
Ceca Kraǐsniković, BSc

Symbolic Computation in Spiking

Neural Networks

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieurin

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor:
Em.Univ.-Prof. Dipl.-Ing. Dr.rer.nat. Wolfgang Maass

Institute of Theoretical Computer Science

Graz, December 2017

Affidavit
I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Date Signature

ii

Abstract
Scientific progress is made step by step. If we dream of great things, for ex-
ample, to understand the complex functioning and mechanisms of our brain,
and do tiny steps in that direction, one day we will be able to achieve what
we seek for. Inspired by the prefrontal cortex, where abstract rule-like rep-
resentations guide our behavior and other cognitive processes, we were mo-
tivated to explore learning capabilities of Spiking Neural Networks (SNNs)
in the task Symbolic Computation. For symbolic or algebraic computation
the term symbolic (mathematical) expression is important. We will focus on
using simple arithmetic operations, namely, addition, subtraction and multi-
plication. Humans can, without many difficulties, use symbolic expressions
describing how to perform simple computation of, say, two numbers. If we
want to have (more) intelligent machines, they should be able to do this as
well. So, our task now is to help them make progress and be able to perform
simple symbolic computation as described by the abstract rule (symbolic
expression).

According to Dan Brown, “Everything is possible. The impossible just
takes longer” [1].

iii

Zusammenfassung
Wissenschaftlicher Fortschritt wird Schritt für Schritt gemacht. Wenn wir
von großen Dingen träumen, zum Beispiel, die komplexen Funktionen und
Mechanismen unseres Gehirns zu verstehen, und auch nur winzige Schritte in
diese Richtung machen, werden wir eines Tages erreichen, was wir anstreben.
Inspiriert von dem präfrontalen Cortex, wo regelähnliche Darstellungen un-
ser Verhalten und andere kognitive Prozesse leiten, waren wir motiviert, die
Lernmöglichkeiten von Gepulsten Neuronalen Netzwerken in der Aufgabe
Symbolischer Berechnung zu erforschen. Für symbolische oder algebraische
Berechnung ist der Begriff symbolischer (mathematischer) Ausdruck wichtig.
Wir werden den Schwerpunkt auf einfache arithmetische Operationen, und
zwar Addition, Subtraktion und Multiplikation, legen. Menschen können
ohne Schwierigkeiten symbolische Ausdrücke verwenden, die beschreiben,
wie beispielsweise eine einfache Berechnung von zwei Zahlen durchgeführt
wird. Wenn wir intelligente(re) Maschinen möchten, sollten diese das auch
können. Deswegen ist es jetzt unsere Aufgabe ihnen zu helfen, weitezukom-
men, sodass sie eine einfache symbolische Berechnung, beschrieben durch
eine abstrakte Regel (einen symbolischen Ausdruck), leisten können.

Wie Dan Brown schreibt: “Alles ist möglich. Das Unmögliche dauert nur
etwas länger” [1].

iv

Acknowledgment
For the great support and motivation, special thanks to:

my late and dear grandpa, wherever he is now,
my parents, sister and brother, always being patient and encourag-

ing,
my supervisor Wolfgang Maass, for this outstanding opportunity to

be part of his research team,
Anand Subramoney, for all kind of advices (ranging from Python to

purpose of life and life),
all IGI family, our journal club sessions and the nights going out for a

dinner, Bier and Schnaps,
Michael Müller, for providing me with this great template and
all other friends, particularly those who have their home address at

Inffeld campus as well.

v

Contents
1 Introduction 1

1.1 Motivation and Contributions 3

2 Background 4
2.1 Perceptron and Sigmoidal Neuron Models 4
2.2 Spiking Neural Networks . 6
2.3 Leaky Integrate-and-Fire (LIF) Neurons 8
2.4 Recurrent Neural Networks and LSNNs 10
2.5 Learning-To-Learn (LTL) . 11

3 On Symbolic Computation 13
3.1 Working Memory . 13
3.2 Related Work . 13
3.3 On Cognitive Architectures 14

4 Implementation 16
4.1 Neuron Model . 16
4.2 Network Model . 17
4.3 Input Encoding . 18
4.4 Generation of Nonlinear Functions for LSNN to Learn 19
4.5 Training Procedure . 20

5 Experiments 22
5.1 Learning Nonlinear Functions 22

5.1.1 Learning Nonlinear Functions Using Previous Targets 22
5.1.2 Learning Nonlinear Functions Using Symbolic Identifiers 23
5.1.3 Comparison and Results 23

5.2 Learning Symbolic Expressions 27
5.3 Remembering Symbolic Expressions 37

6 Conclusion and Discussion 43

Appendices 45
A Network Parameters . 45
B References . 46

vi

LIST OF FIGURES

List of Figures
1 A simple neuron model. In case f(x) is a step or thresh-

old function, this model represents a perceptron (McCulloch-
Pitts neuron). In case f(x) is a sigmoidal function, this model
represents a sigmoidal neuron with analog outputs between 0
and 1. 5

2 A sigmoidal gate, a smooth activation function. [From
Maass, 2016] . 6

3 A spiking neuron. a. Simplified illustration of a neuron,
with dendrites, soma and axons marked and a spike propa-
gated along axon. b. Time course of one spike. As soon as

membrane potential reaches a threshold ϑ at moment t
(f)
j , the

neuron generates a spike and goes into a refractory state, here
denoted as SAP (negative Spike After-Potential). c. Excita-
tory and Inhibitory Postsynaptic Potentials over time (EPSPs
and IPSPs, respectively). SAP and postsynaptic potentials
can be modeled using appropriate kernels. Here εij denotes a
kernel, which describes the effect of the postsynaptic poten-
tials. [From Vreeken, 2003] 7

4 A RC circuit. An electrical equivalent to LIF neuron. [From
Gerstner, 2002] . 9

5 An LSNN network. X,Y,R,A denote populations of neu-
rons - input, output, regular and adaptive populations, re-
spectively. Connections from one population to another pop-
ulation or to itself are indicated by arrows. All inputs that
have to be encoded by the population X to spike trains are
denoted as i, whereas o denotes the output which has to be
read out from the population Y (or in the simplest case, a
single neuron). 18

6 A target network, TN. It consists of sigmoidal neurons.
Layers are fully connected. 19

7 Illustration of training and test realization. 21
8 LSNN performance over training and testing itera-

tions, compared with a linear baseline. Learning new
nonlinear functions was implemented through LTL setup. MSE
for LSNN using function identifiers during testing was 0.002,
for LSNN using previous targets 0.0045 and for linear baseline
0.0215. 24

vii

LIST OF FIGURES

9 LSNN performance over steps, compared with a lin-
ear baseline. Performance given here shows the average
behavior of the network for nonlinear functions, used in 100
test iterations, each with 10 episodes. MSE for linear baseline
here was 0.0639. 24

10 The worst and best performing episode, learned through
identifiers. Each episode represents a nonlinear function,
which LSNN has learned and is able to use later when the
identifier is given. 25

11 Progress during learning a new nonlinear function,
given through an identifier. Change of internal model
over few steps is illustrated and shows a rapid progress. . . . 25

12 Spike raster. Shown is the firing activity of inputs (first
subplot), recurrently connected neurons, regular and adap-
tive (R and A populations, respectively) (middle 2 subplots)
and output-target correlation. Population of input neurons X
encodes an identifer of a function (first panel of the first sub-
plot) and concrete real values, x1 and x2 (middle and bottom
panels of the first subplot). Spike activity presented here is
for time window 0− 500ms, i.e., first 25 steps of an episode. 26

13 LSNN performance over training and testing itera-
tions. Learning new symbolic expressions was implemented
through LTL setup. Through a single iteration, consisting
of 10 episodes, network is forced to transfer knowledge (ac-
cumulate and apply preceding knowledge). MSE for testing
iterations was 0.0024. 28

14 LSNN performance over steps. Performance given here
shows the average behavior of the network for symbolic ex-
pressions, presented in 100 test iterations, each with 10 episodes.
After few steps, the network is able to “reuse” the rule for
symbolic expression and achieves very good performance for
all remaining steps in episode. MSE = 0.0024. 28

15 The worst and best performing episode. These episodes
are chosen from test iterations, based on mean value of all but
first 5 steps of MSEs in episode. MSEs for the first 5 steps
in each episode are excluded from this analysis, because the
network needs few steps to adapt to new symbolic rule and
usually makes higher errors there. 29

16 Symbolic expression subtraction, where both operands
are the same variable. Here, symbolic expressions z =
x− x = 0 and z = y− y = 0 from two episodes are presented
together, since for both expressions the target function is a
horizontal line, z = 0. In this concrete case, most predictions
are in the range [−0.05, 0.05]. 31

viii

LIST OF FIGURES

17 Symbolic expression addition, where both operands
are the same variable. Here, symbolic expressions z =
x+x = 2x and z = y+y = 2y from two episodes are presented
together, since for both expressions the target function is a
linear function. 31

18 Symbolic expression multiplication, where both operands
are the same variable. Here, symbolic expressions z =
x∗x = x2 and z = y ∗y = y2 from two episodes are presented
together, since for both expressions the target function is a
parabola. 32

19 Symbolic expression z = x + y. Predictions from two
episodes are presented here together, since addition is a com-
mutative function. a Target plane for x, y ∈ [−1, 1], conse-
quently, z ∈ [−2, 2]. Predictions on the plane, marked with
dots, are points which are ε-close to the plane, ε = 0.03. All
other predictions are marked with star-sign. b Distances of
all points to the target plane. These normal projections, il-
lustrated by vertical lines, correspond to predictions from a.
Note that vertical lines without upper bound have distances
greater than 0.2. 33

20 Symbolic expression z = x ∗ y. Predictions from two
episodes are presented here together, since multiplication is
a commutative function. a Target hyperbolic paraboloid for
x, y ∈ [−1, 1], consequently, z ∈ [−1, 1]. Predictions on the
plane, marked with dots, are points which are ε-close to the
hyperbolic paraboloid, ε = 0.03. All other predictions are
marked with star-sign. b Distances of all points to the target
hyperbolic paraboloid. These normal projections, illustrated
by vertical lines, correspond to predictions from a. 34

21 Symbolic expression z = x− y. Subtraction is not a com-
mutative operation. a Target plane for x, y ∈ [−1, 1], conse-
quently, z ∈ [−2, 2]. Predictions on the plane, marked with
dots, are points which are ε-close to the plane, ε = 0.03. All
other predictions are marked with star-sign. b Distances of
all points to the target plane. These normal projections, il-
lustrated by vertical lines, correspond to predictions from a.
Note that vertical lines without upper bound have distances
greater than 0.2. 35

ix

LIST OF FIGURES

22 Symbolic expression z = y− x. Subtraction is not a com-
mutative operation. a Target plane for x, y ∈ [−1, 1], conse-
quently, z ∈ [−2, 2]. Predictions on the plane, marked with
dots, are points which are ε-close to the plane, ε = 0.03. All
other predictions are marked with star-sign. b Distances of
all points to the target plane. These normal projections, il-
lustrated by vertical lines, correspond to predictions from a. . 36

23 Spike raster. Shown is the firing activity of inputs (upper
2 subplots) and recurrently connected neurons, regular and
adaptive (R and A populations, respectively) (lower 2 sub-
plots). Population of input neurons X encodes concrete real
values, x and y, and symbolic expression. Presented symbolic
expression in this episode was x−x. Spike activity presented
here is for time window 0− 500ms. 37

24 LSNN performance over training and testing itera-
tions. The task was to remember and use the symbolic ex-
pression given in the beginning of every episode. Learning
was implemented throughout LTL setup. Although MSE over
training is occasionally unstable, performance during testing
shows low errors. 38

25 LSNN performance over steps. Performance given here
shows the average behavior of the network for symbolic ex-
pressions, presented in 100 test iterations, each with 10 episodes.
Symbolic expressions are shown only during first 20 steps in
each episode, illustrated here with a vertical dashed line. Af-
ter that, the network is still able to perform computation and
achieves very good performance for all remaining steps in the
episode. MSE = 0.0052. 39

26 The worst and best performing episode. These episodes
are chosen from test iterations, based on mean value of all but
first 5 steps of MSEs in episode. MSEs for the first 5 steps
in each episode are excluded from this analysis. A vertical
dashed line denotes the moment when symbolic expressions
are stopped being shown to the network. 40

27 Spike raster. Shown is the firing activity of inputs (upper
2 subplots) and recurrently connected neurons, regular and
adaptive (R and A populations, respectively) (lower 2 sub-
plots). Population of input neurons X encodes concrete real
values, x and y, and symbolic expression. Presented symbolic
expression in this episode was y− y. Spike activity presented
here is for time window 500−1000ms, because one can clearly
see the moment of stopping showing the symbolic expression,
marked with a dashed line in the first subplot. 41

x

LIST OF TABLES

28 MSE over “learning” and “testing’ ’steps. “Learning”
here means that symbolic expressions are given as input, and
“testing” that the network had to rely on its memory and use
previously given symbolic expressions. 42

List of Tables
1 Parameters for all spiking neurons. 17
2 Additional parameters for adaptive spiking neurons

(ALIF). 17
3 Parameters of Target Network. 20
4 The worst performing episode, with concrete values

for steps 1− 5, 50− 51, 96− 100. Symbolic expression used
in this episode was z = x+ x = 2x. 29

5 The best performing episode, with concrete values for
steps 1− 5, 50− 51, 96− 100. Symbolic expression used in
this episode was z = x− x = 0. 30

6 The worst performing episode, with concrete values
for steps 1− 5, 50− 51, 96− 100. Symbolic expression used
in this episode was z = y − y. 42

7 The best performing episode, with concrete values for
steps 1− 5, 50− 51, 96− 100. Symbolic expression used in
this episode was z = y − y = 0. 43

8 Network parameters for the experiment Learning non-
linear function using previous targets/function iden-
tifiers. 45

9 Network parameters for the experiment Learning sym-
bolic expressions. 45

10 Network parameters for the experiment Remember-
ing symbolic expressions. 45

xi

Introduction

1 Introduction
Artificial intelligence (AI) is very active research field nowadays. The AI
approach appeared with the digital computer, which can be specialized for
different computations. We, humans, are intelligent beings and one impor-
tant characteristic of our intelligence is the ability to manipulate abstract
symbols. Computers do that too – they manipulate abstract symbols in or-
der to perform computations. People started thinking about intelligence and
how to create programs that do what we can do. Whether we use words and
grammar rules or mental symbols which represent names or properties, we
do it using brain’s network of neurons. On the other side, a digital computer
is a system composed of millions of logic gates, wired into circuits [2].

The very first step towards integrating two fields of research, namely,
theoretical neurophysiology and the theory of propositional logic, has been
made in 1943, by McCulloch and Pitts [3]. McCulloch and Pitts pointed out
that neurons could be similar to logic gates, since they gather inputs from
each other, process those inputs and depending on the processing mecha-
nism, fire off an output or not. Neurons can, in theory, be seen as living
logic gates, which implement digital functions [3], hence this was the first
model resembling the functionality of a biological neuron.

After World War II, digital computers became available for broader ap-
plications. The pioneers of AI started with language translation and image
and speech understanding applications, based on the previously mentioned
concepts of McCulloch and Pitts model of a neuron. They claimed that
computer intelligence would very quickly match and surpass human intelli-
gence. In fact, successful applications were only good in solving the partic-
ular problems for which they were designed, but they could not generalize
or be flexible in solving problems of similar nature [2]. Humans can do
that without any difficulties, since we are able to transfer the knowledge we
have acquired and hence, we can solve problems flexibly [4]. The challenge
was (and still is) designing programs which would be able to solve problems
which humans cannot describe easily by a list of formal, mathematical rules,
but rather intuitively [5].

During years, available computational power made it possible for com-
puters to be good in solving particular tasks and to compete with human
level performance [4]. Nowadays, computers are able to learn complicated
concepts by building them out of simpler ones and to gather knowledge from
experience (for example, convolutional neural networks for pattern classifica-
tion tasks). Many of the most advanced and intelligent solutions nowadays
are outcome of the deep learning techniques, with neural network archi-
tectures designed for specific purposes. Computational units that become
intelligent via their interactions with each other is the concept behind neu-
ral networks and it is inspired by the brain. In fact, neuroscience can give

1

Introduction

us guidelines and ideas for underlying models of powerful applications [5],
but despite showing great results and being biologically inspired, they are
aimed for solving actual computational problems. Of course, this is valuable
approach to understand our brain better, but successes of failures of such
systems do not necessarily provide explanations to the question how our
brain works [6]. In our quest to make a machine intelligent, we would need
to understand much better the principles of brain and its computation.

Gary Marcus in his works [7, 8] writes about a cognitive architecture, try-
ing to integrate two possible theories. Is the mind a manipulator of symbols
or it is a large neural network with neuron-like nodes and synapse-like con-
nections? Marcus also points out that deep learning networks have proved
to be successful in the pattern classification tasks (for example, speech or
image recognition), but have shown little progress in areas such as reasoning
or natural language understanding. Circuits for encoding and manipulating
sequences, manipulation and encoding of variables, working memory stor-
age, decision-making and many other concepts are needed as computational
primitives, alongside the primitive for hierarchical pattern recognition. He
pinpoints that particularly important would be to understand the neural
mechanisms of “variable binding” concept, which is of crucial importance
in language and deductive reasoning, and possibly, fundamental for under-
standing the relations between neurons and higher-level cognitive processes.
Variable binding term refers to connecting together two pieces of informa-
tion - a variable and an arbitrary instance of that variable, for example, in
algebra - abstract symbols X or Y with a number, in language - subject
or verb with a word, in general - a placeholder with a symbol. Some of
proposed neural mechanisms for variable binding are: binding through syn-
chrony [9], vector symbolic architectures [10], precisely controlled recurrent
interactions between the prefrontal cortex and basal ganglia [11].

On the other hand, Maass in his works writes that “neural networks are
highly recurrent networks of neurons and synapses with diverse dynamic
properties”, that neurons in the brain code their information through the
patterns (by spike trains) in which each neuron fires relative to other neu-
rons in the group and that full spatial and temporal pattern is computa-
tionally relevant signal. Unlike the offline computation which requires a
global synchronisation (like a PC, or a traditional artificial neural network,
or in general, Turing machine), where all relevant inputs are available at the
start of computation, and then processing (computation) gives the output,
in online computation (performed by our brain as well) diverse pieces of in-
formation arrive at different points in time and the computation has to start
before all of them are available. Additional pieces of information represent-
ing new inputs and results of previous subcomputations are integrated into
computation while computation is performed, if necessary. Instead of global
synchronisation to perform computations, time is used as a new dimension
for coding information. These facts lead to creating a new generation of

2

Introduction

neural networks - spiking neural networks [12, 13, 14, 15].
Hence, using biologically more realistic neural networks - spiking neu-

ral networks, and even improved model with adapting spiking neurons [16],
binding together the previously mentioned and aspects proposed by Marcus,
through this work we would like to demonstrate some interesting computa-
tional properties of recurrently connected networks of adapting spiking neu-
rons, in the task where we use abstract rule-like representations for symbolic
(algebraic) computation.

1.1 Motivation and Contributions

If we compare the number of neurons of our brain’s network (about 1011)
with the number of transistors in a modern supercomputer, these num-
bers are in the same range, but unlike the efficient computing performed
by our brain, supercomputers are great power consumers. In order to un-
derstand better energy-efficient computation performed by our brain and
benefit from it, spike-based computations are of great interest to be studied.
Spiking neural networks can be emulated in a more energy-efficient way us-
ing neuromorphic hardware, which is specially designed to mimic biological
architectures [17]. For example, Intel’s Loihi, fully digital and asynchronous
neuromorphic chip, composed of neurons having local memory and state
dynamics and communicating via spike impulses is on-chip trainable [18],
and as such, a great target for new experiments with spiking neural net-
works. Some other popular neuromorphic chips are SpiNNaker [19], Brain-
scales [20], True North [21]. The benefits are twofold. On one hand, we aim
to develop more powerful SNNs and, of course, the target could be neuro-
morphic hardware, on the other hand, examining capabilities and limitations
of neuromorphic hardware using SNNs is of great significance.

Our aim is that we move, through this research, toward computation
using “higher-level” rules. Although these “abstract rules” will be given and
network would need to bind pieces of information, connecting two levels of
abstraction (for example, a rule with concrete numbers), maybe this research
could be the ground point for the further research where the network would
be able to discover abstract rules by itself.

Our main task is to explore learning capabilities of LSTM-like units in a
recurrently connected network of spiking neurons. First we will investigate
whether the network is able to apply computational program only through
identifier of that program. Later we switch to use rules for symbolic com-
putation and, lastly, we test working memory of these LSTM-like units. All
experiments will be performed in Learning-To-Learn (LTL) setup. Using
LTL with spiking neural networks is also of great importance, because, so
far, it is not studied enough.

3

Background

2 Background
How do computers carry computations? Traditional computers are pro-
grammed in terms of instructions and variables. Unlike them, artificial
neural networks are defined by a large set of numbers (parameters) which
represent the strengths (weights) of synapses between neurons in the brain
and the excitabilities (biases) of neurons. An optimization algorithm, used
in an iterative process to adjust these parameters, is aimed at minimizing
the errors for a concrete computational task. The underlying architectures
and neural models are chosen in such a way to maximize the performance of
particular learning algorithms for particular tasks, which is not necessarily
similar to biological networks of neurons [22].

2.1 Perceptron and Sigmoidal Neuron Models

McCulloch-Pitts neuron, illustrated in Figure 1, also known as perceptron or
threshold gate, represents the first model of a neuron in the first generation
of artificial neural networks, designed to capture essential aspects of neural
computation carried out in the brain. Conceptually it is very simple –
a neuron outputs binary ’high’ signal, if the sum of its weighted inputs
surpasses a certain threshold value, otherwise the output is binary ’low’
signal. More precisely, given weights w0, w1, ..., wn and inputs x1, ..., xn, the
output y is computed as

x =

n∑
i=0

wixi > 0, (1)

y = f(x) =

{
1, if x > 0

0 otherwise
(2)

where each wi represents a real-valued constant, also denoted as weight,
that determines the contribution of input xi to the output. The weight
(−w0) is a threshold value that the weighted sum of elements (w0 +w1x1 +
w2x2 + ... + wnxn) must surpass in order for perceptron to output a 1.
f(x) denotes a step or threshold activation function. Hence, this model
produces digital outputs (0 or 1), which leads to having many difficulties
with designing learning algorithms for networks with several layers of such
neurons [23, 24].

4

Background

Figure 1: A simple neuron model. In case f(x) is a step or threshold function,
this model represents a perceptron (McCulloch-Pitts neuron). In case f(x) is a
sigmoidal function, this model represents a sigmoidal neuron with analog outputs
between 0 and 1.

The second generation of artificial neural networks uses sigmoidal neuron
model. This model uses a continuos activation function f , f : R 7→ [0, 1],
monotonically increasing and depicted in Figure 2, which interpolates in
a smooth differentiable manner values between 0 and 1, making networks
consisting of these neurons suitable for analog inputs and outputs. Neurons
either fire or not, and an analog output can be interpreted as normalized
firing rate (frequency) of the neuron within some time window. Hence,
neurons of this generation are more biologically realistic than the neurons
of the first generation.

Commonly used examples of networks with neurons of this type are
feed-forward and recurrent neural networks. Learning algorithm used to
train such networks is based on gradient-descent optimization. Differentiable
activation function makes it possible to compute (using chain rule) how
parameters of neurons contributing to network’s output should be changed
in order to reduce the error at the output. The chain rule is applied layer-
wise, starting at the output layer, calculating and propagating errors back
toward the input layer, hance,

”
backprop“ learning algorithm [22, 24, 13].

5

Background

Figure 2: A sigmoidal gate, a smooth activation function. [From Maass,
2016]

2.2 Spiking Neural Networks

Computers and other devices for information processing consist of hardware
and software. For their functioning, dry environment is required and pour-
ing water over our computer will cause its damage – it will stop working.
Here, one can see a sharp contrast between computers and with the ab-
solute need for water all organisms in nature have. For living organisms,
water is essential. An artificial sea-environment of salty extra-cellular fluid
surrounds the neurons in our brain. Brain and parts of it (in short, our ner-
vous system), are referred to as wetware. Similarities between the wetware
in our brain and the wetware of the creatures still living in the sea made the
research on neurons and brain in general easier, since, for example, squid
have up to thousand times larger neurons than those in our brain. Despite
the difference in size, the functioning mechanism is similar – the Hodgkin’s
and Huxley’s equations for the dynamics of neuron apply both to squid and
the neurons in our brain.

Neurons carry out computation, but it is essential that these intermedi-
ate results are communicated between neurons. So, in order for computation
to be possible in wetware, nature had a challenging task to solve, namely,
to find a way for neurons to communicate and use information via so-called
spikes, also referred to as action potentials. While computers use bits sent
over copper wires, neurons communicate using spikes. Similarily to a bit, a
spike is the common unit of information in wetware.

6

Background

Figure 3: A spiking neuron. a. Simplified illustration of a neuron, with den-
drites, soma and axons marked and a spike propagated along axon. b. Time course
of one spike. As soon as membrane potential reaches a threshold ϑ at moment

t
(f)
j , the neuron generates a spike and goes into a refractory state, here denoted as

SAP (negative Spike After-Potential). c. Excitatory and Inhibitory Postsynaptic
Potentials over time (EPSPs and IPSPs, respectively). SAP and postsynaptic po-
tentials can be modeled using appropriate kernels. Here εij denotes a kernel, which
describes the effect of the postsynaptic potentials. [From Vreeken, 2003]

Essential parts of a neuron are cell body (soma), dendrites, axons and
synapses.

Dendrites, also referred to as a
”
dendritic tree“, collect synaptic inputs.

There are approximately 10000 inputs per neuron.
Cell body (soma) with axon hilloc represent action potential (spike) gen-

erator. A spike is a short (1ms) and a sudden increase in voltage, formed at
the trigger zone of the soma and transmitted along axons, which grow quite
long before they start to branch (analog to the axons in wetware, copper
wires are signal carriers in hardware). The purpose of these branching points

7

Background

is to duplicate the spikes, so that a single spike from one neurons can easily
be transmitted to a few thousand other neurons, if necessary. Typically,
axons transmit spike outputs to synapses in the dendritic trees of around
10000 other neurons.

Spikes move from one neuron to another only if they pass a very complex
signal pre-processor, a so-called synapse, where a rather complicated chain
of events at chemical level happens. As a result, an increase or decrese of
the membrane voltage occurs. One refers to these voltage changes either as
excitatory (EPSPs, excitatory postsynaptic potentials) or inhibitory (IPSPs,
inhibitory postsynaptic potentials) potentials, as shown in Figure 3c.

EPSPs represent positive postsynaptic potential, hence, they increase
the membrane voltage, whereas IPSPs represent negative postsynaptic po-
tential, decreasing the membrane voltage. The resulting membrane voltage
of a neuron is represented by a sum of many such continuosuly arriving
EPSPs and IPSPs from other neurons, and once this sum reaches a firing
threshold ϑ, the neuron fires, sending out a spike down the axon. In other
words, neurons can excite or inhibit other neurons via synapses – they con-
nect the axon of the presynaptic neuron to the dendrite (or soma) of the
postsynaptic neuron.

Spikes are very much alike, but postsynaptic potentials differ in size and
shape, depending on the properties of the synapses (synaptic efficacy) and
the history of the synapse (e.g.,

”
mood“ and recent

”
experiences“) [12, 24].

Neurons and synapses implement processors and memory for brain com-
putations. But, how do neurons communicate? They communicate via spike
trains, which are sequences of spikes. These sequences contain all the rel-
evant information of the computation which should be transmitted from
one neuron to another. One can take in account firing frequency of the
neurons, but the changes in frequency are very rapid and the temporal dis-
tances between two spikes are very irregular, so, it is obvious that another
aspects should be taken in account. Studies have shown that spatial and
temporal dimension of information are relevant for encoding the messages
neurons communicate to each other. The message is encoded through the
spatio-temporal pattern – firing of each neuron relative to the firing of other
neurons in the group [12].

Spiking neurons, as substantially more biologically realistic neuron model,
are computational units utilized in spiking neural networks, i.e., the third
generation of neural network models [13].

2.3 Leaky Integrate-and-Fire (LIF) Neurons

Leaky Integrate-and-Fire neuron model is one of the best-known models of
spiking neurons. It is a thresholding model, more precisely, the spike gener-
ation mechanism is implemented by a threshold. Every time the membrane
potential u crosses a threshold ϑ from below, spikes are generated. The

8

Background

moment of spike being generated is referred to as a firing time, t(f),

t(f) : u(t(f)) = ϑ. (3)

Figure 4: A RC circuit. An electrical equivalent to LIF neuron. [From Gerstner,
2002]

The basic circuit of integrate-and-fire model is shown in Figure 4. It
consists of a resistor-capacitor circuit (RC circuit) driven by a current I(t).
For this circuit, we can write equations:

I(t) = IR(t) + IC(t), (4)

IR(t) =
u(t)

R
, (5)

IC(t) = C
du

dt
. (6)

Expression (5) is calculated using Ohm’s law, whereas (6) follows from the
definition of the capacity, C = q/u (then q = uC), and the definition of
electric current, I = dq/dt, where q is the charge and u is the voltage. Thus,

I(t) =
u(t)

R
+ C

du

dt
, (7)

and transforming this expression, we get

τm
du

dt
= −u(t) +RI(t), (8)

where τm = RC represents the time constant of the “leaky integrator”. The
voltage u represents the membrane potential and the constant τm is the
membrane time constant.

In general, after a spike is generated, the dynamics is reset and again
according to (8) until the next spike occurs, but very often leaky integrate-
and-fire model includes an absolute refractory period, during which the dy-
namics is interrupted and only reset after the refactory period, namely, at

9

Background

the moment t(f) + ∆abs, with the membrane potential u being set to the
resting potential ur < ϑ during the refractory period.

In fact, an external current I(t) can be used to stimulate a neuron, but
it is more realistic that neurons, since they are part of a larger network, are
stimulated by a current resulting from the activity of presynaptic neurons.
In this case, each presynaptic spike injects a current of some typical form
α(s) into the membrane. Current-based neuron model can be then described
as

Ii(t) =
∑
j

wij

∑
f

α(t− t(f)j), (9)

where each j denotes a presynaptic neuron relevant for the neuron i, wij

represents synaptic efficacy from presynaptic neuron j to the neuron i and

t
(f)
j denotes f -th spike of presynaptic neuron j.

One commonly used mathematical model for α is the exponential model,
with

α(s) =
q

τs
exp(− s

τs
)Θ(s), (10)

where q is the total charge injected in a postsynaptic neuron, τs is a time
constant for decay and Θ is the Heaviside step function (Θ(s) = 1 if s > 0,
otherwise Θ(s) = 0) [25].

2.4 Recurrent Neural Networks and LSNNs

In machine learning research, it has been shown that recurrent neural net-
works (RNNs) are computationally very powerful. They are very successfully
applied in solving tasks which include sequential inputs (for example, speech
and language or video recognition). This is because their architecture is
suitable for processing one element of a sequence at each timestep and their
hidden units are able to maintain the history of all elements presented ear-
lier. In fact, they are able to integrate information over time, but essential
to their remarkable successes is the use of special modules called Long-Short
Term Memory (LSTM) units. Introduced by Hochreiter and Schmidhuber,
in their paper Long Short-Term Memory (see [26]), these units are capable
of learning long-term dependencies by using their store und update gates,
hence, a basic LSTM unit represents a memory cell [27].

In contrast to great successes of recurrent networks with LSTM units,
recurrent networks of spiking neurons (SNNs) are able to integrate informa-
tion on time scale of hundreds of millisecond through short-time plasticity,
which is not enough for tasks that require longer maintenance of relevant
information. To overcome this problem and empower SNNs with greater
capabilities, adapting spiking neurons are integrated in the network. These
adapting neurons can be modelled by LIF neurons with an adaptive firing
threshold and are referred to as ALIF neurons (Adaptive LIF). Analogously

10

Background

to RNNs and LSTMs, ALIF neurons are LSTM-like units for SNNs, and
hence we call such networks LSNNs [28, 16].

2.5 Learning-To-Learn (LTL)

As already mentioned, deep learning neural networks do perform very well
in solving tasks they are specialized for and often they even outperform
humans, but their learning does not include some of the cruical aspects of
human learning. Human-like learning and thinking machines should be able
to:

• explain and understand the world through causal thinking (causality),

• enrich and support the knowledge that is learned,

• use compositionality and learning-to-learn in order to rapidly acquire
and generalize to new tasks and situations [4].

Here we will focus on the last aspect, particularly on Learning-To-Learn
(LTL), since we use that approach in our experiments.

LTL is the approach which makes rapid model learning possible. Com-
positionality refers to the idea that combination of primitive elements leads
to new representations. Given a finite set of primitives, an infinite number
of new representations can be constructed. We are able to construct new
models from previously learned parts and relations between them through
learning-to-learn, indicating that these two concepts (compositionality and
learning-to-learn) complement each other [4].

Having experience in doing something, finding two concepts similar or
noticing that something is a special case of some more general concept in-
dicate that the learner of a new task will learn faster or more accurately
than the unexperienced learner. This comes as a consequence of solution
regularities in a problem domain [29].

Meta-learning using gradient descent, introduced in [29], by Hochreiter,
Younger and Conwell, is organized through two systems - supervisory and
subordinate systems. Subordinate system is a recurrent neural network
which is adjustable. A goal is to learn a target function fk using sequences
sk from a set of sequences {sk}, which are all generated using this target
function fk. Inputs to the meta-learning system are an example of the
current function to learn and the result of the previous example.

Meta-learning system is penalized every time when the subordinate sys-
tem does not perform well, and in this way it is forced to improve the
subordinate system, which has to learn the current function better (faster
and more precisely).

The results have shown that recurrent neural networks are able to learn
novel algorithms from a teacher extremely fast, i.e., they can quickly learn
quadratic functions seen never before with using only few examples [29].

11

Background

Learning enhancement can be achieved through exploiting previously
learned or through learning in parallel related tasks, because, very likely, a
new task shares, to some extent, inductive biases or prior knowledge with
other tasks [4].

Humans are able to learn many things from single or few examples (“one-
shot” learning) and crucial for that is the ability to extract and use abstract
knowledge [4].

Our approach to achieve meta-learning consists of the following:

• instead of a single learning task, we define a family F (in general,
infinitely large) of learning tasks C;

• learning is carried out through two loops - an inner and an outer loop.
An inner loop represents a neural network N (in our case, an LSNN)
with a learning algorithm and a set of parameters. An outer loop tries
to optimize the parameters of the network N for a randomly drawn
task C from F ;

• outer loop uses some optimization algorithm, for example, BPTT
(BackPropagation Through Time), ES (Evolution Strategies), SA (Sim-
ulated Annealing), GA (Genetic Algorithm). The goal is to integrate
performance evaluations from different tasks C of the family F , since
it enhances learning, as already stated.

12

On Symbolic Computation

3 On Symbolic Computation
Higher-level mental processes, binding together thoughts, experiences and
senses, make use of, among other concepts, working memory [30]. Of course,
different models of working memory module are proposed and all of them
are trying to make an efficient use of it, to integrate it into existing models
of networks and use it in many different aspects, for example, LTL setup.
With spiking neural networks, it is even more challenging.

On the other side, there are also attempts to make cognitive architec-
tures. Gary Marcus discusses it and sets some concepts which are important
for symbolic computation in general.

Through this chapter we will give a short overview of these concepts
- working memory from a perspective of neuroscience, concepts proposed
by Marcus in his book “The Algebraic Mind - Integrating connectionism
and cognitive science’ ’ (see [7]) and some of the arcitectures proposed to
make use of these ideas. We will also mention Neural Turing Machines, also
referred to as Memory-Augmented Networks, and how they can be used for
“one-shot” learning, as they are similar to our work and since through our
experiments we use an LSNN (spiking neural network with LSTM-like units,
i.e., memory units) in LTL setup.

3.1 Working Memory

Working memory can be considered to be the most significant achievement
of human mental evolution. It refers to the temporary maintenance and
manipulation of information for short periods of time (on time scale sec-
ond to minutes). Tasks such as looking for a lost item (for example, car
keys), conversation or driving to work show us that working memory in-
teracts closely with other functions/systems - motor and premotor systems
(immediate goals and possible actions to achieve them), cognitive functions
(perception, language comprehension and production, thought and inten-
tionality), attention, reasoning, goal-directed behavior and so on [31, 32].
Humans are able to store, retrieve and manipulate symbolic information.
Performing mental arithmetic is an example of using symbolic information.
It requires storing a string of numbers representing operands and a result
of performed subcomputation (for example, the sum of one addition), while
calculating the next one [32].

3.2 Related Work

Neural Turing Machines (NTM) are neural networks extended by an
external memory, where the interaction between the modules is achieved via
attentional processes. With an analogues design as in Turing machines or in
systems with Von Neumann architecture and trained with gradient descent,

13

On Symbolic Computation

these architectures are able to learn simple algorithms such as associative
recall, copy and sort operation. This architecture reminds a lot to a working
memory system, since it makes use of rule-based manipulation (here, simple
programs) of stored information (the arguments of these programs). An-
other similarity to biological working memory system is the use of attention
mechanism. The NTM arcitecture has a so-called attentional controller,
which makes it possible to implement reading from and writing to memory
operations in a selective manner. The advantage of this model is its ability
to use working memory content to learn necessary tasks instead of having a
fixed set of procedures [33].

One-shot learning using Memory-Augmented Neural Networks
A traditional neural network trained using gradient-based algorithms re-
quires an extensive iterative training. Difficulties arrise from the fact that
encountering new data forces these models to inefficiently relearn their pa-
rameters, so the new information can be adequately incorporated in the
existing model, togehter with the previous knowledge. In contrast, humans
can learn quickly from just a few examples. Architecture used in this paper
combines memory-augmented neural networks, more precisely, previously
described NTMs, and a meta-learning setup by Hochreiter, Younger and
Conwel, as explained in Section 2.5. The tasks they demonstrate are a
regression task with Gaussian process with fixed hyperparameters and a
classification task on Omniglot. Meta-learning setup with a delay in pre-
senting labels of data samples forces this network to use memory module
(for store and retrieval of data presented in the previous steps and binding
sample-class information so it can be reused) [34].

3.3 On Cognitive Architectures

According to Gary Marcus, symbols can represent categories (e.g., CAT),
variables (e.g., x), computational operations (e.g., ‘+’, ‘-’, concat, compare)
and individuals (e.g., Felix). He sees context-independent representations of
categories, which multilayer perceptrons have, as symbols and argues that
the mind is a system that represent variables and operations over variables,
structured representations and a distinction between kinds and individuals.
One possible way to implement this system physically is to use a set of
buckets, where the bucket’s contents indicates the instantiation of a given
bucket. Computers already use binary registers (bits) that correspond to
buckets being either full or empty and operations which they perform are
defined in parallel over these sets of bits. The next question is how a given
input variable is represented - using one node or a set of nodes, namely, the
number of input units allocated for representing each input variable.

Nevertheless, each variable should correspond to an anatomically defined
region or register. For example, the symbol “black” in concepts “black cat”
or “black sedan” should apply equally, even though categories animals and

14

On Symbolic Computation

cars in this particular case may be represented in widely separated regions
of the cortex. In Dynamically Partionable Autoassociative Neural Networks
(DPANN) model [35], a given symbol corresponds to a global attractor state
of the dynamics of a large-scale network that links many regions of the brain.
Information flow between particular sets of registers is achieved through
turning on and off subsets of synapses, i.e. gating [7, 8].

Biologically Inspired Cognitive Architectures (BICA) challenge
is an attempt to integrate “neural-level” and “cognitive-level” approach.
Since, in general, symbolic representations are superior concerning their
interpretability, direct control, coding and extraction of knowledge are some
of the difficulties to tackle [36].

ACT-R (“Adaptive Control of Thought—Rational”) is an cognitive ar-
chitecture which models higher-level cognitive processes and possibly could
make use of DPANN binding system for production rule matching opera-
tions, as suggested in [8].

Vector-symbolic architectures (VSAs) [10]. These architectures
use high-dimensional vectors to represent the symbolic concepts encoded
by activity patterns of a group of neurons and a defined set of mathemat-
ical operations. Both the variables and potential role filters (for example,
subject, object or verb) are represented as vectors. Compositional process
typical for symbol manipulation is then implemented through some mathe-
matical transformation of these vectors, for example, multiplication of two
vectors, for example, subject and cat, will provide the activity pattern for
this binding, assigning cat to the role of subject [8].

15

Implementation

4 Implementation
In this chapter we will present relevant implementation details. We will
describe neuron and network model and training procedure used in our ex-
periments. Variations and specifics for the experiments will be given in
Chapter 5.

4.1 Neuron Model

In all experiments presented through this work, we used spiking neural net-
work with recurrent connections. This network consisted of leaky integrate-
and-fire (LIF) neurons, which are modelled as adaptive leaky integrate-and-
fire (ALIF) neurons. Such a network is referred to as an LSNN network.
As explained in Section 2.3, a neuron j fires when its membrane potential
crosses a threshold voltage bj(t). Adaptive LIF neurons change their dy-
namics through learning. Their threshold values change at each spike, i.e.,
threshold of each neuron j is increased by a constant β when neuron j fires
and then decays back to a baseline value b0j .

Dynamics of these neurons can be described as follows:

τm
duj
dt

= −uj(t) +RmIj(t), (11)

τa,j
dbj
dt

= b0j − bj(t), (12)

where τm represents the membrane time constant, uj(t) is the membrane po-
tential, Rm is the membrane resistance, τa,j is the adaptation time constant,
bj(t) the threshold and b0j the baseline threshold value.

Neurons are stimulated by synaptic current Ij(t), which is defined as
the weighted sum of spikes from all connected neurons (external inputs and
other neurons of the network):

Ij(t) =
∑
i

W in
ji xi(t− d) +

∑
i

W rec
ji zi(t− d), (13)

where terms W in
ji and W rec

ji represent synaptic weights for the input and
recurrent neurons, respectively, xi and zi represent spike trains of neuron j
received from the input and recurrent populations, respectively, and term d
denotes a synaptic delay.

Our experiments were performed in discrete time, with discretized steps
dt = 1ms and the equations then become:

uj(t+ dt) = αuj(t) + (1− α)RmIj(t)− bj(t)zj(t), (14)

bj(t+ dt) = ρjbj(t) + (1− ρj)zj(t), (15)

16

Implementation

where α = exp(− dt
τm

), the current Ij(t) represents a weighted sum of all

incoming spikes, ρ = exp(− dt

τa,j
) and zj(t) represents incoming spike trains.

The reset of membrane voltage is implemented through the term bj(t)zj(t).
In all experiments, it was sufficient to use the same parameters for

LIF/ALIF neurons and they are listed in Tables 1 and 2.

Parameter Value

maximum firing rate 200 Hz
threshold bj 0.03 V
dt 1 timestep
refractory steps 5 timesteps
delay steps d 5 timesteps
τm 20 ms
dampening factor 0.4 or 0.3

Table 1: Parameters for all spiking neurons.

Parameter Value

β 1.6
τa,j 1-1000ms or 1-8000ms

Table 2: Additional parameters for adaptive spiking neurons (ALIF).

4.2 Network Model

Proportion of 40% of all neurons in this recurrently connected network are
adaptive, others are referred to as regular spiking neurons, i.e., their thresh-
olds are not adaptive, but rather constant. Adaptive neurons are denoted
as a population A, whereas regular neurons are denoted as a population R,
as depicted in Figure 5.

17

Implementation

Figure 5: An LSNN network. X,Y,R,A denote populations of neurons - input,
output, regular and adaptive populations, respectively. Connections from one pop-
ulation to another population or to itself are indicated by arrows. All inputs that
have to be encoded by the population X to spike trains are denoted as i, whereas
o denotes the output which has to be read out from the population Y (or in the
simplest case, a single neuron).

A population of input neurons X represents external inputs to both pop-
ulations R and A in form of spike trains. For example, through all the exper-
iments we have two real-valued variables x and y, both x, y ∈ [−1, 1] whose
values are encoded by a population consisting of 200 neurons (100 neurons
for one real-valued variable), and whose spike trains are fed in as an input to
this network. Depending on experiment performed, input population X can
be extended in order to encode some other relevant information. Output Y
is always a result of computation performed by this network. It is a linear
readout neuron, whose inputs are mean firing rate per step (time windows
of 20 or 40ms) of all neurons from populations R and A. For the first exper-
iment, duration of step was 20ms and mean firing rates were calculated for
these time windows of 20ms. In our second and third experiment, duration
of step was 40ms, and mean firing rates rates were calculated for the time
windows of last 20ms of every step.

4.3 Input Encoding

To perform our experiments, it was necessary to encode analog values into
spike trains. Analog values were real numbers from the input range [-1, 1]
and encoded by an input population X of spiking neurons in the following
way: each analog value was encoded by 100 input neurons, m1,m2, ...,m100.

18

Implementation

Values from the input range were equally distributed and assigned to each
of these 100 neurons, which had a Gaussian response with particular mean
on that analog value and a constant standard deviation of σ = 0.002. Firing
rate of a neuron i is given by:

ri = rmax exp(−
(mi − zi)2

2σ2
), (16)

where rmax = 200Hz, mi is the value for which neuron i is responsible and
zi is some value from the input range.

For some experiments, it was necesarry to give additional information,
for example, an identifier of a function or a rule for symbolic expression.
To encode these additional input, we used one-hot encoding, with as many
neurons as indicated by the length of one-hot vectors. All of these neurons
always fire with a firing rate of 2Hz, except for the one (exactly there where
1 is indicated in one-hot vector), which fires with a firing rate of 200Hz.

4.4 Generation of Nonlinear Functions for LSNN
to Learn

A simple two-layer feed-forward neural network with two input neurons and
one hidden, fully connected layer and an output sigmoid neuron was used
to generate nonlinear functions, which the LSNN had to learn. This archi-
tecture is depicted in Figure 6 and we call it a target network (TN). The set
of parameters describing this TN is given in Table 3.

Figure 6: A target network, TN. It consists of sigmoidal neurons. Layers are
fully connected.

19

Implementation

Parameter Value

number of input neurons 2
number of neurons in the hidden layer 10
number of output neurons 1
use bias True
input range [-1, 1]
output range [0, 1]

Table 3: Parameters of Target Network.

All neurons (except for input neurons) have weights and biases as pa-
rameters, which are uniformly drawn from range [-1, 1]. For example, the
total number of parameters of one TN, which defines one nonlinear function
which LSNN has to learn is:

ncoefs = (ninputs ∗ nhidden + nhidden) + (nhidden ∗ noutput + noutput). (17)

Outputs are resized to values in range [0, 1].

4.5 Training Procedure

In a recurrent neural network, gradients are propagated through time. An
unfolded recurrent network is trained using Backpropagation Through Time
(BPTT) algorithm. Term unfolding of a recurrent neural network indicates
that its computational graph represents spatially unfolded (unrolled) time
steps. Since gradients are propagated over many steps, they tend to either
vanish or explode. To overcome this problem, we can use LSTM (Long-Short
Term Memory) units. The idea behind is to create paths through time that
neither vanish nor explode [5]. For spiking neural networks, computing
gradients differs from the previously described case. The reasons for this
are:

• outputs of spiking neurons are non-differentiable,

• gradients need to be propagated through continuous time or

• in case of time being discretized, gradients need to be propagated
through many steps

and hence BPTT algorithm cannot be used. Instead, one can use a pseudo-
derivative, as proposed in [37, 21], for binary neurons, or as proposed in
[16] a dampened pseudo-derivative:

dzj(t)

dvj(t)
:= γ max{0, 1− |vj(t)|}, (18)

20

Implementation

vj(t) =
uj(t)− bj(t)

bj(t)
, (19)

where vj(t) represents the normalized membrane potential and γ is a damp-
ening factor, typically set to 0.3 or 0.4.

Training was implemented through iterations depicted in Figure 7. Up-
date of weights was performed after every iteration, which consisted of a
batch of 10 episodes. In each episode there were n steps and every step was
20 or 40ms long.

Figure 7: Illustration of training and test realization.

In particular, each episode represents one function or symbolic expression
that our network had to learn, and each step was one concretization of that
function or symbolic expression.

Weights are initialized randomly according to normal, Gaussian distri-
bution, with zero-mean and unit-variance, N (0, 1) and rescaled with a factor
1/
√
numrec, where numrec is the number of recurrently connected neurons

(all neurons of the LSNN network). All biases are initialized with the same
constant value, zero.

As an optimization algorithm, Adam optimizer (Adaptive Moment Esti-
mation) was used, with learning rate lr = 0.001. Training was performed for
5000 iterations, testing for 100 iterations. The loss function was the Mean
Squared Error (MSE) of the network’s predictions for one iteration. The
linear readout neuron was used to read network’s predictions for each step,
calculated as an average over spikes over 20ms time window. The final loss
was calculated as L = MSE + 30R, where the term R represents rate regu-
larization term, introduced to maintain a neuron firing rate of 20Hz, and it
was defined as MSE(average firing rate of the LSNN neurons − target rate
of 20Hz).

21

Experiments

5 Experiments
In this chapter we will describe performed experiments. As already discussed
earlier, in the setup from Hochreiter (see [29]), meta-learning is used and
we use it in a similar way. We start with learning nonlinear functions using
LSNN. Once this task is successful, we move to our next, main experiment -
symbolic computation. Finally, our third experiment aims to test if network
is still able to perform computation even if we stop showing the symbolic
expression at some step.

5.1 Learning Nonlinear Functions

In these experiments, a two-layer feed-forward neural network (target net-
work, TN), consisting of sigmoid neurons, is used to generate nonlinear
functions which the LSNN had to learn. The architecture of this target
network is illustrated in Figure 6 and its parameters are given in Table 3.

Given two inputs, x1, x2 ∈ [−1, 1], outputs are obtained as y = fi(x1, x2),
i = 1, . . . , 100. Each nonlinear function fi has fixed parameters, which repre-
sent weights and biases in the target network (Expression 17), hence denoted
as a finite family of functions. We use 100 different nonlinear functions in
our experiments.

Training was performed through 5000 iterations, consisting of batches of
10 episodes. Each episode represented one nonlinear function and training
examples of one episode, for a concrete function fi, were presented in 500
steps. Each step was one application of the function fi. Dataset for this
experiment was generated using TNs, whose architecture was described in
Section 4.4 and had two inputs and one output. So, concrete values x1, x2,
which are randomly chosen for each step, were inputs for the TN which
corresponded to that particular fi, and the output of TN, fi(x1, x2), we
denote as C(x1, x2).

5.1.1 Learning Nonlinear Functions Using Previous Targets

First experimental setup was to give the network inputs x1 and x2, to which
some fi was applied and for which we know C(x1, x2). We have third input
for enabling supervised learning, but we do not present targets immediately,
but only after the network makes a guess, i.e., in the next step this third
input, the result of previous application of fi to arguments (x1, x2) will be
given and we denote it as C ′(x1, x2). Since network should learn nonlinear
mappings fi, in the very first step (step 1 of all steps), we let network guess
the output and we set third input to zero. More precisely, inputs in every
step are triples (x1, x2, C

′(x1, x2)). This experimental setup was proposed
by Hochreiter in [29], using RNNs and LSTMs.

22

Experiments

5.1.2 Learning Nonlinear Functions Using Symbolic Identi-
fiers

Each nonlinear function represents a “computational program” which LSNN
has to learn. In addition, we also provide a symbolic identifier for each of
these computational programs. The LSNN should learn to apply each of
the computational programs through the symbolic identifier. That would
imply that each learned computational program is encoded and stored in
the “working memory” of the LSNN and that it is possible to reproduce the
working memory content from the identifier.

We use finite family of nonlinear functions, generated by the TNs, hence
a symbolic identifier is an identifier of a function from this finite family,
where each function has fixed coefficients.

5.1.3 Comparison and Results

The LSNN network for both experiments consisted of 250 recurrently con-
nected neurons. For the needs of the first experiment (using previous tar-
gets), input population had 300, since we need to encode 3 real-valued vari-
ables to spike trains. For our second experiment, we need to encode x, y and
function identifiers, and hence, for the number of functions in finite family of
functions, we chose number 100. The input population is then of the same
size for both experiments and hence, comparable.

We also wanted to compare it with a linear baseline. It was generated
using linear regression with L2-norm regularizer of factor 100, trained using
not analog values, but average spiking traces of all neurons (because spike
trains are inputs to LSNN). First, an exponential kernel (20ms width and
time constant 20ms) was applied to obtain spike traces from spiking activity
of input neurons (representing variables x1 and x2) and then we calculate
mean values for every step. We train the linear regressor using 90% of
randomly chosen points (in one iteration, when calculating MSE over iter-
ations, or in all points representing particular step, when calculating MSE
over steps) and test it on the remaining 10% of all points; we cross-validate
it 5 times.

Both experiments perform better than the linear baseline. Figures 8 and
9 show comparison of MSE over iterations and steps for both experiments.

23

Experiments

Figure 8: LSNN performance over training and testing iterations, com-
pared with a linear baseline. Learning new nonlinear functions was imple-
mented through LTL setup. MSE for LSNN using function identifiers during testing
was 0.002, for LSNN using previous targets 0.0045 and for linear baseline 0.0215.

Figure 9: LSNN performance over steps, compared with a linear baseline.
Performance given here shows the average behavior of the network for nonlinear
functions, used in 100 test iterations, each with 10 episodes. MSE for linear baseline
here was 0.0639.

We will focus now on experiment with learning using symbolic (function)
identifiers, because learning using previous targets is already presented and
discussed in [16]. The worst and best performing episodes are shown in
Figure 10, with MSEs 0.0034 and 0.0011, respectively.

24

Experiments

Since our network learns very quickly, in only few steps, we were inter-
ested to see what was the internal model of the network and its progress
during learning a new nonlinear function restored by using an identifier, as
depicted in Figure 11.

Figure 10: The worst and best performing episode, learned through iden-
tifiers. Each episode represents a nonlinear function, which LSNN has learned and
is able to use later when the identifier is given.

Figure 11: Progress during learning a new nonlinear function, given
through an identifier. Change of internal model over few steps is illustrated
and shows a rapid progress.

25

Experiments

Figure 12: Spike raster. Shown is the firing activity of inputs (first subplot),
recurrently connected neurons, regular and adaptive (R and A populations, re-
spectively) (middle 2 subplots) and output-target correlation. Population of input
neurons X encodes an identifer of a function (first panel of the first subplot) and
concrete real values, x1 and x2 (middle and bottom panels of the first subplot).
Spike activity presented here is for time window 0− 500ms, i.e., first 25 steps of an
episode.

26

Experiments

5.2 Learning Symbolic Expressions

We want to move in direction of calculating symbolic expressions, i.e., to be
able to calculate expressions of the form

V ar1 Sign V ar2 = Solution, (20)

where V ar1 ∈ {x, y}, Sign ∈ {+,−, ∗}, V ar2 ∈ {x, y}.
Two concrete values for variables x and y are always given, but depending

on the concrete expression, it might happen that only one value is needed
and used. That happens in cases where V ar1 = V ar2, for example, in
expressions x+x, y ∗y. . . These concrete values are encoded by spike trains
of 200 neurons from input population X (100 neurons for each concrete
value), as in experiments before. For symbolic expressions, we use one-hot
encoding, so we need 7 more neurons to encode it:

x|y|+ | − | ∗ |x|y
Network consisted of 300 recurrently connected spiking neurons, 40% of

them were adaptive (population A), the rest were regular spiking neurons
(population R). Output was a linear readout neuron, calculating the result
of the computation based on mean firing rate for steps of duration 40ms,
but taken only for the second half of this time window. In this way, symbolic
expressions were presented to the network longer, leading to slightly more
accurate computation, compared to the steps of duration 20ms and mean
firing rates for the whole time window.

Training was performed for 5000 iterations, whereas testing was per-
fomed for 100 iterations. In both cases, batches consisted of 10 different
episodes and each episode lasted 100 steps of 40ms. Each episode repre-
sented one symbolic expression and in every step concrete values (for x and
y) were substituted in symbolic expression. Figure 13 shows the performance
of LSNN network during training and testing iterations.

We also observed what happens in each episode. After only few steps,
predictions become very good. In fact, network needs few steps to adapt to
given expression, to install it and start using. Figure 14 shows performance
of LSNN for 100 iterations of testing with batches of size 10. Note that these
100 ∗ 10 = 1000 episodes, with their 100 steps are overlapped to illustrate
the performance over steps.

27

Experiments

Figure 13: LSNN performance over training and testing iterations. Learn-
ing new symbolic expressions was implemented through LTL setup. Through a
single iteration, consisting of 10 episodes, network is forced to transfer knowl-
edge (accumulate and apply preceding knowledge). MSE for testing iterations was
0.0024.

Figure 14: LSNN performance over steps. Performance given here shows
the average behavior of the network for symbolic expressions, presented in 100 test
iterations, each with 10 episodes. After few steps, the network is able to “reuse” the
rule for symbolic expression and achieves very good performance for all remaining
steps in episode. MSE = 0.0024.

Again, we focus on testing phase and want to inspect two single episodes,
the worst and best performing one, where criteria was simply to find maxi-
mum and minimum mean value of the episode, skipping first 5 steps. These

28

Experiments

two single episodes are shown in Figure 15. Tables 4 and 5 demonstrate
few concrete calculation steps for these two episodes. MSE for the worst
performing episode (without taking first 5 steps in consideration) was 0.005,
whereas for the best performing one was 0.0003, which shows that even the
worst performing episode is performing very well.

Figure 15: The worst and best performing episode. These episodes are chosen
from test iterations, based on mean value of all but first 5 steps of MSEs in episode.
MSEs for the first 5 steps in each episode are excluded from this analysis, because
the network needs few steps to adapt to new symbolic rule and usually makes higher
errors there.

Step no. Symbolic expression: x + x LSNN output MSE

1. -0.6279 + (-0.6279) = -1.2558; -1.1228; 0.0177;
2. -0.9994 + (-0.9994) = -1.9988; -1.8927; 0.0113;
3. 0.5662 + 0.5662 = 1.1324; 1.1249; 0.0001;
4. -0.0162 + -0.0162 = -0.0324; -0.0445; 0.0001;
5. 0.5622 + 0.5622 = 1.1243; 1.0350; 0.0080;
50. 0.5866 + 0.5866 = 1.1733; 1.1431; 0.0009;
51. 0.3724 + 0.3724 = 0.7447; 0.7388; 0.0000;
96. -0.7887 + (-0.7887) = -1.5773; -1.5915; 0.0002;
97. 0.1002 + 0.1002 = 0.2003; 0.1167; 0.0070;
98. -0.4471 + (-0.4471) = -0.8942; -0.9213; 0.0007;
99. 0.8005 + 0.8005 = 1.6010; 1.6983; 0.0095;
100. -0.7640 + (-0.7640) = -1.5280; -1.5261; 0.0000;

Table 4: The worst performing episode, with concrete values for steps 1−5,
50− 51, 96− 100. Symbolic expression used in this episode was z = x+ x = 2x.

29

Experiments

Step no. Symbolic expression: x - x LSNN output MSE

1. -0.8971 - (-0.8971) = 0; 0.3128; 0.0978;
2. 0.3485 - 0.3485 = 0; 0.0153; 0.0002;
3. -0.2366 - (-0.2366) = 0; 0.0357; 0.0013;
4. -0.1055 - (-0.1055) = 0; 0.0134; 0.0002;
5. -0.5302 - (-0.5302) = 0; -0.0174; 0.0003;
50. 0.0255 - 0.0255 = 0; 0.0100; 0.0001;
51. -0.4733 - (-0.4733) = 0; 0.0197; 0.0004;
96. -0.1535 - (-0.1535) = 0; -0.0131; 0.0002;
97. -0.9593 - (-0.9593) = 0; 0.0173; 0.0003;
98. 0.5423 - 0.5423 = 0; 0.0307; 0.0009;
99. -0.1916 - (-0.1916) = 0; -0.0099; 0.0001;
100. -0.9174 - (-0.9174) = 0; -0.0120; 0.0001;

Table 5: The best performing episode, with concrete values for steps 1−5,
50− 51, 96− 100. Symbolic expression used in this episode was z = x− x = 0.

Through this task, the network had to learn different expressions, i.e.,
functions, which can be grouped in the following way:

• expressions z = x − x and z = y − y, where the target function is a
horizontal line z = 0,

• expressions z = x + x = 2x and z = y + y = 2y, where the target
function is a linear function (with a slope),

• expressions z = x ∗ x = x2 and z = y ∗ y = y2, where the target
function is a quadratic function, i.e., a parabola,

• expression z = x− y, z = y− x, z = x+ y, where the target functions
are different planes in a 3D space,

• expression z = x∗y, where the target function is a hyperbolic paraboloid,

and they are presented in Figures 16 - 22.

30

Experiments

Figure 16: Symbolic expression subtraction, where both operands are the
same variable. Here, symbolic expressions z = x−x = 0 and z = y−y = 0 from
two episodes are presented together, since for both expressions the target function
is a horizontal line, z = 0. In this concrete case, most predictions are in the range
[−0.05, 0.05].

Figure 17: Symbolic expression addition, where both operands are the
same variable. Here, symbolic expressions z = x + x = 2x and z = y + y = 2y
from two episodes are presented together, since for both expressions the target
function is a linear function.

31

Experiments

Figure 18: Symbolic expression multiplication, where both operands are
the same variable. Here, symbolic expressions z = x ∗ x = x2 and z = y ∗ y = y2

from two episodes are presented together, since for both expressions the target
function is a parabola.

32

Experiments

Figure 19: Symbolic expression z = x + y. Predictions from two episodes are
presented here together, since addition is a commutative function. a Target plane
for x, y ∈ [−1, 1], consequently, z ∈ [−2, 2]. Predictions on the plane, marked with
dots, are points which are ε-close to the plane, ε = 0.03. All other predictions are
marked with star-sign. b Distances of all points to the target plane. These normal
projections, illustrated by vertical lines, correspond to predictions from a. Note
that vertical lines without upper bound have distances greater than 0.2.

33

Experiments

Figure 20: Symbolic expression z = x ∗ y. Predictions from two episodes are
presented here together, since multiplication is a commutative function. a Tar-
get hyperbolic paraboloid for x, y ∈ [−1, 1], consequently, z ∈ [−1, 1]. Predictions
on the plane, marked with dots, are points which are ε-close to the hyperbolic
paraboloid, ε = 0.03. All other predictions are marked with star-sign. b Dis-
tances of all points to the target hyperbolic paraboloid. These normal projections,
illustrated by vertical lines, correspond to predictions from a.

34

Experiments

Figure 21: Symbolic expression z = x − y. Subtraction is not a commutative
operation. a Target plane for x, y ∈ [−1, 1], consequently, z ∈ [−2, 2]. Predictions
on the plane, marked with dots, are points which are ε-close to the plane, ε = 0.03.
All other predictions are marked with star-sign. b Distances of all points to the
target plane. These normal projections, illustrated by vertical lines, correspond to
predictions from a. Note that vertical lines without upper bound have distances
greater than 0.2.

35

Experiments

Figure 22: Symbolic expression z = y − x. Subtraction is not a commutative
operation. a Target plane for x, y ∈ [−1, 1], consequently, z ∈ [−2, 2]. Predictions
on the plane, marked with dots, are points which are ε-close to the plane, ε = 0.03.
All other predictions are marked with star-sign. b Distances of all points to the
target plane. These normal projections, illustrated by vertical lines, correspond to
predictions from a.

Finally, we show spike raster for one chosen episode.

36

Experiments

Figure 23: Spike raster. Shown is the firing activity of inputs (upper 2 subplots)
and recurrently connected neurons, regular and adaptive (R and A populations,
respectively) (lower 2 subplots). Population of input neurons X encodes concrete
real values, x and y, and symbolic expression. Presented symbolic expression in
this episode was x−x. Spike activity presented here is for time window 0−500ms.

5.3 Remembering Symbolic Expressions

Through our previous experiments we have seen that in each episode, af-
ter few steps, the network is able to restore and reuse the symbolic rule
(expression or identifier) and achieve very low errors. Hence we were moti-
vated to test memory capabilities of the LSNN network. How much does the
network rely on given symbolic expression? Is it able to correctly perform

37

Experiments

computation even when the neurons responsible for symbolic rule do not fire
anymore? Here we perform symbolic computation as in previously described
experiment, with one difference - we stop showing symbolic expression after
20 steps.

MSE over iterations, illustrated in Figure 24 shows that the learning is
less stable, compared with the previous experimental setup, with occasional
jumps, but still with a convergence and a low error during testing.

Figure 24: LSNN performance over training and testing iterations. The
task was to remember and use the symbolic expression given in the beginning of
every episode. Learning was implemented throughout LTL setup. Although MSE
over training is occasionally unstable, performance during testing shows low errors.

38

Experiments

Figure 25: LSNN performance over steps. Performance given here shows the
average behavior of the network for symbolic expressions, presented in 100 test
iterations, each with 10 episodes. Symbolic expressions are shown only during first
20 steps in each episode, illustrated here with a vertical dashed line. After that, the
network is still able to perform computation and achieves very good performance
for all remaining steps in the episode. MSE = 0.0052.

There are 100 steps in each episode, but the symbolic expression was
given only for the first 20 steps. For the remaining 80 steps, network should
remember to use the previously given symbolic expression. In this way,
adaptive neurons should use their longer term memory. In some cases, it
happens that after stopping showing formula, performed computation gets
worse. Exactly that happens in the worst performing episode for this ex-
periment, with MSE = 0.078 over steps, excluded first 5 steps, illustrated in
Figure 26, together with the best performing episode, for which MSE was
0.001 (excluded first 5 steps). ome steps from these two episodes are shown
in Tables 6 and 7.

39

Experiments

Figure 26: The worst and best performing episode. These episodes are chosen
from test iterations, based on mean value of all but first 5 steps of MSEs in episode.
MSEs for the first 5 steps in each episode are excluded from this analysis. A vertical
dashed line denotes the moment when symbolic expressions are stopped being shown
to the network.

40

Experiments

Figure 27: Spike raster. Shown is the firing activity of inputs (upper 2 subplots)
and recurrently connected neurons, regular and adaptive (R and A populations,
respectively) (lower 2 subplots). Population of input neurons X encodes concrete
real values, x and y, and symbolic expression. Presented symbolic expression in
this episode was y − y. Spike activity presented here is for time window 500 −
1000ms, because one can clearly see the moment of stopping showing the symbolic
expression, marked with a dashed line in the first subplot.

41

Experiments

Figure 28: MSE over “learning” and “testing’ ’steps. “Learning” here means
that symbolic expressions are given as input, and “testing” that the network had
to rely on its memory and use previously given symbolic expressions.

Step no. Symbolic expression: y - y LSNN output MSE

1. 0.5296 - 0.5296 = 0; -0.0571; 0.0033;
2. 0.5278 - 0.5278 = 0; -0.0550; 0.0030;
3. 0.6400 - 0.6400 = 0; -0.0387; 0.0015;
4. 0.6567 - 0.6567 = 0; -0.0031; 0.0000;
5. -0.4489 - (-0.4489) = 0; -0.0124; 0.0002;
50. -0.6562 - (-0.6562) = 0; 0.1513; 0.0229;
51. -0.7321 - (-0.7321) = 0; 0.2272; 0.0516;
96. -0.2836 - (-0.2836) = 0; 0.0632; 0.0040;
97. -0.9507 - (-0.9507) = 0; 0.8469; 0.7173;
98. -0.8598 - (-0.8598) = 0; 0.6858; 0.4703;
99. 0.6516 - 0.6516 = 0; 0.3686; 0.1359;
100. 0.6617 - 0.6617 = 0; 0.4222; 0.1782;

Table 6: The worst performing episode, with concrete values for steps
1− 5, 50− 51, 96− 100. Symbolic expression used in this episode was z = y − y.

42

Conclusion and Discussion

Step no. Symbolic expression: y - y LSNN output MSE

1. -0.4705 - (-0.4705) = 0; -0.0014; 0.0000;
2. 0.9398 - 0.9398 = 0; -0.0887; 0.0079;
3. -0.2445 - (-0.2445) = 0; 0.0347; 0.0012;
4. -0.4246 - (-0.4246) = 0; -0.0286; 0.0008;
5. 0.9448 - 0.9448 = 0; -0.0766; 0.0059;
50. 0.2152 - 0.2152 = 0; 0.0279; 0.0008;
51. 0.1826 - 0.1826 = 0; -0.0411; 0.0017;
96. 0.6748 - 0.6748 = 0; -0.0340; 0.0012;
97. -0.7325 - (-0.7325) = 0; -0.0044; 0.0000;
98. 0.3487 - 0.3487 = 0; 0.0082; 0.0001;
99. 0.2508 - 0.2508 = 0; -0.0196; 0.0004;
100. 0.4771 - 0.4771 = 0; -0.0306; 0.0009;

Table 7: The best performing episode, with concrete values for steps 1−5,
50− 51, 96− 100. Symbolic expression used in this episode was z = y − y = 0.

6 Conclusion and Discussion
So far, RNNs, especially those employing LSTM units, have shown great
successes. Through our experiments, we have shown one interesting appli-
cation of recurrently connected SNNs and their LSTM-like units. Adaptive
LIF neurons are endorsed with memory capabilities, and one can rely on
this model to be able to store and retrieve information for longer timespans
than for few hundred seconds, what was known before as a bottleneck when
using SNNs with LIF neurons.

Through our first experiment, we have shown that information can be
encoded and restored through identifiers, i.e., our network learned different
nonlinear function, was able to restore the knowledge and apply it to new
examples. This concept reminds of computational program with its execu-
tion routine, present in working memory and ready to be activated, when
there is a demand for it. Once activated, inputs to this computational pro-
gram are transformed according to execution routine, in our case, nonlinear
function, providing very low errors.

Second experiment was similar, but more interesting, because network
had to learn to use symbolic expressions, given as encoded rules, in fact,
representing different functions, ranging from simple one, e.g., z = 0 to
more complex one, z = x ∗ y. Challenges here were:

• to learn to ignore one given variable and to use only another one (in
expressions such as x+ x, y − y, x ∗ x...),

• subtraction is not a commutative function, so in this case it was very

43

Conclusion and Discussion

important to use the given rule and arguments (concrete values of x
and y) in the order given by the symbolic expression.

Another importance of this concrete experiment is for development of
neuromorphic hardware. One could try to implement basic arithmetic op-
erations with SNNs, which could possibly lead to more intelligent machines.
If we think of us, humans, and our intelligence, without any doubt learning
basic arithmetic is one of the first challenges we tacke in the school.

In our experiments we did not consider the arithmetic operation division,
because of the mathematical constraint that division by zero is undefined,
and our input values were centered around zero.

The goal of our third experiment was to test memory capabilities of our
network and to see if the network was able to learn to use and remember
the symbolic rule presented in the beginning of the episode, in as less steps
as possible, and to apply that symbolic rule later even when it is not given.
This experiment, compared to the second one (Learning symbolic expres-
sions), suggested that the task was more challenging, but achievable, and it
required a slightly more powerful architecture. Here it was essential to have
greater memory capabilities (longer memory) of ALIF neurons, namely, τ
adaptation time constant (τa,j), whereas for the second experiment increas-
ing it brought only insignificant improvements. Too “long” memory indi-
cated that further enhancements of ALIF model are possible, for example,
some kind of reset signal, or forget gate (analogously to LSTMs) would be
useful for some purposes.

44

Appendices

Appendices

A Network Parameters

Parameter Value

number of recurrent neurons 250
proportion of adaptive neurons 0.4
dampening factor 0.4
tau adaptation 1-1000 ms
number of steps in an episode 500
duration of steps 20 ms

Table 8: Network parameters for the experiment Learning nonlinear func-
tion using previous targets/function identifiers.

Parameter Value

number of recurrent neurons 300
proportion of adaptive neurons 0.4
dampening factor 0.3
tau adaptation 1-8000 ms
number of steps in an episode 100
duration of steps 40 ms

Table 9: Network parameters for the experiment Learning symbolic ex-
pressions.

Parameter Value

number of recurrent neurons 350
proportion of adaptive neurons 0.4
dampening factor 0.3
tau adaptation 1-8000 ms
number of steps in an episode 100
duration of steps 40 ms

Table 10: Network parameters for the experiment Remembering symbolic
expressions.

45

Appendices

B References

[1] D. Brown. Digital fortress. St. Martin’s Paperbacks, 2004.

[2] Jeff Hawkins and Sandra Blakeslee. On Intelligence.

[3] W. S. McCulloch and W. H. Pitts. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics,
vol.5:115–133, 1943.

[4] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and
Samuel J. Gershman. Building machines that learn and think like
people. CoRR, abs/1604.00289, 2016. http://arxiv.org/abs/1604.

00289.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[6] W. Maass, C. H. Papadimitriou, S. Vempala, and R. Legenstein. Brain
computation: A computer science perspective. Draft of an invited con-
tribution to Springer Lecture Notes in Computer Science, vol. 10000,
2017.

[7] G. F. Marcus. The Algebraic Mind - Integrating connectionism and
cognitive science. MIT Press, 2001.

[8] G. Marcus, A. Marblestone, and T. Dean. The atoms of neural com-
putation - does the brain depend on a set of elementary, reusable com-
putations? Science, 346(6209):551–552, 2014. incl. frequently asked
questions.

[9] Christoph von der Malsburg. Binding in models of perception and brain
function. Current Opinion in Neurobiology, 5:520–28, 1995.

[10] Chris Eliasmith, Terrence Stewart, Xuan Choo, Trevor Bekolay, Travis
Dewolf, Charlie Tang, and Daniel Rasmussen. A large-scale model of
the functioning brain. Science (New York, N.Y.), 338:1202–5, 11 2012.

[11] Trenton Kriete, David C. Noelle, Jonathan D. Cohen, and Randall C.
O’Reilly. Indirection and symbol-like processing in the prefrontal cortex
and basal ganglia. Proceedings of the National Academy of Sciences,
110(41):16390–16395, 2013.

[12] Wolfgang Maass. wetware. In TAKEOVER: Who is Doing the Art of
Tomorrow (Ars Electronica 2001), pages 148–152, 2001.

[13] Wolfgang Maass. Networks of spiking neurons: The third generation of
neural network models. Neural Networks, 10(9):1659 – 1671, 1997.

46

http://arxiv.org/abs/1604.00289
http://arxiv.org/abs/1604.00289
http://www.deeplearningbook.org

Appendices

[14] Wolfgang Maass. Liquid state machines: Motivation, theory, and ap-
plications. 01 2010.

[15] W. Maass. Searching for principles of brain computation. Current Opin-
ion in Behavioral Sciences (Special Issue on Computational Modelling),
11:81–92, 2016.

[16] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert A. Legen-
stein, and Wolfgang Maass. Long short-term memory and learning-to-
learn in networks of spiking neurons. CoRR, abs/1803.09574v2, 2018.

[17] W. Maass. To spike or not to spike: That is the question. Proceedings
of the IEEE, 103(12):2219–2224, 2015.

[18] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines,
R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan,
Y. Weng, A. Wild, Y. Yang, and H. Wang. Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38(1):82–99,
January/February 2018.

[19] Steve B. Furber, David R. Lester, Luis A. Plana, Jim D. Garside, Eu-
stace Painkras, Steve Temple, and Andrew D. Brown. Overview of the
spinnaker system architecture. IEEE Trans. Comput., 62(12):2454–
2467, December 2013.

[20] Johannes Schemmel, Daniel Brüderle, Andreas Grübl, Matthias Hock,
Karlheinz Meier, and Sebastian Millner. A wafer-scale neuromorphic
hardware system for large-scale neural modeling. In ISCAS, pages 1947–
1950. IEEE, 2010.

[21] Steven K. Esser, Paul A. Merolla, John V. Arthur, Andrew S. Cas-
sidy, Rathinakumar Appuswamy, Alexander Andreopoulos, David J.
Berg, Jeffrey L. McKinstry, Timothy Melano, Davis R. Barch, Carmelo
di Nolfo, Pallab Datta, Arnon Amir, Brian Taba, Myron D. Flickner,
and Dharmendra S. Modha. Convolutional networks for fast, energy-
efficient neuromorphic computing. Proceedings of the National Academy
of Sciences, 113(41):11441–11446, 2016.

[22] Wolfgang Maass. Energy-efficient neural network chips approach hu-
man recognition capabilities. Proceedings of the National Academy of
Sciences, 2016.

[23] Tom M. Mitchell. Machine Learning. McGraw-Hill Science/Engineer-
ing/Math, 1997.

[24] Jilles Vreeken. Spiking neural networks, an introduction. Technical
report, 2003.

47

Appendices

[25] Wulfram Gerstner and Werner Kistler. Spiking Neuron Models: An
Introduction. Cambridge University Press, New York, NY, USA, 2002.

[26] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, November 1997.

[27] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, vol. 521:436–444, 2015.

[28] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert A. Legen-
stein, and Wolfgang Maass. Long short-term memory and learning-to-
learn in networks of spiking neurons. CoRR, abs/1803.09574v1, 2018.

[29] Sepp Hochreiter, Arthur Younger, and Peter R. Conwell. Learning to
learn using gradient descent. pages 87–94, 09 2001.

[30] Wikipedia. Cognition. [Online; accessed 01-December-2018].

[31] Dale Purves, Elizabeth M. Brannon, Roberto Cabeza, Scott A. Huettel,
Kevin S. LaBar, Michael L. Platt, and Marty Woldorff. Principles of
Cognitive Neuroscience. Sinauer, 2008.

[32] Patricia S. Goldman-Rakic. Working memory and the mind. Scientific
American, 267:110–7, 10 1992.

[33] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines.
CoRR, abs/1410.5401, 2014.

[34] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra,
and Timothy P. Lillicrap. One-shot learning with memory-augmented
neural networks. CoRR, abs/1605.06065, 2016.

[35] Kenneth Hayworth. Dynamically partitionable autoassociative net-
works as a solution to the neural binding problem. Frontiers in Com-
putational Neuroscience, 6:73, 2012.

[36] T. R. Besold and K.-U. Kühnberger. Towards integrated neuralsymbolic
systems for human-level AI: Two research programs helping to bridge
the gaps. Biologically Inspired Cognitive Architectures, 14:97–110, 2015.

[37] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep
neural networks with weights and activations constrained to +1 or -1.
CoRR, abs/1602.02830, 2016.

48

	Introduction
	Motivation and Contributions

	Background
	Perceptron and Sigmoidal Neuron Models
	Spiking Neural Networks
	Leaky Integrate-and-Fire (LIF) Neurons
	Recurrent Neural Networks and LSNNs
	Learning-To-Learn (LTL)

	On Symbolic Computation
	Working Memory
	Related Work
	On Cognitive Architectures

	Implementation
	Neuron Model
	Network Model
	Input Encoding
	Generation of Nonlinear Functions for LSNN to Learn
	Training Procedure

	Experiments
	Learning Nonlinear Functions
	Learning Symbolic Expressions
	Remembering Symbolic Expressions

	Conclusion and Discussion
	Appendices
	Network Parameters
	References

