
submitted to

Graz University of Technology

DOCTORAL THESIS

Judith Kloas, Bsc. Dipl.-Ing.

Reflected and stopped random walks and 

the distinguishing number of graphs

Univ.-Prof. Dipl.-Ing. Dr.rer.nat. Wolfgang Woess

Institute for discrete mathematics

to achieve the university degree of

Doktorin der technischen Wissenschaften

Supervisor

Graz, Dezember 2017





AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other 

than the declared sources/resources, and that I have explicitly indicated all material 

which has been quoted either literally or by content from the sources used. The text 

document uploaded to TUGRAZonline is identical to the present doctoral thesis.

Date Signature





Contents

1 An introduction based on a short story 7

2 Summary 11

3 Preliminaries 13

4 Random Walks with Reflection 19

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 A summary on local contractivity . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 A review of one-dimensional reflected random walk . . . . . . . . . . . . . . 23

4.4 Reflection in all coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Reflected plus non-reflected coordinates . . . . . . . . . . . . . . . . . . . . 35

5 The multidimensional Lindley process 39

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Subordination tools for random walks . . . . . . . . . . . . . . . . . . . . . 41

5.3 Multidimensional Lindley Process . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Distinguishing graphs of maximum valence three 53

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Canonical 2-colorings rooted at a subgraph . . . . . . . . . . . . . . . . . . 57

6.4 Leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 Vertex types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.5.1 Vertices of type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.5.2 Type 2 vertices of valence 2 . . . . . . . . . . . . . . . . . . . . . . . 63

6.5.3 Type 2 vertices of valence 3 . . . . . . . . . . . . . . . . . . . . . . . 63

6.6 Girth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



6.7 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Distinguishing locally finite trees 71

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2.1 Graph representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2.2 Ends and rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.3 Automorphisms and Colorings . . . . . . . . . . . . . . . . . . . . . 73

7.3 Coloring locally finite infinite trees . . . . . . . . . . . . . . . . . . . . . . . 74

7.4 Finite trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.5 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.5.1 Coloring Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.5.2 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . 80



Chapter 1

An introduction based on a short
story

In this introduction I want to give a short overview over my research of the last years within
some non-mathematical and easily understandable words in a short story. The motivation
to do it in this way was given in a very useful soft skill and presentation seminar that
Mathematic PhD-Students have to absolve during their studies.

Let us start with a quotation by Shizuo Kakutani who said that: “A drunk man will find
his way home, but a drunk bird may get lost forever.” I could imagine you wonder about
the meaning of this citation and where the connection to mathematics occurs. Let me
explain.

We make it simple and imagine that the drunk man can move in four directions. To the
left, to the right, to the front and to the rear, in other words he moves on a two-dimensional
grid. Now assume that the drunk man is so drunk that he does not know where his home
is. With each new step he throws a tetrahedron (“a four sided dice”) that gives him the
direction with the same probability of 1/4 where he can go. Moreover, after each step he
has forgotten where he went before.

Now one may ask the question: “Will he ever find his home with probability one?”

Since the drunk man describes a two dimensional random walk it is known that the answer
is “yes”.

But what is about the drunk bird? For the bird we assume that it can move additionally
up and down and that it takes every step independently from the one before, analog to the
drunk man. It chooses the direction with a probability of 1/6 by for example throwing a
dice. That is not really realistic for a bird but it is only to give you a pictorial imagination
of a three dimensional random walk. For the drunk bird the answer on the question is
“no” as the statement of Kakutani already conveyed.

The corresponding mathematical theorem goes back to Pólya and handles the question of
how the return probability of a symmetric random walk to its starting point changes if
the dimension of the room grows up. As I told you through the example such a one-step
symmetric random walk is recurrent (returns with probability 1) in dimension one or two
and it is transient (returns with probability smaller than 1) if it moves in a three or higher
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dimensional room.

Now I want to modify this situation and add some walls or barriers in the world of the
man and the bird. First imagine that these barriers are something like mirrors so that in
case they would “want to go through this barriers” they are reflected. The question now is
how the mirrors influence the behavior of the return probability of the man/bird? These
and some more questions will be answered in Chapter 5, of course in a more mathematical
way.

A further question is, what will happen if the barriers are built in a way that the man and
the bird are really stopped there instead of reflected? The solving of this problem can also
be motivated by a different model. Hence, the story goes on and we imagine that the man
stops by a supermarket on his way to buy some chocolate for his children. If he comes to
the checkstand, there is a queue and he has to wait. The waiting time of each customer
can be also modeled by a one dimensional random walk that is stopped at the barriers
from before and one can ask the following questions. “What is the relation between the
waiting time of the man and the waiting time of the customer in front of him?” “How fast
does the checkout clerk have to be in order for it to be possible to handle all customers
and, furthermore, when a second checkout is needed?” as well as “ How will the waiting
time of the man be changed if there are two or three checkouts?” In the theory of queuing
processes one can find answers to these questions with a lot of further extensions and
applications. We stick to the random walk behind this process which is known as Lindley
process in the one dimensional case and extend it to higher dimensions. Results regarding
this process are specified in Chapter 5.

As I mentioned before the probability that the drunk man will come back to his home
is one. But if he arrives at home, he has to face another problem. The man carries a
bunch of keys where every key has exactly the same (symmetric) shape, meaning they are
indistinguishable. It is not really a problem because the wife of the man was so clever and
colored some of his keys in a way that he can identify each key and of course now also
will find the right key to get into his house. But the interesting question is: “How many
colors did his wife need if she tried to use as few as possible colors?” This question was
raised by Albertson and Collins in 1996. The maybe unexpected answer is that one needs
three colors if one has three, four or five keys and in all other cases one only needs two
colors. In Figure 1.1 you can see some examples. The idea is to distinguish the keys not
only by their own color but also by their sequence.

Figure 1.1: Distinguished colored cycle with k = 4, . . . , 7 vertices.

The ring of keys represents a cycle graph. But the similar question one could ask for
other graphs for example trees (= a connected graph without cycles) or subcubic graphs
(= every vertex of the graph has at most three neighbors). That is what is discussed in
Chapter 6.
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In the end I want to mention that I am sorry about the allocation of the role of the man
and the woman, but to stick to the quotation of Kakutani it was only possible to present
this short story in that way.
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Chapter 2

Summary

In this thesis we start with an introductory chapter where we give some general definitions
and a short overview about known facts regarding the topics of the subsequent chapters.
First, we define Markov chains and random walks and consider their limiting behavior
regarding recurrence and transience. After that the thesis covers the definitions of graphs
and their properties as transitivity, their coloring and distinguishing number.

The rest of the PHD-Thesis is divided into three parts. In the first part we present
the research results concerning the reflected random walk. After introducing the re-
flected random walk in the one-dimensional case we consider the reflected random walk
in higher dimensions with one or more axes of reflection and provide conditions for its
recurrence behavior. The used methods are based on the works about the corresponding
one-dimensional reflected random walk. The model was first considered by von Schelling
who pointed out the application of this process to telephone networks. The reflected ran-
dom walk is defined by X0 = x0 and Xn+1 = |Xn − Yn+1|, n ≥ 0, where Y1, Y2, . . . is a
sequence of independent and identically distributed real valued random variables. It is a
special example of a random dynamical system and can also be seen as a Markov chain.
We give a summary of some interesting results about this stochastic process, which was
described and studied among others by Feller, Spitzer, Peigné and Woess, Boudiba and
Rabeherimanana. After this we focus on the recurrence behavior of the multi-dimensional
reflected random walk. We consider processes with reflections in each coordinate and pro-
cesses where in some coordinates there are reflections and in all other coordinates there
are ordinary random walks.

In the second part we give results concerning the multidimensional Lindley process. Recall
the one-dimensional Lindley process (Wn)n≥1, which is defined by setting W0 = 0 and
Wn = max{0,Wn−1 − Yn}, n ≥ 1, where Y1, Y2, . . . is a sequence of independent and
identically distributed discrete random variables. We summarize the known results about
this process and introduce the multi-dimensional case which is build upon the process
(Wn)n≥1. We study the recurrence behavior and present our approach which is based on
the technique of discrete subordination and the theory of regular variation.

The third part contains a more graph theoretical topic. The direct connection to the other
two topics is quite small apart from the introductory story. But since there was a chance
to collaborate with other DK-Students and to get an insight to an other interesting field
in mathematics I was not reluctant to work on the questions that were stated by Wilfried
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Imrich in an fruitful seminar given by him and Wolfgang Woess. The upraising ques-
tion is how many colors do we need to color a graph such that the only color preserving
automorphism is the identity? The smallest such quantity of colors is called the distin-
guishing number. Since its introduction by Albertson and Collins [1] more than 20 years
ago, an extensive literature on this topic has developed. Collins and Trenk [26] and, inde-
pendently, Klavžar, Wong and Zhu [57] proved that for any finite graph G of maximum
valence ∆(G) = d, D(G) ≤ d+ 1. For infinite graphs D(G) ≤ d, see Imrich, Klavžar and
Trofimov [48]. We want to improve this bounds for subcubic graphs (d = 3) and give a
complete classification regarding its distinguishing number. As one of the consequences
we get that all infinite connected graphs with ∆(G) = 3 are 2-distinguishable. In part
four we are interested in coloring the vertices of a finite or infinite tree T of bounded finite
valence k by c colors (2 ≤ c ≤ k), such that every color preserving automorphism fixes as
many vertices as possible. In this sense we show that there always exists a c coloring for
which all vertices whose distance from the next leaf is at least dlogc ke are fixed by any
color preserving automorphism, and that one can do much better in many cases.
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Chapter 3

Preliminaries

In this chapter we want to give a short collection of some definitions and facts that build a
basis for the upcoming three parts. It contains some properties of Markov chains, random
walks as well as some graph theoretical aspects. A lot of things are comparable to the
books of Woess [85], [86].

Remember the man and the bird from the introductory story. I called them ”random
walker”. The term ”random walk” is often used instead of Markov chain since there is a
strong connectivity.

A Markov chain (Xk) is build upon a state space X that consists of finite or countably
infinite elements. In the example of the drunk man X was the space of all points in
a two-dimensional grid. Moreover, we need a start distribution p0(x) that describes the
probability that the Markov chain starts in x. The so called transition probabilities p(x, y)
that can be collect in the transition matrix P represent the probability that the Markov
chain jumps from x to y. If we multiply the transition matrix n times by itself, we get a
matrix Pn whose entries are the probabilities to come from one point to another in exactly
n steps. We write

p(x, y) = P(Xn = y|Xn−1 = xn−1),

p(n)(x, y) = P(X1 = x1|X0 = x)P(X2 = x2|X1 = x1) . . .P(Xn = y|Xn−1 = xn−1).

For example the one step transition probabilities of the man are

p((i, j), (i± 1, j)) = p((i, j), (i, j ± 1)) =
1

4

and zero else where (i, j) describes a point in Z2. At last for every Markov chain the
Markov property 3.1 and the property of time homogeneity 3.2 holds

P(Xk+1 = xk+1|Xk = xk, . . . , X1 = x1) = P(Xk+1 = xk+1|Xk = xk), (3.1)

P(Xj+1 = x|Xj = y, ) = P(Xk+1 = x|Xk = y). (3.2)

The first one means that the future state of the process depends only on the present
state and not on the past. The second one describes that the transition probabilities are
independent from the time or index.

For each Markov chain one has an underlying graph.
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Definition 3.0.1 (Graph). A graph G is a pair (V,E) where V is the set of vertices and
E is the set of edges which is build by subsets of two elements of V . For an undirected
graph there is at most one edge between two vertices so that (x, y) is the same edge as
(y, x). In the case of a directed graph the edges are ordered pairs. Thus, (x, y) is an edge
that is directed from x to y while (y, x) is directed from y to x. If a vertex is connected
by an edge to itself, we call it a loop.

Regarding a Markov chain we have a directed graph with loops where the vertices are build
by the state space X . There is a directed edge between two vertices x and y if and only
if p(x, y) > 0. It is possible to give p(x, y) as weight to the edge (x, y) for every edge of
the graph and obtain a weighted graph in that way. A Markov chain is irreducible if from
every state in the transition graph it is possible to reach every other state with positive
probability. Considering the drunk man in our main example the underlying graph of this
Markov chain is the two-dimensional grid where every edge is a double edge with weight
1/4 in each direction. As we have seen one can imagine that the Markov chain describes a
random walk on that graph. Thus, one often speaks (also in this thesis) of a random walk
instead of a Markov chain especially if the Markov chain is adjusted to the underlying
state space. In general a random walk is defined as follows.

Definition 3.0.2 (Random Walk). Let Y1, Y2, . . . be a sequence of independent and iden-
tically distributed (i.i.d.) random variables in Rd. The stochastic process (Xn)n∈N0 given
by

Xn = X0 +
n∑
j=1

Yj , n ∈ N0

is called a d-dimensional random walk in Rd. Often one takes X0 = 0 ∈ Rd. A random
walk is a discrete process with independent and stationary increments, compare [33].

A typical example is the d-dimensional simple random walk like the drunk man or the
drunk bird from the introduction. An often used and studied property of a random walk
or of a Markov chain is the return behavior to the starting point that can be described
through recurrence and transience.

Definition 3.0.3 (Recurrence). We say that a state x of a stochastic process (Markov
chain, random walk) is recurrent if

Px(Xn = x for infinitely many n) = 1.

A very helpful tool to study the recurrence is the Green function.

Definition 3.0.4 (Green function). The Green function is defined by

G(x, y|z) =
∑

p(n)(x, y)zn,

G(x, y|1) = E(number of visits of y if starting in x).

If

G(x, x) =∞

14



then x is recurrent (and vice versa). For a random walk G(x, y) = ∞ means that if
the random walk starts in x the expected number of visits to y is infinity. In addition
recurrence is equivalent to each of the following conditions

Px(∃n > 0 : Xn = x) = 1,

P(τx <∞|X0 = x) = 1,

where

τx = inf{n ≥ 1 : Xn = x}

is the time of the first return to the starting point x of the process.

Definition 3.0.5 (Transience). A stochastic process is transient if it is not recurrent. It
means that

Px(Xn = x for infinitly many n) = 0.

Transience is equivalent to each of the following conditions

Px(∃n > 0 : Xn = x) < 1,

G(x, x) =
∑
n

p(n)(x, x) <∞,

P(τx <∞|X0 = x) < 1.

For a irreducible Markov chain either all states are recurrent or transient A well known
criteria for recurrence and transience of a random walk is the following where we take
Y ∼ Y1.

Theorem 3.0.6. (Chung-Fuchs, 1951) Consider a d-dimensional random walk Xn. Then
the following holds.

(i) For d = 1 and if Xn/n → 0 in probability, then Xn is recurrent. This happens if
EY = 0.

(ii) For d = 2 and if Xn/
√
n converges in distribution to a centered normal distribution,

then Xn is recurrent. This happens if EY = 0 and EY 2 <∞.

(iii) For d = 3 Xn is transient.

Remark 3.0.7. If EY = µ, then by the strong law of large numbers Xn/n → µ almost
surely. Therefore, if EY exists and is non-zero, it is obvious that the random walk is
transient.

For recurrent random walks or Markov chains we can further differentiate between null
and positive recurrence. A recurrent state x is called positive recurrent if Eτx < ∞ and
null recurrent else. If all states of a Markov chain are positive recurrent, then we say that
the Markov chain is positive recurrent.

15
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Definition 3.0.8 (Stationary/invariant measure). A measure ν = (ν1, ν2, . . . ) that satis-
fies

νP = ν

is called a stationary measure. If 0 ≤ νi ≤ 1 for all i and
∑

i νi = 1, we call it a stationary
probability measure or stationary distribution. One often also call it invariant measure.

For a Markov chain the existence of a stationary probability measure is equivalent to
positive recurrence.

In Definition 3.0.1 we have specified what we mean by a graph and described the underlying
graph of a Markov chain. If there is no connection to a Markov chain, we will consider
undirected graphs without multi-edges in this thesis. Some classical examples are k-regular
graphs where each vertex has k neighbored vertices, the complete graph having an edge
between every pair of vertices or more general a connected graph.

Definition 3.0.9 (Path, Connected graph, Locally finite graph). A path between two
vertices v1 and vn is a sequence of vertices v1, . . . vn with vi ∼ vi+1 for i = 1, . . . n − 1
where u ∼ v means that there is an edge between u and v.

We say that a graph is connected if there exists a path between u and v for all vertices
u, v ∈ V . If the number of neighbored vertices is finite for each vertex, the graph is locally
finite.

Definition 3.0.10 (Isomorphism, Automorphism of a graph). Two graphs G1 and G2 are
isomorph if there is a bijection γ : V (G1) → V (G2), such that x is adjacent to y in G1 if
and only if γ(x) is adjacent to γ(y) in V (G2).

An automorphism of a graph G is an isomorphism from G to G. That means it is a
bijective map γ : V (G)→ V (G) such that

x ∼ y ⇔ γ(x) ∼ γ(y) ∀x, y ∈ V (G).

It is a permutation of the vertices where the edges in both graphs are the same. The
identical mapping is an automorphism which we can take as neutral element. If we have
two automorphisms, then the product is also an automorphism. Moreover, for every
automorphism we can find a second automorphism such that the product is the identical
mapping. So the set of all automorphisms of a graph G build a group, the automorphism
group which we will write as Aut(G).

If one collect all automorphisms that leave a vertex v invariant, then we call this the
stabilizer of v

Aut(G)v = {α ∈ Aut(G)|α(v) = v}.

It is a subgroup of the automorphism group Aut(G).

In Chapter 6 we want to color the vertices of a graph such that each vertex can be uniquely
identified through the structure of the graph and the coloring of the vertices. We want to
determine how many colors we need to color trees and subcubic graphs. That number of
colors is defined as distinguishing number.

16



Definition 3.0.11 (Coloring, Distinguishing number). A map c : V → {1, . . . , d} is
called d-coloring of a graph. The distinguishing number D(G) of a graph G is the the
smallest d such that there exists a d-coloring c of G that is only preserved by the identity
automorphism.

Example 3.0.12. The distinguishing number of the K2,3 and the cube is 2 while it is 3
for the K3,3 and the K4.

Figure 3.1: Distinguishing colorings for the K2,3, the cube, the K3,3 and K4.

Sometimes the distinguishing number is given for graphs where each automorphism moves
at least a certain number of vertices. For this we use the term motion of a graph.

Definition 3.0.13 (Motion). The motion m(φ) of a permutation φ is defined as the
number of vertices that are moved by φ, indeed

m(φ) = |{v|φ(v) 6= v}|.

The motion m(G) of a graph G is the minimal motion of all its automorphisms (excluding
the identity). That means

m(G) = min{m(φ)|φ ∈ Aut(G)\{id}}.

Thus, if we consider a graph with for example motion 3, it means that every automorphism
of the graph moves at least three vertices and there is no automorphism moving only two
vertices and fixing the rest.

Definition 3.0.14 (degree/valence). We say that a vertex v of a graph has degree or
valence k if there exists exactly k vertices vi, i = 1, . . . , k such that there is an edge
between v and vi for each i.

Definition 3.0.15 (edge and vertex transitivity). A graph G is called edge transitive if for
every (u, v), (u′, v′) ∈ E there exists an automorphism γ such that (γ(u), γ(v)) = (u′, v′).
We say that G is vertex transitive if for every u, v ∈ V there exists an automorphism φ
such that φ(u) = v.

A vertex transitive graph is always regular. That means every vertex has the same degree.
A typical example of a vertex transitive graph is the peterson graph. Complete graphs
are vertex as well as edge transitive.

17





Chapter 4

Random Walks with Reflection

The following part is based on the submitted joint paper with Wolfgang Woess Multidi-
mensional random walk with reflections.

4.1 Introduction

Let (Yn)n≥0 be a sequence of i.i.d. real valued random variables, and let Sn = Y1 + . . .+Yn
be the classical associated random walk. Reflected random walk (RRW) is the process
(Xx

n)n≥0 given by
Xx

0 = x ≥ 0 , Xx
n = |Xx

n−1 − Yn|.
It was first considered by von Schelling [83] in the context of telephone networks.
A rigorous examination appeared in Feller [38], and was then developed further by
Knight [59], Boudiba [18], [19] and Leguesdron [63]. The PhD Thesis of Benda [10]
and his unpublished papers [11], [12] contain important contributions that will also play
a role here.

Our main interest is in recurrence of this process. Positive recurrence is settled in the above
references via exhibiting a unique stationary probability measure for the process; proving
uniqueness is a non-trivial task. Criteria for null recurrence were given by Smirnov [75]
and Rabeherimanana [71], and also by Peigné and Woess [67], [68].

In the present paper, we are interested in the multidimensional variant, where we have a
random walk which is reflected in the first coordinate(s) and remains an ordinary random
walk in the other coordinate(s). Thus, we have a probability measure µ on Rr+s and the
state space Rr+ × Rs, whose elements we write as (x,w) or just xw, where x ∈ Rr+ and
w ∈ Rs. For x = (x1, . . . , xr) ∈ Rr, we write

|x| =
(
|x1|, . . . , |xr|

)
and ‖x‖ =

√
x2

1 + · · ·+ x2
r .

We consider a sequence (Yn , Vn) of i.i.d. µ-distributed random vectors with Yn ∈ Rr and
Vn ∈ Rs. Then our process starting at (x, v) is given by

(Xx
n , v + Zn) , where Xx

0 = x, Xx
n = |Xx

n−1 − Yn| , and Zn = V1 + · · ·+ Vn . (4.1)

We shall usually start with w = 0. For studying transience / recurrence, only the cases
s ∈ {0, 1, 2} are of interest, since otherwise already (Zn) is transient.
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We remark immediately that the process (4.1) factorises in each coordinate.

• If i ≤ r, then the i-th coordinate of (Xx
n , v + Zn) is the reflected random walk on

R+ which starts at xi and is driven by the i-th marginal µi of µ.

• If r+1 ≤ i ≤ r+s then the i-th coordinate is the random walk (sum of i.i.d. random
variables) which starts at vi and whose law is the i-th marginal of µ.

• In particular, (Xx
n) is the reflected random walk on Rr+ driven by µbrc, the overall

marginal of µ on the first r coordinates, and (v+Zn) is the (ordinary) random walk
on Rs whose law µdse is the overall marginal of µ on the last s coordinates.

The given process is comparable to other reflected processes. Some examples can be found
in Fayolle, Iasnogorodski and Malyshev [37] and Jonckheere and Shneer [52].
There are some similarities to the well known queuing process Xn = max{0, Xn−1 −
Yn} that was studied by Cygan and Kloas [28] in the multidimensional case. We
mention that one could suppose to see connections to the large field on Brownian motion
approximations as in Bramson, Dai and Harrison [22] and Hobson and Rogers [45]
but we emphasize that their are big differences especially since in our case increments with
arbitrary distributions are considered.

As usual, we shall distinguish between the lattice and the non-lattice cases in each coordi-
nate. The lattice case arises when there is κ > 0 such that supp(µi) ⊂ κ · Z. In this case,
we can and will always assume without loss of generality that

supp(µi) ⊂ Z and gcd supp(µ) = 1. (4.2)

The marginal µi is non-lattice if no κ as above exists.

Thus, we shall assume that r = r1 + r2 and s = s1 + s2 such that the marginals µi satisfy
(4.3.3) for i = 1, . . . , r1 and i = r + 1, . . . , r + s1 , while they are non-lattice in the other
coordinates. Consequently, it is natural that we restrict our state space to

X = Nr1
0 × Rr2+ × Zs1 × Rs2 . (4.3)

In the non-discrete situation, our study of recurrence and stationary probability distribu-
tions focuses on topological recurrence.

One of our basic tools is local contractivity, a property of stochastic dynamical systems
that was introduced by Babillot, Bougerol and Elie [8] and studied in detail by
Benda [10]. We summarise the basic facts in the short §2. In §3, we review one-
dimensional reflected random walk and display the clever method of [10] in the lattice
case to induce a locally contractive process on the even integers (Proposition 4.2.4). We
also display an example of a transient reflected random walk where the non-reflected walk
is recurrent.

In §4, we consider the multidimensional case with reflection in all coordinates. The
main result is Theorem 4.4.2, characterising positive recurrence. While the case where
all marginals are non-lattice is covered by Peigné [66], the presence of lattice marginals
leads to considerable additional difficulties which we elaborate in detail. Subsequently, we
provide several partial results and examples regarding the null-recurrent situation, where
however a complete characterisation remains a challenging open problem.
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In the last §5, we consider the general situation where some coordinates are reflected and
others (at most 2) are “free” (non-reflected). Our second main result is Theorem 4.5.1,
where we assume that the reflected part is (topologically) recurrent and the non-reflected
coordinates are centred and satisfy the natural moment conditions. While this is easy when
the reflected part is discrete (lattice), additional tools from Ergodic Theory are needed
in general, invoking results on recurrence of stationary random walks which are due to
Atkinson [5] and Schmidt [74]. This leads to recurrence of the process. Again, it is a
challenging open problem to handle the case when the reflected part is only null-recurrent.

4.2 A summary on local contractivity

We recall a few facts that were explained in [68], plus additional features. Unless otherwise
stated, the facts displayed in this section can be found in [68], resp. the remarkable PhD
thesis [10].

In general, we consider a proper metric space (X , d) and the monoid C(X ) of all continuous
mappings X → X . It carries the topology of uniform convergence on compact sets.
Now let µ̃ be a Borel probability measure on C(X ), and let (Fn)n≥1 be a sequence of
i.i.d. C(X )-valued random variables (functions) with common distribution µ̃, defined on
a suitable probability space (Ω,A,P). The associated stochastic dynamical system (SDS)
ω 7→ Xx

n(ω) is given by

Xx
0 = x ∈ X , and Xx

n = Fn ◦ Fn−1 ◦ · · · ◦ F1(x) , n ≥ 1 . (4.4)

In case of reflected random walk on X = Nr1
0 × Rr2+ (as in (4.3) with s1 = s2 = 0), we

have Fn(x) = |x−Yn|, and these mappings are contractions, whence we may replace C(X )
by the closed sub-monoid Lip1(X ) of all Lipschitz mappings with Lipschitz constant ≤ 1.
If µ is the distribution on Rd of the increments Yn, then µ̃ is the image of µ under the
mapping R→ Lip1(X ), y 7→ fy, where fy(x) = |x− y|.

Definition 4.2.1. The SDS is called locally contractive, if for every x ∈ X and every
compact K ⊂ X ,

P[d(Xx
n , X

y
n) · 1K(Xx

n)→ 0 for all y ∈ X ] = 1 .

It is called strongly contractive, if for every x ∈ X ,

P[d(Xx
n , X

y
n)→ 0 for all y ∈ X ] = 1 .

Proposition 4.2.2. A locally contractive SDS is either transient,

P[d(Xx
n , x)→∞] = 1 for every x ∈ X

or (topologically) recurrent in the sense that there is a maximal non-empty closed subset
L ⊂ X with the property that for every open set U that intersects L,

P[Xx
n ∈ U infinitely often] = 1 for every x ∈ X .

In the recurrent case, L coincides almost surely with the set of accumulation points of any
trajectory

(
Xx
n(ω)

)
, i.e. every neighbourhood of any point in L is visited infinitely often

a.s.
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CHAPTER 4. RANDOM WALKS WITH REFLECTION

L is also characterised as the smallest non-empty closed subset of X with the property that
f(L) ⊂ L for every f ∈ supp(µ̃) ⊂ C(X ).

Note that the last characterisation does not rely on recurrence; it depends only on supp(µ̃).
In the recurrent case, the set L is called the attractor, and the SDS is strongly contractive.

An invariant measure for an SDS is a Radon measure ν on X such that for any Borel set
B ⊂ X , ∫

1B(Xx
1 ) dν(x) = ν(B).

Part (a) of the following is obvious; for (b) see [67].

Proposition 4.2.3. (a) A locally contractive SDS which has an invariant probability mea-
sure is recurrent.

(b) A locally contractive SDS which is recurrent has an invariant measure ν which is
unique up to multiplication by constants. In this case, the following holds.

• supp(ν) = L.

• ν(L) <∞ if and only if the SDS is positive recurrent
(the return time to any open set which intersects L has finite expectation).

For an SDS of contractions, let S(µ̃) be the sub-semigroup of Lip1(X ) generated by
supp(µ̃) and S(µ̃) its closure.

Proposition 4.2.4. A non-transient SDS of contractions is locally contractive if and
only if S(µ̃) contains a constant function. In this case, it is recurrent as well as strongly
contractive, so that it is absorbed by the attractor: for any starting point x,

d(Xx
n ,L)→ 0 almost surely.

See [63], [66], [10] and [68, Theorem 4.2]. An important tool is going to be the following.

Proposition 4.2.5. Suppose that our SDS of contractions is locally contractive and has
an invariant probability measure ν. Then there is an X -valued random variable Z such
that for any starting point x ∈ X ,

X̂x
n = F1 ◦ · · · ◦ Fn(x)→ Z almost surely.

The distribution of Z is ν.

Note that in general, (X̂x
n)n≥0 is not Markovian. The proposition is proved in [63] and

[66] under the assumption that X = Rr. In [66], it concerns more general SDS of contrac-
tions which are not necessarily compositions of i.i.d. mappings, but driven by a positive
recurrent Markov chain. It readily extends to any proper metric space X in place of Rr.
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4.3. A REVIEW OF ONE-DIMENSIONAL REFLECTED RANDOM WALK

4.3 A review of one-dimensional reflected random walk

Here, the Yn are real random variables with common distribution µ. We always assume
that

µ
(
(0 , ∞)

)
> 0 . (4.5)

The state space is X = R+ in the non-lattice case, and X = N0 = {0, 1, . . . } in the lattice
case (4.3.3).

A. Irreducibility and local contractivity

We set

N = sup supp(µ) , if supp(µ) ⊂ R+ , resp. N =∞ , otherwise, and

L = [0 , N ] ∩ X , if N <∞ , resp. L = R+ ∩ X , if N =∞ .
(4.6)

Then (Xx
n) is (topologically) irreducible on L, see [63], [19], [71], [67], [68]. Regarding

local contractivity, the following is known; compare with [63], [10], [11], [67] and [68].

Proposition 4.3.1. Assume that µ is non-lattice and satisfies (4.5). Then the reflected
random walk induced by µ is locally contractive.

In the lattice case, we cannot have local contractivity. Indeed, if x, y ∈ N0 then Xx
n −X

y
n

always has the same parity as x − y. However, the PhD thesis [10] contains a smart
observation & method which we now explain. For the remainder of this sub-section, we
assume that µ satisfies (4.3.3).

For x ∈ Z, let π(x) = 0 if x is even, and π(x) = 1 if x is odd. Then the following is
obvious.

Lemma 4.3.2. The process
(
π(Xx

n)
)
n≥0

is a Markov chain on {0, 1} with transition prob-

abilities p(i, j) = P
(
π(Xx

n) = j|π(Xx
n−1

)
where

p(0, 0) = p(1, 1) = µ(2 · Z) and p(0, 1) = p(1, 0) = µ(2 · Z + 1) .

In particular, it depends only on the parity of the starting point x, and by (4.3.3) it is
irreducible. It is therefore positive recurrent, the return times to each of the two states
coincide, their distribution is easily computed, and the expected value is 2. We can
consider the induced process on 2 · N0 , resp. on 2 · N0 + 1. That is, we consider the a.s.
finite stopping times

t(0) = 0 , and, setting Sk = Y1 + · · ·+ Yk ,

t(n) = inf{k > t(n− 1) : π(Xx
k ) = π(x)} = inf{k > t(n− 1) : Sk is even } .

(4.7)

No matter whether the starting point of (Xx
n) is even or odd, the induced process (Xx

t(n))
on the respective class 2 ·N0 or 2 ·N0 + 1 is again an SDS generated by i.i.d. contractions:

Xx
t(n) = F̄n ◦ F̄n−1 ◦ · · · ◦ F̄1(x) with F̄n = fYt(n) ◦ fYt(n)−1

◦ · · · ◦ fYt(n−1)+1
. (4.8)

Let µ̃t be the distribution of F̄1 on Lip1(N0) . Since the proof of the following is not easily
accessible [10], we present it here.
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CHAPTER 4. RANDOM WALKS WITH REFLECTION

Proposition 4.3.3. If µ satisfies

supp(µi) ⊂ Z and gcd supp(µ) = 1.

then 12·N0 ∈ S(µ̃t).

Proof Recall the notation fy(x) = |x− y|.
Step 1. There are elements y0 , . . . , ym ∈ N such that

0 < y0 < · · · < ym , gcd{y0 , . . . , ym} = 1 , and fyk ∈ S(µ̃).

Indeed, there is b ∈ supp(µ) with b ≥ 1, and if a < 0 then a′ = a+ (b−a/bc+ 1)b ≥ 1, and
we check easily that

fa′ = f
b−a/bc+1
b ◦ fa , where fnb = fb ◦ · · · ◦ fb︸ ︷︷ ︸

n times

whence fa′ ∈ S(µ̃) whenever a ∈ supp(µ). Now, there are a1 , . . . , an ∈ supp(µ) \ {0}
with greatest common divisor 1. We replace each ak < 0 by a′k and add b to the updated
collection of elements. Then we order them and eliminate possibly redundant ones to get
y0 , . . . , ym .

Step 2. We now set dk = gcd{y0 , . . . , yk}, so that y0 = d0 > d1 > · · · > dm = 1. We
construct recursively elements g0 , . . . , gm ∈ S(µ̃) such that

gk(n) = fdk(n) for all n ∈ {0, 1, . . . , dk} .

We start with g0 = fy0 . If we already have gk−1 then we follow the steps of the Euclidean
algorithm getting dk as the greatest common divisor of yk and dk−1. We pose r0 = yk ,
r1 = dk−1 < yk and applying repeated integer division ri−1 = qiri+ri+1 with 0 ≤ ri+1 < ri.
If j is the first index for which rj+1 = 0 then rj = gcd{yk , dk−1} = dk. We let

h0 = fyk , h1 = gk−1 , and hi = h
qi−1

i−1 ◦ hi−2 , i = 2, . . . , j .

Then we set gk = hj . (The hi as well as j depend on k.) One checks easily that also gk
has the proposed properties.

Step 3. We now have gm(n) = f1(n) for n ∈ {0, 1} . Because f1(x) − f1(y) always has
the same parity as x − y, gm sends even numbers to odd ones and vice versa. Since it is
a contraction, this implies that |gm(n + 1) − gm(n)| = 1 for all n. From this we deduce
inductively that for all n ∈ N,

gm(2n− 1) ∈ {0, 2, . . . , 2n− 2} and gm(2n) ∈ {1, 3, . . . , 2n− 1}.

Therefore h = g2
m ∈ S(µ̃) preserves the parity of any n ∈ Z. But this just means that

h ∈ S(µ̃t). The above yields that

hk(2n− 1) = 1 and hk(2n− 2) = 0 for n = 1, . . . , k.

As k →∞, we see that hk → 12·N0+1 pointwise, so that 12·N0+1 ∈ S(µ̃t).

Next Proposition 4.2.4 implies the following.
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Corollary 4.3.4. The induced process (Xx
t(n)) is locally contractive on each of the classes

2·N0 and 2·N0+1. The respective limit sets are L0 = L∩(2·N0), resp. L1 = L∩(2·N0+1),
where L is as in (4.6).

If the original reflected random walk (Xx
n) is positive, resp. null recurrent, then so is the

induced process on each of the two classes, and Xx
n −X

y
n → 0 a.s. whenever x− y is even.

The statement on recurrence is clear from the fact that the return time to the starting point
of the induced process is bounded by the return time of the original process. We remark
that [10] has general results in the same spirit, where the SDS has a finite, irreducible
factor chain.

B. Non-negative Yn

We first consider the situation when Yn ≥ 0 (of course excluding the trivial case Yn ≡ 0), so
that the increments of (Xx

n) are non-positive except possibly at the moments of reflection.
In this case, Feller [38] and Knight [59] have computed an invariant measure for the
process when the Yn are non-lattice random variables, while first Kemperman [54] and
later Boudiba [18], [19] have provided such a measure when the Yn are lattice variables.
Compare also with Foss and Rogozin [39] and Borovkov [17].

Lemma 4.3.5. Suppose that suppµ ⊂ [0 ,∞).

(a) If µ is non-lattice then an invariant measure is given by

ν(dx) = µ
(
(x , ∞)

)
dx .

(b) If µ is lattice, then an invariant measure is

ν(0) =
1− µ(0)

2
and ν(x) =

µ(x)

2
+ µ

(
(x , ∞)

)
, if x ∈ N .

In both cases, ν
(
[0 ,∞)

)
= E(Y1). This leads to the following well-known property.

Corollary 4.3.6. The reflected random walk is positive recurrent on L if and only if
E(Y1) <∞.

The next question is when we have null-recurrence. The following sufficient conditions are
due to [75], [67] and [71] (in this order for (i)-(iii)). We want to remark that [54] also give
conditions for recurrence of reflected lattice random walks.

Proposition 4.3.7. Suppose that supp(µ) ⊂ R+. Then each of the following conditions
implies the next one (but not vice versa) and is sufficient for recurrence of the reflected
random walk on L.

E
(√

Y1

)
<∞ (i)∫

R+

µ
(
(x , ∞)

)2
dx <∞ (ii)

lim
y→∞

µ
(
(y , ∞)

) ∫ y

0
µ
(
(x , y]

)
dx = 0 (iii)

(In the lattice case, the integrals reduce to sums and dx is the counting measure on N0 .)
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C. Two-sided increments

We now drop the assumption that Yn ≥ 0. Of course, we require that µ is such that we
do not have Sn = Y1 + · · · + Yn → −∞ with positive probability (= probability 1 by
Kolmogorov’s 0-1 law), because in this case there are only finitely many reflections, and
Xx
n →∞ almost surely.

Let Y +
n = max{Yn, 0} and Y −n = max{−Yn, 0}. If (a) E(Y −1 ) < E(Y +

1 ) ≤ ∞ , or if (b)
0 < E(Y −1 ) = E(Y +

1 ) <∞ , then lim supSn =∞ almost surely, so that there are infinitely
many reflections.

We now assume that lim supSn = ∞ almost surely. Then the (non-strictly) ascending
ladder epochs

`(0) = 0 , `(k + 1) = inf{n > `(k) : Sn ≥ S`(k)}

are all almost surely finite, and the random variables `(k + 1) − `(k) are i.i.d. We can
consider the embedded random walk S`(k) , k ≥ 0, which tends to ∞ almost surely. Its

increments Y k = S`(k) − S`(k−1) , k ≥ 1, are i.i.d. non-negative random variables with

distribution denoted µ. Furthermore, if (X
x
k) denotes the reflected random walk associated

with the sequence (Y k), while Xx
n is our original reflected random walk associated with

(Yn), then
X
x
k = Xx

`(k) ,

since no reflection can occur between times `(k) and `(k + 1). It is easy to see that the
embedded reflected random walk (X

x
k) is recurrent if and only the original reflected random

walk is recurrent. This leads to the following sufficient recurrence criteria [68].

Proposition 4.3.8. Reflected random walk (Xx
n) is (topologically) recurrent on L, if

(a) E(Y −1 ) < E(Y +
1 ) ≤ ∞ and E

(√
Y +

1

)
<∞ , or if

(b) 0 < E(Y −1 ) = E(Y +
1 ) and E

(√
Y +

1

3)
<∞ .

In case (a), one has positive recurrence if and only if E(Y +
1 ) < ∞, and in case (b), one

has null recurrence.

In the positive recurrent case of (a), we also explain how to get the invariant probability
measure from the one for the embedded process. Write ν for the latter. It is computed
from µ according to Lemma 4.3.5. For any Borel set B ⊂ R,

ν(B) =

∫
L
E

`(1)−1∑
k=0

1B(Xx
k )

 dν(x) , (4.9)

and it is finite because `(1) has finite expectation. (Note that for k < `(1) we have
Xx
k = x− Sk .) Among the observations from [10] and [68], we also recall the following.

Lemma 4.3.9. If µ is symmetric on R (resp. Z), then reflected random walk is (topolog-
ically) recurrent if and only if the random walk (Sn) is recurrent.

In particular, if µ is symmetric and has finite first moment, then the associated reflected
random walk is recurrent.
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The last statement follows from the classical result that when E(|Y1|) <∞ and E(Y1) = 0
then Sn is recurrent; see Chung and Fuchs [25].

At this point we can ask whether also in the non-symmetric case, recurrence of the ordinary
random walk (Sn) always implies recurrence of the associated reflected random walk. The
answer is “no”, as the following example shows.

Example 4.3.10. Let the Yn be i.i.d. with centred distribution µ supported by {k ∈ Z :
k ≥ −1}, and µ the distribution of the Y k. By Wiener-Hopf-factorisation as in [38] (see
[68] in the present context),

µ = µ+ δ−1 − µ ∗ δ−1 ,

because δ−1 is the first strictly descending ladder distribution associated with µ. Thus,
we have

µ(−1) = 1− µ(0) and µ(x) = µ(x)− µ(x+ 1) for x ∈ N0 .

If we start with a probability measure µ on N0 which satisfies µ(x) ≥ µ(x + 1) for all x
then we can construct µ in this way, whence µ has finite first moment and is centred. By
the uniqueness of the Wiener-Hopf decomposition, µ is indeed the first ascending ladder
distribution of µ. Now define µ(x) = c log(x + 2)/(x + 2)3/2, x ∈ N0 . Then the random
walk (Sn) with law µ is recurrent. But by [68, Ex. 5.11], resp. its discrete variant in
[67], the embedded reflected random walk is transient, and so is the reflected random walk
induced by µ.

4.4 Reflection in all coordinates

In this section, we study the multidimensional case (4.1) with r = r1 + r2 ≥ 2 and s = 0.
Our state space is X = Nr1

0 × Rr2+ . We suppose that all one-dimensional marginals of the
probability measure µ satisfy (4.5). Suppose initially that r1 ≥ 1. For x = (x1 , . . . , xr) ∈
X , write

Xx
n = (Xx1

n,1 , . . . , X
xr
n,r) ,

so that (Xxi
n,i)n≥0 is the reflected random walk induced by µi . When the latter is recurrent

on its unique essential class, we know from propositions 4.3.1 and 4.2.4 that Xxi
n,i−X

yi
n,i → 0

almost surely, when i > r1 and xi, yi ∈ R+ are arbitrary. On the other hand, when i ≤ r1,
by Corollary 4.3.4 the same holds as long as xi, yi ∈ N0 have the same parity. Recall the
mapping π(k) = 12·Z+1(k) and define

π : X → {0, 1}r1 , π(x1, . . . , xr) =
(
π(x1), . . . , π(xr1)

)
.

Then recurrence of the marginal processes implies

‖Xx
n −Xy

n‖ → 0 almost surely, whenever π(x) = π(y) . (4.10)

For an element ε of the hypercube Zr12 = {0, 1}r1 , let

Xε = {x ∈ X : π(x) = ε} .

We note that π(Xx
n) = π(x + Sn), where again Sn = Y1 + · · · + Yn . The process(

π(Xx
n)
)
n≥0

is a random walk on the hypercube which is translation invariant with respect
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to addition mod 2 and automatically symmetric. It is driven by the probability measure
πµ(ε) = µ

(
(2 · Z)r1 + ε

)
. Since by assumption (4.3.3), each supp(µi), i ≤ r1 , contains

odd elements, πµ charges elements different from 0 = (0, . . . , 0). The random walk is not
necessarily irreducible; the group Zr12 decomposes into a subgroup Γ (consisting of 0 and
the elements that can be reached from 0) and its cosets, on each of which that random
walk is irreducible. This leads us to the following.

Observation 4.4.1. Let Γ(j), j = 1, . . . , 2d, be the cosets of Γ in Zr12 . Then 1 ≤ d < r1,
and our state space decomposes into the classes

X (j) =
⋃
ε∈Γ(j)

Xε ,

so that reflected random walk started in some x ∈ X (j) never exits from that class.

Thus, even though all marginal one-dimensional reflected walks are (topologically) irre-
ducible on the respective sets Li (i = 1, . . . , r), the multidimensional reflected random
walk may have a decomposition into non-interacting parts. We shall see an example fur-
ther below; in particular, the structure of the essential class(es) is not as simple as in the
one-dimensional case (4.6). Of course, in the non-lattice case r1 = 0, we will not have
more than one class; in that case, we set d = 0 and X (1) = X .

Theorem 4.4.2. Let µ be a probability measure on Zr1 × Rr2 whose lattice marginals µi
(i = 1, . . . , r1) satisfy (4.3.3), while for i > r1 , the marginals are non-lattice.

Suppose that for each i ∈ {1, . . . , r}, the one-dimensional reflected random walk induced
by µi is positive recurrent on the respective set Li according to (4.6).

Then each class X (j) of (4.4.1) carries a unique invariant probability measure ν(j) for the
r-dimensional reflected random walk induced by µ. Reflected random walk started in any
point of X (j) is a.s. absorbed by L(j) = supp(ν(j)), and it is positive recurrent on L(j).

Proof If r1 = 0 then the proof simplifies, as we shall clarify at the end. So assume
r1 ≥ 1. As in (4.7), we consider the a.s. finite stopping times

τ (0) = 0 and τ (n) = inf{k > τ (n− 1) : π(Xx
k ) = π(x)}

= inf{k > τ (n− 1) : π(Sk) = 0} ,
(4.11)

where again Sk = Y1 + · · ·+ Yk ∈ Zr1 × Rr2 . Once more, the increments τ (n)− τ (n− 1),
n ≥ 1, are i.i.d. The stationary probability distribution of

(
π(Xx

n)
)

on Γ(j) is uniform,
whence E

(
τ (1)

)
= |Γ|. We look at the induced process (Xx

τ (n))n≥0 on each set Xε , where

ε ∈ {0, 1}r1 . As in (4.8), it is an SDS induced by the i.i.d. multidimensional contractions

Fn = fYτ(n) ◦ fYτ(n)−1
◦ · · · ◦ fYτ(n−1)+1

, with

Fn(x1, . . . , xr) =
(
Fn,1(x1), . . . , Fn,r(xr)

)
, where

Fn,i = fYτ(n)−1,i
◦ · · · ◦ fYτ(n−1)+1,i

.

(4.12)

Here, Yk,i is of course the i-th coordinate of the random vector Yk , and as above fb(xi) =
|xi− b| for b, xi ∈ R. Note that the random mappings Fn do not depend on the point x or
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the class Xε where the process starts. By (4.10), the SDS (Xx
τ (n)) is strongly contractive

on each Xε . We write Lε for its attractor. Hence, each of its marginal processes is
also strongly contractive; for any starting point, it is absorbed by its attractor, which is
the respective projection of Lε . (Here, “absorbed” means in the lattice case that with
probability 1 it belongs to the attractor from some time onwards, while in the non-lattice
case, the distance to the attractor tends to 0.)

Claim. Each marginal process (Xxi
τ (n),i)n≥0 is positive recurrent on its attractor.

In spite of being “obvious”, this needs justification.

We start by considering the first marginal of (Xx
n), which is driven by the lattice distribu-

tion µ1 . We can apply the reasoning of Lemma 4.3.2 and the subsequent lines to (Xx1
n,1).

Define

π′ : X → N0 × {0, 1}r1−1 , π′(x1, . . . , xr) =
(
x1, π(x2), . . . , π(xr1)

)
.

The process
(
π′(Xx

n)
)
n≥0

is “reflected random walk on N0 with internal degrees of free-
dom”. Its transition probabilities are

p′
(
(x1, ε

′), (y1, ε
′)
)

= P
[
|x1 − Y1,1| = y1 ,

(
π(Y1,2), . . . , π(Y1,r1)

)
= ε′ − ε′

]
, (4.13)

where of course ε′ − ε′ is taken mod 2. Observation 4.4.1 applies to
(
π′(Xx

n)
)

if one

replaces X (j) with

π′(X (j)) =
{

(x1, ε
′) :
(
π(x1), ε′

)
∈ Γ(j)

}
.

Since the transition probabilities (4.13) are additive mod 2 in the ε′-coordinates, an in-
variant measure with finite total mass for

(
π′(Xx

n)
)

is given by

ν ′1(x1, ε
′) = ν1(x1) ,

where ν1 is the invariant probability distribution for the first marginal process driven by

µ1 . We let ν
(j)
1 be the probability measure obtained by restricting ν ′1 to π′(X (j)) and

normalising it. We shall see that supp(ν
(j)
1 ) is the only essential class of

(
π′(Xx

n)
)

within

π′(X (j)).

In any case,
(
π′(Xx

n)
)

is positive recurrent in the irreducible (whence essential) class of
each point (x1, ε

′) with x1 ∈ supp(ν1). We have π(x) = ε = (ε1, ε
′), where π′(x) = (x1 , ε

′)
and ε1 = π(x1). The stopping times τ (n) are the successive instants when

(
π′(Xx

n)
)

visits
the subset (2 · N0 + ε1) × {ε′}. Thus, if x is such that x1 ∈ supp(ν1), then the return
time of

(
π′(Xx

n)
)

to (x1, ε
′) has finite expectation. At that return time, also

(
π′(Xx

τ (n))
)

is back at (x1, ε
′), whence also the return time of

(
π′(Xx

τ (n))
)

has finite expectation. But

the first marginal of
(
π′(Xx

τ (n))
)

is just the first marginal of (Xx
τ (n)), so that the return

time of the first marginal process also has finite expectation.

This argument shows that all the lattice marginal processes (Xxi
τ (n),i), i = 1, . . . , r1, are

positive recurrent on their respective attractors (as we know that they are strongly con-
tractive, whence the respective attractor – depending on π(x) – is the unique essential
class).
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Now suppose that there are also non-lattice marginals, i.e., r > r1 . Then we consider the
last marginal of (Xx

n), which is driven by the non-lattice distribution µr . We know from
propositions 4.3.1 and 4.2.3 that this marginal SDS is strongly contractive with invariant
probability measure νr . Its attractor is supp(νr).

For any x ∈ Xε , the rth marginal process (Xxr
τ (n),r) is a strongly contractive sub-SDS of

(Xxr
n,r). This time we define

π′′ : X → {0, 1}r1 × R+ , π′′(x) =
(
π(x), xr

)
.

The transition probabilities of the process
(
π′′(Xx

n)
)
n≥0

are

p′′
(
(ε, x1), {ε} ×B

)
= P

[
|xr − Y1,r| ∈ B ,

(
π(Y1,1), . . . , π(Y1,r1)

)
= ε− ε

]
, (4.14)

again taking ε− ε mod 2, where B ⊂ R+ is a Borel set. Again, Observation 4.4.1 applies
to
(
π′′(Xx

n)
)

if one replaces X (j) with

π′′(X (j)) = Γ(j) × R+ .

Once more, since the transition probabilities (4.14) are additive mod 2 in the ε-coordinates,
an invariant measure with finite total mass for

(
π′′(Xx

n)
)

is given by

ν ′′r ({ε} ×B) = νr(B) ,

where νr is the invariant probability distribution for the rth marginal process driven by
µr . That marginal process is strongly contractive, and its attractor is supp(νr).

The projected random walk
(
π(Xx

n)
)

is positive recurrent on each of its irreducible classes

Γ(j). If ε ∈ Γ(j) and x ∈ Xε then π′′(Xxε) = {ε} × R+ is a recurrent set for
(
π′′(Xx

n)
)
. It

is a straightforward and well-known consequence that the restriction of ν ′′r to {ε} × R+ is
an invariant measure for the induced process on that recurrent set; see e.g. the proof of
[68, Lemma 2.6] (which at first yields excessivity of the restriction, while invariance follows
from the fact that the restricted measure has finite total mass). Now, that induced process
is nothing but

(
ε, Xx

τ (n),r

)
. Therefore νr is the unique invariant probability measure of(

Xx
τ (n),r

)
. Since the latter process is strongly contractive, supp(νr) is its attractor, and

the process is positive recurrent on that set.

Again, this argument applies to all non-lattice marginals of our SDS, and the claim is
proved.

We know (via Proposition 4.2.3) that for every starting point x ∈ X , each marginal SDS
(Xxi

τ (n),i) has a unique invariant probability measure νi,ε on its attractor, which depends

on ε = π(x). By Proposition 4.2.5, where we introduced the right product (Furstenberg’s
Principle) there is a non-negative integer, resp. real random variable Zi,ε such that for
the reversed process, we have

X̂xi
τ (n),i = F1,i ◦ F2,i ◦ · · · ◦ Fn,i(xi)→ Zi,ε almost surely

for each x = (x1, . . . , xr) ∈ Xε , with the Fk,i given in (4.12) . But then we get that

X̂x
τ (n) = F1 ◦ F2 ◦ · · · ◦ Fn(x)→ Zε = (Z1,ε , . . . , Zr,ε) almost surely
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for each x ∈ Xε . Since the limit random variable Zε does not depend on the starting point,
its distribution νε is an invariant probability measure for (Xx

τ (n)), and Lε = supp(νε). We

note that the marginals of νε are the above measures νi,ε . (Recall here that for r1 < i ≤ r,
we have νi,ε = νi , the invariant probability measure for the reflected random walk driven
by the marginal µi .)

Now suppose that the starting point x lies in X (j). The projected random walk
(
π(Xx

n)
)

is positive recurrent on Γ(j). Therefore (Xx
n) visits each Xε ⊂ X (j) infinitely often with

probability 1. Since the τ (n) are the times of the successive return visits to each of those
Xε , we see that the set of accumulation points of (Xx

n) coincides almost surely with

L(j) =
⋃
ε∈Γ(j)

Lε . (4.15)

We choose ε ∈ Γ(j) and use νε to construct a probability measure on X (j) by

ν(j)(B) =
1

E
(
τ (1)

) ∫
Lε
E

(
τ (1)−1∑
n=0

1B(Xx
n)

)
dνε(x)

=
1

|Γ|

∞∑
n=0

∫
Lε
P[Xx

n ∈ B , τ (1) ≥ n+ 1] dνε(x) ,

where B ⊂ X (j) is a Borel set. It is well known and easy to verify that this is an invariant
probability measure for (Xx

n).

Suppose that ν is an arbitrary invariant probability measure for (Xx
n) on X (j). Every point

in X (j) \L(j), not being an accumulation point of (Xx
n), is transient (has a neighbourhood

which is visited only finitely often). Thus, we must have supp(ν) ⊂ L(j). On the other
hand, invariance of ν implies that Xx

1 ∈ supp(ν) a.s. for any x ∈ supp(ν(j)), and iterating,
the entire trajectory of (Xx

n) is in supp(ν). We see that supp(ν) = L(j).

The projected probability measure π(ν) must be invariant for the factor chain
(
π(Xx

n)
)

in Γ(j). Therefore ν(Xε) = 1/|Γ| for every ε ∈ Γ(j). It is again a well-known fact that the
normalised restriction of ν to Xε must be the (as we know, unique) invariant probability
measure for the induced process (Xx

τ (n)) on that set. Thus, ν = ν(j) is unique,

ν(j) =
1

|Γ|
∑
ε∈Γ(j)

νε ,

where νε is viewed as a measure on the whole of X (j). This concludes the proof in the
presence of lattice marginals.

In the purely non-lattice case when r1 = 0, we do not need to pass to an induced subsystem
which becomes contractive: the reversal argument applies directly to the original reflected
random walk. Indeed, this is the case treated by [66, Th. 24].

We know that the one-dimensional marginals of each of the invariant probability measures
ν(j) on the different parts X (j) of the state space are the invariant measures νi of the
marginal processes, which are supported by the intervals [0 , Ni] ∩ R+ , resp. [0 , Ni] ∩N0 .
In the higher-dimensional case, the essential classes X (j) where the reflected random walk
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takes place – the respective support of the ν(j) - are not easily determined. We illustrate
this by the following simple examples.

Example 4.4.3. We let X = N2
0.

(a) Let µ = 1
2(δ(2,3)+δ(3,2)). Then N1 = N2 = 3 and the reflected random walk is absorbed

by (a subset of) {0, 1, 2, 3}2. We have Γ = {0, 1}2, and there is only one essential class.
Indeed, there are the three irreducible classes

{(0, 0), (2, 3), (3, 2)} , {(3, 3)} and {0, 1, 2, 3}2 \ {(0, 0), (2, 3), (3, 2), (3, 3)}.

The latter is the essential one.

(b) Let µ = 1
2(δ(−1,2) + δ(2,−1)). Then N1 = N2 =∞ and Γ = {0, 1}2. Again, there is only

one essential class, and one finds that this is N2
0 \ {(0, 0)}.

(c) Let µ = 1
2(δ(−1,3) + δ(3,−1)). Again, N1 = N2 = ∞ but Γ = {(0, 0), (1, 1)}. Reflected

random walk evolves on the two separated parts

X (1) = {(k, l) ∈ N2
0 : k + l is odd } and X (2) = {(k, l) ∈ N2

0 : k + l is even }.

While the whole of X (1) is an essential class and thus equal to L(1), the essential class
within X (2) is L(2) = X (2) \ {(0, 0)} .

One can also find examples as in (b) or (c) where a bigger region around the origin is not
part of the attractor. �

Remark 4.4.4. (a) In view of Proposition 4.2.2, the sets Lε only depend on supp(µ),
and thus also the set L(j) of (4.15) does not depend on recurrence, but just on supp(µ).
And as long as all marginals satisfy µi

(
(0 , ∞)

)
> 0, we can modify µ to obtain another

probability measure with the same support that induces a reflected random walk which is
positive recurrent on each X (j) (or, more precisely, L(j)).

(b) There is a very simple argument, communicated to us by Nina Gantert, which shows
at least in the discrete case (r2 = 0) that positive recurrence of each of the marginal
processes implies that RRW starting from any point in Nr

0 must be absorbed by a positive
recurrent essential class. We display that argument here, for simplicity taking only r = 2.
There must be finite sets A1 , A2 ⊂ N0 such that ν1(A1)+ν2(A2) > 1, where the νi are the
respective stationary probability measures. Then for x ∈ N2

0, by the convergence theorem,

1

n

n−1∑
k=0

P[Xx
k ∈ A1 ×A2] ≥ 1

n

n−1∑
k=0

(
P[Xx1

k,1 ∈ A1] +P[Xx2
k,2 ∈ A2]− 1

)
→ ν1(A1) + ν2(A2)− 1 > 0 , as n→∞ .

Thus, one would think that the first issue is to use purely algebraic arguments involving
only supp(µ) which should lead to a description of the essential classes of RRW, showing
that there is precisely one within each X (j). However, to the authors it is by no means ob-
vious how to achieve this without involving the local contractivity arguments used above.
Indeed, already in the one-dimensional case, without use of local contractivity (which
works via the algebraic Proposition 4.3.3), the corresponding reasoning is amazingly hard:
quoting [19, p. 100], “d’une surprenante difficulté ” – even though in dimension 1 the
stationary distribution is known explicitly. �

32



4.4. REFLECTION IN ALL COORDINATES

The next question is whether one can get a more general recurrence result regarding null
recurrence, that is, when some of the marginal distributions give rise to null recurrent
reflected random walks; compare with propositions 4.3.7 and 4.3.8. This appears to be a
hard task. We next show that in general, for recurrence one cannot have more than two
marginals which are only null recurrent.

Consider µ on Rr. We take a sequence (en,i)n≥0,1≤i≤r of i.i.d. random variables which are
equidistributed on {±1} and independent of (Yn)n≥1 . For each one-dimensional marginal
µi and the associated coordinates Yn,i we consider the associated process

W xi
0,i = xi , and W xi

n+1,i = W xi
n,i + Exin,iYn+1,i , where Exin,i =



−1 , if W xi
n,i > 0 ,

en,i , if W xi
n,i = 0 ,

1 , if W xi
n,i < 0 .

Then we have
|W x

n | = X |x|n ,

where (recall) absolute values are taken coordinate-wise. The following is a straightforward
exercise.

Lemma 4.4.5. If µ is fully symmetric, that is, invariant under all coordinate reflections
xi 7→ −xi (i = 1, . . . , d), then the r-dimensional increments

Ỹn = Exn−1 · Yn =
(
Ex1n−1,1Yn,1 , . . . , E

xd
n−1,dYn,d

)
are i.i.d. µ-distributed. In particular, for any x ∈ X and Borel set B ∈ Rr+,

P[Xx
n ∈ B] = P[x+ Sn ∈ B∗] , where

B∗ = {(±y1 , . . . ,±yr) : (y1 , . . . , yr) ∈ B}.
(4.16)

We observe that when supp(µ) is a fully symmetric set, then the induced reflected random
walk is such that L(j) = X (j) for the essential classes given by (4.15), resp. the respective
partition (4.4.1) of the state space X .

Corollary 4.4.6. Suppose that µ is fully symmetric. Then reflected random walk induced
by µ is transient whenever the dimension is r ≥ 3. When r ∈ {1, 2}, a sufficient condition
for recurrence is that µ has finite moment of order r .

We shall deduce from Theorem 4.5.1 below that this has the following generalisation.

Corollary 4.4.7. Let µ be a probability measure on Rr+s whose lattice marginals satisfy
(4.3.3). Write µbrc for the r-dimensional marginal of µ in the first r coordinates and µdse
for the s-dimensional marginal of µ in the last s coordinates, where s ∈ {1, 2}. Suppose
that the reflected random walk induced by µbrc is positive recurrent on each of its essential
classes.

If µdse is fully symmetric and has finite moment of order s, then the reflected random walk
induced by µ is (topologically) null recurrent on its essential classes.
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The following, regarding the joint observation of independent parts, is obvious.

Lemma 4.4.8. Suppose that the probability measure µ on Rr1+r2 is such that all lattice
marginals satisfy (4.3.3) and

µ = µbr1c ⊗ µdr2e .

If RRW driven by µbr1c is positive recurrent and RRW driven by µdr2e is null recurrent,
then RRW driven by µ is null recurrent (on the respective essential classes).

This holds in particular, when r2 = 1 and one of the conditions of for null recurrence of
§3 is satisfied.

The following provides a class of examples regarding null recurrence in dimension 2.

Lemma 4.4.9. Let µ1 and µ2 be probability measures on Z which satisfy (4.3.3). Suppose
they have exponential moments of all orders and are centred. Then RRW on N2

0 induced
by µ1 ⊗ µ2 is null recurrent on its essential classes.

Proof Under the above assumptions, it was shown by Essifi and Peigné [35] that for
all x, y ∈ N0

P[Xx
n,i = y] ∼ C(i)

y n−1/2 as n→∞,

where C
(i)
y > 0, for i = 1, 2. The statement follows.

With weaker moment conditions, one can well have two independent RRWs, each of which
is null recurrent, while the resulting two-dimensional RRW is transient.

Example 4.4.10. On Z, let (Yn) be equidistributed on {±1}, so that Sn = Y1 + · · ·+Yn is
simple random walk. Let

(
τ(n)

)
n≥0

be a sequence of random times which is independent

of (Yn) and such that τ(0) = 0 and τ(n) − τ(n − 1) are i.i.d. N-valued. The associated
subordinated random walk is

Sτ(n) = Ỹ1 + · · ·+ Ỹn , where Ỹk = Yτ(k−1)+1 + · · ·+ Yτ(k) .

Now let 0 < α < 1 and consider τ(n) = τα(n), where

P[τα(n)− τα(n− 1) = k] =
αΓ(k − α)

k! Γ(1− α)
∼ α

Γ(1− α)

1

k1+α
(1 ≤ k →∞).

By Bendikov and Saloff-Coste [15, Thm.3.4],

P[Sτ(2n) = 0] ' n−
1
2α ,

where ' means asymptotic equivalence of sequences. Let µα be the distribution of Ỹ1 . We
see that (Sτ(n)), the symmetric random walk on Z with law µα , as well as the associated
RRW on N0 are recurrent if and only if α ≥ 1/2.

Now consider µ = µα⊗µα on Z2. It is fully symmetric, and we get that for any α ∈ (0 , 1),
the random walk induced by µ with reflection in none, one or both coordinates is transient.
�
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4.5 Reflected plus non-reflected coordinates

We now consider the situation of (4.1) in dimension r+ s with s ∈ {1, 2}, and state space
as in (4.3). As before, we write µbrc and µdse for the overall marginal distributions of µ in
the first r and last s variables, respectively.

Theorem 4.5.1. Suppose that µbrc satisfies the assumptions of Theorem 4.4.2, so that
the associated reflected random walk (Xx

n) on Nr1
0 × Rr2+ is positive recurrent.

If µdse has finite moment of order s, then the process (Xx
n , Zn) of (4.1) is (topologically)

recurrent if and only if µdse is centred.

Here, we mean that when L(j) is one of the essential classes (4.15) of (Xx
n) according to

Theorem 4.4.2, then for each x ∈ L(j) and v ∈ Rs, the process (Xx
n , v+Zn) returns to any

neighbourhood of (x, v) infinitely often with probability 1. Of course, when µdse is lattice,
there are infinitely many returns to (x, v) itself. Note that we may assume w.l.o.g. that
v = 0. We also remark here that (Xx

n , Zn) is a typical case of a Markov random walk or
random walk with internal degrees of freedom with positive recurrent driving Markov chain
(Xx

n). There is an ample literature on processes of this type, see e.g. Jacod [51], Krámli
and Szász [60], Babillot [7] or Uchiyama [80] and the references in those papers.

Proof Because this is considerably simpler, we first consider the case when µbrc is

purely lattice, that is, r2 = 0. Let x ∈ L(j), and let t(n) be the successive return times of
(Xx

n) to x, with t(0) = 0. They have i.i.d. increments with finite expectation by positive
recurrence. Then

Zt(n) = Ṽ1 + · · ·+ Ṽn , where Ṽk = Zt(k) − Zt(k−1) ,

and the Ṽk are i.i.d. By Wald’s identity,

E( Ṽ1) = E
(
t(1)

)
E(V1) ,

and if V1 has finite second moment then so does Ṽ1 . The result follows.

The situation is more complicated when the reflected part is not purely lattice. In this
case, we start with a compact neighbourhood U of some point x ∈ L(j). We know that for
any y ∈ U , the chain (Xy

n) returns to U almost surely. Thus, we can consider the induced
process (Xy

t(n)) on U , where t(n) are the times of the successive visits to U . Note that
they depend on the starting point y and do not have i.i.d. increments. In any case, it is

a well known fact that the normalised restriction νU = ν
(j)
U of the invariant probability

measure ν(j) to U is an invariant probability for the induced process.

We shall use a method of [8, Thm. 4.1]. For any probability distribution ν supported in
L(j), we let Pν = P(ν,0) be the probability on the trajectory space of (Xx

n , v + Zn), where
(Xx

n) has starting distribution ν – so that we might as well use the notation (Xν
n) – while

(Sn) starts at v = 0. In other words,

Pν =

∫
P(x,0) dν(x) ,

where in general P(x,v) refers to starting the process at the deterministic point (x, v). Since

ν(j) is the unique invariant probability for the original process on X (j), resp. L(j), also νU
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is the unique invariant probability for the induced process. Therefore the induced process
on L(j) with initial distribution νU – which we denote by (XνU

t(n)) – is not only stationary,

but ergodic under PνU – see e.g. Hernández-Lerma and Lasserre [44, Prop. 2.4.3]

Claim. The sequences of random variables (Ṽn) and
(
t(n)−t(n−1)

)
are stationary ergodic

under PνU .

Proof of the claim. Stationarity is straightforward, and contained in the first part of the
following. Let (Fn) be the filtration of the σ-algebra on the trajectory space generated by
(Xx

n , Zn). Take a measurable function φ : RN → R+. Then, since the distribution of XνU
t(n)

is νU and the transitions of (Zn) are translation invariant,

EνU

(
φ(Ṽn+1 , Ṽn+2 , . . . ) | Ft(n)

)
= E(X

νU
t(n)

,Zt(n))

(
φ(Ṽ1 , Ṽ2 , . . . )

)
= E(X

νU
t(n)

,0)

(
φ(Ṽ1 , Ṽ2 , . . . )

)
= EνU

(
φ(Ṽ1 , Ṽ2 , . . . )

)
.

Now suppose in addition that W = φ(Ṽ1 , Ṽ2 , . . . ) is measurable with respect to the
invariant σ-algebra of (Ṽ1 , Ṽ2 , . . . ), so that W = φ(Ṽn , Ṽn+1 , . . . ) for each n. Then by
martingale convergence and the above,

W = lim
n→∞

EνU (W | Ft(n)) = lim
n→∞

E(X
νU
t(n)

,0)(W ) .

Therefore W is also an invariant function of (XνU
t(n)), which is ergodic, so that W is PνU -

almost surely constant. This shows ergodicity of (Ṽn). The proof for the increments(
t(n)− t(n− 1)

)
is analogous.

Having proved the Claim, we recall that as in the lattice case E
(
t(1)

)
<∞ , and by Wald’s

identity E( Ṽ1) = 0 if and only E(V1) = 0.

If s = 1, then we see that under PνU , the random walk (Zt(n)) on R arises from the sums of

the stationary ergodic sequence of the random variables Ṽn , which have finite expectation.
By a theorem of [5], (Zt(n)) is recurrent (= returns infinitely often to any neighbourhood of
0 with probability 1) if and only if V1 is centred. This proves that (Xx

n , v+Zn) is recurrent
(where RRW is considered one one of its attractors L(j)) if and only if E(V1) = 0.

If s = 2, then our assumption is that E(V 2
1 ) < ∞, so that Zn satisfies the Central Limit

Theorem. If E(V1) 6= 0 then we have of course transience. So suppose that E(V1) = 0.
Then Zn/

√
n converges in law to a non-degenerate 2-dimensional centred normal distri-

bution. By Birkhoff’s Ergodic Theorem, t(n)/n → E
(
t(1)

)
almost surely under PνU .

Then, by an old theorem of Rényi [72] (going back to Anscombe [3]), also Zt(n)/
√

t(n)
is asymptotically normal with the same limit distribution. Now we can apply the theorem
of [74] to deduce that (Zt(n)) is recurrent. This concludes the proof.

Proof [Proof of Corollary 4.4.7] Let (Xx
n) be RRW induced by µbrc and (v + Zn) be the

ordinary random walk induced by µdse. By Theorem 4.5.1, the process (Xx
n , v + Zn) is

recurrent on its essential classes. A straightforward adaptation of Lemma 4.4.5 yields that
we also have recurrence when there is reflection in the last two coordinates.

Note that the last phrase of the proof remains true also when s = 2 and there only is reflec-
tion in one of the last two coordinates, while the other coordinate remains non-reflected.
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This observation together with Corollary 4.4.7 and Theorem 4.5.1 clarifies that there can
not be a general result on recurrence with more than two null-recurrent coordinates, be
they reflecting or “free”.

We conclude with an open problem. Suppose that r = s = 1, so that we have reflection in
the first coordinate only, and no reflection in the second one. Also suppose that the second
marginal gives rise to a recurrent (ordinary) random walk (e.g., having finite first moment
and being centred.) Provide general recurrence criteria, when the reflected process in the
first coordinate is null-recurrent.

Acknowledgement: The authors thank the referees for the helpful remarks and com-
ments. Moreover, we are grateful to Marc Peigné for a lot of fruitful discussions.
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Chapter 5

The multidimensional Lindley
process

The following part is based on the submitted joint paper with Wojciech Cygan On recur-
rence of the multidimensional Lindley process.

5.1 Introduction

Let (Yn)n≥1 be a sequence of independent and identically distributed random variables
with common distribution µ and let Sn = Y1 + · · · + Yn be the classical random walk. A
Lindley process (LP) is a discrete time stochastic process (Wn)n≥0 defined recursively by

W0 = w0 ≥ 0 and Wn = max{Wn−1 − Yn, 0}, for n ≥ 1. (5.1)

The process (Wn) is a Markov chain on the state space [0,∞) with one-step transition
probabilities given by

p(w0, [0, w]) = P(W1 ≤ w |W0 = w0) = µ ([w0 − w,∞)) , for w ≥ 0

Relation (5.1) reveals that the LP which starts at 0 obeys the same transition rules as the
underlying random walk (Sn), except the times when (Sn) crosses its successive maximal
levels, since at these moments (Wn) stays at 0. In other words, the return times to 0,
denoted by TW (k), k ≥ 0, for the process (Wn) started at 0 coincide with the ascending
ladder epochs of the random walk (Sn). Let us recall that the (non-strict) ascending ladder
epochs are defined as

τ̄(0) = 0, τ̄(k + 1) = inf{n > τ̄(k) : Sn ≥ Sτ̄(k)}, for k ≥ 0,

where S0 = 0 and we use the convention that inf ∅ =∞. It is straightforward to check that
TW (k) = τ̄(k). There are also more connections like this and one of the most significant
is that, given W0 = 0, the random variable Wn has the same distribution as Mn =
max{0, S1, . . . , Sn}. All the mentioned facts bear a lot of fruitful consequences and we
exploit them repeatedly in our paper.

We briefly state the well-known facts about recurrence of the LP in the one-dimensional
case. Recall that an essential class for a Markov chain is a subset of the state space which
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is irreducible and absorbing. Given P(Y1 > 0) > 0 there is only one essential class for
(Wn) and it contains all the states that can be visited after the process reached 0. Thus
to study its recurrence it suffices to concentrate on the behaviour at the origin.

We recall from Feller [38, Ch. XII, Sec. 2, Theorem 1] that there are three types of
random walks:

• (Sn) is either oscillating, then lim infn→∞ Sn = −∞ and lim supn→∞ Sn =∞;

• or it has a positive drift with limn→∞ Sn =∞;

• or it has a negative drift meaning that limn→∞ Sn = −∞.

In the first two cases we have P(τ̄(1) < ∞) = 1, whereas in the negative drift case
P(τ̄(1) < ∞) < 1. By the correspondence between the ladder epochs of (Sn) and the
return times of (Wn), we conclude that (Wn) is recurrent if and only if P(τ̄(1) <∞) = 1.
Therefore (Wn) is recurrent if and only if (Sn) is oscillating or if it has a positive drift and
the following dichotomy holds true:

1) The process (Wn) is null recurrent if and only if (Sn) is oscillating. Then τ̄ = τ̄(1)
has infinite first moment, cf. Gut [43, Theorem 9.1]. It happens if EY1 = 0 or if µ is
symmetric.

2) The process (Wn) is positive recurrent if and only if (Sn) has a positive drift. In this
case Eτ̄ is finite and Wn converges weakly to the random variable M∞ = sup{S0, S1, . . .}
which is finite a.s. This holds in particular if E|Y1| <∞ and EY1 > 0.

We observe that for a general distribution µ on R and the associated LP with an arbitrary
initial random variable W0 ≥ 0 which is independent of (Yn) we have equality in law
Wn = max{Mn−1,W0 + Sn}, for n ≥ 1. This in turn implies that, given E(Y1) > 0,
Wn → M∞ in law and thus the distribution of M∞ is the unique stationary measure for
(Wn), cf. also Diaconis and Freedman [29, Theorem 4.1].

The LP comes up naturally in the framework of single server queues and thus it was
extensively studied over the past decades, see e.g. the seminal paper Kendall [55] with
references therein and cf. also the books by Feller [38], Borovkov [17] and Asmussen
[4]. Lindley [65] was the first who investigated the limit behaviour of (Wn) and discovered
its connections with the Wiener-Hopf integral equations. More recently, asymptotics of
the return probabilities of (Wn) were computed by Essifi, Peigné and Raschel [36].

The LP may be also viewed as a random walk with a certain barrier at zero and in this
spirit we mention the reflected random walk (RRW), denoted by (Xx

n)n≥0, which is defined
analogously to (Wn) but instead of the maximum function in (5.1) one sets Xx

0 = x ≥ 0
and Xx

n = |Xx
n−1 − Yn|, for n ≥ 1. There is an obvious and striking resemblance between

the two processes and in this note we take advantage of this aspect. In particular, the
question of recurrence of RRW received much attention in the literature, see Peigné and
Woess [67] with references therein and Kloas and Woess [58] respective chapter 4 for
a treatment of the multidimensional case.

The multidimensional counterpart of the LP arises from the studies on many server queue-
ing models which were initiated by Kiefer and Wolfowitz [56]. In this note we aim
at finding sufficient conditions for recurrence of the multidimensional LP as well as for a
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process of which some coordinates are LP and the other are ordinary random walks. We
focus mainly on the two-dimensional lattice case but we also present a satisfactory result
for higher dimensions. More precisely, the paper is organized as follows: Section 5.2 is de-
voted to the study of the asymptotic behaviour of a given random walk on integers which is
evaluated at some random stopping times that are ladder epochs of a second independent
random walk. Further, we take advantage of the result and construct a pair of examples
of random walks with infinite second moment and investigate their recurrence. In section
5.3 we treat the two-dimensional LP in the lattice quadrant and investigate its recurrence
under various assumptions on the tail behaviour of the underlying random walk. Among
other methods, we apply the asymptotics obtained in Section 5.2. In the last paragraph
we use a technique of local contractivity, which is related to stochastic dynamical systems,
to study the LP in higher dimensions.

5.2 Subordination tools for random walks

Let Sn = Y1 + . . .+Yn be an oscillating random walk such that S0 = 0. We always assume
that the distribution µ of the increment Y is supported by Z. Since (Sn) is oscillating,
the first strict ascending ladder epoch τ = τ(1) = min{n ≥ 1 : Sn > 0} is well-defined.
Following Vatutin and Wachtel [81], for α, β ∈ R we consider the set

A = {0 < α < 1; |β| < 1} ∪ {1 < α < 2; |β| ≤ 1} ∪ {α = 1, 2; β = 0}. (5.2)

For (α, β) ∈ A we write Y ∈ D(α, β) if the distribution of Y belongs to the domain of
attraction of the stable law with characteristic function

Φ(ξ) = exp

{
−c|ξ|α

(
1− iβ ξ

|ξ|
tan

απ

2

)}
,

for c > 0. If 1 < α ≤ 2 we assume that E(Y ) = 0. It is known Doney [32] that if
Y ∈ D(α, β) then

P(Sn > 0)→ ρ ∈ (0, 1), n→∞, (5.3)

where the parameter ρ is given by

ρ =
1

2
+

1

πα
arctan

(
β tan

πα

2

)
. (5.4)

Moreover, condition (5.3) is equivalent to the existence of a slowly varying (at infinity)
function ` such that

P(τ > n) ∼ 1

Γ(ρ)Γ(1− ρ)nρ`(n)
, n→∞. (5.5)

Recall that a function f is regularly varying of index γ at infinity if limx→∞ f(λx)/f(x) =
λγ , for all λ > 0, and f is called slowly varying if γ = 0. Equation (5.5) means that τ
belongs to the domain of attraction of the one-sided stable law of index ρ. According to
[81, Theorem 3] and [82, Theorem 10] for α = 1 or β = −1 we also have the following
local result

P(τ = n) ∼ ρ

Γ (ρ) Γ(1− ρ)nρ+1`(n)
, n→∞, (5.6)
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with the same slowly varying function ` as in (5.5).

We study the local asymptotic behaviour of a random walk which is evaluated at ladder
epochs of the random walk (Sn). More precisely, we consider a finite range and centered
random walk (Zn) on Z (i.e. the support of the law of Z1 is bounded and EZ1 = 0) and we
look more closely at the tail decay of the random variable Zτ , where τ is the first strictly
ascending ladder epoch of (Sn). The proof of the theorem below is based on the similar
result obtained in Bendikov and Cygan [13] for the Green function of the subordinated
random walk in Zd but it requires numerous improvements and adjustments to the present
setting. To our best knowledge, this is the first result of this type in the centred but not
necessarily symmetric case.

We emphasise that the scope of the theorem is wider than it is stated. One can consider
an arbitrary increasing random walk (ηn) on non-negative integers and then a new sub-
ordinated random walk (Zηn). The result is applicable given that the increments of (ηn)
behave locally as in (5.6). We obtain the local behaviour of the subordinated random walk
without any assumption on the structure of the distribution of η1, cf. Bendikov, Cygan
and Trojan [14] for the detailed discussion on the asymptotic behaviour of subordinated
random walks under the assumption that the Laplace transform of η1 is governed by a
Bernstein function.

Theorem 5.2.1. Suppose that (Sn) is an oscillating random walk such that its increment
Y ∈ D(α, β). Let τ be the first strict ascending ladder epoch of (Sn). Assume that (Sn) is
independent of (Zn), then

P (Zτ = x) ∼ C(ρ)

|x|2ρ+1`(|x|2)
, as |x| → ∞, (5.7)

where ` is the slowly varying function from (5.6) and

C(ρ) =
ρ(2σ2)ρ−1Γ

(
ρ+ 1

2

)
√
πΓ(ρ)Γ(1− ρ)

, with σ2 = Var(Z1). (5.8)

Proof We set pn(x) = P(Zn = x) and write

P(Zτ = x) =

[|x|5/3]∑
n=1

pn(x)P(τ = n) +
∑

n>[|x|5/3]

pn(x)P(τ = n) = I1(x) + I2(x).

Let pn(x) = (
√

2πnσ)−1e−|x|
2/(2σ2n) and E(n, x) = pn(x)− pn(x). Applying Lawler and

Limic [62, Theorem 2.1.1] (see the discussion following Proposition 2.1.2), we get that for
a centered irreducible and aperiodic random walk in Zd with finite third moment there is
some C > 0 such that

|E(n, x)| ≤ Cn−
d+1
2 , n ≥ 1. (5.9)

We decompose I2(x) into two parts

I2(x) =
∑

n>[|x|5/3]

pn(x)P(τ = n) +
∑

n>[|x|5/3]

E(n, x)P(τ = n) = I21(x) + I22(x),
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and first we establish that I22(x) = o
(
|x|−2ρ−1/`(|x|2)

)
. Our assumption followed by (5.6)

and (5.9) with d = 1 implies that for some C > 0

I22(x) ≤ C
∑

n>[|x|5/3]

1

nρ+2`(n)
∼ C

∫ ∞
|x|5/3

1

tρ+2`(t)
dt, as |x| → ∞.

By Bingham, Goldie and Teugels [16, Proposition 1.5.10], we have∫ ∞
|x|5/3

1

tρ+2`(t)
dt ∼ 1

(ρ+ 1)|x|5(ρ+1)/3`
(
|x|5/3

) , as |x| → ∞

and whence, for |x| large enough,

I22(x)|x|2ρ+1`(|x|2) ≤ C 1

(ρ+ 1)|x|(2−ρ)/3

`(|x|2)

`
(
|x|5/3

) .
Potter bounds [16, Theorem 1.5.6] yield `(|x|2) ≤ 2|x|1/3`

(
|x|5/3

)
, for |x| large, and there-

fore

I22(x)|x|2ρ+1`(|x|2) ≤ C 1

(ρ+ 1)|x|(1−ρ)/3
→ 0, as |x| → ∞,

as desired. Next, with I21(x) we proceed as follows. For |x| → ∞,

I21(x) ∼ C1

∑
n>[|x|5/3]

e−
|x|2
2σ2n

1

nρ+3/2`(n)
∼ C1

∫ ∞
|x|5/3

e−
|x|2
2σ2t

1

tρ+3/2`(t)
dt,

where C1 = ρ(σ
√

2πΓ(ρ)Γ(1− ρ))−1. By a suitable change of variables we have∫ ∞
|x|5/3

e−
|x|2
2σ2t

1

tρ+3/2`(t)
dt =

(2σ2)ρ+ 1
2

|x|2ρ+1`(|x|2)

∫ |x|1/3/(2σ2)

0
e−ssρ−

1
2

`(|x|2)

` (|x2|/(2σ2s))
ds.

We choose an arbitrary ε ∈ (0, (2ρ + 1)/2). By Potter bounds we get that for |x| big
enough,

`(|x|2) ≤ 2 max
{

(2σ2s)−ε, (2σ2s)ε
}
`
(
|x|2/(2σ2s)

)
.

Hence, we are allowed to apply the dominated convergence theorem to the above integral
which implies

I21(x) ∼
ρ(2σ2)ρ−1Γ

(
ρ+ 1

2

)
√
πΓ(ρ)Γ(1− ρ)

1

|x|2ρ+1`(|x|2)
, as |x| → ∞.

To finish the proof we are left to show that I1(x) = o
(
|x|−2ρ−1/`(|x|2)

)
. Here we use our

assumption that the random walk (Zn) has finite range. The Gaussian upper bound of
Alexopoulus [2, Theorem 1.8] yields

I1(x) ≤ C2e
−C3|x|1/3

[|x|5/3]∑
n=1

n−1/2e−
C3x

2

n P(τ = n) ≤ C2e
−C3|x|1/3 .

Since x−ν`(|x|2) tends to 0 for any ν > 0, we get that

|x|2q+1`(|x|2)I1(x) ≤ C2|x|2ρ+1+νe−C3|x|1/3 ,

where the last quantity tends to 0 as |x| → ∞.
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Corollary 5.2.2. Under the assumptions of Theorem 5.2.1, Zτ ∈ D(2ρ, 0).

Proof Let F (x) = P(Zτ ≤ x). By Theorem 5.2.1, as x→∞,

1− F (x) =
∑
k>x

P (Zτ = k) ∼ C(ρ)
∑
k>x

1

k2ρ+1`(k2)
∼ C(ρ)

∫ ∞
x

1

t2ρ+1`(t2)
dt.

Hence, by [16, Prop. 1.5.10], 1−F (x) ∼ C(ρ)/(2ρ x2ρ`(x2)) at infinity. Asymptotics (5.7)
are symmetric in x and whence one easily shows that F (−x)/(1 − F (x)) tends to 1 as
x goes to infinity. We conclude that 1 − F (x) + F (−x) ∼ C(ρ)/(ρ x2ρ`(x)) at infinity.
The conditions of Gnedenko and Kolmogorov [42, §35, Thm. 2] are fulfilled and we
obtain that Zτ belongs to the domain of attraction of the stable law of index 2ρ. Since
F (−x)/(1− F (x) + F (−x)) tends to 1/2 as x goes to infinity, the skewness parameter β
equals 0.

We next present a variety of examples of random walks on Z which are constructed ac-
cording to the discussed procedure of the random change of time. As we proved that
Zτ ∈ D(2ρ, 0), we get that E(|Zτ |γ) < ∞, for all γ < 2ρ. First we handle the case
ρ 6= 1/2.

Proposition 5.2.3. If (Zn) is symmetric then under the conditions of Theorem 5.2.1, the
random walk (Zτ(n)) is transient if 0 < ρ < 1

2 and recurrent if 1
2 < ρ < 1.

Proof If 1
2 < ρ < 1 then E(|Zτ |) <∞ and by symmetry we have E(Zτ ) = 0 which yields

recurrence. If 0 < ρ < 1
2 we set F (x) = P(Zτ ≤ x) and let H(x) = 1− F (x) + F (−x) be

the tail function. Then by symmetry and Theorem 5.2.1, for some C > 0,

H(x)

1− F (x)
=

2(1− F (x)) + P (Zτ = x)

1− F (x)
∼ 2 +

C(ρ)2ρ x2ρ`(x2)

Cx2ρ+1`(x2)
→ 2, as x→∞.

Thus H(x) ∼ 2(1− F (x)) ∼ C(ρ)/(ρ x2ρ`(x2)) at infinity.

Let φ(t) = E(eitZτ ) be the characteristic function of Zτ . By symmetry it is a real and
even function. The result by Pitman [70, Theorem 1] implies that, as t→ 0,

1− φ(t) ∼ πH(t−1)

2Γ(2ρ) sin(ρπ)
∼ C1(ρ)t2ρ`(t−2), with C1(ρ) = C(ρ)

π

4ρΓ(2ρ) sin(ρπ)
.

To prove transience we apply the Chung and Fuchs criterion [25], see also Spitzer [77,
Ch. 2, Sec. 8, T2]. Since the random walk (Zτ(n)) is aperiodic (according to [77, Ch. 1,
Sec. 2, Def. D2]), φ(θ) = 1 if and only if θ = 2kπ, k ∈ Z, and whence it suffices to prove
that

∫ ε
0 (1 − φ(t))−1dt is finite for small ε > 0 which in front of the previous formula is

equivalent to the convergence of
∫ ε

0 (t2ρ`(t−2))−1dt. For any ν > 0 we have `(t−2) > t2ν , for
t > 0 small enough. Choosing ν such that 2(ρ+ ν) < 1 the considered integral converges.

In the (critical) case ρ = 1
2 we give an example of a recurrent random walk (Zτ(n)) with

increments that have no finite first moment. First we recall an important notion of α-
conjugate pairs from the theory of regular variation which we extract from Doney [31].

For a given slowly varying function ` set f(x) = xα`(x), with some α > 0. By [16, Theorem
1.5.12], there is a regularly varying function g of index 1/α and such that g(f(x)) ∼ x
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at infinity. Since g varies regularly, g(x) = x1/α`∗α(x), for some slowly varying `∗α. By
definition, `∗α satisfies

(`(x))1/α`∗α(xα`(x))→ 1, equivalently (`∗α(x))α`(x1/α`∗α(x))→ 1, as x→∞. (5.10)

The function `∗α is called the α-conjugate of the function `. The way to remember the
meaning of `∗α is that y ∼ xα`(x), when x goes to infinity, if and only if x ∼ y1/α`∗α(y), as
y goes to infinity. One easily checks that if

lim
x→∞

`(x)

`(xα`(x))
= C(α) > 0 then `∗α ∼ (C(α)`(x))−

1
α , as x→∞. (5.11)

This holds for many slowly varying functions, for example log x, log log x etc.

Example 5.2.4. Let (Sn) be an oscillating random walk such that its increment Y belongs
to the domain of attraction of the normal distribution. It is known from Feller [38, Ch.
XVII, Sec. 5, Thm. 1a] that it holds if and only if the truncated variance of Y is slowly
varying, that is

E
(
Y 21(|Y |≤y)

)
∼ 2

`(y)
, as y →∞, (5.12)

for some slowly varying function `. We additionally assume that E(Y 2) =∞ and E(Sτ ) <
∞. Then the result by Uchiyama [80, Thm. 1.2 and Rem. 2] implies that

P(τ > n) ∼ 1
√
πE(Sτ )n1/2`∗(n)

, as n→∞,

where `∗ = `∗2 is the 2-conjugate of ` as defined in (5.10). By [81] we obtain that

P(τ = n) ∼ 1

2
√
πE(Sτ )n3/2`∗(n)

, as n→∞.

Next, if we take a symmetric random walk (Zn) then Theorem 5.2.1 gives us

P(Zτ = x) ∼ 1√
2πE(Sτ )x2`∗(x2)

, as x→∞.

As in the proof of Proposition 5.2.3,

H(x) = 1− F (x) + F (−x) ∼ 1√
2πE(Sτ )x`∗(x2)

, as x→∞,

and

1− φ(t) ∼ π

2
H(t−1) ∼ t

23/2E(Sτ )`∗(t−2)
, as t→ 0.

Thus, to study recurrence of (Zτ(n)) we investigate convergence of the integral
∫ ε

0
1

1−φ(t)dt
around zero. To simplify the calculations we restrict our attention to the specific choice
of the slowly varying function in (5.12) and for that reason we take `(x) = logη x, for
η ∈ R. We immediately get by (5.11) that `∗(x) ∼ 2

η
2 log−

η
2 x at infinity. Finally we are

left with the integral
∫ ε

0 t
−1 log−

η
2 (t−2)dt which diverges for η ≤ 2 (and we get recurrence),

whereas for η > 2 it converges and implies transience. Moreover, one easily verifies that
E(|Zτ |) = ∞ for η ≥ −2 and E(|Zτ |) < ∞ otherwise. Thus we have the following
possibilities
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• for η < −2 the random walk (Zτ(n)) is recurrent with finite first absolute moment,

• for −2 ≤ η ≤ 2 the random walk (Zτ(n)) is recurrent and E(|Zτ |) =∞,

• for 2 < η the random walk (Zτ(n)) is transient.

We end this section with a result concerning Theorem 5.2.1 when the increments of the
random walk (Sn) have finite second moment.

Proposition 5.2.5. Let (Sn) be an oscillating random walk with the increment Y hav-
ing finite second moment and let (Zn) be a centred and finite range random walk on Z
independent of (Sn). Then there is some C > 0 such that

lim
y→∞

y2
P (Zτ = y) = C, (5.13)

and in this case E(|Zτ |) = ∞. Equation (5.13) holds also when Y is symmetric and has
a density.

Proof The proof is similar to that of Theorem 5.2.1, but in place of formula (5.6) one
uses the result by Éppel [34],

P(τ = n) ∼ cn−3/2, c > 0, n→∞.

We prove that E(|Zτ |) = ∞. We set F (x) = P(Zτ ≤ x) and by (5.13) we get that, for
some C1 > 0,

1− F (n) ∼ C1

n
, n→∞, (5.14)

which means that 1−F (n) is regularly varying at infinity of index −1. In view of symmetry
this implies that Zτ is in the domain of attraction of the Cauchy law. Therefore, if
C is the distribution function of the Cauchy law, then there are sequences bn > 0 and
an > 0 such that F ∗n(bnx + bnan) → C(x), for all x as n goes to infinity. We find the
asymptotic behaviour of the normalizing sequence (bn). It is known [42] that (bn) satisfies
1 − F (bn) ∼ C2

n at infinity and, by (5.14), we obtain that bn ∼ C3n at infinity. Finally,
by Tucker [78], the integral

∫
|x|dF (x) is finite if and only if

∑
n≥1 n

−2bn <∞ and the
proof is finished.

5.3 Multidimensional Lindley Process

We proceed to study recurrence of the LP in higher dimensions. We start by discussing
the two-dimensional case and finally we display a result and various ideas for higher
dimensions.

Two-dimensional LP

Let (W i
n), i = 1, 2, be two Lindley processes as defined in (5.1) with the underlying

random walks (Sin) with increments Y i which have distributions µi supported in Z.
We consider a process (W 1

n ,W
2
n) in the lattice quadrant N0 × N0 and we assume that
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P
(
Y 1 > 0, Y 2 > 0

)
> 0. Then the probability to reach (0, 0) from an arbitrary state after

finitely many steps is positive. Thus, the origin and all the states that can be reached
from it build a unique essential class. Without our assumption it may happen that some
states will never be reached by the process even when gcd(suppµi) = 1, see the following
example. We also emphasize that a precise description of essential classes in a general case
is a very hard task.

Example 5.3.1. Set µ = 1
4

(
δ(−4,1) + δ(−3,2) + δ(1,−4) + δ(2,−3)

)
. Then gcd(suppµi) =

1 and clearly the two coordinates of (W 1
n ,W

2
n) are transient and whence also the two

dimensional process is transient. In this case every point in N0×N0 will be visited at most
one time a.s.

On the other hand, setting µ = 1
4

(
δ(−1,1) + δ(−1,2) + δ(1,−1) + δ(2,−1)

)
we also have that

gcd(suppµi) = 1 with positive recurrent coordinates and the two-dimensional Lindley
process (W 1

n ,W
2
n) will never reach (0, 0) in this case. We notice however that (W 1

n ,W
2
n)

is positive recurrent in its essential class, cf. Theorem 5.3.7.

We begin our discussion on recurrence with a very simple but fruitful lemma.

Lemma 5.3.2. Let τ̄1(n) be the n-th non-strict ascending ladder epoch of (S1
n). Assume

that the first coordinate process (W 1
n) and the projected process (0,W 2

τ̄1(n)) are recurrent

then the two-dimensional process (W 1
n ,W

2
n) is recurrent. If W 1

n and W 2
τ̄1(n) are positive

recurrent then (W 1
n ,W

2
n) is positive recurrent.

Proof Let T and T̃ be the first return times to the point (0, 0) of (W 1
n ,W

2
n) and (0,W 2

τ̄1(n))

respectively. By the assumption, T̃ is a.s. finite. We claim that T = τ̄1(T̃ ). Indeed, we
have

T = inf{n ≥ 1 : (W 1
n ,W

2
n) = (0, 0)}

= inf{τ̄1(n) ≥ 1 : (W 1
τ̄1(n),W

2
τ̄1(n)) = (0, 0)}

= τ̄1
(

inf{n ≥ 1 : (0,W 2
τ̄1(n)) = (0, 0)}

)
= τ̄1(T̃ ),

where we used the fact that (W 1
n ,W

2
n) attains the value (0, 0) only if n ∈ {τ̄1(k) : k ≥ 0}.

This in turn implies that T is a.s. finite and we get the first part of the result.

For the positive recurrent case, we consider a random walk τ̄1(n) = ξ1 + . . .+ ξn with the
independent increments ξi = τ̄1(i)− τ̄1(i− 1) which have the same law as τ̄1(1). We build
a new filtration {Fn}n≥1 given by

Fn = σ
(
τ̄1(1), . . . , τ̄1(n),

(
Y 1

1 , Y
2

1

)
, . . . ,

(
Y 1
τ̄1(n), Y

2
τ̄1(n)

))
and notice that, since {T̃ ≤ n} ∈ Fn, T̃ is a stopping time with respect to the filtration
{Fn}n≥1. Moreover, the increments of the random walk (τ̄1(n)) have the form

ξi = inf
k≥0

{
Y 1
τ̄1(i−1)+1 + . . .+ Y 1

τ̄1(i−1)+k

}
and therefore ξn is independent of Fn−1. This allows us to apply the Wald’s identity in
the form Eτ̄1(T̃ ) = Eτ̄1(1)ET̃ <∞ which implies positive recurrence of (W 1

n ,W
2
n).
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In the next proposition we apply Lemma 5.3.2 and combine it with an argument which
comes from renewal theory.

Proposition 5.3.3. Suppose that the random walks (Sin), i = 1, 2, are independent and
oscillating with increments Y i ∈ D(α, β) satisfying ρ1 + ρ2 > 1, where ρi are defined in
(5.4). Then the process (W 1

n ,W
2
n) is null recurrent.

Proof Since (S1
n) is oscillating, (W 1

n) is null recurrent. Let τ1(n) denote the n-th strict
ladder epoch of (S1

n). We show that the Green function G(0, 0) of the process (0,W 2
τ1(n))

is infinite and whence it is a recurrent Markov chain. Evidently, this implies recurrence of
the process (0,W 2

τ̄1(n)) which in front of Lemma 5.3.2 forces the result. An independence-
based argument allows us to compute

G(0, 0) =
∞∑
n=0

P(W 2
τ1(n) = 0) =

∞∑
n=0

∞∑
k=0

P(W 2
k = 0)P(τ1(n) = k)

=

∞∑
k=0

P(W 2
k = 0)

∞∑
n=0

P(τ1(n) = k) =

∞∑
k=0

k∑
m=0

P(τ2(m) = k)

k∑
n=0

P(τ1(n) = k)

=
∞∑
k=0

u1
ku

2
k, where uik =

k∑
n=0

P(τ i(n) = k).

The sequence (u1
k) is a renewal sequence, that is it satisfies the recursive equation

u1
0 = 1, u1

k =
k∑

n=1

P(τ1(1) = n)u1
k−n.

Since P(S1
1 > 0) > 0, we have gcd{k : P(τ1(1) = k) > 0} = 1. Moreover, our assumption

implies that (5.5) holds with some slowly varying function `. Therefore, applying the
celebrated renewal theorem by Garsia and Lamperti [40, Theorem 1.1] we obtain that

lim inf
k→∞

u1
k

kρ1−1`(k)
= π−1Γ (ρ1) Γ(1− ρ1) sin(ρ1π) = C.

Thus, for some ε > 0, k0 > 1, and for all k ≥ k0, we have

u1
k ≥ (C − ε)kρ1−1`(k) ≥ (C − ε)kρ1−1−ν , for any ν > 0.

Clearly, all the same holds for the sequence (u2
k) and whence for C1 > 0 we get that

G(0, 0) ≥ C1
∑

k>k0
k−2ν+ρ1+ρ2−2. Choosing ν such that 0 < 2ν ≤ ρ1 +ρ2−1 we conclude

the claim.

We also present a positive result in the case when ρ1 = ρ2 = 1/2.

Proposition 5.3.4. If the random walks (Sin), i = 1, 2, are independent, centered and
with finite second moment then (W 1

n ,W
2
n) is null recurrent.

Proof The proof is similar as that of Proposition 5.3.3 but instead of asymptotics (5.5)
we use the result by Éppel [34, Theorem 1], that is

P(τ1(1) = n) ∼ Kn−
3
2 , for K > 0, as n→∞.

This allows us to show that G(0, 0) is infinite and we again get the result.
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Our next result concerns recurrence of the two-dimensional process (Wn, Zn), where in the
first coordinate (Wn) is a LP with the underlying random walk Sn = Y1 + . . . + Yn and
the second coordinate (Zn) is a random walk on Z with increments V1, V2, . . ..

Theorem 5.3.5. The two-dimensional process (Wn, Zn) is recurrent in each of the fol-
lowing cases.
1. If (Wn) is positive recurrent and (Zn) is a centered random walk.
2. If (Sn) is oscillating with the increment Y ∈ D(α, β) such that 1/2 < ρ < 1, and (Zn)
is a symmetric finite range random walk independent of (Sn).
3. If (Wn) is null recurrent with E(|Y |2) <∞ and independent of (Zn) which we assume
to be a symmetric random walk of finite range.

Proof Recall that the k-th return time of the first coordinate (Wn) to 0 is equal to the
k-th non-strict ascending ladder epoch τ̄(k) of the underlying random walk (Sn). Thus,
the return times to the origin of (Wn, Zn) are the same as for the induced random walk
(Zτ̄(n)). Moreover, the process (Zτ̄(n)) is recurrent if the random walk (Zτ(n)) is recurrent,
where τ(n) is the n-th strict ascending ladder epoch of (Sn).

To prove the first assertion we notice that as Wn is positive recurrent we known that
Eτ <∞, where τ = τ(1). We also notice that τ is a stopping time for the two-dimensional
random walk (Sn, Zn) which implies that the event {τ ≤ n} is independent of Vn+1 and
whence we are allowed to apply the Wald’s identity in the form EZτ = EZ1Eτ = 0.
Therefore (Zτ(n)) is recurrent.

The second claim is a direct consequence of Proposition 5.2.3. In the last case we have
E(Y ) = 0 and, as follows by Proposition 5.2.5, the following asymptotic relation holds

y2
P(Zτ = y)→ C > 0, as y →∞.

Since (Zτ(n)) is a symmetric random walk, we conclude, for instance by Spitzer [77, Sec.
8, E2], that it is recurrent.

LP in higher dimensions

We consider the multidimensional Lindley process (W 1
n , . . . ,W

d
n) in N0 × · · · × N0. The

underlying random walks (Sin) are governed by distributions µi which are supported by Z
and such that P(Y i > 0) > 0.

The following theorem treats positive recurrence of the multidimensional LP. Its proof
uses elements from the theory of stochastic dynamical systems and thus we briefly present
necessary definitions and facts, see Peigné and Woess [68] and [69] for more detailed
description where in particular the substantial PhD work of Benda [10] is outlined.

Let (X, d) be a proper metric space and denote by C = C(X) the monoid of all continuous
functions from X to X equipped with the topology of uniform convergence on compact
sets. Fix a probability space (Ω,P) and consider a sequence (Fn)n≥1 of independent and
identically distributed C-valued random functions with a common distribution µ̃. The
corresponding stochastic dynamical system ω 7→ Xx

n(ω) is given by

Xx
0 = x, Xx

n = Fn ◦ . . . ◦ F1(x), n ≥ 1.

49
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For a LP on N0 × · · · × N0 we have Fn(x) = max{x − Yn, 0} and these mappings are
contractions so that we can restrict our attention to the set L ⊂ C of all Lipschitz mappings
with Lipschitz constants ≤ 1. Notice that if µ is the distribution of Yn then µ̃ is the image
of µ under y 7→ fy, fy(x) = max{x − y, 0}. A stochastic dynamical system is called
conservative if

P
(

lim inf
n→∞

d(Xx
n , x) <∞

)
= 1, for every x ∈ X,

and it is locally contractive if for every x ∈ X and every compact set K ⊂ X,

P (d(Xx
n , X

y
n)1K(Xx

n)→ 0, for all y ∈ X) = 1.

For ω ∈ Ω we consider the set Lx(ω) of all accumulation points of the sequence (Xx
n(ω))n≥0

in X. The following lemma allows us to show that there is only one essential class for the
multidimensional LP, see [68, Lemma (2.5)].

Lemma 5.3.6. For a conservative and locally contractive stochastic dynamical system,
there exists a set L ⊂ X such that

P (Lx(·) = L, for all x ∈ X) = 1.

We now prove the main theorem of this section.

Theorem 5.3.7. Suppose that each of the Lindley processes (W i
n) is positive recurrent.

Then there exists a unique invariant probability measure of the process (W 1
n , . . . ,W

d
n).

The stationary measure is the distribution of a random variable U which is the limit of
the backward process

F1 ◦ · · · ◦ Fn(x)
a.s−−→ U, for every x ∈ Rd, (5.15)

where Fn(x) = max{x−Yn, 0}. In particular, the multidimensional process (W 1
n , . . . ,W

d
n)

is positive recurrent in its unique essential class.

Proof We start by showing that the LP (W i
n) is locally contractive in each coordinate.

We set fy(x) = max{x − y, 0} and consider random contractions F in = fY in with law µ̃i

which is the image of µi under the mapping fy. Let Si be the closed sub-semigroup of
L generated by supp(µ̃i). Our aim is to show that there is a constant function in Si and
this, in view of [68, Corollary 4.4], will force local contractivity. The claim follows by the
assumption P(Y i > 0) > 0. Indeed, there is y > 0 such that for any x ∈ R there is Nx > 1
such that for all n ≥ Nx we obtain that the n-fold composition fy ◦ · · · ◦ fy(x) ≡ 0, and
thus the null-function lies in S as desired.

Next, by positive recurrence, each (W i
n) has a unique invariant probability measure, say

νi. This together with local contractivity imply that for any starting point xi we have the
a.s.-convergence of the backward process F i1 ◦ · · · ◦ F in(xi) → U i, where U i is a random
variable with distribution νi. This goes back to Leguesdron [63], compare with [58, Prop.
2.6]. But this means that (5.15) holds. Applying Furstenberg’s contraction principle, see
[68, Prop. 1.3], we conclude that the distribution ν of the random vector (U1, U2, . . . , Ud)
is the unique invariant probability measure for (W 1

n , . . . ,W
d
n) which is equivalent to the

positive recurrence.
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5.3. MULTIDIMENSIONAL LINDLEY PROCESS

It is left to show that there is only one essential class. Indeed, by the very defini-
tion, the local contractivity of the coordinates implies that the multidimensional process
(W 1

n , . . . ,W
d
n) is locally contractive as well. Since we have proved it is recurrent, it must be

conservative. In our case, the Lindley process lives on the grid and thus the deterministic
set L ⊂ N0× · · · ×N0 from Lemma 5.3.6 is such that, independently of the starting point,

P
(

(W 1
n , . . . ,W

d
n) = l for infinitely many n

)
= 1, for every l ∈ L.

We clearly conclude that L is the unique essential class of (W 1
n , . . . ,W

d
n).

Remark 5.3.8. To prove the existence of positive recurrence states of (W 1
n , . . . ,W

d
n)

there is a simple argument which was presented to us by Nina Gantert and mentioned
already in the context of RRW in [58, Remark (4.10)]. However, this argument yields no
understanding of the number of essential classes and their absorption properties. The use
of local contractivity leads to an answer and additional insight, namely a.s. convergence
of the backward process.
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Chapter 6

Distinguishing graphs of maximum
valence three

This chapter is based on the submitted paper The distinguishing number of locally finite
trees which is joint work with Svenja Hüning, Wilfried Imrich, Hannah Schreiber and
Thomas Tucker.

6.1 Introduction

The distinguishing number of a group A acting faithfully on a set Ω is the least number
of colors needed to color the elements of Ω such that the only color-preserving element of
A is the one that fixes all elements of Ω. If A is the automorphism group of a graph G,
then the distinguishing number D(G) of G is the distinguishing number of the action of
A on the vertex set of G. Since its introduction by Albertson and Collins [1] more than
20 years ago, there has developed an extensive literature on this topic.

Actually Babai [6] showed already 1977 that a tree has a distinguishing coloring with two
colors if all vertices have the same valence α ≥ 2, where α can be an arbitrary finite or
infinite cardinal1, but the subject lay dormant until the seminal paper of Albertson and
Collins [1].

The concept also has had an independent separate history in the theory of permutation
groups [24], unknown to graph theorists until recently [9].

The first motivation for this paper is a bound by Collins and Trenk [26] and, independently,
Klavžar, Wong and Zhu [57]. They proved that for any finite graph G of maximum valence
∆(G) = d, D(G) ≤ d+1 with equality only if G is the complete graph Kd+1, the complete
bipartite graph Kd,d, or the C5. For infinite graphs the bound is the supremum of the
valences, see Imrich, Klavžar and Trofimov [48]. Hence, for infinite graphs D(G) ≤ d if
G has bounded valence d. If one wishes to improve this bound, it is reasonable to begin
with d = 3.

The second, equally important motivation, is the Infinite Motion Conjecture of Tucker [79],

1If α is smaller than the first uncountable inaccessible cardinal, then there also exists a coloring with a
finite number of colors that is only preserved by the identity endomorphism.



CHAPTER 6. DISTINGUISHING GRAPHS OF MAXIMUM VALENCE THREE

who conjectured that each connected, locally finite infinite graph is 2-distinguishable if
every automorphism that is not the identity moves infinitely many vertices. The conjecture
is still open, although it has been shown to be true for many classes of graphs [27, 50, 76], in
particular for graphs of subexponential growth [64], and thus for all graphs of polynomial
growth. For a long time it was not clear whether it holds for graphs of maximal valence 3,
and whether infinite motion was really needed. This was first solved under the additional
condition of vertex transitivity [49]. It turns out that all finite or infinite connected, vertex
transitive graphs are 2-distinguishable unless they are one of four exceptional graphs.

Here the result is extended to a complete classification of all finite or infinite connected
graphs of maximal valence 3 that are not 2-distinguishable.

We begin with a general observation about graphs of bounded valence.

For any graph G with ∆(G) = d and D(G) = d − 1, one can subdivide an edge with a
vertex v and add an edge between v and a vertex of a disjoint copy of Kd to get a graph
G′ with ∆(G′) = d and D(G′) = d− 1 (if G is d-valent, then G′ can be as well, simply by
attaching d−2 copies of Kd). Thus, the only cases where one might expect a classification
of graphs with a given distinguishing number are D(G) = d.

There are infinitely many graphs with ∆(G) = d and D(G) = d. Let T (n, d) be the tree
where all vertices have valence 1 or d and every vertex of valence 1 has the same distance
n from a root vertex v. Clearly, D(T (n, d)) ≥ d− 1 and D(T (n, d)) = d− 1 if and only if
D(T (n+ 1, d)) = d− 1. But T (1, d) = K1,d so D(T (1, d)) = d and hence D(T (n, d)) = d.

From now on we assume that the maximum valence is 3, unless otherwise stated.

We call a vertex of valence 1 a leaf.

If u and v have a common neighbor, we say they are siblings or a sibling pair. Vertex v is
an only child of a vertex u if v is the only neighbor of u with valence(v) = 1. For d = 3,
we abbreviate Tn = T (n, d).

We give some variations of the trees Tn which also have distinguishing number 3. The
most obvious one is simply to join each sibling pair of leaves by an edge. Denote this
graph Sn. We do this only for n > 1 since T1 has three sibling pairs and adding all such
edges gives K4. Note that we can also think of Sn as obtained from Tn by attaching a
triangle to each leaf of Tn−1.

The other three variation are obtained by replacing the edges between sibling pairs in Sn
by three other “gadgets”. In each case, the sibling pair vertices are labeled u, v.

• Gadget of type 1 : A 4-cycle uxvy with x, y valence 2.

x y

u v

• Gadget of type 2 : The same as the type 1 gadget but with an edge xy.

x y

u v
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• Gadget of type 3 : A hexagon uxzvyw with edges xy, zw (this can be viewed as K2,2

with u joined to one part and v to the other part).

x y z w

u v

Now, we define three graphs, R1
n, R2

n and R3
n, by adding the respective gadgets between

each sibling pair of leaves in the tree Tn. See Figure 6.1 for examples.

3

R1
3

3

R2
3

2

R3
2

Figure 6.1: R1
3 (top left), R2

3 (top right) and R3
2 (bottom).

Since Aut(Sn) acts on its vertices the same way as Aut(Tn), we have D(Sn) = 3. If
there existed a distinguishing 2-coloring for one of the graphs R1

n, R2
n or R3

n, then this
would induce a distinguishing 2-coloring of the associated Tn. Therefore D(G) = 3 for
G = R1

n, R
2
n, R

3
n.

Our classification of graphs with ∆(G) = 3 and D(G) = 3 is the following:

Theorem 6.1.1 (Main Theorem). Let G be a finite or infinite connected graph with
∆(G) = 3. Then D(G) = 3 if and only if G is either K1,3, K2,3, the cube Q, the Petersen
graph P , or a member of one of the five families Tn, Sn, R1

n, R2
n, R3

n for n > 1.

We note for the four exceptions, clearly D(K1,3) = D(K2,3) = 3, and it is an exercise to
verify that D(Q) 6= 2 (or see [79]). It is slightly more work to show D(P ) 6= 2; we will
sketch a proof in Section 2.

The proof that these are the only graphs G with maximum valence d = 3 and D(G) = 3
occupies most of the rest of this paper. In Section 2, we first give some Corollaries that
may shed some light on the general problem when d > 3. In Section 3 we introduce a
2-coloring which either is distinguishing or leads to restrictions on the local structure of
G. This coloring is then used throughout the rest of the paper. In Section 4, we show
that if G has any leaves, then D(G) = 2 unless G = Tn. The goal of Section 5 is to reduce
to the case of edge transitive graphs by analyzing how the stabilizer of a vertex v acts on
the neighbors of v. In Section 6, we show that any cubic graph G with girth at least 6
has D(G) = 2; this proof does not use edge transitivity. This completes the proof of the
Main Theorem, since the five edge transitive cubic graphs of girth less than 6 are easily
analyzed. In Section 7 we pose a variety of questions.
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6.2 Corollaries

We give some corollaries of the Main Theorem, mostly just observations about our list
of graphs with D(G) = 3. Each gives some insight into the relationship between distin-
guishing number and graph structure. Each suggests ways one might generalize the case
of maximum valence 3 to graphs of higher valence.

Corollary 6.2.1. Every infinite connected graph of maximal valence 3 is 2-distinguishable.

Corollary 6.2.2. Every connected, vertex transitive graph of maximal valence 3 is 2-
distinguishable, except for K3,3, K4, Q and P .

Corollary 6.2.3. Every connected, edge transitive graph of maximal valence 3 that is not
vertex transitive is 2-distinguishable, except for K1,3 and K2,3.

For more direct proofs of Corollary 6.2.2 and 6.2.3 see [49].

Corollary 6.2.4. Every 2-connected graph of maximal valence 3 is 2-distinguishable, ex-
cept for K2,3, K3,3, K4, Q, and P .

The length of the shortest cycle in G is its girth. The following result is in fact one of the
steps in the proof of the Main Theorem.

Corollary 6.2.5. If G has girth at least 6, then D(G) = 2.

The motion of a group A acting on a set Ω is the smallest integer m such that some
element of A moves exactly m points. The motion of a graph G, which we denote m(G),
is the motion of Aut(G) acting on the vertex set. The Motion Lemma [27, 73] states that
if m > 2 log2(|A|), then the action has distinguishing number 2; the proof is elementary
and short. Thus large enough motion gives 2-distinguishability. For graphs of maximum
valence 3, large enough means 3 or more, except for Q and P , since it is easily checked
that all other G in our Main Theorem have motion 2.

Corollary 6.2.6. If m(G) > 2, then D(G) = 2 with the exception of Q and P .

In fact, when D(G) = 3 and G is not Q or P , we can isolate an automorphism of motion
2 using a 2-coloring of G. We say a coloring fixes a set of vertices if any color-preserving
automorphism fixes all vertices in that set.

Corollary 6.2.7. If D(G) = 3 and G is not Q or P , then G admits a 2-coloring that
fixes all vertices except two siblings.

Proof Clearly, such a 2-coloring exists for K1,3 and K2,3. All other graphs that satisfy
the assumptions of the lemma have a root vertex, say v0, corresponding to the root of Tn.
The Tn are the only graphs in the class with leaves and they all come in sibling pairs. We
first construct the desired coloring for Tn.

We begin with a 2-coloring of T1: we color v0 black, two of its neighbors white and
one black. Clearly this coloring fixes all vertices except for one pair of interchangeable
siblings. To color Tn we color its subgraph T1 as before, and continue inductively by
assigning different colors to any two vertices of distance k > 1 from v0 if they have a
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common neighbor of distance k − 1 from v0. When k = n we make an exception for a
single sibling pair of vertices whose shortest paths to v0 contain a white neighbor of v0.
Both vertices in that pair are colored white. It is easy to see that this coloring fixes all
vertices not in this pair.

For Sn, R1
n, R2

n we proceed analogously, and let the vertices x, y in the gadgets play the
role of the sibling pairs in Tn. For R3

n we assign different colors to all gadget vertices z, w,
but treat the pairs x, y as before. Again, our coloring fixes all vertices except the ones in
the white (x, y)-pair. �

It is easily verified that m(Q) = 4.

Proposition 6.2.8. For the Petersen graph, m(P ) = 6 and D(P ) = 3.

Proof We follow a remark of Lehner2. He observed that P is the complement of the line
graph of K5. Thus any edge coloring of K5 is a vertex coloring of the complement P of
P , and thus also of P . Because every 2-edge coloring of K5 corresponds to a subgraph
of K5 and its complement, every subgraphs of K5, together with its complement, yields
correspond a 2-colorings of P . Furthermore, given a subgraph, say H, of K5 the group
induced by Aut(H) on E(H) is the same as the group that preserves the coloring of the
vertices of P induced by H.

As the smallest graph with trivial automorphism group has a least six vertices, every
subgraph H of K5 has a non-trivial automorphism a. We consider the cycle decomposition
of a. If it has a five-cycle or a four-cycle, then Aut(H) moves all ten pairs of distinct vertices
of K5. If it is a three-cycle it moves at least nine pairs. If a has only 2-cycles or fixed
points it moves at least six pairs (but can fix four).

For a 3-distinguishing coloring of P we let H be a path of length 4 in K5 and choose
an end-edge e of H. We color e red, the other edges of H black and the edges of the
complement of H white. This yields a 3-coloring of P . As the group of H that preserves
its edge-coloring is trivial, this is a distinguishing 3-coloring of P . �

6.3 Canonical 2-colorings rooted at a subgraph

Let G be a cubic or subcubic graph and K be a vertex-induced, connected subgraph with
at least one internal vertex, that is, a vertex all of whose neighbors are in K. Define
Sn(K) as the set of vertices of distance n from K; one might call it the sphere of radius
n about K. Thus S0(K) = K and S1(K) is the set of vertices not in K but adjacent to
some vertex in K. Let Bn(K) denote all vertices of distance at most n from K (the ball
of radius n about K). For a vertex v in Sn(K), we call its neighbors in Sn+1(K), Sn(K),
Sn−1(K), respectively, its up, cross, down neighbors. Notice that all vertices which are
not in K have at least one down neighbor and that not every vertex has to have an up
neighbor.

The idea of constructing a 2-distinguishing coloring of the vertices of G is to color all
vertices of K black and then to extend the coloring inductively from one Sn(K) to the

2Private communication.
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next. Our objective is to obtain a 2-coloring of G such that the only color-preserving
automorphism fixing the vertices of K is the identity. Thus at stage n we have this:

Goal Assume Bn(K), n > 0, has been 2-colored so that any automorphism of G fixing
the vertices of K and preserving the coloring of Bn(K) is the identity on Bn(K). Then
extend this to a 2-coloring of Sn+1(K) that has the same property on Bn+1(K).

The plan for extending the coloring to Sn+1(K) is simple enough: if a vertex v in Sn(K)
has a single up neighbor, color it white, and if it has two up neighbors that can be switched
by an automorphism of G that fixes Sn(K), color one white and one black. The problem is
that the up vertices of v may have already been colored when we colored the up neighbors
of a different vertex. In the following three paragraphs we will make this procedure more
precise.

Assume we have colored the graph up to the sphere S(n, v). Let V be the set of vertices
of S(n, v) and U be the set of vertices of S(n+ 1, v). Moreover, let H be the subgraph of
G determined by all edges between vertices of V and U . In fact, these are the up-edges
from V . Note that for the moment we do not care about possible cross-edges in U or V .
We are interested in coloring the vertices of U such that any automorphism of G which
fixes the vertices of V and preserves the coloring of U also fixes the vertices of U .

Suppose that U has a vertex x of valence 3 in H. If there is another vertex y ∈ U adjacent
to the same vertices in V as x, color x black and y white. If there is no such vertex y,
color x white.

Now, consider the subgraph H ′ of H obtained by removing all valence 3 vertices of U in H,
i.e. we remove all colored vertices of U . The remaining subgraph H ′ contains only vertices
which are of valence 1 or 2, so it is a union of paths and/or cycles such that the vertices
in each component alternate between U and V . See Figure 6.2 for some examples. By
assumption the vertices of V are fixed. Therefore, any component of H ′ is fixed except for
two configurations. One is a 2-path, which consists of three vertices such that the middle
vertex is in V , and the other one is quadrilateral, see Figure 6.2. For all other possible
components of H ′ there is no automorphism of G fixing V but acting non trivial on the
considered component of U . Thus, we color all vertices which are neither in a 2-path nor
in a quadrilateral white. For the remaining pairs x, y ∈ V in a 2-path or quadrilateral,
choose a coloring using black the fewest times such that any automorphism of G fixing U
also fixes these remaining pairs. Note that we know there are such colorings because we
could simply color each such pair black-white.

V

U

H ′
edge in G

2-path quadrilateral 2-path with two
white vertices

Figure 6.2: Possible configurations in H ′ used in the description of the canonical coloring.

We call this a canonical 2-coloring of G rooted at K.

In what follows, we use subscripts to denote which sphere a vertex is in: so un, vn, xn . . .
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are vertices in Sn(K). We also extend the notion of siblings as we have defined it in
Section 6.1 by calling two (distinct) vertices un, vn siblings if they have a common down
neighbor.

We make the following observations about the resulting coloring:

Proposition 6.3.1 (White Up). If vn has an up neighbor, it has a white up neighbor.

Proposition 6.3.2 (Black-white Siblings). If vn, n > 0, is black, it has a white sibling un
and there is an automorphism of G interchanging vn and un, but fixing all other vertices
of Bn(K).

Proof Suppose there was no such automorphism. Then we could color vn white, contra-
dicting the minimality in the use of black. �

Proposition 6.3.3 (Black Cross). Suppose n > 0. If un and vn are both black and
adjacent, then there is a quadrilateral unvnxnyn, where xn is a white sibling of un and yn
a white sibling of vn.

Proof Since vn is black, it has a white sibling yn with an automorphism interchanging
vn and yn but fixing un, forcing an edge unyn. Similarly, since un is also black there is a
white vertex xn and edge vnxn. Since the interchange of vn and yn also leaves xn fixed,
which is adjacent to vn, we have yn adjacent to xn. �

Proposition 6.3.4 (All Black). There is no vertex vn for n > 1 of valence 2 or 3 that is
black with all neighbors black.

Proof By Propositions White Up (6.3.1) and Black Cross (6.3.3), all neighbors of vn are
down neighbors. Since vn is black, it has a white sibling un (with the same valence) and
an automorphism interchanging un and vn fixing Sn−1(K). Since all the neighbors of vn
are down neighbors, un has the same neighbors as vn. Let xn−1 be one of the common
neighbors. Since it is black, there is an automorphism φ interchanging xn−1 with the
white vertex zn−1 and leaving fixed all other vertices of Sn−1(K). Since the other down
neighbors of un, vn are all black, φ fixes all of them. Since each of these other possible
down neighbors has un, vn as up neighbors, φ either fixes un, vn or interchanges them.
This forces another edge from either un or vn to the white vertex zn−1, a contradiction,
see Figure 6.3.

un vn

xn−1 zn−1

Figure 6.3: The vertex vn has already three neighbors. Therefore there can not be an edge
between vn and zn−1.

�

Call a vertex of a canonical coloring kiwi if it is black surrounded by black. Proposition
All Black (6.3.4) says the only kiwi vertices are in K ∪ S1(K).
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Proposition 6.3.5 (Internal). The only non-identity color-preserving automorphisms of
a canonical coloring rooted at the subgraph K are those taking an internal vertex of K to
either an internal vertex of K or a kiwi vertex of S1(K).

Note that the neighbors of a kiwi vertex in S1(K) must be in K by Propositions White
Up (6.3.1) and Black Cross (6.3.3).

6.4 Leaves

We first show that the only graphs G having a leaf with D(G) = 3 are the trees Tn.

Theorem 6.4.1. If G has a leaf, then D(G) = 2 or G = Tn for some n.

Proof The smallest two subcubic graphs with a leaf are the T1 and a triangle where
one of the three vertices has a further neighbor. For these two graphs the theorem holds.
Consider now a graph G with more than 4 vertices. Suppose some vertex v in G has
valence 1 and is an only child of u. The canonical coloring where K is the edge uv
breaks all automorphisms in Autv(G) since any automorphism fixing v fixes u as well.
Since all only children other than v are colored white in a canonical coloring, there is no
automorphism moving v, so the canonical coloring is distinguishing.

Now suppose that all leaves of G come in sibling pairs and assume first that G is finite.
Prune all such sibling pairs. Since ∆(G) = 3, there is at least one leaf in the new graph.
We have two cases. The new graph has again sibling pairs. Then prune again all sibling
pairs and continue like this inductively until you get T1 or a graph with an only child. If
we ended with T1 we know that G = Tn for some n. Else we get at some point a graph
G′ with an only child. Give G′ a distinguishing 2-coloring and color all sibling pairs, one
black and one white. Any automorphism φ of G takes G′ to G′, so if φ is color-preserving,
φ|G′ is the identity. But then φ is the identity on G since all successive removed sibling
pairs are colored black-white.

Now assume that G is infinite. As before, if G has an only child leaf, then D(G) = 2.
Suppose instead all leaves come in sibling pairs. We want to prune all such pairs to form
a graph G′. First assume that G has a cycle C. Now we can induct on the distance s
from C to the closest leaf. If s = 1, the closest leaf is an only child, since the parent has
valence 2 on the cycle C, so D(G) = 2. Assume D(G) = 2 for all infinite graphs with a
leaf of distance s = n from a cycle. Then for s = n+ 1, either G has an only child leaf, or
pruning all sibling pairs gives a graph G′ with s = n. In either case, D(G) = 2.

The same argument applies if we replace cycles by 2-way infinite paths. Thus there remain
only trees without 2-way infinite paths, but 1-way infinite paths. In this case there must
be a maximal infinite path whose origin is an only child leaf. To see this, let R be a
1-way infinite path. The set of all 1-way infinite paths that contain R is partially ordered
by inclusion and every totally ordered subset has a maximal element, namely its union.
By Zorn’s Lemma there must be a maximal element. It cannot be a 2-way infinite path.
Hence the maximal element is a 1-way infinite path. Because it is maximal its origin must
be an only child leaf. �
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Lemma 6.4.2. If G has adjacent sibling vertices of valence 2, then D(G) = 2 or G = Sn.
If G has a gadget of type 1, 2, or 3, respectively, then D(G) = 2 or G = R1

n, R
2
n, R

3
n,

respectively.

Proof Suppose that G has adjacent siblings of valence 2. Thus we know that G cannot
be Tn. If G has a vertex of valence 1, then D(G) = 2 by Theorem 6.4.1. Let G′ be the
graph obtained by removing all edges between sibling pairs of valence 2. We note that
Aut(G) is a subgroup of Aut(G′). Thus if D(G′) = 2, we have D(G) = 2. Suppose instead
that D(G′) = 3.

Since G′ has vertices of valence 1, G′ = Tn by Theorem 6.4.1. Since G has no vertex of
valence 1, every vertex of valence 1 in G′ comes from the removal of an edge between a
sibling pair in G, making G = Sn.

The proof for gadgets of type 1, 2, 3 is the same, where G′ is obtained by removing all
gadgets of one type, creating vertices of valence 1. Any distinguishing 2-coloring of G′

extends to one of G by coloring un, vn and xn, yn black white, and for gadgets 3, zn, wn
black-white. Otherwise, G = R1

n, R
2
n, R

3
n. �

6.5 Vertex types

The general plan is to understand distinguishability of cubic or subcubic graphs by looking
at the way Autv(G) acts on the edges incident to a vertex v of valence 3. If that action
is trivial, call v type 1. If the action leaves one edge fixed but interchanges the other two
edges, call it type 2. If it fixes no edge, but is not S3, call it type 3 and type 6 otherwise.
We note that Autv(G) defines a permutation group A on the neighbors of v and the type
is the same as the order of A. See Figure 6.4 for some examples.

v

type 1 type 2

v

v

type 3

v

type 6

Figure 6.4: Examples of the different types of vertices.

We can define similarly type 1 and type 2 for vertices of valence 2. All vertices of valence
1 are type 1.

Observation 1 If every valence 3 vertex of G is type 3 or 6 and every valence 2 vertex
is type 2, then G is edge transitive.

Observation 2 In each of the five families Tn, Sn, R
1
n, R

2
n, R

3
n with D(G) = 3, the root

vertex is type 6 and all other vertices of valence 3 are type 2. For Sn, the valence 2 vertices
are type 1. For R1

n, the valence 2 vertices are type 2.
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6.5.1 Vertices of type 1

Theorem 6.5.1. Suppose that G has a valence 2 vertex v of type 1. Then either D(G) = 2
or G = Sn for some n.

Proof Take a canonical coloring with K the graph spanned by v and its two neighbors u
and w. By Proposition Internal (6.3.5), any non-identity, color-preserving automorphism
must move v to another vertex x, which is either internal to K or a kiwi vertex of S1(K).

If x is internal to K, then K must be a triangle with two vertices of valence 2. Let
G′ be obtained by removing all such triangles. If D(G′) = 2, then we can extend any
distinguishing coloring of G to G′ by coloring the two valence 2 vertices in each such
triangle, one white and one black. Therefore D(G′) = 3, forcing G′ = Tn, so G is Sn.

Suppose instead that x is a kiwi vertex in S1(K). Then by Proposition Internal (6.3.5),
the neighbors of x are u and w. But x would only be black if there is an automorphism
fixing u,w and interchanging x with some other z. Then z has valence 2 as well and is
adjacent to u,w, forcing G = K2,3. But then v is not a type 1 vertex. �

In every figure accompanying the definition of a gadget there are vertices u and v. If u
and v are not siblings, call the corresponding gadget a non-sibling gadget. See Figure 6.5
for an example.

x y x y

(sibling) gadget: non-sibling gadget:

Figure 6.5: Example of a (sibling) gadget and a non-sibling gadget.

Corollary 6.5.2. If G contains a non-sibling gadget, then D(G) = 2.

Proof Suppose first that u, v are adjacent valence 2 vertices that are not siblings. The
last vertex in the path of valence 2 vertices containing u, v (in either direction) is a valence
2 vertex of type 1. Since Sn does not contain a pair of adjacent vertices of valence 2 that
are not siblings, G 6= Sn. Thus D(G) = 2 by Theorem 6.5.1.

For each of the gadgets, replace all appearances of a non-sibling gadget by an edge to
create a graph G′, with adjacent vertices of valence 2 that are not siblings. Then, by the
above, D(G′) = 2 and one easily extends a distinguishing 2-coloring from G′ to G, coloring
x, y black-white for R1

n, R
2
n and also z, w black-white for R3

n. �

Theorem 6.5.3. If G has a type 1 vertex v of valence 3, then D(G) = 2.

Proof Choose a canonical 2-coloring with K spanned by v and its three neighbors. This
breaks all automorphisms in Autv(G). Thus the only color-preserving automorphisms
left must move v to a kiwi vertex u. By Proposition All Black (6.3.4), u is internal to
K ∪ S1(K).
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Suppose that u 6= v is internal to K. This forces K to be a sibling or non-sibling type
2 gadget, making D(G) = 2 or G = R2

n by Corollary 6.5.2 and Lemma 6.4.2. Suppose
instead that n = 1 and x1 is kiwi, which forces its down neighbors to be u0, w0, z0. But
x1 would only be black if there was an automorphism fixing K and interchanging x1 with
another y1. This forces G = K3,3, contradicting that v has type 1. �

6.5.2 Type 2 vertices of valence 2

Theorem 6.5.4. If G has a valence 2 vertex of type 2 but none of type 1, then G =
K2,3, R

1
n or D(G) = 2.

Proof Let G′ be the cubic graph obtained by smoothing over all valence 2 vertices. Thus
G is obtained from G′ by inserting valence 2 vertices in some edges. Note that we cannot
have more than one such vertex in any edge of G′, since otherwise along this edge there
will be a type 1 vertex of valence 2 in G.

A multiple edge in G′, comes from a gadget of type 1 or a non-sibling gadget of type 1 or
from G = K2,3. Thus by Corollary 6.5.2 either D(G) = 2 or G = R1

n. We therefore assume
that G′ has no multiple edges. If D(G′) = 2, then D(G) = 2. Otherwise, either G = R2

n

or G = R3
n, since G′ is cubic. Since all edges of G′ except those in the gadgets have no

automorphism interchanging the endpoints, the inserted vertices being type 2 must be in
the gadget edges.

Color one gadget vertex black and the rest of the valence 2 vertices white. In effect,
this fixes one leaf w of Tn. Now canonically color Tn rooted at the center v so that the
neighbor of v in the branch containing w is colored white and the other two neighbors are
colored black-white. This fixes the neighbors of v and hence breaks all automorphisms.
We conclude that D(G′) = 2 and so D(G) = 2. �

At this point, our classification is complete for subcubic graphs.

6.5.3 Type 2 vertices of valence 3

Lemma 6.5.5. If the cubic graph G contains K2,3 as a subgraph, then G = K3,3, R
3
n or

D(G) = 2.

Proof We note that the subgraphs of the gadget of type 3 spanned by {x,w, u, y, z} and
{y, z, v, x, w} are both isomorphic to K2,3. We claim this the only way two copies of K2,3

in G can overlap. We view their union H as obtained from two copies of K2,3 with vertices
identified in pairs. We consider three different cases.

• Case 1: Identifying a pair of valence 3 vertices also identifies in pairs their 3 neighbors
(so the resulting vertex has valence 3); this yields K3,3. See Figure 6.6 for illustration.

• Case 2: Identifying two vertices of valence 2 forces the identification of a pair of
their neighbors of valence 3, which was just considered (see Case 1).
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• Case 3: Any identification of a valence 2 with a valence 3 vertex forces the identi-
fication of two other neighboring pairs of neighboring vertices, which in turn forces
further identification. Thus H has at most 6 vertices and must be obtained by
adding a single vertex of valence 2 to K2,3, yielding gadget 3.

val > 3

forces indentification

∼= K3,3

∼= K3,3

∼= K2,3

∼= gadget of type 3

Case (1)

Case (2)

Case (3)

Figure 6.6: Identification of vertices.

If G contains a gadget of type 3, then D(G) = 2 or G = R3
n. Therefore we assume that

all copies in G of K2,3 are disjoint. Let G′ be the graph obtained by identifying in each
copy of K2,3 the two valence 3 vertices. The resulting graph has vertices of valence 2 with
some vertices of valence 3 surrounded by vertices of valence 2. Thus G′ is not Sn or R1

n,
so D(G′) = 2. Any distinguishing coloring of G′ can be extended to one of G by coloring
the two valence 3 vertices of each K2,3 black and white. �

Theorem 6.5.6. If the cubic graph G has a type 2 vertex of valence 3, then D(G) = 2 or
G is R2

n or R3
n. If G has a type 3 vertex, then D(G) = 2.

Proof Let v be a type 2 vertex of valence 3 and let u1, v1 be its neighbors which can
be interchanged by Autv(G). Color v black and all its neighbors black as in a canonical
coloring rooted at the graph spanned by v and its neighbors. Suppose that u1 and v1 are
adjacent. If their up neighbors are different, color one white and one black. This will also
fix u1, v1 and can be continued to a canonical coloring that breaks all automorphisms in
Autv(G). If instead u1, v1 have a common up neighbor, we have a gadget 2 or a non-sibling
gadget 2. Then either D(G) = 2 or G = R2

n by Lemma 6.4.2 and Corollary 6.5.2.

We assume therefore that u1 and v1 are not adjacent. If they have one common up
neighbor but not two, color that neighbor white and the other two up neighbors black and
white. This distinguishes u1, v1. Suppose u1, v1 have two common up neighbors. Then G
contains a K2,3 so by Lemma 6.5.5 we infer that D(G) = 2 or G = R3

n.
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Therefore, assume that the up neighbors of u1 and v1 are distinct. Color the up neighbors
of u1 black-white and the up neighbors u2, v2 of v1 both white. This distinguishes u1, v1 but
allows an interchange of u2, v2. Repeat this process on u2, v2. Either we distinguish u2, v2

or we find u3, v3 that can be interchanged. Continue the process. If G is finite, the process
must end either with G = R2

n, R
3
n or with a 2-coloring which breaks all automorphisms

in Autv(G) with v and its three neighbors colored black. If G is infinite, we continue the
process as long as un, vn have distinct up neighbors, yielding a 2-coloring that breaks any
automorphism fixing v see Figure 6.7.

v

v1u1

u2 v2

u3 v3

Figure 6.7: Example of the coloring to fix the vertices u1 and v1 by any automorphism
that fixes v.

We then can proceed as in the proof of Proposition All Black (6.3.4) to show that there
is no other black vertex surrounded by three black vertices for Sn(K), n > 1, and by
construction there is none in S1(K). We conclude that no color-preserving automorphism
moves v, so the coloring is distinguishing.

Suppose instead that v is a type 3 vertex. We proceed exactly as before except now we
are breaking any automorphism taking u1 to v1 or v1 to u1 (but not interchanging them).
We still break all non-identity elements of Autv(G). Since neither R2

n or R3
n have a type

3 vertex, we must have D(G) = 2. �

We have now completed the classification for graphs G with a vertex of type 1,2,3. There
remains only the case where all vertices have type 6. Then G must be cubic and, as is
easily seen, edge transitive. We will treat the distinguishability of edge transitive graphs
in the next section.

6.6 Girth

Our analysis of edge transitive cubic graphs G uses the girth of G. One easily verifies that
the only edge transitive cubic graph of girth 3 is K4, and that K3,3 and the cube are the
only edge transitive graphs of girth 4. We know D(K4) = D(K3,3) = 4 and D(Q) = 3.

For girth 5 we observe that edge transitive graphs that are not vertex transitive must be
bipartite. Hence all edge transitive graphs of odd girth are also vertex transitive. But
there are only two vertex transitive cubic graphs of girth 5, the dodecahedron H and the
Petersen graph [41]. In Lemma 6.2.8 we have shown that D(P ) = 3. However, D(H) = 2.
To find a 2-distinguishing coloring color black a vertex v, its three neighbors x, y, z, and
a vertex w adjacent to x.
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For girth s > 5 the situation changes drastically. Although there are only five cubic edge
transitive graphs of girth at most 5, and no infinite ones, there are infinitely many such
graphs already for girth 6, and an infinite one is the honeycomb lattice, which is also edge
transitive.

Thus it remains for us to show that edge transitive cubic graphs of girth s > 5 are 2-
distinguishable. In fact, our proof does not use edge transitivity at all.

Lemma 6.6.1. If G is a cubic graph with girth s > 6, then D(G) = 2.

Proof Let C be a cycle of length s. Since s > 6, each vertex in S1(C) is adjacent to
only one vertex in C. Moreover, if two vertices in S1(C) are adjacent, then they can be
used to form a path of length three between two vertices in C of distance at most s/2,
contradicting s > 6. Let the vertices of C be denoted by 1, 2, 3, . . . , s. Let K be C together
with the whiskers at vertices 1 and 4 as well as 6, . . . , s, see Figure 6.8.

1

2

3

4

5

6

7

8

K

Figure 6.8: The set K for s = 8. The vertices 1 and 4 together with 6, 7 and 8 are the
kiwi vertices.

Choose a canonical 2-coloring rooted at K. By Proposition All Black (6.3.4), there is no
kiwi vertex in Sn(K) for n > 1. There is none in S1(K) either, since any such vertex
would be adjacent to three vertices in K, forcing a K2,3 in G, contradicting s > 6. Thus
any color-preserving automorphism φ must leave invariant the kiwi vertices 1, 4, 6, . . . , s.
The graph spanned by these vertices consists of an isolated vertex 4 and a path 6, . . . , s, 1.
Thus φ fixes 4, and either leaves the path fixed or reverses it (interchanging vertices 1, 6).
In the first case, φ fixes 5, since s > 4, and φ fixes 2, 3 since 1, φ(2), φ(3), 4 provides another
path of length 3 between 1 and 4, contradicting s > 6. In the second case, 4, φ(5), φ(6) = 1
provides a path of length 2 from 4 to 1, contradicting s > 5. We conclude that φ fixes all
vertices of C and hence all vertices of K, so φ is the identity. �

For girth s = 6, we also have D(G) = 2 but the argument is slightly more complicated.

Lemma 6.6.2. Let G be a cubic graph with girth s = 6. Then D(G) = 2.

Proof We note that the proof of Lemma 6.6.1 for girth s > 6 only uses s 6= 6 to insure
that for a cycle C of length s, the graph K obtained from C with whiskers to vertices
1′, 4′, 6′, ..., s′ has no edges between the whiskers. The rest of the proof only requires s > 5.
In particular, for girth s = 6, if G contains a cycle 123456 with no edge between 1′ and
4′, then D(G) = 2 (as there can be no edge between 4′ and 6′ as otherwise s < 6). By
cyclically permuting 1, 2, 3, 4, 5, 6, we conclude that for every 6-cycle C, we must have
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edges 1′4′, 2′5′, 3′6′ in S1(C) or else D(G) = 2. Applying this to the cycle 1′12344′, we
have that 1′ and 3′ must have a common neighbor. Since the choice of which vertex is
labeled 1 does not matter, 3′ and 5′ have a common neighbor, as do 5′ and 1′. Since all
vertices have valence 3, it must be that 1′, 3′, 5′ have one common neighbor 7. Similarly,
2′, 4′, 6′ have one common neighbor 8.

At this point all 14 of the vertices have valence 3 so we have the entire graph, see Figure
6.9. This is the Heawood graph (the dual of the triangulation of the torus with underlying
graph K7).

1

2

3

4

5

6

1′ 2′

3′

4′5′

6′

1

2

3

4

5

6

1′ 2′

3′

4′5′

6′

1

2

3

4

5

6

1′ 2′

3′

4′5′

6′

7

8

Figure 6.9: Construction of the graph described in the proof of Lemma 6.6.2.

Now consider the following 2-coloring of the graph. Let 1, 2, 3, 4, 5, 6, 1′, 2′, 7 be black and
the remaining vertices white. In the graph H spanned by the black vertices, 7 is the only
vertex of valence 1 adjacent to a vertex of valence 2 (namely 1′). Thus any color-preserving
automorphism φ fixes 7. Thus φ also fixes 1′ and hence 1. Since 2′ is the only vertex of
valence one, φ also fixes 2. Thus φ fixes the remaining vertices of the cycle C, so φ fixes
all black vertices. But then φ also fixes the white vertices adjacent to 3, 4, 5, 6. That
leaves only 8 so it must be fixed as well, making φ the identity (compare the right graph
in Figure 6.9 for the coloring). �

6.7 Questions

There are a number of questions worth further study,

Question 1 (Higher Valence) Can we classify graphs G with ∆(G) = d = D(G)?

As we have observed, if G = T (n, d), then ∆(G) = d = D(G). We could add edges within
each sibling family of size d− 1 to form a graph S(n, d) analogous to Sn (the vertices of a
sibling family then have valence d− 1). We can also attach d− 1 independent vertices to
a sibling family using Kd−1,d−1 to obtain a graph analogous to R1

n. There do not appear
to be analogues for R2

n and R3
n.

We can define a canonical d − 1 coloring rooted at a graph K such that the only color-
preserving automorphism of G fixing the vertices of K is the identity. Then we have to
identify properties of such colorings that restrict the structure of K and S1(K). Note that
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a variation of the canonical coloring using d+1 colors, with color d+1 for a vertex v , colors
1, 2, . . . , d for the neighbors of v, and colors 1, 2, . . . , d− 1 is how one gets D(G) ≤ d+ 1.
And to show D(G) = d+ 1 only for G = Kd+1 or G = Kd,d, one uses canonical d-colorings
rooted at an asymmetric vertex-induced subgraph K with color d used only on K.

Question 2 (Highly Symmetric Graphs) If ∆(G) = d and G is vertex transitive, must
D(G) = 2 for all but finitely many G?

Question 3 (Connectivity) What is the relationship between vertex or edge connectivity,
valence, and distinguishing number?

The examples with D(G) = d are not 2-connected. What happens if we require, say,
3-connectivity? For example, we can get D(G) = d− 3 with G 3-connected by attaching
Kd−1 at three vertices of valence 2. As the connectivity goes up, the distinguishing number
seems to go down, with finitely many exceptions like Kd+1.

Question 4 (Infinite Graphs) What happens for infinite G with ∆(G) = d > 3?

For infinite graphs, we expect that if ∆(G) = d, then D(G) < d, just as for d = 3. But
there are also interesting questions just for such G with D(G) = 2. As we observed before
Corollary 2.6, for finite graphs, large enough motion implies D(G) = 2. The Infinite
Motion Conjecture [79] is that if G is locally finite and m(G) = ∞, then D(G) = 2. On
the other hand, for the case d = 3, we see there is no need for the hypothesis of infinite
motion to get D(G) = 2, and there are other classes of graphs with D(G) = 2 that do
not depend intrinsically on infinite motion [76]. As we observed, however, it is easy to
construct an infinite d-valent graph G with D(G) = d− 1, so for d > 2, we expect infinite
motion to be involved.

Question 5 (Motion). For cubic graphs, if the motion m(G) > 2, then D(G) = 2 with
the exception of Q and P . For d > 3, is it the case that if m(G) > d, then D(G) = 2 with
finitely many exceptions?

Perhaps, even m(G) > 2 gives D(G) = 2 with finitely many exceptions.

Question 6 (Chromatic Distinguishing Number) Suppose all colorings are required to
be proper (adjacent vertices get different colors). What happens when ∆(G) = 3?

Collins and Trenk [26] define the chromatics distinguishing number χD(G) to be the least
k such that G has a proper k-coloring whose only color-preserving automorphism is the
identity. They prove that χD(G) ≤ 2d with equality only for Kd,d and C6. For d = 3,
there is the possibility of classifying graphs with D(G) = 5, especially in the case that G
is bipartite.

In [47] the chromatic distinguishing number of infinite graphs is investigated. For con-
nected graphs of bounded valence d it is shown that χD(G) ≤ 2d − 1, and for infinite
subcubic graphs of infinite motion this improves to χD(G) ≤ 4.
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Question 7 (Edge Distinguishing) One can also define [53] the distinguishing index (or
edge distinguishing number) D′(G) as the least k such that some k-coloring of the edges
of G is preserved only by the identity. In [53] it is shown that D′(G) ≤ ∆(G) for finite
graphs. For infinite graphs ∆(G) has to be replaced by the supremum of the valences [23].

What happens with D′(G) when ∆(G) = 3?

Question 8 (Cost) When D(G) = 2, the cost [20, 21] is the least number of times the
color black is used. When ∆(G) = D(G) = 2, what can we say about the cost? For cubic
graphs this is treated in [47].

The canonical coloring tends to use black as few times as possible for Sn(K), n > 0. How
close does this number come to the cost?
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Chapter 7

Distinguishing locally finite trees

This chapter is based on the submitted paper Distinguishing locally finite trees which is
joint work with Svenja Hüning, Wilfried Imrich, Hannah Schreiber and Thomas Tucker.

7.1 Introduction

This paper is concerned with automorphism breaking of finite and infinite trees of bounded
valence by vertex colorings. 1977 Babai [6] showed that the vertices of every k-regular
tree, where k ≥ 2 is an arbitrary cardinal, can be colored with two colors such that only
the identity automorphism preserves the coloring. For trees that are not regular such a
2-coloring need not be possible. This raises the question of how many colors are needed
to break all automorphisms of a given tree T , that is, of finding the smallest cardinal d to
which there exists a d-coloring of the vertices of T that is only preserved by the identity
automorphism.

Another question is to find, for a given c ≥ 2, c-colorings of the vertices of a given tree T
such that the color-preserving automorphisms fix subtrees of T that are maximal in some
sense. This is the problem, which we consider here.

Our note is related to [46], where both questions were answered for connected graphs
of maximum valence 3. That paper, in turn, was motivated by the general problem of
determining the distinguishing number of graphs and the Infinite Motion Conjecture of
Tucker.

The distinguishing number D(G) of a graph G is the smallest cardinal number d such that
there exists a d-coloring of the vertices of G which is only preserved by the identity auto-
morphism. We also say that such a coloring breaks Aut(G) and that G is d-distinguishable.
These concepts were introduced 1996 by Albertson and Collins [1] and have spawned a
series of related papers. In two of them, by Collins and Trenk [26] and Klavžar, Wong and
Zhu [57], it is shown that the distinguishing number D(G) of any finite connected graphs
G of maximal valence k is at most k, unless G is Kk, Kk,k or C5. Then D(G) = k + 1. In
[48] this was extended to infinite graphs. In that case D(G) is bounded by the supremum
of the valences of the vertices.

Despite the fact that the distinguishing number can be arbitrarily large, it is 1 for asym-
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metric graphs. As almost all finite graphs are asymmetric, this means that almost all
graphs have distinguishing number 1. Furthermore, almost all finite graphs that are not
asymmetric have just one non-identity automorphisms, which is an involution1. One can
break it by coloring one selected vertex black and all others white. Clearly such graphs
are 2-distinguishable.

For infinite graphs we have the Infinite Motion Conjecture [79]. It says that all connected,
locally finite, infinite graphs are 2-distinguishable if every non-identity automorphism
moves infinitely many vertices. Despite the fact that it is true for many classes of graphs,
for example for graphs of subexponential growth, see Lehner [64], the conjecture is still
open. Until recently it was not even clear whether it holds for graphs of maximum valence
3, but in [46] it was shown that all connected infinite graphs of maximal valence 3 are
2-distinguishable and that no motion assumption is needed.

In the case of connected finite graphs G of maximum valence 3 it is even enough to require
that every automorphism moves at least three vertices to ensure 2-distinguishability, unless
G is the cube or the Petersen graph. In fact, with the exception of K4, K3,3, the cube
and the Petersen graph, all connected finite graphs G of maximum valence 3 admit a
2-coloring where every automorphism that preserves the coloring fixes all vertices, with
the exception of at most one pair of interchangeable vertices. We say the 2-coloring fixes
all but this pair of vertices. For example, consider three copies of K1,3, select a vertex of
valence 1 in each copy and identify them. The resulting tree has distinguishing number 3,
and it is easy to find a 2-coloring that fixes all but two vertices.

In this note we generalize this to trees T of maximal valence k and an arbitrary number of
colors c. We wish to find c-colorings that fix as many vertices as possible, that is, we wish
to maximize the sets of vertices that are fixed by each color preserving automorphism. As
this is hard to control, we look for the smallest number r(c, k) such that there exists a
c-coloring of T that fixes in the worst case at least all vertices of T whose distance from
the next leaf is at least r(c, k) = dlogc ke. This is made more precise in Section 7.5, where
one can see that in a lot of cases this number will be significantly smaller.

7.2 Preliminaries

7.2.1 Graph representation

Let G = (V (G), E(G)) be a connected graph, V (G) its set of vertices and E(G) its set of
edges. To simplify the notation we write V and E if the graph is clear by the context. If
the vertices of G have maximal valence 3, then G is called subcubic. As usual we call the
number of edges on a shortest path between two vertices u and v be the distance d(u, v)
between u and v.

Definition 7.2.1. Let v ∈ V . The ball of radius n with center v is defined as the set
B(n, v) = {u ∈ V | d(u,w) ≤ n}. The sphere of radius n around v is the set S(n, v) = {u ∈
V | d(u, v) = n}, that means it is the set of all vertices of distance n from v, see Figure 7.1.

In this paper, we mostly represent a graph G by an arrangement of spheres with a common
center v ∈ V (G), and say that G is rooted in v. In that context, a down-neighbor, a cross-

1Florian Lehner, private communication.
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neighbor and an up-neighbor of ∈ S(n, v) is a neighbor w of u that it is in S(n − 1, v),
S(n, v) or S(n + 1, v) respectively; see Figure 7.1. The corresponding edges are called
down-edges, cross-edges and up-edges.

Definition 7.2.2. Two vertices z, z′ are siblings if they have the same down-neighbor.
We call a vertex w an only child of a vertex u if w is the only neighbor of u of valence 1.

S(2, v)

vS(0, v)

S(1, v)

S(3, v)

S(4, v)

S(n− 1, v)

S(n, v)

S(n+ 1, v)

w

z z′

y

x

up-neighbours of w: z, z′

cross-neighbor of w: y
down-neighbor of w: x

Figure 7.1: Decomposition of a graph into spheres centered at a vertex v. Each vertex in
S(i, v) has distance i from v.

7.2.2 Ends and rays

A subgraph of a graph G = (V (G), E(G)) is a graph H = (V (H), E(H)) such that V (H) ⊆
V (G) and E(H) ⊆ E(G). If E(H) contains all edges between vertices of V (H) that are
also in E(G), we say H is an induced subgraph of G and denote it by 〈V (H)〉. If S ⊂ V (G),
then G \ S is the subgraph of G induced by the vertices of the set V (G) \ S.

Definition 7.2.3. A ray is an infinite graph R = (V,E), with V = {v0, v1, v2, ...} and
E = {v0v1, v1v2, v2v3, ...} where the vi are pairwise different. If a ray R1 = (V1, E1) is a
subgraph of a ray R2 = (V2, E2), then R1 is called a tail of R2.

Two rays R1 and R2 in a graph G = (V (G), E(G)) are equivalent, in symbols R1 ∼ R2,
if for every finite set S ⊂ V (G) there exists a connected component of G \ S containing a
tail of both R1 and R2. One can show that ∼ is an equivalence relation. The equivalence
classes of ∼ are called ends of G.

If T = (V,E) is an infinite tree, then the set of vertices in V such that T − vi = 〈V \ vi〉
contains at least two infinite components is denoted by V C = {v1, v2, . . . }. We call the
induced subgraph 〈V C〉 the trunk of T and denote it by TC .

7.2.3 Automorphisms and Colorings

An isomorphism ϕ : V (G)→ V (H) between two graphs G and H is a bijection such that
uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(H). The isomorphisms of G onto itself are called
automorphisms. They form a group A(G). The stabilizer of a vertex v ∈ V (G) is the set
A(G)v = {α ∈ A(G) |α(v) = v}.

Definition 7.2.4. A d-coloring c : V → {1, ..., d} of a graph G is a map that gives each
vertex of G a color i ∈ {1, ..., d}. We say that an automorphism preserves a coloring c, if
c(v) = c(ϕ(v)) for all v ∈ V . Otherwise, we say that the coloring breaks the automorphism.
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The set A(G)c of all automorphisms preserving c forms a group. If v ∈ V (G) and A(G)c ⊆
A(G)v, we say that c fixes v. As mentioned in the introduction our aim is to construct
graph colorings that fix as many vertices as possile. The minimal number of colors needed
to fix all vertices is called the distinguishing number.

Definition 7.2.5. The distinguishing number D(G) of a graph G is the the smallest d for
which there exists a d-coloring c of G such that the only automorphism preserving c is the
identity.

Definition 7.2.6. The center of a finite graph is a vertex for which the greatest distance
from v to any other vertex of the graph is minimal.

In a finite tree T the center is either a single vertex or an edge. If the center of T is a
vertex w, then A(T )w = A(T ). If the center is an edge uv, any automorphism α ∈ A(T )
satisfies either α(v) = v and α(u) = u or α(v) = u and α(u) = v. We define a subtree Tw
of the tree T rooted in v, with w ∈ S(n, v), as the tree induced by w and all the vertices
in S(m, v), m > n, for which there exists a path to w in T not containing v.

7.3 Coloring locally finite infinite trees

In this section we prove that every locally finite infinite tree with maximal valence k has
distinguishing number k − 1. For the proof we need the following two lemmas.

Lemma 7.3.1. Let T be a tree with maximal valence k. If T has a vertex v of valence
1 ≤ val(v) ≤ k − 1 then D (A(T )v) ≤ k − 1. In other words, there is a (k − 1)-coloring c
of T that breaks all automorphisms of A(T )v.

Proof Let v be a vertex of valence 1 ≤ val(v) ≤ k − 1. We color v with an arbitrary
color and all its neighbors with different colors. This coloring fixes B(1, v) in A(T )v. We
prove that for all i > 0 there is a k − 1-coloring of B(i, v) that breaks all automorphisms
of A(B(i, v))v. To show this, it suffices to extend a given coloring c(i) of B(i, v) with k−1
colors to B(i + 1, v). We do this as follows. Every vertex in S(i, v) has at most k − 1
up-neighbors. Each of them can be colored with a different color. If we continue to color
the tree in this way, we obtain a coloring that breaks all automorphisms of A(T )v but the
identity. �

The second result that we need is Königs Lemma, see e.g. [30].

Lemma 7.3.2 (König’s Lemma). Let V0, V1, V2, . . . be an infinite sequence of non-empty,
disjoint sets. Let V = ∪i≥0 denote their union. If G = (V,E) is a graph such that for all
v ∈ Vn, n ≥ 1, there exits a vertex f(v) ∈ Vn−1 adjacent to v, then there exists an infinite
path v0v1 . . . in G with vn ∈ Vn for all n ≥ 0.

Note that parts of the next result (namely the finite case) can be extracted from a recent
classification result from [46]. Here we provide a direct and constructive proof which also
generalizes to trees with maximal valence k.

Theorem 7.3.3. Every locally finite, infinite tree with maximal valence k has distinguish-
ing number D(G) ≤ k − 1.
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Proof Let T be a locally finite infinite tree. It is well known that such a tree without
vertices of valence 1 is 2-distinguishable, see for example [84]. Hence, we can assume that
T has at least one vertex of valence 1.

By König’s Lemma, T has at least one end. We first treat the case, where T has exactly
one end, say e. Let R ∈ e be a ray with origin v0, where v0 is a vertex of valence 1.

We color all vertices of R with color 1. Thus every automorphism that stabilizes R also
fixes all vertices of R. Consider a vertex z in R and its j neighbors that are not in R.
Since j ≤ k− 2 we can color these vertices with different colors without using color 1. We
proceed by doing this for all neighbored vertices of R. Let v be one neighbor of z not in R
and let Tv be the component of T − z that contains v. Now, color Tv as in Lemma 7.3.1.
Continue by coloring the neighbors of all vertices in R in the same way. If w is another
vertex of T of valence 1, then the unique ray Rw in e with origin w contains at least one
vertex which is not colored with 1. Hence, independently of how the coloring of T will be
finished, any color preserving automorphism α of T will satisfy α(v0) 6= w. Because this
holds for all vertices of valence 1 that are different from v0 we infer that α(v0) = v0 and
that α fixes every vertex of R. Because the vertices in R are fixed also the neighbors and
finally all finite trees connected to R are fixed.

We now treat the case when T has 2 or more ends. Consider the trunk TC of T which
is a locally finite, infinite tree without leaves. Since it is unique any automorphism of T
leaves TC invariant. By [84] we know that TC is 2-distinguishable. Any vertex z of TC

has at most k − 2 neighbors not in TC that can be fixed by coloring them with different
colors. Again, for each of these neighbors vi of z we consider the underlying tree Tvi of
T − z that contains vi as before and apply Lemma 7.3.1. �

The following example shows that Theorem 7.3.3 cannot be generalized to finite trees.

Example 7.3.4. Consider a finite tree with center v where every vertex is of valence 3 or
1 and every leaf has the same distance from v. The distinguishing number of such trees is
3. For any 2-coloring of such a tree, there remains a pair of leaves that is indistinguishable,
see Figure 7.2. An other easy example is the K1,3.

v

Figure 7.2: Example of a finite tree T with D(T ) = 3. With a 2-coloring, two leaves are
interchangeable.

7.4 Finite trees

We begin with the analog of Theorem 7.3.3 for finite trees.
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Lemma 7.4.1. Let T be a finite tree with maximal valence k. Then there is a k − 1-
coloring, which fixes all vertices, with the possible exception of two sibling leaves.

Proof If the center of T consists of a single vertex v, assign v an arbitrary color and color
its neighbors v1, v2, . . . with as many different colors as possible. Only in the case where v
has valence k we have to use one color twice. As before let Tvi be the component of T − v
containing vi. We extend the coloring of Tvi as in Lemma 7.3.1 for all i. In the case where
v has k neighbors it is possible that there is an automorphism that interchanges the two
subtrees, say Tvm and Tvn (with vm and vn of the same color). We take an endpoint a of
Tvm and change its color so that Tvm and Tvn are indistinguishable.

However, now there might be a color preserving automorphism that moves a. This is only
possible if there is another vertex of valence 1, say b, that has a common neighbor with a.
This is the only pair of that kind in T .

We still have to consider the case where the center of T is an edge, say uv. In that case we
color u and v with different colors, and consider the components Tu and Tv of T −uv that
contain u or v, respectively. We now obtain a distinguishing k − 1-coloring by applying
Lemma 7.3.1 to Tu and Tv. �

It is known from Babai [6] that each (infinite) homogeneous tree of valence k > 2 is 2-
distinguishable. This result cannot be adapted to the finite case, but note that we can fix
all vertices except the leaves by a 2-coloring.

Lemma 7.4.2. Let T be a finite tree where every vertex has valence 1 or k. Then there
exist a 2-coloring of T that fixes all vertices except (some of) the leaves.

Proof Suppose the center of T consists of the single vertex v. This vertex is then
automatically fixed by any automorphism. Let v be a white vertex and color all k neighbors
of v black.

Figure 7.3: Example of the coloring algorithm given in the proof of Lemma 7.4.2 with
k = 4.

To avoid that they can be changed we assign different colorings to the next k − 1 up-
neighbors. Since the number of different 2-colorings of k − 1 indistinguishable vertices is
k, each of the black vertices can be fixed. We proceed with this coloring process until
we reach the leaves. Then, all vertices except the leaves are fixed. See Figure 7.3 for an
example.

If the center of T is an edge, say uv, we color u white, v black and continue with a coloring
for the subtrees Tu respectively Tv as before. �
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7.5 Main Theorem

We now construct a c-coloring of a tree with maximal valence k which only leaves certain
vertices of the tree indistinguishable. In the next theorem, we consider a tree rooted in a
vertex v. Here, that is, in the finite case, we define Tu as the vertex u together with the
components of T − u that do not contain v. In the infinite case Tu consists of the vertex
u together with all finite subtrees of T − u, see Figure 7.4.

u
Tu

T

Figure 7.4: After removal of u, all remaining finite trees are attached to u in Tu.

Main Theorem. Let T be a finite or infinite tree of maximal valence k < ∞. We assume
T to be rooted in a fixed vertex v (the center of the tree in the finite case) and choose
a number c ≥ 2. Then, for every pair c, k, there exists a number r(c, k) and a c-coloring
of T that fixes all vertices u ∈ V (T ), for which there exists a leaf w in Tu such that
d(u,w) ≥ r(c, k). If k ∈ {0, 1, 2} or c ≥ k, then r(c, k) = 0, which means that the entire
graph is fixed. If k ≥ 3 and c = k − 1, then r(c, k) = 1. Otherwise

r(c, k) :=


log2(max {3, k − 2}) + 1 for k ≥ 4 and c = 2.

logc

(
max

{
3,
⌈
k−2
c−1

⌉})
for k ≥ 4 and 2 < c ≤ k − 2.

(7.1)

The strategy to prove the theorem is the following. First we introduce an explicit coloring
algorithm and then we show two of its properties (see Lemmas 7.5.1 and 7.5.2) which lead
to the result.

We start by considering a finite tree T with maximal valence 4 ≤ k <∞. We assume that
we have 2 ≤ c ≤ k−2 colors. For simplicity we write {0, 1, 2, 3, ..., c−1} for the c different
colors (in the following figures, 0 is white, 1 black and 2 gray).

Furthermore, a c-coloring of a set of siblings optimal if the maximal number of vertices with
the same color is minimal. Moreover, a vertex u is said to satisfy the distance condition
if there exists a leaf w in Tu of distance d(u,w) ≥ r(c, k).

7.5.1 Coloring Algorithm

We first assume that the center of T consists of a single vertex v. We root T in v and color
v with color 0. Let n′ ∈ N be the maximal radius such that S(n′, v) 6= ∅. Now consider
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the following steps, each of which maybe processed several times..

Step 0: If there exist indices ` in {1, . . . , n′} such that there still exist uncolored vertices
in S(`, v), then let n be the minimum of these indices and continue with Step 1.

Otherwise stop the coloring algorithm2.

Step 1 : If there exists an uncolored vertex in S(n, v) call it u and go to Step 2. Otherwise
go back to Step 0.

Step 2: If the vertex u does not fulfill the distance condition, color u with 0 and go back
to Step 1. Otherwise continue with Step 3.

Step 3: Note that the vertex u satisfies the distance condition. Consider u and all of its
uncolored siblings {v1, . . . vr} which fulfill the distance condition. If this set is not empty,
then color them optimally. If there are no indistinguishable vertices within {u, v1, . . . vr}
with the same color, go back to Step 1. Otherwise continue the coloring in the following
way (which is still part of Step 3):

Main Line Coloring: Let Vj be the set of vertices among {u, v1, . . . vr} with color j, where
at least two vertices have color j, i.e. |Vj | > 1 (vertices with a color that appears only
once are clearly fixed).

We can assume that for all v ∈ Vj , and for all j, there exists a leaf w in Tv of distance

d(v, w) ≥ r(c, k). Let Vj = {vj1, v
j
2, . . . , v

j
mj} for each of the colors j = 1, . . . , ` ≤ c and do

the following:

Consider (one of) the longest path(s) Ri from vji to a leaf in T
vji

for each of these vertices

vji , i = 1, ...,mj . We call the chosen paths Ri main lines. To distinguish {vj1, v
j
2, . . . , v

j
mj}

we color the main lines Ri with pairwise different finite sequences of colorings.

For example, if c = 2, we color the paths with different “reverse binary colorings”. That
means R1 will be colored with 00000..., R2 with 10000..., R3 with 01000..., R4 with 11000...
and so on. If c = 3, we use “reverse ternary colorings”, meaning that R1 will be colored
with 00000..., R2 with 10000..., R3 with 20000..., R4 with 01000... and so on, see Figure 7.5.

v1 v2 v3 v4 v5 v6

R1 R2 R3 R4 R5 R6

Figure 7.5: Coloring of main lines for c = 3.

In general we use a reversed coloring based on the number system with base c. Having
done this for all j ∈ {1, . . . `} continue with Step 4.

Step 4: We consider all vertices {w1, . . . wr} produced in Step 3 that are part of one of the
main lines and have valence ≥ 3. That means we consider vertices that have at least one
second up-neighbor, which is not in the main line. Consider a vertex wi. For simplicity

2In this step we always look after the lowest sphere where there are uncolored vertices, such that in the
end we can guarantee that we colored all vertices.
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we denote its up-neighbors (it has at least two) by v1, v2, . . . , v`. By construction only
one vertex is in a main line, let it be v1. Therefore, v1 is already colored, whereas v2, . . . ,
v` are uncolored. Let a be the color of v1. We consider two cases:

Case 1: ` = 2.

Then color v2 with (a+ 1) mod c, see Figure 7.6 for an example, where c = 3.

Ri

Figure 7.6: How to color unique siblings of vertices in a main line for c = 3.

If c > 2 continue with Step 4 for the next wi. Otherwise do the following:

If the subtree Tv2 contains only vertices of valence one or two (we say if there is no
branching), color all vertices of Tv2 − v2 with 1. Now, consider the case in which there is
a branching in Tv2 . Color all vertices up to the branching in Tv2 − v2 with 1. If there are
2 or 3 sibling vertices in that branching, color them all with 1. If the branching consists
of 4 or more vertices, then assign them an optimal coloring, see Figure 7.7. Restart Step
4 for the next wi.

Rj

wi

v1 v2 v1 v2 v1 v2

Rj

wi

Rj

wi

Figure 7.7: Coloring of secondary lines for c = 2.

Case 2: 3 ≤ ` ≤ k − 1.

Color v2, v3, . . . , v` with an optimal coloring considering two additional restrictions:

First, we do not use the color a. Second, if there exists j ∈ {2, . . . , `} such that vj has the
color b ∈ {0, . . . , c − 1} \ {a}, then there exists j′ ∈ {2, . . . , `}, j 6= j′, such that vj′ also
has color b. This means that a color is always used at least twice, see Figure 7.8. Note
that v1 is the only vertex among the siblings whose color appears just once.

Having done this for all w1, ..., wk check whether there are indistinguishable vertices of the
same color satisfying the distance condition (as an example consider the case that there
is a branching in the subtree Tv2 when c = 2 or within {v2, v3, . . . , v`}), then repeat the
Main Line Coloring method and apply Step 4 to these vertices. If there are no colored
indistinguishable vertices, continue with Step 1.

This completes the algorithm for the case that the center of T is a single vertex.
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Rj

wi

v1
v2 v3 v4

Rj

wi

v1
v2 v3 v4 v5 v6

Figure 7.8: Examples of how to color the four (left) or the six (right) up-neighbors of a
vertex in some main line, with c ≥ 3.

Now, assume that the center of T is not a vertex but a an edge uv. Let Tu be the tree
containing u in T − v and Tv be the tree containing v in T − u. Color u with 1, v with
0, and proceed with the coloring of Tu and Tv as explained above for trees whose center
consists of a single vertex.

7.5.2 Proof of the Main Theorem

Lemma 7.5.1. Let V be a set of t vertices. Assume they are colored with an optimal
coloring consisting of j colors, with the additional restriction that every color appears
at least twice. Then, the maximal number p of vertices with the same color in V is

max
{

3,
⌈
t
j

⌉}
.

Proof If t is even and j ≥ t
2 , then there are enough colors such that the vertices are

colored pairwise differently, meaning that p = 2. If t is even but j < t
2 , we are forced to

use every possible color, and every color has to be used at least twice. Thus, the restriction

is automatically fulfilled and p =
⌈
t
j

⌉
.

Now, consider the case when t is odd. We first ignore one vertex and proceed as in the
even case for the remaining t − 1 vertices. The ignored vertex then has to get the same
color as one of the remaining vertices due to the additional restriction. That means

if j ≥ t− 1

2
, then p = 2 + 1 = 3, and

if j <
t− 1

2
, then p =

⌈
t− 1

j

⌉
+ 1.

The +1 arises from the vertex that was first ignored. It is needed in the case where each

color is used equally often. It is easy to verify that
⌈
t
j

⌉
≥
⌈
t−1
j

⌉
+ 1 for every possible

pair of t and j. Therefore an upper bound for p is always max
{

3,
⌈
t
j

⌉}
. �

Lemma 7.5.2. Let T be a finite tree with maximal valence 0 < k < ∞. If T is colored
as described in the Coloring Algorithm where c ≥ 2, then the largest number of sibling
vertices fulfilling the distance condition and having the same color that can appear is

max
{

3,
⌈
k−2
c−1

⌉}
.

Proof Within our Coloring Algorithm there are three situations in which sibling vertices
with the same color fulfilling the distance condition might appear.

80



7.5. MAIN THEOREM

Situation 1: If we apply an optimal coloring to m vertices, we obtain a maximum of
⌈
m
c

⌉
vertices with the same color. For a tree with maximal valence k it is bounded by s1 =

⌈
k
c

⌉
.

Situation 2: In Step 4 case 2 of the Coloring Algorithm, we use an optimal coloring with
c − 1 colors such that each color appears at least twice. By applying Lemma 7.5.1, we

obtain a maximum number s2 = max
{

3,
⌈
k−2
c−1

⌉}
of sibling vertices with the same color

in that case.

Situation 3: Consider the case c = 2 in Step 4 Case 1 of the algorithm where we are in the
branching situation. There are at most s3 = max{3, dk−1

2 e} vertices with the same color.
We see that s2 ≥ s3 for c = 2 and k ≥ 4.

It remains to compute the maximum of s1 and s2. Straight forward calculations show that

k < 2c ⇐⇒ k − 2

c− 1
<
k

c
< 2.

Therefore, for k < 2c the maximum is 3, while for k ≥ 2c it is k−2
c−1 . Thus, the maximum

of s1 and s2 is max
{

3,
⌈
k−2
c−1

⌉}
. �

Proof of the Main Theorem The cases k ∈ {0, 1, 2} and c ≥ k are trivial. For c = k−1,
we refer to Corollary 7.4.1 in Section 7.4. So, assume that we have 2 ≤ c ≤ k − 2 and
k ≥ 4.

First, we consider a finite tree T and apply the Coloring Algorithm. Assume that the
center of T consists of a single vertex v. This vertex is fixed by each automorphism of T .
Thus, it remains to show that for all n ∈ N the vertices with the same color in S(n, v)
which satisfy the distance condition are indistinguishable due to our algorithm.

The distance r(c, k) is built upon the maximal number of indistinguishable vertices with
the same color that can appear in the same sphere and the given Main Line Coloring in
the algorithm. The aim of these main lines is to fix indistinguishable siblings that have
the same color and the vertices on these main lines themselves.

Let n′ ∈ N be the smallest index such that there exist indistinguishable sibling vertices
with the same color v1, . . . , vm, m ≥ 2, in S(n′, v) which fulfill the distance condition.

Consider v1, . . . , vm and their main lines Ri given by Step 3 of the algorithm. We
see that if each vi has distance at least logcm to a leaf in Tvi , then the main lines
Ri are colored pairwise differently. Due to Lemma 7.5.2 this distance is bounded by

logc max
{

3,
⌈
k−2
c−1

⌉}
. Since this coincides with our distance condition regarding the given

r(c, k), for any color-preserving automorphism α of T with α(vi) = vj and α(Ri) = Rj
for some i, j ∈ {1, . . . ,m}, we see that i = j. This means that the main lines are not
interchangeable.

Next we argue why a main line Ri cannot be mapped to any other string of some Tvj . By
a string we mean a path, that has at most one vertex of each sphere. Therefore we show
that there is no automorphism α such that α(Tvi) = Tvj for any i, j ∈ {1, . . . ,m}.

Without loss of generality we consider Tvi and Tvj , i 6= j and assume that there exists at
least one vertex in Ri resp. Rj with at least two up-neighbors (otherwise Tvi and Tvj are
stabilized by the Main Line Coloring method).
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Case 1: There exists a vertex w0 in Ri with one up-neighbor w1 in Ri and at least two more
up-neighbors, called w2, . . . , w`, ` ≥ 3. Let us assume that there exists a color-preserving
automorphism α of T that maps Tvj to Tvi . By the Main Line Coloring method we know
that α(Ri) 6= α(Rj). Thus, there exists a vertex w̃ ∈ Rj (in the same sphere as w1, . . . , w`)
and k ∈ {2, . . . , `} such that α(w̃) = wk. See Figure 7.9.

Ri Rj

w1
w2 w3 w̃

w0

vi vj

Figure 7.9: Example of w0 in Ri with three up-neighbors. The vertex w̃ has the same
color as w2 and w3.

Due to Step 4, Case 2, in the algorithm, w̃ does not have a sibling vertex with the same
color, whereas wk for sure has. So, α cannot map w̃ to wk, and we have a contradiction.
We conclude that α does not exists.

Case 2: There exists a vertex w0 in Ri with one up-neighbor w1 in Rj and exactly one
additional up-neighbor, called w2.

Let us again assume that there exists a color-preserving automorphism α of T that maps
Tvj to Tvi . By main line coloring we know that α(w1) /∈ Rj . Thus there exits a vertex
w̃ ∈ Rj such that α(w2) = w̃.

Case 2.1: Let c ≥ 3. If α swaps w̃ and w2, then α also swaps w1 and the unique sibling of
w̃. But if w̃ and w2 have the same color, their siblings do not, because of the shifting of
the colors modulo c in Case 1 of Step 4 of the algorithm. Thus, such an α does not exist.
Note, here it is important that we assume that c ≥ 3. For c = 2, we only have the color
pairs (0, 1) and (1, 0) which cannot be distinguished.

Case 2.2: Let c = 2. If the subtree Tw2 contains only vertices of valence one or two (no
branching), all vertices of Tw2 (except maybe w2) are colored with 1. In contrast to this,
at least the last vertex of Rj (the leaf) is colored with 0. This is due to the given r(2, k),
see Figure 7.8 (here we need the +1 in the case where r(c, k) = log2(max{3, k − 2}) + 1).
Thus, such an α does not exist.

Ri Rj

w0

w1 w2
w̃

vi vj

Figure 7.10: The distance r(2, k) guarantees that the last vertex of a main line is always
white if c = 2.

Now, assume there is a branching in Tw2 . By our algorithm, we have avoided that there
exist single vertices of a certain color in such a branching (see the left and the right picture
in Figure 7.7) while in every branching in the main line of Rj there exist a vertex (the
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vertex in the main line itself) with color d that is the only vertex with this color in that
branching3.

All in all, we showed that v1, . . . , vm are fixed. Now, we can use a final inductive argument.
Assume that all vertices with the same color up to the sphere S(n, v) are fixed. Consider
indistinguishable sibling vertices that fulfill the distance condition in the sphere S(n+1, v).
At this point, we can apply the same argument as above to ensure that they have to be
fixed. Note that here it is important to assume that everything below these vertices is
already fixed.

If the center of T consists of an edge uv, color u with 0 and v with 1. Then u and
v are fixed by the properties of a tree and we can apply the Coloring Algorithm to the
remaining vertices in the two subtrees containing u and v after removing the edge uv rooted
in, respectively, u and v. Then, we use the same reasoning as above. This completes the
proof for the finite case.

Now, let T be an infinite, locally finite tree. We first assume that T has at least two ends.
In that case consider the trunk TC of T which is a locally finite, infinite tree without
leaves. Since it is unique any automorphism of T leaves TC invariant. By [84] we know
that TC is 2-distinguishable. Now, for every vertex u in the trunk we consider the subtree
Tu that contains, as explained above, the vertex u together with all finite subtrees of T−u.
We apply the Coloring Algorithm to each of these subtrees and fix all vertices which fulfill
the distance condition.

If T has only one end, then there exists a vertex v with valence 1. Let R be the ray with
root v. We color all vertices of R with 0. For each vertex in R we color the maximal
k − 2 neighbors not in R with an optimal coloring with the c− 1 colors different from 0.
Thus, there are at most dk−2

c−1 e vertices with the same color. If there are indistinguishable
vertices we apply the Coloring Algorithm from above to fix all vertices which fulfill the
distance condition. �

We end with an example that shows that the given constant r(c, k) in (7.1) is tight in
some special cases.

Example 7.5.3. Consider a tree as in Figure 7.11 with maximal valence k = 10, which we
would like to color with c = 3 colors. Without a coloring the vertices in the first sphere are
indistinguishable. Using an optimal coloring for these vertices there are d10

3 e = 4 vertices
v1, . . . , v4 with the same color. Thus in our algorithm they are starting points of main
lines of length two and we can distinguish them in that way, see Figure 7.11. Clearly, it is
not possible to distinguish v1, . . . , v4 by using only 3-colors in the next sphere, but we can
fix them by coloring all vertices of the next two spheres. That is what the upper bound
r(3, 10) = log3 max{3, 10−2

2 } ≈ 1.26 yields, which means we need at least distance 2.

One easily deduces that the number of vertices which can be distinguished by the given
coloring in Theorem 7.5 depends on the structure of the graph. Especially it depends on
the number and the distribution of the leaves. Of course there are enough cases where
it is possible to distinguish considerably more vertices through a coloring than provided
by our theorem (e.g. if a lot of vertices are fixed by the structure of the tree). But for

3Coloring the neighbors of a vertex in Rj we excluded the use of the color of this particular vertex.
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v1 v2 v3 v4

R1 R2 R3 R4

Figure 7.11: Example of a 3-colored tree with maximal valence k = 10.

a general result one has to consider the critical cases as in Example 7.5.3 where we have
seen that the bound is tight.

We always considered the center of a finite tree as a fixed starting vertex in our Coloring
Algorithm. But one also could take another vertex of the graph, that is fixed by all
automorphisms. In some cases this may lead to colorings, that fix more vertices of the
graph than in the case where we start the coloring algorithm in the center.
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[35] R. Essifi and M. Peigné. Return probabilities for the reflected random walk on N0.
J. Theoret. Probab., 28(1):231–258, 2015.
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