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Abstract

An aortic dissection is detected in 2 to 3.5 out of 100,000 people every year. This type

of disease in the aortic wall can appear in an acute or a chronic form and can proceed

with a fatal outcome if not treated. An aortic dissection is generally caused by a minimal

defect in the intima, which can occur due to an accident or other traumatic events. During

a pumping cycle, the aorta undergoes various deformations, such as extension, torsion and

inflation. This deformation allows the initially minimal defect to spread inside the aortic

wall and generate a second pathway for the blood inside the wall of the artery. The aim of

this study is to numerically simulate the crack formation between two medial sub–layers

and to determine important parameters for crack formation in a physical environment. The

thermodynamic approach for the crack phase–field of fracture developed by Miehe et al.

(2010) for an isotropic material is used as a basis for crack propagation modeling.

Since the aorta is a highly anisotropic material it is necessary to expand the model pre-

sented by Miehe et al. (2010), which was done by Gültekin et al. (2017). To validate the

model of Gültekin et al. (2017) for anisotropic materials, the results were compared with

the geometrically anisotropic model of Teichtmeister et al. (2017). In the same study, the

sensitivity of the model proposed by Gültekin et al. (2017) in terms of anisotropy parame-

ters was also analyzed. In the next step, the model from Gültekin et al. (2017) was applied

to a cylinder, with the dimensions of an aorta (Mao et al., 2008). This cylinder consists

of six sub–layers; four layers show the material parameters of a medial layer including a

diseased one and the other two layers correspond to the adventita layer. For the simulation

of an aortic dissection, an incision in the mesh of the cylinder with different lengths and

widths up to the diseased media layer was implemented and then a pumping cycle was

simulated in the physiological and supra–physiological range. It was found that with the

same deformation, the dissection spreads further in the case of a larger initial defect in the

intima. In addition, it was also found that the crack spread helical in the aorta, indicating

that the crack arranges itself along the fiber direction in the material.

IX





Zusammenfassung

Jährlich wird in 2 bis 3,5 von 100.000 Menschen eine Aorten Dissektion festgestellt.

Diese Erkrankung in der Aortenwand kann sich in ihrer akuten oder chronischen Form

äußern und kann bei nicht Behandlung tödlich enden. Eine Aortendissektion wird in der

Regel durch einen minimalen Defekt in der Intima, welche durch einen Unfall oder durch

ein anderes traumatisches Ereignis auftreten kann, verursacht. Während eines Pumpzyklus

wiederfährt die Aorta unterschiedliche Verformungen, wie zum Beispiel Streckung, Tor-

sion und Inflation. Diese Deformationen ermöglichen es, dass sich der anfangs mimimale

Defekt innerhalb der Aortenwand ausbreiten kann, dies erzeugt einen zweiten Weg für das

Blut innerhalb der Arterienwand. Das Ziel dieser Studie ist es die Rissbildung zwischen

zwei medialen Unterschichten auf numerische Weise zu simulieren und daraus wichtige

Parameter für die Rissbildung in der physilogischer Umgebung zu bestimmen. Als Ba-

sis für die Modellierung der Rissausbreitung wird der termodynamische Ansatz des Crack

Phase-Field für Risse, welcher von Miehe et al. (2010) für ein isotropes Material entwick-

elt wurde verwendet. Da die Aorta ein hoch anisotropes Material darstellt, ist es nötig das

von Miehe et al. (2010) vorgestellte Modell zu erweitern, was von Gültekin et al. (2017)

durchgeführt wurde. Um das Modell von Gültekin et al. (2017) für anisotrope Materialien

zu validieren, wurden die Resultate mit dem geometrisch anisotropen Modell von Teicht-

meister et al. (2017) verglichen. In der selben Studie, konnte auch die Sensitivität des

Modells (Gültekin et al., 2017) im Bezug auf die Anisotropieparameter analysiert werden.

Im darauffolgenden Schritt wurde das Modell (Gültekin et al., 2017) auf einen Zylinder

angewandt, mit den Dimensionen einer menschlichen Aorta (Mao et al., 2008). Dieser

Zylinder setzt sich aus insgesamt sechs Unterschichten zusammen; vier Schichten weisen

die Materialparameter einer medialen Schicht auf, darunter befindet sich eine erkrankte

Schicht und die weiteren zwei Schichten wurden mit Materialparametern einer adven-

titiälen Schicht simuliert. Für die Simulation einer Aortendissektion wurde ein Einschnitt

in der Mesh des Zylinders, mit unterschiedlicher Länge und Breite bis zur kranken Me-

diaschicht, implementiert und dann ein einzelner Pumpzyklus im physiologischen und ein

weiterer im supra–physiologischen Bereich simuliert. Bei den Resultaten dieser Simula-

tion konnte festgestellt werden, dass sich bei gleicher Deformation, die Dissektion weiter

ausbreitet im Falle eines größeren Anfangsdefekts in der Intima. Zusätzlich konnte man

feststellen, dass sich der Riss helikal in der Aorta ausbreitet, was darauf hinweist, dass sich

der Verlauf eines Risses an die Faserrichtung im Material anpasst.
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1. Introduction

1.1. Arterial histology

Aortic dissection describes the process of delamination, or better known as separation

of the aortic wall. To understand this process, it is important to understand the internal

architecture of the aortic wall. Elastic arteries, in general, which also includes the aorta,

consists of three different main layers. These layers are arranged around the inner volume

of an artery called lumen. In the aorta, the lumen acts as the main pathway for the blood

transport through the body. The wall of an artery consists, in general, of three main layers,

each of these differs from the other by certain properties, Fig. 1.1 shows a general overview

of the internal structure from a healthy artery.

Figure 1.1.: Structure of a healthy human artery, composed of the different main layers in-

tima, media and adventitia, and several collagenous sub–layers separated by elastic lam-

ina sheets. Adapted from Holzapfel et al. (2000).

The innermost layer, related to the lumen, consists of a mono–layer of endothelial cells

and is additionally supported by a fairly loose connective tissue, referred to as tunica in-

tima. Since this layer is in direct contact with the blood stream, which transports essential
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nutrients for the body, it is an important interface for the metabolic processes inside the

body (Mussa et al., 2016). On the exterior side the intima is limited by the interna elastic

lamina, these elastic lamina enables the movement of the intima in relation to the other

main layers of the artery during a cardiac cycle [Holzapfel et al. (2000), Gasser et al.

(2006), Ross and Pawlina (2011)].

The mid–layer, the thickest of the three main layers, is called tunica media. This mus-

cular layer supports the aortic wall against the blood pressure from the inside of the artery,

with its contained smooth muscle cell layers and the collagenous fiber network. In an adult

person, the media consists of 40 to 70 sub–layers of fenestrated, lamellar elastin sheets,

which separates the smooth muscle cell layers. The number of this sheets varies between

age and blood pressure of a person, e.g., in a person with hypertension the number and

thickness of the layers are increased. These fibers and sheets are further embedded in a

ground substance of proteoglycans. The collagen fibers are assumed to be helically ori-

ented in a single sub–layer to limit the extension of the artery during the systolic phase

of the cardiac cycle and contribute to the mechanical properties of an artery. The contrac-

tion phase of a cardiac cycle is defined as systole, in which the left ventricle releases and

pumps the blood in the aorta. Schriefl et al. (2012) observed in their study that the media

comprises two collagen fiber families which are organized different in the separate layers.

This leads to the assumption that each layer contains only of one preferred fiber direction.

In addition, the smooth muscle cells are aligned in a circumferential and coherent manner

in the media to distribute the blood in the body through the controlled contraction of the

artery. At the interface between the media and the last main layer, called adventitia, lies

the external elastic lamina [Holzapfel et al. (2000), Gasser et al. (2006), Ross and Pawlina

(2011), Mussa et al. (2016)].

The tunica adventitia characterizes the outermost layer of the aorta that keeps the aorta at

its place in the body. This layer is relatively thin, less than the half of the media thickness.

It consists of collagen and elastic fibers, which form a fairly loose network, fibroblasts

and macrophages. The collagen fibers are arranged in a helical structure, these fibers are in

general stiffer than those in the media. Due to the smooth transition of the actual adventitial

layer to the connective tissue, an absolute distinction cannot easily be made [Holzapfel

et al. (2000), Gasser et al. (2006), Ross and Pawlina (2011)].

1.2. Aortic dissection

1.2.1. General aspects of the disease

Based on the knowledge of the inner structure of the aorta, the process of aortic dis-

section can now be studied more closely. An aortic dissection describes the loose of the

structural integrity in the artery wall, which means a change of the inner structure of the

artery seen in Fig. 1.1. As a result, the mechanical reaction to a load in the diseased aortic

wall decreases. It is assumed that one of the main causes of an aortic dissection is hyper-

tension, which refers to a high blood pressure inside the artery. This condition is diagnosed
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in around 70 percent (Sommer et al., 2016) of the aortic dissection cases. A further com-

mon reason for aortic dissection is a disease of the connective tissue in the aortic wall, e.g.,

Marfan–syndrome (Mussa et al., 2016). An aortic dissection could be also caused by a pre-

vious injury of the aorta, e.g., after a car accident or a consequence of an incision caused

by a cardiac catheterization (Dunning et al., 2000). IRAD (IRAD, 1996), the International

Registry of acute aortic dissection, proclaims that men, between the age of 48 and 67, are

three times more susceptible to aortic dissection than woman. Related to western countries

the rate of aortic dissection is 2 to 3.5 out of 100,000 people (Hiratzka and Bakris, 2010).

In the case of an occurence of an aortic dissection the initial phase is defined by a for-

mation of a tear in the intima. The cause of this kind of defect of the structural integrity of

the vascular wall in the physiological range is still unclear. An aortic dissection may also

appear in the absence of this tear where the dissection starts to propagate from an intermu-

ral haemorrhage or a haematoma formation in the media. One of the assumptions about

the formation of an initial tear is that it forms due to high hemodynamic forces at certain

locations of the aorta (Numata et al., 2016). Cherry and Dake (2009) observed previously

mentioned high hemodynamic forces, for instance, at the root of the aortic arch and right

after the origin of the left subclavian artery. Especially, the left subclavian artery, which

supplies the left arm with oxygenated blood exhibits large turbulences of the blood stream

in the aorta. Through the turbulences additional large stress are generated in the tissue and

facilitate the tearing of the thin endothelial liner of the intima [Mussa et al. (2016), Numata

et al. (2016), Cherry and Dake (2009)].

Starting from an initial tear, the high stress in the tissue can lead to a fracture initiation

at locations with high hemodynamic forces, which was observed by Numata et al. (2016).

These cracks can then propagate either in the radial direction towards the media, observed

by Mikich (2003), or helically along the longitudinal direction between two sub–layers

of media and also propagate towards the adventitia. Since cracks cannot easily propagate

through multiple fibrils, which would be the case for the crack propagation in the radial

direction, it is more likely that the crack propagates along two sub–layers, as mentioned by

Schriefl et al. (2012). Based on this knowledge, the focus of this study is the modeling of

an aortic dissection along sub–layers of the media.

From the lumen of the aorta a significant amount of the bloodstream can enter the dis-

sected part between these layers of the artery wall through the initial tear. This creates a

second channel for the bloodstream the so–called false lumen, see Fig. 1.2. Blood enters

the wall through an initial tear and continues to shear away the connection between the two

neighboring medial sub–layers. With each systole of the heart, blood jets through this tear

and cause even more tearing. From this point on, the dissection can continue its propaga-

tion along the aorta or can create a so–called exit tear, also referred to as secondary tears

so that the blood can flow back into the aorta. In the absence of an exit tear, more and more

blood enters the false lumen. Over time the false lumen takes a significant amount of space

in the aorta, which decreases the blood volume through the true lumen. Consequently, the

blood supply in the whole body is disturbed and the tissue is not supplied with sufficient

nutrients, which further leads to the necrosis of the cells. An other outcome of this situation
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is that the remaining artery wall between the false lumen and the adventitia will undergo a

dilatation and weakening over time, which can lead to other severe pathologies in the false

lumen, for example rupturing of the remaining aortic wall [Mussa et al. (2016), Cherry and

Dake (2009)].

Tear
Tear

Dissection

False lumen

False lumen

True lumen

True lumen

Blood flow

Figure 1.2.: Aortic dissection in the descending part of the aorta, with an initial tear

which allows that the blood enters the aortic wall. With every cardiac cycle the left ven-

tricle jets blood into the dissected part of the aorta and separates the wall more and more.

This separation of the wall layers leads to the creation of a second blood channel, called

false lumen beside the true lumen. With the ungoing dissection the heart jets even more

blood in the false lumen. Adapted from: https://www.cardiachealth.org/aortic-dissection-

type-b-complications/ (20.01.2018).

Classification of an aortic dissection

Despite the characterization of an aortic dissection based on the duration it commerces

until the time it is diagnosed, referred to as acute or chronic. There are two main classifi-

cation systems to distinguish an aortic dissection, as illustrated in Fig. 1.3. The Stanford

classification defines whether the lesion affects either the ascending segment of the aorta,

the part until the origin of the left subclavian artery (Type A) or the descending part of

aorta (Type B), which is localized after the origin of the left subclavian artery. The De-

Bakey system, on the other hand, classifies 3 different types of aortic dissection; Type I of

the DeBakey classification describes the pathology affecting the ascending and descending
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part of the aorta, whereas Type II describes only the ascending segment of the aorta af-

fected by the dissection and Type III classifies an aortic dissection affecting the descending

segment of the aorta [Hiratzka and Bakris (2010)].

DeBakey I DeBakey II DeBakey III

Stanford Type A Stanford Type B

left

subclavian

arteryA
sc

en
d

in
g

ao
rt

a

ao
rt

a

Arch of aorta

D
es

ce
n

d
in

g
Figure 1.3.: Classification of the aortic dissection types by the affected region of the aorta.

Stanford Type A describes if the ascending aorta is affected by the delamination of the

aortic wall, or if the dissection starts in the descending aorta (Stanford Type B). In com-

parison to Stanford Type A, which only describes if the ascending part is affected or not,

the DeBakey I and DeBakey II additionally differentiate if the entire aorta is affected or

only the ascenting part of the aorta. Furthermore, DeBakey III defines a dissection just in

the descending area of the aorta. Adapted from: Tsamis et al. (2013).

Treatment of an aortic dissection

The type of classification of an aortic dissection, mentioned in Chapter 1.2.1, has a major

implication on the treatment of it. Type A, is the most common type of aortic dissection.

Due to its location there are extremly large shear stresses caused by the jet of blood from

the left ventricle of the heart during the systolic phase. The treatment plan always consid-

ers surgery. The aim of this procedure is in replacing the affected part of the aorta with

an endograft. This endograft is exactly placed and stitched under the remaining part of the

false lumen, to seal it and stop the blood to enter the false lumen. For a better fixation

of the endograft the aorta is surrounded with a teflon felt on the outside. To make this

endograft also leak proof, tissue engineered collagen fibers are built in the device. Type B,
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on the other hand, is treated with medication to lower the blood pressure by decreasing the

heart rate and the contractility. In the case of complications with the conservative method

a minimal invasive surgery to treat this type of aortic dissection is possible. Previous men-

tioned method describes an endovascular stent grafting, where a stent is directly implanted

in the dissected part of the descending aorta to treat the dissected part of the aorta [Pepper

(2016)].

1.2.2. Experiments

Initial tear

Carson and Roach (1990) performed experiments on the healthy thoracic pig aorta with

the aim to investigate the mechanical properties, for which a bleb (a bubble inside the

aortic wall) was prescribed in the tunica media. They observed that the generation of this

kind of bleb in healthy arteries needed very high non–physiological hydraulic pressure.

The initiation of aortic dissection could also occur in the physiological range of the blood

pressure in the artery and further faciliate a propagation of the dissection inside the healthy

tissue of the aorta. For this observation they took samples which already showed a peak in

the shear force under physiological conditions. The tissue of the right lateral wall, located

in the ascending part of the thoracic aorta or the descending thoracic aorta directly after the

ligamentum arteriosum, are known as locations for high stresses in the tissue and further

for developing an aortic dissection (Kasper et al., 2015).

Dissection

Van Baardwijk and Roach (1987) intended to observe that the crack propagation after an

initial tear was formed. Their experiments showed that the development of an dissection is

dependent on the depth of the initial tear in the radial direction and also related to the pres-

sure gradient over the arterial wall. Dissections which were located closer to the intimal

surface developed faster than those which were closer to the adventitia. They assumed that

this behavior could also depend on the anisotropic behavior of the media with different ra-

dial depth in the aorta. Due to that an aortic dissection describes actually a delamination of

the aortic wall, Sommer et al. (2008) performed a steady state investigation by the use of a

peeling test. This allowed an investigation of a slow and controlled propagation of a dissec-

tion inside the artery. During the experiment they have shown that the damage spreads over

approximately 6 to 7 elastic laminae. Later, Sommer et al. (2016) measured the ‘in-plane’

shear stress in the tissue and realized that this shear mode is the most common reason for

arterial wall failures other than the ‘out-plane’ shear stress mode. Haslach et al. (2018)

observed that an aortic dissection, which started in the diseased part of the artery could

also propagate further in the healthy tissue segment of the artery. The setup in this study

was to execute a ring expansion test on a healthy aortic segment. The main advantage is a

more physiological testing of the tissue than with conventional biaxial extension tests. The
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specimens were prepared with an initial incision in the intima and during the experiment a

dissection propagation was observed.

1.2.3. Numerical studies

Based on a cohesive zone model Gasser and Holzapfel (2006) introduced a nonlinear

mechanical framework to investigate the three–dimensional properties of an arterial dis-

section for numerical simulations. With the consideration of the dispersion of the collagen

fibers in the artery, the group expressed the dispersion with only one scalar parameter for

the continuum. The cohesive part of the material problem aims to capture the dissec-

tion properties of the material, which includes the initialization and coalescence of micro–

cracks into a discrete shape, where in the meantime the constitutive model was used to

implement the structural information of the domain (Svensson and Crawford, 1992). Years

later Ferrara and Pandolfi (2010) introduced a numerical model for an aortic dissection

problem. Based on previous theories for fracture with cohesive models, they focused on

the simulation of the delamination process in a multi–layer material.

Until the study of Noble et al. (2017) most studies focused on the propagation of a crack

and neglected the formation of an initial tear. The focus of the study was on the creation

of such an intimal tear. They investigated the cause of an initial tear originated by a stiff,

planar penetrating external body (catheter-induced dissection) and formulate a model of

the process using cohesive zone formulation.

1.2.4. Fracture mechanics

In the early twenties of the last century, Griffith (1920) attempted to solve fracture me-

chanical problems. As starting point, he selected the first law of thermodynamics and

reformulated it to a simple energy balance equation to describe the theory of fracture evo-

lution. He assumed that the growth of a crack would be sufficient to overcome the surface

energy of a material, which further leads to a decrease of the stored strain energy in the

material. This theory was exclusively valid for a fracture analysis of brittle material, until

a modification in 1948, which introduced the local plastic flow of a material during tension

was postulated (Irwin, 1948). Irwin (1956) developed the concept of the energy release

rate based on previous studies from Griffith. In order to describe the stresses and the dis-

placements close to a crack–tip by a single parameter, which was related to the energy

release rate, Irwin introduced the so called stress intensity factor (Irwin, 1957). On the

other side, there was another approach to characterize the nonlinear material behavior of

a crack by Rice (1968). In this study, he was able to generalize the energy release rate of

nonlinear materials by the idealization of the plastic deformation. Until Shih and Hutchin-

son (1976) provided a theoretical framework for the approach of Rice (1968), there was no

fracture design analysis available for the case of linear elastic problems.

In recent studies, researchers are more focused to develop models based on the micro

structure of the observed material. With this kind of modeling the crack behavior could
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be related to the local and global material parameters. One of the more recent approaches

for the modeling fracture of isotropic material is provided by Miehe et al. (2010). The aim

of their study was to formulate a thermodynamically consistent crack phase–field model.

In the same year the group introduced a rate–independent crack propagation based on an

operator split (Miehe et al., 2010), to simplify the calculations of the system. Both of

the previous mentioned approaches were based on the energy release of the Griffith the-

ory (Griffith, 1920). Beside the strain energy release, other researchers focused on either

the stress intensity factor (Irwin, 1957) or the crack tip plastic zone (Gasser and Holzapfel

, 2006) theory for describing linear elastic fracture mechanics.

Based on the framework of Miehe et al. (2010), Gültekin et al. (2018) further introduced

a structure tensor to model fracture of anisotropic materials, which represents the base of

this study. Later Gültekin et al. (2017) extended the developed model (Gültekin et al.,

2016) to model also finite strains, which was not considered in the model of Miehe et al.

(2010).
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2. Methods

This chapter gives an inside in the model for the rupture of an anisotropic material in-

troduced by Gültekin et al. (2018) and it is based on a multi-field framework for fracture.

2.1. Multi–field framework for fracture

A continuum body B ⊂ R
3 can be described at time t0 ∈ T ⊂ R

+ and S ⊂ R
3 at time

t ∈ T ⊂ R
+ in an Euclidean coordinate system. To define this coupled problem of fracture

two primary field variables are introduced, the bijective deformation map ϕ(X, t) and the

internal variable for the crack phase-field d, i.e.

ϕt(X) :

{

B × T → S,

(X, t) 7→ x = ϕ(X, t),
d :

{

B × T → [0, 1],

(X, t) 7→ d(X, t),
(2.1)

where ϕt(X) maps a point X ∈ B from the reference configuration to a point x ∈ S in the

current configuration, for a better understanding, see Fig. 2.1, and where d describes the

thermodynamic approach to quantify fracture in a solid material, in general, it interpolates

between the intact material (d = 0) and the ruptured state (d = 1), see Fig. 2.3. In compar-

ison to the primary field variable ϕt(X), which is defined in the current configuration, d is

defined in the reference configuration.

2.1.1. Kinematics of mechanical problem

In this section the focus lies on the description of the mechanical problem of the multi–

field framework, which is described with the primary field variable ϕt(X), see Fig. 2.1.

Since the variable ϕt(X) is a coordinate system dependent parameter, it is recommended

to work with the coordinate system independent invariants for implementation in a finite

element method. The calculations below illustrate the method of obtaining these invariants

of a continuum body S in the current configuration. To reduce the cycle time of the code,

the invariants are implemented in the Eulerian form, also called spatial description with re-

spect to the spatial coordinates. Since ϕt(X) describes a vector at a point in the continuum

body, it is simpler to define a gradient which defines the changing of the deformation field,

this is done by the calculation of the deformation gradient F, i.e.

F = ∇ϕt(X), (2.2)
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Figure 2.1.: Nonlinear deformation of an anisotropic continuum body with the material

configuration of the body B ⊂ R3 at t0 and the current configuration S ⊂ R3 at t. The

surface of the body is described in the reference configuration by ∂Bϕ ⊂ R
2 and analo-

gous for the spatial configuration by ∂Sϕ ⊂ R2. T̃, N and t̃, n define the traction force

and the normal vector on the surface of the body in the reference and spatial configu-

ration, respectively in addition, the vectors M(X) and M′(X) represent the mean fiber

direction of the anisotropic solid in the reference configuration and m(x) and m′(x) are

specified for the directions in the spatial configuration. With the bijective deformation

map ϕ(X, t) the deformation of a defined point X in the reference configuration to a point

x in the spatial configuration can be defined over time. With permission from Gültekin

et al. (2018).

where the operator ∇ defines the gradient of the deformation map ϕt(X) in the material

configuration. In the case of a volume change, from the reference configuration to the spa-

tial configuration at different time steps, the variable J is further introduced. The variable

J(X, t) = detF(X, t) describes the volume ratio (or Jacobian matrix) from the spatial con-

figuration of the continuums body S related to the reference configuration of the body B.

Subject to the condition that it is not possible to reach a negative volume, the condition

J(X, t) > 0 has to be fullfilled at every time. In the case that J(X, t) = 1 the volume

behaves isochoric, also known as a volume-preserving deformation.

For the calculation of the stress response in a material, the strain of a material is an

important measure, in spatial coordinates the deformation is defined with the matrix b,

also referred to as left Cauchy–Green tensor. Equation (2.3) shows the calculation of b, i.e.

b = FG−1FT, (2.3)

where G−1 specifies the inverse of the co–variant reference metric tensor G = δIJEI ⊗EJ ,

where δIJ is the Kronecker delta function, which is equal to 1 only if the variables are equal

otherwise it is 0. In general the tensor b is symmetric and positive definite, i.e. that each

eigenvalue is positive at each spatial coordinate x. If a continuum body shows in each space

10



direction the same mechanical behavior, we say the material behaves isotropic. With this

condition the stress response is not dependent on the choice of the operating coordinate

system. To describe the stress response of an isotropic material, in general, only three

invariants are needed, i.e.

I1 = trb, I2 =
1

2

[
I21 − tr(b2)

]
and I3 = det b. (2.4)

To extend the isotropic material to a transversely isotropic material, with a preferred direc-

tion in the material, the structure tensors Am and Am′ are further introduced, i.e.

Am = m ⊗ m, Am′ = m′ ⊗ m′, (2.5)

where m(x) = FM(X) and m′(x) = FM′(X) define the fiber directions in the deformed

configuration. The physically significant fiber stretch related to anisotropic invariants I4
and I6 are defined by

I4 = m · gm = λ2, I6 = m′ · gm′ = λ2, (2.6)

with the co–variant spatial metric tensor g = δije
i ⊗ ej , where δij defines again the Kro-

necker delta function, and λ2 is the square of stretch of the fiber along its direction.

2.1.2. Geometrical approach for anisotropic rupture

In general, a phase-field is used to model a homogeneous material which undergoes

a phase transition, this leads to a strong discontinuity in the contiuum body B. For the

modeling of a crack exactly this kind of model is used to describe a fracture, which can

also be seen as a discontinuity in a solid.

Crack phase-field in a one-dimensional bar

This section is for the general explanation of the crack phase-field, in the next section

the crack phase-field is expanded to a three–dimensional domain. To describe the basic

principles of the crack phase–field a continuum body B was assumed to describe an infinite

long beam with the cross–section Γ and a length L = [−∞,∞]. For an implementation

of a crack the position x ∈ L along the x–axis is further defined. In the event of a sharp

crack, which is defined as a strong discontinuity in the domain, it is assumed that the crack

manifests itself as a jump of the internal field variable d to the value 1. Figure 2.2(a) shows

the change of the field variable d for the case of a sharp crack, where it is assumed that the

crack appears at the position x = 0. Since it is assumed to be a sharp crack the material

next to this location will remain intact and the value for d stays at 0. For the numerical

analysis of a domain with a sharp crack, this represents a major complexity (Fig. 2.2(a)).

To simplify this problem the jump of the internal field variable d has to be smoothened out,

seen in Fig. 2.2(b). For the smoother transition between the intact and the ruptured state,

11
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Figure 2.2.: Sharp and diffusive crack modeling: (a) sharp crack at x = 0, defined by a

strong discontinuity in regard to the internal field variable d to 1; (b) diffusive crack at

x = 0 with length scaling factor l, for a smoothing out by the function d(x) = e−|x|/l of

the crack along the x–axis of an infinite bar.

an exponential function is used to approximate the transition between both states, Miehe

et al. (2010) used an exponential function as

d(x) = e−
|x|
l , (2.7)

where l defines the length scale of the diffusive crack over the domain L of the bar for their

study. Based on this condition a functional Γl(d) was introduced in the same study, i.e.

Γl(d) :=
1

l
I(d) =

1

2l

∫

B

(d2 + l2d′2)dV, (2.8)

where I(d) is a developed functional of a homogeneous differential equation to describe

a diffusive crack surface. With the introduction of I(d) to describe the crack surface, a

constitutive model for fracture mechanical problems can be developed in the next step.

Crack phase-field in a continuum body

This section explains the application of a crack phase-field on a continuous formu-

lation and extends the one–dimensional approach from the previous section to a multi–

dimensional domain, seen in Fig. 2.3. In Fig. 2.3, Γ is defined as a strong discontinuous

boundary of a sharp crack in the continuums body B with the dimension Γ ∈ ∂Bϕ ⊂ R2

at reference time t0, i.e. Γ =
∫

Γ
dA, which is denoted by a solid black line. To generate an

overall continuous domain of this problem, the crack will be approximated over the volume

and leads further to a regularized crack surface Γl(d), i.e.

Γl(d) =

∫

B

γ(d,∇d)dV, γ(d,∇d) =
1

2l
(d2 + l2∇d · ∇d), (2.9)
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Figure 2.3.: Overview of a continuum body with a sharp crack surface Γ and a diffusive

crack surface Γl(d) in the material configuration B ⊂ R
3 and the current configuration

S ⊂ R3, respectively where the diffusive crack surface is regularized by the length–scale

l. The fiber directions are given by M(X) and M′(X) for the reference configuration and

by parameter m(x) and the parameter m′(x) as the spatial counterparts. The anisotropic

crack phase–field is further specified by a Neumann-type boundary condition, which

leads to an traction–free contiuums body L∇d · N = 0. With permission from Gültekin

et al. (2018).

where γ(d,∇d) describes the isotropic crack surface density function. This approach from

Miehe et al. (2010) was then extended by Gültekin et al. (2018) for an anisotropic material

with the anisotropic structure tensor L such that

Γl(d) =

∫

B

γ(d,∇d;L)dV, where γ(d,∇d;L) =
1

2l
(d2 +∇d ·L∇d), (2.10)

describes the crack surface with an anisotropic crack surface density function. In the model

of Gültekin et al. (2018) the second–order tensor L is defined as

L = l2[I + ωMM ⊗ M + ωM′M′ ⊗ M′], (2.11)

where the parameters ωM and ωM′ are defined as penalty terms, in other words, weighting

terms, for the anisotropy in certain fiber direction. To ensure stability of the simulation the

variable ωi with i ∈ {M,M′} is limited to the open range −1 < ωi < ∞.

2.2. Strong form of the multi–field problem

With the characterization of the multi–field problem it is possible to obtain a represen-

tative model for fracture in an anisotropic material. As a starting point the rate–type of the
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potential energy density Πη was used, i.e.

Πη = E +Dη − P , (2.12)

where E characterizes the rate of energy storage functional in the material, Dη specifies the

viscous regularized dissipation functional due to fracture and P characterizes the external

power functional on the observed domain.

The following passage is devoted to the calculation of the rate of energy storage func-

tional E(ϕ̇; ḋ) in the material, and is defined by

E(ϕ̇; ḋ) =

∫

B

( τ : g∇xϕ̇− fḋ )dV, (2.13)

with the variables ϕ̇ and d, which are work conjugated to the Kirchhoff stress tensor τ and

the thermodynamic force f , where τ is simply calculated with the push forward applied to

S (τ = FSFT ). The thermodynamic force f governs the damage evolution.

Thus,

τ := 2∂gΨ(g,F,Am,Am′ ; d), f := −∂dΨ(g,F,Am,Am′ ; d). (2.14)

Based on the developed fracture criterion by Griffith (1920) E(ϕ̇; ḋ) also includes the

consideration of degradation due to fracture. This mechanical degradation is modeled by

the use of the function gi with i = {ani, iso} for the isotropic and anisotropic material

behavior, i.e.

giso(d) = (1− d)aiso and gani(d) = (1− d)aani, (2.15)

where ai, i ∈ {ani, iso}, controls the rate of mechanical degradation. For simplification

of the model the defined parameter from Miehe et al. (2010) were used (aiso = 2 and

aani = 2), as shown in Fig. 2.4. To ensure a monotonic mechanical degradation the form

g′i(d) ≤ 0 with gi(0) = 1, gi(1) = 0, g′i(1) = 0, (2.16)

is used. The second and third conditions are used to define the limits of the ruptured and

intact state of the material, and the last term ensures the saturation of gi(d) in the fully

ruptured state. In the model of Gültekin et al. (2018) the stored energy in the intact (d = 0)

material is defined in the form

Ψ0(g,F, J,Am,Am′) = Ψiso
0 (g,F, J) + Ψani

0 (g,F,Am,Am′), (2.17)

where Ψiso
0 (g,F, J) and Ψani

0 (g,F,Am) refers to the isotropic and anisotropic parts of the

Helmholtz free–energy function without fracture respectively. They are defined as

Ψiso
0 (g,F, J) = Ψ̂iso

0 (J, I1) and Ψani
0 (g,F,Am,Am′) = Ψ̂ani

0 (I4, I6). (2.18)

For a more detailed formulation of the Helmholtz free–energy function Ψ and how the

formulations are implemented in a finite element code, see Appendix A, which shows the
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Figure 2.4.: Mechanical degradation function gi(d), i ∈ {iso, ani}, in regard to an in-

crease of the internal field variable d, which represents the rupture state of the material.

case for an incompressible material. With the usage of the degradation functions giso(d)
and gani(d) it is possible to end up with the Helmholtz free–energy function Ψ with respect

to the crack phase–field d and the degradation function gi(d), i ∈ {iso, ani}, i.e.

Ψ(g,F, J,Am,Am′ ; d) = giso(d)Ψ
iso
0 (g,F, J) + gani(d)Ψ

ani
0 (g,F,Am,Am′). (2.19)

The second term on the right–hand side of Eq. (2.12) defines the viscous regularized

dissipation functional. The parameter η classifies the artificial viscosity of the continuum

body, which is used as a stabilization parameter for crack simulation. Accordingly, to a

correct crack propagation, η ≥ 0 should be assumed to be positiv and close to 0, i.e.

Dη(ḋ, β; d) =

∫

B

[βḋ−
1

2η
〈χ(β; d,∇d)〉2]dV, (2.20)

where β defines the local driving force, ḋ describes the rate of the deformation tensor and

χ, for which the Macaulay brackets 〈•〉 = [(•)+ |(•)|]/2 is defined to filter out the positive

values from the argument (χ > 0), defines the scalar viscous over–stress term, i.e.

χ(β; d,∇d) = β − gc[δdγ(d,∇d;L)], (2.21)

where the parameter gc defines the related variable to the critical fracture energy.

The last term in Eq. (2.12) on the right–hand side refers to the external power functional

P(ϕ̇) which is defined by

P(ϕ̇) =

∫

B

ρ0γ̃ · ϕ̇dV +

∫

∂Bt

t̃ · ϕ̇da, (2.22)
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where ρ0, γ̃ and t̃ define the material density, the described spatial body force and the

spatial surface traction, respectively.

Finally, with the rate–dependent potential Πη, it is possible to propose a mixed varia-

tional principle of the evolution problem according to

{ϕ̇, ḋ, β} = Arg
{

inf
ϕ̇∈Wϕ̇

inf
ḋ∈W

ḋ

sup
β≥0

Πη

}

, (2.23)

where the defined domains for the field variables ϕ̇ and ḋ are

Wϕ̇ = {ϕ̇ | ϕ̇ = 0 on ∂Bϕ}, Wḋ = {ḋ | ḋ = 0 on ∂Bd}. (2.24)

After the variation of Πη regarding to the fields of {ϕ̇, ḋ, β}, and additional mathematical

manipulations, Gültekin et al. (2018) introduced two main considerations for modeling

rupture.

The first consideration describes the balance of linear momentum in a continuum body,

i.e.

1: J div(J−1τ ) + ρ0γ̃ = 0. (2.25)

The characterization of the rate–dependent evolution of the crack phase–field, is

2: ηḋ = 2(1− d)H− d+Div(L∇d), (2.26)

where the first term of the right–hand side defines the driving force of the fracture with

respect to the dimensionless crack driving source term H, and the second term specifies

the geometric resistance of the material with respect to the second–order structure tensor

L. The crack driving source term can be described with

H =
Ψ0

gc/l
, (2.27)

where Ψ0 and gc define the effective free–energy function and the critical energy release

rate in the continuum body. To define the contribution of the isotropic ground matrix and

the anisotropic fibers in the continuum the quantity H is decoupled in the respective terms

H = H
iso

+H
ani
, (2.28)

with

H
iso

=
Ψiso

0

gisoc /l
, H

ani
=

Ψani
0

ganic /l
. (2.29)

These terms will be regulated by the length–scale regularized parameter gic with i ∈ {iso, ani}.

For more details please refer to Griffith (1920), which introduced gc as a parameter of frac-

ture, defining the fracture toughness of a material. The fundamental criterion for fracture

in this model is based on the energy criterion and based on the energy release rate g, which

defines the change of the potential energy in the crack region, in the case of g < gc, the
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energy release rate g in the domain is below the threshold value gc and does not lead to

fracture (Anderson, 2005). In the event g = gc, a crack can start to propagate through a

linear elastic material domain (Anderson, 2005). To specify a rate–independent case for

the crack evolution η → 0, Eq. (2.26) can be reformulated in a crack evolution equation

for the isotropic and anisotropic crack driving source term, i.e.

2(1− d)H
iso

= d− Div(Liso∇d),

2(1− d)H
ani

= d−Div(Lani∇d),
(2.30)

where L
iso represents the part of the second–order structure tensor related to the isotropic

ground matrix and L
ani defines the contribution to L from the fibers, with the definition

L
iso = l2I and L

ani = l2 [ωMM ⊗ M + ωM′M′ ⊗ M′ ] . (2.31)

These relations are interpolated in Eq. (2.26), which leads to

(1− d)H = d−
1

2
Div(L∇d), (2.32)

where H defines the maximal value of the crack driving source term in the deformation

history H(s), s ∈ {0, t}, with the restriction to an irreversible and positive crack driving

source term H for the fracture propagation. This characteristic is ensured with the use of

the Macaulay brackets, where the positive values are filtered out, i.e.

H(t) = max
s∈[0,t]

[
〈H(s)− 1〉

]
, (2.33)

where H(s)− 1 keeps the domain intact until the failure surface is reached and it assures a

fracture zone without the ability for self healing. With this it is possible to reformulate the

strong form of the crack evolution equation (Eq. (2.26)) to the following expression

ηḋ
︸︷︷︸

crack evolution

= (1− d)H
︸ ︷︷ ︸

driving force

− [d−
1

2
Div(L∇d)]

︸ ︷︷ ︸

geometric resistance

. (2.34)

With this assumption, for the strong forms (2.25) and (2.34), it is feasible to generate a

discrete weak formulation for the temporal and the spatial space, a general approach for

that is shown in the Appendix B.
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3. Results

For the validation of the model it is important to identify the material parameters, which

was performed by, e.g., Sommer et al. (2016). In the next step, the model was applied to

a generated mesh by the program CUBIT R© Release (2017), and it was further called by

the input file of the finite element analysis program FEAP R© Release (2008). With this

package the analysis of the sensitivity in regard to ωM and an aortic dissection boundary–

value problem were investigated.

3.1. Parameter identification

The parameter identification is based on the testing protocol of Sommer et al. (2016).

In this study, the authors used uniaxial extension tests and in–plane simple shear tests

to obtain material parameters for aneurysmatic and dissected medial tissue strips. They

performed uniaxial extension tests along the circumferential θ– and the longitudinal z–

directions, defined as (θθ) and (zz) modes. For the characterization of the in–plane simple

shear response, the experiments were executed by facing the radial plane r and along the

θ– and z–direction, which are represented by the modes (rθ) and (rz), see Fig. 3.1. The

least–squares method was applied to a nonlinear objective function χ2(p) to estimate the

unknown parameters related to the elastic material parameters p = {µ, k1, k2, α} of the

constitutive model by Holzapfel et al. (2000). An efficient estimation for these parameters

is successfully obtained when a minimum of variance between the objective function and

the experimental data is achieved, i.e.

min
p

χ2(p) =
∑

(ij)∈m

N
(ij)
exp∑

n=1

(σn
(ij) − σ̄n

(ij))
2, (3.1)

were σn
(ij) describes the model–predicted Cauchy stress and σ̄n

(ij) defines the experimentally

achieved Cauchy stress. Equation (3.1) was further executed for the different mode types

of uniaxial extension and in–plane simple shear, with m = {(θθ), (zz), (rθ), (rz)} for the

different loading scenarios at special data points N
(ij)
exp during an experiment. To solve

the minimization problem (3.1) and to obtain the optimized parameters for the system,

the Euclidean norm was calculated by the built–in MATLAB R© Release (2016b) function

lsqnonlin. The outcome of the optimization process is summarized in Table 3.1. For the

validation of the fitting, a linear correlation coefficient R2
(ij) and the root–mean–square
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(a) (b)
zz

rr
θθ

Figure 3.1.: Schematics of an ‘in–plane’ shear testing sample: (a) applied shear in the

longitudinal direction τrz; (b) applied shear in circumferential direction τrθ to extract the

shear responds of the zθ–plane. Gray surfaces show the fixated surfaces and the dashed

lines, represent incisions of approximately 1[mm]. With permission from Sommer et al.

(2016).

error ǫ was defined as

ǫ =

√
√
√
√
√

χ2(p)
∑

(ij)∈m

N (ij)
exp − q

∑

(ij)∈m

σ̄mean
(ij)

, (3.2)

where q is defined as the number of fitting parameters p and σ̄mean
(ij) specifies the arithmetic

mean of the mode related Cauchy stresses, see also Holzapfel et al. (2005) and Schulze–

Bauer et al. (2003).

Note, that in the case of a complete correlation R2
(ij) = 1, the ‘goodness of fit’ reaches

its maximum, which leads to the estimation of the parameters p related to the specific

mode. Figure 3.2 illustrates the different modes of loading of a medial sample strip. The

‘Experiment’ curve is defined by the results of the experimental data points of the different

loading modes. Furthermore, the term ‘Model’ indicates the elastic material response of

the proposed model (Gültekin et al., 2017) before rupture occurs, and ‘FEM’ is the Cauchy

stress related to the constitutive model of Holzapfel et al. (2000) without considering any
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Table 3.1.: Elastic material parameters obtained with the nonlinear least–squares method,

correlation coefficients and root–mean–square error.

µ [kPa] k1 [kPa] k2 [–] α [◦]

Elastic material parameters 83.51 101.65 4.17 44.71

Correlation coefficients R2
(rθ) = 0.99 R2

(rz) = 0.98 R2
(θθ) = 0.98 R2

(rz) = 0.99

Root–mean–square error ǫ = 0.1043

damage. In Fig. 3.2 it is shown that the assumption of an hyperelastic model response is

acceptable.
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Figure 3.2.: In-plane simple shear and uniaxial extension test data corresponding to the

model (Gültekin et al., 2017) and the hyperelastic FEAP R© Release (2008) model for (a)

(rθ); (b) (rz); (c) (θθ); (d) (zz) modes.
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3.2. Parameter validation of the healthy medial sub–layer

Due to the lack of mechanical material parameters for healthy medial sub–layers (Som-

mer et al., 2016) the stress on the interface of a healthy medial sub–layer and a degenerated

medial sub–layer remains unclear. For that reason an additional investigation regarding the

mechanical stress concentration on the interface of these two sub–layers was executed. As

an initial consideration we assumed that the cross–links between two fibers are the main

cause of fracture propagation along the aorta. To show this assumption for the mechanical

response an in–plane simple shear test was executed on a specimen, which consists of two

medial sub–layers. The investigated domain considered a healthy medial sub–layer with

increased parameters with respect to the parameters of the degenerated medial sub–layer.

Figure 3.3 shows the structure of the domain, where the healthy sub–layer is represented

by the cyan–colored layer and an attached degenerated medial sub–layer (pink–color) is on

the top.

yx

z

0.
25
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0.255

t h
t d
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Figure 3.3.: Geometry for the analysis of the stress concentration at the interface of two

medial sub–layers, where the pink–layer visualizes a degenerated medial sub–layer with

the defined material parameters (see Table 3.1) and with the thickness td = 0.1275 [mm],
while the healthy sub–layer (thickness th = 0.1275 [mm]) is represented by the cyan–

colored sheet. The boundary condition of the domain was assumed to be zero at the top–

surface (z = 0.255) and the bottom–surface (z = 0), which means a restriction against the

deformation of these surfaces. M and M′ represent the mean fiber directions for both fiber

families, where the angle α = 45[◦] is defined as the angle of the first fiber family with

respect to the x–axis. Applied on the top–surface, the in–plane simple shear is defined by

uy in the y–direction. All dimensions are given in [mm].

The thickness of these layers (th and td), defined in the z–direction, was adjusted to

the thickness of a single medial sub–layer (Ross and Pawlina, 2011). For the remaining

measurements of the strip, arbitrary values were considered. The simulation considered

that both fiber families are active and defined by their mean fiber direction M and M′.

For the elastic material parameters, the values from Section 3.1 were used to characterize

the mechanical properties of the degenerated medial sub–layer (see Table 3.1). In contrast
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to these parameters the material parameters k1 and k2 were increased by 20 % related

to the values of the degenerated sub–layer. For the shear–modulus two different values

were assumed (2– or 10–times higher than for the degenerated sheet) to investigate the

stress on the interface surface with respect to a change of the stiffness of the healthy sheet,

summarized in Tabel 3.2. Note that in both sheets the value for α, the angle between the

first fiber family and the x–axis remains equal. The discrete domain is further composed

Table 3.2.: Material parameters for the analysis of the stress concentration with different

stiffnesses, for the healthy medial sub–layer with respect to the properties of the degener-

ated medial sub–layer.

µ [kPa] k1 [kPa] k2 [–] α [◦]

Degenerated elastic material parameters 83.5 101.65 4.17 44.7

Healthy elastic material parameters (1) 167.01 121.98 5.00 44.7

Healthy elastic material parameters (2) 835.08 121.98 5.00 44.7

of 2366 hexahedral elements with a total amount of 2940 nodes over the domain. Since the

aim of this investigation is to obtain the stress concentration at the interface of the two sub–

layers, only the hyperelastic part of the described model is used and the crack phase–field

term is disregarded.
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Figure 3.4.: Stress distribution on the surface of the domain caused by a shear defor-

mation along the y–direction, where the load was applied on the top–surface (z =
0.255 [mm]), with (a) 100%, and (b) 500% increased stiffness for the healthy sub–layer

related to the degenerated sub–layer. The domain is visualized in Eulerian configuration.

Figure 3.4(a) represents the Cauchy stress σxy [kPa] on the surface of the chosen domain,

where the elastic parameters for the healthy medial sub–layer are assumed to be two times

higher than the parameters for the degenerated sub–layer, with a stretch λ [–] along the y–

direction. It can also be observed, that the stress in Fig. 3.4(a) is significantly lower than the
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stress in Fig. 3.4(b), with 5 times higher shear–modulus compared to (a). It is also clearly

visible, that with a smaller difference between the elastic parameters of the degenerated

layer and the healthy layer the finite elements are less deformed (see Fig. 3.4(a)) than with

a higher mechanical parameter. For further investigation of the stresses on the interface

surface, the provided Slices–function of the program Tecplot R© 360 (2017) was used to

generate Fig. 3.5. In contrast to Fig. 3.4, which uses the Eulerian coordinates for the

visualization of the domain, Fig. 3.5 shows the Cauchy stress σxy [kPa] of the interface

region in the Lagrangian configuration.

replacements
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Figure 3.5.: Cauchy stress distribution investigated on the interface surface of two sub–

layers, with (a) 100 %, and (b) 500 % increased stiffnesses for the healthy sub–layer re-

lated to the degenerated sub–layer and an applied shear load on the top–surface of the

domain along the y–direction. The domain is visualized in Lagrangian configuration.

In Fig. 3.5(a) it can be seen that the right edges of the domain show lower stress values

caused by the applied shear load along the y–direction. Compared to the twice higher stiff-

ness parameters, Fig. 3.5(b) shows the stress values for a ten times higher shear–modulus

of the healthy medial sub–layer, and the same elastic parameters as the 100% stiffer medial

layer. As can be seen the Cauchy stress σxy [kPa] in the x–y–plane is significantly higher

than the stress in the same plane with the lower shear–modulus (see Fig. 3.5(a)). For more

details of the stress on the interface between the two sub–layers, the resulting stresses at

node # 217 (node in the middle of the interface surface) are visualized in Fig. 3.6.

In this figure the cyan–colored curve represents a composite of a degenerated medial

sub–layer with an attached healthy sub–layer sheet, the parameter sets are listed in Ta-

ble 3.2 (degenerated– or healthy elastic material parameters (1)). In contrast, the red curve

shows the Cauchy stress trend in a composite with the material parameters from Table 3.2,

where the healthy sheet parameters were assumed to be the healthy elastic material param-
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Figure 3.6.: Stress–stretch curves for a domain composed of a degenerated and a healthy

medial sub–layer, where the contrast of these layers is defined by the different stiffness

parameters and in addition with two different shear–moduli for the healthy medial sub–

layer. The cyan–colored curve represents an assembly of a degenerated medial sub–

layer with the defined parameters (see Table 3.2) and a medial sub–layer with two times

higher parameters. Compared to the cyan–colored curve the red–colored curve shows the

Cauchy stress values for the same parameters for the medial sub–layer related to a stiffer

sub–layer .

eters (2). Despite the fact that both domains underwent the same shear–load the stretch λ
at node # 217 is significant higher than on the same element node in the other material

composite with a ten times higher shear–modulus µ. In addition, an increase of the shear–

modulus µ in the healthy medial sub–layer causes an enhancement of the Cauchy stress.

With this in mind the parameters for the following study, where the elastic material param-

eters are chosen to be 20% higher for the healthy sub–layers as the material parameters

for the degenerated sub–layer, an initiation of a fracture can not really be observed. Based

on this investigation, a more precise determination of the elastic parameters through fur-

ther experimental studies is necessary in order to observe a failure criterion which causes

a delamination between the two sheets.

24



3.3. Sensitivity of a crack path related to the anisotropy in

the material

To investigate the dependency of the crack path on the anisotropy parameters ωM and

ωM′ an uniaxial extension load was applied on a single–edge–notched plate, see Fig. 3.7.

The domain was fixed at the bottom edge in the x and y directions, defined as u0 = 0, and

at the top edge a linear increasing load was applied, which leads to a displacement of the

upper boundary by uy. To simplify the boundary–value problem, one fiber direction was

assumed, with the angle α = 45[◦] related to the x–axis, and defined by the mean fiber

vector M.

α

uy

uy0 = 0

5

5

0
.6

10

1
0

M
(X
)

x

y

Figure 3.7.: Geometry of a single–edge–notched plate boundary–value problem for the

sensitivity analysis of a crack in an anisotropic material, where M(X) defines the mean

fiber direction with the angle α = 45[◦] related to the x–axis in the material, uy0 defines

the fixed bottom edge of the specimen with ux = 0 and uy = 0, and an applied uniaxial

extension force at the top of the plate, which leads to a displacement uy. All dimensions

are given in [mm]. Adapted from the study of Gültekin et al. (2018) .

The results of this simulation were further compared with the results of the anisotropic

fracture model for brittle solids under small strains proposed by Teichtmeister et al. (2017).

In order to make a comprehensive comparison, the material for this simulation was as-

sumed to behave brittle during rupture. This property was assured by the use of unit param-

eters for the shear modulus µ[kPa], the stress–like parameter k1[kPa] and the dimensionless

parameter k2 [–], the latter once are defined for the first fiber family with unit parameters.

For the bulk modulus κ = 3.0[kPa] was considered. The regularized critical energy release

rate for fracture were defined for the isotropic material by gisoc /l = 10−2[kPa] and for the

anisotropic material by ganic /l = 10−2[kPa]. With the definition of the length–scale pa-

rameter l = 0.1[mm] of the diffusive crack phase–field, the minimum mesh size parameter
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h[mm] has to be chosen to satisfy l > 2h.

With this in mind, the geometry was prepared with the software toolkit CUBIT R© Re-

lease (2017) and furthermore a two–dimensional finite element mesh was applied on the

geometry and was considered with 38800 quadrilateral elements, which were connected by

39295 nodes for the discretized domain.

To simulate the behavior of a brittle fracture in the material the artificial viscosity pa-

rameter η was additionally set to zero and the load was applied until the elastic range of

the material reached its maximum (d ≈ 1). After this point was reached in the loading

curve, the unloading phase was initiated and the force F [10−3N] was decreased until the

simulation crashed. This loading and unloading procedure was simulated for several values

of the anisotropy parameter −1 < ωM ≤ 500. This parameter directly affects the evolution

of the crack path (Eq.(2.34)) depending on the second–order structure tensor (2.11), where

the second fiber family is neglected for the simulation. This leads to a new form for the

structure tensor, i.e.

L = l2[I + ωMM ⊗ M]. (3.3)

Depending on Eq. (3.3), Eq. (2.10)2 was reformulated to identify the crack surface density

in the single–edge domain, which leads to the expression

γ(d,∇d;L) =
d2

2l
+

l

2
∇d · ∇d+

l

2
ωM(∇d · M)(M · ∇d), (3.4)

where the third term on the right–hand side of this equation defines the anisotropic penalty

term for the isotropic crack surface density with ωM as the anisotropic penalty parameter.

Based on Eq. (3.4) a sensitivity study for the anisotropy parameter ωM was performed (see

Fig. 3.8) to investigate the angle of the crack path θ for an anisotropic material. In the case

ωM → ∞, the crack was assumed to align along the fiber direction and enforces the term

(∇d · M) = 1. Figure 3.8(a) also shows an important behavior of the crack path, for the

anisotropy parameter of ωM ≈ −1 a kink in the crack growth was observed. This may

be caused by the limitation of ωM in the negative range, to ensure the ellipticity condition

and the possible minima of the energy of the crack path. For the anisotropy parameter

ωM ≥ 10 an apparent issue with the stability of the simulation was noticed. This effected

the pattern of the crack growth and caused a termination of the simulation before the crack

entirely permeated the continuum. Since the focus of this study was to define the crack

growth with finite strains it was also assumed that this behavior determined in the study of

Teichtmeister et al. (2017) with infinite strains. The major difference between this study

and the study of Teichtmeister et al. (2017) is the prediction of the crack angle θ. Teicht-

meister et al. (2017) used for the prediction of θ the proposed maximum energy release

rate (MERR) concept from the study of Takei et al. (2013) used Wulff’s plot to graphically

construct crystal growth. For the graphical construction the inverse of the surface energy

cost for fracturing in the material Gc as a polar plot and the energy release rate G(θ). The

propagation direction defined by a linear plot, dependent on the loading and is tangent to

the polar plot, were used (Takei et al., 2013). The intersection of both functions specify

the angle of the crack propagation in an anisotropic material. Since this method is more
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Figure 3.8.: Diffusive crack propagation defined by the crack angle θ in a brittle material

with varying anisotropy parameter ωM, e.g., (a) ωM ≈ −1; (b) ωM = 1; (c) ωM = 5; (d)

ωM = 10; (e) ωM = 50; (f) ωM = 100; (g) ωM = 500. Adapted from Gültekin et al.

(2018).
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representative for small strains the application for finite strains leads to high inaccuracies

in the prediction of the crack path.

In addition to the investigation of the crack angle θ, the influence of the anisotropy

parameter ωM on the maximum loaded force with respect to the displacement was studied.

Figure 3.9 exhibits a linear increasing of the force F with the corresponding increase of

the displacement uy until an initial rupture in the material occur, for a corresponding node,

at the upper edge of the single–edge–notched domain. To ensure stability for each case of

the simulation the time steps were decreased from 10−3 after the transition from the elastic

range to values between 10−6 and 10−8. Depending on the stability of the simulation larger

time steps are more preferred to minimize the costs.
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Figure 3.9.: Force-displacement curve of a node localized at the upper edge of the single–

edge–notched geometry with respect to different values for the anisotropy parameter ωM.

Adapted from Gültekin et al. (2018).

In Fig. 3.9, it can be seen that an increase of the anisotropy penalty parameter ωM corre-

sponds to an increase of the crack angle θ and an increase of the displacement of the upper

edge of the geometry. This behavior can be explained for the lower range of ωM in which

the force F is applied to the crack surface orthogonal. In these cases a lower displacement

of the finite elements in this region was required to achieve the critical energy release rate

for a crack growth. Greater values of ωM lead to higher values for the geometric resistance

of the material against crack growth due to larger values for the effective length–scale pa-

rameter, see Gültekin et al. (2016). To overcome this resistance higher forces are required

to generate a fracture. For the analysis of the sensitivity of the crack angle θ related to
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the anisotopy penalty parameter ωM, the resulting crack angle θ from Fig. 3.8 was plotted

with respect to ωM, see Fig. 3.10. It may be ascertained, that above a certain value of ωM a

saturation behavior of the crack angle θ arises. Physically, this behavior can be explained

with, that with a high anisotropy parameter the crack propagation will be perfectly aligned

to the fiber direction M. This behavior can be determined for values ωM > 100 in Fig. 3.10,

and was also observed by Teichtmeister et al. (2017).
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Figure 3.10.: Sensitivity of the crack angle θ versus the anisotropy parameter ωM.

Adapted from Gültekin et al. (2018).

In addition to the above investigated cases for ωM, the case ωM = −1 was also evaluated

and an unexpected crack path was observed. In addition, the crack path of ωM ≈ −1 in

Fig. 3.8(a) is the only crack propagation which indicates a kink. Since ωM = −1 defines

the lower limit of ωM, it is assumed that the ellipticity condition of the crack phase–field is

no longer ensured. Furthermore it is assumed that the bending of the crack path occurs due

to different directions but of equivalent values to minimize the energy in the domain.

In the analysis of the force F related to the displacement uy the special case for a purely

isotropic material with ωM = 0 was not included. This exception was made on the basis

of the observation that a crack path not only relates to the anisotropy penalty parameter

ωM for the crack phase–field but is also dependent on the selected material model. For

ωM = 0 a crack angle θ = 0 was prior expected and not achieved in the posterior analysis,

see Fig. 3.10. Since the crack driving source term H in Eq. (2.27) is directly related to the

effective free energy Ψ0 of the material model, a value of ωM leads to an isotropic crack

resistance, but the crack driving force still possesses anisotrop. In Fig. 3.11, the influence

29



of the boundary of the domain is demonstrated. The closer the crack approaches the edge,

the more parallel the crack starts to porpagate with respect to the x–axis.

Figure 3.11.: Diffusive crack propagation defined by the crack angle θ in a brittle material

with anisotropy parameter ωM = 0.

3.4. Application to aortic dissection

Based on the parameter identification in Sec. 3.1 and with respect to the sensitivity anal-

ysis of the anisotropic paramameter ωM in Sec. 3.3 the proposed model for fracture by

Gültekin et al. (2018), summarized in Chap. 2, was applied on a three–dimensional cylin-

drical domain to investigate aortic dissection.

3.4.1. Geometry and material

To model an aortic dissection boundary–value problem, the biological domain has to be

simplified to implement it later into FEAP R© Release (2008). This simplification was done

by the use of a multi–layered cylindrical shape domain, which contains of a combination of

medial and adventitial layers. Figure 3.12 presents a schematic overview of the simplified

biological domain, with the different sub–layers of the media, represented from the lumen

outwards by the colors pink, blue, cyan and green, and the adventitial sub–layers defined

by the colors yellow and orange. Note, that the third layer of the media (media 3) is

defined as a degenerated sub–layer. This property is classified by the lower parameter

values defined by the experimental study of Sommer et al. (2008). The dimensions of the

idealized cylindrical tube were based on the study of Mao et al. (2008), which specified the

dimensions of an ascending aorta for the application in the simulations. With this in mind

a domain with the length of h = 40[mm] and for the inner and outer radii, i.e. Ri = 15 and

Ro = 17.5[mm], which were measured during the end–diastolic phase of a cardiac cycle.
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The thickness of each of the medial sub–layers is assumed by tmed = 0.375[mm] and for

the two remaining adventitial layers by tadv = 0.5[mm].

Media 1

Media 2

Media 3 (degenerated)

Media 4

Adventitia 1

Adventitia 2

x y

z

Ro = 17.5

Ri = 15

h
=

40

Figure 3.12.: Idealized geometry of an ascending aortic segment with multiple sub–layers

of the media and the adventitia. From the lumen outwards the cylinder is composed of

four layers of media defined by the colors pink, blue, cyan and green, and two layers of

adventitia shown in yellow and orange. The green medial layer 4 is also specified as a de-

generated layer, which is defined with lower stiffness. All dimensions are given in [mm].
Adapted from Gültekin et al. (2018).

Related to an aortic dissection problem, an initial damage is a priori implemented with a

specific tear–size and tear–shape. This damage penetrated the wall of the cylinder until the

sub–medial–layer media 4. This enabled a simulation as close as possible to the biological

situation in the body. In the circumferential direction the tear–size was assumed to span

with varying length πRiβ/180
◦, β ∈ {30◦, 60◦}, and a modifying size in the longitudinal

direction, with w1 = 1, w2 = 2 and w3 = 4 [mm], see Fig. 3.13. Since the study of Sommer

et al. (2008) defined the mechanical properties of a degenerated medial sub–layer, defined

as media 3 in this study, the parameters µ, k1 and k2 for a healthy medial sample are as-

sumed to be 20 percent higher in relation to the material parameters of the diseased media

3, wich leads to Table 3.3. Based on the parameter estimation in Section 3.1 for the degen-

Table 3.3.: Elastic and anisotropic mechanical and crack phase–field parameters related to

the individual sub–layers for an extension–inflation–torsion test.

Layer µ [kPa] k1 [kPa] k2 [-] α [◦] gisoc /l [kPa] ganic /l [kPa] ωM [-]

Healthy media 100.21 121.9 5.00 44.70 100 300 103

Degraded media 83.50 101.65 4.17 44.70 6 18 103

Adventitia 200 400 4 44.7051 100 300 103
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Figure 3.13.: Idealized geometry of Fig. 3.12 with varying angles and width of an inci-

sion. This initial defect is applied in the radial direction until it penetrates the degenerated

Media 3. The angle βi, i ∈ {1, 2}, defined in the circumferential direction, where β1 = 30
and β2 = 60[◦]. The width of the incision is represented by wi, i ∈ {1, 2, 3}, with w1 = 1,

w2 = 2 and w3 = 4[mm]. All dimensions are given in [mm]. Adapted from Gültekin et al.

(2018).

erated media the mechanical properties for the healthy medial sub–layers media 1, media

2 and media 4 are defined. For the material parameters of the adventitia sub–layers we es-

timated respectively higher values, due to the high biological stiffness of these layers. The

definition of the crack phase–field parameters by experiments is rather difficult, because of

the effect of the sample size to rupture. Based on this it is more common in this research

field to apply arbitrary values for the ratio gic/l than classify parameters from experimental

studies. From the previous performed sensitivity study of ωM in Sec. 3.3, a value for the

anisotropic parameter ωM in the saturation range (ωM = 103[−]) was presumed to enforce

a crack propagation along the fiber direction.
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3.4.2. Mesh and fiber direction

The related mesh to the defined geometries in Section 3.4.1 is composed of four–node

tetrahedral elements, with different numbers of nodes and elements related to the speci-

fied geometry of the initial–tear, seen in Table 3.4. In addition, a constant length–scale

parameter of l = 0.1875[mm] was assumed, which leads to a conventional mesh geometry

represented in Fig. 3.14. For the simplification of the biological domain, the fiber direction

of the two different families M and M′ are fitted as well to experimental data (Sommer

et al., 2008), and are defined by the parameter α = 44.71[◦], for both families, represented

by Fig. 3.15.

Table 3.4.: Total number of nodes and elements with respect to assumed geometry of the

initial–tear geometry, defined by w and β represented in Fig. 3.13.

Geometry # of nodes # of elements

β = 30◦, w = 1 20 383 102 795

β = 30◦, w = 2 20 109 101 400

β = 30◦, w = 4 18 799 94 423

β = 60◦, w = 1 21 672 108 691

β = 60◦, w = 2 20 943 105 571

β = 60◦, w = 4 20 408 101 953

x y

z

Figure 3.14.: Idealized cylindrical domain with a finite element mesh of tetrahedral ele-

ments. Adapted from Gültekin et al. (2018).
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(a) (b)

x y
z

Figure 3.15.: Idealized cylindrical domain with representative mean fiber vectors: (a) first

fiber family direction M; (b) second fiber family direction M′. Adapted from Gültekin

et al. (2018).

3.4.3. Boundary and loading conditions

The predefined cylindrical geometry undergoes a specified testing protocol. During the

simulation the bottom plane of the domain is restricted against deformation in every di-

rection by the boundary condition ux = uy = uz = 0, see Fig. 3.16(a). The testing

protocol describes two loading cycles, where the first one is defined in the physiological

range of the blood pressure, while the second one describes a loading cycle in the supra–

physiological range. More accurately, the pressure p̂ in the aorta inside the lumen, which

affects the endothlium and generates a gradient over the cylindrical wall layers, acts in

the first cycle, starts with 80[mmHg] and increases to a peak value of 120[mmHg]. The

supra–physiological state cycle is defined by its peak value of 600[mmHg].
Figure 3.16(b) visualizises the sequence with a saw–tooth pattern of one physiological

state cycle followed by one supra–physiological state cycle. Since an aortic dissection is

often associated with hypertension, it was assumed that rupture only occurs during the

supra–physiological cycle, the peak value of this region is identified to appear during ex-

treme sport exercises like weight–lifting, as mentioned by Kenney et al. (2015). After

the pressure p̂ is reached the peak for the supra–physiological state decreases linearly to a

physiological value p̂ = 80[mmHg] at the end of the simulation.

Schulze–Bauer et al. (2003) observed in their study that the aortic tissue in the biological

environment exhibits a pre–stretching, which leads to an axial deformation of 0 during

a cardiac cycle. For the definition of the pre–stretched state of the artery the study by

Horný et al. (2014) was used as the basis for the definition of the axial deformation ûz =
8[mm] in the biological environment, which further defines the stretch in the longitudinal

direction, with λz = 1.2 related to the undeformed domain (Fig. 3.12). This situation was

implemented during a linear increase of the axial displacement ûz during the physiological

part of the loading cycle until it reaches the biological prestretched value at the peak of the

physiological loading state and remained constant during the sequence, see Fig. 3.16(c).
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During a cardiac cycle, in general, the aorta performs a twisting defined by the angle φ̂ in

the range of 8–12[◦] (Carreras et al., 2012) in the case of a healthy left ventricle, this angle

changing spreads further to the ascending part of the aorta, which was investigated in the

present study, see Fig. 3.16(d). For the supra–physiological loading state a higher twisting

angle was assumed with a maximum value of 30[◦] and afterwards it decreases linearly, to

the initial state of φ̂ = 0[◦] at the end of the simulation.
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Figure 3.16.: (a) Idealized cylindrical domain with restricted bottom z = 0 mm, in the x–,

y– and z–directions, with the option of torsion on the upper edge z = 40 mm; the load-

ing conditions applied on the upper edge for the extension–inflation–torsion test defined

by a physiological and a supra–physiological loading cycle, which are applied one after

the other in a saw–tooth manner with respect to (b) pressure in the aorta p̂; (c) axial dis-

placement ûz (pre–stretching of the aorta in the first seconds and then remains constant);

(d) twisting of the aorta defined by the angle φ̂. A, B and C defines the stages of the test

at time t ∈ {0.4, 1.2, 1.6}, where A and B represents the peak of the physiological and

supra–physiological state, and C marks the end of the simulation. Adapted from Gültekin

et al. (2018).
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3.4.4. Simulation and numerical results

With respect to the described loading procedure in Section 3.4.3 a simulation was exe-

cuted with a starting time step–size of τ = 10−2[s] which was decreased to τ = 10−4[s],
after stability issues have appeared to provide a crack initiation in the cylindrical domain.

Figure 3.17 displays the crack phase–field evolution in the defined three–dimensional do-

main at the loading cycle peaks of the physiological state (A), the supra–physiological state

(B) and at the end of the loading sequence (C).

Particularly, Fig. 3.17 visualizes the isosurface of the crack phase–field d ≥ 0.8, which

means it displays the damage zone of the domain close to the ruptured state (d = 1)

between the degenerated medial sub–layer media 3 and a healthy medial sub–layer media 4,

for varying tear–size and –shape. It is apparent, that none of the defined initial tear–shapes

generates efficient high stress values during the physiological loading cycle to initiate a

crack propagation around the initial tear. In addition, the top view of the domain (see

Fig. 3.18) validates the intact state of the domain close to the border of the initial tear.

With an increase of the aortic pressure p̂ and φ̂, an initiation of the crack around the

initial tear was observed due to a higher concentration of stress. With a large value of the

anisotropic parameter ωM = 1000 a crack propagation along the first mean fiber direction

was enforced. The sensitivity for the crack propagation with respect to the anisotropy was

observed in Section 3.3. For case B Fig. 3.17 shows the cack phase–field with respect to

d ≥ 0.8. Furthermore, Fig. 3.18 displays a crack propagation along the circumferential

direction, combined with the propagation along the fibers. A helical crack growth was

observed in the cylindrical domain. After an increase of the loading condition to the instant

C, a damaged zone was still noticed with values for the crack phase–field variable d above

the isosurface 0.8. Due to this loss of integrity, the mechanical stiffness of the arterial sub–

layers gets weaker in this region. With every supra–physiological cardiac cycle blood jets

in this area, and therefore the healthy layers media 1, media 2 and the degenerated sub–

layer media 3 are peeled off from the remaining layers. This separation of the layers leads

to the creation of a false lumen beside the true lumen and can also block the true lumen

when it reaches a significant size. Compared to the tear–size, defined by the value w, it was

recognized that higher values for this variable were related to a higher stress concentration

in the tissue. This appeared to be the case in in Fig. 3.17 (c) and (d) at instant B as larger

damage zones than in Fig. 3.17 (a) and (b), with a smaller tear–size at the same time.
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(a)

(b)

(c)

(d)
A B C

Figure 3.17.: Evolution of the crack phase–field between a diseased medial sub–

layer media 3 and a healthy medial sub–layer media 4 at the peak values of the

physiological/supra–physiological states, related to the loading cycle in Fig. 3.16 with

respect to varying tear–size and tear–shape (a) w = 2[mm], β = 30[◦]; (b) w = 2[mm],
β = 60[◦]; (c)w = 4[mm], β = 30[◦]; (d) w = 4[mm], β = 60[◦]. With an isosurface value

d ≥ 0.8, to visualize a damage zone close to the ruptured state. Adapted from Gültekin

et al. (2018).
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(a)

(b)

(c)

(d)

A B C

Figure 3.18.: Evolution of the crack phase–field between a diseased medial sub–layer

media 3 and a healthy medial sub–layer media 4 displayed in the cross–section at the

peak values of the physiological/supra–physiological states, related to the loading cycle

in Fig. 3.16 with respect to varying tear–size and tear–shape (a) w = 2[mm], β = 30[◦];
(b) w = 2[mm], β = 60[◦]; (c) w = 4[mm], β = 30[◦]; (d) w = 4[mm], β = 60[◦].
With an isosurface value d ≥ 0.8, to visualize a damage zone close to the ruptured state.

Adapted from Gültekin et al. (2018).
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4. Conclusion

With an increasing amount of cardiovascular diseases, especially diseases which affect

the aorta, it is important to develop new methods to define the mechanical stresses in ar-

teries. Based on the parameter identification of the mechanical properties by the use of

high–resolution medical imaging methods, it is possible to apply the obtained material pa-

rameters to simulations which represent the in vivo situation in the body. The method of

simulation is becoming more and more necessary in these times to reduce the amount of

experiments to a minimum, and also to make predictions about the course of a disease in a

patient. With the focus on the prediction part the aim is to produce patient–specific mod-

els in the near future, for example, for the case of an aortic dissection. The present study

showed that an aortic dissection initiates around a defined initial tear and propagates in a

helically pattern between two sub–layers of the aorta. The location where the dissection

starts is further dependent on the radial depth of the initial tear in the aorta. In this study the

a priori defined initial tear in the mesh interferes with the lumen and a predefined mechan-

ical degenerated medial sub–layer. With the discussed model, it was possible to recreate

the same helical crack propagation in the longitudinal direction in the simulations as it was

observed in different experimental investigations. Compared to other anisotropic models,

it is important to note that the introduced second–order tensor L, which is dependent on

the anisotropy parameters ωM and ω′
M , has no influence on the crack driving source term

for the crack phase–field d. As a next step, the investigation of the anisotopy parameters

ωM = 0 and ω′
M = 0 in regard to a different constitutive model would be interesting in

order to see if the crack propagation still prefers a certain direction in relation to another.
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A. Modeling of soft biological tissue in

the Lagrangian configuration

To model arterial wall mechanics the constitutive framework from Holzapfel et al. (2000)

was used. In addition, it was assumed that the material shows an incompressible behavior,

the material keeps the volume constant through J = 1.

A.1. Incompressible material

A.1.1. Helmholtz free energy Ψ(J, I1, I4, I6)

This section specifies the stored energy Ψi with i ∈ {vol, ani, iso} in the material, i.e.

Ψ(J, I1, I4, I6) = Ψvol(J) + Ψiso(I1) + Ψani(I4, I6), (A.1)

where Ψvol(J) describes the volumetric elastic response of the material, Ψiso(I1) defines

the isochoric or volume-preserving elastic term of the material and Ψani(I4, I6) specifies

the finite elastic response of fiber–reinforced composites. The volumetric term and the

ischoric term are in the model of Gültekin et al. (2018) combined to

Ψiso(J, I1) = Ψvol(J) + Ψiso(I1), (A.2)

where Ψiso(J, I1) specifies the isotropic part from the neo-Hookean hyperelastic model,

which models the ground matrix of the material with

Ψvol(J) = κ(J − ln(J)− 1) and Ψiso(I1) =
µ

2
(I1 − 2ln(J)− 3), (A.3)

where κ describes the bulk modulus and µ classifies the shear modulus of the material, both

parameters should be adjusted to reach a level for Poisson’s ratio ν close to 0.5 to ensure

incompressibility of the material, i.e.

0 < ν =
3κ− 2µ

2(3κ+ µ)
< 0.5. (A.4)

For the anisotropic response that features the hyperelasticity of two fiber families dis-

tributed in the ground matrix the term

Ψani(I4, I6) =
k1
2k2

∑

i=4,6

{
exp[k2(Ii − 1)2]− 1

}
(A.5)

is introduced, where k1 > 1 describes a stress–like material parameter and k2 > 0 specifies

a dimensionless parameter.
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A.1.2. Stress tensor S

To obtain a solution for nonlinear problems in finite elasticity for computational prob-

lems, the computed elasticity tensor C will be implemented in the finite element code. For

the calculation, the Helmholtz free energy Ψ(J, I1, I4, I6) is derived with respect to the

right Cauchy–Green tensor C, i.e.

S = Svol + Siso + Sani, (A.6)

where Svol, Siso and Sani defines the volumetric, isochoric and the anisotropic second

Piola–Kirchhoff stress tensor, respectively. With the calculated S(J, I4, I6) it is possible

to calculate the Cauchy stress tensor σ, with the relation σ = J−1FSF . The volumetric

stress tensor Svol can be derived by

Svol = 2∂CΨvol = 2∂JΨvol∂C , (A.7)

with ∂CJ = 1
2
JC−1 and Ψ′

vol =
κ
J
(J − 1), which leads to the final form

Svol = κ(J − 1)C−1 (A.8)

for the volumetric term. The volume–preserving term Siso of the total stress tensor S(J, I4, I6)
will be calculated with

Siso = 2∂CΨiso = 2(∂CΨiso(J) + ∂CΨiso(I1)), (A.9)

where

∂CΨiso(J) = Ψ′
iso(J) ∂CJ

︸︷︷︸
1
2
JC−1

= −
µ

2
C−1 and ∂CΨiso(I1) = Ψ′

iso(I1) ∂CI1︸︷︷︸

I

=
µ

2
I

(A.10)

which leads to the final form for the isochoric stress tensor Siso, i.e.

Siso = µ(I −C−1), (A.11)

where I defines the identity matrix. For simplicity the calculation anisotropic term is

shown only for the fiber direction M, i.e.

Sani = 2∂CΨani(I4) = 2Ψ′
ani(I4)∂CI4, (A.12)

with

∂CI4 = M ⊗ M = A4 and Ψ′
ani(I4) = k1(I4 − 1)exp[k2(I4 − 1)2], (A.13)

where AM, M = 4, 6 is the second–order structure tensor of the fiber–reinforced material.

With that it is possible to generate a readable form of the anisotropic stress tensor Sani, i.e.

Sani = 2k1
∑

i=4,6

(Ii − 1) exp[k2(Ii − 1)2]Ai. (A.14)
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A.1.3. Elasticity tensor C

To achieve the final form of the elasticity tensor C, which defines the stiffness of the

domain in the finite element method, the stress tensor S is derived with respect to the right

Cauchy–Green tensor C and can be written in the decoupled form

C = Cvol + Ciso + Cani(I4, I6), (A.15)

where Cvol, Ciso and Cani are the volumetric, isochoric and anisotropic contributions to the

elasticity tensor C. The pure volumetric term can be written in the form

Cvol = 4∂2
CCΨ̂vol = 4∂C(∂JΨvol∂CJ) = 4[∂2

JJΨvol
︸ ︷︷ ︸

Ψ′′
vol

∂CJ ⊗ ∂CJ + ∂JΨvol
︸ ︷︷ ︸

Ψ′
vol

∂2
CCJ ], (A.16)

where Ψ′′
vol and Ψ′

vol specifies the second and first derivative of the Helmholtz free energy,

with

Ψ′′
vol = κ

1

J2
∂2
CCJ = ∂C

(
1

2
JC−1

)

=
1

2
(∂CJ ⊗C−1 + J ∂CC

−1

︸ ︷︷ ︸

−I
C−1

), (A.17)

where IC−1 describes a fourth order identity matrix. The final form of the volumetric term

of the elasticity tensor is then defined as

Cvol = κ[C−1 ⊗C−1 + (J − 1)C−1 ⊗C−1 − 2(J − 1)IC−1 ]. (A.18)

For the purely isotropic contribution of the elasticity tensor, i.e.

Ciso = 2∂CSiso(C
−1) = 2∂C−1Siso(C

−1)∂CC
−1, (A.19)

with

∂CC
−1 = IC−1 and ∂C−1Siso(C

−1) = −µI, (A.20)

the result is then

Ciso = 2µIC−1. (A.21)

Also for simplification, only the calculation for the anisotropic contribution of the elasticity

tensor is show. From the fiber direction M we obtain

Cani(I4) = 4∂2
CΨani(I4) = 4∂2

I4I4
Ψani(I4)∂CI4 ⊗ ∂CI4, (A.22)

with

Ψ′′
ani(I4) = k1exp[k2(I4−1)2][1+2k2(I4−1)2] and ∂CI4⊗∂CI4 = A4⊗A4, (A.23)

which leads to the final form of

Cani(I4, I6) = 4k1
∑

i=4,6

exp[k2(Ii − 1)2][1 + 2k2(Ii − 1)2]Ai ⊗ Ai, (A.24)

which can further be implemented in the stiffness matrix of the element.
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B. Implementation in a finite element

code

This chapter briefly describes the implementation of the proposed model by Gültekin

et al. (2016), for more details see Gültekin et al. (2016),(2018) and Miehe et al. (2010).

This section, briefly describes the general procedure to achieve the weak form of a strong

formulation of the governing equation by applying the Galerkin method to derive from

the strong formulation of the Eq.(2.25) and (2.34) the weak formulation to apply on the

discretized domain of the system. Through an operator–splitting algorithm the non–convex

multi–field problem is decoupled in two convex problem sets with the internal variables

ϕ(X, t) and d(X, t). These fields are then solved by a Newton–Raphson solver for the

nodal degrees of freedom.

B.1. Temporal discretization

For the discretization process the field variables are only considered at discrete times

in the simulation interval tn ∈ [0, T ], with n ∈ [0,∞]. As step size τ = tn+1 − tn is

considered, where tn defines the previous time step and tn+1 represents the current time

step. For the definition of the current field, all field variables from the previous step have

to be known.

B.2. Spatial discretization

As soon a temporal discretization is applied on the scheme an algorithm can be used to

define the spatial discretised field variables. Through an operator–splitting algorithm the

non–convex multi–field problem (ALGOCM) is decoupled in two convex problem sets with

the internal variables ϕ(X, t) (ALGOM) and d(X, t) (ALGOC), i.e.

ALGOCM = ALGOC ◦ ALGOM, (B.1)

which leads to a robust and stable algorithm for the simulation, for further details see

Gültekin et al. (2017) and Miehe et al. (2010).
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B.2.1. Spatial discretization for the mechanical problem

For the computation of the mechanical problem a Newton–type iteration solver is applied

to the Eulerian equation of the minimization problem of the elasticity by neglecting the

term of the crack phase–field variable. The solution of the discretization was based on the

algorithmic form of the variational problem for the nodal position vector dϕ in the compact

notation proposed by Miehe et al. (2010), i.e.

dϕ ⇐ dϕ −

( ∫

Bh

BT
ϕ [∂

2
c
h
ϕ c

h
ϕ
πτ
ϕ(c

h
ϕ)]Bϕ dV

)−1 ∫

Bh

BT
ϕ [∂chϕπ

τ
ϕ(c

h
ϕ)] dV, (B.2)

where BT
ϕ describes the global interpolation matrix composed by the specified shape func-

tions and its derivatives, with c
h
ϕ defined as the state vector of the deformation map and the

gradient of it, and πτ
ϕ represents the algorithmic potential energy function for the mechan-

ical problem defined over the interpolated domain Bh.

B.2.2. Spatial discretization for the phase–field problem

In order to discretize the domain for the phase–field problem, the same procedure as in

Section B.2.1 described is used. For the calculation of the nodal phase–field vector dd a

further equation can be used to solve an arbitrary boundary–value problem, i.e.

dd =

( ∫

Bh

BT
d [∂

2
c
h
d
c
h
d
πτ
d(c

h
d)]Bd dV

)−1 ∫

Bh

BT
d [∂chdπ

τ
d(c

h
d)] dV, (B.3)

where BT
d , chd , πτ

d and c
h
d describe the same variables as previously mentioned for the me-

chanical problem, now they represent the variables for the phase–field problem.
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