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Abstract

Intrinsic curvature C0 is a property of lipids, which describes the bending radius of unstressed
monolayers. It is an important parameter in the calculation of interfacial energies, which affect
lipid/protein interactions or interleaflet coupling in asymmetric lipid membranes. Intrinsic lipid
curvatures are frequently determined using small-angle X-ray scattering (SAXS) experiments
on inverted hexagonal phases (HII) of dioleoyl phosphatidylethanolamine (DOPE) templates
with various amounts of non-HII forming host lipids. A basic assumption of this approach is
a linear addivity of the individual C0 values. Due to diverse lipid headgroup interactions this
may not always be justified, however. Moreover, temperature effects or repulsive interactions
between lipids rapidly decrease the scattering signal of HII phases adding another limitation
to this approach. In order to seek for a method to circumvent these issues we explored a full
q-range SAXS data analysis method that also takes into account experimentally observed diffuse
scattering contributions. Further, we included a non-linearity term for lipid mixtures based on
the effective lipid headgroup size. This allows to retrieve intrinsic curvatures from weakly ordered
HII phases and minimizes the amount of samples required. This thesis gives an overview over
the experiment, model and possible data evaluation techniques.
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1 Introduction

This thesis is dedicated to the investigation of lipid molecules by X-ray diffraction experiments.
Measuring the shape of molecules within biological aggregates holds a lot of difficulties, due to
the complexity of particle interactions and the high spatial uncertainties within the liquid crys-
talline state. Former methods to measure the spontaneous curvature of lipids required multiple
measurements with different lipid concentrations and the extrapolation of the desired values.
[1, 2] In this work we are testing a model-based approach to measure spontaneous curvatures of
one or two lipids with a single experiment.

1.1 Lipids

Lipids are one of the most important structure giving groups of molecules in biology. They are
essential for the formation of cell membranes. The crucial physical feature in their structure
is their amphiphilic nature, given by a polar headgroup and one or more unpolar tails. As an
example, a glycerophospholipid is shown in figure 1.1.

Figure 1.1: Chemical structure, Van der Waals-model and a simplified representation of a glycerophospho-
lipid[3].

Tail groups are always made of aliphatic compounds, like saturated or unsaturated hydrocarbon
chains (fatty acids). Fatty acids are often labelled as XX:Y, where XX denotes the number of
carbon atoms and Y the degree of unsaturation (= number of double bonds).
The lipids of our interest are phospholipids. They have their hydrocarbon chain(s) attached to
a glycerol backbone in the case of glycerolipids or to the long chain amine sphingosine in sphin-
golipids. Attached to the backbone is a a negatively charged phosphate group (PO4), which is
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1. Introduction

often linked to a positively charged front part, like choline.

Lipids are designed to form structures in aqueous solutions. Due to the amphiphilic character,
they self-assemble into micelles, bilayers or more complex structures (figure 1.2, 1.4). The head-
groups arrange next to each other along the oil-water interface, to shield the tails from contact
with water.[4]

Figure 1.2: Examples for lipid structures in aqueous solutions: lipids arrange in an orientationally ordered way
in order to exclusively expose the hydrophilic headgroups to the water environment. Headgroups
are shown as white circles, the yellow lines denote the fatty acid chains.[5]

Apart from the structure of their aggregates, there is also a variety of phases that lipids can
exhibit, that are mainly distinguished by the behaviour of the tail groups. In the fluid phase
lipids are free to diffuse within their monolayer without any long range positional order of their
tails, but they can also condense into a more ordered gel phase below their melting temperature
Tm. In aggregates containing more than one lipid species, lipids may also separate into regions
of different phases (domains, rafts).[6, 7]

1.1.1 Intrinsic curvature and structures

The shape of lipid-aggregates is highly influenced by the individual shapes of their components.
The parameter of interest is the intrinsic (spontaneous) curvature C0. It is defined as the inverse
of the radius of an unstressed monolayer formed by a single type of lipid. In case of inverted phases
(i.e. headgroups are pointing to the centre) the spontaneous curvature is negative. Curvature is
an important parameter in the calculation of surface energies [8] and plays a substantial role in
lipid/protein interactions.[9, 10]
The plane, where to measure the monolayer radius is arbitrary in principle. Since C0 is an
important parameter in the calculation of stress due to bending and stretching, we measure it
at the neutral plane, where these mechanisms are decoupled.[11] It is assumed to coincide with

2



1.1. Lipids

the position of the lipid backbone R0 (see figure 1.3).[1]

C0 = − 1

R0
(1.1)

Figure 1.3: Different shapes of lipid molecules, determining the spontaneous curvature of a monolayer.

The spontaneous curvature depends mainly on the size of the headgroup, the number of tails and
the degree of unsaturation. Unsaturated chains tend to occupy more space in the lateral direc-
tion. A possible structure for lipids of negative spontaneous curvature is the inverted hexagonal
phase (HII, figure 1.4). It consists of long cylinders of curled up lipid monolayers, arranged in
a 2D-hexagonal lattice. However, using solely lipids, the structure is not stress-free since the
cylinders will deform to fill the spaces between them. Adding a filler molecule made of only
hydrocarbon chains will let the system adopt a relaxed equilibrium position with the monolayers
in their native curvature.[12, 13]

Figure 1.4: Inverted hexagonal phase (HII): Monolayers of different lipid species (green, orange headgroups,
black hydrocarbon chains) arrange around water cylinders (blue), forming a 2D hexagonal lattice.
The spaces between them are filled with additional hydrocarbon chains (red).

3



1. Introduction

1.1.2 Types of lipids

DOPE
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (18:1(∆9-Cis) PE, DOPE) is a glycerophospho-
lipid with the rather small PE-headgroup and two identical unsaturated hydrocarbon chains
(18:1). It has a negative spontaneous curvature and a transition temperature from lamellar to
inverted hexagonal between 3 and 10 °C ([14], p.770). We will be using DOPE as a host lipid
for lipid species, which would form different structures in their pure state (guest lipids).

Figure 1.5: Chemical structure of DOPE[15]

Unsaturated glycerophospholipids with a PC-headgroup
1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC) are very similar lipids, distinguished only by the length of their saturated hydrocarbon
chains (14:0, 16:0). They are bilayer-forming lipids with a small positive spontaneous curvature.
Added to a hexagonal aggregate in small concentrations, they are expected to fit into the layer
without disturbing the structure. They have their melting temperatures (transition point from
gel to liquid phase) at around 24 °C (DMPC) and 41 °C (DPPC; [14], p.548).

(a) DMPC (14:0)

(b) DPPC (16:0)

Figure 1.6: Chemical structures of PC-lipids[15]

Sphingomyelin
Sphingomyelin (SM) is a sphingolipid, which has the same PC-headgroups as the lipids above.
Egg-Sphingomyelin, which was used in the experiment, is a natural mixture of lipids of different
hydrocarbon chains. The predominant species has a 16:0-tail and a phase transition around
40 °C ([14], p. 577).

Figure 1.7: Chemical structure of Egg-Sphingomyelin (predominant species)[15]
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1.2. Small-angle X-ray scattering theory

Filler molecules
(Z)-9-Tricosene is used as a supplement in the experiment to support the structure we are trying
to achieve. It consists purely of hydrocarbon chains, including one double bond and is expected
to fill the gaps between cylinders in the hexagonal structure, due to its hydrophobic character.
In nature it is found as a hormone in house flies.[16]

Figure 1.8: Chemical structure of (Z)-9-Tricosene[17]

Another molecule with a similar structure, but a higher number of double bonds, is Squalene.
As it was shown that double bonds make a molecule more rigid and therefore impede the inter-
digitation with the lipid tails [12], we are also testing this molecule as a filler in the hexagonal
phase. It is a common molecule in all plants and animals.

Figure 1.9: Chemical structure of Squalene

Table 1.1: Characteristics of Tricosene and Squalene
Molecule Chemical formula Molar mass [g/mol] No. of double bonds

(Z)-9-Tricosene C23H46 322.62 1
Squalene C30H50 410.71 6

1.2 Small-angle X-ray scattering theory

We consider here the refraction of X-rays passing through soft matter. X-rays are transverse
electromagnetic waves, with wavelengths λ around 0.5 to 2.5 Å−1. The velocity in matter is
around the same as in vacuum, which indicates that there is almost no refraction. Interactions
with matter occur through elastic and inelastic (Compton) scattering with electrons and the
photoelectric effect.[18] Since we are dealing with structures much larger than the wavelength of
the radiation, relevant diffraction peaks will be in a small angle range. In this domain we can
neglect all but elastically scattered X-rays.
The binding energies of electrons in light atoms, as present in biological materials, are much
smaller than the photon energy of X-rays. We can thus treat them as free electrons and calculate
outgoing intensity of the beam by the Thomson formula:

Ie(θ) = Ip
r2
e

a2

1 + cos2 2θ

2
(1.2)

Here, Ip is the primary intensity, re the classical electron radius and a the distance between the
scattering event and the detector. The dependence of the scattering angle 2θ is of cos-shape and
therefore approximately 1 in the small-angle range.[19] In further calculations we will only be
dealing with relative intensities and therefore omit the constant Ie.

5



1. Introduction

1.2.1 Interference

To evaluate the interference pattern of X-rays scattered by the electron cloud of the lipid aggre-
gate, we first consider scattering with single electrons. The incoming and outgoing radiation is
coherent, since only elastic scattering is considered. This means that we can add up all ampli-
tudes and calculate the intensity by the absolute square of the resulting amplitude.[19]
We consider scattering at an angle 2θ from two neighbouring points O and P (see fig. 1.10).
S0 and S denote the unitary direction vectors of the incident and the scattered beam. The
path difference between upper and lower wave is the distance mO+On, which can be evaluated
through simple geometrical considerations to −(S− S0) · r. The phase difference is therefore
ϕ = −2π

λ (S− S0) · r = −q · r. We call q = 2π
λ (S− S0) the scattering vector, whose modulus is

linked to the scattering angle by q = 4π
λ sin θ.

Figure 1.10: Elastic scattering from adjacent scattering centers O and P . S0 and S denote the primary and
the scattered beam.

To get the total amplitude A(q), we have to sum over all scattering centres. However, electrons
are not localized. It is therefore necessary to introduce the electron density ρ(r) and integrate
the whole irradiated volume:

A(q) =

∫
dV ρ(r)e−iq·r (1.3)

1.2.2 Form and structure factor

In the case of a periodic structure, we do not need to integrate over the whole space. We divide
the integral into a sum over localized units on positions Rj and integrate over the volume of
these units.

A(q) =

N∑
j=1

e−iq·Rj

∫
ρ(rj)e

−iq·rj d3rj (1.4)

If we assume that all units are equal, we can pull the integral out of the sum and in this way
factorize the equation:

A(q) =

∫
ρ(r)e−iq·r d3r ∗

N∑
j=1

e−iq·Rj (1.5)

The first part of the equation will further be called form factor F (q) =
∫
ρ(r)e−iq·r d3r. The

scattering intensity is proportional to the absolute square of the amplitude:

I(q) ∝ A(q)A∗(q) = |
∫
ρ(r)e−iq·r d3r|2 ∗

1 +
1

N

N∑
j 6=k

e−iq·(Rj−Rk)

 = |F (q)|2 ∗ S(q) (1.6)

6



1.2. Small-angle X-ray scattering theory

Here, we introduced the structure factor S(q), where we have split the sum into equal and
unequal indices and normalized it by the factor 1

N .

1.2.3 Thermal displacement

We start at equation (1.5). To include thermal oscillations, we divide Rj into an average position
Rj,0 and a time dependent displacement vector uj(t). The length of a measurement will be much
longer than the oscillation periods, so we can average the amplitude over time:

A(q, t) = F (q)
∑
j

eiq·(Rj,0+uj(t)) = F (q)
∑
j

eiq·Rj,0eiq·uj(t) (1.7)

Assuming small oscillations, we can express the exponential function as a Taylor series and cut
at second order:

eiq·uj(t) ≈ 1 + iq · uj(t)−
1

2
(q · uj(t))2 (1.8)

The first order term vanishes, since thermal oscillations in all directions statistically cancel out.
We evaluate the scalar product in the second order term to q2|uj(t)|2 cos2 α(t) and average cos2 α
over the range from 0 to π, which gives 1

3 . Inserting back into the exponential function, we have:

eiq·uj(t) ≈ 1− 1

6
q2|uj(t)|2 ≈ e−

1
6
q2|uj(t)|2 (1.9)

Since all units are assumed to be the same, we can set |uj(t)|2 = |u(t)|2 and - inserting in (1.7)
- pull it out of the sum. We further rename Rj,0 to Rj. The structure factor, including thermal
oscillations becomes

S(q) = 1 +
1

N
e−

1
3
q2|u(t)|2

N∑
j 6=k

e−iq·(Rj−Rk) = 1 +
1

N
e−q

2∆
N∑
j 6=k

e−iq·(Rj−Rk) (1.10)

Here we introduced the temperature dependent thermal displacement parameter ∆ = 1
3 |u(t)|2.

1.2.4 Cylinder aggregates

Figure 1.11: Parametrisation of the cylindrical unit.[20]
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1. Introduction

We parametrize the structure as shown in figure 1.11. Carrying out the scalar product in the
exponent of (1.2.3) and averaging over all angles ϕ, we get to a form including the 0th order
Bessel function J0:

S(q, θ) = 1 +
1

N
e−q

2∆
N∑
j 6=k

J0(q|Rj −Rk| sin θ) (1.11)

At last, we want to write out the integration necessary for the form factor. We assume the
electron density to be homogeneous along the rotational axes of the cylinder as well as rotationally
symmetric. The integral to be evaluated is

F (q, θ) =

∫ −L
2

−L
2

eiqr‖ cos θdr‖

∫ R

0
r⊥ρ(r⊥)

∫ 2π

0
eiqr⊥ cosϕ sin θdϕ dr⊥ (1.12)

where R is the outer radius and L the length of the cylinder. The formula can be simplifed by
integrating to:

F (q, θ) =
4π sin(L2 q cos θ)

q cos θ

∫ R

0
r⊥ρ(r⊥)J0(qr⊥ sin θ)dr⊥ (1.13)

The total intensity, depending only on the modulus of the scattering vector, is obtained by
averaging over θ:

I(q) ∝
∫ π

0
|F (q, θ)|2S(q, θ) sin θdθ (1.14)

1.2.5 Bilayer form factor and cross-term

Due to reasons discussed in chapter .., it is also necessary to include a bilayer form factor into
the model. Its derivation is done similarly to the cylinder. We work in cartesian coordinates
with an electron density changing only in one direction. From (1.3) follows:

ABL(q) =

∫
e−iqx·x dx

∫
e−iqy ·y dy

∫
ρ(z)e−iqz ·z dz = 4π2δ(qx)δ(qy)

∫
ρ(z)e−iqz ·z dz (1.15)

The first two integrals, evaluated from −∞ to ∞, each yield a Dirac delta function. Averaging
over all orientations as before, will only give results if qz = q. Thus, we have acquired the bilayer
form factor:

FBL(q) = 4π2

∫
ρ(z)e−iqz ·z dz (1.16)

In a sample consisting of hexagonal as well as layered structures, we can add up the scattering
amplitudes of both contributions. We get an expression for the total intensity:

I(q) ∝
∫ π

0
|F (q, θ)|2S(q, θ) sin θdθ + FBL(q)

∫ π

0
F (q, θ)s(q, θ) sin θdθ +

+ P ∗BL(q)

∫ π

0
F ∗(q, θ)s∗(q, θ) sin θdθ + |FBL(q)|2 (1.17)

Or, in the case of a center of symmetry (i.e. all imaginary parts vanish):

I(q) ∝
∫ π

0
|F (q, θ)|2S(q, θ) sin θdθ + 2FBL(q)

∫ π

0
F (q, θ)s(q, θ) sin θdθ + |FBL(q)|2 (1.18)

s(q, θ), which occurs in the cross-term, is acquired analogously as the structure factor and is
given by:

s(q, θ) =
1√
N

e−q
2∆/2

N∑
j

J0(q|Rj | sin θ) (1.19)
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2 Methods

In this work we tried to develop a new method consisting of experimental and theoretical work.
Both parts have not been optimized for the current problem and here we are mainly focussed
on the theoretical part. In the experimental section the current way of sample preparation is
described, but a standardized method is still to determine.

2.1 Experimental techniques

2.1.1 Sample preparation

Sample preparation was done by the Rapid Solvent Exchange (RSE) method.[21, 22, 2] Lipids
were purchased by Avanti Polar Lipids (Alabaster, AL) in powder form.
6 mg lipid (or combination of lipids) was dissolved in a chloroform/methanol 9:1-mixture with
a concentration of 10 mg/ml (The concentration was lowered in comparison to [2] for better
pipetting accuracy.). Different lipid species were dissolved in separate recipients. For the filler
molecule the same solvent was used, but a concentration of 5 mg/ml. 0.3 ml water (ultra pure,
18 mOhm) was pre-heated to a temperature of 60 to 70 °C. The dissolved lipids and filler was
added to the water and immediately inserted into the RSE-apparatus (see figure 2.1). In the
machine, the sample was simultaneously heated to 65 °C, vortexed at 600 rpm (The velocity was
reduced in comparison to [2] to avoid that the sample raises up the glass wall and sticks to it.)
and exposed to a vacuum of 400 to 500 mBar and to a Argon flow of 60 ml/min. This process
was continued until all solvent was evaporated (approx. 5 min).

Figure 2.1: Schematic representation of the RSE-apparatus.[21]
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2. Methods

Samples marked by * in tables 3.1 and 3.4 were prepared using the parameters above. Samples
marked by ** used: temperature: 45 ◦C, pressure: 200 mbar, vortex speed: 1800 rpm, Argon
flow: 61 ml/min [2].

Table 2.1: Pure samples prepared by the RSE-method.
* and ** denote different peparation parameters (see section 2.1.1)
No. Host lipid Filler molecule wt% Note

1 DOPE none *
2 DOPE Tricosene 10 *
3a DOPE Tricosene 12 prepared by M. Pachler*
3b DOPE Tricosene 12 prepared by N. Negahbani**
4 DOPE Squalene 9 *
5 DOPE Squalene 12 *
6 DOPE Squalene 13 *
7 DOPE Squalene 14 *
8 DOPE Squalene 15 *
9 DMPE Tricosene 12 prepared by M. Pachler*

Table 2.2: Mixed samples prepared by the RSE-method. In all samples 12 wt% tricosene was used as filler.
and ** denote different peparation parameters (see section 2.1.1)

No. Host lipid Guest lipid mol% Note

M1 DOPE DMPC 10 prepared by N. Negahbani**
M2 DOPE DMPC 20 prepared by N. Negahbani**
M3 DOPE DPPC 10 prepared by N. Negahbani**
M4 DOPE DPPC 20 prepared by N. Negahbani**
M5 DOPE DPPC 30 prepared by N. Negahbani**
M6 DOPE DLPE 10 prepared by M. Pachler*
M7 DOPE DLPE 20 prepared by M. Pachler*
M8 DOPE Egg-Sphingomyelin (SM) 10 prepared by N. Negahbani**
M9 DOPE Egg-Sphingomyelin (SM) 20 prepared by N. Negahbani**

2.1.2 Polarized light microscopy

This method was used to get an overview of the sample structure. It is a simple optical microscopy
technique, making use of the optical path difference of light after traveling through a birefringent
material. If a heterogeneous sample with birefringent regions is irradiated by polarized light, one
can achieve different contrasts by adjusting the angle of an analyzer placed behind the sample. If
the analyzer angle matches the rotation caused by the sample, only the birefringent parts appear
white in the image.

2.1.3 Small angle X-ray scattering

Small angle X-ray scattering (SAXS, figure 2.2) experiments were done at the University of Graz,
using an X-ray tube with Cu Kα (1.54 Å) radiation (device: SAXSpace by Anton Paar GmbH,
Graz) and a Eiger R 1M detector system (Dectris, Switzerland). Samples were measured in a
paste cell (Anton Paar) at a sample to detector distance (SDD) of 308 mm and exposed to
the beam in 4 frames of 8 min per measurement. The sample temperature was regulated by
the TC Stage 150 (Anton Paar). Data reduction, distance to q-conversion, normalization and
background subtraction were done by the Anton Paar -software SAXSanalysis.
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2.2. Scattering data evaluation

Figure 2.2: Schematic representation of the SAXS-experiment.

2.2 Scattering data evaluation

2.2.1 Model-free approach

To extract the scattering length density profile from the SAXS-spectrum, without any prior
assumptions except the presence of a hexagonal lattice, we attempted to perform a generalized
inverse Fourier transformation.[23, 20] This was done in cooperation with Otto Glatter. We shall
forestall here that this method provided perfect fits to the data, but no physically meaningful
results. This indicates the necessity of modelling as well as the presence of no purely hexagonal
phase.

2.2.2 Modelling of the hexagonal lattice

We imagine a bundle of cylinders consisting of a water core covered by lipids, as illustrated in
figure 1.4. The spaces between the cylinders are occupied by the filler molecule. To calculate the
structure factor, we need to obtain the distances between the cylinders. We define a lattice as
shown in figure 2.3, determined by its lattice parameter a and the number of rings (lattice order
n).

Figure 2.3: Hexagonal lattice. n denotes the lattice order, a the lattice parameter.

The diameter of an aggregate is approximately

D = (2n+ 1) ∗ a, (2.1)

11



2. Methods

Computing the term 1
N

∑N
j 6=k J0(q|Rj−Rk| sin θ) in the structure factor is rather expensive due

to the nature of the Bessel function. To facilitate an efficient computation in a routine of many
consecutive calculations, we pre-calculate it for a range of lattice orders which are eligible for the
data. The lattice parameter is well defined by the peak positions, which are located at

qhk =
4π

a
√

3

√
h2 + hk + k2; h, k = 0, 1, 2, ... (2.2)

In contrast to this rather straightforward model, we tested an empirical model published by
Förster et al.[24] This Multiple Peak Model although contains a higher number of parameters
and yielded no advantage in comparison to the cylinder bundle model.

2.2.3 Lipid unit cell and form factor

The next step is designing the cylinders within the lattice. Their length is supposed to be
much longer than their diameter. Evaluating the prefactor of the form factor integral f(q, θ) =
4π sin(L

2
q cos θ)

q cos θ , we find that if L is above some threshold, the function is rather independent of L.
However, with higher values of L, the sin-term oscillates faster, thus more sampling points of θ
are needed. We found 2500 Å to be a convenient value for calculations. Hence, we can evaluate
this factor in advance.

Figure 2.4: Lipid unit cell in the hexagonal phase. The outer radius is half the lattice parameter a. The
backbone of the lipid is located at the radius R0.

The rest of the form factor is determined by the radial electron density profile. We determine it
by filling a lipid molecule into its unit cell, which has the shape of a cylinder sector, as shown in
figure 2.4.
We split the lipid into 3 parts of different electron densities: head, backbone and tail (see figure
2.5). Treating the backbone separately is necessary to locate the position of the neutral plane.

Figure 2.5: Subdivision of a lipid molecule into head, backbone and tail using the example of DOPE.
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2.2. Scattering data evaluation

The volume of a slab in the unit cell of height h and opening angle α, limited by an inner and
an outer radius (ri, ro) is given by

Vslab(ri, ro) =
αh(r2

o − r2
i )

2
=
Â/r̂(r2

o − r2
i )

2
(2.3)

We introduced the unit area Â, which is the mantle area of the cylinder sector at a unitary
radius r̂. The volume which the hydrocarbon chains occupy is Vslab(R0 + dBB/2, a/2), where
dBB is the backbone width. Using this, we can calculate Â and determine the volumes of
the headgroup slabs. The number of water molecules in the backbone-slab is then given by
[Vslab(R0−dBB/2, R0 +dBB/2)−VBB]/VH2O and analogously for the head-slab. Then we count
the electrons and calculate the electron density in each slab. The radial electron density profile
with N slabs is given by:

∆ρe(r) = ρe(r)− ρe,H2O =

N∑
k=1

∆ρe,k [Θ(r − ri,k)−Θ(r − ro,k)] (2.4)

Of course ro,k ≡ ri,k+1.

Figure 2.6: Left side: Illustration of the area which needs to be integrated in the unit cell.
Right side: Examplary electron density profile.

In figure 2.6 to the left we see a twelfth the area over which we have to integrate. For the cylinder
until a/2 we can evaluate the integral in (1.2.4) analytically and get the result

Flipid(q, θ; {ro,k}, {∆ρe,k}) = f(q, θ)

∫ a/2

0
r∆ρe(r)J0(qr sin θ)dr =

=
f(q, θ)

q sin θ
[∆ρe,Nro,NJ1(qro,N sin θ) +

N−1∑
k=1

(∆ρe,k −∆ρe,k+1)ro,kJ1(qro,k sin θ)] (2.5)

The rest of the integral (filler) is integrated numerically and also pre-calculated within fitting-
algorithms. It is given by

Ffiller(q, θ) =
f(q, θ)

2π
∗ 12

∫ π/6

0

∫ a
2 cos(ϕ)

a/2
r∆ρe,fillerJ0(qr sin θ)drdϕ (2.6)

For the total form factor we add Flipid and Ffiller.
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2. Methods

2.2.4 Lipid fluctuations and scaling parameters

The facilitate a lift-off of the form factor minima, we allow the lipids to fluctuate to the in- and
outside of the cylinder. Therefore we sum over a couple of form factors, which contain unit cells
that are radially shifted by a distance xi and weighed by a Gaussian distribution N (x|0, σ2

fluc)

with mean 0 and variance σ2
fluc.

Flipid,fluc(q, θ) =
∑
i

N (xi|0, σ2
fluc) Flipid(q, θ; {ro,k}+ xi, {∆ρe,k}) (2.7)

To complete the model for single lipid aggregates, we introduce 2 more parameters:
λ0 is a constant, additive background which could be caused by local fluctuations within the
molecule groups. It mainly causes a lift-off in the high-q region where the form factor decays to
very small values.
λ1 is a scaling constant, adapting the total fitting curve to the height of the spectrum which is
arbitrary in principles. Thus, this constant has no physical meaning.
This transformation is performed at the end of the calculation:

I(q)→ λ1I(q) + λ0 (2.8)

2.2.5 Addition of curvature in binary lipid mixtures

As we add a small amount of a second lipid species (guest), these are expected to incorporate into
the hexagonal phase and uniformly spread within the aggregate. Guest lipids with different shape
will change the cylinder radius according to their curvature. However, the exact mechanism of
curvature addition is still unclear. In former calculations, usually a linear addition of curvatures
was assumed [25, 1]:

C0 = (1− x)C0,host + xC0,guest (2.9)

where
x =

NB

NA +NB
(2.10)

is the mole fraction (i.e., the number concentration) of component B.

The following considerations about non-linear curvature addition originate in an unpublished
work by Primož Ziherl:
We consider a two-component mixture consisting of lipids characterized by wedge angles ωA and
ωB and headgroup areas aA and aB measured in the neutral plane. Since the location of the
neutral plane in a mixture need not be the same as in a pure monolayer, aA and aB are to some
extent adjustable parameters, possibly even dependent on concentration. For present purposes,
it is important to appreciate that aA and aB are generally different. We assume that (i) the
lipids mix at all concentrations, that (ii) the mixture forms the inverted cylindrical micelle phase
HII and so that the shape of both components is a truncated wedge, and that (iii) the dimen-
sion of the headgroup along the micelle is the same in both components. Thus each of the two
components can be characterized by its effective in-plane dimension in the neutral plane, which
is often close to the glycerol backbone of phospholipids [1] In figure 2.7, these dimensions are
denoted by bA and bB for component A and B, respectively.
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2.2. Scattering data evaluation

Figure 2.7: Schematic of the cross-section of an inverted cylindrical monolayer micelle consisting of two types
of wedge-shaped lipids of angles ωA and ωB , respectively, and effective in-plane headgroup di-
mensions bA and bB , respectively. The thick circular arc represents the neutral plane, its radius
being R. For simplicity, both components are drawn such that their tail lengths are the same.

In an inverted cylindrical micelle, the total angle of the neutral plane contour seen in the cross-
section is 2π, and this angle consists of individual contributions of NA molecules of type A and
NB molecules of type B (Fig. 2.7):

2π = NAωA +NBωB = (NA +NB)[(1− x)ωA + xωB]. (2.11)

In this notation, positive angles ωA and ωB correspond to lipids with a negative curvature and
vice versa. Our argument applies both to mixtures where both components have a negative
curvature and to those where one component (say B) has a positive curvature as long as the
mixture still forms an inverted micelle, that is for NB small enough so that 2π = NAωA +NBωB
holds although ωB < 0. This condition is fulfilled for x < xc = ωA/(ωA − ωB). (For ωB ≥ 0,
xc ≥ 1 and the restriction does not apply.)
The perimeter of the micelle cross-section is

P = NAbA +NBbB = (NA +NB)[(1− x)bA + xbB], (2.12)

where R is the radius of the micelle, and bA and bB are the in-plane dimensions of headgroups
in component A and B. Now from eq. (2.11) we have NA +NB = 2π/[(1− x)ωA + xωB] so that
eq. (2.12) can be rewritten as

2πR = 2π
(1− x)bA + xbB
(1− x)ωA + xωB

, (2.13)

which implies that the micelle curvature

C0 = − 1

R0
= −(1− x)ωA + xωB

(1− x)bA + xbB
, (2.14)

(Note that the curvature of inverted micelles is negative, hence the minus sign.) Geometrically,
the inplane spontaneous curvature of component A is given by JA = −ωA/bA and similarly
JB = −ωB/bB for component B; here we took into account that the curvature of inverted-cone
lipids which form inverted micelles is negative itself. Thus

C0(bB/bA, x) =
(1− x)C0,A + x bBbAC0,B

(1− x) + x bBbA

. (2.15)

This result is valid for all C0(bB/bA, x) < 0 where the mixture indeed forms an inverted micelle.
For bB/bA = 1 eq. (2.15) reduces to the linear relationship, eq. (2.9).
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2. Methods

2.2.6 Electron density in binary mixtures

To calculate the electron density of the lipid mixture, we need to define a new unit cell. We
introduce a hybrid lipid composed of a fraction (1− x) of the host lipid and x of the guest lipid.
A hybrid unit cell of a host lipid with a cylindrical guest lipid of equal fractions is shown in figure
2.8.

Figure 2.8: Hybrid unit cell of a binary lipid mixture of equal shares. The lipids are aligned at the oil-water
interface.

Assuming that the lipids align at the oil-water interface, we can calculate Â as before using (2.3)
and that the hydrocarbon chain volumes are additive:

VHC = (1− x)VHC,host + xVHC,guest (2.16)

To calculate the factor bB/bA, we assume that the projected lateral area per lipid has a quadratic
profile at the interface and that the areas Aif,i at the interface are additive just as the chain
volumes. Using Aif = Â/r̂ ·R0, we get

bguest
bhost

=

√
Aif,guest
Aif,host

=

√√√√√ 2VHC
a2

4
+ 1

C0

(
− 1
C0

)
− (1− x)Aif,host

xAif,host
(2.17)

Aif,host is determined from a global SAXS analysis of the host system in the absence of guest
lipids. The determined bguest/bhost values are consequently inserted into (2.15) and solved for
C0 numerically to acquire the interfacial radius. Then again we can define slabs for all molecule
groups and fill them with the respective volumes and electrons. An exemplary hybrid lipid
electron density is shown in figure 2.9.
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2.3. Computational techniques

Figure 2.9: Electron density of a hybrid lipid with a small percentage of guest lipid.

2.3 Computational techniques

2.3.1 Differential evolution

Differential evolution (DE) is an evolutionary fit algorithm, which works via creation of random
populations of parameter sets, mutation of the individual parameters, crossover with the exist-
ing set and selection of the set with the best cost function.[26] It is supposed to be an efficient
algorithm, which is robust against local minima because of its mutation and crossover routine.
Parameters that determine its functionality are the population size, a mutation constant F ∈ [0, 2]
and a crossover constant CR ∈ [0, 1]. F and CR can be tuned for the existing problem, to reach
a good balance between convergence speed and precision.

2.3.2 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) sampling is a method to obtain probability distributions,
based on Bayesian probability theory (for all derivations of this chapter, see [27]). As a cost
function in the algorithm serves the posterior probability p({xi}|d, σ, I) of the proposed param-
eter set {xi}. It is defined as the probability of a parameter set given the measured data vector
d, their errors σ and general information about the system I. According to Bayes’ theorem
it is the product of prior p({xi}|I) (information about the parameters, available before doing
the experiment) and likelihood function p(d|{xi}, σ, I) (probability of measuring the data, given
a parameter set). Since we assume every data point to be an independent event, their joint
probability is given by their product. For N data points Bayes’ theorem becomes

p({xi}|d, σ, I) =
p({xi}|I)

∏Npar

j=1 p(dj |{xi}, σ, I)

Z
(2.18)

The variable Z, a normalization constant called evidence, is of no importance in our case.
As we are dealing with a counting experiment, experimental errors are in general Poisson dis-
tributed. For counting rates > 100 the Poisson distribution is practically indistinguishable to
a normal distribution, thus we assume normal distributed errors for the likelihood function. If
I(qj , {xi}) is the function that should resemble the data, the likelihood for a data point dj is

p(dj |{xi}, σj , I) =
1

σj
√

2π
exp

(
− 1

2σj
(I(qj , {xi})− dj)2

)
(2.19)
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As priors for the parameters we assume uniform distributions between lower and upper borders
xli, x

u
i , determined by physics and former measurements. Their normalizations would be the

reciprocal value of the sampling range, but since priors are unchanged for every iteration, also
these are unimportant for the method.
For reasons of usability we introduced a scaling factor η for the errors given by the X-ray device
and perform the transformation σ → ησ. This gives the code the ability to move through
parameter space regions of poor agreement and gives an estimate for the true experimental
errors. Here, we use Jeffreys prior 1/η, which assumes scaling invariance.[28] The algorithm is
implemented as follows:

1. Start at an arbitrary location {x0
i } in the parameter space.

2. Propose update for a randomly chosen parameter xTi = x0
i + 2si (U [0, 1]− 1/2)

Here si denotes the stepsize for parameter xi and U [0, 1] is a random number between
0 and 1, drawn from a uniform distribution.

3. If xli ≥ xTi ≥ xui
Accept if p({xTi }) > p({x0

i })
else generate u from U [0, 1]

accept if p({x
T
i })

p({x0i })
> u

if accepted: x0
i := xTi

4. repeat from 2.

Parameters samples are saved after every sweep (sweepsize ≈ 1.5 times the number of parameters
npar in iterations), to avoid heavily correlated samples (chain thinning). Since the first samples
might be chosen randomly, they might be far away from the distribution. Therefore, the first
20 % of the samples are not included in the results (burn-in phase). Stepsizes are calibrated
beforehand for every parameter, so that the acceptance rate lies approximately between 0.5 and
0.8. The code was implemented in Matlab 2016b.
The acquired samples represent a probability density cloud in a npar-dimensional space. From the
we calculate the probability distributions (marginal posterior probabilities) for each parameter,
which have defined mean values and standard deviations. Marginal posteriors are defined as
integrals of the posterior p({xi}|d, σ, I) over all parameters except the ones of interest. This
can result in distributions of arbitrary numbers of dimensions, whereby 1 and 2-dimensional are
the most demonstrative ones. In the case of MCMC-samples, the integration is replaced by the
creation of histograms of all values of the desired parameters. All other parameter values do not
have to be considered (they are marginalized out). Mean value x̄i and variance σ2

i for a Monte
Carlo run of NMC sweeps:

x̄i =
1

NMC

NMC∑
k=1

xki , σ2
i =

1

NMC

NMC∑
k=1

(xki )
2 − x̄i2 (2.20)

Since MCMC is basically an educated random walk, new sampling points depend heavily on the
position of the prior ones. In addition to the chain thinning, we want to make sure that the
number of samples is at least 2 or 3 orders of magnitude larger than the integrated autocorrelation
time τ . It can be evaluated from the autocorrelation function ρ(j), which is a measure for
correlations of point that are j Monte Carlo-sweeps apart (usually decaying exponentially with
(−j/τ)). For a parameter x, ρ(j) and τ are calculated as follows:

ρ(j) =
Σt

[
(x(t) − x̄)(x(t+j) − x̄)

]
√

Σt(x(t) − x̄)2
√

Σt(x(t+j) − x̄)2
(2.21)

τ =
1

2
+ Σjρ(j) (2.22)

18



3 Results

3.1 Qualitative analysis of the samples

Sample appearance
The samples, coming out of the RSE-apparatus, have usually the form of small, white pellets
distributed over the water surface, with small amounts floating in the water and attached to the
walls. They are very sticky and can easily be combined to one pellet. The surface does not seem
to repel water as one would expect from the outward pointing hydrocarbon chains in a pure
inverted phase.

Polarization microscopy
Images from polarization microscopy (figure 3.1) allow a rough estimation of the aggregate sizes.
The hexagonal aggregates are birefringent as seen in the polarized images and show accumulations
of long, aligned aggregates (concentrated at the edges, as seen in the lower rows of figure 3.1).
The images resemble formerly taken ones ([29]).

Figure 3.1: Appearance of the samples through a polarisation microscope.
Left side: unpolarized images, right side: polarized to maximum contrast.
Upper row: DOPE + 12% tricosene, lower row: DOPE + 12% squalene

From the details shown in figure 3.2 one can estimate the aggregate diameter to be in the order
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3. Results

of a few micrometers and the length in the order of 100 µm.

Figure 3.2: Details from the microscope images (red frames from figure 3.1) with marked aggregate diameters
(red) and lengths (green).
Left side: DOPE + 12% tricosene, right side: DOPE + 12% squalene

X-ray scattering data
Figure 3.3 shows exemplary data from SAXS-measurements of samples of one lipid. The left spec-
trum is representative for successful preparations. One can easily recognize the first 7 diffraction
peaks, as marked in the figure, whereby the disappearance of the (2,1)-peak is a recurring detail.
The right image shows the spectrum of a sample using a too high amount of filler molecule.
Additional details around the (1,0)-peak are characteristic for these samples (samples 5, 6, 7).
Deviations from the desired shape were also observed for DOPE above 60 ◦C, as well as for
DMPE below 80 ◦C.
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Figure 3.3: SAXS-spectra from pure DOPE samples.
Left side: DOPE + 12% tricosene (35 ◦C), right side: DOPE + 13% squalene (35 ◦C)

In spectra of mixed aggregates (figure 3.4) one can observe the same structure of peaks, however,
as the concentration of guest lipid rises, their intensity as well as the number of visible peaks
decreases. Additionally, if C0,guest > C0,host, a higher amount of guest lipid shifts the peak
positions to lower q-values, which means that the cylinder diameter increases.
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Figure 3.4: SAXS-spectra from mixed samples.
Left side: DOPE + 10 mol% Egg Sphingomyelin (40 ◦C),
right side: DOPE + 30 mol% Egg Sphingomyelin (40 ◦C)

3.2 Influence of the filler molecule

A challenging aspect of measuring intrinsic curvatures is that one has to produce stress-free
monolayers. In our model system the filler molecule is thought to facilitate this. Therefore it is
crucial to understand what happens between the lipid cylinders. As a parameter of how well the
filler incorporates into the aggregate, we can use the lattice constant a.
If there is no or not enough filler, lipids have to occupy the space between the cylinders. One
part of the lipids stretches into the corners of the hexagon while the others have to bend to
the sides or interdigitate with the tail groups of the neighboring cylinders. In both cases these
hydrocarbon chains cause a higher mean curvature than the relaxed lipid would have, thus result
in smaller cylinders.
If the filler molecules interdigitates with the lipid tail groups, a should also decrease, because if
more space is occupied by the hydrocarbon chains, again the curvature rises.
If there is too much filler molecule, it will try to enter the hydrophobic region between the
cylinders and push them apart. This can result in packing defects of the lattice, as shown in
figure 3.5. These defects might add undesired details to the diffraction spectrum.
An increase of a in respect to the optimal, relaxed case would only be possible if all cylinders
are pushed apart by the filler molecule. However, in this case they would easily fluctuate and a
regular hexagonal lattice would be unlikely. Thus, we are looking for the configuration with an
unperturbed spectrum and the highest possible a.

Figure 3.5: Lattice defects in the hexagonal lattice. The order of the lipid (green) cylinders with water cores
(blue) is distorted by a too high amount of filler molecules (red).

As indicated in section 1.1.2 we tested squalene as an alternative filler and prepared various
samples to explore its influence in different concentrations. It was observed for tricosene ([2],
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black line in figure 3.6) that a reaches a plateau around 12 wt% (≈ 12.5 vol%) and at 15 wt%
(≈ 15.8 vol%) additional features in the spectrum were observed. For squalene, already at 13
wt% (≈ 13 vol%) deviations appeared.
Lattice parameters are also significantly smaller for squalene than for tricosene samples at the
same volume fraction. This indicates that there are interactions in the tail groups in these
samples (interdigitation, bending/stretching, other interactions with squalene).
The largest lattice constant was reached with the sample 3a, using 12 wt% tricosene. The
different result for sample 3b indicates that the amount of tricosene is not the only factor of
influence. Documented differences in preparation are the reduction of the vortex speed from
1800 rpm (3b) to 600 rpm (3a) and different lipid solutions (30 mg/ml for 3b, 10 mg/ml for 3a).
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Figure 3.6: Lattice constant a of DOPE HII phases in dependence of filler concentration and temperature.
Wt% were converted to vol% for better comparability. Data points with red filled markers did not
form pure HII-phases.
Measurements of the aggregates with tricosene at 25 ◦C are taken from [2].
Measurements marked with a and b refer to samples 3a and 3b.

Inserting these results into (2.2.2) together with our estimated aggregate diameter D from the
microscopy images, we acquire a lattice order of around n = 50.
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3.3. Results from the global scattering data analysis

3.3 Results from the global scattering data analysis

Our idea about the global analysis, would be to first evaluate data from pure samples to obtain
a parameter set for the host lipid and to use these parameters for the analysis together with
a guest lipid. The global analysis was tested for some of the prepared samples. The analysed
q-range was 0.05 to 0.5 Å−1. Monte Carlo runs were done with 105 sweeps, starting once with
a guessed parameter set (either from a DE-analysis or with knowledge from previous related
problem) and 3 times starting from random positions. Runs that did not converge within the
burn-in phase (2 ∗ 104 sweeps) were excluded from further calculations. For DE-runs we used
F = 0.4, CR = 0.7 and a population size of 10 times the parameter size.

3.3.1 Single lipid

This analysis was mainly done for DOPE. PE-lipids are a well researched molecule group, so
there is some prior information that we can use. The following parameters were fixed in the
fitting routine:
The backbone width was chosen to be dBB = 3 Å. This was done to avoid correlations with
other parameters (C0, dH) and justified by the rigidity of the backbone structure. The values
were estimated from SDP-analysis of lamellar phases. Headgroup and backbone volumes are
also expected to coincide with these data (VPE = 245 Å3 and VBB = 0.55 VPE) and were fixed
(Source for all data: [30]).
About the total lipid volume of DOPE in the HII-phase there is very little reliable data. In figure
3.7 we see the resulting fits for DOPE with tricosene (sample 3a) and squalene (sample 5). In
both cases there is no optimal agreement, but the data of the sample with tricosene (χ2 = 11800)
seems to fit better to the model than the data of the one with squalene (χ2 = 30400). This agrees
with the results from section 3.2, that tricosene is the better choice as a filler. All further results
in this section were evaluated from measurements of sample 3a.
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Figure 3.7: X-ray scattering data (blue) and fits (orange) for DOPE-samples.
Left side: DOPE + 12 wt% tricosene, right side: DOPE + 12 wt% squalene. Both samples were
measured at 30 ◦C.

The details of the fitting curve of the tricosene sample can be seen in figure 3.8. One can see
that the bilayer form factor compensates for the form factor minimum between the (1,0) and the
(1,1)-peak. The (2,1)-peak has almost vanished in the data, which is due to the concurrence of
structure factor peak and form factor minimum as seen in the data between 0.2 and 0.25 Å−1.
However, the solution where they fully overlap and the peak vanishes is never a good result
according to fitting routines. The reason is that the deviation that would occur right after the
(2,0)-peak (as can be seen from the form factor just below 0.2 Å−1 in the figure) gives a higher
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3. Results

penalty to the χ2 than the deviation in the shown solution.
The electron density profile used in the form factor (right side of the figure) has an expected
shape. A small headgroup width causes a relatively high difference in electron density to the outer
parts of the lipid. Unexpected is the difference in electron density between the lipid hydrocarbon
chain and tricosene. This is linked to a rather small total lipid volume resulting from the fit, as
discussed below.
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Figure 3.8: Details of the fitting curve shown in figure 3.7, left.
The left graph shows the components that the model uses for the fit. Right side: radial electron
density profile of the hexagonal prisms used for the form factor.

MCMC analysis
The following data show the results of 3 converged MCMC runs, for the sample 3a at 30 °C.
Looking at marginal posteriors, we see the distribution of likely values as well as correlations
between parameters. The most significant correlation of parameters is that of C0 and dH (figure
3.9). The 2D-plot shows a valley of likely solutions along a straight line of equal inner radius
of the lipid cylinder. The radius of the oil-water interface also contributes, since the likelihood
increases at lower C0- (and dH -) values. The abrupt drop at small dH is due to a break criterion
in the algorithm, which is triggered when the headgroup volume exceeds the volume of the slab
which should accommodate it (and therefore negative H2O molecules would be necessary.).
Choosing a value as well as estimating the uncertainty of C0 is difficult because of the non-
symmetric distribution. As we need a parameter set of DOPE (C0, dH , dBB and Vlipid) for
fitting the lipid mixtures, one choice would be the set with the lowest χ2, that was found in the
run (marked red in the figures).
Another possibility would be to choose a dH (or C0) and to use a horizontal (vertical) slice
from the 2D-distribution and calculate mean and variance from the resulting, roughly Gaussian,
distribution for C0 (An example is shown in figure 3.9, right. Its quality could be further improved
by a higher number of samples). dBB was chosen in advance and Vlipid is uncorrelated, thus we
could take its mean value. For further results, the most likely set was chosen.
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3.3. Results from the global scattering data analysis
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Figure 3.9: Left side: Marginal posteriors of intrinsic curvature C0 and headgroup width dH . Bright colors in
the 2D-plot depict high number sof samples.
Right side: Distribution of samples with dH ≤ 2.8.

The samples was measured for various temperatures, the results display a linear behaviour (see
figure 3.10). Compared to measurements using the former method ([31]), the slope is slightly
different, the errors are in the same order of magnitude. In the temperature range from 20 to 50
°C the results coincide within their error ranges.

Intrinsic curvature of DOPE : C0 = −0.334− 0.0019 ∗ T ± 0.01 nm−1
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Figure 3.10: Intrinsic curvature of DOPE. Former measurements taken from Kollmitzer et al. [31]

A parameter that was rather well determined is the total lipid volume (which effectively deter-
mines the tail group volume, since the volume of the headgroup is fixed). In the model it has no
influence on the cylinder structure, but defines the electron density of the hydrocarbon chains.
One can see in figure 3.11, left, that the correlation between Vlipid and C0 is negligible and that
the samples are approximately normal distributed in Vlipid. Measured for various temperatures,
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Vlipid results to be constant 1160 ± 25 Å3. The constant behaviour was also observed in [32],
however the value there is about 15 % higher.
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Figure 3.11: Volume Vlipid of DOPE in the HII-phase.
The left subfigure shows marginal posteriors of Vlipid and C0 as well as their correlation. On the
right the results for measurements at different temperatures are shown.

Probability distributions according to MCMC for the remaining parameters are shown in figure
3.12. We see that most of them are well defined and their distributions show Gaussian shapes.
The exception is the correlation between area per lipid and number of water molecules in the
lamellar phase. These show a similar correlation as C0 and dH . In this case, the bilayer thickness
is determined through both parameters and is here the decisive parameter for the shape of the
bilayer form factor.
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3.3. Results from the global scattering data analysis

Figure 3.12: Marginal posteriors of all other varied parameters. Correlations and deviations from a gaussian
shape are only observed for headgroup area and the number of water molecules (both parameters
of the bilayer form factor).

To estimate the quality of the MCMC analysis, we look at the timeline of the parameters (figure
3.13). Parameters with long autocorrelation times τ are dH and C0, as expected from their
correlation (they are only able to move together). Also the lattice size has long autocorrelations,
which might be due to the rather large change induced by a step in lattice order. However, runs
from different starting points result in the same value, which is a good indicator for the quality
of the value. To make up for the autocorrelations, computation time (number of iterations) was
adjusted, so that they are small in comparison to the total time. All other parameters have
smaller values τ and show a noise-like behaviour in the time plot, as desired.
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3. Results

Figure 3.13: Timeline of all varied parameters in the MCMC-run with DOPE at 30 °C.

Further analysis of the temperature series
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Figure 3.14: SAXS-temperature series for sample 3a (DOPE + 12 wt% tricosene)

In table 3.1 we see the resulting parameter sets for DOPE from MCMC analysis of the spectra
shown in figure 3.14. Parameters show either a constant or a monotonous behaviour in temper-
ature.
Interestingly the disorder parameter ∆ does not increase with temperature as one would expect.
Also the increase in lattice size n does not seem intuitive, since steric repulsions between the
cylinders might increase.
The unit cell fluctuations also do not seem to increase with temperature, which might be a hint
that this parameter σfluc is more a measure for cylinder deformation, lipid buckling/stretching
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3.3. Results from the global scattering data analysis

and rotation than for actual movement of the molecules.
The interfacial area per lipid Aif is rising with temperature, as expected, but the behaviour does
not seem to be linear.
xlam is a measure for the amount of lamellar phase in the sample, however its absolute value has
no physical meaning. The necessity of a lower amount at high temperatures can seen in figure
3.14: Although the height of the first peak increases, the minimum intensity between the peaks
decreases.
Further, because we see a correlation between AL,lam and nH2O,lam there is no certainty that
their values have a physical meaning. Since they are responsible for the shape of the bilayer form
factor together, one could try to combine them to a single parameter.
λ0 and λ1 are scaling parameters without physical meaning. It is reasonable that they are con-
sistent for a single measurement series.
The value of erf suggests that the actual errors of the measurement are 5 to 7.5 times higher
than expected. This is an indicator for the disagreement between model and reality.

Table 3.1: Most likely parameter sets for DOPE. Bold quantities are to be used in the analysis of mixed
samples.
∗ not a fit parameter, but evaluated from the others.

T [°C] 20 30 35 40 50 Error

∆ [Å2] 8.47 9.03 10.18 9.94 7.88 2
n 7 8 10 13 18 1

σfluc [Å] 0.174 0.177 0.173 0.173 0.173 0.007
Aif

∗ [Å2] 53.0 52.8 54.4 59.1 63.4
C0 [Å−1] -0.0379 -0.0394 -0.0400 -0.0410 -0.0432 0.001
dH [Å] 2.47 2.53 2.97 3.18 4.81 0.7

Vlipid [Å3] 1164 1157 1161 1159 1156 25
xlam 6.2 5.7 5.2 4.9 4.4 0.5
AL,lam 70.4 68.6 66.0 65.6 65.1 2
nH2O,lam 17.7 15.4 11.8 10.2 8.9 2.2

λ1 1.72 1.81 1.81 1.82 1.90 0.2
λ0 0.149 0.146 0.150 0.141 0.148 0.02
η 6.1 6.2 5.3 5.4 6.2 0.3

Analysis by differential evolution
In contrast to the Monte Carlo sampling we tested a pure fitting routine. Its advantages are
expected to be a much faster evaluation and possibly a better convergence to the global minimum.
The results for DOPE at 30 °C shown in table 3.2 were acquired in 90 min (using 500 iterations
per fit), in contrast to a duration of 11.5 h for the MCMC-analysis. Also, parameter with better
fit quality have been found (χ2 = 11430, fig. 3.15 right, versus 11700 for MCMC), however with
slightly different curvature values (C0 = -0.0385 versus -0.0395). The fits do not seem to converge
to the lower boundary of dH as the MCMC analysis suggests, but are closer to the mean value
of the distribution (figure 3.9, left).
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Table 3.2: Results from 10 DE-runs for DOPE at 30 °C with with 500 iterations each.
Fit No. C0 [Å−1] χ2

01 -0.0382 11630
02 -0.0385 11430
03 -0.0378 11480
04 -0.0388 11580
05 -0.0388 12060
06 -0.0384 11520
07 -0.0390 11540
08 -0.0389 11680
09 -0.0382 11580
10 -0.0382 11520

The method seems to converge to its final C0-value already within about 150 iterations (figure
3.15, left), with no further change afterwards. This suggests, that the method might have trouble
dealing with the correlation between C0 and dH and gets stuck easily at some point with in the
correlation valley.
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Figure 3.15: Differential evolution fitting results for DOPE at 30 °C.
The left figure shows how the fit quality (algorithm intern unit) and C0 converge.
The right figure shows the best acquired fit (No. 02 from table 3.2).

For other temperatures the results show a similar distribution, which makes the result less
consistent and linear. The temperature profile is shown in figure 3.16. The alternative result,
acquired by differential evolution is:

Intrinsic curvature of DOPE : C0 = −0.329− 0.0017 ∗ T ± 0.01 nm−1
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Figure 3.16: Intrinsic curvature of DOPE, acquired by DE. Former measurements taken from Kollmitzer et al.
[31]

DMPE
There was also one suitable spectrum obtained by using DMPE in pure form at 80 °C. The
spectrum looks slightly different, since also the (2,1)-peak is visible. It was analysed by DE, the
best fit is shown in figure . It is of lower quality than for DOPE, but the consistency of the
DE-runs is very high (table 3.3).

Intrinsic curvature of DMPE at 80 ◦C : C0 = −0.285± 0.01nm−1
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Figure 3.17: SAXS-measurement of DMPE at 80 °C including best fit acquired by DE
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Table 3.3: Results from 10 DE-runs with with 200 iterations each.
Fit No. C0 [Å−1] χ2

01 -0.0285 53950
02 -0.0285 52890
03 -0.0285 53380
04 -0.0285 55260
05 -0.0285 54940
06 -0.0285 452930
07 -0.0286 54510
08 -0.0285 55200
09 -0.0285 56210
10 -0.0285 55470

3.3.2 Lipid mixtures

In the evaluation of SAXS-spectra from mixed samples we used the parameters for DOPE given
in table 3.1. Fixing these parameters is beneficial for the data evaluation, since the number of
parameters is the same as for the single lipid. However, using MCMC the acquired errors will
possibly be smaller than the ones given in the results, since these parameters are not allowed to
vary. Again, The backbone volume was fixed to 3 Å, the PC-head and backbone sizes size set
to VH = 331 Å3 and VBB = 0.42VH [33]. For sphingomyelin: VH = 331 Å3 and VBB = 0.42VH
(from private communication with Fred Heberle). Lipid volumes were taken from [14].
The presented results have been acquired by MCMC. Fitting curves at low guest lipid percentages
x (figure 3.18 a) are of similar quality as for pure samples. For higher concentrations (figure 3.18
b,c) it deviates more, especially a form factor minimum right after the (3,0)-peak becomes more
and more pronounced in the model.
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(a) 10 mol% DPPC
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(b) 20 mol% DPPC
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(c) 30 mol% DPPC

Figure 3.18: Fits for samples of DOPE with DPPC at 50 °C

The headgroup width-curvature correlation seems to be less relevant for lipid mixtures (see figure
3.19). For low concentrations of guest lipid, the headgroup size is expected to have only minor
influence, since the electron density of the guest lipid is weighed by x. For lipids with PC-
headgroups, dH tends to its upper limit. This might be due to their bulkiness compared to the
PE-headgroup. Also the angular headgroup size bguest is larger than that of DOPE, however a
physical consistent value was only found for 10 and 30 mol% guest lipid concentration..

Figure 3.19: C0-dH correlations for DOPE + 10 mol% DPPC at 50 °C (left) and DOPE + 10 mol% SM
(right)
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Table 3.4: Most likely parameter sets for DPPC at 50 °C.
∗ determined from peak positions. ∗∗ calculated by (2.17)

xDPPC 10 mol% 20 mol% 30 mol% Error

a ∗ [Å] 81.2 89.5 101.9
∆ [Å2] 9.6 18.7 28.9 5
n 5 6 4 2

σfluc [Å] 0.129 0.106 0.121 0.009
bguest/bDOPE

∗∗ 1.37 1.11 1.37
C0 [Å−1] 0.0031 0.0034 0.0011 0.003
dH [Å] 8.271 4.593 9.89 2.1
xlam 4.15 8.5 7.61 0.6
AL,lam 63.4 68.8 65.4 2.6
nH2O,lam 6.7 15.9 16.0 2.7

λ1 0.52 0.62 0.42 0.09
λ0 0.029 0.040 0.040 0.009
η 2.6 2.2 1.6 0.2

The results suggest that there is around twice as much lamellar phase at concentrations 20 and
30 than for 10 mol% DPPC (similar for SM, see Appendix tab. i). If this is the case, there might
be an inclination of the guest lipid to join the lamellar phase, which would cause a reduced
molar fraction in the HII-aggregate. We want to do a rough estimation for the error caused by
this effect. Assuming independent (no off-diagonal terms in the covariance matrix), Gaussian
distributed variables, we can estimate the influence of a smaller amount of guest lipid in the
hexagonal phase:

∆C0,guest(∆x) =

∣∣∣∣∂C0,guest

∂x

∣∣∣∣∆x, (3.1)

whereby we derive from (2.15):

C0,guest(x) =
1

x

C0 − C0,host

bguest/bhost
+ const. (3.2)

For C0,guest > C0,host, C0 − C0,host is always positive. Thus decreasing x increases C0,guest.
Evaluated for the 10 mol% DPPC sample (50 °C) and assuming that x could be 2 mol% lower
than intended, we get an additional error for the measurement:

Error caused by lower guest lipid concentrations : ∆C0,guest(∆x = +0
−2 mol%) = +0.009

−0 Å−1

As mentioned above, also the errors resulting from the single lipid analysis have not been in-
cluded. They might also be introduced in the same way.

Figure 3.20 shows results for different guest lipid curvatures. Errorbars denote the pure standard
deviations resulting from MCMC (no inclusion of the errors mentioned just above). One can see
that the results agree rather well for different amounts of DPPC and SM, but for DLPE and
DMPC the difference is rather large. The common parameter of these characteristics seems to
be the tailgroup length. The hydrocarbon chain length of DPPC and SM (16:0) closely matches
that of DOPE (18:1, the double bond is assumed to shorten the chain), while that of DMPC
(14:0) and DLPE (12:0) do not. Hence, the chainlength mismatch between short chain lipids
and DOPE seems to impede the analysis in terms of the currently applied model.

34



3.3. Results from the global scattering data analysis

15 20 25 30 35 40 45 50 55

T / °C

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
C

0
 /
 n

m
-1

DMPC, 10 mol%

DMPC, 20 mol%

DPPC, 10 mol%

DPPC, 20 mol%

DPPC, 30 mol%

DLPE, 10 mol%

DLPE, 20 mol%

SM, 10 mol%

SM, 20 mol%

Figure 3.20: Resulting curvatures for different guest lipids acquired by MCMC.

In the case of DPPC we can observe the effect of the curvature addition using headgroup sizes
(2.15). Figure 3.21 shows the total curvature in dependence of the lipid ratio x calculated for the
analysed DPPC-samples, as well as the linear extrapolation done in [2]. One can see that the
results for the total curvature from this analysis agree with the former ones, but using equation
(2.15) they result in different values for C0,DPPC .
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Figure 3.21: Total monolayer curvature depending lipid composition in a DOPE-DPPC mixture.
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4 Discussion

Looking at the whole method global X-ray scattering data analysis of inverted hexagonal phases
we have to discuss several levels of complexity. Since the sample is created solely for this mea-
surement, there are two parameter-systems to adjust: the model system and the model. In
addition, there are different ways to analyse the data given by the X-ray scattering, which is the
only part of the analysis which is fixed from the beginning.

The procedure of sample preparation (RSE) was originally invented for liposomes [21], but works
fairly well to produce HII-aggregates. The result seems to be very robust to several parameters
(temperature, solution, vortex speed, etc.). However, reproducibility of the aggregate dimensions
needs to be checked rigorously.
A decisive parameter that was already analysed rather well is the amount of filler molecule.[34,
13, 35, 12] Aggregates grow with increasing amount of filler until deviations from a pure hexag-
onal phase occur.[2] However, the reproducibility of the lattice parameter (which is equal to the
cylinder size) is not yet fully examined. Sample 3a is significantly larger than the others, which
would in theory suggest it to be the best sample, however the reason for being larger and thus
the reason for the other samples to be smaller has to be investigated. If the optimal lattice pa-
rameter for every temperature of DOPE is known, it can be a very good indicator for successful
preparations. For lipid mixtures, the exact relation between guest/host lipid ratio and lattice
parameter would also be interesting to examine.
Another crucial point in the preparation concerns the mixing of host and guest lipid. In general,
we do not know how much of the guest lipids incorporates into the hexagonal aggregate and if
there is an enrichment of guest lipid in the coexisting lamellar phase. Furthermore, there might
be an effect of demixing or domain formation at temperatures below the guest lipid’s melting
point, as the failed MCMC-runs for these measurements suggest. This effect might be reduced
by heating the sample above the guest lipid melting temperature before measuring at the desired
temperature.
The time between preparation and measurement apparently has no impact on the measurement.
It has shown that keeping mixed aggregates 1-2 days at room temperature or higher (but below
70 °C, where double bonds start to oxidise) helps them reach their equilibrium state.

On the other hand there is the task to create a model that represents the actual structure of the
sample well enough. However, adding more details increases computation time and involves the
danger to over-determine the system or might be simply wrong and lead to wrong conclusions.
The vaguest part of the model is probably the bilayer form factor, which is mainly justified by
the shape of the observed spectrum (absence of a minimum between the first 2 peaks). A result
that supports this assumption is the increase of the lamellar scaling factor with higher amounts
of DPPC in the sample. Also for the SM- and DMPC-samples the value is higher for 20 mol%
guest lipid than for 10 (see tables i,ii). It would be advisable to investigate if this is a recurring
feature.
The slab model for the electron density obviously assumes a simplicity not given by nature.
However, the difference in the form factor comparing to the more complex SDP-model (see [33])
has turned out to be negligible. This might be caused by the inclusion of fluctuations, which do
not distinguish between rotations, movement and buckling/stretching of the lipid and also cause
an overlap between the molecular groups, as also the SDP-model does.
A problem that arises in the mixed aggregates is the location of the tail groups. If the hydro-
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carbon chains of host and guest lipids have different lengths, the longer chains could bend over
the shorter ones and change the shape of their unit cell. This could be a general drawback in
the utilization of curvature as a parameter describing heterogeneous membranes, which impedes
the additivity of curvature. For this method it means that for lipids of different tail groups we
would either need a theory about the interactions of hydrocarbon chains of different length or a
set of host lipids to always match the chain length of the guest.

The X-ray scattering was not attempted to be optimized. One detail should be mentioned:
Some measurements show higher resolution, which means that the shape of the high-q peaks
is better defined. However, these peaks are still not reproducible by the model, thus a higher
resolution is not necessary. One could even think of shortening measuring times.
The next step is comparing model and data and to answer the question: How can we be sure that
what we observe is what we believe it is? Optimal fit quality is not given and some parameters
are connected in complex relations.
MCMC gives an overview of the situation. Insights about correlations and probabilities have
given good impulses for the work. However, since the MC-chain moves through parameter space
slowly, the calculation is rather expensive and the chances that an optimal parameter set is not
found are still high. Furthermore, the analysis of mixed lipids was fed from the single lipid anal-
ysis by parameter values without any variance. However, some of these parameters have complex
probability distributions, which should be respected in the calculations. Doing this efficiently
would require to code the analysis in a lower level language than Matlab.
Differential evolution (or fit algorithms in general) might be a better approach for a quick and
efficient curvature measurement. However, this algorithm seems to be fragile to certain kinds of
correlations. Corrective actions could be either to optimize mutation rate and crossover for the
data, to use a number of consecutive fits or to try even another method (simulated annealing,
etc.).

Regarding the results, we see that for the single lipid analysis there are still problems to re-
liably resolve the headgroup. MCMC sampling distributions for DOPE have their maximums at
low dH , but the mean values are rather far away from this solution. The linear correlation to C0

causes a rather wide distribution of results in both MCMC and DE. It has been shown that if
one could narrow the possible dH , one could reduce the error by a factor of 3 (figure 3.9). Here,
data from molecular dynamics simulations could give insight.
Small dH -values, which correspond to headgroups tilted towards the monolayer, have been ob-
served for PE-lipids in lamellar phases and is caused by the attraction of the polar parts of the
headgroup. Upon the addition of ions, they have been shown to stretch towards the water ([36]).
Adding ions could give insight if this tendency is also given in the hexagonal phase.
As for the result of the lipid volume, the reason for the difference to the literature value is unclear.
The fact that the electron density (figure 3.8) of the hydrocarbon chain is different from tricosene
gives rise to doubts about the result (the difference would be smaller for a higher value Vlipid). A
proper density-measurement of tricosene would however be advisable for a better comparability.
As discussed above, the model does not include interactions of tailgroups of different lengths.
The short chained guest lipids DLPE and DMPC show a large difference of curvature for different
concentrations, which is assumed to be a consequence of the disagreement with the model. For
DMPC (14:0) one could test a 16:1-PE host lipid, for DLPE (12:0) an even shorter one would
be necessary.
However, also for SM (16:0) there is no perfect agreement for 10 and 20 mol%. There might
be still a concentration dependence in the packing of bi-disperse elements. An analysis of more
samples of different concentrations could give insight here.
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5 Conclusion and Outlook

The task of creating a new technique to evaluate X-ray scattering data of lipid HII-phases was
performed and for the most part successful in measuring intrinsic lipid curvatures. The method
was able to reproduce literature values for DOPE with potentially higher precision. For lipid
mixtures the method seems to be restricted to lipids of coinciding chain lengths. Problems
were also found in the miscibility of lipids below their melting temperature, as well as in the
determination of the exact amount of guest lipid in the HII-phase. There is also room for
improvement in the fitting algorithm, since the currently used techniques can not describe the
full complexity of the system efficiently.
Upcoming tasks in the experimental section will be the testing of the reproducibility of lattice
parameters and the introduction of a standardized preparation protocol (including the optimal
host/guest lipid ratio) and testing of new host lipids of different chain lengths. The model could
possibly be improved by introducing considerations about packing, which might explain different
results for different guest/host lipid ratios. The data evaluation would profit from being coded in
a low-level language, which would enable sampling a higher number of parameters simultaneously.
Literature research could be done about molecular dynamics simulations to compare measured
parameters. And if for some reason there is still need for higher resolution of the technique, one
could think about extending it to a joint-analysis with small-angle neutron scattering (SANS).
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Appendix

Guest lipid parameter sets

Table i: Most likely parameter sets for Egg-Sphingomyelin determined by MCMC.
∗ determined from peak positions. ∗∗ calculated by (2.17)

T [°C] 40 50
xSM [mol%] 10 20 10 20

a ∗ [Å] 84.6 96.7 81.2 92.1
∆ [Å2] 14.8 23.2 15.6 17.5
n 9 7 12 9

σfluc [Å] 0.134 0.130 0.14 0.14
bSM/bDOPE

∗∗ 1.79 1.61 1.64 1.33
C0 [Å−1] 0.0029 0.0046 0.0017 0.0057
dH [Å] 10.0 10.0 10.6 9.9
xlam 4.9 6.3 4.7 6.6
AL,lam 67.2 64.7 68.1 67.7
nH2O,lam 14.4 16.0 12.3 15.6

λ1 3.30 3.10 2.56 2.06
λ0 0.085 0.151 0.046 0.116

Table ii: Most likely parameter sets for DMPC determined by MCMC.
∗ determined from peak positions. ∗∗ calculated by (2.17)

T [°C] 20 30 40 50
xDMPC [mol%] 10 10 20 10 20 10 20

a ∗ [Å] 92.0 88.2 97.5 84.4 92.9 80.5 89.5
∆ [Å2] 15.8 14.5 18.1 21.0 29.4 19.0 18.5
n 6 6 4 8 20 9 6

σfluc [Å] 0.113 0.115 0.110 0.121 0.131 0.123 0.101
bDMPC/bDOPE

∗∗ 1.90 1.60 1.76 1.61 1.78 1.18 1.11
C0 [Å−1] 0.0031 0.0008 -0.0007 0.0036 -0.0006 0.0023 0.0033
dH [Å] 9.9 7.9 9.9 8.6 9.8 2.1 4.0
xlam 5.0 5.3 7.6 4.0 5.4 5.1 8.5
AL,lam 64.0 66.8 69.0 60.9 69.2 65.3 68.4
nH2O,lam 12.5 14.4 19.4 6.1 15.9 7.6 15.8

λ1 1.28 1.18 0.55 1.38 0.87 1.13 0.61
λ0 0.050 0.055 0.050 0.046 0.049 0.046 0.040
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Table iii: Most likely parameter sets for DLPE determined by MCMC.
∗ determined from peak positions. ∗∗ calculated by (2.17)

T [°C] 35 40 50
xDMPC [mol%] 10 20 10 10 20

a ∗ [Å] 82.9 82.6 80.8 78.3 78.2
∆ [Å2] 14.0 11.3 12.2 12.1 9.8
n 9 25 14 12 25

σfluc [Å] 0.160 0.127 0.132 0.145 0.132
bDLPE/bDOPE

∗∗ 1.82 1.50 1.37 1.21 1.31
C0 [Å−1] -0.0100 -0.0201 -0.0082 -0.0075 -0.0199
dH [Å] 3.0 8.2 8.2 8.1 8.2
xlam 2.0 3.5 3.8 4.3 3.4
AL,lam 68.3 60.5 62.3 65.8 59.4
nH2O,lam 10.3 7.2 8.0 10.8 4.4

λ1 5.0 2.8 3.1 2.7 2.3
λ0 0.117 0.106 0.124 0.124 0.121

Filler molecule electron densities
As squalene was newly introduced as filler molecule, we determined its electron density by mea-
suring its volumetric mass density. This was done by the Anton Paar Density Meter DMA
5000M -apparatus:

ρsqualene = 0.86873 +−0.000675 ∗ T ± 0.0001g/cm

For tricosene, the volume was estimated by reassembling the molecular groups of POPE and
SOPE in [30] and from there, the electron density was calculated. Both electron density curves
are plotted in figure i.
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Figure i: Electron densities of squalene and tricosene.
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