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ABSTRACT 

In this thesis powder compaction is modeled by means of two different particle-based methods. 

The discrete element method in this work is used to model the filling behavior of powder during 

the dosator process. In this process the powder is mainly compacted due to rearrangement of 

the particles. Cohesive powders form loose packed powder beds which are far more compressed 

during processing compared to free-flowing powder which results in a different qualitative 

filling behavior. 

The multi-particle finite element method is used to model powder compaction with deformable 

spherical particles which are compacted up to a relative density of 0.95. The high computational 

costs of this method are reduced by introducing an efficient representative volume element 

which allows to compute the homogenized stress and strain of a small sample of compacted 

powder. Based on the stress and the strain it is possible to determine the mechanical properties 

such as the elastic constants and the yield strength of the compacted powder. An extensive 

parameter study demonstrates the convergence behavior of the model with respect to the mesh 

fineness and the number of particles in the representative volume element as well as the time 

step size and the mass scaling of the explicit solver. A second parameter study is performed to 

describe the mechanical properties of the powder as function of the contact cohesion strength, 

the strain path and the relative density. 

The contact cohesion is important to get a solid material and it governs the mechanical 

properties for tension load. The anisotropy of the mechanical properties is correlated with the 

anisotropy of the strain path. The elastic constants and the yield strength increase with the 

relative density of the powder. Analytical regression curves are defined which correlate the 

model parameters and the mechanical properties. In this way it is possible to describe the 

continuous distribution of the material properties in a macroscopic model of a heterogeneous 

deformed part.   
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KURZFASSUNG 

In dieser Arbeit wird Pulverkompaktierung mit zwei partikelbasierte Methoden modelliert. 

Die Diskrete-Elemente-Methode wird verwendet um den Dosator Prozess zu modellieren, bei 

welchem das Pulver hauptsächlich durch Umordnung der Partikel kompaktiert wird. Dabei 

bilden kohäsive Pulver lose Pulverpackungen, welche während des Prozesses wesentlich 

stärker komprimiert werden als freifließende Pulver und wodurch sich ein qualitativ 

unterschiedliches Füllverhalten ergibt. 

Die Multi-Partikel-Finite-Elemente-Methode wird zur Modellierung von Pulverkompaktierung 

verformbarer, kugelförmiger Partikel verwendet, die zu einer relativen Dichte von maximal 

0.95 kompaktiert werden. Der hohe Rechenaufwand dieser Methode wird durch ein effizientes 

repräsentatives Volumenelement reduziert, welches die homogenisierte Spannung und 

Dehnung einer kleinen Probe berechnet. Darauf basierend können mechanische Eigenschaften 

wie die Elastizitätskonstanten und die Fließfestigkeit des Pulvers bestimmt werden. Um das 

Konvergenzverhalten des Modells bezüglich der Netzfeinheit und Anzahl der Partikel sowie 

des Zeitschrittes und der Massenskalierung des expliziten Lösers zu demonstrieren wird eine 

umfassende Parameterstudie durchgeführt. In einer weiteren Parameterstudie werden die 

mechanischen Eigenschaften als Funktion der Kontaktkohäsion, des Dehnungspfades und der 

relativen Dichte bestimmt. 

Die Kontaktkohäsion wird für die Modellierung eines festen Materials benötigt und ist für die 

mechanischen Eigenschaften unter Zugbelastung entscheidend. Die Anisotropie der 

mechanischen Eigenschaften korreliert mit der Anisotropie des Dehnungspfades. Die 

Zahlenwerte der mechanischen Eigenschaften nehmen mit der relativen Dichte des Pulvers zu. 

Analytische Regressionskurven geben den Zusammenhang zwischen Modellparametern und 

mechanischen Eigenschaften an, wodurch kontinuierliche Verteilungen von mechanischen 

Eigenschaften in heterogen verformten Bauteilen beschrieben werden können.  
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1 Introduction 

The thesis at hand consists of three self-contained papers which are presented in sections 2 to 

4. This introduction gives a motivation of these three papers which all deal with modeling 

powder compaction. Compaction of powder is an important issue during processing of bulk 

materials. During compaction the bulk density of the powder increases, while the flowability 

decreases. This may be disadvantageous in some cases as for example compacted powder inside 

a hopper can inhibit hopper outflow. On the other hand, in some cases highly compacted powder 

is desired e.g. during tableting, during production of green bodies before sintering or during 

production of food or fuel pellets. 

To get a basic idea about powder compaction we have a look at the compaction of powder in a 

container (see Figure 1). Starting from a loose packing in picture (A) the particles are settled 

due to gravity in (B) and (C). The packing density of the particles inside the container after 

settling depends on the size and shape of the particles and the interaction forces between the 

particles as it is discussed in section 2 of this thesis. After settling a lid is inserted at the top of 

the container and starts to compress the powder in (D). Depending on the initial packing density 

of the powder, densification first takes place solely by rearrangement of the particles inside the 

powder. At some point particles are not able to rearrange anymore and they start to deform to 

allow more compaction as it is shown in (E) and (F). The change of the color from blue to red 

describes the increasing local stress inside the particles. If the particles are compressed further, 

then the shape of the particles changes dramatically as can be seen in (G) to (I). Depending on 

the material properties the particles can deform plastically as it is shown in Figure 1 or they can 

break in case of a brittle material. 
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Figure 1: Compaction of powder inside a container 

  



6 

Based on the observations in Figure 1 the two different approaches considered in this thesis are 

justified: 

If the forces acting on the particles are low and the particles are only slightly deformed as it is 

shown in Figure 1 (A) to (E) then the discrete element method DEM can be used to model the 

flow behavior of the powder. DEM is a very efficient method to model a high number of 

particles and to track their position during powder processing. In section 2 the DEM method is 

used to model the dosator filling process with up to 3.5 million particles. During the dosator 

process the powder is compacted only slightly to obtain a stable powder plug which is filled 

into a capsule. 

If the forces acting on the particles are very high as it can be seen in Figure 1 (F) to (I) then the 

change of the particle shape and the formation of contact area have to be considered in the 

model. In section 3 and 4 of this thesis the multi-particle finite element method MPFEM is used 

to model the compaction of powders for high packing densities. With this method the 

deformation of each particle is considered in addition to the interaction of the particles. The 

drawback of this method is the high computational effort which limits the number of particles 

in the model to several hundreds. In contrast to the illustrated process in Figure 1 with a low 

number of particles , to describe real processes it is necessary to model millions or even billions 

of particles. 

Since it is impossible to model a real process considering all relevant microstructural properties 

of the powder, the powder is described preferentially as a continuum during powder 

compaction. The transition from a micromechanical model to a continuum model is called 

homogenization and is shown in Figure 2. In the homogenized model no single particles are 

considered and the material is smeared out over the whole volume of the powder part (see 

Figure 2 right).  

 



7 

 

 

 

Figure 2: Transition from a micromechanical model to a continuum model 

 

To describe the deformation and a possible failure of the compacted powder in a continuum 

model it is necessary to have a suitable material model including several mechanical material 

properties. At low stresses the powder deforms elastically (after unloading the compacted 

powder returns in its initial shape). The respective elasticity model requires two independent 

elasticity constants at minimum in case of an isotropic material and up to 21 constants for a 

general anisotropic material [1]. If the stress exceeds the yield stress of the powder, then the 

powder deforms plastically (after unloading the compacted powder does not return in its initial 

shape). To be able to describe yielding of powder for general load cases it is necessary to define 

a yield surface. Among others, the Drucker-Prager/Cap model is one of the most used models 

for describing the yield surface of powders [2]. All material parameters needed for a continuum 

model of a powder are usually found during diverse experimental tests of the compacted 

powder. The drawback of experiments is that they are very laborious since many samples are 

necessary as the material properties of the powder change dramatically during compaction. At 

the beginning of the compaction the powder is free flowing while it is completely solid after 

compaction. Furthermore, experiments give only limited insight into the physics of the process 

and the gain of process understanding is therefore limited. Hence, the representative volume 

element RVE of deformable particles is introduced in section 3. The RVE is useful to determine 

Homogenization 
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the mechanical properties based on a micromechanical model consisting of a low number of 

particles. In this way it is possible to apply the knowledge gained from a micromechanical 

model to a macroscopic model of a compacted powder part. 

 frictionless walls frictional walls 

 

  

Figure 3: Pressure distribution inside a container with frictionless and frictional walls 

 

Another important issue of powder modeling is the sensitivity of the powder properties to the 

compaction conditions of the powder. Unfortunately, the compaction conditions cannot be 

assumed to be uniform for a real powder part as can be seen for the pressure distribution in 

Figure 3 right. Furthermore, it is supposed to have anisotropic material properties in case of 

anisotropic compaction conditions. As the powder in Figure 1 is just compressed in one vertical 

direction it is likely to have different material properties in vertical and horizontal direction. 

This issue is addressed in section 4 where the powder properties are determined for different 

compaction conditions. 
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2 Mechanistic Modeling of a Capsule Filling Processa 

Abstract: Filling a dosator nozzle moving into a powder bed was investigated using the 

Discrete Element Method (DEM). Various particle diameters and contact properties were 

modeled. The simulations qualitatively showed the influence of powder properties on the 

amount of dosed powder. Two factors that influence the dosed mass were observed. First, the 

ratio between the particle and dosator diameters affects the packing of particles inside the 

dosator chamber. Second, the flow behavior of the powder significantly modifies its filling and 

compression behavior. Cohesive powders pack less densely inside the powder bed, which could 

lead to a lower amount of dosed powder. In contrast, cohesive powders are compressed more 

during dosing and the density inside the dosator chamber increases during the dosing process. 

Since the simulation of fine cohesive powders is numerically impossible due to a high number 

of particles and small simulation time steps, we applied a simple method for particle scaling to 

acquire a qualitative understanding of the filling behavior of coarse and fine powders. 

2.1 Introduction 

Hard capsules are next to tablets one of the most commonly used and prescribed oral dosage 

forms and were first introduced in the 19th century. The capsule is filled with powder or with 

pellets made by the extrusion and spheronization. Capsules offer several advantages, including 

a reduction of excipients needed to achieve a designed pharmacokinetic profile. According to 

regulatory requirements, based on the needs and safety of patients, the content of capsules, i.e., 

the fill weight, needs to be constant within a certain narrow tolerance region. Moreover, content 

uniformity has to be ensured, i.e., segregation prior to the capsule filling step needs to be 

                                                 

a This section is based on the journal article “Mechanistic modeling of a capsule filling process” by Loidolt et al. 

in International Journal of Pharmaceutics 2017 
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excluded. Fill weight variability and content uniformity are therefore considered critical quality 

attributes (CQAs) within the Quality-by-Design (QbD) framework. [3] 

In the industry, several capsule filling techniques have been used over the last decades. These 

include tamping and dosator systems for hard-gelatin capsules [4]. In addition, for low-dose 

capsules vacuum-roll techniques and vibration-based pepper-shaker systems are being used [5–

7]. In this study, dosator systems are considered. In a typical filling cycle, first a cylindrical 

(hollow) dosator nozzle plunges into an un-compacted powder bed stored in a rotating bowl 

(which is periodically refilled). The nozzle vertically dips into the powder bed until it reaches 

a prescribed minimum distance from the bottom. During this step, the powder enters the nozzle 

and is compressed to a predefined degree. Subsequently, the filled nozzle is lifted and removed 

from the powder bed. The nozzle is then placed on top of an empty capsule body and the powder 

is ejected into the capsule, after which the cap is placed onto the capsule body. A detailed review 

of the process is provided in [8]. To prevent powder dropping from the nozzle before the powder 

is ejected into the capsule, a minimum stability of the powder plug inside the dosator chamber 

is required. Thus, the powder needs to be (lightly) compressed during the dipping step. In order 

to be able to control compression a moveable piston inside the dosator nozzle can enhance 

compression. The minimal compression stress is investigated in [9]. However, the powder plug 

needs to be loose enough to allow rapid disintegration upon delivery, e.g., in case of capsules 

made for dry powder inhalers (DPIs). [10] 

The filling volume of the nozzle is defined by its inner diameter and an adjustable piston, which 

defines the length of dosator chamber. Since the volume of the chamber is exactly defined, this 

method is a volumetric dosing method. However, the critical quality attributes (CQA) of 

capsules are fill weight and fill weight variability. Thus, a constant fill weight is only achieved 

if the powder density is known and constant. Unfortunately, the density of a powder is highly 

variable and a strong function of many effects, including processing history, material properties, 

environmental conditions (such as humidity and vibrations) and the process parameters during 
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compression. Even the surface texture of the dosator tools has to be considered as it is shown 

in [11]. Hence, controlling the final dosage mass is one of the biggest challenges associated 

with capsule filling processes, including dosator filling.  

The influence of powder properties and process parameters on the capsule fill weight has been 

investigated experimentally by many groups (Patel and Podczeck, 1996; Podczeck and Newton, 

1999; Podczeck and Newton, 2000; Pinzon, 2012; Llusa et al., 2013 and Faulhammer et al., 

2014b). Evidently, the densification of powder during the dipping step increases with powder 

compressibility and poorer flowability (leading to higher Hausner ratios). Moreover, the plug 

density is increased by the precompression ratio. The precompression ratio is defined as the 

ratio between the powder bed height and the dosator chamber length. The influence of the 

dosing speed is rather complex, since an increasing dosing speed leads to a higher rotational 

speed of the dosator machine, causing densification of the powder bed due to machine 

vibrations and other forces. In addition, the dosator nozzle dipping speed increases, and it is 

unclear, whether the influence of dosing speed is due to the densification of the powder bed or 

to the increased dipping speed of the nozzle. Likely, for different powders different effects are 

dominating. This example shows how difficult it is to acquire a full mechanistic understanding 

of the process via experiments alone. Lastly, the state of the powder bed in the bowl is unknown 

during industrial capsule filling. Depending on the capsule filling speed a few hundred to a 

several hundred thousand dipping events occur per hour, affecting the consistency of the 

powder bed. Although there are measures taken in a capsule filling machine to homogenize the 

powder and to sample from non-identical locations, the powder cannot a priori be assumed to 

be homogeneous. A homogeneous state of the powder in the bowl may be achieved only for 

materials with very good flowability (which in turn show a tendency to segregate). 

Nevertheless, no standard process-analytical tools are available to analyze the state of the 

powder in the bowl. [5] 
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Numerous experimental studies focused on linking material properties and process parameters 

to the critical quality attributes of capsules, i.e., average fill weight and fill weight variability, 

as for example [3]. In contrast, modeling and simulation studies of the dosator capsule-filling 

process are rare.  However, there are numerous groups working with simulation tools to 

describe other powder-based processes. For example, there are numerously simulation studies 

published dealing with die filling prior to compaction of tablets or the production of green 

bodies [16–18]. Similar to the dosator process, during die filling a fixed volume is filled with 

particles. Particles fall into the cavity due to gravity during die filling, and therefore, it is not 

directly comparable to the dosator process. Nevertheless, a constant filling mass is crucial for 

both processes. Another related process is the coil feeding process which can also be used for 

dosing.  A coil feeder with cohesive powder was investigated with the discrete element method 

by [19]. 

 As mentioned above, a mechanistic modeling of the dosator process itself has not been reported 

so far. However, a theoretical consideration of the dosator process can be found in [20]. This 

work deals with the retention of the powder inside the nozzle. It shows, that the interaction of 

the powder and the wall material is important for the capsule filling ability of powders. A 

phenomenological model proposed by [21] takes precompression densification and 

compression density into account. However, a deeper mechanistic understanding of the process 

is required. [22] simulated the packing behavior of various pellet shapes inside a hard capsule 

using a Monte Carlo method. This study was enhanced by [23]. Although the results are not 

directly applicable to the dosing process, as they do not involve the movement of piston inside 

a powder, they describe how particle size and shape influence packing inside a closed chamber.  

In the current study, the dosator capsule-filling process is studied using a mechanistic modeling 

tool. Specifically, the Discrete Element Method (DEM) is applied in this work. This method 

offers the opportunity to freely modify powder properties and to observe quantities that are not 

measurable experimentally. As such, it is a great complementary tool to experiments. 
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Nevertheless, many simplifications are required to set up a simulation that can be run within a 

reasonable time and thus, modeling of the filling process is only a first step towards the rational 

design of capsule filling processes.  

2.2 Methods 

In our study, the discrete element method DEM introduced by Cundall and Strack [24] was 

used to investigate the filling of a dosator nozzle. This method relies on the soft-sphere 

approach, with particles represented as (overlapping) spheres. The contact forces between two 

particles in the normal and tangential directions are computed as a function of the particle 

overlap. The contact law comprises the functional relationship between the particle overlap and 

the contact force and is the core of the DEM model. The particle position and velocity are 

computed at every simulation time step by solving Newton’s second law. Since particle rotation 

in dense packed beds considered here is of minor importance the particle rotation is not 

considered in the simulation. This way, the position of every particle in the powder is tracked 

during the entire simulation. The open source DEM software LIGGGHTS® [25] was used for 

that purpose. 

2.2.1 Geometric Setup 

To simulate the dosator filling process, particles with nominal diameters of 500, 300, 200, 100 

and 75 µm were allowed to settle on a fixed base in order to create a powder bed height of 8 

mm. Since in DEM no ambient air is considered and particles could accelerate indefinitely, a 

viscous damping force is applied to get a terminal velocity of 0.1 m/s. Thus, compaction of the 

powder bed due to unrealistic high impact velocities can be avoided. To limit the computational 

effort, we only considered a section of the powder bed with a width of 12 mm both in the x- 

and y-directions (see Figure 4). To compensate for the limited size of the powder bed, the 

boundaries of the domain were set to be periodic, meaning that a particle leaving one side of 

the boundary was inserted at the opposite side. This geometrical setup allowed to simulate 
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approximately 3.5 million particles with a nominal diameter of 75 µm. To avoid modeling 

artifacts due to monodisperse particles a mass-based particle size distribution is used (see Figure 

5). A rather narrow distribution is used to avoid additional computational costs due to a high 

number of small particles. The diameter of the dosator nozzle was chosen to be 3.4 mm, which 

is a standard diameter also used in the experimental study of [3]. The dosator chamber length 

was set to 4 mm in all simulations. The distance from the nozzle to the powder bed floor is used 

to describe the position of the dosator (see Figure 6). In the results part of this work the evolution 

of the dosator filling is shown as function of the dosator position for different powder properties. 

 

 

Figure 4:Initial powder bed in the dosator filling simulation. Periodic boundary conditions are used in both 
horizontal directions. 
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Figure 5: Particle size distribution. The diameters of the five different particle classes are given as fractions of the 
nominal particle diameter. 

 

 

Figure 6: Cross section of the powder bed and the dosator nozzle. The position of the nozzle is given as distance to 
the powder bed floor. 

 

During simulations, the dosator nozzle moved vertically into the powder bed until it touched 

the bottom. Since only filling of the nozzle was considered in this study, the simulation was 
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discontinued once this position was reached. During the nozzle movement, the amount of 

powder and the pressure inside the nozzle were analyzed and plotted as a function of the 

distance to the bottom. The pressure is defined as one third of the trace of the stress tensor. In 

the results section the pressure inside the dosator is reported as the volume averaged pressure 

inside the dosator chamber. 

2.2.2 Particle Contact Model 

In DEM simulations, the mechanical particle properties have to be defined. In this work, lactose 

was chosen as a reference material since it is often used in pharmaceutical capsule-filling 

applications. Accordingly, the particle density was chosen to be 1538 kg/m³. A Poisson ratio of 

0.3 and a Young’s modulus of 25 MPa were used as elastic constants. To reduce the high contact 

stiffness and to increase the minimum simulation time step, a low Young’s modulus was used 

rather than the true Young’s modulus of lactose of approximately 25 GPa [26], as is typically 

done in DEM simulations. To determine the effect of this modification on the dosator filling, 

the Young’s modulus was varied in our study. 

Material properties are essential for the contact model. The well-known Hertz contact model (a 

standard model implemented in LIGGGHTS®) was used to compute the contact normal force 

Fn as a function of the particle normal overlap δn, the effective particle radius R* and the 

effective Young’s modulus E* as shown in Eq. (1). The tangential contact force is a function of 

the tangential overlap δt and the effective shear modulus G* and is shown in Eq. (2). It is limited 

by the Coulomb friction force, which is a function of the coefficient of friction μs and the contact 

normal force. The effective properties can be computed as function of the particle diameter and 

the elastic constants of the two particles being in contact as it is shown in Eq. (3) to (5). To 

enable energy dissipation, damping forces in the normal and tangential directions were 

computed based on the coefficient of restitution e (equations not shown here). More detailed 

information about the contact model can be found in [27].  
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(5) 

 

To model cohesive powders also cohesion forces have to be included into the contact model. 

Basically, powders can be considered as cohesive if the attractive cohesion forces between 

particles or particles and walls are large compared to volume forces of the particles. A 

dimensionless group that describes the relative effect of cohesion is the Bond number Bo which 

is defined as the ratio of volume forces and surface forces. In this work it is defined as the ratio 

of particle gravity force and contact cohesion force (see Eq. (6)). To model powders of different 

Bond numbers a simple cohesion model was implemented into LIGGGHTS® in addition to the 

default cohesionless contact model. The cohesion model adds a constant attractive normal force 

to the contact if two particles touch each other. By adding different cohesion forces to the 

particle contacts the Bond number can be varied over several orders of magnitude. 

Consequently, powder properties ranging from free flowing (high Bond number) to very 

cohesive (low Bond number) can be adjusted irrespective of the particle diameter. 

Bo =
volume force

surface force
=

gravity force

cohesion force
=

d3πρg
6
Fc

 
(6) 
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In Table 1, the model parameters used for the reference case are summarized. The particle 

density and the Poisson ratio of lactose are used. The particle diameter and the Young’s 

modulus are chosen to give a compromise between simulation time and quality of the result. 

For the reference case no cohesion is considered and therefore the Bond number is infinity. All 

other contact parameters for the reference case are chosen in order to represent the average 

properties of the four parameter studies outlined below. 

Table 1. Model parameters for the reference case 

Particle diameter d 200 µm 

Particle density ρ 1538 kg/m³ 

Young’s modulus E 25 MPa 

Poisson ratio ν 0.3 - 

Coefficient of restitution e 0.45 - 

Coefficient of friction (all contacts) 𝜇𝑠 0.1 - 

Bond number Bo ∞ - 

 

In part 1 of this study, the Young’s modules is increased by one and two orders of magnitude 

compared to the reference case. The aim was to check if there are any effects and artefacts 

caused by the substantially lower stiffness used in the DEM simulation compared to real particle 

stiffness. In part 2 of this study, the nominal diameter of particles filled into the nozzle is varied 

in the range from 75 to 500 µm. The objective was twofold: First, we want to investigate the 

behavior of coarse and fine powders during the dosator filling process. Second, the results 

should indicate if it is possible to use bigger particles in the simulation than in the real process. 

If there is no big difference between bigger and smaller particles, then the number of particles 

in the simulation can be reduced compared to the real systems. Only then simulation of the 

dosator process would be feasible (in a realistic time scale) since the number of particles in a 
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real system is far too high for the simulation using current computational capacity (up to 108 

particles with the best codes). 

In part 3 of this study the influence of the coefficient of friction is investigated. Based on this 

simulation additional insight into the process is expected. Especially in regions of high shear 

rates inside the powder bed or for particles sliding close to the wall of the dosator bed floor the 

friction behavior may be relevant. In part 4 of the study, powders with different Bond numbers 

(∞, 0.1, 0.01, 0.001, 0.0001) are compared. A Bond number of infinity describes powders with 

negligible small particle cohesion forces compared to the particle volume forces. This is the 

case for dosing of big particles like granules. A bond number of Bo=0.0001 represents fine 

powders where cohesion forces dominate. For example, during cohesion force measurements 

of microparticles in [28] a Bond number of 0.0001 was obtained for particle diameters of 

approximately 10 µm. During studying the range of high to low Bond numbers it is possible to 

investigate the transition from free flowing powders to very cohesive powders. In Figure 7 the 

solid volume fraction inside the powder bed after settling (poured density) is shown as a 

function of the Bond number. For high Bond numbers the solid volume fraction is 0.62 what is 

close to the solid volume fraction 0.64 of random closed packed monodisperse spheres. For the 

lowest considered Bond number, the solid volume fraction is 0.32. In the study of the Bond 

number the nominal particle diameter is kept constant 200 µm and only the cohesion force is 

adjusted to get the desired Bond number. 
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Figure 7: Solid volume fraction inside the powder bed as a function of the Bond number. 

 

2.3 Results and Discussion 

2.3.1 Dosing of Non-Cohesive Powder 

In Figure 8 three snap-shots of the dosator nozzle cross section during dipping into the powder 

bed are shown for different cases. The first row represents the reference case of cohesionless 

particles and a 200 µm nominal diameter. The complete evolution of powder mass inside the 

nozzle and the average pressure inside the nozzle of the reference simulation (particle stiffness 

25 MPa) is shown in Figure 9. In addition, two cases with higher particle stiffness are included.  

By plotting the dosed mass as a function of the distance from the bottom, the dosator filling 

process can be divided into three stages. In the figure the feeding process always starts at the 

right side at the maximum distance and ends at zero distance. During the first stage, the dosator 

chamber is filled linearly as a function of the traveling path. Filling begins as the nozzle enters 

the top of powder bed and ends when the piston inside the nozzle reaches the level of powder 

bed. Since the dosator chamber is filled in this position but there is more or less no pressure 
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acting on the powder, the first stage may be considered as volumetric filling, i.e., mass is 

directly proportional to the filled volume. During the (intermediate) stage 2, the nozzle moves 

further through the powder bed. The amount of powder inside the nozzle is nearly constant, yet 

the pressure increases sharply. Finally, when the nozzle is closer than 1mm to the bottom, 

another sharp increase in mass occurs. The pressure inside the nozzle is up to 100 times larger 

than that during the second stage. Hence, the third stage is referred to as the compression step. 

Thus, only the very last stage of the dosing process determines the pressure inside the dosator 

nozzle (and hence, the level of compression). As a consequence, the minimum gap occurring at 

the deepest penetration of the nozzle has very strong impact on the plug stability and 

dispersability, and thus, is one of the most sensitive (and easily controllable) process 

parameters. 

Interestingly, the particle stiffness used in the simulations does not have a significant impact on 

the evolution of the dosed mass and the pressure inside the nozzle during the first two stages. 

Only in the compression stage the softer particles can be easier compressed (higher overlap) 

compared to the stiff particles, and therefore, the amount of dosed mass is higher for soft 

particles when the nozzle touches the powder bed floor. The maximum pressure inside the 

nozzle is lower for softer particles. Thus, for a precise quantitative simulation of the 

compression stage III of the dosator process a particle stiffness higher than 25 MPa is needed. 

Alternatively, a factor can be introduced to compensate for the systematic deviation due to soft 

particles. Since the aim of this work is to get a mechanistic understanding of the dosator process 

and the qualitative behavior is well represented with softer particles a Young’s modules of 25 

MPa is used for the subsequent studies. 
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 Stage I Stage II Stage III 

Bo=∞ 

d=200 µm 

   

Bo=∞ 

d=500 µm 

   

Bo=0.001 

d=200 µm 

   

Bo=0.0001 

d=200 µm 

   

Figure 8: The three stages of dosator filling for different nominal particle diameters and Bond numbers. 
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Figure 9: Mass and average pressure inside the dosator as a function of the nozzle position for different particle 
stiffness. The dosator filling can be divided in three different stages. 

 

Figure 10 shows the powder mass and the average pressure inside the nozzle as a function of 

the distance to the bottom of the powder bed for five different nominal particle diameters. For 

all curves, the contact parameters from the reference case are used except for the particle 

diameter, which is provided in the inset. Three snap-shots of 500 µm particles are shown in 

Figure 8 and they look similar to the reference case with 200 µm particles.  

As can be seen in Figure 10 the qualitative evolution of the powder inside the nozzle is very 

similar for all particle diameters, though there are significant quantitative differences. Although 

the initial solid volume fraction for all particle diameters is approximately 0.62 inside the 

powder bed, after the volumetric filling stage the mass of powder inside the nozzle is lower for 

bigger particles. This behavior can be referenced to a wall effect, since particle packing close 

to walls is different compared to far away from walls. The wall effect is more important if the 

ratio of particle size to the size of the geometry is big. Similarly, a study by [29] showed the 

increase of the porosity with increasing particle diameter for particles packed into cylindrical 

container. 

In stage two the mass inside the dosator remains constant irrespective of the nominal particle 

diameter, although there is a small increase in case of 500 µm particles. In average, the pressure 
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inside the nozzle is nearly the same for all particle diameters in the first and second stage of 

filling. The fluctuation of the pressure is higher for increasing particle diameter, since the 

number of particles inside the nozzle is smaller for bigger particles. In the compression stage 

III the pressure is significant higher for bigger particles and so is the amount of additional 

powder squeezed into the nozzle. This is the reason why the total amount of powder inside the 

nozzle at end of the process is nearly the same for all particle diameters although it was lower 

for bigger particles after the volumetric filling phase. However, if only a small gap of 0.5-1mm 

existed at the end of filling, powder with larger particles would lead to a reduced fill weight (up 

to 5-10%).  

Interestingly, the fill masses in Figure 10 converge for small particle diameters, i.e., below a 

certain particle-to-dosator-size ratio, size effects are not noticeable. In fact,  the ratio of particle 

and dosator nozzle size matters, as also shown by [29] and [30]. The filling behavior for particle 

diameter of 200 µm (used in the reference case) is close to the behavior for 75 µm particles. 

Thus, 200 µm seems a good choice for the reference case. 

  

Figure 10: Powder mass and average pressure inside the dosator as a function of the distance to the bottom of 
powder bed for various nominal particle diameters 

 

In order to gain a better mechanistic understanding of the compression stage a study with 

different coefficients of friction was performed (Figure 11). The coefficient of friction applies 

to particle-particle and particle-wall contacts. In addition to the reference case, a high-friction 
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case (coefficient of friction 0.5) and the case of frictionless contacts are shown. The amount of 

dosed mass after volumetric filling (at a distance of 4 mm) is increased for lower friction 

coefficients since in this case the particles rearrange easier, leading to denser beds. This can 

also be seen in the initial powder bed with a solid volume fraction of 0.59 for the high friction 

case and 0.64 for the frictionless case. Interestingly, the extent of compression in phase III close 

to the bottom is different for all three cases. In the case of frictionless contacts, there is only 

compression very close to the bottom, since a quite dense powder bed was already created 

during phase I of the filling process and particles can “escape” from the region between the 

lowering dosator nozzle and the bottom of the container. This is shown in Figure 12 (left), 

which shows the velocity field of the particles during the filling process. Clearly, particles can 

leave the space below the nozzle for the case of frictionless particles. Compression of the 

frictionless particles occurs only if the clearance between the nozzle and the bottom is smaller 

than the particle diameter, i.e., when particles are trapped inside the nozzle (Figure 12 right). In 

contrast, if particles are frictional, compression starts already at a clearance of 1mm, which is 

even more pronounced for the case of high-friction contacts. This is due to resistance against 

the shear flow, which occurs when the powder is squeezed through a small gap close to the 

bottom for frictional particles (see Figure 12 left). 

  

Figure 11: Dosed powder mass and average pressure as a function of distance for various friction coefficients. 
Frictionless particles lead to denser beds during volumetric filling and high-friction particles are compressed more 

during the compression stage. 
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Figure 12: Streamlines of particles during the filling process for the reference case (left). The velocity is proportional 
to the length of the streamlines. If the gap becomes smaller than the particle size, the particles are trapped inside the 

dosator chamber (right) 

 

Different stages of dosator filling were observed experimentally also by [5] via force 

measurement. In these experiments the same nozzle diameter as in the current study was used. 

In the experiments a sharp increase of the force acting on the nozzle was measured when the 

nozzle came within 1 to 2 mm to the powder bed floor. This indicates a high pressure acting on 

the powder inside the nozzle. 

The comparison of the plots for various particle diameters in Figure 10 above showed that small 

particles pack more densely than larger ones during volumetric filling due to lose packing of 

particles close to the walls and corners. Although this well-known wall effect applies to all 

particle sizes, the effect on the average solid volume fraction of the nozzle is more important 

for bigger particles (also see [29]). An opposing effect can be observed during the final 

compression stage close to the bottom: bigger particles are more compressed, which is due to 

the particles trapped close to the bottom (Figure 12 right). Particles are not trapped as long as 

the clearance between nozzle and bottom is larger than the particle size, but the resistance 

against squeezing them through the gap causes a compression of the powder inside the nozzle. 

This is also the reason why there is more compression in the case of high friction. 
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2.3.2 Dosing of Cohesive Powder 

The filling behavior of cohesive particles with various Bond numbers is shown in Figure 13. 

The contact properties are the same as in the reference case (i.e., the case with Bo=∞). With 

increasing cohesion (decreasing Bond number) the rate of mass accumulation inside the dosator 

changes dramatically. For Bond numbers 0.1 and 0.01 the plots look similar to the ones for 

cohesionless particles, i.e., three distinct phases can be observed. However, for Bond numbers 

0.001 and 0.0001 the three different stages of dosator filling completely vanish. Instead, the 

mass inside the dosator increases continuously during the whole movement of the nozzle 

through the powder bed. The amount of powder during volumetric filling decreases, due to the 

looser packing of cohesive powder beds. Clearly, the looser packing of the cohesive powder 

beds (see Figure 7) increases the compressibility of cohesive powders, leading to a different 

behavior during nozzle filling. In addition, another effect which can be seen in the third and 

fourth row of Figure 8 comes into play. In case of Bond number 0.0001 the dosator chamber is 

not completely filled even if the upper end of the chamber is lower than the level of the powder 

bed. The powder is not able to enter the dosator nozzle, but an arch is formed which prevents 

dosator filling. This effect is comparable with arches inside of hoppers which prevent hopper 

outflow.  Only as the nozzle gets closer to the powder bed floor and the powder is pressed into 

the nozzle the dosator can be filled. As a consequence, the total mass inside the nozzle at the 

bottom of the powder bed is much lower for the case of very strong cohesion (Bond number 

0.0001) and the pressure is also significantly lower.  

The effect of arching is not that pronounced for a Bond number of 0.001. In this case the dosator 

is filled volumetrically with some cavities and a lower solid volume fraction compared to the 

cohesionless case (see Figure 8 stage II). After volumetric filling the powder is compressed 

continuously until the nozzle touches the powder bed floor. In this way the mass inside the 

nozzle at the bottom of the powder bed and the pressure inside the powder are identical for the 

Bond number 0.001 and for cohesionless powder (see Figure 13). The important consequences 
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of the differences in evolution of dosed mass for cohesive and non-cohesive powders are 

following:  

 For non-cohesive powders, the total powder bed height is of minor importance. If 

the powder bed height increases, the second stage expands and the dosed mass 

remains nearly constant. 

 For cohesive powders, there is no real stage 2 and the dosed mass increases with an 

increase in the powder bed height. This is a mechanistic explanation why the 

influence of the powder bed height is more important for cohesive powders, as 

experimentally observed, e.g., in [10]. 

 

  

Figure 13: Dosed mass and average pressure as a function of distance from bottom for 200µm particles of various 
Bond numbers 

 

2.4 Conclusions  

The current work focused on a basic understanding of the capsule filling process via dosator 

system, using the computational method of DEM simulations. The method can simulate the 

dosing process and can track the amount of powder inside the nozzle as a function of the 

nozzle’s penetration depth (or the distance to the bottom of the bowl) during dosing. The filling 

behavior of coarse and fine powders and cohesive and non-cohesive powders was compared. 
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While the influence of the particle size can be explained by the wall effects, the effect of 

cohesion is more complex. Non-cohesive and cohesive powders have different filling 

mechanisms of the dosed mass, which mechanistically explains the influence of powder bed 

height on the fill weight of cohesive and non-cohesive powders observed in the experimental 

studies. 

For non-cohesive powders the amount of dosed powder is not sensitive to the total powder bed 

height and it is not that important to keep the powder bed height constant in the industrial 

process. Compared to the simulation it is not possible in the real process to move the nozzle 

until it touches the powder bed floor, but a certain clearance is needed to avoid damage of the 

machine. Since the minimum distance to the powder bed floor is very important for the 

maximum pressure acting on the powder inside the nozzle it is essential to keep the clearance 

constant. Only for a constant pressure a constant density and strength of the dosed plug can be 

expected. 

For cohesive powders the amount of dosed powder is sensitive to the total powder bed height 

and the smallest clearance between nozzle and powder bed floor. Cohesive powders form a 

powder bed of lower solid volume fraction and are therefore easier to compress. If the nozzle 

moves through the powder bed the powder gets densified continuously. For very cohesive 

powders arching is observed and it is difficult to fill the nozzle. To avoid the problem of arching 

a dosator chamber with bigger diameter and smaller height may be beneficial similar as a wider 

hopper opening is beneficial to avoid arching during hopper outflow. 

To keep the computational time reasonable, using bigger and softer particles in the simulation 

compared to real powders is necessary. With regard to the investigated dosator geometry 

(diameter 3.4 mm, length 4 mm), nominal particle diameters in the range of 75-300 µm 

produced qualitatively comparable results. For larger particles significant deviations were 

observed. This indicates that the particle diameter should be less than approximately one tenth 

of the smallest dimension of the geometry. For quantitative studies, correction factors should 
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be used to compensate for the artificial wall effect due to enlarged particle diameters. Particle 

softening is critical if there are high contact forces or if the cohesion forces are computed based 

on the contact area.  

To avoid confusion with respect to cohesion forces a cohesion model with a constant cohesion 

force was used to adjust desired Bond numbers. In this work, only selected Bond numbers were 

used to model the powder properties, ranging from free-flowing to highly cohesive. Simulating 

a real powder in future work will require calibrating the contact properties accordingly. Only 

in this way a direct comparison between simulations and experiments can be made. To achieve 

a better understanding of the process, the geometry of the dosator and the powder bed height 

should be varied for various powder properties. 

For future studies, not only the movement of the dosator into the powder bed, but also the 

movement out of the bed should be considered to establish if the powder plug inside the nozzle 

is stable or if there is a loss of powder. Finally, the variability of the dosed mass as a function 

of bed inhomogeneity will be studied, since this is another critical quality indicator of filled 

pharmaceutical capsules. The ultimate goal should be to determine material and process 

parameters (i.e., a comprehensive design space) that ensure a stable process with low variations 

in the dosed mass. 
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3 Modeling Yield Properties of Compacted Powder using a Multi-

Particle Finite Element Model with Cohesive Contactsb 

Abstract: The multi-particle finite element method (MPFEM) was used to simulate the yield 

properties of compacted powders with cohesive contacts. A suitable representative volume 

element (RVE) of monodisperse, spherical, deformable particles was created to be implemented 

into a commercially available finite element code. New efficient periodic boundary conditions 

were proposed to compute representative properties of the volume at limited computational 

costs. A contact model was introduced, which includes repulsive forces, friction forces and 

cohesion forces. As a result, the proposed model is capable of considering tensile strength in a 

MPFEM setting, which was not attainable in related published work.  

We present extensive parameter studies to demonstrate the performance of the proposed RVE 

and to find the optimal balance between accuracy and computational speed. The minimum mesh 

fineness and the minimum number of particles in the RVE were determined during convergence 

studies. The employed explicit integration scheme was enhanced by means of mass scaling. 

The optimized model was used to predict the strength of compacted powders. A simple 

analytical expression was fitted to the numerical predictions to describe the uniaxial tensile 

strength and the uniaxial compression strength as a function of the powders’ relative density 

and the cohesion strength of the contacts. A general form of a yield surface was proposed to 

describe the yield properties for generic load cases, which can be applied to different relative 

densities and cohesion strengths. As a result, we showed that the yield surfaces grow with 

increasing relative density, while they change their shape with increasing cohesion strength. 

The obtained yield surface results in the Drucker-Prager/Cap model in case of low cohesion, 

                                                 

b This section is based on the journal article “Modeling yield properties of compacted powder using a multi-particle 

finite element model with cohesive contacts” by Loidolt et al. in Powder Technology 2018 
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whereas it has an elliptical shape in case of high cohesion. The proposed analytical form of the 

yield surface is capable of describing both cases. 

3.1 Introduction 

Cold compaction of powder is important for many industrial processes, e.g., for the production 

of green bodies before sintering of metals, ceramic parts in mechanical engineering, pellets for 

mineral or animal food industry or the production of tablets in the pharmaceutical industry [31–

34]. The goal of powder compaction is to reduce the volume of the powder, increase the 

flowability or to create a part of a certain shape and size. 

The final powder compact requires a minimum strength as otherwise it would disintegrate 

during processing, transportation or storage. The strength of a compact depends on both, 

material and process parameters. Important material parameters are the chemical composition 

of the primary particles (and their mechanical properties), as well as the particles’ size and 

shape. Furthermore, the material properties are influenced by the environmental conditions, 

e.g., temperature and humidity. The process parameters include the geometry of toolings and 

dies, the compaction stress or strain, as well as on the compaction force-versus-time profile, 

which depends on the control strategy of the compaction machine. Experiments can be used to 

adjust the process to get the desired compact properties. Commonly, this is time-consuming, as 

process parameters change often, e.g., the geometry of the machine tools or the powder 

properties. Hence, reliable numerical models to predict the properties of compacts with 

simulations are crucial. 

Phenomenological models for powder compression have been in use for many decades. The 

Heckel equation [35] and the Kawakita [36] equation are, among many other approaches, most 

commonly used nowadays. Recent studies dealing with these equations were reported [37–39]. 

Both equations correlate the applied pressure with the relative density (or porosity) of the 

powder compact. Another noteworthy phenomenological model is the Ryshkewitch-Duckworth 
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[40] equation which correlates the relative density of a powder compact with its strength, which 

is of higher interest in practical situations. Recent studies using this equation are reported in 

[41,42]. All models have in common that the introduced constants are empirically adjusted by 

means of compaction experiments and force measurements. The disadvantages of these 

phenomenological approaches are the minimal mechanistic understanding of the process and 

the lack of information about the strength of the final compact. Moreover, the parameters 

determined for one material (or one size fraction) are not valid for other materials. 

There also exist some analytical models in the literature which describe the compaction process. 

We mention here exemplarily [43] and [44] with analytically derived flow surfaces and [45] 

with the authors considering the densification during compaction and sintering theoretically. 

Although very interesting in principle, the disadvantage of analytical models is their 

oversimplification. Most often, affine motion has to be assumed and the description of particle 

deformation is very difficult. Such assumptions limit the practical applicability of these models.  

In recent years, two numerical methods became important for powder flow simulations, which 

are the discrete element method (DEM) and the finite element method (FEM). In DEM every 

single particle is modelled and numerically tracked. The interaction forces between particles 

are computed based on the overlap of the particles (soft-sphere model) and Newton’s equations 

of motion are solved for the particles’ acceleration, velocity and position. As a result, the 

rearrangement of particles during compaction can be efficiently modelled. Recent 

investigations in this area were carried out, e.g., by [46–50]. Note that particle deformation, 

which is dominant at higher densities of the powder compact, are commonly not taken into 

account. Furthermore, the fully discretized nature of DEM entails high computational costs and 

practically limits the number of particles to fewer than 10 million. In contrast, in classical FEM 

simulations powders are described as a continuum, i.e., the discrete nature of the particles is not 

implemented. This renders the method to be much more efficient than DEM. Recent studies 

include [51–53]. However, in FEM a material model is required to connect the stress and the 
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strain of the material. The determination of such material models, including the yield surface, 

is a difficult and cumbersome task.  

Several models for yield surfaces connected to powder compaction can be found in the 

literature. The Drucker-Prager/Cap model based on [2] is one of the most often used yield 

surfaces. It is conceived for pressure-dependent materials and widely used for geological 

materials, powders, polymers, concrete, foams and other substances. Another common model 

is the so-called modified Cam-Clay model [54], which was developed for soft soils. Its yield 

surface is an elliptical curve. Both models are compared in the recent work of [55]. The shape 

and the evolution of the yield surfaces are shown in the p-q diagrams (equivalent pressure stress 

p and von Mises equivalent stress q) (see Figure 14). With regard to powder compaction, both 

models are employed for the description of powders with small or negligible tensile strength, 

since in such a case the yield surfaces do not extend into the negative pressure region. In 

contrast, the metallic foam model proposed by [56,57] and the Gurson model [58] can be used 

if tensile strength has to be taken into account (see Figure 14). The metallic foam model, which 

has the shape of an ellipse, is used to model foams which have a comparably high void fraction. 

In case of volumetric hardening (as it is shown in Figure 14) the tensile strength is fixed and 

the compression strength increases during compaction. For the metallic foam model with 

isotropic hardening, the center of the ellipse is located at the origin of a p-q diagram. The Gurson 

model is developed for porous materials with comparably small voidage rather than for 

compacted powders. Its yield surface is symmetric with respect to the q-axis and grows with 

decreasing voidage f. As a side note, all mentioned yield surface models are implemented in 

Abaqus 6.14 as standard material models. 
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Figure 14: Schematic of the Drucker-Prager/Cap model and the modified Cam-Clay model in the p-q plane. In 
addition to the shape of the yield surface the evolution of the yield surface with relative density (hardening) is shown. 
For powders with substantial tensile strength the yield surface for crushable foam and the Gurson yield surface for 

porous metal can be used. 

 

A kind of combination of DEM and FEM is the multi-particle finite element method (MPFEM), 

also called the discrete finite element method. This approach considers discrete particles by 

treating each single particle with FEM. The meshed particles may deform according to some 
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elasto-plastic material law and interact with each other via contact mechanics. The MPFEM has 

the advantage of taking all granular phenomena into account: irregularly shaped particles, 

packing density, interfacial friction and cohesion, particle deformation and other properties. 

Recent approaches in the literature include [59–62]. The disadvantage of this method is the very 

high computational costs, which by far exceed the computational cost of DEM with the same 

number of particles. Hence, it is usually not possible to model complete powder compacts, but 

only small sections of the powder. 

In order to account for these computational limitations, in our work only a small representative 

volume with a certain number of particles is considered. This “micromechanical” model is then 

used to determine macroscopic properties of the powder, which could be used in a continuum 

FEM model of a complete powder compact. 

The state of the art in micromechanical modeling defines a representative volume element 

(RVE) in a computational homogenization procedure [63]. The objective is to compute the 

macroscopic properties of a heterogeneous material from the response of its underlying 

microstructure. The heterogeneous material may then be substituted with an equivalent 

homogeneous one. An RVE considers a small but representative volume of the structure, which 

features all relevant characteristics of the material’s microstructure. The RVE needs to be 

sufficiently large in size to capture enough microstructural information, but small enough to 

show no gradients of a macroscopic state variable. The effective macroscopic properties are 

commonly computed by averaging over the internal fields in the RVE in a first-order strain-

driven computational homogenization. The boundary conditions of the RVE are generally 

defined such that the energy equivalence between the two scales, the so called Hill–Mandel 

condition (macro-homogeneity), is preserved [64–66]. 

𝑷̅: 𝑭̇̅ =
1

𝛺0
∫ 𝑷: 𝑭̇ d𝑉0𝐵0

. (7) 
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The quantity P represents the first Piola-Kirchhoff stress tensor, F the deformation gradient and 

𝛺0 is the referential volume. Note that in case of a powder or porous material, 𝛺0 takes also the 

voids between the particles into account. Quantities with a bar denote the macroscopic 

equivalents. Several boundary conditions obey this requirement: constant deformation over the 

entire RVE (Voigt-Taylor’s bound), constant stress over the entire RVE (Reuß-Sachs’s bound), 

linear displacement on the boundary of the RVE, constant traction on the boundary of the RVE 

domain, and periodic displacement and antiperiodic traction boundary conditions (PBC). 

This work investigates the influence of cohesive contact between compacted particles on the 

yield properties of the resulting powder compact. An appropriate RVE with periodic boundary 

conditions (PBCs) in an MPFEM is determined. However, new PBCs needed to be developed 

in this work for two reasons. First, the boundary conditions need to be suitable not only to apply 

pressure, but also tension load to test the strength of the cohesive contacts. Second, a 

computationally efficient implementation for technological-relevant processes should be 

possible, allowing implementation into commercially available FEM software packages. 

The paper is organized as follows. Section 3.2 gives details about the MPFEM. A new 

formulation of PBCs, the interfacial contact and the simulation procedure are described. Section 

3.3 presents convergence studies in probing the yield surface using the proposed RVE setting. 

Section 3.4 applies the model to a powder compact with different degrees of cohesive contact. 

We demonstrate the large influence of cohesion and how the yield surface significantly changes 

its shape. Finally, a conclusion closes the paper in section 3.5. 

3.2 MPFEM Model with Cohesive Contact of Particles 

3.2.1 Boundary Conditions of the RVE 

Homogenization procedures, which are based on Eq. (7), are well developed for continuous 

microstructures. Particle microstructures as encountered in powder compaction are more 

difficult to handle. The basic difficulty in the transition is the possible rotation of particles, 
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which leads to an inconsistency with a homogenized standard macro-continuum. Here we apply 

the approach discussed in [67–69], which facilitates the quasi-static homogenization of (rigid) 

granular aggregates. The same approach can be used for our model of deformable particles 

since a reference point is assigned to each particle. The discrete counterpart to Eq. (7) is 

discussed in [68] and shown in Eq. (8). The discrete Hill-Mandel-type condition is postulated 

as 

1/𝑉 ∙  ∑ (𝒂𝑞 − 𝑷̅𝑨𝑞) ∙ (𝒙̇𝑞 − 𝑭̇̅𝑿𝑞)
𝑀

𝑞=1
= 0. (8) 

We thereby assume a microstructure volume V that characterizes an RVE of a granular 

aggregate of solid particles. The centroid of a boundary particle 𝑞 for 𝑞=1,…,M of this 

aggregate is located at 𝑿𝑞 ∈ 𝜕𝑉 in the reference configuration and 𝒙𝑞 in the current 

configuration. The continuous-to-discrete transition is conceptually performed by the 

operations ∫ 𝑵ⅆ𝐴
𝜕𝑉𝑞

→ 𝑨𝑞  and ∫ 𝒕ⅆ𝐴
𝜕𝑉𝑞

→ 𝒂𝑞. Hence, infinitesimal boundary area vectors 

(with 𝑵 being the normal vector pointing outward of the boundary) are transformed to the finite 

area vectors 𝑨𝑞 and infinitesimal boundary forces (with boundary traction 𝒕) are transformed 

to finite forces 𝒂𝑞 acting at the center point of each boundary particle. The quantity 𝜕𝑉𝑞 is the 

portion of the microstructural boundary domain 𝜕𝑉 associated with particle 𝑞. Several boundary 

conditions obey the discrete Hill-Mandel requirement. 

For example, linear displacements on the entire boundary 𝜕𝑉 of an RVE are invoked by 

𝒙𝑞 = 𝑭̅𝑿𝑞          for 𝑞 = 1,… ,𝑀. (9) 

The particles’ centers are translated according to the prescribed macroscopic deformation 

gradient (Dirichlet BC). Additionally, the boundary particle rotations are constrained to be zero. 

This boundary condition causes a too stiff macroscopic response, since particles are not able to 

rearrange as they could inside the powder bed. 

Next, a constant traction boundary condition prescribed on the entire boundary 𝜕𝑉 of an RVE 

may be applied, i.e., 



39 

𝒂𝑞 = 𝑷̅𝑨𝑞          for 𝑞 = 1,… ,𝑀. (10) 

The discrete support forces 𝒂𝑞 are determined according to the macroscopic first Piola-

Kirchhoff stress (Neumann BC). The particles are free to rotate in this setting. Problems of non-

uniqueness and rigid body motions may arise in this setting, which are overcome in continuous 

homogenization by additional semi-Dirichlet BC in the literature [63,70]. This boundary 

condition results in a too soft macroscopic response since particles can rearrange easier than 

inside a powder bed. 

The third option is to use periodic boundary conditions that relax the Dirichlet constraint to 

some extent. The boundary is split into periodic (opposing) counterparts. Each particle 𝑿𝑞
+ in 

𝜕𝑉+ has an associated particle 𝑿𝑞
− in 𝜕𝑉− (with 𝜕𝑉 = 𝜕𝑉+ ⋃ 𝜕𝑉−). Therefore, periodicity of 

the deformation of a granular medium can be enforced by a periodic displacement of the particle 

center and anti-periodicity of the particle support forces: 

𝒙𝑞
+ − 𝒙𝑞

− = 𝑭̅[𝑿𝑞
+ − 𝑿𝑞

−],       𝒂𝑞
+ + 𝒂𝑞

− = 𝟎     for 𝑞 = 1,… ,𝑀/2. (11) 

In addition, the boundary particle rotations 𝒒𝑞 need to be periodic as well: 𝒒𝑞
+ − 𝒒𝑞

− = 𝟎. A 

proper application of periodic boundary conditions requires a periodic topology of the particles 

in this setting. Even more, application of periodic boundary conditions requires a periodic mesh 

in the FEM discretization where every node on the boundary was constraint to its opposite 

counterpart.  

In our implementation, we avoid constraining every node on the boundary. Accordingly, we 

employ a new flavor of periodic boundary conditions suitable for MPFEM, which is designed 

to be compatible with conventional finite element code architectures. For demonstration 

purposes we consider a simple face-centered unit cell as shown in Figure 15 and use the 

commercial multi-purpose finite element package Abaqus 6.14. If a particle at the boundary of 

the periodic box is found, an associated particle is placed at the opposite side of the periodic 

box to obtain a periodic arrangement. A reference point is assigned to the center of each 
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boundary particle. The reference points are used to enforce the periodic boundary condition 

according to Eq. (11) and the displacements and the forces on the reference points are used for 

the homogenization based on Eq. (8). Then we define a simulation box, which is the size of the 

periodic box enlarged by an add-on layer. Every finite element located outside the simulation 

box is removed. The nodes and elements in the add-on layer of every single boundary particle 

are used to distribute the reaction force of its reference point via distributing coupling. The 

distributing coupling enforces a distribution of loads, which means that the sum of the forces 

and the moments at the coupling nodes is equivalent to the forces and moments at the reference 

node. The coupling forces are weighted based on the surface area of the coupled elements (for 

detailed information see also [71]). The thickness of the add-on layer is half of the largest 

particle radius to have enough nodes for the distributing coupling and to avoid stress 

concentrations. A thicker add-on layer would cause additional computational costs and thus has 

no further benefit.  

Finally, the pairs of reference points for opposite particles in the RVE are constrained to enforce 

the periodic boundary conditions. The constraints are applied via linear constraint equation for 

all degrees of freedom (3 translational and 3 rotational). To deform the RVE during simulation 

(𝒙𝑞
+ − 𝒙𝑞

− ≠ 𝟎) it is necessary to introduce three auxiliary nodes to the model. Each auxiliary 

node is assigned to a pair of opposing faces of the RVE and controls the movement of the faces 

to each other. The linear constraint equation for two opposite boundary particles on faces with 

a normal vector in x-direction, as shown in Figure 15, can be written as:  

𝒙𝑞
+ − 𝒙𝑞

− + 𝒙𝑟𝑒𝑓,𝑥 = 𝟎,   𝒒𝑞
+ − 𝒒𝑞

− = 𝟎 (12) 

 

As a result, we obtain 6N constraint equations for N pairs of opposite boundary particles. The 

approach of three auxiliary nodes was also used in the MPFEM model of [72]. The advantage 

of our approach is the relatively low number of constraint equations that are needed to apply 



41 

periodic boundary conditions. Consequently, this approach increases the simulation speed 

dramatically. 

The application of the periodic boundary condition during the whole simulation procedure is 

summarized as follows: During compaction of the RVE the displacement of the auxiliary nodes 

is prescribed. The auxiliary nodes are kinematically constrained to the reference points of the 

boundary particles, which are themselves connected to their coupling nodes via distributing 

coupling. This way a macroscopic deformation gradient can be incrementally applied. Then the 

system of equations is solved and the nodal positions of the inner particles are updated. This 

mode is referred to as “deformation-controlled”. During probing of the yield strength, the load 

of the auxiliary nodes is prescribed to achieve a certain macroscopic stress of the RVE. This 

mode is referred to as “force-controlled”. We restrict ourselves to three auxiliary nodes in this 

powder compaction study, which limits the change in the RVE’s shape to a cuboid. The 

generalization of the proposed procedure to more auxiliary nodes is straightforward. 

Note that the proposed RVE is similar to the procedure in [72]. These authors use linear 

constraint equations to prescribe the displacement of pairs of nodes on the opposite sides of the 

RVE. The constraint equations are also governed by the displacements of three auxiliary nodes. 

Each auxiliary node is connected to one of the three parallel faces of the cubic RVE. The parallel 

faces need to have a periodic mesh topology, which is solved by the authors with ‘ghost 

particles’. For every particle on the boundary there exists a particle composed of the surface 

nodes on the opposite boundary. These surface nodes are constrained with each other. However, 

a high number of constraint equations have to be solved, which reduces significantly the 

efficiency of the FE solver and slows down the simulation.  

Another similar methodology is presented by [59] and [62]. These authors study the compaction 

of ductile metal powders through a numerical assembly of elastic–plastic and rate-independent 

spherical particles, which are in frictional contact. The simulation results revealed yield surfaces 

with both isotropic and kinematic hardening mechanisms. Their work uses rigid planes for the 
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walls of the RVE to bound the particles into a cubic volume, which has certainly a large 

influence on the homogenized macroscopic quantities.  

An implementation of PBCs was also accomplished in [73] via surface-to-surface constraints, 

i.e., by constraining each node on a slave surface to have the same motion as the closest point 

on a master surface. The authors in [74] present different approaches for possible boundary 

conditions resulting in periodic and non-periodic RVE topologies. Among others, these authors 

advocate approximate periodic boundary conditions via surface-to-surface constraints available 

in most commercial FE software packages. Kinematic coupling is enforced in a master-slave 

approach. The degrees of freedom at the coupling nodes are eliminated, which will move 

henceforth with a reference point (see Figure 15).  

 

 

Figure 15: Periodic boundary conditions of two opposite particles in a RVE with particles arranged as a face-
centered unit cell. 

 

In addition, note that the proposed periodic boundary conditions can be applied to systems with 

non-periodically meshed particles, i.e., the associated (opposite) particles in the add-on layer in 
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Figure 15 do not need to have the same mesh. It is obvious that the choice of the reference 

points and the distributed coupling with nodes in the vicinity via distributing coupling is 

independent of the discretization. In [74], a similar definition of boundary conditions is 

reported, which does not require periodicity of the underlying discretization. These authors 

conclude that enforcing periodicity is not necessary in order to identify material parameters for 

technologically relevant processes. We refrain from showing non-periodic meshes in this article 

as we focus on the dependence of yield surfaces on cohesion. Furthermore, we only study 

spherical particles and creating a periodic mesh is simple in this case.  

3.2.2 Interfacial Contact of Particles 

Failure of powder often occurs at contacts between particles, especially if the cohesion 

interaction of the contacts is weak. As a result, contact properties are of great importance in 

powder modeling and a suitable implementation of friction and cohesion forces is necessary. 

We propose in this work to compute the contact forces with the balanced master-slave method. 

This method is robust and allows for an efficient implementation into existing (commercial) 

finite element software packages.  

In the balanced master-slave method the contact forces are computed as a linear combination 

of the pure master-slave forces of the two surfaces in contact. In our case the forces of the 

interchanged master-slave pairs will be weighted equally. The contact force of each node on 

the slave surface is computed as a function of contact stress multiplied by the associated surface 

area. To compute the contact stress, we implement a simple user-defined contact model 

(including cohesion stress) using the VUINTERACTION user subroutine in Abaqus 6.14. The 

contact normal stress is computed as a function of the normal distance 𝛿𝑁 of the slave node to 

the master surface as shown in Figure 16 and Figure 17. The distance has positive values for 

penetration and negative values for separation (Figure 17). Similar the contact tangential stress 

is computed as a function of the relative tangential displacement 𝛿𝑇. Additionally, a numeric 
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damping coefficient ⅆ can be included, which damps the system as a function of the normal 

relative velocity 𝛿𝑁̇ and the tangential relative velocity 𝛿𝑇̇. 

Three different situations are considered (see Table 2 and Figure 16 (right)). First, if the 

separation is greater than 𝛿0, no interaction between the surfaces occurs and all stresses are 

zero. The quantity 𝛿0 is the interaction length of the cohesion model. Second, the cohesion 

stress increases linearly as a function of the distance starting from 𝛿0 until the slave node 

touches the discretized master surface. The repulsive normal stress 𝜎𝑟𝑒𝑝 and the tangential 

friction stress 𝜎𝑓𝑟𝑖𝑐 remain zero until the discretized surfaces virtually penetrate each other. 

Third, if the surfaces penetrate each other, the repulsive normal stress increases linearly as a 

function of the penetration 𝛿𝑁. The contact stiffness k is chosen such that the penetration 

remains small compared to the dimension of the particles (penetration/diameter < 0.001), yet 

avoiding stability issues due to a too stiff contact. The cohesion stress remains constant, if the 

surfaces are in contact. The friction stress increases linearly with the relative tangential 

displacement 𝛿𝑇 and is limited by the maximum friction force, which is the product of the 

repulsive stress and the coefficient of friction. 

 

Figure 16: Determination of the normal distance in the master-slave contact algorithm (left). Schematic 
representation of the load on a slave node approaching a master surface (right). 
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Table 2: Overview contact model with cohesion stress 

 

 

The total normal stress 𝜎𝑁, which is enforced at the slave node, is a function of the repulsive 

stress, the cohesion stress and additional damping. The evolution of the contact normal stress 

as a function of the dimensionless overlap (overlap/particle diameter) without damping is 

shown in Figure 17. The signs follow the convention that compressive stress is taken to be 

positive. The damping is a linear function of the relative speed and the damping coefficient ⅆ. 

The value of the damping coefficient is chosen such that contact oscillations are dampened, yet 

substantial additional macroscopic stresses are avoided. Without damping the elastic contact 

would lead to an oscillating movement of the particles. Similar to the normal stress, the total 

tangential stress 𝜎𝑇 is a function of the friction stress and a tangential damping.  

The implemented contact model considers contact cohesion in a simplified way. Dependent on 

the physical origin of the cohesion interaction a different cohesion model may be implemented. 

We use this simple model to obtain a clear picture of how contact cohesion influences the yield 

properties of compacted powder. 

 Normal direction Tangential direction 

𝜹𝑵 < 𝜹𝟎 𝜎𝑁 = 0 𝜎𝑇 = 0 

𝜹𝟎 < 𝜹𝑵

< 𝟎 

𝜎𝑟𝑒𝑝 = 0 

𝜎𝑐𝑜ℎ = 𝑐𝑚𝑎𝑥 (1 −
𝛿𝑁
𝛿0
) 

𝜎𝑓𝑟𝑖𝑐 = 0 

𝟎 < 𝜹𝑵 𝜎𝑟𝑒𝑝 = 𝑘 ∙ 𝛿𝑁 

𝜎𝑐𝑜ℎ = 𝑐𝑚𝑎𝑥 

|𝑘 ∙ 𝛿𝑇| < 𝜎𝑟𝑒𝑝 ∙ 𝜇:     𝜎𝑓𝑟𝑖𝑐 = −𝑘 ∙ 𝛿𝑇  

|𝑘 ∙ 𝛿𝑇| > 𝜎𝑟𝑒𝑝 ∙ 𝜇:     𝜎𝑓𝑟𝑖𝑐 = −𝜎𝑟𝑒𝑝 ∙ 𝜇 ∙
𝛿𝑇
|𝛿𝑇|

 

total 𝜎𝑁 = 𝜎𝑟𝑒𝑝 − 𝜎𝑐𝑜ℎ + ⅆ ∙ 𝛿𝑁̇ 𝜎𝑇 = 𝜎𝑓𝑟𝑖𝑐 − 0.01 ∙ ⅆ ∙ 𝛿𝑇̇  
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Figure 17: Contact normal stress as function of the relative overlap (overlap/diameter) 

 

3.2.3 Simulation Procedure 

We chose a cubic RVE filled with monodisperse random close-packed spheres. The initial 

packing (relative density 0.64) is obtained from a DEM simulation in LIGGGHTS® [25]. 

During the DEM simulation a cubic box with periodic boundary conditions is filled with 

randomly placed spheres. Starting from a loose initial packing the diameter of the particles is 

ramped up until a relative density of 0.64 is reached. The periodic boundary condition of the 

DEM code automatically creates a periodic counterpart for each particle at the boundary of the 

box. The DEM simulation offers therefore a suitable initial packing for our model. In the 

MPFEM model PBC and the interfacial contact as described in section 3.2.1 and 3.2.2 are used. 

Furthermore, each particle is modeled as an elasto-plastic body, which does not break during 

deformation. This assumption is in good agreement with the experimental behavior of metallic 

particles, but may not be as applicable to ceramics or certain brittle compaction aids used in the 

pharmaceutical industry. 

A MPFEM simulation is divided into three steps, i.e., compaction, unloading and reloading, as 

shown in Figure 18. The compaction and unloading steps correspond to the production of a real 
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powder part. The reloading corresponds to the testing of the powder-part strength and is used 

in the simulation to determine the yield points in the stress space. In the compaction step, the 

randomly-filled close-packed particles are compacted by a deformation-controlled isotropic 

compression to reach a certain relative density of the entire RVE. In order to keep the 

accelerations small, the deformation speed is linearly ramped up in the first half of the 

compaction step and linearly ramped down in the second half. After compaction a short dwell 

step with fixed boundaries of the RVE is included to allow for dissipation of possible 

oscillations. Then the load control of the RVE is shifted to force control, and the load is linearly 

ramped down during unloading to relieve the RVE to a state of 0.1 MPa isostatic compression 

stress. The small residual compression stress is used to avoid disintegration of the compact in 

case of cohesion-less contacts. After releasing the applied load, we end up with a compacted 

RVE without unnatural gaps between the particles. This state of the RVE will be taken as the 

RVE’s reference state as it corresponds to the state of a powder part after production. 

 

 

Figure 18: Schematic evolution of the stress during the three steps of the compaction and subsequent yielding 
simulation. The real simulation is in 3D. 
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The size of the reference RVE is used to compute the stresses and strains needed for the 

calculation of the yield points. The edge lengths of the RVE are denoted as X, Y and Z and the 

area of the faces are Ax, Ay and Az. In the reloading step the RVE is reloaded in different 

directions to probe different yield points on the yield surface. The probing of each direction is 

independent of each other and always starts from the reference RVE. The probing of one 

direction is an elaborate procedure as it is necessary to ramp up the stress slowly towards the 

unknown yield point to avoid inertial effects. As a remedy, we probe each direction at least 

three times to approach the yield point with sufficient accuracy, i.e., we use two trial steps to 

estimate the yield point and use the third one to hit the yield surface sufficiently slowly to 

minimize inertial effects. 

The three-step procedure (compaction, unloading, reloading) is similar to the work [59] and 

[72], although the former authors use rigid walls as BC and both do not consider cohesion. 

Furthermore, in the referenced studies only the compaction step was performed with the explicit 

solver of Abaqus and the implicit solver was used for unloading and reloading. This has the 

potential benefit of a reduction in computational costs since bigger time steps can be used with 

the implicit solver. In the present work convergence issues arose with the implicit solver of 

Abaqus 6.14 due to the used contact model, and therefore, only the explicit solver was used. 

The determination of the yield point requires a criterion for plastic deformation of the powder 

compact. Small (or infinitesimal) strain theory is used in the following, since only small strains 

are considered during yielding of the RVE. This is tantamount to assuming the size of the 

(undeformed) reference RVE and the (deformed) actual RVE in the reloading step to be 

identical. The Cauchy stress tensor, which coincides with the first Piola-Kirchhoff stress tensor 

for small strain theory, is defined as 
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(13) 

and based on the constraint forces, which are imposed by the constraint equation. The sum of 

the constraint forces for two parallel faces can be obtained as the reaction force of the auxiliary 

node, which was used for the corresponding constraint equations. Hence, the three force vectors 

𝑭𝑥, 𝑭𝑦 and 𝑭𝑧 are taken from the three auxiliary nodes and their components are used to 

compute the stress tensor. Similarly, the strain tensor 

𝜺 =
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(14) 

can be computed based on components of the displacement vectors of the auxiliary nodes ∆𝒖𝑥, 

∆𝒖𝑦 and ∆𝒖𝑧. We propose a scalar strain measure for general load cases, which can be used to 

describe the yielding of a powder. For that we adopt the structure of the von Mises equivalent 

strain formulation. The von Mises equivalent strain is based on the strain deviator tensor and is 

often used for metals. The deviatoric strain component is related to distortion, but not to volume 

change. Since powders can also yield during isostatic compression, we use the full strain tensor 

instead of the strain deviator tensor to determine the yield point and define the critical plastic 

equivalent strain for yielding 𝜀𝑝𝑙,𝑐𝑟𝑖𝑡 as 

𝜀𝑝𝑙,𝑐𝑟𝑖𝑡  = √
2

3
𝜺𝑦𝑝 ∶ 𝜺𝑦𝑝  −  √

2

3
𝜺𝑒𝑙 ∶ 𝜺𝑒𝑙. (15) 

Therefore, the yield point is found by evaluating the plastic equivalent strain of Eq. (15) during 

probing the RVE in a certain direction. The simulation is stopped as soon as the critical plastic 

strain for yielding is achieved. The strain tensor at the yield point 𝜺𝑦𝑝 is computed with Eq. 

(14), i.e., the positions of the RVE’s auxiliary nodes at the yield point and in the reference state 
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determine the displacements. The elastic strain tensor 𝜺𝑒𝑙 is estimated as the unloading strain 

after compaction. Hence, the positions of the RVE’s auxiliary nodes after compaction and the 

positions in the reference state determine the displacements for the elastic unloading. The 

unloading strain after compaction is taken as elastic strain for all yield points since there exists 

no accurate constitutive equation for the elastic deformation of powders and cyclic probing of 

the powder tremendously increases the computational costs. However, the contribution of the 

elastic strain is not crucial anyway and there is no need to determine the elastic strain for each 

loading direction. 

The plastic equivalent strain needs to be negligible (smaller than a user-defined threshold) 

during elastic loading. If the user-defined threshold of plastic equivalent strain is reached, then 

the deformation is assumed to be plastic. In the present work the threshold for the plastic 

equivalent strain was chosen to be 0.002 in analogy to the offset yield point in uniaxial tensile 

testing, where a plastic strain of 0.2% is used to define the yield strength. The corresponding 

yield stress tensor of this loading direction is evaluated according to Eq. (13) in a post-

processing step. 

In the results section of this work (section 3.4) the yield points are plotted in the 𝑝-𝑞-plane. The 

pressure p and the equivalent stress q are computed as functions of the main principal stresses 

of the stress tensor at the yield point (Eq. (13)): 

𝑝 =
1

3
(𝜎11 + 𝜎22 + 𝜎33) (16) 

𝑞 = √
1

2
[(𝜎11 − 𝜎22)

2 + (𝜎22 − 𝜎33)
2 + (𝜎33 − 𝜎11)

2] (17) 

Previous studies, such as [59], used the amount of dissipated energy during probing of the yield 

surface as a yield criterion. This approach has a disadvantage concerning cohesion, which can 

be explained by a simple example. If we consider a compact with lubricated contacts and low 

cohesion, then the compact has to be strained severely to obtain a certain amount of energy 
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dissipation. In contrast, if we take a non-lubricated system with high cohesion levels, then only 

little plastic strain is needed for the same energy dissipation. Hence, we advocate an alternative 

approach in this work, which takes the plastic strain into account. 

In addition, note that the von Mises equivalent strain is based on the strain deviator tensor and 

is often used for metals. The deviatoric strain component is related to distortion, but not to 

volume change. Since powders can also yield during isostatic compression, we use the full 

strain tensor instead of the strain deviator tensor to determine the yield point. 

Although a quasi-static problem is considered by the MPFEM, we employ ABAQUS/Explicit 

as a solver. Hence, dynamic equilibrium equations are solved by a forward Euler algorithm. 

The explicit algorithm allows for an efficient and robust solution of the contact algorithm 

problem compared to an implicit algorithm. The drawback of the explicit solver is the limited 

time increment, since this method is only stable for sufficiently small time steps. Fortunately, 

it is possible to increase the stable time step by mass scaling. During mass scaling the density 

of the material is artificially increased without any influence on the results in case of a quasi-

static model. The dynamic effect of mass scaling for explicit FEM was investigated in [75] and 

more recently used in [76] and [77]. As long as there are no inertial effects in the model, it is 

possible to apply mass scaling. Since finite accelerations are needed to deform and to yield the 

RVE the maximum mass scaling is limited. 

3.3 Convergence Study for the Proposed RVE 

The choice of a proper RVE is a subtle task as powder compacts have a complex microstructure. 

Needless to say, accuracy should be maximized with the least computational effort. The RVE 

must be large enough to be statistically representative of the powder, such that it effectively 

includes a sampling of all microstructural heterogeneities. To address these issues, the 

performance of the proposed RVE is demonstrated by convergence studies. First, a mesh 

convergence study was conducted to find the minimum mesh fineness. This is followed by a 
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study of the number of particles and their arrangement in the RVE. Finally, the time step size 

and the influence of mass scaling were investigated. 

We chose again a periodic cubic box filled with randomly close-packed, monodisperse spheres 

(relative density 0.64) obtained from a DEM simulation, as initial packing. Each particle was 

modeled as an elasto-plastic body, which does not break during deformation. In this work the 

particles have the material properties of copper, which are summarized in Table 3. The yield 

stress of the von Mises yield criteria increases as a function of the plastic strain and is defined 

piecewise linear based on the experimental data given by [78] and [79]. The particles’ contact 

parameters are listed in Table 4. The maximum cohesion interaction length is given as a fraction 

of the particle diameter dparticle. For simplicity the diameter of the particles is chosen to be one 

meter, since it does not influence the properties of the RVE in case of a quasi-static simulation. 

The value of the damping coefficient was determined by preliminary studies and yielded an 

optimum in our simulations for a sufficient damping and a negligible influence on the 

macroscopic yield stress. The particles in the MPFEM model are discretized with standard 

linear hexahedrons in Abaqus 6.14. 

Table 3: Material properties of copper used as particle material 

Property Value 

Young’s modulus 115 GPa 

Poisson ratio 0.34 

density 8920 kg/m³ 

σ/ MPa εplastic 

150 0.00 

250 0.06 

300 0.30 

350 1.00 

400 2.50 

450 5.00 
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Table 4: Contact properties for convergence studies 

Property Value 

Contact stiffness k 1.0∙1012 N/m 
Coefficient of friction µ 0.2 
Maximum cohesion strength cmax 100 MPa 
Cohesion interaction length δ0 0.01·dParticle 
Damping coefficient d 500 MPa∙s/m 

 

 

The four parameter studies were performed iteratively, since the mesh size, the number of 

particles, time step size and mass scaling interact with each other. As an example, the maximum 

time step size for a robust simulation is a function of the finite element size and the density. 

The maximum mass scaling decreases with an increasing number of particles in the RVE. 

However, the four parameter studies should verify the suitability of the proposed RVE for 

powder compaction within acceptable tolerances. 

3.3.1 Mesh Fineness 

The first study addressed the degree of mesh fineness of the particles, which is needed to obtain 

convergence in the homogenized quantities. We considered an initial packing of 50 particles 

and compacted the RVE to a relative density of 0.9. The particles were discretized with different 

mesh fineness. The mesh fineness is defined as the ratio of particle diameter to element size 

and ranges from 4 to 16 in this study. 

 

Figure 19: Stress distribution after compaction of 50 particles in the RVE for different finite element discretization.  
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Figure 19 shows the stress distribution after compaction for three representative meshes based 

on an identical initial particle packing. In the case of a very coarse mesh the linear elements 

cannot discretize the shape of the spheres very well. In addition, some of the particles on the 

boundary are not deformed at all (blue color), since there is no constraint active as the number 

of coupling nodes is not high enough for at least one of two corresponding particles. The stress 

distributions for the medium and the fine mesh are comparable by visual inspection. To 

determine a sufficient mesh fineness, the compact strengths for three different loading cases 

(uniaxial tension, uniaxial compression and isostatic compression) are plotted as functions of 

the mesh discretization in Figure 20. It can be clearly seen that the strengths converge for mesh 

fineness higher than 8 or 10. Since there is only a small deviation in the compact strength 

(maximum 3.2%) for the mesh fineness of 8 compared to 16, a mesh fineness of 8 was used for 

the subsequent studies (section 3.4) to keep the computational cost moderate.  

 

Figure 20: Compact strength of an RVE with 50 particles compacted to a relative density of 0.9. 

 

3.3.2 Particle Number and Particle Distribution 

The minimum number of particles to obtain converged quantities for the proposed RVE was 

investigated next. The RVE must be large enough to be statistically representative of the powder 
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such that all microstructural heterogeneities are sufficiently sampled.  Particle numbers ranging 

from 10 to 2000 particles were considered. As only a small number of particles can be 

practically considered in the MPFEM, the packing distribution itself will have a large influence 

on the results. Hence, we chose ten different packing realizations for each particle number and 

computed the average. The RVE was compacted again to a relative density of 0.9. In Figure 21 

three particle packings with different particle numbers are shown for illustration purposes. 

 

Figure 21: Stress distribution after compaction of different numbers of particles inside the RVE.  

 

The computed compact strengths of the three loading cases are shown for all packings in Figure 

22 as black crosses. In addition to that, the average compact strength as a function of the number 

of particles and the three loading cases is plotted by a filled symbol. We clearly observe that 

with an increasing number of particles the average strengths converge towards a nearly constant 

value. There is a slight increase of the yield strength above 100 particles what may be due to 

inertial effects. The mass scaling factor used in this study was determined for a system of 50 

particles (see section 3.3.4) and is rather too high for packings with several hundred particles. 

Interestingly, the results for the particle packing with 10 particles are closer to the converged 
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results than for 20 particles. The random arrangement of 20 particles in this simulation is 

apparently not sufficient for modelling an infinite particle packing. Besides, a low particle 

number (smaller than 50) gives a very wide scattering of the results. Figure 23 presents the 

relative standard deviation (RSD) shown for different particle numbers and loading cases. The 

RSD decreases with an increasing particle number. We observe that beyond 100 particles the 

RSD is limited to a range from 0 to 0.05. It is noteworthy that the RSD is higher for uniaxial 

compression compared to isostatic compression and uniaxial tension. According to this 

convergence study and due to computational reasons we used a packing of 50 particles for 

further simulations. 

 

 

Figure 22: Strength for different particle packings compacted to a relative density of 0.9. Every single compact 
strength is plotted as a cross, whereas the average strength for the same particle number is plotted with filled 

symbols. 
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Figure 23: Relative standard deviation of the compact strengths for different loading cases as a function of the 
particle number. 

 

3.3.3 Time Step Size 

The presented MPFEM is designed for the implementation in commercially available FEM 

software packages. The complex contact problem involved in the MPFEM advocates the use of 

an explicit integration scheme in these packages. As we opt for ABAQUS/Explicit, the 

homogenized compact strength will be dependent on the simulation time step size. To determine 

its influence, we considered an RVE populated with 50 particles and a mesh fineness of 8 and 

investigated three different loading cases. The simulation time step was varied from 0.01 to 

1ms, while the mass scaling factor was kept constant at 10000. Time step sizes larger than 1ms 

resulted in an unstable simulation. As can be seen in Figure 24, the results are rather insensitive 

to the size of the time step, although a deviation of 8.5% for the largest time step compared to 

the smallest time step for uniaxial compression is obtained. We chose a size of 0.1ms for the 

convergence study of the mesh and the mass scaling to obtain stable simulations for a big range 

of the mesh fineness and the mass scaling factor. A higher step size of 0.5ms is used during 
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convergence study of the number of particles and the subsequent simulation studies of the yield 

properties. 

 

Figure 24: Strength of a 50-particle RVE compacted to a relative density of 0.9 for different loading cases as a 
function of the simulation time step. 

 

3.3.4 Mass Scaling 

A parameter study for the maximum factor of mass scaling was performed. Mass scaling 

multiplies the original density by a factor to give a new artificial density, which optimizes the 

solution of the quasi-static problem. We considered an RVE with 50 particles, initial packing 

density of 0.64 and a mesh fineness of 8 and investigated a compaction to a relative density of 

0.9, considering three different loading cases (uniaxial tension, uniaxial compression and 

isostatic compression). First we used a time step size of 1µs and no mass scaling. The used time 

step of 1µs was found during a convergence study in which the time step was stepwise reduced 

until the result was constant. The resulting compact strengths are given in Figure 25 as 

horizontal lines. We increase the time step to 0.1ms to speed up the simulation. However, this 

requires a mass scaling as the simulation is not stable while using the original density. The mass 

scaling factor was varied between 200 and 70,000. Smaller factors than 200 resulted in unstable 
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simulations for the chosen time step size. We note that too low scaling factor result in stability 

problems or imprecise results, while too high scaling factors cause artificial inertia effects.  

 

Figure 25: Strength of a 50-particle RVE compacted to a relative density of 0.9 for different loading cases as a 
function of the mass scaling factor. The horizontal lines indicate the strength without mass scaling. 

 

Figure 25 shows in addition the compact strength as a function of the mass scaling factor for a 

time step size of 0.1ms. Mass scaling factors between 300 and 10,000 result in compact 

strengths that are nearly constant and match the target strength obtained without mass scaling, 

although the strength is slightly overestimated during mass scaling. Possibly, minor inertial 

effects cause a delay of yielding, and therefore, increase the apparent yield strength. If the mass 

scaling factor exceeds 10,000, the deviations increase noticeable. This effect is more dominant 

for tension than for compression. This is to be expected, as the cohesive bonds break under 

tensile load and the particles have to be accelerated. To limit this inertial effect a mass scaling 

factor of 10,000 is used for all subsequent simulation studies with a time step size of 0.1ms. 
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3.4 MPFEM for Obtaining the Yield Properties of Compacted Powders 

3.4.1 Uniaxial Strength of Powder after Isostatic Compaction 

The dependence of the uniaxial strength on different relative densities after compaction was 

studied. We used RVEs with 50 particles, an initial relative packing density of 0.64, a mesh 

fineness of 8, a mass scaling factor of 10,000 and a simulation time step of 0.5ms. Three 

different initial packing arrangements were considered for each case and averages were 

computed. The system was isostatically compacted to packing densities ranging from 0.65 to 

0.95. Figure 26 shows the stress distribution inside one RVE after compaction to different 

relative densities. 

 

Figure 26: Stress distribution inside an RVE’s cross section after compacting to different relative densities. 
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Figure 27: Uniaxial strength as a function of the relative density with a constant cohesion interaction strength of 100 
MPa. 

 

Figure 28: Uniaxial strength as a function of the cohesion interaction strength with a constant relative density of 
0.85. 

 

Figure 27 shows the uniaxial strength as a function of the relative density after compaction. 

Tensile strength is stated as positive and compression strength is negative. The simulation 

results are plotted as filled points. Every point describes the average uniaxial strength of three 
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different RVEs compacted to the same relative density. In addition, a parameter study with 

different cohesion strengths was performed with a constant relative density of 0.85. The results 

are shown in Figure 28. It is possible to fit the numerically obtained uniaxial yield strength 

shown in Figure 14 and 15 by means of an analytical equation: 

𝜎𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 = 𝑎 ∙ (𝜌𝑟𝑒𝑙 − 𝜌𝑟𝑒𝑙,0)
𝑏
∙ exp (− (

𝑐

𝑐𝑚𝑎𝑥
)
𝑑

). 
(18) 

The equation consists of a scaling factor 𝑎, another prefactor, which describes the influence of 

the current relative density 𝜌𝑟𝑒𝑙 compared to the initial relative density 𝜌𝑟𝑒𝑙,0, and an exponential 

term, which includes the influence of the maximum cohesion strength cmax. The exponential 

term saturates at high cohesion strength and hence, it is possible to model contact failure at low 

cohesion strength and failure of the particle material at high cohesion strength. Theoretically, 

the saturation cohesion strength 𝑐 should be in the order of the yield strength of the base 

material. It is supposed to have negligible yield strength for packing densities below random 

closed packing of spheres (𝜌𝑟𝑒𝑙,0 = 0.64) since contact surfaces between spheres are only 

formed above this threshold. Furthermore, two additional parameters 𝑏 and ⅆ are introduced to 

improve the flexibility of the fitting. 

Least square regression analyses resulted in the factors 𝑎, 𝑏, 𝑐 and ⅆ. The analytical expression 

for the tensile strength (in MPa) equals 

𝜎𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = 1180 ∙ (𝜌𝑟𝑒𝑙 − 0.64)
1.33 ∙ exp (− (

255.5

𝑐𝑚𝑎𝑥
)
0.71

), 
(19) 

while the analytical expression for the compression strength (in MPa) is 

𝜎𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = −1530 ∙ (𝜌𝑟𝑒𝑙 − 0.64)
1.50 ∙ exp (−(

65.3

𝑐𝑚𝑎𝑥
)
0.40

). 
(20) 

The regression curves fit the numerically obtained strengths very well as it can be seen in Figure 

27 and Figure 28. Interestingly, the saturation cohesion strength 𝑐 for uniaxial tension is 255.5 

MPa while it is only 65.3 MPa for uniaxial compression. The yield strength of the base material 

of 150 MPa lies in between the saturation cohesion strength for tension and compression. This 
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is reasonable, since contact failure is influenced by the loading direction while yielding of the 

base material is the same for tension and compression. The contact surfaces are compressed 

towards each other during compressive load, which strengthens cohesive interactions and 

plastic deformation of the base material occurs rather than contact sliding. In contrast, during 

tensile load contact surfaces are pulled apart from each other, acting against the cohesion 

interaction. In this case a higher cohesion strength is needed to obtain plastic flow of the base 

material. 

The analytical description allows for a quick estimation of the strength based on numerical 

results of the MPFEM. This simplifies the incorporation of the proposed strategy into 

technologically relevant processes. Of course the presented results are only valid for the 

considered system of monodisperse copper-like particles. The coefficients may differ for other 

systems and additional simulations are needed to describe the yield strength for other materials. 

3.4.2 Yield Surfaces 

For the description of powder compacts via continuum models a properly defined yield surface 

is needed. As we investigate the influence of cohesion on the yield surfaces in this article, we 

take a general form of the yield surface in the 𝑝-𝑞-plane (hydrostatic pressure 𝑝, equivalent 

stress 𝑞) as a basis. We use the following form: 

𝑞 = (
(𝑎2 − (𝑝 − 𝑝𝑚)

2)0.5

𝑟
) ∙ (𝑗 ∙ (𝑝 − 𝑡)2 + 𝑘 ∙ (𝑝 − 𝑡) + 1). 

(21) 

Eq. (21) can be divided into two parts. The first part describes an ellipse with a midpoint at the 

pressure 𝑝𝑚, the horizontal semi axis 𝑎 and 𝑟, which is defined as the ratio of the two semi axes 

a/b. The second part is a quadratic polynomial with factors 𝑗, 𝑘 and 𝑡, which change the shape 

and the position of the ellipse in stress space. A schematic example of the yield surface in stress 

space is shown in Figure 29.  
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Figure 29: Schematic representation of the proposed form of the yield surface 

 

We employ the same RVEs as in the previous section and consider again averages of three 

different initial packing arrangements. The yield surfaces are numerically probed and the 

parameters in Eq. (21) are obtained by curve fitting to obtain an analytical description of the 

yield surface.  

Figure 30 presents the numerically obtained yield surfaces for different relative densities with 

a constant cohesion strength (filled points). As expected, the size of the yield surfaces increases 

with increasing relative density, while the shape remains approximately constant. The solid 

lines are least-square error fits of Eq. (21) to the discrete data points. Table 5 summarizes the 

regression data. As can be seen in the figure, a very good fit is achieved. During regression an 

isotropic yield behavior of the powder and a circular shape of the yield surface in the deviatoric 

cross section was assumed. In this case a certain yield point, which is a function of the pressure, 

has to be independent of the loading direction. The same pressure can be achieved for different 

loading directions as can be seen in Eq. (16). The yield points in Figure 30 are only slightly 
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scattered, although the strength was tested in different loading directions. Consequently, the 

assumption of isotropic yield behavior is valid in case of isostatic compaction. 

 

Figure 30: Evolution of the yield surfaces as a function of the relative density with a constant cohesion strength of 
100 MPa 

 

Table 5: Parameters of the yield surface as a function of the relative density for a constant cohesion strength of 100 
MPa. 

ρrel /- 
pmax 

/MPa 
t /MPa a /MPa pm /MPa r /- k /MPa-1 j /MPa-2 

0.7 18.2 4.8 11.5 6.7 1.344 0.021 -4.38E-03 

0.75 46.9 10.5 28.7 18.2 1.227 0.016 -6.23E-04 
0.8 79.1 16.9 48.0 31.1 1.216 0.011 -1.97E-04 

0.85 117.7 24.1 70.9 46.8 1.190 0.008 -9.20E-05 
0.9 162.6 32.1 97.3 65.2 1.206 0.006 -4.73E-05 

0.95 219.2 40.8 130.0 89.2 1.249 0.004 -2.51E-05 
 

Figure 31 depicts the numerically modeled yield surfaces as a function of the cohesion strength 

with a constant relative density of 0.85. An interesting behavior can be observed here: Low 

cohesion strengths cause yield surfaces that match the shape of the Drucker-Prager/Cap model. 
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In contrast, high cohesion strengths result in an elliptical shape. The ellipse is remarkably 

similar to the isotropic constitutive model for the plastic behavior of metallic foams developed 

by [56]. The center of the ellipse is close to a pressure of zero, which requires the isostatic 

compressive strength to be equal to the isostatic tensile strength. Such a behavior can be 

physically motivated, if particles are compressed into each other in a hydrostatic manner and 

they are practically bonded due to very high cohesion. Then little or no contact sliding and 

particle rearrangement is expected. In this case the plastic yielding of the particles is mainly 

responsible for the deformation of the powder, which renders the powder’s behavior similar to 

a foam or porous material. The solid lines are again least-square error fits of Eq. (21) to the 

discrete data points, the regression data are shown in Table 6. Once more, a very good match is 

obtained. 

 

Figure 31: Yield surfaces as function of the cohesion strength with a constant relative density of 0.85 
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Table 6: Parameters of the yield surface as a function of the cohesion strength for a constant relative density of 0.85. 

cmax /MPa pmax /MPa t /MPa a /MPa pm /MPa r /- k /MPa-1 j /MPa-2 

1 117.6 2.6 60.1 57.5 3.137 0.060 -4.31E-04 
10 117.7 4.3 61.0 56.7 2.573 0.044 -3.23E-04 

100 117.7 24.1 70.9 46.8 1.190 0.008 -9.20E-05 
300 117.1 69.9 93.5 23.6 1.099 -0.001 -3.22E-05 
600 117.3 112.5 114.9 2.4 1.237 -0.003 -1.67E-05 

1000 117.8 114.0 115.9 1.9 1.257 -0.004 -1.76E-05 
 

To get a deeper understanding of the failure mode in the compact, the effect of the coefficients 

of friction was studied. The relative density was kept constant and three different cohesion 

strengths ranging from very low to very high were investigated (see Figure 32 to Figure 34 and 

Table 7 to Table 9). As can be seen, the coefficient of friction has no influence on the isostatic 

strength (neither for compressive nor for tensile load). However, if the RVE is probed in a non-

isostatic way, the coefficient of friction becomes important as can be seen in Figure 32 and 

Figure 33. In this case sliding between particles is responsible for powder yielding. 

Interestingly, in case of very high cohesion strengths (see Figure 34) the yield surfaces approach 

each other for coefficients of friction of at least 0.2. Here, plastic yielding of the particles is 

again responsible for the powder yielding, since particle sliding is inhibited due to high 

cohesion and friction. 
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Figure 32: Yield surfaces as a function of coefficient of friction with a constant relative density of 0.85 and a 
cohesion strength of 1 MPa 

 

Table 7: Parameters of the yield surface as a function of the coefficient of friction for a constant relative density of 

0.85 and a cohesion strength of 1 MPa. 

coef. of friction 
/- 

pmax /MPa t /MPa a /MPa pm /MPa r /- k /MPa-1 j /MPa-2 

0.01 111.4 2.6 57.0 54.4 3.735 0.057 -4.81E-04 
0.1 116.2 2.5 59.4 56.9 3.492 0.059 -4.46E-04 
0.2 117.6 2.6 60.1 57.5 3.156 0.060 -4.26E-04 
0.5 118.2 2.6 60.4 57.8 2.897 0.077 -5.81E-04 
1 117.6 2.6 60.1 57.5 2.456 0.077 -6.26E-04 
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Figure 33: Yield surfaces as a function of the coefficient of friction with a constant relative density of 0.85 and a 
cohesion strength of 100 MPa 

 

Table 8: Parameters of the yield surface as a function of the coefficient of friction for a constant relative density of 

0.85 and a cohesion strength of 100 MPa. 

coef. of friction 
/- 

pmax /MPa t /MPa a /MPa pm /MPa r /- k /MPa-1 j /MPa-2 

0.01 111.2 22.9 67.0 44.2 1.594 0.008 -1.39E-04 
0.1 116.3 23.6 70.0 46.3 1.367 0.007 -9.86E-05 
0.2 117.7 24.1 70.9 46.8 1.190 0.008 -9.20E-05 
0.5 117.6 25.2 71.4 46.2 0.928 0.007 -1.12E-04 
1 117.3 25.9 71.6 45.7 0.821 0.006 -1.20E-04 
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Figure 34: Yield surfaces as a function of the coefficient of friction with a constant relative density of 0.85 and a 
cohesion strength of 1000 MPa 

 

Table 9: Parameters of the yield surface as a function of the coefficient of friction for a constant relative density of 

0.85 and a cohesion strength of 1000 MPa. 

coef. of friction 
/- 

pmax /MPa t /MPa a /MPa pm /MPa r /- k /MPa-1 j /MPa-2 

0.01 114.3 109.0 111.6 2.6 2.119 -0.006 -2.99E-05 
0.1 118.7 114.7 116.7 2.0 1.258 -0.002 -1.10E-05 
0.2 117.8 114.0 115.9 1.9 1.260 -0.004 -1.86E-05 
0.5 116.2 111.8 114.0 2.2 1.276 -0.005 -2.03E-05 
1 116.9 111.2 114.1 2.9 1.266 -0.004 -1.99E-05 

 

The investigation of the yield surfaces for different contact parameters can be summarized as 

follows: 

During compaction the yield surface grows, but the shape remains constant for constant contact 

parameters. 
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For low cohesion strength the Drucker-Prager/Cap model is appropriate. For very high cohesion 

strength the yield surface can be described with an ellipse, which is symmetric with respect to 

the 𝑞-axis (the metallic foam model with isotropic hardening is appropriate).  An analytical 

equation is given capturing both shapes. 

The frictional constants are not relevant for isostatic compression or in case of very high 

cohesion strengths combined with coefficients of friction exceeding 0.2.  In both cases there is 

no contact failure since contacts simply stick to each other. 

If the state of stress is not isostatic and the cohesion strength is small compared to the particles’ 

material strength, then contact sliding is the failure mode. 

3.5 Conclusion and Outlook 

This work introduces an efficient RVE for the compaction of a monodisperse powder with the 

MPFEM. In contrast to earlier studies, such as [59] and [72], cohesion is considered in the 

particles’ contact, which allows to describe tensile strength after compaction. The present article 

shows the influence of different cohesion strengths on the yield surface of compacted powder. 

A new way of incorporating periodic boundary conditions is presented. Each boundary particle 

is assigned with a reference point and the nodes of the finite element mesh of this boundary 

particle within an add-on layer are coupled with the reference point via distributing coupling. 

This manner of modeling allows for the incorporation of cohesive contact to the boundary 

particles, which is essential for this study. As a result, a robust MPFEM ready for the 

implementation into existing FEM codes is obtained. 

 We present several convergence studies to justify the performance of the proposed RVE. This 

is an important step since an RVE of compacted powder is only useful if convergence of the 

macroscopic yield properties can be obtained. To the best knowledge of the authors no 

comparable convergence study was reported in the literature which showed convergence of a 

MPFEM RVE. The mesh fineness, the ratio of the diameter of the spherical particles and the 
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size of the finite elements, has to be chosen to equal 8 or higher to avoid mesh effects. Different 

particle arrangements have a significant influence on the homogenized results. The scatter 

decreases with an increasing particle number, but is still observable for RVEs with 300 

particles. Therefore, it is necessary to simulate a couple of different particle arrangements with 

the same particles’ properties to determine average RVE properties. The required number of 

particles and the minimum mesh fineness of the FEM model determine to a large extent the 

computational costs for a single time step. The number of time steps is a function of the total 

process time and the simulation time step. The maximum simulation time step may be increased 

by mass scaling for quasi-static problems. If the process time for the compaction step is 6s, then 

a mass scaling factor of 10,000 can be used without the introduction of unwanted inertial 

effects. In this situation a robust simulation time step equals 0.5ms. 

The proposed MPFEM is designed to be efficiently implemented into an existing finite element 

software. One compaction step of our reference model (50 particles and mesh fineness of 8) 

can be solved in parallel on three CPU cores in approximately 50 minutes. 

The model allows to run multiple parameter studies. Hence it is possible to determine the 

uniaxial yield strength and complete yield surfaces as a function of the compact density and the 

cohesion strength. The numerically obtained uniaxial tensile strength and the uniaxial 

compression strength are described by analytical equations, which include the relative density 

and the cohesion strength. We are even capable of describing yield surfaces based on different 

contact properties and relative densities by using the numerical model. Again, an analytical 

form is given to match the numerical results. Hence, the same material model could be used to 

describe weak cohesion during cold compaction of a powder and strong cohesion (or bonding) 

of the powder after subsequent sintering.  

The existing work demonstrates the possibilities of MPFEM for compaction simulations. 

Nevertheless, many further steps are necessary to fully exploit the possibilities of this method 

in the future. First of all, the simulation results have to be compared to experimental results, 
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such as in [80]. Non-ideal conditions in the experiments (non-spherical particles, slightly 

polydisperse, etc.) have to be taken into account to describe real powders. Next, different 

compaction modes could be considered in future work, which might lead to the observation of 

anisotropic material properties of the compacted powder what was already observed 

experimentally in [81]. Especially closed-die compaction should be considered, since it is 

representative for many industrial compaction processes. Different base materials could be 

investigated to elucidate the influence of their yield properties on the yield properties of the 

compacted powder. Contact modeling and the identification of sufficient contact model 

parameters for a certain material is another story and must be solved in a future work. In 

addition to the yield surface considered in this work the MPFEM can also be used to investigate 

the flow rule to see how the material flows upon yielding. Moreover, the Young’s modulus, 

which is needed to describe the elastic behavior of the compacted powder, should be considered. 

As a result, all macroscopic properties of the compacted powder could be determined by the 

MPFEM, which are then used in a continuum model to simulate macroscopic parts under stress 

and deformation. 
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4 Prediction of the Anisotropic Mechanical Properties of 

Compacted Powdersc 

Abstract: The multi-particle finite element method (MPFEM) was used to test the anisotropic 

elastic and plastic properties of compacted powders with cohesive contacts. A representative 

volume element (RVE) of monodisperse, spherical, deformable particles was used to 

investigate the powder properties after compaction. Efficient periodic boundary conditions and 

an RVE of only 50 particles allowed extensive parameter studies. During parameter studies the 

relative density after compaction, the contact cohesion strength and the strain path during 

compaction were varied. The strain paths were characterized by the ratios of the applied 

principal strains during compaction that results in different Dirichlet boundary conditions on 

the RVE. Seven different strain paths were considered including the practically important 

isostatic and closed die compaction.  

The outcome of the parameter study were the elastic constants of an orthotropic material model, 

the uniaxial yield strength for tension and compression, and the yield surfaces for general load 

cases. No anisotropy was observed for isostatic compaction but increasing anisotropy was 

observed with increasing ratio of the principal strains during compaction. Regression curves 

were generated to describe the mechanical properties as a function of the model parameters. In 

this way, continuous functions were obtained which were capable to describe the distribution 

of the mechanical material properties in a FEM model of a heterogeneous compacted powder 

part. 

                                                 

c This section is based on the journal article “Prediction of the anisotropic mechanical properties of compacted 

powders” by Loidolt et al. in Powder Technology 2018 
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4.1 Introduction 

Compaction of powders is a very common industrial process. It is used for producing green 

bodies before sintering a metallic or ceramic part, to produce pellets of minerals or animal food 

or to manufacture tablets in the pharmaceutical industry [31–34]. The requirements depend on 

the application: for example, the total mass and its uniformity is crucial in the pharmaceutical 

industry, whereas shape of the parts is essential for structural parts in mechanical engineering. 

The properties of the compacted powder depend on the particle properties, such as particle size 

and shape, the mechanical features of the particles and the particle-surface properties. In 

addition to that the process conditions during compaction play a major role. The geometry and 

the surface of the tools, as well as the load control during compaction, are three of the most 

important influencing factors of the process. 

Simulations are an important tool, next to experiments, to understand the details of a process 

and to optimize powder compaction. The advantage of process optimization via simulation is 

the possibility to perform extensive parameter studies without any investment costs for 

prototypes. The drawback of simulation is the simplification of the real system that requires the 

identification of assumedly negligible effects on the system to set up a suitable model. Suitable 

models are not well established for powder materials. There are some very basic 

phenomenological models available which correlate the applied pressure with the relative 

density or porosity of a powder (compressibility), e.g. the Heckel [35] and Kawakita [36] 

equations. Other models correlate the relative density of a powder compact with its strength 

(compactability) [40]. The constants of these models differ from powder to powder and have to 

be estimated during compaction experiments by force measurement. The benefit of these 

models is limited, since there is no spatial resolution which may be crucial for a complex stress 

distribution inside the part. Furthermore, the gain of mechanical understanding is marginal.  

In opposite to the simple phenomenological models, the compaction processes can as well be 

described by means of simple mechanical models as proposed in [44] and [43]. In these studies, 



76 

yield surfaces for powders are derived analytically. Compaction and sintering is analyzed 

theoretically in the work of [45]. The drawback of analytical models is the need of many 

simplifications as it is not possible to consider rearrangement and deformation of particles 

within these models. 

Due to the availability of high-performance computers the application of numerical methods 

became more common in recent years. In the field of powder simulations, the discrete element 

method (DEM) and the finite element method (FEM) are used. In a DEM model the position of 

every particle is tracked. If two particles (theoretically) overlap, a contact force is computed as 

a function of the overlap. The particles are accelerated by the sum of all contact forces and the 

position of the particles is calculated based on the Newton’s equations of motion. In this way 

rearrangement of particles is considered. With efficient codes, this method can be used to model 

up to many millions of particles [82,83]. Still, in most cases the number of particles inside the 

process is too high to be captured by a DEM model. Furthermore, the deformation of particles 

cannot be considered effectively in DEM. In contrast to DEM, the number of particles is no 

issue in a FEM simulation since the powder is considered as a continuum. Therefore, individual 

particles are not considered, but the powder is assumed to have field properties which are 

distributed continuously, e.g., density, stress and strain. During a FEM simulation the stress 

inside the part is computed as a function of the strain. In Eq. (22) the stress-strain relation is 

written in the Voigt matrix notation (symmetric tensors are denoted as vectors) where Cij is the 

6x6 elasticity tensor. The inverse relation is shown in Eq. (23) where Sij is the compliance 

tensor.  

𝝈𝒊 = 𝑪𝒊𝒋𝜺𝒋 (22) 

𝜺𝒊 = 𝑺𝒊𝒋𝝈𝒋 (23) 

Since the elasticity tensor is symmetric there are only 21 independent elastic constants for a 

general elastic material (see for example [1]). The number of elastic constants reduces in case 
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of material symmetry. In Eq. (24) the compliance tensor is shown for a material with three 

perpendicular planes of symmetry (orthotropic material).  
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(24) 

 

Here E1, E2 and E3 describe the Young’s moduli, G12, G23 and G31 are the shear moduli and ν12, 

ν23 and ν31 are the Poisson’s ratios. Examples for orthotropic materials are wood, fabrics, fiber 

composite materials and rolled sheet metals. If there exist an axis of rotational symmetry, then 

the material is called transverse isotropic. In this case two of the Young’s moduli, shear moduli 

and Poisson’s ratios are equal. In case of an isotropic material there exists only one Young’s 

modulus, one shear modulus and one Poisson’s ratio. 

If the stress exceeds a certain threshold, then the powder deforms plastically. To model yielding 

of powder in FEM the yield surface has to be provided in addition to the elastic properties. As 

soon as the stress state reaches the yield surface the powder deforms plastically. A general form 

of the yield surface is given in Eq. (25). A good discussion about standard requirements to yield 

surfaces is found in [84]. The Drucker-Prager/Cap model is a widely used form of the yield 

surface for powders and is shown in Figure 35 (see [51]). In the Drucker-Prager/Cap model the 

yield surface in stress space is divided into a shear failure surface Fs and into a cap surface Fc. 

In both cases the von Mises equivalent stress q is computed as a function of the hydrostatic 

pressure p. 
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𝐹(𝝈) = 0 
(25) 

 

  

Figure 35: left: Drucker-Prager/Cap model in the hydrostatic stress-equivalent stress plane; right: Representation of 
material hardening during compaction of the Drucker-Prager/Cap yield surface. 

 

A suitable yield model will need two important ingredients for our study. Firstly, as the strength 

of the powder changes in a compaction process, the yield surface has to grow during compaction 

(Figure 35 right). Such a surface growth is commonly modeled by an isotropic hardening law 

[84]. Hence, a huge amount of compression tests are necessary to determine the evolution of 

the yield surface. Secondly, the boundary conditions of compaction may render the powder 

compact’s material properties to be anisotropic. An arbitrary initial arrangement of particles, 

which are made of an isotropic material, will show different material properties in the three 

principal directions after closed die compaction. Once again, the strength of the compact has to 

be tested in different loading directions to construct an anisotropic yield surface that is not 

known a priori. 

Several yield surfaces to describe anisotropic plastic deformations were developed by Hill [85]. 

These yield criteria are based on the isotropic von Mises yield criterion, are widely used for 

metals and composites, and can be considered to be standard for FEM applications. We mention 

exemplarily some modifications of this approach [86–88]. An alternative criterion for plastic 
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anisotropy was presented by Barlat [89], who introduced a criterion based on the weighted 

deviatoric stress tensor. Variations of this work were describes by [90–93]. A recent book [94] 

reviews the theory of pressure-sensitive plasticity which is important for structured materials 

including voids. Recent studies of powder compaction reported experimental investigations of 

the strength anisotropy after closed die compaction in [81] and determination of the compact’s 

strength by simulation in [59]. 

The objective of the current work is the investigation of the expected anisotropic material 

properties after non-isostatic compaction. The goal is to obtain reliable material properties 

(elastic and plastic) after compaction with different strain paths (i.e., different Dirichlet 

boundary conditions on a representative volume element, RVE, in compaction) and different 

compact densities. Therefore, we employ a multi-particle FEM (MPFEM) model already 

introduced by us in [95] to study the elastic and plastic properties of a representative volume 

element RVE consisting of deformable particles. First the model is described. Then results on 

the elastic properties are given, followed by results for the yield surfaces. Finally, a conclusion 

and outlook are provided.  

4.2 Model 

4.2.1 Representative Volume Element (RVE) of deformable Particles 

The present work is based on a model introduced by us [95] where detailed information about 

the implementation is given. The model is used to obtain homogenized quantities of a 

particulate system. Specifically, the homogenized stress and strain inside a powder bed are 

determined. The stress and the strain are needed to derive the elastic and plastic properties for 

a continuum model of the powder. The model arranges a certain number of particles in a 

periodic RVE using the commercial multi-purpose finite element package Abaqus 6.14. Due to 

the periodic boundary conditions an RVE of 50 monodisperse spherical particles as shown in 

Figure 36 is sufficient to obtain representative averaged properties. To eliminate the variation 
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between different arrangements of particles, three arrangements are simulated and averaged 

properties are determined. Besides, the particles in the multi-particle finite element (MPFEM) 

model are discretized with standard three-dimensional solid elements in Abaqus. The explicit 

solver is used during simulation and an appropriate mass scaling is employed to increase the 

time step size. 

 

Figure 36: RVE of 50 deformable particles with periodic boundary conditions 

 

The periodic boundary conditions are a key factor in this model. The arrangement of the 

particles on the boundary is periodic, i.e., for each particle on one face of the RVE there exists 

a particle on the opposite face. The displacements of each pair of corresponding particles is 

constraint via linear constraint equation. The constraint equations include the displacement of 

an auxiliary node. Three auxiliary nodes are used to govern the relative displacements of the 

particles at two opposing faces of the RVE. In addition to that, the constraint forces of all 

included constraints are summarized as reaction force at the auxiliary nodes. The displacements 

of auxiliary nodes are used to compute the strain of the RVE, and the reaction force yields the 

stress of the RVE. During testing of the mechanical properties of the powder the infinitesimal 

strain theory is used, since only small strains are considered during elastic deformation and 
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yielding of the RVE. This means the size of the RVE is assumed to stay constant during testing. 

The Cauchy stress tensor is defined as 

𝝈 =

[
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(26) 

 

The three force vectors 𝑭𝑥, 𝑭𝑦 and 𝑭𝑧 are taken from the three auxiliary nodes and their 

components are used to compute the stress tensor. The cross sections of the RVE faces are 

denoted as Ax, Ay and Az. Similarly, the strain tensor 
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(27) 

can be computed based on components of the displacement vectors of the auxiliary nodes ∆𝒖𝑥, 

∆𝒖𝑦 and ∆𝒖𝑧. The dimensions of the RVE are denoted as lx, ly and lz. 

Each particle in the RVE is modeled as an elasto-plastic body which does not break during 

deformation. In reality this is the case for most metallic materials. In this work the material 

properties of copper are used. The yield stress is defined as a piecewise linear function of the 

plastic strain based on the experimental data in [78] and [79]. All material properties are 

summarized in Table 10. If brittle materials would be considered, such as ceramics or some 

excipients in pharmaceutical industry, it would be necessary to use an appropriate fracture 

criterion to model cracking of the particles. In this case, the MPFEM model is more complex 

as new surfaces are created during compaction and additional material properties need to be 

considered. 
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Table 10: Material properties of copper 

Property Value 

Young’s modulus 115 GPa 

Poisson ratio 0.34 

density 8920 kg/m³ 

σ/ MPa εplastic 

150 0.00 

250 0.06 

300 0.30 

350 1.00 

400 2.50 

450 5.00 

 

The contact properties between particles are of importance, since failure of powders often 

occurs at contacts between particles. To compute the contact stress a simple contact model 

including cohesion stresses was implemented as VUINTERACTION subroutine in Abaqus. 

The contact normal stress is computed as a function of the normal distance 𝛿𝑁 and the normal 

relative velocity 𝛿𝑁̇ of the slave node to the master surface (see Table 11). The distance has 

positive values for penetrations and negative values for gaps. Similarly, the contact tangential 

stress is computed as a function of the relative tangential displacement 𝛿𝑇 and the tangential 

relative velocity 𝛿𝑇̇. Three different cases are distinguished (see Table 11). 

The total normal stress is a function of the repulsive stress 𝜎𝑟𝑒𝑝, the contact cohesion stress 𝜎𝑐𝑜ℎ 

and an additional damping stress. The signs follow from the convention where pressure stress 

is counted as positive. The damping stress is a linear function of the relative normal speed and 

a damping coefficient d. The damping coefficient is chosen to damp contact oscillations and to 

simultaneously avoid substantial additional macroscopic stresses. Similar to the normal stress 

the total tangential stress is a function of the friction force and a low tangential damping stress. 
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Table 11: Contact model 

 

The contact parameters used in the simulations are summarized in Table 12. Two different 

values of the contact stiffness are used for testing the yield properties and the elastic properties. 

A comparably high contact stiffness is used during testing the elastic properties to avoid 

artificial softening due to too soft contacts. A lower contact stiffness is used during testing the 

yield properties, since it has no essential influence on the yield strength, but a larger simulation 

time step can be used to speed up the simulations. The maximum cohesion strength cmax is 

varied in the range from 1 to 1000 MPa. The lower values describe the weak bonding of 

particles after cold compaction while the high values exceed the yield strength of the particle 

material and are therefore useful to describe strong bonding of particles after sintering. The 

cohesion interaction length is given as a fraction of the particle diameter. The latter is chosen 

for simplicity to be 1 m.  

 Normal direction Tangential direction 

𝜹𝑵 < 𝜹𝟎 𝜎𝑁 = 0 𝜎𝑇 = 0 

𝜹𝟎 < 𝜹𝑵 < 𝟎 𝜎𝑟𝑒𝑝 = 0 

𝜎𝑐𝑜ℎ = 𝑐𝑚𝑎𝑥 (1 −
𝛿𝑁
𝛿0
) 

𝜎𝑓𝑟𝑖𝑐 = 0 

𝟎 < 𝜹𝑵 𝜎𝑟𝑒𝑝 = 𝑘 ∙ 𝛿𝑁  

𝜎𝑐𝑜ℎ = 𝑐𝑚𝑎𝑥 

|𝑘 ∙ 𝛿𝑇| < 𝜎𝑟𝑒𝑝 ∙ 𝜇:         𝜎𝑓𝑟𝑖𝑐 = −𝑘 ∙ 𝛿𝑇 

|𝑘 ∙ 𝛿𝑇| > 𝜎𝑟𝑒𝑝 ∙ 𝜇:         𝜎𝑓𝑟𝑖𝑐 = −𝜎𝑟𝑒𝑝 ∙ 𝜇 ∙
𝛿𝑇
|𝛿𝑇|

 

total 𝜎𝑁 = 𝜎𝑟𝑒𝑝 − 𝜎𝑐𝑜ℎ + ⅆ ∙ 𝛿𝑁̇ 𝜎𝑇 = 𝜎𝑓𝑟𝑖𝑐 − 0.01 ∙ ⅆ ∙ 𝛿𝑇̇  
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Table 12: Contact properties 

Property Value 

Contact stiffness k (yield tests) 1.0∙1012 N/m 
Contact stiffness k (elasticity tests) 1.0∙1014 N/m 
Coefficient of friction µ 0.2 
Maximum cohesion strength cmax [1, 10, 100, 300, 600, 1000] MPa 
Cohesion interaction length δ0 0.01·dParticle 
Damping coefficient d 500 MPa∙s/m 

 

4.2.2 Compaction Simulation 

The MPFEM simulation procedure is divided in three steps. In Figure 37 the evolution of the 

stress inside the powder is shown for simplicity in the 2D stress space although the real 

simulation is in 3D. In the first step the initial packing is compacted with strain- (deformation-

) controlled tri-axial compression. After compaction a short dwell step is used to allow for 

dissipation of possible particle oscillations. Then, the load control of the RVE is shifted to stress 

(force) control and the load is ramped down thoroughly to obtain a stress-free RVE. Starting 

from this configuration the RVE is reloaded in different directions during the testing step to 

determine the mechanical properties of the compacted powder.  

 

Figure 37: Schematic evolution of the stress during three steps of the compaction simulation and subsequent testing. 
The real simulation is in 3D. 
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We introduce seven different strain paths for the compaction step (see Figure 38). The initially 

cubic RVE is strained along the x-, y- and z-direction, i.e., the three different strains in direction 

of the coordinate system are equal to the principal strains during compaction as no shear strains 

develop. The strain is computed based on the engineering strain measure as shown in Eq. (28). 

The vector of the principal strains during compaction can therefore be written as shown in Eq. 

(29). Furthermore, the mean strain 𝑒̅ is computed in a standard fashion from the dilatation 

(relative variation of the volume) as given in Eq. (30). The values of the principal strains for 

the seven different strain paths are given as a fraction of the mean strain. In this way the ratios 

of the three principal strains are fixed for a certain strain path irrespective of how dense the 

powder is compacted. In strain path case A (see Figure 38) all three strains are equal, and 

therefore, this case describes isostatic compaction. Isostatic compaction is relevant in powder 

metallurgy during hot isostatic pressing of high quality products. In case B the powder is only 

compressed in x-direction and no strain is allowed perpendicular to the x-direction. This case 

refers to closed die compaction and is the most often used strain path during compaction of 

powders. It is widely used during tableting in the pharmaceutical industry and during production 

of green bodies before sintering. In real compaction processes ideal homogenous deformation 

of the powder does not occur due to the friction between tools and powder, which affect the 

distribution of the strain inside the powder (e.g., see [96]). Therefore, the strain path is also not 

constant across the powder compact. We consider strain path case C to case G to account for a 

possible inhomogeneous deformation during compaction. Case C works similar to case B but 

in this case the powder is stretched perpendicular to the x-direction. In cases D and E, the 

powder is compacted in y- and z-direction. While in case D no straining takes place in x-

direction, in case E a stretch is applied. Finally, three different strains are applied in cases F and 

G. The absolute values for the strains are determined based on the initial packing density and 

the final packing density after compaction. The final packing density was varied in the range 

from 0.65 to 0.95. For all cases the powder was unloaded after compaction to obtain the stress 
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free reference state which is tested in the last step. The dimension of the unloaded RVE is used 

to calculate the stresses and strains needed during the testing step. 
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 𝑒1 = 𝑒̅ 
𝑒2 = 𝑒̅ 
𝑒3 = 𝑒̅ 

𝑒1 = 3𝑒̅ 
𝑒2 = 0 
𝑒3 = 0 

𝑒1 = 5𝑒̅ 
𝑒2 = −𝑒̅ 
𝑒3 = −𝑒̅ 

𝑒1 = 0 
𝑒2 = 3/2𝑒̅ 
𝑒3 = 3/2𝑒̅ 

𝑒1 = −6/8𝑒̅ 
𝑒2 = 15/8𝑒̅ 
𝑒3 = 15/8𝑒̅ 

𝑒1 = 6𝑒̅ 
𝑒2 = 0 
𝑒3 = −3𝑒̅ 

𝑒1 = 2𝑒̅ 
𝑒2 = 𝑒̅ 
𝑒3 = 0 

Figure 38: The seven different strain paths during compaction. The continuous line indicates the state before 
compaction and the dashed line the state after compaction.  

 

4.2.3 Testing of the Elastic Properties 

The elastic properties of the compacted powder are tested with our model. For that the reference 

state of the RVE is externally loaded for each of the six stress components in Eq. (24). The 

normal stresses are investigated for positive and negative signs to take the difference of tension 

and compression into account. The stress inside the RVE is calculated based on Eq. (26), while 

Eq. (27) is used to determine the corresponding strain. We plot exemplarily the stress as a 

function of the strain for uniaxial compression and tension in the direction of the first principal 
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axis in Figure 39. Since all stress components, except of the loading direction, are zero it is 

possible to make use of Eq. (24) to obtain the elastic constant relevant for this type of loading. 

In this way, all components of the orthotropic elasticity model given in Eq. (24) can be obtained. 

Table 13 presents the evaluation of the nine independent elastic constants based on the six 

different loading cases. As shown, each Poisson’s ratio can be computed based on two different 

loading cases. Both cases are used in our subsequent analysis and the average value of the 

Poisson’s ratio is reported. The stress-strain curves of the compacted powders are generally no 

straight lines. Especially in case of low contact cohesion they are non-linear, as can be seen in 

Figure 39. This means the elastic constants are strictly speaking no constants, but are a function 

of the stress. In this work we aim for a description of the powder as a linear elastic material. 

Hence, the elastic constants are found by linearization of the stress-strain curve for strains 

smaller than a defined threshold strain which is chosen here to be 0.002.  

 

Figure 39: Determination of the Young's modulus E1 based on linear regression of the stress-strain curve for small 
strains. Different cohesion strengths of the particle contacts are considered as shown in the legend. Straight lines are 

a fit of the strain-stress relationship. 
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Table 13: Evaluation of the elastic constants for different loading directions 

Loading 

direction 

Elastic Modulus Poisson’s ratio 

±𝝈𝟏𝟏 𝐸1 =
𝜎11
𝜀11

 𝜈12 = −
𝜀22
𝜀11

;   𝜈31 = −
𝜀33
𝜀11

𝐸3
𝐸1

 

±𝝈𝟐𝟐 𝐸2 =
𝜎22
𝜀22

 𝜈23 = −
𝜀33
𝜀22

;   𝜈12 = −
𝜀11
𝜀22

𝐸1
𝐸2

 

±𝝈𝟑𝟑 𝐸3 =
𝜎33
𝜀33

 𝜈31 = −
𝜀11
𝜀33

;    𝜈23 = −
𝜀22
𝜀33

𝐸2
𝐸3

 

𝝈𝟐𝟑 𝐺23 =
𝜎23
2𝜀23

  

𝝈𝟑𝟏 𝐺31 =
𝜎31
2𝜀31

  

𝝈𝟏𝟐 𝐺12 =
𝜎12
2𝜀12

  

 

4.2.4 Testing of the Yield Properties 

The uniaxial yield strength of an RVE of the compacted powder is tested by applying uniaxial 

loading starting from the reference state. During loading the stress and the strain inside the 

powder are evaluated based on Eq. (26) and (27), respectively. Yielding is defined based on a 

scalar plastic strain measure already proposed in [95] to describe the onset of yielding for 

general loading cases (see Eq. (31)).  

𝜀𝑝𝑙  =√
2

3
𝜺 ∶ 𝜺  − √

2

3
𝜺𝑒𝑙 ∶ 𝜺𝑒𝑙. (31) 

Therefore, the yield point is found by evaluating the equivalent plastic strain 𝜀𝑝𝑙  of Eq. (31) 

after probing the RVE in a certain direction. The strain tensor 𝜺 is computed with Eq. (27) based 

on the displacements of the auxiliary nodes during testing. The elastic strain 𝜺𝑒𝑙 at the yield 

point is found during unloading. To avoid cyclic loading and unloading for every single yield 

point, we define the unloading strain after compaction as the elastic strain for all loading 

directions. The yield point for a certain load case is reached if the plastic equivalent strain 
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exceeds a defined threshold. Below this threshold of the plastic equivalent strain, the 

deformation is assumed to be elastic. The threshold for the plastic equivalent strain is chosen to 

be 0.002 in analogy to the offset yield point in uniaxial tensile testing, where a plastic strain of 

0.2% is used to define the yield strength. The corresponding yield stress tensor of this loading 

direction is evaluated according to Eq. (26) in a post-processing step. 

During determination of the yield surface of the compacted powder a total of 82 yield points 

are tested. We aim for an even distribution of these points on the yield surface in stress space. 

To find a proper distribution of the yield points the rough dimensions of the yield surface is 

estimated during 4 trial tests. In the 4 trial tests the yield point for the loading direction during 

compaction, the yield point for isostatic compression and their inverted loading directions are 

tested. The remaining 78 yield points are evenly distributed based on the 4 obtained yield points. 

During testing the 78 yield points, the powder is first loaded to obtain a stress state in the center 

of the yield surface. Starting from this stress state an additional load is applied into different 

directions to hit the yield surface. 

4.3 Results - Elastic Properties 

The elastic properties of the powder compacted in different strain paths are summarized in 

Figure 40. The plots show the Young’s modulus E, the shear modulus G and the Poisson’s ratio 

ν as a function of the maximum contact cohesion 𝑐𝑚𝑎𝑥 and the relative density 𝜌𝑟𝑒𝑙 of the 

powder after compaction. The simulation series of contact cohesion was conducted for a 

constant relative density of 0.85 while the contact cohesion was set to 100 MPa during the series 

of the relative densities. The points in the plots describe the average elastic properties of three 

different packings of 50 particles. The lines indicate the regression curves, also given in Eq. 

(32) to (34), which describe the simulated properties as a function of the relative density, the 

maximum contact cohesion and the main principal strains during compaction. 
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Case A

 

Case B

 

Case C

 

Case D
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Case E

 

Case F

 

Case G

 

 

Figure 40: Elastic properties for 7 different compaction cases. The points are the simulation results and the curves 
are a regression fit of the simulated points. The results for contact cohesion (left panels) were obtained for a constant 

relative density of 0.85. Results for density (right panels) were obtained for a contact cohesion of 100 MPa. 

 

The regression equation of the Young’s modulus 𝐸𝑖 for a certain loading direction as shown in 

Eq. (32) can be divided into two parts. The first part describes the increase of the Young’s 
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modulus as a function of the relative density and the contact cohesion. The influence of the 

contact cohesion is described by means of the arc tangent since the observed saturation behavior 

can be modelled in this manner. The second part of the equation includes the influence of the 

strain path during compaction and is only important for non-isostatic compaction. The Young’s 

modulus averaged over the three principal axes is a maximum for isostatic compaction and 

decreases as a function of the standard deviation of the three principal strains in case of non-

isostatic compaction. The Young’s modulus is furthermore higher for directions of high 

compaction strains and lower for directions of low or even negative strains as described by the 

arc tangent. In case of the important application of closed-die compaction (case B), the Young’s 

modulus is higher in the direction of the punch axis than perpendicular to the punch axis. This 

may be crucial during unloading of the powder compact inside the die after compaction, since 

usually first the upper punch is removed before the powder compact is ejected. This step-wise 

elastic unloading leads to stress states which may cause failures like the well-known capping 

of tablets after compaction. 

The shear modulus is described in Eq. (33) as a function of the relative density, the contact 

cohesion and the principal strains during compaction. The shear modulus increases with 

increasing relative density and contact cohesion and decreases with increasing standard 

deviation of the strain components during compaction. In contrast to the Young’s modulus there 

is no big influence of the loading direction irrespective of the strain path during compaction. 

The shear modulus can therefore be considered to be isotropic in the studied strain paths which 

are chosen to be practically important for compaction processes. 

The regression of the Poisson’s ratios for different loading directions proved to be difficult. It 

was not possible to obtain a unified equation which described all strain paths during 

compaction. Hence, we reduce ourselves to describe the averaged Poisson’s ratio based on Eq. 

(34). The averaged Poisson’s ratio is approximately 0.3 for a large range of the relative density 

and the contact cohesion. Only in case of very weak contact cohesion the Poisson’s ratio 
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increases up to 0.5. In this case the powder has only low strength and therefore the deformation 

during testing is plastic rather than elastic. According to basic plasticity theory of metals a 

Poisson’s ratio of 0.5 is expected during plastic yielding, if plastic incompressibility is assumed 

[97]. The difference of the Poisson’s ratios for different directions is especially distinct for low 

relative density and low contact cohesion. There seem to be preferred directions for transverse 

strain which are correlated to the principal strains during compaction as similar evolutions are 

observed for similar strain paths, e.g., similar evolutions of the different Poisson’s ratios are 

found for strain path case B and case C since in both cases the powder is only compacted in x-

direction. However, there is no unified rule how to describe the Poisson’s ratio based on the 

principal strains for all different strain paths during compaction. 

 

𝐸𝑖 = 3.04 ∙ 10
11 ∙ (𝜌𝑟𝑒𝑙 − 0.6)

1.34 ∙ atan (
𝑐𝑚𝑎𝑥
246

)
0.559

∙ 

∙ [1 − 0.04 ∙ 𝑠𝑡ⅆ (
𝒆

𝑒̅
)
0.899

+ 0.571 ∙ (1.14 − 𝜌𝑟𝑒𝑙) ∙ atan (
𝑒𝑖
𝑒̅
− 1)] 

(32) 

  

𝐺𝑖𝑗 = 9.34 ∙ 10
10 ∙ (𝜌𝑟𝑒𝑙 − 0.6)

1.26 ∙ 𝑎𝑡𝑎𝑛 (
𝑐𝑚𝑎𝑥
118

)
0.846

∙ (1 − 0.0343 ∙ 𝑠𝑡ⅆ (
𝒆

𝑒̅
)
1.35

) 
(33) 

𝜈𝑚𝑒𝑎𝑛 = 0.305 ∙ (1 − 𝜌𝑟𝑒𝑙)
2.19 + 𝑎𝑡𝑎𝑛 (

0.00038

𝑐𝑚𝑎𝑥
)
0.1

 (34) 

 

4.4 Results - Yield Properties 

4.4.1 Uniaxial Strength 

The evolution of the uniaxial yield strength as a function of the relative density and the cohesion 

strength is shown in Figure 41 for different strain paths during compaction. The tensile strength 

is plotted in positive direction of the ordinate while the compression strength is negative. For 

each strain path two simulation series are performed. The left diagrams show the uniaxial 

strengths as a function of the cohesion strength for a constant relative density of 0.85 after 
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compaction while the right diagrams show the uniaxial strengths as a function of the relative 

density for a cohesion strength of 100 MPa. The full lines indicate the regression curves shown 

in Eq. (35) and (36). 

Case A 

 

Case B

 
Case C

 

Case D

 
Case E

 

Case F

 
Case G

 

 

 

Figure 41: Uniaxial strength as a function of relative density and cohesion strength. Left panels show dependence on 
cohesion strength for constant relative density of 0.85. Right panels show dependence on relative density for 

cohesion strength of 100 MPa. 
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Eq. (35) shows the regression of the tensile strength for a direction of principal strain during 

compaction as a function of the relative density, the cohesion strength and the compaction strain 

in the direction under consideration. The tensile strength increases as a function of the relative 

density and the contact cohesion. As it was seen for the Young’s modulus also the tensile 

strength is highest for the direction of the highest compaction strain. Hence, if isotropic 

mechanical properties are important then it is necessary to use isostatic compaction. 

The regression of the compression strength in Eq. (36) is complex. The first part of the equation 

describes the averaged compression strength which increases as a function of the relative 

density and the contact cohesion and decreases as a function of the standard deviation of the 

principal strains during compaction. The second part describes the anisotropic behavior. In 

general, the compression strength is higher for the directions of high compaction strains. The 

difference between different directions increases for low relative density and decreases for high 

relative densities. This can be explained by contact surfaces between particles which are first 

formed normal to the main compaction direction. In case of high relative densities of the 

compacted powder the contact surfaces are also formed parallel to the compaction direction and 

the anisotropy of the compression strength diminishes. The evolution for both uniaxial strengths 

as a function of the contact cohesion increase strongly for low cohesion strengths and saturate 

for high cohesion strengths. The denominator of the arc tangent indicates the onset of saturation 

and is therefore referred to as the saturation cohesion strength. The saturation cohesion strength 

describes the transition between contact failure of the particle contacts in case of low cohesion 

strength and plastic flow of the particle material in case of high cohesion strengths. The 

saturation cohesion strength is remarkably higher for tensile load compared to compression 

load. This behavior can be attributed to the different failure mechanisms for the particle material 

and the contacts between particles. The particle material follows a von Mises yield criterion 

which is independent from the loading direction while the contact failure is different for tension 

and compression. During tension loading the contacts are pulled apart facilitating contact failure 
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while contacts are pressed together during compression load impeding contact failure. This 

leads to a transition from contact failure to particle material flow which takes place at a lower 

contact cohesion strength in case of compression than in case of tension.  

𝜎𝑡𝑖 = 772 ∙ (𝜌𝑟𝑒𝑙 − 0.6)
1.44 ∙ 𝑎𝑡𝑎𝑛 (

𝑐𝑚𝑎𝑥
332

)
1.13

∙ (1 + 0.195 ∙ 𝑎𝑡𝑎𝑛 (
𝑒𝑖
𝑒̅
− 1)) 

(35) 

𝜎𝑐𝑖 = −1403 ∙ (𝜌𝑟𝑒𝑙 − 0.6)
1.73 ∙ 𝑎𝑡𝑎𝑛 (

𝑐𝑚𝑎𝑥
223

)
0.502

∙ (1 − 0.0647 ∙ 𝑠𝑡ⅆ (
𝒆

𝑒̅
)
0.33

) 

−2157 ∙ (𝜌𝑟𝑒𝑙 − 0.6)
1.73 ∙ (1.03 − 𝜌𝑟𝑒𝑙) ∙ 𝑎𝑡𝑎𝑛 (

𝑒𝑖
𝑒̅
− 1) ∙ 𝑎𝑡𝑎𝑛 (

𝑐𝑚𝑎𝑥
223

)
0.216

 

(36) 

 

4.4.2 Yield Surface 

The simulation results for the yield points in the 3D stress space are shown in Figure 42 and 

Figure 43. Figure 42 shows the yield points after compaction to different relative densities and 

a constant cohesion strength of 100 MPa for different strain paths. In Figure 43 the relative 

density is kept constant at 0.85 while different cohesion strengths are used. The plots show 2D 

projections parallel to the Cartesian coordinate axes. The coordinate axes show pressure stresses 

as positive, as common for yield surfaces of powders (e.g., see Figure 35). For each projection 

only the yield points included in the convex hull are shown for clarity. The solid lines indicate 

the regression curves for the yield points, and therefore, define the yield surface. 
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Case A, 𝒆 = [1, 1, 1]𝑒̅

 
Case B, 𝒆 = [3, 0, 0]𝑒̅

 
Case C, 𝒆 = [5,−1,−1]𝑒̅

 
Case D, 𝒆 = [0, 1.5, 1.5]𝑒̅
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Case E, 𝒆 = [−0.75, 1.88, 1.88]𝑒̅

 
Case F, 𝒆 = [6, 0, −3]𝑒̅

 
Case G, 𝒆 = [2, 1, 0]𝑒̅

 

 

Figure 42: 2D representation of the yield points in the stress space as a function of the relative density after 
compaction for a constant cohesion strength of 100 MPa. The dot-dashed line indicates the rotation axis of the yield 

surface, while the dashed line points towards the flattest side of the yield surface (𝝋 = 𝟎). 
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Case A, 𝒆 = [1, 1, 1]𝑒̅

 
Case B, 𝒆 = [3, 0, 0]𝑒̅

 
Case C, 𝒆 = [5,−1,−1]𝑒̅

 
Case D, 𝒆 = [0, 1.5, 1.5]𝑒̅
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Case E, 𝒆 = [−0.75, 1.88, 1.88]𝑒̅

 
Case F, 𝒆 = [6, 0, −3]𝑒̅

 
Case G, 𝒆 = [2, 1, 0]𝑒̅

 

 

Figure 43: 2D representation of the yield points in the stress space as a function of the contact cohesion strength for 
a constant relative density of 0.85. The dot-dashed line indicates the rotation axis of the yield surface while the 

dashed line points towards the flattest side of the yield surface (𝜑 = 0). 

 

The mathematical description of the yield surface is performed in cylindrical coordinates: r, 𝜑 

and z (see Figure 44 and Eq. (37)). The origin of the cylindrical coordinate system coincides 

with the origin of the Cartesian coordinate system. The components 𝑧𝑖 of the unit vector 

pointing in the z-direction of the cylindrical coordinates are given in Eq. (38), while the axis 
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for 𝜑 = 0 is given in Eq. (39). Eq. (37) determines the radius for each pair of 𝜑 and z as a 

product of three terms. The first two terms describe a 2D cut of the yield surface in the r-z plane 

which has the shape of an ellipse (first term) modified by a linear equation (second term). The 

3D yield surface is obtained by rotating the described shape around the z-axis resulting in an 

ellipsoid. During rotation the surface is stretched by a factor (𝑙 ∙ sin(𝜑)2 + 1) with 𝑙 being a 

positive number, meaning the yield surface is flattest for 𝜑 = 0, 𝜋 and thickest for 𝜑 =
𝜋

2
,
3𝜋

2
. 

The orientation of the rotation axis of the yield surface is influenced by the compaction 

conditions (see Eq. (38)). It is aligned with the [1 1 1]T-space diagonal of the Cartesian 

coordinate system in case of isostatic compaction and rotated towards the direction of high 

compaction strain in case of non-isostatic compaction. The orientation of the rotation axis is 

therefore a measure of the anisotropy of the yield surface. As can be seen, the anisotropy 

diminishes for increasing relative density. This can, as already stated earlier, be attributed to 

the formation of contact surfaces which are first formed normal to the main compaction 

direction and formed parallel to the compaction direction in case of high relative densities. The 

orientation of the yield surface is not dependent on the contact cohesion according to Eq. (38) 

and Figure 43. 

The orientation of the coordinate axis for 𝜑 = 0 is only influenced by the principal strains 

during compaction (see Eq. (39) and Figure 43). It always points towards the direction of 

minimum strain since the yield surface is flattest in this direction. 
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Figure 44: Cylindrical coordinate system of the yield surface 

 

𝑟(𝜑, 𝑧) =
√(𝑎2 − (𝑧 − 𝑧𝑚)

2)

𝑞
∙ (𝑘 ∙ (𝑧 − 𝑧𝑚𝑎𝑥) + 1) ∙ (𝑙 ∙ sin(𝜑)

2 + 1) (37) 

𝑧𝑖 =

(
1

√3
+ 0.397 ∙ 𝑎𝑡𝑎𝑛 (

𝑒𝑖
𝑒̅ − 1) ∙

(1 − 𝜌𝑟𝑒𝑙)
0.615)

√∑ (
1

√3
+ 0.397 ∙ 𝑎𝑡𝑎𝑛 (

𝑒𝑖
𝑒̅
− 1) ∙ (1 − 𝜌𝑟𝑒𝑙)

0.615)
2

3
𝑖=1

 
(38) 

𝜑0𝑖  =

{
 
 
 
 

 
 
 
 +(1.21 − 1.02 ∙ 𝑎𝑡𝑎𝑛 (

𝑒𝑖
𝑒̅ − 0.753))

√∑ (1.21 − 1.02 ∙ 𝑎𝑡𝑎𝑛 (
𝑒𝑖
𝑒̅ − 0.753))

2
3
𝑖=1

  , 𝑒𝑖 = min (𝒆)
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𝑒𝑖
𝑒̅ − 0.753))

√∑ (1.21 − 1.02 ∙ 𝑎𝑡𝑎𝑛 (
𝑒𝑖
𝑒̅ − 0.753))

2
3
𝑖=1

  , 𝑒𝑖 ≠ min (𝒆)

 
(39) 

 

The constants in Eq. (37) are elaborate functions to some degree of the relative density after 

compaction, the contact cohesion and the standard deviation of the strain ratios during 

compaction (see Eq. (40) to Eq. (46)). The constants zmax and zmin describe the maximal 

extension of the yield surfaces along its rotation axis in positive and negative direction. The 

respective Eq. (40) and (41) have the same structure except that zmin includes the cohesion 
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strength as it describes the extension of the yield surface for tension load. The parameters zm 

and a describe the center and the semi-major axis of the ellipse shown in the first term of Eq. 

(37). The ratio of the major and the minor axes of the ellipse is given by the parameter q. The 

parameter k describes the slope of the linear equation of the second term in Eq. (37). The last 

parameter 𝑙 is used in the third term of Eq. (37) and describes the difference of the ellipsoid’s 

extension in r-direction. As 𝑙 is zero in case of isostatic compaction and increases for 

anisotropic compaction it is a primary measure for the anisotropy of the yield surface in 

addition to the orientation of the rotation axis described in Eq. (38). 

It would be fruitful to combine the regression equations of the observed yield surface given in 

Eq. (37) to (39) with the existing concepts of anisotropic plasticity [85,89] in the literature. 

However, we refrain from this step in the current work, as it was our goal to best fit the 

numerically obtained yield surface with flexible analytical equations which describe the 

anisotropy of the yield surface as a function of the condition of the compacted powder 

(relative density after compaction, the contact cohesion strength and the strain path during 

compaction). Our description of the yield surface in cylindrical coordinate systems directly 

follows from the visual inspection of the yield surface for different compaction conditions of 

the powder. 

𝑧𝑚𝑎𝑥 = 3356 ∙ (𝜌𝑟𝑒𝑙 − 0.6)
1.79−0.1∙𝑠𝑡𝑑(

𝒆
𝑒̅
)
∙ (1 − 0.16 ∙ 𝑠𝑡ⅆ (

𝒆

𝑒̅
)
0.86

) 
(40) 

𝑧𝑚𝑖𝑛 = −2097 ∙ (𝜌𝑟𝑒𝑙 − 0.6)
1.79−0.1∙𝑠𝑡𝑑(

𝒆
𝑒̅
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∙ (1 − 0.16 ∙ 𝑠𝑡ⅆ (

𝒆

𝑒̅
)
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) ∙ atan (
𝑐𝑚𝑎𝑥
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(41) 

𝑧𝑚 =
𝑧𝑚𝑎𝑥 + 𝑧𝑚𝑖𝑛

2
 

(42) 

𝑎 =
𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛

2
 

(43) 

𝑞 = (2.28 + 7.93 ∙ (1 − 𝜌𝑟𝑒𝑙)
2.05) ∙ (1 + 0.146 ∙ 𝑠𝑡ⅆ (

𝒆

𝑒̅
)
0.558

) 
(44) 
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𝑘 = (0.000447 + 4.98 ∙ 10−6 ∙ (𝜌𝑟𝑒𝑙 − 0.6)
−2.02) ∙ (0.64 − 𝑎𝑡𝑎𝑛 (

𝑐𝑚𝑎𝑥
176.1

)) 
(45) 

𝑙 = 0.154 ∙ (1 + 1.52 ∙ (1.52 − 𝜌𝑟𝑒𝑙)) ∙ (1 − 0.000256 ∙ 𝑐𝑜ℎ) ∙ 𝑠𝑡ⅆ (
𝒆

𝑒̅
)
0.366

 (46) 

 

4.5 Conclusion and Outlook 

The elastic and plastic properties of compacted powders were investigated in this work during 

extensive simulation studies based on a MPFEM model including 50 particles in a periodic 

RVE. The RVE was compacted to different relative densities using different strain paths. 

Although the initial packing of the particles is random and isotropic, a clear anisotropy of the 

mechanical properties is observed after compaction. The simulations show a direct correlation 

of the anisotropy of the principal strains during compaction and the anisotropy of the elastic 

and plastic properties of the compacted powder. In case of isostatic compaction, the elastic and 

plastic properties are observed to be isotropic. If the compaction strain in one direction differs 

from the others, then also a different Young’s modulus and yield strength is observed in this 

direction. A higher compaction strain results in a higher Young’s modulus and yield strength, 

while the opposite is true for lower compaction strain. The properties of the directions with 

equal strain during compaction are identical leading to a transverse isotropic elastic material 

model. This is the case for the most often used closed-die compaction. It is therefore an 

oversimplification to use an isotropic material model for closed-die compaction, as it is widely 

done for tableting [51,96]. In case of three different compaction strains all three Young’s moduli 

and uniaxial yield strengths are different, leading to an orthotropic elasticity model of the 

compacted powder. The yield surface, described as a rotated surface, shows the anisotropy of 

the yield properties as well. The rotational axis is not aligned with the space diagonal, but is 

rotated towards the direction of highest compaction strain. Furthermore, the yield surface is 

compressed in the direction of the smallest strain during compaction. The anisotropy is not 

solely a function of the strain path, but is also influenced by the relative density after 
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compaction. The anisotropy is more important at low relative densities compared to high 

relative densities, since contact areas are particularly formed normal to the direction of the 

highest strain in case of low relative densities. This behavior was already reported in [59]. At 

high relative densities contact surfaces are increasingly formed parallel to the main compaction 

direction leading to smaller anisotropy. 

The contact cohesion has a minor influence on the anisotropy of the compacted powder, but it 

has a major influence on the mechanical properties of the compacted powder in general. In case 

of very low contact cohesion the Young’s modulus, the shear modulus and the uniaxial strength 

are negligibly small and the Poisson’s ratio is close to 0.5. This indicates a pure plastic behavior 

of the powder rather than an elastic-plastic behavior. Only in case of a positive pressure 

noteworthy stresses can be applied to the cohesionless powder as can be seen in Figure 43. In 

case of cohesion strengths which are in the range or even above the yield strength of the particle 

material a clear elastic-plastic behavior of the compacted powder can be observed. The powder 

can furthermore take up substantial tensile load, leading to yield surfaces which are equally 

extended for positive and negative pressure. 

This work clearly reveals the need of an alternative yield surface for powder compaction as the 

most often used Drucker-Prager/Cap model (see Figure 35) is not able to describe the yield 

behavior of powders after compaction using different strain paths. Based on the regression 

equations shown in this work, it is possible to implement an anisotropic yield surface and 

elasticity model for a macroscopic FEM model of a powder compaction process in a future 

work. Since the relative density and the strain ratios during compaction are included in the 

regression equation they are useful to determine the distribution of the material properties of 

inhomogeneous compacted powder. This allows to model compaction of complex shapes of 

powder compacts and to model the deformation close to walls and corners. The variety of the 

contact cohesion strength can be used to model different contact properties, e.g., a low contact 
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cohesion can be used to model cold compaction of powders with weak cohesion interaction and 

high contact cohesion can be used to model powders after sintering. 

Despite the considerable possibilities of the demonstrated model additional improvements are 

suggested for future work. First of all, it is necessary to adapt the contact model to enhance the 

physical interpretation of parameters in the modeled contact between particles. To enable 

comparability to a real powder it will be necessary to use a proper particle size distribution and 

non-spherical particles. As there are many brittle particle materials it would be a valuable 

extension to include particle breakage into the model. Furthermore, the flow rule which 

describes the direction of the flow during yielding of the compacted powder needs to be 

considered. In case of solid metallic materials, it is often valid to assume plastic flow normal to 

the yield surface. This assumption is not necessarily applicable for compacted powders. 

Another different measure which can also be of interest is the fracture energy of the compacted 

powder. The fracture energy is an important quantity in fracture-mechanics analyses which may 

be employed during brittle fracture of the compacted powder. 

Finally, the material models derived from our micromechanical model have to be implemented 

in a suitable subroutine of a FEM code (e.g., UMAT/VUMAT in Abaqus) to compute the stress 

distribution of whole powder parts during compaction and processing. In this way possible 

failures of the compacted powder can be predicted and process optimization can be performed. 
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5 Conclusion and Outlook 

5.1 DEM Modeling of Powder Compaction 

The work presented in section 2 has shown the qualitatively different behavior of free flowing 

and cohesive powder during the dosator process. The cohesive powders form a loose powder 

bed which can easily be compressed during dosing as particles only have to rearrange to get 

densified. The initial powder bed of free flowing powder is already densely packed and 

therefore the particles are just slightly compressed during dosing. As a consequence, the 

evolution of the powder mass inside the dosator is different for cohesive and for free flowing 

powder. To increase the practical applicability of the results in section 2 it is necessary to adjust 

the DEM contact model in such a way to describe the flow behavior of practical relevant 

powders quantitatively. Noteworthy effort was spent on contact model calibration at IPPE in 

the last years [98–100]. The authors use the design of experiments DoE approach to correlate 

the microscopic contact parameters of the contact models (contact stiffness, coefficient of 

friction, cohesion force, etc.) and the macroscopic powder properties (bulk density, 

compressibility, flowability, etc.). The macroscopic powder properties can be obtained during 

standard experimental tests and have to be reproduced during powder simulation. It is shown, 

that it is far more challenging to model cohesive powders than free flowing powders. It was not 

possible to model the measured compressibility and flowability of a certain powder with the 

same contact model parameters. Kottlan [100] refers this shortcut to the oversimplification of 

the DEM model which uses spheres to describe non-spherical particles. He proposes to use non-

spherical particles to obtain more realistic DEM models. 

The work of Madlmeir [101] succeeds the work described in section 2 and deals with the 

variation of process parameters which also have an influence on the density of the powder after 

dosing. He was able to qualitatively reproduce the behavior of the moderate cohesive powder 

Lactohale® 100 as a function of different process conditions. In his work it was also not 
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possible to model strong cohesive powders sufficiently. For future investigations it is suggested 

to eliminate oversimplification of the DEM model by using non-spherical particles and a 

sufficient contact model. Only if the model is able to reproduce all important macroscopic 

powder properties, quantitative predictions based on DEM simulations can be expected. 

5.2 MPFEM Modeling of Powder Compaction 

The work in section 3 and the subsequent work in section 4 demonstrate the applicability of the 

proposed MPFEM model. It was possible to obtain elastic and plastic material properties based 

on a RVE of a small number of particles. The influence of the model parameters (relative 

density, contact cohesion strength and strain path during compaction) on the mechanical 

properties was observed. So far, the model is limited to particles which are spherical at the 

beginning of the compaction process and only deform plastically during compaction. To 

describe compaction of brittle materials it is necessary to model fracture of the particles. 

Therefore, a sufficient fracture criterion has to be included in the description of the particle 

material model and the MPFEM model has to consider the formation of new surfaces during 

cracking. 

Another important step towards a more realistic model of powder compaction is to consider 

non-spherical particles. In principle the MPFEM method is not restricted to spherical particles 

since the particles are meshed. If it is possible to mesh a certain particle shape based on 

hexahedral or tetrahedral elements, then it can be used in the presented RVE. However, the 

RVE requires a densely packed initial powder bed which can easily be obtained from DEM 

simulations in case of spherical particles. It is much more challenging to get densely packed 

beds of non-spherical particles as it was shown by Segner [102] and Huber [103]. They used 

the glued-sphere approach to generate densely packed beds of non-spherical particles in DEM. 

The position and orientation of the particles in the DEM model were used to set up a RVE in a 

MPFEM model. This approach was optimized and applied for elongated particles in the 
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subsequent work of Fiedler [104]. In this thesis similar convergence studies were performed as 

presented in section 3.3. Figure 45 shows for example a mesh convergence study of 50 

elongated particles which are slightly twisted. It is more challenging to get representative 

properties in case of non-spherical particles than for spheres. Depending on the initial packing 

of the particles the mechanical properties of the compacted powder vary significantly. For this 

reason, RVEs consisting of non-spherical particles have to including a higher number of 

particles. 

 

 

Figure 45: Convergence study of the mesh fineness for elongated particles [104] 

 

Another challenge occurring for non-spherical particles is the additional effort required during 

meshing. The maximum size of the mesh elements must be substantially smaller than the 

smallest cross section of the particles. Hence, the number of elements needed to sufficiently 

mesh the particles increases with an increasing aspect ratio of the particles. This is especially 

problematic for thin needles or fibers. To circumvent this problem it would be beneficial to use 
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1D elements as it was done in [105]. In this way the particles are only discretized in longitudinal 

direction leading to significant lower computational costs. 

One important aspect of the MPFEM model is the interaction of the particles as it was shown 

in section 3 and 4. The contact cohesion model is particularly important since it is the key factor 

to model tension strength of powders. The used cohesion model considers surface cohesion in 

a simplified fashion. The cohesion strength is used as a parameter to model the range from weak 

cohesion interaction between surfaces and practically bonded surfaces. Alternative contact 

models should be used to better reflect the behavior of real particles. First of all, the cohesion 

model should be adapted to the physical origin of the surface attraction (e.g. van der Waals 

interaction, solid bonding, etc.). Furthermore, additional phenomena as time-dependent and 

pressure-dependent cohesion forces should be considered. One step towards more realistic 

contact models was done in the work of Fiedler [106] and Gschiel [107] who implemented and 

tested different contact models which could be further used within an advanced MPFEM model. 

The final goal of modeling powder compaction is to describe the behavior of whole powder 

parts of arbitrary shape. This is not possible by means of a MPFEM model, since the 

computational effort is far too high. Instead a continuum model has to be used which uses the 

macroscopic material properties obtained from the MPFEM model. Therefore, a sufficient user 

defined material model has to be implemented in a FEM code. This model has to describe the 

elastic and plastic deformation behavior on the one hand and has to consider possible brittle 

fracture of the compacted powder on the other hand. The elastic properties of spherical particles 

compacted to different relative densities by using different strain paths are already presented in 

section 4.3. According to this data, it is necessary to use an orthotropic elasticity model in the 

macroscopic model if general strain paths during compaction are considered. The continuum 

plasticity model has to take into account the onset of yielding for any loading direction based 

on a yield surface. The yield surface of powders with different contact cohesion and compaction 

conditions are already presented in section 4.4. The yield surfaces are not isotropic for general 
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strain paths during compaction and their size and shape depends on the cohesion strength of the 

particle surfaces in contact. This has to be considered in a sufficient model for the yield surface. 

In addition to the yield surface which describes the onset of yielding, it is also necessary to 

define the flow potential which describes the direction of flow during plastic yielding. One 

possibility is to assume a flow direction normal to the yield surface. This normality rule is 

usually applied in case of metallic materials, but it is not generally accepted for compacted 

powder. A small number of trail simulations were conducted for this thesis to obtain the flow 

direction of the RVE. However, a clear answer regarding the applicability of the normality rule 

could not be obtained. A more comprehensive simulation study is necessary to get a clear 

statement of the flow potential of compacted powder. The last mechanism which has to be 

included in the continuum model is brittle fracture of the compacted powder. During fracture 

the compacted powder cleaves into two or more parts leading to the formation of new surface 

area. The energy needed to create new surface area is a measure for the resistance of a material 

against brittle fracture. This fracture energy could be determined based on the RVE considered 

in this work by simply pulling apart the RVE of compacted powder and calculate the energy 

needed to completely separate the fracture area. It is supposed to obtain anisotropic fracture 

energy after anisotropic compaction similarly as it was observed for the Young’s modulus and 

the yield strength in section 4.3 and 4.4. 

One important step in modeling was not addressed in this thesis as no effort was spent on model 

validation. Model validation has to be performed on the micro and the macro scale. On the 

micro scale the properties of the particles and their interaction have to be addressed. The 

material model of the particle has to reflect correctly the deformation behavior of the particles. 

The contact model has to be adapted for the specific material system. Only if the 

micromechanics of the MPFEM model reflect the real system it makes sense to make a 

validation on the macro scale. Since the model so far is only sufficiently tested for spherical 

particles which deform plastically the validation has to be performed for such an idealized 
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system. Validation on the macro scale means to compare the homogenized quantities of the 

MPFEM model with real experiments. In these experiments at least, the Young’s modulus and 

the uniaxial yield strength should be determined as function of the relative density of the 

powder.  
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