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“The first principle is that you must not fool yourself and you are the easiest person to fool.”

– Richard Feynman
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Abstract

This work reports on the simulation of high-resolution scanning transmission elec-
tron micrographs of Au-Ni models in the high-symmetry zone axis [001] of the
face-centered cubic crystal structure and the contrast analysis of the obtained im-
ages. Models with variously arranged nickel substituents in a gold matrix were cre-
ated and multislice simulations were performed. Changes in the simulated images
caused by the variation of model and microscope parameters were investigated. In
the process, particular attention was paid to the recordings originating from high-
angle annular dark field detectors, which feature exceptionally good contrast with
respect to differing atomic numbers. The meticulous evaluation of the results com-
prises the effects of model thickness, Ni concentration, convergence angle of the pri-
mary electron beam, and collection angle of the detectors on measured electron in-
tensities. The alloy Au-Ni exhibits spinodal decomposition for certain chemical com-
positions and temperature ranges. In the course of approaching this phenomenon, a
program that performs Monte Carlo simulations of the lattice relaxation of bimetal-
lic alloys was developed in order to cope with lattice distortions accompanying the
demixing.

Complementarily, Au-Ni specimens, in which the spinodal decomposition had been
activated before, were imaged using a transmission electron microscope and a scan-
ning transmission electron microscope. The results emerging from the simulations
were surveyed concerning their informative value for the purpose of analyzing ex-
perimental micrographs at atomic resolution. Computer-aided concepts were re-
alized to extract suitably conditioned information from greyscale images or image
series respectively. It is evident that a quantitative comparability without system-
atic errors is hard to reach, since real laboratory conditions in modern electron mi-
croscopy do not conform to idealized simulation parameters. The superordinate goal
of this work is to represent a contribution to the vision of making precise quantitative
composition determination of suitable materials based on the contrast in scanning
transmission electron microscope images possible.
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Kurzbeschreibung

Diese Arbeit untersucht die Simulation von Hochauflösungsrastertransmissionselek-
tronenmikroskopaufnahmen von Au-Ni-Modellen in der hochsymmetrischen Zo-
nenachse [001] der kubisch flächenzentrierten Kristallstruktur und berichtet von der
Kontrastanalyse der erhaltenen Bilder. Es wurden Modelle mit unterschiedlich an-
geordneten Nickel-Substituenten in einer Gold-Matrix erstellt, an denen Multislice-
Simulationen durchgeführt wurden. Die Veränderungen in den simulierten Bildern
aufgrund der Variation verschiedener Modell- sowie Mikroskopparameter wurden
untersucht. Dabei wurde besonderes Augenmerk auf jene Aufnahmen gelegt, die
von ringförmigen Großwinkel-Dunkelfeld-Detektoren stammen und daher außeror-
dentlich guten Kontrast hinsichtlich variierender Ordnungszahl bieten. Die Auswer-
tung der Resultate umfasst die Auswirkungen von Modelldicke, Ni-Konzentration,
Konvergenzwinkel des Primärelektronenstrahls und Erfassungswinkel der Detek-
toren auf gemessene Elektronenintensitäten. Im Zuge der Untersuchung des Phäno-
mens der spinodalen Entmischung, das die Legierung Au-Ni für bestimmte Bereiche
von chemischer Zusammensetzung und Temperatur aufweist, wurde ergänzend ein
Programm zur Monte-Carlo-Simulation der Gitterrelaxation von bimetallischen Le-
gierungen entwickelt, um mit der Entmischung einhergehenden Gitterverzerrungen
gerecht zu werden.

Komplementär wurden Au-Ni-Proben nach Aktivierung des Mechanismus der spi-
nodalen Entmischung mithilfe eines Transmissionselektronenmikroskops und eines
Rastertransmissionselektronenmikroskops abgebildet. Die Ergebnisse, die aus den
Simulationen hervorgehen, wurden auf ihre Aussagekraft bezüglich der Analyse ex-
perimenteller Aufnahmen bei atomarer Auflösung hin überpüft. Dazu wurden com-
puterunterstützte Konzepte realisiert, um aus Grauwertbildern bzw. -bildserien für
diesen Zweck brauchbar aufbereitete Informationen zu gewinnen. Eine quantitative
Vergleichbarkeit ohne systematische Fehler ist offenkundig schwierig zu erzielen, da
reale Laborbedingungen in der modernen Elektronenmikroskopie keineswegs mit
idealisierten Simulationsparametern übereinstimmen. Das übergeordnete Ziel die-
ser Arbeit ist es, einen Beitrag zur Ermöglichung präziser quantitativer Bestimmung
der chemischen Zusammensetzung geeigneter Materialien aufgrund des Kontrasts
in Rastertransmissionselektronenmikroskopbildern darzustellen.
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Notes and clarifications

Guidelines

The following applies to any section of this thesis.

1. If the proportion or concentration of an element is not precisely declared "at%",
"vol%", "atomic fraction", or "volume fraction", the numbers stand for atomic
fractions.

2. As a German native speaker, I frequently feel confused - and sometimes ir-
ritated - about different meanings of (mathematical) symbols and dissimilar
symbols with the same meaning when reading English and German literature
in quick succession. It might happen the reader hits such a situation of con-
fusion in this thesis. On that account, the following explanatory notes should
establish clearness:

• ∝ ... proportional to

• ≈ ... approximately (mostly used in a numerical context)

• u ... approximately equal to (used for analytical simplifications)

• ln or log ... natural logarithm (used interchangeably)

• ⇔ ... equivalent to

3. [value1] .. [value2] specifies a range from [value1] to [value2].

4. An uncertainty statement x = 135.2(12) is equivalent to x = 135.2± 1.2. The
parenthesized value always refers to the least significant digit(s).

5. Reciprocal lattice vectors and their norm are labeled ~Ghkl and Ghkl. As for the
basis, I use the crystallographic convention~b1 := ~a2×~a3

~a1·(~a2×~a3)
without a factor of

2π, so that the relationship between reciprocal and real space becomes Ghkl =

d−1
hkl. Accordingly, all spatial frequencies q in reciprocal space correspond to

rq = q−1 in real space.

xi



Notes and clarifications

List of acronyms

ABF annular bright field
ADC analog-to-digital converter
ADF annular dark field
BF bright field
BIB broad ion beam
BSE backscattered electron
CBED convergent beam electron diffraction
DF dark field
EAM embedded atom model
EDX energy dispersive X-ray spectroscopy
EELS electron energy loss spectroscopy
FFT fast Fourier transform
FWHM full width at half maximum
GUI graphical user interface
HAADF high-angle annular dark field
HRSTEM high-resolution scanning transmission electron microscope/microscopy
HRTEM high-resolution transmission electron microscope/microscopy
IFFT inverse fast Fourier transform
MC Monte Carlo
MD Molecular Dynamics
MH Metropolis-Hastings
PCA principal component analysis
PM photomultiplier
SAED selected area electron diffraction
SDOM standard deviation of the (sample) mean
SE secondary electron
SEM scanning electron microscope/microscopy
STEM scanning transmission electron microscope/microscopy
TDS thermal diffuse scattering
TEM transmission electron microscope/microscopy
WDX wavelength dispersive X-ray spectroscopy
ZL zero loss
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Used software

Apart from obligatory software, such as operating system, basic text editors, or
browsers, any used applications are listed below.

Application Version Weblink
ATOM 1.19.6 ia32 atom.io
CrystalMaker R©for Windows 9.2.8 www.crystalmaker.com
Gatan Digital Micrograph 2.31.734.0 www.gatan.com
Inkscape 0.92.2 www.inkscape.org
IrfanView 4.38 www.irfanview.com
JabRef 3.8.2 www.jabref.org
jems 4.5230U2017 www.jems-saas.ch
Julia compiler 0.5.0 julialang.org
LAMMPS 26 Jan 2017 lammps.sandia.gov
MATLAB R© R2015a (8.5.0.197613) www.mathworks.com
Paint.NET "Classic" 4.0.17 www.getpaint.net
QSTEM 2.40 www.qstem.org
TeX Live 2016 www.tug.org/texlive
TeXstudio 2.12.6 texstudio.sourceforge.net
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1. Introduction and goals

Modern high-resolution electron microscopy is unimaginable without computer-
controlled guidance of microscopes and all the possibilities of computer-aided ana-
lysis. In addition, computer simulations have found their way into many domains
of natural and technical sciences, including electron microscopy. In many cases, the
conduct of simulations aims to deduce general laws and to predict the behavior of
real systems.

During my last year’s work at the Institute of Electron Microscopy and Nanoanaly-
tics1, numerous simulations of high-resolution scanning transmission electron mi-
crographs were performed. Without access to results from properly correspond-
ing experiments, the explanatory power of these simulation types would have been
severely limited. Therefore, the simulated results were compared to experiments at
the Austrian Scanning Transmission Electron Microscope (ASTEM), a microscope of
the type FEITM Titan3 G2 60-300.

The gold-nickel system features some interesting phenomenons, e.g. there is a re-
gion in temperature and chemical composition in which spinodal decomposition of
the solid alloy occurs. The consequences of this continuous demixing mechanism,
which are periodic concentration modulations in certain crystallographic directions
(without the formation of separate phases) and lattice distortions, are visible in con-
ventional TEM and SAED images. Quantitatively, they show the wavelength of the
modulations and the magnitude of the distortions, but they are unsuitable in terms of
concentration determination. Z-contrast (HAADF-STEM) imaging is more appropri-
ate for this purpose. In addition, if viewed from the perspective of HAADF-STEM,
the material contrast is quite good for this alloy because the atomic numbers of Au
and Ni are wide apart. This fact should facilitate the quantitative composition deter-
mination.

Keeping that in mind, the first goals were to create Au-Ni models of different consti-

1www.felmi-zfe.at

1

http://www.felmi-zfe.at/


1. Introduction and goals

tution and to obtain STEM images computed via a multislice algorithm. Next, an ab
initio concept in order to quantify the contrast in BF- and DF-STEM images had to
be excogitated and realized. The most important aim was to learn more about how
the pictures are generated, e.g. to spot which aspects of Au-Ni specimens and the
microscope itself lead to which effects in the actual pictures.

An ambitious long-term vision squired this work. Imagine the following situation,
in which an electron microscopist has just recorded some STEM lattice images and
monologizes: “Alright, that’s a good image. Let me take a look at the intensities.
Where is the simulation table? ... Okay, got it, 43 percent iron here and 28 there!”
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2. Fundamentals and methods

2.1. The gold-nickel system

This short introduction to the gold-nickel alloy system should make the course of
action during this work comprehensible. The occurring phenomenon of spinodal
decomposition is the background, which inspired how exactly the high-resolution
STEM simulations have been carried out.

Figure 2.1.: "The Au–Ni phase diagram (solid
line) and spinodal line (broken line) calculated
from the present thermodynamic description
in comparison with experimental measure-
ments ..."; figure and caption from the paper
by Wang et al. (2005, fig. 1)

The binary alloy system Au-Ni features
some interesting properties. On the
one hand, gold has an fcc structure at
room temperature (298.15 K), an atomic
number of 79, and a lattice constant
of (4.079 ± 0.001) Å, which has often
been (re-)determined in the past, e.g.
by Straumanis (1971) and Harada &
Ohshima (1981). On the other hand,
nickel has an fcc structure as well, but a
much lower atomic number of 28, and a
significantly shorter lattice parameter of
(3.524± 0.001) Å, which was measured
by In-Kook Suh et al. (1988) and many
others. Due to the large difference in
length of the lattice constants, substitu-
tional foreign atoms of one of the two
metals in a matrix of the other lead to extensive distortions of the crystal. This effect
will later be demonstrated by dint of TEM images and quantitatively analyzed by
MC- and MD-simulations.

3



2. Fundamentals and methods

Figure 2.2.: Schematic illus-
tration of the phase dia-
gram (top) and the Gibbs
free energy (bottom) of a
mixed phase with miscibil-
ity gap; figure from the
book by Gottstein (2014, p.
422, Abb. 9.10)

A phase diagram of the alloy is shown in figure 2.1. The
solid system is completely soluble at temperatures above
1083 K. For lower temperatures, a two-phase field with
an asymmetric miscibility gap can be observed, within
which decomposition occurs by nucleation. This discon-
tinuous phase separation has been the topic of research
over a long period of time (Köster & Dannöhl, 1936; Un-
derwood, 1954; Gust et al. , 1976; Hofer, 1982). For tem-
peratures below roughly 600 K, no grains with varying el-
emental composition appear, but the alloy continuously
forms structures with sinusoidal concentration modula-
tions in a coherent crystal lattice (see e.g. figure 2.4). This
demixing mechanism was theoretically investigated and
named "spinodal decomposition" by Cahn (1961). As
explained and described in the materials science book
by Gottstein (2014, p. 418-423), it can occur for mix-
tures with concentrations near the maximum of the G(c)-
curve, where G is the Gibbs free energy and c the concentration of one of the el-
ements. The spinodal decomposition mechanism lowers the Gibbs free energy if
the concentration is in the right-curved region of the function (see figure 2.2). This
can easily be justified as follows: Chords connecting the concentration points of the
decomposed structure indicate its Gibbs free energy and lie below the curve. The
inflection points of G(c) for all temperatures shape the chemical spinodal line in the
phase diagram. The coherent spinodal line, below which this kind of decomposition
actually happens, is shifted to lower temperatures. Specific details about this topic
can be found in the book by Predel (1982).

An overview of investigations into the modulated structures of Au-Ni alloys up to
that point was given by Hofer & Warbichler (1985). Spinodal decomposition oc-
curs in the {100}- and the {111}-planes. Fukano (1961) and Moss (1966) found the
first experimental evidence, Wu (1978) observed modulations for alloys with Ni-
concentrations of 53 and 77 at.%, and Woodilla & Averbach (1968) used electron
diffraction to investigate 20 to 60 at.% Ni-alloys. The latter found a critical temper-
ature of 493 K at about 45 at.% and concentration modulation wavelengths from 6.5
Å (54 at.% Ni) to 13 Å (22 at.% Ni) in the 〈100〉-directions, which were determined by
measuring the distances between fundamental reflections and their satellites, which

4



2.1. The gold-nickel system

stem from the concentration modulations, in diffraction patterns like shown in fig-
ure 2.4.

Figure 2.3.: "Phase diagram of solid Au-
Ni alloys ..."; figure from the paper by
Hofer & Warbichler (1985, fig. 5)

The spinodal decomposition mechanism
was verified for higher temperatures and
higher Ni-concentrations by Fukano (1961).
Later, Hofer (1982) and Hofer & Warbichler
(1984, 1985) studied the region of spinodal
decomposition extensively again and sum-
marized the results of their own and pre-
vious works regarding the accurate course
of the spinode in the phase diagram (see
figure 2.3). As for electron diffraction, be-
sides the satellites at the fundamental re-
flections (200), (020), (220), ..., Hofer (1982)
recognized {110}- and {310}-reflections (see
figure 2.4), which are, as ascertained later,
piercing points caused by atomic defects.

(a) Aged for 40 h at 423 K (b) Aged for 400 h at 423 K

Figure 2.4.: Transmission electron micrographs and electron diffraction images of a Au-Ni
specimen with cNi = 0.291 for different annealing durations, [001] zone axis; from the PhD
thesis by Hofer (1982, p. 131ff, Abb. 42 & 44)

5



2. Fundamentals and methods

2.2. STEM

The following section is a brief summary of STEM aspects relevant to this thesis. It
covers electron detector types and their setup for STEM imaging as well as basics
regarding the STEM contrast formation. Essentially, its content is an excerpt from
the book about (S)TEM by Williams & Carter (1998, ch. 7.3, 9.4, 22) and should
help readers who are little familiar with STEM to get along in the results section.
Additionally, some details about the practical work are given (used collection angles,
concept of contrast).

Unlike to TEM imaging, STEM images are not generated once at a time. The beam
is a fine probe with a diameter in the range of 1 Å for modern HRSTEMs, which is
scanned across a section of the specimen. For every scan position, the transmitted
electron signal is measured and a pixel is generated. Note that, in contrast to SEMs,
where the beam pivots around a point before/above the specimen, the scanning
beam of STEMs2 has to be parallel to the optic axis at all times and positions.

2.2.1. Electron detectors

Functionality

In STEMs, two kinds of electron detectors other than the fluorescent screen play a
major role: Semiconductor detectors and scintillator-photomultiplier systems. The
first is realized by creating a p-n junction in a semiconducting material. Electrons
with sufficient kinetic energy that hit the p-n junction excite valence-band electrons
across the band gap and put them into the conduction band. The number of electron-
hole pairs created per incoming electron depends on the kinetic energy. In order to
measure the electron count, an external bias in reverse direction is applied and the
electric current is measured. In (S)TEM practice, if a beam of high-energy electrons
hits the detectors, enough electron-hole pairs are created such that the internal bias
of the p-n junction is sufficiently high to separate the electrons and holes and no
external bias is needed. Due to the large capacitance of semiconductor detectors
they are not responsive to fast changes in the intensity of the electron signal. Their
bandwidth is in the range of 100 kHz.

Scintillator-photomultiplier detectors, on the other hand, can be made of materials

2more precisely: the axis of the convergent beam cone
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2.2. STEM

for which the emission of light rapidly decays after being struck by electrons, such
as Ce-doped yttrium-aluminum garnet (YAG). Thus they have a broad bandwidth
in the MHz-range. Additionally, their noise level is low compared to semiconduc-
tor devices. Although scintillator-PM detectors exhibit some disadvantages as well,
such as higher susceptibility to radiation damage, higher costs and lower energy-
conversion efficiency, they are preferred over the semiconductor detector for general
electron detection.

Types of imaging

In the following, I completely skip SE/BSE imaging (more important in the domain
of SEM), diffraction images, and EELS/EDX/WDX mapping, and just mention some
details about bright field and dark field imaging.

Figure 2.5.: Schematic of the detector setup for
STEM imaging; The detectors have to be imag-
ined circular/annular. The sketch is neither
length-preserving nor conformal to angles.

Figure 2.5 is a sketch of how the STEM
detection system looks like. The objec-
tive lens focuses the incident electron
beam, which hits the specimen under
a certain angle range with respect to
the optical axis. Its upper boundary is
called the convergence (semi-)angle and
usually abbreviated by α. Knowing that
not all transmitted electrons will travel
in the same direction, one can position
detectors at different locations in order
to obtain diversified information about
specimens. In general, the correspond-
ing detector regions are well-defined by
a solid angle range with respect to the
optical axis. Since usually circular or an-
nular axis-on-axis3 detectors are used, the angle enclosed by the trajectory of a trans-
mitted electron and the optical axis of the microscope becomes the identifying pa-
rameter. Henceforth, it is called collection (semi-)angle or semi-angle of collection
and subsequently abbreviated by β. For a specific detector in an experiment, the

3coincident detector and microscope axis
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2. Fundamentals and methods

Table 2.1.: Juxtaposition of collection semi-angle ranges for FEI Titan3 G2 60-300 (βexp) and
QSTEM simulations (βsim); Values for Titan from the PhD thesis by Knez (2017, p. 22f)

detector βexp/ mrad βsim/ mrad
BF [not measured] 0 .. 40

ABF [not measured] α
2 .. α

ADF 12.5 .. 28? [not used]
HAADF 62.2 .. 214? 73.5 .. 200

? valid for a nominal camera length of 91 mm

range of β can be changed by varying the camera length4. We classify STEM electron
detectors into the following types, whereat the denoted collection angle boundaries
should not be considered strict but as approximate reference values:
Bright field (BF)
A BF detector is circular, intercepts the direct beam and collects unscattered and
forward-scattered electrons, typically with β ≈ 0 .. 40 mrad.
Annular bright field (ABF)
This detector is also disc-shaped, but has a circular hole in its center. The defining
criterion is βouter

!
= 2βinner and the usual range of an ABF detector is β ≈ 10 .. 20

mrad.
Annular dark field (ADF)
In principle, in order to perform DF STEM imaging one can shift the stationary
diffraction pattern in such a way that a specific beam of scattered electrons hits the BF
detector. Though, usually there is a dedicated axis-on-axis detector for this purpose,
namely the ADF, which collects electrons scattered to higher angles with respect to
the optical axis. The typical β-range is 50 .. 100 mrad.
High-angle annular dark field (HAADF)
We can use another detector that sits around the ADF and collects electrons scattered
out to even higher angles, β ≈ 100 .. 200 mrad for instance. So-called high-angle an-
nular dark field images are obtained this way. HAADF-STEM images most notably
feature highly sensitive contrast regarding the mean atomic number (Z-contrast, see
section 2.2.2), which makes this kind of detector particularly interesting. The focus
of this thesis clearly lies on HAADF imaging and Z-contrast between gold-rich and
nickel-rich regions.

Table 2.1 gives an overview of the used collection semi-angle ranges, both experi-
mentally and in simulations.

4effective distance between specimen and screen/detector

8



2.2. STEM

2.2.2. Image contrast

A widely-used definition is the Weber contrast

CW(I1, I2) :=
(I2 − I1)

I1
=

∆I
I1

=
I2

I1
− 1. (2.1)

As a rule of thumb we can state that |CW | < 5 % cannot be detected by the human
eye. There is an inconsistency coming along with this definition of contrast, because
CW = +x does not correspond to the same relative change in intensity as CW = −x.
This is why I plotted values of I2

I1
in semi-logarithmic representation or the quantity

Cln(I1, I2) := ln
(

I2

I1

)
(2.2)

in linearly scaled graphs in the present work. Since equal values of the modulus
of Cln correspond to the same effective contrast, e.g. |Cln(I, 2I)| = |Cln(I, 1

2 I)|, the
variable Cln is in accordance with the perceived brightness in the Weber-Fechner law,
which was formulated by Fechner (1860, ch. XXIII, p. 89ff). The human detection
limit for contrast expressed in terms of Cln is again roughly ±5 %.5

Mass-thickness and Z-contrast

Variations of the specimen properties mass density, (mean) atomic number, and
thickness affect the beam-specimen interaction.6 In general, heavier elements and
thicker specimen regions appear darker in BF-STEM images, but brighter in DF-
STEM images. Z-contrast represents the atomic limit of mass contrast where de-
tectable scattering stems from single atoms or atom columns (Williams & Carter,
1998).

HAADF-STEM images exhibit exceptionally strong Z-contrast. The contrast in
the micrographs mainly arises from incoherent elastic scattering and quasi-elastic
phonon scattering (TDS). The actual Z-dependency of the HAADF signal varies sig-
nificantly from case to case. The TDS contribution increases with Z, approximately
as Z1.5 (Williams & Carter, 1998). For single incoherent elastic scattering events and
at the limit of high angles, one would obtain a quadratic dependency of intensity on

5For low values CW(x, y) 5 1, we have Cln(x, y) u CW , because the first-order approximation of
ln(x) is x− 1 (Taylor series at x0 = 1).

6Of course, there are many other properties which have an effect on the interaction as well.
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2. Fundamentals and methods

the atomic number in accordance with the cross section for Rutherford scattering7

(Nellist & Pennycook, 2000), which holds true for Mott as well as for Dirac scatter-
ing. Assume IZ abbreviates the intensity after the effects of all parameters other than
the atomic number (e.g. noise, thickness background, ...) have been eliminated. The
exponent γ in IZ ∝ Zγ becomes lower than 2 due to screening effects and multiple
scattering events (dynamic scattering) in combination with electron channeling. The
latter plays a major role if the probe beam is oriented in a zone axis of a crystal. Thus,
values given in literature are not uniform and they do not cover every case. Kirkland
(2010, p. 107) found≈ Z1.5 to Z1.7 for ADF-STEM simulations of very thin specimens
(only a few atoms thick). For two atom species in the same column parallel to the
incident beam, we have to distinguish between two different assumptions. If we
acted on the assumption that scattering from two atoms can be added coherently,
we would expect Ic

Z ∝ (ZA + ZB)
γc . This leads to Ic

Z ∝ (cAZA + cBZB)
γc = Zγc for

an atom column with the elemental concentrations cA and cB, where Z is the mean
atomic number (Brydson, 2011, p. 90ff). But, since we assume mostly incoherent
scattering, we expect

Ii
Z ∝ cAZγi

A + cBZγi
B = Zγi ,

which can be rewritten to

Ii
Z ∝ Zγi

B +
[
Z− ZB

] Zγi
A − Zγi

B
ZA − ZB

= f1(γi, ZA, ZB) + f2(γi, ZA, ZB)Z. (2.3)

The intensity Ii
Z actually is a linear function of Z. If either cA or cB becomes zero, Ii

Z

gets equal to Ic
Z.

As for the thickness dependence of HAADF intensities, Carter et al. (2016, ch. 11.1, p.
284ff) stated that the first-order prediction for perfect incoherence along a column of
atoms would be a linear behavior of the scattered intensity as a function of thickness,
because scattering cross sections of individual atoms could just be added up. There
are several reasons leading to a non-linear behavior. Excited phonons have a finite
coherence length of a few atomic spacings in the direction of the beam. Based solely
on this effect, the initial thickness dependence would go as t2. For thicker specimens,
after a few atom monolayers, channeling and beam broadening get important. These
effects result in a strong contribution from the atoms in the first channeling peak,
independent of thickness, and a background that is higher, the thicker the crystal is.

7charged particles without spin
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2.3. HRSTEM image simulation

Furthermore, the finite probe current limits the rise of the detected intensity8 (Nellist
& Pennycook, 2000).

Diffraction contrast

If the sample is crystalline, electrons can get coherently elastically scattered by Bragg
diffraction. Depending on whether Bragg’s condition is fulfilled or not and whether
BF or DF imaging is concerned, grains with different orientations appear darker or
brighter. In addition, bendings within a grain lead to diffraction contrast as well.
Note that diffraction contrast is negligibly weak in DF-STEM imaging when com-
pared to mass-thickness and Z-contrast, but can be the predominant reason for con-
trast in BF-STEM images (Williams & Carter, 1998).

2.3. HRSTEM image simulation

Currently, there are two widespread approaches when it comes down to the simu-
lation of HR(S)TEM images of thick specimens (more than a few atoms thick): The
Bloch wave eigenvalue solutions and multislice algorithms. QSTEM uses the latter
method, which is briefly discussed here.

2.3.1. The multislice method

The specimen is sectioned into slices split by plains perpendicular to the incident
beam. The incoming electron wave function is modified by the specimen slice and
transferred to the next slice. There exist different calculation methods for the transfer,
however, all of them have one thing in common: The wave function ψn+1(x) after
the (n + 1)-th slice can be determined from ψn(x) and does not depend on any other
slice before the n-th. A detailed description of the multislice method can be found in
the book by Kirkland (2010).

TDS effects can also be included into multislice simulations. This is, for instance,
achieved by so-called frozen phonon multislice methods, which QSTEM offers an
option for. Multiple calculations for different thermal displacements of the atoms,

8(!) conservation of energy
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2. Fundamentals and methods

"frozen" configurations, are performed and averaged over. This approach is rea-
sonable because lattice vibrations happen on a much larger time scale (typical pe-
riod of 10−13 s) than the transmission of (S)TEM electrons through specimens (about
3 · 10−17 s for a 100-keV-electron and a 10-nm-specimen). (Hawkes & Spence, 2008,
p. 93f)

2.3.2. Simulation software package Q(uantitative)STEM

This software package (Koch, 2016) has been developed by Prof. C. T. Koch (HU
Berlin) during the work on his PhD thesis (Koch, 2002). It offers the simulation of
TEM, STEM and coherent CBED images. The user has to create a specimen model in
advance, which QSTEM can replicate in space. Scanning window size and sample
tilt are flexible. A lot of microscope parameters are adjustable: Acceleration voltage,
defocus, astigmatism, spherical and chromatic aberration coefficients, higher order
aberrations, temperature, energy spread of the beam, convergence angle, beam tilt,
dwell time, gun brightness...

As for detectors, an arbitrary number (limited by the capacities of the computing
system, of course) can be set. A specific collection angle range can be assigned to
each of them. Hence, in order to simulate HAADF images for a large collection
angle width, e. g. β = 100 .. 150 mrad, it is practicable to insert many detectors
each with some fraction of the total range, e. g. one for β = 100 .. 110 mrad, one for
β = 110 .. 120 mrad, and so on. In the post-processing, one can arbitrarily sum over
specific detectors that were split before. This approach leads to a significant gain in
information.

A brief introduction to the usage of QSTEM is given in the appendix B.

2.4. Quantitative HRSTEM image analysis

Quite a lot of research dealing with quantitative composition determination from
HAADF-STEM at atomic resolution has been going on within the last two decades
(e.g. Anderson et al. (1997); LeBeau et al. (2008); Martinez et al. (2014)). A prereq-
uisite for that purpose is the reversibility of the imaging process, which includes all
steps between when electrons hit the detector and when the final image is produced.
After the electrons reach the detector, the time-averaged electron flux is converted to
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2.4. Quantitative HRSTEM image analysis

a detector signal (photon flux or current depending on the detector type), which is
then processed by electronic units and transferred to an analog-to-digital converter
(ADC). Linearity of this process is desirable in order enable us to quite easily back-
calculate. This, however, cannot always be ensured, e.g. if the detector signal and or
the ADC output become under- or oversaturated (LeBeau & Stemmer, 2008).

In the following, the signal manipulation between detector and ADC is described,
because the elimination of its effect on intensity ratios is mandatory for meaningful
quantitative analysis of experimental image data. Later, the functionalities of the
MATLAB code emerged from the wish to automatedly analyze HR(S)TEM micro-
graphs are sketched.

Signal-processing electronics: Settings ‘Contrast’ and ‘Brightness’

ΔI0

4 5

1

2

3

'Brightness'

'Contrast'
I
DET

I
ADC

Figure 2.6.: Illustration of the ef-
fects of the signal-processing param-
eters ‘Contrast’ and ‘Brightness’; 1
is the original signal range, 2 and 3
are signal ranges amplified by ‘Con-
trast’, 4 is the the signal range 2 off-
set by ‘Brightness’, and 5 is the al-
lowed ADC input range. The two in-
tensity scales indicate the zero-point
shift between detector and ADC. A
drawing in the user’s manual for FEI
Titan3 G2 60-300 (section "Detector
control") served as a template for this
figure.

(S)TEM control panels usually feature turning
knobs for the settings ‘Contrast’ and ‘Bright-
ness’. The microscopes used for this work were
both manufactured by the same company and,
according to the device manuals, these two set-
tings affect the detector signal in the following
manner: Because the original intensity is too low
to be detected by the analog-to-digital (ADC)
converter, an amplification between detector and
ADC is necessary. Its amount is varied via the
‘Contrast’ setting. Because the amplified signal
has to remain within the allowed boundaries of
the ADC, an offset has to be applied as well. This
is controlled by the ‘Brightness’ setting. The user
cannot change or revert these modifications once
a micrograph has been taken, because they hap-
pen before the conversion from a current to a
digital value. Figure 2.6 is a sketch of the de-
scribed situation.

A secondary goal of this thesis was to verify or falsify whether the signal modifica-
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tion obeys the linear law

IADC(C, B) = IDET · kC · C + kB · B− ∆I0, (2.4)

where IADC is the intensity value corresponding to the current flowing through the
analog side of the ADC, IDET is the detector output intensity, C and B are the numer-
ical values for the settings ‘Contrast’ and ‘Brightness’, kC and kB are proportionality
constants, and ∆I0 is the zero-point shift between detector and ADC.

In general, both settings change intensity ratios and thereby contrast according to
the definitions in equations (2.1) and (2.2), which is why the terms are put between
single quotation marks. If equation (2.4) holds true, we can get rid of the ‘Brightness’
and the (unknown) zero-point shift for the most part, simply by subtracting the mean
vacuum level9 after leaving ‘Contrast’ and ‘Brightness’ unchanged. We obtain

I?ADC(C) = IADC(C, B)− IADC,vac(C, B) = (IDET − IDET,vac) · kC · C, (2.5)

in which C, directly correlated with the setting ‘Contrast’, does actually not affect
contrast as defined above.

Peak detection and quantification for experimental ADF/HAADF
micrographs

We had visions of a dedicated application able to accomplish the following: Read
grey scale image files, subtract the vacuum level, apply a noise filter, search for peaks
or valleys - probably corresponding to atom columns in HR(S)TEM images - in the
grey scale matrix, calculate an objective and normalized value for every found peak,
and display the results in a way such that the viewer is capable of capturing the
essential in the twinkling of an eye.

I am very grateful that Dr. Daniel Knez generated a nicely working solution includ-
ing a graphical user interface for most of all tasks mentioned above. His application,
which I could supplement with a few subtleties, works for files in the formats TIF,
DM3, DM4, and IMG10. One can opt for a patch-based principal component analysis
(Patch-PCA), introduced by Pearson (1901), or a mean filter. In most cases, maxima
are reliably found for user-defined ‘minimum intensity’ (threshold) and ‘minimum

9mean grey scale value in an image of vacuum
10QSTEM output
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2.4. Quantitative HRSTEM image analysis

distance’. The segmented image can be displayed in a diagram type defined by
Voronoï (1908). Finally, for every maximum, the grey scale values within an ad-
justable pixel radius are summed. The resulting peak intensity distribution is visu-
alized in a histogram. One might claim that a 2D Gaussian fit would be more appro-
priate - and indeed, it is. We tried to implement that, but it took us too long to make
it working properly (automate starting parameters, catch various exceptions, find
the best iteration method, convergence criteria, ...), so at some point we just stopped
because we did not feel the time investment may be worth it for our purpose. In
order not to swell this paragraph, demonstrating illustrations are consciously omit-
ted here. Once the reader moves on to the experimental results section 3.2.1, and
figure 3.44 respectively, potential obscurities will hopefully become superfluous.

Simulated image series

As mentioned at the beginning of this thesis, a main objective was to identify the ef-
fects of a few microscope and specimen parameters on detected electron intensities.
While varying each parameter one at a time, performing basically the same simula-
tion again and again produces a lot of data. Rapidly I realized that, at the end of my
simulation work, there would be about ten to twenty thousand simulated images
to be analyzed. It is self-explanatory this cannot be done manually in a reasonable
amount of time. Although the application described in the previous paragraph can,
in principle, be used for simulated images as well, the computing time is way too
long either.

Therefore, it was crucial to write another relatively extensive MATLAB code capable
of quickly reading and analyzing multislice image series. Fortunately, a noise filter
is obsolete and the crystal model inputs can be standardized in such a way as to
get all the peaks at well-defined positions throughout a series, making the dynamic
peak search unnecessary. All images were source size corrected with a probe diam-
eter of 70 pm (FWHM), which is equal to the probe size of the experimentally used
HRSTEM Titan. As for the peak intensity determination, the values within a tunable
pixel radius were summed, just as we did it in the code for experimental images. Fi-
nally, all intensities corresponding to the same domain, e.g. pure gold atom columns,
were averaged, resulting in a normalized numerical value, e.g. IAu.

The plots include graphs of absolute as well as relative electron intensities (used
definition of contrast see equation (2.2)) stemming from gold/nickel/mixed atom
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2. Fundamentals and methods

columns against thickness, collection semi-angle, mean atomic number, or nickel
concentration for different convergence angles and Au-Ni alloy models.

2.5. Simulated lattice relaxation of binary alloys

After a few weeks of STEM image simulation activity, in order to get closer to real-
ity we started to work on and with simulation software suitable to carry out lattice
relaxations of the created virtual Au-Ni alloy models. The original models, despite
possessing structures originating from spinodal decomposition, still had a perfect fcc
lattice with a parameter of a = 4.07894 Å, so the interatomic distances were a

√
2/2

between nearest neighbors and a between second-nearest neighbors. We dealt with
up to 13500 atoms in total and utilized an embedded atom model (EAM) potential in
a Monte Carlo (MC) algorithm and a Molecular Dynamics (MD) integration at con-
stant temperature. In addition, a Finnis and Sinclair potential has been implemented
into the MC code.

2.5.1. Potentials

Finnis and Sinclair form, ‘RTS’

Sutton & Chen (1990) published fcc metal potential parameters (see table 2.2) for the
following form according to Finnis & Sinclair (1984):

E = ε

[
1
2 ∑

i
∑
j 6=i

V(rij)− c ∑
i

ρ
1
2
i

]
, (2.6)

in which

V(rij) =

(
a
rij

)n

(2.7)

and

ρi = ∑
j 6=i

(
a
rij

)m

. (2.8)

V(rij) is a repulsive pair potential term corresponding to the Coulomb interaction of
two atoms, ρi is the electron density at the site of atom i arising from all other atoms,
rij is the distance between atoms at the sites i and j, and a is the lattice constant. ε is
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Table 2.2.: Finnis and Sinclair potential: Fcc metal parameters computed for a cut-off radius
of 2 lattice constants; Values from the paper by Rafii-Tabar & Sutton (1991, p. 221)

ε / eV c m n
Ni 1.5713e-2 39.755 6 9
Cu 1.2386e-2 39.755 6 9
Rh 4.9371e-3 145.658 6 12
Pd 4.1790e-3 108.526 7 12
Ag 2.5415e-3 145.658 6 12
Ir 2.4489e-3 337.831 6 14
Pt 1.9835e-2 34.428 8 10
Au 1.2794e-2 34.428 8 10
Pb 5.5772e-3 45.882 7 10
Al 3.3307e-2 16.460 6 7

a parameter with the dimension of energy, c a dimensionless parameter, and n and
m are positive integer values.

Rafii-Tabar & Sutton (1991) later expanded the model to be suitable for binary fcc
metallic alloys. In the generalized form, the potential energy can be expressed as
follows:

E =
1
2 ∑

i
∑
j 6=i

εij

(
aij

rij

)nij

−∑
i

εici

[
∑
j 6=i

(
aij

rij

)mij
]1/2

(2.9)

Here, one has to respect that

εij =


εAA if sites i and j are both occupied by an A atom

εBB if sites i and j are both occupied by a B atom

εAB if sites i and j are occupied by different elements.

(2.10)

εAA and εBB name the parameter ε of the pure metals A and B, whereas a determina-
tion rule for εAB has to be defined. The same applies to the parameters a, c (exception:
cAB does not occur), m, and n. Rafii-Tabar and Sutton assumed the Lorentz-Berthelot
mixing rules

εAB =
√

εAAεBB, aAB =
√

aAAaBB, (2.11)

mAB =
1
2

(
mAA + mBB

)
, nAB =

1
2

(
nAA + nBB

)
. (2.12)

Henceforth, this potential is called ‘RTS’.
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Table 2.3.: EAM potential: Parameters for gold and nickel; Values from the paper by Zhou
et al. (2004, TABLE III)

Au Ni
re / Å 2.885034 2.488746

fe 1.529021 2.007018
σe 19.991632 27.562015
σs 19.991509 27.930410
α 9.516052 8.383453
β 5.075228 4.471175

Ã / eV 0.229762 0.429046
B̃ / eV 0.356666 0.633531

κ 0.356570 0.443599
λ 0.748798 0.820658

Gn0 / eV -2.937772 -2.693513
Gn1 / eV -0.500288 -0.076445
Gn2 / eV 1.601954 0.241442
Gn3 / eV -0.835530 -2.375626
G0 / eV -2.980000 -2.700000
G1 / eV 0 0
G2 / eV 1.706587 0.265390
G3 / eV -1.134778 -0.152856

η 1.021095 0.469000
Ge / eV -2.978815 -2.699486

Embedded atom model, ‘Zhou’

Johnson (1989) and Wadley et al. (2001) derived an EAM potential for binary alloys
with a form as follows:

E =
1
2 ∑

i
∑
j 6=i

φij(rij) + ∑
i

Fi(ρi), (2.13)

at which

φ(r) =
Ã exp

[
(−α( r

re
− 1)

]
1 + ( r

re
− κ)20 −

B̃ exp
[
(−β( r

re
− 1)

]
1 + ( r

re
− λ)20 (2.14)

and
ρi = ∑

j 6=i
f j(rij) (2.15)
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with

f (r) =
fe exp

[
(−β( r

re
− 1)

]
1 + ( r

re
− λ)20 . (2.16)

φij(rij) is the pair energy between atoms at the sites i and j separated by a distance rij

and Fi(ρi) is the so-called embedding function that corresponds to the embedment
of an atom i into a site with a local electron density ρi arising from all other atoms.
re is the spacing between nearest neighbors in equilibrium (re = a

√
2/2 for fcc). Ã,

B̃, α and β are the model parameters, supplemented by the cut-off parameters κ and
λ. As for the embedding function, the equations are

F(ρ) =


∑3

i=0 Gni

(
ρ

0.85σe
− 1
)i

ρ < 0.85σe

∑3
i=0 Gi

(
ρ

0.85σe
− 1
)i

0.85σe ≤ ρ < 1.15σe

Ge

[
1−

[
ln
(

ρ
σs

)]η] ( ρ
σs

)η
1.15σe ≤ ρ

(2.17)

with the parameters Gni and Gi for i = 0 .. 3, Ge, σe, σs and η. Note that the RTS-
potential can also be transformed into an EAM form with the definitions Fi :=
−εici

√
ρi and φij := εijVij.

The alloy model shows an adaption for φ. The pair potential for different elements
A and B is

φAB =
1
2

[
f b(r)
f a(r)

φAA +
f a(r)
f b(r)

φBB

]
. (2.18)

The assignment to φij is the same as for the RTS-parameters according to equa-
tion (2.10). Table 2.3 contains all needed parameters for gold and nickel, which were
calculated by Zhou et al. (2001). Henceforth, this potential is called ‘Zhou’.

The shapes of the discussed potentials for two atoms are drawn in figure 2.7. We
put on record that the RTS-potential is steeper near its minimum in all cases. This
will be reflected in a higher atom mobility during the MC-simulation. It is also very
interesting that the RTS-potential minimum lies about 50 % lower than the minimum
of the Zhou-potential. Anyway, for models with a larger number of atoms, say N ≥
1000, we will find that the relative difference in total energy is within ± 3 %. This
apparent inconsistency is justified by the insight that the Zhou-parametrization of
the embedding energy is not suited for models which are too small.
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Figure 2.7.: Two-atom energies of the pairs Au-Au, Au-Ni, and Ni-Ni vs. interatomic sepa-
ration for the RTS- and the Zhou-potential
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Periodic boundary conditions (p.b.c.)

Simulating crystal models small compared to real bulk specimens11 requires the im-
plementation of p.b.c. in order to get rid of or at least reduce surface effects. In this
frame, p.b.c. mean that the model can be periodically repeated, with the effect that
an atom located at one side of the surface becomes a neighbor of an atom at the
opposite side. One needs to calculate (evidently distance-dependent) potential ener-
gies, which implies the introduction of a box size. An MC step can then propose a
single atom displacement or a box size change. In the second case, the random walk
is performed in the space of logarithmic volume instead of length, as suggested by
Frenkel & Smit (2002, p. 122).

2.5.2. Metropolis-Hastings algorithm (Monte Carlo)

This well-known Monte Carlo sampling method was introduced by Metropolis et al.
(1953) and later generalized by Hastings (1970). A detailed explanation of the al-

gorithm and its broad scope of application can be found in numerous works about
computational physics, such as the book by Binder & Heermann (1988). Respecting
importance sampling, it creates an ergodic Markov chain12 of states x according to
the Boltzmann distribution

π(x) =
1
Z

exp (−βE(x)) , β := kBT, (2.19)

with the probability density π(x), the energy E(x), the Boltzmann constant kB, the
temperature T, and the normalization constant Z =

∫
exp (−βE(x))dx.

The self-composed code was written in the high-level programming language Julia,
which was invented by Bezanson et al. (2012), and is compatible to version 0.5.0.
Some important ideas for the practical implementation originate from the course
"Computer simulations" at TU Graz. Further concepts were adapted from the book
by Frenkel & Smit (2002, ch. 5). Individual code fragments were adopted from the
PhD thesis by Knez (2017), values of physical constants were downloaded from the
National Institute of Standards and Technology (2017, [online]).

11In the scope of this work, models in the range of up to 60 x 60 x 60 Å3 (cube of 15 x 15 x 15 = 3375
Au unit cells, 13500 atoms for fcc) were simulated.

12In this context, a Markov chain is a sequence of generated states in which a subsequent state only
depends on a limited number of previous states, not on all before. In the case of Metropolis-
Hastings, any state solely depends on its predecessor.
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The proposal probability from state x to y is the same as vice versa, which leads to
the acceptance probability

pacc
x→y = min(1,

πy

πx
) = min(1, e−β∆E), ∆E := E(y)− E(x). (2.20)

Furthermore, due to the high number of atoms (N = 13500) the simulation program
needed to deal with, we were forced to make a trade-off. If we had calculated the
total energies according to equations (2.9) and (2.13) from section 2.5.1 for every MC
step and used only one CPU, just thermalizing the system would have taken several
months on a state-of-the-art personal computer.

Clearly, because this thesis is not about efficiently parallelizing tasks on computer
systems, we truncated the calculation of ∆E. To clarify, let the random number gen-
erator roll k and the MH algorithm propose to displace the k-th atom. For equa-
tion (2.9) (RTS-potential), the sum over i is left out and we define the "single-atom
energy"

Ek(x) := ∑
j 6=k

εkj

(
akj

rkj(x)

)nkj

− εkck

[
∑
j 6=k

(
akj

rkj(x)

)mkj
]1/2

. (2.21)

The difference
∆Ek := Ek(y)− Ek(x) (2.22)

is not the same as ∆E, because the terms for any i in equation (2.9) are changed if
atom k is displaced, not only the summand with i = k. As for the difference ∆Ek −
∆E, we do not commit a systematic error for the pair potentials, as all contributions
not taken into account in the first sum in equation (2.21), namely for any pair of i
and j with i 6= k and j 6= k, remain unaffected. In contrast to this, the truncation does
change the embedding energy difference. In other words: Moving atom k does not
only affect the pair energies and the embedding energy of k itself, but also changes
the electron density at any other site and, with it, the embedding energy of any atom
other than k. As equation (2.13) is qualitatively equivalent to equation (2.9), the same
holds true for the Zhou-potential. By applying the simplification

p?acc
x→y = min(1, e−β∆Ek), (2.23)

we took the loss of detailed balance, but reduced the computational effort from
O(N2) to O(N), where N is the number of atoms. Though, the extensive validation
process as well as the promising results of the simulations proved that the violated
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MH algorithm is feasible at least (see section 3.1).

2.5.3. Velocity Verlet algorithm (Molecular Dynamics)

The symplectic second-order13 integrator used in the Molecular Dynamics simula-
tions is based upon the well approved method commonly known as the Stoermer-
Verlet algorithm. It was applied to Molecular Dynamics by Verlet (1967) and its
Velocity Verlet adaption, which stands out due to improved numerical stability, has
been stated by Swope et al. (1982, p. 648f, Appendix). It obeys the calculation rules

xn+1 = xn + h · vn +
h2

2
· f (xn) (2.24)

vn+1 = vn +
h
2
· [ f (xn+1) + f (xn)] , (2.25)

where xn and vn are position and velocity after the n-th time step, f (x) is the accel-
eration (calculated by Newton’s law), and h = ∆t = tn+1 − tn is the size of a time
step.

The conducted MD simulations have been carried out via LAMMPS14, a volumi-
nous open source software package developed by Plimpton et al. (2017). They were
performed at constant temperature, so neither the total energy nor the total momen-
tum is conserved. This enables the system to be relaxed and thermodynamically
equilibrated. More information about Molecular Dynamics at constant temperature
can be found in the book by Frenkel & Smit (2002, ch. 6.1).

2.5.4. Autocorrelation function

The statistical autocorrelation function is the Pearson correlation of process values
at different times. The following statements are heavily based on the lecture notes
belonging to the computer simulations course mentioned above.

Let Xτ be the random variable of a stochastic process X at time τ. We assume that
〈Xτ〉 = 〈X〉 and var(Xτ) := 〈X2

τ〉 − 〈Xτ〉2 = 〈X2〉 − 〈X〉2 are time-independent.
Then the autocorrelation function between two points in time with a lag of t does

13global error is O(∆t2)
14Large-scale Atomic/Molecular Massively Parallel Simulator
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2. Fundamentals and methods

not depend on τ and becomes simplified to

ρ(t) :=
cov(Xτ, Xτ+t)

std(Xτ)std(Xτ+t)
=
〈(X0 − 〈X〉) (Xt − 〈X〉)〉

〈X2〉 − 〈X〉2
. (2.26)

Stable estimator

Anyway, for a particular realization of a stochastic process (e.g. a time series with
values a0, a1, a2, ..., an) estimators of quantities such as expectation values (e.g. the
average value a := 1

N ∑N
i=1 ai as an estimator of 〈A〉) and the autocorrelation function

have to be used. For the MC simulations, the so-called empirical autocorrelation
function

ρE(t) :=
∑N−t

j=1

(
aj − a(t)

) (
bj − b(t)

)
√

∑N−t
j=1

(
aj − a(t)

)2
∑N−t

k=1

(
bk − b(t)

)2
, (2.27)

was evaluated, where

bj := aj+t (2.28)

a(t) :=
1

N − t

N−t

∑
j=1

aj (2.29)

b(t) :=
1

N − t

N

∑
j=1+t

aj. (2.30)

It contains time-dependent estimators a(t) 6= b(t), which in fact cause the high sta-
bility of ρE(t).

Autocorrelation times

In time series of Monte Carlo simulations, the autocorrelation function typically is a
sum of decaying exponential functions:

ρE(t) = ∑
i

ci exp
(
− t

τi

)
. (2.31)

Therefore, autocorrelations on different time scales τi can be estimated from the slope
of ρE(t) in a semi-logarithmic plot versus t. In order to be able to estimate the au-
tocorrelation function reliably, the simulation length should be at least a hundred
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2.6. Statistics and data analysis

times larger than the largest autocorrelation length τmax. The so-called integrated
autocorrelation time

τint
N�τmax
u 1

2
+

N

∑
t=1

ρ(t) (2.32)

is used to calculate the actual variance of an observed average value

σ2
a =

σ2
ai

N
2τint

, (2.33)

so the effective number of measurements is lowered by a factor of 2τint.

2.6. Statistics and data analysis

Briefly, some basic statistical concepts, which were mainly used for the validation of
the Monte Carlo relaxation code and the analysis of the relaxed models, are denoted.
Additionally, the Gaussian model function used here and there is declared.

Key values

Let {xi} be a finite sample of N values. We define the sample mean

x :=
1
N

N

∑
i=1

xi (2.34)

and the sample variance

s2
x :=

1
N − 1

N

∑
i=1

(xi − x)2 . (2.35)

From the central limit theorem the standard deviation of the sample mean (SDOM)

sx =
sx√
N

(2.36)

can be derived.
The sample median x̃ is any real value for which

p(xi ≤ x̃) ≥ 0.5 ∧ p(xi ≥ x̃) ≥ 0.5 (2.37)
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2. Fundamentals and methods

is satisfied, where p is the relative frequency of occurrence. If the condition is true
for a range of values x̃min .. x̃max, which might be the case if N is even, one usually
takes x̃ = 1

2(x̃min + x̃max).
Furthermore, the sample coefficient of variation15

cv :=
s
x

(2.38)

and the sample skewness

v :=
1
N ∑N

i=1 (xi − x)3

s3
x

(2.39)

were used as statistical indicators.

(Dunn, 2010, ch. 5, 6)

Fitting of Gaussian functions to series of data points

Whenever the assumption that an obtained data set is approximately normally dis-
tributed was somewhat meaningful, even if the distribution of the values was not
symmetric to an extremely high degree, the model function

f (µgf, σgf, a, d, x) = d + a exp

−1
2

(
x− µgf

σgf

)2
 (2.40)

was used.

15also known as the relative sample standard deviation
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3. Results and analysis

The outcomes of the comprehensive simulation activities are presented beforehand,
because this work was about simulating and analyzing simulation results for the
most part. Anyway, since possessing knowledge of the experimental results in ad-
vance is crucial to understand the course of action during the simulation part, es-
pecially readers unfamiliar with the topic are advised to swap the order and glance
over the experimental section first.

In the simulation section 3.1 I rigorously focus on two aspects. First, the sequen-
tial explanation and annotation of the realized simulation concepts should allow the
reader to comprehend the process of approaching experimental results step-by-step.
Second, the numerous graphs are described and interpreted as objectively as possi-
ble, but for all that, assumptions concerning unaccounted effects are not omitted.

As far as the experimental section 3.2 is concerned, the main focus is layed on pre-
senting obtained (S)TEM images and the quantitative analysis of them. In addition,
opportunities to compare the results of experiments and simulations are demon-
strated by means of an example. The limitations of the comparability are sketched
later in section 4.2.

3.1. Simulation results

To start with, a perfect fcc gold matrix, featuring no crystal defects and deforma-
tions, was created and STEM images of it were simulated via QSTEM. All the sim-
ulations have been performed with the specimen model in the [001] zone axis. The
obtained images were analyzed in a quantitative manner with respect to the speci-
men thickness t and the angles aforementioned in section 2.2.1 and figure 2.5, namely
the convergence angle α of the primary electron beam and the collection angle β of
the detector.
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3. Results and analysis

Next, gold-nickel alloy models were made. First, the gold atoms of a single atom col-
umn in the direction of the electron beam were substituted by nickel atoms. Every
further model contained a gradually more complex arrangement of substitutional
nickel atoms in the gold matrix. After generating simulated images of these, the
quantitative analysis was continued and the effects of nickel impurities were inves-
tigated. Although the models were unrealistic due to the absence of lattice deforma-
tions, the results constitute a reference point for what happens in the micrographs.

Later, models closer to real spinodally decomposed gold-nickel specimens were cre-
ated by performing lattice relaxations with MC- and MD-simulations. A major dif-
ficulty for the comparability with experiments arose from the computational effort.
For every QSTEM simulation, a trade-off between size of the simulated scanning re-
gion, resolution and model thickness had to be found. The models’ thickness was 60
nm at most, whereas the experimentally investigated specimen regions are at least
as thick as that.
Complementarily, diffraction patterns were simulated, using coherent CBED simu-
lations in combination with a very small convergence angle in order to approximate
SAED images.

In order not to overload this section with figures too heavily, not every single effect is
explicitly depicted graphically for every model. Instead, as every subsequent model
has new properties, the respective result analysis is more focused on aspects not
present in the previous one. Unless otherwise noted, features elaborated for a simple
model apply for the structurally more complicated ones as well.

QSTEM settings

In well conformity with the Titan microscope, the following parameters were used:

• Acceleration voltage: 300 kV (De Broglie wavelength λB ≈ 1.97 pm)

• 3rd order spherical aberration coefficient (Cs): 0.001 mm

• Astigmatism coefficient: 0

• Defocus: -1.7 nm (Scherzer condition)

• Chromatic aberration coefficient (Cc): 1 mm

• Primary electron energy distribution width: 0.6 eV

• Temperature: 300 K

28



3.1. Simulation results

• Number of TDS runs to be averaged over: 30

• Dwell time: 1 µs, no beam damage considered

3.1.1. QSTEM images of models with a perfect fcc lattice

All models that were not put into our alloy relaxation code are listed and specified in
table 3.1. Figure 3.1 illustrates them schematically in a smaller style, since drawings
of the full-size models would not emphasize the substantial aspects that well.

The first models handed over to QSTEM were quite uncomplicated in terms of struc-
ture and composition. Due to the simplicity of the arrangement of substitutional
foreign Ni atoms it was possible to generate models 1 to 4 by manipulating a Crys-
tallographic Information File downloaded from FIZ Karlsruhe - Leibniz Institute for
Information Infrastructure (2016, [online], Coll. Code 52700) with the CrystalMaker
software package (Palmer et al. , 2016, [online]).

As the Ni substituent distribution becomes more complex and thereby more realistic,
a graphical solution in which selecting atoms is done by drawing a frame around
them gets unsuitable. For this reason, a few MATLAB scripts were written in order
to create the desired XYZ-files (see appendix A.2). According to the description in
table 3.1, the code, for instance, generates model 5 with cNi(x, y, z) = sin2( x

λ π) ·
(cmax− cmin) + cmin. Up to a rounding error, the value of cNi(xi) is valid for a specific
(100)-plane with x = xi. In y- and z-direction, the Ni atoms are randomly distributed
by utilization of the MATLAB command randperm.

Table 3.1.: Overview of the nickel impurities in the models used without lattice relaxation

model no. type of Ni impurity

1 none

2 single atom column ‖ ~z, [001]

3 single (100) lattice plane

4 parallel (100) lattice planes, distance = 2 · aAu, periodically

5 sine-squared-shaped modulation in ~x-direction,
λ = 2 · aAu = 0.815788 nm, cmin = 0, cmax = 0.6

6 sine-squared-shaped modulation in ~x-direction,
λ = 0.77 nm, cmin = 0, cmax = 1
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3. Results and analysis

(a) Model 1: Pure Au (b) Model 2: One atom column Ni

(c) Model 3: One lattice plane Ni (d) Model 4: Several lattice planes Ni

(e) Model 5: Sine-squared-shaped
modulation of the Ni-concentration in
~x-direction, λ = 2aAu ≈ 0.816 nm

(f) Model 6: Sine-squared-shaped
modulation of the Ni-concentration in
~x-direction, λ = 0.77 nm (full-size)

Figure 3.1.: Inclined crack of simulation model 1 (a) and views of models 2 to 6 along the
[001] direction (b to d); All structures have a perfect fcc lattices with a = aAu = 0.407894 nm.
The large golden spheres represent Au atoms, the small silver ones are Ni. The lines link
nearest neighbors in the lattice and their primary purpose is to illustrate the 3D topography.

30



3.1. Simulation results

Model 1: Pure Au

The first model had a size of 4.07894 x 4.07894 x 61.18410 nm3 (10 x 10 x 150 fcc unit
cells) and consisted of 66371 atoms. The number of atoms is greater than 10 · 10 ·
150 · 4, because in each direction the confining conventional unit cells are completed
in order to obtain inversion symmetry. The electron beam was scanned across a
square of 1 x 1 nm2 and, hence, covered 5 x 5 columns containing 150 or 151 atoms
each.

(a) t ≈ 10.0 nm, HAADF:
β = 73.5 .. 200 mrad

(b) t ≈ 10.0 nm,
BF: β = 0 .. 40 mrad

(c) t ≈ 10.0 nm,
ABF: β = 9.8 .. 19.6 mrad

(d) t ≈ 30.4 nm, HAADF:
β = 73.5 .. 200 mrad

(e) t ≈ 30.4 nm,
BF: β = 0 .. 40 mrad

(f) t ≈ 30.4 nm,
ABF: β = 9.8 .. 19.6 mrad

Figure 3.2.: Model 1: QSTEM HAADF-, BF-, and ABF-images for different thicknesses t;
The convergence angle was α = 19.6 mrad. The color scale is not the same for images of
different detectors. Black and white in the pictures correspond to intensity values of 0.0 and
0.3 for HAADF-images, 0.6 and 1.0 for BF-images, and 0.3 and 0.6 for ABF-images. Thus, the
comparability between detectors by means of these images is limited to a qualitative manner.

Figure 3.2 shows exemplary QSTEM images of this model. The atom columns appear
bright in the HAADF- and dark in the BF- and ABF-images. The contrast between
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3. Results and analysis

10 and 30 nanometers in thickness can clearly be seen by the human eye. Besides
that, we recognize a distinctly increased background intensity in the HAADF image
for t ≈ 30 nm (see figure 3.2(d)) when compared to the one for t ≈ 10 nm (see
figure 3.2(a))
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Figure 3.3.: Model 1: Average HAADF-, BF-, and ABF-intensity of gold atom columns vs.
thickness for different convergence semi-angles

Figure 3.3 shows the electron intensity stemming from the locations of the gold
atoms columns and hitting the different detectors as a function of the model thick-
ness. We see that the intensity is a non-linear function of thickness for all investi-
gated detector types. The HAADF-intensity increases substantially with thickness
up to about 5 nm, then there is a gentle kink between 5 and 10 nm and after that
the slope further flattens out. This behavior can be reasoned by coherent phonon
scattering for low penetration depths and the presence of electron channeling con-
ditions in the [001] zone axis (see fundamentals section 2.2.2) and is similar to the
frozen phonon results for Sr and Ti-O columns obtained by LeBeau et al. (2008, FIG.
3). In the BF images we observe the opposite behavior. The ABF signal shows os-
cillating characteristics, which could not be justified. The periodicity changes with
the convergence angle. The distance between the maxima seems not to correspond
to extinction distances in crystalline gold, but we are not entirely sure whether it
is somehow associated with the observed oscillations. Furthermore, the collection
angle range in the BF region was split into four sections, namely β = 0 .. 9.8 mrad,
9.8 .. 19.6 mrad (ABF), 19.6 .. 29.4 mrad, and 29.4 .. 39.2 mrad, but the intensity-versus-
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Figure 3.4.: Model 1: Log-log plot of mean HAADF- and BF-intensity vs. thickness for dif-
ferent convergence semi-angles

thickness curves exhibit an irregular behavior for β-ranges other than the one of the
ABF (no figure). As far as the convergence angle is concerned, the intensity becomes
lower in HAADF images with higher α, but higher in BF/ABF images. The higher
the convergence angle is chosen, the lower the slope ∆I/∆t gets for all detector types.
The speculative presumption that the mean convergence semi-angle of the incoming
electrons adds to the scattering angle, with the effect that more electrons are scattered
to higher angles with respect to the optical axis for higher convergence semi-angles,
is disconfirmed.
In figure 3.4, the same HAADF- and BF-data is illustrated again, but in log-log rep-
resentation. The absolute value of the slope in these graphs is correlated with the
relative thickness contrast

∣∣∣ln I(rtref)
I(tref)

∣∣∣. For a given r, the HAADF relative thickness
contrast is almost constant for thicknesses in this range, being slightly better for thin
specimens. The BF relative thickness contrast is much weaker than in the HAADF,
but its dependence on thickness is higher. It gets better for thicker specimens. In ad-
dition, lower convergence angles enhance the BF relative thickness contrast, whereas
the convergence angle has a minor effect on the HAADF contrast.

As mentioned in section 2.3.2, the total collection semi-angle range for the HAADF
detector, β = 73.5 .. 200 mrad, was split into 11 evenly large regions, each 11.5 mrad
in width, corresponding to annular "subdetectors". Figure 3.5 illustrates the angu-
lar distribution of the electrons scattered into the HAADF region. We would ex-
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pect monotonously decreasing intensities with increasing angles if we considered
incoherent and no multiple scattering (Remember: Rutherford differential scatter-
ing cross-section dσ

dΩ ∝ sin(θ/2)−4). This expectation is not met. The majority of
electrons hit the detector in regions corresponding to 4 subdetectors which are not
neighbors with regard to their β-range. For β = 85 .. 96.5 mrad, the intensity grows
linearly up to t ≈ 6 nm, then flattens out and decreases slightly for t > 20 nm. All
other intensity curves in figure 3.5(a) have a positive slope and a negative curva-
ture.
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The values of the mean collection semi-angle β are the centers of the HAADF subdetectors’

β-ranges, e.g. β = 79.25 mrad for β = 73.5 .. 85.0 mrad.

Figure 3.5.: Model 1: Average HAADF-intensity of gold atom columns vs. thickness (a) and
average HAADF-intensity vs. mean collection semi-angle (b) for α = 19.6 mrad
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Model 2: One Ni atom column

This model had a single Ni atom column parallel to the [001]-direction in its center
and was identical to model 1 at all other points. The most interesting questions
concern the Au-Ni contrast and whether the presence of Ni atoms affect the intensity
of neighboring Au atoms. To get an idea of how QSTEM images of this model look
like, one per detector is shown in figure 3.6.

(a) HAADF, β = 73.5 .. 200 mrad (b) BF, β = 0 .. 40 mrad (c) ABF, β = 9.8 .. 19.6 mrad

Figure 3.6.: Model 2: QSTEM HAADF-, BF-, and ABF-image for t ≈ 20.2 nm and α = 19.6
mrad. Note that the given pictures are only suitable for qualitative comparison, because the
color scale is not the same for images of different detectors.

As for the convergence semi-angle, larger values lead to a little better HAADF-, but
slightly worse BF- and ABF-contrast (no figure). The effect is below ± 2 % and was
not topic of further investigations. From now on, all results arise from simulations
with a convergence angle of α = 19.6 mrad.

Figure 3.7 shows the absolute intensity stemming from the nickel column as well
as the intensity ratio of nickel and gold as a function of thickness, both for all three
used detector types. The absolute intensity for gold columns is not visualized there,
because the changes compared to figure 3.3 concerning model 1 are very small (see
below for details on HAADF). As for nickel, both the HAADF- and BF-intensity are
extensively linear functions of thickness, indicating that channeling effects should be
quite weak for nickel. The ABF-intensity exhibits an oscillating behavior, as we no-
ticed for gold as well. The HAADF-contrast is better, the thinner the specimen model
is. The relative intensities should approach 1 for large thicknesses at the point of elec-
tron opacity. As far as the BF-contrast is concerned, it remains roughly constant in
the investigated thickness range. Due to the oscillating signal in ABF images, they
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offer better Au-Ni contrast than the BF detector for some thickness values. Although
the BF-/ABF-contrast is distinctly detectable by the human eye, because the relative
intensity values are mostly above 1.1 resulting in contrast values of Cln ≥ 10 %, it is
much weaker than for HAADF images.

Regarding the HAADF detector, the absolute gold, the absolute nickel, and the rel-
ative nickel-to-gold intensity, all as a function of thickness, split by collection angle
and normalized with respect to the number of atom columns, are depicted in fig-
ure 3.8. The gold intensities can be compared to figure 3.5(a). Their behavior is very
similar to model 1. The relative deviation from model 1 and between Au columns
next to the Ni column and farther away from it, is lower than 2 %. Outliers were
not statistically evaluated due to their rare occurrence, however, a deviation greater
than 4 % has not been observed. As for the nickel column, the angular distribution of
electrons scattered to the HAADF collection range is different, resulting in the Au-
Ni contrast varying from subdetector to subdetector. At some points, the relative
intensities cross the zero-contrast-line (INi : IAu = 1) and the nickel column appears
brighter than the gold columns on average.
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Figure 3.7.: Model 2: Average HAADF-, BF-, and ABF-intensity of nickel atom columns vs.
thickness (top) and relative nickel-to-gold intensity vs. thickness in a semi-logarithmic plot
corresponding to the Au-Ni contrast (bottom); In the contrast plot, data points far away
from the line log10(INi : IAu) = 0 represent better contrast than points closer to it. The
semi-logarithmic representation is used because the perceived contrast is proportional to the
logarithm of the intensity ratio (see section 2.2.2). Equal visual distances in direction of the
ordinate correspond to equal intensity ratios.
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Figure 3.8.: Model 2: Average HAADF-intensity of gold and nickel vs. thickness (top and
middle row) and relative nickel-to-gold intensity vs. thickness in semi-logarithmic represen-
tation (bottom row), all split by collection semi-angle

Model 3: One Ni lattice plane

The only difference to model 2 was a (100) Ni lattice plane, instead of an atom col-
umn, through its center. The evaluation of the simulated images yielded very similar
results as we obtained for model 2, so no new insights were gained. Therefore, any
graphical data and further discussion is omitted.
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Model 4: Parallel Ni lattice planes

In this model, every fourth plane perpendicular to the [001]-direction was replaced
by a nickel-yielding plane. Two different configurations, model 4a with cNi = 1
and model 4b with cNi = 0.6 in the nickel-yielding planes, were simulated. The
electron beam was scanned across a square of ≈ 2.65 x 2.65 nm2 and covered 13 x 13
columns, thus 6 x 6 conventional unit cells. The model had a size of 4.07894 x 4.07894
x 20.39470 nm3 (10 x 10 x 50 fcc unit cells). It is only a third of the previous models
in thickness, because the computational effort would have become too large if the
model had not been thinned.

In the scope of the result analysis, it is appropriate to classify the model into three
regions: Nickel-rich columns, gold columns next to nickel-rich columns, and gold
columns farther away from nickel-rich columns. Figure 3.9 illustrates a QSTEM
HAADF image and electron intensities stemming from these different regions as a
function of thickness. All solid lines belong to model 4a, all dashes ones to model
4b. We observe the same effects we have already noticed for the previous models,
such as a non-linear intensity dependence on thickness, oscillating ABF-intensites,
and generally weak Z-contrast for BF- and ABF-signals. Again, not only absolute
intensities are visualized, but also intensity ratios of nickel(-rich) and gold planes
in semi-logarithmic representation (see lower row of graphs in figure 3.9(a)). As
for BF- and HAADF-intensites, the lines for the relative intensities Irel(cNi = 0.6)
and Irel(cNi = 1) are farther away from each other than the line for Irel(cNi = 0.6)
from 1, which is the intensity from pure gold columns. This means that the Weber-
Fechner contrast between cNi = 1 and cNi = 0.6 is higher than between cNi = 0.6
and cNi = 0.

Even though, as stated before, the effect of atom columns on their neighboring ones
is minor, a few things about it are worth noting by means of a comment on fig-
ure 3.9(b). The relative intensity difference between gold planes near and far from
nickel is higher for thicker specimens. For t ≈ 20.2 nm and model 4a with pure nickel
planes, the HAADF-intensity stemming from gold planes next to the nickel planes
(red regions/curves) is ≈ 1.6 % lower compared to gold planes far from nickel (yel-
low regions/curves). On the other hand, the BF-intensity is ≈ 0.6 % and the ABF-
intensity ≈ 1.9 % higher. Anyhow, the Weber contrast stays below ± 2 % and is not
perceptible for the human eye.
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Figure 3.9.: Model 4: Analysis of different specimen regions; blue region: nickel-rich planes,
red region: gold planes near nickel, yellow region: gold planes far from nickel

39



3. Results and analysis

0 50 100

I
a
b
s
/
a
rb
.
u
.

0

0.5

1

1.5

2
HAADF (β  = 73.5 .. 200.0 mrad)

mean atomic number Z / 1
0 50 100

0

2

4

6

8

10
BF (β  = 0 .. 40.0 mrad)

t ≈ 1.8 nm

t ≈ 3.9 nm

t ≈ 5.9 nm

t ≈ 8 nm

t ≈ 10 nm

t ≈ 12 nm

t ≈ 14.1 nm

t ≈ 16.1 nm

t ≈ 18.2 nm

t ≈ 20.2 nm

0 50 100

0

2

4

6

8

10
ABF (β  = 9.8 .. 19.6 mrad)

Figure 3.10.: Model 4: Average HAADF-, BF-, and ABF-intensity vs. mean atomic number
for different thicknesses

In figure 3.10, absolute intensities as a function of the mean atomic number are de-
picted. It is basically the same data differently put into graphs, but thought has been
given to the uniform distribution of the nickel atoms in the y- and the z-direction,
leading to slightly fluctuating mean atomic numbers for the mixed planes in model
4b (Z ≈ 50). If the assumption that scattering from many atoms can be added co-
herently was correct, we would notice that γc in IHAADF − Ibackground ∝ Zγc is dis-
tinctly lower than 2. But for the most thickness values, the slope of the HAADF-
intensity gets flatter with higher mean atomic number. Theory, according to which
the Z-dependence should be higher does not hold true for incoherent scattering from
mixed atom columns and if the crystal is viewed in a zone axis.

Model 5: Sine-squared-shaped modulation of the nickel concentration
(wavelength equals a multiple of the lattice parameter)

This model had a nickel concentration modulation of cNi(x, y, z) = sin2( x
2aAu

π) ·
0.6 and was identical to model 4 at all other points. Because the wavelength has
been set to two times the lattice parameter, the nickel concentration sequence in x-
direction simply is 0 → 0.3 → 0.6 → 0.3 → 0 → 0.3 → ... . The electron beam was
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3.1. Simulation results

scanned across a square of ≈ 1.63 x 1.63 nm2 and covered 8 x 8 columns, thus two
wavelengths of the nickel concentration modulation.
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Figure 3.11.: Model 5: QSTEM HAADF
image for t ≈ 18.2 nm; blue region:
planes with cNi = 0.6, red region: planes
with cNi = 0.3, yellow region: Au planes

Figure 3.11 depicts a QSTEM HAADF image
of the model. The classification into three re-
gions is similar to model 4. Figure 3.12 illus-
trates absolute and relative intensities as a
function of thickness. Looking at the bottom
left graph in figure 3.12, we recognize that
the dashed red line intersects the dotted yel-
low one at several points. This means that
the HAADF-contrast between cNi = 0.6 and
cNi = 0.3 switches from being better than be-
tween cNi = 0.3 and cNi = 0 to being worse.
As far as the pure gold planes and the planes
with a nickel concentration of 0.6 are con-
cerned, the qualitative changes compared to
model 4 are negligible. The absolute inten-
sity values in the upper row of graphs in figure 3.12 regarding model 5 are not of the
same order of magnitude as the values in figure 3.9(a) belonging to model 4, because
the sizes of the scanning region and the pixel dimensions do not match.
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Figure 3.13.: Model 5: Average HAADF-, BF-, and ABF-intensity vs. mean atomic number
for different thicknesses

Figure 3.13 shows absolute intensities as a function of the mean atomic number. By
trend, the slope of the HAADF-signal grows for higher mean atomic number. We
did not see this for model 4 due to a lack of nickel concentration values between 0.6
and 0. More discussion on these graphs is omitted, because the data obtained for the
next model 6 is more revealing.

Model 6: Sine-squared-shaped modulation of the nickel concentration
(wavelength of 0.77 nm)

This model had a size of 4.07894 x 4.07894 x 61.18410 nm3 (10 x 10 x 150 fcc unit
cells) and a nickel concentration modulation of cNi(x, y, z) = sin2( x

0.77nm π). The total
nickel concentration was ctot

Ni ≈ 0.48. As on model 4, the electron beam was scanned
across a square of≈ 2.65 x 2.65 nm2 and covered 13 x 13 columns. Because the wave-
length has been offset from a multiple of the lattice parameter, the concentration
sequence does not repeat within the examined scanning region. For that reason, this
model allows us to investigate more individual nickel concentration values.
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Figure 3.14.: Model 6: Absolute (upper row) and relative (lower row) average HAADF-, BF-,
and ABF-intensity vs. mean atomic number for different thicknesses; The relative average
intensity is Irel := Iabs(Z)

Iabs(79)

∣∣∣
t
. The dashed lines in the absolute HAADF-intensity-plot (top left)

are first order polynomial fits. Note that the scaling for the BF-/ABF-intensity is different
to the one for the HAADF-intensity, both in the plots concerning relative as well as absolute
intensities.

Figure 3.14 depicts absolute and relative intensities as a function of the mean atomic
number for various thicknesses. It provides some more information about the Z-
dependence of the signals. The HAADF-background is increasing with thickness,
which can be reasoned by electron channeling and beam broadening (see 2.2.2). The
absolute HAADF- and BF-intensities are approximately linear functions of the mean
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3. Results and analysis

atomic number. As for the HAADF-intensity, this is well in accordance with theory
considering incoherence of scattering events (see equation (2.3)). Fits of I(d, k, γi, cNi) =

d + k
[
cNiZ

γi
Ni + (1− cNi)Zγi

Au
]

or the equivalent model function Ĩ(d̃, k̃, Z) = d̃ + k̃ Z
with d̃ = d̃(d, k, γi), k̃ = k̃(k, γi) and Z = Z(cNi) are not expedient in order to quan-
tify the Z-dependency, because the parameter γi cannot be computed independently
from k. The slope of the first order polynomial fits is the highest for t ≈ 20 nm,
but this does not mean that the Z-contrast is best for this thickness value. The vi-
sual slope in the relative intensity-plots are the ones which directly correspond to
logarithmic contrast Cln according to equation (2.2). Concerning the HAADF, it is
higher for thin specimens and gets monotonously lower with increasing thickness.
Note that the HAADF-contrast is outstanding when compared to BF/ABF. Assum-
ing a value of

∣∣∣∆I
I

∣∣∣ ≥ 5 % is perceptible by the human eye, a nickel concentration

of as low as cNi ≈ 0.06 (Z ≈ 76) could be seen in between pure gold columns for
specimens approximately 6 nm in thickness and at least cNi ≈ 0.08 (Z ≈ 75) for
thicknesses up to 60 nm. The BF-contrast is better for thicker than for thinner mod-
els by trend. As expected, it is much weaker than the HAADF-contrast. For thickness
values less than roughly 20 nm, we would need cNi ≈ 0.5 (Z ≈ 54) to be able to dis-
tinguish nickel-yielding columns from pure gold, for higher thicknesses we could
see cNi ≈ 0.3 (Z ≈ 64). The ABF-contrast exhibits an irregular behavior, the intensity
for low mean atomic numbers is less than for higher ones at many points.

In figure 3.15, HAADF iso-intensity lines for the parameters thickness and nickel
concentration are plotted. The higher the nickel concentration is, the more the gra-
dient of the intensity with respect to thickness and nickel concentration points in the
direction of changing nickel concentration. The thicker the model, the farther away
from each other the iso-intensity lines are.

The interpretation of the contour plot regarding the logarithmic intensity in relation
to the pure gold intensity at the same thickness, which is illustrated in figure 3.16,
is anything but intuitive. The contrast quantity log

[
Iabs(cNi,t)
Iabs(0,t)

]
immediately corre-

sponds to the logarithmic contrast Cln according to equation (2.2). Iso-contrast lines
close to each other indicate a good contrast regarding the nickel concentration. So,
for a very thin model, only a few nanometers thick, concentration variations can be
detected quite easily, because the distance between iso-contrast lines is short. On
the other hand, it is difficult to assert an absolute nickel concentration because on
a given iso-contrast line the concentration heavily depends on thickness. Note that
irregularities from 4 to 6 nm represent the same effect as the presence of the kink
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3.1. Simulation results

in the curve of HAADF-intensity versus thickness for gold columns in combination
with its absence for nickel columns (see previous models, e.g. figures 3.3 and 3.7).
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Figure 3.15.: Model 6: Iso-intensity lines for the absolute average HAADF-intensity as a
function of thickness and nickel concentration; The original data points are not located on
the iso-intensity lines, which are obtained by interpolation.

If we move on to higher thicknesses, the lines move farther away from each other,
making concentration contrast weaker. At the latest here, if not before, it becomes
clear that concentration determination of real specimens based on contrast quantifi-
cation from experimental STEM images and deduction from simulation results is a
really hard task. First, the iso-contrast lines are not parallel to the thickness axis,
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3. Results and analysis

so the specimen thickness should be known precisely since it heavily influences the
Z-contrast. Second, if we obtained a certain contrast value concerning two different
atoms column or regions, we would need to know the nickel concentration in one of
them in order to be able to estimate the concentration in the other, because a given
value of Cln (e.g. 0.2) could corresponding to any iso-contrast line pair separated by
this value (e.g. −0.7 and −0.5, −0.3 and −0.1). Therefore, approximate knowledge
of the average concentration in the investigated region is mandatory if iso-contrast
plots fashioned this way are used.

-1.5-1.4-1.3-1.2
-1.1

-1

-1

-0.9

-0
.9

-0.8

-0
.8

-0.7

-0
.7

-0.6

-0
.6

-0
.6

-0.5

-0
.5

-0
.5

-0.4

-0
.4

-0
.4

-0
.4

-0.3

-0
.3

-0
.3

-0
.3

-0.2

-0
.2

-0
.2

-0
.2

-0.1

-0
.1

-0
.1

-0
.1

0
0

0
0

-0.35

-0
.3

5

-0
.3

5

-0
.3

5

-0.25

-0
.2

5

-0
.2

5

-0
.2

5

-0.15

-0
.1

5
-0

.1
5

-0
.1

5

-0
.0

5

-0
.0

5

-0
.0

5

cNi / atomic fraction
0 0.2 0.4 0.6 0.8 1

t
/
n
m

10

20

30

40

50

60
log(Irel) / 1
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3.1.2. Lattice relaxations

The following section starts with an extensive validation of the MC relaxation pro-
gram by means of a small model (256 atoms). This is necessary due to the self-made
character of the code, in contrast to the MD simulation carried out with the wide-
spread LAMMPS. Later, the results of the application to two larger models (13500
atoms) are presented.

MC method validation

Figure 3.17.: Validation model for the MC lat-
tice relaxation code: Inclined crack of the in-
put with a perfect fcc lattice; The marked dis-
tance equates to three times the lattice con-
stant.

In order to refine our MC binary al-
loy lattice relaxation code and validate
its applicability, a model small enough
to have the relaxation process com-
plete thermalization within a reason-
able amount of time, say half an hour
at most, was used (see figure 3.17).
It consisted of 4 x 4 x 4 unit cells,
which were arranged in a way such
that p.b.c. were implementable. 81
out of 256 atoms were nickel (cNi ≈
0.316) and they were distributed simi-
lar to models 5 and 6: cNi(x, y, z) =

sin10 ( x
0.907nm π

)
· 0.8 + 0.1, thus we have

max
x

(
∑y ∑z cNi(x, y, z)

)
≤ 0.9 and

min
x

(
∑y ∑z cNi(x, y, z)

)
≥ 0.1. We were interested in the following aspects:

• Comparison of the utilized calculation of the single-atom energy Ek (see equa-
tion (2.21)) with the unabbreviated computation of the energy E (see equa-
tions (2.9) and (2.13))

• Independence of the result from the starting configuration

• Differences between RTS- and Zhou-potential

For every potential, the lattice relaxation was performed four times:

(a) Single-atom energy computation according to equation (2.21); The starting con-
figuration was not modified.
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3. Results and analysis

(b) Total energy computation according to equation (2.9); The starting configura-
tion was not modified.

(c) Single-atom energy computation; The original starting coordinates were mul-
tiplied by 0.95, so the input was squeezed.

(d) Single-atom energy computation; The original starting coordinates were ran-
domly distorted by multiplication with a uniformly distributed factor in the
range 0.975 .. 1.025.

(a) Single-atom energy calculation after 256 · 104

steps
(b) Total energy calculation after 256 · 104 steps

(c) Single-atom energy calculation with
squeezed input after 40 · 104 steps

(d) Single-atom energy calculation with a
randomly distorted input after 30 · 104 steps

Figure 3.18.: Validation model for the MC lattice relaxation code: [001] views of the outputs
of the four simulation variations using the RTS-potential; The marked distances indicate the
contraction in comparison to figure 3.17.
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(a) Single-atom energy calculation
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(b) Total energy calculation
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(c) Single-atom energy calculation with a
squeezed input
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(d) Single-atom energy calculation with a
randomly distorted input

Figure 3.19.: Validation model for the MC lattice relaxation code: Time evolution of box size
and total energy for the four simulation variations using the RTS-potential; Note that the
individual options differ in the plotted time scale.

The results belonging to the RTS-potential are presented in detail. The applicability
of the code in combination with the Zhou-potential has analogously been validated,
but - in order not to overload this lateral, though very important, section - the dis-
cussion concerning it is shortened to simulation option (a). Figure 3.18, showing the
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3. Results and analysis

simulation output crystals, looks very promising per se, however, the time evolution
charts in figure 3.19 and table 3.2 bring some more details forward. The total energy
computation yields larger box edge lengths in the y- and z-direction, leading to an
average energy a few tenths of a percent higher compared to the single-atom energy
computations. The reason for this result is unclear. Apart from that, the starting con-
figuration does not affect the single-atom energy simulations as long as the crystal
distortions remain within reasonable boundaries.
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Figure 3.20.: Validation model for the MC lattice relax-
ation code: Analysis of the systematic error due to the
usage of the single-atom energy Ek

After asserting that our simpli-
fied energy calculation works at
least "pretty fine", we had to
further investigate the system-
atic error we are consciously
committing. Therefore we
put the thermalized result of
the single-atom energy com-
putation (case (a): unmodi-
fied starting configuration) into
a slightly altered simulation
in which we calculated both
∆E according to equations (2.9)
and (2.20) and ∆Ek as per equa-
tions (2.21) and (2.22). The
accept/reject-decision was pro-
cessed with ∆Ek. Figure 3.20
shows the differences ∆E and
∆Ek as well as the deviation and
the quotient of these in a 100-
step-extract of the 105 simula-
tion steps in total. Simple data

analysis yielded:

• The proportion of correct accept/reject-decisions was ≈ 81.5 %. A correct de-
cision is performed if both exp

(
−∆E
kBT

)
and exp

(
−∆Ek
kBT

)
are either (A) greater

than or (B) less than or equal to a given random number r.

• The fraction of non-negative ∆Ek was ≈ 74.8 %.
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3.1. Simulation results

• The fraction of non-negative ∆E was ≈ 71.5 %.

• ∆E and ∆Ek had the same sign in ≈ 86.9 % of all cases. A value that high
indicates that the single-atom energy approximation correlates strongly with
the total energy.

• Concerning the quantity δ := ∆Ek − ∆E:

· δ ≥ 0 ⇔ ∆Ek ≥ ∆E in ≈ 72.6 % of all cases. One effect is that the simula-
tion can get stuck in local minima more easily.

· δ = 14.9(1)meV, whereby the given uncertainty corresponds to the stan-
dard error of the sample mean. This value is not low compared to kBT ≈
25.3 meV for T = 293.15 K, which argues against the simplification.
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Figure 3.21.: Validation model for the MC lat-
tice relaxation code: Time evolution of box
size and total energy for single-atom energy
calculation using the Zhou-potential

As for the Zhou-potential, the total en-
ergy is a few percent lower than calcu-
lated from the RTS-potential. We no-
tice that the thermal motion of the atoms
is more unrestricted in comparison to
the RTS-simulation, since the post-
thermalization fluctuation range for box
size as well as for energy is about three
times larger (see time evolutions in fig-
ure 3.21 and table 3.2).

To round the inspection up, histograms
of the nearest neighbor distances are
plotted in figure 3.22. Au-Ni and Ni-
Ni distances are significantly lower than
the Au-Au distances.
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2.4 2.6 2.8 3 3.2

co
u
n
ts

0

10

20

(b) Zhou-potential, Au-Au

distance / Å
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Figure 3.22.: Validation model for the MC lattice relaxation code: Histograms of nearest
neighbor distances for single-atom energy calculation outputs; The equilibrium values are
aAu ·

√
2/2 ≈ 2.885 Å for gold and aAu ·

√
2/2 ≈ 2.494 Å for nickel.

Table 3.2.: Various data values concerning the MC relaxation validation simulations
ttot total computation time for 10000 steps per atom
Nth thermalization length (approximated from the time series)
E average energy (after thermalization)
τint(E) integrated autocorrelation time regarding the energy time series
x, y, z average box length in x-, y-, z-direction

potential
simulation

option
ttot /

h
Nth /

MC steps
E / eV τint(E) / steps x / Å y / Å z / Å

RTS (a) 0.8 1 · 105 −1009.5± 0.7 ≈ 4000 15.38 15.90 15.96

RTS (b) 44 1 · 105 −1005.8± 1.0 ≈ 4000 15.35 15.99 16.07

RTS (c) [n.c.*] 1 · 105 −1009.6± 1.4** ≈ 3000** 15.36 15.91 15.97

RTS (d) [n.c.*] 5 · 104 −1010± 3** ≈ 6000** 15.38 15.89 15.98

Zhou (a) 1.1 1 · 105 −1035± 3 ≈ 5000 15.51 15.91 15.92
* not completed
** simulation length too short for a well-founded indication
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3.1. Simulation results

Model 7: Sine10-shaped nickel
concentration modulation (wavelength of 0.907 nm)

The model had 13500 atoms and cNi(x, y, z) = sin10 ( x
0.907nm π

)
· 0.8 + 0.1 (see fig-

ure 3.23), with a total nickel concentration of ≈ 0.304.

Lattice relaxation
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Figure 3.23.: Model 7: Nickel concentration
modulation in x-direction

The time evolution of energy and the
model edge lengths in the MC simula-
tions are depicted in figure 3.24.
Using the RTS-potential, the thermaliza-
tion of the crystal took about 4 million
Monte Carlo steps in total (see time evo-
lution in figure 3.24(a)), which is just un-
der 300 steps per atom. The total energy
averages out at E/N = −3.962 95(5) eV
per atom, the box dimensions at x1× x2× x3 = 57.45(3)× 59.94(3)× 59.92(2) Å3. As
for the integrated autocorrelation time regarding the energy time series, we obtain
τint(E) ≈ 2 · 105. The autocorrelation time τint(xi) is in the range of 5 · 106. Thus, the
simulation length was too short in order to provide reliable data here.
There were about 3 million thermalization steps needed in total (≈ 225 per atom)
with the Zhou-potential. The time evolution of the simulation is illustrated in fig-
ure 3.24(b). The total energy averages out at E/N = −4.0467(7) eV per atom, the
box dimensions at x1 × x2 × x3 = 58.09(7)× 59.82(5)× 59.89(6) Å3. Furthermore,
we have τint(E) ≈ 2.5 · 105 for the energy time series and τint(xi) ≈ 5 · 106 regarding
the box edge length again.
As for the Zhou-MD simulation, we used the output of the RTS-MC computation, av-
eraged over the time series excluding thermalization. The potential energy aver-
ages out at E/N ≈ −3.96 eV per atom. The box dimension can be indicated as
x1 × x2 × x3 ≈ 56.6× 63.7× 62.8 Å3, but these values do not specify the result well,
because the model differs greatly from a cuboid.

The output crystals after all three relaxation methods are illustrated in figure 3.25.
The MC-outputs are time averaged after equilibration, however, the MD-output is a
snap-shot at the simulation’s end, because the computation of the average has not
been caught up. Looking at the MD-output (figure 3.25(c)), we recognize displace-
ments of atoms as well as crystal bendings that are presumptively too severe to ac-
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Figure 3.24.: Model 7: Monte Carlo time evolution of box size and total energy

tually appear in a real crystalline bulk material without the presence of dislocations
(no proof by calculation of mechanical stresses). It seems very likely that the consid-
eration of p.b.c. along with the cuboid-shaped box of the model cause this simulation
behavior. In addition, we find irregularities in the [110]-direction which cannot be
explained. Most likely, the feature is another computational artifact.

(a) MC-relaxed, RTS-potential (b) MC-relaxed, Zhou-potential (c) MD-relaxed, Zhou-potential

Figure 3.25.: Model 7: Views of the crystal in the [001] zone axis after different relaxation
simulations; The grid size is 1 Å x 1 Å.
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2.4 2.6 2.8 3 3.2

co
u
n
ts

0

2000

4000

(a) MC, RTS-potential, Au-Au

distance / Å
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Figure 3.26.: Model 7: Histograms of nearest neighbor distances for MC and MD simulation
outputs; The equilibrium values are aAu ·

√
2/2 ≈ 2.885 Å for gold and aNi ·

√
2/2 ≈ 2.494 Å

for nickel.

Table 3.3.: Model 7: Statistical key data of the crystal after lattice relaxation
r̃ median
r sample mean
s2 sample variance
cv sample coefficient of variation
v sample skewness
µgf mean of Gaussian fit (uncertainty corresponds to the 95 % confidence bounds)
σ2

gf variance of Gaussian fit (uncertainty corresponds to the 95 % confidence bounds)
Relaxation

method
Bonding

atoms r̃/Å r/Å s2/Å2 cv v µgf/Å σ2
gf/Å2

MC (RTS-
potential)

Au-Au 2.8335 2.8321 0.0019 0.0153 -0.0861 2.834(1) 0.001 65(5)
Au-Ni 2.7641 2.7706 0.0076 0.0315 0.3529 2.760(5) 0.0093(9)
Ni-Ni 2.7321 2.7380 0.0041 0.0235 0.5263 2.729(2) 0.0044(3)

MC (Zhou-
potential)

Au-Au 2.8450 2.8450 0.0032 0.0198 0.0393 2.845(1) 0.003 19(3)
Au-Ni 2.7229 2.7345 0.0118 0.0397 0.4512 2.718(7) 0.014(2)
Ni-Ni 2.7444 2.7531 0.0055 0.0269 0.4948 2.741(3) 0.0059(5)

MD (Zhou-
potential)

Au-Au 2.8446 2.8463 0.0052 0.0252 0.3891 2.843(1) 0.004 52(7)
Au-Ni 2.7163 2.7377 0.0206 0.0524 0.5221 2.710(9) 0.022(3)
Ni-Ni 2.7260 2.7358 0.0091 0.0349 0.6669 2.722(3) 0.0083(5)
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3. Results and analysis

The nearest neighbor distances are graphed in figure 3.26. Some statistical key values
can be found in table 3.3. For the Zhou-MC simulation, it is quite interesting that the
mean distance between gold and nickel is lower than between nickel and nickel. This
coheres with the nature of the nickel impurities, i.e. many atoms in a plane. Say we
have a nickel-rich plane perpendicular to the x-direction and surrounded by parallel
nickel-poor planes. Then the planes come closer to each other because the Au-Ni
potential minima are at shorter distances than the minima for Au-Au bonds. On the
other hand, the nickel atoms cannot move closer together in the y- and z-direction
due to restoring forces arising from atoms in the neighboring planes and the p.b.c.

Model 8: Nickel concentration modulation in x-direction and a single (010)
lattice plane

The model had 13500 atoms and it features nickel substituents as follows:

• cNi(x, y, z) = sin2 ( x
0.907 nm π

)
· 0.4 + 0.3 for x ≤ 13aAu and y ≤ 0.5x + 5aAu, in

which the nickel atoms are randomly distributed in y- and z-direction.

• In addition, a single (010) lattice plane with cNi = 0.7 at y = 23 aAu
2 was re-

placed.

• The total concentration of nickel was ≈ 0.282.

Figure 3.27(a) clarifies how the model was designed. In terms of the nickel-yielding
planes, the drawing has a nickel concentration of up to 1 and, thus, is not identical to
the used model. Anyhow, the graphical representation depicts the special properties
of this model clearlier.

Lattice relaxation
The outputs are illustrated in the figures 3.27(b), 3.27(c) and 3.27(d).
There were about 13 million Monte Carlo steps needed for thermalization with the
RTS-potential (see time evolution in figure 3.28(a)), which is≈ 960 steps per atom.

• Total energy:
E/N = −3.930 81(5) eV per atom, τint(E) ≈ 250

• Box dimensions:
x1 × x2 × x3 = 59.35(2)× 58.61(3)× 60.13(3) Å3, τint(xi) ≈ 5 · 106
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3.1. Simulation results

(a) Input with perfect fcc lattice (not
identical to the model used in simulations,

see running text)

(b) MC-relaxed, RTS-potential

(c) MC-relaxed, Zhou-potential (d) MD-relaxed, Zhou-potential

Figure 3.27.: Model 8: Views of the crystal in the [001] zone axis before and after the relax-
ation simulations; The grid size is 1 Å x 1 Å.
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Figure 3.28.: Model 8: Monte Carlo time evolution of box size and total energy

Using the Zhou-potential, the thermalization of the crystal took about 10 million
steps in total (≈ 740 per atom). The time evolution is illustrated in figure 3.28(b).

• Total energy:
E/N = −4.0242(5) eV per atom, τint(E) ≈ 200

• Box dimensions:
x1 × x2 × x3 = 59.7(2)× 58.8(2)× 59.8(2) Å3, τint(xi) ≈ 5 · 106

The Zhou-MD simulation yields an average potential energy after equilibration of
E/N ≈ 3.83 eV per atom. It distorted the shape of the initial cube strongly, just as
we noticed for model 7, so that the box dimension can only roughly be stated as
59 .. 63× 62 .. 64× 66 .. 68 Å3.

The statistical key values for the nearest neighbor distances can be found in table 3.4.
Just as we determined for the previous model, the relaxations, especially the ones us-
ing the Zhou-potential, lead to lower gold-nickel distances when compared to nickel-
nickel.
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3.1. Simulation results

Table 3.4.: Model 8: Statistical key data of the crystal after lattice relaxation
r̃ median
r sample mean
s2 sample variance
cv sample coefficient of variation
v sample skewness
µgf mean of Gaussian fit (uncertainty corresponds to the 95 % confidence bounds)
σ2

gf variance of Gaussian fit (uncertainty corresponds to the 95 % confidence bounds)

Relaxation
method

Bonding
atoms

r̃/Å r/Å s2/Å2 cv v µgf/Å σ2
gf/Å2

MC (RTS-
potential)

Au-Au 2.8422 2.8404 0.0022 0.0165 -0.0554 2.844(1) 0.001 98(9)
Au-Ni 2.7362 2.7440 0.0066 0.0296 0.5021 2.733(2) 0.0063(2)
Ni-Ni 2.7376 2.7447 0.0042 0.0237 0.7172 2.735(1) 0.0035(2)

MC (Zhou-
potential)

Au-Au 2.8621 2.8607 0.0056 0.0262 -0.0563 2.863(3) 0.0065(4)
Au-Ni 2.6739 2.6906 0.0114 0.0397 0.8530 2.666(4) 0.0093(8)
Ni-Ni 2.7369 2.7471 0.0070 0.0304 0.7695 2.732(2) 0.0057(3)

MD (Zhou-
potential)

Au-Au 2.8475 2.8484 0.0064 0.0281 0.1272 2.848(1) 0.006 20(9)
Au-Ni 2.6490 2.6663 0.0132 0.0431 0.7846 2.641(4) 0.0109(9)
Ni-Ni 2.7123 2.7204 0.0084 0.0336 0.6645 2.709(2) 0.0071(3)
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3. Results and analysis

3.1.3. QSTEM images of relaxed models

After the relaxed crystals had been obtained, the results were handed over to QSTEM
and DF- as well as BF-images were produced.

It should be anticipated that in section 3.2, which deals with experimental results,
we will see that the images obtained from MC relaxations are quite good matches
for some regions in experimental images. The contrast patterns look qualitatively
very similar. Furthermore, the applicability of this particular MD simulation on both
models has to be scrutinized.

Model 7

(a) MC, RTS-potential (b) MC, Zhou-potential (c) MD, Zhou-potential

Figure 3.29.: Model 7: QSTEM HAADF images of MC- and MD-relaxed models, t ≈ 22.4 Å,
α = 19.6 mrad

Figure 3.29 shows QSTEM HAADF images of the relaxed model 7. We notice some
differences between the relaxation methods, which we partially recognized while
inspecting figure 3.25. Firstly, in contrast to the MC-results, the atom columns are
not well aligned in the MD-outputs. The image of the MD-relaxed model exhibits a
bright stripe in positive x- and negative y-direction, which is a few Å in width. Small
tilts lead to no better images, because the displacement of the atoms is random in all
directions such that an exact alignment is not possible. Secondly, the MC relaxation
using the Zhou-potential appears slightly more blurred when compared to the RTS-
potential.
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Figure 3.30.: Model 7 (MC-relaxed, RTS-potential): Absolute and relative HAADF-, BF-, and
ABF-intensity vs. mean atomic number for different thicknesses; Here, the relative intensity
is Irel := Iabs(Z)

Iabs(73.9)
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Figure 3.30 contains the analysis results regarding the RTS-MC-relaxed model 7.
The upper row of graphs depicts absolute HAADF-, BF-, and ABF-intensities ver-
sus mean atomic numbers for different thicknesses. In the lower row of graphs, the
ratios of the absolute intensities (for varying Z) with respect to the absolute intensity
for Z = 73.9 (cNi = 0.9) are plotted. The distribution of the nickel concentration val-
ues is not as uniform as it was in the scanning window for model 6. Similar trends
as in figure 3.14 can be observed, but a detailed comparison is not possible due to
the dissimilarity of the models. In addition, the systematic error of the method how
the intensity values are obtained rises for blurred, rotationally non-symmetric peaks
and/or double peaks, because the greyscale values within a circle around a given
peak are averaged. This error leads to a non-monotonous behavior of the intensities
with respect to the mean atomic number. On these grounds, the available data is not
sufficient for meaningful iso-intensity/-contrast plots either. The consistency of the
data gets even worse for the other relaxation methods.
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3. Results and analysis

Model 8

Figure 3.31 illustrates QSTEM HAADF images of the relaxed model 8. One can iden-
tify distinctive distortions in all three images. In the micrograph of the MD-relaxed
model (see figure 3.31(c)), surprisingly, the atom columns in z-direction are better
aligned when compared to the MD-relaxed model 7 (see figure 3.29(c)). Anyway,
this fact does not approve the validity of the MD-results. We can identify distinct
bending of the atom columns in the x- and y-direction, especially in the upper right
part of the image. The magnitude of the bending is a few degrees per nanometer,
which perhaps is unrealistically high.

(a) MC, RTS-potential (b) MC, Zhou-potential (c) MD, Zhou-potential

Figure 3.31.: Model 8: QSTEM HAADF images of the MC- and MD-relaxed models,
t ≈ 22.4 Å, α = 19.6 mrad
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3.1. Simulation results

3.1.4. QSTEM CBED images with small convergence angle

To top off the simulation activity, some coherent CBED simulations in the [001] zone
axis were produced. Using a very small convergence angle (0.01 mrad), the goal was
to approximate SAED recordings like the ones presented before in figure 2.4 (section
2.1) or later in figure 3.49 (section 3.2.2).

It was quite tricky to find out the optimal parameters for this purpose. It turned out
that in order to obtain patterns with distinct reflection spots, the model should not be
thicker than a few nanometers. Furthermore, it was necessary to periodically repeat
the models 7 and 8 along the x- and the y-direction, because the originals had a cross
section of about 60 x 60 Å2, which is too small to obtain feasible diffraction patterns.
In the end, the following settings were used:

• Convergence angle: 0.01 mrad

• Probe array: 600 pixels x 600 pixels

• Window size: 230× 230 Å2, leading to a resolution in q-space of ≈ 0.0043 Å−1

• No TDS runs

• Any other setting was identical to the STEM simulations (see section 3.1).

By means of the chosen succession in the presentation of the CBED images the forma-
tion of the [001] diffraction pattern of a spinodally decomposed Au-Ni alloy becomes
comprehensible. Just as before, when dealing with QSTEM images in real space, the
models get more and more complex in terms of the nickel impurities in the gold
matrix.

Figure 3.32 shows two CBED image, one of model 1, which is a pure gold crystal, and
one of model 4a, in which every fourth plane perpendicular to the [100] direction
is pure nickel. Looking at the pattern of model 1, we can identify the following
diffraction spot "groups":

(1) 200, 220, 020, 220, ...

(2) 110, 110, ...

(3) 310, 130, ...

An inspection of the reflections yielded G200 = 0.491(4) Å−1, corresponding to
d200 = 2.04(2)Å, which is a good approximation for the half of the model lattice
constant aAu,model/2 = 2.03947 Å. The pattern of the unrelaxed model 4a features

63



3. Results and analysis

qx / Å−1
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(b) Model 4a, perfect fcc lattice, t ≈ 2.2 nm

Figure 3.32.: QSTEM coherent CBED images of the unrelaxed models 1 and 4 in the [001]
zone axis

distinct satellites next to all the fundamental reflections mentioned above. The dis-
tance of the satellites from the fundamental spots is q = 0.122(4) Å−1, which corre-
sponds to a nickel concentration modulation wavelength of λ = 8.2(3)Å. The actual
value is 2 · aAu,model = 8.15788 Å.

In figure 3.33, CBED images for the unrelaxed as well as an Zhou-MC-relaxed ver-
sion of model 7, which has a sine10-modulation of the nickel concentration along the
[100] direction with a wavelength of λ = 9.07 Å, are depicted. The fundamental spot
group (1) and the associated satellites become less distinctive, because weak inten-
sities occur almost everywhere between these spots. After relaxation, they get more
diffuse. The spot groups (2) and (3) can hardly be seen in the patterns, especially spot
group (2) in the one belonging to the relaxed model. This is not associated with the
increase in thickness compared to models 1 and 4 (not demonstrated by additional
figures here).

As for model 8 (see figure 3.34), which has a sine2-modulation along the [100] di-
rection and one Ni plane perpendicular to [010], all the spots are more diffuse in
comparison to model 7. In the CBED image of the relaxed model the spot group (2)
completely disappears. The spot group (1) and their satellites become even more
diffuse and are almost smelted with each other.
In anticipation of the SAED recording in the experimental section 3.2 note that the
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3.1. Simulation results

CBED image in figure 3.34(b) is not an exact match of the experiment by any means,
but it is not a bad counterpart.
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Figure 3.33.: Model 7: QSTEM coherent CBED images in the [001] zone axis before and after
the MC-relaxation using the Zhou-potential, t ≈ 6.1 nm
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Figure 3.34.: Model 8: QSTEM coherent CBED images in the [001] zone axis before and after
the MC-relaxation using the Zhou-potential, t ≈ 6.1 nm
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3. Results and analysis

3.2. Experimental results

In contrast to the previous section, the figure captions in this one sometimes contain comple-
mentary evaluation which is not always repeated in the floating text. This should help the
reader to find specific information where he or she would intuitively seek for it.

Two different gold-nickel specimens with cNi = 0.291 at% were investigated. Both
had been repeatedly melted and quenched, whereupon they had been homogenized
at approximately 900 ◦C (solid state) and quenched again. They were dissimilar in
terms of aging16 and the (S)TEM preparation process:

1. aged for 10 hours at 150 ◦C, final thinning process via electropolishing

2. aged for 20 hours at 150 ◦C, final thinning process via conventional broad ion
beam (BIB) milling with Argon ions

They varied greatly from each other, both in terms of preparation artifacts and con-
trast. The resulting image quality of the ion-thinned specimen was pretty poor when
compared to the electrolytically thinned one. The high-resolution lattice images were
significantly more blurred and the spinodal decomposition’s effect could not be seen
that distinctively, neither in STEM images nor in SAED recordings. The investigation
of the electrolytically thinned specimen was by far more successful, the image qual-
ity was superior and the image analysis led to much more accurate results. Thus,
images of the ion-thinned specimen and the associated analysis are omitted here.

The STEM images have been taken with a probe Cs
17 corrected FEI Titan3 G2 60-300

with a probe diameter of ≈ 0.7 Å (FWHM). An acceleration voltage of 300 kV was
used. The nominal camera length for the Fischione FEI HAADF detector was set to
91 mm, which led to an HAADF collection semi-angle of β = 62.2 .. 214 mrad. The
convergence semi-angle was α = 19.6 mrad.
As for TEM and SAED imaging, an FEI Tecnai G2 FEG HRTEM has been used. The
acceleration voltage was set to 200 kV.

Note that, for all presented (S)TEM images, the implementation into this document
is non-loss-free due to data size issues, but the analysis of any greyscale values has
been processed on the loss-free originals.

16to activate of the spinodal decomposition mechanism
17coefficient of third order spherical aberration
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3.2. Experimental results

3.2.1. STEM micrographs

(a) (b)

Figure 3.35.: HAADF-STEM micrographs of an electrolytically thinned Au70.9Ni29.1 speci-
men at low magnifications

(a) (b)

Figure 3.36.: HAADF- and BF-STEM micrograph of an electrolytically thinned Au70.9Ni29.1
specimen at medium magnification; (a) is an HAADF image, (b) is the BF image belonging
to (a).
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An HAADF-STEM image of the electrolytically thinned specimen at low magnifi-
cation is illustrated in figure 3.35(a). It shows a hole stemming from the prepara-
tion process and the edge zones next to it. The region in the lower left corner is
depicted in another HAADF-STEM micrograph at a bit higher magnification (see
figure 3.35(b)). Figure 3.36 contains an HAADF- and the corresponding BF-STEM
micrograph of the specimen at medium magnification. The individual features and
the explanation of the contrast visible on these length scales were not topic of this
work.

(a) (b)

Figure 3.37.: HAADF- and BF-STEM micrographs of a 46 x 46 nm2 specimen region, zone
axis [001]; (a) HAADF image, (b) BF image

In figure 3.37, an HAADF- and the corresponding BF-HRSTEM lattice image in the
[001] zone axis are pictured. They show the spinodal decomposition in the crystallo-
graphic directions [100] and [010] distinctly. In the HAADF image, the dark stripes
in these directions, which are about 0.2 nm in width, correspond to nickel-rich re-
gions. They appear as bright stripes in the BF image.
The bright-dark variations on larger length scales can be split into two distinguish-
able phenomenons. First, bright and dark stripes in the 〈110〉-directions are visible,
which are a few nanometers in width. They are not topic of this work. Second, there
appear generally bright and dark areas on a length scale of or above 10 nanome-
ters. This effect is even more pronounced in figure 3.38(a), which shows an HAADF-
HRSTEM image of another specimen region at a bit worse resolution. The obvious
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10 nm

(a) (b)

Figure 3.38.: (a) HAADF-STEM micrograph of a 46 x 46 nm2 specimen region, zone axis [001],
and (b) relative thickness map of the marked section stemming from a t/λ - measurement

question is whether we see thickness contrast or not. On this account, a t/λ - mea-
surement18 was performed. The relative thickness map of the section marked in fig-
ure 3.38(a) is shown in figure 3.38(b). It reveals that the variously bright appearing
areas do not coincide with differently thick areas.

Thickness estimation

Additionally, the absolute thickness of this specimen region can approximately be
determined. From the corresponding EELS spectrum (no figure) an average relative
thickness of t/λ f ≈ 1.17 was calculated. The theoretical inelastic mean free path
estimation is λ f = 69 nm for 100 % Au, λ f = 95 nm for 100 % Ni, and λ f = 74 nm for
a homogeneous phase of 70 % Au and 30 % Ni. Due to the spinodal decomposition
mechanism the examined specimen exhibits no homogeneously mixed phase in the
common sense. Knowing that, the average thickness of this specimen region can
only roughly be estimated at between 80 and 110 nm.

18thickness over inelastic mean free path
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3. Results and analysis

FFT analyis

(a) (b)

Figure 3.39.: (a) HAADF-STEM image of a 64 x 64 nm2 specimen region, zone axis [001], and
(b) IFFT of the (000)-satellites in the associated FFT, which is depicted in figure 3.40.

Figure 3.39(a) shows another HAADF-HRSTEM image in the [001] zone axis. By
means of the FFT of images like this one, we can derive some important things.

(020)

(200)

satellites

Figure 3.40.: FFT of the HAADF image
in figure 3.39

The FFT image of figure 3.39(a), which is de-
picted in figure 3.40, exhibits satellites near the
spatial frequencies corresponding to the reflec-
tions (000), (200), (020), (220), ..., in experimen-
tal diffraction patterns. They are caused by the
periodic intensity variations, the concentration
modulation respectively, with a wavelength in
the range of 1 nm. The spots and their satel-
lites are blurry because the wavelength varies,
which has two reasons. On the one hand, the
number of gold-rich planes in between two
nickel-rich planes in the directions [100] and
[010] fluctuates, and on the other hand, the

nickel atoms lead to lattice distortions.
Some features of the specimen can superiorly be visualized by means of the in-
verse transform of some spots in the FFT. Figure 3.39(b) shows the IFFT of the (000)-
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(a) (b)

Figure 3.41.: (a) 13 x 13 nm2 section of the HAADF-STEM image of figure 3.39(a) and (b)
IFFT of the fundamental spots (200), (020), (200), (020) and their satellites in the FFT image
of figure 3.40

satellites. It reduces the original image to the concentration variation pattern. Addi-
tionally, a smaller region of the image in figure 3.39(a) is enlarged in figure 3.41(a).
In the IFFT of the fundamental {200}-spots and their satellites (see figure 3.41(b)), the
lattice distortions become visible more clearly.
Furthermore, there are spots in the FFT image that would in principle correspond to
(110), (110), ..., reflections. These spatial frequencies do occur in the 2D image of an
fcc structure in the [001] zone axis and we will see them later in an SAED image as
well. The {110}-reflections are forbidden only for undisturbed fcc crystals without
substitutional foreign atoms (see e.g. Williams & Carter (1998, ch. 16.3ff, p. 259ff)).
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3. Results and analysis

Gold-nickel contrast quantification

10 nm

1

2

3

Figure 3.42.: HAADF-STEM micrograph of a 33 x 33 nm2 specimen region, zone axis [001];
Line profiles of the areas marked in orange (solid rectangles) are shown in figure 3.43, a
detailed peak analysis of the section marked in green (dashed square) is illustrated in fig-
ure 3.44.

Figure 3.42 shows an HAADF-HRSTEM micrograph of another specimen region in
the [001] zone axis. The image has a particularly high resolution (in the range of 1 Å)
and some regions in which the bright-dark variations on larger length scales can be
neglected were carefully examined.

First, line profiles were created and analyzed. These are shown in figure 3.43.
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(b) Line Profile 2
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(c) Line Profile 3

Figure 3.43.: Line profiles of the three areas marked in figure 3.42; The vacuum level was
Ivac = 42.0± 0.5 arb. u. on this scale.
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3. Results and analysis

In agreement with former research, they affirm a wavelength in the nickel concen-
tration modulation between 0.8 and 1.2 nm in these specimen regions. An in-depth
analysis leads to mean HAADF intensity ratios of I?low/I?high = 0.91(4), 0.90(3), and
0.92(3) for the lines profiles 1, 2, and 3, where I? = I − Ivac. This corresponds to
Cln = ln I?low

I?high
= −0.10(4),−0.11(3), and −0.09(3) according to equation (2.2). A

t/λ - analysis has not been carried out for this specimen region, anyway, the average
thickness should be in the range between 50 and 90 nm. If we assumed a thickness of
about 60 nm, we would be able to directly compare these results to the iso-contrast
plot in figure 3.16. We could state that the concentration difference between the
columns should be roughly

∆cNi = chigh − clow = 0.25(10). (3.1)

Assuming this specimen region’s composition is representative in terms of the total
nickel concentration (ctot

Ni = 0.291), since the average wavelength of the modulation
is approximately 5 times the distance between (200) planes, we would find

4clow + chigh

5
= 0.291. (3.2)

Combining these equations and solely taking uncertainties into account that propa-
gate from wavelength and concentration difference, we could state chigh

Ni = 0.49(13)
and clow

Ni = 0.24(13).

Second, the peak detection and quantification code described in section 2.4 was ap-
plied to a 4 x 4 nm2 section of the micrograph in figure 3.42. The sequential condition-
ing of the image data is illustrated in figure 3.44. To begin with, the mean vacuum
level was subtracted, which leads to the image displayed in figure 3.44(a). Then, a
Patch-PCA noise filter was applied, which resulted in a better distinguishability of
the peaks (see figure 3.44(b)). After that, the Voronoi segmentation was performed
and the peaks were quantified. As we recognize by means of the Voronoi diagram
(see figure 3.44(c)), the peak detection works fantastically for images in which the
peaks are that well separated from each other. The blue and turquoise circles cor-
respond to supposedly nickel-rich columns, the orange and red ones to gold-rich
columns. A rough contrast analysis can be made on the basis of Voronoi diagram
and histogram (see figure 3.44(d)). Nickel-rich atom columns feature an intensity of
INi-rich ≈ 4.1 .. 4.7, whereas gold-rich columns have an intensity of IAu-rich ≈ 5.3 .. 5.9.
Thus, we obtain an intensity ratio range of 0.7 .. 0.9 and Cln = −0.36 .. − 0.10. Cross-
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3.2. Experimental results

checking these results with the iso-contrast plot in figure 3.16, we could suppose
that the nickel concentration should be above 0.9 in the darkest and below 0.1 in the
brightest atom columns.
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(a) Unfiltered image; The mean vacuum
intensity was subtracted.
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(b) Patch-PCA filtered image
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(c) Voronoi diagram after peak detection; The white
dots are the locations of the maxima, the white lines

separate the Voronoi cells, the coloured circles
indicate the area for which the intensity was

averaged.
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(d) Histogram of normalized
integrated peak intensity

Figure 3.44.: Peak detection and quantification of the 4 x 4 nm2 image section marked in
figure 3.42; The normalized integrated intensity in (c) and (d) is the average intensity value
within a circle around a given peak. This is more meaningful than the sum of all intensities
within a circle, because, to some extent, the normalization compensates for the systematic er-
ror that occurs if the cell boundaries are closer to a given peak than the maximum summation
radius, especially important for peaks next to the image margins.
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3. Results and analysis

The values obtained by the different methods do not match exactly, but, in principle,
their ranges are astoundingly plausible. Nevertheless, the subjunctive was used in
order to pronounce the possible lack of correctness. The denoted values have to
be regarded with suspicion, because the contrast in experimental images may be
influenced by diverse non-eliminated parameters. This circumstance is carved out
in section 4.2.

Influence of the signal-processing parameters ‘Contrast’ and ‘Brightness’

In order to verify the relationship IADC(C, B) = IDET · kC · C + kB · B − ∆I0 accord-
ing to equation (2.4), the same region of the electrolytically thinned specimen was
recorded multiple times, each time with an individual pair of the parameters ‘Bright-
ness’ B and ‘Contrast’ C. After applying a specimen drift correction to the image
stack, the grey scale values were evaluated. The maximum, the minimum and the
average grey scale values in dependence of the parameters B and C are depicted in
figure 3.45. They are all not monotonously increasing as a function of C for constant
B, and they grow for a step in ‘Brightness’ from B = 0.35 → 0.3 and an unchanged
‘Contrast’ value C = 0.55. Thence, neither an offset in compliance with kB · B nor a
multiplier as per kC · C could be ascertained.

settings ’Brightness’ and ’Contrast’

B = 0.35

C = 0.45

B = 0.35

C = 0.50
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Figure 3.45.: Maximum, minimum and average grey
scale value for the image series regarding the signal-
processing parameters contrast and brightness

This result does not allow us to
affirm or contradict the linear
relation between IADC and IDET

by means of the obtained data.
Regardless of the unsuccessful
confirmation, note here that, in
the contrast quantification pre-
sented before, it was presumed
that equation (2.4) would hold
true if both the detector signal
as well as the ADC input were

neither over- nor undersaturated. There was no better way of eliminating the effects
of the ‘Brightness’ B and the zero-point offset ∆I0 on intensity ratios in images than
the subtraction of the mean vacuum intensity for the same values B and C.
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[011] zone axis

Figure 3.46.: HAADF-STEM micrograph of a 23 x 23 nm2 specimen region, zone axis [011];
The associated FFT is depicted in figure 3.47(a).

To round the HAADF-STEM imaging of this specimen up, figure 3.46 shows an
HAADF-HRSTEM lattice images in the [011] zone axis and the spinodal decomposi-
tion in the crystallographic direction [100], which becomes evident by means of the
FFT depicted in figure 3.47(a) and the theoretical diffraction pattern in figure 3.47(b).
For 300 keV - electrons and this lattice constant, the theoretical distance to the Laue
circle center is 4.90323 nm−1 for the spots (200) and (200), and 4.24633 nm−1 for the
spots (111), (111), (111), and (111).
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(a)

111 111
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022 222
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(b)

Figure 3.47.: (a) FFT of the HAADF-STEM image in figure 3.46 and (b) the corresponding
computed diffraction pattern of an fcc lattice with a parameter of 0.407894 nm in the zone
axis [011]
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3.2.2. TEM and SAED images

Figure 3.48.: ZL energy-filtered BF-TEM image of a 45 x 45 nm2 specimen region in the zone
axis [001]

The contrast pattern stemming from the spinodal decomposition mechanism is also
perceivable in the ZL filtered BF-HRTEM image of the electrolytically thinned speci-
men (see figure 3.48). An SAED image and an associated line profile including Gaus-
sian fits are illustrated figure 3.49. The evaluation yielded the following:

• The distance between the main reflections (000), (200), (020), (220), ..., is q13 =

G200 = 4.9(2) nm−1, which corresponds to d200 = 0.204(8) nm. Since the nickel
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3. Results and analysis

impurities lead to lattice distortions, this result including the uncertainty is
excellently consonant with our expectations.

• Taking into account mean values and standard deviations of the Gaussian fits
and their large uncertainties, the distance of the main reflections and their dif-
fuse satellites is q12 = 0.4 .. 1.1 nm−1, which leads to a wavelength in the nickel
concentration modulation of λ = 0.9 .. 2.5 nm.

(a) SAED recording, gamma-corrected with γ = 1.5 in
order to make the {110}-reflections visible to the naked eye;
The line profile in (b) corresponds to the uncorrected image.
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Figure 3.49.: SAED recording in the zone axis [001] and line profile
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4.1. Summary

Various models with differently arranged substitutional nickel atoms in the gold ma-
trix were created and multislice simulations for imaging in the [001] zone axis were
carried out via QSTEM. The changes in the simulated HAADF-, BF-, and ABF-STEM
images caused by variations of model thickness, nickel impurity, and convergence
angle of the incident electron beam were analyzed. The used total collection angle
range of the HAADF detector was split into smaller sectors, for which the detected
intensities were separately investigated.

The multislice simulation results show a non-linear behavior of the BF/HAADF sig-
nal as a function of thickness. They indicate that the thinner the specimen, the better
the obtained relative BF/HAADF thickness contrast. Vividly explained, this means
that the intensity ratio between specimen regions that are 25 and 20 nm thick is
higher than for regions 50 and 40 nm in thickness. ABF signals feature oscillating
behavior as a function of thickness.
The angular distribution of the electrons scattered by gold atom columns and hitting
the HAADF detectors is concentrated in the semi-angle of collection ranges from
85.0 to 108.0, from 131.0 to 142.5, and from 165.5 to 177.0 mrad. As for nickel atom
columns, distinct peaks were detected for the ranges from 96.5 to 108.0 and from
131.0 to 142.5 mrad.
The semi-angle of convergence has a strong influence on absolute intensities for all
investigated detectors, whereas the contrast between gold and nickel remains exten-
sively unaffected.
The gold-nickel contrast heavily depends on the model’s thickness. It is best for thin
models and monotonously gets worse with increasing thickness. An approximate
thickness value for which any contrast between pure gold and pure nickel disap-
pears cannot be ascertained from the simulation data, because the time consumption
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of simulations would have been too large for thicknesses above 60 nm. The absolute
HAADF-intensity as a function of the mean atomic number is largely linear, so the
Z-contrast obtained from the performed QSTEM simulations is well in accordance
with theory concerning incoherent scattering from inhomogeneous atom columns.
The effects of a given atom column on its neighboring ones are negligible in the in-
vestigated thickness range (up to 60 nm).

The applied alloy relaxation methods reduce the elongation of the gold-nickel mod-
els especially perpendicular to nickel-rich planes, which conforms to expectations.
The exact amount of distortion has not been cross-checked with appropriate (S)TEM
images or dilatation experiments in the scope of this work. The results stemming
from Monte Carlo simulations using the embedded atom model potential accord-
ing to Zhou et al. (2001) lead to QSTEM HAADF images that visually appear quite
similar to some sections in experimental HAADF micrographs (see figure 4.1).

(a) Simulated QSTEM HAADF
(β = 73.5 .. 200 mrad) image of an

MC-relaxed Au-Ni model in the [001]zone
axis. The model had a sine-squared-shaped

nickel concentration modulation in
[100]-direction (ctot

Ni = 0.48 at%) and a
thickness of 57.6(1) nm.
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(b) Experimental HAADF-STEM
(β = 62.2 .. 214 mrad) image of a Au-Ni specimen

in the [001]zone axis. The specimen had a total
nickel concentration of 0.291 at% and a thickness

of 70(20) nm. It had been fabricated in such a
way that spinodal decomposition occurs.

Figure 4.1.: Juxtaposition of a simulated and an experimental HAADF-STEM image

Experimentally, BF-STEM, HAADF-STEM, BF-TEM, and SAED images of a spin-
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odally decomposed Au-Ni specimen were taken. The spinodal decomposition mech-
anism was made visible in the crystallographic 〈100〉-directions, by means of all
mentioned methods. The spatial resolution of the obtained HAADF-STEM lattice
images in combination with the superior specimen quality were sufficient to per-
form a computer-aided analysis of the contrast between individual atom columns.

4.2. Uncertainties regarding the comparability of

simulation and experiment

A direct contrast comparison between simulated and experimental images can be
made with the applied, partially newly developed methods, but a well-assured com-
position determination of the atom columns is not achievable for a variety of reasons.
There are a few main causes to be emphasized:
First, there is a lack of simulation data because extensive simulation series for mod-
els greater than 50 nm in thickness and scanning regions larger than a few square
nanometers with pixel sizes in the sub-angstrom range take several months to be ac-
quired with the hardware available for this work and the used software. A trade-off
between the quoted quantities had to be made in order to stay within a reasonable
computational effort.
Second, the reliability of multislice simulation results has not been experimentally
evaluated and validated to the full extent. Therefore, inductive conclusions based
on imprecise individual results can mislead to potentially wrong general laws.
Third, there are major discrepancies between the idealized model and simulation
conditions and their physical counterparts. In an experimental STEM setup, many
factors are present that prevent the construction of a situation that is similar to the
idealized simulation configuration. Regarding the specimen, the influences of prepa-
ration and/or beam damage, irregular thickness variations, and contamination lay-
ers – just to name a few properties not matching the used models – make a depend-
able comparison very difficult. Regarding the microscope, it is not self-evident that
beam current fluctuations and/or specimen drift do not get too high during a mea-
surement. In order to make quantitative statements reliable, requirements that cur-
rently are hardly satisfiable have to be met.
Fourth, the acquisition of precise thickness maps for experimentally captured spec-
imen regions could not be realized. The obtained thickness estimations are tainted
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with large uncertainties. In addition, the signal-processing parameters ‘Brightness’
and ‘Contrast’, which can arbitrarily be adjusted by the microscope operator before
capturing a micrograph on the used STEM, change intensity ratios. While in theory
it is possible to get rid of the parameter ‘Brightness’ by subtracting the mean vac-
uum level for the same settings, which improves the signal-to-noise ratio and makes
intensity ratios independent of ‘Contrast’, the influences of both parameters could
not be decrypted accurately in practice.

Nevertheless, based upon the acquired simulation data, the concept of an iso-contrast
plot (see figure 3.16) has been demonstrated, which may become particularly use-
ful if further improved and reviewed with care. The comparison with experimen-
tally observed contrast values, which have been deliberately conditioned, looks very
promising.

4.3. Outlook

Overall, the simulation activity produced roughly 35.000 images of various gold-
nickel alloy models, of which about 20.000 were analyzed. A big part of this work’s
output are the developed approaches to create and analyze lattice imaging simula-
tions.

The sequential approach of simulations to the experiment was more or less success-
ful. The developed code to perform lattice relaxations of inhomogeneously mixed
alloys using a Monte Carlo algorithm delivers reasonable results, however, in order
to reliably verify the method, dilatation experiments of similar physical specimens
are definitely required. Another issue is the computational effort of the code. Several
improvements need to be done to make extensive usage in the future expedient.

Although very challenging, simulation concepts that include more non-ideal speci-
men and microscope properties could bring us one step closer to concentration quan-
tification via STEM imaging. To broaden a well-grounded quantitative contrast com-
parability between simulated and experimental images, further elaborate improve-
ments both on the experimental as well as on the simulation side are needed. A small
step towards and on the road to quantitative composition determination on the basis
of HAADF-STEM contrast has been taken, but there is still a long way to go.
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Appendix

A. Code snippets

A.1. Julia

Listing A.1: Code segment: Predefinition of constants

1 #= Constants =#

2 kB = 1.38064852E-23; # in J/K; Boltzmann constant (NIST)

3 eC = 1.6021766208E-19; # in C; Elementary charge

4 kBeV = kB/eC; # in eV

5 P = 101325; # in Pa; Average value of virial pressure, which is equal

to normal pressure (NIST).

6 PeVperA3 = P*1E-30 / eC; # in eV/A^3

7 Temp = 293.15; # in K; Normal temperature (NIST)

8 beta = 1/(kBeV*Temp);

Please note that following script will not run as it is. Some variables have to be
declared and set beforehand. Furthermore, the input arguments to the energy calcu-
lation functions are truncated.

Listing A.2: Code segment: Single Monte Carlo step

1 #= Randomly choose an atom or go for a box size adjustment.

2 With ideas from the book by Frenkel and Smit (2002, p.121ff) =#

3 # Set a probability for a box size modification

4 pMCvol = 3/nPart; # Decide whether probability is appropriate

5 if FixateEdgeLengthRatio

6 pMCvol /= 3;

7 end

8 # Choose a random atom

9 N = nPart / (1-pMCvol);

10 atom = round(Integer,floor(rand()*N)+1);

11
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12 #= Single MC step (put this into a loop to perform more steps) =#

13 if atom > nPart

14 ## Box size modification is proposed

15 # Total energy calculation of old coordinates

16 if potential == "RTS"

17 E1 = EPOT_RTS(coords, ...);

18 elseif potential == "Zhou"

19 E1 = EPOT_Zhou(coords, ...);

20 end

21

22 # Random walk in logarithmic volume space,

23 # either for a single direction or for all 3 directions

at the same time

24 V0 = L[1]*L[2]*L[3];

25 lnV0 = log(V0);

26 if FixateEdgeLengthRatio

27 dlnV = log(dVrelmax);

28 else

29 dlnV = log(dVrelmax^(1/3));

30 end

31 lnVn = lnV0 + (rand()-0.5) * 2 * dlnV;

32 Vn = exp(lnVn);

33 ratio_1D = Vn/V0;

34 if FixateEdgeLengthRatio

35 ratio_1D ^= 1/3;

36 L *= ratio_1D;

37 coords *= ratio_1D;

38 else

39 direction = rand(1:3);

40 L[direction] *= ratio_1D;

41 coords[direction,:] *= ratio_1D;

42 end

43

44 # Total energy calculation of new coordinates

45 if potential == "RTS"

46 E2 = EPOT_RTS(coords, ...);

47 elseif potential == "Zhou"

48 E2 = EPOT_Zhou(coords, ...);

49 end

50 arg = E2-E1 + PeVperA3*(Vn-V0) - (nPart+1)*log(Vn/V0)/beta;

51

52 # Metropolis decision

53 if exp(-beta*arg) < rand()
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54 # rejected

55 if FixateEdgeLengthRatio

56 coords /= ratio_1D;

57 L /= ratio_1D;

58 else

59 coords[direction,:] /= ratio_1D;

60 L[direction] /= ratio_1D;

61 end

62 NskippedV += 1;

63 else

64 NacceptedV += 1;

65 println(string("Box size changed to ",Vn, " A^3"));

66 end

67 else

68 ## Displacement of a single atom is proposed

69 # "Single atom" energy calculation of old coordinates

70 if potential == "RTS"

71 E1 = EPOT_RTS_sgl(atom, coords, ...);

72 elseif potential == "Zhou"

73 E1 = EPOT_Zhou_sgl(atom, coords, ...);

74 end

75 rnew = 2*drmax.*(rand(nDim)-0.5);

76 coords[:,atom] = coords[:,atom] + rnew;

77

78 # "Single atom" energy calculation of new coordinates

79 if potential == "RTS"

80 E2 = EPOT_RTS_sgl(atom, coords, ...);

81 elseif potential == "Zhou"

82 E2 = EPOT_Zhou_sgl(atom, coords, ...);

83 end

84 arg = E2-E1;

85

86 # Metropolis decision

87 if arg < 0

88 Naccepted += 1;

89 elseif exp(-arg*beta) > rand()

90 Naccepted += 1;

91 else

92 coords[:,atom] = coords[:,atom] - rnew;

93 Nskipped += 1;

94 end

95 end
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Listing A.3: Function: Total energy calculation using the RTS-potential

1 function EPOT_RTS(coords, AtomTypes, cutoff_rel, a, eps, m, n, c, d, L,

pbcFlag)

2 # init

3 nPart = size(coords,2);

4 V = 0;

5 rho = zeros(nPart);

6 F = 0;

7

8 # Calculate RHO and PHI with cutoff

9 for partA = 1:nPart-1

10 typeA = AtomTypes[partA]; # 1 or 2

11 typeA = Integer(typeA);

12 for partB = (partA+1):nPart

13 typeB = AtomTypes[partB]; # 1 or 2

14 typeB = Integer(typeB);

15 r = coords[:,partA] - coords[:,partB];

16 if pbcFlag == true

17 # Fix according to periodic boundary

conditions

18 r = distPBC3D(r,L);

19 end

20 norm_r = sqrt(dot(r,r));

21

22 if typeA != typeB

23 indx = 3;

24 else

25 indx = typeA;

26 end

27 cutoff = cutoff_rel * a[indx];

28

29 if norm_r < cutoff

30 aux1 = a[indx]/norm_r; # auxiliary

variable 1

31 aux2 = aux1^(m[indx]);

32 rho[partB] += aux2;

33 rho[partA] += aux2;

34 V += eps[indx] * aux1^n[indx];

35 end

36 end

37 F -= eps[typeA]*c[typeA]*sqrt(rho[partA]);

38 end
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39 E = F + V;

40 return E, V, F

41 end

Listing A.4: Function: "Single atom energy" calculation using the RTS-potential

1 function EPOT_RTS_sgl(indx_part, coords, AtomTypes, cutoff_rel, a, eps,

m, n, c, d, L, pbcFlag)

2 typeA = AtomTypes[indx_part];

3 typeA = Integer(typeA);

4 # init

5 nPart = size(coords,2);

6 V = 0;

7 rho = 0;

8 F = 0;

9

10 # Calculate RHO and PHI with cutoff

11 for partB = 1:nPart

12 if partB == indx_part

13 continue;

14 end

15 typeB = AtomTypes[partB]; # 1 or 2

16 typeB = Integer(typeB);

17 r = coords[:,partB] - coords[:, indx_part];

18 if pbcFlag == true

19 # Fix according to periodic boundary conditions

20 r = distPBC3D(r,L);

21 end

22 norm_r = sqrt(dot(r,r));

23

24 if typeA != typeB

25 indx = 3;

26 else

27 indx = typeA;

28 end

29 cutoff = cutoff_rel * a[indx];

30

31 if norm_r < cutoff

32 aux1 = a[indx]/norm_r; # auxiliary variable 1

33 rho += aux1^m[indx];

34 V += eps[indx] * aux1^n[indx];

35 end

36 end

37 F -= eps[typeA]*c[typeA]*sqrt(rho);
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38 E = F + V;

39 return E, V, F

40 end

Listing A.5: Function: Total energy calculation using the Zhou-potential

1 function EPOT_Zhou(coords, AtomTypes, cutoff_rel, r_e, f_e, rho_e,

rho_s, alpha, beta, A, B, kappa, lambda, G_n, G, eta, G_e, L,

pbcFlag)

2 # init

3 nPart = size(coords,2);

4 rho = zeros(nPart);

5 phi = 0;

6 F = 0;

7

8 # Calculate RHO and PHI with cutoff

9 for partA = 1:nPart-1

10 typeA = AtomTypes[partA]; # 1 or 2

11 typeA = Integer(typeA);

12 for partB = (partA+1):nPart

13 typeB = AtomTypes[partB]; # 1 or 2

14 typeB = Integer(typeB);

15 r = coords[:,partA] - coords[:,partB];

16 if pbcFlag == true

17 # Fix according to periodic boundary

conditions

18 r = distPBC3D(r,L);

19 end

20 norm_r = sqrt(dot(r,r));

21

22 if typeA != typeB

23 PseudoLatticePar = sqrt( r_e[typeA] *

r_e[typeB] );

24 else

25 PseudoLatticePar = r_e[typeA];

26 end

27 cutoff = cutoff_rel * PseudoLatticePar / sqrt

(2) * 2;

28

29 if norm_r < cutoff

30 aux1 = norm_r/r_e[typeA]; # auxiliary

variable 1

31 h_alpha_A = exp( -alpha[typeA] * (aux1

-1) );
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32 h_beta_A = exp( -beta[typeA] * (aux1-1)

);

33 D_lambda_A = 1 + (aux1 - lambda[typeA])

^20;

34 D_kappa_A = 1 + (aux1 - kappa[typeA])

^20;

35

36 f_A = f_e[typeA] * h_beta_A /

D_lambda_A;

37 phi_A = A[typeA] * h_alpha_A /

D_kappa_A - B[typeA] * h_beta_A /

D_lambda_A;

38

39 rho[partB] = rho[partB] + f_A;

40

41 if typeA != typeB

42 aux1 = norm_r/r_e[typeB]; #

auxiliary variable 1

43 h_alpha_B = exp( -alpha[typeB]

* (aux1-1) );

44 h_beta_B = exp( -beta[typeB] *

(aux1-1) );

45 D_lambda_B = 1 + (aux1 - lambda

[typeB])^20;

46 D_kappa_B = 1 + (aux1 - kappa[

typeB])^20;

47

48 f_B = f_e[typeB] * h_beta_B /

D_lambda_B;

49 phi_B = A[typeB] * h_alpha_B /

D_kappa_B - B[typeB] *

h_beta_B / D_lambda_B;

50

51 rho[partA] = rho[partA] + f_B;

52 phi = phi + (f_B/f_A * phi_A +

f_A/f_B * phi_B)/2;

53 else

54 rho[partA] = rho[partA] + f_A;

55 phi = phi + phi_A;

56 end

57 end

58 end

59 if rho[partA] >= 1.15*rho_e[typeA]
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60 x = rho[partA]/rho_s[typeA]; # auxiliary

61 F = F + G_e[typeA] * (1 - log(x)^eta[typeA]) *

x^eta[typeA];

62 else

63 if rho[partA] < 0.85*rho_e[typeA]

64 x = G_n[:,typeA]; # auxiliary

65 y = (rho[typeA]/0.85/rho_e[typeA]-1)

.^[0; 1; 2; 3]; # auxiliary

66 else

67 x = G[:,typeA]; # auxiliary

68 y = (rho[typeA]/rho_e[typeA]-1).^[0; 1;

2; 3]; # auxiliary

69 end

70 F = F + sum(x.*y);

71 end

72 end

73 E = F + phi;

74 return E, phi, F

75 end

Listing A.6: Function: "Single atom energy" calculation using the Zhou-potential

1 function EPOT_Zhou_sgl(indx_part, coords, AtomTypes, cutoff_rel, r_e,

f_e, rho_e, rho_s, alpha, beta, A, B, kappa, lambda, G_n, G, eta,

G_e, L, pbcFlag)

2 typeA = AtomTypes[indx_part];

3 typeA = Integer(typeA);

4 # init

5 nPart = size(coords,2);

6 rho = 0;

7 phi = 0;

8 F = 0;

9

10 # Calculate RHO and PHI with cutoff

11 for partB = 1:nPart

12 if partB == indx_part

13 continue;

14 end

15 typeB = AtomTypes[partB]; # 1 or 2

16 typeB = Integer(typeB);

17 r = coords[:,partB] - coords[:,indx_part];

18 if pbcFlag == true

19 # Fix according to periodic boundary conditions

20 r = distPBC3D(r,L);
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21 end

22 norm_r = sqrt(dot(r,r));

23

24 if typeA != typeB

25 PseudoLatticePar = sqrt( r_e[typeA] * r_e[typeB

] );

26 else

27 PseudoLatticePar = r_e[typeA];

28 end

29 cutoff = cutoff_rel * PseudoLatticePar / sqrt(2) * 2;

30

31 if norm_r < cutoff

32 aux1 = norm_r/r_e[typeA]; # auxiliary variable

1

33 h_alpha_A = exp( -alpha[typeA] * (aux1-1) );

34 h_beta_A = exp( -beta[typeA] * (aux1-1) );

35 D_lambda_A = 1 + (aux1 - lambda[typeA])^20;

36 D_kappa_A = 1 + (aux1 - kappa[typeA])^20;

37

38 f_A = f_e[typeA] * h_beta_A / D_lambda_A;

39 phi_A = A[typeA] * h_alpha_A / D_kappa_A - B[

typeA] * h_beta_A / D_lambda_A;

40

41 rho = rho + f_A;

42

43 if typeA != typeB

44 aux1 = norm_r/r_e[typeB]; # auxiliary

variable 1

45 h_alpha_B = exp( -alpha[typeB] * (aux1

-1) );

46 h_beta_B = exp( -beta[typeB] * (aux1-1)

);

47 D_lambda_B = 1 + (aux1 - lambda[typeB])

^20;

48 D_kappa_B = 1 + (aux1 - kappa[typeB])

^20;

49

50 f_B = f_e[typeB] * h_beta_B /

D_lambda_B;

51 phi_B = A[typeB] * h_alpha_B /

D_kappa_B - B[typeB] * h_beta_B /

D_lambda_B;

52
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53 phi = phi + (f_B/f_A * phi_A + f_A/f_B

* phi_B)/2;

54 else

55 phi = phi + phi_A;

56 end

57 end

58 end

59 if rho >= 1.15*rho_e[typeA]

60 x = rho/rho_s[typeA]; # auxiliary

61 F = F + G_e[typeA] * (1 - log(x)^eta[typeA]) * x^eta[

typeA];

62 else

63 if rho < 0.85*rho_e[typeA]

64 x = G_n[:,typeA]; # auxiliary

65 y = (rho/0.85/rho_e[typeA]-1).^[0; 1; 2; 3]; #

auxiliary

66 else

67 x = G[:,typeA]; # auxiliary

68 y = (rho/rho_e[typeA]-1).^[0; 1; 2; 3]; #

auxiliary

69 end

70 F = F + sum(x.*y);

71 end

72 E_atom = F + phi;

73 return E_atom, phi, F

74 end

A.2. MATLAB

The following script was used to generate the models 7 and 8 in XYZ-format. The
functions that create fcc supercells and write XYZ-files are appended afterwards.

Listing A.7: Script: Creation of models 7 and 8

1 %% Initialization

2 % Material parameters

3 Z1 = 79; % gold: atomic number

4 Z2 = 28; % nickel: atomic number

5 a = 4.07894; % gold: lattice constant, in Angstroems

6

7 % Call CreateFCCSupercell

8 Nx = 15;

9 Ny = 15;
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10 Nz = 15;

11 pbcFlag = true;

12 Crystal = CreateFCCSupercell(a, Nx, Ny, Nz, pbcFlag);

13 NAtoms = size(Crystal, 1);

14

15 % Parameters for later manipulation

16 XMax = max(Crystal(:, 1));

17 CoordsSetX = 0: a/2 : XMax;

18 PosTolerance = 1e-2; % Numerical position tolerance

19

20 %% Model 7

21 period = 9.07;

22 M = 10;

23 cmax = 0.9; % maximum concentration regarding a 100-plane

24 cmin = 0.1; % minimum concentration regarding a 100-plane

25 cNi = ( sin( pi / period * CoordsSetX)).^M * (cmax-cmin) + cmin;

26

27 % Write char array containing element labels

28 Elements = repmat(’Au ’, NAtoms, 1);

29 for k = 1:numel(CoordsSetX)

30 % logical array corresponding to a 100-plane

31 L = ( abs(Crystal(:, 1)-CoordsSetX(k)) < PosTolerance );

32 rows = find(L);

33 Nrows = numel(rows);

34 % auxiliary variable for later selection

35 ToExchange = randperm(Nrows, round(Nrows*cNi(k)) );

36 rows = rows(ToExchange);

37 for l = 1:numel(rows)

38 Elements(rows(l),:) = ’Ni ’;

39 end

40 end

41 cNi_tot = sum( Elements(:,1) == ’N’ ) / size(Elements, 1);

42 disp([’Model 7: Total concentration of Ni = ’,num2str(cNi_tot)]);

43

44 % Plot nickel concentration as a function of x

45 figure;

46 p = plot(CoordsSetX, cNi, ’o--’);

47 set(p, ’MarkerFaceColor’, get(p, ’Color’));

48 xlabel(’x / \AA’,’interpreter’, ’latex’);

49 ylabel(’$c_\textrm{Ni}$ / atomic fraction’, ’interpreter’, ’latex’);

50 ylim([0 1]); grid on; grid minor;

51

52 % Write to File
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53 if pbcFlag == true, pbcStr = ’open’; else pbcStr = ’closed’; end

54 comment = [’Au-matrix (fcc, ’,num2str(Nx),’x’,num2str(Ny),’x’,num2str(

Nz),’ unit cells, ’,...

55 pbcStr,’), Ni concentration: ’,num2str(cNi_tot),’; sine^’,num2str(M

),’-shaped, c_min = ’,...

56 num2str(cmin),’, c_max = ’,num2str(cmax),’ regarding a 100-plane,

period = ’,...

57 num2str(period),’ Angstroems’];

58 filename = [’AuNi_’,num2str(Nx),’x’,num2str(Ny),’x’,num2str(Nz),...

59 ’_Sine’,num2str(M),’Modulation_cNitot=’,num2str(cNi_tot),’_Period=’

,num2str(period),’.xyz’];

60 writeXYZ(filename, Elements, Crystal, comment)

61

62 %% Model 8

63 period = 9.07;

64 cmax = 0.7;

65 cmin = 0.3;

66 cNi = ( sin( pi / period * CoordsSetX)).^2 * (cmax-cmin) + cmin;

67

68 % Write char array containing element labels

69 Elements = repmat(’Au ’, NAtoms, 1);

70 % First, insert the modulation in [100]-direction

71 DyDx = 0.5;

72 D = Ny/3 * a;

73 SecX = 7/10;

74 Xsel = 27;

75 Ysel = 24;

76 for k = 1:numel(CoordsSetX)

77 L = ( abs(Crystal(:,1)-CoordsSetX(k)) < PosTolerance ) & ...

78 ( Crystal(:,2) - DyDx*Crystal(:,1) - D < PosTolerance ) & ...

79 ( Crystal(:,1) - CoordsSetX(Xsel) < PosTolerance );

80 rows = find(L);

81 if ~isempty(rows)

82 Nrows = numel(rows);

83 ToExchange = randperm(Nrows, round(Nrows*cNi(k)) );

84 rows = rows(ToExchange);

85 for l = 1:numel(rows)

86 Elements(rows(l),:) = ’Ni ’;

87 end

88 end

89 end

90 % Afterwards, insert the 010-plane

91 L = ( abs(Crystal(:,2)- CoordsSetX(Ysel)) < PosTolerance );
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92 rows = find(L);

93 if ~isempty(rows)

94 Nrows = numel(rows);

95 ToExchange = randperm(Nrows, round(Nrows*cmax) );

96 rows = rows(ToExchange);

97 for l = 1:numel(rows)

98 Elements(rows(l),:) = ’Ni ’;

99 end

100 end

101 cNi_tot = sum( Elements(:,1) == ’N’ ) / size(Elements, 1);

102 disp([’Model 8: Total concentration of Ni = ’,num2str(cNi_tot)]);

103

104 % Write to file

105 if pbcFlag == true, pbcStr = ’open’; else pbcStr = ’closed’; end

106 comment = [’Au-matrix (fcc, ’,num2str(Nx),’x’,num2str(Ny),’x’,num2str(

Nz),’ unit cells, ’,...

107 pbcStr,’), Ni concentration: ’,cNi_tot,’; sine-squared-shaped + xz-

plane for high x, c_min = ’,...

108 num2str(cmin),’, c_max = ’,num2str(cmax),’ regarding a 100-plane,

period = ’,...

109 num2str(period),’ Angstroems’];

110 filename = [’AuNi_’,num2str(Nx),’x’,num2str(Ny),’x’,num2str(Nz),...

111 ’_Model8_cNitot=’,num2str(cNi_tot),’_Period=’,num2str(period),’.xyz

’];

112 writeXYZ(filename, Elements, Crystal, comment)

Listing A.8: Function: Create fcc supercells / crystals

1 function [ Crystal, BoxSize ] = CreateFCCSupercell(a, Nx, Ny, Nz,

pbcFlag, origin)

2 %CreateFCCSupercell - This function creates an fcc super cell and

returns it in an array.

3 %

4 % [ Crystal, BoxSize ] = CreateFCCSupercell(a, Nx, Ny, Nz, pbcFlag,

origin)

5 %

6 % a 1x1 double lattice constant (the unit of length is a

user choice)

7 % Nx 1x1 double number of unit cells in x-direction

8 % Ny 1x1 double number of unit cells in y-direction

9 % Nz 1x1 double number of unit cells in z-direction

10 % pbcFlag* 1x1 logical periodic boundary conditions (default:

false)

11 % If pbcFlag is true, the created super cell is a repeatable
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unit.

12 % If pbcFlag is false, the super cell is concluded at all

sides

13 % and has inversion symmetry regarding the center.

14 % origin* 1x3 double starting coordinates for replication (

default: [0 0 0])

15 % The replication is performed in positive x-, y-, and z-

direction.

16 %

17 % * optional input argument

18 %

19 % Crystal ( )x3 double locations of the atoms

20 % e.g. [x1 y1 z1

21 % x2 y2 z2

22 % ... ]

23 % BoxSize 1x3 double (only if pbcFlag is true)

24 % size of the repeatable unit

25 if nargin < 6

26 origin = [0 0 0];

27 end

28 if nargin < 5

29 pbcFlag = false;

30 end

31

32 %% fcc: atom positions of the basis

33 a0 = [0 0 0];

34 a1 = [0 1 1] * a/2;

35 a2 = [1 0 1] * a/2;

36 a3 = [1 1 0] * a/2;

37

38 %% build repeatable unit cell

39 UnitCell = [origin + a0; origin + a1; origin + a2; origin + a3];

40 N_AtomsUC = size(UnitCell, 1);

41

42 %% build super cell

43 % build cubic lattice

44 if pbcFlag == true

45 Nx = Nx-1; Ny = Ny-1; Nz = Nz-1;

46 end

47 [XX, YY, ZZ] = ndgrid(0:Nx, 0:Ny, 0:Nz);

48 CubicLattice = a * [XX(:), YY(:), ZZ(:)];

49 N_UC = size(CubicLattice, 1);

50 % replicate variables
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51 Crystal = repmat(UnitCell, N_UC, 1);

52 CubicLattice = repelem(CubicLattice, N_AtomsUC, 1);

53 % build crystal

54 Crystal = Crystal + CubicLattice;

55 % with PBC: return size of the repeatable unit

56 % without PBC: delete atoms outside of super cell boundaries

57 if pbcFlag == true

58 BoxSize = a * [Nx Ny Nz];

59 else

60 L = ( Crystal(:,1)==max(Crystal(:,1)) ) | ...

61 ( Crystal(:,2)==max(Crystal(:,2)) ) | ...

62 ( Crystal(:,3)==max(Crystal(:,3)) );

63 Crystal = Crystal(~L, :);

64 BoxSize = nan(1, 3);

65 end

66 NAtoms = size(Crystal, 1); % obsolete

Listing A.9: Function: Write crystal data to XYZ-file

1 function [] = writeXYZ( filename, Elements, Crystal, comment )

2 %writeXYZ - Write crystal data to XYZ-file

3 %

4 % [] = writeXYZ( filename, Elements, Crystal, comment )

5 %

6 % filename ... full or relative path including the filename; if

extension is not xyz, ’.xyz’ will be appended

7 % Elements ... N x 2 - char array containing one element symbol per

row

8 % Crystal ... N x 3 - array (numerical) containing one set of

coordinates per row

9 % comment ... comment line to be written to the file’s second line

10 tic

11 if nargin < 4

12 comment = ’’;

13 end

14 NAtoms = size(Elements, 1);

15 if NAtoms ~= size(Crystal, 1)

16 error(’Number of element symbols and number of coordinate sets have

to be the same!’)

17 end

18 if ~isequal( filename(end-3:end), ’.xyz’ )

19 filename = [filename, ’.xyz’];

20 end

21
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22 fileID = fopen(filename, ’w’);

23 fprintf(fileID, ’%u\r\n’, NAtoms);

24 fprintf(fileID, ’%s\r\n’, comment);

25 for k = 1:NAtoms

26 fprintf(fileID, ’%s %12.5f %11.5f %11.5f\r\n’, Elements(k,:),

Crystal(k,:));

27 end

28 fclose(fileID);

29 time = round(toc,1);

30 str = [’Writing to ’,num2str(filename),’ lasted ’,num2str(time),’

seconds.’];

31 disp(str)

32 end

The following functions can be used to find peaks/valleys in QSTEM output files
(*.img). In order to read the files, the unquoted function binread2D19 is used.

Listing A.10: Function: Determine peaks/valleys in QSTEM DF/BF images

1 function [intensities, t, dx, dy] = img_peaks(path_img, num_peaks,

detector_type, ss_fwhm, maxradius)

2 %IMG_PEAKS - QSTEM image peaks/valleys (for .img)

3 %

4 % num_extrema (1x2 array): e.g.: [5 5]

5 % detector_type (string): ’HAADF’, ’BF’, ’ABF’

6 %

7 % finding maxima or minima depending on detector type

8

9 if ~isempty(findstr(’BF’, detector_type))

10 find_min = true;

11 else

12 find_min = false;

13 end

14

15 [intensities, t, dx, dy] = img_peakquant(path_img, num_peaks, find_min,

ss_fwhm, maxradius);

Listing A.11: Function: Quantify peaks/valleys in QSTEM DF/BF images

1 function [values_max, t, dx, dy] = img_peakquant(file, num_sectors,

find_min, ss_fwhm, maxradius)

2 %IMG_PEAKQUANT - QSTEM image peak/valley quantifier (for .img)

3

19part of the QSTEM source code

112



A. Code snippets

4 %% user prompts

5 % get image path via image dialog box

6 if nargin<1

7 [file, path] = uigetfile({’*.img’},’Select File to Open’);

8 file = [path, file];

9 end

10 % get image specifications

11 if nargin<2

12 num_sectors = prompt_num_sectors;

13 end

14 % find minimum?

15 if nargin<3

16 find_min = false;

17 end

18 % source size

19 if nargin<4

20 ss_fwhm = prompt_source_size;

21 end

22 % maximum radius for summation

23 if nargin<5

24 maxradius = 2.3;

25 end

26

27 %% investigation of image

28 % read

29 [img_grey, t, dx, dy] = binread2D(file);

30 img_height = size(img_grey, 1);

31 img_width = size(img_grey, 2);

32 % source size correction

33 if ss_fwhm > 0

34 img_grey = img_sscorr(img_grey, dx, dy, ss_fwhm, 1);

35 end

36 % split image

37 [secs_heights, secs_widths] = GetSectionHW(img_height, img_width,

num_sectors);

38 sections = mat2cell(img_grey, secs_heights, secs_widths);

39 % find and quantify peaks/valleys

40 method = 1;

41 switch method

42 case 0

43 % pick absolute maximum

44 if find_min == false

45 func = @(x) max(x(:));
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46 else

47 func = @(x) min(x(:));

48 end

49 values_max = cellfun(func, sections);

50 case 1

51 % sum up within a certain radius

52 for k = 1:numel(sections)

53 sec = sections{k};

54 if find_min == false

55 [peaky, peakx] = find(sec == max(sec(:)));

56 else

57 [peaky, peakx] = find(sec == min(sec(:)));

58 end

59 [ly, lx] = size(sec);

60 [xx, yy] = meshgrid(1:lx, 1:ly);

61 MaskCircular = logical( (xx-peakx).^2+(yy-peaky).^2 <=

maxradius^2 );

62 values_max(k) = sum(sec(MaskCircular));

63 end

64 end

The next two functions are used by img_peakquant. The first one (img_sscorr)
performs a correction of simulated QSTEM images accounting for the shape of the
intensity distribution in the probe. The used option applies a convolution of the in-
put image with a Gaussian distribution. The second one (GetSectionHW) returns
partial section heights and widths resulting from splitting a matrix, or image respec-
tively, into smaller rectangular sections.

Listing A.12: Function: Source size correction on image data

1 function [ img_out ] = img_sscorr( img, dx, dy, ss_fwhm, option )

2 %IMG_SSCORR - Source size correction for *.img

3 %

4 % img_out = img_sscorr( img_in, dx, dy, ss_fwhm, option )

5 %

6 % img ... image data (pre-correction)

7 % dx, dy ... pixel distance (in Angstroem)

8 % ss_fwhm ... full width at half maximum of source size (in Angstroem

)

9 % option = 1, (default) ... correction copied from QSTEM/showimage

10 % = 2 ... correction via imgaussfilt

11 if nargin < 4

12 ss_fwhm = 0.7; % in Angstroem

114



A. Code snippets

13 end

14 if nargin < 5

15 option = 1;

16 end

17

18 if option == 2

19 sigma = ss_fwhm / (2*sqrt(2*log(2)));

20 img_out = imgaussfilt(img, sigma/dx*1.005);

21 else

22 % ---- BEGIN ---- source-size-correction

23 % Code taken from QSTEM/showimage,

24 % Source available from https://github.com/QSTEM/QSTEM/blob/master/

GUI_Matlab/showimage.m, retrieved on 19th of December, 2016

25

26 ss = ss_fwhm/(sqrt(-log(0.5))*2); % = ss/1.66510922231540;

27

28 [Ny,Nx] = size(img);

29

30 NxMid = floor(Nx/2)+1;

31 NyMid = floor(Ny/2)+1;

32 [qx,qy] = meshgrid((-NxMid+[1:Nx])/(Nx*dx),(-NyMid+[1:Ny])/(Ny*dy))

;

33 img_out = real(ifft2( fft2(img) .* ifftshift(exp(-((pi*ss)^2*(qx

.^2+qy.^2)))) ));

34 % ---- END ---- source-size-correction

35 end

36 end

Listing A.13: Function: Get height and width of rectangular image sections

1 function [ secs_heights, secs_widths ] = GetSectionHW( N, M,

num_sectors )

2 %GetSectionHW

3 % This function calculates integer height and width of rectangular

4 % sections of an image / generic matrix which arise from splitting it

5 % into a given number of sectors.

6 %

7 % N ... Image height

8 % M ... Image width

9 % num_sectors ... 2 x 1 - or 1 x 2 - array (numeric

10 secs_limits1 = round( img_height/num_sectors(1) * (1:num_sectors(1)) );

11 secs_limits2 = round( img_width/num_sectors(2) * (1:num_sectors(2)) );

12 secs_heights = secs_limits1 - [0, secs_limits1(1:end-1)];

13 secs_widths = secs_limits2 - [0, secs_limits2(1:end-1)];
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14 end

The successional script reproduces the representation of QSTEM/showimage

Listing A.14: Script: Plot a QSTEM image

1 [file, path] = uigetfile(’Z:\sims\*.*’);

2 [I, t, dx, dy] = binread2D([path, file]);

3

4 IsRealImage = false;

5 if IsRealImage

6 ss_fwhm = 0.7;

7 I = img_sscorr( I, dx, dy, ss_fwhm );

8 xlab = ’$x$ / \AA’;

9 ylab = ’$y$ / \AA’;

10 I = flipud(I);

11 else

12 % CBED images: no source size correction, but log scale

13 I = log(I+1-min(I(:)));

14 xlab = ’$q_x$ / \AA$^{-1}$’;

15 ylab = ’$q_y$ / \AA$^{-1}$’;

16 maxI = max(I(:));

17 I(I==0) = maxI;

18 % dkx and dky are not correct in QSTEM *.img files or not correctly

read

19 % by binread2D. Thus, request user input.

20 dx = eval( cell2mat(inputdlg(’Set dkx and dky (1/A): ’, ’’, 1, {’

1/230’})) );

21 dy = dx;

22 end

23 [Ny_I, Nx_I] = size(I);

24 x = 0:(Nx_I-1);

25 x = x.*dx;

26 y = 0:(Ny_I-1);

27 y = y.*dy;

28 if ~IsRealImage

29 % CBED images: centering regarding the undeflected beam

30 x = x - x(floor(Nx_I/2+1));

31 y = y - y(floor(Ny_I/2+1));

32 end

33

34 figure

35 imagesc(x, y, I)

36 axis equal

116



A. Code snippets

37 colormap(gray)

38 xlabel(xlab, ’interpreter’, ’latex’)

39 ylabel(ylab, ’interpreter’, ’latex’)

40 xlim([x(1) x(end)])

41 ylim([y(1) y(end)])

Last, the function quoted below calculates the empirical autocorrelation function of
a time series according to equation (2.27).

Listing A.15: Function: Empirical autocorrelation function

1 function [rhoE, t] = rhoE(x, tmax)

2 %rhoE - Empirical autocorrelation function of a time series

3 %

4 % [rhoE, t] = rhoE(x,tmax)

5 %

6 % x ... time series of a scalar

7 % tmax ... maximum time difference used in the calculation

8 %

9 % rhoE ... empirical autocorrelation function

10 % t ... corresponding time differences

11 N = numel(x);

12 if size(x,2) == 1

13 x = x.’;

14 end

15 if tmax > N

16 error(’tmax must not exceed N!’)

17 end

18 t = 0:tmax-1;

19 xsq = x.^2;

20

21 sum_xj = fliplr(cumsum(x));

22 sum_yj = fliplr(cumsum(fliplr(x)));

23 sum_xjsq = fliplr(cumsum(xsq));

24 sum_yjsq = fliplr(cumsum(fliplr(xsq)));

25 %% FFT for the correlation function sum_{j=1}^{N-t} (xj*yj)

26 L = N + tmax;

27 ft_x = fft(x,L);

28 sum_xjyj = ifft(abs(ft_x).^2);

29

30 %% Cutting away indices higher than tmax

31 sum_xj = sum_xj(1:tmax);

32 sum_yj = sum_yj(1:tmax);

33 sum_xjsq = sum_xjsq(1:tmax);
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34 sum_yjsq = sum_yjsq(1:tmax);

35 sum_xjyj = sum_xjyj(1:tmax);

36 xbar = 1 ./ (N-t) .* sum_xj;

37 ybar = 1 ./ (N-t) .* sum_yj;

38

39 rhoE = ( sum_xjyj - ybar.*sum_xj - xbar.*sum_yj + (N-t).*xbar.*ybar )

./ ...

40 ( (sum_xjsq - (N-t).*xbar.^2) .* (sum_yjsq - (N-t).*ybar.^2) )

.^(1/2);

B. How to get QSTEM simulations done

(*.cif to *.img)

In this section, I present a detailed explanation of the preliminary work necessary
in order to start simulating STEM images with QSTEM. Furthermore, a step-by-step
demonstration that should enable a first-time user to perform simulations is given.

*.cif

(a) Specify a query

(b) Download a CIF

Figure B.2.: How to acquire a specific CIF from
the ICSD produced by FIZ Karlsruhe

To start with, one can use a Crystal-
lographic Information File (CIF). This
file format was published by the In-
ternational Union of Crystallography
(IUCr20) in 1990. It was described as
"a general, flexible and easily extensi-
ble free-format archive file" that "can be
edited by a simple text editor" by Hall
et al. (1991) and its outstanding features
were emphasized by Brown & McMa-
hon (2002). A large number of CIFs for a
wide variety of chemical composition is
gathered in the Inorganic Crystal Struc-

ture Database (ICSD), which is currently produced by FIZ Karlsruhe - Leibniz Insti-
tute for Information Infrastructure. Note that the website is not freely accessible.

20www.iucr.org
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Demo - step 1:
If we exemplarily wish to download a CIF of a copper unit cell, we will navigate

to icsd.fiz-karlsruhe.de and fill ’Cu’ in the form field Composition. The space char-
acter between the element identifiers is mandatory. We fill ’1’ in the field Number
of elements and click on the button Run Query close to the right upper corner (see
figure B.2(a)). In contrast, if we liked to search for any 2-element-compositions con-
taining oxygen, we would need to put ’O’ and ’2’ in the corresponding fields.
However, after the query has been performed, we get to see a listing of database en-
tries matching your request. We choose one of them and download it via clicking on
the floppy disk button (see figure B.2(b)).

Crystal-modeling

Once a CIF has been obtained, the file, which typically contains a single unit cell,
can be manipulated using a crystal/molecule modeling software package, e.g. Avo-
gadro21, CrystalMaker, Crystal Studio22, or VESTA23. Here, the usage of any soft-
ware package regarding crystal manipulation other than CrystalMaker is not cov-
ered.

Figure B.3.: Set range of
a super cell to enlarge the
model

Demo - step 2:
We launch CrystalMaker and open the downloaded

CIF. We select Transform from the menu bar, choose Set
Range..., set some arbitrary, though not too large values
(Your computer might get overstrained, which is not nec-
essary for this purpose.) for Minimum and Maximum in x,
y, and z (see figure B.3) and press Apply. While pressing
Ctrl, using the left mouse button and the scroll wheel are
the easiest ways to rotate and resize the view of our super cell. Now we save the
result as a CMDF24, which, in contrast to CMMF25, contains unit cell and symmetry
information.

21avogadro.cc
22www.crystalsoftcorp.com
23jp-minerals.org/vesta
24CrystalMaker Crystal File
25CrystalMaker Molecule File
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Figure B.4.:
Select Arrow
Tool

As our next goal, we would like to insert a single substitutional for-
eign atom. In order to achieve that, we select Transform from the menu
bar, choose Molecule to Crystal... and press Convert. We switch to the
Arrow Tool in the Tools Palette (see figure B.4), left-click an atom, se-
lect Selection, Atoms, Change Atom Type..., fill in the element symbol of
the desired foreign atom, label it and give it a different color (see fig-
ure B.5). The possibility to set an arbitrary radius is a visual, though
physically irrelevant, gimmick. Press OK and take a look at our con-

structed point defect. We save the model as a CMMF, which, as stated above, con-
tains no unit cell or symmetry information. Additionally, change an atom type with-
out converting the crystal to a "molecule" before and inspect the result.

Figure B.5.: Introduce a substitutional foreign atom into a crystal

*.xyz (or *.xtl optionally)

After creating the desired structure, one exports the model to an XYZ26- or XTL27-
file, alternatively.

Demo - step 3:
We export the model via File, Export and XYZ.

*.cfg

Arrived at an XYZ-/XTL-file, one converts it to a QSTEM Atomic Configuration File
(CFG) with the tool "Convert to CFG" included in the QSTEM software package.

Demo - step 4:
We launch ’Convert to CFG’ in our QSTEM (start menu) folder and adjust shift

26The format is not strictly defined (yet), but, as labeled xyz, it contains the values of the Cartesian
coordinates of every atom in the structure. Just take a look at it with a text editor.

27used e.g. by VESTA
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vector as well as super cell size on demand. Changes of the latter are mostly used if
you wish your model to be replicated by QSTEM afterwards, because the displace-
ment of replicant super cells with respect to the original one can be modified this
way.

QSTEM, *.qsc

Figure B.6.: How to start a simulation in
QSTEM

Finally, one loads the CFG-file into
QSTEM, sets the numerous parameters
and saves the configuration to a QSTEM
Simulation Config File (QSC). A simu-
lation using the stored QSC can be per-
formed on any computer, although the
CFG-file must have the same path as it
had when it was originally loaded.

Demo - step 5:
We launch QSTEM. As marked in fig-

ure B.6, we press Load Model, select the
generated *.cfg, adjust some microscope and/or model parameters (feel free to try
anything out!), save a QSC-file via Save Config and are now ready to run.
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