGS viscosity

𝜈t [m2/s] eddy viscosity

Ξ [rad] random phase

𝜌 [kg/m3] density

𝜎 [kgK/J] inverse of 𝑐𝑝

�⃗�𝜅 [−] direction of turbulence velocity vector per
wave-number 𝜅

𝜎𝓀𝜁𝑓 [−] 𝓀-𝜁-𝑓 model parameter

𝜃 [K] temperature

𝜃S [K] Sutherland’s temperature

𝜏𝑖𝑗 [kg/ms2] viscous shear stress tensor

Π [Pa/s] aeroacoustic pressure source cross-term

𝜙 [−] arbitrary quantity

𝜓 [−] arbitrary quantity

Ψ [−] complex amplitude of an arbitrary quantity

�⃗� [1/s] vorticity vector

Ω [m/s2] centered aeroacoustic source term

Superscript symbols

Superscript Description

′ fluctuating variable based on temporal average
′ea fluctuating variable based on ensemble average
′fa fluctuating variable based on Fourier average
′ma fluctuating variable based on moving average
′′ unresolved by LES
+ dimensionless quantity normalized with the wall friction

velocity
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List of Symbols

Superscript Description

∗ dimensionless quantity normalized with characteristic scale
of the geometry (inner pipe radius 𝑅I)

Subscript symbols

Subscript Description

0 mean base flow

𝑎𝑥 axial direction

a acoustic contribution

conv convective

C computational cell

Cyl cylindrical

diff diffusive

ea ensemble average

E computational cell edge

fluct fluctuating

F computational cell face

G geometry

high upper limit

ℎ5
orifice with ℎO = 5 mm

ℎ10
orifice with ℎO = 10 mm

𝑖 directional index x, y and z

init initialization

I inner pipe radius

𝑗 directional index x, y and z

𝑘 directional index x, y and z

𝐾 Von Kármán constant

𝒦 Kolmogorov scale

𝜅 wave-number

𝓀𝜁𝑓 𝓀-𝜁-𝑓 turbulence model

low lower limit

L large (integral) scale
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Nomenclature

Subscript Description

max maximum

mean mean base flow

min minimum

ma moving average

N computational cell nodes

O orifice

pert perturbation function

PL power law

ramp ramping function

ref reference quantity

t turbulent

𝑡𝑔 tangential direction

tot total

TF temporal filter

𝜏W
wall friction

W wall

Acronyms

Acronym Description

AP acoustic pipe

BC boundary condition

BL boundary layer

CAA computational aeroacoustics

CFD computational fluid dynamics

CV control volumes

DES detached eddy simulation

DNS direct numerical simulation

FEM finite element method

FFT fast Fourier transformation

FTT flow-through time
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Dimensionless Numbers

Acronym Description

FVM finite volume method

G grid

GP grid positions

LEE linearized Euler equations

LES Large-Eddy Simulation

LHS left hand side

PANS partial averaged Navier-Stokes

PP periodic pipe

RANS Reynolds averaged Navier-Stokes

RHS right hand side

SGM subgrid-scale model

SGS subgrid-scale

SNGR stochastic noise generation and radiation

UKSG unstructured kinematic source generator

URANS unsteady Reynolds averaged Navier-Stokes

VKS Von Kármán spectrum

Dimensionless Numbers

Dimensionless Number Definition

Courant Friedrichs Lewy number in
case of incompressible CFD:

CFLCFD =
|𝑣|Δ𝑡
Δ𝓍

Courant Friedrichs Lewy number in
case of CAA:

CFLCAA =
(|𝑣| + 𝒸) Δ𝑡

Δ𝓍

Mach number: ℳ𝒶 =
|𝑣|
𝒸

Reynolds number: ℛℯ = 𝓋𝓁

𝜈
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Nomenclature

Mathematical expressions
Most equations are written in the Cartesian tensor notation, also known as Ein-
stein notation. Thus, a simple rule of summation applies, indicating a summation
over all three components 1,2 and 3 (which correspond to the three Cartesian co-
ordinates 𝑥,𝑦 and 𝑧) is required whenever the same indices appear repeatedly in
a given term, e.g.,

3

∑
𝑖=1

𝜙𝑖𝜓𝑖 = 𝜙1𝜓1 + 𝜙2𝜓2 + 𝜙3𝜓3 = 𝜙𝑖𝜓𝑖

Definition Description

⟨ ⟩ temporal average

⟨ ⟩ea ensemble average

⟨ ⟩fa Fourier average

⟨ ⟩ma moving average

̃ from LES resolved (filtered) quantity

̄ mean flow configuration

⃗ column vector

| | absolute of quantity

|| || norm of quantity

𝛿 change
𝜕

𝜕𝑥𝑖
partial derivative in 𝑖 direction

𝐷
𝐷𝑡

material derivative

ℱ Fourier transformation

ℱ−1 inverse Fourier transformation

XIV Master’s Thesis



Contents

Preface I

Abstract III

Kurzfassung V

Nomenclature VII
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII
Dimensionless Numbers . . . . . . . . . . . . . . . . . . . . . . . . . XIII
Mathematical expressions . . . . . . . . . . . . . . . . . . . . . . . . XIV

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Acoustics and aeroacoustics . . . . . . . . . . . . . . . . . . . . 2
1.3 Computational aeroacoustics . . . . . . . . . . . . . . . . . . . . 4
1.4 Motivation and aims . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Document structure . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Fundamentals 11
2.1 Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Conservation laws . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Primitive form of the conservation laws . . . . . . . . . . 16
2.2.3 The closure of the system of primitive equations . . . . . 16
2.2.4 Inviscid flows with no conductive/radiative heat transfer 19
2.2.5 Incompressible flows . . . . . . . . . . . . . . . . . . . . 20

2.3 Propagation of waves and the speed of sound . . . . . . . . . . 21
2.3.1 Wave equation for a quiescent fluid . . . . . . . . . . . . 21
2.3.2 Speed of sound . . . . . . . . . . . . . . . . . . . . . . . 23

3 Turbulent flow 25
3.1 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Reynolds number . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Reynolds decomposition . . . . . . . . . . . . . . . . . . 28
3.1.3 Energy cascade . . . . . . . . . . . . . . . . . . . . . . . 29

XV



Contents

3.1.4 Scales of turbulence . . . . . . . . . . . . . . . . . . . . 30
3.1.5 Turbulence energy spectrum . . . . . . . . . . . . . . . . 33
3.1.6 Characteristics of turbulence . . . . . . . . . . . . . . . 34
3.1.7 Coherent structures . . . . . . . . . . . . . . . . . . . . 34
3.1.8 Temporal filtering . . . . . . . . . . . . . . . . . . . . . 35
3.1.9 Timescales of vortical structures . . . . . . . . . . . . . 37

3.2 Turbulence modeling . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Reynolds averaged Navier-Stokes equations . . . . . . . 39
3.2.2 Turbulence near solid walls . . . . . . . . . . . . . . . . 43
3.2.3 Large-Eddy Simulation . . . . . . . . . . . . . . . . . . . 45

3.3 Computational fluid dynamics . . . . . . . . . . . . . . . . . . . 50
3.3.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Solution procedure . . . . . . . . . . . . . . . . . . . . . 54

4 Aeroacoustics 59
4.1 Lighthill’s acoustic analogy . . . . . . . . . . . . . . . . . . . . 60
4.2 Lilley’s acoustic analogy . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Acoustic analogy based on LEE . . . . . . . . . . . . . . . . . . 67

4.3.1 Aeroacoustic decomposition . . . . . . . . . . . . . . . . 67
4.3.2 Linearized Euler equations . . . . . . . . . . . . . . . . . 67
4.3.3 Linearized Euler equations solved by the CAA tool in FIRE™ 70

4.4 Aeroacoustic Sources for two-dimensional sheared flows . . . . . 72
4.4.1 Application of the LEE to the two-dimensional shear flow 74

4.5 Aeroacoustic sources from LES . . . . . . . . . . . . . . . . . . 77
4.5.1 Determination of aeroacoustic source term . . . . . . . . 77
4.5.2 Influence of the SGS model . . . . . . . . . . . . . . . . 78

4.6 The CAA tool in FIRE™ . . . . . . . . . . . . . . . . . . . . . 80
4.6.1 Solution procedure of the acoustic field . . . . . . . . . . 80
4.6.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . 81
4.6.3 Spatial and temporal discretization . . . . . . . . . . . . 81
4.6.4 Generation of aeroacoustic sources . . . . . . . . . . . . 82

5 Task definition and applied methods 87
5.1 Geometry and expected flow configuration . . . . . . . . . . . . 88

5.1.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.2 Fluid properties . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.3 Operating conditions . . . . . . . . . . . . . . . . . . . . 90
5.1.4 Expected flow field . . . . . . . . . . . . . . . . . . . . . 91

5.2 Computational domain and grid generation . . . . . . . . . . . 93
5.2.1 Computational domain for LES . . . . . . . . . . . . . . 93
5.2.2 Grid generation for LES . . . . . . . . . . . . . . . . . . 94
5.2.3 RANS and CAA grids . . . . . . . . . . . . . . . . . . . 96

5.3 Applied simulations and tasks . . . . . . . . . . . . . . . . . . . 98

XVI Master’s Thesis



Contents

5.4 Boundary and initial conditions, temporal integration . . . . . . 99
5.4.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . 99
5.4.2 Flow initialization . . . . . . . . . . . . . . . . . . . . . 101
5.4.3 Temporal integration . . . . . . . . . . . . . . . . . . . . 102
5.4.4 RANS and CAA simulation . . . . . . . . . . . . . . . . 103

6 Flow simulation results 105
6.1 Periodic pipe flow . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.1 Initial conditions to a fully developed turbulent state . . 106
6.1.2 The instantaneous vorticity fields . . . . . . . . . . . . . 107
6.1.3 Convergence of the statistics . . . . . . . . . . . . . . . . 108
6.1.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.1.5 Instantaneous flow field used for inflow boundary conditions 114

6.2 Acoustic pipe results . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.1 Flow conditions upstream the orifice . . . . . . . . . . . 116
6.2.2 The instantaneous velocity field downstream of the orifice 117
6.2.3 The temporally averaged flow field downstream of the orifice 119
6.2.4 The temporally averaged turbulence kinetic energy field

downstream of the orifice . . . . . . . . . . . . . . . . . 124
6.2.5 The instantaneous vorticity field downstream the orifice 128
6.2.6 Investigation of aeroacoustic key quantities in the time and

frequency domain . . . . . . . . . . . . . . . . . . . . . . 129
6.2.7 Turbulence time-scales . . . . . . . . . . . . . . . . . . . 130
6.2.8 Turbulence kinetic energy spectrum . . . . . . . . . . . . 134

7 Aeroacoustic sources 137
7.1 The aeroacoustic source terms computed from LES . . . . . . . 138

7.1.1 Instantaneous aeroacoustic source terms ̃𝒮𝑖,LES for momen-
tum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.1.2 Modification of the aeroacoustic source term for momen-
tum with statistical averages or temporal filtering . . . . 144

7.1.3 Aeroacoustic sources of momentum in LEE generated by
cross-terms. . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2 The aeroacoustic source term for energy computed from UKSG
and the LES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8 Summary, conclusions and outlook 167

List of Figures i

List of Tables v

Bibliography vii

A Appendix xi

Johannes Tieber XVII





1 Introduction

1.1 Background
One important goal of research and development in industry is to shorten and
simultaneously improve product development processes. This can be achieved by
introducing novel enhanced methods into the product development process or by
improving already existing ones. One of these methods is numerical simulation,
which is now standard in various product development processes in many branches
of industry, e.g. the automotive industry. Basically, all simulation methods
have the advantage that they can be applied at a relatively early phase of the
product development process, as compared to measurements, when there is no
physical model available yet. Therefore, simulation can strongly support the
whole product development process from the very beginning. Of course, the
reliability of simulations significantly depends on the quality of the input data
(boundary conditions, geometry data, etc.) which has to be available. The rapid
increase and cost reduction of computational power has led to a large increase of
simulation tools and models.

The automotive industry currently experiences a shift from combustion engines
to electric engines which is driven by climate change and political decisions. As
a consequence, new issues arise, which essentially come from the change of the
engine. This Master’s Thesis is particularly motivated by the fact that combus-
tion engines are basically much louder than electric engines, and hence drown
all additional low-intensity noise coming from other sources (e.g. from valves
in the coolant system). Due to the much lower sound emissions of electric en-
gines, this additional noise generated from other sources might become more and
more relevant. Therefore, the automotive industry is supposed to put more ef-
fort into interior and exterior sound design, which requires a better description,
understanding, and finally control of the acoustics of the individual components.
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1 Introduction

1.2 Acoustics and aeroacoustics
The main aim of acoustics is to assess (both numerically and experimentally)
the noise which is radiated from an object at an arbitrary point that can be
detected by the human ear. The major difficulty in acoustics lies with the wide
range of acoustic energy which has to be resolved. For example, the human
ear can detect sound in the range from the threshold of hearing at 𝑝RMS,min =
10−5 Pa to the threshold of pain at 𝑝RMS,max = 102 Pa, within the frequency
range of 𝒻low = 20 Hz to 𝒻high = 20 kHz. Acoustics is a very broad field of study,
which can be divided into multiple subfields. The numerous subfields focus on
different effects of acoustics. E.g., psychoacoustics studies the perception of noise
by humans and its influence on health, whereas elastoacoustics studies the noise
emission of vibrating objects.

In classical acoustics non-linear effects are often negligible and the generation
of sound is often defined in terms of a specific boundary condition (e.g. the un-
steady movement (vibration) of a solid plate: loudspeakers).

This Master’s Thesis can be assigned to the subfield of aeroacoustics. Aeroa-
coustics focuses on the radiation of noise from turbulent flow. Turbulence is a
non-linear partly chaotic motion of the fluid, where a rigorous deterministic de-
scription is not available. Basically, the governing equations of fluid dynamics,
the Navier-Stokes equations together with the conservation equation of energy,
describe all flow (turbulence, etc.) and acoustic (wave propagation, scattering,
refraction, etc.) effects. Therefore, aeroacoustics involves a large part of fluid
dynamics, as it is dealing with turbulent flow structures as sound sources.

Aeroacoustics is typically based on the famous Lighthill’s acoustic analogy [36,
37]. Lighthill used the Navier-Stokes equations, which are the governing equations
of fluid mechanics, to derive an exact formulation of the wave equation for the
density (and pressure) fluctuations 𝜌a

𝜕2𝜌a

𝜕𝑡2 − 1
𝒸2

0

𝜕2𝜌a

𝜕𝑥2
𝑖

=
𝜕2Tij

𝜕𝑥𝑖𝜕𝑥𝑗
, (1.1)

where 𝒸0 is the speed of sound. The left hand side (LHS) represents a simple
wave operator, which can be solved numerically but also analytically, as long as
the aeroacoustic sources on the right hand side (RHS) are known. The wave
operator, on the LHS, of Lighthill’s equation is equal to the wave operator used
in classical acoustics. Therefore, Lighthill’s theory is called an acoustic analogy.
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1.2 Acoustics and aeroacoustics

The aeroacoustic source term, on the RHS, is represented by the well-known
Lighthill stress tensor :

Tij = 𝜌𝑣𝑖𝑣𝑗 − 𝜏𝑖𝑗 + (𝑝a − 𝒸2
0𝜌a)𝛿𝑖𝑗, (1.2)

where 𝑣𝑖 is the flow velocity, 𝜏𝑖𝑗 are the viscous shear stresses and 𝑝a are the pres-
sure fluctuations, which are related to the density fluctuations through 𝑝a = 𝒸2

0𝜌a.
Aeroacoustics might also include the generation of sound due to heat transfer and
chemical reactions within the flow (e.g. in a combustion engine).

The main problem with Lighthill’s acoustic analogy is that all interactions
between the acoustic field and the aeroacoustic sources are neglected and all
sound propagation phenomena, like refraction or scattering at flow uniformities
appear as sound sources, although they are only kinematic effects. Lighthill’s
acoustic analogy was repeatedly improved by including additional effects into
the aeroacoustic source term. E.g., Curle [20] introduced the impact of solid
boundaries. Powell [44] and Howe [30] included the feedback phenomenon from
the acoustic field to the sound sources based on the vortex-sound theory. Ffowcs-
Williams & Hawkings [57] introduced the noise from arbitrarily moving objects.

Goldstein [25, 26] derived a more general acoustic analogy based on Phillips’
[42] convected wave equation and Lilley’s [38, 39] idea to split the aeroacoustic
source terms into its isentropic and anisentropic parts. This acoustic analogy
includes sound propagation phenomena into the wave operator. Thus, it becomes
better applicable in non-uniform flows (at least for some simple applications), but
it has to be solved numerically due to the complex wave operator. This advanced
acoustic analogy is often referred to as Lilley’s acoustic analogy.
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1.3 Computational aeroacoustics

CAA

Direct
methods

Hybrid
methods

Analytical
approach

Numerical
approach

Figure 1.1: Overview of CAA methods.

In computational aeroacoustics (CAA) generally two different approaches (see
figure 1.1) for solving the acoustic field exist [10, 56].

The first approach is to solve directly the Navier-Stokes equations and there-
fore, to resolve all flow and acoustic effects, which is computationally very de-
manding and costly. Subsonic flow configurations with high turbulence, which
this Master’s Thesis is focused on, require a high spatial resolution to capture
all relevant turbulent structures. Acoustics additionally requires a significantly
higher temporal resolution to resolve all frequencies of interest. In combination
this enormously increases the computational demand. This is the reason why di-
rect approaches are often not feasible for most technically relevant applications.
Additionally, the energy contained in the aerodynamic forces is usually some or-
ders of magnitude greater than the acoustic energy [35]. Therefore, CAA solvers
need to be as numerically accurate as possible so that even the smallest acoustic
waves are still resolved.

One possible alternative approach to direct simulations is to use a hybrid ap-
proach, which seperates the flow and acoustic fields and therefore calculates the
flow field using (incompressible) computational fluid dynamics (CFD), and acous-
tic field separately. These hybrid approaches are based on the aeroacoustic de-
compositions, which is for an arbitrary field variable 𝜙 defined as

𝜙 = ⟨𝜙⟩ + 𝜙′ + 𝜙a, (1.3)

where, ⟨𝜙⟩ represents the mean value, 𝜙′ the turbulent fluctuating and 𝜙a the
acoustic contribution. Hybrid approaches are based on acoustic analogies (e.g.
Lighhill, Lilley, etc.) which introduce a wave operator describing the wave propa-
gation and associated aeroacoustic sources. The latter are required as closure for
solving the acoustic field and are extracted from the CFD solution. CAA methods
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distinguish between analytical and numerical approaches. Analytical techniques
are based on integral methods (e.g. Kirchhoff’s surface integral, Ffowcs Williams-
Hawkings (FW-H) equations, etc.), where the sound pressure, at a specific point,
is calculated by integrating over the region containing the aeroacoustic sources.
Numerical techniques are similar to the CFD approach, in that both solve numer-
ically the governing partial differential equations in the entire domain of interest.
Thus, in contrast to analytical techniques the numerical approach computes the
flow field and the sound pressure simultaneously in the whole computational do-
main.

One typical feature of hybrid approaches is that different computational grids
and temporal resolution are possible. On the one hand, this is disadvantageous,
because additional temporal and spatial interpolation is required, which might
introduce additional numerical uncertainties and instabilities. On the other hand,
it is advantageous, since the temporal and spatial discretization schemes can easily
be fine-tuned to meet the different requirements of CFD and CAA, seperately. In
general, CFD solvers are often more diffusive than CAA solvers, which helps them
to quickly damp numerical instabilities so that a converged solution is reached
faster. In contrast, CAA solvers, which describe the propagation of sound waves
have to transport also the weakest sound waves, therefore, need to be as less
diffusive as possible.

The main drawback, of hybrid CAA approaches is that acoustic and flow effects
are decoupled, because the turbulent flow and acoustic fields are computed sepa-
rately. Therefore, the aeroacoustic sources obtained from the incompressible flow
field being fully decoupled from acoustic phenomena cannot account for effects,
which originate from the interactions between the turbulent flow and acoustic
field.

In the numerical approach the acoustic field is often computed solving linearized
Euler equations (LEE) [10, 11], which are much simpler compared to the full set
of the compressible conservation equations, since non-linear terms do not occur
in the wave operator. It can be further shown that the acoustic analogy based on
the LEE is equivalent to Lilley’s acoustic analogy [17, 18, 26], if both are applied
to sheared flows.

The dominant aeroacoustic source term appearing in the momentum equation
of the LEE, which originates from turbulence-turbulence interaction, is

Ω′
𝑖 = 𝑣′

𝑗
𝜕𝑣′

𝑖
𝜕𝑥𝑗

− ⟨𝑣′
𝑗
𝜕𝑣′

𝑖
𝜕𝑥𝑗

⟩ , (1.4)

where 𝑣′
𝑖 are the turbulent velocity fluctuations. This formulation for the aeroa-
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coustic source term is often applied when solving the acoustic field based on the
LEE [1, 8, 17, 19]. Bogey et al. [17] argued that centering achieved by the sub-
traction of the temporal average of the source term in equation (1.4) stabilizes
the numerical solution process of the LEE and leads to better prediction of the
acoustic field near the source region.

Carrying out the linearization of the Euler equations, based on the aeroacoustic
decomposition, additional cross-terms, representing interaction between the mean
flow field and the turbulence fluctuations, appear in the momentum and energy
equation. If these cross-terms are included into the source term the equation
stays formally exact. Bechara et al. [13] considered the dominant aeroacoustic
source terms (1.4) together with the cross-terms, whereas Colonius et al. [18] and
Goldstein [26] argued that these additional cross-terms are often negligible.
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1.4 Motivation and aims

LES RANSCFD:
⇒ flow field

LEE
CAA:
(source generation)
numerical solution
⇒ acoustic field

mean flow field and
resolved aeroacoustic sources

mean flow field and
mean turbulence quantities

Figure 1.2: Discussed hybrid CAA methods.

This Master’s Thesis was done in cooperation with AVL LIST GmbH1(AVL) and
the Institute of Fluid Mechanics and Heat Transfer (ISW) of Graz University of
Technology (TU Graz). Because of the cooperation with AVL, the CFD software
AVL FIRE™ [7] was used. A CAA tool is already implemented into FIRE™ [6],
which follows a hybrid approach, where the source terms are calculated from a
prior RANS-type CFD simulation, and the acoustic radiation (CAA) is based on
numerical solution of the LEE (see figure 1.2), which is a widespread standard
approach [8, 9, 11, 14]. In the current version the aeroacoustic sources are artifi-
cially generated by using the unstructured kinematic source generator (UKSG),
which is part of the CAA tool implemented in FIRE™. This aeroacoustic source
generation module relies on a stochastic approach reflecting the stochastic nature
of turbulence.

The alternative to a RANS based CFD in combination with a modeling of the
aeroacoustic source terms is to use a CFD method, which is capable of computing
directly the aeroacoustic source terms, which requires the direct simulation of
turbulent motion. The method of Large-Eddy Simulation (LES) [23, 54] is by
definition capable of resolving directly most parts of the turbulent motion down
to the limit of the unresolved small structures (subgrid-scale, SGS). Therefore,
the aeroacoustic sources calculated from a LES are expected to better describe
the physics of sound generation induced by the turbulent eddy motion, especially
in complex flow configurations. This higher level of description comes of course

1https://www.avl.com/home
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with much higher computational costs, which is the main advantage of the RANS
based method.

The primary goal of this Master’s Thesis is to calculate the sound sources for
the LEE directly from LES and compare them with the aeroacoustic sources
computed with the existing sound generation module of FIRE™. As a secondary
goal it shall be further analyzed to which extent the source terms obtained from
the LES contain contributions from large low-frequency vortical structures. It
shall be investigated, how to assess and quantify the possible contribution of
these large low-frequency vortical structures to the aeroacoustic source term. An
additional goal is the investigation of the possible contributions of the cross-terms,
arising from the linearization of the Euler equations. Aside from the computation
and analysis of the aeroacoustic source terms, the results of the underlying LES
and RANS-type CFD solutions of the flow field shall be discussed and validated
against data from direct numerical simulation (DNS) as well [32].

The geometry considered in this Master’s Thesis is a straight pipe contain-
ing a sharp contraction/orifice. This geometry was particularly chosen because
AVL launched a project in parallel to this Master’s Thesis, where this particu-
lar configuration was examined experimentally and numerically. The design of
the experimental setup used in this project essentially follows the Ph.D.-thesis of
Hofman [29]. Similar geometries were considered in publications of Bailly et al.
[8], Longatte et al. [40], Crouzet et al. [19], Gloerfelt & Lafon [24] and Bayati
et al. [12]. The computational part of the parallel project was focused on the
simulation of the flow using RANS and the acoustic field with the CAA module
as implemented in FIRE™. The project was carried out by the VIRTUAL VEHI-
CLE Research Center2 Graz. The grids for the CAA simulation were generated
by the VIRTUAL VEHICLE Research Center, whereas the grids used for all the
CFD simulations were generated in the framework of this Master’s Thesis.

2http://www.v2c2.at
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1.5 Document structure
The structure of this Master’s Thesis can roughly be divided into two parts, the
theoretical and the practical part. In the first part, the fundamental theories
are introduced. In the second part, the methods for reaching the aims of this
Master’s Thesis and the obtained results are presented and discussed.

The theoretical part starts with an introduction of the basic principles for de-
scribing acoustics, fluid mechanics and the propagation of sound waves in chap-
ter 2. The document continues with a discussion of the phenomenon of turbulence
in chapter 3, in particular with the generally applied modeling approaches, and
the realization in CFD. An introduction to aeroacoustics is given in chapter 4,
where the acoustic analogies and their corresponding aeroacoustic sources are de-
rived. The computation of the aeroacoustic sources from the LES solution and
the possible contribution of the unresolved SGS terms is presented and discussed
as well. The theoretical part is concluded with a brief introduction of the solution
procedure in the CAA tool implemented in FIRE™ and the presentation of the
mathematical algorithm of the UKSG.

The practical part starts with a detailed problem definition (geometry, flow
configuration, etc.) and the applied methods for handling the individual tasks of
this Master’s Thesis in chapter 5. The results of the CFD simulations, which are
the basis of the aeroacoustic sources, are presented in chapter 6. In the follow-
ing chapter 7 the resulting aeroacoustic source terms from the CFD simulation
are presented and compared to the aeroacoustic sources from the source gener-
ation module implemented in FIRE™. The possible influence of the large low-
frequency vortical structures on the aeroacoustic source terms is also discussed
and presented in this chapter. Additionally, the LES results for the cross-terms,
arising from the linearization of the Euler equations, are presented and discussed.
The document concludes in chapter 8 with a summary of the most important
results and conclusions as well as an outlook on possible further investigations.
Additional tabulated results are appended (see appendix A).
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2 Fundamentals

This chapter introduces and discusses the fundamentals which are required for
describing the acoustics in a stagnant fluid in section 2.1. The sound pressure, one
of the target quantities of acoustics, is explained at first. It follows a presentation
of the governing equations of fluid mechanics in section 2.2, which are derived
in various different formulations. The focus is on a most complete derivation of
these governing equations so that all applied assumptions and simplifications are
clearly seen. In section 2.3 the propagation of sound waves is discussed by deriving
the simplest wave equation, introducing the speed of sound as the characteristic
velocity.

11



2 Fundamentals

2.1 Acoustics

Hearing is the sensation of sound due to small mechanical stimulations of certain
parts of the ear. These oscillatory stimulations are essentially caused by the
unsteady sound pressure, which is defined as

𝑝′(𝑡) ∶= 𝑝(𝑡) − ⟨𝑝⟩ [Pa], (2.1)

where ⟨𝑝⟩ is the temporal average (steady or mean part) of the instantaneous
pressure 𝑝(𝑡). The temporal average pressure ⟨𝑝⟩ is defined as:

⟨𝑝⟩ ∶= lim
𝑇 →∞

1
𝑇

𝑇

∫
𝑇0

𝑝(t)𝑑t. (2.2)

This steady base pressure has no influence on the sensation of sound. The strength
of the sound pressure is quantified in terms of the root mean square (RMS) of the
fluctuation, written as

𝑝RMS = √⟨(𝑝′(𝑡))2⟩ [Pa]. (2.3)

The human ear is capable of resolving a large range of sound pressure strength. It
covers a range from the threshold of hearing at 𝑝RMS,min = 10−5 Pa to the threshold
of pain at 𝑝RMS,max = 102 Pa. Due to this wide range, a logarithmic scale was
introduced to define the sound pressure level as:

𝐿𝑝 ∶= 10 log10 (
𝑝RMS
𝑝ref

)
2

= 20 log10 (
𝑝RMS
𝑝ref

) [dB]. (2.4)

The threshold of hearing at approximately 1 kHz in air is used as the reference
pressure 𝑝ref,air = 20×10−6 Pa. For other fluids (e.g. water) the reference pressure
𝑝ref = 10−6 Pa is used.

The main difficulty of computational acoustics is the strong disparity of the
largest and smallest scales of the sound pressure, which need to be resolved for
accurate predictions.

The time-period 𝑇, over which the temporal averaging is applied, determines
the lower limit of frequencies 𝒻low, which can be considered, since

𝒻low = 1
𝑇

. (2.5)

The upper limit of the resolvable frequencies is practically determined by the
sampling rate in measurements, or the time-step size in numerical simulations
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used for temporal discretization. Accordingly, the number of time-steps 𝑁𝑇,
which are used to discretize the time-period 𝑇, define the upper limit of resolved
frequencies:

𝒻high = 1
2Δ𝑡

, where (2.6)

Δ𝑡 = 𝑇
𝑁𝑇

. (2.7)

This restriction is based on the Nyquist criterion, which states that the high-
est resolved frequency 𝒻high is half of the sampling frequency 1/Δ𝑡. Thus, the
time-period 𝑇 and the time-step Δ𝑡 have to be chosen appropriately to the con-
sidered problem, regardless of whether the sound pressure is accessed by sim-
ulation or measurement. For example, the human ear responds to frequencies
from approximately 𝒻low = 20 Hz to 𝒻high = 20 kHz, which requires a time-step of
Δ𝑡 = 2.5×10−5 s and a time-period of 𝑇 = 0.05 s.

Summing up, it can be stated, that the pressure 𝑝 represents a key quantity
in acoustics. The difficulty to access the sound pressure level is not only due to
the typical large disparity of the smallest and the largest relevant pressure scales.
It also arises from the energy associated with the acoustic pressure fluctuations,
which might be very small compared to the energy contained in the turbulent
motion, and thus, is difficult to capture.
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2.2 Governing equations

In this section, the governing equations of fluid mechanics are introduced [52].
Starting from the general laws of conservation, several alternative formulations
will be derived, which constitute the basis for further definitions and specifica-
tions.

2.2.1 Conservation laws

In general, fluid is considered a continuum and its motion can be described by
the conservation laws for mass, momentum and energy. The corresponding con-
servation equations assume a compressible Newtonian fluid and are written in
Cartesian coordinates. The conservation law for mass, termed continuity equa-
tion, reads

𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕𝑥𝑗

(𝜌𝑣𝑗) = 𝑆�̇�, (2.8)

where 𝜌 is the fluid density, 𝑣𝑗 is the velocity component in direction 𝑥𝑗 and 𝑡 is
the time. The term 𝑆�̇� represents a mass source. It is included in the general
formulation, because mass sources 𝑆�̇� can contribute to the generation of sound.
They will be excluded for the presently considered sound field though, as will be
shown later.

The conservation equation of momentum are also known as the Navier-Stokes
equations. For the momentum in direction 𝑥𝑖, they are rewritten as

𝜕
𝜕𝑡

(𝜌𝑣𝑖) + 𝜕
𝜕𝑥𝑗

(𝜌𝑣𝑗𝑣𝑖) = + 𝜕
𝜕𝑥𝑗

(𝑃𝑗𝑖) + 𝑆𝑓,𝑖 + 𝑆�̇�𝑣𝑖, (2.9)

where 𝑃𝑗𝑖 is the fluid stress tensor and 𝑆𝑓,𝑖 is an external volumetric body force.
The term 𝑆�̇�𝑣𝑖 is the contribution of the mass source to the momentum, if injected
with velocity 𝑣𝑖, when considering the mass source term 𝑆�̇� in the continuity
equation. The fluid stress tensor 𝑃𝑗𝑖 is composed of the static pressure 𝑝 and the
viscous stresses 𝜏𝑗𝑖

𝑃𝑗𝑖 = −𝑝𝛿𝑖𝑗 + 𝜏𝑗𝑖, (2.10)

where 𝛿𝑖𝑗 is the Kronecker delta, which is defined as

𝛿𝑖𝑗 =
⎧{
⎨{⎩

1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗
. (2.11)
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Fluids in general oppose the rate of deformation and not the deformation itself,
as solids do. The stress tensor 𝜏𝑗𝑖 is modeled based on Stokes’ hypothesis for
Newtonian fluids, where the relation between stresses and the deformation rate
is linear. Using these assumptions the stress tensor 𝜏𝑗𝑖 is

𝜏𝑗𝑖 = 𝜂 (
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗

𝜕𝑥𝑖
) − 2

3
𝜂 (

𝜕𝑣𝑘
𝜕𝑥𝑘

) 𝛿𝑖𝑗. (2.12)

The dynamic viscosity 𝜂 is a property of the fluid, which is in general dependent
of the temperature 𝜃 and the pressure 𝑝, and can be experimentally determined
for the considered fluid.

The velocity gradient 𝜕𝑣𝑖/𝜕𝑥𝑗 can be decomposed into two parts

𝜕𝑣𝑖
𝜕𝑥𝑗

= 1
2

(
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗

𝜕𝑥𝑖
)

⏟⏟⏟⏟⏟⏟⏟
𝑆𝑖𝑗

+ 1
2

(
𝜕𝑣𝑖
𝜕𝑥𝑗

−
𝜕𝑣𝑗

𝜕𝑥𝑖
)

⏟⏟⏟⏟⏟⏟⏟
𝑊𝑖𝑗

, (2.13)

where the symmetric rate of strain tensor 𝑆𝑖𝑗 and the asymmetric vorticity tensor
𝑊𝑖𝑗 appear. Note that the stress tensor 𝜏𝑗𝑖 (2.12) only depends on the rate of
strain tensor 𝑆𝑖𝑗, because a fluid in rigid rotation represented by 𝑊𝑖𝑗 does not
experience viscous stresses.

The conservation equation for the total energy 𝑒tot, which is composed of the
specific internal energy 𝑒 and the specific kinetic energy

𝑒tot = 𝑒 + 1
2

|𝑣|2. (2.14)

reads

𝜕
𝜕𝑡

(𝜌𝑒tot) + 𝜕
𝜕𝑥𝑗

(𝜌𝑣𝑗𝑒tot) = − 𝜕
𝜕𝑥𝑗

(𝑝𝑣𝑗) −
𝜕𝑞𝑗

𝜕𝑥𝑗
+ 𝜕

𝜕𝑥𝑗
(𝜏𝑗𝑖𝑣𝑖)

+ 𝑆𝑓,𝑖𝑣𝑖 + 𝑆�̇�𝑒𝑡 + 𝑆𝜃. (2.15)

The heat flux 𝑞𝑗, due to conduction, can be described by Fourier’s law

𝑞𝑗 = −k 𝜕𝜃
𝜕𝑥𝑗

, (2.16)

where k is the heat conductivity of the fluid and 𝜃 is the local fluid temperature.
𝑆𝑓,𝑖𝑣𝑖 is the power due to the action of an external body force, 𝑆�̇�𝑒𝑡 is the power
due to mass injection, if included, and 𝑆𝜃 is an external volumetric heat source.

The non-linear convective terms on the LHS of the conservation equations
momentum (2.9) and energy (2.15) are the origin of turbulence. Since turbulence
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plays a great role for the generation of flow-induced sound sources, two distinct
sections 3.1 and 3.2 are devoted to this phenomenon. It is further noted that the
acoustic pressure 𝑝a, the key acoustic variable, is included in the presented fully
compressible formulation. Thus, if this system of equations is solved directly,
all aeroacoustic effects, like wave propagation, refraction and scattering, can be
described as well. As already mentioned, the direct numerical solution of this
system of equations comes with huge computational costs. This is mainly due to
the large wide range of relevant scales of the pressure as well as the turbulence,
which need to be resolved.

2.2.2 Primitive form of the conservation laws

In this section, the so called primitive forms of the conservation laws are derived.
For this derivation the material derivative, defined as:

𝐷
𝐷𝑡

∶= 𝜕
𝜕𝑡⏟
𝐼

+ 𝑣𝑗
𝜕

𝜕𝑥𝑗⏟
𝐼𝐼

, (2.17)

is considered. The first term on the RHS (I) represents the local temporal change,
while the second therm (II) represents convective change of an arbitrary quan-
tity. Using this material derivative, the conservation equations of mass (2.8),
momentum (2.9) and energy (2.15) can be rewritten in primitive formulation as

𝐷𝜌
𝐷𝑡

= − 𝜌
𝜕𝑣𝑗

𝜕𝑥𝑗
+ 𝑆�̇�, (2.18a)

𝜌
𝐷𝑣𝑖
𝐷𝑡

= − 𝜕𝑝
𝜕𝑥𝑖

+
𝜕𝜏𝑗𝑖

𝜕𝑥𝑗
+ 𝑆𝑓,𝑖 and (2.18b)

𝜌𝐷𝑒
𝐷𝑡

= − 𝑝
𝜕𝑣𝑗

𝜕𝑥𝑗
+ 𝜏𝑗𝑖

𝜕𝑣𝑖
𝜕𝑥𝑗

−
𝜕𝑞𝑗

𝜕𝑥𝑗
+ 𝑆𝜃. (2.18c)

The mass source in the momentum and energy equation vanish in this formula-
tion.

2.2.3 The closure of the system of primitive equations

The system of conservation law equations (2.18) involve seven dependent vari-
ables: density 𝜌, pressure 𝑝, three velocity components 𝑣𝑖, specific inner energy
𝑒 and the temperature 𝜃. To close this set of equations, two additional relations
are needed. The closure is essentially based on the fundamental law of thermo-
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dynamics by Gibbs, which reads for a reversible process

𝜃𝛿𝑠 = 𝛿𝑒 − 𝑝
𝜌2 𝛿𝜌 (2.19)

Here, the specific entropy 𝑠 is introduced as a new variable, which will replace the
internal energy 𝑒. The change 𝛿 can be interpreted as the material based change
following a fluid particle. Thus, the fundamental law of thermodynamics can be
written in terms of the material derivatives as

𝜃𝐷𝑠
𝐷𝑡

= 𝐷𝑒
𝐷𝑡

− 𝑝
𝜌2

𝐷𝜌
𝐷𝑡

. (2.20)

Introducing the material derivative of the internal energy obtained from (2.20)
into the primitive form of the energy equation (2.18c) and incorporating the
primitive form of the continuity equation (2.18a) yields

𝜌𝐷𝑠
𝐷𝑡

= 1
𝜃

[𝜏𝑗𝑖
𝜕𝑣𝑖
𝜕𝑥𝑗

−
𝜕𝑞𝑗

𝜕𝑥𝑗
+ 𝑆𝜃 − 𝑝

𝜌
𝑆�̇�] . (2.21)

Note that the entropy equation (2.21) is just a reformulation of the energy equa-
tion (2.18c).

In the next step a thermodynamic relation

𝜌 = 𝜌(𝑝, 𝑠) (2.22)

is introduced, which describes in particular the dependence of the density 𝜌 as a
function of the pressure 𝑝 and the entropy 𝑠. The total variation of the density
can be accordingly written as

𝛿𝜌 = (
𝜕𝜌
𝜕𝑝

)
𝑠⏟

=∶ 1
𝒸2

𝛿𝑝 + (
𝜕𝜌
𝜕𝑠

)
𝑝⏟

=∶−𝜌𝜎

𝛿𝑠, (2.23)

involving the two new expressions

𝒸2 ∶= (
𝜕𝜌
𝜕𝑝

)
−1

𝑠
, and (2.24a)

𝜎 ∶= (
𝜕𝜌
𝜕𝑠

)
𝑝

. (2.24b)

Later in this chapter it is shown that 𝒸 is a measure for the isentropic speed of
sound. Recalling the equivalence between the total variation and the material
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derivative, equation (2.23) can be written as

1
𝒸2

𝐷𝑝
𝐷𝑡

=
𝐷𝜌
𝐷𝑡

+ 𝜌𝜎𝐷𝑠
𝐷𝑡

. (2.25)

Introducing (2.25) into the entropy equation (2.21) and recalling the primitive
formulation of the continuity equation (2.18a) finally leads to a formulation of
the energy equation yielding the pressure 𝑝 according to

1
𝒸2

𝐷𝑝
𝐷𝑡

= −𝜌
𝜕𝑣𝑗

𝜕𝑥𝑗
+ 𝜎

𝜃
[𝜏𝑗𝑖

𝜕𝑣𝑖
𝜕𝑥𝑗

−
𝜕𝑞𝑗

𝜕𝑥𝑗
+ 𝑆𝜃] + 𝑆�̇� [1 − 𝜎

𝜃
𝑝
𝜌

] . (2.26)

The system of equations is finally closed by introducing the thermal equation of
state, which reads for a perfect gas

𝜌 = 𝑝
ℛ𝜃

, (2.27)

where ℛ is the specific gas constant. The perfect gas assumption is applied as
well for determining the parameters 𝒸2 and 𝜎. For a perfect gas one can write

𝑑𝑒 = 𝑐𝑣𝑑𝜃, (2.28a)

ℛ = 𝑐𝑝 − 𝑐𝑣 and (2.28b)

𝛾 =
𝑐𝑝

𝑐𝑣
, (2.28c)

where 𝑐𝑝 and 𝑐𝑣 are the constant specific heat capacities at constant pressure and
volume, respectively, and 𝛾 is the isentropic coefficient. Using (2.27), (2.28a),
(2.28c) and (2.19) one obtains

𝒸2 = 𝛾ℛ𝜃 = 𝛾𝑝
𝜌

and (2.29a)

𝜎 = 1
𝑐𝑝

. (2.29b)

18 Master’s Thesis



2.2 Governing equations

Finally, the closed system of equations for a perfect gas in primitive form can
be rewritten as

𝐷𝜌
𝐷𝑡

= − 𝜌
𝜕𝑣𝑗

𝜕𝑥𝑗
+ 𝑆�̇�, (2.30a)

𝜌
𝐷𝑣𝑖
𝐷𝑡

= − 𝜕𝑝
𝜕𝑥𝑖

+
𝜕𝜏𝑗𝑖

𝜕𝑥𝑗
+ 𝑆𝑓,𝑖, (2.30b)

𝐷𝑝
𝐷𝑡

= − 𝛾𝑝
𝜕𝑣𝑗

𝜕𝑥𝑗
+ [𝜏𝑗𝑖

𝜕𝑣𝑖
𝜕𝑥𝑗

−
𝜕𝑞𝑗

𝜕𝑥𝑗
+ 𝑆𝜃] (𝛾 − 1) + 𝑆�̇�

𝑝
𝜌

. (2.30c)

2.2.4 Inviscid flows with no conductive/radiative heat transfer

Inviscid flow of non-conducting/radiating fluids is generally described by the so
called Euler equations. The Euler equations can be directly derived from the full
closed system of equations given by (2.30), applying some simplifications. The
first simplification excludes the external sources of mass 𝑆�̇� and chemical heat
release 𝑆𝜃. The second simplification neglects the viscous forces and dissipation,
as well as the conductive or radiative heat transfer. These simplifications imply
isentropic flow such that

𝐷𝑠
𝐷𝑡

= 0. (2.31)

Applying these simplifications, the system of governing equations is reduced to

𝐷𝜌
𝐷𝑡

= − 𝜌
𝜕𝑣𝑗

𝜕𝑥𝑗
, (2.32a)

𝐷𝑣𝑖
𝐷𝑡

= − 1
𝜌

𝜕𝑝
𝜕𝑥𝑖

+ 𝑆𝑓,𝑖, (2.32b)

1
𝒸2

𝐷𝑝
𝐷𝑡

= − 𝜌
𝜕𝑣𝑗

𝜕𝑥𝑗
. (2.32c)

It is noted that the pressure equation (2.32c) is equivalent to the isentropy con-
dition (2.31). However, since the pressure 𝑝 is the target variable in acoustics,
the pressure equation is often preferred.

The system of Euler equations, which is solved by the CAA module of FIRE™,
additionally neglects all body forces 𝑆𝑓,𝑖, and uses a different formulation of the
pressure equation (2.32c). Since the isentropy condition (2.31) also implies

1
𝜌

𝐷𝑝
𝐷𝑡

= 𝛾
𝐷𝜌
𝐷𝑡

, (2.33)
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equation (2.32c) is accordingly rewritten to

𝐷𝑝
𝐷𝑡

= − 𝛾𝑝
𝜕𝑣𝑗

𝜕𝑥𝑗
. (2.34)

2.2.5 Incompressible flows

Starting from the full system of conservation equations written in conservative
form, (2.8), (2.9) and (2.15) and introducing some simplifications, the system of
equations for incompressible flows is derived. The external source terms 𝑆�̇� and
𝑆𝜃 are neglected again. Dissipation due to viscous stresses are also neglected.
Assuming incompressible flow basically implies that the pressure 𝑝 is decoupled
from the density 𝜌. Additionally, assuming no heat transfer due to conduction
and radiation further implies isothermal flows such that the density is constant
and the conservative equations of mass and momentum reduce to

𝜕𝑣𝑗

𝜕𝑥𝑗
= 0 and (2.35a)

𝜌ref
𝜕𝑣𝑖
𝜕𝑡

+ 𝜌ref
𝜕𝑣𝑗𝑣𝑖

𝜕𝑥𝑗
= − 𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑣𝑖

𝜕𝑥2
𝑗

. (2.35b)

where 𝜌ref is the constant reference density of the fluid.
Note that the pressure 𝑝 in the momentum equation (2.35b) does not include

any acoustic component due to the assumed incompressibility. The shown system
of incompressible equations is still the basis for the computations of the acoustic
pressure field, when using the hybrid approach. In this approach, the incompress-
ible formulation is solved to obtain the turbulence-induced aeroacoustic source
terms, which are used as input to the solution of the acoustic field produced by
a separate solver. In the present Master’s Thesis the incompressible solution of
the turbulent flow field is computed using the method of LES. In the following
chapter 3 the phenomenon turbulence, which originates from the non-linear term
of the momentum equation, shall be further discussed.
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2.3 Propagation of waves and the speed of sound

2.3 Propagation of waves and the speed of sound

In this section, a brief introduction to the propagation of (sound-) waves is pre-
sented by deriving a simple wave equation from the Navier-Stokes equations.
The derivation is based on the acoustic decomposition, which is for an arbitrary
quantity 𝜙 defined as:

𝜙 ∶= ⟨𝜙⟩ + 𝜙a, (2.36)

where ⟨𝜙⟩ is the mean base flow and 𝜙a is the acoustic perturbation. Linearization
of an arbitrary non-linear term 𝜙𝜓 would lead to the following three terms

𝜙𝜓 = ⟨𝜙⟩ ⟨𝜓⟩

+ ⟨𝜙⟩ 𝜓a + 𝜙a ⟨𝜙⟩

+�
��𝜙a𝜓a, (2.37)

since non-linear effects are not considered.

2.3.1 Wave equation for a quiescent fluid

Applying the acoustic decomposition (2.36) to the flow field variables pressure 𝑝,
velocity 𝑣𝑖 and density 𝜌 and introducing these into the Euler equations (2.32)
together with the isentropy condition (2.31) yields

𝜕
𝜕𝑡

(⟨𝜌⟩ + 𝜌a) + 𝜕
𝜕𝑥𝑗

[(⟨𝜌⟩ + 𝜌a)(⟨𝑣𝑗⟩ + 𝑣a,𝑗)] = 0, (2.38a)

𝜕
𝜕𝑡

(⟨𝑣𝑗⟩ + 𝑣a,𝑗) + (⟨𝑣𝑗⟩ + 𝑣a,𝑗)
𝜕

𝜕𝑥𝑗
(⟨𝑣𝑗⟩ + 𝑣a,𝑗) =

− 1
⟨𝜌⟩ + 𝜌a

𝜕
𝜕𝑥𝑖

(⟨𝑝⟩ + 𝑝a) , and (2.38b)

𝜕
𝜕𝑡

(⟨𝑠⟩ + 𝑠a) + (⟨𝑣𝑗⟩ + 𝑣a,𝑗)
𝜕

𝜕𝑥𝑗
(⟨𝑠⟩ + 𝑠a) = 0, (2.38c)

respectively. Before continuing, additional assumptions are introduced. First,
the fluid is considered as stagnant (𝑣0,𝑖 = 0) and uniform (⟨𝜌⟩ = 𝜌0, ⟨𝑝⟩ = 𝑝0

and ⟨𝑠⟩ = 𝑠0). These fluid conditions are often described as quiescent. Second,
acoustic perturbations are assumed as very small (𝜙a ≪ ⟨𝜙⟩). As a result, all
second order terms 𝜙a𝜓a are neglected as in (2.37). Third, the acoustic pertur-
bations are isentropic 𝑠a = 0. Applying all these assumptions, only the equations
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for the acoustic perturbations 𝜙a remain:

𝜕𝜌a
𝜕𝑡

+ 𝜌0
𝜕𝑣a,𝑗

𝜕𝑥𝑗
= 0 (2.39a)

𝜌0
𝜕𝑣a,𝑖

𝜕𝑡
+

𝜕𝑝a
𝜕𝑥𝑖

= 0. (2.39b)

To eliminate 𝑣a,𝑖 from the equations (2.39a) and (2.39b), the time derivative of the
continuity equation (2.39a) was subtracted from the divergence of the momentum
equation (2.39b) such that

𝜕2𝜌a

𝜕𝑡2 −
𝜕2𝑝a

𝜕𝑥2
𝑗

= 0. (2.40a)

Rewriting (2.24a) based on the applied assumptions to 𝒸2
0 = 𝑝a/𝜌a either 𝑝a or

𝜌a can be expressed in terms of the other and the wave equations for a quiescent
fluid finally read

𝜕2𝑝a

𝜕𝑡2 − 𝒸2
0

𝜕2𝑝a

𝜕𝑥2
𝑗

= 0 (2.41a)

𝜕2𝜌a

𝜕𝑡2 − 𝒸2
0

𝜕2𝜌a

𝜕𝑥2
𝑗

= 0. (2.41b)

This formulation makes evident that 𝒸 represents the speed of the perturbation
traveling through the space, namely the speed of sound. No source terms have
been considered thus far in this derivation. They are subsequently included as
arbitrary sources 𝑆𝑝 and 𝑆𝜌 so that the wave equations for a quiescent fluid
become inhomogeneous

𝜕2𝑝a

𝜕𝑡2 − 𝒸2
0

𝜕2𝑝a

𝜕𝑥2
𝑗

= 𝑆𝑝, (2.42a)

𝜕2𝜌a

𝜕𝑡2 − 𝒸2
0

𝜕2𝜌a

𝜕𝑥2
𝑗

= 𝑆𝜌. (2.42b)

These are the main equations for wave propagation in classical acoustics, which
can also be solved analytically, if the sources 𝑆𝑝 or 𝑆𝜌 are known and permit it
mathematically.
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2.3.2 Speed of sound

Recalling equation (2.24a)

𝒸2 = (
𝜕𝜌
𝜕𝑝

)
−1

𝑠

and assuming a perfect gas, the speed of sound is only dependent of the fluid
temperature 𝜃 as in (2.29a) such that

𝒸2 = 𝛾ℛ𝜃 = 𝛾𝑝
𝜌

.

Thus, the speed of sound for air, at given atmospheric conditions, is

𝒸air = √𝛾ℛair𝜃 = 343.48 m/s, (2.43)

where

𝛾 = 1.402,

ℛair = 287.06 J/(kg K) and

𝜃 = 293.15 K = 20 ∘C. (2.44a)

When assuming an incompressible fluid, the heat capacities are equal 𝑐𝑣 = 𝑐𝑝

and the density 𝜌 is only dependent of the fluid temperature 𝜃 such that

𝜌 ≠ 𝜌(𝑝), 𝜌 = 𝜌(𝜃) ⇒ (2.45)

𝒸−2 = (
𝜕𝜌
𝜕𝑝

)
−1

𝑠
= 0, (2.46)

which implies an infinitely high speed of sound. This explains the very large
difference between the propagation speed of sound in compressible gaseous and
(nearly) incompressible fluids.
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E.g. the speed of sound in water, which can be computed within the temper-
ature range from 273 K to 293 K and the pressure range from 105 Pa to 107 Pa,
from the expression [46]

𝒸water = 𝒸ref + 𝛽𝒸,𝜃,water(𝜃 − 𝜃ref) + 𝛽𝒸,𝑝,water𝑝 (2.47)

becomes with

𝒸ref = 1447 m/s,

𝛽𝒸,𝜃,water = 4.0 m K/s,

𝛽𝒸,𝑝,water = 1.6×10−6 m Pa/s,

𝜃ref = 283.16 K,

𝜃 = 293.15 K and

𝑝 = 1.0×106 Pa, (2.48a)

𝒸water = 1487.12 m/s. (2.49)

Due to the much higher speed of sound in (nearly) incompressible flows, the com-
putational costs for resolving all relevant time-scales increase significantly. Thus,
dealing with (nearly) incompressible fluids is numerically even more challenging.

Using the speed of sound 𝒸 as reference velocity, a non-dimensional character-
istic number, the Mach number ℳ𝒶, can be defined as

ℳ𝒶 = �̄�

𝒸
, (2.50)

where �̄� a characteristic velocity of the flow. The Mach number describes the
compressibility of the flow configuration. For ℳ𝒶 < 0.3 the flow is considered
as incompressible, whereas for ℳ𝒶 > 0.3 the fluid behaves compressible. Flow
configurations with ℳ𝒶 < 1 are referred to as subsonic and those with ℳ𝒶 ≥ 1
are called supersonic. In this Master’s Thesis only small Mach numbers ℳ𝒶 are
considered so that the flow can be assumed as incompressible.

24 Master’s Thesis



3 Turbulent flow

In the previous chapter the governing equations of fluid mechanics were intro-
duced. The non-linear terms in the momentum equation are, as already men-
tioned, the origin of turbulence. The phenomenon of turbulence and its mathe-
matical description shall be discussed in much detail in section 3.1 and section 3.2,
because the turbulent fluctuating motion strongly contributes to the aeroacoustic
sources. In section 3.3 the CFD solution procedure as implemented in FIRE™ is
shortly addressed.
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3 Turbulent flow

3.1 Turbulence

Turbulence is one of the great still unsolved physical phenomena. It is very
complex and therefore difficult to handle. Due to its strong dependence on time
and space and its non-linear and multi-dimensional nature, every assumption
inherently introduces certain simplifications, which do not universally apply to all
types of turbulent flow situations. Therefore, turbulence is very difficult to model.
At the same time, it is present in almost every technical application, where it
exhibits a great influence on the transport processes of heat, mass and momentum.
In this section, a short introduction on the fundamentals of turbulence [21, 41,
52, 54] is given.

3.1.1 Reynolds number

To describe the basic characteristics of turbulence, one can start with the incom-
pressible momentum equation (2.35b) written as

𝜕𝑣𝑖
𝜕𝑡

+
𝜕𝑣𝑗𝑣𝑖

𝜕𝑥𝑗
= −1

𝜌
𝜕2𝑝
𝜕𝑥2

𝑗
+ 𝜈

𝜕2𝑣𝑖

𝜕𝑥2
𝑗

.

The momentum equation can be non-dimensionalized by introducing character-
istic reference values for the flow quantities and the geometry

𝑣𝑖 = 𝑣∗
𝑖𝓋, (3.1a)

𝑥𝑖 = 𝑥∗
𝑖𝓁, (3.1b)

𝑡 = 𝑡∗ 𝓁

𝓋
and (3.1c)

𝑝 = 𝑝∗𝜌ref𝓋
2, (3.1d)

where 𝜌ref is the reference density, 𝓋 is a typical velocity-scale (e.g. the bulk
velocity of a pipe-flow) and 𝓁 a typical length-scale (e.g. the hydraulic diameter
of an arbitrary channel) of the application. The hydraulic diameter 𝒹 of a channel
of arbitrary shape is defined as

𝒹 = 4𝐴
𝑈

, (3.2)

where 𝐴 is the cross-sectional area and 𝑈 is the circumference of the channel.
For cylindrical pipes the hydraulic diameter becomes the inner diameter 𝒹 = 𝐷I

of the pipe. Using the characteristic reference values as shown in (3.1), one can
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non-dimensionalize the momentum equation (2.35b) to get

𝜕𝑣∗
𝑖

𝜕𝑡∗ +
𝜕𝑣∗

𝑗𝑣∗
𝑖

𝜕𝑥∗
𝑗

= −𝜕𝑝∗

𝜕𝑥∗
𝑗

+ 1
ℛℯ

𝜕2𝑣∗
𝑖

𝜕𝑥∗2
𝑗

. (3.3)

In this dimensionless formulation (3.3) the Reynolds number ℛℯ appears, which
is the characteristic number determining the flow. The Reynolds number can be
interpreted as a ratio between inertia and viscous forces and is defined as

ℛℯ = 𝓋𝓁

𝜈
= inertia forces

viscous forces
. (3.4)

Note that the Reynolds number is the only free parameter in equation (3.3), and
thus, its value determines the solution. For every flow configuration, there exists
a critical Reynolds number (ℛℯcrit), which defines the transition from laminar to
turbulent flow. This can be illustrated by the well-known Reynolds experiment.

(a) laminar flow: ℛℯ < ℛℯcrit

(b) early transitional (but still laminar) flow: ℛℯ ≈ ℛℯcrit

(c) turbulent flow: ℛℯ > ℛℯcrit

Figure 3.1: The Reynolds experiment [41].

In figure 3.1 the three different regimes are sketched, which can be displayed by
injecting dye into a pipe flow with varied Reynolds numbers. For small Reynolds
numbers (ℛℯ < ℛℯcrit) the flow is laminar, thus only molecular diffusion causes
the dye to mix with the main flow. When the Reynolds number is slightly in-
creased (ℛℯ ≈ ℛℯcrit), the dye streak becomes wavy, but stays laminar. When
the Reynolds number is further increased (ℛℯ > ℛℯcrit), the flow might become
turbulent, thus the streamlines become irregular and chaotic. As a result, the dye
strongly mixes with the main fluid due to the increased convection. In laminar
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3 Turbulent flow

as in turbulent flows the dye will mix with the main fluid, but in turbulent flows
the mixing is strongly enhanced. It is noted that, with increasing Reynolds num-
bers above the critical limit, the flow basically becomes unstable. This instability
makes a transition from laminar to turbulent flow possible, because any arbitrar-
ily small perturbation will be further amplified for ℛℯ > ℛℯcrit and not dampened.
The higher the Reynolds number beyond this limit, the more unstable the flow,
and thus the transition is more likely. Further note that it is even possible to
realize laminar flows at Reynolds numbers larger than the critical Reynolds num-
ber, if the configuration is kept free from outer perturbations and disturbances
at the flow inlet and boundaries (very smooth walls) as much as possible.

3.1.2 Reynolds decomposition

As indicated in the Reynolds experiment, one can describe turbulence as an
irregular and chaotic motion. This led to the definition of the Reynolds decom-
position which attempts to separate the mean flow effects and the turbulence.
The Reynolds decomposition of an arbitrary flow quantity 𝜙 is defined as

𝜙(𝑡) = ⟨𝜙⟩ + 𝜙′(𝑡), (3.5)

where 𝜙′(𝑡) are the time dependent fluctuations around the statistical average
⟨𝜙⟩. For statistically stationary turbulent flows, the average ⟨𝜙⟩ is calculated as a
temporal average of the instantaneous flow quantity 𝜙(𝑡) according to (2.2). The
statistical averaging procedure is associated with the following identities:

⟨𝜙′⟩ = 0, (3.6a)

⟨⟨𝜙⟩⟩ = ⟨𝜙⟩ , (3.6b)

⟨𝜙 + 𝜓⟩ = ⟨𝜙⟩ + ⟨𝜓⟩ , (3.6c)

⟨⟨𝜙⟩ 𝜓⟩ = ⟨𝜙⟩ ⟨𝜓⟩ , (3.6d)

⟨
𝜕𝜙
𝜕𝑥𝑖

⟩ =
𝜕⟨𝜙⟩
𝜕𝑥𝑖

. (3.6e)
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3.1 Turbulence

The intensity of the fluctuating quantities is quantified by the corresponding
RMS-values

𝜙RMS = √⟨(𝜙′(𝑡))2⟩. (3.7)

Accordingly, the kinetic energy contained in the turbulence velocity fluctuations
𝑣′

𝑖, namely the turbulence kinetic energy 𝓀, is defined as:

𝓀 = 1
2

(⟨(𝑣′
𝑥)2⟩ + ⟨(𝑣′

𝑦)2⟩ + ⟨(𝑣′
𝑧)2⟩) . (3.8)

In the modeling of turbulence, isotropic turbulence is often assumed, which implies

⟨(𝑣′
𝑥)2⟩ = ⟨(𝑣′

𝑦)2⟩ = ⟨(𝑣′
𝑧)2⟩ . (3.9)

Based on this assumption, the averaged isotropic velocity fluctuations are calcu-
lated as

⟨𝑣′
iso⟩ = (2

3
𝓀)

1/2
. (3.10)

The turbulence kinetic energy will decay due to the action of the viscous forces,
if a continuous supply of energy is not available. The rate, at which the turbulent
energy decays, is the dissipation rate 𝜀, which is defined as:

𝜀 = 𝜈 ⟨
𝜕𝑣′

𝑖
𝜕𝑥𝑘

𝜕𝑣′
𝑖

𝜕𝑥𝑘
⟩ . (3.11)

3.1.3 Energy cascade

As already mentioned, due to the permanent dissipation of turbulence kinetic
energy caused by the action of viscous forces, turbulence requires a continuous
supply of energy, to sustain a statistically stationary turbulent flow. This kinetic
energy is essentially provided by large vortical structures (eddies) of the mean flow
and is further transferred to the smaller and smaller scales. At the smallest scales
the kinetic energy is dissipated due to the viscous forces. The energy cascade from
the large scale eddies to the small scale eddies is presented in figure 3.2.

Johannes Tieber 29



3 Turbulent flow

Kinetic energy of mean flow

Kinetic energy of large scales

Energy flux through small scales

Energy dissipation by viscosity

Production of turbulent
kinetic energy by
mean flow instabilities

Dissipation of turbulent
kinetic energy

Figure 3.2: Energy flux from the large scale to small scale eddies [2].

Richardson [45] clearly described this phenomenon as follows

Big whorls have little whorls,
which feed on their velocity;

And little whorls have lesser whorls,
and so on to viscosity.

3.1.4 Scales of turbulence

The energy cascade describes the transport of energy through the different scales
of turbulence. In this paragraph a short description of the turbulence-scales and
the energy flux between them is presented [2, 41]. To describe those turbulence-
scales, characteristic length-scales 𝓁, time-scales 𝓉 and velocity-scales 𝓋 are de-
fined.

Geometry related scales

The geometry related scales of turbulence are based on the main characteris-
tic features of the considered configuration. The length-scale is a characteristic
length 𝓁G of the geometry (e.g. the hydraulic diameter 𝒹) and the characteristic
velocity-scale 𝓋G might be the mean velocity of the application (e.g. the bulk
velocity for pipe flows). Using the length-scale and the velocity-scale, a so called
convective time-scale 𝓉G,conv can be constructed. Using the kinematic viscosity 𝜈
of the fluid, a diffusive time-scale 𝓉G,diff can be constructed:

𝓉G,conv =
𝓁G
𝓋G

, (3.12a)

𝓉G,diff =
𝓁2

G
𝜈

. (3.12b)
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3.1 Turbulence

The shown time-scales basically describe the rate at which flow properties are
transferred due to convection or diffusion, respectively. Note that these time-
scales allow for an alternative interpretation of the Reynolds number ℛℯG, if it is
rewritten as

ℛℯG =
𝓉G,diff

𝓉G,conv
=
𝓋G𝓁G

𝜈
. (3.13)

If ℛℯG is large, the diffusive time-scale is much larger than the convective time-
scale, thus diffusive effects are negligible.

Integral scale

The length and time-scales of the largest turbulent structures within the flow are
often chosen as a characteristic scale of turbulence. These large scales, which are
associated with the so called integral length-scale 𝓁L, contain a significant part
of the kinetic energy. The rate of the transfer of turbulent energy from the large
scales to the small scales is determinded by the turbulence dissipation rate 𝜀.
Accordingly, the characteristic length-scale of these large scales 𝓁L are estimated
using the turbulence kinetic energy 𝓀 and the turbulence dissipation rate 𝜀 as

𝓁L = 𝓀3/2

𝜀
. (3.14)

The integral time-scale 𝓉L is defined as

𝓉L = 𝓉𝓀𝜀 = 𝓀

𝜀
, (3.15)

which can be interpreted as the lifetime of the turbulent large scale structures,
named the eddy turnover time. A characteristic turbulence fluctuation velocity-
scale 𝓋L can be constructed using the definition of the turbulence kinetic energy
𝓀 as

𝓋L = (2
3
𝓀)

1/2
. (3.16)
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Kolmogorov scale

The Kolmogorov length-scale represents the smallest relevant scales of turbulent
motion. It was originally derived by Kolmogorov and is also called the dissipation-
scale due to the assumption that any turbulent eddies associated with this small
length-scale are significantly affected by viscous dissipation. Accordingly, the def-
inition of this length-scale is based on the kinematic viscosity 𝜈 and the turbulence
dissipation rate 𝜀 of the turbulence kinetic energy 𝓀, and is written as

𝓁𝒦 = (𝜈3

𝜀
)

1/4
. (3.17)

The corresponding time- and velocity-scales are defined as:

𝓉𝒦 = (𝜈
𝜀

)
1/2

, (3.18a)

𝓋𝒦 = (𝜈𝜀)1/4 , (3.18b)

respectively. Using the Kolmogorov length- and velocity-scales, a Reynolds num-
ber can be constructed as

ℛℯ𝒦 =
𝓋𝒦𝓁𝒦

𝜈
= 1. (3.19)

Being unity by definition implies that viscous dissipation becomes significant.
The turbulent structures, whose size is larger than the integral scale (𝓁 > 𝓁L) are
generally anisotropic and depend on the geometry and the Reynolds number of
the flow configuration. A major part of the kinetic energy is contained in these
large scales. Kolmogorov stated that in the cascading process from the large scales
to the small scales the turbulent motion becomes statistically isotropic. Thus, at
scales below 𝓁L, the turbulent eddies become universal, thus define the so-called
universal range, where the turbulent structures are independent of the geometry
and the Reynolds number. The production of turbulent energy, its transfer and
final dissipation according to the different length-scales, is schematically shown
in figure 3.3.
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𝓁
𝓁𝒦 𝓁L 𝓁G

production of
kinetic energy

dissipation
of energy

transfer
of energy

Figure 3.3: The energy transfer between different length-scales [2].

3.1.5 Turbulence energy spectrum

Applying a spectral analysis to the turbulence kinetic energy ℱ(𝓀), the turbulence
energy spectrum ℰ(𝜅) can be calculated, where 𝜅 is the wave number. A typical
energy spectrum of a fully developed homogeneous turbulent flow is shown in
figure 3.4. One can observe that the large scale eddies 𝜅L contain the highest
turbulence kinetic energy. These large scale eddies, basically generated by the
main flow, break into smaller eddies, transferring their energy to these smaller
structures. No energy is created nor dissipated but only transferred within the
inertial subrange. The higher the Reynolds number of the flow configuration, the
wider the inertial subrange. In this inertial subrange the spectral kinetic energy
density follows the Kolmogorov spectrum law written as

ℰ(𝜅) = 𝐶𝒦𝜀2/3𝜅−5/3, for 1
𝓁L

< 𝜅 < 1
𝓁𝒦

. (3.20)

At higher wave numbers, 𝜅 > 1/𝓁𝒦 the turbulence kinetic energy is dissipated.

log(𝜅)

ℰ(𝜅)

𝜅G 𝜅L 𝜅𝒦

Inertial
subrange

Universal
range

𝜀2/3𝜅−5/3

Figure 3.4: The turbulence kinetic energy spectrum [2].
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3 Turbulent flow

3.1.6 Characteristics of turbulence

Before continuing some important characteristics of turbulence are summarized
[2].

Irregularity: Turbulence is random, chaotic and irregular. The flow contains
large scale as well as small scale structures within a large range.

Diffusivity: Turbulence enhances all diffusion processes, which add up with the
molecular diffusion processes, due to increased convective transport.

Instability: Turbulence is associated with unstable flow configurations at high
Reynolds numbers, where the flow is very sensible to perturbations. Due
to that turbulent flows are stochastic, although the governing equations are
deterministic.

Three-dimensional: Turbulent flow is always an unsteady spatially three-dimensional
flow.

Energy cascade: In turbulent flows energy is typically transferred from the large
scales to the small scales, mainly carried by inviscid processes. The energy
is dissipated at the smallest scales due to viscous stresses.

Continuum: Turbulence is a phenomenon of the continuum. Thus, the smallest
scales are larger than the molecular scales and therefore are determined by
the conservation laws for continua and influenced by boundary and initial
conditions.

State of the flow: Turbulence is a state of the flow and not a state of the fluid.

3.1.7 Coherent structures

In turbulent flow configurations a wide range of scales of turbulent structures
appear, which are spatially correlated and thus coherent. These coherent struc-
tures appear as vortical structures and can therefore be identified based on the
vorticity [31]

�⃗� =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝑣𝑧
𝜕𝑦

−
𝜕𝑣𝑦

𝜕𝑧
𝜕𝑣𝑥
𝜕𝑧

−
𝜕𝑣𝑧
𝜕𝑥

𝜕𝑣𝑦

𝜕𝑥
−

𝜕𝑣𝑥
𝜕𝑦

⎤
⎥
⎥
⎥
⎥
⎦

. (3.21)

In figure 3.5 vortical structures developing from sheared flow are presented.
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𝑥

𝑦

Figure 3.5: Vortical structures developing from sheared flow.

One can distinguish between large and small vortical structures based on their
length- or time-scales, because large structures are associated with long time-
scales. In general, small structures are mainly turbulent, whereas some large
vortical structures might be not chaotic and not stochastic and therefore not
turbulent. Hussain [31] argues that, not the vortical structures themselves, but
rather their breakdown process into smaller and smaller structures is the domi-
nant sound generation process. These large vortical structures might still strongly
influence the propagation of sound waves, as they are convected through large re-
gions of the flow field, while small structures are dissipated much quicker. There-
fore, the influence of the large vortical structures on the aeroacoustic source terms
shall be investigated in the present Master’s Thesis as well. To achieve this task a
method which excludes vortical structures associated with large time-scales from
the aeroacoustic source terms is applied and discussed in this Master’s Thesis.

3.1.8 Temporal filtering

As already mentioned, the definition of the Reynolds decomposition (3.5) basi-
cally splits the instantaneous flow quantities into a statistical mean value and
a relative deviation therefrom. In the hybrid CAA approach, basically the full
turbulent content, represented by the fluctuating term in the Reynolds decom-
position, is included into the aeroacoustic source terms. In this Master’s Thesis
the possible contribution of these large turbulent structures to the aeroacoustic
sources is investigated. Therefore, alternative methods for calculating acousti-
cally relevant fluctuating contributions, excluding large low-frequency vortical
structures, shall be introduced and tested. The foundation of these alternative
methods is, similar as in the Reynolds decomposition (3.5), the decomposition of
the instantaneous flow quantities into a statistical mean and a fluctuation

𝜙fluct(𝑡) = 𝜙(𝑡) − 𝜙mean(𝑡). (3.22)
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The difference to the standard Reynolds decomposition is that in this case the
mean flow quantity 𝜙mean(𝑡) is time dependent, as it includes the low-frequency
content of the large vortical structures. In turn, the fluctuations 𝜙fluct(𝑡) include
the remaining high frequency turbulence of the small scale structures. The mean
flow quantities 𝜙mean(𝑡) are calculated by applying a temporal low-pass filter to
the instantaneous flow field 𝜙(𝑡). In this Master’s Thesis two different methods
for temporal filtering are used for this purpose.

The first method calculates the mean flow quantities (𝜙mean(𝑡) = ⟨𝜙⟩ma) by
applying a moving average procedure, which is defined as

𝜙mean(𝑡) = ⟨𝜙⟩ma ∶= 1
𝑇TF

𝑡+𝑇TF/2

∫
𝑡−𝑇TF/2

𝜙(t)𝑑t ≈ 1
𝑇TF

𝑡+𝑇TF/2

∑
𝑡−𝑇TF/2

𝜙(t)Δt. (3.23)

This procedure basically represents a temporal box filter, which has a constant
width 𝑇TF and moves with time 𝑡. Note that the standard temporal averaging
method (2.2), used in the Reynolds decomposition (3.5), basically represents a
box filter with an infinity long width. The fluctuations are then simply computed
by

𝜙′ma = 𝜙 − ⟨𝜙⟩ma . (3.24)

The second method splits the instantaneous flow field 𝜙(𝑡) into a high and low
frequency part, where the mean flow is defined as the low frequency part. The
low frequency part is obtained from an Fourier analysis of the instantaneous flow
field Ψ𝜅 = ℱ(𝜙), where Ψ𝜅 is the complex amplitude corresponding to the wave
number 𝜅, and where only the low frequency part below the corresponding cut-off
frequency 𝒻TF = 1/𝑇TF is considered. Finally the mean flow field is computed
from the inverse Fourier transformation

𝜙mean(𝑡) = ⟨𝜙⟩fa = ℱ−1 (Ψ𝜅(𝜙)) (3.25)

=
𝜅TF

∑
𝜅=0

(Ψ𝜅(𝜙)𝑒𝑖𝜅𝑡) 𝜅 = 0, 1, … , 𝜅TF,

where 𝜅TF is the wave number which corresponds to the cut off frequency of the
temporal filter 𝒻TF. The fluctuations are then analogously computed as

𝜙′fa = 𝜙 − ⟨𝜙⟩fa . (3.26)

The difficult part of temporal filtering methods is to find an appropriate tem-
poral filter width 𝑇TF (time-scale), which corresponds to the large low-frequency
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structures to be excluded from the aeroacoustic source terms. Note that these
time-scales might vary locally, because different sizes of vortical structures might
appear in a turbulent flow field. Strictly speaking, vortical structures represent
spatially correlated structures. Applying only temporal filters, without including
any spatial structure information, the present approach inherently assumes that
the spatial and time-scales of large low-frequency structures are equivalent. In
the following paragraph, candidates for the time-scale of the temporal filtering
methods are presented and discussed.

3.1.9 Timescales of vortical structures

In general, it is not a trivial task to estimate the time-scales associated with
vortical structures in a flow configuration. Several alternatives are possible, which
might be differently reliable depending on the application.

Based on the energy cascade theory, the integral time-scale can be determined
from the rate at which turbulence kinetic energy 𝓀 cascades down to smaller and
smaller scales, as represented by the turbulence dissipation rate 𝜀. As such, it
can be considered as a first candidate, which is often used to estimate the lifetime
of large scale eddies, and generally referred to as the eddy turnover time (3.15)

𝓉𝓀𝜀 = 𝓀

𝜀
.

Another possibility is to define a time-scale, which is based on the reciprocal
of the norm of the temporally averaged rate of strain tensor:

𝓉ST = || ⟨𝑆𝑖𝑗⟩ ||−1. (3.27)

The time-scale 𝓉ST is expected to deliver higher values than the eddy turnover
time, because it is based on temporally averaged flow quantities and not fluctu-
ating quantities. Therefore, it should deliver some kind of upper limit for the
large scale structures. In regions, where the averaged flow quantities significantly
change, e.g. near walls or within shear layers, this time-scale might locally drop
to very small values, though.

The third option considered in this Master’s Thesis, is a time-scale based on
the isotropic velocity fluctuations (3.10) computed from the turbulence kinetic
energy 𝓀

⟨𝑣′
iso⟩ = (2

3
𝓀)

1/2
, (3.28)

and a length-scale 𝓁E corresponding to the large vortical structures within the
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flow configuration, written as

𝓉SW =
𝓁E

⟨𝑣′
iso⟩

. (3.29)

Since in this Master’s Thesis internal flow through a straight pipe locally con-
tracted by a orifice is considered, the gap height of the orifice was presently
chosen as the characteristic length-scale, such that 𝓁E = ℎO. The time-scale 𝓉SW

is often referred to as the sweeping time. Guowei et al. [27] found that the sweep-
ing time 𝓉SW is a more suitable time-scale than the eddy turnover time. Using
this time as reference time-scale gave a better time-correlation for the different
scales of turbulent structures.
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3.2 Turbulence modeling

Turbulence is a very important phenomenon, which strongly influences all con-
vective and diffusive transport processes in various technical applications. In
addition, it is often considered as the main aeroacoustic source. Due to its phys-
ical complexity, it is very difficult to model. In this section a brief introduction
of the different approaches to handle turbulence is presented [2, 23, 54].

Basically, three different most prominent approaches exist. The first, essen-
tially the most generic approach, is to fully resolve the turbulent spectrum down
to the smallest turbulence scales. This method is called direct numerical simula-
tion (DNS) and has the highest computational costs, which makes this method
unfeasible for most technical flow configurations. The second method solves the
Reynolds averaged Navier-Stokes (RANS) equations derived from the Reynolds
decomposition. The solution of the RANS equations for the statistical mean
quantities require a turbulence model for closure, which models the whole turbu-
lence spectrum. The third method is the Large-Eddy Simulation (LES), which
directly resolves the turbulent spectrum down to a certain length-scale 𝓁LES, and
only the unresolved turbulent spectrum needs to be modeled. Within the last
decade, many hybrid approaches have been developed, which attempt to com-
bine the latter two concepts, like detached eddy simulation (DES) or partial
averaged Navier-Stokes (PANS) simulation. These approaches however, will not
be discussed in this Master’s Thesis.

In the present Master’s Thesis the resolved aeroacoustic sources obtained from
LES as well as the RANS based reconstructed aeroacoustic sources using un-
structured kinematic source generator (UKSG), shall be calculated and compared
against each other.

3.2.1 Reynolds averaged Navier-Stokes equations

The derivation of the RANS equations recalls the continuity equation (2.35a) and
momentum equation (2.35b) for incompressible flows

𝜕𝑣𝑗

𝜕𝑥𝑗
= 0 and

𝜕𝑣𝑖
𝜕𝑡

+
𝜕𝑣𝑗𝑣𝑖

𝜕𝑥𝑗
= − 1

𝜌0

𝜕𝑝
𝜕𝑥𝑖

+ 𝜈
𝜕2𝑣𝑖

𝜕𝑥2
𝑗

.
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Including the Reynolds decomposition (3.5) for the velocity 𝑣𝑖 = ⟨𝑣𝑖⟩ + 𝑣′
𝑖 and

the pressure 𝑝 = ⟨𝑝⟩ + 𝑝′ leads to

𝜕⟨𝑣𝑗⟩ + 𝑣′
𝑗

𝜕𝑥𝑗
= 0 and (3.31a)

𝜕⟨𝑣𝑗⟩ + 𝑣′
𝑗

𝜕𝑡
+

𝜕(⟨𝑣𝑗⟩ + 𝑣′
𝑗) (⟨𝑣𝑖⟩ + 𝑣′

𝑖)
𝜕𝑥𝑗

=

− 1
𝜌0

𝜕⟨𝑝⟩ + 𝑝′

𝜕𝑥𝑖
+ 𝜈

𝜕2 ⟨𝑣𝑖⟩ + 𝑣′
𝑖

𝜕𝑥2
𝑗

. (3.31b)

After temporally averaging, using equation (2.2), these equations become

⟨
𝜕⟨𝑣𝑗⟩ + 𝑣′

𝑗

𝜕𝑥𝑗
⟩ = 0 and (3.32a)

⟨
𝜕⟨𝑣𝑖⟩ + 𝑣′

𝑖
𝜕𝑡

⟩ + ⟨
𝜕(⟨𝑣𝑗⟩ + 𝑣′

𝑗) (⟨𝑣𝑖⟩ + 𝑣′
𝑖)

𝜕𝑥𝑗
⟩ =

− ⟨1
𝜌

𝜕⟨𝑝⟩ + 𝑝′

𝜕𝑥𝑖
⟩ + ⟨𝜈

𝜕2 ⟨𝑣𝑖⟩ + 𝑣′
𝑖

𝜕𝑥2
𝑗

⟩ . (3.32b)

Applying the rules of statistical averaging (3.6) the continuity equation reduces
to

𝜕⟨𝑣𝑗⟩
𝜕𝑥𝑗

= 0, because (3.33a)

𝜕⟨𝑣′
𝑗⟩

𝜕𝑥𝑗
= 0. (3.33b)

Note that, as indicated by equations (3.31a) and (3.33a), the temporally averaged
velocity ⟨𝑣𝑖⟩ and its fluctuation 𝑣′

𝑖 separately fulfill the continuity equation.
The non-linear term in the momentum equation (3.32b) can be rewritten as

⟨𝑣𝑖𝑣𝑗⟩ = ⟨(⟨𝑣𝑖⟩ + 𝑣′
𝑖) (⟨𝑣𝑗⟩ + 𝑣′

𝑗)⟩ = ⟨⟨𝑣𝑖⟩ ⟨𝑣𝑗⟩ + 𝑣′
𝑖 ⟨𝑣𝑗⟩ + ⟨𝑣𝑖⟩ 𝑣′

𝑗 + 𝑣′
𝑖𝑣

′
𝑗⟩

= ⟨𝑣𝑖⟩ ⟨𝑣𝑗⟩ + ⟨𝑣′
𝑖⟩ ⟨𝑣𝑗⟩ + ⟨𝑣𝑖⟩ ⟨𝑣′

𝑗⟩ + ⟨𝑣′
𝑖𝑣

′
𝑗⟩

= ⟨𝑣𝑖⟩ ⟨𝑣𝑗⟩ + ⟨𝑣′
𝑖𝑣

′
𝑗⟩ . (3.34)
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Substituting the decomposition (3.34) into the momentum equation (3.32b)
and using the continuity equation finally leads to the general RANS equations

𝜕⟨𝑣𝑖⟩
𝜕𝑡

+
𝜕⟨𝑣𝑗⟩ ⟨𝑣𝑖⟩

𝜕𝑥𝑗
= − 1

𝜌0

𝜕⟨𝑝⟩
𝜕𝑥𝑖

+ 𝜈
𝜕2 ⟨𝑣𝑖⟩

𝜕𝑥2
𝑗

−
𝜕⟨𝑣′

𝑗𝑣
′
𝑖⟩

𝜕𝑥𝑗
. (3.35)

Apart from the non-linear term constituted by the fluctuations, these equations
are formally quite similar to the non-averaged Navier-Stokes equations. The ad-
ditional non-linear term originates from the turbulent convective transport of
momentum and is well-known as the Reynolds stress term. This term represents
a second-order statistical moment of the velocities, which cannot be computed
directly from the statistical lower-order moments, and therefore, has to be mod-
eled. Basically, two different approaches exist to close the problem: Reynolds
stress models (RMS) and eddy viscosity models (EVM). Reynolds stress models
(RSM) close the RANS equation by solving separately a transport equation for
all six Reynolds stresses ⟨𝑣𝑗𝑣𝑖⟩ and the turbulence dissipation rate 𝜀. The eddy
viscosity models compute the Reynolds stress tensor in analogy to the viscous
stresses. They have become a standard approach for most technical flow config-
urations and are therefore discussed in more detail.

Eddy viscosity models

Eddy viscosity models are based on the Boussinesq ansatz. Following this ansatz,
the components of the Reynolds stress tensor ⟨𝑣′

𝑖𝑣
′
𝑗⟩ are assumed as proportional

to the mean velocity gradients analogously to the viscous fluxes of momentum.
In other words, Boussinesq proposed to model the convective turbulent transport
of momentum in terms of a diffusive transport, written as

⟨𝜏t⟩
𝜌

= − ⟨𝑣′
𝑖𝑣

′
𝑗⟩ = 2𝜈t (

𝜕⟨𝑣𝑖⟩
𝜕𝑥𝑗

+
𝜕⟨𝑣𝑗⟩
𝜕𝑥𝑖

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟨𝑆𝑖𝑗⟩

−2
3

⟨𝓀⟩ 𝛿𝑖𝑗, (3.36)

where the eddy viscosity 𝜈t represents a turbulent analogue to the molecular
kinematic viscosity 𝜈. Using the ansatz (3.36), the momentum equation used for
RANS (3.35) becomes

𝜕⟨𝑣𝑖⟩
𝜕𝑡

+
𝜕⟨𝑣𝑗⟩ ⟨𝑣𝑖⟩

𝜕𝑥𝑗
= − 1

𝜌0

𝜕⟨𝑝⟩
𝜕𝑥𝑖

+ (𝜈 + 𝜈t)
𝜕2 ⟨𝑣𝑖⟩

𝜕𝑥2
𝑗

. (3.37)

Note that the eddy viscosity 𝜈t is not a fluid property and strongly depends
on the turbulence. Therefore, eddy viscosity models generally solve additional
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3 Turbulent flow

transport equations for certain characteristic turbulence parameters, which are
used to calculate the local eddy viscosity 𝜈t. As compared to RSM, these models
have the advantage that only a small number of additional equations need to
be solved so that computational time is saved. For example, the 𝓀-𝜀 model
solves two extra transport equations, for the turbulence kinetic energy 𝓀 and the
turbulence dissipation rate 𝜀. In FIRE™ the standard turbulence model is the
so called 𝓀-𝜁-𝑓 model, which will be introduced further below in this section.

In statistically stationary flow the solution obtained from RANS are temporally
averaged flow quantities ⟨𝑣𝑖⟩ and ⟨𝑝⟩, as well as the temporal averaged turbulence
kinetic energy ⟨𝓀⟩ and the turbulence dissipation rate ⟨𝜀⟩. The turbulence ki-
netic energy is supposed to represent the motion of the whole turbulence energy
spectrum. Since RANS solutions are mostly computed as steady-state solutions,
they do not capture any unsteady large scale vortical structures.

The 𝓀-𝜁-𝑓 model

The 𝓀-𝜁-𝑓 model [28, 43] is based on a non-linear eddy viscosity approach, where
the eddy viscosity 𝜈t is defined as:

𝜈t = 𝐶𝓀𝜁𝑓,𝜈𝜁𝓀
2

𝜀
, (3.38)

and three different transport equations for 𝓀, 𝜀 and 𝜁 written as

𝜌𝐷𝓀
𝐷𝑡

= 𝜌(𝑃𝓀 − 𝜀) + 𝜕
𝜕𝑥𝑗

([𝜌 (𝜈 +
𝜈t

𝜎𝓀𝜁𝑓,𝓀
) 𝜕𝓀

𝜕𝑥𝑗
]) (3.39a)

𝜌𝐷𝜀
𝐷𝑡

= 𝜌
(𝐶∗

𝓀𝜁𝑓,𝜀1𝑃𝓀 − 𝐶𝓀𝜁𝑓,𝜀2𝜀)
𝓉𝓀𝜁𝑓

+ 𝜕
𝜕𝑥𝑗

([𝜌 (𝜈 +
𝜈t

𝜎𝓀𝜁𝑓,𝜀
) 𝜕𝜀

𝜕𝑥𝑗
]) (3.39b)

𝜌
𝐷𝜁
𝐷𝑡

= 𝜌𝑓 − 𝜌
𝜁
𝓀

𝑃𝓀 + 𝜕
𝜕𝑥𝑗

([𝜌 (𝜈 +
𝜈t

𝜎𝓀𝜁𝑓,𝜁
)

𝜕𝜁
𝜕𝑥𝑗

]) (3.39c)

are solved. The here appearing production term of the turbulence kinetic energy
𝑃𝓀 is defined as:

𝑃𝓀 = − ⟨𝑣′
𝑖𝑣

′
𝑗⟩

𝜕⟨𝑣𝑖⟩
𝜕𝑥𝑗

(3.40)

The function 𝐶∗
𝓀𝜁𝑓,𝜀1 is used to dampen 𝜀 near solid walls by

𝐶∗
𝓀𝜁𝑓,𝜀1 = 𝐶𝓀𝜁𝑓,𝜀1 (1 + 0.045√1/𝜁) . (3.41)
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3.2 Turbulence modeling

The elliptic relaxation function 𝑓, occurring in equation (3.39c), is obtained from
the solution of equation

𝑓 − 𝓁2
𝓀𝜁𝑓

𝜕2𝑓
𝜕𝑥2

𝑖
= (𝐶𝓀𝜁𝑓,1 + 𝐶𝓀𝜁𝑓,2

𝑃𝓀

𝜀
)

(2/3 − 𝜁)
𝓉𝓀𝜁𝑓

, (3.42)

where the time-scale 𝓉𝓀𝜁𝑓 and length-scale 𝓁𝓀𝜁𝑓 are defined as

𝓉𝓀𝜁𝑓 = max (min (𝓀

𝜀
, 0.6√

6𝐶𝓀𝜁𝑓,𝜈|𝑆|𝜁
) , 𝐶𝓀𝜁𝑓,𝓉 (𝜈

𝜀
)

1/2
) , (3.43a)

𝓁𝓀𝜁𝑓 = 𝐶𝓀𝜁𝑓,𝓁 max (min (𝓀3/2

𝜀
, 𝓀1/2
√

6𝐶𝓀𝜁𝑓,𝜈|𝑆|𝜁
) 𝐶𝓀𝜁𝑓,𝜂

𝜈3/4

𝜀1/4
) , (3.43b)

respectively. The constants in equations (3.39), (3.41), (3.42) and (3.43) are listed
in table 3.1.

Table 3.1: The constants appearing in the 𝓀-𝜁-𝑓 model.

symbol value symbol value

𝜎𝓀𝜁𝑓,𝓀 1 𝜎𝓀𝜁𝑓,𝜁 1.2
𝜎𝓀𝜁𝑓,𝜀 1.3 𝐶𝓀𝜁𝑓,𝜀1 0.012
𝐶𝓀𝜁𝑓,𝜀2 1.9 𝐶𝓀𝜁𝑓,1 1.4
𝐶𝓀𝜁𝑓,2 0.65 𝐶𝓀𝜁𝑓,𝜈 0.22
𝐶𝓀𝜁𝑓,𝓉 6 𝐶𝓀𝜁𝑓,𝜂 85

3.2.2 Turbulence near solid walls

At solid walls the relative velocity between the fluid and the wall is zero. This
is the so called no-slip condition. Thus, near a solid wall all the momentum is
lost and therefore, a boundary layer (BL) is created. Inside this BL the relative
velocity increases from zero to the velocity outside the boundary layer (e.g. the
velocity of the core region in a pipe). The turbulent motion inside the BL strongly
enhances the diffusive transport processes due to the increased shear rates. This
turbulent boundary layer can be split into different sublayers [48]. The sublayer
next to the wall, the so called viscous sublayer, is dominated by the viscous stresses
and the sublayer near the mean flow, the so called turbulent sublayer, is dominated
by the turbulent stresses. Between these two layers there is a transitional sublayer
(buffer layer), where both, viscous and turbulent stresses, are equally important.
The total shear stress 𝜏tot inside the turbulent boundary layer can be expressed
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3 Turbulent flow

as the sum of the viscous and Reynolds stresses

𝜏tot
𝜌

= 𝜈
𝜕⟨𝑣𝑥⟩

𝜕𝑦
− ⟨𝑣′

𝑥𝑣′
𝑦⟩ , (3.44)

where ⟨𝑣𝑥⟩ is the velocity component in the main flow direction parallel to the
wall and 𝑦 is the normal distance to the wall. At the wall (𝑦 = 0) the total shear
stress is equal to the wall shear stress 𝜏W

𝜏tot
𝜌

=
𝜏W
𝜌

= 𝜈
𝜕⟨𝑣𝑥⟩

𝜕𝑦
∣
𝑦=0

(3.45)

The wall friction velocity 𝓋𝜏W
is often chosen as a characteristic velocity-scale for

the turbulent boundary layer and is defined as:

𝓋𝜏W
= √

𝜏W
𝜌

. (3.46)

Using the wall friction velocity 𝓋𝜏W
and the kinematic viscosity 𝜈 a characteristic

length-scale can be defined as:

𝓁𝜏W
= 𝜈
𝓋𝜏W

. (3.47)

Using the wall friction velocity-scale 𝓋𝜏W
in combination with the hydraulic di-

ameter 𝒹 of the geometry (3.2), the wall friction based Reynolds number ℛℯ𝜏W

can be defined as:

ℛℯ𝜏W
=
𝓋𝜏W

𝒹

𝜈
. (3.48)

Based on the superposition (3.44), it is possible to derive wall functions ⟨𝑣+
𝑥 ⟩ =

𝑓(𝑦+) for the different sublayers, where ⟨𝑣+
𝑥 ⟩ = ⟨𝑣𝑥⟩ /𝓋𝜏W

is the dimensionless ve-
locity and 𝑦+ = 𝑦/𝓁𝜏W

is the dimensionless distance from the wall. The thickness
of the sublayers of the turbulence boundary layer can be universally classified as
follows:

1. viscous sublayer: (0 < 𝑦+ < 5),

2. buffer sublayer: (5 < 𝑦+ < 30) and

3. fully turbulent inner sublayer: (30 < 𝑦+ < 400) .
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3.2 Turbulence modeling

The universal velocity wall functions, valid inside the viscous and fully turbu-
lent inner sublayer, are written as

⟨𝑣+
𝑥 ⟩lam = 𝑦+, 0 < 𝑦+ < 5, (3.49a)

⟨𝑣+
𝑥 ⟩t = 1

𝐴K
𝑙𝑛(𝑦+) + 𝐵K, 𝑦+ > 30, (3.49b)

where 𝐴K = 0.42 and 𝐵K = 5 is the Von Kármán constant. For the description of
the buffer sublayer different models are available. The universal solutions (3.49a)
and (3.49b) are shown in figure 3.6.

10−1 100 101 102 103

10

20

30
viscous
sublayer

turbulent
sublayer

𝑦+; [−]

⟨𝑣
𝑥
⟩+

;[
−

]

⟨𝑣𝑥⟩+
lam; ⟨𝑣𝑥⟩+

t

Figure 3.6: Logarithmic law of the wall.

If the linear laminar near-wall profile and wall friction based Reynolds number
ℛℯ𝜏W

of a flow configuration is known, it can be used to estimate the spatial
resolution of the near-wall region in terms of the dimensionless wall distance 𝑦+

written as

Δ𝑦+ =
Δ𝑦BL

2
ℛℯ𝜏W

𝒹
, (3.50)

where Δ𝑦BL is the distance of the first computational grid point to the wall.
For LES simulations the boundary layer should be resolved down to the viscous
sublayer, which requires Δ𝑦+ < 5. Depending on the used wall model for RANS
simulation Δ𝑦+ ≈ 30 might be sufficient.

3.2.3 Large-Eddy Simulation

The basic idea of LES [23] is to resolve the large scales of turbulence and to
model only the small scales. This can be achieved by applying a spatial filter
to the governing equations. This filter can be explicit (e.g. Gaussian filter, box
filter, etc.) or implicit, where the spatial discretization of the computational grid
(as in FIRE™) represents the filter. Using the grid as a filter (see figure 3.7), the
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3 Turbulent flow

resolved scales are greater than the grid size Δ𝓍C, while the unresolved scales are
smaller. The unresolved scales are therefore often referred to as the subgrid-scales
(SGS). The unresolved scales need to be modeled by a so called subgrid-scale model
(SGM).

Unresolved scales
Resolved scales

Δ𝓍C

Figure 3.7: Resolved and unresolved scales of the computational grid with the
local cell size Δ𝓍C.

Applying an arbitrary filter on an arbitrary quantity 𝜙, its instantaneous value
can be decomposed into the resolved ̃𝜙 and unresolved 𝜙′′ part, which is known
as the Leonard decomposition and defined as:

𝜙 = ̃𝜙 + 𝜙′′. (3.51)

For different explicit or implicit filters (e.g. due to different computational grids)
the filtered quantity ̃𝜙 varies. In comparison to the statistical averaging used for
the Reynolds decomposition (3.6) the filtering exhibits some important different
features, such as

̃̃𝜙 ≠ ̃𝜙 and (3.52a)

𝜙′′ ≠ 0. (3.52b)

The governing equations for LES, are derived by filtering the incompressible
Navier-Stokes equations, which yields:

𝜕 ̃𝑣𝑗

𝜕𝑥𝑗
= 0, (3.53a)

𝜕 ̃𝑣𝑖
𝜕𝑡

+
𝜕𝑣𝑗𝑣𝑖
𝜕𝑥𝑗

= − 1
𝜌0

𝜕 ̃𝑝
𝜕𝑥𝑖

+ 1
𝜌0

𝜕 ̃𝜏𝑗𝑖

𝜕𝑥𝑗
. (3.53b)

Since the continuity equation (3.53a) is individually satisfied by both, the resolved
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filtered and the local instantaneous unresolved velocities, the unresolved subgrid-
scale fluctuations satisfy the continuity equation as well:

𝜕𝑣′′
𝑗

𝜕𝑥𝑗
= 0. (3.54)

The non-linear term occurring in the filtered momentum equation (3.53b) cannot
be computed directly. Substituting the Leonard decomposition into the non-linear
term and subtracting the resolved term ̃𝑣𝑗 ̃𝑣𝑖 yields

𝑣𝑗𝑣𝑖 − ̃𝑣𝑗 ̃𝑣𝑖 = ( ̃𝑣𝑗 + 𝑣′′
𝑗 )( ̃𝑣𝑖 + 𝑣′′

𝑖 )̃ − ̃𝑣𝑗 ̃𝑣𝑖

= ̃̃𝑣𝑗 ̃𝑣𝑖 − ̃𝑣𝑗 ̃𝑣𝑖 + ̃̃𝑣𝑗𝑣′′
𝑖 + 𝑣′′

𝑗 ̃𝑣𝑖 + 𝑣′′
𝑗 𝑣′′

𝑖 , (3.55)

where three different terms can be distinguished:

Leonard stresses: 𝐿𝑖𝑗 = ̃̃𝑣𝑗 ̃𝑣𝑖 − ̃𝑣𝑗 ̃𝑣𝑖, (3.56a)

Cross stresses: 𝐶𝑖𝑗 = ̃̃𝑣𝑗𝑣′′
𝑖 + 𝑣′′

𝑗 ̃𝑣𝑖 and (3.56b)

Reynolds stresses: 𝑅𝑖𝑗 = 𝑣′′
𝑗 𝑣′′

𝑖 . (3.56c)

The Leonard stresses are resolved, if the explicit function of the LES filter is
known, while the other stresses, the Cross and Reynolds stresses, are unresolved.
These three stress tensors are mostly modeled together in terms of one common
SGS-tensor 𝜏𝑖𝑗,SGS, which is the sum of the Leonard, Cross and Reynolds stress
tensors:

̃𝑣𝑗 ̃𝑣𝑖 + [𝑣𝑗𝑣𝑖 − ̃𝑣𝑗 ̃𝑣𝑖] = ̃𝑣𝑗 ̃𝑣𝑖 + [𝐿𝑖𝑗 + 𝐶𝑖𝑗 + 𝑅𝑖𝑗] = ̃𝑣𝑗 ̃𝑣𝑖 + 𝜏𝑖𝑗,SGS. (3.57)

The resulting system of equations, which is solved by the LES reads

𝜕 ̃𝑣𝑗

𝜕𝑥𝑗
= 0 and (3.58a)

𝜕 ̃𝑣𝑖
𝜕𝑡

+
𝜕 ̃𝑣𝑗 ̃𝑣𝑖

𝜕𝑥𝑗
= − 1

𝜌0

𝜕 ̃𝑝
𝜕𝑥𝑖

+ 1
𝜌0

𝜕 ̃𝜏𝑗𝑖

𝜕𝑥𝑗
− 1

𝜌0

𝜕𝜏𝑗𝑖,SGS

𝜕𝑥𝑗
, (3.58b)

where the unresolved SGS stress tensor is computed from a subgrid-scale model
to close the system of equations.
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Subgrid-scale model

Most subgrid-scale model (SGM), which are required for closure of the filtered
equations, are based on an eddy viscosity ansatz, written as

𝜏𝑖𝑗,SGS − 1
3

̃𝜏𝑘𝑘𝛿𝑖𝑗 = −2𝜈SGS
̃𝑆𝑖𝑗, (3.59)

where 𝜈SGS is the SGS viscosity and ̃𝑆𝑖𝑗 is the resolved rate of strain tensor. In
FIRE™ the Coherent Structure Model (CSM) by Kobayashi [33, 34] is imple-
mented, where the SGS viscosity 𝜈SGS is calculated as

𝜈SGS = 𝐹CSMΔ𝓍2
C| ̃𝑆|. (3.60)

Δ𝓍2
C is the local filter width, which is calculated by FIRE™ using the local cell

volumes 𝑉C of the computational grid (Δ𝓍C = 𝑉 1/3
C ). The function 𝐹CSM is

calculated from the resolved flow quantities as follows:

𝐹CSM = 1
22

|𝐹CSM,CS|3/2𝐹CSM,Ω, (3.61a)

with 𝐹CSM,CS =
−1

2
𝜕 ̃𝑣𝑗

𝜕𝑥𝑖

𝜕 ̃𝑣𝑖
𝜕𝑥𝑗

1
2

(
𝜕 ̃𝑣𝑗

𝜕𝑥𝑗
)

2 and

𝐹CSM,Ω = 1 − 𝐹CSM,CS.

The CSM represents a so called dynamic SGM, where an additional wall damping
function to provide a vanishing SGS viscosity 𝜈SGS near the wall is not necessary.
Based on the SGS viscosity, the turbulence kinetic energy and the turbulence
dissipation rate associated with the unresolved SGS-scale motion can be estimated
as

𝓀SGS = 𝜈SGS|| ̃𝑆||/√𝐶SGS,𝜇 and (3.62a)

𝜀SGS = 𝜈SGS|| ̃𝑆||2, (3.62b)

respectively, where 𝐶SGS,𝜇 = 0.09 is a constant and || ̃𝑆|| = √2 ̃𝑆𝑖𝑗
̃𝑆𝑖𝑗.
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RANS vs. LES

For a comparison with RANS results the resolved flow quantities of the LES have
to be temporally averaged using (2.2), such that

𝜙RANS = ⟨𝜙⟩ ⇔ ⟨ ̃𝜙⟩ , (3.63)

once the LES solution is statistically converged. When comparing the turbu-
lence kinetic energy ⟨𝓀⟩, the resolved as well as the unresolved parts have to be
considered in terms of their temporal averages:

𝓀RANS = ⟨𝓀tot⟩ ⇔ ⟨𝓀LES⟩ + ⟨𝓀SGS⟩ . (3.64)

log(𝜅)

ℰ(𝜅)

𝜅LES 𝜅𝒦

Figure 3.8: The turbulence kinetic energy spectrum of an LES simulation.

In figure 3.8 the energy spectrum of a LES is presented. A DNS simulation
resolves the whole spectrum (black dashed line), up to the wave number associ-
ated with the Kolmogorov scale 𝜅𝒦 ∼ 1/𝜈, whereas the LES only resolves the
spectrum up to 𝜅LES ∼ 1/Δ𝓍C due to the filtering procedure (blue line). The
SGS model essentially has the task to extract the right amount of turbulence
kinetic energy from the resolved scales at 𝜅 = 𝜅LES to bridge the gap (hatched
area) in dissipation between 𝜅LES and 𝜅𝒦. A RANS simulation has to model the
whole turbulence kinetic energy spectrum, instead.
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3.3 Computational fluid dynamics
In the previous sections, the governing system of equations for incompressible
flows (2.35) were derived, which were solved using the CFD-software FIRE™ [7].
In the present section some fundamentals of CFD, some solution techniques ap-
plied in FIRE™ and related particular tasks of this Master’s Thesis are discussed.

CFD is a numerical method to solve approximately the governing set of equa-
tions for the flow field, heat and mass transfer and associated phenomena like
chemical reactions [2, 47, 54]. Commercial CFD codes often provide a pre- and
post-processor as well, where the latter generally has the task to bring the results
of the CFD solution into interpretable form (graphs, figures, ect.).

3.3.1 Pre-processing

The pre-processor translates the required user input into a form suitable for the
solver. The required user input consists of several parts [55], which are presented
in the following.

Computational domain and grid

The first step is the definition of the computational domain and the required
time-frame (𝑇 = 𝑡end − 𝑡start) by the engineer. The result is the geometry of
the considered fluid volume, specified by the outer surface of the computational
domain. This computational volume is often generated using commercial CAD1

programs. In the successive grid-generation process the computational domain
is subdivided into 𝑁C non-overlapping finite control volumes (cells) with the cell
volume 𝑉C. The computational grid (or mesh) can be structured or unstructured
(see figure 3.9), depending on the chosen geometry of the cells (Tetrahedron (tet),
Hexahedron (hex), etc.). Each cell has 𝑁N corner nodes, 𝑁E edges and 𝑁F faces
(see figure 3.10).

1CAD: Computer Aided Design
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3.3 Computational fluid dynamics

(a) A structured grid. (b) An unstructured grid.

Figure 3.9: Different types of grids.

(a) Hexahedron (b) Tetrahedron

Figure 3.10: Different grid topologies and their structure.

node

face

edge

The quality of the cells (grid) can be quantified by various parameters:

Skewness is a quantity that quantifies the distortion of a cell:

𝛽SK = max (
𝛽max − 𝛽opt

𝛽opt
,
𝛽opt − 𝛽min

𝛽opt
) , (3.65)

where 𝛽opt is the optimal angle (e.g. 90° for an optimal quadrilateral cell,
represented by a rectangle). In figure 3.11 the definition of the skewness for
an arbitrary quadrilateral is presented.

rectangle

𝛽min

𝛽max 𝛽opt

Figure 3.11: The skewness of a quadrilateral cell.
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3 Turbulent flow

Aspect Ratio quantifies the stretching of a cell:

𝐴𝑅 =
longest edge
shortest edge

and (3.66)

𝐴𝑅V = Volume circumsphere
𝐶𝐴𝑅Volume cell

(Volume based), (3.67)

where 𝐶𝐴𝑅 is a chosen factor so that the volume based aspect ratio 𝐴𝑅V = 1
for an optimal cell (e.g. equilateral tetrahedron). Its definition for an
arbitrary triangle is presented in figure 3.12.

equilateral triangle

arbitrary triangle

circumsphere

longest edge
shortest edge

Figure 3.12: The aspect ratio 𝐴𝑅 of a triangle.

Smoothness of the grid compares the volumes 𝑉C of neighboring cells, which
should not differ too much. In figure 3.13 the smoothness between cells is
illustrated, where the transition between cells A and B is smooth, while is
not between the cells B and C.

A B C

Figure 3.13: The smoothness between cells.

Additionally, the computational grid needs to fulfill certain resolution require-
ments, which might be, e.g. imposed by the actually applied turbulence wall
model.

Model definition and numerical setup

The second step is the definition of the required physical models (compressibility,
turbulence models, etc.). For the present Master’s Thesis the setup for solving
the incompressible Navier-Stokes equations (2.35b) is selected.

The numerical setup determines the important settings of the solver, choosing
different solution control parameters (under relaxation, blending factors, etc.),
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3.3 Computational fluid dynamics

differencing schemes (central, upwind, etc.), or different solver-types. A well-
chosen numerical setup might accelerate the performed simulation, whereas badly
chosen parameters might lead to unphysical results or to the divergence of the
simulation.

Fluid definition

The third step is the definition of the fluid and its properties. This Master’s Thesis
considers atmospheric air, which is defined as ideal gas, with the spezific gas con-
stant ℛair, where the reference pressure 𝑝ref and the reference temperature 𝜃ref

need to be specified. The reference density is then calculated from the equation
of state for an ideal gas (2.27). The dynamic viscosity of the fluid is specified
using Sutherland’s law [53] for an ideal gas, where the dynamic viscosity 𝜇 is
dependent on the fluid temperature 𝜃:

𝜇(𝜃) = 𝜇ref ( 𝜃
𝜃S,ref

)
3/2 𝜃S,ref + 𝜃S

𝜃 + 𝜃S
. (3.68)

Therein, 𝜃S,ref is the reference temperature of the model, 𝜃𝑆 is the so called Suther-
land’s temperature, and 𝜇ref is the reference dynamic viscosity. The presently
used values of these coefficients are listed in table 3.2.

Table 3.2: The coefficients of Sutherland’s law.

coefficient value [unit]

𝜇ref 18.27 ×10−6 [Pa s]
𝜃S,ref 291.15 [K]
𝜃S 120 [K]

Initial conditions

The fourth step is the definition of initial conditions, from which the solver will
start the solution procedure. Good initial conditions can accelerate the solution
process significantly. In case of eddy resolving simulations (LES) at moderate
Reynolds numbers, imposing an initial disturbance might be necessary to finally
obtain a statistically converged self-sustained turbulent flow (see section 3.1.1).

Boundary conditions

The last step is the definition of appropriate boundary conditions (BC), in par-
ticular at the inlet, outlet and wall boundary.
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For the inlet and the outlet BCs certain combinations of in- and outflow con-
ditions (e.g. mass flow, velocity distribution, pressure etc.) are possible. Addi-
tionally, a BC at the inlet, for the turbulence kinetic energy 𝓀 and turbulence
dissipation rate 𝜀 are required. In case of RANS-type simulations the BCs are
necessary for the temporally averaged field quantities, whereas in case of LES,
the BCs are required for the instantaneous field variables. The instantaneous
inlet BC, required for the LES simulation, might be modeled or computed from
an additional auxiliary LES.

At the outlet a constant pressure level 𝑝ref is often specified. In FIRE™ the
definition of an averaged pressure (averaged over the boundary face) is available
for this scope. The averaged pressure BC is advantageous, especially for LES,
since it allows for instantaneous pressure fluctuations at the boundary.

Usually, at solid boundaries (walls), the no-slip condition (𝑣𝑖 = 0 ) is imposed.

3.3.2 Solution procedure

The CFD-solver implemented in FIRE™ [7] numerically solves the governing set
of conservation equations using the finite volume method (FVM) in a Cartesian
coordinate system (𝑖 = 𝑥, 𝑦, 𝑧). This method basically performs the following
three steps:

Integration: The integration of the governing conservation equations over all
individual cells 𝑁C.

Discretization: The spatial and temporal discretization of the integral equations.
The result is a system of algebraic equations.

Solution: The iterative numerical solution of the system of algebraic equations.
The result is the flow field plus the results for the transported scalars.

Depending on the considered problem, FIRE™ solves the conservation equations
of mass 𝜌, momentum 𝜌𝑣𝑖, total enthalpy 𝐻 = ℎ+𝑣𝑖𝑣𝑖/2 and the concentration of
any number of species 𝑐species. Since this Master’s Thesis is focused on incompress-
ible isothermal flows, only the conservation laws for mass 𝜌 (2.8) and momentum
𝜌𝑣𝑖 (2.9) are solved. In the integration step FIRE™ transforms the conserva-
tion laws into an integral form by integrating over an arbitrary control volume
𝑉 (FVM) bounded by 𝑁F (𝑙 = 1 … 𝑁F) piecewise smooth surfaces. Using the
Gauss theorem, a volume integral can be converted into surface integrals, which
is thus transformed into a sum of surface integrals over all cell faces 𝑁F. The re-
quired face values are computed from an interpolation between the nodal values
of neighboring cells. For calculating gradients different discretization schemes
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(central differencing, upwind schemes, etc.) are available. A blending factor
0 ≤ 𝛼B,s ≤ 1 has to be chosen for interpolation between the central differencing
𝛼B,s = 1 and the upwind schemes 𝛼B,s = 0. In case of LES the blending factor
should be as close to 𝛼B,s = 1 as possible so that the most accurate discretization
scheme is used. The simulation though might become unstable so that smaller
values 𝛼B,s ≈ 0.98 have to be chosen.

For unsteady flow problems the solver requires a time marching method, which
integrates the solution step by step over a discrete time-step Δ𝑡. For fully explicit
schemes a stability criterion

CFLCFD =
|𝑣|Δ𝑡
Δ𝓍C

≤ 1 (3.69)

has to be satisfied, where Δ𝓍C = 𝑉 1/3
C can be estimated for each cell separately.

Even though FIRE™ uses implicit time integration schemes, which are also sta-
ble for CFLCFD > 1, equation (3.69) can be used to estimate an appropriate
time-step for the simulation. First (Euler) or second order implicit schemes are
available. A blending factor 0 ≤ 𝛼B,𝑡 ≤ 1 can be used to interpolate between
the solutions of the first 𝛼B,𝑡 = 0 and second order 𝛼B,𝑡 = 1. In the implicit
solution procedure, the system of algebraic equations is obtained from the spatial
and temporal discretization, which is iteratively solved. After each iterative step
under-relaxation factors 𝛼UR are used to limit the temporal change of the field
variables. The sum of the under relaxation factors of the continuity equation and
of the momentum equation should be one. The iterative procedure within each
time-step Δ𝑡 is continued, until a converged solution is reached.

Pressure correction

Due to the incompressibility of the flow configuration, the density 𝜌 and the
pressure 𝑝 are decoupled. In FIRE™ the SIMPLE2 algorithm is used to solve for
the pressure. This method basically solves a Poisson equation for the pressure,
which is further used to correct the predicted velocities, so that they satisfy the
continuity equation. For unsteady flows a combination of the SIMPLE and PISO3

algorithm is used, which is more efficient in these cases [54].

2SIMPLE: Semi-Implicit-Method for Pressure-Linked Equations
3PISO: Pressure Implicit Split Operator
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The numerical algorithm

The numerical algorithm (see figure 3.14) in FIRE™ (applied to incompressible
flows) based on a SIMPLE/PISO pressure correction approach can be summarized
as follows:

1. Calculate all geometric quantities (cell volumes, cell face areas, etc.) of the
computational grid.

2. Initialize the field variables 𝜙𝑛 at 𝑡 = 0.

3. Start the time stepping loop. Store current field variables as old field vari-
ables (𝜙𝑛−1 = 𝜙𝑛). Update the BCs for the current time-step.

4. Start the implicit time iteration loop.

5. Compute the predicted flow field by assembling and solving the algebraic
system of equations, which represent the conservation equations of momen-
tum.

6. SIMPLE/PISO algorithm:

a) Assemble and solve the algebraic system of equations to obtain the
velocity and pressure corrections.

b) Compute the corrected values of the flow field 𝑣𝑖 and 𝑝.

7. Solve the turbulence model and update the eddy viscosity 𝜈t.

RANS: Assemble and solve corresponding transport equations depending
on the selected eddy viscosity model (e.g. 𝓀-𝜁-𝑓) and calculate the
eddy viscosity 𝜈t. The turbulence kinetic energy ⟨𝓀⟩ and the turbu-
lence dissipation rate ⟨𝜀⟩ are direct results from the model.

LES: Calculate the eddy viscosity 𝜈SGS (3.60) by applying the SGS model.
Additionally calculate the turbulence dissipation rate 𝜀SGS (3.62b) and
the SGS turbulence kinetic energy 𝓀SGS (3.62a).

8. Check the convergence criterion and return to step 4 if convergence criterion
is not fulfilled, else:

steady: Simulation is finished.

transient: Return to step 3 and continue until the required simulation time
𝑡end is reached. In case of an LES, calculate temporal averaged values
(3.63) and calculate the total turbulence kinetic energy ⟨𝓀tot⟩ (3.64)
from the resulting fluctuations.
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Ensemble average

Since transient eddy resolving simulations (DNS, LES, etc.) advance step per step
over time, the database available for calculating the temporal average increases
with each time-step. For calculating statistically reliable temporal averages (and
the fluctuations around these), long simulation times are necessary. For a constant
time-step Δ𝑡 the temporal average of an arbitrary quantity 𝜙 can be computed
as

⟨𝜙⟩ = 1
𝑁𝑇Δ𝑡

𝑁start+𝑁𝑇

∑
𝑁start+1

Δ𝑡𝜙𝑛, (3.70)

where 𝑁𝑇 denotes the number of time-steps after the start of the averaging process
at 𝑁 = 𝑁start + 1.
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1. Pre-processing

2. Initialisation

3. Time stepping loop

4. Implizit time iteration

5. Solve

6. SIMPLE/PISO:

7. Turbulence

RANS: 𝓀-𝜁-𝑓 LES: CSM

8. Converged?

Transient?

if LES:
𝜙 ⇒ ⟨𝜙⟩
⟨𝓀tot⟩

𝑡 = 𝑡end?

End of Simulation

calculate grid parameter

initialize flow field

𝜙𝑛−1 = 𝜙𝑛, update BCs

compute predicted flow field

compute corrected flow field

compute 𝜈t,
𝓀 and 𝜀

compute 𝜈𝑆𝐺𝑆,
𝓀SGS and 𝜀SGS

No

Yes

steadytransient

Yes

No

Figure 3.14: The FIRE™ solver algorithm.
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In the previous chapter, some fundamental features of the presently applied CFD-
solver were described, whose solution is used to calculate the targeted aeroacous-
tic sources. In this chapter, the mathematical derivation of these aeroacoustic
sources is presented in detail. First, Lighthill’s acoustic analogy is presented in
section 4.1, which is the foundation of aeroacoustics, but is very limited in ap-
plication due to the underlying assumptions. Second, the acoustic analogy of
Lilley is derived in section 4.2, which is a more general acoustic analogy, but,
due to its mathematical complexity, is difficult to solve. Third, the aeroacoustic
decomposition, the foundation of hybrid CAA approaches, is introduced in sec-
tion 4.3, which further delivers a LEE based acoustic analogy. In section 4.4 it is
shown that the main aeroacoustic source term from the LEE is equivalent to the
aeroacoustic source term in Lilley’s acoustic analogy, by applying both acoustic
analogies to a two-dimensional sheared flow. The successive section 4.5 explains
the computation of the aeroacoustic source terms from the LES solution. Some
additional methods for the centering of the aeroacoustic source term are also pro-
posed, to investigate the influence of large low-frequency vortical structures in
incompressible flows. Additionally, the impact of the SGS contributions on the
aeroacoustic sources is briefly discussed. In section 4.6 this chapter is concluded
by shortly presenting the solution procedure of the CAA module in FIRE™, in-
cluding a description of the UKSG model used for reconstructing the aeroacoustic
source terms from a RANS solution.
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4.1 Lighthill’s acoustic analogy
In this section Lighthill’s acoustic analogy is presented and discussed. The basic
idea of Lighthill was to derive a wave equation, in which the source term includes
all possible sound generation mechanisms driven by the motion of the fluid. To
achieve that goal, Lighthill derived a formally exact wave equation, applying no
approximations to the Navier-Stokes equations. Accordingly, Lighthill started
from the full set of Navier-Stokes equations, as already presented in section 2.2.
Originally, Lighthill excluded the mass source term 𝑆�̇� from the continuity and
momentum equations as well as the external force term 𝑆𝑓,𝑖 from the momentum
equation. Since effects like mass injection, can also act as a sound source, these
terms are presently not excluded. Thus, the derivation starts with the continuity
equation (2.8) and the momentum equation (2.9), rewritten in conservative form
as

𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕𝑥𝑗

(𝜌𝑣𝑗) = 𝑆�̇�,

𝜕
𝜕𝑡

(𝜌𝑣𝑖) + 𝜕
𝜕𝑥𝑗

(𝜌𝑣𝑗𝑣𝑖) = − 𝜕
𝜕𝑥𝑗

(𝑃𝑗𝑖) + 𝑆𝑓,𝑗 + 𝑆�̇�𝑣𝑖.

Taking the time derivative of the continuity equation and the divergence of the
momentum equation, one obtains

𝜕2

𝜕𝑡𝜕𝑥𝑗
(𝜌𝑣𝑗) = −

𝜕2𝜌
𝜕𝑡2 +

𝜕𝑆�̇�
𝜕𝑡

and (4.2a)

𝜕2

𝜕𝑡𝜕𝑥𝑗
(𝜌𝑣𝑗) = − 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑝𝛿𝑖𝑗 − 𝜏𝑗𝑖 + 𝜌𝑣𝑗𝑣𝑖) +

𝜕𝑆𝑓,𝑗

𝜕𝑥𝑗
+

𝜕𝑆�̇�𝑣𝑗

𝜕𝑥𝑗
. (4.2b)

After eliminating the term on the LHS from (4.2), one obtains

𝜕2𝜌
𝜕𝑡2 = 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑝𝛿𝑖𝑗 − 𝜏𝑗𝑖 + 𝜌𝑣𝑗𝑣𝑖) +

𝜕𝑆�̇�
𝜕𝑡

−
𝜕𝑆𝑓,𝑗

𝜕𝑥𝑗
−

𝜕𝑆�̇�𝑣𝑗

𝜕𝑥𝑗
. (4.3)
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Decomposing the pressure 𝑝 and density 𝜌 into fluid-dynamical (temporally
averaged ⟨𝜙⟩ and turbulent fluctuations 𝜙′) and acoustic components (acoustic
perturbation 𝜙a), written as

𝜌 = ⟨𝜌⟩ + 𝜌′ + 𝜌a, (4.4a)

𝑝 = ⟨𝑝⟩ + 𝑝′ + 𝑝a, (4.4b)

equation (4.3) can be transformed into

𝜕2𝜌a

𝜕𝑡2 − 𝒸2
0

𝜕2𝜌a

𝜕𝑥2
𝑖

=
𝜕2Tij

𝜕𝑥𝑖𝜕𝑥𝑗
+

𝜕𝑆�̇�
𝜕𝑡

−
𝜕𝑆𝑓,𝑗

𝜕𝑥𝑗
−

𝜕𝑆�̇�𝑣𝑗

𝜕𝑥𝑗
, (4.5)

Equation (4.5) represents the well-known wave equation of Lighthill, whose RHS
evidently consists of several different aerodynamic source terms. The first term,
involving the Lighthill stress tensor Tij :

Tij = 𝜌𝑣𝑖𝑣𝑗 − 𝜏𝑖𝑗 + (𝑝a − 𝒸2
0𝜌a)𝛿𝑖𝑗. (4.6)

contains three different terms which originate from different flow effects:

• non-linear convective forces due to the Reynolds stresses: 𝜌𝑣𝑖𝑣𝑗,

• viscous forces: 𝜏𝑖𝑗

• entropy perturbations (e.g. due to combustion): 𝑠a = 𝑝a − 𝒸2
0𝜌a .

As already mentioned, the remaining three source terms originate from mass
injection (𝑆�̇�) with the impulse (𝑆�̇�𝑣𝑖) and from the external force (𝑆𝑓,𝑖), which
are now excluded.

Note that the LHS of equation (4.5) is equal to the simple wave operator
equation (2.42b) derived in section 2.3. This is the major benefit of Lighthill’s
acoustic analogy, since methods from classical acoustics are applicable without
restrictions if the aeroacoustic source terms on the RHS are known. Since these
source terms have still to be calculated or measured, the solution of this wave
equation (4.5) is not easier than that of the original set of compressible equations.
Therefore, Lighthill made some simplifying assumptions for the Lighthill stress
tensor Tij , which essentially limit his analogy. This implies that the observer
is standing far away from the source surrounded by a quiescent fluid with the
reference speed of sound 𝒸ref at the observers position. Accordingly, only the
acoustic components of the flow variables, 𝜙a = 𝜙 − ⟨𝜙⟩, are varying in space
and time in the far field, whereas the turbulent fluctuations are zero (𝜙′ = 0), as
the fluid is quiescent. Assuming further isentropic flow, implying 𝑝a = 𝒸2

ref𝜌a and
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neglecting viscous forces (𝜏𝑖𝑗 = 0), finally reduces the Lighthill stress tensor to

Tij = ⟨𝜌⟩ 𝑣𝑖𝑣𝑗. (4.7)

In hybrid CAA approaches the aeroacoustic sources on the RHS of equa-
tion (4.5) are calculated from a CFD solution. One major drawback still remains
in that all sound propagation phenomena, like refraction inside shear or boundary
layers, appear as aeroacoustic sources, although they are wave propagation effects,
as the interaction between the sound sources and the acoustic field is completely
neglected. Throughout history numerous extensions were added to Lighthill’s
acoustic analogy. E.g. Curle [20] introduced the influence of solid boundaries.
Powell [44] and Howe [30] included the feedback phenomenon from the acoustic
field to the sound sources based on the vortex sound theory. Ffowcs-Williams &
Hawkings [57] accounted for the noise from arbitrary moving objects. All these
acoustic analogies are based on analytically solving the wave equation of the
type (4.5) using so called Green functions. Therefore, a more advanced acoustic
analogy has to be found, which includes less assumptions and is also applicable
in internal flows. In the following section 4.2, the generalization of Lighthill’s
acoustic analogy to non-uniform flows by Phillips and Lilley is derived.
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4.2 Lilley’s acoustic analogy
In this section Lilley acoustic analogy is derived following the description of Gold-
stein [26]. The derivation starts with the equation for the material derivative of
the entropy 𝑠 rewritten as

1
𝒸2

𝐷𝑝
𝐷𝑡

−
𝐷𝜌
𝐷𝑡

= 𝜌𝜎𝐷𝑠
𝐷𝑡

. (4.8)

Using the continuity equation in primitive form (2.30a), with zero mass source
term �̇� yields

1
𝜌𝒸2

𝐷𝑝
𝐷𝑡

+
𝜕𝑣𝑗

𝜕𝑥𝑗
= 𝜎𝐷𝑠

𝐷𝑡
. (4.9)

Taking the material derivative of equation (4.9) leads to

𝐷
𝐷𝑡

( 1
𝜌𝒸2

𝐷𝑝
𝐷𝑡

) + 𝐷
𝐷𝑡

𝜕𝑣𝑗

𝜕𝑥𝑗
= 𝐷

𝐷𝑡
(𝜎𝐷𝑠

𝐷𝑡
) . (4.10)

Recalling the momentum equation in primitive form (2.30b)

𝐷𝑣𝑖
𝐷𝑡

= −1
𝜌

𝜕𝑝
𝜕𝑥𝑖

+ 1
𝜌

𝜕𝜏𝑗𝑖

𝜕𝑥𝑗
(4.11)

and taking the divergence it gives

𝜕
𝜕𝑥𝑖

𝐷𝑣𝑖
𝐷𝑡

= − 𝜕
𝜕𝑥𝑖

(1
𝜌

𝜕𝑝
𝜕𝑥𝑖

) + 𝜕
𝜕𝑥𝑖

(1
𝜌

𝜕𝜏𝑗𝑖

𝜕𝑥𝑗
) . (4.12)

Using the identity

𝜕
𝜕𝑥𝑖

𝐷
𝐷𝑡

≡ 𝐷
𝐷𝑡

𝜕
𝜕𝑥𝑖

+
𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕
𝜕𝑥𝑗

(4.13)

and eliminating the term 𝜕/𝜕𝑥𝑖(𝐷(𝑣𝑖)/𝐷𝑡) in equation (4.10) and (4.12), the
following wave equation can be derived

𝐷
𝐷𝑡

( 1
𝜌𝒸2

𝐷𝑝
𝐷𝑡

) − 𝜕
𝜕𝑥𝑖

(1
𝜌

𝜕𝑝
𝜕𝑥𝑖

) =

𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕𝑣𝑖
𝜕𝑥𝑗

− 𝜕
𝜕𝑥𝑖

(1
𝜌

𝜕𝜏𝑗𝑖

𝜕𝑥𝑗
) + 𝐷

𝐷𝑡
(𝜎𝐷𝑠

𝐷𝑡
) . (4.14)
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Equation (4.14) is the so called Phillips equation. It is formally similar to
Lighthill’s wave equation with the time derivative 𝜕/𝜕𝑡 replaced by the material
derivative 𝐷/𝐷𝑡. Originally, a logarithmic expression for the pressure 𝑝 was
introduced as

𝒫 ∶= 1
𝛾

ln 𝑝
𝑝ref

, and (4.15a)

𝛾 = 𝒸2 𝜌
𝑝

, (4.15b)

where 𝑝ref is a convenient reference pressure. Using the definition (4.15a), the
following wave equation for the logarithmic pressure 𝒫 is obtained as

𝐷2𝒫

𝐷𝑡2 − 𝜕
𝜕𝑥𝑖

(𝒸2 𝜕𝒫
𝜕𝑥𝑖

) =

𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕𝑣𝑖
𝜕𝑥𝑗

− 𝜕
𝜕𝑥𝑖

(1
𝜌

𝜕𝜏𝑗𝑖

𝜕𝑥𝑗
) + 𝐷

𝐷𝑡
(𝜎𝐷𝑠

𝐷𝑡
) . (4.16)

Equation (4.14) can take account of some interaction between the mean flow
and the acoustic waves. Lilley and Doak [22] argued that some wave propagation
effect are still hidden in the first term on the RHS of the Phillips equation so
that this term is not a pure aeroacoustic source term. To obtain a wave equation,
where all the wave propagation effects are appearing exclusively on the LHS,
included in the wave operator, the further following steps are necessary. First,
another material derivative is applied to Phillips equation (4.14) yielding a third
order differential equation written as

𝐷
𝐷𝑡

[ 𝐷
𝐷𝑡

( 1
𝜌𝒸2

𝐷𝑝
𝐷𝑡

) − 𝜕
𝜕𝑥𝑖

(1
𝜌

𝜕𝑝
𝜕𝑥𝑖

)] =

𝐷
𝐷𝑡

[
𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕𝑣𝑖
𝜕𝑥𝑗

] − 𝐷
𝐷𝑡

[ 𝜕
𝜕𝑥𝑖

(1
𝜌

𝜕𝜏𝑗𝑖

𝜕𝑥𝑗
)] + 𝐷

𝐷𝑡
[ 𝐷

𝐷𝑡
(𝜎𝐷𝑠

𝐷𝑡
)] . (4.17)

Using the product rule of differentiation, the first term on the RHS can be rewrit-
ten as

𝐷
𝐷𝑡

[
𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕𝑣𝑖
𝜕𝑥𝑗

] =
𝜕𝑣𝑗

𝜕𝑥𝑖

𝐷
𝐷𝑡

(
𝜕𝑣𝑖
𝜕𝑥𝑗

) +
𝜕𝑣𝑖
𝜕𝑥𝑗

𝐷
𝐷𝑡

(
𝜕𝑣𝑗

𝜕𝑥𝑖
)

= 2
𝜕𝑣𝑗

𝜕𝑥𝑖

𝐷
𝐷𝑡

(
𝜕𝑣𝑖
𝜕𝑥𝑗

) . (4.18)
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Introducing (4.18) into (4.17) gives

𝐷
𝐷𝑡

[ 𝐷
𝐷𝑡

( 1
𝜌𝒸2

𝐷𝑝
𝐷𝑡

) − 𝜕
𝜕𝑥𝑖

(1
𝜌

𝜕𝑝
𝜕𝑥𝑖

)] =

2
𝜕𝑣𝑗

𝜕𝑥𝑖

𝐷
𝐷𝑡

(
𝜕𝑣𝑖
𝜕𝑥𝑗

) − 𝐷
𝐷𝑡

[ 𝜕
𝜕𝑥𝑖

(1
𝜌

𝜕𝜏𝑗𝑖

𝜕𝑥𝑗
)] + 𝐷

𝐷𝑡
[ 𝐷

𝐷𝑡
(𝜎𝐷𝑠

𝐷𝑡
)] . (4.19)

Applying again the identity (4.13) to the LHS term of equation (4.12), the latter
can be rewritten as

𝐷
𝐷𝑡

𝜕𝑣𝑖
𝜕𝑥𝑗

= −
𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕𝑣𝑖
𝜕𝑥𝑗

− 𝜕
𝜕𝑥𝑗

(1
𝜌

𝜕𝑝
𝜕𝑥𝑖

) + 𝜕
𝜕𝑥𝑗

(1
𝜌

𝜕𝜏𝑖𝑘
𝜕𝑥𝑘

) . (4.20)

Substituting equation (4.20) into equation (4.18) leads to

2
𝜕𝑣𝑗

𝜕𝑥𝑖

𝐷
𝐷𝑡

(
𝜕𝑣𝑖
𝜕𝑥𝑗

) = − 2
𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕𝑣𝑘
𝜕𝑥𝑗

𝜕𝑣𝑗

𝜕𝑥𝑘
− 2

𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕
𝜕𝑥𝑖

(1
𝜌

𝜕𝑝
𝜕𝑥𝑖

)

+ 2
𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕
𝜕𝑥𝑖

(1
𝜌

𝜕𝜏𝑖𝑘
𝜕𝑥𝑘

) . (4.21)

After substituting equation (4.19) into equation (4.18) and rearranging some
terms Lilley’s wave equation can be written as

𝐷
𝐷𝑡

[ 𝐷
𝐷𝑡

( 1
𝜌𝒸2

𝐷𝑝
𝐷𝑡

) − 𝜕
𝜕𝑥𝑖

(1
𝜌

𝜕𝑝
𝜕𝑥𝑖

)] + 2
𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕
𝜕𝑥𝑗

1
𝜌

𝜕𝑝
𝜕𝑥𝑖

=

− 2
𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕𝑣𝑘
𝜕𝑥𝑗

𝜕𝑣𝑖
𝜕𝑥𝑘

+ 𝒮𝜏,𝑠, (4.22)

where 𝒮𝜏,𝑠 represent aeroacoustic sources from viscous and entropy changing
effects (e.g. chemical heat release)

𝒮𝜏,𝑠 = 2
𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕
𝜕𝑥𝑗

1
𝜌

𝜕𝜏𝑖𝑘
𝜕𝑥𝑘

− 𝐷
𝐷𝑡

[ 𝜕
𝜕𝑥𝑖

(1
𝜌

𝜕𝜏𝑗𝑖

𝜕𝑥𝑗
)] + 𝐷

𝐷𝑡
[ 𝐷

𝐷𝑡
(𝜎𝐷𝑠

𝐷𝑡
)] . (4.23)
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Introducing again the logarithmic pressure 𝒫 (4.15a) as the dependent quantity,
the following wave equation is finally obtained

𝐷
𝐷𝑡

[𝐷2𝒫

𝐷𝑡2 − 𝜕
𝜕𝑥𝑖

(𝒸2 𝜕𝒫
𝜕𝑥𝑖

)] + 2
𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕
𝜕𝑥𝑗

𝒸2 𝜕𝒫
𝜕𝑥𝑖

=

− 2
𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕𝑣𝑘
𝜕𝑥𝑗

𝜕𝑣𝑖
𝜕𝑥𝑘

+ 𝒮𝜏,𝑠. (4.24)

In contrast to Lighthill’s acoustic analogy, Lilley’s acoustic analogy includes re-
fraction and convection effects of sound sources on the LHS into the wave op-
erator. As a consequence, the aeroacoustic source term on the RHS is a pure
source of sound without wave propagation effects. However, the advantage of the
high order wave operator comes with the great mathematical complexity of the
solutions of this equation. To date, only limited solutions are known for Lilley’s
acoustic analogy.

The CAA Module of FIRE™ is based on linearized Euler equations (LEE)
which are solved for the acoustical field. Thus, an acoustic analogy has to be
found, which can deliver aeroacoustic sources for the LEE and is applicable in
internal flows. Therefore, in the following section, an acoustic analogy based on
the LEE is derived.
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4.3 Acoustic analogy based on LEE

4.3.1 Aeroacoustic decomposition

The aeroacoustic decomposition, the foundation of hybrid CAA approaches, sep-
arates the flow variables into the base flow components, represented by the mean
values ⟨𝜙⟩, the turbulence fluctuations 𝜙′, and the acoustic perturbations 𝜙a. It
is defined as:

𝜙 = ⟨𝜙⟩ + 𝜙′ + 𝜙a. (4.25)

In hybrid CAA approaches the turbulent flow field, represented by the first two
components, and the acoustic field are calculated separately. Thus, the CFD
solution for the flow is decoupled from the acoustic perturbations.

Applying this decomposition to the flow variables density 𝜌 , pressure 𝑝 and
velocity 𝑣𝑖 gives

𝜌 = ⟨𝜌⟩ + 𝜌′ + 𝜌a, (4.26a)

𝑣𝑖 = ⟨𝑣𝑖⟩ + 𝑣′
𝑖 + 𝑣a,𝑖, (4.26b)

𝑝 = ⟨𝑝⟩ + 𝑝′ + 𝑝a. (4.26c)

4.3.2 Linearized Euler equations

In this section the linearized form of the compressible Euler equations (2.32)
are derived based on the aeroacoustic decomposition (4.25). Since the hybrid
approach is based on an incompressible simulation, only the turbulent instanta-
neous fluctuations of the velocity 𝑣′

𝑖 and the pressure 𝑝′ are considered, as 𝜌′ = 0
and 𝜌 = ⟨𝜌⟩ = 𝜌ref = const.. Thus, the aeroacoustic decomposition only includes
the turbulent velocity and pressure fluctuations, which need to be provided by a
submodel, while neglecting the turbulent density fluctuation, such that

𝜌 = 𝜌ref + 𝜌a, (4.27a)

𝑣𝑖 = ⟨𝑣𝑖⟩ + 𝑣′
𝑖 + 𝑣a,𝑖, (4.27b)

𝑝 = ⟨𝑝⟩ + 𝑝′ + 𝑝a. (4.27c)
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Substituting the reduced aeroacoustic decomposition (4.27) into the system of
Euler equations (2.34) gives

𝐷
𝐷𝑡

(𝜌ref + 𝜌a) = − (𝜌ref + 𝜌a) 𝜕
𝜕𝑥𝑗

(⟨𝑣𝑗⟩ + 𝑣′
𝑗 + 𝑣a,𝑗) , (4.28a)

𝐷
𝐷𝑡

(⟨𝑣𝑖⟩ + 𝑣′
𝑖 + 𝑣a,𝑖) = − 1

𝜌ref + 𝜌a

𝜕
𝜕𝑥𝑖

(⟨𝑝⟩ + 𝑝′ + 𝑝a) and (4.28b)

𝐷
𝐷𝑡

(⟨𝑝⟩ + 𝑝′ + 𝑝a) = − 𝛾(⟨𝑝⟩ + 𝑝′ + 𝑝a) 𝜕
𝜕𝑥𝑗

(⟨𝑣𝑗⟩ + 𝑣′
𝑗 + 𝑣a,𝑗) . (4.28c)

Assuming that the acoustic density perturbations 𝜌a are small compared to the
mean flow density ⟨𝜌⟩ = 𝜌ref the linearization of the inverse of the density can be
written as

1
𝜌ref + 𝜌a

≈
1 −

𝜌a
𝜌ref

𝜌ref
= 1

𝜌ref
−
�
�
��7

≪
𝜌a

𝜌2
ref

≈ 1
𝜌ref

. (4.29)

We further rewrite the statistically averaged representation of the Euler equations.
The terms, including only temporal averaged flow quantities written as

�
�
���

= 0
𝜕𝜌ref
𝜕𝑡

+ 𝜌ref
𝜕⟨𝑣𝑗⟩
𝜕𝑥𝑗

+ ⟨𝑣𝑗⟩
�
�
�
�7

= 0
𝜕𝜌ref
𝜕𝑥𝑗

= 0, (4.30a)

𝜕⟨𝑣𝑖⟩
𝜕𝑡

+ ⟨𝑣𝑗⟩
𝜕⟨𝑣𝑖⟩
𝜕𝑥𝑗

= − 1
𝜌ref

𝜕⟨𝑝⟩
𝜕𝑥𝑖

− ⟨𝑣′
𝑗
𝜕𝑣′

𝑖
𝜕𝑥𝑗

⟩ , (4.30b)

𝜕⟨𝑝⟩
𝜕𝑡

+ ⟨𝑣𝑗⟩
𝜕⟨𝑝⟩
𝜕𝑥𝑗

= − 𝛾 ⟨𝑝⟩
𝜕⟨𝑣𝑗⟩
𝜕𝑥𝑖

(4.30c)

appear as subsets in the full set of equations (4.28), and hence, cancel out. Incom-
pressible flow behavior also implies divergence-free mean and fluctuating velocity
fields, 𝜕 ⟨𝑣𝑖⟩ /𝜕𝑥𝑖 = 0 and 𝜕𝑣′

𝑖/𝜕𝑥𝑖 = 0, respectively. Additionally neglecting the
non-linear cross-terms, constituted by the turbulence fluctuations and acoustic
components, the linearized Euler equations (LEE) finally become
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𝜕𝜌a
𝜕𝑡

+ ⟨𝑣𝑗⟩
𝜕𝜌a
𝜕𝑥𝑗

+ ⟨𝜌⟩
𝜕𝜌a
𝜕𝑥𝑗

= 0 (4.31a)

𝜕𝑣a,𝑖

𝜕𝑡
+ 𝑣a,𝑗

𝜕⟨𝑣𝑖⟩
𝜕𝑥𝑗

+ ⟨𝑣𝑗⟩
𝜕𝑣a,𝑖

𝜕𝑥𝑗
+ 1

𝜌ref

𝜕𝑝a
𝜕𝑥𝑖

=

−
𝜕𝑣′

𝑖
𝜕𝑡

− 𝑣′
𝑗
𝜕⟨𝑣𝑖⟩
𝜕𝑥𝑗

− ⟨𝑣𝑗⟩
𝜕𝑣′

𝑖
𝜕𝑥𝑗

− 𝑣′
𝑗
𝜕𝑣′

𝑖
𝜕𝑥𝑗

+ ⟨𝑣′
𝑗
𝜕𝑣′

𝑖
𝜕𝑥𝑗

⟩ − 1
𝜌ref

𝜕𝑝′

𝜕𝑥𝑗
(4.31b)

𝜕𝑝a
𝜕𝑡

+ ⟨𝑣𝑗⟩
𝜕𝑝a
𝜕𝑥𝑗

+ 𝑣a,𝑗
𝜕⟨𝑝⟩
𝜕𝑥𝑗

+ 𝛾 ⟨𝑝⟩
𝜕𝑣a,𝑗

𝜕𝑥𝑗
=

− 𝜕𝑝′

𝜕𝑡
− ⟨𝑣𝑗⟩

𝜕𝑝′

𝜕𝑥𝑗
− 𝑣′

𝑗
𝜕⟨𝑝⟩
𝜕𝑥𝑗

− 𝑣′
𝑗
𝜕𝑝′

𝜕𝑥𝑗
(4.31c)

The terms on the LHS of equation (4.31) represent a convective wave operator
depending on the mean flow field, whereas terms on the RHS can be considered
as aeroacoustic sources similar as in other acoustic analogies. For an accurate
prediction of the acoustic field in terms of 𝜌a, 𝑣a,𝑖 and 𝑝a a reliable prescription
of the aeroacoustic source terms determined from the underlying turbulent flow
field is a standard requirement.

In most previous related work found in various publications [1, 17, 19] only the
non-linear terms, constituted by the turbulent velocity fluctuations, written as

Ω′
𝑖 = 𝒮𝑖 − ⟨𝒮𝑖⟩ , where (4.32a)

𝒮𝑖 = 𝑣′
𝑗
𝜕𝑣′

𝑖
𝜕𝑥𝑗

and (4.32b)

⟨𝒮𝑖⟩ = ⟨𝑣′
𝑗
𝜕𝑣′

𝑖
𝜕𝑥𝑗

⟩ , (4.32c)

are considered, whereas all other aeroacoustic source terms are neglected. There-
fore, the aeroacoustic source term Ω′

𝑖 occurring in the momentum equation of the
LEE is the mainly investigated aeroacoustic source term in the present
Master’s Thesis.
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4.3.3 Linearized Euler equations solved by the CAA tool in
FIRE™

The CAA tool, actually implemented in FIRE™, additionally neglects the tur-
bulent pressure fluctuations 𝑝′ in the aeroacoustic decomposition (4.26), which
becomes

𝜌 = 𝜌ref + 𝜌a, (4.33a)

𝑣𝑖 = ⟨𝑣𝑖⟩ + 𝑣′
𝑖 + 𝑣a,𝑖, (4.33b)

𝑝 = ⟨𝑝⟩ + 𝑝a. (4.33c)

Accordingly, all aeroacoustic source terms containing the pressure fluctuations
𝑝′ in the LEE (4.31) vanish. Additionally, the temporal derivative of the ve-
locity fluctuations 𝜕𝑣′

𝑖/𝜕𝑡 and the temporally averaged non-linear aeroacoustic
source term ⟨𝒮𝑖⟩ are neglected, as well. The cross-terms, constituted of the mean
flow variables and the turbulence fluctuations, are not neglected, though. The
obtained LEE, solved by the CAA module in FIRE™, reads

𝜕𝜌a
𝜕𝑡

+ ⟨𝑣𝑗⟩
𝜕𝜌a
𝜕𝑥𝑗

+ ⟨𝜌⟩
𝜕𝜌a
𝜕𝑥𝑗

= 0 (4.34a)

𝜕𝑣a,𝑖

𝜕𝑡
+ 𝑣a,𝑗

𝜕⟨𝑣𝑖⟩
𝜕𝑥𝑗

+ ⟨𝑣𝑗⟩
𝜕𝑣a,𝑖

𝜕𝑥𝑗
+ 1

𝜌ref

𝜕𝑝a
𝜕𝑥𝑖

=

− 𝑣′
𝑗
𝜕⟨𝑣𝑖⟩
𝜕𝑥𝑗

− ⟨𝑣𝑗⟩
𝜕𝑣′

𝑖
𝜕𝑥𝑗

− 𝑣′
𝑗
𝜕𝑣′

𝑖
𝜕𝑥𝑗

(4.34b)

𝜕𝑝a
𝜕𝑡

+ ⟨𝑣𝑗⟩
𝜕𝑝a
𝜕𝑥𝑗

+ 𝑣a,𝑗
𝜕⟨𝑝⟩
𝜕𝑥𝑗

− 𝛾 ⟨𝑝⟩
𝜕𝑣a,𝑗

𝜕𝑥𝑗
= −𝑣′

𝑗
𝜕⟨𝑝⟩
𝜕𝑥𝑗

. (4.34c)

The aeroacoustic source term appearing in the momentum equation evidently
reads

Λ𝑖 + 𝒮𝑖 = 𝑣′
𝑗
𝜕⟨𝑣𝑖⟩
𝜕𝑥𝑗

+ ⟨𝑣𝑗⟩
𝜕𝑣′

𝑖
𝜕𝑥𝑗

+ 𝑣′
𝑗
𝜕𝑣′

𝑖
𝜕𝑥𝑗

, (4.35)

which is the same aeroacoustic source term used by Bechara et al. [13]. The
current version of the CAA tool in FIRE™ generates output only for the cross-
terms in the pressure equation of the LEE (4.34c)

Π = 𝑣′
𝑗
𝜕⟨𝑝⟩
𝜕𝑥𝑗

, (4.36)

therefore, only this term can be considered, when the aeroacoustic source terms,
computed form LES and the UKSG in the CAA tool of FIRE™ are compared.
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Nontheless, the possible contribution of the cross-terms, appearing in the mo-
mentum equation of the LEE (4.34b) as

Λ𝑖 = ⟨𝑣𝑗⟩
𝜕𝑣′

𝑖
𝜕𝑥𝑗

+ 𝑣′
𝑗
𝜕⟨𝑣𝑖⟩
𝜕𝑥𝑗

, (4.37)

to the aeroacoustic source terms shall be investigated in this Master’s Thesis.
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4.4 Aeroacoustic Sources for two-dimensional
sheared flows

In the previous section 4.2 the acoustic analogy of Lilley was derived, which is
more suitable for non-uniform flows compared to Lighthill’s acoustic analogy.
In this section it will be shown that the LEE formulation is equivalent to Lil-
ley’s acoustic analogy, when considering [17, 18, 26] a two-dimensional sheared
mean flow. Considering in particular two-dimensional incompressible transversly
sheared mean flow given in a Cartesion coordinate system by

⟨𝑣1⟩ (𝑥2), ⟨𝑣2⟩ = ⟨𝑣3⟩ = 0, (4.38a)

⟨𝑝⟩ = const. = 𝑝ref, (4.38b)

⟨𝜌⟩ = const. = 𝜌ref, (4.38c)

the Reynolds decomposition of the instantaneous quantities read

𝑣1 = ⟨𝑣1⟩ + 𝑣′
1, (4.39a)

𝑣2 = 𝑣′
2, (4.39b)

𝑝 = ⟨𝑝⟩ + 𝑝′. (4.39c)

We further assume uniform speed of sound 𝒸 = 𝒸ref and neglect the turbulent
velocity fluctuations occuring in the wave operator on the LHS of Phillips (4.14)
and Lilley’s (4.24) acoustic analogy, so that they read

�̄�2𝒫

�̄�2𝑡
− 𝒸2

ref
𝜕2𝒫

𝜕𝑥2
𝑗

= 2
𝜕⟨𝑣1⟩
𝜕𝑥2

𝜕𝑣2
𝜕𝑥1

+
𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕𝑣𝑖
𝜕𝑥𝑗

, (4.40a)

�̄�
�̄�𝑡

[�̄�2𝒫

�̄�𝑡2
− 𝒸ref

𝜕2𝒫

𝜕𝑥2
𝑖

] + 2𝒸2
ref

𝜕𝑣1
𝜕𝑥2

𝜕
𝜕𝑥1

𝜕𝒫
𝜕𝑥2

= −2
𝜕𝑣𝑗

𝜕𝑥𝑖

𝜕𝑣𝑘
𝜕𝑥𝑗

𝜕𝑣𝑖
𝜕𝑥𝑘

, (4.40b)

where the material derivative is simplified to

�̄�
�̄�𝑡

= 𝜕
𝜕𝑡

+ ⟨𝑣1⟩ 𝜕
𝜕𝑥1

, (4.41)

and the viscous stresses and entropy changing effects (e.g. chemical heat release,
shocks, etc.) have been discarded, as well.
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Introducing the Reynolds decomposition (4.39) into the RHS of (4.40a) yields
Phillips acoustic analogy applied to a two-dimensional sheared flow, which reads

�̄�2𝒫

�̄�2𝑡
− 𝒸2

ref
𝜕2𝒫

𝜕𝑥2
𝑗

= 2
𝜕𝑣1
𝜕𝑥2

𝜕𝑣′
2

𝜕𝑥1
+

𝜕𝑣′
𝑗

𝜕𝑥𝑖

𝜕𝑣′
𝑖

𝜕𝑥𝑗
. (4.42)

To obtain once more a third order wave equation of Lilley’s type, the material
derivative (4.41) is applied to (4.42), yielding

�̄�
�̄�𝑡

[�̄�2𝒫

�̄�2𝑡
− 𝒸2

ref
𝜕2𝒫

𝜕𝑥2
𝑗

] = 2 �̄�
�̄�𝑡

[
𝜕⟨𝑣1⟩
𝜕𝑥2

𝜕𝑣′
2

𝜕𝑥1
] + �̄�

�̄�𝑡
[

𝜕𝑣′
𝑗

𝜕𝑥𝑖

𝜕𝑣′
𝑖

𝜕𝑥𝑗
] . (4.43)

Expanding the term on the RHS of equation (4.43) yields

2 �̄�
�̄�𝑡

[
𝜕⟨𝑣1⟩
𝜕𝑥2

𝜕𝑣′
2

𝜕𝑥1
] = 2

𝜕⟨𝑣1⟩
𝜕𝑥2

�̄�
�̄�𝑡

𝜕𝑣′
2

𝜕𝑥1
+ 2

𝜕𝑣′
2

𝜕𝑥1

�̄�
�̄�𝑡

𝜕⟨𝑣1⟩
𝜕𝑥2

. (4.44)

Applying the derivative, with respect to 𝑥1 to the transverse momentum equation
generally given by (4.11), using the logarithmic pressure 𝒫, and further applying
the identity (4.13), the following expression is obtained

𝜕
𝜕𝑥1

�̄�𝑣′
2

�̄�𝑡
= �̄�

�̄�𝑡
𝜕𝑣′

2
𝜕𝑥1

+
𝜕𝑣𝑗

𝜕𝑥1

𝜕𝑣′
2

𝜕𝑥𝑗
= −𝒸2

ref
𝜕2𝒫

𝜕𝑥1𝜕𝑥2

⇒ �̄�
�̄�𝑡

𝜕𝑣′
2

𝜕𝑥1
= −𝒸2

ref
𝜕2𝒫

𝜕𝑥1𝜕𝑥2
−

𝜕𝑣𝑗

𝜕𝑥1

𝜕𝑣′
2

𝜕𝑥𝑗
. (4.45)

Introducing the above expressions into the third order wave equation (4.43) yields

�̄�
�̄�𝑡

[�̄�2𝒫

�̄�2𝑡
− 𝒸2

ref
𝜕2𝒫

𝜕𝑥2
𝑗

] + 2𝒸2
ref

𝜕⟨𝑣1⟩
𝜕𝑥2

𝜕2𝒫

𝜕𝑥1𝜕𝑥2
=

�̄�
�̄�𝑡

[
𝜕𝑣′

𝑗

𝜕𝑥𝑖

𝜕𝑣′
𝑖

𝜕𝑥𝑗
] + 2

𝜕𝑣′
2

𝜕𝑥1

�̄�
�̄�𝑡

𝜕⟨𝑣1⟩
𝜕𝑥2

− 2
𝜕⟨𝑣1⟩
𝜕𝑥2

𝜕𝑣𝑗

𝜕𝑥1

𝜕𝑣′
2

𝜕𝑥𝑗
. (4.46)

As expected the wave operator on the LHS of (4.46) is identical to the operator
in the corresponding formulation for the acoustic analogy of Lilley (4.40b). The
second term on the RHS side of (4.46) vanishes since

�̄�
�̄�𝑡

𝜕⟨𝑣1⟩
𝜕𝑥2

=
�

�
�

�
�>= 0

𝜕
𝜕𝑡

𝜕⟨𝑣1⟩
𝜕𝑥2

+
�
���

����*= 0

⟨𝑣1⟩ 𝜕
𝜕𝑥1

𝜕⟨𝑣1⟩
𝜕𝑥2

= 0. (4.47)

Assuming that the fluctuating velocities are divergence free 𝜕𝑣′
𝑖/𝜕𝑥𝑖 = 0, the
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RHS of (4.46) can be transformed yielding

�̄�
�̄�𝑡

[�̄�2𝒫

�̄�2𝑡
− 𝒸2

ref
𝜕2𝒫

𝜕𝑥2
𝑗

] + 2𝒸2
ref

𝜕⟨𝑣1⟩
𝜕𝑥2

𝜕2𝒫

𝜕𝑥1𝜕𝑥2
=

�̄�
�̄�𝑡

[
𝜕2𝑣′

𝑖𝑣
′
𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
] − 2

𝜕⟨𝑣1⟩
𝜕𝑥2

𝜕2𝑣′
2𝑣′

𝑗

𝜕𝑥1𝜕𝑥𝑗
. (4.48)

Goldstein argued that these two terms on the RHS of equation (4.48) are the
main aeroacoustic source terms for sheared flow configurations (e.g. free jets,
mixing layer, etc.).

4.4.1 Application of the LEE to the two-dimensional shear
flow

To show that the acoustic analogy based on the LEE (4.31) together with the
main aeroacoustic source terms 𝒮𝑖 (4.32b), derived in section 4.3, is equivalent to
Lilley’s acoustic analogy, a third order wave equation of Lilley’s type is derived
from the LEE and applied to the two-dimensional shear flow.

Considering the continuity equation of the LEE (4.31a) applied to the two-
dimensional shear flow and rewritten as

1
𝒸2

ref

𝜕𝑝a
𝜕𝑡

+ 1
𝒸2

ref

𝜕𝑝a ⟨𝑣𝑖⟩
𝜕𝑥𝑖

+
𝜕𝑣a,𝑖

𝜕𝑥𝑖
= 0, (4.49)

where the acoustic density fluctuations 𝜌a were replaced by the acoustic pressure
fluctuations using 𝑝a = 𝒸2

ref𝜌a. Applying the material derivative (4.41) to the
continuity equation (4.49) leads to

1
𝒸2

ref

�̄�2𝑝a

�̄�𝑡2
+ �̄�

�̄�𝑡

𝜕⟨𝑣a,𝑖⟩ 𝜌ref

𝜕𝑥𝑖
= 0. (4.50)

We recall the momentum equation of the LEE (4.31b), which shall be applied to
two-dimensional shear flow and is accordingly rewritten as

𝜕𝜌ref𝑣a,𝑖

𝜕𝑡
+

𝜕⟨𝑣𝑖⟩ 𝜌ref𝑣a,𝑖

𝜕𝑥𝑗
+

𝜕𝑝a
𝜕𝑥𝑖

= 𝜌ref𝒮𝑖, (4.51)

where the aeroacoustic source term 𝒮𝑖 appears as a priorly unknown term. Ap-
plying the divergence to (4.51) and rewriting the first two terms on the LHS using
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the material derivative leads to

𝜕
𝜕𝑥𝑖

�̄�𝜌ref𝑣a,𝑖

�̄�𝑡
+

𝜕2𝑝a

𝜕𝑥2
𝑖

= 𝜌ref
𝜕𝒮𝑖
𝜕𝑥𝑖

(4.52)

Subtracting equation (4.52) from equation (4.50) one obtains

1
𝒸2

ref

�̄�2𝑝a

�̄�𝑡2
−

𝜕2𝑝a

𝜕𝑥2
𝑖

+ �̄�
�̄�𝑡

𝜕⟨𝑣a,𝑖⟩ 𝜌ref

𝜕𝑥𝑖
− 𝜕

𝜕𝑥𝑖

�̄�𝜌ref𝑣a,𝑖

�̄�𝑡
= −𝜌ref

𝜕𝒮𝑖
𝜕𝑥𝑖

. (4.53)

Applying the identity (4.13) to two-dimensional shear flow, i.e.,

𝜕
𝜕𝑥𝑖

𝐷
𝐷𝑡

≡ 𝐷
𝐷𝑡

𝜕
𝜕𝑥𝑖

+
𝜕⟨𝑣1⟩
𝜕𝑥2

𝜕
𝜕𝑥1

, (4.54)

the third term on the LHS in equation (4.53) can be rewritten as

�̄�
�̄�𝑡

𝜕⟨𝑣a,𝑖⟩ 𝜌ref

𝜕𝑥𝑖
= 𝜕
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− 2

𝜕⟨𝑣1⟩
𝜕𝑥2

𝜕𝑣a,𝑖𝜌ref

𝜕𝑥1
. (4.55)

Applying again the material derivative to (4.53), after substituting (4.55), leads
to the third order wave equation

�̄�
�̄�𝑡

[ 1
𝒸2

ref

�̄�2𝑝a
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−
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𝑖
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�̄�𝑡
𝜌ref
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𝜕𝑥𝑖

. (4.56)

Taking the derivative with respect to 𝑥1 of the transverse momentum equation
written as

𝜕
𝜕𝑥1

�̄�𝜌ref𝑣a,2

�̄�𝑡
+

𝜕2𝑝a
𝜕𝑥1𝜕𝑥2

= 𝜌ref
𝜕𝒮2
𝜕𝑥1

, (4.57)

the third order wave equation finally reads

�̄�
�̄�𝑡
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𝒸2

ref
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−
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] − 2 �̄�
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𝜕2𝑝a
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=

− �̄�
�̄�𝑡

𝜌ref
𝜕𝒮𝑖
𝜕𝑥𝑖

−
𝜕⟨𝑣1⟩
𝜕𝑥2

𝜌ref
𝜕𝒮2
𝜕𝑥1

. (4.58)

If the aeroacoustic source term 𝒮𝑖 is chosen as

𝒮𝑖 = −
𝜕𝑣′

𝑗𝑣
′
𝑖

𝜕𝑥𝑗
(4.59)

the resulting third order wave equation and its aeroacoustic source term are equiv-
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alent to the formulation derived by Goldstein (4.48). This aeroacoustic source
term represents the non-linear turbulent velocity fluctuations already identified
as the main aeroacoustic source term in section 4.3.
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4.5 Aeroacoustic sources from LES

In section 4.3 the aeroacoustic sources for the LEE were identified. In the present
section the method for calculating the aeroacoustic sources from an incompress-
ible LES simulation is discussed.

LES basically provides resolved instantaneous velocities ̃𝑣𝑖, pressure ̃𝑝, and, in
case of a compressible LES, density ̃𝜌 fields down to the grid scale (see section 3.2).
By subtracting the temporally averaged resolved flow quantities ⟨ ̃𝜙⟩ from the
resolved instantaneous flow quantities ̃𝜙 the resolved turbulent fluctuations ̃𝜙′

are obtained as

̃𝜙′ = ̃𝜙 − ⟨ ̃𝜙⟩ . (4.60)

The resolved turbulent contribution to the main aeroacoustic source term consis-
tently reads

̃𝒮𝑖,LES = ̃𝑣′
𝑗
𝜕 ̃𝑣′

𝑖
𝜕𝑥𝑗

. (4.61)

The resolved cross-terms appearing in the momentum equation of the LEE (4.34),
as used by FIRE™, rewritten as

Λ̃𝑖,LES = ̃𝑣′
𝑗
𝜕⟨ ̃𝑣𝑖⟩
𝜕𝑥𝑗

+ ⟨ ̃𝑣𝑗⟩
𝜕 ̃𝑣′

𝑖
𝜕𝑥𝑗

, and (4.62a)

Π̃LES = ̃𝑣′
𝑗
𝜕⟨ ̃𝑝⟩
𝜕𝑥𝑗

, (4.62b)

can also be directly calculated from the resolved flow quantities.

4.5.1 Determination of aeroacoustic source term

The aeroacoustic source terms generated by the turbulent motion, as occurring
on the RHS of the LEE (4.31) are basically constituted by the turbulent velocity
fluctuations around the corresponding statistical average values (4.60). As such,
these fluctuations cover the full range of turbulent scales from the largest to the
smallest eddies. The contribution of the large low-frequency vortical structures,
being thus included into the aeroacoustic source term, deserves special attend
and is therefore further investigated in this Master’s Thesis.

As shown in the derivation of the LEE, the subset of momentum equations to
be solved for the mean (= Reynolds averaged) velocities ⟨𝑣𝑖⟩, (4.30c), involves
the divergence of the statistically averaged Reynolds stress tensor 𝜕 ⟨𝑣′

𝑗𝑣
′
𝑖⟩ /𝜕𝑥𝑗.

This term finally appears in the momentum aeroacoustic source term, where it
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effectively reduces the contribution of the non-averaged instantaneous counterpart
𝜕𝑣′

𝑗𝑣
′
𝑖/𝜕𝑥𝑗. This important aspect was already addressed by Bogey [17]. In

this Master’s Thesis three different methods are investigated for computing this
temporal average. The corresponding aeroacoustic source terms read

Ω̃′
𝑖,LES = ̃𝒮𝑖,LES − ⟨ ̃𝒮𝑖,LES⟩ , (4.63a)

Ω̃′fa
𝑖,LES = ̃𝒮𝑖,LES − ⟨ ̃𝒮𝑖,LES⟩

fa
, (4.63b)

Ω̃′ma
𝑖,LES = ̃𝒮𝑖,LES − ⟨ ̃𝒮𝑖,LES⟩

ma
, (4.63c)

where the unsubscripted angular brackets ⟨ ⟩ indicate a standard statistical av-
erage, basically determined for an infinite averaging period 𝑇TF → ∞. The two
alternative methods indicated by the subscripted angular brackets ⟨ ⟩ma and ⟨ ⟩fa

represent the moving time-frame averaging method (3.23) and the Fourier based
averaging method (3.26), respectively. The moving average procedure temporally
averages over an given finite time-period 𝑇TF , whereas the Fourier average ap-
plies a low-pass filter, with the given cut-off frequency 𝒻TF = 1/𝑇TF. The width
of the moving time-frame and the temporal filter width are based on the different
time-scales of the large low-frequency vortical structures, representing the turbu-
lent time-scales presented in section 3.1.9. The present Master’s Thesis compares
the different averaging methods highlighting their efficiency in eliminating the in-
fluence of the large low-frequency vortical structures from the aeroacoustic source
terms.

4.5.2 Influence of the SGS model

In the previous section the calculation of the aeroacoustic source terms from the
resolved instantaneous flow quantities was presented. It was also mentioned that
these resolved quantities only contain the turbulence scales down to the grid scale.
Since the SGS only contains the small unresolved turbulence structures, thus
representing high-frequency fluctuations which are supposed to act as effective
sound sources, they should therefore be somehow considered in the aeroacoustic
source terms. Since the SGS velocity fluctuations are not known in LES, a further
SGS model (SGM) would be required for this purpose. The further discussion of
such a model shall be based on incompressible flows and on the analysis of the
SGS contribution to the aeroacoustic source term.
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Since in incompressible flows the turbulent velocity fluctuations are divergence-
free, 𝜕𝑣′

𝑗/𝜕𝑥𝑗 = 0, the main aeroacoustic source term 𝒮𝑖 (4.32b) can be rewritten
as

𝒮𝑖 =
𝜕𝑣′

𝑗𝑣
′
𝑖

𝜕𝑥𝑗
. (4.64)

This term shall be investigated analogously to the study of Seror et al. [49, 50],
who investigated the contribution of the SGS to the Lighthill stress tensor 𝑇𝑖𝑗.
Seror et al. assumed in his analysis isotropic turbulence and concluded that the
SGS contribution might be negligible if the cut-off frequency of the applied LES
filter is high enough. In consistence with the filtering based concept of LES, the
instantaneous aeroacoustic source term can be split into

𝒮𝑖 = ̃𝒮𝑖,LES + ̃𝒮𝑖,SGS (4.65)

where, ̃𝒮𝑖,LES is the resolved part, which can be directly computed from the
resolved LES results

̃𝒮𝑖,LES =
𝜕 ̃𝑣′

𝑗 ̃𝑣′
𝑖

𝜕𝑥𝑗
, (4.66)

and ̃𝒮𝑖,SGS is the unresolved subgrid-scale contribution. The latter can be com-
puted as the spatial derivation of the SGS tensor, as appearing in equation (3.58)

̃𝒮𝑖,LES =
𝜕𝜏𝑖𝑗,SGS

𝜕𝑥𝑗
. (4.67)

As such, this contribution can be obtained from the subgrid-scale model, which
is actually applied for closing the filtered equations of motion.

Providing a high resolution of the computational grid will certainly help to
keep the unresolved part as small as possible, increasing the computational cost
though. The relative contribution of the SGM can be estimated by a comparison
between the resolved and the modelled unresolved turbulence kinetic energy.
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4.6 The CAA tool in FIRE™

4.6.1 Solution procedure of the acoustic field

The CAA tool in FIRE™ solves the LEE (4.34), based on a hybrid approach,
using the aeroacoustic decomposition (4.33), where the aeroacoustic source terms,
occurring in the vector ⃗𝒮, are modeled with the UKSG from an RANS solution.
The system of equations rewritten in vectorial notation reads [16, 17, 51]

𝜕 ⃗𝑈
𝜕𝑡

+
𝜕 ⃗𝐹𝑖
𝜕𝑥𝑖

+ �⃗� = ⃗𝒮, (4.68)

where

⃗𝑈 = [𝜌a, ⟨𝜌⟩ 𝑣a,𝑖, 𝑝a]T , (4.69a)

⃗𝐹𝑖 =
⎡
⎢⎢⎢
⎣

𝜌a ⟨𝑣𝑖⟩ + ⟨𝜌⟩ 𝑣a,𝑖

⟨𝜌⟩ ⟨𝑣𝑖⟩ 𝑣a,𝑗 + 𝑝a

⟨𝑣𝑖⟩ 𝑝a + 𝛾 ⟨𝑝⟩ 𝑣a,𝑖

⎤
⎥⎥⎥
⎦

, (4.69b)
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⎢
⎢
⎢
⎢
⎣

0

(⟨𝜌⟩ 𝑣a,𝑖 + 𝜌a ⟨𝑣𝑖⟩)
𝜕𝑣0,𝑗

𝜕𝑥𝑖
+ ( ̄𝜌𝑣′

𝑖 + 𝜌′ ̄𝑣𝑖)
𝜕 ̄𝑣𝑗

𝜕𝑥𝑖

(𝛾 − 1)𝑝a
𝜕⟨𝑣𝑖⟩
𝜕𝑥𝑖

− (𝛾 − 1)𝑣a,𝑖
𝜕⟨𝑝⟩
𝜕𝑥𝑖

⎤
⎥
⎥
⎥
⎥
⎦

. (4.69c)

(4.69d)

The vector �⃗� which only vanishes if the temporally averaged flow field is uniform
[9, 11] is neglected. The remaining system of equations is solved by using a finite
element method (FEM), applying the Quadrature-Free Discontinuous Galerkin
[3–5] spatial discretization approach. Inside each finite element linear indepen-
dent base-functions are defined, which approximate the spatial variation of the
unknown dependent variables. These base-functions are often chosen as polyno-
mials of degree 𝑁poly = 3 in case of FIRE™. Between the interfaces of the finite
elements, the solution is discontinuous, therefore an additional Riemann flux has
to be included.
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4.6.2 Boundary conditions

Three different kinds of boundary conditions for the acoustic variables are avail-
able in the CAA module of FIRE™:

Reflecting boundaries for solid walls. These boundary conditions are easy to
implement (similar as in CFD) and numerically not problematic.

Non reflecting boundaries for artificial far field boundaries. These are bound-
aries, where the acoustic energy exits completely the domain. Consistently,
the applied numerical scheme should not introduce any kind of reflection.

Porous boundaries are basically internal boundaries which serve as a transitional
surface between computational and analytic transport processes. Starting
from these internal boundaries the acoustic field is propagated analytically
based on the, e.g., Ffowcs Williams-Hawkings equations.

4.6.3 Spatial and temporal discretization

For the spatial discretization an unstructured grid based on tetrahedrons (see
section 3.3) is used. It was already mentioned that CAA is very sensitive to
numerical errors, thus the grid has to be of high quality. The CAA module within
FIRE™ therefore suggests a stringent minimum volume-based aspect ratio (3.67)
𝐴𝑅V = 3.3. The required CAA grid size Δ𝓍CAA is estimated, based on the CFD
grid size Δ𝓍CFD and the Mach number ℳ𝒶 as

Δ𝓍CAA ≈
Δ𝓍CFD
ℳ𝒶

, (4.70)

where both grid sizes can be estimated by 𝑉 1/3
C , with 𝑉C beeing the volume of

the corresponding cell within the computational grid.
The CAA module of FIRE™ uses a Runge-Kutta time scheme of fourth or first

order for the temporal integration. Due to the small CAA time-step the first order
Runge-Kutta scheme might be often sufficiently accurate with the advantage of
higher computational speed. The time-step for the CAA Δ𝑡CAA is estimated by
the CFL condition depending on the speed of sound and the mean velocity as

CFLCAA =
(𝒸+ |𝑣|)Δ𝑡CAA

Δ𝓍CAA
⇒ Δ𝑡CAA =

CFLCAAΔ𝓍CAA

(𝒸+ |𝑣|)
. (4.71)

Additionally, the target maximum resolved frequencies 𝒻high, which should be
resolved, might further decrease the permitted minimum time-step if 2Δ𝑡CAA >
1/𝒻high.
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The time-step of the UKSG Δ𝑡UKSG is estimated depending on the time-step
of the CAA solver and the Mach number ℳ𝒶 of the flow configuration:

Δ𝑡UKSG ≈ (1 + 1
ℳ𝒶

) Δ𝑡CAA. (4.72)

The different time-steps and their approximated relation is presented in figure 4.1.

𝑡

Δ𝑡LES Δ𝑡CAAΔ𝑡UKSG

Figure 4.1: Different time-steps in hybrid CAA methods.

4.6.4 Generation of aeroacoustic sources

In this section the computational algorithm for calculating the aeroacoustic sources
by the CAA tool of FIRE™ is presented. In general, these aeroacoustic sources
generation methods are often referred to as “stochastic noise generation and ra-
diation (SNGR)” methods, because they are generally based on a stochastic ap-
proach to mimic turbulence. Bailly & Juve [10], Bechara et al. [13] and Billson
et al. [14] used a similar approach to generate aeroacoustic sources. In FIRE™
the module for calculating the aeroacoustic source terms is called a “unstructured
kinematic source generator (UKSG)”.

The UKSG calculates the following aeroacoustic source terms as given by equa-
tions (4.35) and (4.36), being here rewritten as

Λ𝑖 + 𝒮𝑖 = 𝑣′
𝑗
𝜕⟨𝑣𝑖⟩
𝜕𝑥𝑗

+ ⟨𝑣𝑗⟩
𝜕𝑣′

𝑖
𝜕𝑥𝑗

+ 𝑣′
𝑗
𝜕𝑣′

𝑖
𝜕𝑥𝑗

Π = 𝑣′
𝑗
𝜕⟨𝑝⟩
𝜕𝑥𝑗

where the turbulent velocity fluctuations 𝑣′
𝑖 = 𝑣′

𝑖,UKSG are generated as pseudo
stochastic turbulent fluctuations around the statistically averaged flow field ob-
tained from a RANS simulation. As such, the UKSG uses the averaged quantities
⟨𝜌⟩, ⟨𝑣𝑖⟩, ⟨𝑝⟩, ⟨𝓀⟩ and ⟨𝜀⟩, obtained from the preceding incompressible RANS sim-
ulation, as input for computing the three turbulent velocity fluctuations 𝑣′

𝑖, occur-
ring in the aeroacoustic source terms. The foundation of most source generation
models, alike the UKSG in FIRE™, is the prescription of a certain turbulence
kinetic energy spectrum, assuming isotropic turbulence. This implies that kinetic
energy contained in the turbulence spectrum is statistically equally distributed
among the three spatial components of the turbulent velocity fluctuations at all
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relevant scales of turbulence. Isotropic turbulence also implies divergence-free
Reynolds stresses, so that the temporal average of the main aeroacoustic source
term in the momentum equation ⟨𝒮𝑖⟩ = 0 .

In some cases the assumption of isotropic turbulence does not hold (e.g. in
highly sheared flows), which basically requires anisotropic turbulence and SNGR
models [15] and comes with higher computational costs.

Stochastic turbulent velocity model

The turbulent velocity fluctuations 𝑣′
𝑖,UKSG are determined from an inverse Fourier

transformation written as

𝑣′
𝑖,UKSG = ∫

𝜅
[ ̂𝑣( ⃗𝜅)𝑒𝒾Ξ𝑖(�⃗�)�⃗�𝜅] 𝑒𝑖�⃗�𝑥𝑖𝑑 ⃗𝜅, (4.74)

where ⃗𝜅 is the wave vector, �⃗�( ⃗𝜅) is the direction of the turbulent velocity vector
and Ξ𝑖 is a random phase for each reconstructed component, which is required to
resemble the stochastic nature of turbulence. From the inverse Fourier transform
only the real part is used, so that

𝑣′
𝑖,UKSG = ∫

𝜅
[ ̂𝑣( ⃗𝜅)�⃗�𝜅] 𝑐𝑜𝑠( ⃗𝜅 ⋅ ⃗𝑥 + Ξ𝑖( ⃗𝜅))𝑑 ⃗𝜅. (4.75)

After discretization of the wave domain into 𝑁𝜅 modes, the following expression
for the modeled turbulence velocity 𝑣t,𝑖,UKSG can be obtained

𝑣′
𝑖,UKSG = 2

𝑁𝜅

∑
𝜅=1

̂𝑣𝜅𝑐𝑜𝑠( ⃗𝜅 ⋅ ⃗𝑥 + Ξ𝑖)�⃗�𝜅. (4.76)

The parameter Ξ𝑖 is a random phase in the range of 0 ≤ Ξ𝑖 ≤ 2𝜋, and is
independent of the position within the domain. As a result for each realization,
the three components 𝑣′

𝑖,UKSG are temporally different, but statistically isotropic,
such that

⟨(𝑣′
𝑥,UKSG)2⟩ = ⟨(𝑣′

𝑦,UKSG)2⟩ = ⟨(𝑣′
𝑧,UKSG)2⟩ (4.77)

The wave vector ⃗𝜅 covers the appropriate wave number domain. The direction
of the turbulent velocity �⃗�𝜅 is chosen perpendicular to the wave vector ⃗𝜅. The
spectral turbulent velocity amplitude ̂𝑣𝜅 is dependent on the wave numbers 𝜅,
and is obtained from a presumed turbulence kinetic energy spectrum ℰ(𝜅) as

̂𝑣𝜅 = √ℰ(𝜅)𝑑𝜅. (4.78)
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Von Kármán spectrum

In case of FIRE™ a Von Kármán spectrum ℰVKS(𝜅) [13] is chosen as the presumed
turbulence kinetic energy spectrum which reads

ℰVKS(𝜅) = 1.453

2
3
𝓀

𝜅𝑒

( 𝜅
𝜅𝑒

)
4

(1 + ( 𝜅
𝜅𝑒

)
2
)

17/6
𝑒−2𝜅2/𝜅2

𝜈. (4.79)

The constants 𝜅𝑒 and 𝜅𝜈 are given as

𝜅𝑒 = 0.747
𝜆

and (4.80)

𝜅𝜈 =
4

√
𝜀
𝜈3 , (4.81)

and the parameter 𝜆 is calculated from

𝜆 = 𝜆UKSG

(2
3
𝓀)

3/2

𝜀
, (4.82)

where 𝜆UKSG is a model parameter to be specified in the UKSG. Note that the
local turbulence kinetic energy 𝓀 and turbulence dissipation rate 𝜀 effectively
determine the strength of the turbulent velocity fluctuations, and hence, the
strength of the aeroacoustic source term as well as the main turbulent time-scale
𝓉𝓀𝜀 = 𝓀/𝜀 of the spectrum.
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Figure 4.2: Von Kármán spectrum ℰVKS(𝜅) with 𝓀= 10 m2/s2, 𝜀 = 1000 m2/s2

and 𝜈ref = 1.5266×10−5 m2/s.

In figure 4.2 a Von Kármán spectrum is shown for arbitrarily selected values of
𝓀= 10 m2/s2 and 𝜀 = 1000 m2/s3 as well as for the reference kinematic viscosity
𝜈ref = 1.5266×10−5 m2/s. Using these values the eddy turnover time (3.15) 𝓉𝓀𝜀 =
𝓀/𝜀 = 0.01 s and the Kolmogorov time-scale (3.18a) 𝓉𝒦 = (𝜈/𝜀)1/2 = 0.000 12 s
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can be computed. From these time-scales their corresponding frequencies are
𝒻𝓀𝜀 = 100 Hz, which corresponds to the high amplitude region, and
𝒻𝒦 = (𝜈/𝜀)1/2 = 8333.33 Hz, which corresponds to the smallest turbulent scales
in the Von Kármán spectrum , respectively.

Convection of the turbulent velocity

The convection of the noise generating eddies with the mean flow needs to be
consistently reflected by the aeroacoustic source terms. To this end the modeled
turbulence velocity is convected using a simple convection scheme, which reads

𝜕𝑣′
𝑖,UKSG

𝜕𝑡
+ ⟨𝑣𝑗⟩

𝜕𝑣′
𝑖,UKSG

𝜕𝑥𝑗
= 0. (4.83)

To obtain the turbulent velocity at the current time-step 𝑣′𝑛
𝑖,UKSG a Marcov chain

is applied, which temporally correlates the convected turbulent velocity field
𝑣′𝑛−1

𝑖,UKSG,conv from the preceding time-step with the new realisation of the tur-
bulent velocity 𝑣′𝑛

𝑖,UKSG,new at the current time-step as follows

𝑣′𝑛
𝑖,UKSG = 𝛼UKSG𝑣′𝑛−1

𝑖,UKSG,conv + √1 − 𝛼2
UKSG𝑣′𝑛

𝑖,UKSG,new, where (4.84a)

𝛼UKSG = 𝑒(−Δ𝑡CAA/𝓉UKSG), (4.84b)

and 𝓉UKSG is the time-scale 𝓉𝓀𝜀 corrected by the parameter 𝜆UKSG, such that

𝓉UKSG = 𝜆UKSG𝓉𝓀𝜀 = 𝜆UKSG
𝓀

𝜀
. (4.85)
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5 Task definition and applied
methods

In the previous chapters the theoretical background of this Master’s Thesis was
discussed. In this chapter the particular tasks of this Master’s Thesis and the
method for reaching the goals of this Master’s Thesis are presented. In section 5.1
the investigated geometry and the expected flow configuration is discussed. This
is followed by the description of the computational domain and the grid generation
process in section 5.2. After that, the applied simulations and involved tasks are
presented in section 5.3. At the end of the chapter the setup of the performed
simulations is presented.
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5.1 Geometry and expected flow configuration

5.1.1 Geometry

0 𝑧

𝑦

4 mm

45°flow direction

𝑥

𝑦

𝐷
𝑖

=
29

.7
m

m

ℎ O

Figure 5.1: Key region of the considered flow geometry: a slot orifice inside a
straight cylindrical pipe.

As already mentioned, the investigated flow configuration consists of a straight
cylindrical pipe with a inner diameter of 𝐷I = 29.7 mm, which is abruptly con-
stricted by a slot orifice with a gap height ℎO at its entrance (see figure 5.1). The
total axial length of the orifice is 4 mm. The upper and lower walls are inclined
by an angle 45°, so that sharp backward facing corners appear at the entrance of
the gap.

𝑥

𝑦

𝑑𝐴

𝑅𝑖

𝛼O

ℎ O

𝐴O

𝑈O

Figure 5.2: Geometrical relations of the entrance of the orifice.

The cross-sectional area of the entrance of the orifice 𝐴O and its circumference
𝑈O (see figure 5.2) can be calculated from the gap height ℎO as

𝐴O = 4 ∫
ℎ/2

0
√𝑅2

I − 𝑦2𝑑𝑦⏟⏟⏟⏟⏟
𝑑𝐴

= 4 ⎡⎢
⎣

𝑅2
I

2
𝛼O(ℎO) +

ℎO
4

√𝑅2
I − (

ℎO
2

)
2
⎤⎥
⎦

, (5.1a)

𝑈O = 4√𝑅2
I − (

ℎO
2

)
2

+ 4𝑅I𝛼O(ℎO), (5.1b)
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where 𝑅I = 𝐷I/2 = 14.85 mm is the inner radius of the pipe and 𝛼O =
arcsin(ℎO/2𝑅I). Using (5.1a) and (5.1b) the hydraulic diameter 𝑑O of the en-
trance cross-section of the orifice opening is calculated from

𝒹O =
4𝐴O
𝑈O

,

according to the general definition of the hydraulic diameter (3.2).
In this Master’s Thesis two entrance gap heights with ℎO = ℎ5 = 5 mm, and

ℎO = ℎ10 = 10 mm are examined. The relevant geometrical parameters for the
two different orifice configurations are listed in table 5.1.

Table 5.1: Geometrical parameters of the orifice and the pipe.

symbol value [unit]

pipe: 𝐷I 29.700 [mm]
𝑅I 14.850

entrance gap
of the orifice:

ℎ5 5 [mm]
ℎ10 10

cross-sectional
area:

𝐴𝐷I
692.792

[mm2]𝐴ℎ5
291.289

𝐴ℎ10
147.796

constriction: 𝐴𝐷I
/𝐴ℎ5

2.378 [−]
𝐴𝐷I

/𝐴ℎ10
4.688

circum-
ference:

𝑈𝐷I
93.305

[mm]𝑈ℎ5
76.330

𝑈ℎ10
68.600

hydraulic
diameter:

𝒹𝐷I
= 𝐷𝑖 29.700

[mm]𝒹ℎ5
15.265

𝒹ℎ10
8.618

5.1.2 Fluid properties

Air is chosen as the operating fluid, which is modeled as an ideal gas (2.27)
at athomspheric conditions 𝜃ref = 293.15 K and 𝑝ref = 1 bar. The reference den-
sity 𝜌ref = 1.189 kg/m3 was determined by the thermal equation of state for an
ideal gas (2.23) using the specific gas constant for air ℛair = 287 J/(kg K). The
reference dynamic viscosity 𝜇ref = 18.148×10−6 Pa s was determined by Suther-
land’s law (3.68) and the reference kinematic viscosity is calculated from 𝜈ref =
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𝜇ref/𝜌ref = 15.226×10−6 Pa s. The given fluid properties are summarized in ta-
ble 5.2.

Table 5.2: The chosen reference fluid properties of air at reference temperature
𝜃𝑟𝑒𝑓 = 293.15 K and reference pressure 𝑝ref = 1 bar.

property value [unit]

𝜃ref 293.15 [K]
𝑝ref 1 [bar]
ℛair 287 [J/(kg K)]
𝜌ref 1.188 58 [kg/m3]
𝜇ref 18.145×10−6 [Pa s]
𝜈ref 15.266×10−6 [m2/s]

5.1.3 Operating conditions

Two cases with bulk Reynolds numbers ℛℯ𝐷I
= 5300 and 7400, based on the cylin-

drical pipe inflow conditions, were considered. From the definition of the Reynolds
number (3.4) the corresponding mean bulk velocity �̄� ̇𝑉 ,𝐷I

in the cylindrical pipes
are calculated from

�̄� ̇𝑉 ,𝐷I
=
ℛℯ𝐷I

𝜈ref

𝒹𝐷I

. (5.2)

From the relation

�̇� = 𝜌ref𝓋 ̇𝑉 ,𝐷I
𝐴𝐷I

(5.3)

the corresponding mass flow rates �̇� are calculated. The mean volumetric velocity
at the orifice entrance �̄� ̇𝑉 ,O is calculated from

̇𝑉 = �̄�𝐴 = �̄� ̇𝑉 ,𝐷I
𝐴𝐷I

= �̄� ̇𝑉 ,O𝐴O ⇒

�̄� ̇𝑉 ,O = �̄� ̇𝑉 ,𝐷I

𝐴𝐷I

𝐴O
. (5.4)

The resulting mean volumetric velocities and the mass flow corresponding to the
two chosen Reynolds numbers ℛℯ𝐷I

= 5300 and 7400 are listed in table 5.3.
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Table 5.3: The appearing mean volumetric velocities in the pipe and the orifice.

ℛℯ𝐷I
�̄� ̇𝑉 ,𝐷I

�̄� ̇𝑉 ,ℎ10
�̄� ̇𝑉 ,ℎ5

�̇�
[−] [m/s] [m/s] [m/s] [kg/s]

5300 2.724 6.479 12.770 2.243×10−3

7400 3.804 9.047 3.132×10−3

The considered Reynolds numbers were actually chosen so that the simulations
carried out for generating appropriate turbulent inflow conditions could be veri-
fied against data from existing DNS simulations provided by the ISW [32]. The
DNS data used for validation were simulated assuming wall shear stress based
Reynolds numbers (3.48) ℛℯ𝜏W

= 360 and 500, which is equivalent to bulk flow
Reynolds numbers close to ℛℯ𝐷I

= 5300 and 7400, respectively.

5.1.4 Expected flow field

𝑧

𝑦

jet
osc.

Figure 5.3: The expected flow field.

The basic structure of the expected flow field is shown in figure 5.3. Starting
from hydraulically fully developed turbulent pipe flow as upstream condition,
the fluid (air) approaches the orifice at moderate Reynolds numbers ℛℯ𝐷I

. Due
to the constriction of the orifice, the fluid accelerates. The flow detaches at
the sharp corners of the orifice entrance, so that a jet-like core flow emerges
downstream of the orifice. Inside the outer region down to the reattachment of
the flow, two recirculation zones appear. Between the recirculation zones and the
jet two shear layers arise, which will enhance the production of turbulence due
to the large velocity gradients. It is therefore also expected that the strongest
aeroacoustic source terms are generated inside these shear layers. Additionally,
large coherent vortical structures (eddies) might emerge from these shear layers,
which are convected downstream until they decay.
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It will be shown that, at the chosen Reynolds numbers, the jet-like core flow
does not oscillate around the center line as indicated in figure 5.3, but rather
attaches at one side of the wall so that the flow pattern becomes asymmetric.
This phenomenon is called the Coanda effect. The Coanda effect associated with
a so called bifurcation, where two possible flow configurations (attachment at the
top or bottom of the pipe) statistically occur with the same probability for a
certain range of flow conditions. Outside this range the flow pattern is unique
again.

It is clear that the region downstream of the orifice represents the main region
of interest for the generation of the aeroacoustic sources.
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5.2 Computational domain and grid generation

5.2.1 Computational domain for LES
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Figure 5.4: The computa-
tional domain.

The chosen computational domain, with the ori-
fice positioned at the origin of the Cartesian co-
ordinate system is shown in figure 5.4. The do-
main axially extends twenty-fife diameters down-
stream of the orifice, and fife diameters upstream.
The actually assumed length of the domain down-
stream of the orifice (25 𝐷I) was supposed to be
sufficient to cover the full region of relevant turbu-
lent sound generation. The chosen length should
further ensure, that the solution is not contami-
nated by any spurious perturbations triggered by
the outlet boundary condition.
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5.2.2 Grid generation for LES

The generation of the hex-based structured computational grids for the LES was
divided into four main steps:

Subdomain: The grid generation process exploited the symmetries of the compu-
tational domain and the uniformity of the straight pipe generally, given at
the inflow and ouflow sections. Therefore, some steps were only performed
on a subdomain which covers only a quarter of the full cross-section. The so
reduced subdomain is shown in figure 5.5. The required subdomain surface
was generated with CATIA™1

𝑧

𝑦
𝑥

Figure 5.5: The subdomain for the grid generation process, with orifice
ℎ10 = 10 mm as an example.

Features: The implementation of the main grid features using HyperMesh™2,
including e.g. a circumferential boundary layers around the cylindrical pipe.

Refinement: As the LES was supposed to resolve the turbulent BL, a refinement
of the layers near to the walls of the pipe and the orifice down to 𝑦+ ≈ 1
was necessary. The radial grid size was clustered towards the wall to provide
computationally feasible grid sizes. A section of the resulting computational
subgrids near the orifice is exemplarily shown in figure 5.6 for different LES
cases.

1Dessault Systems Catia
2Altair®HyperWorks®HyperMesh®
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𝑧

𝑦

(a) Subgrid ℎ10 = 10 mm with refinement for ℛℯ𝐷I
= 5300.

𝑧

𝑦

(b) Subgrid ℎ10 = 10 mm with refinement for ℛℯ𝐷I
= 7400.

𝑧

𝑦

(c) Subgrid ℎ5 = 5 mm with refinement for ℛℯ𝐷I
= 5300.

Figure 5.6: The resulting subgrids for different orifice openings ℎO and different
flow configuration ℛℯ𝐷I

.

Finalization: The full computational domain were finally meshed by mirroring
the subdomain grids with respect to the 𝑥- and 𝑦- axis and by extending
the surface meshes at the inlet and exit surface of the subdomain shown in
figure 5.5 to the inflow and the outflow boundaries, respectively. The axial
resolution was thereby coarsened keeping a maximum Aspect ratio 𝐴𝑅 = 10
as upper limit.
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Auxiliary simulation grid

As already noted, the present LES prescribes the turbulent inflow boundary con-
ditions, using the instantaneous flow field obtained from a separate auxiliary LES
of fully developed turbulent pipe flows (periodic pipe flows). The computational
grid applied in this precursor LES, serving here as inflow generator, has exactly
the same spatial discretization into the cross-stream directions as the surface
mesh at the inflow boundary. As a result, no spatial interpolation is required
when mapping an instantaneous cross-sectional solution of the fully developed
auxiliary (periodic pipe) LES onto the inlet BC for the main (acoustic pipe) LES.
The total axial extension of the domain used for the fully developed periodic pipe
flow LES is 10 𝐷I, with a constant axial resolution Δ𝑧PP,ref = const.

5.2.3 RANS and CAA grids

RANS typically require coarser grids than LES do. The RANS, which was
presently carried out for comparison still used the same grid as the corresponding
LES for simplicity.

For the CAA simulations a slightly shorter straight pipe outflow section was
used. As already mentioned the CAA grid was generated by the VIRTUAL
VEHICLE Research Center. The unstructured CAA grid was generated using
FAME™ from AVL. In a second step the grid was improved using a so called
volume optimizer so that an important restriction on the grid imposed by the
CAA solver (volume based aspect ratio 𝐴𝑅V < 3.3) is fulfilled. The section
around the orifice of the CAA grid is presented in figure 5.7.

Figure 5.7: Meridional cut (𝑥-cut) through the CAA grid near the orifice.
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5.2 Computational domain and grid generation

The total number of all computational grids used for LES, RANS and CAA,
whith the resulting number of computational cells 𝑁C, are listed in table 5.4.
The abbreviations (GPP_… and GAP_…), which are further used for reference are
listed as well.

Table 5.4: The computational grids.

ℎO ℛℯ𝐷𝑖
𝑁C Grid:

au
xi

lia
ry

gr
id

s:
pe

ri
od

ic
pi

pe

ℎ10 5300 1 467 600 GPP_h10

ℎ10 7400 2 632 500 GPP_h10F
ℎ5 5300 1 736 400 GPP_h5

m
ai

n
gr

id
s:

ac
ou

st
ic

pi
pe

ℎ10 5300 3 788 944 GAP_h10

ℎ10 7400 7 050 132 GAP_h10F
ℎ5 5300 4 559 480 GAP_h5

CAA ℎ10 5300 339 368 GAP_h10T

Further details, concerning the computational grids, like selected local values
of 𝑉C and Δ𝓍C are listed in table A.1.
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5.3 Applied simulations and tasks
As already stated in section 5.1, two different gap heights of the orifice ℎ5 = 5 mm
and ℎ10 = 10 mm are examined, assuming two different flow conditionsℛℯ𝐷𝑖

= 5300
and 7400. The higher Reynolds number ℛℯ𝐷𝑖

= 7400 is applied only to the orifice
with the larger gap hight ℎ10. Additionally, the influence of the grid is exam-
ined, which adds another LES case considering the orifice with ℎ10 = 10 mm and
ℛℯ𝐷𝑖

= 5300, but on a finer grid. The finer computational grid used for this simu-
lation is simply taken from the LES carried out for the same orifice ℎ10 prepared
for the higher Reynolds number ℛℯ𝐷𝑖

= 7400.
For each main simulation (acoustic pipe LES) a separate auxiliary simulation

(periodic pipe LEE) was performed to obtain the required transient instantaneous
inflow boundary condition.

For a comparison of the aeroacoustic source terms from LES against the pre-
diction of the UKSG, an additional RANS simulation and an additional CAA
simulation was carried out for gap hight ℎ10 at ℛℯ𝐷𝑖

= 5300. These simulations
are also included into the summary of all performed simulations listed in table 5.5.
The abbreviations (e.g. PP_… and AP_…) given in the last column will be used
in all the further discussions, when referring to the individual simulation cases.

Table 5.5: All performed Simulations.

ℎO ℛℯ𝐷𝑖
Grid: Case:

au
xi

lia
ry

sim
ul

at
io

ns
:

pe
ri

od
ic

pi
pe ℎ10 5300 GPP_h10 PP_h10Re5300

ℎ10 5300 GPP_h10F PP_h10Re5300F
ℎ10 7400 GPP_h10F PP_h10Re7400

ℎ5 5300 GPP_h5 PP_h5Re5300

m
ai

n
sim

ul
at

io
ns

:
ac

ou
st

ic
pi

pe ℎ10 5300 GAP_h10 AP_h10Re5300

ℎ10 5300 GAP_h10F AP_h10Re5300F
ℎ10 7400 GAP_h10F AP_h10Re7400

ℎ5 5300 GAP_h5 AP_h5Re5300

hy
br

id
C

A
A ℎ10 5300 GAP_h10F RANS_h10Re5300

ℎ10 5300 GAP_h10T CAA_h10Re5300

The LES were performed with the Coherent Structure Model (CSM) as the
SGS model and the RANS simulation was performed with the 𝓀-𝜁-𝑓 model as the
used turbulence model, which were both introduced in section 3.2.
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5.4 Boundary and initial conditions, temporal integration

5.4 Boundary and initial conditions, temporal
integration

5.4.1 Boundary conditions

Inflow boundary

In contrast to RANS simulations, which require BCs for the temporally averaged
quantities ⟨𝜙⟩, LES simulations require BCs for the instantaneous quantities 𝑣𝑖.
For generating such instantaneous BCs some kind of statistical model might be
used to artificially generate the turbulent velocity fluctuations. The present LES
applies an alternative approach imposing the turbulent fluctuating velocities ob-
tained from an instantaneous solution of an LES of a fully developed pipe flow.
The instantaneous pipe flow solution is taken from a separate precursor periodic
pipe LES (PP_…), which is simulated for the same Reynolds number using pe-
riodic boundary conditions in the axial direction. The cross-section, where the
instantaneous velocities are taken from, is temporally advanced downstream, as-
suming the spatially axial fluctuations as equivalent to the temporal fluctuations.
This concept requires only one instantaneous solution of the periodic pipe LES,
and inherently relies on the statistical homogeneity of this flow in the axial direc-
tion 𝑧. The fluctuations in time and 𝑧-direction are assumed to be related through
a mean convecting velocity, which is chosen as equal to the volume flow equiv-
alent velocity �̄� ̇𝑉 ,𝐷I

. Accordingly, the cross-section providing the actual inflow
data is successively advanced through the instantaneous pipe flow solution by an
increment Δ𝑧 = �̄� ̇𝑉 ,𝐷I

Δ𝑡, where Δ𝑡 is the time-step used in the corresponding
acoustic pipe LES (AP_…). Since the actual 𝑧-position of the advancing cross-
section does not automatically coincide with the 𝑧-positions of the discretized
periodic pipe flow solution, a linear interpolation between the nearest neighbor-
ing 𝑧-positions is used. The whole concept used for generating the inflow BC is
schematically shown in figure 5.8

The prescription of axially periodic BC condition in the auxiliary LES implies,
that the velocity field from the outlet boundary face is mapped onto the inlet
boundary face. The periodic pipe LES therefore requires the prescription of
the flow rate through the pipe or, equivalently, the prescription of a pressure
difference between the inlet and the outlet. Since the mass flow through the pipe
is known from the given volume flow equivalent velocity (5.3), depending on the
Reynolds number (5.2), the first option was chosen. The prescribed mass flow
rate is approached in an iterative procedure using an under-relaxation factor,
which was chosen as 𝛼�̇� = 0.4.
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flow direction

main simulation

(acoustic pipe LES)

instantaneous solution of

auxiliary simulation

(periodic pipe LES)

periodic BC

moving cross-section

Figure 5.8: Concept for generating the transient instantaneous inlet boundary
conditions.

Outflow boundary

As discussed in section 5.2 one factor, which decided the chosen length of the
pipe downstream the orifice, was that no spurious perturbation introduced by
the outflow BC contaminates the main source region. Simply setting a fixed
constant pressure 𝑝 = 𝑝BC,outlet = 𝑝ref = const. at the outlet boundary might lead
to spurious perturbations. These would also nonphysically perturb the turbulent
velocity field upstream. Therefore, the so called averaged pressure BC was applied
at the outflow boundary, which reads

̄𝑝BC,outlet = 1
𝐴BC,outlet

∫
𝐴BC,outlet

𝑝𝑑𝐴 = const., (5.5)

where the pressure, averaged over the outflow face, is set constant ̄𝑝BC,outlet =
𝑝ref = const., effectively allowing the pressure fluctuations in the turbulent flow
to exit the domain.

Solid wall boundary

For all CFD simulations, the periodic pipe LES and the acoustic pipe LES, the
no-slip condition 𝑣𝑖,W = 0 was applied at solid walls.
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5.4 Boundary and initial conditions, temporal integration

5.4.2 Flow initialization

The solution for the auxiliary LES of the periodic pipe flow was initialized im-
posing an axial velocity 𝑣𝑧, which varies radially according to a 1/7-power law
written as

𝑣𝑧,PL(𝑟) = 𝑣PL,max (1 − 𝑟
𝑅𝑖

)
1/7

. (5.6)

Additionally, a local disturbance was prescribed at two neighboring 𝑧-positions
in the middle of the pipe, which should trigger the transition to a turbulent flow
regime. The perturbation, which is added to the 1/7-power law

𝑣𝑧(𝑟) = 𝑣𝑧,PL(𝑟) + 𝑣𝑧,pert, (5.7)

was definded as:

𝑣𝑧,pert = 𝑣PL,max 𝜆pert⏟
=10

[cos (4𝜋𝑥
𝑅𝑖

) cos (
4𝜋𝑦
𝑅𝑖

)] . (5.8)

Contours of the resulting velocity distribution are presented in figure 5.9.

𝑥
𝑦

−60 0 60

𝑣𝑧; [m/s]

Figure 5.9: Perturbed velocity field 𝑣𝑧 = 𝑣PL,𝑧 + 𝑣pert,𝑧 [m/s] at selected cross-
sections for case PP_h10Re5300.

In the acoustic pipe LES (AP_…), considering the pipe flow configuration with
the sharp orifice, the flow field was uniformly initialized with 𝑣𝑖,init = 0 and
𝑝init = 𝑝ref. Starting from this quiescent state, the mass flow was successively
increased towards the prescribed target value imposing a temporally ramped 1/7-
power law velocity distribution at the inflow boundary. The ramped profile reads
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𝑣𝑧,PL,ramp(𝑟) = 𝜆ramp(𝑡)𝑣𝑧,PL, where (5.9a)

𝜆ramp(𝑡) =
⎧{
⎨{⎩

𝑡
𝑇ramp

if 𝑡 < 𝑇ramp

1 else
, (5.9b)

where 𝑇ramp = 0.01 s. After the ramping phase the solution of the periodic pipe
LES was used for specifying the instantaneous inflow BC, as explained in sec-
tion 5.4.1.

To check the statistical convergence of the periodic pipe LES (PP_…) solution
the wall shear stress 𝜏W averaged over the whole pipe wall, was monitored, where
the flow has converged to a statistically fully developed state when the value of
this monitored quantity reached a constant level.

5.4.3 Temporal integration

For the temporal integration over time an implicit method is used in FIRE™,
where, due to the setting of the blending factor 𝛼B,𝑡 = 1, the second order
marching scheme is applied. The time-steps for the periodic pipe LES (PP_…)
and the acoustic pipe LES (AP_…) were chosen with respect to the CFL condition
(3.69) with CFLCFD ≈ 0.5. The time-step for the periodic pipe LES were based
on the constant axial resolution Δ𝑧PP,ref and the mean bulk velocity in the pipe
�̄� ̇𝑉 ,𝐷I

(5.2)

Δ𝑡PP,ref =
Δ𝑧PP,refCFLCFD

�̄� ̇𝑉 ,𝐷I

. (5.10)

The time-step for the acoustic pipe LES were based on a reference cell size
Δ𝑧AP,ref, located at the center of the pipe one pipe diameter downstream of the
orifice, and the mean volumetric velocity inside the orifice �̄� ̇𝑉 ,ℎ (5.4)

Δ𝑡AP,ref =
Δ𝑧AP,refCFL

�̄� ̇𝑉 ,ℎ
. (5.11)

Choosing a time-step with reference to the smallest cell inside the orifice would
have let to much smaller time-steps, due to the local refinements directly at the
corners of the orifice extending into the center of the pipe, which would have
increased the number of required time-steps enormously.

The total simulation times were chosen with reference to an approximated flow-
through time (FTT), which is defined as the required time a particle, traveling
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with the mean volumetric velocity �̄� ̇𝑉 ,𝐷I
, would need to pass the computational

domain once, which are 10 𝐷I for the periodic pipe LES and 25 𝐷I, measured
from the entrance of orifice to the outflow boundary, for the acoustic pipe LES.
For the periodic pipe LES simulations approximately 26 flow-through times for
the total simulation time and approximately 5 flow-through times for the time-
frame for the sampling of the statistical results were chosen. For the acoustic
pipe LES approximately 4 flow-through times for the total simulation time and
approximately 1 flow-through time for the sampling of the statistical results and
the monitoring of the aeroacoustic source terms were chosen. This led to the
corresponding time-frames listed in table 5.6, where 𝑡end is the total simulation
time and 𝑇statistics = 𝑡end−𝑡reset is the time-frame for the sampling of the statistical
results.

Table 5.6: The chosen time-steps, time-period and approximated flow-through
times (FTT) for the applied LES.

Δ𝑡 𝑡end ≈FTT 𝑡reset 𝑇statistic ≈FTT
Case: [s] [s] [−] [s] [s] [−]

PP_h10Re5300

PP_h10Re5300F 2 ×10−4 2.8 26.7 2.2 0.6 5.5
PP_h5Re5300

PP_h10Re7400 1 ×10−4 2.0 26.6 1.6 0.4 5.1

AP_h10Re5300 5 ×10−5

AP_h10Re5300F 1.2 4.3 0.9 0.3 1.0
AP_h5Re5300 2.5×10−5

AP_h10Re7400 0.8 4.1 0.6 0.2 1.0

5.4.4 RANS and CAA simulation

RANS

The RANS simulation was initialized, similar to the LES simulations, imposing
a uniform flow field with zero velocity 𝑣𝑖,init = 0 and the reference pressure
𝑝init = 𝑝ref. The same initial ramping of the inflow using a 1/7-power law was
applied to approach the desired mass flow rate.

At the outlet also the averaged pressure BC ̄𝑝BC,outlet = 𝑝ref was used for better
comparison with the LES.

The RANS was carried out as a steady-state simulation, where a stationary
solution is iterated until convergence.
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CAA simulation

The results of the RANS simulation, the flow field ⟨𝑣𝑖⟩ , ⟨𝑝⟩ and ⟨𝜌⟩ = 𝜌ref and
the turbulence quantities ⟨𝓀⟩ and ⟨𝜀⟩, are mapped from the CFD grid onto the
CAA grid. Within the mapping process the CAA module of FIRE™ estimates an
optimum time-step for the CAA Δ𝑡CAA depending on the CFL condition (3.69).
Additionally, a time-step used by the UKSG Δ𝑡UKSG method for computing the
evolution of the aeroacoustic source terms is determined from equation (4.72),
but can be modified by the user. In the CAA simulation the acoustic solution is
integrated in time using a fourth order accurate Runge-Kutta temporal discretiza-
tion scheme. Approximately one flow through time FTT was chosen for the total
simulation time 𝑇CAA = 0.1 s. In table 5.7 the used CAA time-steps and the total
simulation time are listed. At the inlet and outlet boundaries non-reflecting, and
at the solid walls reflecting boundaries were applied.

Table 5.7: The used time-steps Δ𝑡 and the simulation time 𝑇CAA of the CAA
in [s].

quantity value [unit]

Δ𝑡CAA 1.15×10−7 [s]
Δ𝑡UKSG 5 ×10−6 [s]

𝑇CAA 1 ×10−1 [s]
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6 Flow simulation results

In this chapter the results obtained from the incompressible flow simulations shall
be discussed and analyzed. In section 6.1 the results obtained from the periodic
pipe LES (PP_…) are presented, discussed and validated against DNS results
available at the ISW. Finally, in section 6.2 the flow results from the acoustic
pipe LES (AP_…) are presented and discussed.
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6 Flow simulation results

6.1 Periodic pipe flow

6.1.1 Initial conditions to a fully developed turbulent state

(a) 𝑡 = 0 s

(b) 𝑡 = 0.03 s

(c) 𝑡 = 0.2 s

(d) 𝑡 = 0.4 s

𝑧
𝑦

0 2 4

̃𝑣𝑧; [m/s]

Figure 6.1: Turbulence transition presented as contours of the instantaneous
velocity field ̃𝑣𝑧 [m/s] at different times 𝑡 for case PP_h10Re5300.

Each periodic pipe LES (PP_…) was initialized with a perturbed velocity field
based on equation (5.8) to trigger the transition to a fully developed turbulent
state, which is presented for case PP_h10Re5300 in figure 6.1. Due to the initial
perturbation at 𝑡 = 0 s (see figure 6.1a) a laminar high velocity structure appears
which travels through the periodic pipe (see figure 6.1b). After some time this
high velocity structure decays and it seems that this flow field might stay laminar
and symmetric, however at 𝑡 = 0.2 s, in the wake of the high velocity structure,
the flow field becomes asymmetric and falls into a transition to a fully developed
turbulent state. At 𝑡 = 0.4 s figure 6.1d the flow field appears to be fully turbulent.

106 Master’s Thesis



6.1 Periodic pipe flow

6.1.2 The instantaneous vorticity fields

(a) Case PP_h10Re5300 with ℛℯ𝐷𝑖
= 5300 at 𝑡end = 2.8 s.

(b) Case PP_h10Re7400 with ℛℯ𝐷𝑖
= 7400 at 𝑡end = 2.0 s.

𝑧
𝑦

−5 0 5

�̃�𝑧; 102 [1/s]

Figure 6.2: Comparison of conrours of the axial component of the instantaneous
resolved vorticity �̃�𝑧 [1/s] of different Reynolds numbers.

Figure 6.2 exemplarily shows instantaneous contours of the vorticity in the axial
direction �̃�𝑧 for the statistically converged cases PP_h10Re5300 and case
PP_h10Re7400, in the longitudinal section plane 𝑥 = 0. As expected, the higher
Reynolds number case exhibits more small scale turbulent structures with gener-
ally higher intensity.
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6 Flow simulation results

6.1.3 Convergence of the statistics

The history of the spatially averaged wall shear stress 𝜏W is exemplarily shown
for the case PP_h10Re5300 and PP_h10Re7400 in figure 6.3. After about 𝑡 = 0.6 s the
wall shear stress stays approximately constant. The starting point of the temporal
averaging for sampling the flow statistics is at 𝑡reset = 1.6 s for case PP_h10Re7400

and 𝑡reset = 2.2 s for case PP_h10Re5300. The level of the statistical (= temporal
averaged) value ⟨𝜏W⟩ is indicated as well.

0.5 1 1.5 2 2.5
0

2

4

6

8

𝑡; [s]

𝜏 W
,⟨

𝜏 W
⟩

10
−

2
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2 ]

PP_h10Re7400: 𝜏W; ⟨𝜏W⟩
PP_h10Re5300: 𝜏W; ⟨𝜏W⟩

Figure 6.3: History of the wall shear stress 𝜏W [N/m2] and its finally obtained
temporal average ⟨𝜏W⟩ [N/m2] over time for the case PP_h10Re5300

and case PP_h10Re7400.

6.1.4 Validation

For validation the results of the periodic pipe LES (PP_…) are compared against
DNS data obtained for the wall friction based Reynolds numbers ℛℯ𝜏W

= 360 and
500 available at the ISW.

The predicted wall friction based Reynolds numbers ℛℯ𝜏W
of all periodic pipe

LES are listed in table 6.1. One can see from the also shown near wall resolution
in terms of 𝑦+, that a refinement tends to produce a better agreement with the
wall friction based Reynolds numbers ℛℯ𝜏W

of the DNS. The smaller 𝑦+ the closer
the results are to the target values.
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Table 6.1: The main flow quantities of the periodic pipe LES (PP_…) results.

ℛℯ𝜏W
𝑦+

Case: [−] [−]

PP_h10Re5300 344.10 1.239
PP_h10Re5300F 349.37 0.882
PP_h5Re5300 346.52 1.167
PP_h10Re7400 466.17 1.177

The results presented in the following figures for validation are all non-
dimensionalized, so that a comparison against DNS data is better possible. The
dimensionless pipe radius 𝑟∗, denoted by the superscript ∗ is normalized with the
inner pipe radius 𝑅I = 14.85 mm, such that 1 − 𝑟∗ = 0 represents the pipe wall,
and 1 − 𝑟∗ = 1 is at the center of the pipe. The wall friction velocity 𝓋𝜏W

of the
corresponding periodic pipe LES was used to non-dimensionalize the turbulent
velocity fluctuations and Reynolds stresses, which are denoted with a superscript
+. The presented quantities are based on a cylindrical coordinate system with
𝑖 = 𝑎𝑥, 𝑟, 𝑡𝑔 representing the axial, radial and tangential directions, respectively.

0 0.25 0.5 0.75 1
0

0.5

1

1 − 𝑟∗; [−]⟨𝑣
𝑎𝑥

⟩/
𝓋

̇
𝑉

,𝐷
I;[

−
]

Case: PP_h10Re5300; PP_h10Re7400

LES: ⟨ ̃𝑣𝑎𝑥⟩ /�̄� ̇𝑉 ,𝐷I
; ⟨ ̃𝑣𝑎𝑥⟩ /�̄� ̇𝑉 ,𝐷I

ℛℯ𝜏W
: 360; 500

DNS: ⟨𝑣𝑎𝑥⟩ /�̄� ̇𝑉 ,𝐷I
; ⟨𝑣𝑎𝑥⟩ /�̄� ̇𝑉 ,𝐷I

Figure 6.4: Comparison of the temporally averaged dimensionless velocity pro-
files in axial direction ⟨𝑣𝑎𝑥⟩ /�̄� ̇𝑉 ,𝐷I

[−] between LES and DNS for
ℛℯ𝜏W

= 360 and 500.

Figure 6.4 shows the comparison of the radial variation of the mean axial
velocity ⟨𝑣𝑎𝑥⟩ normalized by the volume flow equivalent velocity �̄� ̇𝑉 ,𝐷𝑖

for the
case PP_h10Re5300 and case PP_h10Re7400 to the DNS data. The higher Reynolds
number leads to a higher velocity gradient close to the pipe wall 1−𝑟∗ = 0, which
results in higher wall shear stress 𝜏W, also visible in figure 6.3, and a stronger
pressure loss.
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(a) Comparison of case PP_h10Re5300 with DNS for ℛℯ𝜏W
= 360.
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(b) Comparison of case PP_h10Re7400 with DNS for ℛℯ𝜏W
= 500.

LES: ⟨( ̃𝑣+′
𝑎𝑥)2⟩1/2; ⟨( ̃𝑣+′

𝑟 )2⟩1/2; ⟨( ̃𝑣+′
𝑡𝑔 )2⟩1/2

DNS: ⟨(𝑣+′
𝑎𝑥)2⟩1/2; ⟨(𝑣+′

𝑟 )2⟩1/2; ⟨(𝑣+′
𝑡𝑔 )2⟩1/2

Figure 6.5: Comparison of the RMS of the turbulent fluctuations ⟨( ̃𝑣+′
𝑖 )2⟩1/2;

[−] between LES and DNS for ℛℯ𝜏W
= 360 and 500 in axial, radial

and tangential direction (𝑖 = 𝑎𝑥, 𝑟, 𝑡𝑔).

For validating the predicted second order statistics figure 6.5 shows the di-
mensionless temporally averaged turbulence velocity fluctuations in the axial
⟨(𝑣+′

𝑎𝑥)2⟩1/2, radial ⟨(𝑣+′
𝑟 )2⟩1/2, and tangential direction ⟨(𝑣+′

𝑡𝑔 )2⟩1/2 representing
the RMS of the resolved turbulent normal stresses, generally defined as

⟨( ̃𝑣+′
𝑖 )2⟩1/2 = ⟨( ̃𝑣+

𝑖 − ⟨ ̃𝑣+
𝑖 ⟩)2⟩1/2 . (6.1)

As typically observed, the radial fluctuations are the smallest due to the damping
effect of the pipe wall, while the less impeded axial fluctuations are the largest.
For higher Reynolds numbers the peaks are evidently shifted towards the wall.
The results from LES are in good agreement with DNS for the axial fluctuations,
while the radial and tangential components are notably under-predicted.
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(a) Comparison of case PP_h10Re5300 with DNS for ℛℯ𝜏W
= 360.
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(b) Comparison of case PP_h10Re7400 with DNS for ℛℯ𝜏W
= 500.

LES: ⟨ ̃𝑣+′
𝑎𝑥 ̃𝑣+′

𝑟 ⟩; ⟨ ̃𝜏+
t ⟩; ⟨ ̃𝜏+

lam⟩; ⟨ ̃𝜏+
tot⟩

DNS: ⟨𝜏+
t ⟩; ⟨𝜏+

lam⟩; ⟨𝜏+
tot⟩

Figure 6.6: Comparison of the stresses between LES and DNS for ℛℯ𝜏W
= 360

and 500.

Figure 6.6 shows the dimensionless shear stresses dependent on the dimension-
less radius 𝑟∗ for the same cases with ℛℯ𝜏W

= 360 and 500. The total shear stress
⟨ ̃𝜏+

tot⟩ is composed of the turbulent shear stresses ⟨ ̃𝜏+
t ⟩ and the laminar shear

stress ⟨ ̃𝜏+
lam⟩ rewritten as

⟨ ̃𝜏+
tot⟩ = ⟨ ̃𝜏+

t ⟩ + ⟨ ̃𝜏+
lam⟩ , (6.2)

where

⟨ ̃𝜏+
lam⟩ = − 𝜈+

ref
𝜕⟨ ̃𝑣+

𝑎𝑥⟩
𝜕𝑟∗ (6.3)

and in case of LES the turbulent stresses are composed of the resolved and mod-
eled turbulent stresses

⟨ ̃𝜏+
t ⟩ = ⟨𝑣+′

𝑎𝑥𝑣+′
𝑟 ⟩ − 𝜈+

SGS
𝜕⟨ ̃𝑣+

𝑎𝑥⟩
𝜕𝑟∗ (6.4)

Since the stresses were made dimensionless with the wall friction velocity 𝓋𝜏W
,

the total stresses are one ⟨ ̃𝜏+
tot⟩ = 1 at the wall. Due to the axial symmetry of
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the pipe flow all shear stresses are zero at the center of the pipe. As following
from analytical considerations, it is mandatory for fully developed turbulent pipe
flows that the total shear stress is linearly dependent on the radial coordinate
𝑟. The total turbulence stresses ⟨𝜏+

t ⟩ of the DNS are equal to ⟨𝑣+′
𝑎𝑥𝑣+′

𝑟 ⟩ hence,
including no modeled SGS contribution, because the whole turbulence spectrum
is resolved. For both Reynolds number cases the LES evidently under-predicts
the turbulent shear stresses. The unresolved gap to the DNS data is not fully
compensated by the contribution of the SGS-model.
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PP_h10Re5300: ⟨ ̃𝑣+′
𝑎𝑥 ̃𝑣+′

𝑟 ⟩; ⟨ ̃𝜏+
t ⟩

PP_h10Re5300F: ⟨ ̃𝑣+′
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𝑟 ⟩; ⟨ ̃𝜏+
t ⟩

Figure 6.7: Comparison of the contribution of the subgrid-scale model (SGM)
between case PP_h10Re5300 and case PP_h10Re5300F.

Figure 6.7 illustrates the influence of the spatial resolution comparing the
LES results obtained with different computational grids, as applied in the cases
PP_h10Re5300 and PP_h10Re5300F. Due to the higher grid resolution in case
PP_h10Re5300F, the resolved stresses ⟨ ̃𝑣+′

𝑎𝑥 ̃𝑣+′
𝑟 ⟩ are higher, whilst the contribu-

tion of the subgrid-scale model is smaller. This expected tendency is also demon-
strated in table 6.2, comparing the temporally averaged turbulence kinetic energy
⟨𝓀⟩ averaged over the whole periodic pipe domain.
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Table 6.2: The contribution of the SGM dependent on the grid resolution av-
eraged over all cells 𝑁C of the periodic pipe domain.

⟨𝓀tot⟩ ⟨𝓀LES⟩ ⟨𝓀SGS⟩
Case: [m2/s2] [m2/s2] [%] [m2/s2] [%]

PP_h10Re5300 0.057 02 0.056 57 99.21 0.000 45 0.79
PP_h10Re5300F 0.059 81 0.059 46 99.41 0.000 35 0.59
PP_h5Re5300 0.057 14 0.056 71 99.24 0.000 44 0.76

PP_h10Re7400 0.110 11 0.108 94 98.94 0.001 17 1.06

100 101 102

5

10

15

𝑦+; [−]

⟨𝑣
+ 𝑎𝑥

⟩;
[−

]

Case: PP_h10Re5300; PP_h10Re7400

LES: ⟨ ̃𝑣+
𝑎𝑥⟩; ⟨ ̃𝑣+

𝑎𝑥⟩
ℛℯ𝜏W

: 360; 500
DNS: ⟨𝑣+

𝑎𝑥⟩; ⟨𝑣+
𝑎𝑥⟩

Figure 6.8: Comparison of the logarithmic law of the wall between LES and
DNS for ℛℯ𝜏W

= 360 and 500.

Figure 6.8 shows the predicted axial velocity plotted over the non-
dimensional wall distance 𝑦+ for the cases PP_h10Re5300 and PP_h10Re7400. The
viscous sublayer (𝑦+ < 5) is evidently well resolved and the predicted data are
very close to the analytic function (compare to figure 3.6). In the core region
beyond the buffer layer the solution approaches a logarithmic dependence on 𝑦+,
as indicated by the straight section of profiles.

Despite the deviations which were particularly observed for the second order
statistics, the LES solution of the periodic pipe flows still represents a physically
reliable basis for delivering turbulent fluctuating velocity distributions for use as
inflow conditions in the acoustic pipe LES, where the pipe contains the orifice
constriction.
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6.1.5 Instantaneous flow field used for inflow boundary
conditions

Figure 6.9 and 6.10 exemplarily show contours of the resolved instantaneous ve-
locity components ̃𝑣𝑖 obtained from the LES for case PP_h10Re5300 at 𝑡end = 2.8 s,
in longitudinal sectional and axial cross-sectional view, respectively. The resolved
instantaneous velocity components ̃𝑣𝑖, which are exemplarily shown in figure 6.10
at a certain cross-section, are directly mapped onto the inflow boundary of the
corresponding acoustic pipe LES.

(a) ̃𝑣𝑥

(b) ̃𝑣𝑦

𝑧
𝑦

−0.2 0 0.2

̃𝑣𝑥, ̃𝑣𝑦; [m/s]

(c) ̃𝑣𝑧

𝑧
𝑦

0 2 4

̃𝑣𝑧; [m/s]

Figure 6.9: Resolved instantaneous velocity components ̃𝑣𝑖 [m/s], presented
as contours in longitudinal section, at 𝑡end = 2.8 s for case
PP_h10Re5300.

114 Master’s Thesis



6.1 Periodic pipe flow

(a) ̃𝑣𝑥 (b) ̃𝑣𝑦 (c) ̃𝑣𝑧

𝑥
𝑦

−0.2 0 0.2

̃𝑣𝑥, ̃𝑣𝑦; [m/s]

0 2 4

̃𝑣𝑧; [m/s]

Figure 6.10: Resolved instantaneous velocities ̃𝑣𝑖 [m/s], presented as contours
in a cross-section at position 𝑧 = 0 and at 𝑡end = 2.8 s of case
PP_h10Re5300.
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6.2 Acoustic pipe results
In this section the results of the acoustic pipe LES (AP_…), considering the pipe
flow configuration associated with the sharp orifice constriction, are presented
and discussed.

6.2.1 Flow conditions upstream the orifice

(a) 𝑡 = 0.3 s

(b) 𝑡 = 0.4 s

𝑧
𝑦

0 2 4

̃𝑣𝑧; [m/s]

Figure 6.11: Contours of the instantaneous resolved velocity component ̃𝑣𝑧
[m/s] at the inflow pipe of case AP_h10Re5300 at 𝑡 = 0.3 s and
𝑡 = 0.4 s.

Figure 6.11 gives a qualitative insight into the flow upstream of the orifice as
obtained at two distinct instants of time, 𝑡 = 0.3 s and 0.4 s. Figure 6.11a shows
instantaneous contours of the axial velocity at 𝑡 = 0.3 s. This corresponds to ap-
proximately one flow-through time, where a temporally ramped 1/7-power law
was used as velocity inlet boundary condition. Immediately, thereafter the map-
ping procedure using the instantaneous velocity field from the corresponding pe-
riodic pipe LES was started. After a further time interval 𝑇 = 0.1 s, imposing
the turbulent fluctuating inflow boundary conditions, the flow field upstream of
the orifice is evidently completely governed by irregular vortical structures very
similar to the structures shown in figure 6.9 for the corresponding periodic pipe
LES.
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6.2.2 The instantaneous velocity field downstream of the
orifice

Figure 6.12 shows contours of the resolved instantaneous velocity component
in axial direction ̃𝑣𝑧, from the inlet of the acoustic pipe, located at 𝑧 =−5 𝐷I

upstream the orifice until 𝑧 =10 𝐷I downstream of the orifice, for all acoustic
pipe LES, case AP_h10Re5300, case AP_h10Re5300F, case AP_h5Re5300 and case
AP_h10Re7400. The irregular vortical structures upstream the orifice, as well as the
unsteady asymmetrical jet-like core flow downstream the orifice are clearly visible.
Additionally, it is clearly visible, that the instantaneous flow field is strongly
influenced by the orifice even ten diameters downstream of the orifice, resulting
in smaller turbulent vortical structures in comparison to the larger turbulent
vortical structures upstream of the orifice.

Also note that the jet-like core flow is attached at different sides of the pipe
wall, representing the bifurcation characteristics of the Coanda effect. In previous
publications considering similar geometries [8, 12, 19, 24, 40] the Coanda effect
also appeared, leading to an asymetric jet-like core flow.
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(a) Case
AP_h10Re5300

at 𝑡end = 1.2 s

(b) Case
AP_h10Re5300F
at 𝑡end = 1.2 s

(c) Case
AP_h5Re5300

at 𝑡end = 1.2 s

(d) Case
AP_h10Re7400

at 𝑡end = 0.8 s

𝑦
𝑧

−5 0 5

̃𝑣𝑧; [m/s]

Figure 6.12: Contours of the resolved instantaneous velocity component in ax-
ial direction ̃𝑣𝑧 [m/s] at 𝑡 = 𝑡end in a longitudinal section of the
acoustic pipe.
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6.2.3 The temporally averaged flow field downstream of the
orifice

In this section the temporal averaged velocity and pressure fields are presented
and discussed. For each acoustic pipe LES (AP_…) approximately one flow-
through time (FTT) was used for sampling the statistically averaged values, as
listed in table 5.6.

Temporally averaged velocity field

(a) ⟨| ̃𝑣|⟩ of case AP_h10Re5300

(b) ⟨| ̃𝑣|⟩ of case AP_h10Re5300F

(c) ⟨|𝑣|⟩ of case RANS_h10Re5300

𝑧
𝑦

0 5 10

⟨| ̃𝑣|⟩; [m/s]

Figure 6.13: Comparison of contours of the temporally averaged velocity mag-
nitude ⟨| ̃𝑣|⟩ [m/s] between acoustic pipe LES and RANS for
ℛℯ𝐷I

= 5300.

Figure 6.13 presents contours of the averaged velocity magnitude ⟨|𝑣|⟩ for the
acoustic pipe LES cases with gap height ℎ10 and ℛℯ𝐷I

= 5300, as well as for the
corresponding case computed with RANS. Due to the so called Coanda effect, the
emerging jet is evidently attached to the top (𝑦 > 0) or bottom (𝑦 < 0) side of
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the acoustic pipe. The LES results of the cases AP_h10Re5300 and AP_h10Re5300F,
which only differ in the applied spatial resolution of the computational grid,
GAP_h10 and GAP_h10F, respectively, are practically identical, as indicated by
the very good agreement on the reattachment points of the jet downstream the
orifice. The RANS simulation RANS_h10Re5300 is close to the LES. However, the
reattachment point is predicted further downstream in comparison to the LES
results.

(a) ⟨| ̃𝑣|⟩ of case AP_h10Re7400

(b) ⟨| ̃𝑣|⟩ of case AP_h5Re5300

𝑧
𝑦

0 5 10

⟨| ̃𝑣|⟩; [m/s]

Figure 6.14: Comparison of contours of the temporally averaged velocity mag-
nitude ⟨| ̃𝑣|⟩ [m/s] between acoustic pipe LES at ℛℯ𝐷I

= 7400
AP_h10Re7400 and ℎO = ℎ5 = 5 mm AP_h5Re5300.

Figure 6.14 presents contours of the averaged velocity magnitude ⟨|𝑣|⟩ for the
LES cases AP_h10Re7400 and AP_h5Re5300. The increase of the Reynolds number
from ℛℯ𝐷I

= 5300 to ℛℯ𝐷I
= 7400 has apparently only a small impact as compared

to the reduction of the gap height ℎO from ℎ10 = 10 mm to ℎ5 = 5 mm of the orifice.
The Coanda effect also appears in the case of AP_h5Re5300. Due to the stronger
constriction, the deflected jet has evidently much higher axial momentum, which
is preserved also downstream of the reattachment point, as indicated by the high
velocity region near the upper wall (𝑦 > 0) in figure 6.14b.

120 Master’s Thesis



6.2 Acoustic pipe results
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(a) (𝑧-) positions: 0.5 𝐷𝑖, 1.5 𝐷𝑖 and 2.5 𝐷𝑖
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(b) (𝑧-) positions: 1 𝐷𝑖, 2 𝐷𝑖 and 3 𝐷𝑖

AP_h10Re5300; AP_h10Re5300F; RANS_h10Re5300

AP_h10Re7400; AP_h5Re5300

Figure 6.15: Comparison of the temporally averaged velocity component ⟨𝑣𝑧⟩
[m/s] between LES and RANS along the vertical coordinate 𝑦 at
selected downstream (𝑧-) positions.

Figure 6.15 shows the temporal average velocity component ⟨𝑣𝑧⟩ along the
vertical coordinate 𝑦 at selected downstream 𝑧-positions in the central symmetry
plane (𝑥 = 0 ) for all acoustic pipe LES. One can observe that case AP_h5Re5300

exhibits the highest velocities, followed by case AP_h10Re7400. Case AP_h10Re5300

and case AP_h10Re5300F, where only the computational grids are different GAP_h10

and GAP_h10F, show a good agreement at all positions. Note that the velocity
profile of the RANS simulation is very different to the corresponding LES cases
AP_h10Re5300 and AP_h10Re5300F, especially close to the reatachement point of
the jet-like core flow.
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Temporally averaged pressure field

(a) ⟨ ̃𝑝⟩ − 𝑝ref of case AP_h10Re5300

(b) ⟨ ̃𝑝⟩ − 𝑝ref of case AP_h10Re5300F

(c) ⟨𝑝⟩ − 𝑝ref of case RANS_h10Re5300

𝑧
𝑦

−40 0 40

⟨𝑝⟩ − 𝑝ref; [Pa]

Figure 6.16: Comparison of contours of the temporally averaged pressure
field ⟨𝑝⟩ − 𝑝ref [Pa] between acoustic pipe LES and RANS at
ℛℯ𝐷I

= 5300.

Figure 6.16 shows contours of the temporally averaged pressure field ⟨𝑝⟩−𝑝ref for
the acoustic pipe LES and RANS for ℛℯ𝐷I

= 5300. The LES solutions of cases
AP_h10Re5300 and AP_h10Re5300F are in general well comparable to the result of
the RANS based results of case RANS_h10Re5300, showing a similar structure of
the contours. However, inside the recirculation zone the local pressure drops much
more in case of the LES compared to RANS. Due to higher pressure gradients in
the LES case in this subregion, the resulting pressure source term from LES will
be much more intense here.
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(a) ⟨ ̃𝑝⟩ − 𝑝ref of case AP_h10Re7400

𝑧
𝑦
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⟨𝑝⟩ − 𝑝ref; [Pa]

(b) ⟨ ̃𝑝⟩ − 𝑝ref of case AP_h5Re5300

𝑧
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Figure 6.17: Comparison of contours of the temporally averaged pressure
field ⟨𝑝⟩ − 𝑝ref [Pa] between acoustic pipe LES at ℛℯ𝐷I

= 7400
AP_h10Re7400 and ℎO = ℎ5 = 5 mm AP_h5Re5300.

Figure 6.17 shows contours of the temporally averaged pressure field ⟨𝑝⟩ − 𝑝ref

for the LES cases AP_h10Re7400 and AP_h5Re5300. The temporally averaged
pressure field of case AP_h10Re7400 for ℛℯ𝐷I

= 7400 is comparible to the cases
AP_h10Re5300 and AP_h10Re5300F presented in figure 6.16 for ℛℯ𝐷I

= 5300, show-
ing similar contours. Only the pressure loss is greater in the higher Reynolds
number case. The temporally averaged pressure field of case AP_h5Re5300 is quite
different to the other cases, which is especially seen in the much higher pressure
loss due to the small gap height of the orifice. Due to the impingement of the
deflected core jet-flow on the upper pipe wall, resulting in high linear deformation
in the reattachement subregion, the local pressure increases.

The high pressure gradients around the sharp corners of the orifice are well
visible in each acoustic pipe simulation.
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6.2.4 The temporally averaged turbulence kinetic energy field
downstream of the orifice

Since the flow-induced noise is mainly generated by the turbulent motion, the
turbulence kinetic energy produced by the orifice represents a highly relevant key
parameter for the aeroacoustic sources.

(a) ⟨𝓀tot⟩ of case AP_h10Re5300

(b) ⟨𝓀tot⟩ of case AP_h10Re5300F

(c) ⟨𝓀tot⟩ of case RANS_h10Re5300

𝑧
𝑦

0 5 8

⟨𝓀tot⟩; [m2/s2]

Figure 6.18: Comparison of contours of the temporally averaged total turbu-
lence kinetic energy field ⟨𝓀tot⟩ [m2/s2] between LES and RANS
at ℛℯ𝐷𝑖

= 5300.

In figure 6.18 contours of the temporally averaged total turbulence kinetic en-
ergy ⟨𝓀tot⟩ for the LES cases AP_h10Re5300, AP_h10Re5300F, and the correspond-
ing RANS simulation RANS_h10Re5300 for ℛℯ𝐷I

= 5300 are presented. In the LES
cases, the resulting temporally averaged turbulence kinetic energy is the sum of
the resolved und modeled SGS part ⟨𝓀tot⟩ = ⟨𝓀LES⟩ + ⟨𝓀SGS⟩. The results,
of the two LES cases are quite similar. The case AP_h10Re5300F computed with
the finer computational grid (GAP_h10F) should basically resolve a larger fraction
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of turbulence kinetic energy, so that it should predict a slightly higher level of
turbulence kinetic energy. This expected feature can be seen here in particular
close to the sharp edges of the orifice, where the turbulence kinetic energy for case
AP_h10Re5300F is higher in comparison to the case AP_h10Re5300. Comparing the
RANS simulation to the LES cases, the averaged turbulence kinetic energy field is
very different. The present RANS simulation predicts a significantly lower turbu-
lence kinetic energy in both shear layers emerging downstream of the orifice. The
applied turbulence model (𝓀-𝜁-𝑓) produces evidently substantially less turbulence
kinetic energy inside those highly sheared regions. Using this considerably lower
averaged turbulence kinetic energy ⟨𝓀⟩ as input, the UKSG is expected to deliver
much weaker aeroacoustic source terms as compared to the LES.
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00 8

(a) (𝑧-) positions: 0.5 𝐷𝑖, 1.5 𝐷𝑖 and 2.5 𝐷𝑖
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(b) (𝑧-) positions: 1 𝐷𝑖, 2 𝐷𝑖 and 3 𝐷𝑖

AP_h10Re5300 AP_h10Re5300F RANS_h10Re5300

Figure 6.19: Comparison of the temporally averaged total turbulence kinetic
energy ⟨𝓀tot⟩ [m2/s2] along the vertical coordinate 𝑦 at se-
lected downstream (𝑧-) positions between LES and RANS at
ℛℯ𝐷I

= 5300.

Figure 6.19 shows, the temporally averaged total turbulence kinetic energy
⟨𝓀tot⟩ along the vertical coordinate 𝑦 at different (𝑧-) positions for the cases
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AP_h10Re5300, AP_h10Re5300F and RANS_h10Re5300. The profiles essentially show
the trends in more detail as already observed for the corresponding contours pre-
sented in figure 6.18. Concerning the effect of the refined computational grid
the observations somewhat differ downstream of position 𝑧 = 1 𝐷I. The case
AP_h10Re5300F (GAP_h10F) exhibits lower turbulence kinetic energy than the case
with the coarser computational grid AP_h10Re5300 (GAP_h10). The rather unex-
pected tendency might be due to the fact, that a refined resolution also leads to
an inherently more accurate description of the turbulence dissipation rate. The
dissipative loss might be effectively higher, reducing the intensity of the resolved
turbulent motion.
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(a) (𝑧-) positions: 0.5 𝐷𝑖, 1.5 𝐷𝑖 and 2.5 𝐷𝑖
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Figure 6.20: Comparison of the three components of temporally averaged
turbulence velocity fluctuations ⟨( ̃𝑣′

𝑖)
2⟩ [m2/s2] of the case

AP_h10Re5300 along the vertical coordinate 𝑦 at selected down-
stream (𝑧-) positions.

Figure 6.20 shows the three components of the temporally averaged velocity
fluctuations ⟨( ̃𝑣′

𝑥)2⟩, ⟨( ̃𝑣′
𝑦)2⟩ and ⟨( ̃𝑣′

𝑧)2⟩ along the vertical coordinate 𝑦 at differ-
ent (𝑧-) positions. The 𝑧-component ⟨( ̃𝑣′

𝑧)2⟩ of the temporally averaged velocity
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6.2 Acoustic pipe results

fluctuations is mostly the largest. Only near the reattachement point of the de-
flected core jet, the 𝑥-component ⟨( ̃𝑣′

𝑥)2⟩ exhibits a larger value close to the wall
(𝑦 → 𝑅𝑖). The here observed significant difference of the individual turbulence
intensities indicates that the turbulence is quite anisotropic, especially close to
the orifice.

𝑧
𝑦

0 8 16

⟨𝓀tot⟩; [m2/s2]

(a) ⟨𝓀tot⟩ of case AP_h10Re7400

𝑧
𝑦

0 15 30

⟨𝓀tot⟩; [m2/s2]

(b) ⟨𝓀tot⟩ of case AP_h5Re5300

Figure 6.21: Comparison of contours of the temporally averaged total tur-
bulence kinetic energy field ⟨𝓀tot⟩ [m2/s2] between acoustic
pipe LES at ℛℯ𝐷I

= 7400 AP_h10Re7400 and ℎO = ℎ5 = 5 mm
AP_h5Re5300.

Figure 6.21 compares the contours of the temporally averaged total turbulence
kinetic energy ⟨𝓀tot⟩ for the cases AP_h10Re7400 and AP_h5Re5300 to examine
the effects of the increased Reynolds number to ℛℯ𝐷I

= 7400 and the reduction
of the gap height ℎO to ℎ5 = 5 mm of the orifice, respectively. In both cases, the
turbulence increases significantly, especially for the case AP_h5Re5300, associated
with the reduced gap hight ℎO of the orifice. Based on this observation, one
might certainly expect that the case AP_h5Re5300 should deliver the most intense
aeroacoustic source term, followed in second place by the case AP_h10Re7400,
associated with the increase in the Reynolds number. Case AP_h10Re5300F might
deliver slightly higher aeroacoustic sources, as compared to AP_h10Re5300, due to
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the finer grid resolution. The weakest aeroacoustic sources should be delivered
by the UKSG based on case RANS_h10Re5300, which always predicted the lowest
levels of turbulence kinetic energy.

Further detailed results for selected local values of the temporally averaged
total turbulence kinetic energy ⟨𝓀tot⟩ for all acoustic pipe LES and the RANS
simulation are listed in table A.2. For the cases AP_h10Re5300 and AP_h10Re5300F
local values of the temporally averaged total turbulence kinetic energy ⟨𝓀tot⟩,
split into the resolved turbulence kinetic energy ⟨𝓀LES⟩ and the modeled turbu-
lence kinetic energy ⟨𝓀SGS⟩ are listed in table A.3.

6.2.5 The instantaneous vorticity field downstream the orifice

Alike the turbulence kinetic energy the resolved vorticity might be used as a
suitable indicator for identifying the regions of intense generation of flow induced
sound.

(a) Case AP_h10Re5300 at 𝑡end = 1.2 s

(b) Case AP_h10Re7400 at 𝑡end = 0.8 s

(c) Case AP_h5Re5300 at 𝑡end = 1.2 s

𝑧
𝑦

0 1 2

|�̃�|; 103 [1/s]

Figure 6.22: Comparison of contours of the instantaneous vorticity field |�̃�|
[1/s] of the acoustic pipe LES at 𝑡 = 𝑡end.
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Figure 6.22 shows instantaneous contours of the magnitude of the instantaneous
vorticity |�̃�| for the LES cases AP_h10Re5300, AP_h10Re7400 and AP_h5Re5300.
Close to the orifice, confined high- vorticity regions emerge, which can be con-
sidered as the main aeroacoustic sources region. Eddies emerging from these
highly sheared layers are further convected downstream, and merging to larger
structures, or decaying. These low-frequency vortical structures convected down-
stream might not contribute a lot to the aeroacoustic source terms, but might
still noticeably affect the propagation of sound waves. In comparison to the case
AP_h10Re5300 the emerging eddies seem to be much smaller in case AP_h10Re7400

due to the higher Reynolds number, which might also influence the structure of
the aeroacoustic source terms.

6.2.6 Investigation of aeroacoustic key quantities in the time
and frequency domain

To investigate aeroacoustic key quantities (like the aeroacoustic source term ̃𝒮𝑖)
in the time (or frequency) domain, these quantities were stored at every time-step
of the LES simulations over one flow-through time at 49 points positioned in a
7×7 rectangular grid pattern covering the main source region for every acoustic
pipe LES, as shown in figure 6.23. Whenever referring to these selected indi-
vidual points in the following sections or chapters, they are always referred to as
“GP(col/row)”, indicating their column and row numbers as defined in figure 6.23.

4 𝑧

𝑦

1 0.75 𝑅𝑖
2 0.5 𝑅𝑖
3 0.25 𝑅𝑖

5 −0.25 𝑅𝑖
6 −0.5 𝑅𝑖
7 −0.75 𝑅𝑖

1

−
0.

2𝐷
𝑖

2

0.
2𝐷

𝑖

3

0.
5𝐷

𝑖

4

1𝐷
𝑖

5

1.
5𝐷

𝑖

6

2𝐷
𝑖

7

3𝐷
𝑖

row
col

Figure 6.23: The 7×7 grid pattern defining the positions of the selected points.

As already mentioned, the jet-like core flow is always deflected towards one
side of the pipe, leading to an asymmetric flow field. Therefore, when comparing
acoustic pipe LES, where the jet-like core flow attaches at the upper or lower sides
of the pipe, the row numbers in the case with the jet attaching at the bottom side
(𝑦 < 0) are flipped. E.g. the results from cell at column 4 and row 2 GP(4/2)
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form case X (with a jet attached at the top (𝑦 > 0)) is compared to the data
from the cell at column 4 and row 6 GP(4/6) of case Y (with a jet attached at
the bottom (𝑦 < 0)), using always the notation GP(4/2). This ensures that only
points with equivalent underlying flow characteristics are compared. In the tables
in appendix A the data for the simulations with the core jet-flow attaching at the
bottom (𝑦 < 0) are consistently flipped.

For further detailed discussions, four special grid points downstream of the
orifice were chosen from the 7×7 grid pattern. They are highlighted in figure 6.23.
These particular positions were chosen for following reasons.

• GP(3/3) is located inside the core jet-flow between the shear layers with
high anisotropic turbulence 0.5 diameter downstream of the orifice,

• GP(4/1) is close to the reattachment point of the core jet-flow with high de-
formation and high anisotropic turbulence, as observed one diameter down-
stream of the orifice,

• GP(5/2) is further downstream of the orifice with still anisotropic turbu-
lence but already inside the less sheared region 1.5 diameters downstream
of the orifice,

• GP(7/4) is at the center of the acoustic pipe three diameters downstream
of the orifice with less turbulence kinetic energy and almost isotropic tur-
bulence.

6.2.7 Turbulence time-scales

In this section, the results of the computed turbulence time-scales, introduced
in section 3.1.9, are presented. These three investigated turbulence time-scales,
rewritten here as

𝓉ST = || ⟨𝑆𝑖𝑗⟩ ||−1,

𝓉𝓀𝜀 = 𝓀

𝜀
,

𝓉SW =
𝓁E

⟨𝑣′
iso⟩

,

were computed at all selected points defined by the 7×7 grid pattern, but only
the results of the acoustic pipe LES case AP_h10Re5300 in the four selected grid
positions GP(3/3), GP(4/1), GP(5/2) and GP(7/4) shall be discussed in detail,
which are highlighted in figure 6.23. Results in all 7×7 grid positions are listed
in table A.4.
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Time-scale: 𝓉ST

The time-scale based on the inverse norm of the rate of strain tensor 𝓉ST (3.27)
was computed with a FIRE™ Formula, where the spatial derivatives were com-
puted from the temporally averaged velocity field 𝜕 ⟨ ̃𝑣𝑖⟩ /𝜕𝑥𝑗 to assemble the
temporally averaged rate of strain tensor as

⟨ ̃𝑆𝑖𝑗⟩ = 1
2

(
𝜕⟨ ̃𝑣𝑖⟩
𝜕𝑥𝑗

−
𝜕⟨ ̃𝑣𝑗⟩
𝜕𝑥𝑖

) . (6.6)

Its norm was then calculated as

|| ⟨ ̃𝑆𝑖𝑗⟩ || = √2 ⟨ ̃𝑆𝑖𝑗⟩ ⟨ ̃𝑆𝑖𝑗⟩, (6.7)

so that the resulting time-scale was computed as

𝓉ST = || ⟨ ̃𝑆𝑖𝑗⟩ ||−1. (6.8)

Time-scale: 𝓉𝓀𝜀

The eddy-turnover time (3.15) was computed from the temporally averaged re-
solved turbulence kinetic energy ⟨𝓀LES⟩ and the resolved turbulence dissipation
rate ̃𝜀LES (3.11), which were both computed from the resolved instantaneous ve-
locity fluctuations 𝜕𝑣′

𝑖/𝜕𝑥𝑗 and their derivatives as

⟨𝓀LES⟩ = 1
2

(⟨( ̃𝑣′
𝑥)2⟩ + ⟨( ̃𝑣′

𝑦)2⟩ + ⟨( ̃𝑣′
𝑧)2⟩) and (6.9a)

̃𝜀LES = 𝜈ref ⟨
𝜕 ̃𝑣′

𝑖
𝜕𝑥𝑘

𝜕 ̃𝑣′
𝑖

𝜕𝑥𝑘
⟩ , (6.9b)

and the resulting eddy-turnover time was computed as

𝓉𝓀𝜀 =
⟨𝓀LES⟩

̃𝜀LES
(6.10)

The instantaneous resolved velocity fluctuations ̃𝑣′
𝑖 were computed directly dur-

ing the simulation by subtracting the ensemble average (3.70) ⟨ ̃𝑣𝑖⟩ea from the
instantaneous resolved velocities ̃𝑣𝑖

̃𝑣′
𝑖 = ̃𝑣𝑖 − ⟨ ̃𝑣𝑖⟩
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Time-scale: 𝓉SW

The sweeping time 𝓉SW (3.29) was computed from the temporally averaged re-
solved turbulence kinetic energy ⟨𝓀LES⟩ (6.9a)

⟨ ̃𝑣′
iso⟩ = (2

3
⟨𝓀LES⟩)

1/2
, (6.11)

assuming isotropic turbulence, and using the gap height ℎO of the orifice as the
characteristic length-scale 𝓁E = ℎ10 = 10 mm, such that

𝓉SW =
ℎ10

⟨ ̃𝑣′
iso⟩

. (6.12)

Time-scales: results and comparison

Table 6.3: The resulting time-scales 𝓉 and corresponding frequencies 𝒻𝓉 of case
AP_h10Re5300 at four selected grid positions in the 7×7 pattern (see
figure 6.23).

co
l

ro
w 𝓉ST 𝓉𝓀𝜀 𝓉SW 𝒻ST 𝒻𝓀𝜀 𝒻SW

[s] [s] [s] [Hz] [Hz] [Hz]

3 3 3.95×10−4 2.29×10−2 6.22×10−3 2534.55 43.60 160.85
4 1 9.98×10−4 2.24×10−3 4.51×10−3 1001.59 447.40 221.62
5 2 4.23×10−3 1.40×10−3 5.69×10−3 236.38 714.73 175.89
7 4 4.01×10−3 7.12×10−3 8.73×10−3 249.35 140.38 114.54

From the obtained results, listed in table 6.3 the following conclustions are ob-
tained. As expected, the time-scale based on the averaged rate of strain tensor
𝓉ST, which should generally deliver the largest time-scales, are the smallest since
the gradients of the temporally averaged velocity field close to the shear layers
produced by the orifice are indeed very high, especially at the points GP(3/3)
and GP(4/1), thus resulting in high frequencies 𝒻ST at this grid positions. As a
result, applying temporal filters with the time-scale 𝓉ST would remove not only
large low-frequency vortical structures, but also high frequency content, thus re-
moving highly relevant contributions to the aeroacoustic sources.

Comparing the eddy turnover time 𝓉𝓀𝜀 to the sweeping time 𝓉SW at the four
selected grid positions, the eddy turnover time delivers smaller time-scales in
almost every grid point except GP(3/3). Thus, when the temporal filters are
applied, the eddy turnover time 𝓉𝓀𝜀 would cut-off also higher frequencies.

Since the target of applying temporal filters to the aeroacoustic source terms is
to remove large low-frequency vortical structures the sweeping time 𝓉SW was cho-
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sen as the most suitable time-scale, since it delivered generally the largest time-
scales in the whole source region downstream of the orifice (also see table A.4).
Note that the hearing range of humans starts at approximately 𝒻low ≈ 20 Hz (see
section 2.1), thus with the applied time-scale at approximatelly 𝒻SW ≈ 200 Hz also
hearable frequencies are cut-off from the aeroacoustic source term, which might
indicate that the sweeping time is also not the ideal time-scale. Furthermore,
isotropic turbulence was assumed for the sweeping time, which is close to the
orifice not fulfilled, as already observed and discussed (see figure 6.20).

Time-scale: 𝓉𝒦

Using the resolved turbulence dissipation rate also the Kolmogorov time-scale
(3.18a), rewritten as

𝓉𝒦 = (
𝜈ref

̃𝜀
)

1/2
, (6.13)

was computed, where the results for the four selected points are listed in table 6.4.
Note that the obtained frequencies 𝒻𝒦 = 1/𝓉𝒦 are, as mandatory, higher then the
turbulence time-scales listed in table 6.3, since the Kolmogorov scales represent
the smalles scales of turbulence.

Table 6.4: The resulting Kolmogorov time-scale 𝓉𝒦 and the corresponding fre-
quencies 𝒻𝒦 of case AP_h10Re5300 at four points selected from the
7×7 grid pattern (see figure 6.23).

co
l

ro
w 𝓉𝒦 𝒻𝒦

[s] [Hz]

3 3 3.53×10−4 2831.88
4 1 1.94×10−4 5145.97
5 2 3.01×10−4 3324.23
7 4 5.77×10−4 1732.73
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6.2.8 Turbulence kinetic energy spectrum

Figure 6.24 shows the turbulence kinetic energy spectrum |Ψ𝒻| = |ℱ(𝓀(𝑡)))|,
obtained from a fourier analysis of the instantaneous resolved turbulence kinetic
energy 𝓀LES(𝑡) of case AP_h10Re5300 computed as

𝓀LES(𝑡) = 1
2

(( ̃𝑣′
𝑥(𝑡))2 + ( ̃𝑣′

𝑦(𝑡))2 + ( ̃𝑣′
𝑧(𝑡))2) . (6.14)

Additionally, the turbulent time-scales 𝓉𝓀𝜀 (3.15), 𝓉SW (3.29) taken from table 6.3
and 𝓉𝒦 (6.13) from table 6.4 are marked. The shown time-scales are consitent
with the turbulence kinetic energy spectrum |Ψ𝒻| = |ℱ(𝓀LES(𝑡)))|, where the
Kolmogorov time-scale 𝓉𝒦 evidently represents the highest resolved frequencies
and the eddy turnover time 𝓉𝓀𝜀 as well as the sweeping time 𝓉SW obviously repre-
sent the regions with high amplitudes. Further note that the present turbulence
kinetic energy spectra contains large low-frequency contributions with high ampli-
tudes, which implies that the turbulence field contains vortical structures, which
are convected downstream the orifice.

Altough the time-step Δ𝑡 = 5×10−4 s of the acoustic pipe LES allows resolving
frequencies up to 𝒻H = 10 kHz, limited by the Nyquist criterion (see section 2.1),
only frequencies up to the Kolmogorov scales were resolved, due to the incom-
pressible flow model used for solving the governing Navier-Stokes equations equa-
tions. As a result the whole turbulence kinetic energy spectrum was at least
temporally fully resolved but no acoustic content is included. Consequently, the
aeroacoustic source terms obtained from the incompressible LES should therefore
not contain a contribution from frequencies above the Kolmogorov time-scale 𝓉𝒦.

Basically, the SGS model has the task to dissipate the smallest resolved scales
down to the Kolmogorov scale. If the contribution of the SGS model is too
small, then small turbulent scales are not dissipated but remain. Considering
that small turbulent scale are correlated with high frequencies this might result in
high amplitudes of the remaining, not dissipated, frequencies close to Kolmogorov
time-scale 𝒻 ≈ 𝒻𝒦. Such a shortcoming is not observed in the present spectra.
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Figure 6.24: Comparison of the resolved turbulence kinetic energy spectrum
|Ψ𝒻| = |ℱ (𝓀LES) | [m2/s2] of case AP_h10Re5300 at the four se-
lected grid positions (see figure 6.23).
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In the previous chapter 6, the solutions of the incompressible CFD simulations,
the basis of the aeroacoustic source terms, was presented. Using these simulated
flow fields, the aeroacoustic source terms, as derived in chapter 4, were computed
as field variables and stored at the 7×7 grid positions, defined in section 6.2.6
(see figure 6.23), over the period of one flow-through time. From these 7×7 avail-
able grid positions the results of four specially selected grid positions, GP(3/3),
GP(4/1), GP(5/2) and GP(7/4), circled in figure 6.23, being well representa-
tive for the main flow features of the flow field downstream of the orifice (see
section 6.2.6), are examined in further detail.

In section 7.1 the results of the main aeroacoustic source terms for the momen-
tum equation of the LEE 𝒮𝑖 and Ω𝑖 is presented and discussed. The approaches
to exclude the contribution of large low-frequency vortical structures, will be ex-
amined as well. Finally, the cross-terms, which appear as additional aeroacoustic
source terms in the momentum equation of the LEE Λ𝑖, which are considered
in the CAA module of FIRE™, are discussed. In section 7.2 the cross-term ap-
pearing in the energy equation of the LEE Π𝑖 computed from the LES solution
is compared to the equivalent cross-term generated by the UKSG within the
RANS-based CAA tool of FIRE™.
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7.1 The aeroacoustic source terms computed from
LES

The representation of the main aeroacoustic source term appearing on the RHS of
the LEE formulation equation (4.31) shall be considered first. Using the resolved
LES results the main aeroacoustic source term is rewritten as

Ω̃′
𝑖,LES = ̃𝑣′

𝑗
𝜕 ̃𝑣′

𝑖
𝜕𝑥𝑗⏟

̃𝒮𝑖,LES

− ⟨ ̃𝑣′
𝑗
𝜕 ̃𝑣′

𝑖
𝜕𝑥𝑗

⟩
⏟⏟⏟⏟⏟

⟨ ̃𝒮𝑖,LES⟩

. (7.1)

We recall at this point, that the subtraction of the mean ⟨ ̃𝒮𝑖,LES⟩ basically follows
from the rigorous derivation of the LEE. The full formulation of the LEE (4.31)
contains the Reynolds averaged momentum equations as subset, introducing the
divergence of the Reynolds stresses represented by ⟨ ̃𝒮𝑖,LES⟩. Other authors in-
terpreted this term rather as an important modification of the instantaneous
representation, which effectively centers the signal, so that its statistical aver-
age becomes identically zero ⟨Ω̃′

𝑖,LES⟩ = 0 . Bogey et al. [17] argued that this
centering avoids the generation of non-physical large-amplitude signals, which
might, especially, when reflected at solid boundaries, seriously contaminate the
acoustic sound field. The present analysis of the LES-based aeroacoustic source
terms addresses this particular aspect as well, discussing first the contributions of
the instantaneous components ̃𝒮𝑖,LES, thereafter demonstrating the effect of the
modification with the mean value.
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7.1.1 Instantaneous aeroacoustic source terms ̃𝒮𝑖,LES for
momentum

(a) ̃𝒮𝑥,LES

(b) ̃𝒮𝑦,LES

(c) ̃𝒮𝑧,LES

𝑧
𝑦

−5 0 5

̃𝒮𝑖,LES; 103 [m/s2]

Figure 7.1: Contours of the three instantaneous aeroacoustic source term com-
ponents ̃𝒮𝑖,LES [m/s2] of case AP_h10Re5300 at 𝑡end = 1.2 s.

Figure 7.1 exemplarily shows contours of the three components of the aeroacoustic
source term ̃𝒮𝑖,LES for the case AP_h10Re5300 at 𝑡end = 1.2 s.
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Each component basically consists of three terms, written as

𝒮𝑥 = ̃𝑣′
𝑥

𝜕 ̃𝑣′
𝑥

𝜕𝑥
+ ̃𝑣′

𝑦
𝜕 ̃𝑣′

𝑥
𝜕𝑦

+ ̃𝑣′
𝑧
𝜕 ̃𝑣′

𝑥
𝜕𝑧

, (7.2a)

𝒮𝑦 = ̃𝑣′
𝑥

𝜕 ̃𝑣′
𝑦

𝜕𝑥
+ ̃𝑣′

𝑦
𝜕 ̃𝑣′

𝑦

𝜕𝑦
+ ̃𝑣′

𝑧
𝜕 ̃𝑣′

𝑦

𝜕𝑧
and (7.2b)

𝒮𝑧 = ̃𝑣′
𝑥

𝜕 ̃𝑣′
𝑧

𝜕𝑥
+ ̃𝑣′

𝑦
𝜕 ̃𝑣′

𝑧
𝜕𝑦

+ ̃𝑣′
𝑧
𝜕 ̃𝑣′

𝑧
𝜕𝑧

, (7.2c)

using the resolved turbulent velocity fluctuations ̃𝑣′
𝑖, as generally defined by (4.60)

None of the three components seem to be dominant and all of them appear
in the same region downstream of the orifice. As one might expect, very intense
aeroacoustic sources are mainly generated inside the highly sheared boundary
layer between the inner core jet emerging from the orifice and the two separated
flow regions in the wake of the upper and lower wall of the orifice.
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(a) ̃𝒮𝑥,LES

(b) ̃𝒮𝑦,LES

(c) ̃𝒮𝑧,LES

𝑧
𝑦

−1 0 1

̃𝒮𝑖,LES; 104 [m/s2]

Figure 7.2: Contours of the three instantaneous aeroacoustic source term com-
ponents ̃𝒮𝑖,LES [m/s2] of case AP_h10Re7400 at 𝑡end = 1.2 [s].

Figure 7.2 shows the contours of the aeroacoustic source term components
̃𝒮𝑖,LES for case AP_h10Re7400, representing the case with higher Reynolds num-

ber ℛℯ𝐷𝑖
= 7400. Note that the magnitude of the aeroacoustic source terms is

significantly higher then for the case with the lower Reynolds number shown
in figure 7.1. Furthermore, the structures seem to be much finer in the case
AP_h10Re7400 than in AP_h10Re5300, which corresponds to the predicted vorticity
fields already discussed in section 6.2.5.

Johannes Tieber 141



7 Aeroacoustic sources

(a) ̃𝒮𝑥,LES

(b) ̃𝒮𝑦,LES

(c) ̃𝒮𝑧,LES

𝑧
𝑦

−1 0 1

̃𝒮𝑖,LES; 104 [m/s2]

Figure 7.3: Contours of the three instantaneous aeroacoustic source term com-
ponents ̃𝒮𝑖,LES [m/s2] of case AP_h5Re5300 at 𝑡end = 0.8 [s].

The aeroacoustic source terms of the case AP_h5Re5300, presented in figure 7.3,
are obviously much more intense than the aeroacoustic source terms of the cases
AP_h10Re5300 and AP_h10Re7400. This is due to the markedly higher shear rate
induced by the high velocity �̄� ̇𝑉 ,ℎ5

of the core jet-flow, emerging from the con-
striction with the gap height reduced to ℎ5 = 5 mm in case AP_h5Re5300.

The instantaneous aeroacoustic source terms represent by definition strongly
turbulent fluctuating quantities. The intensity of these fluctuations can be sta-
tistically quantified by the RMS values, written as

Ω̃′
𝑖,LES,RMS = ⟨( ̃𝒮𝑖,LES − ⟨ ̃𝒮𝑖,LES⟩)2⟩

1/2
. (7.3)

Regions with high fluctuation intensities are expectedly zones with intense aeroa-
coustic sound generation.
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Table 7.1: Comparison of the intensity of the centered aeroacoustic source term
components Ω̃′

𝑖,LES,RMS [m/s2] and the temporally averaged total
turbulence kinetic energy ⟨𝓀tot⟩ at four selected grid positions for
cases AP_h10Re5300, AP_h5Re5300 and AP_h10Re7400.

co
l

ro
w Ω̃′

𝑥,LES,RMS Ω̃′
𝑦,LES,RMS Ω̃′

𝑧,LES,RMS ⟨𝓀tot⟩
Case: [m/s2] [m/s2] [m/s2] [m2/s2]

A
P_

h1
0R

e5
30

0

3 3 2594.80 2626.20 3042.14 3.88
4 1 6636.81 6061.40 6180.30 7.37
5 2 2678.67 2777.82 3353.35 4.64
7 4 1026.92 954.01 1192.09 1.97

A
P_

h1
0R

e7
40

0

3 3 7595.34 8302.53 9125.54 8.07
4 1 13 347.20 12 389.10 12 728.60 13.27
5 2 5237.87 5187.77 6639.22 7.35
7 4 2500.52 2292.19 2478.74 3.80

A
P_

h5
R

e5
30

0

3 3 19 814.30 20 197.50 22 252.20 26.25
4 1 16 162.10 15 482.40 15 278.70 18.86
5 2 6822.64 6929.33 8442.23 9.30
7 4 3932.42 3678.70 4291.81 6.83

The resulting intensities obtained at the investigated four grid positions for
the cases AP_h10Re5300, AP_h10Re7400 and AP_h5Re5300 are listed in table 7.1. At
some grid positions the level of RMS-values of case AP_h5Re5300 is more than
double the level of case AP_h10Re7400, and more then five times larger than the
corresponding level of the case AP_h10Re5300. Also notice that for any case very
high intensities occur at grid position GP(4/1) close to the reattachement point
of the core jet-flow followed by the the grid position GP(3/3) close to the shear
layers. The intensity strongly decreases further downstream of the orifice, as also
the temporally averaged turbulence kinetic energy ⟨𝓀LES⟩ decreases, as already
presented in section 6.2.4. For all 7×7 grid positions and all acoustic pipe LES,
the intensity levels are listed in table A.5 and table A.6 in the appendix.
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7 Aeroacoustic sources

7.1.2 Modification of the aeroacoustic source term for
momentum with statistical averages or temporal filtering

The presently discussed statistical averages are always obtained from averaging
the resolved instantaneous data over a full flow-through time (FTT), as listed in
table 5.6.

Centering with statistical averages

Assuming incompressible flow allows to rewrite the statistical average appearing
in equation (7.1) in terms of the divergence of the resolved Reynolds stresses

⟨ ̃𝒮𝑖,LES⟩ =
𝜕⟨ ̃𝑣′

𝑗 ̃𝑣′
𝑖⟩

𝜕𝑥𝑗
. (7.4)

As such, this quantity would vanish in the case of statistically homogeneous
turbulent flows. On the other hand, it is expected to be very large in highly
sheared or strongly linearly deformed regions.
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(a) ⟨ ̃𝒮𝑥,LES⟩

(b) ⟨ ̃𝒮𝑦,LES⟩

(c) ⟨ ̃𝒮𝑧,LES⟩

𝑧
𝑦

−1 0 1

⟨ ̃𝒮𝑖,LES⟩; 103 [m/s2]

Figure 7.4: Contours of the statistical averages of the aeroacoustic source term
components ⟨ ̃𝒮𝑖,LES⟩ for case AP_h10Re5300.

This is clearly seen in figure 7.4, showing contours of the statistically averaged
aeroacoustic source term components ⟨ ̃𝒮𝑖,LES⟩ for the case AP_h10Re5300. The
components ⟨ ̃𝒮𝑦,LES⟩ and ⟨ ̃𝒮𝑧,LES⟩ exhibit large magnitudes in the shear lay-
ers downstream of the two sharp corners of the orifice, and the region near the
reattachment point of the core jet-flow. The 𝑧-component plays a dominant role,
especially in the core jet-flow region. The 𝑥-component ⟨ ̃𝒮𝑥,LES⟩ is in comparison
negligibly small, because there is no significant deformation of the base flow into
the spanwise direction 𝑥.
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(a) Ω̃′
𝑥,LES

(b) Ω̃′
𝑦,LES

(c) Ω̃′
𝑧,LES

𝑧
𝑦

−5 0 5

103 [m/s2]

Figure 7.5: Contours of the centered instantaneous aeroacoustic source term
components Ω̃′

𝑖,LES from case AP_h10Re5300 at 𝑡end = 1.2 s.

Figure 7.5 shows contours of the centered instantaneous aeroacoustic source
term components Ω̃′

𝑖,LES, where only in the regions near the core jet-flow and
the reattachement point some very small differences are noticeable in comparison
to the non-centered instantaneous aeroacoustic source term components ̃𝒮𝑖,LES

presented in figure 7.1. This is due to the fact that local instantaneous peaks of
the aeroacoustic source terms ̃𝒮′

𝑖,LES are generally significantly higher than their
statistical averages ⟨ ̃𝒮𝑖,LES⟩.
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Figure 7.6: Figure continued and caption on right page.
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Figure 7.6: Histories of centered instantaneous aeroacoustic source term com-
ponents Ω̃′

𝑖,LES [m/s2] at the four selected grid positions for case
AP_h10Re5300.
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Figure 7.6 shows the history of the aeroacoustic source term components Ω̃′
𝑖,LES

over a time-period 𝑇 = 0.1 s at the four selected grid positions. Note the high
intensity of the aeroacoustic source terms close to the reattachement point at
GP(4/1) due to the large deformation. Also, as already observed from the in-
stantaneous contours in the previous section, none of the three spatial components
seem to be dominant and as indicated by the RMS-values in table 7.1. Further-
more, as seen from figure 7.6d the intensity strongly decreases far downstream of
the orifice.

𝑧

𝑦

0.5 𝐷𝑖

−
8 0 8

1.5 𝐷𝑖
−

8 0 8

̃𝒮𝑧,LES, ⟨ ̃𝒮𝑧,LES⟩, Ω̃′
𝑧,LES; 103 [m/s2]

2.5 𝐷𝑖

−
8 0 8

(a) (𝑧-) positions: 0.5 𝐷𝑖, 1.5 𝐷𝑖 and 2.5 𝐷𝑖

𝑧

𝑦

1 𝐷𝑖

−
8 0 8

2 𝐷𝑖

−
8 0 8

̃𝒮𝑧,LES, ⟨ ̃𝒮𝑧,LES⟩, Ω̃′
𝑧,LES; 103 [m/s2]

3 𝐷𝑖

−
8 0 8

(b) (𝑧-) positions: 1 𝐷𝑖, 2 𝐷𝑖 and 3 𝐷𝑖

̃𝒮𝑧,LES; ⟨ ̃𝒮𝑧,LES⟩; Ω̃′
𝑧,LES

Figure 7.7: Comparison of the non-centered ̃𝒮𝑧,LES, temporal averaged
⟨ ̃𝒮𝑧,LES⟩ and centered Ω̃′

𝑧,LES aeroacoustic source term 𝑧-
component along the vertical coordinate 𝑦 at selected (𝑧-) positions
of case AP_h10Re5300 at 𝑡end = 1.2 s.

Subtracting the temporal average ⟨ ̃𝒮𝑖,LES⟩ from the instantaneous represen-
tation ̃𝒮𝑖,LES effectively centers the total aeroacoustic source terms. The effect
on the obtained signal is quantitatively demonstrated in figure 7.7, showing par-
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ticular profiles of the instantaneous non-centered component ̃𝒮𝑧,LES, its statis-
tical average ⟨ ̃𝒮𝑧,LES⟩ as well as the centered component Ω̃′

𝑧,LES for the case
AP_h10Re5300, plotted over the vertical coordinate 𝑦 in the center symmetry plane
𝑥 = 0 at selected downstream (𝑧-) positions. At (𝑧-) positions close to the orifice
(𝑧 = 0.5 DI) the influence of the shear layers bounding the core jet-flow is clearly
visible. Also in the region with high linear deformation, close to the upper wall
(𝑦 > 0) at the (𝑧-) positions 𝑧 = 1 DI and 𝑧 = 1.5 DI the influence of the center-
ing is noticeable. Further downstream of the orifice the centering effect is much
smaller, since the flow is more homogenous, already discussed in section 6.2.4.

Centering with temporal filtering

In the case of free turbulent shear flow, involving large low-frequency vortical
structures (e.g. shed in separated flow regions), the absence of strong mean de-
formation rates typically leads to very small statistical averages ⟨ ̃𝒮𝑖,LES⟩. The
centering, therefore, does not effectively modify the instantaneous component

̃𝒮𝑖,LES. To investigate the possible contribution of large low-frequency vortical
structures to the aeroacoustic source terms the alternative temporal filtering ap-
proaches are applied to exclude these structures from the statistics. In contrast
to the standard statistical averaging approach these alternative methods might
also effectively eliminate low-frequency vortical structures further downstream of
the orifice.

The first alternative approach simply subtracts time averages ⟨ ̃𝒮𝑖,LES⟩
ma

which
are computed as moving box averages (see section 3.1.8) over a suitably defined
sampling time-frame 𝑇TF, according to equation (3.23) .

The second approach applies a spectral filter (see section 3.1.8) to the in-
stantaneous Fourier-transformed components Ψ𝒻 = ℱ( ̃𝒮𝑖,LES), using a cut-off
frequency 𝒻TF = 1/𝑇TF, according to equation (3.26). Assuming the sweeping
time 𝓉SW as relevant time-scale of the large low-frequency vortical structures (see
section 3.1.9) both approaches are supposed to reduce or even eliminate contri-
butions from large low-frequency vortical sturctures associated with the sweeping
time 𝓉SW and beyond in the transient signal ̃𝒮𝑖,LES.
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(b) GP(4/1): 𝒻SW = 221.62 Hz

Figure 7.8: Figure continued and caption on right page.
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(c) GP(5/2): 𝒻SW = 175.89 Hz
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(d) GP(7/4): 𝒻SW = 114.54 Hz

Figure 7.8: Spectral density of source terms |Ψ𝒻| = |ℱ(𝜙)| before and after
applying temporal filters based on the sweeping time 𝓉SW at the
selected grid positions of case AP_h10Re5300.
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The effect of the alternative temporal filtering approaches on the spectral-
distribution is exemplarily shown in figure 7.8, considering a time sequence of in-
stantaneous signals obtained from LES at the four selected grid positions GP(3/3),
GP(4/1), GP(5/2) and GP(7/4) for the case AP_h10Re5300. The spectral tem-
poral filter based on the FFT sharply cuts off all amplitudes below the cut-off
frequency determined by the chosen time-scale 𝒻SW = 1/𝓉SW. In contrast, the
temporal filter based on the moving box average does not rigorously eliminate
the content below 𝒻SW, while completely preserving the content beyond. As a
result, some low-frequency content remains and, therefore, the reduction in the
strength of the aeroacoustic source term is slightly smaller.

Note the low-frequency content |ℱ ( ̃𝒮𝑧,LES) | for 𝒻SW < 𝓉SW, included in the
non-centered aeroacoustic source terms ̃𝒮𝑧,LES, which remains in case of centering
with statistical averages also further downstream of the orifice.

Figure 7.9 shows the evolution of the averages obtained from the different tem-
poral filtering approaches in the time domain, shown at the selected grid positions
for the case AP_h10Re5300 exemplarily for the 𝑧-component of the aeroacoustic
source term ̃𝒮𝑖,𝐿𝐸𝑆. For each grid position the averaged quantity ⟨ ̃𝒮𝑧,LES⟩ and the
averages based on the temporal filters ⟨ ̃𝒮𝑧,LES⟩

fa
and ⟨ ̃𝒮𝑧,LES⟩

ma
are presented.

Note that the averages based on the moving time-frame approach ⟨ ̃𝒮𝑧,LES⟩
ma

,
as already presumed, show in general less intense variations compared to the
fourier-based spectral cut-off averages ⟨ ̃𝒮𝑧,LES⟩

fa
.

As already discussed the influence of the centering with statistical averages
decreases further downstream of the orifice, while the alternative temporal filters
still effectively remove low-frequency content above the chosen time-scale.
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Figure 7.9: Evolution of the averages of the aeroacoustic source term com-
ponent ̃𝒮𝑧,LES [m/s2] at the four selected grid positions of case
AP_h10Re5300. Temporally filtered averages are based on the shown
sweeping time 𝓉SW.
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Table 7.2: Intensity of the temporally filtered aeroacoustic source term compo-
nents Ω̃′fa,ma

𝑖,LES,RMS [m/s2] at the four selected grid positions for the
case AP_h10Re5300.

co
l

ro
w Ω̃′fa,ma

𝑥,LES,RMS Ω̃′fa,ma

𝑦,LES,RMS Ω̃′fa,ma

𝑧,LES,RMS
[m/s2] [m/s2] [m/s2]

Fo
ur

ie
r

av
er

ag
e 3 3 2343.79 2376.13 2726.16

4 1 5763.10 5361.43 5812.86
5 2 2421.36 2503.81 3120.29
7 4 850.03 862.28 1073.24

m
ov

in
g

av
er

ag
e 3 3 2457.37 2485.65 2930.71

4 1 6180.91 5780.26 6005.58
5 2 2551.26 2627.30 3220.56
7 4 922.66 904.65 1116.07

Using the alternatively obtained temporal averages ⟨ ⟩fa or ⟨ ⟩ma significantly
reduces the RMS-values of the respective aeroacoustic source term variations as
well. Applying the time-dependent averages ⟨ ⟩fa or ⟨ ⟩ma instead of the statis-
tical average ⟨ ⟩ in (7.3) produces evidently markedly less intense fluctuations,
as seen from the values Ω̃′fa

𝑖,LES and Ω̃′ma
𝑖,LES listed in table 7.2 for the investigated

grid positions of case AP_h10Re5300. As compared to the very small impact of
the standard statistical average based centering method on the intensity of the
aeroacoustic source terms (see table 7.1) the effectivity of the two alternative
temporal filtering methods can be still observed also further downstream of the
orifice GP(7/4), where the mean flow gradients are small and the flow field is
more homogeneous compared to the grid positions close to the shear layers at
GP(3/3).

Summing up, applying the presented alternative temporal filtering approaches,
can evidently eliminate some low-frequency content from the aeroacoustic source
term. This aspect might become important, when dealing with persistent large
low-frequency vortical structures, which are not dissipated even far away from
the regions associated with intense aeroacoustic sources. Assuming that the re-
maining high-frequency content remaining from the filtering is more isotropic,
the temporally filtered aeroacoustic source terms should essentially contain only
the isotropic fraction of the turbulence kinetic energy.

It was also shown, as expected, that the obtained aeroacoustic source terms
are strongly connected with the observed instantaneous vorticity of the turbulent
flow field. Therefore, a reliable prediction of the instantaneous turbulent flow
field is essential for a good prediction of the aeroacoustic source terms.
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7.1.3 Aeroacoustic sources of momentum in LEE generated by
cross-terms.

The LEE for momentum (4.34b) used in the CAA tool of FIRE™ and [13], con-
sideres in addition to the non-linear momentum exchange between the turbulent
fluctuating components, 𝑣′

𝑗𝜕𝑣′
𝑖/𝜕𝑥𝑗, also the contribution of the cross-terms be-

tween the mean and the fluctuating components, such that the total momentum
source term reads

Λ𝑖 + 𝒮𝑖 = ⟨𝑣𝑗⟩
𝜕𝑣′

𝑖
𝜕𝑥𝑗

+ 𝑣′
𝑗
𝜕⟨𝑣𝑖⟩
𝜕𝑥𝑗

+ 𝑣′
𝑗
𝜕𝑣′

𝑖
𝜕𝑥𝑗

. (7.5)

As such, the cross-terms Λ𝑖 represent the sound generation caused by interaction
of the mean ⟨𝑣𝑖⟩ and the turbulent 𝑣′

𝑖 flow field.
In the context of RANS the statistically averaged velocities ⟨𝑣𝑖⟩ are known from

the CFD solution of the RANS equations, while the fluctuating components 𝑣′
𝑖

have to be provided by a sub-model, like the UKSG. Having available instead the
resolved turbulent fluctuating velocity field obtained from the LES, the cross-term
contribution to the aeroacoustic source term Λ̃𝑖,LES can be directly computed as

Λ̃𝑖,LES = ⟨ ̃𝑣𝑗⟩
𝜕 ̃𝑣′

𝑖
𝜕𝑥𝑗

+ ̃𝑣′
𝑗
𝜕⟨ ̃𝑣𝑖⟩
𝜕𝑥𝑗

. (7.6)

The evolution of this term was monitored at the 7×7 grid positions shown in
figure 6.23. The results for a subset of the four specially selected grid position
shall be discussed here in detail.

Figure 7.10 shows the histories of the cross-term contribution Λ̃𝑖,LES over time-
period 𝑇 = 0.1 s at the four selected grid positions for case AP_h10Re5300. Similar
to the aeroacoustic source terms ̃𝒮′

𝑖,LES none of the components 𝑖 seem to be
dominant, while their intensity decreases further downstream of the orifice. In
contrast to the aeroacoustic source term ̃𝒮′

𝑖,LES, which is generally most intense
at GP(4/1), the intensity of Λ̃𝑖,LES is generally highest at the grid points GP(3/3)
and GP(5/2). One might conclude that the highly sheared layers bounding the
core jet-flow produce higher cross-terms compared to the region close to the reat-
tachment point with mainly linear deformation.
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Figure 7.10: Figure continued and caption on right page.
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Figure 7.10: Histories of instantaneous cross-term contributions Λ̃𝑖,LES [m/s2]
at the four selected grid positions for case AP_h10Re5300.
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Table 7.3: RMS-values of the cross-term components Λ̃𝑖,LES,RMS [m/s2] at the
investigated grid positions for case AP_h10Re5300.

co
l

ro
w Λ̃𝑥,LES,RMS Λ̃𝑦,LES,RMS Λ̃𝑧,LES,RMS

[m/s2] [m/s2] [m/s2]

3 3 5180.17 5866.88 6958.04
4 1 3938.20 2898.90 3185.21
5 2 4700.23 4796.40 4590.55
7 4 1566.68 1540.62 1422.29

The corresponding intensities of Λ̃𝑖,LES, quantified by the RMS-values Λ̃𝑖,LES,RMS,
at the four examined grid positions of case AP_h10Re5300 are listed in table 7.3.
The intensities of all cross-terms at the 7×7 grid positions of case AP_h10Re5300

are listed in the appendix in table A.8.
In general, at any grid position the resulting intensities of the cross-terms are

comparable in magnitude to the intensities of the aeroacoustic source term ̃𝒮𝑖,LES,
discussed in the previous sections and listed in table 7.2.

As already noted in section 4.3, the contribution of the cross-terms is often
neglected. In most literature, where similar geometries were investigated (see [8,
12, 19, 24, 40]), the LEE consider only the aeroacoustic source term Ω′

𝑖, arising
from the turbulent-turbulent interaction. Some authors like Bechara et al. [13]
still included the cross-terms contributions into the aeroacoustic source terms.
The influence of including these cross-terms on the finally predicted acoustic field
should be certainly further debated and specially investigated.

It is noted, that the presently implemented CAA tool in FIRE™ does not
provide access to the momentum sources, which are actually used for solving the
LEE. Therefore, neither the RANS-based data for Ω𝑖, nor for Λ𝑖 are available for
a comparison against the present LES-based data. However, the CAA tool does
provide access to the aeroacoustic source term Π, defined by (4.36) appearing
in the energy equation of the LEE (4.34c). The following section is therefore
particularly dedicated to the comparison of the RANS-based results, obtained
with the UKSG, against the LES-based results, where the aeroacoustic source
term Π̃ is computed directly from the resolved instantaneous turbulent flow field.
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7.2 The aeroacoustic source term for energy
computed from UKSG and the LES

Recalling the aeroacoustic source term for the energy equation of the LEE (4.34c)
used by the CAA tool in FIRE™

Π = 𝑣′
𝑗
𝜕⟨𝑝⟩
𝜕𝑥𝑗

,

makes evident that this term basically represents the interaction between the
temporally averaged pressure gradients and the turbulent velocity fluctuations.
In RANS-based CFD, these instantaneous fluctuations have to be provided by a
dedicated sub-model. For the present comparison, the RANS-based aeroacoustic
source term Π was computed using the UKSG within the CAA tool of FIRE™
as sub-model for the case CAA_h10Re5300. The corresponding LES results for Π̃
were computed from an instantaneous resolved flow field for the equivalent LES
case AP_h10Re5300.

(a) Π̃LES of case AP_h10Re5300 at 𝑡end = 1.2 s

(b) ΠUKSG of case RANS_h10Re5300 at 𝑡end = 0.1 s

𝑧
𝑦

−2 0 2

Π̃; 103 [m/s2]

Figure 7.11: Comparison of contours of the instantaneous energy source Π
[Pa/s] for LES case AP_h10Re5300 and the UKSG for RANS case
CAA_h10Re5300 at 𝑡 = 𝑡end.

Figure 7.11 shows the instantaneous contours of the aeroacoustic source term
for energy as predicted from the UKSG, ΠUKSG ,and the LES, Π̃LES, at a certain
instance of time. In contrast to the UKSG, the LES produces also very intense
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aeroacoustic source terms further downstream of the orifice and also in the region
near the upper wall, where the deflected jet-like core flow reattaches. In com-
parison to the instantaneous aeroacoustic source terms for momentum presented
in figure 7.1, additional sub-regions with significant levels of aeroacoustic energy
source terms Π appear near the sharp corners of the orifice, which is due to the
local high mean pressure gradients occurring in this zone (see figure 6.16).

Table 7.4: Turbulent fluctuation intensities of the aeroacoustic energy source
term ΠRMS [Pa/s] for LES and the UKSG, and the temporal av-
eraged total turbulence kinetic energy ⟨𝓀tot⟩ [m2/s2] between case
AP_h10Re5300 and case CAA_h10Re5300, at the selected grid positions.

co
l

ro
w ΠRMS ⟨𝓀tot⟩

Case: [Pa/s] [m2/s2]

AP_h10Re5300

3 3 3353.96 3.88
4 1 2685.12 7.37
5 2 1074.12 4.64
7 4 87.07 1.97

CAA_h10Re5300

3 3 1302.66 3.30
4 1 1776.75 2.78
5 2 456.02 2.19
7 4 240.36 1.92

The turbulent fluctuation intensity of the energy source term measured in terms
of the RMS-values ΠRMS are presented in table 7.4 at the four selected grid posi-
tions of case AP_h10Re5300 and CAA_h10Re5300, together with the corresponding
temporally averaged total turbulence kinetic energy ⟨𝓀tot⟩. The intensities of
ΠRMS obtained from the LES are much higher close to the orifice at GP(3/3),
GP(4/1) and GP(5/2), while being much smaller further downstream of the ori-
fice at GP(7/4) in comparison to the intensities obtained from the UKSG.

In figure 7.12 the histories of the aeroacoustic energy source term Π(𝑡), pre-
dicted from the UKSG for the RANS case CAA_h10Re5300 and for the equiva-
lent LES case AP_h10Re5300 are presented. The shown results were obtained at
the four selected grid positions indicated in figure 6.23, covering a time-period
𝑇 = 0.1 s. Note that at the grid position GP(5/2) and GP(7/4) the order of mag-
nitude is significantly lower in comparison to the other grid positions GP(3/3)
and GP(4/1), so that a different scaling for the ordinate was chosen.

Additionally figure 7.13 shows the spectral distribution of the aeroacoustic
energy source term |ℱ (Π) |, obtained from a fast Fourier transform. We note
again that at the grid position GP(7/4) the amplitudes are one order of magnitude
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smaller (∼ 105[Pa]) in comparison to the other grid positions (∼ 106[Pa]).
Both figures 7.12 and 7.13 clearly show the high frequency content (𝒻 >3000 Hz)

appearing in the energy source term predicted from the UKSG. The amplitudes
of these high frequency components are small though, compared to the ampli-
tudes of the lower frequencies and therefore might be negligible. The capability
of tracking much higher frequencies as compared to the highest frequencies ap-
pearing in the LES based source term, is due to the methodology of the UKSG,
where the phase Ξ (see section 4.6.4) of the reconstructed turbulence velocity is
chosen randomly advancing in very small time-steps Δ𝑡UKSG. Since these time-
steps are significantly smaller in size to the acoustic time-step size Δ𝑡CAA (see
table 5.7), the evaluated turbulent fluctuations inherently include very high fre-
quency content, which cannot be captured by the incompressible LES using a
much longer only flow-determined time-step size Δ𝑡LES. Therefore, the energy
source term predicted from such sub-models can also contain acoustic frequencies
well beyond the inverse flow related time-scales, altough the modeling is based
on an incompressible RANS solution. Additionally, the randomly chosen phase
Ξ between every time-step might produce small discontinuities in time, which
might also contribute some random high-frequency content.
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Figure 7.12: Histories of the aeroacoustic energy source term Π̃LES [Pa/s] for
the LES case AP_h10Re5300 and ΠUKSG [Pa/s] for the equivalent
RANS case CAA_h10Re5300 obtained from the UKSG at the inves-
tigated grid positions.
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Figure 7.13: Spectral distribution of the aeroacoustic energy source term
|Ψ𝒻| = |ℱ (Π) | [Pa/s] for LES case AP_h10Re5300 and the equiva-
lent RANS case CAA_h10Re5300 obtained from the UKSG at the
investigated grid positions.
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In general the magnitude of the aeroacoustic energy source terms obtained from
the UKSG ΠUKSG is well below the predictions of the LES in the regions close
to the shear layers at GP(3/3), GP(4/1) and GP(5/2), while it is above in the
region further downstream of the orifice at GP(7/4).

The pressure source term at GP(4/1) contains more low-frequency (𝒻 <100 Hz)
content, in comparison to GP(3/3), which was similarily predicted by the LES
and the UKSG, which is also indicated by the spectral densities of the turbulence
kinetic energy in figure 6.24. At both grid positions the UKSG produces much
less mid-frequency (100 < 𝒻 <100 Hz) content, due to the underpredicted total
temporally averaged turbulence kinetic energy ⟨𝓀tot⟩ in the RANS solution (see
figure 6.18). At GP(5/2) the source term of the UKSG remains below the LES
results over the whole range of frequencies. The opposite behavior is observed at
GP(7/4), where the amplitudes are generally much lower, though.

To sum up the aeroacoustic energy source term predicted from the UKSG are
in general markedly less intense than their counterparts obtained from LES. The
observed difference can be to a great extent to an underpredicted turbulence
kinetic energy, which is used by the UKSG model as key input parameter from
the RANS solution. In turn, introducing the considerably higher predicted source
terms from LES into the LEE will expectedly intensify the generation of sound
especially in the near-field of the orifice.
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8 Summary, conclusions and
outlook

This Master’s Thesis was carried out in cooperation with AVL LIST GmbH and
the Institute of Fluid Mechanics and Heat Transfer (ISW) of the Graz Univer-
sity of Technology (TU Graz). Its primary aim was the numerical investigation
of aeroacoustic sources produced by an orifice within a straight cylindrical pipe.
The flow through the orifice was investigated using computational fluid dynamics
(CFD) based on the numerical solution of the Reynolds averaged Navier-Stokes
(RANS) equations and the Large-Eddy Simulation (LES).

After introducing the fundamentals of acoustics and fluid mechanics, the foun-
dation of aeroacoustics, Lighthill’s acoustic analogy, was derived and discussed.
For the present task a more advanced acoustic analogy had to be found. For
that Lilley’s acoustic analogy was derived, which is difficult to solve due to its
complex wave operator. After introducing the aeroacoustic decomposition, which
is the foundation of every hybrid computational aeroacoustics (CAA) approach,
the acoustic analogy based on the linearized Euler equations (LEE) was derived,
which is a widely used acoustic analogy, because it is easier to solve due to its
linearity, but also because it can describe some wave propagation effects. By
applying Lilley’s acoustic analogy and the acoustic analogy based on the LEE
to a two-dimensional sheared flow, it was shown that both acoustic analogies are
equivalent, because the same wave operator and aeroacoustic source term remain.
As a result, the most relevant target aeroacoustic source term was identified, orig-
inating from the turbulent-turbulent velocity fluctuations. Additional cross-terms
for the momentum and energy equation of the LEE, constituted of the mean flow
field and the turbulent velocity fluctuations, were identified and investigated as
well. Thereafter, the concept of computing the aeroacoustic source terms from
the resolved LES quantities was described. Finally, the solution procedure of the
CAA tool implemented in FIRE™ was introduced. This tool solves LEE, where
the required aeroacoustic source term are artificially generated by the “unstruc-
tured kinematic source generator (UKSG)”.
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The accuracy of the LES solution obtained from the periodic pipe LES, which
provided instantaneous inflow conditions for the acoustic pipe LES cases, was
validated against DNS data. Comparing the first and second order statistics of
the obtained results against direct numerical simulation (DNS), it was shown
that the periodic pipe LES results were in fairly good agreement with the DNS
data. The applied subgrid-scale model (SGM), the Coherent Structure Model,
could not fully compensate the unresolved gap between the resolved LES and the
DNS data. Summing up, the periodic pipe LES, delivered a reliable basis for the
turbulent inflow BC.

The results of the acoustic pipe LES were also analyzed in much detail. The
focus was first on the instantaneous resolved flow field, extending between the
instantaneous inflow BC and the turbulent core jet-flow appearing downstream
of the orifice. Due to the Coanda effect the core jet-flow attached at the top or
bottom wall of the pipe, which had a strong influence on the basic structure of
the turbulent flow field. At the higher Reynolds number and for the reduced gap
height of the orifice a significantly enhanced turbulent motion downstream of the
orifice was observed. It was additionally shown that the turbulence field is highly
anisotropic in the shear layers of the core jet-flow and near the reattachment
point with high linear deformation.

Comparing the temporally averaged flow fields of the LES solution with the
RANS solution, it was shown that the structure of the flow field was quite similar,
showing an asymmetrical flow field due to the Coanda effect. The RANS simula-
tion predicted the reattachment point of the core jet-flow further downstream in
comparison to the LES solution. The turbulence kinetic energy fields were quite
different, where the RANS solution significantly underpredicted the turbulence
kinetic energy especially close to the shear layers of the core jet-flow and the
reattachment point.

By investigating the vorticity fields, one could observe that intense vortical
structures are emerging from the shear layers of the core jet-flow. Some of these
vortical structures might contain low-frequency content which might be convected
even far downstream of the orifice, and therefore might strongly influence the
propagation of sound waves.

The history of a selected number of acoustically relevant quantities was addi-
tionally stored at 49 points of each LES case, determined by a 7×7 rectangular
grid pattern covering the main source region. From these 7×7 grid points four
points were selected for further detailed discussions, which are representative for
the different flow regions downstream of the orifice.

From the three introduced turbulent time-scales, the sweeping time delivered
the most promising results for extracting large low-frequency vortical structures
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from the aeroacoustic sources.

In the final chapter 7, the results of the obtained aeroacoustic sources from
the LES are presented. First the main aeroacoustic source term, appearing in
the momentum equation, was discussed. Analogous to the turbulence kinetic
energy field the obtained source field was intense close to the shear layers and the
reattachment region of the core jet-flow. Further downstream of the orifice the
intensity decreased fast. Therefore, the vortical structures, which were observed
in the vorticity fields and are convected downstream of the orifice, might not
contribute a lot to the aeroacoustic source term. Also, it seems that none of
the three components of the aeroacoustic source term is dominant, although the
turbulence is highly anisotropic.

Comparing the different flow configurations, the obtained source term inten-
sities of the case with the reduced orifice gap height were the highest, followed
by the case with the higher Reynolds number, which is in accordance with the
obtained turbulence kinetic energy fields.

The centering of the aeroacoustic source term, obtained by subtracting its tem-
poral average, effectively reduces the aeroacoustic source term in regions with
high mean deformation rates, occurring in the shear layers and close to the reat-
tachment point of the core jet-flow. The large low-frequency vortical structures
are not affected. The axial (𝑧) and vertical (𝑦) components of the temporally
averaged aeroacoustic source term are dominant close to the shear layers and the
reattachment point of the core jet-flow. The spanwise (𝑥) component seems to
be negligible, since no significant deformation appears.

Applying temporal filters to the aeroacoustic source terms effectively subtracts
all low-frequency content below the chosen turbulent time-scales, therefore ex-
cluding large low-frequency vortical structures. While the spectral method based
on the Fourier transform sharply cuts off content below the cut-off frequency, the
moving averaging method does not remove all low-frequency content. In contrast
to the standard centering method also low-frequency content further downstream
of the orifice are effectively removed.

Following from a rigorous derivation of the LEE, additional cross-terms, con-
stituted of the mean and turbulent flow field, appear as aeroacoustic sources. In
most literature these are neglected. In this Master’s Thesis also the cross-terms
appearing in the momentum equation were investigated. It is shown that they
are equally intense near the sheared region and the reattachment point of the core
jet-flow as the main turbulence-turbulence aeroacoustic source term. Therefore,
it is mandatory to investigate the influence of these cross-terms on the acoustic
field.

Johannes Tieber 169



8 Summary, conclusions and outlook

The CAA tool in FIRE™ accounts for the cross-terms in the momentum, to-
gether with the non-centered aeroacoustic source term, and the energy equation
of the LEE. Since the CAA tool is based on an incompressible RANS based hybrid
approach, the aeroacoustic source terms have to be modeled, which is performed
by the UKSG. Since only the output of the energy source term is available, this
energy source term was also computed from the acoustic pipe LES solution for
comparison. The UKSG mostly underpredicted the energy source term, since the
turbulence kinetic energy field of the RANS solution was predicted less intense
than the turbulence kinetic energy fields of the LES solution, especially in regions
close to the shear layers and the reattachment point of the core jet-flow. By inves-
tigating the spectra of the energy source terms, it was observed that the energy
source term from the UKSG contains contributions of high-frequencies above the
time-scale, which could be resolved by the incompressible LES.

The next future steps following this Master’s Thesis could be to modify the
CAA module in FIRE™ in a way so that the aeroacoustic source terms obtained
from the LES can be used as input data. This would allow the investigation of the
different acoustic fields obtained from differently generated aeroacoustic source
terms.

Since, in the current hybrid CAA approach different computational grids are
used for the CFD and CAA simulation, also the influence of the mapping pro-
cedure of the aeroacoustic source terms between the computational grids on the
aeroacoustic source terms could be investigated. Since the CAA grids are much
coarser, some parts of the finer spatial resolution of the aeroacoustic source terms
obtained from LES might be lost.

One major problem though of aeroacoustics in confined flow configurations is
that the interest lies in the acoustic field outside of the pipe, at some observers
position, and not within the pipe. If the technical application does not have
some kind of exhaust (e.g. in closed coolant systems), where the acoustic field
can emerge, somehow the transfer path through the surrounding walls have to
be described so that the acoustic field outside can be obtained. Since the vi-
brations of solids and their sound radiation is well understood, the difficult part
is extracting the required boundary conditions from the internal turbulent flow
field.
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A Appendix

In the following tables the presented data corresponds to the 7×7 grid points,
which were defined in section 6.2.6 and are shown again in figure A.1. In this
Master’s Thesis four selected grid points GP(3/3), GP(4/1), GP(5/2) and GP(7/4)
are investigated in more detail and are circled in figure A.1.

4 𝑧

𝑦

1 0.75 𝑅𝑖
2 0.5 𝑅𝑖
3 0.25 𝑅𝑖

5 −0.25 𝑅𝑖
6 −0.5 𝑅𝑖
7 −0.75 𝑅𝑖
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Figure A.1: The 7×7 grid of the evaluated cells.

As already mentioned in chapter 6, the jet-like core flow is always deflected
towards one side of the pipe, leading to an asymmetric flow field. Therefore, when
comparing acoustic pipe LES, where the jet-like core flow attaches at the upper or
lower sides of the pipe, the row numbers in the case with the jet attaching at the
bottom side (𝑦 < 0) are flipped. E.g. the results from cell at column 4 and row 2
GP(4/2) form case X (with a jet attached at the top (𝑦 > 0)) is compared to the
data from the cell at column 4 and row 6 GP(4/6) of case Y (with a jet attached
at the bottom (𝑦 < 0)), using always the notation GP(4/2). This ensures that
only points with equivalent underlying flow characteristics are compared. In the
following tables the data for the simulations with the core jet-flow attaching at
the bottom (𝑦 < 0) are consistently flipped.
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A Appendix

Table A.1: The cell volumes 𝑉C and characteristic cell lengths Δ𝓍C = 𝑉 1/3
C of

the computational grids at the 7×7 grid positions.
grid pos. GAP_h10 GAP_h10F GAP_h5 GAP_h10T

𝑉C Δ𝓍C 𝑉C Δ𝓍C 𝑉C Δ𝓍C 𝑉C Δ𝓍C
col row 10−12 [m3] 10−4 [m3] 10−12 [m3] 10−4 [m3] 10−12 [m3] 10−4 [m3] 10−12 [m3] 10−4 [m3]

1

1 10.18 4.67 7.5 4.22 11.55 4.87 121.01 10.66
2 9.85 4.62 6.04 3.92 7.62 4.24 142.77 11.26
3 8.4 4.38 4.7 3.61 8.15 4.34 141.85 11.24
4 9.74 4.6 5.31 3.76 3.34 3.22 179.9 12.16
5 8.4 4.38 4.7 3.61 8.15 4.34 199.73 12.59
6 9.85 4.62 6.04 3.92 7.62 4.24 258.38 13.72
7 10.18 4.67 7.5 4.22 11.55 4.87 147.18 11.37

2

1 2.66 2.98 2.14 2.78 6.1 3.94 25.95 6.38
2 9.25 4.52 5.41 3.78 0.97 2.13 100.49 10.02
3 11.08 4.8 5.46 3.79 8.47 4.39 145.67 11.34
4 8.38 4.38 5.06 3.7 8 4.31 233.95 13.28
5 11.08 4.8 5.46 3.79 8.47 4.39 119.17 10.6
6 9.25 4.52 5.41 3.78 0.97 2.13 39.98 7.37
7 2.66 2.98 2.14 2.78 6.1 3.94 46.59 7.75

3

1 8.94 4.47 5.42 3.78 10.16 4.67 113.74 10.44
2 15.12 5.33 8.77 4.44 8.99 4.48 189.66 12.38
3 24.26 6.24 9.78 4.61 11.66 4.89 102.02 10.07
4 19.89 5.84 8.47 4.39 11.73 4.9 147.39 11.38
5 24.26 6.24 9.78 4.61 11.66 4.89 195.02 12.49
6 15.12 5.33 8.77 4.44 8.99 4.48 164.46 11.8
7 8.94 4.47 5.42 3.78 10.16 4.67 40.47 7.4

4

1 14 5.19 8.24 4.35 15.44 5.37 95.73 9.86
2 23.69 6.19 13.34 5.11 13.67 5.15 152.94 11.52
3 38.01 7.24 14.87 5.3 17.73 5.62 212.16 12.85
4 31.17 6.78 12.88 5.05 17.84 5.63 187.01 12.32
5 38.01 7.24 14.87 5.3 17.73 5.62 145.29 11.33
6 23.69 6.19 13.34 5.11 13.67 5.15 198.5 12.57
7 14 5.19 8.24 4.35 15.44 5.37 57.45 8.31

5

1 12.69 5.03 9.05 4.49 21.32 5.97 213.71 12.88
2 21.46 5.99 14.66 5.27 18.87 5.74 230.2 13.2
3 34.47 7.01 16.37 5.47 24.48 6.26 103.18 10.1
4 28.31 6.57 14.2 5.22 24.62 6.27 246.33 13.51
5 34.47 7.01 16.37 5.47 24.48 6.26 76.68 9.15
6 21.46 5.99 14.66 5.27 18.87 5.74 216.01 12.93
7 12.69 5.03 9.05 4.49 21.32 5.97 148.28 11.4

6

1 12.69 5.03 9.05 4.49 21.32 5.97 248.01 13.54
2 21.46 5.99 14.66 5.27 18.87 5.74 227.17 13.15
3 34.47 7.01 16.37 5.47 24.48 6.26 118.71 10.59
4 28.31 6.57 14.2 5.22 24.62 6.27 195.2 12.5
5 34.47 7.01 16.37 5.47 24.48 6.26 352.29 15.22
6 21.46 5.99 14.66 5.27 18.87 5.74 193.37 12.46
7 12.69 5.03 9.05 4.49 21.32 5.97 209.99 12.81

7

1 12.69 5.03 9.05 4.49 21.32 5.97 84.16 9.44
2 21.46 5.99 14.66 5.27 18.87 5.74 209.58 12.8
3 34.47 7.01 16.37 5.47 24.48 6.26 157.96 11.65
4 28.31 6.57 14.2 5.22 24.62 6.27 118.74 10.59
5 34.47 7.01 16.37 5.47 24.48 6.26 147.84 11.39
6 21.46 5.99 14.66 5.27 18.87 5.74 157.92 11.65
7 12.69 5.03 9.05 4.49 21.32 5.97 178.7 12.13
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Table A.2: The temporal averaged total turbulence kinetic energy ⟨𝓀tot⟩
[m2/s2] at the 7×7 grid positions of the acoustic pipe simulations.

grid pos. AP_h10Re5300 AP_h10Re5300F AP_h5Re5300 AP_h10Re7400 RANS_h10Re5300
⟨𝓀tot⟩ ⟨𝓀tot⟩ ⟨𝓀tot⟩ ⟨𝓀tot⟩ ⟨𝓀tot⟩

col row [m2/s2] [m2/s2] [m2/s2] [m2/s2] [m2/s2]

1

1 0.16 0.63 0.67 0.68 3.93 × 10−2

2 5.81 × 10−2 0.15 9.46 × 10−2 0.13 2.1 × 10−2

3 3.24 × 10−2 3.12 × 10−2 6.15 × 10−2 6.67 × 10−2 1.88 × 10−2

4 2.58 × 10−2 2.68 × 10−2 3.97 × 10−2 5.14 × 10−2 1.68 × 10−2

5 3.19 × 10−2 3.8 × 10−2 6.27 × 10−2 8.98 × 10−2 1.88 × 10−2

6 0.12 5.37 × 10−2 0.28 0.34 2.1 × 10−2

7 0.61 0.41 0.46 1.25 3.98 × 10−2

2

1 1.1 1.2 5.75 2.56 1.36
2 1.3 1.38 5.34 3.3 2.69
3 1.09 4.5 8.71 10.04 1.79
4 8.15 × 10−2 0.12 1.95 0.24 0.1
5 3.7 4.96 2.37 9.47 1.07
6 0.85 0.85 1.81 1.42 1.26
7 0.75 0.83 1.88 1.58 0.96

3

1 2.71 3.47 14.21 6.93 1.63
2 4.33 5.61 18.28 11.67 4.32
3 3.88 3.9 26.25 8.07 3.3
4 1.94 3.93 31.28 8.07 0.16
5 5.83 6.63 5.59 12 2.82
6 1.49 1.43 2.49 2.21 1.63
7 1.18 1.09 2.66 1.89 1.12

4

1 7.37 7.13 18.86 13.27 2.78
2 6.71 6.03 19.37 11.96 3.8
3 5.65 6.17 16.98 12.13 1.22
4 7.04 6.13 9.88 11.54 3.53
5 4.5 3.4 4.87 6.95 2.24
6 2.08 1.48 3.76 3.21 1.83
7 1.58 1.12 3.18 2.28 1.33

5

1 4.63 3.62 8.51 7.24 2
2 4.64 3.98 9.3 7.35 2.19
3 4.63 4.16 10.51 8.28 3.05
4 4.97 4.4 10.15 8.68 3.11
5 3.98 3.46 7.84 7.16 2.44
6 2.81 2.34 6.04 4.53 2.07
7 2.08 1.63 3.9 2.99 1.52

6

1 2.77 2.17 6.09 4.15 1.21
2 2.72 2.3 7.45 4.54 1.78
3 2.9 2.7 9.12 5.79 2.61
4 3.53 3.25 10.19 6.37 3.27
5 3.45 3.15 9.03 6.43 2.77
6 3 2.47 7.26 5.46 2.26
7 2.2 1.54 4.71 3.58 1.63

7

1 1.38 1.11 4.7 2.1 0.91
2 1.5 1.31 5.52 2.57 1.13
3 1.7 1.52 6.57 3.17 1.37
4 1.97 1.75 6.83 3.8 1.92
5 1.94 1.84 6.41 3.83 2.18
6 1.67 1.63 5.29 3.15 1.88
7 1.27 1.12 3.53 2.48 1.42
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A Appendix

Table A.3: The temporal averaged resolved turbulence kinetic energy ⟨𝓀LES⟩
[m2/s2] and the temporal averaged SGS turbulence kinetic energy
⟨𝓀SGS⟩ [m2/s2] at the 7×7 grid positions of case AP_h10Re5300 and
case AP_h10Re5300F.

grid pos. AP_h10Re5300 AP_h10Re5300F
⟨𝓀LES⟩ ⟨𝓀SGS⟩ ⟨𝓀SGS⟩ / ⟨𝓀tot⟩ ⟨𝓀LES⟩ ⟨𝓀SGS⟩ ⟨𝓀SGS⟩ / ⟨𝓀tot⟩

col row [m2/s2] [m2/s2] [%] [m2/s2] [m2/s2] [%]

1

1 0.15 9.38 × 10−3 5.95 0.61 1.74 × 10−2 2.78
2 5.35 × 10−2 4.6 × 10−3 7.9 0.14 5.72 × 10−3 3.9
3 2.39 × 10−2 8.54 × 10−3 26.34 2.49 × 10−2 6.3 × 10−3 20.16
4 1.54 × 10−2 1.04 × 10−2 40.4 2.06 × 10−2 6.22 × 10−3 23.19
5 2.3 × 10−2 8.92 × 10−3 27.95 3.27 × 10−2 5.22 × 10−3 13.74
6 0.11 7.9 × 10−3 6.58 5.05 × 10−2 3.14 × 10−3 5.86
7 0.59 2.11 × 10−2 3.47 0.4 1.22 × 10−2 2.97

2

1 1.07 2.79 × 10−2 2.55 1.16 3.92 × 10−2 3.26
2 1.25 5.22 × 10−2 4.02 1.33 4.83 × 10−2 3.51
3 1.04 5.63 × 10−2 5.14 4.17 0.32 7.17
4 6.66 × 10−2 1.5 × 10−2 18.36 0.1 1.44 × 10−2 12.44
5 3.46 0.24 6.42 4.57 0.38 7.69
6 0.81 3.4 × 10−2 4.01 0.82 2.74 × 10−2 3.22
7 0.74 1.49 × 10−2 1.97 0.81 1.66 × 10−2 1.99

3

1 2.6 0.11 3.94 3.34 0.13 3.67
2 4.12 0.2 4.74 5.38 0.23 4.17
3 3.71 0.17 4.41 3.68 0.22 5.55
4 1.78 0.16 8.06 3.71 0.21 5.46
5 5.48 0.35 5.97 6.28 0.35 5.27
6 1.43 5.75 × 10−2 3.87 1.38 5.52 × 10−2 3.85
7 1.15 2.92 × 10−2 2.48 1.07 1.99 × 10−2 1.82

4

1 6.97 0.4 5.36 6.75 0.38 5.36
2 6.37 0.33 4.99 5.7 0.33 5.42
3 5.35 0.29 5.19 5.9 0.26 4.25
4 6.69 0.34 4.87 5.89 0.24 3.96
5 4.26 0.25 5.47 3.24 0.16 4.73
6 1.98 9.59 × 10−2 4.61 1.41 7.15 × 10−2 4.81
7 1.54 4.33 × 10−2 2.74 1.08 3.56 × 10−2 3.18

5

1 4.44 0.19 4.06 3.45 0.16 4.53
2 4.41 0.23 4.87 3.78 0.2 4.94
3 4.36 0.26 5.72 3.97 0.19 4.58
4 4.73 0.23 4.72 4.23 0.17 3.93
5 3.78 0.2 4.97 3.31 0.15 4.45
6 2.7 0.11 3.79 2.22 0.11 4.84
7 1.99 8.35 × 10−2 4.02 1.56 6.3 × 10−2 3.87

6

1 2.68 9.46 × 10−2 3.41 2.08 8.45 × 10−2 3.9
2 2.59 0.13 4.77 2.19 0.11 4.71
3 2.74 0.16 5.67 2.57 0.12 4.54
4 3.37 0.16 4.64 3.13 0.13 3.86
5 3.29 0.16 4.59 3.02 0.13 4.01
6 2.87 0.12 4.16 2.37 0.1 4.19
7 2.12 7.82 × 10−2 3.56 1.47 6.62 × 10−2 4.31

7

1 1.34 4.15 × 10−2 3.02 1.08 3.32 × 10−2 2.98
2 1.43 5.97 × 10−2 3.99 1.25 5.55 × 10−2 4.24
3 1.63 7.51 × 10−2 4.41 1.46 5.54 × 10−2 3.66
4 1.89 7.4 × 10−2 3.76 1.69 5.7 × 10−2 3.26
5 1.87 6.82 × 10−2 3.52 1.77 6.49 × 10−2 3.53
6 1.63 4.65 × 10−2 2.78 1.58 5.75 × 10−2 3.52
7 1.23 3.49 × 10−2 2.76 1.09 3.11 × 10−2 2.77
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Table A.4: The resulting time-scales 𝓉 [s] and corresponding frequencies 𝒻 [Hz]
at the 7×7 grid positions of case AP_h10Re5300.

grid pos. time-scales frequencies
𝓉ST 𝓉𝓀𝜀 𝓉SW 𝓉𝒦 𝒻ST 𝒻𝓀𝜀 𝒻SW 𝒻𝒦

col row [s] [s] [s] [s] [Hz] [Hz] [Hz] [Hz]

1

1 1.69 × 10−3 6.92 × 10−2 3.08 × 10−2 1.49 × 10−3 591.76 14.46 32.43 673.28
2 2.75 × 10−3 0.14 5.08 × 10−2 3.14 × 10−3 364.06 7.16 19.69 318.86
3 2.22 × 10−3 0.12 6.8 × 10−2 5.4 × 10−3 449.54 8.15 14.71 185.24
4 2.3 × 10−3 0.11 7.63 × 10−2 7.07 × 10−3 435.32 9.29 13.11 141.38
5 2.22 × 10−3 9.9 × 10−2 6.86 × 10−2 5.04 × 10−3 451.39 10.1 14.58 198.42
6 2.11 × 10−3 6.06 × 10−2 3.54 × 10−2 1.64 × 10−3 473.77 16.5 28.28 609.74
7 1.56 × 10−3 3.12 × 10−2 1.57 × 10−2 7.23 × 10−4 640.65 32 63.72 1 382.52

2

1 1.62 × 10−3 1.72 × 10−2 1.17 × 10−2 4.67 × 10−4 616.28 58.16 85.5 2 143.61
2 2.48 × 10−3 7.9 × 10−3 1.07 × 10−2 4.95 × 10−4 402.98 126.57 93.09 2 020.63
3 2.23 × 10−4 8.86 × 10−2 1.17 × 10−2 5.66 × 10−4 4 480.35 11.28 85.4 1 766.79
4 2.29 × 10−3 8.91 × 10−2 4.29 × 10−2 3.7 × 10−3 436.18 11.22 23.32 270.04
5 1.92 × 10−4 1.97 × 10−2 6.37 × 10−3 2.79 × 10−4 5 206.81 50.65 157.03 3 588.81
6 2.96 × 10−3 1.02 × 10−2 1.33 × 10−2 6.13 × 10−4 337.64 98.33 75.2 1 632.4
7 2.03 × 10−3 3.42 × 10−2 1.41 × 10−2 6.46 × 10−4 493.13 29.2 70.87 1 547.43

3

1 2.52 × 10−3 3.15 × 10−3 7.44 × 10−3 3.12 × 10−4 396.08 317.88 134.43 3 205.92
2 9.41 × 10−4 6.1 × 10−3 5.89 × 10−3 2.92 × 10−4 1 062.5 164.03 169.83 3 425.95
3 3.95 × 10−4 2.29 × 10−2 6.22 × 10−3 3.53 × 10−4 2 534.55 43.6 160.85 2 831.88
4 1.07 × 10−3 9.14 × 10−3 8.79 × 10−3 5.06 × 10−4 933.47 109.38 113.75 1 975.36
5 5.5 × 10−4 7.82 × 10−3 5.07 × 10−3 2.86 × 10−4 1 817.97 127.94 197.12 3 501.38
6 5.88 × 10−3 4.86 × 10−3 1 × 10−2 5.86 × 10−4 170.13 205.57 99.59 1 706.75
7 4.94 × 10−3 1 × 10−2 1.13 × 10−2 6.13 × 10−4 202.28 99.86 88.53 1 630.14

4

1 9.98 × 10−4 2.24 × 10−3 4.51 × 10−3 1.94 × 10−4 1 001.59 447.4 221.62 5 145.97
2 7.99 × 10−4 5.45 × 10−3 4.73 × 10−3 2.61 × 10−4 1 251.35 183.52 211.44 3 824.78
3 1.84 × 10−3 3.2 × 10−3 5.15 × 10−3 3.1 × 10−4 544.78 312.07 194.05 3 224.8
4 8.92 × 10−4 5.85 × 10−3 4.62 × 10−3 2.82 × 10−4 1 121.57 170.88 216.59 3 542.26
5 1.27 × 10−3 5.75 × 10−3 5.77 × 10−3 3.55 × 10−4 786.31 173.9 173.27 2 813.68
6 5.25 × 10−3 2.75 × 10−3 8.49 × 10−3 4.57 × 10−4 190.59 363.09 117.74 2 189.66
7 6.47 × 10−3 5.68 × 10−3 9.74 × 10−3 5.56 × 10−4 154.68 176.04 102.64 1 798.18

5

1 3.96 × 10−3 1.48 × 10−3 5.69 × 10−3 2.73 × 10−4 252.52 674.29 175.71 3 668.98
2 4.23 × 10−3 1.4 × 10−3 5.69 × 10−3 3.01 × 10−4 236.38 714.73 175.89 3 324.23
3 2.08 × 10−3 3.04 × 10−3 5.69 × 10−3 3.39 × 10−4 479.82 329.41 175.66 2 952.53
4 1.44 × 10−3 4.92 × 10−3 5.49 × 10−3 3.24 × 10−4 694.09 203.3 182.05 3 088.27
5 1.87 × 10−3 5.04 × 10−3 6.14 × 10−3 3.84 × 10−4 533.85 198.58 162.88 2 606.49
6 3.73 × 10−3 3.49 × 10−3 7.31 × 10−3 3.91 × 10−4 267.89 286.5 136.82 2 555.91
7 3.89 × 10−3 3.37 × 10−3 8.5 × 10−3 4.05 × 10−4 256.78 296.79 117.67 2 467.95

6

1 4.31 × 10−3 2.8 × 10−3 7.35 × 10−3 3.57 × 10−4 231.92 357.07 135.97 2 802.19
2 5.85 × 10−3 1.78 × 10−3 7.43 × 10−3 3.94 × 10−4 170.92 562.97 134.64 2 536.71
3 2.86 × 10−3 3.51 × 10−3 7.19 × 10−3 4.25 × 10−4 349.55 284.62 139.12 2 354.08
4 2.07 × 10−3 5.09 × 10−3 6.52 × 10−3 3.91 × 10−4 483.7 196.44 153.46 2 558.51
5 2.1 × 10−3 5.92 × 10−3 6.59 × 10−3 4.23 × 10−4 475.16 169.05 151.65 2 364.44
6 3.29 × 10−3 4.4 × 10−3 7.08 × 10−3 4.34 × 10−4 303.81 227.19 141.34 2 306.77
7 3.73 × 10−3 4.62 × 10−3 8.26 × 10−3 4.36 × 10−4 268.14 216.28 121.09 2 295.21

7

1 1.02 × 10−2 3.17 × 10−3 1.04 × 10−2 5.47 × 10−4 98.42 315.01 95.83 1 827.18
2 5.8 × 10−3 5.1 × 10−3 1 × 10−2 6.07 × 10−4 172.31 196 99.84 1 648.54
3 4.62 × 10−3 6.27 × 10−3 9.39 × 10−3 6.32 × 10−4 216.3 159.49 106.54 1 582.58
4 4.01 × 10−3 7.12 × 10−3 8.73 × 10−3 5.77 × 10−4 249.35 140.38 114.54 1 732.73
5 4.84 × 10−3 7.99 × 10−3 8.8 × 10−3 6.49 × 10−4 206.78 125.17 113.6 1 541.19
6 4.71 × 10−3 1.39 × 10−2 9.47 × 10−3 7.47 × 10−4 212.11 72.19 105.63 1 339.4
7 8.4 × 10−3 6.87 × 10−3 1.09 × 10−2 6.99 × 10−4 118.99 145.61 91.87 1 429.86
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Table A.5: The intensity of the centered aeroacoustic source terms Ω̃′
𝑖,RMS

[m/s2] at the 7×7 grid positions of case AP_h10Re5300 and case
AP_h10Re5300F.
grid pos. AP_h10Re5300 AP_h10Re5300F

Ω̃′
𝑥,RMS Ω̃′

𝑦,RMS Ω̃′
𝑧,RMS Ω̃′

𝑥,RMS Ω̃′
𝑦,RMS Ω̃′

𝑧,RMS
col row [m/s2] [m/s2] [m/s2] [m/s2] [m/s2] [m/s2]

1

1 159.46 85.18 158.88 481.76 260.49 330.73
2 29.85 20.07 47.74 115.41 89 285.96
3 16.35 12.83 14.44 15.6 10.79 16.88
4 7.11 8.96 9.4 9.99 8.05 9.82
5 19.39 12.66 13.42 20.68 14.01 14.52
6 142.6 71.54 282.33 41.83 25.67 67.33
7 741.69 386.38 521.94 374.56 241.15 329.89

2

1 930.95 860.62 1 026 1 312.93 1 257.98 1 376.76
2 911.97 989.35 980.93 1 231.61 1 315.79 1 306.94
3 817.49 549.48 1 231.51 5 227.1 4 690.38 5 780.91
4 33.82 53.21 50.92 68.15 130.2 116.06
5 4 966.26 3 481.9 4 721.93 5 443.08 5 499.87 6 462.71
6 608.77 730.58 743.89 730.64 824.25 867.86
7 633.39 552.93 736.8 771.37 704.63 890.54

3

1 2 463.17 2 146.01 2 433.99 3 233.16 3 202.59 3 589.46
2 3 475.55 3 003.16 3 132.1 5 625.18 5 209.88 5 443.85
3 2 594.8 2 626.2 3 042.14 3 859.64 3 755.92 5 264.32
4 1 996.62 1 571.71 3 189.46 5 152.08 4 051.62 6 104.06
5 3 925.39 3 332.22 4 265.02 6 411.36 4 673.94 5 488.55
6 1 335.96 1 066.2 1 343.02 1 454.58 1 508.25 1 405.13
7 773.67 729.13 947.42 706.84 667.79 873.52

4

1 6 636.81 6 061.4 6 180.3 6 432.99 6 169.91 6 512.94
2 4 149.57 3 957.47 4 531.61 4 672.46 4 848.98 5 869.56
3 2 942.61 2 744.35 4 344.53 4 004.44 3 978.74 5 063.42
4 4 136.84 3 436.18 4 672.74 5 283.87 4 087.44 5 008.07
5 2 937.09 2 137.13 3 360 2 853.15 2 801.05 3 331.36
6 1 388.79 1 340.82 1 799.9 1 153.85 1 152.83 1 296.31
7 1 198.04 1 135.43 1 329.92 794.65 833.5 965.5

5

1 3 331.38 3 406.65 3 484.26 2 757.48 2 981.02 3 206.02
2 2 678.67 2 777.82 3 353.35 2 743.93 2 676.55 3 400.41
3 2 553.65 2 415.06 3 277.45 2 853.82 2 640.98 3 553.44
4 3 301.78 2 714.49 3 355.3 3 587.39 3 064.12 3 660.94
5 2 348.25 2 345.21 2 737.03 2 987.87 2 670.28 2 750.55
6 1 847.18 1 879.55 2 149.61 1 808.29 1 731.73 1 715.41
7 1 616.72 1 509.46 1 925.46 1 649.34 1 513.32 1 585.28

6

1 1 847.27 1 741.01 2 186.18 1 515.11 1 456.96 1 892.03
2 1 881.23 1 695.85 2 102.11 1 709.5 1 603.7 1 886.19
3 1 713.06 1 588.98 2 039.52 1 811.59 1 845.45 2 057.73
4 1 972.29 1 715.41 2 303.57 1 992.96 2 005.63 2 362.65
5 1 970.02 1 913.05 1 884.06 2 190.31 2 051.88 2 191.22
6 1 632.06 1 804.22 1 823.59 1 723.15 2 085.91 1 848.17
7 1 400.94 1 549.62 1 431.3 1 589.49 1 706.78 1 560.03

7

1 781.81 746.77 1 082.82 764.15 716.66 845.75
2 825.86 826.33 908.11 836.35 879.03 955.28
3 865.07 935.74 1 025.56 897.19 797.89 932.64
4 1 026.92 954.01 1 192.09 1 039.04 959.51 1 121.71
5 915.46 959.76 996.3 1 041.36 1 026.39 1 046.67
6 748.13 738.27 754.91 911.17 1 025.69 988.26
7 717.01 736.76 814.07 744.37 707.21 826.81
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Table A.6: The intensity of the centered aeroacoustic source terms Ω̃′
𝑖,RMS

[m/s2] at the 7×7 grid positions of case AP_h10Re7400 and case
AP_h5Re5300.
grid pos. AP_h10Re7400 AP_h5Re5300

Ω̃′
𝑥,RMS Ω̃′

𝑦,RMS Ω̃′
𝑧,RMS Ω̃′

𝑥,RMS Ω̃′
𝑦,RMS Ω̃′

𝑧,RMS
col row [m/s2] [m/s2] [m/s2] [m/s2] [m/s2] [m/s2]

1

1 835.41 643.26 701.81 555.11 517.27 504.51
2 105.34 88.74 113.88 138.68 74.79 103.66
3 46.42 49.96 52.78 27.39 18.27 24.88
4 18.19 20.27 22.79 12.7 13.99 18.66
5 51.49 40.74 46.04 23.94 19.56 34.73
6 456.99 462.31 645.22 269.17 185.24 210.17
7 1 264.93 1 020.64 1 348.81 408.24 285.58 648.88

2

1 3 008.57 2 972.71 3 300.15 6 330.86 5 500.27 6 793.06
2 2 588.16 3 043.72 2 880.52 6 025.82 5 555.29 6 507.33
3 11 254.5 9 671.92 12 712.6 7 206.53 10 666.3 8 271.67
4 179.93 304.2 194.95 1 272.03 2 636.86 2 877.61
5 12 387.2 9 838.07 12 511.9 1 992.83 2 663.39 2 380.89
6 1 023.62 1 070.1 1 235.28 1 364.66 1 386.24 1 542.72
7 1 211.43 1 312.12 1 556.49 1 449.43 1 532.81 1 884.74

3

1 7 459.79 7 239.03 7 891.72 12 189.9 12 084.5 12 152
2 11 324 10 567.2 9 898.5 16 718.2 17 054.7 15 336.8
3 7 595.34 8 302.53 9 125.54 19 814.3 20 197.5 22 252.2
4 8 846.06 7 097.17 10 852.4 25 681.9 21 218.1 29 925.4
5 11 971.7 10 270.8 12 398.9 5 891.28 6 296.56 7 623.98
6 1 922.12 2 062.09 2 364.89 1 801.12 1 948.54 2 015.85
7 1 404.87 1 356.04 1 714.67 1 803.82 1 680.48 2 294.15

4

1 13 347.2 12 389.1 12 728.6 16 162.1 15 482.4 15 278.7
2 8 995.25 9 214.17 10 982.1 14 459.2 14 039.9 18 315.5
3 7 980.58 7 091.04 10 031.5 12 127.8 11 493.1 14 335.8
4 8 698.98 7 817.35 9 440.58 8 526.26 7 985.56 9 414.8
5 5 310.76 5 090.82 6 497.84 3 429.34 3 328.12 4 363.51
6 2 439.39 2 691.76 3 053.44 2 479.56 2 573.89 2 753.93
7 1 467.42 1 781.09 2 058.78 2 014.55 2 048.98 2 189.33

5

1 5 966.86 5 620.07 6 808.16 6 440.27 6 278.77 6 962.07
2 5 237.87 5 187.77 6 639.22 6 822.64 6 929.33 8 442.23
3 6 023.43 5 168.63 6 719.24 8 084 7 240.26 8 287.17
4 6 121.83 5 351.33 6 673.69 7 177.85 7 142.18 8 274.23
5 5 370.1 4 905.89 5 228.81 5 021.14 4 854.62 5 365.02
6 2 730.75 3 186.78 3 402.21 4 507.79 4 532.75 5 032.71
7 2 032.04 2 338.18 2 386.89 2 729.7 2 852 3 398.33

6

1 3 384.81 3 526.2 3 904.68 4 326.48 4 217.76 5 211.16
2 3 262.93 3 434.5 4 330.58 5 054.52 4 934.54 6 305.6
3 4 111.69 3 971.12 4 982.72 6 223.62 5 882.36 7 390.1
4 4 442.51 4 286.93 4 362.18 7 120.82 6 270.04 7 261.66
5 4 172.52 4 408.37 4 092.35 6 171.27 5 619.01 6 056.83
6 3 776.41 4 019.18 3 825.11 5 439.34 5 318.65 5 729.09
7 2 450.61 2 340.46 2 480.69 3 311.43 3 241.42 3 340.36

7

1 1 573.01 1 646.57 2 177.89 2 697.89 2 532.87 3 520.18
2 1 639.53 1 658.08 2 066.11 3 324.22 3 412.11 3 872.39
3 2 115.22 2 147.58 2 284.53 3 419.48 3 613.28 4 240.95
4 2 500.52 2 292.19 2 478.74 3 932.42 3 678.7 4 291.81
5 2 714.49 2 404.79 2 817.33 3 528.11 3 378.9 3 875.55
6 1 998.28 1 980.33 1 910.83 3 072.76 3 071.43 3 055.03
7 1 684.03 1 657.88 1 927.26 2 399.14 2 047.65 2 362.02
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A Appendix

Table A.7: The intensity of the centered aeroacoustic source terms Ω̃′fa,ma
𝑖,LES,RMS

[m/s2] at the 7×7 grid positions of case AP_h10Re5300.
grid pos. moving average Fourier average

Ω̃′ma
𝑥,LES,RMS Ω̃′ma

𝑦,LES,RMS Ω̃′ma
𝑧,LES,RMS Ω̃′fa

𝑥,LES,RMS Ω̃′fa
𝑦,LES,RMS Ω̃′fa

𝑧,LES,RMS
col row [m/s2] [m/s2] [m/s2] [m/s2] [m/s2] [m/s2]

1

1 157.62 80.56 158.3 153.3 78.36 151.19
2 29.66 20.06 48.35 28.74 19.91 46.98
3 16.39 12.82 14.38 16.21 12.74 14.33
4 7.11 9.06 9.33 7.06 8.95 9.19
5 18.79 12.69 13.14 18.56 12.48 13.07
6 137.37 70.96 271.63 132.86 69.58 261.45
7 540.27 337.16 395.93 449.15 309.94 342.99

2

1 898.73 807.5 984.63 865.49 778.44 952.41
2 857.57 953.86 940.95 827.84 914.43 899.51
3 762.03 507.75 1 135.98 735.74 488.1 1 090.05
4 33.68 51.2 48.72 33.27 50.09 47.7
5 4 663.84 3 027.61 4 295.09 4 424.53 2 746.63 3 908.49
6 563.31 693.48 703.94 539.55 653.18 676.21
7 612.25 536.87 692.32 585.82 512.95 671.32

3

1 2 309.05 2 078.43 2 347.36 2 208.39 1 949.06 2 281.59
2 3 402.83 2 911.55 2 934.24 3 284.47 2 772.46 2 821.75
3 2 457.37 2 485.65 2 930.71 2 343.79 2 376.13 2 726.16
4 1 913.88 1 500.46 3 078.58 1 819.68 1 441.83 2 876.54
5 3 709.51 3 030.91 4 099.12 3 491.08 2 780.29 3 871.62
6 1 019.04 1 018.38 1 196.85 883.1 972.15 1 125.27
7 681.3 691 897 640.86 658.42 867.46

4

1 6 180.91 5 780.26 6 005.58 5 763.1 5 361.43 5 812.86
2 3 903.23 3 639.71 4 397.18 3 577.47 3 376.37 4 211.97
3 2 712.57 2 558.34 4 138.84 2 520.57 2 398.07 3 912.88
4 3 910.77 3 220.79 4 431.29 3 632.15 3 022.31 4 155.49
5 2 802.96 2 029.17 3 293.2 2 574.07 1 934.49 3 140.84
6 1 259.83 1 257.3 1 726.8 1 193.55 1 184.92 1 611.41
7 1 140.42 1 088.13 1 287.09 1 094.73 1 047.11 1 245.92

5

1 3 159.13 3 267.17 3 397.89 3 014.49 3 149.83 3 315.68
2 2 551.26 2 627.3 3 220.56 2 421.36 2 503.81 3 120.29
3 2 382.65 2 305.17 3 128.31 2 231.51 2 191.02 3 020.32
4 2 983.72 2 560.3 3 229.91 2 840.53 2 439.28 3 106.71
5 2 198.73 2 191.58 2 604 2 049.71 2 049.17 2 472.18
6 1 651.98 1 748.41 2 012.22 1 552.52 1 673.83 1 960.78
7 1 473.25 1 421.91 1 859.81 1 410.99 1 346.9 1 814.3

6

1 1 798.81 1 686.38 2 121.76 1 726.44 1 620.47 2 062.8
2 1 800.4 1 637.58 2 069.64 1 725.87 1 589.04 2 022.29
3 1 641.59 1 517.75 1 973.33 1 549.89 1 446.26 1 884.83
4 1 815.55 1 634.99 2 152.01 1 712.41 1 540.98 2 069.6
5 1 742.23 1 761.35 1 764.27 1 585.03 1 645.46 1 650.14
6 1 516.73 1 632.04 1 699.95 1 407.93 1 480.88 1 604.29
7 1 328.22 1 402.75 1 347.89 1 249.77 1 267.19 1 277.93

7

1 767.59 718.27 1 058.47 748.91 705.47 1 035.66
2 797.4 812.4 887.27 776.51 786.61 871.54
3 818.61 893.82 992.96 783.52 866.11 972.54
4 922.66 904.65 1 116.07 850.03 862.28 1 073.24
5 857.88 893.95 935.59 816.75 849.34 898.94
6 655.9 702.56 719.55 617.7 680 693.15
7 664.21 704.18 776.07 625.58 674.88 754
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Table A.8: The intensity of the cross-terms Λ̃𝑖,RMS [m/s2] at the 7×7 grid po-
sitions of case AP_h10Re5300.

grid pos. AP_h10Re5300
Λ̃𝑥,RMS Λ̃𝑦,RMS Λ̃𝑧,RMS

col row [m/s2] [m/s2] [m/s2]

1

1 270.19 241.73 372
2 147.84 152.98 201.14
3 109.92 170.49 147.25
4 100.8 137.31 113.27
5 135.83 133.69 127.29
6 319.23 240.08 319.03
7 334.79 287.17 625.1

2

1 1 271.29 1 110.09 1 091.08
2 974.8 824.73 986.08
3 2 284.96 3 543.16 4 431.31
4 338.27 869.1 877.15
5 5 503.47 4 020.76 7 566.51
6 827.66 883.15 766.79
7 678.75 625.85 617.72

3

1 2 181 1 755 1 850.57
2 1 295.91 1 014.95 1 836.57
3 5 180.17 5 866.88 6 958.04
4 4 091.18 4 699.44 4 684.4
5 910.47 859.01 2 746.89
6 1 295.87 1 108 1 037.18
7 1 228.33 1 046.51 1 079.02

4

1 3 938.2 2 898.9 3 185.21
2 5 730.49 5 698.93 5 413.45
3 5 124.08 5 617.08 6 158.38
4 3 322.81 2 731.48 3 695.93
5 762.16 577.06 1 527.73
6 1 610.35 1 182.02 1 457.65
7 1 450.97 1 172.05 1 284.91

5

1 4 010.36 3 850.26 3 932.26
2 4 700.23 4 796.4 4 590.55
3 4 327.63 4 136.22 4 132.73
4 2 368.22 1 904.56 2 338.26
5 300.71 387.67 806.8
6 1 347.21 1 155.46 1 053
7 1 499.79 1 332.08 1 442.23

6

1 3 549.25 3 149.53 3 184.45
2 3 444.15 3 179.73 3 139.55
3 3 102.95 2 727.04 2 693.83
4 2 039.9 1 754.54 1 925.41
5 841.97 563.12 786.38
6 215.34 289.88 420.2
7 599.97 482.32 434.54

7

1 2 130.27 2 053.14 2 158.87
2 2 058.19 1 869.08 1 761.53
3 1 909.38 1 628.13 1 670.92
4 1 566.68 1 540.62 1 422.29
5 1 011.62 971.16 821.95
6 549.47 600.01 481.92
7 511.6 402.23 372.43
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Table A.9: The intensity of the aeroacoustic sources ΠRMS [Pa/s] at the 7×7
grid positions of case AP_h10Re5300, case AP_h10Re5300F and case
CAA_h10Re5300.

grid pos. AP_h10Re5300 CAA_h10Re5300
Π̃RMS ΠRMS

col row [Pa/s] [Pa/s]

1

1 49.14 42.71
2 101.52 18.23
3 87.65 81.88
4 114.12 87.58
5 94.55 57.18
6 106.37 30.76
7 104.42 55.52

2

1 766.62 1 832.68
2 472.15 370.94
3 1 776.05 1 473.41
4 393.81 228.32
5 2 514.09 453.5
6 360.72 325.09
7 461.46 191.96

3

1 646.78 564.38
2 457.63 982.49
3 3 353.96 1 302.66
4 447.51 257.46
5 540.97 91.05
6 233.09 30.32
7 222.77 3.91

4

1 2 685.12 1 776.75
2 2 627.27 1 077.21
3 1 081.09 356.27
4 602.95 377.57
5 399.22 33.11
6 234.83 25.54
7 322.39 23.97

5

1 1 261.26 404.76
2 1 074.12 456.02
3 1 118.01 468.16
4 999.09 178.29
5 1 029.9 161.26
6 910.2 120.27
7 828.59 95.78

6

1 592.51 119.73
2 481.86 172.03
3 494.24 313.49
4 526.17 368.28
5 563.2 323.16
6 590.02 394.08
7 609.07 293.13

7

1 102.2 112.3
2 79.08 131.89
3 68.77 179.55
4 87.07 240.36
5 133.89 281.76
6 201.17 297.57
7 181.64 218.46
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