

Daniel Ciglenecki BSc

Berechnung von Schwerefeldgrößen in Österreich mit Hilfe des Programmsystems pyGravsoft und Vergleich mit bestehenden Lösungen

MASTERARBEIT

zur Erlangung des akademischen Grades Diplom-Ingenieur Masterstudium Geomatics Science

eingereicht an der

Technischen Universität Graz

Betreuer

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Norbert Kühtreiber

> Institut für Geodäsie Arbeitsgruppe Navigation

> > Graz, Oktober 2017

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

Datum

Unterschrift

Kurzfassung

GRAVSOFT ist ein Programm zur Gravitationsfeldmodellierung und basiert auf FORTRAN Programmen, die kontinuierlich seit den 70er-Jahren von der DTU-Space (Dänisches Nationales Weltrauminstitut) und der Universität von Kopenhagen weiterentwickelt wurden. Wegen der schwer zu bedienenden FORTRAN Programme, und um Neueinsteigern einen schnelleren Einstieg zu ermöglichen, wurde eine benutzerfreundlichere Oberfläche mit der Programmiersprache Python entwickelt.

Im ersten Teil dieser Diplomarbeit, werden die Funktionalitäten des GRAVSOFT Programms untersucht. Im zweiten Teil, wird das GRAVSOFT Programm dazu verwendet, Schwerefeldgrößen in Österreich zu berechnen. Die Berechnung erfolgt dabei nach dem Remove-Compute-Restore Konzept.

In einem Remove-Schritt, werden die gemessenen Schwereanomalien um den Einfluss der Topographie und des EGM (Earth Gravitational Model) reduziert, sodass man glattere Werte von Schwereanomalien erhält. Es werden zwei Varianten zur Berechnung des Einflusses der Topografie gerechnet. Die vollständige Entfernung von topografischen Massen bis zum Nullniveau bzw. die Entfernung von topographischen Massen bis zum groben mittleren Höhenmodell (RTM-Reduktion).

Nach dem Remove-Schritt, werden mit der Formel von Stokes, Geoidhöhen aus den reduzierten Schwerewerten berechnet (Gravimetrische Geoidbestimmung). Im Restore-Schritt, werden die Reduktionsschritte wieder rückgängig gemacht (Einfluss der Topografie/RTM und des EGM), sodass man gravimetrische Quasigeoidhöhen erhält.

Aufgrund von Approximationen und Modellierungsfehlern, weichen die berechneten Geoidhöhen von den aus Nivellement und GNSS gerechneten Geoidhöhen ab. Die Anpassung der berechneten Geoidhöhen wurde mittels Kollokation durchgeführt, wobei 192 GNSS/Nivellementpunkte zur Verfügung standen.

Abschließend werden die Geoidlösungen evaluiert, sowie das GRAVSOFT Paket bewertet.

Abstract

GRAVSOFT is a program for gravitational field modeling and based on FORTRAN programs, which have been continually developed since the 1970s by the DTU-Space (Danish National Space Institute) and the University of Copenhagen. Due to the hard-to-use FORTRAN programs, and to enable newcomers an easier start, a more user-friendly interface was developed with the programming language Python. The first part of this diploma thesis examines the functionalities of the GRAVSOFT program.

In the second part, the GRAVSOFT program is used to calculate gravity field quantities for Austria. The calculation is carried out according to the Remove-Compute-Restore concept. To calculate geoid heights with the formula of Stokes, it is assumed that the disturbing potential is harmonic. That means that all masses outside the geoid have to be removed.

In the remove step, the measured gravity anomalies are reduced by the influence of the topography and an Earth Gravitational Model (EGM), so that smoother values of gravity anomalies are obtained. Two ways of computing the influence of the topography are applied. Either the topographical masses are removed complete down to the zero level or the removal of the topographical masses is done with respect to a coarse mean height model, the residual terrain model (RTM).

After the removal step, the formula of Stokes is used to calculate geoid heights from the reduced gravity values (gravimetric geoid determination). In the restore step the influence of the topography and the EGM to geoid heights is computed and restored to the output of Stokes.

Due to approximations and modeling errors, the calculated geoid heights deviate from the geoid heights derived from leveling and GNSS. The adjustment of the calculated geoid to the 192 GNSS/leveling points was carried out by collocation.

Finally, the geoid solutions and the GRAVSOFT package are evaluated.

Inhaltsverzeichnis	
1.Themenstellung	1
2. Mathematischer Hintergrund	3
2.1 FFT (Cooley und Tukey)	3
2.2 Remove-Compute-Restore Technik (Heiskanen, Moritz)	5
3. Geoidberechnungen für Österreich mittels RTM	14
4. Ergebnisse	
Remove-Compute-Restore Technik	
5. Das GRAVSOFT Programm	46
5.1 Entwicklung	46
5.2 FORTRAN	46
5.3 Tk (Toolkit)	47
5.4 Python	47
5.5 Installation von GRAVSOFT	48
5.6 GRAVSOFT Funktionsumfang	50
EMPCOV	
GEOIP	52
STOKES	
GEOGRID	
GEOLGM TC	
FITGFOID	
TCGRID	
SELECT	
FCOMP	73
GCOMB	75
G2SUR	77
5.7 GRAVSOFT Datenformate	79
6. Fazit	81
7. Abbildungsverzeichnis	83
8. Literatur- und Quellenverzeichnis	86

1.Themenstellung

GRAVSOFT ist ein Programm zur Gravitationsfeldmodellierung und basiert auf FORTRAN Programmen, die kontinuierlich seit den 70er-Jahren von der DTU-Space (Dänisches Nationales Weltrauminstitut) und der Universität von Kopenhagen weiterentwickelt wurden. Wegen der schwer zu bedienenden FORTRAN Programme, und um Neueinsteigern einen schnelleren Einstieg zu ermöglichen, wurde eine benutzerfreundlichere Oberfläche mit der Programmiersprache Python entwickelt.

Im ersten Teil dieser Diplomarbeit, werden die Funktionalitäten des GRAVSOFT Programms untersucht, welches später für Berechnungen von Schwerefeldgrößen in Österreich verwendet wird. ist Das GRAVSOFT Eingangsfenster in 3 Abschnitte geteilt, die unterschiedliche Berechnungsprogramme enthalten. Um sich in das Programm einzuarbeiten, steht ein Handbuch zur Verfügung: "An overwiew manual for the GRAVSOFT Geodetic Gravity Field Modelling Programm by Rene Forsberg and C. C. Tscherning, 2.edition August 2008" welches frei zur Verfügung steht. In diesem Handbuch, werden die wichtigsten Funktionalitäten des Programms erklärt und ein Beispielprojekt mit Testdaten aus New Mexiko nach der Remove-Compute-Restore Technik mithilfe eines RTM berechnet. Das RTM steht für "Residual Terrain Model" (RTM), und wurde von Rene Forsberg (1984) eingeführt.

Im zweiten Teil, wird das GRAVSOFT Programm dazu verwendet, Schwerefeldgrößen in Österreich zu berechnen. Die Berechnung erfolgt dabei nach dem Remove-Compute-Restore Konzept. Um mit der Formel von Stokes Geoidhöhen zu berechnen, wird vorausgesetzt das das Störpotential *T* harmonisch ist. D.h das alle Massen außerhalb des Geoides entfernt werden müssen. So werden in einem Remove-Schritt die gemessenen Schwereanomalien um den Einfluss der Topographie (kurzwelliger Anteil) und des globalen Schweremodells (langwelliger Anteil) reduziert, sodass man glattere Werte von Schwereanomalien erhält. Es werden zwei Varianten zur Berechnung des Einflusses der Topografie gerechnet. Die vollständige Entfernung von topografischen Massen bis zum Nullniveau (klassische Methode) bzw. die Entfernung von topographischen Massen bis zum groben mittleren Höhenmodell (RTM-Reduktion).

Mit der Formel von Stokes, werden nach dem Remove-Schritt, Geoidhöhen aus den reduzierten Schwerewerten berechnet (Gravimetrische Geoidbestimmung). Im Restore-Schritt, werden die Reduktionsschritte wieder rückgängig gemacht, sodass man gravimetrische Quasigeoidhöhen erhält. Dabei wird der Anteil des globalen Schweremodells und der Anteil der Topografie/RTM wieder angebracht. Mithilfe von Bouguer Anomalien, lassen sich die gravimetrischen Quasigeoidhöhen auf gravimetrische Geoidhöhen umrechnen. Aufgrund von Approximationen und Modellierungsfehlern, weichen die berechneten Geoidhöhen von den aus Nivellement und GNSS gerechneten Geoidhöhen ab. Die Anpassung der berechneten Geoidhöhen wurde mittels Kollokation durchgeführt, wobei 192 GNSS/Nivellementpunkte zur Verfügung standen.

Für die Berechnung stehen folgende Daten zur Verfügung:

- ein DTM vom Bundesamt für Eich- und Vermessungswesen
- Datensatz mit 13689 Freiluftanomalien
- Datensatz mit 192 GPS-Punkten

Abschließend werden die Geoidlösungen evaluiert, sowie das GRAVSOFT Paket bewertet.

2. Mathematischer Hintergrund

2.1 FFT (Cooley und Tukey)

FFT steht für Fast Fourier Transformation. Der Hauptnutzen ist eine schnellere Faltung unter Verwendung des Faltungssatzes. Die folgenden Formeln sind dem Handbuch "An overview manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs" (Forsberg und Tscherning, 2008) entnommen.

Es gilt:

$$f * g(x, y) = \int \int f(x - x', y - y') g(x', y') dx' dy'$$
(1)

und:

$$F(f \star g) = F(f) F(g) \tag{2}$$

Die FFT dient in der physikalischen Geodäsie dazu, Formeln zu approximieren und Berechnungen in der Ebene oder im 3D Raum durchzuführen. Der Vorteil ist, das sich Rechenoperationen im Frequenzbereich oft vereinfachen und die Berechnungsdauer sich dadurch stark verkürzt. Wichtig ist dabei, das die Daten periodisch und auf einem endlichen Gitterintervall gegeben sind. Die 2-dimensionale-FFT drückt sich in den zwei folgenden Formeln aus:

$$F(g) = F(k_x, k_y) = \iint g(x, y) e^{-i(k_x x + k_y y)} dx dy$$
(3)

$$F^{-1}(G) = g(x, y) = \frac{1}{4 \Pi^2} \iint G(k_x, k_y) e^{i(k_x x + k_y y)} dk_x dk_y$$
(4)

mit:

g = Funktion im Ortsbereich G = Spektrum k = Wellennummer

Approximiert durch die diskrete Fourier Transformation,

$$G(n) = \sum_{k=0}^{N-1} g(k) e^{\frac{-2\prod i kn}{N}} \quad \text{für } n = 0, 1, 2, \dots \text{ N-1}$$
(5)

$$g(k) = \frac{1}{N} \sum_{k=0}^{N-1} G(n) e^{\frac{2\Pi i \, k \, n}{N}} \quad \text{für } k = 0, 1, 2, \dots \text{ N-1}$$
(6)

Aufgrund der Approximation der kontinuierlichen Fourierreihen, kann es zu Problemen (periodische Effekte \rightarrow Leakage-Effekt) kommen. Dies kann durch die Fenstertechnik (Gewichtung der Daten), wie auch im GRAVSOFT Programm durch "zero padding" behoben werden.

Abbildung 1: Zero padding

"Zero padding" bedeutet ein Auffüllen der Daten mit zusätzlichen Nullen am Rand (siehe Abbildung 1). Diese Funktion ist in mehreren GRAVSOFT Programmen implementiert.

Die Anzahl der Punkte entlang des Gitterrandes wird wie folgt erfasst.

$$N = n_1 n_2 \dots n_q \tag{7}$$

Der FFT Algorithmus arbeitet daher am schnellsten, wenn N eine Potenz von 2 ist. So sind die zahlen 128, 256 ... am besten geeignet. Da aber die meisten geografischen Gitter eine Gitterpunkteanzahl von 60,120 ... haben, sind diese nicht so ideal. Sie werden aber durch den "mixed-radix algorithm" aufgefangen (so wird $60 \text{ zu } 22 \cdot 3 \cdot 5$). Am schlechtesten geeignet ist eine ungerade Punkteanzahl (61,87,...).

2.2 Remove-Compute-Restore Technik (Heiskanen, Moritz)

Das Geoid ist Bezugsfläche für die orthometrische Höhe. Orthometrische Höhen, können durch das geodätische Nivellement bestimmt werden. Aufgrund der immer weiteren Verbreitung von GPS, bei der man millimetergenau ellipsoidische Höhen bestimmen kann, ist es von Nöten Geoidhöhen zu kennen, die eine Umrechnung in orthometrische Höhen erlaubt. Weiter wird das Geoid in der Geophysik und der Ozeanografie (Erforschung der physikalischen Eigenschaften und Prozesse auf der Erdkruste und im Erdinneren) benötigt. Die Bestimmung des Geoides ist eines der wichtigsten Aufgaben der Physikalischen Geodäsie. Die folgenden Formeln und Abbildungen sind dem Skriptum der "Physikalischen Geodäsie" (TU Graz, 2014), dem Skriptum "Bezugssysteme" (TU Graz, 2013) und dem Handbuch "An overview manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs" (Forsberg und Tscherning, 2008) entnommen.

Abbildung 2: Höhensysteme

- h = Ellipsoidische Höhe
- H = Orthometrische Höhe
- N =Geoidhöhe/Geoidundulation
- ζ = Höhenanomalie
- H^N = Normalhöhen

Das Geoid ist eine Äquipotenzialfläche. Eine Potentialfläche entspricht einer horizontalen Fläche, bei der für die Verschiebung einer Masse keine Arbeit geleistet werden muss. Damit entspricht die mittlere ruhende Oberfläche von Wasser einer Potentialfläche.

Die Fläche die mit der ruhenden Oberfläche der Weltmeere zusammenfällt W_0 , wird als Geoid bezeichnet. Obwohl die Potentialflächen keine Parallelflächen sind, steht die gekrümmte Lotrichtung dabei normal auf den Potentialflächen.

Abbildung 3: Äquipotentialflächen

Berechnungen des Geoids sind mit mehreren Methoden möglich. Eine Methode davon ist die Astrogeodätische Methode, bei der Geoidhöhenunterschiede ΔN aus Lotabweichungen ε bestimmt werden. Diese Methode verwendet die Formel von Helmert, bei der die Richtung des Schwerevektors verwendet wird. Dieses Verfahren ist ein relatives, da die Differenzgeoidhöhe zwischen zwei Punkten bestimmt wird und nicht direkte Geoidhöhe N. Der Vorteil der astrogeodätischen Geoidbestimmung ist, das man nur die Lotabweichungen im betrachteten Gebiet benötigt.

$$N_{B} - N_{A} = -\int_{A}^{B} \varepsilon(s) ds$$
(8)

Ein Verfahren, welches mit dem GRAVSOFT Programm berechnet wird, ist die Gravimetrische Methode, bei der Geoidhöhen N aus Schwereanomalien Δg berechnet werden. Hierbei wird die Formel von Stokes verwendet, bei der mit dem Betrag des Schwerevektors gearbeitet wird. Dieses Verfahren ist ein absolutes, da man sich die Geoidhöhe N berechnet. Diese Methode geht auf dem Land und auf dem Meer, wobei man streng genommen Schwereanomalien über die gesamte Erde benötigt.

$$N = \frac{R}{4\pi\gamma_0} \iint_{\sigma} \Delta g \, S(\psi) \, d \, \sigma \tag{9}$$

Es gibt noch weitere Verfahren um das Geoid zu berechnen. Wie zum Beispiel über Kugelfunktionsmodelle, die aus den Bahnstörungen von Satelliten abgeleitet wurden. Diese werden aber in dieser Diplomarbeit nicht näher beschrieben.

Da das Geoid mit seinem Schwerepotential W mathematisch schwer beschreibbar ist, definiert man sich ein Normalpotential U welches sich auf ein Referenzellipsoid bezieht. Bildet man die Differenz zwischen dem Schwerepotential W und dem Normalpotential U, erhält man das Störpotential T. Es gilt:

$$W = U + T \tag{10}$$

Grafisch ergibt sich folgendes Bild:

Abbildung 4: Zusammenhang zwischen Geoid und Ellipsoid

Die benötigten Schwereanomalien für die Formel von Stokes, setzen sich wie folgt zusammen: Aus dem Schwerevektor g_P (Gradient des Schwerepotentials W) und dem Normalschwerevektor γ_Q (Gradient des Normalpotentials U), welche in einem gemeinsamen Startpunkt P verschoben wurden.

$$\Delta g = g_{P} - \gamma_{Q} \tag{11}$$

Der Schwerevektor g_P kann durch astronomische und gravimetrische Messungen in jedem Punkt bestimmt werden. Der Normalschwerevektor γ_Q hingegen, kann nicht gemessen werden, und muss durch Modelle berechnet werden.

Abbildung 5: Schwereanomalienvektor

Der Gradient des Störpotential wird als Schwerestörungsvektor δg bezeichnet, und setzt sich aus dem Schwerevektor g_P und dem Normalschwerevektor γ_P zusammen.

$$\delta g = g_P - \gamma_P \tag{12}$$

Indem man den unbekannten Vektor γ_P in einer Taylorreihe entwickelt und weiter ableitet, erhält man die Grundgleichung der Physikalischen Geodäsie. Diese Formel stellt eine Randbedingung dar, und gilt als Grundlage für die Bestimmung von Geoidhöhe N aus Schwereanomalien Δg .

$$\frac{\partial T}{\partial r} + \frac{2}{R}T + \Delta g = 0 \tag{13}$$

Nur ist die Grundgleichung unterbestimmt. Man kann diese nur lösen, wenn die topografischen Massen in Außenraumes des Geoids entfernt werden, sodass gilt:

$$\Delta T = 0 \tag{14}$$

Zur Lösung werden Kugelfunktionen herangezogen, sodass sich folgende Form der Grundgleichung ergibt:

$$T(\vartheta, \lambda) = \sum_{n=2}^{\infty} \frac{R}{n-1} \Delta g_n(\vartheta, \lambda)$$
(15)

In diese Gleichung setzt man nun folgende Gleichung ein,

$$\Delta g(\vartheta, \lambda) = \frac{2n+1}{4\pi} \int \int \Delta g(\vartheta', \lambda') P_n(\cos\varphi) d\sigma$$
(16)

dann führt man die Stokesche Funktion ein,

$$S(\psi) = \sum_{n=2}^{\infty} \frac{2n+1}{n-1} P_n(\cos \varphi)$$
(17)

und erhält das Integral von Stokes:

$$T(\mathfrak{P},\lambda) = \frac{R}{4\pi} \int \int \Delta g(\mathfrak{P}',\lambda') S(\varphi) d\sigma$$
(18)

Mithilfe der Formel von Bruns, die den Zusammenhang zwischen dem Störpotential T und der gesuchten Geoidhöhe N beschreibt,

$$N = \frac{T}{Y}$$
(19)

erhält man die Formel von Stokes

$$N(\vartheta, \lambda) = \frac{R}{4\pi\gamma_0} \iint_{\sigma} \Delta g(\vartheta', \lambda') S(\psi) d\sigma$$
⁽²⁰⁾

Damit lassen sich Geoidhöhen N mithilfe von Schwereanomalien Δg berechnen. Die Geoidhöhe N bezieht sich auf den Aufpunkt (ϑ, λ) , die Schwereanomalie $\Delta g(\vartheta', \lambda')$ auf den laufenden Integrationspunkt. Die Berechnung erfolgt dabei nach dem Remove-Compute-Restore Schritt. Um mit der Formel von Stokes Geoidhöhen zu berechnen, wird vorausgesetzt dass das Störpotential T harmonisch ist. Es soll gelten:

$$\Delta T = 0 \tag{21}$$

D.h. das alle Massen außerhalb des Geoides entfernt werden müssen. So werden in einem Remove-Schritt die gemessenen Schwereanomalien auf der Erdoberfläche (Freiluftanomalien) um den Einfluss der Topographie (kurzwelliger Anteil) und des globalen Schweremodells (langwelliger Anteil) reduziert, sodass man glattere Werte von Schwereanomalien erhält. Die Freiluftanomalien Δg lassen sich mithilfe von Gradienten darstellen. Wobei die Gradienten gleichgesetzt werden, da sie annähernd dem gleichen entsprechen.

$$\Delta g = g_{P} - \frac{\partial g}{\partial h} H - \left(\gamma_{Q} - \frac{\partial \gamma}{\partial h} H^{N}\right) = g_{P} - \gamma_{Q}$$
(22)

Der Schwerevektor g_p kann durch astronomische und gravimetrische Messungen in jedem Punkt bestimmt werden. Der Normalschwerevektor γ_Q hingegen, kann nicht gemessen werden, und muss durch Modelle berechnet werden.

Der Remove-Schritt setzt sich wie folgt zusammen:

$$\Delta g_{res} = \Delta g - \Delta g_{EGM} - \Delta g_{Top} \tag{23}$$

Im nächsten Schritt, lassen sich durch die Formel von Stokes Geoidhöhen aus den reduzierten Schwerewerten berechnen (Gravimetrische Geoidbestimmung). Dabei ist zu beachten, das als Ergebnis ein gravimetrische Geoid herauskommt.

$$N_{res} = \frac{R}{4\pi\gamma_0} \iint_{\sigma} \Delta g_{res} S(\psi) d\sigma$$
(24)

Für eine schnellere Berechnung, kann eine Fast Fourier Transformation durchgeführt werden. Die FFT dient in der Physikalischen Geodäsie zur schnelleren Berechnung. Um die FFT anwenden zu können, müssen Formeln approximiert bzw. vereinfacht werden. Hauptnutzen ist, das sich Rechenoperationen im Frequenzbereich oft vereinfachen und die Berechnungsdauer sich dadurch stark verkürzt. Wobei zu beachten ist, das das Ergebnis nicht so exakt ist, wie wenn man die ursprüngliche Formel nimmt. Es ergibt sich folgende approximierte Form der Formel von Stokes:

$$N_{res}(x, y) = \frac{1}{2\pi} \int \int \frac{\Delta g(x', y')}{\sqrt{(x - x')^2 + (y - y')^2}} dx' dy'$$
(25)

Mit der Fast Fourier Transformation, wird sie wie folgt berechnet:

$$N_{res} = \frac{1}{\gamma} F^{-1} [F(S) F(\Delta g_{res})]$$
(26)

Im Restore-Schritt, werden die Reduktionsschritte wieder rückgängig gemacht. Dabei wird der Anteil des globalen Schweremodells und der Anteil der Topografie auf die berechneten Geoidhöhe angebracht.

$$N = N_{res} + \Delta N_{EGM} + \Delta N_{Top} \tag{27}$$

Aber auch aufgrund von Approximationen und Modellierungsfehlern, weichen diese berechneten Geoidhöhen immer noch von den aus GPS und Nivellement bestimmten Geoidhöhen ab. So ein berechnetes Geoid, weicht bis zu 2 Metern von den tatsächlichen Geoidhöhen ab, welche mit GPS bestimmt wurden. Es gilt für die Geoidhöhen :

$$N = h_{GPS} - H_{orthometrisch}$$
⁽²⁸⁾

Um nun die gesuchten Geoidhöhen aus der Berechnung zu erhalten, müssen die berechneten Geoidhöhen um die Differenz ϵ korrigiert werden. Diese Differenz setzt sich wie folgt zusammen :

Durch Anbringen dieser Differenz, welche durch Kollokation mit Trendentfernung (hier durch ein Polynom dritten Grades) berechnet wird, erhält man die gesuchte Geoidhöhe N:

$$N = N_{gravimetrisch} + \epsilon \tag{30}$$

Eine andere Variante um Geoidhöhen nach der Remove-Restore Technik zu berechnen, ist das "Residual Terrain Model" (RTM), welches von Rene Forsberg (1984) eingeführt wurde. Dabei werden die Auswirkungen von topografischen Unregelmäßigkeiten relativ zu einer mittleren Höhenfläche betrachtet.

Abbildung 6: RTM Modellfläche

Quelle: Rene Forsberg und C. C. Tscherning: An overview manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs, 2.edition August 2008

Der Vorteil ist, das die Effekte bei der Geoidberechnungen sehr klein sind. Denn man berechnet sich gesondert, nur aufs RTM bezogen, dessen Topografische Effekte. Damit ergibt sich folgende Form des Remove-Schrittes:

$$\Delta g_{res} = \Delta g - \Delta g_{EGM} - \Delta g_{RTM} \tag{31}$$

Im nächsten Schritt, lassen sich durch die Formel von Stokes Geoidhöhen aus den reduzierten Schwerewerten berechnen (Gravimetrische Geoidbestimmung). Dabei ist zu beachten, das als Ergebnis ein gravimetrische Quasigeoid herauskommt.

$$\zeta_{res} = \frac{R}{4\pi\gamma_0} \iint_{\sigma} \Delta g_{res} S(\psi) d\sigma$$
(32)

Die approximierte Form der Formel von Stokes lautet wie folgt:

$$\xi_{res}(x, y) = \frac{1}{2\pi} \int \int \frac{\Delta g(x', y')}{\sqrt{(x - x')^2 + (y - y')^2}} dx' dy'$$
(33)

Mit der Fast Fourier Transformation, wird sie wie folgt berechnet:

$$\zeta_{res} = \frac{1}{\gamma} F^{-1} [F(S) F(\Delta g_{res})]$$
(34)

Im Restore-Schritt, werden die Reduktionsschritte wieder rückgängig gemacht, sodass man gravimetrische Quasigeoidhöhen erhält. Dabei wird der Anteil des globalen Schweremodells und der Anteil der Topografie/RTM wieder angebracht.

$$\zeta = \zeta_{res} + \Delta \zeta_{EGM} + \Delta \zeta_{RTM} \tag{35}$$

Problem, wie schon erwähnt, ist das sich diese Geoidhöhen auf das gravimetrische Quasigeoid beziehen. Deswegen müssen diese Höhen in Geoidhöhen umrechnen werden. Dies erreicht man mit den Bouguer Anomalien. Indem von den Freiluftanomalien Δg die Effekte der Topografie Δg_{Top} abgezogen werden, erhält man die Bouguer Anomalien.

$$\Delta g_B = \Delta g - \Delta g_{Top} \tag{36}$$

Mit diesen Anomalien lässt sich nun die Differenz zwischen Geoid und Quasigeoid berechnen:

Diese erhält man aus dem Zusammenhang:

$$N = \zeta + \frac{\overline{g} - \overline{\gamma}}{\overline{\gamma}} H \tag{38}$$

mit :

 \overline{g} mittlere Schwere

 $\overline{\gamma}$ mittlere Normalschwere

 \overline{g} - $\overline{\gamma}$ entspricht der Bouguer Anomalie

Damit lässt sich approximieren (aus Physical Geodesy von Moritz H.):

$$(\zeta - N)_{[Meter]} = -\Delta g_{B[gal]} H_{[Km]}$$
(39)

Indem man nun diese Differenzen zu den berechneten Geoidhöhen hinzuaddiert, erhält man gravimetrische Geoidhöhen.

Aber auch aufgrund von Approximationen und Modellierungsfehlern, weichen diese berechneten Geoidhöhen immer noch von den aus GPS und Nivellement bestimmten Geoidhöhen ab. Dies kommt daher, das die Berechnungen ein wie schon erwähntes gravimetrisches Geoid liefern. So ein berechnetes Geoid, weicht bis zu 2 Metern von den tatsächlichen Geoidhöhen ab, welche mit GPS bestimmt wurden. Es gilt für die Geoidhöhen :

$$N = h_{GPS} - H_{orthometrische}$$

$$\tag{40}$$

Um nun die gesuchten Geoidhöhen aus der Berechnung zu erhalten, müssen die berechneten Geoidhöhen um die Differenz ϵ korrigiert werden. Diese Differenz setzt sich wie folgt zusammen :

$$\epsilon = h_{GPS} - H_{orthometrisch} - N_{gravimetrisch} \tag{41}$$

Durch Anbringen dieser Differenz, welche durch Kollokation mit Trendentfernung (hier durch ein Polynom dritten Grades) berechnet wird, erhält man die gesuchte Geoidhöhe N:

$$N = N_{gravimetrisch} + \epsilon \tag{42}$$

3. Geoidberechnungen für Österreich mittels RTM

Im folgenden, wird die Remove-Compute-Restore Technik auf Daten von Österreich angewendet, um mithilfe des GRAVSOFT Programms Schwerefeldgrößen zu berechnen. Dargestellt wird das Verfahren bei Verwendung eines RTM, da es etwas komplizierter ist, als das klassische Verfahren ohne RTM. Sollte das klassische Verfahren verwendet werden, sind die Schritte mit der RTM Berechnung und die Umrechnung vom Quasigeoid aufs Geoid mithilfe der Bouguer Anomalien zu vernachlässigen (Gründe: siehe vorheriges Kapitel). Für nähere Informationen zu den Programmen (Siehe: GRAVSOFT Funktionsumfang).

Zur Berechnung stehen folgende Daten zur Verfügung:

- ein DTM vom Bundesamt für Eich- und Vermessungswesen
- Datensatz mit 13689 Freiluftanomalien
- Datensatz mit 192 GPS-Punkten

In einem ersten Schritt, wird das DTM grafisch dargestellt, um einen groben Überblick über das Gebiet, welches es abdeckt, zu erhalten. Klar zu erkennen ist, das es mehr als den Bereich der Republik Österreich abdeckt. Es deckt den Bereich von Mittel- und Süddeutschland, Tschechien, Slowakei, Ungarn, Slowenien, Kroatien, Norditalien und die Schweiz ab. Also die Nachbarländer der Republik Österreich. Es umfasst einen Bereich von: In φ (43.0013671875° – 52.9982421875° mit einer Auflösung von 0.003125°) und in λ (5.002278645833° – 22.99707031° mit einer Auflösung von 0.005208333333334°). Das Grid hat eine Größe von 3200 Werten x 3456 Werten mit einer Gesamtanzahl von 11059200 Werten. Das Minimum der Werte ist bei -635 Metern, wobei der höchste Wert bei 4537 Metern liegt.

Abbildung 7: DTM des BEV

Um dieses Grid (Surfer ASCII) für die Berechnungen im GRAVSOFT Programm benutzen zu können, muss es umgewandelt werden. Das GRAVSOFT Programm verarbeitet Grids (beschrieben im Abschnitt "GRAVSOFT Datenformate") nur in folgender Form:

Das ASCII-Grid ist aber in einer etwas anderen Form abgespeichert, und verwendet die Süd-West Ecke als Startpunkt, und den Nord-Ost Punkt als Endpunkt. Der Aufbau ist wie folgt:

DSAA Ncolumns Mrows Xmin Xmax Ymin Ymax Zmin Zmax ... Row 1: Z11 Z12 Z13 ... Z1n Row 2: Z21 Z22 Z23 ... Z2n Row 3: Z31 Z32 Z33 ... Z3n ... Row M: ZM1 ZM2 ZM3 ... ZMn

Da es für dieses Problem kein GRAVSOFT Programm gibt, muss dieses manuell umgeändert werden. Dazu wird das Programm "Matlab" verwendet, welches durch einfache Programmierung ermöglicht, die Grids, die in Matrizen abgespeichert sind, zu spiegeln. Dazu wird folgender Befehl verwendet:

 \rightarrow spiegeln von Matrizen dat=flipud(data1);

Die geforderte Kopfzeile mit den Koordinaten der Süd-West Ecke, der Nord-Ost Ecke, und der Auflösung, wird im Texteditor hinzugefügt:

43.001367187552.99824218755.00227864583322.99707031250.0031250.0052083333333334

Als nächstes wird mit dem Programm TCGRID ein grobes Grid erstellt, da es für die weiteren Berechnung benötigt wird. Das Programm kann Grids mitteln und glätten. Die Mittelung erfolgt dabei für das ganze detaillierte Grid (Angabe 0 0 0 0), mit einer 5 x 5 Zelle. Eine zusätzliche Glättung wird dabei nicht vorgenommen. Wie genau gemittelt und geglättet wird, siehe Kapitel: GRAVSOFT Funktionsumfang \rightarrow TCGRID.

7 TCGRID - DTM grids and mean terrain surfaces for RTM method				_	- [<	
Name of grid file:	Grid_matlab					Browse		
Specification of grid file format:	0						?	
Wanted area boundaries:	0000						?	
Grid cell averages:	5 5						?	
Moving average window size:	0 0						?	
Name of file to hold result:	Grid_grob					Save as		
Running options. Working in D:\DA\Dip	Running options. Working in D:\DA\Diplomarbeit\pyGravsoft\pyGravsoft							
Data send to tcgrid								
Quit	Write settings	Run	n program			Help		

Abbildung 8: Erstellung des groben Grids

Die folgende Abbildung zeigt das neu berechnete grobe Grid. Das Grid besitzt durch die 5 x 5 Mittelung folgende neue Grenzen und Auflösungen: 43.007617 52.991992 5.012695 23.007487 0.015625 0.026042.

Abbildung 9: Darstellung des groben Grids

Als nächstes wird das RTM (Residual Terrain Modell) berechnet. Dieses lässt sich ebenfalls mit dem Programm TCGRID berechnen. Das RTM entspricht einer mittleren Höhenfläche und wird aus dem berechneten groben Grid berechnet. Die Mittelung erfolgt mit eine 2 x 2 Zelle (wegen der mittlere Höhenfläche), und einer zusätzlichen Glättung der Werte mit einem Kernel von 9 x 9. Wie genau gemittelt und geglättet wird, siehe Kapitel: GRAVSOFT Funktionsumfang \rightarrow TCGRID.

7 TCGRID - DTM grids and mean terrain surfaces for RTM method				-	- [- X	(
Name of grid file:	D:/DA/Grid_gro	b				Browse	
Specification of grid file format:	0						?
Wanted area boundaries:	0000						?
Grid cell averages:	2 2						?
Moving average window size:	99						?
Name of file to hold result:	D:/DA/RTM					Save as	$\left[\right]$
Running options. Working in D:\DA\Diplomarbeit\pyGravsoft\pyGravsoft							
Data send to tcgrid							
Quit	Write settings	Run	n program			Help	

Abbildung 10: Erstellung des RTM

Die folgende Abbildung zeigt das berechnete RTM für das Gebiet um die Republik Österreich mit einem Kernel von 9 x 9.

Abbildung 11: Darstellung des berechneten RTM

Zum Vergleich wurden noch andere Glättungen vorgenommen. Die folgende Abbildung, zeigt das berechnete RTM für das Gebiet um die Republik Österreich mit einem Kernel von 7 x 7.

Abbildung 12: Darstellung des RTM mit einem Kernel von 7 x 7

Die folgende Abbildung zeigt das berechnete RTM für das Gebiet um die Republik Österreich mit einem Kernel von 11 x 11.

Abbildung 13: Darstellung des RTM mit einem Kernel von 11 x 11

Um für den Remove-Schritt den langwelligen Anteil des globalen Schweremodells Δg_{EGM} zu berechnen, wird das GRAVSOFT Programm GEOEGM verwendet. Dazu muss das Schweremodell ausgewählt werden, welches für die Berechnung verwendet werden soll (hier das egm96 mit Grad und Ordnung 360), wie auch das Referenzsystem (Geodätisches Referenzsystem 1980) mit seiner Gravitationskonstante GM und der großen Halbachse a. Berechnet werden soll es in den Punkten der Freiluftanomalien (Input Code 13) die in einer Punktedatei vorliegen und nicht in einem Grid. Eine Subtraktion von den Beobachtungen soll ebenfalls nicht durchgeführt werden, da man sich hier für den nächsten Schritt nur die egm-Effekte berechnen möchte. Statistik kann, muss aber nicht ausgegeben werden.

76 GEOEGM - Gravity Model Evaluation		_		<
Select reference system	5 - GRS80 7 - Best current			
Input gravity model filepath:	EGM96		Browse	?
Are the coefficients formatted?	Yes	No		
Input format	(2I4,2D20.12)			
Input GM, semi-major axis (M):	3.986004415D14 63	378136.3		
Input maximal degree:	360			
Configure parameters				
Input datatype code:	13			?
Should a grid be used in computations	Yes	No		_
Input grid specification :	54.5 57.5 7.0 13.0 0	.1 0.2		?
Input grid altitude (m) :	0.0			
Input name of datafile (Gravsoft format):	dgfa_13689.dat		Browse	2
Should computed values be subtracted from observed	Yes	No		_
Data column number:	1			?
Should statistics be output	Yes	No		_
Input histogram bin size	5.0			
Output to file	Yes	No		
Name of file to hold result:	egm_effekte		Save as	;
Running options. Working in D:\DA\Diplomarbeit\pyGrav	soft\pyGravsoft			
1	1			
Quit	Write settings	Run program	Help	2

Abbildung 14: Berechnung der egm-Effekte

Nun lässt sich der erste Teil des Remove-Schrittes berechnen. Für die Berechnung des ersten Teils des Remove-Schrittes, wird das GRAVSOFT Programm FCOMB hergenommen. Es ermöglicht eine Substraktion, bzw. eine Addition von Werten in einer Tabelle. In diesem Fall, werden von den Freiluftanomalien (dgfa_13689.dat --> input file 1), der berechnete egm-Effekt (egm_effekte --> input file 2) abgezogen ("Subtraction"). Dabei muss angegeben werden, wo die Werte in der Tabelle stehen, ausschlaggebend ist die Spalte nach der Höhenangabe (hier die 1 Spalte nach der Höhenangabespalte).

76 FCOMP - File Comparison				_		×	
Name of input file 1:	dgfa_13689.dat					Browse	
Name of input file 2:	egm_effekte					Browse	
Number of columns after alt. column:	1						
Histogram binsize:	1.0						
Column operation	Addition						
	Subtraction						
Name of file to hold result:	fa-egm					Save as	
Running options. Working in C:\DA\Diplomarbeit\pyGravsoft\pyGravsoft							
Data send to fcomp							
Quit	Write settings	Run p	rogram			Help	

Abbildung 15: Abzug der egm-Effekte von den Schwereanomalien

In grafischer Darstellung, ergibt sich das folgendes Bild für die reduzierten Schwereanomalien in Österreich. Die Schwereanomalien liegen dabei in einem Bereich von -220 bis 140 mgal:

Abbildung 16: Darstellung der Schwereanomalien ohne egm-Effekte

Als nächstes muss für den zweiten Teil des Remove-Schritt, der kurzwellige Anteil der Topografie Δg_{RTM} berechnet werden. Dazu kann das Programm TC wie auch das Programm TCFOUR verwendet werden. Der Unterschied ist, dass das TC Programm die Effekte der Topografie mithilfe der Prismentechnik im Ortsbereich berechnet. Problem dabei ist, das die Prismenformeln im Ortsbereich sehr kompliziert sind. Dies ist bei großen Datenrängen (große Grids) nicht zu vernachlässigen, da es die Rechenzeit deutlich erhöht. Nur sind die berechneten Werte dadurch exakter.

Das TCFOUR Programm, berechnet die Effekte der Topografie im Frequenzbereich mithilfe der Fast Fourier Transformation. Dabei wird die Anzahl der notwendigen Multiplikation (von N² auf N·log2) verringert und damit die Rechenzeit deutlich verkürzt. So entspricht eine Faltung im Zeitbereich einer Multiplikation im Frequenzbereich und umgekehrt. D.h die Effekte der Topografie werden aus einem regelmäßigen Gitter von Prismen berechnet. Das Ergebnis wird schließlich durch eine umgekehrte Fast Fourier Transformation wieder zurücktransformiert.

Für die exakten Werte, wird aber hier das Programm TC verwendet. Um die Effekte der Topografie Δg_{RTM} berechnen zu können, ist es nötig diverse Eingangsdaten anzugeben. Dazu muss zuallererst eine Listendatei mit Berechnungspunkten, eine Grid-Datei die ein detailliertes Höhenraster und eine Grid-Datei die ein grobes Höhenraster enthält angegeben werden. Da ein RTM benutzt wird, muss dieses Grid ebenfalls angegeben werden. Unter Datentyp wird der Typ 5 Schweranomalie ausgewählt. Berechnen möchte man den "Residual terrain effect" (Code 4). Das "Placement of station" ist der Code 1, bei dem die Messungen auf dem Terrain Model liegen. Unter "Type of operation" kann ausgewählt werden, was als Ausgabe herauskommen soll. Dabei wird der Code 1 gewählt, der die berechneten Effekte in einer Datei ausgibt. Die restlichen Vorgaben werden nicht geändert, außer der Bereich, für den die Effekte berechnet werden, dies sind die Grenzen des berechneten grob Grids (Nach GRAVSOFT Angabe: 43.007617 52.991992 5.012695 23.007487). Für die Prismen wird der Bereich 10/60 km gewählt. Der Innere Bereich wird mit 10 km festgelegt. In diesem Bereich wird die exakte Prismenformel verwendet. Dabei wird im Nahbereich, rund um den Berechnungspunkt, die Daten des detaillierten Grid durch Interpolation verdichtet. In dieser Innenzone treten die größten Effekte auf. In der Außenzone (bis 60 km), wird das grobe Grid verwendet, da hier kleinere Effekte auftreten. Dies wird so gewählt, weil das egm96 eine Auflösung von 180/n-Grade hat, also 180/360=0.5 Grad, was einer Auflösung von 55 km entspricht. Da besser ist, wenn es Überlappungen gibt, wurde 60 km gewählt. Einen genaueren Radius der Außenzone, lässt sich nur in der Kombination mit der RTM Berechnung erhalten.

74 TC - Compute terain effect on gravimetric qua	_	\Box \times	
Station list file:	fa-egm		Browse
Detailed elevation grid file:	Grid_matlab.txt		Browse
Coarse elevation grid file:	Grid_grob		Browse
Reference elevation grid file:	RTM		Browse
Data type:	5		?
Type of effect:	4		?
Placement of station:	1		?
Type of operation:	1		?
Data column (operation 2 or 3):	2		?
Density:	2.67		?
Maximum window:	91992 5.012695 23.007487		?
Minimum computation distance of inner grid:	10		?
Maximal radius of computation	60		?
Running options. Working in D:\DA\Diplomarbeit\	pyGravsoft\pyGravsoft		
Name of file to hold ouput:	topo_effekte		Save as
Quit	Write settings Run pro	gram	Help

Abbildung 17: Berechnung der Topografie-Effekte Δg_{RTM}

Die folgende Tabelle zeigt, welche Auswirkung, eine andere Angabe des Prismenbereichs zur Folge hat. Für die Güte der Berechnung, gilt die 5 Spalte der Ausgabe (wird nur im Ereignisfenster angegeben, nicht in der Ergebnisdatei). In dieser Spalte, wird die mit dem Programm berechnete Höhe des Berechnungspunktes wiedergegeben. Diese kann man mit Spalte 4 (Höhenangabe der Punkte) vergleichen. Dabei sollten nicht allzu große Unterschiede auftreten (Differenz im flachen Bereich im einstelligen Meterbereich, im Gebirge im zweistelligen Meterbereich). Es wurde getestet mit den Radien: 10-60,1-60, 1-10 und 60-100 km.

Punkte	Geg.Höhe	Ber.Höhen		Berechnete Effekte in mgal			
			Radien 1 km / 10 km	Radien 1 km / 60 km	Radien 10 km / 60 km	Radien 60 km / 100 km	
77518	268.3 m	268.0 m	-1.21326	-1.23143	-1.23499	-1.33257	
77519	282.7 m	283.0 m	2.02194	2.01108	2.00917	1.91725	
7833	1010.9 m	966.0 m	38.62783	38.18259	38.14058	38.03253	
7842	528.7 m	549.0 m	-17.16010	-17.73397	-17.85426	-17.96492	
8853	45.1 m	45.0 m	-10.10937	-10.18192	-10.19859	-10.25932	

	Statistik über alle Datenpunkte in mgal					
	Radien 1 km / 10 km	Radien 1 km / 60 km	Radien 10 km / 60 km	Radien 60 km / 100 km		
Anzahl Punkte	13689	13689	13689	13689		
Mittelwert	-13.52	-13.85	-13.97	-14.05		
Minimum	-187.44	-189.48	-189.09	-189.34		
Maximum	109.80	108.59	108.68	108.53		
Standardabw.	35.19	35.43	35.46	35.50		

Die obigen zwei Tabellen, geben die Ergebnisse des TC Programms wieder. Dabei zeigt die erste Tabelle die vom Programm berechneten Höhen, und deren berechnete Effekte. Zu erkennen ist, das die berechneten Höhen wie erwartet, von den gegebene Höhen im einstelligen bzw. zweistelligen Meterbereich abweichen (flaches und gebirgiges Gebiet). Kleine Unterschiede treten erst bei den berechneten Effekten auf. Dabei zeigen sich aber auch keine großen Unterschiede. Nur ist zu erkennen, das im Bereich von 1-10 km die größten Effekte auftreten, und sich mit Steigerung auf 60 km die Werte kaum mehr verändern. Die zweite Tabelle gibt die Statistik über alle Punkte wieder. Wie man erkennt, wird die Standardabweichung bei Erweiterung der Radien immer schlechter. Wobei sie sich zwischen den Radien von 1/60 km, 10/60 km und 60/100 km geringfügig verändert, und keinen Sprung macht wie bei den Radien 1/10 km. Unterschiede treten nur bei dem minimalen und dem maximalen Wert auf, da diese nicht gleichmäßig schlechter werden. Bei den Radien 10/60 km und 60/100 km; bei den Radien 10/60 km und 60/100 km die Overgleich mit Radien 1/60 km und 60/100 km). Somit scheint für diese Fall, die Angabe von 10/60 km die optimale Angabe zu sein.

Als Ergebnisdatei des Programms TC erhält man eine Listendatei, in der die Effekte der Topografie in der letzten Spalte angeben sind. Es ergibt sich folgende Darstellung der Datei:

id	φ	λ	h	Topo-Effekte
77518	45.60289	8.43930	268.33	-1.2350
77519	45.60400	8.47595	282.67	2.0092
77549	45.60761	8.52372	235.88	-2.0309
77551	45.60567	8.60399	231.47	-0.5314
77552	45.60400	8.64260	217.82	-1.3166
77553	45.60150	8.68314	156.63	-7.4535

Nun lässt sich der zweite Teil des Remove-Schrittes berechnen.

Für die Berechnung des zweiten Teils des Remove-Schrittes, wird wie vorher das GRAVSOFT Programm FCOMB verwendet. In diesem Fall, werden von den Schwereanomalien, die schon um den langwelligen Anteil des globalen Schweremodells verringert wurden, der kurzwellige Anteil der Topografie abgezogen.

7 FCOMP - File Comparison				_		×	
Name of input file 1:	fa-egm					Browse	
Name of input file 2:	topo_effekte					Browse	
Number of columns after alt. column:	1						
Histogram binsize:	1.0						
Column operation	Addition Subtraction						
Name of file to hold result:	fa-egm-topo					Save as	
Running options. Working in C:\DA\Diplomarbeit\pyGravsoft\pyGravsoft							
Data send to fcomp							
Quit	Write settings	Run p	rogram			Help	

Abbildung 18: Abzug der Effekte der Topografie

In grafischer Darstellung ergibt sich folgendes Bild für die reduzierten Schwereanomalien in Österreich. Dabei liegen die Schweranomalien nur noch in einem Bereich von -65 bis 75 mgal:

Abbildung 19: Darstellung der Schwereanomalien ohne egm- und Topografie-Effekte

Um nun die reduzierten Geoidhöhen mithilfe der Formel von Stokes zu berechnen, muss vorher aus den reduzierten Schwereanomalien ein Grid erstellt werden. Dazu wird das Programm GEOGRID verwendet.

Als Eingangsdatei dienen die reduzierten Schwereanomalien (Freiluftanomalien die um den langwelligen und den kurzwelligen Anteil reduziert wurden). Außerdem muss angegeben werden wo die Werte der Schwereanomalien im Datensatz liegen und wie viele solcher Datenspalten es gibt. Als Angabe dient die Position nach der Höhenangabe. Dies ist in diesem Fall beides mal die 1, da es nach der Höhenangabe nur eine Datenspalte gibt. Bei "Number of closest points" wird 5 als Anzahl der Punkte pro Quadrant festgelegt. Da GRAVSOFT eine Quadranten-basierte Suche verwendet, bei der typischerweise die 5 nächsten Nachbarn verwendet werden. Von den Daten wird der Mittelwert abgezogen, da Grundvoraussetzung der Kollokation ist, das die Daten zentriert sind. Und das ist nur der Fall, wenn der Mittelwert der Daten 0 ist. Sollte dies nicht der Fall sein, muss der Mittelwert abgezogen werden. Für die Gridberechnung wird die Berechnungsmethode Kollokation ausgewählt, mit einer Halbwertsbreite von 17 km (lässt sich GRAVSOFT Programm EMPCOV auslesen) und einem aus dem angenommenen Rauschen/Standardabweichung von 0.2 mgal.

Schwereanomalien setzen sich aus dem Schwerevektor und dem Normalschwerevektor zusammen. Der Schwerevektor kann gemessen werden (Gravimeter), der Normalschwerevektor aber nicht und muss durch Modelle berechnet werden. Die Genauigkeiten von Gavimetern liegt im Bereich von 1 - 0.5 mgal, und kann unter Aufwand auf 1/10 mgal gesteigert werden. Die Berechnung des Normalschwerevektors liegt dabei im 1 mgal Bereich. (nähere Beschreibung: siehe Wikipedia). Darum wird die kleinste Standardabweichung von 0.2 mgal angenommen. Da ein Grid ausgeben werden soll, wird als "Mode number" die 1 eingegeben. Als Bereichsgrenzen für das Grid dienen dabei die Grenzen des groben Grids (Angabe: 43.007617 52.991992 5.012695 23.007487 0.015625 0.026042). Der "Margin for data selection area" wird mit 0 km angegeben, da sowieso alle Punkte innerhalb der Grenzen des grob Grids liegen. Durch Eingabe von 100 km oder von 1000 km ändert sich am Ergebnis nichts. Es ändert sich erst dann was, wenn Punkte außerhalb des Grids liegen (hier aber nicht der Fall).

76 GEOGRID - Gridding or interpolation	n of irregualar distributed	d data	_	o x
Input data filename:	fa-egm-topo			Browse ?
Number of data values:	1			?
Input position of data element: :	1			?
File to hold predictions:	dat_grid			Save as ?
File to hold errorestimates:	dat_grid_error			Save as ?
Number of closest points:	5			?
Trend surface removal method	1			?
Select prediction method:	1			?
Prediction variables	17 0.2			?
Mode number:	1			?
Specify prediction points:	007487 0.015625 0.0	26042		?
Margin for data selection area:	d			?
Running options. Working in D:\DA\Dipl	omarbeit\pyGravsoft\py	/Gravsoft		
Data send to geogrid	1			
Quit	Write settings	Run program		Help

Abbildung 20: Erstellung eines Grids aus fa-egm-topo

Nachdem das Grid erstellt wurde, lassen sich mit der Formel von Stokes reduzierte Geoidhöhen berechnen. Als Programm, kann SPFOUR verwendet werden, welches in einer Fast Fourier Transformation die Werte berechnet, oder das Programm STOKES, welches mit den exakten Formeln arbeitet. Für die exakten Werte, wird aber das Programm STOKES verwendet. Als Eingangsgrid dient das berechnete Grid mit den reduzierten Schweranomalien und als "Station file", die Datei, die dessen Gitterpunkte enthält. Die "Cap size range" wird mit 0 bis 9 Grad festgelegt, um alle Punkte der gemessenen Freiluftanomalien einzubeziehen (Punkte liegen in einem Bereich von 3.5 Grad in Phi und 9 Grad in Lambda).

% STOKES - Space domain integra	ation for geoid or deflectio	n of the vertical — [x c
Grid file:	dat_grid		Browse ?
Station file:	fa-egm-topo		Browse ?
Operation mode:	1		?
Remove mean?	Yes	No	
Cap size range [degrees]:	0 9.0		
Running options. Working in D:\DA\	\Diplomarbeit\pyGravsoft\	pyGravsoft	
Name of file to hold result:	N_stokes		Save as
Quit	Write settings	Run program	Help

Abbildung 21: Geoidhöhen mit Stokes berechnen

Als Ausgabe erhält man eine Listendatei, in der die Effekte der Topografie in der letzten Spalte angeben sind. Unschöner Effekt ist, das ***** Spalten enthalten sind, die für eine weitere Verwendung entfernt werden müssen.

Im nun folgenden Restore-Schritt, werden die getätigten Reduktionsschritte wieder rückgängig gemacht. D.h der langwellige Anteil des globalen Schweremodells (ΔN_{EGM}) und der kurzwellige Anteil der lokalen Topografie/RTM (ΔN_{RTM}), wird auf die berechneten Geoidhöhen wieder aufaddiert. Um den Einfluss der lokalen Topografie auf die berechnenden Geoidhöhen zu berechnen, wird das Programm TC herangezogen (ebenfalls möglich mit dem Programm TCFOUR). Die Angaben sind ähnlich wie vorher im Remove-Schritt, außer das unter "Data type" der Typ 3 (Geoidhöhen) und unter "Placement of station" der Code 3 (Stationsfrei) auszuwählen ist.

7 TC - Compute terain effect on gravimetric quantities			σ×			
Station list file:	N_stokes_ohne.txt		Browse			
Detailed elevation grid file:	Grid_matlab.txt		Browse			
Coarse elevation grid file:	Grid_grob		Browse			
Reference elevation grid file:	RTM		Browse			
Data type:	3		?			
Type of effect:	4		?			
Placement of station:	3		?			
Type of operation:	1		?			
Data column (operation 2 or 3):	2		?			
Density:	2.67		?			
Maximum window:	91992 5.012695 23.007487		?			
Minimum computation distance of inner grid:	10		?			
Maximal radius of computation	60		?			
Running options. Working in D:\DA\Diplomarbeit\pyGravsoft\pyGravsoft						
Name of file to hold ouput:	topo_effekte2		Save as			
Data send to tc						
Quit	Write settings Run prog	gram	Help			

Abbildung 22: Berechnung der Topografie-Effekte ΔN_{RTM}

Mit diesen Effekten der Topografie, kann nun der erste Teil des Restore-Schritts berechnet werden. Dafür wird wieder das GRAVSOFT Programm FCOMB hergenommen. In diesem Fall, wird auf die berechneten Geoidhöhenpunkte der kurzwellige Anteil der Topografie aufaddiert.

76 FCOMP - File Comparison			_		×
Name of input file 1:	N_stokes_ohne.txt				Browse
Name of input file 2:	topo_effekte2				Browse
Number of columns after alt. column:	1				
Histogram binsize:	1.0				
Column operation	Addition				
	Subtraction				
Name of file to hold result:	N+topo				Save as
Running options. Working in C:\DA\Diplomarbeit\pyGravsoft\pyGravsoft					
Data send to fcomp					
Quit	Write settings	Run program			Help

Abbildung 23: Addition der Topo-Effekte

Durch diese Addition ergibt sich folgendes Bild für Österreich. Die Geoidhöhen liegen dabei in einem Bereich -0.9 bis +2.0 Metern:

Abbildung 24: Darstellung N+topo

Um den langwelligen Anteil des globalen Schweremodells auf die berechneten Geoidhöhenpunkte (Code 11) zu berechnen, wird wie vorher das Programm GEOEGM verwendet.

74 GEOEGM - Gravity Model Evaluation		_	
Select reference system	5 - GRS80 7 - Best current		
Input gravity model filepath:	C:/DA/EGM96		Browse ?
Are the coefficients formatted?	Yes No		
Input format	(2l4,2D20.12)		
Input GM, semi-major axis (M):	3.986004415D14 6378136	.3	
Input maximal degree:	360		
Configure parameters			
Input datatype code:	11		?
Should a grid be used in computations	Yes		
Input grid specification :	54.5 57.5 7.0 13.0 0.1 0.2		?
Input grid altitude (m) :	0.0		
Input name of datafile (Gravsoft format):	N+topo		Browse
Should computed values be subtracted from observed	Yes		
Data column number:	1		?
Should statistics be output	Yes		_
Input histogram bin size	5.0		
Output to file	Yes No		
Name of file to hold result:	egm_effekte2		Save as
Running options. Working in C:\DA\Diplomarbeit\pyGrav	vsoft\pyGravsoft		
Data send to geocol17		1	
Quit	Write settings Run p	program	Help

Abbildung 25: Berechnung der egm-Effekte

Mit diesen berechneten Effekten, kann nun der zweite Teil des Restore-Schrittes berechnet werden. Dafür wird wieder das GRAVSOFT Programm FCOMB hergenommen. In diesem Fall, wird auf die berechneten Geoidhöhenpunkte, auf welche schon die Effekte der Topografie addiert wurde, der berechnete Anteil des globalen Schweremodells aufaddiert.

🎋 FCOMP - File Comparison			_		×	
Name of input file 1:	N+topo				Browse	
Name of input file 2:	egm_effekte2				Browse	
Number of columns after alt. column:	1					
Histogram binsize:	1.0					
Column operation	Addition Subtraction					
Name of file to hold result:	N+topo+egm				Save as	
Running options. Working in D:\DA\Diplomarbeit\pyGravsoft\pyGravsoft						
Quit	Write settings	Run program			Help	

Abbildung 26: Addition der egm-Effekte

In grafischer Darstellung ergibt sich das folgendes Bild in Österreich, bei der man deutlich die Zunahme der Höhenwerte durch den Restore-Schritt erkennen kann. Diese Höhen, sind schon fast die gesuchten Geoidhöhen, allerdings handelt es sich um gravimetrische Quasigeoidhöhen.

Abbildung 27: Darstellung N+topo+egm (gravimetrisches Quasigeoid)

Damit ist der Restore-Schritt abgeschlossen, d.h der langwellige Anteil des globalen Schweremodells und der kurzwellige Anteil der lokalen Topografie wurden wieder aufaddiert. Zu beachten ist, das sich die berechneten Geoidhöhen auf das gravimetrisches Quasigeoid beziehen (wegen Verwendung des RTM).

Im folgenden, wird gezeigt, wie man die gravimetrischen Quasigeoidhöhen auf das Geoid umrechnet. Dies erfolgt mit Bouguer Anomalien und gemessenen GPS-Punkten.

Um mit Bouguer Anomalien zu rechnen, müssen diese zuallererst aus den gegebenen Daten berechnet werden. Diese erhält man, indem man von den Freiluftanomalien den vollen Effekte der Topografie abzieht. Der volle Effekt der Topografie bezieht sich hier auf das Geoid, und ist nicht der gleiche wie im Remove-Schritt. Die Effekte lassen sich mit dem Programm TC berechnen. Es ist zu achten, das unter "Type of Effekte" der "topographic effect" ausgewählt ist. Als Radien werden wie vorher die Werte 10/60 km angegeben. Siehe folgende Abbildung:

74 TC - Compute terain effect on arruimetric au	untities				
Station list file:	fa-egm		Browse		
Detailed elevation grid file:	Grid_matlab		Browse		
Coarse elevation grid file:	Grid_grob		Browse		
Reference elevation grid file:			Browse		
Data type:	5		?		
Type of effect:	1		?		
Placement of station:	1		?		
Type of operation:	1		?		
Data column (operation 2 or 3):	2		?		
Density:	2.67		?		
Maximum window:	91992 5.012695 23.007487		?		
Minimum computation distance of inner grid:	10		?		
Maximal radius of computation	60		?		
Running options. Working in D:\DA\Diplomarbeit\	pyGravsoft\pyGravsoft				
Name of file to hold ouput:	topo_vol		Save as		
Quit	Write settings Run pro	gram	Help		

Abbildung 28: Berechnung der vollen Topografie-Effekte

Am einfachsten kann man nun die Bouguer Anomalien mit dem Programm FCOMB berechnen. In diesem Fall, wird von den Freiluftanomalien, der volle Effekt der Topografie abgezogen.

76 FCOMP - File Comparison			— C	X I	
Name of input file 1:	dgfa_13689.dat			Browse	
Name of input file 2:	topo_voll			Browse	
Number of columns after alt. column:	1				
Histogram binsize:	1.0				
Column operation	Addition				
column operation	Subtraction				
Name of file to hold result:	bouguer			Save as	
Running options. Working in D:\DA\Diplomarbeit\pyGravsoft\pyGravsoft					
Quit	Write settings	Run program		Help	
	4 7.				

Abbildung 29: Berechnung von Bouguer Anomalien
Für die weitere Berechnung, muss ein Grid aus diesen Anomalien berechnet werden. Dazu wird wie vorher das Programm GEOGRID verwendet. Mit einer Halbwertsbreite von 111 km (aus dem Programm EMPCOV) und einem angenommenen Rauschen/Standardabweichung von 0.2 mgal (siehe Wikipedia). Die Geologen hingegen, geben für die Halbwertsbreite einen optimalen Wert von 146 km an (siehe Meurers und Ruess).

74 GEOGRID - Gridding or interpolation of irregualar distributed data —	<
	1
Input data filename: bouguer Browse	?
Number of data values: 1	?
Input position of data element: : 1	?
File to hold predictions: bouguer_grid Save as	?
File to hold errorestimates: bouguer_grid_error Save as	?
Number of closest points: 5	?
Trend surface removal method 1	?
Select prediction method: 1	?
Prediction variables 111 0.2	?
Mode number: 1	?
Specify prediction points: 007487 0.015625 0.026042	?
Margin for data selection area: 0	?
Running options. Working in D:\DA\Diplomarbeit\pyGravsoft\pyGravsoft	
Quit Write settings Run program Help	

Abbildung 30: Erstellung des Bouguer Grids

In grafischer Darstellung ergibt sich das folgendes Bild für die Bougueranomalien in Österreich:

Abbildung 31: Bougueranomalien

Mithilfe des Programms GCOMB, wird nun die Differenz $N-\zeta$ berechnet. D.h die Differenz zwischen Geoid und Quasigeoid. Als Datensatz für das Quasigeoid, wird das Grid über die Bouguer Anomalien und für das Geoid, das grobe Grid herangezogen. Als Kombinationsmodus wird 9 ausgewählt. Damit wird die Differenz Geoid - Quasigeoid berechnet.

76 GCOMB - Combining two grid	ls		— C) ×	
Name of grid file 1:	bouguer_grid			Browse	
Name of grid file 2:	Grid_grob			Browse	
Write grid combinationmode:	9				?
Output file type:	2				?
Running options. Working n C:\DA	\Diplomarbeit\pyGravso	oft\pyGravsoft			Γ
Name of file to hold result:	n-zeta			Save as	
Data send to gcomb					
Quit	Write settings	Run program		Help	
Abbildung 32: Berechnung de	er Differenz N-ζ				

Stellt man diese Differenz grafisch dar, ergibt sich folgendes Bild für Österreich. Die Differenzen bewegen sich dabei in einem Bereich von -60 cm bis + 5 cm :

Abbildung 33: Differenz n-zeta

Im nächsten Schritt wird nun diese Differenz auf das berechnete Quasigeoid Grid addiert. Um damit das gravimetrische Geoid zu erhalten. Dazu wird das Programm GEOIP verwendet. Als Berechnungsmodus wird 12 (Addieren von Grid und Punktdatei) gewählt. Ausgewählt wird das berechnete n-zeta Grid (aus dem vorherigen Schritt) und als Punktdatei die Punkte des gravimetrischen Quasigeoides. Damit erhält man Punkte auf dem gravimetrischen Geoid in einer Punktdatei.

% GEOIP - Grid interpolation			—		
Input grid filename:	n-zeta			Browse	?
Operation mode:	12				?
Spline windows size:	0				?
Minimum distance:	0				?
Pointfile definition (mode = 1-3, 5-7 and mod	e > 10)				Γ
Point filename:	N+topo+egm			Browse	?
Data number in record:	1				?
Gridfile definition (mode = 4)					Γ
Output grid definition:	1.0 5.0 2.0 6.0 0.1 0.1				
Elipsoide and zone numbers:	0 0				?
Subgrid coordinates:	0.0 0.0 0.0 0.0				?
Should grid values be integers:	Yes	No			?
Height definition (mode > 100)					Γ
Altitude of grids:	0 1000				
Running options. Working in C:\DA\Diplomar	beit\pyGravsoft\pyGra	vsoft			
Name of file to hold interpolated values:	geoid_bouguer			Save as	?
Quit	Write settings	Run program		Help	

Abbildung 34: Anbringen der Differenz

Die nun erhaltenden Geoidhöhen weichen aber immer noch von den tatsächlichen Geoidhöhen aufgrund von Approximationen und Modellierungsfehlern ab. Dieses Höhen, können dabei ca. 1-2 Metern vom Geoid, welches durch Nivellement und GPS bestimmt wurde, abweichen.

Um diese Fehler zu berücksichtigen, werden gemessene GPS Punkte herangezogen, die absolute Geoidhöhen enthalten. In diesem Fall 192 GPS Punkte, die über ganz Österreich verteilt sind ("GPS_192.dat"). Zu beachten ist, das dieser Datensatz der GRAVSOFT lesbaren Datenform entsprechen soll. (Siehe Abschnitt : GRAVSOFT Datenformate).

Für die Anpassung, muss aber die Punktedatei des gravimetrischen Geoids auf ein Grid umgerechnet werden. Dazu wird das Programm "Surfer" von Golden Software verwendet, welches einfache Grid Berechnung und Grid Visualisierung ermöglicht. Die Punkte werden auf ein Gitter gerastert und schließlich als ASCII Datei abgespeichert. Die Gridberechnung lässt sich unter Surfer unter folgendem Pfand finden : [Grids \rightarrow Grid Data].

Zu beachten ist, das die entsprechenden Spalten aus der Listendatei auszuwählen sind (X-Spalte \rightarrow Längenangabe (λ), Y-Spalte \rightarrow Breitenangabe (ϕ) und Z-Spalte \rightarrow Spalte mit den gravimetrische Geoidhöhen. Die "Gridding Method" ist das Kriging (Interpolation von Messwerten). Im Abschnitt "Output Grid Geometry" kann man sich die Größe des Grids angeben. Dabei müssen die Maximalen und die Minimalen Werte für den Bereich des berechneten Grids, wie auch der Abstand zwischen den Gitterpunkten ("Spacing") angegeben werden. Das Spacing kann man verändern, was einen Einfluss auf die Anzahl der Gitterpunkte ("Nodes") hat. Verwendet werden die Grenzen des grob Grids. Weitere Einstellungen sind nicht nötig, außer das Abspeichern des berechnenden Grids als ASCII-Datei.

Grid Data - C:\	\Users\xxx\Deskto	p\geoid_bouguer		? 💌
-Data Column	s (13689 data po	bints)		OK
X: Column C		▼ Fi	lter Data	
Y: Column B		•	View Data	Cancel
Z: Column E		•	Statistics	Grid <u>R</u> eport
Gridding Met	hod			
Kriging		▼ Advance	ed Options	Cross Validate
Output Grid (<u>X</u> Direction: <u>Y</u> Direction:	Geometry Minimum 5.012695 43.007617	Maximum 23.007487 52.991992	Spacing 0.0260416671 0.015625	# of Nodes 692
Grid Z Limits Minimum: M Maximum: M	lone	ZT	ransform: Linear Blank grid outside o Inflate convex hul	vonvex hull of data
Output Grid				
C:\Users\x	cx\Desktop\geoid_t	bouguer.grd		

Abbildung 35: Berechnung des gravimetrischen Geoid Grids

Bevor dieses Grid im GRAVSOFT Programm verwendet werden kann, muss das SURFER-Grid gedreht werden und der Kopf der Datei angepasst werden (Min, Max, Spacing Werte aus dem Surfer Programm: 43.007617 52.991992 5.012695 23.007487 0.015625 0.026042). Da das GRAVSOFT Programm einen anderen Aufbau von Grids verarbeitet (siehe Kapitel: GRAVSOFT Datenformate).

Die folgende Abbildung zeigt das gravimetrische Geoid vor der Anpassung an die GPS/Nivellement Punkte. Die Höhen bewegen sich in einem Bereich von 42 bis 52 Meter, und sind schon fast die gesuchten Endhöhen:

Abbildung 36: Darstellung des gravimetrischen Geoids vor der Anpassung an die GPS/Nivellement Punkte

Um nun die Approximationen und Modellierungsfehlern anzubringen und die richtigen Geoidhöhen zu bekommen, muss die Differenz zwischen den GPS Punkten auf dem Geoid und dem berechneten gravimetrischen Geoid angebracht werden. Das Anbringen erledigt das GRAVSOFT Programm FITGEOID.

Als Eingangsgeoid dient das berechnete gravimetrische Geoid und als GPS-Punktdatensatz, die gemessenen GPS Punkte, welche Geoidhöhen enthalten. Als Bereichsgrenzen für das End-Grid dienen dabei die Grenzen des groben Grids.

Bei " Number of closest points" wird 5 als Anzahl der Punkte pro Quadrant festgelegt. Da GRAVSOFT eine Quadranten-basierte Suche verwendet, bei der typischerweise die 5 nächsten Nachbarn verwendet werden. Für die Trendentfernung und Modellierung wird ein Polynom 3. Grades verwendet (Code 4). Erkennen kann man dies, wenn man sich die Residuen des aus dem berechneten gravimetrischen Geoid und den GPS Punkten berechnet, und sich daraus ein Grid berechnet (lässt sich am einfachsten mit dem Programm SURFER berechnen). In der Darstellung (siehe folgende Abbildung), erkennt man sehr deutlich einen vorhandenen Trend. Wegen dem Verlauf, lässt sich dieser nicht durch ein Polynom niederen Grades beschreiben (Polynom 1. oder 2. Grades). Sondern mit einem Polynom 3. Grades.

Abbildung 37: Darstellung der Residuen

Für die Prädiktion wird die Kollokation ausgewählt, mit einer Halbwertsbreite von 70 km (lässt sich aus dem Programm EMPCOV auslesen) und einer Standardabweichung von 0.02 m für die GPS Punkte.

76 FITGEOID - Fit surface to GPS levell	ing		—	o x	
Input geoid grid filename:	geoid_bouguer_grid	.txt		Browse	?
Input GPS filename:	GPS_192.dat			Browse	?
File to hold final geoid values:	geoid			Save as	?
Input grid definition:	007487 0.015625	0.026042			?
					Γ
Number of closets points:	5				?
Trend surface removal method	4				?
Select prediction method:	1				?
Prediction variables	70 0.02				?
Running options. Working in D:\DA\Dip	lomarbeit\pyGravsof	t\pyGravsoft			Γ
Data send to fitgeoid	,				
Quit	Write settings	Run program		Help	

Abbildung 38: Anpassung an das Geoid

Die nun erhaltenden Geoidhöhen von Österreich, lassen sich grafisch wiedergeben. Dies kann mit jedem Programm, welches Grids lesen und darstellen kann, getan werden. In diesem Fall, wurde das Programm Surfer verwendet, da hier schon vorher Darstellungen von Grids erstellt wurden, wie auch Grids berechnet wurden. Nur muss das GRAVSOFT Grid vorher in ein SURFER Grid umgewandelt werden. Dazu enthält das **GRAVSOFT** Programm das passende Umwandlungsprogramm \rightarrow G2SUR. Es muss nur das GRAVSOFT Grid ausgewählt werden, welches umgewandelt werden soll, und der Speicherort und Name des Surfer Grids festgelegt werden.

7₭ G2SUR - Conversion of GRAVSOFT grids to SURFER format			_		×
Name of GRAVSOFT grid file:	geoid				Browse
Name of SURFER grid to hold result:	geoid_surfer				Save as
Running options. Working in C:\DA\Diplomarbeit\pyGravsoft\pyGravsoft					
			-		
Quit	Write settings	Run prog	ram		Help

Abbildung 39: Erstellung des SURFER Grids

Im Abschnitt "Ergebnisse" wird das Ergebnis der Remove-Compute-Restore durch Verwendung eins RTM grafisch wiedergegeben. Ebenfalls wird das Ergebnis des klassischen Remove-Compute-Restore Schrittes ohne Verwendung des RTM gezeigt. Die Berechnungsschritte sind wie schon erwähnt, die gleichen, außer das kein RTM berechnet wird und keine Umrechnung vom Quasigeoid aufs Geoid mithilfe der Bouguer Anomalien durchgeführt werden muss (Gründe siehe Kapitel: Mathematischer Hintergrund).

Klassischer Remove-Compute-Restore Schritt:

$$\Delta g_{res} = \Delta g_{gem} - \Delta g_{EGM} - \Delta g_{Top} \tag{43}$$

$$N = N_{res} + \Delta N_{EGM} + \Delta N_{Top} \tag{44}$$

4. Ergebnisse

Remove-Compute-Restore Technik

Abbildung 40: Geoidlösung nach der Remove-Compute-Restore Technik unter Verwendung eines RTM

Abbildung 41: Geoidlösung nach der klassischen Remove-Compute-Restore Technik ohne Verwendung eines RTM

Die Abbildungen 40 und 41 geben das Ergebnis des Remove-Compute-Restore Schrittes einmal unter Verwendung eines RTM und einmal klassisch ohne RTM wieder. Zu erkennen sind die berechneten Geoidhöhen, welche sich in einem Bereich von 42 bis 52 Metern bewegen.

Die folgende Abbildung 42 gibt die offiziell berechnete Geoidlösung von Pock wieder. Die Geoidhöhen bewegen sich ebenfalls in einem Bereich von 42 bis 52 Metern.

Abbildung 42: Geoidlösung von Pock

Zum Vergleich der Lösungen, wird auf den folgenden Seiten, ein statistischer Vergleich zwischen den einzelnen Geoidlösungen erstellt.

Als Kontrolle der Berechnungsschritte der Remove-Compute-Restore Technik mit RTM und ohne RTM, werden die Standardabweichung, der minimale- und der maximale Wert der berechneten Daten berechnet. Denn die Standardabweichung der Schwereanomalie, sollte nach dem Remove-Schritt, kleiner sein, als vor dem Remove Schritt. Sollte dies nicht der Fall sein, ist keine Glättung der Werte eingetreten, und es liegt ein Fehler in der Berechnung bzw. in der Wahl der Parameter vor. Das gleiche gilt für den Restore-Schritt, nur umgekehrt. Am Anfang sollte die Standardabweichung klein sein, da noch keine Effekte hinzuaddiert wurden. Danach, sollte diese aber größer sein. Ist dies nicht der Fall, liegt ebenfalls ein Fehler in der Berechnung bzw. in der Wahl der Parameter vor.

Compute-Restore Technik mit RTM					
Daten	Std.	Minimum	Maximum		
fa	42.7110 mgal	-155.8100 mgal	201.0001 mgal		
fa-egm	37.4431 mgal	-208.8580 mgal	136.7850 mgal		
fa-egm-topo	14.7403 mgal	-65.1330 mgal	91.5040 mgal		
N_stokes	0.4475 m	-0.7870 m	1.6560 m		
N+topo	0.4892 m	-0.7960 m	1.9650 m		
N+topo+egm	1.9975 m	42.1630 m	51.8400 m		

Taballa 1. Standardabwaiahung und Minimum Maximum dar Damaya

Tabelle 2: Standardabweichung, Minimum und Maximum der klassischen **Remove-Compute-Restore Technik ohne RTM**

Daten	Std.	Minimum	Maximum
fa	42.7110 mgal	-155.8100 mgal	201.0001 mgal
fa-egm	37.4431 mgal	-208.8580 mgal	136.7850 mgal
fa-egm-topo	25.9563 mgal	-164.6430 mgal	19.9180 mgal
N_stokes	5.5352 m	-13.7230 m	7.8870 m
N+topo	2.7306 m	-0.9080 m	9.3600m
N+topo+egm	2.4044 m	43.7180 m	54.9250 m

In Tabelle 1 und 2 fällt auf, das bei den Berechnungen eine Glättung der Daten nach dem Remove-Schritt eintritt, den die Standardabweichung wird kleiner bzw. besser. Ebenfalls tritt im Restore-Schritt eine Zunahme der Standardabweichung ein. Sodass in der Berechnung des Remove-Compute-Restore Schrittes kein grober Fehler zu erkennen ist.

Als nächstes, werden die Residuen der einzelnen Lösungen mit dem Programm SURFER berechnet. Als Vergleich dienen die absoluten Geoidhöhen der 192 GPS Punkte. Die Berechnung der Residuen findet man in SURFER unter folgendem Pfad: [Grid \rightarrow Residuals]. Um sich die statistischen Werte anzeigen zu lassen, muss die gesamte Residuenspalte ausgewählt werden und [Data \rightarrow Statistics] angeklickt werden.

Tabelle 3 : Statistischer Vergleich der Geoidlösungen (192 GPS Punkte)					
Geoidlösung	Mit RTM	Ohne RTM	Pock		
Anzahl der Werte/Punkte	192	192	192		
Summe	-0.0095 m	-0.0083 m	-0.2548 m		
Minimum	-0.0514 m	-0.0665 m	-0.0671 m		
Maximum	0.0557 m	0.0732 m	0.1011 m		
Mittelwert	0.0000 m	0.0000 m	0.0013 m		
Standardabweichung	0.0162 m	0.0212 m	0.0280 m		

In Tabelle 3 werden die einzelnen statistischen Werte der Geoidlösungen, die mit dem Programm Surfer gerechnet werden, numerisch wiedergegeben. Angegeben werden die Anzahl der verwendeten Punkte (alle GPS Punkte), die Summe daraus, wie auch das Maximum, das Minimum, der Mittelwert, wie auch die Standardabweichung. Die Standardabweichung für die Geoidlösung mit RTM beträgt 1.6 cm, die Standardabweichung für die Geoidlösung ohne RTM bei 2.1 cm. Vergleicht man die Standardabweichung miteinander, fällt auf, das die Standardabweichung besser ist, als bei der Geoidlösung von Pock 2.8 cm. Dies lässt sich damit erklären, das am Ende mit dem Programm FITGEOID eine Anpassung des gravimetrischen Geoids an das gesuchte Geoid durch die 192 GPS Punkte erfolgt. Wodurch die Anpassung genau auf die 192 Punkte erfolgt und dadurch eine so gute Standardabweichung zu Stande kommt. Bei der Lösung von Pock, war aufgrund der verwendeten Methode keine Anpassung mit Hilfe der GPS/Nivellement Punkte notwendig, und die Standardabweichung von 2.8 cm stellt bereits eine Abschätzung für die absolute Geoidgenauigkeit dar.

Zur besseren Veranschaulichung, wird die Differenz zwischen der Lösung von Pock und den berechneten Lösungen grafisch visualisiert.

Abbildung 43: Gridvergleich Pock - RTM Lösung mit 192 GPS Punkten

Abbildung 44: Gridvergleich Pock – klassische Lösung ohne RTM mit 192 GPS Punkten

Die Abbildungen 43 und 44 zeigt die Differenz zwischen der Lösung von Pock und der berechneten Lösung unter Verwendung eines RTM und einmal die Differenz klassisch ohne Verwendung eines RTM. Die Abweichungen der GPS Punkte (schwarze Kreuze) liegen größtenteils in einem Bereich von -10 und +10 Zentimetern und besser (hoher Grünanteil), was auch die Tabelle 3 verdeutlicht. Was aber auffällt, ist das je weiter man sich von den GPS entfernt, die Abweichungen größer werden. Dies veranschaulicht die folgende Tabelle 4, in der die Statistik der Gitterpunkte angegeben wird.

Tabelle 4 : Statistischer Vergleich der Gitterpunkte (192 GPS Punkte)				
Differenzdarstellung	Pock-RTM	Pock-klassisch		
Anzahl der Gitterpunkte	442880	442880		
Summe	811.8658 m	564.3458 m		
Minimum	-0.8212 m	-0.3343 m		
Maximum	1.2214 m	0.3117 m		
Mittelwert	0.0274 m	0.0191 m		
Standardabweichung	0.1564 m	0.0675 m		

Besonders deutlich lassen sich die Abweichungen bei der Lösung mit RTM erkennen, bei der Abweichungen von +122 bis -82 cm auftreten. Was daher auch einen Standardabweichung von 15.6 cm zur Folge hat. Bei der klassischen Lösung hingegen, bleiben die Abweichungen in einem Bereich von +31 bis -33 cm, mit einer Standardabweichung von 6.8 cm.

Um zu sehen, wie es sich verhält wenn man nicht alle 192 GPS Punkte zur Anpassung des Geoids verwendet, sondern nur die Hälfte davon (96 Punkte), wird die Anpassung nochmal gerechnet. Der statistische Vergleich bezieht sich im folgenden auf die restlichen nicht verwendeten 96 Punkte.

Tabelle 5 : Statistischer Vergleich der Geoidlösungen (96 GPS Punkte)				
Geoidlösung	Mit RTM	Ohne RTM	Pock	
Anzahl der Werte/Punkte	96	96	96	
Summe	-0.5001 m	0.3326 m	-0.0773 m	
Minimum	-0.5347 m	-0.2389 m	-0.0688 m	
Maximum	0.5243 m	0.5049 m	0.0622 m	
Mittelwert	-0.0052 m	0.0346 m	-0.0008 m	
Standardabweichung	0.1924 m	0.0964 m	0.0271 m	

In der Tabelle 5, werden die einzelnen statistischen Werte der Geoidlösungen, die mit dem Programm Surfer gerechnet werden, numerisch wiedergegeben. Die Standardabweichung für die Geoidlösung mit RTM beträgt 19.2 cm, wohingegen die Standardabweichung für die Geoidlösung ohne RTM bei 9.6 cm liegt. Vergleicht man die Standardabweichung miteinander, fällt auf, das die Standardabweichung nun deutlich schlechter ist, als bei der Geoidlösung von Pock mit 2.7 cm. Dies lässt sich damit erklären, das am Ende mit dem Programm FITGEOID eine Anpassung des gravimetrischen Geoids an das gesuchte Geoid nur durch 96 GPS Punkte erfolgt. Sodass die Anpassung genau auf die 96 Punkte erfolgt, und dadurch eine so schlechte Standardabweichung in den restlichen 96 Punkten zu Stande kommt. Bei der Lösung von Pock, wurde dahingegen keine Anpassung gerechnet, da diese schon so gut die Geoidform der Erde wiedergibt.

Zur besseren Veranschaulichung, wird die Differenz zwischen der Lösung von Pock und den berechneten Lösungen bei Verwendung von 96 Punkten grafisch visualisiert.

Abbildung 45: Gridvergleich Pock - RTM Lösung mit 96 GPS Punkten

Abbildung 46: Gridvergleich Pock – klassische Lösung ohne RTM mit 96 GPS Punkten

Die Abbildung 45 und 46 zeigt die Differenz zwischen der Lösung von Pock und der berechneten Lösung unter Verwendung eines RTM und einmal die Differenz klassisch ohne Verwendung eines RTM bei Verwendung von 96 GPS Punkten. Die Abweichungen, liegen nun nicht mehr wie vorher größtenteils in einem Bereich von -10 und +10 Zentimetern (außer bei den verwendeten 96 GPS Punkten), sondern ist deutlich höher. Dies veranschaulicht die folgende Tabelle 4, in der die Statistik der Gitterpunkte angegeben wird.

Tabelle 6 : Statistischer Vergleich der Gitterpunkte (96 GPS Punkte)				
Differenzdarstellung	Pock-RTM	Pock-klassisch		
Anzahl der Gitterpunkte	442880	442880		
Summe	1140.5058 m	734.4998 m		
Minimum	-0.7871 m	-0.3568 m		
Maximum	1.3864 m	0.8849 m		
Mittelwert	0.0384 m	0.0247 m		
Standardabweichung	0.1999 m	0.1026 m		

Besonders deutlich lassen sich die Abweichungen bei der Lösung mit RTM erkennen, bei der Abweichungen von +139 bis -79 cm auftreten. Was daher auch einen Standardabweichung von 20 cm zur Folge hat. Bei der klassischen Lösung hingegen, bleiben die Abweichungen in einem Bereich von +88 bis -36 cm, mit einer Standardabweichung von 10.2 cm. **Fazit:** Die Berechnung nach dem klassischen Remove-Compute-Restore Verfahren liefert ein besseres Ergebnis als unter Verwendung eines RTM. Ein Grund, weswegen das Verfahren mit RTM nicht so gute Ergebnisse liefert, mag der Glättungsgrad für das RTM sein. Dies hat Einfluss auf die Wahl der Radien im TC Programm. Wobei sich aber erst im Ergebnis zeigt, ob man den optimalen Glättungsgrad für das RTM verwendet hat. Ein weiterer Grund, mag die n-zeta Differenz sein, die gegebenenfalls geglättet werden muss, wodurch sie einen kleineren Einfluss auf das Endergebnis hat. Ebenfalls, sollte die Halbwertsbreite der Geologen von 146 km für die Bougueranomalien (siehe Meurers und Ruess) ausgetestet werden. Wie und in welcher Weise solche Veränderungen das Ergebnis verbessern und damit nicht verfälschen, sollte in zukünftigen Diplomarbeiten weiter untersucht werden.

5. Das GRAVSOFT Programm

5.1 Entwicklung

Das GRAVSOFT Programm, ist ein ein Programm zur Gravitationsfeldmodellierung. Es benutzt als Mathematische Grundlage die Kollokation nach kleinsten Quadraten (2D oder 3D) und die Fouriertransformationen.

Das GRAVSOFT Programm basiert auf FORTRAN Programmen, die kontinuierlich seit den 70er-Jahren von der DTU-Space (Raumfahrtinstitut der Technischen Universität von Dänemark) und der Universität von Kopenhagen weiterentwickelt wurden.

Die FORTRAN Programme, verwenden text-/linienorientierte DOS-Schnittstellen, die schwer zu bedienen sind. Um Neulingen den Einstieg in diese Programm zu erleichtern, beauftragte die DTU-Space die Universität von Kopenhagen ein benutzerfreundlicheres System zu entwickeln. Janni Nielsen, Professorin der Informatik Technologie an der Kopenhagener Business School, diente dabei als Beraterin für die neue Benutzer Schnittstelle.

Als erstes musste man sich auf die Werkzeuge einigen, um dieses benutzerfreundliche System zu erstellen. Man einigte sich auf die Programmiersprache Python und das widget toolkit Tk. Diese Produkte sind frei zugänglich (Open-Source Programme) und ermöglichen die Erstellung von plattformübergreifenden Schnittstellen.

Die neue Schnittstelle wurde schließlich mit diesen Werkzeugen implementiert. Das Ergebnis war die GRAVSOFT Benutzerschnittstelle.

5.2 FORTRAN

FORTRAN ist eine Programmiersprache und steht für FORmula TRANSlation. Sie wurde von John W.Backus einem Programmierer bei IBM 1957 entwickelt. Sie liegt in mehreren Versionen/Erweiterungen vor.

FORTRAN ist für wissenschaftliche und numerische Berechnungen optimiert. Dazu liegen umfangreiche Bibliotheken vor. FORTRAN ist die erste jemals realisierte höhere Programmiersprache. Eine höhere Programmiersprache ist eine Programmiersprache dessen Code durch einen Compiler oder Interpreter in Maschinensprache umgewandelt wird, und somit nicht direkt vom Prozessor verstanden und ausgeführt werden kann. Als Beispiel für aktuelle höhere Programmiersprachen gelten:

- C++
- JAVA
- Ruby
- Python

5.3 Tk (Toolkit)

Tk ist eine Toolkit zur Programmierung von grafischen Benutzeroberflächen (GUI). Es eignet sich für einfache Programmierung von kleineren bis mittleren Programmen. Das Toolkit wurde für die Tool Command Language (Tcl) entwickelt und ist daher einfach zu benutzen. Damit erstellten Programme laufen auf Unix, Windows und Macintosh. Den Programmiersprachen Common Lisp, Ruby, Perl und Python dient Tk als grafisches Toolkit.

Tk stellt verschiedene Oberflächenelemente für die Erstellung von GUIs zur Verfügung:

- button
- checkbutton
- entry
- label
- listbox
- menubotton
- notebook
- progressbar
- scale
- separator
- spinbox
- treeview

- canvas
- combobox
- frame
- labelframe
- menu
- message
- panedwindow
- radiobutton
- scrollbar
- sizgrip
- tk_optionMenu
- text

5.4 Python

Python ist eine universelle höhere Programmiersprache. Sie wurde Anfang 90-er Jahre von Guido van Rossum am Zentrum für Mathematik in Amsterdam entwickelt. Python sollte dabei die Programmiersprache ABC ersetzen.

Über die Namensgebung, welche in erster Assoziation mit einer Schlange gleichzusetzen ist, schrieb Guido van Rossum 1996:

"Vor über sechs Jahren, im Dezember 1989, suchte ich nach einem 'Hobby'-Programmier-Projekt, dass mich über die Woche um Weihnachten beschäftigen konnte. Mein Büro ... war zwar geschlossen, aber ich hatte einen PC und sonst nichts vor. Ich entschloss mich einen Interpreter für die neue Skripting-Sprache zu schreiben, über die ich in der letzten Zeit nachgedacht hatte: ein Abkömmling von ABC, der UNIX/C-Hackern gefallen würde. Python hatte ich als Arbeitstitel für das Projekt gewählt, weil ich in einer leicht respektlosen Stimmung war (und ein großer Fan von Monty Python's Flying Circus)." [Quelle: python-kurs.eu]

Der Grundgedanke bei Python ist: Einfachheit und Übersichtlichkeit. Wegen dieser Klarheit im Programmierstil, welcher mit wenigen Schlüsselwörtern auskommt, gilt die Sprache als einfach zu erlernen. Objektorientierte und strukturierte Programmierung wird dabei vollständig unterstützt, wobei man nicht auf einen einzigen Programmierstil gezwungen wird, sondern den für die Aufgabe am geeignetsten wählen kann.

Zudem ist eine umfangreiche Standartbibliothek implementiert, die leicht erweiterbar und überschaubar sind. Sodass es möglich ist, Programme in Python in anderen Sprachen als Module einzubetten.

Unter dem Titel "The Zen of Python" wurden 2004 die wesentlichen Ziele und Regeln der Sprache herausgegeben.

"The Zen of Python":

- Beautiful is better than ugly.
- *Explicit is better than implicit.*
- Simple is better than complex.
- *Complex is better than complicated.*
- *Flat is better than nested.*
- Sparse is better than dense.
- *Readability counts.*
- Special cases aren't special enough to break the rules.
- Although practicality beats purity.
- Errors should never pass silently.
- Unless explicitly silenced.
- *In the face of ambiguity, refuse the temptation to guess.*
- There should be one-- and preferably only one --obvious way to do it.
- *Although that way may not be obvious at first unless you're Dutch.*
- *Now is better than never.*
- *Although never is often better than right now.*
- If the implementation is hard to explain, it's a bad idea.
- If the implementation is easy to explain, it may be a good idea.
- *Namespaces are one honking great idea -- let's do more of those!* [Quelle: python.org]

Es liegen mehrere Versionen vor:

- Python v. 1.0 veröffentlicht im Januar 1994
- Python v. 2.0 veröffentlicht im Oktober 2000
- Python v. 3.0 veröffentlicht im Dezember 2008

5.5 Installation von GRAVSOFT

In seiner Entstehungsphase, stand das GRAVSOFT Programm für Testzwecke am Server der Universität von Kopenhagen kostenlos zur Verfügung. Was aber nicht mehr der Fall ist, und das GRAVSOFT Programm kein Open Source Programm mehr ist. Für nicht kommerzielle Zwecke (Diplom-, Doktorratsarbeit ...) wird es aber kostenlos zur Verfügung gestellt. Dazu reicht es den Autoren des Programms (Janni Nielsen und Rene Forsberg) eine E-Mail zu schreiben und den Sachverhalt zu schildern. Sie entscheiden dann über die Freigabe des Programms.

Nach Erhalt der Freigabe, erhält man von einem der Autoren den ZIP-Ordner mit dem Programm. Dieser ZIP-Ordner muss heruntergeladen und entpackt werden.

Nach dem öffnen des entpackten Ordners, offenbart sich die Ordnerstruktur. Diese enthält die Python Programme, die FORTRAN Programme und die Testdaten.

Die Struktur gliedert sich wie folgt:

- Python Programme (.py)
- README Datei (.txt)
- Unterordner
 - src : Enthält die FORTRAN Programme (.for)
 - bin : Enthält die Ausführungsdateien (.exe)
 - doc : Enthält die zugänglichen Dokumentationen/Hilfsdateien
 - data : Enthält die Testdaten von New Mexico und das EGM96

Um die Python Programme des GRAVSOFT Programms auszuführen, ist es nötig Python zu installieren. Python lässt sich kostenlos unter folgendem Link herunterladen und installieren (https://www.python.org).

Wichtig: Es wird empfohlen die Python 2 Version runterzuladen und zu installieren. Da die Programmcodes in Python 2 geschrieben wurden und geringfügig anders sind als die in der Python 3 Version.

Das GRAVSOFT Programm, kann durch klicken auf "launcher.py" oder durch Eingabe des Befehls "launcher.py" in die Windows Eingabeaufforderung geöffnet werden.

5.6 GRAVSOFT Funktionsumfang

Nach Ausführen der Python Programme ("launcher.py"), öffnet sich das Eingangsfenster des GRAVSOFT Programms.

76 PyGravs	oft Launcher - Gravity field programs		– 🗆 X
3D Applicatio	ons		
COVFIT	Covariance Fitting	EMPCOV	Empirical Covariance Estimation
GEOCOL	Geodectic Collocation	GEOGRID	Gridding or Interpolation of Irregular Distributed Data
GEOIP	Grid Interpolation	GEOEGM	Gravity Model Evaluation
STOKES	Space Domain Integration for Geoid or Deflections of the Vertical	тс	Gravimetric Terrain Effects
2D Applicatio	ons		
SPFOUR	Spherical Multiband FFT for Gravimetric Computations	TCFOUR	Terrain effect computation by FFT
COVFFT	Estimation of 2D Covariance Functions Using FFT	GEOFOUR	Planar FFT for Gravity Field Modelling
GPFIT	Fitting Flat-earth Covariance Function to Gravity Data	GPCOL1	Flat-earth Collocation
FITGEOID	Fit surface to GPS levelling	TCGRID	DTM Grids and Mean Terrain Surfaces for RTM Method
Service Progr	ams		
SELECT	Select, Thin and/or Average Data	GEOMAIN	2 points: Distance and Azimuth or Reverse
TRANS	Transformation of Coordinates to or from a 2D or 3D System	N2ZETA	Transformation of Geoid Heights to Height Anomalies
FCOMP	File Comparison	G2SUR	Conversion of GRAVSOFT Grids to SURFER Format
GBIN	Convert Grid to Binary or Reverse	G2GMT	Conversion of GRAVSOFT Grids to GMT Format
GCOMB	Combining Two Grids	GLIST	Converts grid file to list file

QUIT

Abbildung 47: GRAVSOFT Eingangsfenster

Das GRAVSOFT Eingangsfenster ist in 3 Abschnitte geteilt, die unterschiedliche Berechnungsprogramme enthalten. Bei Auswahl einer dieser Programme, wird man auf eine Folgeseite weitergeleitet, bei der man diverse Information angeben und auswählen muss. Die Eingabeaufforderungen sind dabei benutzerfreundlich gestaltet und es sind Hilfebuttons vorhanden, welcher weitere Informationen liefern. Ebenfalls ist ein Link zu einer Allgemeinen Hilfsdatei (im Internet oder im Unterordner doc) implementiert.

Nach Abschluss der Eingabeaufforderung für das ausgewählte Programm, wird die Berechnung mit Klick auf den "Run" ausgeführt. Informationen zur Berechnung werden angezeigt, und eine ASCII Eingangsdatei ("Programmname.inp") und eine Ergebnisdatei ("Programmname.log") werden erzeugt.

Bei nochmaliger Ausführung des Programms, werden die Dateien überschrieben. Darum wird empfohlen die Dateien jedes mal umzubenennen, um die Ergebnisse nicht zu verlieren.

Im folgenden, werden die in dieser Diplomarbeit verwendeten GRAVSOFT Programme beschrieben:

EMPCOV

Dieses Programm steht für "Empirical Covariance Estimation", und berechnet die empirische Kovarianzfunktion. Das Eingabefenster sieht wie folgt aus:

76 EMPCOV - Emperical Covariance Estin	nation		_	
Input data filename:	observations.dat			Browse
Input position of data element: :	1			?
Input sample intervalsize (arcmin):	10.0			
Input number of sampling intervals:	20			
Configure parameters				
Should mean value be subtracted:	Yes	No		
Should data in subarea be used:	Yes	No		
Input area boundaries:	54.5 57.5 7.0 13.0			?
Input histogram bin size	5.0			
Name of file to hold result:	table.txt			Save as
Running options. Working in D:\DA\Diplon	narbeit\pyGravsoft\pyGr	ravsoft		
Quit	Write settings	Run program		Help

Abbildung 48: EMPCOV Programm

Um die empirische Kovarianzfunktion zu berechnet, muss die entsprechende Punktedatei angegeben werden. Wichtig ist, dass diese Datei dem GRAVSOFT Format entspricht (siehe Abschnitt: GRAVSOFT Datenformate). Wichtig ist anzugeben, in welcher Spalte die Datenwerte liegen, welche Intervalgröße verwendet werden soll, und in welcher Anzahl. Ebenfalls kann entschieden werden, ob der Mittelwert von den Daten abgezogen werden soll. Was bei der empirischen Kovarianzfunktion aber nie eine schlechte Wahl ist, da man sich dann sicher sein kann, das die Daten zentriert sind. Möchte man von den Punktedatei nicht alle Punkte in die Berechnung einfließen lassen, lässt sich ein Bereich festlegen in dem die Punkte liegen müssen. Unter "Histogram binsize", kann man sich ein Histogramm ausgeben lassen (wenn Eingabe 0, wird kein Histogramm ausgegeben). Durch festlegen des Namens der Ergebnisdatei, und mit Klick auf " Run program", wird die empirische Kovarianzfunktion berechnet.

GEOIP

Dieses Programm steht für "Grid Interpolation". Es ist ein Programm, zur Interpolation von Werten aus einem Gitter mithilfe einer bilinearen oder einer Spline Interpolation. Ebenfalls lassen sich Grids wie beim Programm GCOMB addieren bzw. subtrahieren. Das Eingabefenster sieht wie folgt aus:

% GEOIP - Grid interpolation		— C	x c
Input grid filename:	grid.gri		Browse ?
Operation mode:	1		?
Spline windows size:	0		?
Minimum distance:	0		?
Pointfile definition (mode = 1-3, 5-7 and mod	e > 10)		
Point filename:	pointfile.dat		Browse ?
Data number in record:	1		?
Gridfile definition (mode = 4)			
Output grid definition:	1.0 5.0 2.0 6.0 0.1 0.1		
Elipsoide and zone numbers:	0 0		?
Subgrid coordinates:	0.0 0.0 0.0 0.0		?
Should grid values be integers:	Yes	No	?
Height definition (mode > 100)			
Altitude of grids:	0 1000		
Running options. Working in C:\Users\Ciglene	ecki\Desktop\Diplomarl	beit\pyGravsoft\pyGravsoft	
Name of file to hold interpolated values:	result.gri		Save as ?
Quit	Write settings	Run program	Help

Abbildung 49: GEOIP Programm

Um Werte aus einem Grid zu Interpolieren, muss dieses Grid angegeben werden. Wichtig ist, das dieses Grid dem GRAVSOFT Format entspricht (siehe Abschnitt: GRAVSOFT Datenformate). Unter "Operation mode" lässt sich die gewünschte Berechnungsart festlegen. Diese sind mit Codes definiert (bei Klick aufs Fragezeichen, werden die möglichen Berechnungsart mit ihrem Code angegeben). Unter "Spline windows size" lässt festlegen, welche Interpolationsart man verwenden möchte. Sollte der Wert 0 angegeben werden, wird die bilineare Interpolation verwendet. Bei Angabe eines Wertes größer als 0, wird die Spline Interpolation verwendet, bei der die Spline Fenstergröße definiert werden muss. Unter "Minimum distance" lässt sich festlegen, welche Punkte in die Interpolation einbezogen werden sollen. Also ob diese Punkte einen bestimmten Abstand haben sollen.

Durch festlegen des Namens für die Ausgabedatei, und mit Klick auf "Run program" wird die Grid Interpolation durchgeführt.

Bei der bilinearen Interpolation, ist der Höhenwert des Punktes von der Distanz zu den 4 benachbarten Punkten des Grids abhängig.

Abbildung 50: Prinzip der bilinearen Interpolation

Die Berechnung des Höhenwertes des Punktes erfolgt nach folgenden Formeln:

$$h_m = \frac{h_3 - h_1}{D} dy + h_1$$

$$h_n = \frac{h_4 - h_2}{D} dy + h_2$$

$$h_P = \frac{h_n - h_m}{D} dx + h_m$$

mit:

 h_1 - h_4 Höhenwert der benachbarten Punkte

- dx, dy Distanz zu den benachbarten Punkten
- D Abstand der Punkte
- $P(X_p, Y_p)$ Punkt für den sein Höhenwert gesucht wird

Rechenbeispiel:

Koordinatenpunkten:

	X	Y	H [m]
Punkt 1	79	79	50
Punkt 2	84	79	65
Punkt 3	79	84	80
Punkt 4	84	84	39

Gesuchter Höhenwert für den Punkt P:

Punkt P	81	81	?
---------	----	----	---

Berechnung:

$$h_{m} = \frac{80-50}{5} + 2+50 = 62$$

$$h_{n} = \frac{39-65}{5} + 2+65 = 54.6$$

$$h_{p} = \frac{54.6-62}{5} + 2+62 = \underline{59.04 \text{ m}}$$

Der gesuchte Höhenwert für den Punkt P ist 59.04 Meter.

STOKES

Dieses Programm steht für "Space Domain Integration for Geoid or Deflection of the Vertical", d.h es berechnet aus Schwereanomalien Geoidhöhen nach der Formel von Stokes oder Lotabweichungen nach dem Integral nach Vening-Meinesz (siehe Kapitel: Mathematischer Hintergrund). Das Eingabefenster sieht wie folgt aus:

% STOKES - Space domain integra	tion for geoid or deflection	n of the vertical — 🛛 🗆) ×	1
Grid file:	gravi.gri		Browse	?
Station file:	stations.dat	_	Browse	?
Operation mode:	1	_		?
Remove mean?	Yes	No		
Cap size range [degrees]:	0 9.0			
Running options. Working in C:\Use	rs\Ciglenecki\Desktop\Dip	lomarbeit\pyGravsoft\pyGravsoft		
Name of file to hold result:	result.dat		Save as	
Quit	Write settings	Run program	Help	

Abbildung 51: STOKES Programm

Für die Berechnung, muss ein GRAVSOFT Grid mit Schwereanomalie angegeben werden, wie auch eine GRAVSOFT Punktedatei mit Koordinaten, an denen die Geoidhöhen/Lotabweichungen berechnet werden sollen. Unter "Operation mode" lässt sich die Art der Berechnung festlegen. Es stehen folgende Codes zur Auswahl:

- 1 : Stokes Integration
- 2 : Vening-Meinesz

In einer weiteren Abfrage, kann festgelegt werden ob der Mittelwert von den Daten abgezogen werden soll. Unter "Cap size range" kann festgelegt werden, in welchem Bereich Punkte um den jeweiligen Integrationspunkt einbezogen werden. Im Fall von Stokes und Vening-Meinesz, sollten alle Punkte einbezogen werden. Durch festlegen des Namens für die Ausgabedatei, und mit Klick auf "Run program" wird die Berechnung durchgeführt.

Nach Ausführung des Programms STOKES, erhält man ein Punktdatensatz in dem in den ersten vier Spalten Informationen über den Integrationspunkt stehen (*id*, φ , λ , *h*), und in der letzten Spalte die berechneten Geoidhöhen, bzw. in den letzten zwei Spalten die Lotabweichungen (ξ , η).

GEOGRID

Dieses Programm steht für "Gridding or Interpolation of Irregular Distributed Data", d.h es ist ein Programm für die Rasterung von unregelmäßig verteilten Datenwerten in ein regelmäßiges rechteckiges Grid. Dies erfolgt mithilfe einer Interpolation mit gewichteten Mittel oder einer Kollokation nach kleinsten Quadraten. Mit dem Programm ist es möglich einen Trend aus den Daten zu entfernen. Das Eingabefenster sieht wie folgt aus:

76 GEOGRID - Gridding or interpolation	n of irregualar distributed data	a — C	ı ×	
Input data filename:	observations.dat	-	Browse	?
Number of data values:	2	-		?
Input position of data element: :	1	-		?
File to hold predictions:	result.gri	-	Save as	?
File to hold errorestimates:	errors.gri	-	Save as	?
				\Box
Number of closest points:	1			?
Trend surface removal method	0			?
Select prediction method:	1	-		?
Prediction variables	10.0 1.0	-		?
Mode number:	1	-		?
Specify prediction points:	54.5 57.5 7.0 13.0 0.1 0.1	-		?
Margin for data selection area:	10.0	-		?
Running options. Working in C:\Users\C	iglenecki\Desktop\Diplomarb	oeit\pyGravsoft\pyGravsoft		Γ
		1		
Quit	Write settings Run	n program	Help	

Abbildung 52: GEOGRID Programm

Um ein regelmäßiges rechteckiges Grid aus gegebenen/gemessenen Punkten zu erstellen, muss dieser Punktdatensatz angegeben werden. Wichtig ist, das dieser Datensatz dem GRAVSOFT lesbaren Format entspricht (siehe Abschnitt: GRAVSOFT Datenformate). Weiter muss angegeben werden, wie viele Datenspalten der Punktdatensatz besitzt (da diese ja später als Bestimmungswerte für die Höhenwert der Gitterpunkte dienen), wie auch in welcher Spalte des Datensatzes diese liegen. Bevor die Paramter der Gridberechnung bestimmt werden, muss der Name des Ergebnisgrids, wie auch die Datei mit dessen Fehlerabschätzungen bestimmt werden.

Im nächsten Abschnitt werden die Parameter für die Gridberechnung festgelegt. Dabei ist es möglich zu bestimmen, wie viele Punkte um den Berechnungspunkt in die Berechnung einfließen sollen (das Programm verwendet dabei eine Quadranten-basierte Suche, bei der typischerweise die 5 nächsten Nachbarn verwendet werden). Sollte der Wert 0 angegeben werden, für die Anzahl der Nachbarpunkte, werden alle Punkte verwendet.

Abbildung 53: Nearest neighbour

Ebenfalls zu bestimmen, ist es wie ein möglicher Trend zu entfernen ist ("Trend surface removal method"). Der Trend lässt sich dabei unterschiedlich beschreiben (Linear, Logaritmisch, Polynomisch ...). Zur Trendentfernung stehen diverse Codes zur Verfügung (Klick aufs Fragezeichensymbol). Unter "Select prediction method", lässt sich die Berechnungsmethode für das Grid bestimmen. Es stehen zur Auswahl:

- 0 : keine, nur Trendbereinigung
- 1: Kollokation:

Der Kollokation liegt die lokale Kovarianzfunktion zugrunde:

$$c(s) = C_0(1 + \frac{s}{d})e^{(-s/d)}$$

mit:

d = Halbwertsbreite

s = Klassenbreite

Abbildung 54: Kovarianzfunktion mit Halbwertsbreite

Die Kollokation berechnet man wie folgt:

$$\hat{s} = C_{sl} C_{ll}^{-1} l$$

mit:

 C_{sl} , C_{ll} = sind die Kovarianzen zwischen den Punkten l = die Beobachtungspunkte

2: gewichtetes Mittel:

Dabei bekommen die Punkte gewichte Mittel:

$$\hat{s} = \frac{\sum_{i} \frac{l_{i}}{s_{i}^{2}}}{\sum_{i} \frac{1}{s_{i}^{2}}}$$

mit:

s =Abstände der Punkte

l = die Beobachtungspunkte

Sollte man sich für die Kollokation entscheiden, ist die Grundvoraussetzung, das die Daten zentriert sind, d.h das der Mittelwert über die Daten 0 ist. Sollte dies nicht der Fall sein, ist der Mittelwert von den Daten abzuziehen (einzustellen unter "Trend surface removal method"). Unter "Prediction variables" müssen die Variablen der Prädiktion angegeben werden. Dazu zählen die Halbwertsbreite des Punktdatensatzes wie auch der RMS Fehler. Die Halbwertsbreite ist jener Wert, bei der der Kovarianzfunktion auf die Hälfte von C(0) gesunken ist. Der Wert wird errechnet, indem der C(0)/2 Wert mit der Kovarianzfunktion geschnitten wird (siehe vorherige Abbildung: Kovarianzfunktion mit Halbwertsbreite). Der RMS ist die Wurzel der mittleren Fehlerquadratsumme, und ist eine Maßzahl die angibt, wie stark die berechneten Daten von den Beobachteten Werten abweichen. Was aber in diesem Fall nicht ganz stimmt. Da man das Ergebnis vorher nicht kennt. Der RMS Fehler ist in diesem Fall die kleinste Standardabweichung der Punkte.

Im folgenden kann unter "mode number" festgelegt werden, was mit dem berechneten Grid geschehen soll. Es stehen zur Auswahl:

- 1 : Grid in geographischen Koordinaten
- 2 : Grid in UTM
- 4 : Profil Interpolation
- 5 : Punkt Interpolation
- 6 : sollten die Eingangsdaten Bouguer Anomalien sein, lassen sich mit dieser Funktion Schwerewerte berechnen

Unter "Specify predictions points" lässt sich die Größe des Ergebnisgrids angeben. Dabei müssen wie üblich in GRAVSOFT (siehe Kapitel: GRAVSOFT Datenformate) die Nord-West Ecke und die Süd-Ost Ecke des gewünschten Grids mit seiner gewünschten Auflösung angegeben werden. Beim Punkt "Margin for data selection area" kann die Grenze in Kilometern festgelegt werden, über der Punkte über das definierte Grid, in die Berechnung einbezogen werden sollen.

Durch Klick auf "Run program" wird das Grid berechnet.

GEOEGM

Dieses Programm steht für "Gravity Model Evaluation", d.h mithilfe des Programmes lässt sich der langwelligen Anteil des globalen Schweremodells berechnen (EGM-Effekt). Das Eingabefenster des Programms sieht wie folgt aus:

🎋 GEOEGM - Gravity Model Evaluation		- 🗆 ×
Select reference system	5 - GRS80 7 - Best current	
Input gravity model filepath:	EGM96	Browse ?
Are the coefficients formatted?	Yes No	
Input format	(2I4,2D20.12)	-
Input GM, semi-major axis (M):	3.986004415D14 6378136.3	
Input maximal degree:	360	
Configure parameters		
Input datatype code:	13	?
Should a grid be used in computations	Yes	
Input grid specification :	54.5 57.5 7.0 13.0 0.1 0.2	?
Input grid altitude (m) :	0.0	
Input name of datafile (Gravsoft format):	dgfa_13689.dat	Browse
Should computed values be subtracted from observed	Yes	
Data column number:	1	?
Should statistics be output	Yes	_
Input histogram bin size	5.0	
Output to file	Yes No	
Name of file to hold result:	egm_effekte	Save as
Running options. Working in D:\DA\Diplomarbeit\pyGrav	/soft\pyGravsoft	
Quit	Write settings Run prog	gram Help

Abbildung 55: GEOEGM Programm

Um den EGM-Effekt berechnen zu können, muss das Schweremodell ausgewählt werden, welches verwendet werden soll (hier das egm96 mit Grad und Ordnung 360, möglich auch andere Bsp: egm2008 ...), wie auch das Referenzsystem (Geodätisches Referenzsystem 1980 (globale System) oder ein best angepasstes (lokales System) mit seiner Gravitationskonstante GM und der großen Halbachse a.

Im folgenden Abschnitt, gilt es zu bestimmen, auf welcher Datengrundlage, die EGM-Effekte berechnet werden sollen. Dabei muss die Art der Eingangsdatei, welche in die Berechnung einbezogen werden soll, angegeben werden. Es stehen mehrere Codes zur Auswahl:

- 11 : Höhenanomalien oder Geoidundulation
- 12 : Schwerestörung
- 13 : Schwereanomalien
- 15 : Vertikaler Schwerestörungsgradient
- ...

Den Code 13, benötigt man im Remove-Schritt, da man am Anfang den langwelligen Anteil des globalen Schweremodells (egm96) auf gemessene Schwereanomalien (Freiluftanomalien) wissen möchte.

Der Code 11, kommt im Restore-Schritt zum Einsatz, da man da den langwelligen Anteil des globalen Schweremodells (egm96) auf berechnete Geoidhöhen wissen möchte.

Durch festlegen des Namens für die Ausgabedatei und mit Klick auf "Run program" wird der Effekt berechnet.

Zur Kontrolle, werden die EGM-Effekte auf gemessene Schwereanomalie berechnet. Die Schwereanomalien setzten sich aus dem Schwerevektor (durch Messung bestimmbar) und dem Normalschwerevektor (durch Modelle bestimmbar) zusammen.

Freiluftanomaliendatensatz:

nomalie[mgal]	hwerean	h Sc	lam	phi	id
	-47.23	268.33	8.4392953	45.6028860	77518
	-49.02	282.67	8.4759504	45.6039968	77519
	-60.35	235.88	8.5237238	45.6076076	77549
	-65.02	231.47	8.6039931	45.6056699	77551

Ergebnis mit den berechneten Effekten:

id	phi	lam	h	Effekt[mgal]
77518	45.602886	8.439295	268.3	-24.6060
77519	45.603997	8.475950	282.7	-29.5327
77549	45.607608	8.523724	235.9	-35.0242
77551	45.605670	8.603993	231.5	-44.6117

TC

Dieses Programm steht für "Gravimetric Terrain Effect", d.h es berechnet verschiedene Arten von Terrain Effekten. Dazu zählen direkte topografische Effekte, topografisch/isostatische Reduktionen , Gravimetrische Terrain Korrekturen und RTM (residual terrain model) Effekte. Das Eingabefenster des Programms sieht wie folgt aus:

7 TC - Compute terain effect on gravimetric qua	_		
Station list file:	fa-egm		Browse
Detailed elevation grid file:	Grid_matlab.txt		Browse
Coarse elevation grid file:	Grid_grob		Browse
Reference elevation grid file:	RTM		Browse
Data type:	5		?
Type of effect:	4		?
Placement of station:	1		?
Type of operation:	1		?
Data column (operation 2 or 3):	2		?
Density:	2.67		?
Maximum window:	91992 5.012695 23.007487		?
Minimum computation distance of inner grid:	10		?
Maximal radius of computation	60		?
Running options. Working in D:\DA\Diplomarbeit\	pyGravsoft\pyGravsoft		
Name of file to hold ouput:	topo_effekte		Save as
Quit	Write settings Run pro	gram	Help

Abbildung 56: TC Programm

Um die Terrain Effekte berechnen zu können, ist es nötig diverse Eingangsdaten anzugeben. Dazu muss zuallererst eine Listendatei mit Berechnungspunkten wie auch eine Grid-Datei die ein detailliertes Höhenraster enthält und eine Grid-Datei die ein grobes Höhenraster enthält angegeben werden. Sollte ein RTM benutzt werden, sollte dieses Grid ebenfalls angegeben werden. Es ist darauf zu achten, das die Grids in einer GRAVSOFT lesbaren Form vorliegen (siehe Kapitel: GRAVSOFT Formate).

Als nächstes gilt es den Typus der angegebenen Berechnungspunkte anzugeben. Es stehen folgende Codes zur Auswahl:

- 1 : Schwerestörrung *dg* [mgal]
- 2: Lotabweichungen ξ , η
- 3 : Höhenanomalien h_a [m]
- 4: dg, ξ , η
- 5 : Schwereanomalien Δg
- 6: Δg , ξ , η , h_a
- 7 : Vertikaler Schweregradient t_{zz}
- $\bullet \qquad 8: t_{xx} , t_{yy} , t_{zz}$
- 9 : alle Gradienten

Der Code 3 (Höhenanomalien) und der Code 5 (Schwereanomalien) werden im Remove-Compute-Restore Schritt benötigt.

Als nächstes gilt es den Effekt auszuwählen, welchen man mit diesem Programm berechnen möchte. Es stehen zur Auswahl:

- 1 : Topografische Effekte
- 2 : Isostatische Effekte
- 3 : Terrain Korrekturen
- 4 : RTM (residual terrain model) Effekte

Ebenfalls muss angegeben werden, wo die Berechnungspunkte auf dem Grid liegen, die Dichte welche in der Berechnung verwendet wird, das Fenster indem die Effekte berechnet werden sollen, der Radius der Innenzone und der Außenzone, wie auch die Ausgabeform des Ergebnisses.

Durch festlegen des Namens für die Ausgabedatei , und mit Klick auf "Run program" werden die ausgewählten Effekte berechnet.

Prismamethode

Für die Berechnung von Gravitationseffekten, wird die Elementdarstellung verwendet. D.h das jedes Element ein rechteckiges Prisma mit konstanter Dichte ist. Das Prisma ist durch die Koordinaten x1,x2,y1,y2 und z1,z2 definiert. Wobei der Punkt P der Berechnungspunkt ist.

Abbildung 57: Prisma und Berechnungspunkt

Die Terrain Effekte lasse sich nach folgender Formel berechnen:

$$EFFECT = G \rho \int_{\infty}^{\infty} \int \int_{h_p}^{h} \frac{z - h_p}{\left((x - x_p)^2 + (y - y_p)^2 + (z - h_p)^2 \right)^{\frac{2}{3}}} dx \, dy \, dz$$

durch Verwendung eines rechteckigen Prismas, bei der der Berechnungspunkt P mit dem Koordinatenursprung zusammenfällt,ergibt sich folgende Form:

$$EFFECT = G\rho \left| \left\| x \log(y+r) + y \log(x+r) - z \arctan \frac{xy}{xr} \right\|_{x_1}^{x_2} \frac{y_2}{y_1} \Big|_{z_1}^{z_2} \right|_{z_1}^{z_2}$$

mit:

 $r = \sqrt{(x^2 + y^2 + z^2)}$ G = Gravitationspotential ρ = Dichte h_p =Höhe des Berechnungspunktes x, y, z = Koordinaten des Prismas

 $x_p, y_p, z_p =$ Koordinaten des Punktes

Für die Berechnung wird ein detailliertes und ein grobes Höhengrid benötigt. Aus dem detaillierten Grid, werden durch Interpolation, rund um den Berechnungspunkt die Daten aus dem Grid verdichtet. Da in dieser Innenzone (lässt sich definieren) die größten Effekte auftreten. In der Außenzone (lässt sich ebenfalls definieren), wird das grobe Grid verwendet. Da hier kleinere Effekte auftreten. Die Definition, ist von dem verwendeten Schweremodell (z.B. egm96) und dessen Auflösung abhängig. Das egm96 besitzt eine Auflösung von 180/ n_Graden, was bei 360 Graden einer Auflösung von 0.5 Grad = 55 km entspricht.

Zum Test, wird der "Residual terrain effect" für Österreich im Remove-Schritt berechnet. Wobei die Freiluftanomalien die als Berechnungspunkte dienen, um den egm-Effekt reduziert werden müssen (siehe Kapitel: Remove-Compute-Restore für Österreich). Für die Güte der Berechnung, gilt die 5 Spalte der Ausgabe (wird nur im Ereignisfenster angegeben, nicht in der Ergebnisdatei). In dieser Spalte, wird die mit dem Programm berechnete Höhe des Berechnungspunktes wiedergegeben. Diese kann man mit Spalte 4 (Höhenangabe der Punkte) vergleichen. Dabei sollten nicht allzu große Unterschiede auftreten (Differenz im flachen Bereich im einstelligen Meterbereich).

Ergebnis mit den berechneten Effekten:

id	phi	lam	h h	_berechi	n. Effekt[mgal]
77625	45.6065	9.1870	186.4	186.0	-2.00513
77519	45.6040	8.4759	282.7	283.0	2.14065
77549	45.6076	8.5237	235.9	235.0	-1.90910
6050133	47.0588	14.4871	1146.8	1165.0	-8.31258
6050134	47.0702	14.5298	1789.3	1762.0	57.27984
6036193	47.0544	14.5976	1839.0	<i>1841.0</i>	64.13349

FITGEOID

Dieses Programm steht für "Fit surface to GPS levelling", d.h diese Programm, passt das berechnete gravimetrische Geoid (weicht vom absoluten Geoid bis zu 2 Meter ab) mithilfe von gemessenen GPS Punkten an das absolute Geoid an. Das Eingabefenster des Programms sieht wie folgt aus:

76 FITGEOID - Fit surface to GPS level	ing	— C) X	
Input geoid grid filename:	geoid.gri		Browse	?
Input GPS filename:	gps.dat		Browse	?
File to hold final geoid values:	result.gri		Save as	?
Input grid definition:	0.0 8.0 90.0 98.0 0.1 0.1			?
				Γ
Number of closets points:	10			?
Trend surface removal method	0			?
Select prediction method:	1			?
Prediction variables	10.0 1.0			?
Running options. Working in C:\Users\Ciglenecki\Desktop\Diplomarbeit\pyGravsoft\pyGravsoft				Γ
Quit	Write settings	Run program	Help	

Abbildung 58: FITGEOID Programm

Um diese Anpassung zu berechnen, muss das Grid des gravimetrischen Geoids und die Datei mit den gemessenen GPS Punkten ausgewählt werden. Dabei müssen diese dem GRAVSOFT Format entsprechen (siehe Abschnitt: GRAVSOFT Datenformate). Bevor die Parameter der Anpassung bestimmt werden, muss der Name des Ergebnisgrids bestimmt wie auch die Größe des gewünschten Grids angegeben werden. Dieses wird aber meistens die Größe des gravimetrischen Grids besitzen. Sodass der Input dem Output in der Größe entsprechen sollte. Sollte diese nicht der Fall sein, ist dies nach gängigen GRAVSOFT Gridformat anzugeben.

Im nächsten Abschnitt werden die Parameter für die Anpassung festgelegt. Dabei entsprechen die Festlegungen denen im Programm GEOGRID (Für mehr Informationen \rightarrow siehe Programm GEOGRID).

Durch Klick auf "Run program" wird auf Grundlage von GPS Höhenpunkten die Anpassung berechnet.

TCGRID

Dieses Programm steht für "DTM Grids and Mean Terrain Surface for RTM Method", d.h. Das das Programm Grids mittelt und glätten kann. Das Eingabefenster des Programms sieht wie folgt aus:

74 TCGRID - DTM grids and mean terrain surfaces for RTM method		hod — D) ×	
Name of grid file:	dtm.gri		Browse	
Specification of grid file format:	0			?
Wanted area boundaries:	54.0 58.0 10.0 20.0			?
Grid cell averages:	5 5			?
Moving average window size:	3 3			?
Name of file to hold result:	result.dat		Save as	
Running options. Working in C:\Users\Ciglenecki\Desktop\Diplomarbeit\pyGravsoft\pyGravsoft				
Quit	Write settings	Run program	Help	

Abbildung 59: TCGRID Programm

Für die Mittelung und Glättung, muss das entsprechende Grid ausgewählt werden, welches bearbeitet werden sollte. Dabei muss dieses Grid dem GRAVSOFT Format entsprechen (Siehe Abschnitt: GRAVSOFT Datenformate). Unter "Specifikation" kann das Format des Gridfils angegeben werden, nur ist diese Angabe etwas sinnlos, da das Programm sowieso nur GRAVSOFT Datenformate verarbeiten kann. Mit "Wanted area boundaries" kann man einen Bereich des Grids auswählen der gemittelt und gegebenenfalls geglättet werden soll. Möchte man aber das ganze Grid bearbeiten, sollte die Angabe 0 0 0 0 für die Grenzen angegeben werden.

Unter dem Punkt "Grid cell average" kann die Größe der Zelle angegeben werden, in der die Werte gemittelt werden sollen. Möchte man noch eine Glättung der Daten, kann man unter "Moving average window size" die größe des Kernels der Glättung angeben.

Durch festlegen des Namens der Ergebnisdatei , und mit Klick auf "Run program" wird die Berechnung durchgeführt.

Um die Funktionsweise des Programms wiederzugeben, wird im folgenden einmal eine Mittelung, wie auch eine Glättung über ein Beispielgrid berechnet. Das Beispielgrid, besteht aus 9 Punkten mit einem Abstand von 5 Metern und unterschiedlichen Höhenwerten.

Beispielgrid:

 $0.000000 \ 10.000000 \ 0.000000 \ 10.000000 \ 5.000000 \ 5.000000$

50.0010.0020.0010.0020.0030.0020.0030.0040.00
Bei der Mittelung, gilt es die Größe der Zelle anzugeben, in der die Werte gemittelt werden sollen. Bei einer 2 x 2 Zelle, werden die Werte von 4 Punkten auf einen Punkt gemittelt. Bei einer 3 x 3 Zelle die Werte von 9 Punkten auf einen Punkt, … usw. Die Mittelungszelle, wandert dabei Punktweise von links nach rechts. Der Neupunkt mit dem gemittelten Wert, liegt dabei in der Mittelungszelle.

Abbildung 60: Mittelung mit einer 2 x 2 Zelle

Für unser Beispielgrid, wo eine Mittelung mit einer 2 x 2 Zelle erfolgt, liefert das Programm TCGRID ein gemitteltes Grid mit 4 Punkten:

Ergebnisgrid mit 2 x 2 Zelle

2.500000 12.500000 2.500000 12.500000 10.000000 10.000000

30.00 20.00 20.00 35.00

Bei Verwendung einr 3 x 3 Zelle , ergibt sich folgendes Grid mit einem Punkt.

Ergebnisgrid mit 3 x 3 Zelle

5.000000 5.000000 5.000000 5.000000 15.000000 15.000000

25.56

Bei der Glättung, definiert man sich die Größe der Filtermatrix (Kernel) des Tiefpass- bzw. Mittelwertfilters. Bei diesem Filter, wird das arithmetische Mittel aller Werte gebildet, welche sich innerhalb der Matrix befinden. Der Kernel ist dabei die Gewichtung der einzelnen Elemente in der Matrix. Der zentrale Wert, wird dabei durch das arithmetische Mittel der Werte in der Matrix ersetzt. Die Matrix bewegt sich dabei Punktweise in Zeilenrichtung, sodass jeder Punkt einmal das zentrale Element definiert. Die Matrix besitzt dabei immer eine ungerade Dimension, da es bei einer Matrix mit gerader Dimension kein zentrales Element gibt.

1	1	1
1	1	1
1	1	1

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Abbildung 61: 3 x 3 und 5 x 5 Kernel

Bei Anwendung eines 3 x 3 Kernels auf unser Beispielgrid, ergibt sich folgendes Ergebnis:

Ergebnis der Glättung:

 $0.000000 \ 10.000000 \ 0.000000 \ 10.000000 \ 5.000000 \ 5.000000$

22.50	23.33	20.00
23.33	25.56	25.00
20.00	25.00	30.00

Dabei wandert wie schon erwähnt das Kernel Zeilenweise, sodass jeder Punkt einmal zentrales Element der Matrix ist. In diesem Punkt, wird das arithmetische Mittel der Matrix gebildet. Sollte die Matrix über den Rand des Grids wandern, werden die leeren Werte nicht besetzt, sondern das arithmetische Mittel über die verbliebenen Werte gebildet. Der erste Wert des Ergebnisses von 22.50, wird wie folgt gebildet:

50.00	10.00	20.00
10.00	20.00	30.00
20.00	30.00	40.00

Abbildung 62: Berechnung des ersten Wertes

Mathematisch:

$$\frac{50+10+10+20}{4} = \underline{22.5}$$

Der zweite Wert 23.33, wird durch das weiterwandern des Kernels auf den nächsten Punkt gebildet:

50.00	10.00	20.00
10.00	20.00	30.00
20.00	30.00	40.00

Abbildung 63: Berechnung des zweiten Wertes

Mathematisch:

 $\frac{50+10+20+20+10+20+30}{6} = \underline{23.33}$

usw.

SELECT

Dieses Programm steht für "Select, Thin and/or Average Data", d.h es ist ein Programm zur Auswahl, Mittelwertbildung und Neuformatierung von Datensätzen bzw. Grids. Das Eingabefenster des Programms sieht wie folgt aus:

			—		(
data.dat				Browse	?
1					?
1					?
1					?
1.0 5.0 2.0 6.0 0.1 0.	1				?
0					?
0.0 0.0 0.0 0.0					?
jlenecki\Desktop\Di	plomarbe	it\pyGravs	oft\pyGravsoft	t	
result.gri				Save as	?
Write settings	Run	program		Help	
	data.dat 1 1 1 1 1 1 1 0 0 0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0	data.dat 1 1 1 1 1 1 1 1 1 0	data.dat 1 1 1 1 1 1 1 1 1 0 0.0 0.0 0.0 0.0 0.0 plenecki\Desktop\Diplomarbeit\pyGravss result.gri Write settings Run program	data.dat 1 1 1 1 1 1 1 0 0.0 0.0 0.0 0.0 plenecki\Desktop\Diplomarbeit\pyGravsoft\pyGravsoft write settings Run program	data.dat 1

Abbildung 64: SELECT Programm

Um den Datensatz zu bearbeiten muss dieser zuerst ausgewählt werden. Dies kann entweder ein Punktdatensatz, oder ein Grid sein. Es ist nur darauf zu achten, das es dem GRAVSOFT Format entspricht (siehe Abschnitt: GRAVSOFT Datenformate).

Unter "Operation mode", lässt sich die gewünschte Operation auswählen. Dazu stehen diverse Codes zur Auswahl:

- 0 : alle Daten neu formatieren
- 1 : Daten die dem Knoten am nächsten liegen werden ausgewählt
- 2 : Durchschnitt aller Daten in den Gitterzellen wird berechnet, Ausgabe in Listenformat
- 3 : Ausgabe als Grid
- 4 : Screen Plot
- usw.

Unter "Code for coordinates and format" lässt sich auswählen, in welcher Form das Ergebnis ausgegeben werden soll. Möglich ist eine Ausgabe als Grid (Code 7), wie auch eine Ausgabe in Binär Format (Code 5). Es stehen aber noch weitere zur Auswahl (Klick aufs Fragezeichensymbol). Wichtig für die gewählte Operation, ist es anzugeben, in welcher Spalte des Eingangsdatensatz die Daten liegen, die bearbeitet werden sollen.

Die nächsten Abschnitte sind je nach gewähltem "Operation mode" auszufüllen. Durch festlegen des Namens der Ausgabedatei, und mit Klick auf "Run program" wird das SELECT Programm ausgeführt.

Zu Testzwecke, wird die vom Programm SELECT angebotene Auswahlmöglichkeit für ein Grid getestet. Dabei wird aus einem Testgrid ein Bereich ausgewählt, der im Ergebnis wiedergegeben werden sollte.

Das Testgrid hat die Form:

0 15 0 15 5 5

Ausgewählt wird der Bereich des neuen Grids (Abschnitt "Pixel definition"):

3 11 4 11 8 7 (was den Grenzen des neuen Grids mit seinen Abständen entspricht

Als Ergebnis erhält man das Grid:

3.000000 11.000000 4.000000 11.000000 8.00000000 7.00000000

20.00 30.00 35.00 45.00

Zum besseren Verständnis, was das Programm getan hat, wird das der Vorgang auf der nächsten Seite grafisch wiedergegeben.

Wie man am Ergebnis erkennen kann, hat das Programm SELECT für die Werte der Neupunkte den "Nearest neighbour" und den "Mittelwert" des Grids verwendet. Der "Nearest neighbour" wurde dort verwendet, wo der alte Gitterpunkt am nächsten ist (Abstand 1 Koordinatenwert). Punkt N1 und N2 haben die Werte der Punkte 6 und 7 übernommen. Bei den Punkten N3 und N4 hingegen wurde eine Mittelung der Werte der Punkte 10-14 und 11-15 verwendet (Abstand größer als 1 Koordinatenwert).

	Neupunkte Methode		Methode	
PN R	У	X	Н	
N1	11	3	20	Nächster Wert des Nachbarpunktes 6
N2	11	10	30	Nächster Wert des Nachbarpunktes 7
N3	3	3	35	Mittelung der Werte der Punkte 10-14
N4	3	11	45	Mittelung der Werte der Punkte 11-15

Damit ergeben sich die Werte für die Neupunkte:

FCOMP

Dieses Programm steht für "File Comparison", d.h es ist ein Programm mit welchem sich Daten in Listenform addieren und subtrahieren lassen. Das Eingabefenster sieht wie folgt aus:

74 FCOMP - File Comparison		- 0	×
Name of input file 1:	file1.dat		Browse
Name of input file 2:	file2.dat		Browse
Number of columns after alt. column:	2		
Histogram binsize:	1.0		
Column operation	Addition Subtraction		
Name of file to hold result:	result.dat		Save as
Running options. Working in C:\Users\Ciglen	ecki\Desktop\Diploma	rbeit\pyGravsoft\pyGravsoft	
Quit	Write settings	Run program	Help

Abbildung 66: FCOMP Programm

Um Daten bearbeiten zu können, müssen die entsprechenden Datensätze ausgewählt werden. Das wären in diesem Fall, zwei Datensätze in Listenform. Wichtig ist anzugeben, in welcher Spalte die Datenwerte liegen, die kombiniert werden sollen (anzugeben ist dabei die Datenspalte nach der Höhenangabe). Mit der "Histogram binsize" kann man sich ein Histogramm ausgeben lassen (wenn Eingabe 0, wird kein Histogramm ausgeben). Unter "Column operation" kann die Berechnungsart ausgewählt werden. Zur Auswahl stehen die Subtraktion und die Addition von Datensätzen. Durch festlegen des Namens der Ergebnisdatei, und mit Klick auf "Run program" wird das Programm ausgeführt.

Als Beispiel, ob es das Programm richtig funktioniert, wird zu Testzwecke vom Datensatz 1 der Datensatz 2 abgezogen (Werte aus der 1 Spalte nach der Höhenangabe).

Datensatz 1:

id	phi	lam	h	Wert
77518	45.60289	8.43930	268.33	-22.624
77519	45.60400	8.47595	282.67	-19.487
77549	45.60761	8.52372	235.88	-25.326

Datensatz 2 :

Wert	h	lam	phi	id
-0.9922	268.33	8.43930	45.60289	77518
2.1406	282.67	8.47595	45.60400	77519
-1.9091	235.88	8.52372	45.60761	77549

Ergebnis :

id	phi	lam	h	Wert
77518	45.60289	8.43930	268.33	-21.632
77519	45.60400	8.47595	282.67	-21.628
77549	45.60761	8.52372	235.88	-23.417

Wie man erkennen kann, wird die Subtraktion richtig durchgeführt. Die Werte in den anderen Spalten bleiben dabei unangetastet.

GCOMB

Dieses Programm steht für "Combining Two Grids", d.h es kombiniert zwei Griddateien. Das Eingabefenster des Programms sieht wie folgt aus:

% GCOMB - Combining two grids		— C	ı ×	
Name of grid file 1:	file1.gri		Browse	
Name of grid file 2:	file2.gri	_	Browse	
Write grid combinationmode:	2	_		?
Output file type:	2	_		?
Running options. Working n C:\Users\0	Ciglenecki\Desktop\Diploma	arbeit\pyGravsoft\pyGravsoft		
Name of file to hold result:	result.gri		Save as	
Quit	Write settings R	un program	Help	

Abbildung 67: GCOMB Programm

Um eine Kombination auszuführen, müssen zwei GRAVSOFT Griddateien (siehe Abschnitt GRAVSOFT Datenformate) ausgewählt werden. Durch Auswahl des Kombinierungsmodus lassen sich unterschiedliche Operationen durchführen. Es stehen dafür folgende Codes zur Auswahl:

- 1 : Substraktion zweier Grids(Grid1 Grid2)
- 2 : Addition zweier Grids(Grid1 + Grid2)
- 5 : Grid2 Werte werden an den Anfang von Grid1 geschrieben
- 6 : Daten werden nur dann in Grid1 geschrieben wenn keine Daten in Grid2 vorhanden sind
- 9: Wenn Grid1 ein Bouger Anomalien Grid und Grid2 ein Höhenraster ist, ist der Output in linearer Nährung die Differenz Geoid – Quasigeoid (N- ζ).

Unter "Output file type" kann die Art der Ergebnisdatei festgelegt werden. Es stehen folgende Codes zur Auswahl:

- 1 : Binäre Form
- 2 : Txt-Datei
- 3 : Txt-Datei nur (Ganzzahlen)

Durch festlegen des Namens der Ergebnisdatei, und mit Klick auf "Run program" wird die Kombination zweier Grids ausgeführt.

Als Kontrolle, ob es das Programm richtig funktioniert, wird zu Testzwecke vom Grid 1 das das Grid 2 abgezogen. Dabei sind Grid 1 und Grid 2 die gleichen Grids und als Ergebnis müsste ein Nullergrid herauskommen.

Grid 1 und Grid 2 haben die Werte:

...

43.001367 52.991367 5.002279 23.002279 0.0150000 0.0250000 46.747 42.746 46.746 46.746 46.746 46.786 46.746 57.500 46.746 47.746 46.786 46.746 57.741 46.745 46.745 58.745 50.725 46.745 46.745 46.945 46.745 ...

Ergebnis bei Subtraktion (Grid 1 – Grid 2) und Ausgabe als Txt-Datei :

43.001367 52.991367 5.002279 23.002279 0.015000 0.025000

0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Wie erwartet, ergibt sich ein Nullergrid, bzw ein Grid welches die Höhe 0 hat. Die Grenzen werden dabei nicht verändert, sondern nur die Höhenwerte.

Sollte eine Addition durchgeführt werden, dürften sich die Grenzen ebenfalls nicht ändern, sondern nur die Werte.

Ergebnis bei Addition (Grid 1 +Grid 2) und Ausgabe als Txt-Datei : 43.001367 52.991367 5.002279 23.002279 0.015000 0.025000

 93.494
 85.492
 93.492
 93.492
 93.572
 93.492
 115.000

 93.492
 95.492
 93.572
 93.492
 115.482
 93.490
 93.490
 117.490

 101.450
 93.490
 93.490
 93.890
 93.490
 93.488
 93.488

 ...

Wie erwartet, ändern sich die Grenzen nicht, sondern nur die Werte.

G2SUR

Dieses Programm steht für "Conversion of GRAVSOFT Grids to SURFER Format", d.h es konvertiert eine GRAVSOFT Griddatei in eine Surfer Griddatei. Das Eingabefenster sieht wie folgt aus:

7∕6 G2SUR - Conversion of GRAVSOFT grids to SURFER format - □					
Name of GRAVSOFT grid file:	input.gri	-	Browse		
Name of SURFER grid to hold result:	-	Save as			
Running options. Working in C:\Users\Ciglenecki\Desktop\Diplomarbeit\pyGravsoft\pyGravsoft					
Quit	Write settings Run	program	Help		

Abbildung 68: G2SUR Programm

Für die Konvertierung muss nur die GRAVSOFT Griddateien, die konvertiert werden soll, ausgewählt werden. Durch festlegen des Namens der Surfer Griddatei, und mit Klick auf "Run program" wird die Konvertierung durchgeführt.

Das GRAVSOFT Grids besitzt folgende Form:

 φ_2 , φ_1 , λ_1 , λ_2 , $\Delta \varphi$, $\Delta \lambda$ d_{n1} , d_{n2} , ..., d_{nm} $\rightarrow \varphi_1$, λ_1 die Koordinate der Nord – West Ecke des Gitters

- $\rightarrow \varphi_2$, λ_2 die Koordinate der Süd Ost Ecke des Gitters
- $\rightarrow \Delta \varphi$, $\Delta \lambda$ Abstand der Gitterpunkte in Grad
- \rightarrow d_{nm} die Gitter Werte von Norden nach Süden

Das ASCII-Grid, welches in SURFER dargestellt werden kann, ist in einer etwas anderen Form abgespeichert, und verwendet die Süd-West Ecke als Startpunkt, und den Nord-Ost Punkt als Endpunkt. Der Aufbau ist wie folgt:

DSAA Ncolumns Mrows Xmin Xmax Ymin Ymax Zmin Zmax ... Row 1: Z11 Z12 Z13 ... Z1n Row 2: Z21 Z22 Z23 ... Z2n Row 3: Z31 Z32 Z33 ... Z3n ...

Row M: ZM1 ZM2 ZM3 ... Zmn

Durch das Programm G2SUR, wird durch Spiegelung, die nötige Konvertierung automatisch durchgeführt. Wodurch diese nicht manuell, wie von ASCII-Grid zu GRAVSOFT Grid durchgeführt werden muss (siehe Kapitel: Remove-Compute-Restore für Österreich).

Zur Kontrolle, ob die Umwandlung richtig funktioniert, wird ein Beispielgrid umgewandelt.

Das GRAVSOFT Grid besitzt die Werte:

43.001367 52.991367 5.002279 23.002279 0.0150000 0.0250000

62.800	63.368	63.936	64.500	65.063	65.623	66.182
66.738	67.294	67.848	68.399	68.949	69.497	70.043
70.588	71.130	71.671	72.211	72.612	73.149	73.683
74.217	74.747	75.277	75.805	76.331	76.856	77.378
77.899	78.423	78.940	79.293	79.808	80.321	80.832

ASCII-Ergebnisdatei für SURFER:

DSAA					
721 66	7				
5.00228	3 23.0022	28			
43.0013		37			
-103.05	5 298.16				
-103.05	-102.90	-102.75	-102.60	-102.45	-102.30
-102.15	-102.01	-101.87	-101.73	-101.59	-101.45
-101.31	-101.18	-101.05	-100.92	-100.79	-100.66
-100.53	-100.41	-100.28	-100.16	-100.04	-99.922

Das Programm ordnet wie gefordert, die Grenzen und die Werte nach dem geforderten Format.

5.7 GRAVSOFT Datenformate

Das Programm GRAVSOFT verarbeitet verschiedene standardisiert Datenformate. Dazu zählen folgende Formate:

1. Koeffizienten (sphärische harmonische)

Die Daten müssen nach folgender Form aufgebaut sein:

```
n , m , Cnm , Snm ...
```

- \rightarrow *n* der Grad der Koeffizienten der Kugelfunktionsreihe
- \rightarrow *m* die Ordnung der Koeffizienten der Kugelfunktionsreihe
- → Cnm und Snm die Kugelfunktionskoeffizienten

Bsp: EGM96 (geht bis Grad und Ordnung 360)

2 () -0.484165371736E-03	0.00000000000E+00	0.35610635E-10	0.0000000E+00
-----	-----------------------	-------------------	----------------	---------------

- 2 1-0.186987635955E-09 0.119528012031E-08 0.10000000E-29 0.10000000E-29
- 2 2 0.243914352398E-05 -0.140016683654E-05 0.53739154E-10 0.54353269E-10
- 3 0 0.957254173792E-06 0.0000000000E+00 0.18094237E-10 0.0000000E+00

```
3 1 0.202998882184E-05 0.248513158716E-06 0.13965165E-09 0.13645882E-09
```

•••

2. Punkte

Die Daten müssen nach folgender Form aufgebaut sein:

```
id, \varphi, \lambda, h, datal,...
```

•••

- \rightarrow *id* ist der ganzzahlige Identifier
- \rightarrow ϕ , λ Koordinaten in Grad
- \rightarrow *h* die Höhe in dieser Koordinaten
- \rightarrow *data1*, ... die Daten zu diesen Koordinaten

Bsp: GPS Punkte

9025 32.333701 -106.794114 1191.10 -25.04 8929 32.363705 -106.751139 1311.66 -24.84 8734 31.801597 -106.307371 1215.28 -25.12 8138 32.277326 -106.903204 1317.95 -25.15 8134 32.400379 -106.342463 1228.21 -24.74 7830 32.400261 -106.333361 1231.38 -24.72 ...

3. Grids

Die Daten müssen nach folgender Form aufgebaut sein:

 φ_1 , φ_2 , λ_1 , λ_2 , $\Delta \varphi$, $\Delta \lambda$ d_{n1} , d_{n2} , ..., d_{nm}

- → ϕ_1 , λ_1 die Koordinate der Nord West Ecke des Gitters
- → ϕ_2 , λ_2 die Koordinate der Süd Ost Ecke des Gitters
- $\rightarrow~\Delta\phi$, $~\Delta\lambda$ Abstand der Gitterpunkte in Grad
- → d_{nm} die Gitterwerte von Norden nach Süden

Bsp: nmdtm5

31.500000 35.000000 -108.000000 -105.000000 0.050000 0.050000

2290.00 2271.67 2103.33 2011.67 2016.67 2108.33 2040.00 1973.33 1960.00 1936.67 1848.33 1863.33 1875.00 1833.33 1725.00 1703.33 1690.00 1698.33 1706.67 1680.00 1656.67 1593.33 1623.33 1713.33 1656.67 1590.00 1490.00 1575.00 1606.67 1638.33 1741.67 1976.67 2238.33 2305.00 2255.00 2180.00 2075.00 1988.33 1910.00 1890.00 1895.00 1910.00 1928.33 1958.33 2013.33 2118.33 2185.00 2135.00 2088.33 2050.00 2030.00 1941.67 1895.00 1871.67 1820.00 1805.00 1803.33 1756.67 1701.67 1660.00 1633.33 ...

6. Fazit

Das GRAVSOFT Programmpaket ist ein einfach zu bedienendes Programm, welches bei Eingabe der richtigen Parameter schnell und unkompliziert die nötigen Ergebnisse liefert. Hervorzuheben ist dabei die große Funktionalität des GRAVSOFT Programmpaketes, welches für jeden Sachverhalt in der Gravitationsfeldmodellierung das passende Programm liefert. Wobei es möglich ist, mit einer Kombination verschiedener Programm an das gleiche Ergebnis zu kommen, sodass man nicht auf einen Lösungsweg gebunden ist, und damit freie Auswahl in der Berechnung hat.

Ebenfalls hervorzuheben, ist das ansprechende Design der Benutzeroberfläche, die entwickelt wurde um Neueinsteigern einen schnelleren Einstieg zu ermöglichen. Da die Programme in GRAVSOFT auf FORTRAN Programmen beruhen, die schwer zu bedienen sind. Deswegen wurde eine Benutzeroberfläche mit Python geschaffen, die übersichtlich in drei Abschnitten mit diversen Programmen unterteilt wurde. Zur Auswahl stehen dabei die Programme in den Abschnitten: " 3D Applications", 2D Applications" und "Service Programs". Die einzelnen Programme sind dabei einzeln in zwei Spalten aufgeführt. Ebenfalls sind noch kurze Beschreibungen der Funktionalität jedes einzelnen Programms aufgeführt.

Das GRAVSOFT Programmpaket ist aber nicht käuflich erwerblich, sondern wird von den Autoren des Programms, für nicht konventionellen Zwecken frei zur Verfügung gestellt. Wobei die Autoren über die Freigabe entscheiden. Von Vorteil ist, das das GRAVSOFT Programmpaket plattformunabhängig ist, und somit auf jedem Betriebssystem problemlos installierbar ist. Das einzigste, an das man gebunden ist, ist die Installation von Python, auf dem die Benutzeroberfläche beruht. Aber diese lässt sich kostenlos aus dem Internet beziehen, da diese Programmiersprache frei zugänglich ist.

Trotzdem ist bei der Arbeit mit dem GRAVSOFT Programmpaket einiges zu beachten. Die nächsten Punkte sollen als Hilfe für zukünftiges Arbeiten mit GRAVSOFT dienen.

Zu beachten ist:

• Python wird in mehreren Versionen angeboten, wobei empfohlen wird nicht die aktuelle Python 3 Version herunterzuladen, sondern die die Python 2 Version herunterzuladen und zu installieren. Da die Programmcodes in Python 2 geschrieben wurden und diese geringfügig anders sind als die der Python 3 Version. D.h es kann bei Verwendung der Python 3 Version, dazu kommen, das das Programm sich nicht ausführen lässt, bzw. sich die Programme nicht ausführen lassen.

- In der Ordnerstruktur des GRAVSOFT Programmpaketes wird ein Handbuch zur Verfügung gestellt: "An overwiew manual for the GRAVSOFT Geodetic Gravity Field Modelling Programm by Rene Forsberg and C. C. Tscherning, 2.edition August 2008" welches frei zur Verfügung steht. In diesem Handbuch, werden die wichtigsten Funktionalitäten des Programms erklärt und ein Beispielprojekt mit Testdaten aus New Mexiko, nach der Remove-Compute-Restore Technik mithilfe eines RTM berechnet. Dieses Handbuch ist schon sehr hilfreich, nur etwas zu oberflächlich. Da einerseits die Fast Fourier Transformation als schnellste und beste angepriesen wird, aber nicht die gewünschten und beschriebenen Genauigkeiten liefert. Widersprüchlich ist ebenfalls die am Ende vorgestellte Prädiktion von Höhenanomalien, da diese ohne ausreichende Beschreibung und Angabe der benötigten Testdaten vorgestellt wird.
- Etwas problematisch ist dabei die Anzeige bei Ausführung des Programms. Da eine erfolgreiche Berechnung angezeigt wird, es aber nicht immer der Fall ist. Dies erkennt man daran, das die Ergebnisdatei mit einer Größe von 0 Kilobyte angezeigt wird. Erst im Ereignisfenster lässt sich erkennen, ob eine Berechnung erfolgreich war, und ob diese überhaupt Werte liefert. Sodass man sich nicht auf die Ausgabe des Programms verlassen kann, sondern immer ins Ereignisfenster schauen muss.
- Das Ereignisfenster, wird gleichzeitig mit Ausführung der Benutzeroberfläche in einem extra Fenster gestartet und läuft im Hintergrund. Nur muss man diesen Hintergrund, ebenfalls immer beachten.
- Zu beachten, sind die Fehlermeldungen im Ereignisfenster, wenn ein Programm keine Werte liefert. Da nicht immer klar ist was mit dem Fehler gemeint ist. Sodass man doch in das FORTRAN Programm des ausgeführten Programms hineinschauen muss, um den Fehler zu verstehen.
- Auf die Beschränktheit der GRAVSOFT Programme ist ebenfalls zu achten, da diese auf eine geringe Datenmenge (meistens 12000 Datenwerten) beschränkt sind. Was zur Folge hat, das größere Datenmengen nicht verarbeitet werden. Als Abhilfe, müssen die FORTRAN Programme einzeln an die größere Datenmenge angepasst werden. Dies erreicht man, indem man die in FORTRAN angegebenen Limitierungen der Datenwerte nach oben schraubt. Nur braucht man dafür einen extra Compiler, der sich nicht so einfach frei besorgen lässt, um damit eine .exe-Datei zu erstellen.
- In den Berechnungen ist zu beachten, das bei Angabe von Inputdaten nur kurze Programmpfade von den GRAVSOFT Programmen gelesen werden können. Da die Pfadlänge ebenfalls in jedem Programm beschränkt ist, und meistens bei einer "unit"-Angabe von 10 bis 15 Zeichen beschränkt ist. Damit wird folgender Pfad nicht gelesen:

D:/Diplomarbeit/berechnung_fein_RTM/geoid_10_60/dn_topo_matlab

sondern nur kürzere Pfade:

D:/DA/dn_topo_matlab

• Ebenfalls zu beachten ist, das nur GRAVSOFT Datenformate verarbeitet werden. Sodass jede Inputdatei (Grid,Punkt ...), auf dieses Format umgewandelt werden muss. Und es leider kein Programm zur Umwandlung gibt. (Siehe SURFER und GRAVSOFT Datenformate)

7. Abbildungsverzeichnis

Abbildung 1: Zero padding	4
Abbildung 2: Höhensysteme	5
Abbildung 3: Äquipotentialflächen	6
Abbildung 4: Zusammenhang zwischen Geoid und Ellipsoid	7
Abbildung 5: Schwereanomalienvektor	7
Abbildung 6: RTM Modellfläche	11
Abbildung 7: DTM des BEV	14
Abbildung 8: Erstellung des groben Grids	16
Abbildung 9: Darstellung des groben Grids	16
Abbildung 10: Erstellung des RTM	17
Abbildung 11: Darstellung des berechneten RTM	17
Abbildung 12: Darstellung des RTM mit einem Kernel von 7 x 7	18
Abbildung 13: Darstellung des RTM mit einem Kernel von 11 x 11	18
Abbildung 14: Berechnung der egm-Effekte	19
Abbildung 15: Abzug der egm-Effekte von den Schwereanomalien	20
Abbildung 16: Darstellung der Schwereanomalien ohne egm-Effekte	20
Abbildung 17: Berechnung der Topografie-Effekte	21
Abbildung 18: Abzug der Effekte der Topografie	23
Abbildung 19: Darstellung der Schwereanomalien ohne egm- und Topografie-Effekte	24
Abbildung 20: Erstellung eines Grids aus fa-egm-topo	25
Abbildung 21: Geoidhöhen mit Stokes berechnen	25
Abbildung 22: Berechnung der Topografie-Effekte	26
Abbildung 23: Addition der Topo-Effekte	27
Abbildung 24: Darstellung N+topo	27
Abbildung 25: Berechnung der egm-Effekte	28
Abbildung 26: Addition der egm-Effekte	28
Abbildung 27: Darstellung N+topo+egm (gravimetrisches Quasigeoid)	29
Abbildung 28: Berechnung der vollen Topografie-Effekte	30
Abbildung 29: Berechnung von Bouguer Anomalien	30
Abbildung 30: Erstellung des Bouguer Grids	31

Abbildung 31: Bougueranomalien	31
Abbildung 32: Berechnung der Differenz	32
Abbildung 33: Differenz n-zeta	
Abbildung 34: Anbringen der Differenz	33
Abbildung 35: Berechnung des gravimetrischen Geoid Grids	
Abbildung 36: Darstellung des gravimetrischen Geoids vor der Anpassung an die GPS/Nivelle	ement
Punkte	35
Abbildung 37: Darstellung der Residuen	36
Abbildung 38: Anpassung an das Geoid	
Abbildung 39: Erstellung des SURFER Grids	
Abbildung 40: Geoidlösung nach der Remove-Compute-Restore Technik unter Verwendur	ng
eines RTM	
Abbildung 41: Geoidlösung nach der klassischen Remove-Compute-Restore Technik ohne	
Verwendung eines RTM	
Abbildung 42: Geoidlösung von Pock	
Abbildung 43: Gridvergleich Pock - RTM Lösung mit 192 GPS Punkten	41
Abbildung 44: Gridvergleich Pock – klassische Lösung ohne RTM mit 192 GPS Punkten	42
Abbildung 45: Gridvergleich Pock - RTM Lösung mit 96 GPS Punkten	43
Abbildung 46: Gridvergleich Pock – klassische Lösung ohne RTM mit 96 GPS Punkten	44
Abbildung 47: GRAVSOFT Eingangsfenster	50
Abbildung 48: EMPCOV Programm	51
Abbildung 49: GEOIP Programm	52
Abbildung 50: Prinzip der bilinearen Interpolation	53
Abbildung 51: STOKES Programm	55
Abbildung 52: GEOGRID Programm	56
Abbildung 53: Nearest neighbour	57
Abbildung 54: Kovarianzfunktion mit Halbwertsbreite	57
Abbildung 55: GEOEGM Programm	59
Abbildung 56: TC Programm	61
Abbildung 57: Prisma und Berechnungspunkt	63
Abbildung 58: FITGEOID Programm	65
Abbildung 59: TCGRID Programm	66
Abbildung 60: Mittelung mit einer 2 x 2 Zelle	67

Abbildung 61: 3 x 3 und 5 x 5 Kernel	68
Abbildung 62: Berechnung des ersten Wertes	68
Abbildung 63: Berechnung des zweiten Wertes	69
Abbildung 64: SELECT Programm	70
Abbildung 65: Altes und neues Grid	72
Abbildung 66: FCOMP Programm	73
Abbildung 67: GCOMB Programm	75
Abbildung 68: G2SUR Programm	77

8. Literatur- und Quellenverzeichnis

Ciglenecki, D. (2015) Lotabweichungen, Bakkalaureatsarbeit, TU Graz

- Forsberg, R. (1997). Topographic effects in gravity field modelling for BVP, Copenhagen NV, Denmark URL: <u>http://cct.gfy.ku.dk/comored.htm</u>
- **Forsberg, R.** (1984a). A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Rep. of the Dep. of Geodetic Science and Surveying, the Ohio State Univ., Columbus URL: http://www.dtic.mil/dtic/tr/fulltext/u2/a150788.pdf
- Forsberg, R. und Tscherning C.C. (2008). An overview manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs, 2.edition URL: http://www.academia.edu/9206363

Hofmann-Wellenhof. (2013). Bezugssysteme Skriptum, Institut für Navigation, TU Graz

Kühtreiber, N.(2014). Physikalische Geodäsie Skriptum, Institut für Navigation, TU Graz

Lexikon der Geowissenschaften:

Geoid

URL: http://www.spektrum.de/lexikon/geowissenschaften/geoid/5630

Schwerpotential

URL: http://www.spektrum.de/lexikon/geowissenschaften/schwerepotential/14595

Stokes Problem

URL: http://www.spektrum.de/lexikon/geowissenschaften/stokes-problem/15746

Lienhart, W. (2015). Messtechnik für Bauingenieure Skriptum, Institut für Ingenieursgeodäsie und Messsysteme, TU Graz

mapref.org: Abbildung der Lotabweichungen URL: <u>http://mapref.org/savpub/Voser1996-GeometrischeAnforder.html</u> Matlab: MathWorks URL: <u>https://de.mathworks.com</u>

Meurers B. Und Ruess D. (2009). A new bouguer gravity map of Austria

Moritz H. und Heiskanen W. (1967). Physical Geodesy, by W.H.Freeman and Company

- National Geospatial-Intelligence Agency:WGS 84 EGM96 15-Minute Geoid Height File and Coefficient File URL: <u>http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html</u>
- Nielsen J., Tscherning C.C., Jansson T.R.N. und Forsberg R. (2016). Development of a Python interface to the GRAVSOFT gravity field programs URL: <u>https://www.researchgate.net/publication/238692598</u>
- Nielsen J., Tscherning C.C., und Jansson T.R.N. (2008). Creating a user interface to GRAVSOFT URL: http://cct.gfy.ku.dk/publ_cct/cct1932.pdf
- **Python-Kurs.eu:** Selbstlernkurs über die Programmiersprache Python URL: <u>http://www.python-kurs.eu</u>
- Surfer : Golden Software URL: <u>http://www.goldensoftware.com</u>

Surfer Grid Aufbau: Making Surfer grid files

URL: <u>http://hs.umt.edu/geosciences/faculty/sheriff/equipment-techniques-and-</u> <u>cheats/surfergrids.pdf</u>

- TU Berlin : Schwerevektor, Normalschwerevektor und Schwerestörungsvektor URL:<u>http://misc.gis.tu-berlin.de/igg/htdocs kw/fileadmin/Daten_MCA/EM2/vektor.pdf</u>
- Tscherning, C.C. (2007). Geoid determination by least-squares collocation using GRAVSOFT URL: <u>http://cct.gfy.ku.dk/milano2.htm</u>

Universität Hannover. (2006). Abbildung über das Prinzip der Lotrichtungsbestimmung, Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Universität Hannover Nr. 258, S 81-99

Wikipedia:

DTU-Space

URL: https://en.wikipedia.org/wiki/DTU_Space

Fast Fourier Transformation

URL: https://en.wikipedia.org/wiki/Fast_Fourier_transform

Fensterfunktion

URL: https://de.wikipedia.org/wiki/Fensterfunktion

Fortran

URL: https://de.wikipedia.org/wiki/Fortran

Geoid

URL: https://de.wikipedia.org/wiki/Geoid

Höhere Programmiersprache

URL: https://de.wikipedia.org/wiki/H%C3%B6here_

Programmiersprache

Kriging

URL: https://de.wikipedia.org/wiki/Kriging

Leakage Effekt

URL: https://de.wikipedia.org/wiki/Leck-Effekt

Python Progammiersprache

URL: https://de.wikipedia.org/wiki/Python_(Programmiersprache)

Schwereanomalien

URL: https://de.wikipedia.org/wiki/Schwereanomalie

Tk Toolkit

URL: <u>https://de.wikipedia.org/wiki/Tk_(Toolkit)</u>