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Abstract 

The objective of this doctoral thesis is to investigate a time-based and analytics-supported 

operations management approach and develop a structured implementation methodology.  

In the context of digitization, the Industry 4.0 and the Industrial Internet of Things the amount of 

available technology and data is continuously rising. At the same time increasing volatility, 

uncertainty and complexity demand making operations decisions in ever shorter intervals trending 

towards real-time.  

This research explores five perspectives, the needs of industry, in particular manufacturing in 

process industries; the impact of digitization, with focus on Big Data and analytics; the 

management of operations through time-based performance metrics; how operations improvement 

methods and advanced process control help achieve resource-productive operations; and learning 

from practice based on two empirical case studies.  

Next an implementation methodology for a time-based and analytics-supported operations 

management approach is conceived, explained and tested. The methodology is structured around 

five phases known from Six Sigma: Define, Measure, Analyze, Improve, Control and contains 17 

specific steps which are explained and subsequently validated in an industrial case study.  

This thesis discusses the criteria when this approach is meaningful, for example, situations when 

trade-off decisions between conflicting targets are required, time is the constraint, close to real 

time decision making is required, cumulative profit maximization is the desired long term goal, 

and where invested capital and/or resource intensity is high.  

Pre-conditions for implementations are stated, for example, infrastructure such as sensors, meters, 

or data storage; data to compute the metric; access to advanced algorithms required to solve for 

profit per hour as a target function; an implementation process; and the required skills. 

It can be concluded that a time-based and analytics-supported operations management approach 

for maximizing profits is meaningful if the pre-conditions are met. The final case study proves that 

the developed implementation methodology works in practice. 
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Zusammenfassung 

Das Ziel der vorliegenden Arbeit ist die Untersuchung eines zeitbasierten und 

analytikunterstützten Operations-Managementansatzes sowie die Entwicklung einer strukturierten 

Einführungsmethode.  

Im Kontext von Digitalisierung, Industrie 4.0 und dem industriellen Internet der Dinge, steigen die 

technischen Möglichkeiten und das Potenzial zur analytischen Auswertung und Nutzung von 

Daten stetig. Zur gleichen Zeit zeichnet sich das Umfeld durch erhöhte Volatilität, Unsicherheit 

und Komplexität aus. Dies erfordert operative Entscheidungen in immer kürzer werdenden 

Intervallen in Richtung Echtzeit.  

Die vorliegende Arbeit beleuchtet folgende fünf Perspektiven: die Bedürfnisse der Industrie, im 

speziellen in der Produktion in der Prozessindustrie; den Einfluss durch die Digitalisierung mit 

Fokus auf Big Data und Analytik; das Management der Operations mit zeitbasierten 

Leistungskennzahlen; operative Verbesserungsmethoden zur Steigerung der 

Ressourcenproduktivität; und empirische Erfahrung aus der Praxis anhand von zwei Fallstudien. 

In weiterer Folge wird die Methode zur Einführung eines zeitbasierten und analytikunterstützten 

Operations-Managementansatzes hergeleitet, klassifiziert und ausdetailliert. Die entwickelte 

Methode ist entlang der fünf von Six Sigma bekannten Phasen Define, Measure, Analyze, 

Improve, Control strukturiert. Die Methode umfasst 17 spezifische Schritte, die in einer 

abschließenden Fallstudie angewendet werden. 

Die Arbeit diskutiert Kriterien unter welchen der untersuchte Ansatz für Unternehmen sinnvoll 

genutzt werden kann. Beispiele hierfür sind: Entscheidungen zwischen im Konflikt stehenden 

Zielen, Zeit als limitierender Faktor, Notwendigkeit von Echtzeit-Entscheidungen, 

Profitmaximierung als langfristiges Unternehmensziel, und hoher Kapitaleinsatz und/oder hoher 

Ressourcenintensität in Betrieben.  

Voraussetzungen für die Einführung umfassen u.a. die notwendige Infrastruktur, d.h. Sensoren, 

Messstellen und Datenspeicher; Daten zur Berechnung von Profit pro Stunde; Zugang zu 

Analysealgorithmen um zeitbasiert Profit zu optimieren, eine Umsetzungsmethodik und die dafür 

notwendigen Kompetenzen.  

Anhand der abschließenden Fallstudie konnte gezeigt werden, dass der entwickelte zeitbasierte 

und analytikunterstützte Operations-Managementansatz zur Profit-Maximierung umsetzbar und 

sinnvoll ist, wenn die notwendigen Rahmenbedingungen erfüllt sind. 
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1 Introduction 

Chapter 1 provides an introduction to this thesis in four sections. Section 1.1 describes the initial 

situation and motivation for this research. Section 1.2 defines the objective of the research, 

section 1.3 articulates the research questions, and section 1.4 lays out the research design and 

structure of the thesis. 

1.1 Initial situation and motivation  

Industrial companies are currently facing challenging times due to globalization, rapid changes 

in both, supplier and customer markets, and innovation in technology (Westkämper, Zahn 2009, 

V). Key challenges like volatility and uncertainty are steadily increasing in today’s business 

environment (Abele, Reinhart 2011, 5-32). As an example, the volatility of revenues and 

profitability in US firms doubled between 1960 and 2000 (Sull 2009, p. 9). The pressure on 

manufacturing industries has been intensifying due to their typically high capital employed and 

resulting costs (Friedli, Schuh 2012, p. 12). Industrial companies in high cost countries need to 

consider topics such as agility, automation and resource efficiency to remain competitive 

(Ramsauer 2013a, pp. 3–4). In this constant state of change, organizations which recognize and 

react quickly and intelligently to market swings increase their competitiveness (Davenport 

2014b, p. 48). More effective and quicker decisions might be achieved through transformation 

of currently available data into information and knowledge (Vercellis 2009, XIV). The 

availability of data is driven by innovation in advanced manufacturing technologies. The 

integration of digital and intelligent technologies enables companies to raise the level of 

management with the objective of finding its best operating model (Zhou 2013, p. 6). 

Digitalization, and the creation of the Internet of Things in manufacturing leading to the fourth 

industrial revolution, is commonly discussed under the umbrella term “Industry 4.0” 

(Kagermann et al. 2013, p. 13). However, according to a recent study of more than 500 

companies, only 13% of industrial companies have, for example, adopted Big Data initiatives 

as part of their business routines (Bange et al. 2015, p. 11). The goal of this research is to enable 

smart operational decision making to optimize operations for maximum profitability using a 

time-based and analytics-supported operations management approach.  

“The search for the one objective is essentially a search for a magic formula that will make 

judgement unnecessary. But the attempt to replace judgement by formula is always irrational; 

all that can be done is to make judgement possible by narrowing its range and the available 

alternatives, giving it clear focus, sound foundation in facts and reliable measurements of the 

effects and validity of actions and decisions” (Drucker 1966, p. 59). 

The rise of Industry 4.0 and in particular Big Data analytics of production parameters offers 

exciting new ways for optimization. Currently, the majority of factories, for example in process 

industries, aim either for output maximization, yield increase, or cost reduction. With the 

availability of real time data and opportunity to process it online with advanced algorithms a 
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profit per hour management approach becomes possible. Profit per hour as a target control 

metric enables running factories at the optimal currently available operating point taking all 

revenue and cost drivers into account.  

This thesis describes a methodology to implement profit per hour as target key performance 

indicator in production in process industries. The author explains how this management 

approach helps to make better operational decisions, trading off yield, energy, throughput 

among other factors, and the resulting cumulative benefits. He also lays out how Big Data and 

advanced algorithms are the key enablers to this new approach. With profit per hour an agile 

control approach is presented which aims to optimize the performance of industrial 

manufacturing systems in a world of ever increasing volatility. 

1.2 Objective of the research 

The objective of this thesis is to derive a structured implementation methodology for an 

operational management approach leveraging advanced analytics and a time-based profit key 

performance indicator (KPI), Figure 1, in the context of Industry 4.0 and Big Data.  

 

Figure 1: Framing the objective 

“Developing a structured management process for using measures to support decision makers, 

set goals, allocate resources and inform management” has been stated as academic research 

priority (Busi, Bititci 2006, p. 20). For industrial companies this is equally a priority as they 

“struggle to incorporate data-driven insights into day-to-day business processes” (Henke et al. 

2016a, vi). Diab et al emphasize that “Industrial analytics, especially at its early stage of 

development, requires a systematic and architectural approach that is flexible to meet the 

operational and business requirements and forward looking in accommodating usage changes 

and technological advances” (Diab et al. 2017, p. 15). Horvath et al. see a need to integrate 

predictive analytics into performance management and to further develop value driver models 

considering interdependences between operative KPIs and profit (Horvath et al. 2015, p. 105). 

These research needs should be addressed as part of techno-economic research. According to 

Bauer, the term techno-economics results from the intersection between the scientific areas of 

technology and economics and are grounded in realism and experience. Fundamentally, there 

are 3 questions to be answered: (1) is the idea technically solvable, (2) is it economically 

feasible, and (3) does it serve people and society? (Bauer 2013, pp. 10–11).   

Advanced 

analytics

Operations 
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approach

External context (e.g., volatility, uncertainty)
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For this research and the resulting methodology, four objectives can be defined:  

Objective 1: Identification of criteria (when meaningful?) 

Objective 2: Identification of pre-conditions (what is needed?) 

Objective 3: Conception of a methodology (how to implement?) 

Objective 4: Validation of the developed methodology (does it work?) 

In line with the general operations management research process, the next step is to determine 

research questions and to choose a research approach (Karlsson 2016, pp. 16–17). 

1.3 Research questions 

Research questions are the pre-cursor of research design and serve as guardrails for targeted 

research (Töpfer 2012, pp. 155–157). Research questions can be classified in four types 

(exploratory, descriptive, explanatory, prescriptive) and six forms (who, what, where, when, 

how, why) (Åhlström 2016, p. 66). Based on the objectives of the research from the previous 

section three research questions (RQ) have been formulated: 

RQ1:  Under what conditions does a profit per hour management approach help to take 

the best decisions? When does it fail? 

RQ2:  In practice, what keeps companies from implementing a profit per hour approach? 

What are the pre-conditions and why? 

RQ3:  How would companies implement a profit per hour operations management 

approach? 

While the first two research questions are of exploratory and explanatory nature, the third 

question aims to be prescriptive. 

1.4 Research design and structure 

The techno-economic research efforts at TU-Austria-Universities is considered to be mainly 

application oriented. The aim is to apply economic theories to technical-natural scientific 

problems and to find answers to the question of practical implementability in industrial practice 

(Bauer 2013, pp. 18–19). As per Ulrich, the applied research process begins with the 

identification of relevant practical problems, which are subsequently investigated from a 

scientific perspective building on existing literature and relevant theories. The derived models 

are validated in the specific application context. The result of applied research is to provide 

guidance to practitioners based on the learning from the research (Ulrich 1981, p. 20). 

Academics in production research ask for applied research, that is “less armchair research and 

more empirical and experimental work out there in the field” (Akkermans, van Wassenhove 

2013, p. 6754). This is the intention of this thesis: investigating a relevant practical problem 

based on real-life case studies, developing a suitable methodology grounded in theory to solve 

the problem, and to demonstrate the applicability in practice. According to Yin case study 

research is “an empirical inquiry that investigates a contemporary phenomenon within its real-
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life context […, that] copes with [a] technical distinctive situation […,] relies on multiple 

sources of evidence […and that] benefits from the prior development of theoretical 

propositions” (Yin 2003, pp. 13–14). This thesis includes three industrial case studies from 

manufacturers in process industries. Table 1, gives an overview of the cases studied as part of 

this research, their location, investigation time interval, subject, focus, and the role of the 

researcher. As part of this research, the author was consultant, observer and sounding 

board/partner as defined by Karlsson 2016, pp. 15–16. 

 Cement Ammonia Pulp 

Location Northern Europe Western Europe Western Europe 

Investigation duration1 May – Aug 2016 Sep. – Dec. 2016 Apr – Jul. 2017 

Investigation subject Proof-of-concept Pilot implementation Ongoing continuous process 
improvement 

Investigation focus Analytics based process 

control 

Profit per hour modelling Validation of methodology 

Role of researcher Consultant Observer Sounding board and partner 

Table 1: Overview of case studies 

The cement and the ammonia cases are of explorative nature providing valuable empirical 

insights for defining requirements and identifying design elements of the developed 

methodology. The third case of pulp manufacturing serves to describe and validate the derived 

methodology in practice. Yin points out the advantage of multiple case studies (Yin 2003, 

p. 19). For the review of theory and related work a heuristic, conceptual framework is used, 

which is a defined step in the research process by Karlsson 2016, p. 17. Heuristics such as 

Figure 2 are helpful in research “enabling a person to discover or learn something for them”2, 

“involving or serving as an aid to learning, discovery, or  problem-solving”3. 

 

Figure 2: Conceptual framework (heuristic) of this research 

The literature review for the terms and concepts related to industry, management, operations 

and digitization was conducted in the period of April 2015 and April 2017. Next to the library 

                                                

1 Note that project periods extend beyond investigation duration 
2 https://en.oxforddictionaries.com/definition/heuristic, last accessed 16.08.2017 
3 https://www.merriam-webster.com/dictionary/heuristic, last accessed 16.08.2017 
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sources of Graz University of Technology4, common scientific search engines such as Google 

Scholar5, Science Direct6 and Scopus7, were used as they cover a wide range of relevant 

electronic and printed documents with free full-text access to the author. Figure 3, gives an 

overview of the overall timeline of the research. 

 

Figure 3: Research timeline 

The design research methodology follows four phases: (1) research clarification defining goals, 

(2) descriptive study to gain deeper understanding, (3) prescriptive study resulting in a 

methodology, and (4) descriptive study for empirical evaluation (Blessing, Chakrabarti 2009, 

p. 15). Application-oriented research, according to Ulrich follows seven steps: (1) identification 

of relevant problems; (2) identification and interpretation of problem-relevant theories; (3) 

identification and specification of problem-relevant methodologies; (4) identification and 

investigation of application context; (5) derivation of evaluation criteria, design rules and 

models; (6) validation of rules and models in the application context; and (7) advice for practice. 

The research design for this thesis integrates the aspects of Ulrich, Blessing and Chakrabarti, 

and takes practical considerations such as access, skills and interest into account (Åhlström 

2016, p. 72). Furthermore, it aims to address relevant criteria for exploratory and descriptive 

case study research: justification of the research approach, construct validity defining the unit 

of analysis and using multiple sources of evidence, external validity by using the theory to 

define domain for generalization and applicability, and reliability of the case study research by 

making the research process transparent (Yin 2003, p. 28, Voss et al. 2016, p. 192).  

1.5 Thesis outline 

This thesis is structured in eleven chapters as indicated in Figure 4 on the next page. 

Chapter 1 serves as an introduction to the topic commencing with the initial situation, problems 

identified, research gap and motivation for this thesis stating its objectives, design, research 

questions and structure. 

Chapter 2 takes a look at current challenges from an industrial perspective. It starts with 

reviewing current megatrends and the impact of external factors such as increased volatility, 

uncertainty or complexity. 

                                                

4 http://ub.tugraz.at 
5 http://scholar.google.com 
6 http://www.sciencedirect.com 
7 http://www.scopus.com 

15 years of prior 

industry experience
Case IICase I Case III

2015 2017 20182016

Literature study and review of related theories

Practice

Theory

http://ub.tugraz.at/
http://scholar.google.com/
http://www.sciencedirect.com/
http://www.scopus.com/


1 Introduction 

6 

Chapter 3 provides a management view on the topic dealing with decision making based on 

performance measures, management systems and decision support systems. 

Chapter 4 deals with operations and how to make them resource-productive. It includes a 

coverage of relevant operational improvement methods, e.g., lean, Six Sigma and the Theory 

of Constraints and in addition, it looks at advanced process control systems.  

Chapter 5 reviews the impact of digitization driven by Industry 4.0 and the Industrial Internet 

of Things leading to the rise of Big Data and advanced analytics. 

Chapter 6 adds practical insights drawing from two cases studies of manufacturing in process 

industries, cement and ammonia.  

Chapter 7 syntheses the theoretical concepts, literature and practical learning in order to define 

the scope of work, specific requirements and its delimitation.  

Chapter 8 conceives the methodology, looks at criteria when it is meaningful, and derives pre-

conditions for implementation.  

Chapter 9 explains the implementation methodology and its underlying steps in detail.  

In chapter 10, the methodology is validated through an industrial case study from pulp 

manufacturing.  

Chapter 11 concludes this thesis with a summary, critically reviews answers to the research 

questions, and provides an outlook for further research. 

  

Figure 4: Research design and structure of this thesis 
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Introduction1
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2 Industry perspective: Challenges in 

manufacturing in process industries 

This chapter frames the setting for this thesis. Section 2.1 looks at mega trends such as the 

increasingly dynamic environment industrial companies are exposed to. Section 2.2 gives an 

overview of manufacturing industries. Section 2.3 focuses specifically on process industries. 

Section 2.4 provides a summary of the challenges faced by manufacturers in process industries. 

2.1 Megatrends in industry 

The context in which companies operate, according to Adam et al., is getting more and more 

dynamic resulting in a need for quick reactions. However, they should not only be based on 

static analysis at a given point in time, but should rather be dynamic analyses reflecting 

meaningful future development paths of companies. The aim is to create potential in the future 

and leverage previously achieved benefits. Future success depends on decisions today (Adam 

et al. 1998, p. 6). But as Gordon points out: “Our decisions are only as good as the view of the 

future they rest on” (Gordon 2009, p. 6). The future is significantly impacted by technology as 

the main engine for development of the modern world economy. Especially, the rapid growth 

in information and communication technologies influences the standard of living, allocation of 

resources and internationalization (Dunning 2002, p. 61). Chapter 3 of this document focuses 

on technology, more specifically on digitization.  

Global mega trends Effect on production 

Ageing society  Future markets and products 

 Workflow and management of production 

Individualization  Individual and customer specific products 

 Complexity of products and production 

 Synchronization of global production networks 

Knowledge  Knowledge based product development 

 Knowledge based production systems 

Sustainability  Economic, ecological and social efficiency of production 

 Changing availability and cost of raw materials and energy 

 Global competition for resources 

Globalization  Products and production technologies for global markets 

 Global process standards in OEMs 

 Local circumstances and location factors in global competition 

Urbanization  Local infrastructure 

 Emissions, mobility and traffic near to factories 

 Production/work in mega-cities 

Finance  Highly dynamic economic cycles 

 Financing of investments in R&D and PPE 

Public debt  More value-added – more employment 

 Economic politics, public spending 

 Competition between locations 

Table 2: Megatrends beyond technology with effects on industrial production (Westkämper 2013b, p. 8) 
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Other megatrends affecting industrial production include ageing populations, environmental 

sustainability, and individualization and are listed in Table 2.  

Next to the megatrends the operating conditions across industries are changing and can be 

described as VUCA volatile, uncertain, complex, and ambiguous). This expression was first 

used in the 1990s by the U.S. Army War College (Whiteman 1998, p. 15) and resulted in 

requirements for strategists “to exercise influence over the volatility, manage the uncertainty, 

simplify the complexity, and resolve the ambiguity” (Yarger 2006, p. 18). Bennett and Lemoine, 

summarized the main characteristics of VUCA, Figure 5, in the Harvard Business Review in 

2014. 

 

Figure 5: What VUCA really means for you (Bennett, Lemoine 2014, p. 27) 

Volatility 

In their book “No Ordinary Disruption” Dobbs et al state that: “The external environment is 

volatile, with capital markets increasingly characterized by more extreme events” (Dobbs et al. 

2015, p. 88) and the World Economic Forum (WEF) sees increased volatility as the new normal 

for globalized and interconnected supply chains (World Economic Forum 2013, p. 9). In order 

to illustrate the degree of overall turbulence in the business environment Christopher and 

Holweg created the Supply Chain Volatility Index (SCVI) based on the coefficient of variation 

(CoV) as a normalized and scale-free measurement of volatility. In 2011 they observed 

unprecedented levels of volatility in several key business parameters simultaneously, and 

postulated an era of turbulence: “As of 2008, we have left an almost 30-year lasting period of 

stability behind and are now entering a period of turbulence that was last seen during the oil 

crisis of 1973” (Christopher, Holweg 2011, pp. 65–67). In fact, the worldwide real gross 

domestic product (GDP) saw its sharpest decline during the crisis years 2008-2009. While there 
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seems to have been an initial return to more stability since then, the SCVI index as shown in 

Figure 6, paints a different picture. The rise of the index above the “crisis level” of 10 per cent 

as of 2016 suggests that the “era of turbulence” with high volatility is not over yet (Christopher, 

Holweg 2017, pp. 9–10). 

 

Figure 6: Supply Chain Volatiliy Index 1970-2015 (Christopher, Holweg 2017, p. 8) 

Looking behind possible reasons for volatility, there is a wide range of external and internal 

change drivers, for example: shifts in customer demand with regard to product volumes, 

variants, mix, order entries, or delivery due dates; market pressure on prices and costs for oil, 

electricity, raw materials; political and regulatory factors, e.g., globalization or climate change; 

financial fluctuations in currency exchange rates and capital availability; pressure on short term 

positive financial results from capital markets; more frequent changes in ongoing production 

programs; or technological disruptions and innovations (Westkämper, Zahn 2009, p. 9; 

Christopher, Holweg 2011, p. 69). Volatility causes costs in supply chains either in the form of 

recovery costs, e.g., lost sales, idle capacity, overtime, or resilience costs, e.g., 

hedging/insurance cost, or access to extra capacity (Christopher, Holweg 2017, p. 14).  

Uncertainty 

Uncertainty is an important concern for managers and has significantly increased over recent 

years due to increased customer expectations demanding shorter product life-cycles and higher 

product variety; globalization resulting in more complex and longer supply chains; and non-

conventional disruptions such as terror attacks (Sheffi, Rice Jr. 2005, p. 41). Uncertainty 

presents a risk and the WEF´s 2017 Global Risks Report calls for actions along five dimensions: 

(1) growing and reforming the economy, (2) rebuilding communities and society, (3) managing 

the technological disruption, (4) strengthening geopolitical cooperation, (5) accelerating 

environmental action (World Economic Forum 2017, p. 3). Overall the increasing feeling of 

uncertainty can be associated with: an unstable business environment; intransparent cause-

effect interrelationships; and uncertain developments (Kremsmayr 2017, pp. 37–39). 

Dubeauclard et al framed questions to help companies understand the effects of uncertainty on 
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operations, for example: “How can operations preserve margin in down cycles while capturing 

disproportionate volume in up cycles?”, “How can operations quickly react to minimize the 

impact on volume of an internal disruption to supply?”, or “How can operations increase 

[their] ability to predict equipment and process failures?” (Dubeauclard et al. 2014, pp. 37–

38). Figure 7 shows the effects of uncertainty on operations along six dimensions. 

 
Figure 7: Effects of uncertainty on operations (Kremsmayr 2017, p. 59) 

 

Complexity 

“Complexity arises when links between an intervention and an impact are difficult to identify 

and quantify”, which is a common phenomenon in decision-making (Maier et al. 2016, p. 157). 

In organizations, complexity is concerned with “(1) interrelationships of the individuals, (2) 

their effect on the organization, and (3) the organization's interrelationships with its external 

environment”8. Understanding the ‘who, what, where, how, and why’, and the causes and 

effects of complexity is hard. However, major drivers such as mobility, technology (Codreanu 

2016, p. 32) or globalization in general are known.  

 

  

                                                

8 http://www.businessdictionary.com/definition/complexity.html, last accessed 10.05.2017 
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Ambiguity 

Ambiguity, the lack of simple yes/no answers, is the result of volatility, uncertainty and 

complexity (Codreanu 2016, p. 32). For Ferrari et al., “causal relationships are not only 

unclear, but even the assumption that they exist in social systems cannot be verified” (Ferrari 

et al. 2015, p. 24). Ambiguity in general is defined as: “The quality of being open to more than 

one interpretation; inexactness”9. This thesis helps decision makers address ambiguity by 

solving trade-offs based on a profit per hour metric.  

 

Reframing VUCA as opportunity 

After looking at the challenges of a VUCA world characterized by volatility, uncertainty, 

complexity, and ambiguity – it is important to also look at the opportunities. Johansen frames 

them as leadership opportunities using the very same VUCA acronym: vision, understanding, 

clarity, and agility (Johansen 2007, p. 45). The first three (i.e. vision, understanding, clarity) 

can be seen as necessary prerequisites while the last term (i.e. agility) can be viewed as the 

tangible result (Codreanu 2016, p. 33). Agility is a critical success factor for companies and 

their management in a context where volatility and uncertainty are the new "normal" (Ramsauer 

et al. 2017, p. 7). The increased volatility, uncertainty, complexity and ambiguity will present 

an ongoing challenge for industrial manufacturing companies. The opportunity lies in finding 

effective ways for coping with these circumstances, combining technologies, methods and 

capabilities to become more agile.  

 

2.2 Manufacturing industries 

Manufacturing is a basic means of human existence and a major contributor to wealth creation 

(Hitomi 1996, p. 497). This is highlighted, for example in the Industrial Development Report 

2016 (United Nations Industrial Development Organization 2015, p. 12):  

 Global manufacturing value added (MVA) reached an all-time high of $9,228 billion 

in 2014. By 2014, the MVA of developing and emerging industrial economies (DEIEs) 

increased 2.4 times from 2000, while their GDP doubled. 

 World export growth rates averaged 7.7 percent over 2005–2013, and in 2013 world 

trade reached a peak of more than $18 trillion, with 84.0 percent comprising 

manufacturing products. 

 Manufacturing exports by industrialized countries expanded by an annual average of 

4.3 percent over 2005–2013, reaching $11,998 billion in 2013. In the same period, 

DEIEs expanded their manufactured exports by an average 11.5 percent, to peak at 

$6,327 billion, 2.4 times more than in 2005. 

                                                

9 https://en.oxforddictionaries.com/definition/ambiguity, last accessed 28.04.2017 

 

https://en.oxforddictionaries.com/definition/ambiguity


2 Industry perspective 

12 

Definitions 

“Manufacturing can be defined as the application of mechanical, physical, and chemical 

processes to convert the geometry, properties, and/or appearance of a given starting material 

to make finished parts or products” (Rao 2011, p. 1). Hitomi specifies manufacturing as “the 

process of producing economic goods, including tangible goods and intangible services, from 

resources of production […] creating utility by increasing valued added” (Hitomi 1996, p. 8). 

The German Institute for Standardization classifies methodologies to manufacture goods in into 

six major groups: (1) primary shaping like casting or generative methodologies like 3D printing; 

(2) forming such as rolling, hammering or deep-drawing; (3) separating for example cutting, 

drilling or milling; (4) joining like welding or soldering; (5) coating such as galvanizing or 

powder coating; (6) changing material properties like tempering (DIN 8580:2003-09). 

 

Value chain 

Manufacturing spans the entire value chain, Figure 8, and thus goes beyond the physical 

production of a product. Manufacturing is a “series of productive activities: planning, design, 

procurement, production, inventory, marketing, distribution, sales, management” (Hitomi 

1996, p. 4). 

 

Figure 8: Different parts of the value chain (Horngren et al. 2015, p. 28) 

Manufacturing is generally seen as a transformation process to create value (Westkämper 

2013a, p. 15). It is an input-output system, as shown in Figure 9, “converting resources of 

production into economic goods […] creating utilities” (Hitomi 1996, p. 7). The type of 

manufacturing varies by product and services provided. The success of a company depends on 

the efficiency of its operations (Rao 2011, p. 1) with its three distinct flows of materials, 

information, and cost (Hitomi 1996, p. 5). 

 

Figure 9: Definition/basic meaning of production (Hitomi 1996, p. 7) 
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Objectives 

There are two categories of objectives of a company, which are: (1) a profit objective to be 

maximized by management, and (2) a social objective to be used to contribute to the welfare of 

society (Hitomi 1996, p. 13). Similarly, change in manufacturing is either profit driven based 

on market conditions or non-profit driven by regulations and policies (United Nations Industrial 

Development Organization 2015, p. 123). The profit objective has already been debated by 

Marx in his famous book “Capital” where he lays out the formula for capital circulation and 

creation of surplus (Marx 1990, p. 321), see Figure 10. 

  

Figure 10: Capital circulation Karl Marx (Marx 1990, p. 321; Hitomi 1996, p. 10) 

In the book “Capital in the 21st century” Piketty, argues that capitalism drives inequalities in 

situations when the rate of return on capital exceeds the rate of growth of output and income 

(Piketty, Goldhammer 2014, p. 1). 

 

Challenges and opportunities in manufacturing industries 

The majority of root causes of manufacturing issues, for example, product availability, delivery 

performance, quality, efficiencies, etc. are related to transactional processes such as new 

product development, sales and operations planning, outsourcing, or other (Burton 2011, 

p. 359). Overarching challenges for the manufacturing sector are the maturity and saturation of 

industrial products; de-industrialization, unattractiveness of employment in manufacturing; and 

environmental impact (Hitomi 1996, pp. 497–498). A variety of factors hit production, e.g., 

cost pressure, new technologies with high complexity, time constraints for ramp-

up/changeovers/delivery, quality standards, innovation, globalization, and organizational 

factors. Due to these factors further development of production concepts and systems is 

necessary (Wildemann 2010, p. 10). Wiendahl established several guidelines for future 

production, e.g., reacting fast to exceed the standard delivery performance of the market; being 

flexible to dominate volume and product mix changes; taking physical limits as point of 

orientation; designing products and processes to operate in a sustainable, energy and resource-

efficient manner throughout the entire life cycle (Wiendahl et al. 2014, p. 74). In the “New 

Profit Imperative in Manufacturing”, Wise and Baumgartner, argue that smart manufacturers 

have to go downstream, towards the customer, for the very simple reason: “that’s where the 

money is”. This results in exploiting valuable economic activity beyond manufacturing across 

the entire product life cycle (Wise, Baumgartner 1999, 133). Hitomi lays out 6 approaches to 

manufacturing excellence: (1) automated production/computer integrated manufacturing 
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systems, (2) flexible/human-centered production, (3) high added-value production, (4) 

manufacturing for customer satisfaction, (5) green production, and (6) socially appropriate 

production (Hitomi 1996, pp. 500–501). According to Westkämper, the enablers of the 

production of the future are fundamentally driven by the innovations in information and 

communication technology leading to knowledge based technical and organizational processes; 

interconnected internal and external process chains; quick supply of information accessible 

from any location at any time; interactive ways of working with a high degree of visualization 

of complex processes; connection of real technical world with virtual display via sensor-

linkage; and connection of suppliers and users during the life cycle of all technical products. As 

a consequence the boundaries of manufacturing extend to the entire life cycle and information 

technology supports the reduction in resource consumption (Westkämper 2013b, p. 9). But 

there is more than just technology. Skinner framed it as the productivity paradox, a "40 40 20" 

rule, stating that competitive advantage in manufacturing is driven 40% by structural factors 

such as manufacturing footprint, another 40% by process and equipment technology, and 20% 

by productivity improvement (Skinner 1986, 56). This document will focus the discussion on 

the 60% consisting of increasing productivity and technology and will not cover the area of 

manufacturing footprint. Driving productivity through operational measures has always been 

critical in manufacturing and resulted in the fact that a lot of performance management methods 

have been developed in this sector (Yadav, Sagar 2013, p. 956).  

 

2.3 Process industries 

Process industries account for a significant portion of GDP in many countries and embrace a 

variety of businesses from small batch manufacturing in pharmaceuticals, to large batch 

manufacturing in steel production, up to continuous processing facilities in the petrochemical 

industry. However, “operations management (OM)  research has traditionally paid very little 

attention to this large group of industries” (van Donk, Fransoo 2006, p. 211).  

 

Definitions 

Process industries are defined as “Manufacturers that produce products by mixing separating, 

forming, and/or performing chemical reactions” (Pittman, Atwater 2016, p. 141) and include 

large industrial scale processes in sectors such as: oil and gas production; mid-stream oil and 

gas processing; refining; petrochemicals; chemical and plastic production; food and drink 

processing; pharmaceuticals; water and waste water; paper production; nuclear power and other 

forms of power generation; and mining (Edmonds, Wilkinson 2016, pp. 13–14). “All process 

industries, whether batch or continuous, use nondiscrete materials”, e.g., liquids, pulps, 

slurries, gases, and powders (Dennis, Meredith 2000a, p. 1086). 
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Characteristics of process vs. discrete industries 

Process industries are typically distinguished from discrete industries, which work with distinct 

solid materials that do not readily change and that maintain their shape and form without 

containerization. In contrast, process industries handle nondiscrete materials that expand, 

contract, settle out, absorb moisture, or dry out and cannot be held without containerization 

(Dennis, Meredith 2000a, p. 1086). Another common view is that process industries produce a 

variety of products from few raw materials whereas discrete industries assemble few product 

out of many input materials (Fransoo, Rutten 1994, p. 49). Changes to raw materials in process 

industries are transformational and frequently time dependent compared to reconfigurational 

and time independent changes in mechanical manufacturing, such as assembly industries (Floyd 

2010, p. 16). Many companies in process industries “are actually hybrids due to the fact that 

their non-discrete units become discrete at some point during the manufacturing process” 

(Dennis, Meredith 2000b, p. 687). Table 3 summarizes further differences between the two 

industries (Ashayeri et al. 1996, p. 3312). 

 Process industries Discrete industries 

Relationship with the market 

Product type 

Product assortment 

Demand per product 

Cost per product 

Order winners 

 

Transporting costs 

New products 

 

Commodity 

Narrow 

High 

Low 

Price 

Delivery guarantee 

High 

Few 

 

Custom 

Broad 

Low 

High 

Speed of delivery 

Product features 

Low 

Many 

The production process 

Routings 

Lay-out 

Flexibility 

Production equipment 

Labor intensity 

Capital intensity 

Changeover times 

Work in process 

Volumes 

 

Fixed 

By product 

Low 

Specialized 

Low 

High 

High 

Low 

High 

 

Variable 

By function 

High 

Universal 

High 

Low 

Low 

High 

Low 

Quality 

Environmental demands 

Danger 

Quality measurement 

 

High 

Sometimes 

Sometimes long 

 

Low 

Hardly 

Short 

Planning & Control 

Production 

Long term planning 

Short term planning 

Starting point planning 

Material flow 

Yield variability 

Explosion’ via 

By and co-products 

Lot tracing 

 

To stock 

Capacity 

Utilization capacity 

Availability capacity 

Divergent + convergent 

Sometimes high 

Recipes 

Sometimes 

Mostly necessary 

 

To order 

Product design 

Utilization personnel 

Availability material 

Convergent 

Mostly low 

Bill of material 

Not 

Mostly not necessary 

Table 3: Differences between process industries and discrete industries (Ashayeri et al. 1996, p. 3312) 

 

Batch vs. continuous processing 

Within process industries two modes of operations, batch and continuous processing, are 

distinguished. Fransoo and Rutten compare the key characteristic in Table 4. 
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Process/flow businesses are characterized by Batch/mix businesses are characterized by 

 High production speed, short throughput time 

 Clear determination of capacity, one routing 

for all products, no volume flexibility 

 Low product complexity 

 Low added value 

 Strong impact of changeover times 

 Small number of production steps 

 Limited number of products 

 Long lead time, much work in process 

 Capacity is not well-defined (different 

configurations, complex routings) 

 More complex products 

 High added value 

 Less impact of changeover times 

 Large number of production/ process steps 

 Large number of products 

Table 4: Characteristics continuous vs. batch (Fransoo, Rutten 1994, p. 53) 

 

The element of time 

Floyd points out three aspects of time in production that are relevant in process manufacturing 

such as in the chemical industry: (1) residence time, the time between initiation and completion 

of a chemical reaction; (2) persistence, time required to start or stop a reaction; and (3) 

continuity, i.e., continuous transformation of raw materials into products (Floyd 2010, 

p. 19,21). Also from a production and inventory management systems perspective, Dennis and 

Meredith concluded that a time-based system view might be most appropriate compared with a 

material-/capacity-dominated view (Dennis, Meredith 2000b, p. 697).  

 

Challenges and opportunities in process industries 

One of the key challenges of process industries is their typically high capital intensity resulting 

in long amortization times of 10 to 15 or more years and high fixed costs putting pressure on 

companies to run their factories at the highest possible asset utilization (Friedli, Schuh 2012, 

p. 12). With capital and materials representing approximately 70% of the factory cost and labor 

the remaining 30% (Floyd 2010, p. 140), making resources more productive becomes 

paramount (Hammer, Somers 2015, p. 14). An essential requirement for operations in process 

industries is to remain within design and safety limits through tight process control of variables 

such as flow, temperature or pressure (Edmonds, Wilkinson 2016, p. 15). Improving safety, 

reducing variability, as well as documenting and sharing best-practices helps factories become 

more agile and more cost efficient (Ferdows, Thurnheer 2011, p. 922). Although the strategic 

value of agility varies between industries (Luczak 2017, p. 19), Floyd affirms that, given the 

large cost base and high capital intensity in process industries, the application of operations 

improvement principles “will yield higher benefits compared to discrete manufacturing” 

(Floyd 2010, pp. xv–xvi). However, Dennis and Meredith found that process industries face 

difficulties in realizing these benefits (Dennis, Meredith 2000b, p. 683). A positive example 

illustrating the opportunities that can be achieved, is a case study of a long term operations 

improvement effort for factory fitness at Hydro Aluminum Extrusion Group worldwide. 

Between 1986 and 2001, the factories did not only significantly improve safety, but also 

achieved a doubling of labor productivity (4.6 percent per year) and an output increase of 70 

percent (4 percent per year) (Ferdows, Thurnheer 2011, p. 923). 
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2.4 Summary: Manufacturing in process industries 

Manufacturing is an economically highly relevant sector. Private companies follow the profit 

maximization objective. A series of mega trends including globalization, environmental 

sustainability and digitalization have profound effects on manufacturing. Process industries 

embrace a wide range of sectors, such as the chemicals, metals, mining and pharmaceuticals 

industries, thus they represent a large and significant industrial sector. Due to the nature of the 

industry and continuous operations, time is an important factor in optimization as it is the 

ultimate constraint. In general, the sector already captures a lot of process data which can be 

used for analysis and are part of Big Data. There is further opportunity to apply lean, Six Sigma 

and agile principles, which will be covered under operations optimization in chapter 5. 

Learning Delimitations Requirements 

 Megatrends affect industry, e.g., digitization 

 Increased volatility, uncertainty, complexity and 

ambiguity (VUCA) 

 Manufacturers have a social and/ or profit objective 

 Process industries include a wide range or sectors 

and differ significantly from discrete industries 

 Process industries are capital and asset intense  

 Time is a critical constraint 

 There is a need to make resources more productive 

 Process industries generate a lot of data 

INCLUDES 

 Manufacturing at a process 

industry plant, regardless of 

geography and sector 

EXCLUDES 

 Discrete manufacturing, the 

larger supply chain, and 

service industries 

 Leverage digital technologies 

 Help manufacturers cope with 

VUCA context 

 Maximize profits 

 Focus on time utilization 

 Develop a generic 

improvement approach for 

process industries, independent 

from sector, location or plant 
size 

Table 5: Summary of conclusions from industry perspective 
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3 Digitization perspective: Impact of digital 

technologies in manufacturing 

This chapter provides a perspective on digitization and the impact on manufacturing. Section 

3.1 introduces digitization and the subsequent chapters cover Industry 4.0 (section 3.2), 

Industrial Internet of Things (section 3.3), Big Data (section 3.4), advanced analytics (section 

3.5) and a summary (section 3.6). 

3.1 Digitization 

Digitization presents an enormous financial opportunity. The World Economic Forum 

estimated the potential benefits, Figure 11, for industry and society as high as $100 trillion in 

the period to 2025 (World Economic Forum 2016, p. 2). 

 

Figure 11: Value opportunity of digital transformation to 2025 (World Economic Forum 2016, p. 61) 

Digitization also presents an attractive opportunity from a regional point of view. The 2016 

study “Digital Europe – Pushing the frontier, capturing the benefits” found that Europe operates 

at only 12 percent (Bughin et al. 2016, p. 7) and the US economy at 18 percent of the potential 

shown by the digital frontier (Bughin et al. 2016, p. 12). Improvement opportunities can be 

grouped by categories, Table 6, including improved asset efficiency, resource management, 

better operations and supply-chain optimization (Bughin et al. 2016, p. 33). 
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Labor Multifactor productivity 

Increased supply and productivity 

 Increased labor-force participation 

 Better and faster matching of workers with employers 

 Increased productivity of workers in the labor force 

 

R&D and product development 

 Better use of data leads to new inventions 

 Faster product development cycles enabled by better testing 

and quality control 

Operations and supply-chain optimization 

 Real-time monitoring and control of production lines 

 Better logistics routing through path optimization and 

prioritization 

Resource management 

 Improved energy efficiency through intelligent building 

systems 

 Increased fuel efficiency 

 Decreased waste of raw materials 

Capital 

Improved asset efficiency 

 Preventive maintenance decreases downtime and reduces 

expenditure on maintenance 

 Increased use of assets 

Table 6: Improvement opportunities by categories (Bughin et al. 2016, p. 33) 

This profit per hour research addresses a number of categories mentioned in Table 6, for 

instance, improved asset efficiency, resource management and operations optimization through 

real-time monitoring and control of production. 

  

Technologies 

Slack defines disruptive technologies as “technologies which in the short term cannot match 

the performance required by customers but may improve faster than existing technology to 

make that existing technology redundant” (Slack et al. 2010, p. 660). New technologies are also 

being adopted at ever higher speed. While it took 38 years for the radio to reach fifty million 

users, it was only 13 years for television, 3 years for the internet and 1 year for Facebook (Dobbs 

et al. 2015, p. 43). The World Economic Forum studied “Technology Tipping Points and 

Societal Impact” and identified six megatrends: (1) people and the internet; (2) computing, 

communications and storage everywhere; (3) the Internet of Things; (4) artificial intelligence 

and Big Data; (5) the sharing economy and distributed trust, and (6) the digitization of matter 

(World Economic Forum 2015, p. 5).  

 

From digitization to digital transformation 

Digitization goes back to the binary numerical system developed by Leibniz (Khan 2016, pp. 3–

4). Through the conversion of information into 1s and 0s, digitization results in the creation of 

Big Data and close to zero cost information processing capability (Dobbs et al. 2015, p. 39). 

The book “Digital Economy” (Tapscott 2014, pp. 78–80) lays out twelve themes explained in 

Table 7. 
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1. Knowledge There is a shift from brawn to brain. Knowledge becomes an important element of products. The gap between 

consumers and producers blurs. 

2. Digitization Human communication, delivery of government programs, execution of health care, business transactions, 

exchange of funds, etc., become based on ones and zeros. 

3. Virtualization Physical things can become virtual—changing the metabolism of the economy, the types of institutions and 

relationships possible, and the nature of economic activity itself. 

4. Molecularization Replacement of the mass media, mass production, monolithic governments, by molecular media, production, 

governance, etc. 

5. Integration/ 

Inter-networking 

The new economy is a networked economy with deep, rich interconnections within and between organizations 

and institutions. Wealth creation, commerce, and social existence are based on a ubiquitous public 

infrastructure. 

6. Disintermediation Elimination of intermediaries in economic activity including agents, brokers, wholesalers, some retailers, 
broadcasters, record companies, and anything that stands between producers and consumers. 

7. Convergence Convergence of key economic sectors—computing, communications, and content. 

8. Innovation Innovation is the key driver of economic activity and business success. Rather than traditional drivers of 

success such as access to raw materials, productivity, scale, and the cost of labor, human imagination becomes 
the main source of value. 

9. Prosumption The gap between consumers and producers blurs in a number of ways. For example, consumers become 

involved in the actual production process as their knowledge, information, and ideas become part of the 

product specification process. Human collaboration on the Net becomes a part of the international repository of 
knowledge. 

10. Immediacy The new economy is a real-time economy. Commerce becomes electronic as business transactions and 

communications occur at the speed of light rather than of the post office. 

11. Globalization Knowledge knows no boundaries. As knowledge becomes the key resource, there is only a world economy, 

even though the individual organization operates in a national, regional, or local setting. New economic and 

political regions and structures (such as the European Union) are leading to a decline in the importance of the 
nation-state and increasing the interdependencies among countries. 

12. Discordance Massive social contradictions are arising. New, highly paid employment versus the inappropriate skills of laid-

off workers. Gulfs are growing between haves and have-nots, knowers and know-nots, those with access to the 
internet and those without it. 

Table 7: Themes of the Digital Economy (Tapscott 2014, pp. 78–80) 

 

On top of digitization there is digital transformation, which is “the use of technology to radically 

improve performance or reach of enterprises” (MIT Center for Digital Business and Capgemini 

Consulting 2011, p. 5). Burton points out that “technology is most successful when it is 

integrated with process improvement and enables a fact-based solution to a business problem 

or challenge” (Burton 2011, p. 378). This requires organizational change, leadership, a 

compelling vision, and a process helping with the “how” rather than “the what” (MIT Center 

for Digital Business and Capgemini Consulting 2011, p. 5). The building blocks of a digital 

transformation are shown in Figure 12. 
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Figure 12: Building blocks of digital transformation (MIT Center for Digital Business and  

Capgemini Consulting 2011, p. 17) 

 

Current state, challenges and opportunities 

For Porter and Heppelmann, digitization will lead to a new era of lean production systems, 

enabled by smart, connected products. By providing data on their activities, location, or 

maintenance needs, these products will reduce waste and lead to productivity increases in the 

area of materials, energy, labor, and assets (Porter, Heppelmann 2015). For asset-heavy 

industries and public sector-like businesses, digitization is of particular relevance, as they are 

considered as digital laggards (Bughin et al. 2016, p. 10). The digital economy also requires 

people to change. According to Tapscott, yesterday’s managers need to become tomorrow’s 

leaders, who carefully balance business objectives with needs of employees, customers and 

society in the face of the digital disruption (Tapscott 2014, xv).  
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3.2 Industry 4.0 

The first three industrial revolutions are associated with mechanization, electrification and the 

rise of information technology, Table 8. The fourth industrial revolution is driven by the 

introduction of the Internet of Things and Services in the manufacturing environment 

(Kagermann et al. 2013, p. 5). Industry 4.0 is made possible by advancements in hardware and 

software technologies, such as miniaturization, sensors, storage capacities and computing 

power, that are now cheap enough for deployment at scale in production (Neugebauer et al. 

2016, p. 4). 

1. Industrial revolution 

follows introduction of water- 

and steam-powered mechanical 
manufacturing facilities 

2. Industrial revolution 

follows introduction of 

electrically-powered mass 

production based on the 
division of labor 

3. Industrial revolution uses 

electronics and IT to achieve 

further automation of 
manufacturing 

4. Industrial revolution based 
on Cyber-Physical Systems 

 

End of 18th century Start of 20th century Start of 1970s Today 

Table 8: The four stages of the industrial revolution (Kagermann et al. 2013, p. 13) 

Industry 4.0, according to Kagermann et al., promises huge potential through new business 

models and increases in resource productivity and cross-value chain efficiencies. Smart 

factories will be capable of profitably producing custom specific items in an agile way, and 

smart assistance systems will help workers to focus on really value-added activities instead of 

routine tasks (Kagermann et al. 2013, p. 5). Table 9 gives an overview of the estimated cost 

optimization potential through Industry 4.0. 

Cost type Effects Potentials 

Inventory  Reduction of safety stocks 

 Avoidance of Bullwhip and Burbridge effects 

-30 to -40% 

Production  Increase in Overall Equipment Effectiveness (OEE) 

 Process control loops 

 Improvement in vertical and horizontal labor flexibility 

-10 to -20% 

Logistics  Higher degree of automation (milk run, picking, …) -10 to -20% 

Complexity  Enhanced span of control 

 Reduced trouble shooting 

-60 to -70% 

Quality  Real-time quality control loops -10 to -20% 

Maintenance  Optimization of spare part inventories 

 Condition-based maintenance (process data, measurement data) 

 Dynamic prioritization 

-20 to -30% 

Table 9: Estimated benefits of Industry 4.0 (Bauernhansl 2014, p. 31) 

 

Regional perspectives related to Industry 4.0  

Industry 4.0 originated as a “strategic initiative” of the German government, part of the High-

Tech Strategy 2020 Action Plan, which was approved in November 2011 (Kagermann et al. 

2013, p. 77). Ernst Burgbacher, at the time Parliamentary State Secretary in the Federal Ministry 

of Economics and Technology declared that “Germany’s economy is characterized by its 

strong industrial base, particularly its machinery and plant manufacturing, automotive and 

energy industries. Implementation of Industry 4.0 will be absolutely key to its future 
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development – we cannot allow industry to come to a standstill” (Kagermann et al. 2013, p. 30). 

Other regions are pursuing similar initiatives, Table 10.  

USA Europe, specifically Germany China Japan and South Korea 

 

“Radical Innovation” “Engineering Excellence” “Speed” “Ability to Scale” 

Bringing digital innovation 

into the physical world 

Start-ups for the Internet of 

Things and manufacturing 

Renaissance 

 

Bringing engineering 

excellence into the digital 

world 

Visionary concepts integrating 

technology, society and 
economy 

Pragmatic application of 

quick-wins and long-term 

strategy 

Application of mature 

technologies. strategic 

development of key 
technologies 

Innovation by application 

Massive construction of smart 

factories and very large 

manufacturers, strengthening 

products through domestic 
demand 

Table 10: Current focuses of selected countries and regions in the context of Industry 4.0  

(Gausemeier, Klocke 2016, p. 33) 

The Chinese government established a program called China Manufacturing 2025 (CM2025), 

which Chu, considers as “China’s answer to Germany’s Industry 4.0” (Chu 2016, p. 7). But 

CM2025 goes beyond the technological aspects of Industry 4.0 in that it includes the 

restructuring of manufacturing industry to make it more competitive (European Union Chamber 

of Commerce in China 2017, p. 7). CM2025 priority areas include: improving manufacturing 

innovation; integrating IT and industry; strengthening the industrial base; fostering Chinese 

brands; enforcing green manufacturing; promoting breakthroughs in 10 key sectors; advancing 

restructuring of the manufacturing sector; promoting service-orientated manufacturing and 

manufacturing-related service industries; and internationalizing manufacturing (European 

Union Chamber of Commerce in China 2017, p. 9). 

In the United States, the President's Council of Advisors on Science and Technology promoted 

the term “advanced manufacturing” in a report in 2011: “We believe that advanced 

manufacturing provides the path forward to revitalizing U.S. leadership in manufacturing, and 

will best support economic productivity and ongoing knowledge production and innovation in 

the Nation” (Executive Office of the President: President's Council of Advisors on Science and 

Technology 2011, ii). The recommendations of the Advanced Manufacturing Partnership 

across communities, academia, businesses, and government follow three pillars: (1) enabling 

innovation, (2) securing the talent pipeline, and (3) improving the business climate (Executive 

Office of the President: President's Council of Advisors on Science and Technology 2014, 

pp. 17–19). Advanced manufacturing covers both new production technologies and new 

products and is broadly defined as “a family of activities that (a) depend on the use and 

coordination of information, automation, computation, software, sensing, and networking, 

and/or (b) make use of cutting edge materials and emerging capabilities enabled by the physical 

and biological sciences, for example nanotechnology, chemistry, and biology” (Executive 

Office of the President: President's Council of Advisors on Science and Technology 2011, ii). 
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Definition 

According to agiplan, Industry 4.0 is a meta term, referring to the advancement of production 

and value creation systems through combining physical and digital worlds (agiplan et al. 2015, 

p. 12). The integration of cyber-physical systems into manufacturing, as part of Industry 4.0, 

effects business models and value creation in both production and services (Kagermann et al. 

2013, p. 14). Industry 4.0 covers multiple dimensions: technology, e.g., highly interconnected 

systems from sensors/actuators to machines/equipment and users; organization, e.g., self-

controlled, autonomous systems; humans, e.g., their qualification; business models such as 

individualized production (agiplan et al. 2015, p. 1). Baur and Wee consider Industry 4.0 “as 

the next phase in the digitization of the manufacturing sector” based on four trends: (1) the rise 

in data volumes, computational power, and connectivity, (2) the emergence of analytics and 

business-intelligence capabilities; (3) new forms of human-machine interaction such as 

augmented-reality systems; and (4) improvements in transferring digital instructions to the 

physical world, such as advanced robotics and 3-D printing (Baur, Wee 2015, p. 1). Research 

into academic publications resulted in the following terms that define what Industry 4.0 means: 

real-time data, Big Data, machine-to-machine, the Internet of Things, cyber physical systems, 

cloud computing, and smart grid (Tschöpe et al. 2015, p. 148). Bauernhansl points out that it is 

not the digitalization that is revolutionary, but the possibilities offered by interconnected 

technical systems, communication, services, and humans as part of Industry 4.0 (Bauernhansl 

2016, p. 454). The journey towards Industry 4.0, turning traditional factories into smart 

factories, is expected to be gradual and evolutionary (Lee et al. 2015b, p. 8). A study 

commissioned by the IMPULS foundation of the German Mechanical Engineering Industry 

Association VDMA framed the following dimensions of Industry 4.0: smart factory, smart 

products, smart operations, data-driven services, strategy and organization, and employees 

(Lichtblau et al. 2015, p. 21). The study conducted by IW Consult (a subsidiary of the Cologne 

Institute for Economic Research) and the Institute for Industrial Management (FIR) at RWTH 

Aachen University developed a readiness model based upon these six dimensions, Figure 13. 
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Figure 13: Dimensions and associated fields of Industry 4.0 (Lichtblau et al. 2015, p. 22) 

 

Smart factories 

Smart factories offer significant potential ranging from individualized production in dynamic 

business environments to continuous improvement through optimal decision making 

(Monostori et al. 2016, p. 625). Kagermann et al highlighted smart factories as a key feature of 

Industry 4.0 (Kagermann et al. 2013, p. 19). However, the idea of „Smart Factories“ existed 

even prior to Industry 4.0. In 2009 Westkämper and Zahn saw it as a new generation of 

knowledge-based factories based on information available anytime, anywhere through 

ubiquitous computing (Westkämper, Zahn 2009, p. 12). A smart factory is a cyber-physical 

manufacturing system enabling agile production through the integration of equipment, 

machines, products with information systems such as MES and ERP (Wang et al. 2016, p. 159). 

A smart factory is defined as a “factory whose degree of integration has reached a level which 

makes self-organizing functions possible in production and in all business processes relating 
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to production” (VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik 2016a, p. 20). 

Self-x properties can include adaptation, organization, optimization, configuration, protection, 

healing, discovery, description (Friess 2013, p. 63). Table 11 offers a comparison between a 

typical factory and a smart factory.  

 Today´s factory Industry 4.0 

 Data source Attributes Technologies Attributes Technologies 

Component Sensor Precision Smart sensors and 

fault detection 

Self-aware 

Self-predict 

Degradation 

monitoring & 

remaining useful life 
prediction 

Machine Controller Producibility & 

performance 

Condition-based 

monitoring & 
diagnostics 

Self-aware 

Self-predict 
Self-compare 

Up time predictive 

health monitoring 

Production 

system 

Networked 

system 

Productivity & OEE Lean operations: work 

and waste reduction 

Self-configure 

Self-maintain 
Self-organize 

Worry-free 

productivity 

Table 11: Comparison of today´s with an Industry 4.0 factory (Lee et al. 2015a, p. 19) 

For Gilchrist, the smart factory of the future unlike any traditional factories has already arrived 

(Gilchrist 2016, p. 194). 

 

Smart products 

Smart products are another element of Industry 4.0. For Kagermann et al., products are smart 

if they “know the details of how they were manufactured and how they are intended to be used” 

(Kagermann et al. 2013, p. 19). A smart product is characterized as a “produced or 

manufactured (intermediate) product which in a smart factory delivers the (outward) 

communication capability to network and to interact intelligently with other production 

participants” (VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik 2016a, p. 21). 

According to Porter and Heppelman, smart, connected products have 4 capabilities as shown in 

Table 12. 

1. Monitoring 2. Control 3. Optimization 4. Autonomy 

Sensors and external data 

sources enable the 

comprehensive monitoring of: 

 The product’s condition 

 The external environment 

 The product’s operation 

and usage 

Monitoring also enables alerts 

and notifications of changes 

 

Software embedded in the 

product or in the product 

cloud enables: 

 Control of product 

functions 

 Personalization of the 

user experience 

 

Monitoring and control 

capabilities enable algorithms that 

optimize product operation and 
use in order to: 

 Enhance product performance 

 Allow predictive diagnostics, 

service, and repair 

 

Combining monitoring, 

control, and optimization 

allows: 

 Autonomous product 

operation 

 Self-coordination of 

operation with other 

products and systems 

 Autonomous product 

enhancement and 

personalization 

 Self-diagnosis and 

service 

Table 12: Four capabilities of smart, connected products (Porter, Heppelmann 2014) 
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Smart operations 

Smart operations in production are achieved through a continuous exchange of information, “a 

dialogue between smart factory and smart product” (VDI/VDE-Gesellschaft Mess- und 

Automatisierungstechnik 2016a, p. 21). This is achieved through a “systems of systems”, i.e. 

the integration of devices, sensors and software, providing real-time visibility of equipment 

condition, operating parameters, factory or product status (Biron, Follett 2016, p. 13). As of 

2015 only 0.9% of companies had reached the highest maturity level for smart operations, that 

is characterized by complete system-integrated information sharing; autonomous control and 

self-reacting processes; and comprehensive IT security and cloud solutions (Lichtblau et al. 

2015, p. 40). Autonomous control maximizing profit per hour is the envisioned end-state of the 

approach derived in this thesis. 

 

Data-driven Services 

The goal of data-driven services, as per Lichtblau et al., is to provide additional value to 

customers through after-sales and services. This is made possible by the analysis of data 

collected from the usage phase of products (Lichtblau et al. 2015, p. 13). Data-driven services 

comprise the aspects of tele-maintenance; reduced resource consumption; and availability, 

performance, and quality enhancements through optimized parameter settings (Lichtblau et al. 

2015, p. 66). The last aspect will be directly related to the goal of profit per hour maximization 

as part of this work. 

 

Employees 

The working environment and required employee skills and qualifications will be significantly 

impacted through Industry 4.0 (Lichtblau et al. 2015, p. 52). According to Gorecky et al., 

employees will have to take on a higher degree of responsibility as their role changes to 

determine the overarching production strategy, supervise the strategy implementation and status 

of the cyber-physical system, and intervene if needed. Companies will need to help their 

employees in this transition through interdisciplinary training and qualification, and provision 

of appropriate supporting human-technology solutions (Gorecky et al. 2014, p. 527). One of the 

aims of this work is to support employee decision making through the profit per hour approach. 

 

Strategy and organization 

Industry 4.0 is a strategic topic, especially when it comes to identifying new business models 

based on innovation and use of new technologies (Lichtblau et al. 2015, p. 29). Baur and Wee 

recognize eight value areas for Industry 4.0: (1) resource/process efficiency, e.g., smart energy 

consumption or real-time yield optimization; (2) asset utilization, e.g., predictive maintenance, 

augmented reality for the maintenance and repair organization; (3) labor, e.g., human-robot 

collaboration and digital performance management; (4) inventories, e.g., real-time supply chain 

optimization and in situ 3-D printing; (5) quality, e.g., statistical process control (SPC) and 

advanced process control (APC); (6) supply/demand match, e.g., data-driven demand 
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prediction and data-driven design to value; (7) time to market, e.g., rapid experimentation and 

simulation; and (8) service/aftersales, e.g., predictive maintenance, remote maintenance and 

virtually guided self-service (Baur, Wee 2015, p. 3). 

 

Current state, challenges and opportunities 

Industry 4.0 is a major opportunity to increase profitability in manufacturing. It goes far beyond 

the adoption of particular technologies as it encompasses disruptive business models and 

significantly affects humans and society at large. The chances are manifold, so are the risks. 

Challenges includes data protection, cyber-security, system reliability (agiplan et al. 2015, 

p. 79), and additional technological or organizational barriers in the supply chain (Kersten et 

al. 2014, p. 114). The key to increased performance in Industry 4.0 is the optimal collaboration 

between humans and cyber-physical systems. The vision of a self-controlling production plant 

with humans and technical components working synergistically together in a socio- technical 

unit, delivering creative value-added by working seamlessly together, is compelling (Eßer 

2015, p. 3). R&D challenges consist of the handling of time, computational dynamical systems 

theory, standardization, and security issues (Monostori et al. 2016, p. 637). The biggest 

potential benefit of digitalization in the context of Industry 4.0 is to become more agile, thus 

reacting faster to external dynamics through analytics-based decision-making and increased 

efficiency (Schuh et al. 2017, p. 10). Turning factories into smart factories in Industry 4.0 is 

directly related to the Industrial Internet of Things (Wan et al. 2016, V).  

 

3.3 Industrial Internet of Things 

Intelligent systems connecting factories, machines, products and people with each other in real 

time, across all industries, is the vision of the Internet of Things (IoT) (Biron, Follett 2016, 

p. 1). According to the latest forecasts, “8.4 billion connected things will be in use worldwide 

in 2017, up 31 percent from 2016, and will reach 20.4 billion by 2020” (Gartner 2017). "Interest 

in IoT is higher than ever: 28% of businesses already have live projects, with a further 35% 

less than a year away from launch" according to the 4th edition of the Vodafone IoT Barometer 

in 2016. The survey concludes that IoT drives large-scale business transformation with 

measurable results, that it is a business topic and not a technology topic, and that one major 

focus is on Big Data and analytics to support decision making (Vodafone 2016, pp. 4–5). This 

is also reflected in a 22 percent compound annual growth rate (CAGR) for analytics and IoT 

from 2015 to 2020, a 2.7-fold growth (Cisco 2016). The estimated total potential economic 

impact is $3.9 trillion to $11.1 trillion per year in 2025 (Manyika et al. 2015, p. 2). 

 

Definitions 

According to Biron and Follett the term “Internet of Things” was developed by Kevin Ashton 

of the Massachusetts Institute of Technology (MIT) in 1999 (Biron, Follett 2016, p. 2). But 

similar concepts such as machine-to-machine (M2M) connectivity go back even further (Perry 
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2016, p. 1). Nowadays, the terms machine-to-machine communication and the Internet of 

Things are often used interchangeably (Höller et al. 2014, p. 10), although M2M only refers to 

communication between devices of the same type (Höller et al. 2014, p. 11). IoT, as per the 

International Telecommunication Union (ITU) is about communication between any type of 

thing (ITU-T 2012, p. 3), as shown in Figure 14.  

 

Figure 14: The new dimension introduced in the Internet of things (ITU-T 2012, p. 3) 

A popular definition is for the Internet of Things is provided by Gartner: “The Internet of Things 

(IoT) is the network of physical objects that contain embedded technology to communicate and 

sense or interact with their internal states or the external environment10.” 

Formal definitions are provided by the standardization sector of the International 

Telecommunication Union (ITU-T 2012, p. 1): 

Internet of Things (IoT): A global infrastructure for the information society, enabling 

advanced services by interconnecting (physical and virtual) things based on existing and 

evolving interoperable information and communication technologies. 

NOTE 1 – Through the exploitation of identification, data capture, processing and 

communication capabilities, the IoT makes full use of things to offer services to all kinds of 

applications, whilst ensuring that security and privacy requirements are fulfilled. 

NOTE 2 – From a broader perspective, the IoT can be perceived as a vision with 

technological and societal implications. 

Thing: With regard to the Internet of things, this is an object of the physical world (physical 

things) or the information world (virtual things), which is capable of being identified and 

integrated into communication networks.  

                                                

10 http://www.gartner.com/it-glossary/internet-of-things, last accessed 10.03.2017 
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Device: With regard to the Internet of things, this is a piece of equipment with the mandatory 

capabilities of communication and the optional capabilities of sensing, actuation, data 

capture, data storage and data processing. 

The Internet of Things brings together consumer, business and Industrial Internet (Friess 2013, 

pp. 8–9). The creation of the term Industrial Internet is attributed to General Electric (Gilchrist 

2016, p. 1) and the application of IoT to the industrial area is now commonly known as the 

Industrial Internet of Things, or IIoT (Chu 2016, p. 11). The IIoT covers all sectors such as 

energy and utilities, manufacturing, agriculture, health care, retail and, transportation and 

logistics (Gilchrist 2016, p. 2). Usually retrofitting existing infrastructure with the sensors and 

communication modules is required to achieve smart, connected operations (Biron, Follett 

2016, p. 12). Next to the self-x properties already mentioned, autonomy is a vital element of 

IoT systems in industry (Friess 2013, p. 63). 

 

Technology 

“One of the most significant advances in the development of computer science, information and 

communication technologies is represented by cyber-physical systems (CPS)” (Monostori et al. 

2016, p. 621). A cyber-physical system is defined as a “system which links real (physical) 

objects and processes with information-processing (virtual) objects and processes via open, in 

some cases global, and constantly interconnected information networks” (VDI/VDE-

Gesellschaft Mess- und Automatisierungstechnik 2016a, p. 18). The application of CPS in 

production results in cyber-physical production systems (CPPS), Figure 15, where employees 

interact with both physical and virtual system components (Thiede et al. 2016, p. 8).  

 

Figure 15: Functionalities of CPPS (Bauernhansl 2016, p. 454) 
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CPPS need to be smart, autonomous and able to collaborate with all users and elements of the 

system (Monostori et al. 2016, p. 624). In this context, the term digital twin or digital shadow 

is used for a “dynamic software model of a physical thing or system that relies on sensor data 

to understand the state of the thing or system, respond to changes, improve operations, and add 

value” (Gartner 2016). 

The capabilities of CPPS depend on the progress of the underlying technologies and their 

readiness level for application, Table 13. 

Technology-field 
Technology-readiness level 1-3 

(Basics) 

Technology-readiness level 4-6 

(Evaluation) 

Technology-readiness level 7-9 

(Implementation) 

Internet- and communication-

technology 

 Real-time wireless 

communication 

 Self-organizing 

communication-networks 

 Communication standards 

 Horizontal and vertical 

system-integration 

 Real-time bus-technology 

 Wire bound high-performance 

communication 

 IT-security 

 Mobile communication 

channels 

Sensor technology 

 Miniaturized sensor 

technology 

 Intelligent sensor technology 

 Linked-up sensor technology 

 Fusion of sensors 

 New security-sensors 

 

Embedded systems 
 Miniaturized embedded 

systems 

 Energy-harvesting  Intelligent embedded systems 

 Identification means 

Actuators 

  Intelligent actuators 

 Linked-up actuators 

 Safe actuators 

 

Human-machine interface 

 Behavior-models of humans 

 Context-based representation 

of information 

 Semantics-visualization 

 Speech- and gesture-control 

 Perception-controlled 

interfaces 

 Tele-maintenance 

 Augmented reality 

 Virtual reality 

 Intuitive control-elements 

Software/system-technology 

 Simulation-environment 

 Multi-criteria evaluation of 

situations 

 Multi-agent systems 

 Machine-learning and 

pattern-recognition 

 Big-Data storage- and 

analysis-methods 

 Cloud-computing and –

services 

 Ontologies 

 Mobile communication-

channels 

Automation, production 

technology and robotics 

 Autonomous robots 

 Humanoid robots 

 Cloud robotics 

 Deep learning 

 Additive manufacturing 

 Sensitive robotics 

 Multiple-axes robots 

Table 13: Maturity of technologies (agiplan et al. 2015, p. 24) 

 

Technology convergence 

In the broad spectrum of technological developments in the IoT ranging from cloud computing 

to CPS, Friess identified a trend of convergence (Friess 2013, p. 17). This convergence will 

help with both horizontal integration end-to-end across the value chain and vertical integration 

of IT systems within a company. Kagermann et al., specify that horizontal integration of IT 

systems includes all stages of the business lifecycle within a company and their network, such 

as planning, inbound logistics, production, outbound logistics and marketing. On the other 

hand, vertical integration connects systems across hierarchical levels, e.g. the actuator and 
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sensor, process control, production management, manufacturing execution and corporate 

planning levels (Kagermann et al. 2013, p. 20). This brings together, so called, Operational 

Technology (OT) with Information Technology (IT), shown in Figure 16, which will need to 

act as one (Gilchrist 2016, p. 192). Prior to the IIoT, there was limited learning and business 

insight due to separate processes, systems and organizations for OT and IT (IIC - Industrial 

Internet Consortium 2016, p. 17). 

The Gartner IT glossary defines IT and OT in the following ways: 

IT (information technology) “is the common term for the entire spectrum of technologies for 

information processing, including software, hardware, communications technologies and 

related services.”11 

OT (operational technology) “is hardware and software that detects or causes a change 

through the direct monitoring and/or control of physical devices, processes and events in 

the enterprise.”12 

 

Figure 16: Current IT/OT state and transformation potential (IIC - Industrial Internet Consortium 2016, p. 18) 

 

Current state, challenges and opportunities 

“The potential benefits of IoT are almost limitless” according to Vermesan and Friess. The 

successful adoption of the IoT in their opinion, will be enabled by regulation that helps to build 

trust, privacy, security and interoperability within a broader ecosystem (Vermesan, Friess 2014, 

xiii). Furthermore, as per Manyika et al., the upgradability of existing equipment will affect the 

IoT adoption rate, as factories are in general capital-intensive with low rates of equipment 

replacement. They estimate an adoption rate of 65 to 90 percent in advanced economies and 50 

to 70 percent in developing economies by 2025 (Manyika et al. 2015, p. 72). Table 14 provides 

an overview of 5 types of enablers. 

  

                                                

11 http://www.gartner.com/it-glossary/it-information-technology/, last accessed 16.08.2017 
12 http://www.gartner.com/it-glossary/operational-technology-ot/, last accessed 16.08.2017 
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Software and hardware 

technology 

 Low-power, inexpensive sensors and computers 

 Ubiquitous connectivity/low-cost mesh connectivity 

 Additional capacity and bandwidth in the cloud 

 Confidence in security across entire loT ecosystem 

Interoperability 

 Standardization in the technology stack and ability to integrate across technology vendors 

 Standard protocols for sharing between loT systems 

 Standard access to external data sources 

Intellectual property, 

security, privacy, and 

confidentiality 

 Establishing trust with consumers for sharing data 

 Collaboration across companies and industry verticals 

 Horizontal data aggregators 

 Data commerce platforms 

Business organization 

and culture 

 Industry structure, e.g., organized labor cooperation, third-party servicing 

 Hardware-focused companies developing core competency in software 

 Companies committing to up-front investment based on clear business cases 

Public policy 

 Regulation for autonomous control of vehicles and other machinery 

 Government and payer subsidy of health-care loT 

 Agreements on fair practices for data sharing and use 

Table 14: Five types of enablers are needed for maximum IoT impact (Manyika et al. 2015, p. 101) 

Companies are currently already shifting from “if” to “how” to best use IoT technology; from 

“technology” to “business outcome” focused approaches; from “caution” to “action” on 

cybersecurity as part of an overall IT security strategy; and from “optimizing” to “engaging” 

employees and customers in process improvements (Vodafone 2016, p. 33). IoT technologies 

will play a fundamental role in business improvement, next generation performance 

measurement systems (Dweekat, Park 2016, p. 1). Decision-making systems will increasingly 

leverage self-learning, cognitive capabilities to deal with real-time data and complex 

interactions (Höller et al. 2014, p. 26). The convergence of OT and IT will bring together 

advanced process control systems (APC) with advanced analytics.  

 

3.4 Big Data 

In the context of Industry 4.0 companies show great interest in the topic of Big Data (Jäger et 

al. 2016, p. 119). Mayer-Schönberger sees Big Data as game changer: “Big Data is poised to 

reshape the way we live, work, and think. […] The possession of knowledge, which once meant 

an understanding of the past, is coming to mean an ability to predict the future” (Mayer-

Schönberger, Cukier 2013, p. 190). The underlying drivers of Big Data go back to an 

observation of Gordon E. Moore about doubling the power and memory of computer 

semiconductors every 18 months, since then called Moore´s law (Schaller 1997, p. 57) that led 

to a sharp decline in the price of memory13. In 2005 Walter coins the effort of “cramming of as 

many bits as possible onto shrinking magnetic hard drives” as Kryders´ law: “Since the 

introduction of the disk drive in 1956, the density of information it can record has swelled from 

a paltry 2,000 bits to 100 billion bits (gigabits), all crowded in the small space of a square inch. 

That represents a 50-million-fold increase” (Walter 2005, p. 32). The global storage capacity 

for data increased 18-fold and the global computing power by a factor of 1600 in the time period 

                                                

13 http://www.aei-ideas.org/2013/04/chart-of-the-day-the-falling-price-of-memory/, last accessed 16.08.2017 

http://www.aei-ideas.org/2013/04/chart-of-the-day-the-falling-price-of-memory/
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from 1993 to 2007 (Hilbert, Lopez 2011). While this is impressive, Gandomi and Haider rightly 

point out that “Big Data are worthless in a vacuum. Its potential value is unlocked only when 

leveraged to drive decision making” (Gandomi, Haider 2015, p. 140). However, a recent study 

from an oil rig with approx. 30,000 sensors found that <1 % of data is actually used for decision 

making. That means 99% of data remains unused because it is not stored, streamed, made 

accessible and analyzed (Manyika et al. 2015, p. 25). Next to capturing more data, Franks 

underlines that “New Information Is What Makes Big Data So Powerful”, i.e. information that 

was not available before or information with a higher level of detail (Franks 2014, p. 41). Smart 

factories will become one of the major producers of real-time data by 2020 (BDVA Big Data 

Value Association 2016, p. 38).  

 

Definitions 

There are many different definitions for Big Data, focusing on different aspects, such as  

(a) data: “Big Data refers to datasets whose size is beyond the ability of typical database 

software tools to capture, store, manage, and analyze” (Manyika et al., p. 1).  

(b) process: “Collecting, storing and processing massive amounts of data for the purpose of 

converting it into useful information” (Pittman, Atwater 2016, p. 16). 

(c) technology: “Big Data technologies as a new generation of technologies and architectures, 

designed to economically extract value from very large volumes of a wide variety of data by 

enabling high-velocity capture, discovery, and/or analysis” (Gantz, Reinsel 2012, p. 9). 

 

Characteristics 

Common attributes of Big Data are phrased as Vs and summarized in Figure 17.  

 

Figure 17: 5 Vs of Big Data (BDV PPP & BDVA 2016, p. 19) 
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One of the first authors to discuss data volume, velocity and variety was Laney in 2001 (Laney 

2001, p. 1). Since then, several additional properties of Big Data have been mentioned and 

expressed as Vs.  

 Volume refers to the magnitude of data. There is no specific threshold for Big Data, as 

the data volumes are relative and dependent on time, type and industry (Gandomi, 

Haider 2015, p. 138). 

 Velocity refers to the rate at which data are generated [,…] analyzed and acted upon. 

Big Data technologies are able to process high volumes of real-time, ‘perishable’ data 

feeds instantaneously (Gandomi, Haider 2015, p. 138). 

 Variety refers to the structural heterogeneity in a dataset. Data can be structured, semi-

structured, or unstructured data (Gandomi, Haider 2015, p. 138). 

 Veracity […] represents the unreliability inherent in some sources of data. E.g., social 

media data can be imprecise, judgement based and uncertain (Gandomi, Haider 2015, 

p. 139). 

 Value. High value is derived by analyzing Big Data, which in its original form has a low 

value relative to its volume (Gandomi, Haider 2015, p. 139). 

 Variability refers to the variation in the data flow rates. Next to fluctuating data 

velocity, there is the complexity of connecting and processing data from different 

sources (Gandomi, Haider 2015, p. 139). 

 Visibility. By visualizing data in an easily readable format people understand trends 

quicker, gain better insights and can share information internally and externally 

(Gilchrist 2016, pp. 52–54). 

“Regardless of the number of Vs in Big Data, the essential point here is that Big Data can be 

expected to vary considerably” (Guzzo 2016, p. 347). 

 

Types of data 

 Structured and unstructured data: “Structured data is information that exists in fixed 

fields of a computer record, file or database. Structured data also includes data that 

can be easily looked up, processed, analyzed and reported with little uncertainty. 

Examples of structured data include records of product prices, customer names and 

postal codes. Unstructured data are data that do not exist in fixed fields within a record 

or file, or are difficult to label. Examples of unstructured data include audio and video 

files, photographs and text-based data (documents, journals, emails and reports)” 

(APICS Suppy Chain Council 2015, p. 57). 

 Internal and external data. With Big Data “internal data can be profitably 

supplemented with external data” (Davenport 2014a, p. 21). Marr establishes a logical 

sequences for analysis: (1) internal structured data, (2) internal semi-structured, (3) 

internal unstructured, (4) External structured, (5) External unstructured (Marr 2015, 

p. 84). 

 

Within value chains data relates, for example, to customers, products, production, inventory, 

usage, quality, environment, knowledge, logistics (agiplan et al. 2015, p. 75). 
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Value of data:  

“There are three classes of value: cost reductions, decision improvements, and improvements 

in products and services” (Davenport 2014a, p. 22), which are all relevant to this research. 

Further aspects of value include, for example, the availability, access and processing of data; 

legal aspects such as data ownership or intellectual property rights; technical features such as 

interoperability of data sets and solutions; private and public ecosystems; and societal impact 

by helping to solve challenges such as climate change or public sector efficiencies (BDVA Big 

Data Value Association 2016, pp. 5–6).  

 

Data value is a matter of timing: "In most cases data has a life span" to be useful (Marr 2015, 

p. 28). Walker frames a window of opportunity, Figure 18, before the value of high velocity 

data decays to the residual value of historic data (Walker 2015, p. 42). 

 

Figure 18: Value of data over time (Walker 2015, p. 42) 

As data value declines over time it is important to actively reduce the latencies related to data, 

analytics, decisions, and actions when events occur (Iafrate 2014, p. 32), see also Figure 37 in 

chapter 4.4 (Decision support systems). Changes in decision-making culture together with Big 

Data analytics can significantly enhance corporate performance (McAfee, Brynjolfsson 2010, 

p. 61). Recent research confirmed that investments in Big Data and analytics lead to a 6% higher 

profitability (Bughin 2016, p. 3). As illustrated in Figure 19, highest returns can be achieved 

through optimal decisions supported by increases in both data velocity and data precision 

(Walker 2015, p. 52). 
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Figure 19: Achieving high return on Big Data by leveraging high velocity and high precision in Big Data 

(Walker 2015, p. 52) 
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"We don´t need Big Data - we need SMART Data!" (Marr 2015, p. 79). Smart data is created 

through the application of analytical skills and tools and enables business intelligence and real-

time process interventions (Iafrate 2014, p. 26). Smart data is essentially about the 

transformation of data into information and knowledge.  

Davenport, Prusak 2000, offer the following definitions:  

Data is “a set of discrete, objective facts about events”. It can be considered as raw material 

for information as it does not yet include judgement, interpretation or actionable 
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purpose; categorized in defined components; calculated through analyses; corrected by 

removing errors; or condensed to conclusions. 

Knowledge comes from human experience, values, and information that is compared to the 

past or benchmarks; has consequences for actions; has connections to other related topics; 

and adds to conversations among people. 

Additionally, Big Data becomes smart data through the automation of real-time, forward 

looking data analyses as basis for operational decision-making (Iafrate 2014, pp. 32–33). 
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Small data 

"Small is beautiful in a Big Data world" (Marr 2015, p. 27). This can refer to several aspects of 

the V-characteristics, e.g., less variety, the focus on only a few key parameters. Alternatively it 

can also refer to smaller volume, as per Biron and Follett in the case of construction equipment 

leases, daily location information can be sufficient (Biron, Follett 2016, p. 47). 

 

Data quality 

“'Dirty Data' is a Business Problem, Not an IT Problem”, according to Gartner. Data quality 

is about “existence (whether the organization has the data), validity (whether the data values 

fall within an acceptable range or domain), consistency (for example, whether the same piece 

of data stored in multiple locations contains the same values), integrity (the completeness of 

relationships between data elements and across data sets), accuracy (whether the data 

describes the properties of the object it is meant to model), and relevance (whether the data is 

the appropriate data to support the business objectives)” (Gartner 2007). 

 

Use case selection 

"Don´t start with data [...] Start with strategy” (Marr 2015, p. 229). Managers need to 

demonstrate value and then operationalize (Loshin 2013, p. 19). Sources of value, Figure 20, 

can be found from both strategic and operational perspectives (Omri 2015, p. 104). 

 

Figure 20: Sources of value of Big Data analytics for companies (Omri 2015, p. 104).  
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three arguments: (1) more intelligent and better quality decisions through the use of new data 

sources; (2) faster decisions through the capture and analysis of real-time data to support 
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model as potential solution: (S) Start with strategy, (M) Measure metrics and data, (A) Analyze 

your data, (R) Report your results, and (T) Transform your business and decision making (Marr 

2015, p. 21). "The genuinely SMART business will therefore apply the data to their existing 

strategy and improve performance AND integrate those insights to improve day-to-day 

operational efficiency" (Marr 2015, p. 219). Agile companies monitor Big Data from the 

external environment and also use Big Data from their internal operations for optimization 

(Heldmann et al. 2017, p. 80). Approaches for identifying Big Data use cases are explained by 

Heldmann et al. 2017, pp. 81–82, and are based on a strategic and an operational perspective. 

As part of the Sales & Operations Planning process, insights can be gained from both 

perspectives, e.g. external demand predictions provide the boundaries of optimization in 

production, or sensitivities of internal parameters in a ROIC-tree trigger additional observations 

of external resource prices (Heldmann et al. 2017, p. 84). 

 

Current state, challenges and opportunities 

“The proliferation of data in every corner of every sector represents both an opportunity and 

a problem” (Stanton 2016, pp. 160–161). Table 15 gives an overview of applications along the 

value chain.  

Value creation step Application of Big Data analytics 

Research 
Generating new product ideas with trend- and market-analysis (e.g. patent-analysis); analysis of product data 

to improve future products; risk minimization of research activities. 

Sales / Marketing 

Identification of customers that might leave; identification of patterns in customer-requests; increasing 

efficiency of service-activities - automatic answering of requests; personalization of sales/marketing 

activities. 

Design Improved design by understanding of how users interact with the product;  

Development Potential-analysis for pricing and product development; optimization of development costs. 

Construction 
Using project data on future work – eliminating rework; enhancing iterative design by capturing and 

analyzing key building performance metrics, such as energy use intensity.  

Manufacturing 
Predictive maintenance by analyzing machine-data; reporting and analysis of production processes and 

efficiency; tracking of products by analyzing telematics-/movement-data. 

Distribution 
Improved inventory management; route optimization and capacity planning; sales forecast; tracking of 

shipped goods. 

Usage 
Global complaint-management for in-time identification of problems; spare-parts management by collecting 

product data to predict maintenance. 

Table 15: Examples of Big Data applications along the value creation process (Kleindienst 2017, p. 54) 

For manufacturing across various industries, the task force responsible for Big Data at the 

society of German engineers detailed out 48 use cases in their status report (VDI/VDE-

Gesellschaft Mess- und Automatisierungstechnik 2016b). Independent from the application, 

there is a need for ”better tools with more automation to facilitate the exploration” of Big Data 

(Stanton 2016, p. 161). Stakeholders across sectors demand solutions for data integration; data 

curation; handling of data-in-motion; advanced analytics; advanced visualization; user 

experience and usability; and data protection and privacy technologies (BDVA Big Data Value 

Association 2016, p. 21). Cybersecurity and data protection has been found to be the biggest 

barrier to the adoption of Big Data (Schäfer et al. 2012, p. 48). Another issue is that “managers 

don´t understand or trust Big Data-based models” (Barton, Court 2012, p. 6). This is often due 
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to their “black box” nature. Mayer-Schönberger and Cukier argue: “The basis of an algorithm’s 

predictions may often be far too intricate for most people to understand” (Mayer-Schönberger, 

Cukier 2013, p. 178). A central element for Big Data is secure repositories that can handle both 

structured and unstructured data called data lakes (Perry 2016, p. 10). But as Gilchrist rightly 

points out “Creating data lakes will not automatically facilitate business intelligence. If you do 

not know the correct question to ask of the data, how you can expect a sensible answer?” 

(Gilchrist 2016, p. 56). “Data has become a new factor of production, in the same way as hard 

assets and human capital. Having the right technological basis and organizational structure to 

exploit data is essential” (Cavanillas et al. 2016, p. 4). The European Big Data roadmap 

therefore focuses next to technology on business, policy and societal aspects (Becker et al. 

2016, p. 286). To conclude, for Lindstrom, the focus on Big Data instead of small data is a sign 

of insecurity of managers (Lindstrom 2016, p. 76) and Marr states: "the reality is that most 

business are already data rich, but insight poor" (Marr 2015, p. 19). 

 

3.5 Advanced analytics 

“Advanced analytics is likely to become a decisive competitive asset in many industries” 

(Barton, Court 2012, p. 5). Already today large-scale machine learning and other algorithms for 

real-time analytics are being used in industry (Domingue et al. 2016, p. 67). In 2020, 56% of 

the analytics are expected to be advanced, that is predictive or prescriptive analytics 

(Markkanen 2015, p. 4).  

 

Definitions 

Analysis vs. Analytics. Frequently these terms are confounded or used interchangeably in the 

context of data investigation. According to Lanquillon and Mallow, an analysis is a systematic 

investigation of a cause, a process to draw information and resulting insights out of data. 

Analytics is about the art of doing data analyses. It involves methods, tools and technologies 

supporting the analysis process and its results (Lanquillon, Mallow 2015a, p. 55). 

Simple vs. Advanced. Lanquillon and Mallow also discuss what makes analytics „advanced“ 

and conclude that advanced analytics are future oriented variants of predictive and prescriptive 

analytics using complex methods from statistics, data mining and machine learning. Which in 

return means that descriptive and diagnostic analytics variants focusing on the past belong to 

simple or traditional analytics (Lanquillon, Mallow 2015a, p. 62). 

Offline vs. Online. Off-line validation is the sensitivity analysis of schedules against the 

uncertainties whereas on-line relates to anticipatory recognition of deviations, proactive 

analysis of the possible actions (Váncza et al. 2011, p. 807). Off-line also refers to processing 

a batch of historic data whereas on-line means streaming data and real-time processing. 

Business analytics is the “capability of business systems and processes to use algorithms and 

statistics to derive meaning and insight from data, such as for decision making, planning and 

analysis” (APICS Suppy Chain Council 2015, p. 55). According to Franks, descriptive 
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analytics “summarize and describe what happened in the past”, predictive analytics “predict 

what will happen in the future” and prescriptive analytics “determine actions to take to make 

the future happen” (Franks 2014, p. 5). As part of this research prescriptive analytics for 

operational control and maximum profitability are sought. Figure 21 illustrates the rising 

complexity from description through classical reporting, analysis and monitoring to prediction 

and prescription. 

 

Figure 21: The spectrum of BI technologies (Eckerson 2007, p. 5) 

Gandomi and Haider emphasize “that predictive analytics, which deals mostly with structured 

data, overshadows other forms of analytics applied to unstructured data, which constitutes 95% 

of Big Data” (Gandomi, Haider 2015, p. 143). Davenport sees three eras of analytics, Table 16, 
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and impactful insights (Davenport 2014a, p. 197).  
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Pure prescriptive analytics are also called operational analytics. Franks states: “Operational 

analytics is about embedding analytics within business processes and automating decisions so 

that thousands or millions of decisions every day are made by analytics processes without any 

human intervention” (Franks 2014, xvi). Analytics of “physical-first” assets in factories, that 

don’t necessarily generate digital data, are considerably different from “digital-first” devices, 

such IT hardware and their software application (Markkanen 2015, p. 3). Industry analytics 

spans various functional domains and time horizons, e.g., machine time horizon, operation time 

horizon, and planning time horizon (Diab et al. 2017, p. 9). They are applied to discover 

operational and behavioral patterns, perform accurate predictions quickly, and prescribe actions 

with confidence (Diab et al. 2017, p. 10). Aggarwal and Manual emphasize that “Big Data 

analytics should be driven by business needs, not technology”. According to their research, 

companies need to address four important requirements to gain strategic value from analytics: 

“(1) a solid anchor to business value, (2) a pragmatic approach to IT, (3) attracting scarce 

talent, and (4) getting insights to the front line” (Aggarwal, Manuel 2016, p. 1). Similarly, 

Henke et al., point out that on top of a proper foundation in technological infrastructure and 

organizational governance, data analytics depends on relevant data and purposeful use cases 

(Henke et al. 2016b, p. 4). “Ultimately, it is the derived information (not the raw data) and how 

it can be acted on that determines what kinds of analytics are deployed” (Diab et al. 2017, p. 3). 

 

Algorithms 

Analytics cover a wide spectrum of applications with a variety of different algorithms and 

techniques, ranging from online analytical processing (OLAP) within structured query language 

(SQL) analytics to non-linear optimization, Figure 22. 

 

Figure 22: Analytics spectrum (Minelli et al. 2013, p. 14) 
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discontinuous and non-convex design spaces. Hence, the traditional optimization methods 

fail to give global optimum solution, as they are usually trapped at the local optimum.  

2. Non-traditional optimization algorithms: these algorithms are stochastic in nature, with 

probabilistic transition rules […] mainly based on biological, molecular, or neurological 

[…] evolution and/or social behavior of species. […] Examples of these algorithms include 

simulated annealing, genetic algorithm, particle swarm optimization, artificial bee colony, 

shuffled frog leaping, harmony search, etc. 

Artificial neural networks (ANN) belong to the second category and are “information-

processing systems whose structure and function are motivated by the cognitive processes and 

organizational structure of neurobiological systems” (Corsten, May 1996, p. 67). Artificial 

neural networks aim build on desirable characteristics of the human brain, such as massive 

parallelism, distributed computation, learning and generalization ability, fault tolerance, and 

inherent contextual information processing (Jain, Mao 1996, p. 31). According to Jain and Mao, 

two major types of ANN can be distinguished: (1) feed-forward networks, Figure 23; and (2) 

recurrent (or feedback) networks. The latter are dynamic learning systems that adapt both the 

network architecture and the connection weights. In general there is supervised learning, i.e., 

outputs or correction for each input pattern is given; and unsupervised learning that is 

discovering the underlying structure, patterns and correlations between them without a teacher 

(Jain, Mao 1996, pp. 34–35). 

 

 

Figure 23: (a) Individual processing element, (b) structure of a feed-forward neural network (Agachi 2006, p. 39) 

In 1996 Corsten and May pointed out that ANN “have potential in supporting the steering and 

control of production processes” (Corsten, May 1996, p. 74). Meanwhile, according to 

Schmidhuber, ANN have attracted wide-spread attention as they have won competitions and 

outperformed other machine learning methods (Schmidhuber 2015, p. 86). 
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In order to conduct analytics, we can look at the data value chain, Figure 24, spanning from 
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Figure 24: Data value chain (Curry et al. 2016, p. 18) 

Processes for extracting insights from Big Data, according to Gandomi and Haider, consists of 

data management, i.e., acquisition and recording, extraction, cleaning and annotation, 

integration, aggregation and representation; and analytics, i.e., modelling and analysis, and 

finally interpretation (Gandomi, Haider 2015, p. 141). Davenport emphasizes that even before 

looking at the data value chain, it is critical to define the business problem to be solved. 

Furthermore he emphasizes the need to really act on results at the end of the process. The six 

steps for analytics-based decision making for Davenport are (1) recognize the problem or 

question, (2) review previous findings, (3) model the solution and select the variables, (4) 

collect the data, (5) analyze the data, and (6) present and act on the results (Davenport 2013, 

p. 4). The International Controller Association proposes a similar process for business analytics: 

(1) business understanding, (2) data understanding, (3) data preparation, (4) modelling, (5) 

evaluation, and (6) deployment (ICV - Internationaler Controller Verein 2016, pp. 51–52). 

Franks states that “determining the best way to implement an analytics process can be tough. 

[…Companies should] focus on finding the best approach from the many that can work” and 

offers a generic approach in Figure 25 (Franks 2014, p. 172). 

 

Figure 25: Generic analytics process flow (Franks 2014, p. 179) 
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Increasing requirements 

With increasing data velocity and precision the requirements regarding analytics increase and 

lead to self-learning models that operate with limited supervision based on strong meta data and 

structure (Walker 2015, p. 54). Furthermore, data quality is essential for rapid and automated 

operational analytics (Franks 2014, p. 27), however, there are many additional requirements, as 

summarized in Table 17. 

 

Correctness 
Industrial analytics must have a higher level of accuracy in its analytic results. Any system that interprets and acts on 

the results must have safeguards against undesirable and unintended physical consequence. 

Timing 

Industrial Analytics must satisfy certain hard deadline and synchronization requirements. Near instantaneous analytic 

results delivered within a deterministic time window are required for reliable and high quality actions in industrial 

operations. 

Safety 
When applying Industrial Analytics, and interpreting and acting on the result, strong safety requirements must be in 

place safeguarding the wellbeing of the workers, users and the environment. 

Contextualized 

The analysis of data within an industrial system is never done without the context in which the activity and 

observations occur. One cannot construct meaning unless a full understanding of the process that is being executed 

and the states of all the equipment and its peripherals are considered to derive the true meaning of the data and create 

actionable information. 

Causal-oriented 

Industrial operations deal with the physical world and industrial analytics needs to be validated with domain-specific 

subject matter expertise to model the complex and causal relationships in the data. The combination of first principles, 

e.g. physical modeling, along with other data science statistical and machine learning capabilities, is required in many 

industrial use cases in order to provide accurate analytics results. 

Distributed 

Many complex industrial systems have hierarchical tiers distributed across geographic areas. Each of these 

subsystems may have unique analytic requirements to support their operations. Therefore, industrial analytics must 

be tailored to meet the local requirements of the subsystems it supports. The requirements on timing (avoiding long 

latency) and resilience (avoiding widespread outage of service because of faults in the network or in a centralized 

system) require a distributed pattern of industrial analytics in that the analytic will be implemented close to the source 

of data it analyzes and to the target where its analytic outcome is needed. 

Streaming 

Industrial Analytics can be continuous or batch processes. Because of continuous execution in industrial systems, a 

large proportion of industrial analytics will be streaming in nature, performing analysis of live data and providing 

continuous flow of analytics results in support of the operations. Traditional batch-oriented analytics will still be 

performed either for building or improving analytic models, or for human decision-making. 

Automatic 

In order for the industrial analytics to support continuous operations, the analysis of streaming data and the application 

of analytic outcomes must be automatic, dynamic and continuous. As the technologies in industrial analytics advance, 

improvements in analytic modeling e.g., through learning may also be automatic. 

Semantics 

Analytical systems require data that has meaning and context. Unstructured data, when reported without attribution 

to the source and the component or system it represents, makes deriving value complex since it requires the analytics 

to guess or infer the meaning. Inference unnecessary adds significant uncertainty into the system. Most data can be 

properly attributed at the source, and if this information is communicated, it can significantly increase the success 

and accuracy of the analytical systems. 

Table 17: Industrial analytics requirements (Diab et al. 2017, p. 11) 
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Analytics professionals and culture 

“Making analytics operational is not a technology issue for most organizations” (Franks 2014, 

p. 143). “In the end, it all comes down to people” and therefore three outcomes are desired: (1) 

organizational alignment, (2) executive endorsement and sponsorship, and (3) investing in 

analytical human capital (Minelli et al. 2013, p. 125). “The value of analytics professionals is 

now widely accepted” (Franks 2014, p. 234). Table 18 gives an overview of the technical 

capabilities required for industrial analytics. 

Visualize Display and manage data readings and analytics results using a common framework 

Explore Perform ad-hoc experiments with historical data 

Design Automation of the data analytics stages; data quality, data mining, and business intelligence algorithm composition 

Orchestrate Delegate work requests over a cluster of computing resources, and collect and aggregate intermediate and final results 

Connect Exchange data and work requests between components using a common framework 

Cleanse Merge data set form different data sources based on suitable criteria; remove irrelevant data and clean noise from data  

Compute 
Perform computation of statistical, first principle and machine learning model analytical calculations, including live 

analysis on streaming data, batch or ad hoc data mining and operation and business intelligence analysis 

Validate 
Ensure analytics results when applied in the context of the application and environment will not harm people or property. 

This function should be independent from the core analytics processing and act as a governor 

Apply 
Apply analytics results to various subsystems, including the automation systems (e.g. adjusting control parameter or 

models), operations and business processes, increasingly automatically or as information aiding human decision-making 

Store Archive and reproduce measured and calculated data streams, especially time-series sequences 

Manage Manage the information model, including data sources, computing resources and data analytics metadata 

Supervise Manage system reliability by ensuring processes are started and maintained, and that computer resources are not exhausted 

Table 18: Industrial analytics capabilities (Diab et al. 2017, p. 13) 

Even though there are a lot of technical skills required in the role of a data scientist, equally 

important competencies are social (team work, communication, conflict management, 

leadership), economic (business model innovation, business case evaluation, project 

management and controlling), and legal (data protection, ethics) (Meir-Huber, Köhler 2014, 

p. 34). A holistic definition of the data scientist role is provided in Table 19. 

Data scientist 

Big Data business 

developer 

Big Data technologist Big Data analyst Big Data developer Big Data artist 

Identification, 

evaluation and 

implementation of 

innovative business 
models 

Development and 

provision of scaleable 

Big Data infrastructure 
and storage 

Innovative linkage of 

data using machine 

learning, statistics and 
mathematics 

Scalable programming, 

machine learning and 

data management 

Visualization of data, 

graphic design, 

communication and 
psychology 

Table 19: The roles of data scientists (Meir-Huber, Köhler 2014, p. 35) 

Next to analytics professionals and organization, it is important to create a culture of fact based 

decision making through embedded analytics in business processes (Davenport 2014a, p. 146). 

An analytics culture includes knowing ”what is possible using predictive analytics and what is 

not”, to “value data”, to “be ‘data driven’”, and to “have buy-in from the ‘front line’ who must 

act upon the decisions that result from using predictive analytics to predict behaviors” (Finlay 

2014, p. 42). Establishing new cultural norms and organizational behaviors requires 
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commitment (Ransbotham et al. 2016, p. 4). This also includes knowledge management to 

avoid knowledge getting lost when experts leave the company (Schank et al. 2010, p. 208). 

 

Current state, challenges and opportunities 

Analytics is “the engine driving value-creation in IIoT” (Diab et al. 2017, p. 15). But only 20-

30% of the estimated potential has been captured in manufacturing with major barriers being 

leadership skeptical of impact and siloed data in legacy IT systems (Henke et al. 2016a, p. 10). 

There are several technical requirements, Table 20, across various industrial sectors to make 

Big Data analytics work (Becker et al. 2016, p. 275). 

Urgent requirements Very important requirements Important requirements 

 Data security and privacy 

 Data sharing 

 Data integration 

 Real-time insights 

 Data quality 

 Data management engineering 

 Real-time data transmission 

 Deep data analytics 

 Pattern discovery 

 Modelling and simulation 

 Natural language analytics 

 Data improvement 

 Data enrichment 

 Data visualization & user experience 

 Usage analytics 

 Predictive analytics 

 Descriptive analytics 

Table 20: Cross-sectorial requirements for Big Data research (Becker et al. 2016, p. 275) 

Dogan et al. mention benefits of advanced computing power and analytical tools in operations, 

two of them are: “producing more realistic and detailed models, coping with missing and 

substandard data, and enabling complex methods and algorithms”; and “securing quicker 

proof of value—meaning, they can more rapidly build momentum behind larger transformation 

efforts requiring process, behavior, technology and organizational change” (Dogan et al. 2015, 

p. 42). Furthermore, advanced analytics can be effectively combined with lean management to 

identify operational inefficiencies quicker, uncover new waste, support problem solving and 

the identification of solutions (Dhawan et al. 2014, p. 1). “As a large percentage of industrial 

companies have not incorporated machine data in their analytics process for decision support 

and intelligent operations, industrial analytics and IIoT offer a great opportunity to drive the 

next round of value creation” (Diab et al. 2017, p. 15). 

 

3.6 Summary: Impact of digitization on manufacturing 

Digitization presents a significant economic opportunity for society and industry. Industry 4.0, 

the fourth industrial revolution based on cyber-physical systems, originated in Germany, but 

currently similar initiatives are ongoing in the USA, China and other countries. Productivity 

increases come from improved asset utilization, resource management and operations 

optimization based on real-time monitoring and control. This is of particular relevance in 

process industries with their high capital intensity, time constraints and given that a lot of data 

is already captured. While the value of digital transformations is clear to companies in general, 

they need help with how to implement improved operational processes and manage the required 

change on the people side. Industry 4.0 covers several dimensions and the smart factory, smart 

operations and data-driven services are the most relevant ones for this work. Smart factories 
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aim for self-x properties, i.e., self-awareness leading to predictive maintenance or self-

organization to autonomously optimize productivity by reducing waste. Smart operations build 

on real-time data provided by the Industrial Internet of Things, as its backbone. The IIoT 

provides visibility on any “thing”, any “place” at any “time”. The underlying technologies, such 

as sensors, actors, internet and communication technologies are at different maturity levels but 

making significant progress. One of the biggest trends is the convergence of operational 

technology (OT), such as automation and advanced process controls, with information 

technology (IT) including advanced analytics and Big Data. One of the key sources of value 

comes from improved decision making to increase operational efficiency based on data. Big 

Data can include both structured and unstructured data as well as internal and external data 

which is collected in data lakes. However, companies don´t seek big but smart data that is 

relevant, accurate and sometimes small. Analytics and Big Data must be driven by business 

needs not technology. Advanced analytics go beyond descriptive analytics into prediction and 

prescription. The success of analytics depends not only on algorithms and the analytics 

workflow, but crucially on people. New roles such as the one of the data scientist have emerged 

complementing the required functional, IT and change management expertise with analytics 

skills. Advanced analytics is considered complementary to operations improvement approaches 

such as lean management, which can be an advantage as many industrial companies do not yet 

utilize Big Data analytics in operational decision making.  

 

Learning Delimitations Requirements 

 Significant economic opportunity 

 Productivity increases from real-time control and improved 

asset/resource utilization 

 Process industries already have a lot of data 

 Many industrial companies have not yet fully exploited data 

analytics for operational improvement 

 Digital transformation requires an improvement process 

(“how”), as it is not only about technology but also people 

 A combination of functional, IT, change management and 

analytics skills required 

 Smart factories shall be autonomous and self-organizing 

 The convergence of OT and IT brings advanced process 

control and advanced analytics together 

 The value from data comes from improved decision making 

based on predictive and prescriptive analytics performed 

online, i.e., in real-time based on streamed data 

 This is a complex topic for industrial companies requiring 

an approach for implementation, complementary to 

operations improvement philosophies such as lean 

INCLUDES 

 Big Data capabilities, 

e.g., streaming of data, 

data lakes and advanced 

(predictive and 
prescriptive) analytics 

EXCLUDES 

 Hardware, equipment 

upgrades with new 

technologies, e.g. 

sensors, communication, 

etc. 

 

 Consolidate data from various 

data sources with consistent 

time stamps 

 Use of predictive and 

prescriptive analytics 

 Link analytics and advanced 

process control 

 Develop an implementation 

approach consistent with 

existing operations 

improvement methodologies 

Table 21: Summary of conclusions from digitization perspective 
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4 Management perspective: Performance 

opportunities with decision support systems 

In this chapter a perspective of management is given. Section 4.1 starts with decision making 

followed by performance measures (section 4.2) as basis for fact-based decisions. Section 4.3 

covers performance measurement and management systems, section 4.4 decision support 

systems and a summary of performance opportunities with decision-support systems in covered 

in section 4.5. 

4.1 Decision making 

To start with, the prime task of the leadership teams of industrial companies is to manage 

economic performance by taking appropriate decisions to achieve their objectives (Drucker 

1966, p. 7). According to Christensen and Hemmer, the key objective for managers of a firm is 

to find the output– input combination that results in the maximal profit (Christensen, Hemmer 

2006, p. 565). Typically managers make decisions using a cost–benefit approach that considers 

technical and behavioral aspects (Horngren et al. 2015, p. 35). Industrial management combines 

techno-economics and leadership aspects. Techno-economics is fact based, rational and aims 

to improve efficiencies and economics. Leadership is about people, life and human purpose 

(Wohinz 2011, p. 45). “Management is primarily a human activity that should focus on 

encouraging individuals to do their jobs better” (Horngren et al. 2015, p. 35). In business, 

customers take a central role as they define value by the utility of goods and services to them, 

which is expressed by their willingness to pay (Drucker, Maciariello 2008). The human nature 

of business makes management essential. According to Ackoff, managers will always be 

needed, even with progress in management models, algorithms, and computers, as new or 

different problems continuously arise (Ackoff 1978, p. 200). In 1963 Gutenberg stated that all 

important enterprise decisions are made in an atmosphere of uncertainty (Gutenberg 1963, p. 8). 

Managers in manufacturing are frequently confronted with a large spectrum of different 

decision to be made, e.g., product design, material selection, manufacturing process, plant 

layout, flexible manufacturing, product end-of-life scenario, and environmentally conscious 

manufacturing programs (Rao 2013, pp. 2–3). In order to help managers make decisions 

significant attention is given to data. According to Vercellis enterprises gain competitive 

advantages if they are able to make faster and better decisions by turning data into information 

and knowledge (Vercellis 2009, XIV). 
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Definitions 

A decision is basically a “choice made between alternative courses of action”14. Decision-

making is defined in the Oxford dictionary as: “The action or process of making decisions, 

especially important ones”15. In decision-making theory, the term is being used more broadly 

and includes in general all acts of selecting one of several alternative choices of action (Laux 

et al. 2012, p. 3). 

 

Types of decisions 

Decisions in a business context can be viewed as strategic, tactical or operational and vary by 

value-at-stake and frequency (Taylor 2012, p. 78). Trade-off decisions are frequently required 

due to conflicting strategic goals such as low costs through high asset utilization or high 

customer service through rapid response (Wildemann 2010, p. 26). Depending on the 

predictability of the future, decisions need to be made: (1) under certainty, (2) under risk, (3) 

under uncertainty, or (4) under conflict (Hitomi 1996, p. 39). Rumsfeld framed this as: “there 

are known knowns; these are things we know we know. We also know there are known 

unknowns; that is to say we know there are some things we do not know. But there are also 

unknown unknowns -- the ones we don't know we don't know” (Rumsfeld 2002). 

 

Human decision making 

While we tend to think that humans make intelligent conscious decisions based on the laws of 

logic, the reality is that decision making is largely an unconscious activity (Gigerenzer 2007, 

p. 3; Schank et al. 2010, p. 11). Kahneman et al. found that humans are heavily biased decision 

makers relying on heuristics and making judgement errors, for example, for probabilities of 

events (Kahneman et al. 1982, p. 18). Next to biases there is also the chance variability of 

judgements which Kahneman et al. more recently termed “noise” (Kahneman et al. 2016, p. 38). 

Making decisions takes varying degrees of cognitive effort depending on the type of decision 

(Novatsis, Wilkinson 2016, p. 139), as shown in Figure 26. Human decision makers struggle 

with an overload of information and choice leading to decision fatigue (Tompkins 2016, p. 41). 

Replacing human judgement with algorithms offers a solution with positive results (Kahneman 

et al. 2016, p. 44). This is one of the main reasons for the emergence of decision support systems 

and sources of value from Big Data analytics. 

 

                                                

14 http://www.businessdictionary.com/definition/decision.html, last accessed 23.08.2017  
15 https://en.oxforddictionaries.com/definition/us/decision-making, last accessed 10.03.2017 

http://www.businessdictionary.com/definition/decision.html
https://en.oxforddictionaries.com/definition/us/decision-making
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Figure 26: Main types of decision making and cognitive effort (Novatsis, Wilkinson 2016, p. 139) 

 

Fact based decision making 

In the context of Big Data and its influence on management McAfee, Byrnjolfsson state boldly: 

“Data-driven decisions are better decisions – it´s as simple as that” (McAfee, Brynjolfsson 

2010, p. 63). In manufacturing, shop floor data is an important source of insights for decision 

makers (Almeida, Azevedo 2016, p. 126). However the data needs to be processed to become 

value adding information for decision making, leading to actions and improvement of 

performance (Hitomi 1996, p. 412). In Figure 27, Horngren et al, lay out a 5-step fact-based 

decision making process. 
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Figure 27: Five-step decision making process (Horngren et al. 2015, p. 472) 

As mentioned before, managers typically apply a cost-benefit logic in decision making 

(Horngren et al. 2015, p. 35) and aim to take proactive decisions based on a small set of 

performance indicators representing the status quo of their companies (Almeida, Azevedo 2016, 

p. 127).  

 

Levels of decision making 

The information characteristics and performance measures for fact-based decision making 

depend upon the organization level, Figure 28.  

 

Figure 28: Information characteristics for managerial decisions (Curtis, Cobham 2005, p. 10) 
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Characteristic Management Control Operational Control 

Focus of activity 

Judgement 

Nature of structure 

Nature of information 

 

 

Persons primarily involved 

Mental activity 

Source discipline 

Time horizon 

Type of costs 

 Whole operation 

 Relatively much; subjective decisions 

 Psychological 

 Integrated; financial data throughout; 

approximations acceptable; future and 

historical 

 Management 

 Administrative; persuasive 

 Social physchology 

 Weeks, months, years 

 Managed 

 Single task or transaction 

 Relatively little; reliance on rules 

 Rational 

 Tailormade to the operation; often non-

financial; precise; often in real time 

 

 Supervisors (or none) 

 Follow directions (or none) 

 Economics; physical sciences 

 Day-to-day 

 Engineered 

Table 22: Some distinctions between management control and operational control (Anthony 1965, p. 93) 

Management control chooses operating rules for elements of an organization and the 

prioritization for operating rules in order to maximize the overall objective function (Arrow 

1964, p. 397). “Operations control focuses on specific tasks [... and] is essentially objective” 

(Anthony 1965, iii) . There is a general consensus that, only by linking strategic and operational 

performance, it is possible to improve the overall organizational performance. Despite the fact 

that strategy and operations are two different and sometimes not associated perspectives, when 

they are properly aligned the plant is more likely to achieve specific performance goals 

(Almeida, Azevedo 2016, p. 133). The profit per hour approach links both the operational 

control and the management control levels. 

 

Current state, challenges and opportunities 

In order to make better rational and real-time decisions on operations level, what is needed is 

data, the right performance measures, and decision support systems. But as per Minelli et al, a 

future decision culture with humans will need to include traits such as agility to cope with 

continuous transformation of people, process, and technology; multi-disciplinary talent with 

business, math, and technology skills; and the ability to build synergistic ecosystems and 

partnerships (Minelli et al. 2013, pp. 127–128). A holistic strategy in the information age 

includes the technical portfolio, capabilities and people (Benzi 2017, p. 109). 

 

4.2 Performance measures 

“When you can measure what you are speaking about, and express it in numbers, you know 

something about it…” (Thomson 1889, p. 73). 

This chapter focuses on defining measures of performance, their characteristics and linkage to 

outcomes. It also aims to discuss some of the aspects Neely et al. 1995, p. 108 brought up, e.g.: 

“Should measures focus on processes, the outputs of processes, or both?”;”Is time the 

fundamental measure of manufacturing performance?”; or “How can measures which do not 

encourage short-termism be designed?” 
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Definitions 

The performance of a company is directly related to value creation, which is discussed first. 

The term value can be defined from three perspective according to the Business dictionary16:  

1. Accounting: The monetary worth of an asset, business entity, good sold, service rendered, 

or liability or obligation acquired. 

2. Economics: The worth of all the benefits and rights arising from ownership. Two types of 

economic value are (1) the utility of a good or service, and (2) power of a good or service 

to command other goods, services, or money, in voluntary exchange. 

3. Marketing: The extent to which a good or service is perceived by its customer to meet his 

or her needs or wants, measured by customer's willingness to pay for it. It commonly depends 

more on the customer's perception of the worth of the product than on its intrinsic value. 

Therefore, value creation is both subjective, determined by the realized amount of value by 

individual, organization, or society; and relative, comparing the use value with the exchange 

value. An important condition is that at the time of the exchange, the monetary amount must 

exceed the producer’s costs (Lepak et al. 2007, p. 182).  

The performance of a production system, according to Aldinger, is defined as 1) the result of 

a transformation process, 2) the work required, and 3) the potential capabilities to perform a 

transformation (Aldinger 2009, p. 50). In the definition of Lebas, performance is case and 

decision-maker specific: "performance is about deploying and managing well the components 

of the causal model(s) that lead to the timely attainment of stated objectives within constraints 

specific to the firm and to the situation" (Lebas 1995, p. 29). 

A performance measure as per Neely et al is „a metric used to quantify the efficiency and/or 

effectiveness of an action […] either in terms of the actual efficiency and/or effectiveness of an 

action, or in terms of the end result of that action” (Neely et al. 1995, p. 80). In industry, the 

term key performance indicator (KPI)  is widely used and refers to “A financial or nonfinancial 

measure that is used to define and assess progress towards specific organizational goals and 

typically is tied to an organization´s strategy and business stakeholders (Pittman, Atwater 

2016, p. 95). An important high-level financial metric is the return on invested capital (ROIC), 

which will be discussed as part of this chapter. 

 

Characteristics of performance measures 

In general performance indicators can be absolute measures condensed through summation or 

aggregation when needed, or relative numbers expressed as ratios, indices or being weighted 

(Gladen 2003, p. 13). Next to requirements such as reliability, accuracy, comparability, 

continuity and relevance, two specific distinctions are worth detailing further: leading and 

lagging, financial and non-financial metrics. 

                                                

16 http://www.businessdictionary.com/definition/value.html, last accessed 05.07.2017 

http://www.businessdictionary.com/definition/value.html
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Leading and lagging indicators 

Brignall et al framed the thinking about leading and lagging indicators by allocating 

performance dimensions into their results and determinants framework (Table 23), which 

distinguishes the two conceptually different categories: (1) 'ends' or 'results', i.e., lagging 

indicators; and (2) 'means' or 'determinants', i.e., leading indicators (Brignall et al. 1991, p. 34). 

 Dimensions of performance Types of measure 

Results 

Competitiveness  Relative market share and position Sales 

growth 

 Measures of the customer base 

Financial performance  Profitability 

 Liquidity 

 Capital structure 

 Market ratios 

Determinants 

Quality of service  Reliability 

 Responsiveness 

 Aesthetics/appearance 

 Cleanliness/tidiness 

 Comfort 

 Friendliness 

 Communication 

 Courtesy 

 Competence 

 Access 

 Availability 

 Security 

Flexibility  Volume flexibility 

 Delivery speed flexibility 

 Specification flexibility 

Resource utilization  Productivity 

 Efficiency 

Innovation  Performance of the innovation process 

 Performance of individual innovations 

Table 23: Results and determinants - performance measures across six dimensions (Brignall et al. 1991, p. 36) 

Organizational goals, typically linked to lagging indicators should be SMART, which is defined 

by Pitman and Atwater as “specific, measurable, achievable/attainable, relevant/realistic, and 

timely” (Pittman, Atwater 2016, p. 174). KPIs serve not only to understand the status of 

operational performance, but also help in discussing deviations from target and solving 

problems. Ackhoff distinguishes reactive, retrospectively oriented problem solving from 

proactive, prospectively oriented problem solving (Ackoff 1978, p. 26). In line with this, the 

focus of companies needs to be put on (1) aligning and measuring lagging indicators 

representing the organizations goals, e.g., profit maximization; (2) determining current 

performance based on data, e.g., as part of our discussion profit per hour; and (3) solving 

problems and proactively influencing leading indicators, i.e., also profit per hour, that 

influences the lagging result of cumulative profit at the end of a time period, e.g., a fiscal year. 
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Financial and non-financial metrics 

In manufacturing performance measures do not only relate to financial metrics such as cost, but 

also to non-financial metrics related to quality, time or flexibility, as shown in Table 24. 

Quality Flexibility Cost Time 

Q1: Performance 

Q2: Features 

Q3: Reliability 

Q4: Conformance 

Q5: Technical durability 

Q6: Serviceability 

Q7: Aesthetics 

Q8: Perceived quality 

Q9: Humanity 

Q10: Value 

F1: Material quality 

F2: Output quality 

F3: New product 

F4: Modify product 

F5: Deliverability 

F6: Volume 

F7: Mix 

F8: Resource mix 

 

C1: Manufacturing cost 

C2: Value added 

C3: Selling price 

C4: Running cost 

C5: Service cost 

 

T1: Manufacturing lead time 

T2: Rate of production 

       introduction 

T3: Delivery lead time 

T4: Due-date performance 

T5: Frequency of delivery 

 

Table 24: Multiple dimensions of quality, time, cost and flexibility (Neely et al. 1995, p. 83) 

The combination of non-financial and financial measures provides integrative perspective of 

performance (Yadav, Sagar 2013, p. 951). Origins go back to the Tableau de Bord (managerial 

dashboard or instrument panel) which was developed in the early 1960s in France (Lebas 1994, 

p. 471). It consists of non-financial variables that help steer physical and human assets during 

daily operations to achieve the company´s financial goals (Lebas 1994, p. 481). The thought of 

providing managers with a comprehensive integrated view was taken forward with the 

invention of the balanced scorecard (BSC) by Kaplan and Norton in the 1990s. The BSC 

combines operational measures on customer satisfaction, innovation, continuous improvement, 

internal efficiencies with financial measures (Kaplan, Norton 1992, p. 71). A current study 

reconfirms that strategic decision makers should measure business performance in terms of 

financial as well as operational indicators (Vij, Bedi 2016). Profit per hour presents both a 

financial and operational metric. 

 

Management accounting 

The work in this document relates to management accounting, which differs from financial/cost 

accounting in several ways. As per Mowen, financial accounting is externally focused, 

backward looking and must comply with externally defined reporting rules. Management 

accounting, on the other hand, is internally focused, emphasizes the future and aims to provide 

information for decision-making (Mowen et al. 2013, p. 7). In this context, cost are classified 

into relevant and irrelevant costs. According to Drury, “relevant costs are future costs that differ 

between alternatives”; and “irrelevant costs consist of sunk costs, allocated costs and future 

costs that do not differ between alternatives” (Drury 2012, p. 195). When the cost of already 

purchased resources do not vary between the choice of alternative options, they are referred to 

as sunk cost (Drury 2012, p. 33). Allocated costs deal with indirect, not product related costs, 

also called overhead (Zimmerman 2011, p. 47). Cost assignment approaches for overhead can 

follow a standard, normal or actual costing system (Mowen et al. 2013, p. 435). Only variable 

costs are considered within the measurement of profit per hour, that is to say, only costs which 

“increase in direct proportion to increases in activity output", opposed to fixed costs (Mowen 

et al. 2013, p. 92). As per Drury, there is “a move towards the widespread adoption of shortrun 

variable costing techniques” (Drury 2012, p. 216) that includes throughput costing and Theory 
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of Constraints, which will be both discussed in chapter 4.2.2. In the oil & gas industry, for 

example, variable costs are mainly energy costs, non-energy utility costs, and process material 

costs while personnel, maintenance, property and other costs are treated as fixed (Hey 2017, 

p. 327). In process industries, such as oil refining, process costing is used instead of job-costing 

for distinct products (Horngren et al. 2015, pp. 130–131). Cooper and Kaplan claimed that if 

managers measure costs right, they make the right decisions (Cooper, Kaplan 1988, p. 96). 

There is a variety of different costing systems ranging from simplistic systems which are 

inexpensive to operate to highly sophisticated, expensive systems which employ cause-and-

effect cost allocations (Drury 2012, p. 48). Horngren, points out several possible issues with 

cost data, e.g., the time period of the cost driver and cost do not match, the relationship between 

cost driver and cost changes due to modification of the process/introduction of new technology, 

fixed costs are allocated as if they are variable, data is missing or unreliable, and inflation 

(Horngren et al. 2015, pp. 416–417). Furthermore, the different transfer pricing policies for 

internal customers, i.e., market price, cost-based price, or negotiated prices, (Mowen et al. 2013, 

p. 539) affect the profit per hour concept. 

4.2.1 Return on invested capital 

“Companies that grow and earn a return on capital that exceeds their cost of capital create 

value” (Koller et al. 2015, p. 3). This had already been discussed end of the 19th century by 

Alfred Marshall in his book Principles of Economy (Marshall 1895, p. 142). Koller et al 

emphasize that growth merely increases value if the return on invested capital (ROIC) exceeds 

the cost of capital. Otherwise, growth actually decreases value (Koller et al. 2015, p. 17). Figure 

29 summarizes relevant aspects in a value driver tree. 

 

Figure 29: Value driver tree (Koller et al. 2015, p. 582) 
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Horngren et al highlight that the fact of ROIC being a single percentage integrating all the 

components of profitability such as revenues, costs, and investment makes it a very popular 

performance measure in business. Moreover, it can also be used for comparisons with rates of 

returns of alternative opportunities (Horngren et al. 2015, p. 900). The concept of return on 

invested capital17 bringing together sales, earnings and total investment as shown in Figure 30 

originated at the Du Pont company in the beginning of the 1900s (Chandler 1977, p. 446).  

 

Figure 30: Du Pont equation (Davies 1950, p. 7; Chandler 1977, p. 447) 

Visualizing the structure of a KPI tree, e.g., for ROIC, helps with assessing performance and 

finding reasons for low performance (Almeida, Azevedo 2016, p. 150). Typically a sensitivity 

analysis is used, which Pittman, Atwater 2016, p. 169 describe as “a technique for determining 

how much an expected outcome or result will change in response to a given change in an input 

variable”. ROIC is usually expressed as a function, Equation 1, of earnings before interest, 

taxes and amortization (EBITA). 

𝑅𝑂𝐼𝐶 = (1 − 𝑂𝑝𝑒𝑟𝑎𝑡 𝑛𝑔 𝐶𝑎𝑠ℎ 𝑇𝑎  𝑅𝑎𝑡𝑒) 
𝐸𝐵𝐼𝑇𝐴

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠
 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠

𝐼𝑛𝑣𝑒𝑠𝑡𝑒𝑑 𝐶𝑎𝑝 𝑡𝑎𝑙
 

Equation 1: ROIC calculation (Koller et al. 2015, p. 210) 

Alternative performance measures such as return on equity (ROE) and economic profit are both 

a function of ROIC and can therefore be optimized through ROIC improvements. A drawback 

of ROE is that it can be influenced by the company’s debt-to-equity ratio, i.e., replacing equity 

with debt, leading to higher risk for shareholders (Koller et al. 2015, p. 223).  

                                                

17 Throughout this document ROIC is used instead of ROI as ROI commonly refers to single investment decisions. 
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Within the concept of ROIC four types of decisions can be taken to maximize shareholder 

value: (1) operative decisions influencing revenues, cost and profitability; (2) capital allocation 

decisions related to the overall invested capital; (3) financing decisions affecting cost of capital; 

and (4) investment into non-material potential such as innovation or human capital affecting 

share value as well as cost of capital (Groll 2003, p. 101). Related to this, Epstein and Lee 

promoted the calculation of the “return on action” as part of their Action-Profit-Linkage (APL) 

model. They used the same logic as for the sensitivity analysis of ROIC, namely, identifying 

causal linkages between managerial actions and their effects on profitability (Epstein, Lee 2000, 

p. 59). When reviewed, in 2013, Yadav and Sagar found however, that the practical application 

of APL is not widely available (Yadav, Sagar 2013, p. 958). This could indicate an opportunity 

for further consideration. In general, the objective of a firm is to find the output–input 

combination that results in the maximal profit (Christensen, Hemmer 2006, p. 565). The focus 

of further discussion in later chapters of this thesis will be operative decisions. It can be said 

that ROIC is a suitable, high-level, financial metric for operations improvement. The use of 

value trees helps to disaggregate ROIC to derive actionable areas of opportunity.  

 

4.2.2 Time-based performance measures 

“If time be of all things the most precious, wasting time must be [...] the greatest prodigality 

[...] Lost time is never found again” (Benjamin Franklin, William Temple Franklin 1818, 

p. 249). That is why time is a competitive element and important driver of strategy (Horngren 

et al. 2015, p. 768). Time based competitors focus on reducing engineering time in R&D, 

throughput time in operations, and order processing lead time in sales and marketing (Azzone 

et al. 1991, p. 83). The value added is a function of time (Westkämper, Decker 2006) and can 

manifest itself in two ways: (1) higher cash inflows, e.g., through increases in market share and 

(2) lower cash outflows through improvements in efficiency (Azzone et al. 1991, p. 79). 

Horngren defines a time driver as “any factor that causes a change in the speed of an activity 

when the factor changes”, for example, capacity constraints or bottlenecks (Horngren et al. 

2015, p. 769). Galloway and Waldron coined the term throughput accounting (TA), a time-

based costing system based on three concepts (Galloway, Waldron 1988b, p. 35): 

1. Manufacturing units are an integrated whole whose operating costs in the short term 

are largely predetermined. It is more useful and infinitely simpler to consider the entire 

cost, excluding material, as fixed and to call the cost the “total factory cost”. 

2. For all businesses, profit is a function of the time taken to respond to the needs of the 

market. This in turn means that profitability is inversely proportional to the level of 

inventory in the system, since the response time is itself a function of all inventory. 

3. [It is] the rate at which a product contributes money that determines relative product 

profitability. And [it is the rate at which a product contributes money compared to] the 

rate at which the factory spends it that determines absolute profitability. 

Based on the above concepts and their belief that contribution should be measured in terms of 

the rate at which money is received rather than as an absolute, Galloway, Waldron 1988a, p. 34, 

defined the following three ratios (Equation 2, Equation 3, Equation 4). 
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𝑅𝑒𝑡𝑢𝑟𝑛 𝑝𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 ℎ𝑜𝑢𝑟 =  
𝑆𝑎𝑙𝑒𝑠 𝑝𝑟 𝑐𝑒 − 𝑀𝑎𝑡𝑒𝑟 𝑎𝑙 𝑐𝑜𝑠𝑡

𝑇 𝑚𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑘𝑒𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒
 

Equation 2: Return per factory hour (Galloway, Waldron 1988a, p. 34) 

 

𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 ℎ𝑜𝑢𝑟 =  
𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑐𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑡 𝑚𝑒 𝑎𝑣𝑎 𝑙𝑎𝑏𝑙𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑘𝑒𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒
 

Equation 3: Cost per factory hour (Galloway, Waldron 1988a, p. 34) 

 

𝑇𝐴 𝑟𝑎𝑡 𝑜 =  
𝑅𝑒𝑡𝑢𝑟𝑛 𝑝𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 ℎ𝑜𝑢𝑟

𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 ℎ𝑜𝑢𝑟
 

Equation 4: Throughput accounting (TA) ratio (Galloway, Waldron 1988a, p. 34) 

 

A more recent definition of throughput accounting can be found in the dictionary of the 

American Production and Inventory Control Society (APICS) (Pittman, Atwater 2016, p. 188): 

“A management accounting method based on the belief that because every system has a 

constraint that limits global performance, the most effective way to evaluate the impact that 

any proposed action will have on the system as a whole is to look at the expected changes in 

the global measures of throughput, inventory, and operating expense”. The notion of constraint 

in this definition involves time and is also the focal point of monetary operational and global 

performance measures within the Theory of Constraints (TOC) (Rahman 1998, p. 342), further 

elaborated in chapter 5.4:  

 Throughput: the rate at which the system generates money through sales (sold output 

minus totally variable cost) 

 Inventory: all the money invested in things the system intends to sell  

 Operating expense: all the money the system spends in turning inventory into 

throughput.  

 Net profit: an absolute measurement in dollars [or any other currency] expressed as 

total throughput minus operating expense.  

 Return on investment: a relative measurement which equals Net profit divided by the 

inventory.  

Two of the main criticisms of TOC and TA are: (1) They are short-term decision tools, and (2) 

operating expenses are sometimes regarded as fixed, which would make TOC and TA in these 

cases the same as variable costing. Nevertheless, “TA is an important development in modern 

accounting that allows managers to understand the contribution of constrained resources to 

overall profitability […and allows for] better analytical decisions” (Freeman 2007, p. 6). The 

use of time-based accounting methods with a metric such as return (profit) per factory hour 

seems of actual relevance, given the push to respond in agile ways to external volatility and to 

use lean principles for instance to minimize inventory.  
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A closer look at profit per hour 

In the area of manufacturing optimization there are three basic philosophies that can be 

employed: (1) maximum-production rate or minimum-time, (2) minimum-cost, and (3) 

maximum-profit-rate. Optimizing for profit rate is recommend in the case of constraint 

capacities in a given time interval (Hitomi 1996, p. 154) and influences both revenues and cost, 

while the first and second strategy, have a clear bias to revenue and cost respectively. Another 

word for profit rate would be profit velocity, a term adopted by Rothschild in 1998. He argues 

that time-based economics and the analysis of profit velocity helps make better decisions for 

product mix, pricing and target customers (Rothschild 1998, pp. 233–234). Rothschild founded 

a company called Profit Velocity Solutions, which filed a patent application for a “Computer-

Aided System for Improving Returns on Assets (ROA)” in 2015. Figure 31 shows a graphic 

representation of ROA for different products and their respective profit per unit and units per 

asset-hour (Rothschild et al. 2015, p. 3). This is an example of bringing operations and 

management control levels together in discrete industries.  

 

Figure 31: Matrix p/unit, unit/h, ROA (Rothschild et al. 2015, vii) 

In the context of process industries, Anderson et al discussed the benefits of advanced process 

controls to help operate production plants closer to the overall optimum defined by profit per 

hour (Anderson et al. 1994, p. 82). The optimum in real time optimization is constrained by 

plant operating conditions involving process variables like temperatures, pressures, flow rates, 

yield or viscosity; capacities of the plant, its equipment and storage; and economic factors such 

raw material costs or product margins (Seborg et al. 2004, p. 512). Given the large number of 

factors involved and the complexity in industries such as pharmaceuticals, chemicals, and 

mining, nowadays advanced analytics are applied to help (Auschitzky et al. 2014, p. 1). Profit 

per hour has also been defined one of five core beliefs for unlocking industrial resource 

productivity (Hammer, Somers 2016, IX). As the time scale varies across different industrial 

management systems and reporting cycles (Rakar et al. 2004, p. 1), it is worth noting that “per 
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hour” in this discussion is a placeholder for a short time-based metric. Finally, on the topic of 

time horizons, Horngren warns, that “managers could take actions that cause short-run 

increases in these measures but that conflict with the long-run interest of the company” 

(Horngren et al. 2015, p. 906). Koller et al. have a similar view that the often debated focus on 

shareholder value is not a problem, but short-termism is (Koller et al. 2015, p. 4). 

4.2.3 Current state, challenges and opportunities 

The discussion in this chapter aimed to understand the status quo, the importance of 

performance measure and critical factors to consider. Accepting the profit objective of 

commercial firms´ high level financial KPIs such as ROIC and their disaggregation help to 

understand the sensitivities of actions measured as leading indicators on the outcome expressed 

by lagging indicators. The answer to Neely´s questions at the beginning of this chapter “Should 

measures focus on processes, the outputs of processes, or both?” would therefore be both. 

Modeling the linkages between actions and profits continues to be challenging. While 

Christensen, Hemmer 2006, p. 563 see demand for simplification of the complex cost models, 

Buschbacher 2016, p. 41 see the solution in algorithm-based, dynamic KPIs based on Big Data 

analytics going forward. Neely et al. 1995, p. 109, also concluded that future KPIs would be 

predictive measures for the future based on past data. As there is always a bottleneck in 

production and process industries many already operate 24/7, the answer to “Is time the 

fundamental measure of manufacturing performance?” has to be yes. Time based metrics such 

as profit per hour and time-based accounting methods exist but don´t seem to be widely adopted 

yet. Their focus on variable cost is meaningful from the angle that fixed cost can be either 

considered as “sunk cost” or are not adjustable in the short-term. The final challenge of short-

termism, the push of investors and mangers for quarterly results remains. However, a recent 

article gave evidence that “managing for the long term pays off” (Barton et al. 2017). 

 

4.3 Performance measurement and management systems 

Performance measurement and management (PMM) systems play a critical role for managers. 

In a global survey conducted by the Business Application Research Center in 2009, more than 

80% of companies responded that they see the need to improve their performance management 

processes (Bange et al. 2009, p. 5). Another recent study by Möller et al. investigated 196 

German and Swiss companies regarding their focus on performance management systems. The 

researchers found that the financial concept of ROIC prevails as the most common instrument 

(77%), followed by other functional concepts such as Total Quality Management (51%) or Six 

Sigma (28%). Overarching, multi-dimensional performance management systems are less 

frequently used or unknown, with the exception of the balanced scorecard (37%) (Möller et al. 

2014, p. 436). 
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Definitions 

According to Neely et al, performance measurement can be defined as “the process of 

quantifying the efficiency and effectiveness of action” (Neely et al. 1995, p. 80). A performance 

management system is a “system for collecting, measuring, and comparing a measure to a 

standard for a specific criterion for an operation, item, good, service, business, etc. A 

performance measurement system consists of a criterion, a standard, and a measure” (Pittman, 

Atwater 2016, p. 132). Anthony described performance management using the term 

“management control” as “the process by which managers assure that resources are obtained 

and used effectively and efficiently in the accomplishment of the organization´s objectives” 

(Anthony 1965, p. 27). A more recent definition is offered by Horngren et al.: “A management 

control system is a means of gathering and using information to aid and coordinate the 

planning and control decisions throughout an organization and to guide the behavior of its 

managers and other employees” (Horngren et al. 2015, p. 864). Already in 1969 Skinner laid 

out a comprehensive management process linking industry factors, company strategy with 

manufacturing policies, and performance dimensions such as productivity, service, quality 

(Skinner 1969, p. 8). It is crucial to understand, that competitive advantages cannot be obtained 

just by measuring performance (Schläfke et al. 2012, p. 115). It requires process improvement, 

the implementation of changes and management of performance through practices and people 

(Bourne 2008, p. 68).  

 

 

Figure 32: Closed loop performance management (Neely et al. 1995, p. 107) 

The notion of a control loop that includes both measurement and corrective action is important 

(Bititci et al. 2000, p. 702). Performance management is about closing the loop as depicted in 

Figure 32 (Neely et al. 1995, p. 107). Controlling requires information about the current state, 

e.g., through the means of a scorecard; information about deviations from targets to direct 

attention; and problem solving and execution of counter measures (Obermaier 2016, p. 301). 
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Approaches, critique and trends 

Yadav and Sagar reviewed the evolution of PMM approaches, Figure 33, and their extensions 

such as the balanced scorecard, performance pyramid, performance prism, the EFQM 

excellence model, Kanji´s business scorecard, "system dynamics based" balanced score card 

(BSC); holistic approaches like integrated dynamic performance measurement systems or the 

holistic performance management framework; and context-specific PMM frameworks, e.g., 

process-based frameworks (input-process-output-outcome framework) or financial 

performance drivers (economic value added) (Yadav, Sagar 2013, pp. 963–964).  

 

Figure 33: Evolution and trends for performance measurement and management  

(adapted from Yadav, Sagar 2013, p. 950,  956,  962) 

While the focus on financial measures continues to be highly criticized in general (Almeida, 

Azevedo 2016, p. 130), there are also other important aspects for current PMM systems that are 

shown in Figure 34 (Kleindienst 2016, p. 3). Yadav and Sagar see the biggest research need in 

developing effective PMM systems, that are holistic, integrated and dynamic to support 

companies in volatile and competitive business conditions (Yadav, Sagar 2013). 

 

Figure 34: Criticism, factors and properties of PMM systems (Kleindienst 2016, p. 3) 

According to Bititci, such a dynamic PMM system would consist of (1) a monitoring system of 

the external business environment; (2) a monitoring system of internal performance and 
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the current situation with set objectives, and deriving priorities; and (4) an internal deployment 

system for execution of actions (Bititci et al. 2000, p. 696). In order to quantify the positive 

effects of improvement actions a baseline and defined policy is required. The Efficiency 

Valuation Organization (EVO) publishes the International Performance Measurement and 

Verification Protocol (IPMVP), in which measurement and verification is defined as “the 

process of using measurement to reliably determine actual savings” (EVO - Efficiency 

Valuation Organization 2012, p. 4). Savings as well as other performance trends are typically 

visualized in dashboard, Figure 35 provides an example. 

 

Figure 35: Dashboard for oil refinery (Hu et al. 2012, p. 734) 

The current trend of digitization, with more internal/external data and complementing analytics 

competences, will lead to major changes in management control processes, e.g., (1) from 

reactive-analytical to proactive-prognostic control, (2) quantitative value driver models, (3) 

more frequent, agile optimization and control cycles based on real-time data, (4) automated 

analytics based control, (5) integrated cross-functional, cross-enterprise control (Kieninger et 

al. 2015, p. 10). 

 

Current state, challenges and opportunities 

For managers to control their companies, both performance measurement and management is 

required. Although a variety of approaches exist, challenges remain. The convergence of 

strategic and operational performance measurement is facilitated through the drive for 

integrated systems. Through digitalization real time performance measurement on both levels 

becomes possible. This will allow for dynamic management control, closing the loop between 

measurement, decision and action, and result in the increased agility of companies.   
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4.4 Decision support systems 

Capturing strategic and operational business opportunities increasingly depends on decision 

support systems and analytical tools (Schläfke et al. 2012, p. 111). The area of business 

intelligence (BI), Big Data, and analytics is attracting significant interest in business and 

academia (Chen et al. 2012, p. 1165). Information becomes a strategic resource with 

considerable consequences for companies and their decision making processes (Seufert et al. 

2014, p. 18). In the time of Big Data, “decisions may often be made not by humans but by 

machines” (Mayer-Schönberger, Cukier 2013, p. 16). 

Definitions 

A decision support system is a “computer system designed to assist managers in selecting and 

evaluating courses of action by providing a logical (usually quantitative) analysis of relevant 

factors” (Pittman, Atwater 2016, p. 46). Business intelligence is the “the capability to gather, 

sort, classify and maintain data and knowledge for the purpose of improving competitive 

positioning and business management” (APICS Suppy Chain Council 2015, p. 55).  

Approaches, critique and trends 

The first related systems were termed “management information systems (MIS) back in the 

1960s (Lanquillon, Mallow 2015b, p. 257). They feature an “integrated approach for providing 

interpreted and relevant data that can help managers make decisions. This information can 

reflect the progress or lack of progress made in achieving major objectives” (Pittman, Atwater 

2016, p. 104). Several other terms have been adopted since, Table 25. 

Term Time frame Specific meaning 

Decision support 1970–1985 Use of data analysis to support decision making 

Executive support 1980–1990 Focus on data analysis for decisions by senior executives 

Online analytical processing (OLAP) 1990–2000 Software for analyzing multidimensional data tables 

Business intelligence 1989–2005 Tools to support data-driven decisions, with emphasis on reporting 

Analytics 2005–2010 Focus on statistical and mathematical analysis for decisions 

Big Data 2010–present Focus on very large, unstructured, fast-moving data 

Table 25: Terminology for using and analyzing data (Davenport 2014a, p. 10) 

BI is criticized for being backward-looking, whereas Big Data is forward-looking through 

predictive or even prescriptive analytics suggesting a specific course of action. However, this 

distinction appears artificial and not meaningful as both are ultimately aiming to gain insights 

to support decisions (Lanquillon, Mallow 2015b, p. 258). Omri views BI analytics as a 

specialization of Big Data-Analytics focusing on structured data instead of unstructured, 

inconsistent sets of data (Omri 2015, p. 105). Integrated decision support, according to Clark 

and Dostal, represents the highest maturity level in performance management (Clark, Dostal 

2013, p. 6). Performance management analytics (PMAs) is “the extensive use of data and 

analytical methods to understand relevant business dynamics, to effectively control key 

performance drivers, and to actively increase organizational performance” (Schläfke et al. 



4 Management perspective 

67 

2012, p. 111). In 1978, Ackhoff illustrated the interplay of decision making systems, Figure 36, 

in the larger context. 

 

Figure 36: Diagrammatic representation of a problem-solving system (Ackoff 1978, p. 191) 

Taylor provides four principles in respect to decision management systems: “(1) begin with the 

decision in mind, (2) be transparent and agile, (3) be predictive, not reactive, (4) test, learn, 

and continually improve” (Taylor 2012, p. 76). Furthermore, in the context of the overall 

decision lifecycle spanning from strategy definition to execution, automation is a relevant 

aspect (Taylor 2012, p. 82). Automation can help tackle various types of latencies, Figure 37, 

including analysis latency or decision latency. For Iafrate, efficient organization applying a 

combination of effective systems and tools with proper decision KPIs can develop into a “zero 

latency” organization (Iafrate 2014, p. 26). 

 

Figure 37: Corporate adaptation (decision making/latency) (Schuh et al. 2017, p. 11) 
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Current state, challenges and opportunities 

Decision support systems have come a long way, been known under various names, and are 

becoming of particular relevance with the increasing degree of digitization. Advantages include 

quicker, fact based decisions reducing the latency between events and actions. The integration 

of top floor and shop floor (Kleinemeier 2014, pp. 575–576), also dubbed „Controlling 4.0“ 

(Obermaier 2016, p. 301) enables opportunities on many fronts, including gains in resource 

productivity and efficiency (Kagermann et al. 2013, p. 7). Related research activities include 

self-optimizing decision-making in production control (Schuh et al. 2013, p. 443) or artificial 

intelligence (AI). According to a study on technology tipping point from the World Economic 

Forum, 45% of respondents expect an AI machine to become a member of the corporate board 

of directors by 2025 (World Economic Forum 2015, p. 21). 

4.5 Summary: Performance opportunities with decision-support 

systems 

Decision making is the primary task of corporate managers. Human decision making, however, 

is flawed and biased. Fact-based decisions can best be taken by machines or by managers guided 

by decision support systems. Performance measures embrace financial and non-financial 

aspects and indicators can be leading or lagging. Performance can be defined in different ways, 

but in this work focuses on financial performance expressed by the return on invested capital. 

ROIC can be disaggregated into value drivers for further analysis of operational efficiencies. 

This way the management and operational control levels are linked, i.e., potential gains in 

resource productivity and efficiency from the shop floor translate into financial results on the 

top floor. Time based metrics are of particular importance for profit maximization of 

constrained operations, common in continuous process industries. Profit per hour has been used 

infrequently and with the focus on product mix decisions within planning. Within techno-

economics systems, performance measurement and management systems have evolved over 

time and aim to close the loop between measurement, decisions and actions. Technology also 

helps to reduce decision making latency. Using the profit rate as a leading operational target 

control parameter presents an opportunity to maximize the lagging, future total returns of 

invested capital. 

Learning Delimitations Requirements 

 Human decision making is biased and flawed 

 Performance measures and decision support systems 

help managers make data driven decisions 

 Performance measurement and management systems 

aim to be dynamic closing the loop between 

measurement, decision and action 

 Performance measures include financial, non-

financial and leading/lagging indicators 

 Management and operational control are 

distinguished levels that can be linked through a 

value driver tree for ROIC 

 Profit rate not commonly used as a leading 

operations target parameter  

 Technology and digitization can help reduce decision 

making latency and compute profit rate in real-time 

using advanced analytics 

INCLUDES 

 Time-based profit optimization 

 Dynamic, closed-loop 

performance management 

 Operations orientation (internal 

focus) considering external 

factors and overall strategic 

objectives 

 Target group are decision 

makers in a manufacturing site, 

e.g., plant managers, process 

engineers and operators 

EXCLUDES 

 Capital and financing aspects, 

e.g., debt/equity optimization 

 Profit orientation with the goal 

of maximizing ROIC 

 Profit rate as leading 

operational KPI 

 Linking operations level with 

management level through 

value driver tree 

 Decision support, e.g., cockpit 

or closed loop automatic 
decision making 

 

Table 26: Summary of conclusions from management perspective 
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5 Operations perspective: Achieving resource-

productive operations 

This chapter gives a perspective on resource-productive operations (section 5.1), operations 

improvement methods (section 5.2), advanced process control (section 5.3) and a summary of 

how to achieve resource-productive operations in section 5.4.  

5.1 Resource-productive operations 

Operations management in the context of production covers a wide spectrum of factors, such 

as technological, managerial and methodological factors, shown in Figure 38.  

 

 

Figure 38: The scope of production and operations management (Steyn 1989, p. 12) 
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Industrial resource productivity, according to Hammer and Somers, is a priority across 

manufacturing sectors due to trends on both the supply side, e.g. resource scarcity, and the 

demand side, e.g. growth in resource demand. Resource-productive manufacturers aim to 

optimize variable costs for materials, energy or water while taking the operational requirements 

such as throughput and quality into account (Hammer, Somers 2016, p. 49). When it comes to 

resources, the “Limits of growth report” from 1972 identified five critical factors: (1) 

population, (2) agricultural production, (3) natural resources, (4) industrial production, and (5) 

pollution (Meadows et al. 1972, pp. 11–12). More recently, in 2016, Stuchety et al explained 

that the significant economic growth over the past 30 years, when measured by GDP, has been 

driven largely by depleting natural capital (Stuchtey et al. 2016, p. 21) and to illustrate this point 

they cite the Global Footprint Network18 “in 2015, we used a full 1.6 planets with most rich 

countries using between two and five times more than their share” (Stuchtey et al. 2016, p. 12). 

Manufacturing industry is one of the root causes in this global dilemma (Rao 2011, p. 339) and 

accounts for 25.9% of all energy consumption in Europe19, and 32% in the US in 201520. At the 

same time, improving industrial operations through the application of manufacturing 

philosophies such as lean or Six Sigma is a critical enabler to achieve operational excellence 

supporting the highest levels of resource productivity. In manufacturing, materials represent the 

largest cost factor, at over 70% on average (United Nations Industrial Development 

Organization 2015, p. 192). Lacy and Rutqvist see four distinct forms of waste: “(1) Wasted 

resources are materials and energy that cannot be continually regenerated, but instead are 

consumed and forever gone when used. (2) Products with wasted lifecycles have artificially 

short working lives or are disposed of even if there is still demand for them from other users. 

(3) Products with wasted capability sit idle unnecessarily; for instance, cars typically sit unused 

for 90 percent of their lives. (4) Wasted embedded values are components, materials, and 

energy that are not recovered from disposed products and put back into use” (Lacy, Rutqvist 

2015, xvii). For McDonough and Braungart, however, “the very concept of waste does not 

exist” and in 2002 they proposed a shift in product life-cycle thinking from “Cradle-to-Grave” 

to “Cradle-to-Cradle”. This requires designing fundamentally different products and systems 

aiming to close the material cycles in the biosphere and technosphere (McDonough, Braungart 

2002, p. 104). 

 

Definitions 

In the following the key elements of “Resource-Productive Operations” are reviewed. Pittman, 

Atwater define resource as: “anything that adds value to a good or a service in its creation, 

production, or delivery”, which includes materials, energy, direct and indirect labor, equipment 

and facilities, information, and capital. Resource management in this context is seen as “an 

                                                

18 Global Footprint Network: Earth Overshoot Day: Press Release, Oakland, CA, USA, July 12, 2016 

http://www.overshootday.org/newsroom/press-release-english/, last accessed 12.05.2017 
19 Eurostat Statistics Explained: Consumption of Energy,  

http://ec.europa.eu/eurostat/statistics-explained/index.php/Consumption_of_energy, last accessed 02.12.2016 
20 U.S. Energy Information Administration (eia): Monthly Energy Review – November 2016, 

https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf, last accessed 04.12.2016 

http://www.overshootday.org/newsroom/press-release-english/
http://ec.europa.eu/eurostat/statistics-explained/index.php/Consumption_of_energy
https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf
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emerging field of study emphasizing the systems perspective, encompassing both product and 

process life cycles, and focusing on the integration of organizational resources toward the 

effective realization of organizational goals” (Pittman, Atwater 2016, p. 159-160). 

Productivity is an overall measure of the ability to effectively (efficiently and economically) 

convert resources into goods or services. In short, a ratio of output over input. This also applies 

to information systems, for turning raw data into information (Hitomi 1996, p. 15; Pittman, 

Atwater 2016, p. 146). Efficiency in operational management and aims to comply with the 

principle of rationality. On the one hand there is the minimum principle that is to minimize the 

resources needed to achieve a certain production output. On the other hand the maximum 

principle refers to maximize the production output at a given resource input, also known as 

resource productivity. This includes material productivity, energy productivity and also labor 

productivity which in general belong to the category of factor productivity (Ramsauer 2013b, 

p. 9). We speak of total productivity when all resources are included in an overall measure of 

a firm. Productivity can be physical productivity expressed in units or value productivity 

measured in monetary values (Hitomi 1996, p. 17). Maximum value productivity expressed in 

the ROIC is the objective of the majority of companies outside of the non-profit sector. 

 

Trade-offs 

In order to maximize total productivity invariably trade-offs need to be considered. Trade-off 

decisions exist whenever there are at least 2 different courses of actions with unequal outcomes 

in terms of effectiveness and value (Ackoff 1978, p. 12). In trade-off theory, “the improvement 

in one aspect of operations performance comes at the expense of deterioration in another aspect 

of performance, [and is] now substantially modified to include the possibility that in the long 

term different aspects of operations performance can be improved simultaneously” (Slack et 

al. 2010, p. 668). Figure 39 shows an example of conflicting targets, e.g., maximization of 

utilization vs. delivery performance vs. optimal cost. 

 

Figure 39: Positioning within the core goals of production management (Schuh, Schmidt 2014, p. 22) 
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According to Adam, situations of conflicting targets frequently lead to the inability to make 

corporate decisions. Especially when the objectives, behaviors and policies of different 

functions and business units cannot be aligned to an overall target priority. As a consequence, 

even if all functions do their best in their area, the performance of the total system will be 

insufficient (Adam 1997, p. 29). In order to identify the optimal decision in such a case of 

multiple relevant evaluation aspects, Adam suggests a value synthesis to derive a single-

dimensional target function such as profit maximization (Adam et al. 1998, p. 3). However, this 

is a complex undertaking, and “Complex problems seldom have simple solutions […] that 

involve manipulating only one causal variable” (Ackoff 1978, p. 118). On top of this, Skinner 

points out that trade-off decisions have to be made continuously and include competitive and 

strategic elements (Skinner 1969, p. 6). Table 27 shows examples of important trade-off 

decisions in manufacturing. 

Decision area Decision Alternatives 

Plant and 

equipment 
 Span of process 

 Plant size 

 Plant location 

 Investment decisions 

 Choice of equipment 

 Kind of tooling 

 Make or buy 

 One big plant or several smaller ones 

 Locate near markets or locate near materials 

 Invest mainly in buildings or equipment or inventories or research 

 General-purpose or special-purpose equipment 

 Temporary, minimum tooling or "production tooling" 

Production 

planning and 

control 

 Frequency of inventory taking 

 Inventory size 

 Degree of inventory control 

 What to control 

 

 

 Quality control 

 Use of standards 

 Few or many breaks in production for buffer stocks 

 High inventory or a lower inventory 

 Control in great detail or in lesser detail 

 Controls designed to minimize machine downtime or labor cost or time 

in process, or to maximize output of particular products or material 

usage 

 High reliability and quality or low costs 

 Formal or informal or none at all 

Labor and staffing  Job specialization 

 Supervision 

 

 Wage system 

 Supervision 

 Industrial engineers 

 Highly specialized or not highly specialized 

 Technically trained first-line supervisors or nontechnically trained 

supervisors 

 Many job grades or few job grades; incentive wages or hourly wages 

 Close supervision or loose supervision 

 Many or few such personnel 

Product Design/ 

Engineering 
 Size of product line 

 Design stability 

 Technological risk 

 

 Engineering 

 Use of manufacturing 

engineering 

 Many customer specials or few specials or none at all 

 Frozen design or many engineering change orders 

 Use of new processes unproven by competitors or follow-the-leader 

policy 

 Complete packaged design or design-as-you-go approach 

 Few or many manufacturing engineers 

Organization and 

Management 
 Kind of organization 

 Executive use of time 

 

 Degree of risk assumed 

 Use of staff 

 Executive style 

 Functional or product focus or geographical or other 

 High involvement in investment or production planning or cost control 

or quality control or quality control or other activities 

 Decisions based on much or little information 

 Large or small staff group 

 Much or little involvement in detail; authorization or nondirective 

style; much or little contact with organization 

Table 27: Trade-off decisions in manufacturing - "you can´t have it both ways" (Skinner 1969, p. 7) 

 

Theoretical Limits 

We live in a world of constraints and limits. A constraint is “Any element or factor that prevents 

a system from achieving a higher level of performance with respect to its goal” (Pittman, 

Atwater 2016, p. 33). Definitions for “limit” according to the Oxford and Cambridge 

dictionaries vary from “A point or level beyond which something does not or may not extend or 
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pass”21 to “the greatest amount, number, or level of something that is either possible or 

allowed”22. A theoretical limit, as used in this work, is an absolute limit given by nature and 

laws of physics. Examples would be the limitation of 24 hours per day or the law of 

conversation of energy stating that the total energy of an isolated system remains constant and 

can only be transformed. In industrial manufacturing processes, different forms of energy are 

being used and present theoretical limits for optimization (Kals 2015, p. 22; Kreitlein et al. 

2016, pp. 50–54): 

 Chemical energy: All materials contain chemical energy which can be transformed, e.g., 

by combustion into other energy forms. Each chemical reaction needs at least the 

necessary activation energy to start this transformation process. This activation energy 

is identical to the theoretical limit.  

 Electric and magnetic energy: Electric as well as magnetic energy is used in industry in 

various applications. Concerning the transformation of electric to other forms of energy 

the degree of efficiency is subject to certain limitations.  

 Mechanical energy: Subcategories of mechanical energy are kinetic energy; potential, 

elevation, or position energy; wave energy; elastic energy or sound energy.  

 Thermal energy: Physically every item with a temperature above absolute zero  

(-273.15°C) contains thermal energy. An addition of thermal energy expresses itself in 

a higher internal energy of the system, and to achieve this higher level of internal energy 

a certain activation energy is, at least, required.  

 

Figure 40: Analyzing the theoretical limit exposes unseen losses (Hammer, Somers 2015, p. 16) 

                                                

21 https://en.oxforddictionaries.com/definition/limit, last accessed 12.05.2017 
22 http://dictionary.cambridge.org/dictionary/english/limit, last accessed 12.05.2017 
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The traditional approach to resource efficiency starts with understanding the current state and 

subsequent bottom-up brainstorming. A more aggressive approach is to start with the theoretical 

limit instead, Figure 40. Theoretical limit thinking is compatible with the Overall Equipment 

Effectiveness (OEE), a commonly used operations KPI, which is a time based metric helping 

to understand the gap between actual and ideal performance. Stamatis uses the term total 

effective equipment performance (TEEP) when the basis of consideration is the theoretical limit 

of calendar hours, that is, 24 hours per day, 365 days per year (Stamatis 2010, p. 22). An 

application of theoretical limit thinking to raw material consumption of a chemicals company 

found “that up to 30 percent of its raw-material inputs were wasted” (Hammer et al. 2014, 

p. 2). Theoretical limits present an important point of orientation for optimization. Or as Ackoff 

states: “Our ability to solve problems is thereby limited by our conception of what is feasible” 

(Ackoff 1978, p. 25). 

 

Loss thinking 

Considering the gap between current performance and theoretical limits, a lot of improvement 

opportunity appears. Two examples by Allwood illustrate this: (1) a typical car operates 

inefficiently at around 10 times the theoretical limit, and (2) the best available technology to 

extract pure aluminum and iron from their oxides uses over double the absolute theoretical 

minima calculated by Gibbs (Allwood et al. 2012, pp. 102–103). Losses can be illustrated by 

using a loss bridge diagram, as in Figure 41. 

 

Figure 41: Resource-productive operations loss bridge (Hammer et al. 2017a, p. 7) 
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Three documented cases exemplify loss thinking further: 

(1) A company for solid/liquid and dust filtration solutions went through a holistic process 

optimization effort tackling a variety of different losses such as material losses (e.g., filter 

media, auxiliary materials), losses during start-up/shutdown and overdosing. This was achieved 

through (a) operational management solutions such as standardization of cutting patterns and 

the reduction of product variety, along with (b) process design improvements, e.g., automation 

of dosing and cleaning, as well as installing a new geothermal power plant with heat recovery 

and photovoltaics (Schmidt et al. 2017, pp. 74–77). 

(2) A passenger bus manufacturer could achieve a reduction of 28% in energy demand in the 

period of 2011 to 2015 through the development and application of a “best practice guide” for 

energy management to reduce operational losses (Schmidt et al. 2017, 238–241). 

(3) In a move to tackle process design losses and adhering to Good Manufacturing Practice 

(GMP), a producer of printing ink, decided to implement a computer based raw material dosing 

system. With this measure they could eliminate losses related to human interventions (e.g. 

dosing errors, lack of accuracy) and reduce raw material losses by 8-10 tons per year (Schmidt 

et al. 2017, pp. 106–109). 

 

Current state, challenges and opportunities 

Given the challenges outlined in chapter 2 and there is a clear need for industrial resource 

productivity, be it externally driven by supply shortages, demand growth and competition; or 

internally driven by profitability objectives. Five core beliefs guide the journey to industrial 

resource productivity, Table 28. 

Think lean Think Limits Think profit per hour Think holistic Think circular 

Build resource 

productivity 

improvements on top of 

traditional lean thinking 

as lean and green are 

highly synergetic and 

use the same 

fundamentals 

Stretch your aspirations 

by using the theoretical 

limit concept fostering 

creative thinking and 

delivering break-through 

impact 

Prioritize profit as the 

main factor for final 

decisions understanding 

the relationships 

between throughput, 

yield, energy, and the 

environment 

Involve the whole 

organization to sustain 

change reinforcing the 

benefits from technical 

improvements by 

improving and tailoring 

management systems, 

mindsets and behaviors 

Move from finite supply 

chains to supply circles 

boosting business 

opportunities and 

competitive advantages 

by optimizing across 

product and service 

lifecycles 

Table 28: Five core beliefs to unlock industrial resource productivity (Hammer, Somers 2016, p. 34) 

A multitude of trade-offs have to be considered because factors such as throughput, quality, 

energy are all interrelated. Taking the theoretical limit for guidance and using loss bridges helps 

to determine the magnitude of losses and specific areas for improvement. Process improvement 

embraces all “activities designed to identify and eliminate causes of poor quality, process 

variation, and non-value-added activities” (Pittman, Atwater 2016, p. 141) and entails both 

continuous and breakthrough improvement. According to Slack continuous improvement: 

“assumes many, relatively small, incremental, improvements in performance [and] stress[es] 

the momentum of improvement rather than the rate of improvement” while breakthrough 

improvement “implies major and dramatic change in the way an operation works […and is] 

also known as innovation based improvement” (Slack et al. 2010, p. 659). Process innovation 
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is usually driven either by engineering or as Davenport points out by the “information 

technology function” (Davenport 1993, p. 7). Most of the improvement approaches go back to 

the formal discipline of industrial engineering (Burton 2011, p. 32) and while their principles 

are not new, their benefits are still well recognized (Chatterjee 2016, xv). Burton stresses that 

companies should integrate the best of the various improvement methodologies, shown in 

Figure 42, such as Lean and Six Sigma or enabling IT, into their own approach and that they 

should deemphasize the discussion around particular tools as they “are a means, not an end” 

(Burton 2011, p. 27). 

 

Figure 42: The approaches on the two dimensions of improvement (Slack et al. 2010, p. 558) 

In the following sections the four approaches: lean, six sigma, the theory of constraints and 

agility will be reviewed. 

5.2 Lean 
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flexibility, and higher value are also frequently referred to as golden goals of lean (Schonberger 

2008, p. 48). Lean is applicable across industries leading to competitive advantage through 

operations transformation (Drew et al. 2004, p. 1). Due to their capital intensity, the benefits of 

lean in process industries can be even higher than in discrete manufacturing (Floyd 2010, 

pp. xv–xvi). 
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Definition 

The term “lean production” was invented as part of the International Motor Vehicle Program 

by researcher John Krafcik. "Lean" means using “less of everything compared with mass 

production”, i.e., shorter product development and production lead times, lower capital 

investment and inventory levels, less human effort and defects (Womack et al. 1990, p. 13). 

Lean can be defined as a systematic approach built out of principles, practices, tools and 

techniques that help tackle waste, variability and inflexibility in order to meet the requirements 

of customers and shareholders, i.e., a combination of cost, quality, delivery and safety 

objectives (Drew et al. 2004, p. 15). Further descriptors of a lean production system include: “a 

consistent way of thinking”, “a total management philosophy”, “focus on total customer 

satisfaction”, “an environment of teamwork and improvement”, “a never-ending search for a 

better way” (Liker 2004, p. 297). 

 

Focus on waste reduction 

Lean production is based on the Toyota Production System (TPS) and goes back to the 1950s 

and Eiji Toyoda and Taiichi Ohno (Womack et al. 1990, pp. 30–31). At that time, post-World-

war II, Toyota´s primary objective was to be as efficient as possible by relentlessly eliminating 

waste in production. Taichi Ohno summarized this concept in a later interview: "All we are 

doing is looking at the timeline from the moment the customer gives us an order to the point 

when we collect the cash. And we are reducing that time line by removing non-valued-added 

wastes." The principle of waste reduction and respect for humanity form the fundament of the 

Toyota Production System and were previously passed on from Sakichi and Kiichiro Toyoda 

(Ohno 1988, xiii-ix). TPS starts with internal or external customers and their definition of value. 

This allows for the observation of any kind of process, be it in manufacturing or in the service 

sector, and separation of value adding from non-value adding steps (Liker 2004, p. 27). 

Originally, seven types of waste were distinguished by Taichi Ohno: (1) Waste of 

overproduction, (2) Waste of time on hand (waiting), (3) Waste in transportation, (4) Waste of 

processing itself, (5) Waste of stock on hand (inventory), (6) Waste of movement, (7) Waste of 

making defective products (Ohno 1988, p. 20). Another common type of waste in literature is 

(8) Unused employee creativity (Liker 2004, pp. 28–29). Many more, not so obvious, forms 

can be found, e.g., getting customers to buy what they don’t want or need, automating wasteful 

processes, excessive analyses/costing/reporting (Schonberger 2008, pp. 48–49). Compression 

thinking takes it even further by “considering how nature sees waste in order to reach well 

beyond waste as only a customer might see it” (Hall 2010, pp. 92–93). Heinen and Wulf state 

that the principles of lean manufacturing are a perfectly suitable basis for an energy and 

environment oriented production strategy (Heinen, Wulf 2011, p. 504). Several independent 

studies confirmed that lean and green are highly synergistic. Dües concluded: “The research 

findings indicate that a Lean environment serves as a catalyst to facilitate Green 

implementation. The integration of Lean and Green practices will bring benefits to companies 

and introducing Green as the new Lean is no longer a strong and unsupported statement. It is 

rather undeniable that the ultimate Lean will be Green” (Dües et al. 2013, p. 99). Hallam, 

Conteras found positive evidence that “lean is pushing green outcomes through operational 

waste reduction” (Hallam, Contreras 2016, p. 2179). Fercoq has also confirmed the 
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convergence of Lean and Green management in his quantitative research. Specifically, waste 

reduction techniques are considered one of the main areas of the overlap between Lean and 

Green (Fercoq et al. 2016, p. 567). Hammer and Somers provide a specific overview of the 

translation of the lean types of waste to resource productivity and complement the classic lean 

waste categories with two additional, resource-productivity specific sources of waste: (1) 

Inefficient equipment, for example, legacy motors and pumps that are much less efficient than 

similar equipment designed more recently; (2) Failure to fully integrate systems and to take 

advantage of available energies across processes. For example, a product is heated with steam 

during production and then chilled with cooling water for storage (Hammer, Somers 2016, 

p. 53) or using excess process heat of a refinery for city district heating (Schmidt et al. 2017, 

pp. 254–257). 

 

Lean production systems 

The Toyota production system serves as the blueprint for the implementation of lean production 

systems. Beyond specific tools and techniques, the success of TPS and lean rests on people´s 

mindset and behaviors. “Toyota’s ability to align these intangible factors with its operating 

system is probably the aspect of its success that is most often overlooked” (Drew et al. 2004, 

xv). “People benchmark Toyota’s organizational innovations, not its technical ones” (Hall 

2010, p. 77). The “Toyota Way” as described by Liker is comprised of 14 principles. Some of 

the most relevant ones selected are: base your management decisions on a long-term 

philosophy, even at the expense of short-term financial goals; the right process will produce the 

right results; continuously solving root problems drives organizational learning; and go & see 

for yourself to thoroughly understand the situation (genchi genbutsu) (Liker 2004, pp. 37–41). 

TPS is not only a system for production but much more than that. Taichi Ohno claimed: “I am 

confident it will reveal its strength as a management system adapted to today's era of global 

markets and high-level computerized information systems” (Ohno 1988, xv). 

 

Implementation approach 

Before explaining the tactical steps for implementing a large-scale lean improvement program 

it is important to understand the five core principles of lean. As per Womack and Jones, these 

are: (1) precisely specify value by specific product, (2) identify the value stream for each 

product, (3) make value flow without interruptions, (4) let the customer pull value from the 

producer, and (5) pursue perfection (Womack, Jones 2003, p. 10). Lean is not project 

implementable in a short- or mid-term period (Liker 2004, p. 297). “Implementing lean is a 

journey” (Drew et al. 2004, p. 1) which is comprised of the following steps: 

1. A conscious decision to start based on a clear business need to transform operations. A 

high-level roadmap for the implementation journey taking potential risks into account 

(Drew et al. 2004, p. 81). 

2. Assessing the opportunity by using the customer perspective of value and developing a 

real sense of urgency (Drew et al. 2004, p. 93). 

3. Aligning the leadership team around the details of implementation and engaging the 

organization through a compelling ‘change story’ to communicate the desired end state, 
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the path to get there, and measurable objectives linked to the business needs (Drew et 

al. 2004, p. 123). 

4. Demonstrating the benefits of lean for business and employees through a successful 

pilot implementation sustained by the line team (Drew et al. 2004, p. 147). 

5. Embedding change and scaling the lean program through the development of a 

continuous improvement culture (Drew et al. 2004, p. 169). 

 

Mindsets and behaviors 

The mindset of lean companies is one of perfection, i.e., continually declining costs, zero 

defects, and endless product variety (Womack et al. 1990, pp. 13–14). Achieving world-class 

results requires transparency from suppliers to customers in order to find better ways to create 

value (Womack, Jones 2003, p. 26). Total employee involvement is another cornerstone for 

improvement. Empowered frontline operators, e.g., in process industries, deal autonomously 

with day-to-day process optimization, while engineers and managers concentrate their effort on 

larger, strategic improvement opportunities (Floyd 2010, pp. 9–10). Figure 43 shows examples 

of typical lean mindsets and behaviors. 

 

Figure 43: Lean mindsets and behaviors (Drew et al. 2004, p. 69) 

 

Current state, challenges and opportunities 

Lean is a methodology that is well known and adopted by many companies. It includes a 

combination of technical, managerial, and people aspects. The main focus is to relentlessly 

reduce waste, which is compatible with efforts to improve sustainability and resource 

productivity. The power of lean lies in the simplicity of its principles even if their 

implementation can be challenging and mostly depends on people. The combination of lean and 

green presents the fundament for achieving resource-productive operations. As part of this 

work, applying loss thinking, i.e., tackling profit losses is of particular relevance. 
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the symptoms
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Lean mindsets
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5.3 Six Sigma 

The origins of Six Sigma go back to the late 1970s and Motorola and now it is considered a 

tactical strategy for business excellence being deployed by companies worldwide (Patela 2016, 

p. 1). There are many myths when it comes to Six Sigma, such as “Six Sigma is all about 

statistics” or ”Six Sigma works only in large organizations, requiring strong infrastructure and 

massive training”, and ”Six Sigma is not cost-effective”. However, when Kumar et al studied 

these pre-conceptions, they came to the conclusion, that Six Sigma is not a management “fad” 

but a “fit”. This is due to the impact of Six Sigma as an effective strategy leading to significant 

improvements in business performance in a wide range of organizations. What makes the 

difference is “the degree of discipline in the sequencing and use of tools, upper management 

active involvement, linkage to strategy, and measurement of results tied to the bottom line” 

(Kumar et al. 2008, p. 882). 

 

Definition 

There are multiple ways to define Six Sigma. A simple definition for Six Sigma is: “A 

methodology that furnishes tools for the improvement of business processes. The intent is to 

decrease process variation and improve product quality” (Pittman, Atwater 2016, p. 173). A 

more holistic definition would be: “Six Sigma is an organized, parallel-meso structure to 

reduce variation in organizational processes by using improvement specialists, a structured 

method, and performance metrics with the aim of achieving strategic objectives” (Schroeder et 

al. 2008, p. 540). The statistical meaning of Six Sigma is that the standard deviation of a normal 

distribution fits +/- six times between the upper and lower specification limits defined by the 

customer. This corresponds to a quality level of 99.9999998 % and with only 3.4 defects in a 

million Six Sigma is virtually defect-free (Patela 2016, p. 13; Lunau 2009, p. 9). Beyond the 

metric, as per Kubiak and Benbow, Six Sigma is built upon the philosophy that if you control 

the input of a process, you control the outputs. Furthermore; it is a methodology aiming to 

define, measure, analyze, improve, and control (DMAIC) processes by using a set of qualitative 

and quantitative tools and techniques (Kubiak, Benbow 2009, p. 7). Ultimately, the philosophy 

consists of a targeted translation of the voice of the customer into the language of the process 

to manufacturing goods and services with high quality to combine economics (efficiency) and 

customer satisfaction (effectiveness) (Töpfer 2004, p. 16). 

 

Focus on variation 

The primary focus of Six Sigma is to reduce process variation to increase business performance 

through higher quality, reliability or customer service. “Variation is defined as an inevitable 

change in the output or result of a system (process) because all systems vary over time. Two 

major types of variations are (1) common, which is inherent in a system, and (2) special, which 

is caused by changes in the circumstances or environment” (Patela 2016, p. 2). The 

management of variation and use of statistical process control (SPC) goes back to W. Edwards 

and is well established (Schonberger 2008, p. 66). SPC includes assessing and improving the 

inherent process capability as well as subsequently operating the process without variation. SPC 
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shifts the emphasis from lagging indicators (e.g., end of line quality inspection) towards leading 

indicators for controlling manufacturing processes (Floyd 2010, p. 154). The underlying 

mindset is to find a real solution for a real problem by turning it into a statistical problem with 

a statistical solution (Lunau 2009, p. 11). Based on this “statistical thinking” paradigm of action 

and learning based on process, variation and data, Six Sigma aims to improve processes and 

increase customer satisfaction (Kumar et al. 2008, p. 882). 

 

The DMAIC cycle 

The five stage, iterative DMAIC improvement cycle is based on the philosophy that Y = f(x), 

the process outcome (Y) is driven by the process inputs (X). The phases are defined as follows 

(Patela 2016, p. 4): 

Define: Determine the nature of the problem by understanding the project output Y and how to 

measure it. 

Measure: Collect data and facts to determine potential Xs and measure existing performance 

(Xs and Y). 

Analyze: Study the information by determining X–Y relationships and, after verification, 

quantify important Xs to identify root causes of a problem. 

Improve: Implement solutions to improve the process by optimize Xs to improve Y. 

Control: Monitor and control the process, e.g., important Xs and the output Y over time, to 

ensure the solutions are sustained.  

Six Sigma and its implementation process is considered the “engine” to achieve the desired 

Business Excellence Performance (Töpfer 2004, p. 16). Literature offers a wide variety of 

different implementation processes. A generic approach is offered by Patela in Figure 44.  

 

Figure 44: Generic Six Sigma process (Patela 2016, p. 5) 

Töpfer highlights 7 steps for implementing Six Sigma: (1) Understanding the project-oriented, 

specific direction/requirements and capacity of Six Sigma; (2) Involving company leadership 

and gaining commitment of managers; (3) Establishing a Six Sigma organization and recruiting 

staff; (4) Qualifying Six Sigma specialists (Champions, Master Black Belts, Green Belts and 

Yellow Belts); (5) Selecting suitable Six Sigma projects (in production, at suppliers, in R&D 

or at customers); (6) Analyzing the monetary results of Six Sigma; (7) Implementing project 

controlling and establishing knowledge management (Töpfer 2004, p. 19). Burton offers 10 
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strategy, and vision; Deployment Planning (2) Develop a robust implementation plan, (3) 

Provide customized education and development, (4) Communicate, communicate, 

communicate, (5) Launch with the best in mind; Execution (6) Provide strong extensive 

mentoring support, (7) DMAIC the deployment process regularly, (8) Accelerate individual 

project paths, (9) Complete the C in DMAIC 10. Practice concurrent continuous deployment 

(Burton 2011, p. 80). Furthermore, the DMAIC cycle is not only consistent with the PDCA 

problem-solving steps defined by Deming, but it also integrates specific tools, Table 29, into 

each step of the method (Schroeder et al. 2008, p. 542). 

 Tools Mission 

Define 
 Project Charter  

 SIPOC 

 CTQ Matrix  

 Stakeholder Analysis  

 The project is defined 

 Current state and target state are depicted and the process 

to be improved is marked off 

 Customer and business requirements are clearly defined 

Measure 
 Measurement Matrix  

 Operational Definition  

 Measurement System Analysis 

 Sample Size and Strategy  

 Charts and Diagrams  

 Quality Key Figures  

 The starting situation is captured  

 Key figures and an operational definition are developed, 

the measurement system analysis is completed, and the 

data collected  

Analyze 
 Cause Effect Diagram  

 FMEA  

 Process Analysis 

 Value Stream Map  

 Hypothesis Tests  

 Regression  

 DOE  

 The causes for the problem are identified 

 All possible causes are collected and summarized into the 

decisive key figures through process and data analysis  

Improve 
 Brainstorming  

 "Must" Criteria  

 Effort-Benefit Matrix  

 Criteria-based Selection  

 Piloting  

 Roll out Planning  

 The solution is implemented 

 Possible solutions are generated on the basis of core 

causes, systematically selected, and prepared for 

implementation 

Control 
 Documentation  

 Procedural Instructions  

 Control and Run Charts  

 Reaction Plan and Process  

 Management Diagrams  

 The sustainability of the result is secured 

 The implemented solutions are documented and will be 

monitored using key figures  

 A reaction plan secures prompt intervention 

Table 29: Six Sigma tools per phase (Lunau 2009, p. 12) 

 

Philosophy of fact-based decision making 

Six Sigma is a business strategy, a “way of life”, aiming to close the gap between actual and 

target performance through analysis of root causes, problem solving and objective decision 

making (Kumar et al. 2008, p. 890). This requires a shift in mindset of people from fire fighting, 

i.e., solving problems as they occur, to a proactive process improvement based on facts (Kumar 

et al. 2008, p. 882). The saying “In God we trust, all others bring data’’ emphasizes the notion 

of data-based problem exploration and decision-making (Schroeder et al. 2008, p. 543). The 

key success factor in implementing Lean Six Sigma is the behavior of people (Burton 2011, 

p. 80).  
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Current state, challenges and opportunities 

Pyzdek boldly states: “Six Sigma is different. It demands results” (Pyzdek 2011, xii). Several 

independent studies by academics and practitioners investigated the link between Six Sigma 

adoption and organizational performance. The results do not only confirm causal relations that 

Six Sigma management activities exert positive effects on corporate competitiveness, but also 

that in many cases the gains in bottom-line benefits and customer-oriented management are 

significant (Choi et al. 2012, p. 546; Braunscheidel et al. 2011, p. 447; Kumar et al. 2008, 

p. 887). These measurable financial benefits are verified by the finance department of 

companies adopting Six Sigma (Schroeder et al. 2008, p. 542). Another investigation showed 

also substantial synergies between Six Sigma and performance management cockpits, e.g., 

based on the Balanced Scorecard (BSC) methodology. Furthermore, self-evaluation concepts 

such as the model of the European foundation of Quality Management (EFQM) help to verify 

performance improvements. Overall, there are clear causal synergies/complementarities with 

the continuous improvement process in general (Töpfer 2004, p. 16). “Lean-Six Sigma is a fact- 

based, data-driven philosophy of improvement that values defect prevention over defect 

detection. It drives customer satisfaction and bottom-line results by reducing variation, waste, 

and cycle time, while promoting the use of work standardization and flow, thereby creating a 

competitive advantage. It applies anywhere variation and waste exist, and every employee 

should be involved” (Kubiak, Benbow 2009, p. 9). The structured DMAIC approach and people 

focused implementation process seems a strong fundament for a methodology to be developed 

as part of this thesis. A combination of Lean and Six Sigma and other improvement concepts is 

most suitably evidenced by integrated efforts in industry. The focus on process control will be 

further enabled by digitization. Kumar states that “Six Sigma matches well to knowledge-based 

information society” (Kumar et al. 2008, p. 888). One criticism is that Six Sigma efforts are 

handled as projects. Schonberger mentions the irony of improvement activities, such as Six 

Sigma initiatives or Kaizen events, being treated as discontinuous projects instead of ongoing 

continuous improvement journeys (Schonberger 2008, p. 50).  

 

5.4 Theory of constraints 

As already mentioned, it is important to understand the boundaries of a system and the limits 

for optimization. In this respect, one popular improvement methodology has to be mentioned, 

the Theory of constraints (TOC). TOC goes back to the book “The Goal – A Process of Ongoing 

Improvement” which was first published in 1984 (Goldratt, Cox 2004). The improvement goal 

for most business organizations is long-term profitability (Jackson, Low 1993, p. 41). Rahman 

summarized the concept of the TOC stating that “Every system must have at least once 

constraint. If it were not true, then a real system such as a profit making organization would 

make unlimited profit” and furthermore that “The existence of constraints represents 

opportunities for improvement” (Rahman 1998, p. 337). 
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Definitions 

A constraint is characterized as “anything that limits a system from achieving higher 

performance versus its goal” (Goldratt 1988, p. 453). Two types can be distinguished:  

(1) physical constraints (e.g., process capacity) and (2) non-physical constraints (e.g., market 

demand, supplier reliability, or performance targets) (Jackson, Low 1993, p. 41). Constraint 

management is defined as: “The practice of managing resources and organization in 

accordance with the theory of constraints (TOC) principles” (Pittman, Atwater 2016, p. 33). 

TOC includes three different aspects: (1) a “logistics paradigm”, (2) a thinking process, and (3) 

new performance measures (Rahman 1998, p. 337). 

 

The “logistics” paradigm of TOC 

Two of the main elements under the logistics paradigm are the five focusing steps of ongoing 

improvement and the drum-buffer-rope manufacturing execution methodology.  

 The five focusing steps of on-going improvement are: (1) identify the system's constraints; 

(2) decide how to exploit the system's constraints; (3) subordinate everything else to the 

above decision; (4) elevate the system's constraints; and (5) if in the previous steps a 

constraint has been broken, go back to step one, but do not allow inertia to cause a system 

constraint (Goldratt 1990, p. 8). 

 Drum–buffer–rope (DBR) manufacturing execution methodology: (D) the drum is the 

physical constraint of the plant to produce more. The rest of the plant follows the beat of 

the drum making sure that the drum has work and that anything the drum has processed 

does not get wasted. (B) the buffer protects the drum from the effects of disruptions in non-

constraint resources and has time as unit of measure. Buffer management is the use of these 

time buffers as an information system to manage and improve throughput. (R) the rope 

refers to the work order release to the shop floor at exactly one “buffer time” before they 

are due, thus avoiding too-high work-in-process in the system (Panizzolo 2017, p. 158). 

 

TOC performance measures and thinking process 

Another aspect of TOC are new performance measurements impacting cost-accounting 

systems, as discussed as part of chapter 4.2. TOC performance measures, i.e., throughput, 

inventory and operating expense link operational decisions to organizational profit (Pittman, 

Atwater 2016, p. 189). Furthermore, TOC entails a thinking process, a generic approach for 

investigating, analyzing, and solving complex problems following three steps (1) find “what to 

change”, (2) clarify “to what to change to”, and (3) “how to cause the change” (Goldratt 1990, 

p. 8). “TOC is built on the realization that every complex environment/ system is based on 

inherent simplicity and the best way to manage, control and improve the system is by 

capitalizing on this inherent simplicity. That's why the constraints are the leverage points” 

(Goldratt, Cox 2004, p. 360). The review suggests that there is an unmet need for studies 

exploring how TOC methods can be applied not just in problem situations, but in situations 

which are problematic in a positive rather than negative sense (Kim et al. 2008, pp. 173–174). 
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Current state, challenges and opportunities 

A recent study investigated the impact of TOC practices on the performance of manufacturing 

plants, by looking at five indicators: manufacturing cost, due-date performance, lead-time, 

inventory level, and cycle time. The results confirm a positive influence of practices such as the 

drum–buffer–rope methodology on several of the above performance indicators. However, it 

also concludes that the results and adoption vary by country and high manufacturing 

performance can also be achieved by other means (Panizzolo 2017, p. 168). Contributions of 

constraint management include providing a clear focus for the organization as well as 

emphasizing “generation of contribution margin through sales to improve profits rather than 

through cost reduction”. One of the key challenges of this approach is an unstable environment, 

e.g., changes in demand and mix) causing the bottleneck to shift (Jackson, Low 1993, p. 46). 

The TOC contributes significantly with its focus on improving bottlenecks, which has positive 

effects on both the cost and revenue side. It is also relevant in the context of the maximum profit 

rate objective discussed in chapter 3.  

 

5.5 Agility 

In a context of turbulence resulting in frequent changes in production and shorter product life 

cycles, agility is a deciding competitive prerequisite and is invaluable (Sull 2010, p.1; Abele, 

Reinhart 2011, p. 122). Agility offers companies the chance to differentiate themselves from 

competition; to react quicker than competitors to short term market opportunities; to remain 

cost-effective in declining market conditions; and to continuously adapt to changing customer 

requirements (Luczak 2017, p. 18). Agility, in the end, works like an insurance policy for 

companies, with differing price points for varying levels of coverage against uncertainty. The 

question for companies many times is: "What is the optimal insurance point, without being over 

nor underinsured" (Ramsauer et al. 2017, pp. 7–8). 

 

Definitions 

There are many definitions, for example: “The ability to quickly, plan, source, make, and 

deliver to adapt and respond to changes in the competitive environment” (Pittman, Atwater 

2016, p. 6). Frequently, these definitions are reactive in character. Another more pro-active 

view on agility is defined by Schurig et al. 2014, p. 957, and Luczak 2017, p. 19: “Agility in 

manufacturing is the capability of a production company to proactively prepare for 

uncertainties and to react quickly to changes in order to optimize the economic situation of a 

company, measured by profitability, by using the entire production network”. Sull differentiates 

three types of agility: (1) strategic agility to benefit from game-changing opportunities, (2) 

portfolio agility to be able to shift resources between different business areas, and (3) 

operational agility to maximize opportunities within a business (Sull 2010, p. 2). Agility goes 

well beyond other concepts such as changeability, re-configurability, flexibility and 

adaptability when looked at from a product and production point of view (Schuh, Schmidt 2014, 

p. 19). Schurig also confirms that agility differs from other existing concepts such as flexibility, 
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resilience or enterprise risk management. In short, flexibility helps to cope with minor changes 

in production, while the other two are more strategically relevant topics. Resilience aims to 

increase the robustness of companies in the face of external shocks. Enterprise risk management 

focuses on significant business risks, even with low probability. Agility on the other hand 

specifically includes opportunities for economic optimization and shares the short-term 

responsiveness to external changes with the concept of flexibility. As a result, agility is a 

systematic approach incorporating both strategic and operative angles to quickly react to 

volatility (Schurig 2017, p. 92). 

 

How agility works 

The capacity for a company to change their market or production performance depends on a 

number of internal and external factors, Figure 45. The internal analyses reveal the available 

degrees of freedom and thus the constraints for change, while the external world defines the 

change drivers and desired amount of change (Wiendahl, Hernández 2002, p. 135). 

 

Figure 45: Dynamic of change capacity (Wiendahl, Hernández 2002, p. 135) 

The need for action related to uncertainty is determined by the probability of occurrence, the 

potential consequences and the capacity to react (Kremsmayr 2017, pp. 62–63). To understand 

the mechanics of agility, Figure 46, shows a scenario with a change in demand for purpose of 

illustration. To begin with, the overall time line is comprised of (1) the reaction time, (2) 

realization time and (3) effective time. The reaction time can be further broken down into: 

perception time to realize a change is happening; the sense-making time to process the situation 

and possible range of actions; the decision time to select counter measures; and the planning 

time to prepare the implementation specific response measures (Hernández Morales 2003, 

p. 49). The reaction time, and in particular the perception and sense-making times can be 

reduced through the installation of an early warning system (Aschenbrücker et al. 2014, p. 6). 

This would require the definition of appropriate leading indicators and the implementation of 

an efficient monitoring and control system as pointed out by Heldmann et al. In the next step, 

the realization time is defined by the time it takes for an agility measure to be implemented and 

reach its full intensity. Finally, the duration that a measure is sustained at its intensity is reflected 

in the effective time. The selection of industry-specific agility levers have an effect on 

realization time, effective time and measure intensity (Heldmann et al. 2015, pp. 36–37).  
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Figure 46: Mechanics of change (Rabitsch 2016, p. 95) 

 

Agility Monitoring 

As part of volatility management, Schimank et al found that the ability to anticipate, adapt and 

be resilient are closely linked to the efficient use of controlling instruments on different 

corporate levels. However, in their survey they found vast differences in the use and maturity 

of tools such as scenario analysis (Schimank et al. 2015, p. 42). Simulation models typically 

combine external influences depicted in scenarios with internal variables of the production 

system to optimize key performance indicators (Albrecht et al. 2013, p. 142). Monitoring 

systems, which are a critical element to better understand uncertain business environments go 

beyond scenario analysis. Monitoring systems require selecting and placing sensors to capture 

a wide variety of inputs, broadly speaking, they capture both quantitative data as well as 

qualitative information. Two types of monitoring can be distinguished: (1) information based 

monitoring typically used for strategic control, and (2) signal based monitoring for operations 

control. The first requires extensive decision relevant information to be interpreted by managers 

or experts. The latter is based on measurable information allowing defining automatic decision 

rules focusing on early warning to support operations and strategic control (Heldmann 2017, 

pp. 163–164). 

 

Current state, challenges and opportunities 

Some of the most common misconceptions about agility are: "agility and efficiency are a 

contradiction", "agility is expensive", and "agility is a purely defensive strategy". Deubel 

worked through these qualitative statements and found positive, quantitative evidence of the 

advantages of agility expressed in finance metrics such as break-even level and return-on-sales 

(Deubel 2017, 103–109). Agile companies have the advantage to prepare themselves to operate 

at more than one operating point. Some of them can be less efficient than the optimal lean state, 
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but the change between these points is easy and possible with less effort. As the future is hardly 

predictable agile companies have competitive advantages in comparison to lean only 

companies. A hypothesis from a practitioner´s view by Diederichs is: “While lean companies 

are not automatically agile, they most likely are able to master agility better compared with 

companies that are less successfully leveraging lean tools” (Schurig 2017, p. 97). Another 

study of the lean, agile, resilient and green paradigm in supply chain management by Carvalho 

et al. concluded that all four serve the same overall purpose of satisfying customer needs at the 

lowest possible cost just from different angles: lean from a waste minimization; agile from rapid 

response to market changes, resilient from efficient response to disturbances; and green supply 

environmental impact minimization (Carvalho et al. 2011, p. 174). Technological progress 

through digitization allows for increased transparency and better decision making and real-time 

optimization in production (Pointner 2017, p. 230). Agility is a prerequisite in a VUCA world 

and is not going to go away. A critical enabler for agility will be the monitoring of external and 

internal Big Data. There is a need for time based, short interval KPIs for process control on an 

operational level.  

 

5.6 Advanced process control 

Process control and optimizing operating parameters is a critical success factor in 

manufacturing (Rao 2011, p. 3), in particular in process industries where it originated. Process 

control developed from local measurement devices to central control rooms and more recently 

to computer based, plant wide on-line control (Agachi 2006, p. 1). In a context of increased 

environmental turbulence companies get benefits from their capability to realize a high level of 

performance by managing day-to-day activities; to continuously improve; and to implement 

discontinuous, radical changes (Bartezzaghi 1999, p. 247). McMillan affirms: "As plants are 

pushed beyond nameplate, it is increasingly obvious that the importance of process control has 

grown to the point where it is the single biggest leverage point for increasing manufacturing 

capacity and efficiency" (Svrcek et al. 2014, xiii). Reducing process variability, a shared goal 

with Six Sigma, through ongoing process control leads to safer operations; more sustainable 

manufacturing/reduced environmental impact, i.e. lower energy use and less waste; improved 

bottom line returns, e.g., from increased output; efficiency gains, i.e., higher yields; quality 

gains; and agility gains (Anderson et al. 1994, p. 81; Brisk 2004, pp. 10–11). Improved process 

control helps in two ways: (1) to reduce process variability and (2) to shift the average (Seborg 

et al. 2004, p. 10). Process control paired with the aspect of automated decision making for 

optimization is commonly regarded as “the most effective means of generating the highest profit 

from plants, while responding to marketplace variations with minimal capital investment” 

(Agachi 2006, p. 11). Optimization results can either be displayed to plant operators (advisory 

mode) in order to make better decisions or directly sent to controllers (closed-loop mode) 

(Marlin et al. 1991, p. 75). Automation within process control systems, if appropriately used, is 

an effective way to achieve safe and efficient operations (Edmonds, Wilkinson 2016, p. 23). 
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Definitions 

Process control is defined as: “Activities involved in ensuring a process is predictable, stable, 

and consistently operating at the target level of performance with only normal variation23. 

The act of process control involves “the monitoring of instrumentation attached to equipment 

(valves, meters, mixers, liquid, temperature, time, etc.) from a control room to ensure that a 

high-quality product is being produced to specification” (Pittman, Atwater 2016, p. 140). 

Typically this is done with a control system, which is “a combination of elements which act 

together in order to bring a measured and controlled variable to a certain, specific, desired 

value or trajectory termed the ‘set/point of reference’” (Agachi 2006, p. 2). Elements of modern 

process control systems are: field instrumentation with interface to the control system; 

computer-based systems for data processing and display of information; control algorithms to 

provide the logic for manipulating control variables; and control room operators (Li et al. 2011, 

pp. 894–895). 

Optimization is “the use of specific methods to determine the most cost-effective and efficient 

solution to a problem” such as the operation of plants through the use of quantitative tools for 

industrial decision making (Edgar et al. 2001, p. 4). Ackoff articulated in 1978 that ultimately 

the outcome of solving a problem [such as process control and optimization] depends on the 

choice of controllable [manipulable] variables by the decision maker considering constraints, 

and uncontrollable variables [disturbances] (Ackoff 1978, pp. 11–12). Figure 47 shows that 

next to the input variables there are also the output variables which are determined by the 

system. Agachi distinguishes measured and unmeasured controlled variables as well as 

associated variables, which need to stay within certain bounds (Agachi 2006, p. 2). “The 

formulation of objective functions is one of the crucial steps in the application of optimization 

to a practical problem” (Edgar et al. 2001, p. 84). 

 

Figure 47: Definition of input and output variables considered for control system design (Agachi 2006, p. 2) 

Parameters can be categorized as continuous or discrete, Table 30. Continuous variables such 

as temperature, pressure, or flow are uninterrupted as time proceeds and can take on any value 

within a certain range. Discrete variables can only take on specific values, such as open/closed 

(2 position valve) or on/off (motor without variable frequency drive) (Groover 2001, p. 82). 

  

                                                

23 http://www.businessdictionary.com/definition/process-control.html, last accessed 16.08.2017 
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Comparison factor Continuous control in process industries Discrete control in discrete 

manufacturing industries 

Typical measures of product output Weight measures, liquid volume measures, 

solid volume measures 

Number of parts, number of products 

Typical quality measures Consistency, concentration of solution, 

absence of contaminants, conformance to 

specification 

Dimensions, surface finish, appearance, 

absence of defects, product reliability 

Typical variables and parameters Temperature, volume flow rate, pressure Position, velocity, acceleration, force 

Typical sensors Flow meters, thermocouples, pressure 

sensors  

Limit switches, photoelectric sensors, 

strain gages, piezoelectric sensors 

Typical actuators Valves, heaters, pumps Switches, motors, pistons 

Typical process time constants Seconds, minutes, hours Less than a second  

Table 30: Comparison between continuous and discrete control (Groover 2001, pp. 62–63) 

 

Automation in production systems can be differentiated between the automation of the physical 

manufacturing system in the factory and the computerization of information in the 

manufacturing support systems. However, in modern production systems these two aspects 

integrate (Groover 2001, p. 9). Thus, “automation means the replacement of both human 

physical and mental activities by machines” (Hitomi 1996, p. 343). Nof distinguishes four 

elements of automation in Figure 48.  

 

Figure 48: Automation formalism (Nof 2009a, p. 14) 

A high level of automation is a common feature in process control system in process industries. 

They continuously monitor process variables and control equipment, which is especially critical 

in the area of safety, e.g., avoiding overfilling a vessel, over pressurize, etc. However, a 

potential disadvantage of “engineering out the human through automation” is the loss of 

situational awareness and motivation of operators (Edmonds, Wilkinson 2016, pp. 15–16). On 

the other hand, even highly skilled operators struggle to select optimal settings for complex, 

stochastic processes with a high number of variables (Rao 2011, p. 3). “The poor performance 

of human operators in the control room is now being seen as one of the key reasons why […] 

process control systems fail to deliver their full potential” (Li et al. 2011, p. 894). Thus, 

automation and the application of suitable optimization algorithms continue to seem the most 

effective solution (Rao 2011, p. 3). 

 

Levels of control 

Five levels of automation and control are generally distinguished in a company, Figure 49. 

Activities range from the device or field level up to the enterprise level, serve different functions 

and occur at widely different frequencies. Information is exchanged between all levels and 
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coordinated to make the plant operation as profitable as possible (Groover 2001, pp. 76–77; 

Seborg et al. 2004, p. 11; Abel et al. 2008, pp. 23–24). 

 

Figure 49: Five levels of process control and optimization in manufacturing  

(adapted from Seborg et al. 2004, p. 511) 

Similar levels are used by the International Society of Automation (ISA) in their ISA-88 and 

ISA-95 standards. The ISA discusses the level of ERP (Enterprise Resource Planning) systems 

with a focus on financial and logistic activities, which is supported by the level of MES 

(manufacturing execution system) activities related to production management, followed by the 

lower levels of process control.24 On top of this there can be a further layer dealing with multi-

enterprise networks (Nof 2009a, p. 25). According to Shobrys and White, applications for the 

different levels have been developed as independent point solutions with varying models, 

algorithms, users and process owners, e.g., planning in the headquarters, scheduling at the plant, 

and process control by engineering departments. There is a need for integration and “Clearly 

they have to work together” (Shobrys, White 2002, p. 149). The focus of this work is the real-

time optimization, and multivariable and constraint control levels with an hourly frequency. 

 

Open vs. closed loop 

An important distinction in process control is between open loop and closed loop operation. In 

the first case, the recommendations are brought to the attention of a human operator for action, 

whereas in the second case, process control adjustments are directly executed by computer 

systems (Bellman 1964, p. 186). The elements of a closed loop control system or feedback 

control system are shown in Figure 50. 

                                                

24 https://isa-95.com/technical-isa-88-and-isa-95/, last accessed 18.05.2017 
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Figure 50: Feedback control system (Groover 2001, p. 70) 

 

Advanced Process Control (APC) 

Advanced Process Control (APC) is particularly relevant for companies with high raw material 

or energy costs, tight product specification, or limited production capacity (Anderson et al. 

1994, p. 81). In the 1980s, Cutler and Perry quantified the value of real-time optimization and 

control with 6-10% of the value added by the process. Half (3-5%) coming from eliminating 

the variability introduced by operators and the other half through process optimization, i.e., 

selecting correct constraints and on-line optimization (Cutler, Perry 1983, p. 667). Joint 

industry-university studies in the 1990s showed benefits of applying APC in the range of 1.4-

6% of operating costs and 1% in extra revenue (Marlin et al. 1991, p. 79; Anderson et al. 1994, 

p. 78). The benefits were confirmed also a decade later through many successfully applications 

(Brisk 2004, p. 10) and widely recognized in academia and industry (Agachi 2006, p. 24). 

Advanced process control extends beyond traditional process control in several ways, as also 

illustrated in Figure 51. It reaches higher levels of control, i.e., handling constraints, while 

aiming for online optimization to maximize economic benefits. APC is able to deal with 

nonlinear dynamic processes that include multivariable interactions between controlled 

parameters, high variation and uncertainty, and include online control (Anderson et al. 1994, 

p. 79; Agachi 2006, p. 24; Svrcek et al. 2014, p. 245).  

 

Figure 51: Process control: advanced vs. traditional (Anderson et al. 1994, p. 79) 
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control strategy for taking corrective actions in case of deviations from the setpoint (Seborg et 

al. 2004, p. 582). Typical benefits of an APC application, Figure 52, range from 3% to 5% of 

operating cost, whereas the source of the benefits come approx. 1/3 from more capacity, 1/3 

from improved control/stability, and 1/3 from other factors such as lower energy requirements 

or higher recovery (Canney 2003, p. 50).  

 

Figure 52: Economic benefit given by the use of advanced process control (APC) (Agachi 2006, p. 24) 

Advanced control techniques in general can be classified into several groups as shown in Figure 

53 (Agachi 2006, p. 12). Nowadays “APC has become synonymous with model predictive 

control (MPC)” (Svrcek et al. 2014, p. 245).  

 

Figure 53: Classification of advanced control techniques (Agachi 2006, p. 12) 

MPC techniques go back to the 1970s and a wide variety of related algorithms have been 

deployed across the world (Svrcek et al. 2014, p. 248). Brisk estimated more than 6,000 

installations of MPC up to 2005 (Brisk 2005, p. 39), but MPC has not yet penetrated all sectors, 

as per Figure 54, which shows an approximate distribution of the number of MPC applications 

versus the degree of process nonlinearity (Agachi 2006, p. 26). 
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Figure 54: Distribution of MPC application versus the degree of process nonlinearity (Agachi 2006, p. 25) 

MPC, Figure 55, is the most common advanced control method used in industry. It is a class of 

multivariable computer control algorithms that utilize an explicit process model to predict the 

future plant behavior and to derive an appropriate control action to get the output as close as 

possible to the target value (Qin, Badgwell 2003, p. 733; Svrcek et al. 2014, p. 246).   

 

Figure 55: Block diagram for model predictive control (Seborg et al. 2004, p. 535) 

MPC offers several advantages, e.g., it captures both dynamic and static interactions between 

inputs, outputs and disturbances; constraints are reflected systematically; control and 

optimization are coordinated; and predictions help with the early warning of problems (Seborg 

et al. 2004, p. 535). The two main disadvantages of MPC are: (1) the significant amount of time 

required to develop an analytical model of complex processes with good accuracy, and (2) the 

computation effort to optimize these large scale processes (Agachi 2006, p. 37). 
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Real-time optimization (RTO) 

In the mid to late 1980s, the combination of MPC technology with increased capabilities in 

computer processing and equation modeling, resulted in the first attempt at real-time 

optimization of a steady-state process (Darby et al. 2011, pp. 874–875). Cutler and Perry 

pointed out that “real time optimization with multivariable control is required to maximize 

profits” (Cutler, Perry 1983, p. 663). Therefore the optimization of set points requires both an 

economic model with a financial objective, i.e., profit per hour, and an operating model 

consisting of a steady-state process model and constraints (Seborg et al. 2004, p. 515). The 

extensions of RTO and MPC to the planning and scheduling layer is seen as a promising 

research direction (Darby et al. 2011, p. 882). 

 

Current state, challenges and opportunities 

Advanced Process control and systems theory have existed for a while in process industries, 

historically driven by waves of automation. Control models need to trade off local against 

global optima, short against long-term optimization, profit against process KPI maximization. 

Process industries, according to Anderson, have not fully exploited the benefits of process 

control, but there is increasing management awareness of its potential returns and wider 

availability of modern control systems and techniques. This will help companies to improve 

their operations and maximize the returns on their assets (Anderson 1996, p. 3). An ongoing 

concern is the continuous measurement of economic benefits and the cost/benefit calculation 

of combined APC and RTO systems (Bauer, Craig 2008, p. 12). For Canney it is clear that the 

economic benefits of APC systems are achieved in the long-term through the combination of 

skills and an implementation methodology. “APC is not a commodity” and is critical to 

business success (Canney 2005, p. 58).  

Data 

Measurement accuracy and data consistency are highly relevant topics for control 

instrumentation and important prerequisites for optimization (Seborg et al. 2004, p. 222). And 

even before that, the basic availability of measurement devices providing relevant data is 

crucial. Ackoff stated: “We are more likely to be wrong in what we accept without evidence, 

no matter how obvious it may be, than in what we accept with evidence, no matter how doubtful 

it may be.” Therefore turning uncontrolled variables into measured/controlled variables helps 

to release constraints on the actions available to decision makers. Lack of control of variables 

usually turns out to be a lack of knowledge and understanding of it (Ackoff 1978, p. 100). The 

same is true for physical constraints such as compressor loads, column loadings or critical 

pressure. The quality of real time data is crucial for the correct identification of constraints and 

for the optimizer to know the status of the plant relative to physical system limits. Only then 

can the process control system suggest a realizable optimal mode of operation (Cutler, Perry 

1983, p. 665). 

Modelling 

Next to aspects of data for modelling, a challenge is the completeness of the model itself. The 

coverage of all variables including disturbances and constraints is an important prerequisite for 
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the quality of the optimization of a target function (Taha 2007, p. 3). Building accurate 

mathematical models of real world processes and plants with all their details is a highly 

complicated undertaking involving complex equations, unknown functions and values – is hard 

to do (Bellman 1964, p. 186). This is even more true for advanced industrial plants with even 

more complexity. According to Terwiesch and Ganz, building and tuning models individually 

for every plant is still today very expensive and requires highly skilled experts. One solution 

would be reusing models across areas and industries (Terwiesch, Ganz 2009, p. 140). After 

building models their continuous update is of equal importance to avoid profitability losses due 

to degradation of APC performance, as shown in Figure 56 (Canney 2003, p. 49). Degradation 

is caused by changing external circumstances such as seasonality, product demands and internal 

reasons such as fouling of heat exchangers, wearing out of mechanical equipment or 

regeneration of catalysts. On-line computer systems help with realistic models through real-

time updating (Cutler, Perry 1983, p. 665).  

 

Figure 56: Sustaining APC value (Canney 2003, p. 49) 

Skills 

“Process control should not only be advanced: its basic performance should be advancing, not 

retreating” (Brisk 2005, p. 39). The success of this depends in the case of simple controls as 

well as advanced RTO control systems on skills and capabilities. Canney declares that "Most 

current APC projects are constrained by process and business expertise rather than limitation 

of computing hardware and custom software" (Canney 2003, p. 48). 
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Global vs. local optimization alignment  

From a business point of view, decisions on the control level cannot be made in isolation from 

other functions such as planning and scheduling. Many companies in process industries 

continue to struggle with maintaining consistency among all decisions with negative economic 

consequences (Shobrys, White 2002, p. 149). Cutler and Perry wrote “To really achieve true 

plant optimization, local and global optimization results must ultimately be consistent” (Cutler, 

Perry 1983, p. 667). The technology for this is available, but other factors such as organizational 

structure, aligned behaviors and a common global charter visible to all business areas are 

needed for effective integrated decision-making and overall optimization (Shobrys, White 

2002, p. 159). “Our conceptions of what can be done in problematic situations are often limited 

by constraints attributed to technology. We frequently forget or overlook the fact that 

technology and its use are controllable” (Ackoff 1978, p. 71). 

Outlook 

The future of process industries might move closer to visions of producing quantities equal to 

the smallest product order sizes. The agile processing capability required for this must be 

offered by a responsive plant with well-performing control systems (Brisk 2005, p. 38). 

Artificial Intelligence-based control using methods such as genetic algorithms and neural 

networks (Nof 2009b, 628) will help to offset the main disadvantages of MPC: the high amount 

of time required to develop an analytical model of complex processes with good accuracy, and 

the computation effort to optimize these large scale processes. “The advantageous properties 

of neural networks, such as parallel computation, nonlinear mapping and learning capabilities, 

make them an alluring tool in many chemical engineering problems” (Agachi 2006, p. 37). 

There is an opportunity to extend MPC/RTO with advanced, non-linear, self-learning models 

as digital technologies converge. By complementing APC systems with advanced analytics, see 

Figure 57, the optimization of a wider range of manufacturing processes becomes possible 

(Feldmann et al. 2016, p. 3). 

 

Figure 57: Advanced analytics goes beyond APC systems (Feldmann et al. 2016, p. 3) 
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5.7 Summary: Achieving resource-productive operations 

Industrial resource productivity is an important requirement across manufacturing sectors, in 

particular in the resource-intense process industries. To maximize productivity trade-off 

decisions between conflicting goals such as throughput, energy, yield and quality, have to be 

made on the basis of profit per hour. Furthermore, operations have to be constantly improved. 

Lean principles have proven to work well to reduce waste, i.e., inefficiencies in processes, and 

are synergistic with green management. Lean also puts a lot of emphasis on sustainable change 

which is based on peoples´ mindsets and behaviors. Understanding the limits of optimization 

and focusing on the bottleneck is an important contribution of the theory of constraints. Six 

Sigma is based on a well-known, standardized implementation methodology structured around 

the five phases define, measure, analyze, implement and control. A clear process methodology 

is essential in large scale operations transformation programs. In addition, Six Sigma focuses 

on the reduction of process variation, is often combined with lean, and has a strong emphasis 

on the financial impact of initiatives. Agility is one of the requirements to cope with increased 

external volatility. Agility links the internal, operational view with the external, market view. 

Agile shares a common vision with lean, which is to satisfy the customer needs at the lowest 

possible costs. Advanced process controls help companies to reduce variation in processes and 

increase the profit rate. This can be achieved through closed-loop, non-linear model predictive 

controllers, for example based on artificial neural networks. The integration of the various 

approaches, together with advanced analytics and process control technology provides an 

opportunity that process industries have not yet fully exploited.  

 

Learning Delimitations Requirements 

 Industrial resource productivity is a priority in 

process industries and has not yet been fully 

optimized 

 Trade-off decisions are required and can be based on 

profit per hour 

 The theoretical limit provides the basis for 

quantifying and continuously eliminating losses 

 There is a need for changing people’s mindsets and 

behaviors and having a well-known, structured 

implementation methodology  

 Agility is internal capability to cope with external 

volatility 

 Advanced analytics offer additional profit 

opportunities and go beyond advanced process 
control systems 

INCLUDES 

 Maximizing industrial 

productivity of assets and 

resources in process industries 

 Focus on bottleneck 

 Loss thinking with reference to 

the theoretical limited 

 Structured approach for 

operations improvement 

 Closed loop, advanced process 

control enhanced by advanced 
analytics 

EXCLUDES 

 Agility monitoring of the 

external environment and 

handling of external 

influences, such as price and 

demand volatilities 

 Structured implementation 

methodology 

 Compatibility with a well-

known improvement approach 

 On-going process 

improvement through closed-

loop process control  

 Sustainability of results 

through the integration of 

technical, managerial, and 

people aspects 

Table 31: Summary of conclusions from operations perspective 
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6 Practice perspective: Learning from case research 

in the cement and ammonia industry 

After the review of related literature, this chapter provides a practical perspective based on 

sanitized25 examples from cement clinker production (section 6.1) and ammonia production 

(section 6.2). Section 6.3 summarizes the learning and requirements for the application of 

analytics in process industries. 

6.1 Cement 

The cement industry is an extremely local industry. The products do not travel far given their 

high weight and low value. They also have a limited life time, e.g., ready mix concrete needs 

to be delivered within 90 minutes (Verein Deutscher Zementwerke e.V. 2002, p. 449). Cement 

is an omnipresent building material word-wide that together with steel is responsible for almost 

half of all industrial CO2 emissions (Allwood et al. 2012, p. 287). Cement production is a 

particularly electricity and fuel intensive process with an energy share of larger than 52% of the 

gross value creation (EEFA – Energy Environment Forecast Analysis GmbH & Co. KG 2013, 

p. 5). Therefore, energy reduction in the cement industry is a highly relevant technical and 

socio-political objective (Verein Deutscher Zementwerke e.V. 2002, p. 46). Allwood et al found 

that „best practice in cement production is only 50 % over the theoretical limit, the global 

average is around 4.7–5.5 GJ/ton, almost double best practice” (Allwood et al. 2012, p. 293). 

The focus of this case is the clinker production process described by Verein Deutscher 

Zementwerke e.V. 2002, p. 47: Clinker is formed by taking limestone rock, after it has been 

excavated and crushed, and mixing it with sand and clay to be burned in a kiln. The heat of the 

kiln causes the material to react, consequently forming a mixture of calcium silicates, also called 

clinker. According to the EEFA, the kilns consume approximately 22% of all electrical energy, 

a significant share excluding raw material pre-processing, i.e. crushing and milling that account 

for around 73%. The primary thermal energy for the kiln comes from conventional fuels such 

as coal, oil or gas – or alternative fuels including rubber, waste, solvents or renewables (EEFA 

– Energy Environment Forecast Analysis GmbH & Co. KG 2013, p. 10). The temperature in 

the kiln reaches 1,450° C and material takes 20 to 40 minutes to pass through (Verein Deutscher 

Zementwerke e.V. 2002, p. 57). 

 

                                                

25 Throughout the industrial cases confidential data has been removed, i.e., scale labels, tag names, values 
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6.1.1 Context 

This work has been conducted as part of a proof of concept for the application of advanced 

analytics to identify profit related process improvement opportunities and was carried out in 

spring 2016. The focus was to reduce energy consumption in the kiln. Kiln torque has been 

used as a proxy. A value driver tree for cement, Figure 58, shows how kiln torque is connected 

to kiln motor energy consumption, overall energy consumption, variable cost and operating 

margin (Heldmann et al. 2017, p. 84).  

 

Figure 58: Value driver tree for cement (Heldmann et al. 2017, p. 84) 

Overall, there are more than 100 parameters that come into play and determine the operational 

performance of the kiln. Controllable variables by the operators included for example the fuel 

ratio and kiln motor speed. Disturbance variables or non-controllable parameters would be the 

molecular composition of coal or the heating value of rubber. The main output variables 

considered were the clinker volume and the kiln torque as proxy for energy consumption.  

 

6.1.2 Application 

The starting situation included the review of existing systems and previous improvement 

efforts. The investigated site had already implemented an optimizer model in the past, however, 

it has only been used 62% of time. Even in situations considered as “steady state” operations 

with >75 t/h clinker production for which the optimizer was originally designed for, the plant 

ran under operator control at times. The optimizer uses a static set of pre-defined rules to 

optimize the process. As it is not dynamic the operators regularly update the target values 

Profit contri-

bution (EUR/h)

Variable cost 

(EUR/h) 

Revenue

(EUR/h)

Sales quantity

(t/h)

Sales price

(EUR/t)

Raw material 

cost (EUR/h)

Electricity cost

(EUR/h)

Fuel cost

(EUR/h)

Electricity price 

(EUR/kWh)

Price per raw 

material (EUR/t)

Consumption per 

raw material (t/h)

Electricity con-

sumption (kWh)

Price per fuel 

(EUR/t)

Consumption per 

fuel (t/h)

Consumption of 

kiln motor (kWh)

Torque kiln 

motor(Nm)

Target direction



6 Practice perspective 

101 

manually. In order to understand the process variability and the two operating regimes better, 

the stability of the process during the last 158 hours of each of the regimes was analyzed. While 

the expert optimizer increased the stability, that is the kiln torque in this regime showed a lower 

standard deviation of 24.5 vs. 32.2 Nm (-24%) when under operator control, the difference has 

been considered insufficient. Reviewing specific energy consumption for a time period of 18 

months, Figure 59, showed considerable variability. The potential for optimization was to 

reduce process variability and operate at the specific energy consumption level of the best 10% 

days. This represented an opportunity of 0.14 MJ/t and a reduction of total energy consumption 

by 6-8%. 

 

Figure 59: Specific energy consumption 

As a next step data on all variables was collected and inconsistent, redundant or extraneous data 

was removed. The time behavior of the process was assessed to structure the data with 

consistent time stamps. Thereafter a neural network based model was used to simulate process 

behavior and determine the key parameters affecting the kiln torque. As per chapter 3.5 

(Advanced analytics), “Neural networks can model very complex patterns and decision 

boundaries in the data” (Baesens 2014, p. 51), are inspired “by the cognitive processes and 

organizational structure of neurobiological systems” (Corsten, May 1996, p. 67), and belong 

to the group of non-traditional optimization algorithms.  

6.1.3 Results 

The model, Figure 60, shows that torque is primarily affected by coal feed, total energy and 

meal temperature. The sensitivity represents the percentage change in torque based on a 1% 

increase in the parameters.  
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Figure 60: Key parameters and their impact on torque 

Deviation between the actual and predicted values of torque is calculated as a percentage of the 

value range. The average deviation of the model is 4.4. Based on industry standards, <5% 

average deviation is ideal, thus the model is considered highly accurate. Expert interviews were 

conducted to validate the findings and the proof of concept concluded that analytics based 

models can accurately predict process behavior and can be used for process optimization. Once 

implemented, an advanced analytics driven optimizer can recommend optimized set points 

either to operators or the distributed control system (DCS) directly to reduce energy 

consumption in real-time. In order to derive even more value from the analysis, further 

implementation recommendations were presented. They include the review of optimization 

targets potentially even beyond energy consumption in the kiln; enhancing the model with 

additional data and what-if scenarios; building an ongoing optimizer that includes process 

constraints and limits for optimization and safety purposes; designing the implementation 

architecture in line with current IT and security infrastructure; installing the optimizer on-site 

and handing over the model to process engineers for continuous improvement; training the 

operators and process engineers in the use of the optimizer; and launching performance 

management initiatives to ensure ongoing application and tracking of impact. 
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6.2 Ammonia 

This chapter gives a brief summary of a pilot application using profit per hour as a target KPI 

in ammonia production. Part of this research was published in a paper from the 50th CIRP26 

Conference on Manufacturing Systems (Hammer et al. 2017b, p. 715). Ammonia is a large-

volume chemical serving as a raw material for the production of nitrogen based fertilizers 

(Moulijn et al. 2013, p. 171). The most common method of producing Ammonia, although 

energy intensive and costly, is the Haber-Bosch process, which combines hydrogen from steam 

reforming of natural gas with nitrogen from air (Moulijn et al. 2013, p. 182). 

6.2.1 Context 

This work was conducted as part of a pilot analytics implementation in the fall of 2016. The 

method used contained 8 steps (Hammer et al. 2017b, p. 717) to trial profit per hour as a target 

metric based on analytics. The first step, as per Hammer et al., was the creation of a profit per 

hour value tree and the identification of key parameters. These were classified, as in the cement 

case, into three categories: (1) Controllable variables, parameters that can be influenced by the 

operator, e.g., ratios of steam to gas and air to gas; (2) Disturbance variables, parameters that 

can´t be influenced, e.g., external temperature, relative humidity, air pressure; and (3) Output 

variables which are the result of the what happens in the process, e.g., Ammonia and steam 

volumes, and profit per hour (Hammer et al. 2017b, p. 718). 

6.2.2 Application 

Graphical analysis of profit per hour over output led to three insights: (1) there is a strong 

correlation between profit per hour and output, (2) clear seasonal impact, and (3) additional 

variation of approx. 3-5 % at each production rate level (Hammer et al. 2017b, p. 718). A 

predictive model, based on artificial neural networks, helped to estimate the impact of the 

external weather conditions, including parameters such as temperature and humidity, and to 

quantify the remaining non-weather related losses. These residual profit losses were then 

depicted in a cumulative profit per hour chart, Figure 61, and served to detect controllable 

elements for process optimization. Nine operating windows could be differentiated. Assignable 

process disturbances due to internal issues such as equipment reliability, or external shortages 

were found to make up half of all losses and are marked with letters a, b, c, and d. Stable 

operating conditions were assigned with numbers 1 to 5 and showed a varying degree of profit 

losses according to their slope. A further predictive model focusing on the residual losses 

surfaced five additional controllable optimization parameters. These are being visualized as part 

of a decision cockpit for operators and are considered for future automated process control 

(Hammer et al. 2017b, p. 719).  

                                                

26 The International Academy for Production Engineering 
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Figure 61: Cumulative profit losses (Hammer et al. 2017b, p. 719) 

6.2.3 Results 

The pilot implementation of profit per hour as a target process control parameter was considered 

successful under the condition that external, non-controllable variables are isolated. The 

benefits of advanced process control of influenceable parameters have been estimated at 0.5-

2% additional profit per hour (Hammer et al. 2017b, p. 719). 

6.3 Summary: Challenges and opportunities in practice 

The two case examples from the process industries indicate that there is a financial opportunity 

to use advanced analytics and that in general there is sufficient data available, given that the 

processes are operated on continuous basis. With respect to the optimization target, both cases 

were grounded in a financial value driver tree. However, while the ammonia case considered 

all trade-offs by using profit per hour as a target KPI, the cement case focused on energy only. 

In cement, an improvement in yield, can be achieved by increasing the energy used in the 

process by burning more fuel leading to higher costs. On the other hand, reducing energy 

consumption could increase the time the clinker is treated in the kiln and lead to a loss in 

throughput and profitability. Therefore, to consider all trade-offs and to avoid sub-optima an 

overarching financial metric, such as profit per hour, seems meaningful. When it comes to the 

process methodology the two cases used different steps, resulted in different outcomes, but 

nevertheless are considered successful as part of this research. A need for a structured 

implementation methodology based on a well-known approach became evident. 

Learning Delimitations Requirements 

 Financial value driver tree based on ROIC helped 

prioritize the focus for improvement 

 Sufficient data was available 

 The investigated processes showed significant 

variability and improvement opportunity 

 Accurate predictive analytical models could be built 

 Profit per hour as a target for modelling helps solve 

trade-offs 

 Different processes were used, not previously known 

to the organization 

 Companies desire ongoing decision support, e.g., 

operator cockpit or closed-loop, analytics based 
process control 

INCLUDES 

 Manufacturing in process 

industries 

 Continuous operations 

 High capital and resource 

intensity 

EXCLUDES 

 Discrete industries 

 Batch operations 

 Practicality, i.e., minimum 

required complexity and effort 

 Structured implementation 

methodology 

 Compatibility with a well-

known improvement approach 

 On-going decision support for 

process improvement 

Table 32: Summary of conclusions from practice perspective 
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7 Interim conclusion: Scope of work 

In this chapter the research need is summarized and the scope of work is defined through the 

delimitation and requirements from the previous chapters dealing with theory, related work and 

observations from practical cases.  

7.1 Research gap 

The objective of this thesis is to define a structured methodology to increase time-based profit 

in manufacturing in process industries through the use of analytics. This need comes, to 

recapitulate, from both practice and theory. A clear research need in the area of industrial 

analytics has been seen by Diab asking for a “systematic […] approach that […] meet[s] the 

operational and business requirements […] and technological advances” (Diab et al. 2017, 

p. 15). Also Henke et al. point out that companies currently face organizational challenges in 

their attempt to implement “data-driven insights into day-to-day business processes” (Henke 

et al. 2016a, vi). Therefore, LaValle et al. recommend that managers “focus on achievable 

steps” (LaValle et al. 2011, p. 26) for implementation. In the VUCA context, laid out in chapter 

2, companies need to become agile, i.e., react quickly, based on a common profitability goal 

for operations aligned across organizational boundaries. Process controls will need to enable 

“an integration between the business environment, with current cost of material, energy, and 

maybe even emissions, and the production information in the plant allows to solve optimization 

problems that optimize the bottom line directly” (Terwiesch, Ganz 2009, p. 141). Rao affirms 

that, “the selection of optimum process parameters plays a significant role […] to increase 

productivity” in manufacturing (Rao 2011, p. 3). Such operational aspects require additional 

research in the area of performance management systems (Sager et al. 2016, p. 66), especially 

for dynamic performance management systems that lack a structured framework (Bititci et al. 

2000, p. 694) and need to be capable of providing short-term, data-driven recommendations 

(Becker 2016, p. 143). Horvath et al. see a need for profit-focused value driver models based 

on operative KPIs (Horvath et al. 2015, p. 105). Automated data capture and analyses are 

required to cope with changing conditions and dynamic bottlenecks in near real time 

(Neugebauer et al. 2016, p. 3). Gausemeier and Klocke recommend “to develop appropriate 

ontologies and apply them […] for optimizing manufacturing systems” (Gausemeier, Klocke 

2016, p. 75). Brecher points out that socio-technical production systems are highly complex, 

even more so when exposed to significant external volatility, requiring advanced, cybernetic, 

and self-optimizing control approaches (Brecher, Özdemir 2014, p. 2).  
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7.2 Delimitation of research focus and summary of requirements 

In this section the scope of work is outlined based on the delimitations of research focus and 

summary of requirements, Table 33, from the previous chapter covering the industry, 

digitization, management, operations and practice perspectives. 

Chapters Delimitation Requirements 

2. Industry perspective 

 Megatrends affecting industry 

 Manufacturing 

 Process industries 

INCLUDES 

 Manufacturing at a process industry 

plant, regardless of geography and 

sector 

EXCLUDES 

 Discrete manufacturing, the larger 

supply chain, and service industries 

 Leverage digital technologies 

 Help manufacturers cope with VUCA 

context 

 Maximize profits 

 Focus on time utilization 

 Develop a generic improvement 

approach for process industries, 

independent from sector, location or 
plant size 

3. Digitization perspective 

 Industry 4.0 

 Internet of Things 

 Big Data 

 Advanced analytics 

INCLUDES 

 Big Data capabilities, e.g., streaming 

of data, data lakes and advanced 
(predictive and prescriptive) analytics 

EXCLUDES 

 Hardware, equipment upgrades with 

new technologies, e.g. sensors, 

communication, etc. 

 Consolidate data from various data 

sources with consistent time stamps 

 Use of predictive and prescriptive 

analytics 

 Link analytics and advanced process 

control 

 Develop an implementation approach 

consistent with existing operations 
improvement methodologies 

4. Management perspective 

 Decision making 

 Performance measures 

 Performance measurement and 

management systems  

 Decision support systems 

INCLUDES 

 Time-based profit optimization 

 Dynamic, closed-loop performance 

management 

 Operations orientation (internal focus) 

considering external factors and 

overall strategic objectives 

 Target group are decision makers in a 

manufacturing site, e.g., plant 

managers, process engineers and 
operators 

EXCLUDES 

 Capital and financing aspects, e.g., 

debt/equity optimization 

 Profit orientation with the goal of 

maximizing ROIC 

 Profit rate as leading operational KPI 

 Linking operations level with 

management level through value 

driver tree 

 Decision support, e.g., cockpit or 

closed loop automatic decision 
making 

5. Operations perspective 

 Resource-productive operations 

 Lean 

 Six Sigma 

 Theory of constraints 

 Agility 

 Advanced process control 

INCLUDES 

 Maximizing industrial productivity of 

assets and resources in process 

industries 

 Focus on bottleneck 

 Loss thinking with reference to the 

theoretical limited 

 Structured approach for operations 

improvement 

 Closed loop, advanced process control 

enhanced by advanced analytics 

EXCLUDES 

 Agility monitoring of the external 

environment and handling of external 

influences, such as price and demand 

volatilities 

 Structured implementation 

methodology 

 Compatibility with a well-known 

improvement approach 

 On-going process improvement 

through closed-loop process control  

 Sustainability of results through the 

integration of technical, managerial, 
people aspects 

6. Observations of practice 

 Cement 

 Ammonia 

INCLUDES 

 Manufacturing in process industries 

 Continuous operations 

 High capital and resource intensity 

EXCLUDES 

 Discrete industries 

 Batch operations 

 Practicality, i.e., minimum required 

complexity and effort 

 Structured implementation 

methodology 

 Compatibility with a well-known 

improvement approach 

 On-going decision support for process 
improvement 

Table 33: Delimitation of research focus based on related work and theory 
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The resulting scope of work can be synthesized into the following three requirements:  

1. Help manufacturers cope with the VUCA context through an operations improvement 

approach that is generically applicable in process industries, independent from sector, location 

or plant size. The approach should be built upon a structured implementation methodology; 

compatible with a well-known improvement approach; practical, requiring minimum 

complexity and effort; and deliver sustainable results through the integration of technical, 

managerial, and people aspects. 

2. Focus on time-based profit as a leading operational KPI, linking the operations and 

management level using a ROIC-based value driver tree; and maximizing cumulative profits as 

the overarching goal.  

3. Leverage digital technologies, consolidating data from various data sources with consistent 

time stamps, using predictive and prescriptive analytics, linking analytics and advanced process 

control for on-going, closed-loop decision support and process improvement. 
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8 Methodology conception: Framing a time-based 

and analytics supported operations management 

approach 

In this chapter the methodology to answer the research questions from chapter 1 will be outlined. 

The overall objective is to provide industrial companies with a step-by-step process methodology 

to implement a time-based and analytics-supported operations management approach. In section 

8.1 the basic concept and characteristics of the approach are introduced. Section 8.2 covers the 

theoretical classification of the methodology. Section 8.3 deals with criteria when the approach is 

meaningful. Section 8.4 looks at pre-conditions to enable the approach.  

8.1 Concept 

In manufacturing process parameters have to be chosen in the best possible way taking process 

safety, quality, cost and delivery times into account (Rao 2011, pp. 2–3). In order to make trade-

off decisions an overarching criteria has to be stated. Stakeholders of for-profit manufacturing 

companies ultimately aim for profit maximization (Hitomi 1996, p. 320). Effective performance 

management analytics require a combination of IT, management accounting, and the analytical 

methods (Schläfke et al. 2012, p. 114). The same need for an inter-disciplinary approach exists for 

dynamic process control (Roffel, Betlem 2006, xiii-xiv). In 1978 Skinner investigated the 

relationships between technology, constraints, economics and management (Skinner 1978, p. 96). 

Figure 62, gives an overview of these aspects adapted to the concept of this work. 

 

Figure 62: Technology, economics and manufacturing management (adapted from Skinner 1978, p. 96) 

The operations management approach for profit per hour is made possible by advances in 

technology in the context of Industry 4.0 and includes Big Data analytics, as discussed in chapter 
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3. In a set of five defined digital operating models, the approach is classified as “data powered” 

and builds in intelligence from analytics and focuses on ROIC as a KPI (World Economic Forum 

2016, p. 17). Also constraints apply, namely, the delimitations of this work to manufacturing in 

process industries (chapter 2), and time (chapter 4).  

 

8.1.1 Technology 

Advances in analytics algorithms and techniques, including machine learning, are used to analyze 

large amounts of data gathered from industrial control systems […] to drive intelligent 

operational and business processes, [and enable] the convergence of analytics in the OT and IT 

worlds (Diab et al. 2017, pp. 2–3). From a technology point of view, Figure 63 illustrates the 

components of a system that takes in data from a plant (and also its environment), uses analytical 

models as basis for decisions and can prescribe actions back to the MES.  

 

Figure 63: Plant-level active disturbance handling by using reactive/proactive operation modes of simulation 

(Monostori et al. 2016, p. 626) 

There are two possible end-states, depending whether the decision maker is actually a human 

operator/manager, or whether the entire system operates autonomously. In the first case, 

information as a basis for decision making and suggested actions need to be displayed in a 

dashboard to the operators. In the second case, the algorithm works in a closed-loop mode and 

controls the process within predefined boundaries.  
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8.1.2 Economics 

KPIs will gain further significance with the rise in data volume and complexity (Losbichler, 

Gänßlen 2015, p. 312). Although KPIs have been covered in literature for specific functions, 

Epstein and Lee point out that, “there have been relatively few attempts to integrate the 

relationships among variables across disciplines, and relate the management actions pertaining 

to them to overall firm profitability” (Epstein, Lee 2000, pp. 44–45). In line with the overall goal 

to accumulate profits, profit per time period becomes both a leading and a lagging financial 

parameter. What the author would like to add is a point of reference into the concept, the 

theoretical limit (chapter 5) for profit per hour. This allows the quantification of profit losses which 

shall be minimized. It has to be noted that profit losses are additive. As profit is highly volatile, 

and incurred profit losses can never be recuperated, the time dimension is an important element. 

Furthermore, the theoretical limit might change over time, for reasons of simplification it is 

assumed constant in the period of observation as part of this work. According to Horngren et al, 

the timing of performance feedback depends on “(1) how critical the information is for the success 

of the organization, (2) the management level receiving the feedback, and (3) the sophistication 

of the organization’s information technology” (Horngren et al. 2015, p. 910). In the case of profit 

per hour the information is critical to the operations management team and also operators and with 

the latest technology actual values can be computed and visualized in near real-time. Figure 64, 

integrates the economic aspects of the profit per hour management approach. 

 

Figure 64: Economic aspect of time-based profit management approach 

The approach integrates both management control and operations control (Anthony 1965, p. 93) 

into one overall approach. Time dependent metrics for profit do exist but are not commonly used 

for operations control. Profit per hour serves as a leading target process control parameter at the 

operations level, and the resulting cumulative profit, e.g., ROIC, is the corresponding lagging 

indicator at the management level. In the light of implementation, Gray and Wilkinson highlight 

that “financial considerations are powerful motivational factors for both the implementation of 

any change itself, and for how the change is implemented” (Gray, Wilkinson 2016, p. 337). 

Breaking down profitability into underlying value drivers as discussed in chapter 4 with respect 

to ROIC, enables organizations to implement driver-based decision making processes. For Clark 

and Dostal this will lead to increased business insights based on driver-based dashboards linking 

Profit
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Time
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outcome metrics to drivers mathematically and the ability to conduct “what-if” analyses (Clark, 

Dostal 2013, p. 2). 

8.2 Classification 

In this section the work considers application oriented theory, systems theory and model theory.  

8.2.1 Application oriented theory 

The practice focus of application oriented research, according to Ulrich is constitutive, i.e., the 

direct purpose is to support practical actions grounded in science. The link to practice is of central 

importance (Ulrich 1981, p. 10). Economic science should not only support decision makers in 

developing and evaluating possible courses of actions, but also determining how to proceed given 

their objectives (Heinen 1991, p. 11). Human actions, and economic actions in particular, can be 

described as rational processes, as per Domschke, following the general phases of planning 

(decision preparation), decision, execution and control. In this respect, the main task of operations 

research is to apply or develop an optimization model for solving a real decision problem 

(Domschke et al. 2015, p. 1). 

8.2.2 System theory classification 

A system is defined as “a set of things working together as parts of […] a complex whole”.27 

Systems thinking is a generic approach helping to structure and interpret complex situations by 

thinking holistically and considering different perspectives (Züst 1997, p. 34). Figure 65 illustrates 

the basic terms in systems thinking. 

 

Figure 65: Basic terms in systems thinking (Haberfellner et al. 2012, p. 34) 

                                                

27 https://en.oxforddictionaries.com/definition/system, last accessed 11.08.2017 
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In line with this definition there are three systems perspectives: (1) environment oriented, (2) 

causal oriented, and (3) structure oriented (Haberfellner et al. 2012, pp. 42–43). Systems can be 

considered blackbox, greybox, or whitebox depending on the degree of knowledge of the internal 

structure and relationships between systems inputs and outputs (Haberfellner et al. 2012, pp. 38–

39). Law and Kelton point out that when experiments with the actual system cannot be performed, 

experiments with a model of the system have to be conducted. This can be done through physical 

or mathematical models using analytical solutions or simulation (Law, Kelton 1991, p. 4). For 

Bishop, modeling systems using dynamic scenarios and sensitivity analysis “creates the best 

quantitative representation of continuous variables that describe the future state” (Bishop et al. 

2007, p. 20). Systems engineering provides a universally applicable procedural model consisting 

of four components that can be combined in a modular way: (1) top down, (2) principle of building 

variants, (3) phased procedure, and (4) the problem solving cycle (Haberfellner et al. 2012, p. 124). 

Hitomi distinguishes six aspects of systems engineering in manufacturing: (1) the basic function, 

structure and design of the manufacturing system (systems engineering approach), (2) the 

optimization of manufacturing system (management science/operations research approach), (3) 

process control and automation (control engineering approach), (4) production information 

management (information technology approach), (5) economics of manufacturing (economics 

approach), and (6) social aspects of manufacturing excellence (social science approach) (Hitomi 

1996, p. 57). In a socio-technical context “human beings are random, nondeterministic systems” 

(Scaife 2016, pp. 93–94). A classification of systems including adjacent theory such as cybernetics 

is shown in Figure 66. Cybernetics goes back to Norbert Wiener in 1948 (Wiener 1994). 

 

Figure 66: Systems theory, cybernetics, and management theory (Ulrich 2001, p. 44)  
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This research looks at socio-technical systems and aims to develop a methodology, which is 

defined as “a system of methods used in a particular area of study”.28 Where a method is a 

“systematic process of achieving certain ends with accuracy and efficiency”.29 

8.2.3 Model theory classification 

Models can be distinguished in several ways, e.g., they can be deterministic if all information and 

relationships are known, or stochastic when the model is based on uncertain, probabilistic 

variables (Law, Kelton 1991, p. 6). Schweitzer, Krause 1997, p. 9 provide an overview according 

to structural properties of economic models, Figure 67. 

 

Figure 67: Classification of economic models (Schweitzer, Krause 1997, p. 9) 

Depending on the scope of the model it can be a total or a partial model (Domschke, Scholl 2005, 

pp. 32–33) and also of predictive nature (Domschke, Scholl 2005, p. 31). A realistic representation 

of corporate and economic behavior, according to Forrester, requires dynamic, non-linear, stable 

models (Forrester 1961, p. 49). Forester states: “The nonlinearities of maximum factory capacity, 

labor and credit shortage, and the dependence of decisions on complex relationships between 

variables, all compellingly insist on being included in a usefully realistic model of the industrial 

enterprise. Since time and changes with time are the essence of the manager´s task, a useful model 

must be dynamic and capable of adequately generating its own evolution through time” (Forrester 

1961, p. 52). 

8.2.4 Summary of relevance 

In the scope of this work, the methodology deals with a dynamic, non-linear/stochastic model of 

an industrial system. The methodology will be a procedural model with defined system 

boundaries, i.e. a partial model with clear scope on one site excluding aspects of supply chain and 

                                                

28 https://en.oxforddictionaries.com/definition/methodology, last accessed 09.08.2017 
29 http://www.businessdictionary.com/definition/method.html, last accessed 09.08.2017 
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the exhaustive coverage of externalities. Related to this work, Hutchinson 2007, p. 140 specifically 

proposed further research using a system dynamics approach considering the moderating role of 

management accounting systems between a time-based manufacturing strategy and manufacturing 

performance, Figure 68. 

 

Figure 68: System-dynamics based conceptual framework for time-based manufacturing strategy  

(Hutchinson 2007, p. 140) 

 

8.3 Applicability 

In order to answer RQ1 (under what conditions does a profit per hour management approach help 

to take the best available decisions), the author formulates the following proposition: profit per 

hour is a suitable operational target KPI for industrial operations management in manufacturing, 

when (1) trade-off decisions between conflicting targets (e.g., throughput, energy, yield, ...) are 

required, (2) time is the constraint (e.g. high OEE, continuous vs. batch), (3) “real time” decision 

making is required, e.g. due to high volatility, (4) cumulative profit maximization is the desired 

long term goal, (5) invested capital (fixed cost) and/or resource intensity (variable cost) is high 

(e.g. process industries).  

8.3.1 Trade-off decisions are required 

Industrial companies gain strategic, competitive advantage through the performance of their 

production system measured by factors such as process costs, timing, quality or flexibility 

(Ramsauer 2009, 50). As a consequence a variety of trade-offs arise in production, e.g., between 

resource utilization and quality (Brignall et al. 1991, p. 34). Epstein and Lee point out that the 

“prevalent tendency to focus on individual target variables results in a significant impediment to 

cross-functional integration in organizations” (Epstein, Lee 2000, p. 44). Figure 69 provides 

examples of interdependencies among throughput, yield, energy and environment.  
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Figure 69: Trade-offs for resource-productive operations (Hammer, Somers 2016, p. 89) 

In order to reach the highest overall productivity, managers need to handle uncertain conditions 

while balancing several criteria which are in contrast to each other (Rao 2013, p. 1). Technology 

is already in use to help, as discussed in chapter 4.4 (decision support systems) and chapter 5.6 

(advanced process control systems). For example, real-time energy management 

systems communicate with process control systems as well as cost accounting/finance systems 

such as SAP to make decisions (Feldmann 2013, p. 10).  

8.3.2 Time is the constraint 

For the purpose of this discussion, time is considered as linear, continuous, economic (Voss, 

Blackmon 1998, p. 150) and absolute, as per the belief of Aristoteles and Newton (Hawking 1988, 

p. 33). Other concepts, such as space-time, elaborated in Einstein´s general theory of relativity 

(Einstein 1916, p. 769) or the cyclical perception of time in some cultures (Voss, Blackmon 1998, 

p. 149) will not be included. Time is a crucial factor across industries as lost time cannot be 

recovered. Time is of particular relevance in process industries as it often presents a constraint. 

The importance of time is evidenced by continuous 24/7 operations, and already high levels of 

OEE in markets with sufficient demand. 

8.3.3  “Real time” (short interval) decision making is required 

Given the increased volatility of the environment, as discussed in chapter 2, decisions need to be 

made in shorter intervals. Profit per hour as a leading decision metric presents a clear criteria for 

short-interval decisions. Darby sees a need for more exchange between industry and academia 

with respect to real-time optimization (Darby et al. 2011, p. 883), which is one of the anticipated 

outcomes of this thesis. While this thesis focuses on internal operations optimization, the best case 

in the author´s opinion, would be decision-making that considers the commercial conditions from 

markets and customers in real-time. A sector where this is already done is the electricity market 

where generation and consumption are balanced directly via the market price (Conejo et al. 2010, 

p. 2). 
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8.3.4 Cumulative profit maximization is the desired long term goal 

The profit maximization hypothesis is the most common objective in economic literature (Adam 

1970, p. 59). The economic principle and maxim that companies must earn the highest possible 

profits on invested capital is a structural element of market economy systems (Gutenberg 1963, 

p. 8). It also demands that corporate decisions are made both for the short and long term 

(Gutenberg 1963, p. 10). According to a recent study, managing for the long term leads to higher 

growth in average revenue by 47% and earnings by 36%, and in addition, to faster growth in 

market capitalization (Barton et al. 2017). 

8.3.5 High invested capital, high resource intensity and/or resource scarcity 

In situations with “high capital and manufacturing costs, there is an economic need to operate 

these machines as efficiently as possible in order to obtain the required pay back” (Rao 2011, 

p. 3). Process operating situations that are relevant to maximizing operating profits, according to 

Edgar et al. 2001, pp. 7–8 and Seborg et al. 2004, p. 513 include:  

(1) Sales limited by production: If additional products can be sold beyond current capacity, 

sales can be increased by increasing production. This can be achieved by optimizing 

operating conditions and production schedules. This situation implies a higher profit margin 

on the incremental sales. 

(2) Sales limited by market: This situation is susceptible to optimization only if improvements 

in efficiency at current production rates can be obtained, hence, the economic incentive for 

implementation in this case may be less than in the first example because no additional 

products are made. An increase in thermal efficiency, for example, usually leads to a 

reduction in manufacturing costs (e.g., utilities or feedstocks).  

(3) Large throughput: Units with large production rates (or throughputs) offer great 

potential to increase profits. Small savings in production costs per unit throughput or 

incremental improvements in yield, plus large production rates, can result in major increases 

in profits. Most large chemical and petroleum processes fall into this classification. 

(4) High raw material or energy consumption: They are major cost factors in a typical plant 

and thus offer potential savings. For example, the optimal allocation of fuel supplies and 

steam in a plant can reduce costs by minimizing fuel consumption.  

 

8.4 Pre-conditions 

The approach is enabled by a combination of technology, human factors and management. In this 

section, with focus on answering RQ2 (In practice, what keeps companies from implementing a 

profit per hour approach), the pre-conditions are investigated and required elements are elaborated. 

The author´s reasons why companies are currently not following a profit per hour management 

approach are: (1)They are not aware or it is not meaningful to them, i.e. they do not meet criteria 

discussed in the previous section; (2) they lack infrastructure (e.g. sensors/meters), data (e.g., 

volume, frequency, quality) to compute the metric, or do not have access to (advanced) 

algorithms required to calculate profit per hour as a target function; (3) they lack the required 
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skills (e.g., IT, analytics, functional expertise); (4) they lack an implementation process (e.g., 

methodology) or fail in the change management process, and (5) they struggle to adapt the 

accounting procedures. A recent study of complex operations by Gundersen based on 7 

companies found seven success criteria, Table 34, ranging from mindset, leadership, training to 

data capture and data basis. 

No. Success 

criteria 

Capabilities for best practice Typical issues 

1 Data capture 
and data basis 

Use of advanced sensors and automated data capture, 

rich data sources, capacity to handle and store large 

datasets 

 Data is not updated 

 Data is not sufficiently structured 

 No data sources exist to support work process and 

decision point 

2 Communication 

infrastructure 

and data 

transmission 

Capacity for large data quantities without latency and 

with sufficient uptime and security, handle multiple 
technologies 

 Communication infrastructure does not exist with 
sufficient capacity 

3 Information 

access, 

integration 
layer 

Users must have access to appropriate applications and 

information must be available across applications 
 Manual interfaces or lack of information sharing 

across applications 

 Lack of access to applications at information point 

of origin 

 Application catering for the right information does 

not exist 

4 Information 

visualization 
and workspaces 

Enable cross-disciplinary and proactive use of relevant 

information, where workspaces that are adapted, 

presented and visualized with the work process context 

in mind, information can come from various sources and 

must be aggregated to fit the decisions relevant for the 
specific work processes 

 Workspaces/information visualization does not 

support work processes and decision points (or not 
defined) 

5 Collaboration 

functionalities 

and work 
arenas 

Technology and physical space for access to information 

and connection between team members independent of 
location 

 Collaboration infrastructure does not support work 

processes and decision points (or not defined) 

 Collaboration technology not used to its potential 

 Collaboration technology not compatible or is not 

available 

6 Organization, 

roles and 

responsibilities 
(Governance) 

Harmonized and documented work processes, clear 

competence requirements, mandates and decision 

authority, clear and standardized roles, responsibilities 

and relational links, clearly stated requirements for 

information needs, best practices etc. for describes tasks 

within work processes, collaborative work processes 
(between disciplines/skills and locations) 

 Gap between actual operations and formal 

procedures and work instructions 

 Unclear roles, responsibilities, work processes and 

decision points 

  Unclear communication lines and division of 

authority in interfaces between organization units 
and between disciplines 

7 Mindset, 

leadership and 
training 

Transparent leadership, utilize new ways of working, 

integration competence, sustainable change, continuous 
improvement, learning organization (active training) 

 Lack of policy and culture for coordination, 

information sharing, common understanding of 

goals between organizational units, both internally, 

between organizations and at external organizations 

 New strategies, structures and processes not 

implemented, lack of plans for transitions except the 

occasional new organization chart 

 No attention to organizational learning processes and 

training of basic collaboration practices 

Table 34: Success criteria and issues in management of complex operations (Gundersen 2017, pp. 87–88, 93) 

Success criteria 1-5 confirm the author’s hypothesis of a lack of infrastructure or other data related 

issues. Number 6 relates to the hypothesis of a lack of methodology and number 7 links to gaps in 

skills and training. When it comes to data, it is important to point out that issues associated with 

cost allocation, as pointed out in chapter 4.2, are the final reason which keeps companies from 

implementing a profit per hour approach. The author´s operations management approach aims to 

optimize the profit per hour and requires that the revenues of the production of a customer order 

are compared to the cost at the time of production. This leads to differences in external cost 

accounting and internal management accounting in terms of value and timing.  
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8.4.1 Technology 

Technology is an essential enabler. Next to continued reductions in cost for computing or storage, 

developments in the area of analytics and visualization software and interoperability between 

systems is required (Manyika et al. 2015, pp. 11–12). Monostori et al confirm: “The existence of 

legacy systems hinders the stepwise introduction of CPPS solutions into existing manufacturing 

systems or, the transformation of a whole traditional system to become Industry 4.0-ready” 

(Monostori et al. 2016, p. 627). Technical issues such as these are not new and were stated earlier 

in the context of planning and control systems: “Connectivity between applications was difficult 

or expensive to implement and maintain” (Shobrys, White 2002, p. 150); and in the area of 

performance management: “[there is an] absence of a flexible platform to allow organizations to 

effectively and efficiently manage the dynamics of their performance measurement systems” 

(Bititci et al. 2000, p. 694). While there has been some progress in the area of PMS, still in 2016, 

similar technical infrastructure challenges remain, e.g., the capability “to read information not 

only from databases available in the manufacturing system, but also from other functional models 

applied by decision makers during their planning activities” (Almeida, Azevedo 2016, p. 138). 

The rise of data lakes capable of storing data from a variety of sources including structured and 

unstructured data will ease analytics (Martin 2016, p. 35). Figure 70 illustrates the target state with 

a data lake as an analytics enabler. 

  

Figure 70: Data lake (Porter, Heppelmann 2015) 

Beyond the data processing infrastructure, analytics depends on information sources that “go 

beyond sensor data and tend to include environmental and context data, including usage 

information (e.g. high load) of the machinery” (Becker 2016, p. 145). However, while “businesses 
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today are constantly generating enormous amounts of data […,] that doesn’t always translate to 

actionable information” (Veeramachaneni 2016). This has to do with the fact that some 

organizations start with collecting data rather than identifying the business problem first (Franks 

2014, p. 36). Furthermore, “companies need to ensure that the right data are available and that 

the data quality is good” (Schläfke et al. 2012, p. 115). Seufert found that while data quality is 

essential, more than 50% of companies either do not explicitly manage this subject or handle it 

decentrally (Seufert et al. 2014, p. 21). Mining data is of multidisciplinary nature including data 

science, knowledge discovery, statistics, pattern recognition, computational neuroscience, 

machine learning, and AI (Dean 2014, p. 56). The BDVA Big Data Value Association 2016, 

pp. 27–28 sees the following five challenges: (1) Semantic and knowledge-based analysis: 

Improvement to the analysis of data to provide a near real-time interpretation of the data (i.e. 

sentiment, semantics, etc.). Furthermore, ontology engineering for Big Data sources, interactive 

visualization & exploration, real-time interlinking and annotation of data sources, scalable and 

incremental reasoning, linked data mining, cognitive computing, (2) Content validation: 

Implementation of veracity (source reliability / information credibility) models for validating 

content and exploiting content recommendations from unknown users, (3) Analytics frameworks 

& processing, (4) Advanced business analytics and intelligence, and (5) Predictive and 

prescriptive analytics: Machine learning, clustering, pattern mining, network analysis and 

hypothesis testing techniques applied on extremely large graphs containing sparse, uncertain and 

incomplete data. 

 

8.4.2 People 

“Skills of talented human beings are the single most important resource in successfully exploiting 

Big Data” (Davenport 2014a, p. 110). However according to Bill Joy, the cofounder of Sun 

Microsystems “No matter who you are, most of the smartest people work for someone else” 

(Lakhani, Panetta 2007). Even though the benefits of business analytics are clear, the required 

skills might be lacking (Schläfke et al. 2012, p. 119), as mentioned in chapter 3.5. A recent survey 

of 545 companies confirmed this as for around half of the companies missing know-how is the 

biggest hurdle for benefiting from Big Data (Bange et al. 2015, p. 35). Companies therefore 

struggle to move from the early stages of analytics adoption, Table 35, towards using prescriptive 

analytics. 

 Aspirational Experienced Transformed 

Motive Use analytics to justify actions Use analytics to guide actions Use analytics to prescribe actions 

Key obstacles  Lack of understanding how to 

leverage analytics for business 

value 

 Executive sponsorship 

 Culture does not encourage 

sharing of information 

 Lack of understanding how to 

leverage analytics for business 

value 

 Skills within line of business 

 Ownership of data is unclear or 

governance is ineffective 

 Lack of understanding how to 

leverage analytics for business 

value 

 Management bandwidth due to 

competing priorities 

 Accessibility of the data 

Table 35: Three stages of analytics adoption (LaValle et al. 2011, p. 24) 

Four areas of expertise are required for the optimization of manufacturing processes using 

advanced analytics, as per Rao 2011, p. 3; Chen et al. 2012, p. 1183; and Feldmann et al. 2016, 

pp. 4–5: (1) Domain expertise to understand the business issues and translate them into analytics 
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opportunities based on the knowledge of the manufacturing process including constraints, 

specifications machine capacities, etc.; (2) IT expertise to capture data from sensors and store 

information using local or cloud-based software platforms; (3) Advanced analytics knowledge of 

mathematics, statistics, numerical optimization techniques; and (4) Change management skills to 

communicate findings, interact with the frontline and implement improvements. Next to skills, the 

successful implementation of improvement projects requires will and capacity (Monroe 2015, p. 

61). Recent operations research found exceptionally few companies “able to develop the right 

mind set to support real sustainable value creation and continuous improvement” (Benzi 2017, 

p. 117). Also considerable capacity is required to deal with change management issues, working 

with the frontline in adapting operational processes and roles (Davenport 2014a, p. 184). Iafrate 

emphasizes that in the digital world, “the main goal is to move from a data organization 

(struggling with the data management) to a learning organization (leveraging all the value behind 

the data, with the right processes and organization)” (Iafrate 2014, p. 27). 

 

8.4.3 Process methodology 

The author postulates the thesis that in order for companies to implement a profit per hour 

operations management approach they would need to apply a standardized, repeatable, step-by-

step process methodology considering one of the two design end-states, i.e., a live decision cockpit 

for managers/operators or fully automated advanced process controls. As per the requirements in 

chapter 7, a standardized, generic, well known step-by-step methodology for operations 

improvement shall be used. Table 36 shows a selection of 14 common methodologies in the area 

of operations and also Big Data, data mining, and knowledge discovery. The number of steps 

varies between 4 and 10 steps. At the lower end there is Demming´s Plan-Do-Study-Act (PDSA) 

loop while on the higher end there are, for example, TQM and KDD. The comparison also 

illustrates the compatibility and emphasis of the approaches. While there is not only one approach 

that can work for the profit per hour management approach, the following two criteria help to 

make a selection. First, the approach should be an operations approach and secondly it should be 

one that is already well known and using data. DMAIC is a “structured methodology and industry 

accepted universal language of improvement” (Burton 2011, p. 53) and is therefore chosen by the 

author. Next to the DMAIC methodology, Six Sigma bundles a wide range of specific tools. While 

Six Sigma traditionally tends to be project focused solving specific problems, in this work it is 

used for ongoing optimization based on continuous variables, e.g., mass flows, temperatures, 

pressures. 
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OPERATIONS IMPROVEMENT PROCESS METHODOLOGIES BIG DATA, DATA MINING AND KNOWLEDGE DISCOVERY PROCESS METHODOLOGIES 

PDSA 

(Deming 2000, 
p. 132) 

TOC 

(Goldratt 1990, 
p. 8) 

DMAIC 

(Lunau 2009, 
p. 10) 

8D (disciplines) 

(Riesenberger, 
Sousa 2010, 

p. 2225) 

USAF 8-steps 

(Plenert 2011, 
p. 115) 

TQM 

(Plenert 2011, 
p. 104) 

Process 

Reengineering 
(Plenert 2011, 

p. 110) 

Analytics-based 

decision 

making 

(Davenport 

2013, p. 4) 

SMART 

(Marr 2015, 
p. 21) 

Stepwise 

approach to Big 

Data Analysis 

(Berman 2013, 

p. 157) 

Generic 

analytics 

process flow 

(Franks 2014, 

p. 179) 

SEMMA 

(Dean 2014, 
p. 61) 

CRISP-DM 

(Shearer 2000, 
p. 14) 

KDD 

(Fayyad et al. 
1996, p. 42) 

Plan Identify the 
constraint 

 

Define Team formation Clarify the 
problem 

Identify 
problems/ 

opportunities 

Mobilization 
(Develop and 

communicate a 

vision, identify 

champions and 
process owners, 

assemble the 

teams) 

Recognize the 
problem or 

question 

Start with 
strategy 

A question is 
formulated  

Identify business 
problem 

Sample Business 
understanding 

Developing an 
understanding of 

the application 

domain and the 

relevant prior 
knowledge and 

identifying the 

goal of the KDD 

process from the 
customer’s 

viewpoint 

Review previous 

findings 

Resource 

Evaluation 

 

A question is 

reformulated 

Measure Problem 

analysis 

Break down the 

problem/identify 

performance 
gaps 

Prioritize these 

problems 

Diagnosis (train 

and educate, 

current process 
analysis, select 

and scope the 

process, 

understand the 
current 

customer, model 

the process, 

identify 
problems, set 

targets for new 

designs) 

Collect the data Measure metrics 

and data 

Query output 

adequacy 

Acquire data Explore Data 

understanding 

Creating a target 

data set 

Data description Prepare data  Data preparation Data cleaning 
and 

preprocessing 

Data reduction Data reduction 

and projection 

Analyze Containment 
actions 

Set improvement 
targets 

Select the 
biggest bang-

for-the-buck 

project 

Analyze the data Analyze your 
data 

Algorithms are 
selected 

Performa 
analysis 

Modelling Matching the 
goals of the 

KDD process 

(step 1) to a 

particular data-
mining method 

Exploit the 

constraint 

Root cause 

analysis 

Develop an 

implementation 

plan 

Modify Exploratory 

analysis and 

model and 
hypothesis 

selection 

Determine root 

causes 

Use operations 

research and 
MIS tools where 

appropriate  

Model Data mining 

Develop 

countermeasures 

Develop guide 

posts and an 
appropriate 

measurement 

system 

Redesign (create 

breakthrough 
design concepts, 

redesign the 

entire system, 

build prototype, 
information 

technology) 

Present and act 

on the results 

Report your 

results 

Results are 

reviewed and 
conclusions 

asserted 

Evaluate results Assess Evaluation Interpreting 

mined patterns 

Conclusions are 

examined and 

subjected to 
validation 

Do Subordinate the 
processes 

 

Improve Corrective 
actions 

See 
countermeasures 

through 

Training Transform your 
business and 

decision-making 

Deploy and 
drive value 

Deployment Acting on the dis 
covered 

knowledge 

Elevate the 

constraint 

Implementation 

 

 

Transition 

(finalize 

transition 
design, 

implementation 

phase, measure 

benefits, 
communicate to 

avoid resistance) 

Study Repeat the 

process – find 

another 

constraint 

Control Verification of 

the effectiveness 

of the corrective 

actions 

Confirm results 

& process 

Feedback—

monitoring—

control—change 

Preventive 

actions 

Act Congratulate the 

team. 

Standardize 

successful 
processes 

After successful 

project 
implementation 

and on-going 

status, repeat 

cycle 

Table 36: Comparison of process methodologies
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Beyond implementation, an ongoing process of alignment and improvement is required, Figure 

71.  

 

Figure 71: Direct, develop, deploy strategic improvement cycle (Slack, Lewis 2011, p. 220) 

 

8.5 Summary: Constituents of a time-based and analytics-supported 

operations management methodology 

The approach is made possible through a combination of technology and economics taking 

constraints into account as illustrated in section 8.1. The methodology has been classified 

according to application-oriented theory, model theory and systems theory in section 8.2. The 

applicability against five criteria (section 8.3) and the preconditions (section 8.4) have been 

discussed in detail. The standardized method for implementation will be detailed in chapter 9 

and is structured around the DMAIC framework; well-known in industry; generically 

applicable across sectors; practical; proven to deliver sustainable results through the integration 

of technical, managerial, and people aspects. 
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9 Methodology: Implementing an analytics, time 

and Six Sigma based operations management 

approach 

In this chapter the previously conceived methodology will be explained in detail. The 

framework, Figure 72, follows the five phases of the Six-Sigma approach with 17 specific 

activities and tools for each phase stated by the author. This chapter gives the answer to RQ3 

on how to implement a profit per hour management approach. As with all approaches, a 

customization, i.e. an extension of activities or adaptation of tools, to specific circumstances is 

required as part of a broader rollout – this need for adaptation and continuous improvement is 

also pointed out by Schwaninger 2013, p. 56. 

 
Figure 72: Methodology overview 

9.1 Phase 1 – Define 

The first phase, Define, is an important fundament and enabler for the subsequent phases. It 

deals with assessing the starting point and readiness of an organization. It also reviews the 

business itself and its value drivers to derive the most relevant field of actions.  

D1 Understand process 

Before starting any optimization effort, as in Lean (chapter 5), it is necessary to understand the 

process through the involvement of site personnel, walking the shop floor and reviewing 

available information. A solid understanding will help not only with aspects of optimization, 

feasibility, but also with change management and organizational alignment. In addition to go 

& see, helpful Lean Six Sigma tools in this step include value stream mapping, as detailed in 

the book Learning to See (Rother, Shook 1999), and SIPOC (supplier-input-process-output-

customer) (Lunau 2009, p. 34). 
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Expected results include: 

 Process description 

 Process flow diagram 

 Typical problems and opportunity areas 

D2 Identify value drivers 

The concept of value drivers and the underlying theory in management accounting has been 

reviewed in chapter 4. As concluded as part of RQ1 “applicability” we take a financial 

optimization focus as given. Therefore the identification of value drivers starts with analyzing 

the ROIC tree, Figure 73, and for operational management we will exclude the invested capital 

branch, as this is not an influenceable area in the short term. Looking at profit in further detail, 

all information leading up to this, i.e. revenue and cost drivers, need to be collected. 

Understanding the sensitivities and “the Power of 1%” gives insights on value at stake and 

helps to prioritize. According to Gilchrist, “in most industries, a modest improvement of 1% 

would contribute significantly to the return on investment of the capital and operational 

expenses incurred by deploying the Industrial Internet” (Gilchrist 2016, p. 4). 

 

Figure 73: Example ROIC tree for pulp and paper 
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Expected results include: 

 Value driver tree for ROIC created 

 Value drivers identified and their sensitivities analyzed 

D3 Define target function 

For optimization purposes a target has to be defined. Classically this would be increasing 

throughput, maximizing yield, reducing scrap or other cost items. As per the previous 

discussion in chapter 8, using an overarching profit target, such as profit per hour is the default 

target and recommended for continuous process manufacturers. However, there might be 

exceptions and reasons to consider only a sub-set of profit per hour as target. In the cement case 

of chapter 6, energy consumption at the kiln has been selected as target based on its high 

sensitivity on profit.  

Expected results include:  

 Profit per hour function 

 Influencing parameters and constraints 

D4 Align project charter 

A critical element of preparation is the alignment of stakeholders to a project charter prior to 

proceeding with further observations, measurements and data analyses. The project charter, 

Table 37, clarifies the scope, expected impact, roles and discussing it also helps to address 

concerns upfront, e.g., will automation and advanced process control replace work places. 

 

1. Business Case 

Describe the starting situation and emphasize what the project 

means and its importance. 

2. Problems and Goals 

Describe problems and goals the SMART way (Specific, 

Measurable, Agreed to, Realistic, Time bound). Do not guess 

causes or propose solutions, but depict the current and target state. 

Besides the baseline (the basis for savings achieved by the project 

and the additional turn - over), estimate the monetary benefits of 

the project (net benefit). 

 

3. Focus and Scope 

Which issues are within and which are outside the project scope? 

What is to be the focus? For the DMAIC approach, which process 

forms the basis? 

 

4. Roles and Milestones 

Fix the starting date of the project and its duration […], name the 

involved persons, and determine the resources needed. A separate 

project schedule for the whole project is required. Further possible 

components of the project charter are: 

– Key quality indicators […] 

– Improvements or project benefits which cannot be calculated in 

   metrics. 

– Risks that may impede carrying out the project or realizing the  

   full benefit. 

Table 37: Project charter (Lunau 2009, pp. 30–31) 

Expected results include:  

 Project charter created and aligned within the organization 
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D5 Assess readiness to proceed 

A structured maturity questionnaire can be used to identify strengths, weaknesses and potential 

risks. Walker uses a framework called SIGMA assessing the strategic readiness according to 5 

levels, from novice to expert. SIGMA refers to: source of data, innovation, growth mindset, 

market opportunities, analytics (Walker 2015, p. 264). Similarly, Loshin, also uses a 5 point 

scale for quantifying organizational readiness. His assessment is based on 5 dimensions: 

feasibility, reasonability, value, integrability, and sustainability (Loshin 2013, p. 12). 

Davenport´s Big Data Readiness Assessment Survey, on the other hand, is structured around 6 

categories with the abbreviation DELTTA: data, enterprise, leadership, targets, technology and, 

analytics and data scientists. For each category he defined 5 questions, i.e. a total of 30 

questions. Answers should be given in numeric form using a 5 step scale ranging from disagree 

strongly to agree strongly (Davenport 2014a, pp. 205–209). As part of the proposed 

methodology, a combination of the aforementioned questionnaires seems most efficient; not 

only striking a balance between 5 (few) and 30 (many) questions, but also tying the readiness 

to the DMAIC framework. The result is a set of 18 questions, Table 38, for the 3 phases of 

measure (data related), analyze (analytics/modelling related), and implement (related to 

organizational aspects).  

# DMAIC 

phase 

Dimension 

1 M Sensors for data capture: Are readings from operations available? What kind of sensors are used? 

2 M Coverage of data capture: To what extent are production parameters captured? 

3 M Granularity of measuring: At what granularity level is the process flow measured? 

4 M Data collection: At what frequency is data stored? 

5 M Accuracy of data: How accurate is the stored data? 

6 M Streaming and accessibility of data: Is data being streamed? How accessible is the stream? 

7 A Structural data practices: How is data structured, stored and accessed? 

8 A Data cleaning: How is data cleaned and blended? 

9 A Focus of analysis: What is the objective function and focus for any analysis and modelling? 

10 A Depth of analysis: What level of dependents are used in the modelling and analysis? How is the element of time 
taken into account? 

11 A Type of modelling used: How advanced are the modelling techniques? 

12 A Degree of automated analysis: To what degree are the analysis and modelling automated? 

13 I Presenting results: How are the results presented and insights derived? 

14 I Leveraging insights for operational decisions: How is the model output used for operational decision-making? 

15 I Leveraging insights for long-term decision-making: How are insights incorporated into longer term operational 

strategy, e.g., plant optimization through capital investments? 

16 I Capabilities and understanding: Are in-house capabilities to run advanced analytics and modelling available? 

17 I Staff development: What initiatives are used to increase knowledge and awareness of the possibilities to optimize 

the production processes? 

18 I Objectives and vision: Are advanced analytics incorporated into the company’s strategic vision and culture? 

Table 38: Dimension of readiness assessment 

The proposed dimensions help to assess the readiness of an organization to proceed. Further 

questions for define and control are not required, as everything that can be measured, analyzed, 

and implemented naturally can be defined and controlled.  
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Expected results include: 

 Readiness assessment conducted 

 

9.2 Phase 2 – Measure 

M1 Set up 

In this step the available systems and the data landscape has to be understood. According to 

Finlay, this includes current decision-making systems, existing meta data, data sources and 

people working in operational areas (Finlay 2014, pp. 158–159). In addition to knowing what 

systems exist, e.g., a data lake, and who is using them, insights into available parameters, 

direct/indirect measurements, and accuracy of sensors are needed. 

Expected results include: 

 Overview of systems and sources of information 

 Parameters recorded 

 

M2 Capture and store 

This step is about capturing and storing data from the previously identified sources. Typically 

the first time this is done through collecting a batch of historic data. At a later stage online 

streaming into a data-lake can be configured. For the first set up a significant period of data 

needs to be available. A practitioner rule is to collect as much data as possible, but for data in 

seconds/minutes/hours intervals often 6-24 months of data is sufficient. Be aware that 

depending on the number of variables, number of systems and time horizon the data download 

can take several hours. Once the data has been received an immediate backup copy should be 

made before proceeding to manipulate the data.  

Expected results include: 

 Raw data from different sources, e.g., process control and ERP systems, collected and 

stored 

 

M3 Structure and clean 

Once the data is available it has to be structured and cleaned. At first each data tag has to be 

classified with source, variable type (e.g., input, output, controllable, disturbance), units, 

associated process steps and descriptions. Thereafter the matching of time stamps has to be 

performed to create a consistent data set. A consistency check of the data is conducted to 

identify missing values, negative values, errors or any other data anomalies. In order to able to 
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structure and clean the data the process, system constraints and major process changes in the 

period of the investigation need to be well understood.  

Expected results include: 

 Knowledge of data collection frequency from different sources, missing data, 

anomalies, and time behavior of the process 

 Availability of a structured and clean data set for analyses 

 

9.3 Phase 3 – Analyze 

A1 Analyze 

To start with, the variables are analyzed through the means of descriptive analytics tools such 

as visualization of time-series, identifying trends such as increases, decreases, frequencies, 

variability and different operating modes. Other visualization tools are for example heat maps 

and tree maps giving an indication whether parameters are relevant and on or off-target. 

Descriptive analytics also includes classical statistical analysis such as regressions and also 

clustering. The aim of all analyses in this step is to develop data-based improvement hypothesis 

and to quantify the improvement opportunity.  

Expected results include: 

 Data visualized, analyzed and data sets for modelling prepared 

 Key parameters and improvement hypotheses identified 

A2 Model 

For modelling, different data sets are used for training, test and validation. In this step predictive 

analytics such as decision trees, neural networks or genetic algorithms are applied to mirror the 

process and predict its behavior, i.e., a digital twin is created, Figure 74. The model serves four 

purposes: (1) to create a reference based on historic data, (2) to predict the process behavior 

going forward, (3) to quantify improvements comparing optimized/unoptimized process 

behavior, and (4) to monitor performance on ongoing basis. 
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Figure 74: Digital twin as result of modelling and basis for optimization 

Expected results include: 

 Predictive model and optimizer available 

 Quantification and explanation of opportunities 

A3 Problem solve 

After the conclusion of the analyses and modeling steps the site personnel comprised of a cross-

functional team of engineers, operators, supervisors and managers start problem solving 

improvements. Here principles and tools from lean and Six Sigma are applied, such as “go & 

see” the process, root-cause problem solving using cause-effect diagrams, 5-Why’s or FMEA; 

to understand the current state and designing the future state of the process. 

End results include: 

 Problem solving workshops conducted 

 Understanding of current state and envisioned future state 

9.4 Phase 4 – Improve 

I1 Define improvements 

The improvements are selected based on problem solving workshops, brainstorming of 

potential solutions, definition of criteria, prioritization using for example an effort-benefit 

matrix and evaluation of feasibility. 

Expected results include: 

 List of improvement measures to bridge the gap between current and future state 

Data-based validation and real-time optimizationCreation of digital process model
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Time

Optimizer to stabilize 

target function
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I2 Implement 

It almost goes without saying, that only implemented improvements will deliver benefits. What 

is important to point out, in line with the lean philosophy discussed in chapter 5.2, is that 

according to Drew et al, sustainable operational improvements depend on three aspects: “(1) 

Operating system: The way in which assets and resources are configured to deliver value to the 

customer with minimum losses, (2) Management infrastructure: The management organization, 

processes and systems required to support and sustain the operating system, and (3) Mindsets 

and behaviors: The ways of thinking and acting at all levels of the organization that are 

required to underpin the formal systems and structures” (Drew et al. 2004, p. 17). One 

important outcome is the implementation of a profit per hour dashboard, Figure 75, allowing 

operators and their supervisors to manage the operations through setting leading parameters 

that minimize profit losses and thus maximize cumulative profits. 

 

Figure 75: Example of profit per hour dashboard 

Expected results include: 

 Implementation plan 

 Changes of technical, managerial and people related nature 

 Dashboard 

I3 Automate 

In this proposed but optional step, decision making is automated, also referred to as closing the 

loop, based on model predictive control (see chapter 5.3). In certain process industries, for 

example, power plants or refineries, automatic operations are well-accepted practice. The role 

Parameter 1

Min Max

Actual

Parameter 2

Min Max

Actual

Parameter 3

Min Max

Actual

Cumulative profit lossesProfit per hour actual vs. target
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of the operators is to supervise the plant and intervene in case of deviations or abnormal 

conditions. Also, a defined process for updating and continuously improving the controls is 

required. Next to time-based updates specific triggers such as model accuracy or time in 

automatic operating mode can be defined. 

Expected results include: 

 Online optimizer (optional) 

 Process for updates and continuous improvement 

9.5 Phase 5 – Control 

The last phase, control, includes the validation of improvement, sustaining measurement 

systems, process owner transition, the identification of new improvement opportunities, 

knowledge repository, and celebration (Burton 2011, pp. 293–294). These tasks are grouped 

into three steps in this section: verify, learn, scale. 

C1 Verify 

The verification step entails both checking the progress of improvement activities (e.g., using 

a Gantt chart), and the evaluation of realized benefits, (e.g., quantifying the savings based on 

the dashboard implemented in step I2). Furthermore, the finance and accounting department 

provides cost savings reports as part of the routine financial reporting cycle. 

Expected results include: 

 Implementation progress 

 Savings 

C2 Learn 

Learning is essential for three reasons: (1) to continuously improve the process in scope of 

optimization, (2) to roll out optimization efforts to other processes and sites, and (3) to share 

best-practices in order to become more efficient. Slack & Lewis lay out a double loop learning 

process, Figure 76.  

 

Figure 76: Double-loop learning (Slack, Lewis 2011, p. 331) 
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In its first loop the framework reviews the optimization results against the predefined 

objectives, and in its second loop it triggers managers and engineers to step back to review and 

amend the objectives. Sharing knowledge also requires documenting the process, learning, and 

results and developing best-practices. These serve to support internal dissemination and as basis 

for training. Finally, the last step is to fully integrate analytics in the organization and standard 

business processes. Loshin lays out a series of helpful questions for doing so, covering 

participants in the process, desired outcomes of the process, available information, knowledge 

and actionable results delivered by data analytics, additional training needs, and how business 

processes need to be adjusted (Loshin 2013, pp. 110–111). 

Expected results include: 

 Documented learning 

 Tools and best-practices 

C3 Scale 

The purpose of this last step is to plan and execute the role-out of the improvements and 

approach at scale. Figure 77 gives a typical example including all sites, grouped by regions and 

technologies. Sites that have been covered previously are marked with a tick. The rollout logic 

can be either by region or technology based on the availability of skills, work capacity and value 

at stake. 

 

Figure 77: Scale-up matrix with sites, regions and technologies 

Expected results include: 

 Roll out plan / opportunities 
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9.6 Summary of methodology 

At the end of chapter 9, Figure 78, summarizes the expected end results of the 17 steps and five 

phases.  

 

Figure 78: Summary of methodology 
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10  Methodology validation: Prototypical application

 in the pulp manufacturing industry 

In this chapter the conceived methodology is validated by taking a case study approach. The 

research is based again on process industries and deals with pulp manufacturing. It includes 

insights on the process, examples, and sanitized results.  

10.1 Context 

The aim of this case study is to apply the time-based and analytics-supported operations 

management approach for profit per hour maximization in the context of pulp manufacturing. 

The specific aims are to: (1) use profit per hour as operational target metric, (2) confirm that 

the 17-step methodology outlined along the DMAIC phases works, and (3) summarize the 

benefits of this approach. This case study has been conducted by the researcher in a sounding 

board/partner role to an industrial solutions provider serving process industries including the 

pulp & paper, metals, chemicals, among others. The company operates in more than 40 

countries and employs over 25,000 people. One of their offerings is a process optimization 

platform30, which has been used for process improvement and automation at a customer site, 

the scope of this case study. The site is an integrated mill with an annual production of approx. 

220,000 tons of pulp and 1 million tons of high quality multi-coated papers used for premium 

quality publications world-wide. The mill pays a lot of attention to manufacturing excellence 

and has a long record of continuous improvement. Technical upgrades, such as a recent general 

rebuild of critical parts of the liquor boiler and recovery plant, contribute positively to the 

environment as they decrease noise pollution and NOX/SO2 emissions. Next to very high 

recycling rates resulting in low raw material losses and less water consumption, all effluents 

are fully treated before discharge to the river. The mill generates its own electricity from a 

combined heat and power plant, using a high proportion of renewable fuels. The integrated pulp 

plant processes locally harvested wood from sustainable forest (70% sawmill waste, 30% 

thinnings) and uses total chlorine free (TCF) bleaching technology. 

10.2 Application 

The application of the methodology follows the steps outlined in chapter 9, Figure 78. The 

results were obtained through a series of working sessions and interviews with the responsible 

lead engineer from the industrial services company in which the researcher had the role of being 

the sounding board and partner. Specific interview results, such as the readiness assessments 

and questions and answers are documented in Appendix A and B respectively.  

                                                

30 The specific process optimization platform is not a pre-requisite for the methodology described in chapter 9. 
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D1 Understand process 

Cellulose pulp is obtained from fibrous materials, taken from wood and non-wood species 

through a chemical, sulfite based process. Early patents of the process go back to Julius Roth 

in 1857 and Benjamin Tilghman in 1867 and the operation of the first mill using this process 

started in Sweden in 1874. It subsequently became the dominant pulp making process in 

industry, but nowadays accounts for less than 10% due to the rise of the alternative “kraft” 

process. While the kraft process can handle all species of wood producing stronger pulp, key 

advantages of sulfite pulping remain easily bleached, bright pulps with high yield (Biermann 

1996, pp. 91–92). Pulp making needs to meet multiple objectives, from outstanding product 

quality, to lowest possible impact on the environment (Sixta 1998, p. 25). The mill in this case 

study uses a bisulfite process, i.e., a full chemical pulping process with magnesium as base, 

therefore also referred to as magnefite process (Biermann 1996, p. 95). This modification has 

comparatively low sensitivity to wood species while keeping yield and brightness high (Sixta 

1998, p. 25).  

 

Figure 79: Pulp making process overview 

The overall pulp making process is illustrated in Figure 79 and spans from feeding wood chips 

into the process up until the end of the bleaching plant. This process consists of the pre-

treatment of wood chips, cooking, washing, oxygen delignification, screening and bleaching. 

During the cooking process cellulose fibers from the wood are released and lignin is dissolved. 

In the subsequent washing step inorganic and organic compounds are sent to the recovery plant, 

where the chemicals are regenerated for further use as cooking agent. The objective of oxygen 

delignification is to dissolve the remaining lignin still present maintaining pulp properties such 

as viscosity. Screening separates uncooked fiber and any contaminants. Finally, bleaching 

increases the brightness of the pulp to a typical range of 85-90 ISO brightness.  

Results: 

 Process description and process flow diagram available 

 Process understood 

 Typical problems and opportunity areas identified 

Observations: 

Multiple discussions with the engineers required to understand the complex process. Functional 

expertise is critical at this stage and in line with the focus of process engineers: “There are 

fewer and fewer process engineers and they focus on domain know-how” (Appendix B). 
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D2 Identifying value drivers 

As a starting point, the strategic value drivers for the pulp manufacturing site were reviewed 

and mapped against the hierarchical levels and functionalities of the industrial service 

providers´ process optimization platform, Figure 80. Based on a qualitative assessment the 

optimization of production offered a high impact opportunity across levels. 

 

Figure 80: Overview of process optimization functionality and value drivers 

As per the defined methodology, a profit per hour value driver tree, Figure 81, for the pulp 

manufacturing process was developed and main revenue and cost items were highlighted. The 

elaboration of a profit per hour value driver tree required data on cost, production output, 

specific consumption per resource, and the market price for cellulose. An analysis of the 

sensitivities of key parameters to increase profit per hour by 1% was conducted and showed 

that profit is highly sensitive to changes in pulp revenues, raw materials and energy cost.  

Results: 

 Value driver tree for ROIC created 

 Value drivers identified and their sensitivities analyzed 

Additional result: 

 Functionality of process optimization platform understood and mapped to value drivers 

Observations: 

While the specific process optimization platform used in this case is not a pre-requisite, and 

alternatives exist, it is advantageous in terms of project time and cost to work with an 

experienced industrial service provider and a proven analytics platform. 
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Figure 81: Value driver tree31 

 

D3 Define target function 

The target at the site was to optimize for specific cost per output using a cost optimizer 

dashboard, Table 39, and the Maximum Sustainable Rate (MSR) concept. 

 

Area Raw material Cost [Euro/ton] 

O2 

H2O2 3.98 

NaOH 7.60 

Steam medium pressure 0.00* 

O2 0.56 

EP 

H2O2 5.51 

NaOH 3.26 

Steam low pressure 0.00* 

HC 

H2O2 4.26 

NaOH 2.86 

Steam low pressure 0.00* 

H2SO4 0.23 

* The steam related values show zero as the steam was turned off at the time 

Table 39: Cost optimizer 

  

                                                

31 Excludes cost elements where data was not available, e.g., SO2. 
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MSR, Figure 82, is a common concept for output optimization and is defined by the top decile 

production rate in a given time period, e.g., one year. An average rate at 90-91% of MSR, also 

referred to as efficiency, is considered acceptable, >92 excellent. 

 
Figure 82: Maximum Sustainable Rate (MSR) 

To transition from an output optimization to profit per hour maximization, output in tons/hour 

and profit/ton was converted to profit contribution per hour, which is shown in Figure 83. The 

graph contains 4135 hourly profit values from the first calendar half of 201732. A variability 

with a relative standard deviation of 13% can be observed. 

 
Figure 83: Profit per hour 

Taking the gap between the actual profit per hour values and the top decile as a point of 

orientation, profit losses in the order of 10.3% became visible and presented an opportunity for 

improvement. Specific losses from varying operating modes became apparent through steeper 

slopes in the cumulative profit loss chart, Figure 84. For example, the circle highlights a 

technical problem in evaporation leading to less chemicals and less acid in the recovery and the 

digester, and resulting ultimately in reduced throughput and increased profit losses.  

                                                

32 The remaining 245 values were excluded, either as they represented outliers, referred to non-production periods 

or as no readings were available. 
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Figure 84: Cumulative profit losses compared to the top-decile 

Results:  

 Profit per hour calculated 

 Influencing parameters and constraints known 

Observations: 

“The approach is suitable for continuous operations for integrated optimization of cost and 

production”, and “the key strength is the clear link to the end goal of generating profits” 

(Appendix B). 

 

D4 Project charter 

A structured project charter was made available electronically to the team and its stakeholders. 

It includes the definition of the project, customer expectations, economic analysis, risks, 

stakeholders, assumptions, constraints, goals in the initiation phase. Furthermore, the project 

charter helps with planning, executing, measuring & controlling, and closing, Figure 85.  

 

Figure 85: Project charter 

Cumulative profit losses
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Results:  

 Project charter available and aligned within the organization 

Observations: 

The project charter needs to be iterated and partially adapted over time. The team comprised 

personnel from the industrial services provider (process optimization specialist supported by 

data scientists) and from the manufacturer (project manager, process engineers, automation 

specialist, financial controller, and department/mill manager). 

 

D5 Readiness 

Before executing the project the assessment of pre-conditions was done. First, the economic 

evaluation was performed, e.g. payback of implementing a process optimization platform. 

Secondly, technical requirements were discussed, e.g., the topology of network, interface and 

server configuration, hardware, software licenses, remote and local access rights, tag list, etc. 

Furthermore, the developed readiness assessment was applied, the results of which are 

summarized in Appendix A 

Results:  

 Readiness assessment performed 

Observations: 

The questions cover a good mix of technical and organizational elements. “New tools, such as 

the gap analysis and the readiness assessment are useful” (Appendix B). 

 

M1 Setup 

Figure 86 provides an overview of the systems and network topology. Process data is captured 

in the distributed control system (DCS) and an OPC A server transfers the information from the 

process network through a firewall to the mill office network. There the data is stored in a 

database and made available to the process information management system (PIMS), decision 

making expert (DME) and the process optimization platform. The platform can be accessed on 

site through office computers and mobile or augmented reality devices. Furthermore, there is 

an option for remote support through the internet secured by firewalls and virtual private 

networks (VPN). At the mill in scope the process optimization systems do not currently interact 

with other systems such as ERP systems. At other sites interfaces exist to enable risk-based 

maintenance and servicing contracts to be performed. 

Results:  

 Overview of systems available 

 Sources of information and recorded parameters understood 
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Observations: 

Not all interfaces are in place at the start and creating them takes effort, e.g., link to ERP 

systems. High concern about cyber-security and provision of remote access to data systems. 

 

 

Figure 86: Systems overview 

 

M2 Capture and store 

In this phase all available tags, i.e. approx. 3,000 parameters, from the distributed control 

system (DCS) were captured. Further data, such as laboratory information regarding quality, 

alarms or operator inputs were also included in the data lake. The frequency of capture and 

storage varies by source. While DCS data is collected typically in short intervals of 5 seconds, 

the lab results available are available only at the end of shifts, i.e. in 8h intervals. 

Results:  

 Raw data from different sources collected and stored 

Observations: 

Seamless data capture available in this process. A data lake capable to handling real-time data 

streams from various OT/IT systems is useful. 
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M3 Structure and clean 

There is a defined process for the identification and removal of duplicates and outliers, and for 

interpolation, aggregation and shifting of data to match time stamps. This is required to correct 

for varying frequencies of data capture and retention times in the process. The time shifting of 

parameters, Figure 87, is typically done manually and the shift remains fixed. There is an 

opportunity to make it variable, as a function of production output, going forward. 

 
Figure 87: Shifting of data to match time stamps 

Results:  

 Knowledge of data collection frequency from difference sources, missing data, 

anomalies, and time behavior of the process acquired 

 A structured and clean data set for analysis is available 

Observations: 

The automation of data cleaning procedures including time stamping and dead time correction 

is a critical feature. 

 

A1 Analyze 

Common process measures in pulp making are the kappa number, a measure of the lignin 

content of pulp important in the delignification process (Biermann 1996, p. 72), and brightness, 

a measure of the whiteness on a percentage scale (Biermann 1996, p. 123). Kappa can be tied 

to the raw materials yield/cost and brightness effects mainly the chemicals cost. Further 

parameters are the pH-level, temperature and consistency that should remain constant within 

the limits. 

Basic analysis included visualizing trends and checking if parameters stay within the defined 

upper and lower control limits. Figure 88 includes, among others, parameters on brightness, 

steam, oxygen, and throughput. Analyses can show increasing trends, decreasing trends, 

stability, variability, frequencies and different operating modes. 
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Figure 88: Visualization of trends in the bleaching process 

 

Through the use of heat maps correlations were found and investigated. Figure 89 shows a high 

correlation between quantities of NaOH, a base with pH >7, and H2O2, an acid with pH <7. A 

good correlation between the two parameters helps to achieve a stable pH-level in the overall 

process.  

 
Figure 89: Heat map Fiberline 

Time

P
a

r
a

m
e
te

rs

H
2
O

2

k
g
/t

NaOH

kg/t

Low NoHighCorrelationParameters



10 Methodology validation 

144 

Next to heat maps there are tree maps, Figure 90, visualizing parameters with respect to their 

specification. For each one of the 5 departments shown, i.e., washing, O2 bleaching, bleaching, 

cooking and screening, the parameters are represented by size of importance and by color with 

respect to their target range. The tools covered so far help with data visualization and feature 

selection, i.e., the reduction of parameters to focus on in subsequent steps.  

 

 

Figure 90: Tree map 

 

Performing a cluster analysis, Figure 91, resulted in the identification of the best and worst 

parameters based on the average and spread of the middle two quartiles in the boxplots. By 

comparing the top 5 good/bad parameters improvement ideas for delignification efficiency were 

derived. For example, increasing the level of consistency and narrowing its variation from 2.9-

3.2% to 3.2-3.3% through better discharge control. 
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Figure 91: Cluster analysis 

Results:  

 Data visualized, analyzed and data sets for modelling prepared 

 Key parameters and improvement hypotheses identified 

Observations: 

The process optimization platform covers a wide range of analysis capability, not all functions 

were used as part of this project. “Most of our clients do not have or use machine/deep learning 

algorithms yet” (Appendix B).  

 

A2 Model 

The focus for modelling were the 15 parameters influencing brightness. Data for 2 months in 5 

second intervals represented an initial dataset comprised of around 15 million data points. In 

the model phase a predictive decision tree based model was built for acid pH in the 

delignification process with an accuracy of an R² of 0.89. Figure 92 shows the good fit of the 

model illustrating the actual values and the model values. 
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Figure 92: Predictive model for acid pH 

Results: 

 Predictive model and optimizer available 

 Quantification and explanation of opportunities available 

Observations: 

In this case the analytics skills were not available internally in the pulp plant. “Often external 

providers are brought in to provide help with data analytics (Appendix B). The predictive 

models developed by the industrial service provider reached a high accuracy and good fit. 

 

A3 Problem solve 

Daily interactions with operators and weekly working sessions with the process specialists were 

conducted by the industrial service provider to review specific process steps, such as 

delignification, cooking or the bleaching process. For the delignification process optimization 

of the 3 main controls were reviewed: (1) pH control of the pulp to the reactor changing the 

H2O2 dosage, (2) kappa control through adjusting the oxygen dosage, and (3) brightness control 

in alignment with kappa control also adapting H2O2. For the cooking process, where digester 

gas passes through chemical recovery, the discussions centered on discharge control. There are 

7 digesters and around 20 discharges per day in total. Approx. every 70 minutes a digester is 

discharged and pressure drops from 7 to 2.5 bars. This also leads to variation in pH and SO2 

concentration. The aim was to predict the flow of strong gas to the chemical recovery process. 

Increasing strong gas correlates with lower pH and raising SO2 levels. A control for the pH was 

developed using the predictive model from the strong gas flow.  

Model
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Time
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Results: 

 Problem solving workshops conducted 

 Understanding of current state and envisioned future state 

Observations: 

“People need to be convinced and trained” (Appendix B). Aspects like this one underline that 

change management is crucial. Practices from lean and Six Sigma can be leveraged.  

 

I1 Define improvements 

In this step a list of improvements was created. For delignification, as a first example, an 

improvement opportunity was identified through the application of clustering: a reduction of 

chemicals through improved process control while maintaining kappa and brightness 

specifications. A second improvement example, an opportunity to improve consistency by 

reducing the consumption of cold liquor, was recognized through the use of a decision tree 

based model of the cooking process. The solution was the design of a new discharge model. 

Results: 

 List of improvement measures to bridge the gap between current and future state 

available 

Observations: 

Interdependencies are considered through the common profit target KPI. “The approach helps 

as it is holistic and avoids shifting costs within the process, i.e., the savings in one don´t lead 

to higher costs in another” (Appendix B). 

 

I2 Implement 

Three improvements were implemented: a) advanced process control in delignification, b) new 

discharge control and c) target value prediction for SO2 

a) The process control improvements for kappa in delignification are illustrated in Figure 93. 

The advanced process controls can be set to auto or manual modes. Furthermore, target values 

can be set by operators locally, automatically calculated internally or received from an external 

system, e.g. upper level control. 
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Figure 93: Advanced process control diagram for delignification 

b) New discharge control, Figure 94: The improved flow control of the discharge flow leads to 

reduced production losses, i.e. remaining pulp in digester after discharge; and less disturbance 

in consistency in the fiberline with positive effects on pulp quality. 

 

Figure 94: Discharge control diagram 
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c) Target value prediction for SO2: The predictive model, as shown in Figure 92, helps to reduce 

the variability in pH and variability of kappa in cooking.  

For all three improvements the deliverables are an operator manual and documentation 

explaining how the process controls work including risks and benefits, training, and onsite 

support during the initial phases. From a performance management point of view, all 

input/output measures are displayed in a dashboard, see Figure 95. The deviations shown in 

Kappa O2 and conductivity in vessel 3 were due to a technical problem in the washing press. 

In addition to that, a further indicator measuring the time in auto-control mode was 

implemented.  

 

Figure 95: Dashboard 

The shift reports summarizing the performance are made available electronically and an extract 

for cooking is shown in Figure 96.  

Results: 

 Implementation plan 

 Changes of technical, managerial and people related nature 

 Dashboard 

Observations: 

The previous steps resulted in a deep understanding of the process and the sensitivity of 

parameters with respect to profit and facilitated the design of the dashboard.  

 

pH Hot acid SO2 Hot acid Wood weight Max Net wood filling time Max Kappa cooking

Kappa HC Brightness HC Kappa O2 Bleaching Temp. after HC press NaOH specific brightness

H2O2 specific brightness Fresh water bleaching Fresh water O2 bleaching NaOH solution density Conductivity filtrate vessel 
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Kappa % Kappa oc Kg/t

Kg/t l/s l/s % mS/cm



10 Methodology validation 

150 

 

Figure 96: Extract of shift report 

I3 Automate 

An online optimized, model predictive control was configured, Figure 97. The target is to 

optimize the delignification process through optimal brightness in O2 bleaching. The model is 

regularly checked, e.g., once per quarter, and when necessary tuned, for example, when the 

model usage drops below 70%. In the case of deviation the system automatically generates a 

report email which is sent to the process or maintenance engineers. 

 

Figure 97: Model Predictive Control for O2 bleaching 

Results: 

 Online optimizer installed 

 Process for updates and continuous improvement implemented 
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Observations: 

While the full automation of control based on MPC is optional, it delivers better results. Trust 

from operators and managers into the model has to be gained first.  

 

C1 Verify 

The benefits of the three specific improvement initiatives are reviewed in Table 40 and resulted 

in a profit per hour increase of approx. 1-2%. Further process improvements will be initiated to 

tackle the additional profit losses identified. 

Initiative Status Savings 

Chemicals reduction Implemented 3.7 % NaOH, 1.6% H2O2 

Discharge control Implemented 6.7 % energy savings at a specific equipment in the digester 

SO2 concentration Ongoing To be quantified after implementation 

Table 40: Status of initiatives 

Results: 

 Implementation progress assessed 

 Savings quantified 

Observations: 

The help of the accounting department is essential to establish the baseline, quantify the 

benefits, and verify the sustainability of improvement results. 

 

C2 Learn 

Learning from implementation is captured in the logbook and a project summary is shared in 

the format of a 1-page minute. Details such as the operator manual, project documentation and 

analysis are distributed on demand within the global team. The industrial service provider also 

uses a global knowledge sharing and skills management tool. Additional insights from the 

structured interviews about the application of the methodology and time-based profit KPI are 

included in Appendix B. 

Results: 

 Learning documented 

 Tools and best-practices available 

Observations: 

“Large sites have processes for topics such as improvement, innovation, idea generation and 

problem solving […]. What is lacking is demonstrating the importance of change top-down by 

management” (Appendix B). 
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C3 Scale 

For scaling the process optimization opportunities across sites, regions and business areas a 

matrix is used, Figure 98, that indicates which operations have been already covered and which 

ones are to be tackled next.  

 

Figure 98: Roll-out opportunities 

Results: 

 Roll out plan / opportunities 

Observations: 

The roll-out speed and sequence is not only determined by the expected value at stake and time 

to capture, but is also heavily influenced by available resources and local knowledge. 

 

10.3 Conclusion 

What has been found is that the methodology works and that profit per hour is a useful target 

control metric. Significant improvement opportunities surfaced through the data and analytics 

based profit investigation. The process optimization platform providing the capability for data 

analytics and process control supported three specific improvement initiatives, of which two 

have been concluded with measured benefits. Both the structured methodology and the profit 

per hour concept are planned to be used by the industrial services provider in the future and be 

part of the rollout. 
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11  Conclusion 

In this closing chapter, section 11.1 summarizes the results, section 11.2 discusses the findings, 

in the light of the research objectives and questions in chapter 1, and section 11.3 provides an 

outlook on future research needs.  

11.1  Summary 

Chapter 1 introduced the context and challenges industrial companies are currently facing. This 

includes high external volatility, competitive pressures and technological disruption. The last 

of these, under the theme of digitization, however also presents opportunities such as the use of 

Big Data and analytics for improved decision making in operations management, and increasing 

profits through a time-based profit metric. The chapter defined the research objectives, 

questions and laid out an application oriented research design. It concluded with the heuristic 

used for the theory and related work in the subsequent chapters. 

Chapter 2 looked at the megatrends and current challenges in industry, in particular 

manufacturing in process industries. Increasing volatility, uncertainty, complexity and 

ambiguity present significant challenges and opportunities to adopt agility and leverage digital 

technologies. 

Chapter 3 considered the management perspective and discussed fact based decision making 

using performance measures, performance management and decision support systems. The key 

outcome is a profit orientation which links profit rate as a leading indicator with ROIC as a 

lagging indicator using value driver tree logic. 

Chapter 4 defined resource-productive operations and the contribution of operational 

improvement methods, in particular, lean, six sigma, the theory of constraints, agility, and 

advanced process control systems. Elements of all approaches fed into the resulting 

methodology of this work.  

Chapter 5 summarized the relevant aspects of digitization, the broader trends of Industry 4.0 

and the Industrial Internet of Things, and Big Data and advanced analytics specifically. 

Chapter 6 contributed learning from practice through case studies in cement and ammonia, both 

process industries. 

Chapter 7 provided an interim conclusion based on theory and practice. It framed the scope of 

work, specific requirements and its delimitation.  

Chapter 8 conceived the theoretical framework for an analytics and time based profit 

management approach, defined criteria for when it is meaningful, and derived pre-conditions 

to be in place prior to implementation. Important concepts in the areas of systems thinking, e.g. 

value drivers, limits and boundaries; and in the area of operational improvement were reviewed. 

The chapter closed with the choice of DMAIC phases for the methodology. 
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Chapter 9 laid out the details of the implementation methodology along 17 steps including the 

expected end results for each one. 

Chapter 10 presented a third and final industrial application case study as a validation of the 

methodology. The criteria and pre-conditions defined in chapter 7 were met in the case of pulp 

manufacturing.  

Chapter 11 concludes this work with this summary, discussion and outlook.  

11.2  Discussion 

This thesis, “Achieving resource-productive operations through a time-based and analytics-

supported operations management approach – Design of a structured implementation 

methodology based on Six Sigma to maximize profits”, set itself four objectives at the outset: 

(1) the identification of criteria for this approach; (2) the identification of pre-conditions; (3) 

the conception of a methodology for implementation; and (4) its validation. Based on these 

objectives, three research questions were formulated and elaborated on in this work: RQ1 

(Under what conditions does a profit per hour management approach help to take the best 

available decisions? When does it fail?) was answered in the course of chapter 8 (Methodology 

conception) and Appendix B. RQ2 (In practice, what keeps companies from implementing a 

profit per hour approach? What are the pre-conditions and why?) was discussed as part of the 

empiric research in chapters 6 and 10 (Learning from practice, Methodology validation), 

chapter 8 (Methodology conception) and Appendix B (Pulp manufacturing case study – 

interview questions and answers). RQ3 (How would companies implement a profit per hour 

operations management approach?) was dealt with in chapter 9 (Methodology) and chapter 10 

(Methodology validation). In conclusion it can be said that the research objectives have been 

met and the research questions were able to be answered. 

As the three different case studies in the process industries revealed, the structured methodology 

conceived for analytics-supported optimization with a profit rate focus is both feasible and 

highly relevant. It meets the current requirements found during the theoretical and practical 

investigation of this work, as summarized in chapter 7: (1) Helping manufacturers cope with 

the VUCA context through an operations improvement approach, that is generically applicable 

in process industries, independent from sector, location or plant size; that is built upon a 

structured implementation methodology; compatible with a well-known improvement 

approach; practical, requiring minimum complexity and effort; and delivers sustainable results 

through the integration of technical, managerial, people aspects; (2) focusing on time-based 

profit as a leading operational KPI, linking the operations and management level using a ROIC-

based value driver tree; and maximizing cumulative profits as an overarching goal; and (3) 

leveraging digital technologies, consolidating data from various data sources with consistent 

time stamps, using predictive and prescriptive analytics, linking analytics and advanced process 

control for on-going, closed-loop decision support and process improvement. 
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Applicability 

As long as the defined preconditions are in place, the applicability extends beyond process 

industries, e.g., discrete manufacturing or services; and operating modes, e.g., also factories in 

batch production regime. Next to the process methodology, these preconditions are technology, 

i.e., infrastructure that generates, captures and processes data for advanced analytics and 

process controls; and skilled people with cross-functional expertise including functional, IT, 

analytics and change management knowledge.  

Contributions 

This research work contributes novel findings to both academia and practice: (1) a new and 

unique methodology for implementation of a time-based and analytics-supported operational 

management approach along the five phases of Six Sigma including 17 detailed steps; (2) the 

definition of applicability and preconditions for adopting this approach in industry and proof 

that it works; and (3) the documentation of three unique current practical case examples and 

extensive review of present literature.  

Limitations 

Because the system boundaries were clearly defined and the focus of this work is internal 

optimization of manufacturing operations in process industries, external effects such as the 

direct impact of market price volatility were not investigated. 

Validity 

According to Meredith, “case and field studies exhibit the same level of rigor and adhere to the 

same requirements of good research as rationalist studies, but achieve these goals by different 

means” (Meredith 1998, pp. 452–453). As outlined in the research design, chapter 1.4, relevant 

criteria for exploratory and descriptive case study research are the justification of the research 

approach, construct validity, external validity, and reliability (Yin 2003, p. 28; Voss et al. 2016, 

p. 192). The research approach includes theoretical sampling with the goal, as per Eisenhardt, 

to replicate or extend the emergent theory (Eisenhardt 1989, p. 537). The three cases in this 

work build upon each other. The Cement case demonstrated the successful application of 

advanced analytics technique to optimize energy consumption, a highly relevant sub-parameter 

of ROIC in this industry. The Ammonia case piloted the use of profit per hour as a target 

optimization parameter. The final case study in the pulp manufacturing industry completes the 

research with the prototypical application of the conceived implementation methodology. As 

per Yin, the validation using a single case is “worth conducting because the descriptive 

information alone [that] will be revelatory” (Yin 2003, p. 43). As far as the construct validity 

is concerned, and in line with Yin 2003, p. 34, the researcher had key informants review the 

draft case study reports and included multiple sources of evidence. For example, the pulp 

manufacturing case study was reviewed and iterated with the engineer of the industrial solutions 

provider in a series of eight workshops. With respect to external validity and to overcome the 

paradox of sampling (Kaplan 1998, p. 239), “researchers must consider the possible effects of 

industry, organization size, manufacturing processes, and inter-organizational effects” (Stuart 

et al. 2002, p. 426). The author took these effects into account by selecting cases from 
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manufacturing in process industry only, thus reducing the influence of industry. While not 

investigated in this work, the approach developed should work beyond the defined industry 

focus, as mentioned under applicability. Finally, the author aimed to clearly describe the 

investigated literature and case study to enhance research reliability. He discussed the findings 

with other researchers, presented the intermediate results to the scientific community at 

conferences and through the publication of articles.  

11.3  Outlook 

The author sees the definition of specific rules and ongoing procedures for profit rate 

maximization, linking the internal and external context, e.g., as part of the sales & operations 

planning (S&OP) process, as the most relevant future research need. Especially how to handle 

and include external influences, such as price and demand volatilities. According to Chopra and 

Meindl, S&OP helps to maximize profitability when faced with predictable variability in a 

supply chain by managing both supply and demand (Chopra, Meindl 2016, p. 242). A short 

definition is provided by Dougherty: “S&OP is a business process that gives managers control 

based on a current knowledge of the market and the company’s internal capabilities, while 

fostering effective and timely cross-functional communication and decision making.” 

(Dougherty 2012, p. 16). Thomé et al. studied the impact of sales and operations planning 

practices on manufacturing operational performance and found positive effects across countries 

and industries (Thomé et al. 2014, p. 2117). A balanced supply chain involves functional trade-

offs between purchasing (low purchase price), production (economies of scale), finance (low 

working capital), distribution (low transportation cost) and the market (wide product range) 

(Stevens 1989, p. 4). The goal of the S&OP process is to find the optimal trade-offs for 

maximizing profits (Thomé et al. 2012, p. 10). Big Data presents an opportunity to make more, 

and previously invisible data, accessible; resulting in lower uncertainty and better decisions 

(APICS Suppy Chain Council 2015, p. 9). For Dogan et al. “supply chain predictive analytics 

[…] could be the key differentiator in rapidly building and sustaining a high-performing supply 

chain in the decade ahead” (Dogan et al. 2015, p. 37). According to Wallace, S&OP is “a 

medium-to-long term planning tool that provides visibility into the future, thereby avoiding 

surprises when demand shifts” (Wallace 2012, p. 9). A research opportunity is to introduce real 

time advanced analytics of internal and external Big Data into the S&OP process.  

A final question has been raised by (Mayer-Schönberger, Cukier 2013, p. 195): “as Big Data 

transforms our lives—optimizing, improving, making more efficient, and capturing benefits— 

what role is left for intuition, faith, uncertainty, and originality?”  
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Appendix A: Pulp manufacturing case study - 

Readiness assessment 

# Dimension Level 1 (poor) Level 2 Level 3 Level 4 (target) Comments 

1 Sensors for data 
capture: Are 

readings from 

operations available? 

What kind of sensors 

are used? 

Malfunctioning 

and/or incomplete 

sensor installation 

Basic sensors Smart components End-to-end  - 

2 Coverage of data 

capture: To what 

extent are production 

parameters captured? 

Below 50% coverage 70-80% 80-90% Above 90% coverage - 

3 Granularity of 
measuring: At what 

granularity level is 

the process flow 

measured? 

Only basic, high 

level mapping 

Department wise 

mapping  

Equipment level 

mapping 

Component level 

mapping  

- 

4 Data collection: At 

what frequency is 

data stored? 

Unknown or 

inconsistent 

Days or batch wise Hours or minutes Seconds or more 

frequent 

- 

5 Accuracy of data: 
How accurate is the 

stored data? 

Undefined or not 

known 

+/-10-5% +/-5-1% +/- 1% A few measurement 

devices (e.g., for 

consistency) with 

lower accuracy 

6 Streaming and 

accessibility of data: 

Is data being 

streamed? How 

accessible is the 

stream? 

Locally stored files Plant level access Site level access Network or cloud 

access 

Network with secure 

remote access 

capability 

7 Structural data 
practices: How is 

data structured, 

stored and accessed? 

No central plan Central structured 

(SQL) 

High-performance 

databases, e.g., 

Hadoop 

NoSQL for mixed 

data 

SQL database with 

ability to include 

unstructured data 

8 Data cleaning: How 

is data cleaned and 

blended? 

Questionable / no 

structured cleaning 

Ad-hoc data 

cleansing 

Inconsistent and 

duplicate data 

removed. Smart 

value replacement for 

missing data 

Time dependencies 

automatically 

removed 

Data free of 

duplicates. Fixed 

dead time and 

retention time 

correction. 

Opportunity to make 

variable as a function 

of production output 

9 Focus of analysis: 
What is the objective 

function and focus 

for any analysis and 

modelling? 

Close gap to current 

best in class 

Long term production 

efficiency 

Basic profit 

modelling 

Full variable profit 

maximization model 

Mostly data mining 

for cost 

10 Depth of analysis: 
What level of 

dependents are used 

in the modelling and 

analysis? How is the 

element of time taken 

into account? 

Unknown 1st level parameters 2nd/3rd level 

parameters 

3rd/4th level 

parameters 

All data is analyzed 

11 Type of modelling 
used: How advanced 

are the modelling 

techniques? 

Unclear if/what 

modelling is used 

Linear modelling, 

e.g., in MS Excel 

Statistical/correlation 

modelling and FMEA 

in MatLab or specific 

software 

Neural Network 

developed genetic 

model, combining 

multiple approaches 

Machine learning 

methods used 
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12 Degree of 

automated analysis: 

To what degree are 

the analysis and 

modelling 

automated? 

No analysis 

performed 

Analysis made 

manually 

Ad hoc automated 

analysis 

Full automation Specific analysis 

conducted ad hoc. 

KPI calculations, 

such as OEE 

automatically 

updated 

13 Presenting results: 
How are the results 

presented and 

insights derived? 

Data files 

(unstructured) 

Consolidated data 

ready for analysis 

Clear analysis with 

charts 

Real-time interactive 

dashboards 

 

14 Leveraging insights 

for operational 
decisions: How is the 

model output used 

for operational 

decision-making? 

Operational decisions 

made based on 

experience 

Considered but not 

systematically used 

or fully trusted 

Data-driven decision-

making but manual 

adjustment of settings 

Full automation of 

process steering 

Simulation used to 

build trust with 

operators prior to 

eventual automation 

of controls 

15 Leveraging insights 

for long-term 

decision-making: 

How are insights 

incorporated into 

longer term 

operational strategy, 

e.g., plant 

optimization through 

capital investments? 

Unclear Used as input Considered in capital 

expenditure cases but 

not mandatory 

element 

Fact-based decision 

making for capital 

investments based on 

model results 

Maximum sustained 

rate (MSR), 

efficiencies, and 

bottleneck as focus 

for operational and 

capital expenditures 

16 Capabilities and 
understanding: Are 

in-house capabilities 

to run advanced 

analytics and 

modelling available? 

Questionable Basic ad hoc 

competence 

Key resources with 

intermediate level 

capabilities 

Dedicated personnel 

(e.g., Data Scientists) 

with strong expertise 

Process engineers 

with skills required in 

engineering, process 

control, automation 

and data analytics. 

Opportunity to 

automate data 

analysis. 

17 Staff development: 
What initiatives are 

used to increase 

knowledge and 

awareness of the 

possibilities to 

optimize the 

production 

processes? 

None Some training has 

occurred but driven 

by individuals 

Training is available, 

delivery ad-hoc when 

needed 

Everyone has 

received basic 

training on analytics. 

Skills needs are 

defined by role. A 

structured training 

program is in place. 

Standard software 

solution is available 

to all.  

Initial training prior 

to launch of project, 

subsequently on 

demand 

18 Objectives and 
vision: Are advanced 

analytics 

incorporated into the 

company’s strategic 

vision and culture? 

Unclear Analytics is spoken 

about by 

management team, 

but no clear link 

made to strategic 

objectives 

Analytics is part of 

strategic objective 

but not well 

cascaded. Success 

case have been 

communicated, less 

than 3 per year. 

Analytics is built into 

strategic objectives 

and cascaded into the 

organization. Leaders 

communicate a 

compelling story 

regarding analytics as 

part of improvement 

efforts and celebrate 

success cases. 

 

Table 41: Readiness assessment from case study in pulp manufacturing 
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Appendix B: Pulp manufacturing case study - 

Interview questions and answers 

# Question Answer 

1 Under what conditions does a 

profit per hour management 

approach help to take the best 

available decisions? When 

does it fail? 

The approach is suitable for continuous operations for the integrated 

optimization of cost and production (output). Ideally, both production 

and maintenance is covered in the improvement efforts as companies 

suffer from equipment reliability/plant availability issues. 

2 In practice, what keeps 

companies from implementing 

a profit per hour approach? 

What are the pre-conditions 

and why? 

In my opinion the limiting factor is not the availability of data, as all 

internal data is available and external data such as market prices are 

publicly accessible. I think it is a lack of awareness of the approach, 

the traditional focus on production output and cost, rather than profit 

per hour; and perhaps concerns about profit transparency. 

3 How would companies 

implement a profit per hour 

operations management 

approach? 

 

The first step would be to collect the process data and external data. 

Thereafter, a crucial step is to blend them together for analyses. Once 

the data is consolidated, data mining and calculations can be 

performed. Artificial neural networks, fuzzy and other logical 

algorithms/controllers can be applied. 

4 Does the presented approach 

work? Why? 

 

 

Yes, it does, because it considers the entire process end-to-end (from 

preparation to shipping). The approach analyses every parameter 

relevant, gaps, helps develop process improvement, and links back to 

ROIC.  

5 What are the strengths of the 

approach? 

 

 

The key strength is the clear link to the end goal of generating profits, 

which is the prime stakeholder expectation of for-profit companies. 

For example, the prime asset of forestry companies is wood and 

besides producing pulp there are other ways to generate profit from it. 

6 Are there any limitations or 

weaknesses? What can be 

improved further? 

 

Wood cellulose is a commodity product and its price is heavily exposed 

to external markets. We see large volatility in the time horizon of 3-5 

years. In my opinion, it might be required to fix the price to a certain 

extent in the optimization modelling.  

7 What else would you like to 

share? 

 

 

A profit per hour model for the entire plant is required. So far I have 

seen machine learning algorithms like this only in the area of energy 

management.  

Table 42: General interview questions and answers from case study in pulp manufacturing 
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# Question Answer 

1 Does a profit per hour KPI help 

to make trade-off decisions 

between conflicting targets 

(e.g.,. throughput, energy, 

yield, ...)?  

The approach helps as it is holistic and avoids shifting costs within the 

process, i.e. the savings in one area do not lead to higher costs in 

another. 

2 If time is the constraint (e.g., 

continuous operations, high 

OEE), would a profit per hour 

KPI be helpful? Why, why not, 

and how? 

In general, yes! However in situations with a high amount of downtime 

and shutdowns, it seems less helpful as maintenance and reliability 

improvements are of higher priority. 

3 Is “real time” (or hourly) 

decision making required (e.g. 

due to high volatility, process 

changes)? Why, why not, and 

how? 

Today targets and key decisions are made daily. Real-time decision 

support would be interesting in case of unexpected downtime helping 

to evaluate scenarios. Analyzing internal data in real-time, yes – 

external data due to variability, no. 

4 Is cumulative profit 

maximization the desired long 

term goal?  

 

 

Yes, it is, but the constraints of optimization have always to be 

considered, e.g. to avoid damaging equipment. That is the reason why 

we use the concept of MSR (maximum sustainable rate) to also 

guarantee long equipment lifetime.  

5 Is it meaningful to use profit 

per hour as a KPI in industries 

(e.g. process industries) where 

invested capital (fixed cost) 

and/or resource intensity 

(variable cost) is high? Why, 

why not, and how? 

Indeed, to have just one, integrated KPI is meaningful in these 

industries with high investment cost. 

6 Are companies not following a 

profit per hour management 

approach, because it is not 

meaningful to them? Why, 

why not? 

I see two reasons: 1) while companies already have all data, they 

struggle to blend it together. Typically, 3-4 different IT systems 

including SAP and DCS among others are in use. So, there is a need 

to integrate data. 2) They are not aware of the approach and 

opportunity. 

7 Do companies lack 

infrastructure (e.g. 

sensors/meters) and/or data 

(e.g., volume, frequency, 

quality) to compute a profit per 

hour metric? Why, and what? 

In general, in process industries, the necessary measurements are in 

place. As said, the challenge is to combine the data from different 

sources. Some measurement devices are still not as accurate as 

needed, e.g., the device for consistency measures has a variation in 

accuracy of +/- 10% 

8 Do manufacturers have access 

to and use (advanced) 

algorithms to calculateprofit 

per hour as a target function? 

Why, why not? 

Most of our clients do not have or use machine/deep learning 

algorithms yet. 
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9 Do companies lack an 

implementation process (e.g., 

methodology) or fail in the 

change management process? 

Why, why not? 

Large sites have processes for topics such as improvement, innovation, 

idea generation and root cause problem solving, e.g., using Ishikawa 

diagrams. What is lacking is demonstrating the importance of change 

top-down by management. 

10 Is there a lack in required skills 

(e.g., IT, analytics, functional 

expertise)? Why, why not? 

 

There are fewer and fewer process engineers and they focus on domain 

know-how, and not data science skills. Often external providers are 

brought in to provide help with data analytics. 

11 Can the business case for using 

analytics to solve for profit per 

hour be proven (e.g., measure 

& verify financial savings over 

time)? Why, why not, and 

how? 

Yes, it can be proven and makes sense for overall optimization. As said, 

it helps validate savings and avoid shifting between different cost 

buckets. 

12 Would companies benefit from 

and apply a standardized, 

repeatable, step-by-step 

process methodology? Why, 

why not? 

A range of aspects can be covered with existing methodologies, e.g., 

DMAIC which is easy to follow. However, a comprehensive guideline, 

like a recipe for implementation, would help to reduce trial and error. 

New tools, such as the gap analysis and the readiness assessment are 

useful! 

13 Are producers considering a 

live decision cockpit as a key 

tool for managers/operators? 

Why, why not? 

A main dashboard for a plant using profit per hour should allow access 

to a second level with profit per hour by area, and even include a more 

detailed third level to look at notifications, reasons, and the database. 

14 Are fully automated advanced 

process controls (e.g., closed 

loop) an option? Why, why 

not? 

Yes, that is the vision and end-goal to reach autonomous operations. 

15 What specific rules and 

ongoing procedures would 

need to be adopted (e.g., Sales 

& Operations planning linking 

internal and external 

requirements)? Why? 

S&OP is important to link the sales and cost teams. Predictive 

information could help in sales and procurement negotiations, e.g., to 

get discounts for raw materials.  

16 What else would be required to 

implement a “profit per hour” 

management approach 

following the DMAIC logic? 

People need to be convinced and trained as it is a complex process. 

They need to understand the benefits, change their mindset/thinking 

from production output to profit maximization. All would share a 

common, aligned KPI instead of specific process indicators. 

Table 43: Specific interview questions and answers from case study in pulp manufacturing 

 


