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Abstract

Since the dawn of the internet, the available information has been growing
steadily. Hence, algorithms which help humans to filter the information
are needed. Recommender Systems became widely utilized for this task
over the last decade. Today, they are used almost ubiquitous. The general
idea of RS is to identify items which could be of potential interest to a user
and present them as a list. RS rely heavily on the provided information
of users, items and their ratings. Generally, the more the better. However,
there are cases in which only sparse information is available. This thesis
is about the implementation of a recommender engine which tackles that
problem. To illustrate the information sparsity, requests from the subreddit
(a section within the online news aggregation service reddit) r/gamingsug-
gestions were collected. In this subreddit, users can ask for video game
recommendations based on information they are willing to share. A typical
request only includes a few game titles and maybe some further constraints,
such as the preferred support of controllers. To recommend video games,
three state-of-the-art recommender algorithms (i.e., collaborative filtering,
matrix factorization and term frequency-inverse document frequency) were
implemented. In order to improve the results of the algorithms, post-filtering
techniques were applied. By comparing the recommendations of the algo-
rithms with the suggestions of the reddit community, typical scores, such
as precision, recall and F1-score were computed. To further investigate the
recommendations, a qualitative evaluation was performed. Humans were
asked to rate the recommendations on the 3-way-scale, whether they were
good, ok, or bad.
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Kurzfassung

Seit Anbeginn des Internets stieg die Menge an verfügbarer Information
stetig an, sodass Algorithmen gefunden werden mussten, welche den Men-
schen halfen, diese Informationen zu filtern. Für diese Aufgabe wurden in
den letzten zehn Jahren immer häufiger Recommender Systeme eingesetzt,
weswegen sie heutzutage beinahe überall anzutreffen sind. Das Haup-
taufgabe von RS ist es, Entitäten zu identifizieren, welche momentan von
pontentiellem Interesse für die Benutzer sind und diese in einer geordneten
Liste darzustellen. Dabei sind RS von den Informationen der Benutzer, den
Entitäten sowie deren Bewertung abhängig. Normalerweise gilt, je mehr
Informationen verfügbar sind, desto besser sind die Vorhersagen der RS.
In manchen Fällen sind jedoch nur begrenzt Daten verfügbar. In dieser
Diplomarbeit wird eine Recommender engine vorgestellt, welche sich genau
diesem Problem widmet. Um die Recommender engine mit Daten aus der
realen Welt zu testen, wurden Reddit-Anfragen vom Subreddit (eine Kate-
gorie innerhalb des online news Aggregationsservices reddit) r/gamingsugges-
tions gesammelt. In besagtem Subreddit ist es Usern möglich, Empfehlungen
für Videospiele zu erfragen, und zwar ausschließlich basierend auf Infor-
mationen, welche vom Benutzer bereitgestellt wurden. Typische Anfragen
beinhalten meist nur wenige bereits gespielte Titel und ein paar weitere
Einschränkungen, z.B. dass der Support von Gamepads bevorzugt wird.
Als Basis für die Empfehlungen kamen drei state-of-the-art Recommender
Algorithmen zum Einsatz (collaborative filtering, matrix factorization und
term frequency-inverse document frequency). Um die daraus resultierende
Liste mit passenden Spielen zu verbessern wurden sogenannte post-Filter
integriert. Durch den Vergleich der Empfehlungen der Algorithmen mit de-
nen der Reddit-Community konnten Kennzahlen wie precision, recall und
f1-score ermittelt werden. Die Algorithmen wurden außerdem einer qualita-
tiven Evaluierung unterzogen, in welcher Menschen die Spielempfehlungen
als gut, ok oder schlecht bewerten konnten.
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1 Introduction

Since the dawn of the internet, the available information has been growing
steadily. According to IBM (2017), today humans create 2.5 quintillion bytes
of data each and every day. Therefore, about 90 percent of the world’s data
has been made in the past two years. In their data never sleeps report, Domo
(2016) states, that about 400 hours of new video material is uploaded to
YouTube1 every minute, which equals 576,000 hours of new video material
per day. However, the content is not limited to videos, it could be books,
games, music, newspaper articles, scientific articles, and pretty much ev-
erything. One problem with this huge amount of data is, that the bulk of it
likely is not of much interest for a specific user. Furthermore, it would be
too time consuming or even impossible to search through the whole data
for items of interest.

In, for example, a physical book store, there is only a limited shelf space
available to display books. Therefore, only a certain number of books can be
obtained, thus the choice of which book is going to be bought is influenced
by known or unknown factors. Most likely those factors are economic ones.
In order to maximize profit, it would be wise to present products which
are popular and hence are often bought. Vice versa, a customer is only able
to buy a small subset of all the available books in the world. In an online
book store, there is no limitation regarding the number of books which are
displayed. Nevertheless, the huge amount of items would be overwhelming.
It would be difficult to find the specific books in which the customer is inter-
ested the most. There has to be some sort of filtering. However, in contrast
to the physical book store, each customer should get her or his own shelf,
containing books with the highest interest. This is were recommendation
systems (RS) can help and typically yield good results (Ricci, Rokach, and

1http://www.youtube.com
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1 Introduction

Shapira, 2015).

By making a preselection of all available items based on the user’s interests,
former behavior, geographical location, given ratings or other measurable
interactions, RS try to present only appropriate content. Hence, this makes
the user experience more enjoyable increases the chance of a successful
purchase. RS are widely used, large companies, such as Amazon, YouTube,
Netflix, Google, Tripadvisor and numerous others implement them in their
services (Ricci, Rokach, and Shapira, 2015; Felfernig et al., 2014). Addition-
ally, recommendations could be of a general, non-personalized character.
Those recommendations are by far easier to obtain, however, they are bound
to be less useful for a single user. Examples include top-10 lists of best
selling books, top-10 movies of most watched movies or most popular songs
of December. Ricci, Rokach, and Shapira (2015) define RS as

“software tools and techniques providing suggestions for items
to be of use to a user. The suggestions relate to various decision-
making processes, such as what items to buy, what music to
listen to, or what online news to read.”

One of the most common and simplest forms of an output of a RS is a
ranked list, similar to those top-10 lists mentioned above. What a RS tries
to do is to order the huge number of available options based on the user’s
preferences and interests, thus trying to predict the most suitable products
or services (Ricci, Rokach, and Shapira, 2015).

In order to calculate such predictions, knowledge about the user preferences
is necessary. Those preferences could either be explicitly or implicitly stated.
Explicitly stated knowledge includes, but is not limited to, for example,
ratings a user has given for a specific item. Implicit preferences are based
on the interpretation of user interactions. They could be comprised of, for
instance, the time a user has spent on a web page describing a product,
the duration the user played games from different genres, or the click-path
the user used to get to a specific site (Ricci, Rokach, and Shapira, 2015).
The underlying rationale for the development of RS is the observation, that
individuals often tend to rely on recommendations given by their friends
or acquaintances. For example, it is typical to rely on the suggestions of a
person’s colleagues when selecting a book, a movie, or even a restaurant

2



1 Introduction

(Mahmood and Ricci, 2009; Ricci, Rokach, and Shapira, 2015).

As stated above, knowledge about a user is necessary to calculate good
recommendations. Generally speaking, the more, the better. But what if
there is only few information available? Suppose that only a small set of
items a user likes is exposed. Suppose further, there are other constraints,
such as a maximum price for a meal, a genre of a movie or a minimum
play time for a game. Another person could give rather good recommenda-
tions, depending on various aspects. Is the recommending user capable of
identifying latent factors for the given items and knows other items which
could match? Does the user has experience in that field, and to some ex-
tent, does the recommending user has some empathy for the requesting user.

On reddit2 (a social news aggregation service), a subreddit r/gamingsugges-
tions3 exists, which enables the above scenario to happen online in the area of
video games . Although it is very likely to get fairly good recommendations
after posting a request there, there also are a few disadvantages:

• Requests may stay unanswered, due to very exotic games or restrictive
constraints.

• One could wait some time for an appropriate answer.

• Maybe the post is missed due to a high number of new posts in a
certain time.

• Recommendations given by the community often only consider a part
of the given constraints.

• Community results may be biased due to, for example, geographical,
age-related or cultural conditions.

To tackle the issues mentioned above, this thesis aims to describe and
implement a recommender engine which enables people to ask for rec-
ommendations based on a list of games they liked in the past and some

2http://www.reddit.com
3https://www.reddit.com/r/gamingsuggestions
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1 Introduction

contextual information. Using only this very sparse information, it was
tried to mimic the community taste, that is, the recommendation engine
tries to produce similar recommendations as redditors—user on reddit—
would have suggested. More precisely, following research questions were
addressed:

RQ1 How accurately can the community taste from requests posted on the
subreddit r/gamingsuggestions be fitted with RS?

RQ2 Are the recommendations suggested by the recommender engine vi-
able, that is, does it yield a reasonable and satisfying output?

RQ3 Considering post-filtering, how can recommendation results be influ-
enced with re-ranking the recommendation list?

In order to answer those questions, the steam platform was used to obtain
sufficient data about video games. Some of the data was available through
an application programming interface (API), while the rest of the relevant
data was obtained by scraping the steam website.

After the data acquisition and preprocessing, three standard recommen-
dation algorithms (i.e., collaborative filtering, matrix factorization, term-
frequency-inverse-document-frequency) were implemented. To gather train-
and testcases, the subreddit r/gamingsuggestions was manually searched for
suitable requests. Next, the post-filters were implemented and trained and
evaluated in different combinations with the standard algorithms.

Afterwards, a qualitative evaluation of the recommendation results was
performed, by asking people how well the recommended games are fitting
the request.

The remainder of this thesis has the following structure: Chapter 2 gives an
overview of RS, the knowledge discovery process, different recommendation
algorithm approaches, the steam and the reddit platform. Chapter 3 sum-
marizes already published work concerning the research questions stated
above, Chapter 4 describes the steps and methods used for this thesis in

4



1 Introduction

detail, Chapter 5 presents the specific results which are later on discussed
and summarized in Chapter 6.
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2 Background

This chapter gives a theoretical overview of important concepts and terms
used in this thesis. First, an overview of RS including underlying principles
and definitions of terms is given. Second, the knowledge discovery process
is described in detail. Third, some common recommendation algorithms
which had been used in for this thesis are introduced. A description of the
two platforms Steam1 and reddit concludes this chapter.

2.1 Recommender Systems

RS are tools and techniques that provide useful recommendations on, for
example, “which item to buy”, “which movie to watch” or “what online
news to read” to a user (Ricci, Rokach, and Shapira, 2015). Melville and
Sindhwani (2010) state, that

“the goal of a recommender system is to generate meaningful
recommendations to a collection of users for items or products
that might interest them.”

There are two main concepts of RS, collaborative filtering systems , which
analyzes past interactions and behavior of the user (for example previously
purchased items, given ratings to specific products), and content based filter-
ing systems, which are based on item attributes and give recommendations
based on the similarity of those properties (Melville and Sindhwani, 2010).
Often, these two approaches are combined to hybrid recommender sys-
tems. Nevertheless, much smaller concepts include, but are not limited to,
knowledge-based, demographic and social recommender systems (Ricci, Rokach,

1http://store.steampowered.com/
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2 Background

and Shapira, 2015).

Most of the readers of this thesis already have come across RS in some
way. Suppose, a user (“Frank”) got a book recommendation by a friend,
and searches the book online on amazon.com. The book is displayed as
one of the search results, and there likely is another section on the page
which could be called “Customers who bought this item also bought” or
“Frequently bought together”. In this section, other (similar) books are listed
that Frank might be interested in. If he visits the site frequently, this section
becomes personalized more and more, depending on Frank’s behavior (pur-
chase history, given ratings, ...). The underlying software that creates this
list is a RS. One particular word has to be stressed at this point, personalized.
Every user sees a different version of that section, fitted to the user’s taste.
In contrast, it would also be possible to simply display the top-10 bestseller
of 2017, but the resulting list would likely be less useful (Jannach, Zanker,
Felfernig, et al., 2011).

2.1.1 History

Humans often relied on recommendations they got from their acquaintances
or friends in the past, so listening to the advice of another person has there-
fore always been a critical component of the decision making process. Since
the emergence of huge internet marketplaces such as amazon, buyers are
confronted with an increasing number of available products, while sellers
are being faced with the demand of a personalized shopping experience
(Melville and Sindhwani, 2010).

The idea of a computer recommending something to people is not very
new, in fact, it can be traced back to 1979, where Rich (1979) introduced the
computer program Grundy. Grundy tried to mimic the job of a librarian, that
is giving good recommendations on books based on some stereotypes2 of
persons. In order to achieve that, the user was asked some questions regard-
ing the name and some self-describing keywords. Grundy then matched the
keywords to predefined stereotypes. Linked to those stereotypes, Grundy

2a stereotype is a compilation of frequently occurring characteristics of users
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had some lists of books which might be of interest and proposed that books
to the user (Rich, 1979).

The next big step was the introduction of the term “collaborative filter-
ing” by (Goldberg et al., 1992). It was used for the description of the first
commercial RS, Tapestry. The purpose of Tapestry was to recommend docu-
ments from newsgroups to users. Collaborative filtering means that users
help other users to distinguish relevant from irrelevant documents by record-
ing their reaction after they read them (Goldberg et al., 1992; Melville and
Sindhwani, 2010). A good comparison to this early filtering approach is
the usage of tags today. Users annotate certain documents or items with
keywords. Other users are able to filter documents by using this keywords,
thus receiving only relevant content.

In 1994, Resnick et al. announced GroupLens, an open architecure for collab-
orative filtering of netnews. They became the first to describe collaborative
filtering as it is known today. They sorted the news according to a predicted
score which was based on the ratings other, similar users gave the article.
This implies that users who agreed in the past are likely to agree again.

Moreover, it was also in the mid-1990s when RS developed as an indi-
vidual field of research. However, the need for good recommendations is
growing, since there are more and more application areas emerging, such
as recommending books, music, videos, vacations, financial services and
much more (Adomavicius and Tuzhilin, 2005).

In 2009, RS gained some publicity outside the academic world, when Netflix
announced the winner of their Netflix Prize. The challenge started in 2006

and the goal was to improve their algorithm Cinematch by at least 10% to
win $1.000.000 (Netflix, 2009).

The interest in the research of RS has grown rapidly over the past few
years. Reasons include the increase of electronic commerce, the ubiquity of
information access, the rise of the Social Web, risen industrial interest and
new application opportunities in the Mobile Web. The ACM Recommender
Systems conference as well as the increasing number of publications serve
as a good indicator for that growth (Jannach, Zanker, Ge, et al., 2012).

8



2 Background

In the mid-2000s the research was primarily focused on increasing the
accuracy of predictions of unknown items. Today, the spotlight is on improv-
ing other quality parameters like diversity, novelty or serendipity (Jugovac,
Jannach, and Lerche, 2017).

2.1.2 Basic Terms

In this subsection, basic terms and concepts of RS are explained, based on
(Ricci, Rokach, and Shapira, 2015). A typical RS consists of three entities
which are related to each other, namely users, items and transactions. Those
entities, as well as other important definitions are described below.

User

Looking at personalized recommendations, it is crucial to have information
about users and the goals and characteristics about them. Which informa-
tion, that depends on the recommendation technique. For example, in a
demographic RS, that information could be age, gender or profession. For
a collaborative filtering approach, a list of items the user liked/disliked or
rated somehow would suffice. The user data constitutes the user model
(Fischer, 2001; Billsus and M. Pazzani, 1996), meaning that the collected
data of users encodes their preferences and needs. Without a user model,
personalized recommendations would hardly be possible. Reconsidering
a collaborative filtering approach, a user model could consist of direct
interpretation of ratings. However, taking those ratings into account and
deriving others factors which distinguishes users from each other would
also be feasible. Other possibilities to obtain user data could be the analysis
of browsing patterns (Taghipour, Kardan, and Ghidary, 2007) on a website
or travel search patterns (Mahmood and Ricci, 2009).
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Item

Items are the objects that are recommended and are characterized by their
complexity and their value for the user. If an item is useful to a user, its
value may be considered to be positive. If the selected item is not useful,
that is, the user made the wrong decision of selecting it, the value may be
negative.

Simple items in the context of RS can be movies, games, songs, books
whereas more complex items also include insurance policies and financial
investments (Montaner, López, and Rosa, 2003). Each item has specific prop-
erties or features, for example, a movie can be linked to various genres or
actors.

Transaction

A transaction is defined by Ricci, Rokach, and Shapira as a

“recorded interaction between a user and the RS.”

Ratings are the most common form of transaction data. Ratings can be
explicit or implicit. Explicit ratings are obtained by asking the opinion of
the user about an item on a rating scale. Ratings can be of various types
(Schafer et al., 2007):

• Numerical ratings, such as one to five stars for a product on ama-
zon.com, or one to ten stars on imdb.com.

• Ordinal type, which is common in opinion polls, where users have to
select the answer that suit them most, such as “Strongly agree, agree,
neutral, disagree, strongly disagree” or the reactions on facebook.com,
namely“like, love, haha, wow, sad, angry”.

• Binary ratings, such as the thumbs up or thumbs down on youtube.com
or on steam.
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• Unary ratings, that indicate that a user observed, purchased, or other-
wise positively rated an item.

With implicit ratings, the RS tries to guess the users’ opinions based on their
actions. For example, if a user types the word “cat” in the search field on
youtube.com, the website first registers that the user might be interested
in cats. As a result of the search query a list of video clips appears on the
screen. If the user clicks on a video which is about some strange behavior of
cats, the RS may conclude that the user is interested in funny videos with
cats. Without about the user’s opinion on cats, the RS has generated implicit
information about the user’s taste.

Feature

“A feature is an individual measurable property of a phenomenon being ob-
served”(Chowdhury and Bhattacharyya, 2017). According to this definition,
features of, for example, images could include colors, textures and contours.
In other words, features describe the properties of an item in a suitable way
for an algorithm. They can be of various types, for instance, numerical or
categorical.

Prediction

To fulfill its purpose, that is, finding helpful items for a user, a RS must be
able to rank the huge number of available items somehow. It must predict
the value of an item to a user, or at least compare different items and decide
which one would satisfy the user’s needs more than the other. Hence, the
core of a RS can be viewed as “the prediction of the utility of an item for
a user” (Adomavicius and Tuzhilin, 2005; Ricci, 2014). The usefulness of
an item to a user may also depend on contextual factors. It is, for example
much more likely that users are interested in restaurants near them, even
though other restaurants would have a higher utility.
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Recommendation

A recommendation is the final result of the above mentioned prediction
process. It usually consists of a small subset of the available items, ordered by
their utility for the users. It should be noted that the final recommendation
list may not only contain the highest ranked items, it could also incorporate
the most popular items or items which are totally different or contrasting
compared to the ones with the highest predictions. This technique should
prevent recommendations from staying in the so called filter bubble, which
is a phenomenon that describes the isolation of people from a diversity of
viewpoints or content (Nguyen et al., 2014; Pariser, 2011).

Utility Matrix

The utility matrix serves as the foundation for various recommendation
algorithms. As stated above, there are the users, the items and the transaction
(i.e., the ratings between them). The utility matrix pictures those relations in
a compact format.
The utility function maps each item-user pair to a rating and is defined as

fu : U × I → R, (2.1)

where U is the set of user, I is the set of items, and R is a set of ratings, for
example R = {1, 2, 3, 4, 5}. The numbers obtained by the utility function can
be represented by a utility matrix M ∈ Rn×m, where n is the number of
users and m the number of items. Hence, each user is represented by a row-
vector with the given ratings r for an item as a value in the corresponding
column:

→
u= (r1, r2, r3, · · · , rn).

It is assumed, that the matrix is sparse, which means, most of the en-
tries are unknown, thus the users’ preferences for most of the items is
unknown. An example of a typical utility matrix is shown in equation 2.2,
with values taken from table 2.1 (Helic and Kern, 2018; Ullman, 2018).
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HP1 HP2 HP3 The Hobbit SW1 SW2 SW3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

Table 2.1: Example ratings, adapted from Helic and Kern (2018) and Ullman (2018). Users
are represented by capital letters A through D. HP1, HP2 and HP3 stand for
Harry Potter 1-3, SW1, SW2, SW3 for Star Wars Episode 1-3

M =


4 5 1
5 5 4

2 4 5
3 3

 (2.2)

Note, that empty cells in the utility matrix represent unknown ratings for
the respective user-item pair. The goal of a recommender system is to predict
ratings R̂u,1, · · · , R̂u,N for each user u.

2.1.3 Classes of Recommender Systems

There are several classed of RS. Burke (2007) distinguishes between six
different recommender approaches.

• Content-Based
• Collaborative Filtering
• Demographic
• Knowledge-Based
• Community-Based
• Hybrid
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2.1.4 Evaluation

In order to measure the accuracy of RS, several metrics exist. Since the
goal of this thesis was to fit the community taste, that is, how well do the
results of the algorithms overlap with the suggestions from the community,
typically used evaluation metrics are described below.

Precision

As defined by Perry, Kent, and Berry (1955), precision, in the information
retrieval context, is based on sets of retrieved documents and relevant documents.
The set of retrieved documents contains all documents a, for example, search
engine lists as the result of a query. The relevant documents contain all
documents that are deemed relevant for that inquiry. Precision could be
formulated as the question of “how many of the retrieved documents are
relevant?”. Therefore, precision is defined as

precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}| (2.3)

Recall

Recall is the percentage of relevant documents that are successfully retrieved.
Recall could be formulated as the question of “how many of the relevant
documents were found?”, and is defined as

recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}| (2.4)
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F1-Score

The F1-Score is the harmonic mean of precision and recall, thus combines
the two measures mentioned above.

F1 = 2× precision× recall
precision + recall

(2.5)

2.2 Knowledge Discovery Process

Historically, the collecting and analysis of data had many names. Data
mining, information harvesting, data pattern processing, and information
discovery, just to name a few (Fayyad, Piatetsky-Shapiro, and Smyth, 1996).
One of the most established definition is by Fayyad, Piatetsky-Shapiro, and
Smyth (1996) who define the Knowledge Discovery in Databases Process
as

“the non-trivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in data.”

Furthermore, they describe the process as

“interactive and iterative, involving numerous steps with many
decisions being made by the user.”

Figure 2.1 pictures the Knowledge Discovery Process with its five major
steps: Selection, preprocessing, transformation, data mining and interpreta-
tion/evaluation. The dashed lines indicate the iterative nature of the process,
meaning that it is always possible to go back to a previous step and start
over from there. It should be noted, that there are several other models of
the process available (Cios et al., 2007). However, the Knowledge Discovery
Process defined by Fayyad, Piatetsky-Shapiro, and Smyth (1996) as well as
Brachman and Anand (1996) can be understood as the base of this thesis.
Hence details about the individual steps are described below.
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Figure 2.1: Knowledge Discovery Process with its major steps: Selection, Preprocessing,
Transformation, Data Mining and Interpretation/Evaluation. The process may
be non-linear, thus it is always possible to go back to a previous step as indicated
by the dashed lines. Illustration taken from (Wigzo.com, 2018)

Selection

The goal of the selection step is to create a target data set. The target data
set is a subset of variables, on which the knowledge discovery is to be
performed. It is crucial to understand the application domain as well as
relevant prior knowledge to obtain such a dataset. The selection step in this
thesis consisted of finding and obtaining sufficient data for the later steps.

Preprocessing

Unwanted data, such as noise, should be removed in this step. Strategies
on how to cope with missing data should be developed. In the realm of
RS, data preprocessing could include the removal of HTML-Tags or adding
average ratings instead of missing values.
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Transformation

The third step is characterized by reducing the dimensionality of selected
data, transforming the data in a useable format as well as finding useful
features (feature extraction). For example, in this thesis the hours a user
spent playing a specific game had been transformed to ratings between 1

and 5.

Data Mining

The data mining step is all about finding patterns in the data obtained
from steps one to three. Such patterns may consist of classification rules
or trees, regression and clustering. For example, suppose there is a set
of numbers. During the data mining step, it might become clear that the
numbers are distributed like a Gaussian distribution. Therefore, one could
calculate the mean and standard deviation of the numbers, which would
give a better understanding of the data. Hence, the Gaussian distribution
with the calculated parameters would become the model or pattern of the
data. Regarding RS, data mining could consist of fitting the parameters of
the underlying model (of each approach).

Interpretation/Evaluation

The last step is all about visualization of the found patterns and models.
The discovered knowledge should be incorporated in the system as well as
documented and reported to interested parties. It is possible that the found
knowledge interferes with the existing model. Such conflicts are subject to
solving.

2.3 Recommender Algorithms

Ricci, Rokach, and Shapira (2015) define the recommendation problem as
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“estimating the response of a user for new items, based on
historical information stored in the system, and suggesting to this
user novel and original items for which the predicted response
is high.”

As stated in the introduction (Chapter 1) of this thesis, recommendations
can be personalized or non-personalized (e.g. best selling books in a book
store). The personalized approaches can be further divided in content-based,
collaborative filtering and hybrid methods.

Content-based approaches try to identify common attributes or charac-
teristics of items (i.e., “looking at the content”) that the user rated pos-
itively and propose items, that share characteristics with the originally
rated items (Balabanović and Shoham, 1997; Billsus and M. J. Pazzani,
2000). As pointed out by Shardanand and Maes (1995), methods that solely
build upon content-based approaches generally suffer from limited con-
tent analysis and overspecialization. Limited content analysis occurs, when
the system has difficulties in obtaining contentual information from the
items. Reasons include privacy issues (i.e., the user might not give away
personal information), the difficulty or cost intensity of content procurement
or the fact that the content of an item often is insufficient to define its quality.

Overspecialization is inherent to content-based approaches. For example, a
user might like video games with a lot of strategic thinking settled in the
medieval age. Hence, a content-based RS recommends only strategy games
or games within a medieval setting, therefore skipping out other potentially
interesting games.

In contrast, collaborative filtering approaches rely on the rating information
of other users and items in the system. The main idea is, that users who
agreed on items in the past are likely to agree on other items as well. In
other words, the rating a user would give to an unrated item would be
similar to the rating another user gave the item, if both users rated the
same items similar in the past. Collaborative filtering approaches deliver
better results for items for which the content is difficult to assess, they take
into account the quality of the item, and they might recommend differ-
ent items outside of some filter bubble (Ricci, Rokach, and Shapira, 2015).
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Collaborative filtering can be separated in neighborhood- and model-based
approaches. With neighborhood-based methods, the ratings of users for
items are directly used for the recommendation, either user-based or item-
based (Breese, Heckerman, and Kadie, 1998; Deshpande and Karypis, 2004;
Linden, B. Smith, and York, 2003).

Model-based approaches try to fit a model to the underlying data and
perform the recommendations or predictions with that model. There are
various approaches known, some of them are Bayesian Clustering (Breese,
Heckerman, and Kadie, 1998), Latent Semantic Analysis (Hofmann, 2003),
Support Vector Machines (Grčar et al., 2006) and Matrix Factorization (Sin-
gular Value Decomposition) (Bell, Koren, and Volinsky, 2007; Koren, 2008;
G. Takács et al., 2008). On the following pages, two collaborative filtering
approaches (item-based k-nearest-neighbor and matrix factorization) and
one content-based (i.e., term frequency – inverse document frequency) are
described. The actual description of the implementation of the algorithms is
discussed in Section 4.5

2.3.1 Collaborative Filtering – kNN

The following section is based on the Recommender Systems Handbook by
Ricci, Rokach, and Shapira (2015), other sources are marked individually.

Neighborhood-based recommendation build upon the underlying principle,
that similar users prefer the same items and similar items are preferred by
the same users.

Consider the following example in Table 2.2: Eric wants to know whether
to watch the movie Titanic or if he would be better of by watching another
one. Lucy has a similar taste for movies because she rated the same movies
analogous to Eric. Eric therefore might ask Lucy if she liked Titanic and
consider her opinion in his decision process. Eric also observes, that Diane
has rated movies high which he did not like, hence he discards her opinion
on movies or even considers picking the opposite of Diane’s movies.
For collaborative filtering, two approaches are common, namely user-based
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and item-based predictions.

Table 2.2: Example to illustrate collaborative filtering. Each line represents a user, each
column a movie. The number indicates the rating that person gave that movie.
Empty cells indicate that no rating was given.

The Matrix Titanic Die Hard Forrest Gump Wall-E

John 5 1 2 2

Lucy 1 5 2 5 5

Eric 2 ? 3 5 4

Diane 4 3 5 3

User-Based

The sequence from the example above would be a user-based recommen-
dation. Eric asks others users who are similar to him which movies they
would recommend. More formally, the rating rui of a user u for an item i is
calculated by looking at the ratings for i by users most similar to u. Suppose
there is a weight wuv for each user v 6= u which denotes the similarity
between u and v. The k-nearest-neighbors (k-NN), denoted by Ni(u), are the
k users with the highest similarity wuv to u that also rated item i.
The estimated rating r̂ui for item i from user u is therefore

r̂ui =
1

|Ni(u)| ∑
v∈Ni(u)

rvi. (2.6)

Based on the ratings in Table 2.2, it is quite obvious that Lucy would have a
higher similarity score to Eric than Diane. However, in the above formula,
Diane’s and Lucy’s rating would be considered equally (assuming those two
are the two nearest neighbors). Since the taste of Lucy and Diane is quite
different, an equal consideration would not yield good recommendation
results. To account for that problem, the ratings of the nearest neighbors
should be weighted using their similarity to u. In order to stay in the allowed
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rating range, the weights are normalized as:

r̂ui =

∑
v∈Ni(u)

wuvrvi

∑
v∈Ni(u)

|wuv|
. (2.7)

However, there is still a flaw in the equation. Diane only gave one movie a
rating of 5, whereas Lucy gave three times 5. There appears to be a rating
bias between the different users. Diane seems to give a rating of 5 only to
her absolute favorite movie, Lucy seems to give 5 for every movie she likes.
To get rid of that user bias, the ratings rvi for each person are normalized to
h(rvi) as:

r̂ui = h−1

 ∑
v∈Ni(u)

wuvh(rvi)

∑
v∈Ni(u)

|wuv|

 . (2.8)

The predicted rating r̂ui has to be converted back to the “real” rating the user
would give, thus the user bias has to be added to the prediction (denoted
by h−1). There are several approaches on how to normalize the ratings and
how to calculate the similarity. The ones which were used in this thesis are
discussed in Section 4.5.3

Item-Based

Instead of relying on the opinion of like-minded users, the item-based
approach looks at the ratings of similar (or “like-minded”) items (Sarwar
et al., 2001). Looking again at the example from Table 2.2, Eric would look
at the ratings Titanic received from other users. He would notice, that the
ratings from Titanic are similar to the movies Forrest Gump and Wall-E.
Since he liked those two movies, he concludes that he would also like
Titanic.
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More formally, the prediction can be written as

r̂ui =

∑
j∈Nu(i)

wijruj

∑
j∈Nu(i)

∣∣wij
∣∣ , (2.9)

Nu(i)denoting the items rated by user u most similar to item i. To respect
the different rating behaviors of the users, the normalization term from the
user-based approach can be reintroduced:

r̂ui = h−1

 ∑
j∈Nu(i)

wijh(ruj)

∑
j∈Nu(i)

∣∣wij
∣∣
 . (2.10)

2.3.2 Matrix Factorization – SVD

The following section is based on the following papers: Gábor Takács et al.
(2008), Ott (2008), D. D. Lee and Seung (2001) and D. Lee and Sebastian Se-
ung (1999).

The idea of matrix factorization models is to discover latent factors. Latent
factors describe attributes of items, which may not be obvious or explicitly
stated. They are therefore derived solely from the user feedback (i.e., the
ratings users gave items).
However, matrix factorization is not the only possible model for discovering
latent factors. Others include, for example, probabilistic latent semantic anal-
ysis (pLSA) (Delgado and Ishii, 1999), latent Dirichlet Allocation (Billsus
and M. J. Pazzani, 1998), or neural networks (Gori and Pucci, 2007).
Although the classic singular value decomposition (SVD) is well suited
for identifying latent factors (M. Blei, Y. Ng, and Jordan, 2001), there is
one major issue. SVD is not defined when the matrix is incomplete. Since
utility matrices are generally very sparse, Funk (2006) proposed an iterative
algorithm to circumvent that issue.
Mathematically, matrix factorization tries to find two matrices P and Q such
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that their product approximates R:

R ≈ P×QT = R̂ (2.11)

with P ∈ Rn×d and Q ∈ Rm×d, n denoting the number of users, m denoting
the number of items and d denoting the number of latent factors to discover.
Each row in P thus describes the strength of association of a user to a factor
whereas each row in Q characterizes the association of each item to the
discovered factors. In order to calculate the prediction of an arbitrary item
j for a user i, it is sufficient to multiply (dot-product) the corresponding
vectors pi and qj:

r̂ij = pT
i qj =

d

∑
k=1

pikqjk (2.12)

As mentioned above, Funk (2006) proposed a way of finding the two ma-
trices P and Q in an iterative way. Both matrices are first initialized with
arbitrary values. After that, the difference from the product of P and Q to
the original ratings matrix R is calculated. The goal is to iteratively minimize
that difference. As an error measurement, the regularized squared error is
used:

e2
ij = (rij − r̂ij)

2 = (rij − pT
i qj)

2 (2.13)

In order to decrease the error, one has to know the direction, that is the sign
in which the values in P and Q should be adapted. Such a method is called
gradient descent. To get the direction of adaption, the error function has to be
differentiated with respect to both variables:

∂

∂pik
e2

ij = −2(rij − r̂ij)qjk = −2eijqjk (2.14)

∂

∂qik
e2

ij = −2(rij − r̂ij)pik = −2eij pik (2.15)

After obtaining the gradient, the update rules for pik and qjk can be formu-
lated:

p′ik = pik + γ
∂

∂pik
e2

ij = pik + 2γeijqjk (2.16)
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q′jk = qjk + γ
∂

∂qjk
e2

ij = qjk + 2γeij pik (2.17)

Additionally, a regularization term λ can be introduced to avoid overfitting.
That changes the update rules to

p′ik = pik + γ(2eijqjk − λpik) (2.18)

q′jk = qjk + γ(2eij pik − λqij). (2.19)

The iterative process of finding P and Q is repeated until e reaches a certain
threshold, in most cases 0.001, or until a maximum number of iterations is
executed.

2.3.3 Term Frequency – Inverse Document Frequency

One well established way of defining the content of text is via keywords
(Adomavicius and Tuzhilin, 2005). A keyword, also sometimes called a
catchword, is “a significant or memorable word or term in the title, abstract,
or text of a document”3. Keywords should therefore be important words,
that describe the content of a text corpus. Such keywords can be created
manually, by humans, or they can be selected automatically. Automatically
generated keywords are usually determined with some weighting measure
wij. One well established way of measuring the importance of a word inside
a collection of text is the Term Frequency – Inverse Document Frequency
(TF-IDF) (Salton, 1989).
The following explanation is based on Adomavicius and Tuzhilin (2005).
Term frequency denotes the number of appearances of a word ki in a given
document dj ∈ D:

TFij =
fij

maxz fzj
, (2.20)

with fij as the number of times a keyword k j appears in a dj, normalized by
the maximum frequency maxz fzj of all keywords. While the introduction
of the term frequency would yield the most used words in a document,
for example, words such as “the”, they would not help to distinguish the

3http://www.dictionary.com/browse/keyword?s=t
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documents from each other. Hence, so called stopwords can be taken into
account. Stopwords are words which are commonly used but do not give
any information of the text. Typical examples are the, or, and. By filtering out
those words, the information content can be increased. However, assume
there are a lot of texts about computer science which should be described
with keywords. One word that would be in nearly all texts would be bit. So
even if it describes the content of the documents, the information gain by
selecting that word would be fairly low since every document contains the
word. Hence, the Inverse Document Frequency is introduced:

IDFi = log
N
ni

, (2.21)

with N as the total number of documents and ni as the number of docu-
ments containing keyword ki. IDF is a measure of how much information
a word provides for a given text, that is whether the word is common or
rather rare in the whole set of documents.

Thus, the weight of a term ki in a document dj is

wij = TFij × IDFi (2.22)

and the content of a document dj is

content(dj) = (w1j, w2j, ..., wkj). (2.23)
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2.4 The Steam Platform

Steam is a digital distribution platform developed by Valve Corporation.
It offers instant access to games and an active community with over 150

million people. It was created in 2002, mainly because Valve had updating
issues with its online games (e.g., Counter-Strike). Since 2013, Steam is the
worlds largest digital distribution platform for video games (Edwards, 2013).
The steam client was first publicly provided in January 2003. In order to play
Counter-Strike 1.6, it was mandatory to use. However, at that time it was
only used to deliver patches for Counter-Strike. In 2007, large companies
such as id-Software (Bramwell, 2007b), Eidos Interactive (Purchese, 2007)
and Capcom (Bramwell, 2007a) began to deliver their games via Steam.
Since then, the user base as well as the amount of sales on steam grew larger
every year, reaching 150 million registered users in 2018, 18.5 million of
them are online concurrently at peak hours (Steam, 2018a). According to
Forbes, 50 to 70 percent of the 4 billion US$ market for downloadable video
games belongs to Steam (Chiang, 2011).

The Steam Store is available via web4, however, the downloadable client
shown in Figure 2.2 provides the most functionality. The core functionality
is the provision of purchased games, which are displayed in the Library tab.
Within the Store tab, users can purchase games filtered by various options.
For example, users could look for games their friends are playing. It is also
possible to follow a so called Curator, who are “individuals or organizations
that make recommendations to help others discover interesting games in
the Steam catalog” (Steam, 2018a).

Steam itself provides the user with three different kinds of recommen-
dations. To the best of the author’s knowledge, the exact recommendation
process is nowhere to be found, nevertheless, the observations are described
below as accurately as possible:

The Featured & Recommended section contains a huge list of personalized
recommendations. The recommendations seem to be based on the tags of
the games currently played by the users and their friends. Steam provides

4http://store.steampowered.com/
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the information on the tags that have been used for the recommendation.
It seems that there are also games included which only share one or two
tags with the games played, which indicates that they are featured over the
whole Steam client.

The Discovery Queue contains twelve different games, again, based on the
games recently played. However, the list is heavily weighted towards new
top-sellers, meaning that the queue contains the best-selling games, in ac-
cordance to the users taste. The goal of the discovery queue is to make sure,
the user does not miss anything (Schreier, 2014).

The Curator Recommendation suggests games, based on the recommendations
given by curators mentioned above.

One key feature, which is a crucial part of this thesis, is the possibility
to rate games. A typical rating page is depicted in Figure 2.3. Valve uses
binary ratings (thumbs up, thumbs down) for the games on their platform,
however, they also store the playing time a user spent playing a game and
an optional review text. Especially the playing time in combination with the
thumbs up, thumbs down, could provide precious additional information
on how much a user liked or disliked a game.
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Figure 2.2: Screenshot of the steam client with personal information omitted.
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Figure 2.3: Rating page of the game Counter-Strike: Source. Note the highlighted areas for
game time, review text and recommendation checkbox.

2.5 The Reddit Platform

Reddit is an American social news collection. According to (Reddit, 2018),
it is “a source for what’s new and popular on the web”. Users provide the
whole content and decide, via up- and downvoting, what is good and what
is not worth reading. Essentially, Reddit is like a bulletin board. There are
several subcategories (subreddits) which are dedicated to various topics.
They can be understood as user-created areas of interest. Users can create
threads (submissions) in a topic, users can comment the submission as well
as vote for it. The subreddits are usually managed by the creators, however,
other admins can be designated.

Reddit was launched in 2005 by Steve Huffman and Alexis Ohanian. Ta-
ble 2.3 shows the dimensions of the whole Reddit community.
Figure 2.4 gives an overview of the subreddit /r/gamingsuggestions. The tabs
at the top order the various submissions according to different criteria. Each
submission has a title and an optional content. The title is shown in the
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Table 2.3: Overview Reddit dimensions (C. Smith, 2018)

Amount

Registered users 250 million
Subreddits 853 824

Communities 50 000

Countries with Reddit Users 217

Average daily votes 25 million
Reported value of Reddit 1.8 billion US-$

overview of a subreddit. The highlighted arrows with the number between
them indicate the sum of total up- and downvotes (i.e., the score). On the
far right side, a short summary of the subreddit is given. On top of the
summary, usage statistics are depicted. Figure 2.5 shows a submission inside
/r/gamingsuggestions. The title of the submission is displayed again on the
top, followed by the description of the submission. In this case, the redditor
(=user on Reddit) asks for games similar to Cuphead, with some other
constraints. Altogether, seven users commented on this submission. Note
the caption saying “10 points” on the right side of the username of the first
comment which is the score for that post. 10 points indicate that a lot of
users agree with “redmandolin”, making that user’s suggestions credible.
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Figure 2.4: Overview of the subreddit /r/gamingsuggestions
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Figure 2.5: Detailed view of a submission in /r/gamingsuggestions
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3 Related Work

Many studies about RS and recommendation algorithms had been con-
ducted in the past few years. Recommending video games also gained
attention in the past decade. Nevertheless, in the context of online commu-
nities and video games, not much work has been done yet.
Most of the already performed studies focus on algorithmic advantages
in the domain of video games. Skocir et al. (2012) describe a method for
recommending mobile games by looking at the interactions of users with
them. The gathered information is used to model the users’ success and
progress. Based on that, other mobile games are recommended, matching
the difficulty taste of the user.

Sifa, Bauckhage, and Drachen (2014) used a factor oriented model and
a neighborhood oriented model to predict a list of games to users which
they had not played yet and might be interested in. For both methods,
archetypal analysis—which essentially is a dimensionality reduction like
SVD—was performed.

Anwar et al. (2017) proposed a classical collaborative filtering approach
for recommending video games. They used the ratings given for games by
users inside a community, matched similar users with the requesting users
and predicted new games for them. To ensure the quality of their algorithm,
they tested it on a large standard dataset, namely the MovieLens dataset. In
order to improve the recommendations, a genre-based filter was introduced.

Heinz, Lau, and Epstein (2017) built an online recommendation service1

for movies, video games and TV shows. It is possible to enter up to five
different entities and the system delivers recommendations based on the

1https://metarecommendr.herokuapp.com/
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entries. Techniques, such as content filtering and collaborative filtering, were
implemented. The used data foundation was scraped from metacritic.com,
an online reviews aggregation service.

The RS used by Microsoft on its Xbox was described by (Koenigstein et al.,
2012). They used an implicit binary rating scale based on the ownership
of games. Positive ratings were comprised of a game ownership with a
minimal playing time. Negative ratings for a player consisted of random
games not owned, based on their popularity. The prediction model which
has been established is a probabilistic matrix factorization technique with
item biases.

Regarding narrative-driven or context-driven recommendations, Adomavi-
cius and Tuzhilin (2011) introduced REQUEST, a recommendation query
language that enables users to formulate and customize their recommenda-
tion needs.

Another approach for incorporating the current situation and the current
needs of users was proposed by Hariri, Mobasher, and Burke (2013). They
used an extended version of a Latent Dirichlet Allocation (LDA) model that
combines users, items and context associated meta-data.

The term narrative-driven recommendation was first coined by Bogers and
Koolen (2017), meaning that the “recommendation process is driven by both
a log of the user’s past transactions as well as a narrative description of
their current need and the context of use”. They further state, that narrative-
driven recommendations are a combination of traditional recommendations
based on user preferences, and the focused description of the current needs
in a given context, making them a complex recommendation scenario.

In their study, Adomavicius and Tuzhilin (2011) state, that contextual in-
formation is very important when providing recommendations. In order to
achieve that, they introduced contextual pre- and post-filtering techniques.
The pre-filters adjust the raw data with the given context, before any state-of-
the-art recommendation algorithms are applied. Post-filtering on the other
hand, is added to the ranking which was obtained by recommendation
approaches beforehand. These methods filter out irrelevant data or adjust
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the ranking of the recommended items.

To the best of the author’s knowledge, a video game RS covering sev-
eral algorithmic approaches with applied post-filtering techniques to meet
the narrative-driven recommendation needs of users in online communities
has not been addressed in-depth before.
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4 Materials and Methods

In this chapter, all undertaken actions are described to reproduce the results
of this thesis. First, the utilized development environment including pro-
gramming languages and libraries, the used hardware, and the operating
systems are enumerated. Next, the necessary scripts for the data acquisition
(i.e., the knowledge discovery process) are explained. Afterwards, the test
case aggregation is demonstrated. Finally, the recommendation engine with
its recommender pipeline is described, including the used recommendation
algorithms, the post-filter techniques and the evaluation methods.

4.1 Development Environment

Two different machines were used, one for the development of the differ-
ent software pieces as well as the testing, and another one for the actual
execution of the crawling/scraping procedure and the recommendation
calculations (see Table 4.1).

The following additional libraries and programs had been utilized:
• PeeWee 2.10.1

• Scrapy 1.4.0

• SciKit-learn 0.19.1

• gRequests 0.3.0

• MySQL 14.14

36



4 Materials and Methods

Table 4.1: Overview of the development environment

Development machine Execution machine

Processor Intel Core i5-6200U CPU @
2.3GHz, 2.4GHz

Intel Xeon CPU E5-2620 v3

@2.4 GHz, x 24

Memory 8 GB 252 GB
System Windows 10 Home, 64 Bit Ubuntu 14.04.5 LTS
IDE Eclipse Oxygen 1a Release

(4.7.1a) with python extension
Python 3.6.2 3.4.3

4.2 Data Acquisition

In order to get a well suited data foundation, the steam platform was used.
It provides a huge number of different games, and an even higher amount
of users who reviewed the bulk of the game catalog with binary ratings and
the time they spent playing particular games.

The data acquisition was split in five different scripts. Due to the archi-
tecture of the steam API and its output, each script relied on the output
of the previous ones. Steam grants access to the data with an HTTP based
API, which can be used to access a variety of Steamworks1 features. Gen-
erally, the API is accessed by sending a request (either HTTP or HTTPS)
to api.steampowered.com. The Web API is divided in multiple interfaces
which are again separated in different methods. A typical call to the API
therefore looks like this:
https://api.steampowered.com/<interface>/<method>/v<version>/

The result format can be specified with a format parameter, which yields

1Free suite of tools available to any developer to use in their game or software on Steam
(Steamworks, 2018)
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results in JSON2, XML3, CSV4 or VDF5 format. For the experiments in this
thesis, a slightly modified JSON format was used, namely JSON-Lines. The
difference to regular JSON format is, that each line corresponds to one JSON
object, which makes it easier to split files and process the data in chunks.

At the time of writing this thesis, the usage of the API was limited. It
was not possible to get a list of all reviews for a specific game, neither to
achieve a list of all reviews for all games via the API. Although detailed
information about a user was available, a list of all registered users could not
be obtained through the API. The reviews and the user data were acquired
through regular scraping. Furthermore, there was a time limit for calls to
the API which is maximum 200 requests per 5 minutes. As it turned out,
steam also had some defensive mechanisms against excessive scraping that
protect their website from high loads. In order to speed up the scraping
process, proxy servers from FineProxy6 were utilized.

Finally, three scraping, respectively crawling scripts were necessary to ob-
tain the raw data, and two scripts for the transformation and partially
post-processing.

4.2.1 Overview

This section gives a short overview of the scraping process, details are
discussed later on in the corresponding section of each script.

The first script, “Games-Crawler” fetched all available games from steam as
well as the details. As an output, a list of links to the review page of each
game is produced.

That file acts as the input for the next script, “Review-Crawler”, which—in

2Javascript Object Notation
3Extensible Markup Language
4Comma Separated Values
5Valve Data Format
6http://fineproxy.org/eng/
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the initializing run—scrapes all reviews for each link in the provided file.
The reviews are stored temporary in one file per game. The reason for that
is, that steam uses two different kinds of profile IDs, one numerical and one
based on the username. A review is assigned to a user by the user’s pro-
file URL, which is either http://steamcommunity.com/profiles/USER_ID

or http://steamcommunity.com/id/USERNAME. Since the profile ID is also
used for some other calls to the API, it is considered as the more important
feature and therefore used for identification. That decision lead to one prob-
lem, that is, that there is no efficient way to get a profile ID from a username.

Hence, another scraper, “SteamID-Crawler” was needed. It takes all profile
links with a username (which can be easily distinguished because of the
base URL, (steamcommunity.com/profiles/... vs. steamcommunity.com/
id/...) and fetches the steam ID from the user’s profile site and stores it in
one file per game.

Since the only way to get users is to scrape reviews and to extract the
profile URL, another limitation of the resulting dataset is, that only users
who reviewed at least one game are included.

The stored information of each user (i.e., the profile URL and the pro-
file ID) is then converted to the database with “Users-to-DB-converter”.
As a last step, the reviews can be added to the database (“Reviews-to-DB-
converter”), since now every profile-URL has a profile ID which can be used
to assign a user unambiguously to a review.

4.2.2 Games-Crawler

The Games-Crawler was utilized to first obtain a list of all applications on
steam and second, to fetch all details for each application. Steam provides a
variety of applications, Table 4.2 gives an overview of the different types.
According to the official documentation of the steam API, there is no such
function to expose all available applications on steam. After some research,
it turned out, that there is (or was) an interface for that purpose, however, it
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Table 4.2: Overview of application types on steam (Steam, 2018b)

Type Description

Game All games
Software Different kinds of software, for example de-

sign and illustration or photo editing
DLC Downloadable Content, additional content

for games
Video, Series and Episode Movies, TV-Shows, game videos, tutorials
Demo Free demo versions of games

is not documented.
http://api.steampowered.com/ISteamApps/GetAppList/v0002/

delivers a JSON response with the desired information (i.e., application
name and application ID). With the app IDs in that response, detailed
information about each game can be obtained via the URL

http://store.steampowered.com/api/appdetails?appids=APP_ID

which is also not part of the official documentation. Table 4.3 gives an
overview of the crawled data.

The collected game data is stored to a mySQL database after some process-
ing steps discussed in Section 4.3. As a preparation for the next crawler, the
Review-Crawler, a list with all review URLs is generated and saved to a
simple text file. A URL to the review page of a game has the following for-
mat: http://steamcommunity.com/app/GAME_ID/reviews/?browsefilter=
mostrecent&p=1&filterLanguage=default. The resulting file served as in-
put file for the Review-Crawler as well as an input and control file for
the unittest test cases described in Section 4.8. The tags however were not
available via the API, hence a third party scraper7 was utilized to collect
that data.

7https://github.com/prncc/steam-scraper
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Table 4.3: Application details

Attribute Data type Description

AppID Integer ID of the application
type String See table 4.2
name String Name of the application
required age Integer The minimum age
is free Boolean Indicates whether game is free

to play
description String Description of the game
developers List of Strings List of the developers
publishers List of Strings List of the publishers
price Integer Price in smallest unit of currency
currency String International acronym for cur-

rency
metacritic Integer Metacritic score www.

metacritic.com
categories Integer and String Category ID and description

(for example singleplayer, multi-
player)

genres Integer and String Genre ID and description (for
example action, rpg)

recommendations Integer Number of reviews
release date String Release date, localized
coming soon Boolean Indicates whether game is al-

ready released

41

www.metacritic.com
www.metacritic.com


4 Materials and Methods

4.2.3 Review-Crawler

At the time of writing this thesis, an interface for the acquisition of review
data was not available. Hence, the reviews were traditionally scraped uti-
lizing Scrapy, “an open source and collaborative framework for extracting
the data you need from websites” (Scrapy, 2018). Perunicic (2017) describes
an elegant way of fetching all reviews. The scraper suggested by him was
slightly adapted to support proxy usage, file-saving, and incremental scrap-
ing. For each game, all reviews were stored in a corresponding file due
to the above mentioned reasons regarding the profile ID of a steam user.
Since the scraping of all reviews can be very time consuming - the first run
took over 21 days—an incremental scraping feature was implemented. For
each game, the latest review in the database was fetched. The reviews on
steam are ordered descending (meaning newer reviews are first) by their
creation date, hence if the date of the scraped review was less than the latest
stored date, the scraping process for that game was aborted. That feature
reduces the scraping time significantly, depending on the execution cycle
of the scraper. Table 4.4 gives an overview of the available data of one review.

Furthermore, each profile URL which was customized by a user, that is, has
a username instead of a profile ID is stored in a temporary file which serves
as an input for the next step.

4.2.4 Steam-ID-Crawler

Each review is uniquely associated to a user via the profile-URL. Ev-
ery user has a URL to the profile page in the following format: http:

//steamcommunity.com/profiles/USER_ID. However, it is hard to remem-
ber it. Therefore, steam provides the possibility to add a custom profile
URL which enables the user to make use of a self-chosen name (http:
//steamcommunity.com/id/USERNAME). At the time of writing this thesis, it
was not possible to utilize the custom URL or the chosen username for other
calls to the API which require some user identification (e.g., getting friends

42

http://steamcommunity.com/profiles/USER_ID
http://steamcommunity.com/profiles/USER_ID
http://steamcommunity.com/id/USERNAME
http://steamcommunity.com/id/USERNAME


4 Materials and Methods

Table 4.4: Review Data

Attribute Data type Description

product id Integer ID of the application
recommended Boolean Is the game recommended?
date String Submission date
text String Review text
hours Float Time spent playing before writing re-

view
profile url String URL to the user’s profile
products Integer Amount of products the user has
publishers List of Strings List of the publishers
found funny Integer People who found the review funny
found helpful Integer People who found the review helpful
found unhelpful Integer People who found the review unhelp-

ful

of a user, getting owned games). Thus it is necessary to fetch the profile ID
for each custom URL. Since there is no special API interface available for
that purpose, each custom profile URL has to be manually scraped for the
user ID. The results are saved temporarily on a per-game-basis to files.

4.2.5 Database Conversion

The games obtained by the Games-Crawler are stored directly in a mySQL
database with all corresponding information. Since the type of the steam
application is not visible until an API call, the application type of non-
games (see Table 4.2) is also stored. Therefore, they can be skipped for
future scraping executions. Next, the obtained profile IDs are converted
to the database. Hence, a direct association between a profile URL and
the underlying profile ID is available. That association is crucial for the
following step, the review conversion.
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4.3 Data-Preprocessing

In order to get usable information, some preprocessing steps were necessary.
Since this thesis focuses on solely video games, steam applications with
another type were eliminated, thus leaving only applications with type
“Game”. Furthermore, every application which has an ID with a non-zero
number at the last place, is also not of type game, although maybe other-
wise stated. Since the data from the Game-Crawler is already in JSON-Line
format, no HTML has to be removed. Most of the data can be directly
transformed to Integers or Strings. Others, for example the publishers or
developers, require some special attention since they are delivered as lists.
Some data was considered as crucial (game ID, name, developers, publish-
ers, description, categories and genres). If one of them was missing, the
game was ignored. However, if, for example, the price was missing, it was
replaced with appropriate values (0 in this case).

The raw data scraped by the Review-Crawler and Steam-ID-Crawler was
in HTML format, therefore, as a first step, all HTML tags were removed
and the relevant data was extracted using the scrapy framework. Further
preprocessing steps included the conversion from strings to numbers, stan-
dardization of the review date, removing non-alpha-numerical characters
and the simplification of the recommended field from “thumbs up” and
“thumbs down” to boolean values.

Reviews do not get deleted if a user decides to remove the account from
steam. Therefore, it is possible to have reviews which are not linked to an
active profile anymore. Those reviews have been kept, as long as no custom
URL was created by the user before.

4.4 Overview of the Dataset

In order to get a feeling for the crawled data, a thorough analysis was
performed before any further action was carried out. The first scraping
execution took about 26 days, mainly due to the restrictions described above.
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Table 4.5 gives an overview of the whole dataset.

Table 4.5: Overview of the crawled dataset

Amount

Applications 32,119

of type game 21,098

with at least 1 review 18,340

with at least 40 reviews 8,056

Users 3,918,378

Reviews 9,710,554

recommended 7,962,971

not recommended 1,747,583

Genres 42

Categories 29

Developers 14,007

Publisher 10,733

Total hours played 1,149,811,342
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As depicted in Table 4.6, some outliers and impossibly considered values
are present in the dataset. For example, the maximum play time a user spent
playing a game before a review was given is 39,048.8 hours, that is roughly
4.5 years. The game in question is “Star Trek Online”, which was released in
early February 2010. 4.5 years therefore seems fairly unrealistic, especially
regarding the review date, which was July 2016. Furthermore, 153,525.9
hours playtime for one player (that is 17.5 years) also seems very unrealistic,
particularly looking at the fact that steam began collecting playtime data as
recently as in 2009 (Valve Developer Community, 2018).

Other data do look quite promising, for example, 50 percent of the users
played a game more than 16.5 hours before they reviewed a it. One could
argue, that a playing time of two thirds of a day testifies for a profound
opinion.

Regarding the quality of the review text, it seems as if reviews tend to
be nearly twice as much useless than useful (5.91 vs. 3.54). One possible ex-
planation for that phenomenon could be, that there are quite a lot of reviews
with uninformative content like Martin Luther King’s “I have a dream”
speech, cooking recipes, or single words, multiple times repeated. This be-
havior might indicate the presence of so called “internet trolls” (Sobkowicz
and Stokowiec, 2016) and are therefore subject to data cleaning.
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Table 4.6: Detailed descriptive statistics of the dataset

Average Min Q1 Median Q3 Max

Hours played per player 316.1 0 11.7 54.5 248 153,525.9
Hours played before review
was given

128.1 0 4.2 16.5 67.8 39,048.8

Hours played per game 68,759.3 0.1 29.8 188.7 1723.5 178,871,733.6
Positive ratings per player 2 0 1 1 2 979

Negative ratings per player 0.4 0 0 0 1 1,356

Positive ratings per game 441.6 0 6 22 109 230,271

Negative ratings per game 95.2 0 2 9 7 41,478

Ratings ratio per game 4.48 0 1 2.4 5 112

Usefulness of reviews 3.54 0 0 0 1 29,549

Uselessness of reviews 5.91 0 0 0 3 30,989

Length of text in reviews 320 0 40 115 329 39,396

Publishers per game 0.68 0 0 1 1 4

Developers per game 0.53 0 0 1 1 9

Genres per game 3.1 1 2 3 4 12
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4.5 Recommendation Algorithms

In order to answer the research question stated in the introduction, three
different recommender algorithms had been implemented. This section first
gives an overview of the recommendation engine as a whole, followed by a
detailed description of the algorithms and their modifications.

4.5.1 Overview

As a foundation for the whole recommendation engine three different (see
Section 2.3) described, state-of-the-art recommender algorithms had been
developed. To optimize the resulting list of games and to get a better live
performance, the algorithms were slightly adapted and post-filtering tech-
niques, similar to those stated by Adomavicius and Tuzhilin (2011), were
deployed. Each one of the three algorithms produces a list of 10 games,
ordered by their similarity to the input games (i.e., games, that the users
noted they already played and enjoyed. Games that the users did not enjoy
were neglected in this thesis). The introduced post-filters try to eliminate
games which are deemed irrelevant in the given context indirectly, or they
re-rank the games by adding their very own weighted similarity scores.
Although a game could be ranked rather low with a standard algorithm, if
it shares enough common attributes (see Section 4.7) with the input games
or explicitly stated information, it may be moved even to the very top of the
final list of recommendations. For example, if a user is looking for a game
“similar to Dishonored or Bioshock?”, both games as well as their predeces-
sor and successor serve as input games for the recommender algorithms.
Furthermore, the user also writes, that “I enjoy the stealth of Dishonored as
well as the magic/weapon combat”. For instance, the keywords “stealth”,
“magic combat” and “weapon combat” are explicitly stated and hence are
provided to the post-filter responsible for explicitly stated tags. That filter
creates a score for each game in the base list of recommendations between
1 and 0 and is added to the recommendation score (i.e., the similarity of a
game to the input games).
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Since the overall goal of the recommender engine is to fit the commu-
nity taste of the reddit community, a closer look to some submissions on
r/gamingsuggestions seemed appropriate to identify promising post-filtering
approaches (see Section 4.7 for details).

Figure 4.1 depicts the whole recommendation process.

Figure 4.1: Depiction of the recommender engine.
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4.5.2 Utility Matrix Generation

The utility matrix is composed of user-item pairs. Since the following ex-
periments were executed with either a binary or a decimal rating scale,
two utility matrices were created during this thesis. The binary version
contained user-item pairs obtained from the reviews from steam, either
with 1 (indicating a positive recommendation) or -1 (indicating a negative
recommendation) in its cells. Blank cells indicate no rating for that user-item
pair.
The decimal rating scale was derived from the playing time of a user for a
game, hence it contains implicit ratings ranging from -5 to +5. The game
times had been binned into 5 equally sized containers, differentiated for
recommended or not recommended (as denoted by the review). Playing
times below 0.1 hours for recommended reviews had been omitted. Table 4.7
gives an overview of the conversion limits.

Table 4.7: Implicit ratings conversion limits
Yes ≥115.1h ≥40.6h ≥18.4h ≥8.6h ≥0.1h

5 4 3 2 1

No ≥36.5h ≥10.9h ≥3.9h ≥1.5h ≥0.1h
-1 -2 -3 -4 -5

If a users played a game many hours and recommend it to others, it is
assumed that they liked the game a lot, hence, the longer the playing time,
the better the rating. Looking at the reviews which do not recommend the
game, the relationship is inverse. If a user does not recommend a game and
only needed a few minutes to come to that conclusion, a highly negative
rating was deduced. However, if the game was not recommended, but it
was still played over 36.5 hours, it was assumed that it is not all that bad.

Users with only one review provide very few information for the whole
dataset, in fact, the only way they might influence the recommendations
is by changing the average rating µ or the game bias bi. Therefore, two
thresholds were implemented. The best results were obtained by omitting
users with less than 10 reviews and by excluding games with less than 40

reviews. Those thresholds were assessed by performing a grid search from
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1 to 100 with steps of 10.

As pointed out by Desrosiers and Karypis (2011), users have their very
own rating behavior, even if a rating scale is explicitly defined. For example,
one user may be a hardcore gamer, who spends the main part of the day
playing games. Naturally, the hours per game would be higher compared
to a casual player. That phenomenon would still be present in the implicit
utility matrix, hence, a normalization of the ratings was performed:

bu = r̄u − µ, (4.1)

with bu denoting the individual user bias, r̄u the average rating of that user
and µ the global average rating for all games.

Furthermore, some games require a higher playing time by their design,
hence a game bias bi for a game i with an average rating of r̄i is introduced
and defined as:

bi = r̄i − µ. (4.2)

The centered utility matrix is therefore calculated by subtracting the global
average rating µ, the corresponding user bias bu and the corresponding
game bias bi from each rating:

zu,i = ru,i − µ− bu − bi (4.3)

The centering process was only applied to the implicit utility matrix.

4.5.3 Modified Collaborative Filtering

As illustrated in Section 2.3.1, the idea behind collaborative filtering is that
similar users tend to like similar things. For this recommendation engine,
an item-based approach was implemented. It is assumed, that the user who
requests a recommendation is a new user. Hence, in order to recommend
games, one has to know the k-most similar items to the positive games of
the newly introduced user. As a prerequisite, the item-to-item similarities
had been calculated from the utility-matrix for all game in the steam dataset.
The similarity was calculated as proposed by Sarwar et al. (2001) with the
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cosine-similarity. The similarity of two games i and j is therefore calculated
as the cosine angle of the rating vectors of the two games gi and gj:

sim(i, j) = cos(gi, gj) =
gi · gj

‖gi‖2

∥∥gj
∥∥

2

. (4.4)

Applied to all different game-pairs, the similarity matrix S is defined as
follows: S ∈ Rm×m, where m is the number of games.

All input games the new user liked are treated as the best rating on
the used rating scale. For each input game gi, the most similar games
~si = (si1, si2, . . . , sik) are extracted from the similarity matrix S. Summing
up the individual similarities yields a accumulated similarity for each game.
Consider the following example in Table 4.8:

Table 4.8: Similarities for input games 1 to 4

Input game Game 1 Game 2 Game 3 Game 4

Game A 0.2 0 0 0.9
Game B 0.5 0.5 0.7 0

Game C -0.1 0 0 0.4
Game D 0 0.3 0 0

From the above example, the following similarities can be obtained: 0.6 for
Game 1, 0.8 for Game 2, 0.7 for Game 3 and 1.3 for Game 4. In that case,
game 4 would be the highest ranked recommendation, game 1 the lowest.
Those similarities are normalized between 0 and 1 with linear interpolation
and build the baseline for the post-filtering.

4.5.4 Modified Matrix Factorization

Matrix factorization rests upon discovering latent factors based on the rating
behavior of the users. Latent factors are attributes or characteristics of items
which are not explicitly stated somewhere, that is, are hidden inside the
data. Matrix factorization models became very popular in 2006 because of
the Netflix Challenge (Ricci, Rokach, and Shapira, 2015). The theoretical
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background was already covered in Section 2.3.2.
For this thesis, the singular value decomposition for sparse matrices (SVDS8)
from the scipy package9 was used. The matrices returned by this algorithm
represent each user and each game in a latent factor space with f dimen-
sions. A user u is therefore a vector pu ∈ R f , and a game i is a vector
qi ∈ R f . The best results were obtained by setting f = 110. The amount
of dimensions was found by trying values between 40 and 200, in steps of 10.

In order to recommend items, as described in section 4.5.3, the cosine
similarity had been utilized. The similarity between two games hence is
defined as:

sim(i, j) = cos(qi, qj) =
qi · qj

‖qi‖2

∥∥qj
∥∥

2

, (4.5)

with qi and qj as vectors, representing games in the f -dimensional feature
space. Thus, only the matrix Q from the SVD is used for the similarity
computation.

Again, each positive input game was considered to be rated with thumbs-up
in the binary version of the utility matrix, a rating of +5 was assumed for the
implicit one. Similar to the collaborative filtering approach, the individual
similarities were summed up, resulting in an overall similarity score (see
Table 4.8) for an example. This score was normalized as described before
and serves as the baseline for the following post filters.

4.5.5 TF-IDF

Term Frequency - Inverse Document Frequency is a content-based approach
which calculates similarities based on a textual corpus. In this thesis, the
corpus of a game is composed of the name of the game, the description of
the game and all reviews for that game. A closer look at the review text
revealed some useless reviews with just letters or so called stopwords (such
as “a”, “an”, “the”, “I”, “and”) with no information gain. The stopwords
were excluded from the algorithm by providing a stopwords file for English

8https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.svds.html
9scipy.sparse.linalg.svds
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and German words, arranged by Peter Graham10. Furthermore, review text
was only considered in the TF-IDF-algorithm if it was between minimum
200 and maximum 7000 characters long. Those boundaries were obtained
by the author of this thesis via the analysis of random samples of texts.
The best results were obtained by limiting the maximum number of textual
features to 900 (other tried values: 400, 800, 1000, 1200, 1500).
For calculating TF-IDF, the TF-IDF vectorizer from the scikit-learn package11

was utilized. For a theoretical background, please refer to Section 2.3.3.
The TF-IDF for a term t in a document d is defined as

tf-idf(t, d) = tf(t, d)× idf(t). (4.6)

For the IDF calculation, a smoothed version is utilized with d f (d, t) de-
noting the document frequency of term t and nd as the total number of
documents:

idf(t) = log
1 + nd

1 + df(d, t)
+ 1 (4.7)

The resulting TF-IDF vectors are normalized with the Euclidean norm, to
prevent a possible bias towards longer texts:

vnorm =
v
‖v‖2

=
v√

v2
1 + v2

2 + · · ·+ v2
n

(4.8)

The resulting matrix with TF-IDF vectors and the extracted features are
calculated and stored locally, to speed up the recommendation process.
In order to calculate the similarity between games, the input games are
transformed to a single TF-IDF vector with the previously stored features
as a vocabulary. As a text corpus, all names, descriptions and reviews from
all input games were accumulated.
In order to recommend items, as described in Section 4.5.3, the cosine
similarity had been utilized. The similarity between two games hence is
defined as:

sim(i, j) = cos(ti, tj) =
ti · tj

‖ti‖2

∥∥tj
∥∥

2

, (4.9)

10https://github.com/6/stopwords-json
11http://scikit-learn.org/stable/index.html
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ti denoting the tf-idf-vector of game i and tj as the tf-idf-vector of game j.
This similarity score was normalized as described before and serves as the
baseline for the following post filters.

4.6 Evaluation

The algorithms and post-filters were evaluated in two ways: First, with
testcases obtained from the subreddit r/gamingsuggestions and second, a
qualitative evaluation of the recommendations was performed. The detailed
steps for both of this evaluation approaches are discussed in this section.

4.6.1 Testcases

Since the overall goal of the recommendation engine is to fit the community
taste, a closer look to a gaming community seemed appropriate. For that
purpose, the subreddit r/gamingsuggestions was inspected. According to the
description, the subreddit is about

“To give and get advice on games, gaming equipment, consoles,
hardware, software, board games, gaming books, paraphernalia-
anything gaming related.”

In total, 100 testcases were obtained. However, in order to provide a fair
environment and reproducibility, some restrictions apply:

• Submissions must contain the words “games like” or “game like” in
the title
• There had to be a least one game provided as an example which is

also available on steam
• Altogether, a minimum of 10 different games had to be suggested by

the community, each of them available on steam
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• A suggestion for a game was regarded as good, if at least three upvotes
were given for the whole comment. This limit seemed appropriate in
the author’s view.
• A suggestion for a game was regarded as good, if requester said they

would “definitely check this out”, or they are “going to buy that” or
stated otherwise that the suggestion was good.

To better illustrate the very nature of the requests, in Figure 4.2 some
examples of the requests with to some extent very special requirements are
depicted.

Figure 4.2: Example of some typical requests from users of /r/gamingsuggestions. Note the
very detailed and specialized constraints. Some of the asked attributes can only
be complied with if the recommender actually played the game.

56



4 Materials and Methods

For each submission, the following steps were executed:

• For each game mentioned in the title or description of the submission,
it was manually checked whether the game is available on steam, and
if yes, the appropriate steamID was obtained
• Each comment was manually checked if it was either approved as a

good suggestion by the requester, or if it had enough upvotes from
the community
• For each viable comment, the games were manually checked for their

availability on steam and the corresponding steamID was fetched
• Steam provides twelve similar games (presumably based on tags) on

every game detail page (see Figure 4.3). Hence, for every input game,
all twelve steam recommendations were gathered
• Each submission was manually searched for informative tags

Table 4.9 gives an overview of the testcases.

Table 4.9: Overview of the obtained testcases

Amount

Testcases 100

Different Input Games 408

Different Community Recommendations 809

Different Steam Recommendations 1640

Average amount of community recommendations per
submission

14.66

Average amount of input games per submission 7.8
Average text length of submission 473

Average tags per submission 2.96
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Figure 4.3: Steam recommends twelve similar games for each game on their website
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Figure 4.4: Illustration of the 10-fold-cross-validation (Raschka, 2018). Each fold creates
a training set consisting of 90 testcases, and a testset containing ten testcases.
For each fold, the filter weights were trained separately with a grid search
experiment. The performance metrics such as precision, recall and f1-score were
obtained from the previously unseen testset for each fold.

To comply with Salzberg (1997), who stated that “everything done to modify
or train the algorithm has to be done in advance of seeing the test set”, a
10-fold-cross-validation similar to those proposed by (Amatriain et al., 2011;
Cremonesi and Turrin, 2009) was performed. In that way, the algorithms
were trained on a training set consisting of 90 testcases each, and were
tested on a test set of 10 testcases for each fold. By creating ten different
training-testset-pairs, the limitation of only having 100 testcases is also
mitigated to some extent.

In order to compare the recommendations of the algorithms to suggestions
given by the community, typical performance metrics such as precision,
recall and f1-score @N (with N=10) (see section 2.1.4) were utilized.

As a baseline, the steam recommendations were used. Since there are twelve
games per input game, there could be more than ten different games in the
resulting list. Steam does not seem to order the recommendations in any
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particular way, hence, all the steam recommendations had been randomized
and ten were chosen. In this thesis, the different folds were separated by the
submission time stamp.
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4.6.2 Qualitative Evaluation

The goal of the recommendation engine was to fit the community taste.
However, the community might be biased in various ways. For example,
people from the US might recommend other games compared to people
from Asian countries. Older people could be recommending games from
their childhood a bit more than recent games. A gender bias might also
be present. Even if the community taste was not matched in some of the
testcases mentioned above, the recommendations might still be viable.

To test that hypothesis, a qualitative evaluation was performed.

For each submission, the recommendations from the community, from
each of the three algorithms and the games recommended by steam were
merged together into a single list of maximum 50 games (ten games per
approach). Duplicate games were only contained once in the list, hence the
lists were usually shorter.

Each game in such a list could be rated with four different values, de-
pending on whether the game matches the submission or not. In order
to obfuscate the origin of the recommendation, the list was sorted alpha-
betically. Furthermore, since it was assumed that most of the games are
unknown to the user, each game was linked with the corresponding steam
website for detailed gameplay videos, descriptions, and screenshots. More-
over, the associated genres and tags were displayed beneath the game title
directly.

The task of each evaluator was to measure the fit of the recommended
game with the submission. Three ratings had been established, namely good
match, ok match and bad match / no match. The fourth option was ?, which
could be checked if no sound opinion could be given.

The questionnaire was personalized, meaning every person got an individ-
ual link which enabled a pausing of the survey. A detailed task description
was also sent with the link. Figure 4.5 shows the rating page and Figure 4.6
shows the possible options in detail.
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Figure 4.5: Overview of the rating page. At the top, the submission from reddit is displayed.
Below, links to the games mentioned in the description are displayed in case the
games are unknown to the evaluator. Further below, the alphabetically sorted
list of recommendations is shown.

Figure 4.6: Detailed view of recommendations.
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The survey was done by 20 different persons, varying in age (between 24

and 56), gender, gaming experience and education level.

4.7 Post-Filtering

In order to improve the recommendations from the three state-of-the-art
algorithms, post filters similar to those advocated by Adomavicius and
Tuzhilin (2011), were implemented.

Such post filters alter the list of recommendations given by the algorithms
by removing irrelevant games or reordering the list by taking contextual
information into account. For this thesis, only soft filters (filters without
strict boundaries) were considered.

Since it is not viable to compute all post-filters for all games, the list of rec-
ommended games was truncated. However, to preserve the natural concept
of each algorithm, the list length was set at 300 due to performance issues,
however, other list lengths may be possible. All further improvements were
made on that shortened list.

Since only soft post filters were implemented, a removing from the fi-
nal list is therefore done implicitly by reordering the games.
Each game in the list of recommendations has a similarity score to the
positive input games given by the user between 1 and 0. 1 indicating a
rather good recommendation and 0 specifying a bad one (by the definition
of the algorithms).

For each game in the list of 300 and for each post filter, a post filter score
was computed. The score was then added to the recommendation score with
a weighting influence. As a last step, the recommendatin list was reordered.
By manually investigating the subreddit r/gamingsuggestions, the post-filters
in the following subsections emerged.
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4.7.1 Genre Score

By looking at the games which were stated as positive input games and
the resulting recommendations of the community, it was noticed, that the
genres of the games overlap in most cases. For example, the requesters
specify The Witcher and The Elder Scrolls V: Skyrim as games they liked and
the community recommends Dragon Age: Origins, all three games belong
to the genre RPG - Role Playing Game. Hence, the implicit genre score Sgenre
was implemented. It is formally defined as

Sgenre(i) = ∑
j∈Igames

∣∣Gi ∩ Gj
∣∣2

|Gi|
∣∣Gj
∣∣ , (4.10)

with Igames denoting the input games and Gi and Gj the associated genres
of game i and j. The idea behind the implicit Genre Score is, that games
which have the same set of genres should be ranked higher in the final list
of recommendations.

4.7.2 Tag Score

A tag is a keyword which describes an item. By looking at the different sub-
missions on r/gamingsuggestions, it became clear, that for most submissions
explicit tags could be found. Hence, two tag scores are introduced:

The explicit tag score and the implicit tag score.

The explicit tag score SeTags measures the overlap between the explicitly
stated tags in the submission and the associated tags of each game. It is
formally defined as

SeTags(i) =

∣∣Ti ∩ Itags
∣∣2

|Ti|
∣∣Itags

∣∣ , (4.11)

Ti denoting the tags linked to each game and Itags as the set of explicitly
stated tags.
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The implicit tag score SiTags measures the overlap between the associated
tags of the input games with the tags linked to the recommended games. It
is formally defined as

SiTags(i) = ∑
j∈Igames

∣∣Ti ∩ Tj
∣∣2

|Ti|
∣∣Tj
∣∣ , (4.12)

with Igames denoting the input games and Ti and Tj the affiliated tags of
game i and j.

4.7.3 Metacritics Score

Metacritic is a rating aggregation service for different kinds of media prod-
ucts. It combines the opinion of most respected critics writing online and in
print to a single number (Metacritics, 2018).

The metacritic score weighs games which were rated good a bit more,
than games which got bad ratings. This way, qualitative games are ranked
a bit higher than so called “trash games”. Overall, games tend to be more
recommended if their quality is higher than average.

Since the metacritic score was not available for some games, the average of
all games was calculated and assigned to the missing values.

More formally, the score Smetacritic for each game is defined as

Smetacritic(i) = 1 +
Mi −max(M)

max(M)−min(M)
, (4.13)

with M denoting the set of metacritic scores for all 300 recommendations
and Mi the metacritic score for game i. The resulting list of metacritic scores
for all recommendations was normalized between 1 and 0, matching the
best metacritic score to 1 and the worst to 0 and interpolating the values
between.
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4.7.4 Review Score

A similar approach was followed regarding the review score. It was pre-
sumed, that games which have more total reviews tend to be more popular,
regardless whether the reviews were good or bad in total, following the
slogan “there is no such thing as bad publicity”. Formally, the review score
Sreview is defined as

Sreview(i) = 1 +
|Ri| − |max(R)|

|max(R)| − |min(R)| , (4.14)

with R denoting amount of given reviews for each of the 300 recommen-
dations and Ri the amount of reviews for game i. Again, the score was
normalized between 1 and 0.

4.7.5 Category, Developer, Publisher Score

Other scores including the categories, publishers and developers of the
games similar to those mentioned above had also been considered. However,
no significant improvements could be achieved, hence they were abandoned
in the final recommendation engine.

4.7.6 Weighting the Scores

Each of the above scores was added to original recommendation list by
simply summing up the similarity values for each game with the score
values for each game. Some of the scores are more important than others,
hence they should be taken into account more. This is achieved by assigning
each score a weighting factor between 1 and 0, depending on its importance.
The different weights were obtained by a grid search experiment. Each
score was evaluated with values between 0 and 1, in 0.2 steps. The obtained
values where then again tested with -0.1 and +0.1. For example, if grid
search revealed a value of 0.4, 0.3 and 0.5 also had been evaluated.
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4.8 Testing

Python provides a unittest framework12, which was utilized for most of the
tests.
As proposed by Reitz (2018), the general rules of testing had been complied
with. Hence, testing units were kept small to focus on tiny bits of function-
ality at a time. Furthermore, all testcases were executed before committing
changes to the repository. After writing some code, the modules in question
were also tested in regular intervals.

During the implementation work of this thesis, a test-driven development
approach as advocated by Beck (2002) was followed. Therefore, short itera-
tions were possible with clean and sleek code.

Testcases for functions like, for example, a helper function that normal-
izes values between 1 and 0 had been very straight forward to implement.
Naturally, valid and invalid input had been tested.

Testing the scraper and the recommendation algorithms proved to be more
complex.

Since the scraper relies on the existence of HTML sites, a local web server
instance was set up containing a fully downloaded game page from steam.
The reference output was manually defined by analyzing the downloaded
web page. Furthermore, an URL parameter was added to simulate various
HTTP errors. That way, for example, a 404-error or a 429-error13 could be
simulated.

In order to test the recommendation algorithms, a test database environment
with some sample data was created as a prerequisite before each test run.
The results of the algorithms had been calculated manually and served as a
comparison to the implemented ones.

12https://docs.python.org/3/library/unittest.html
13Too Many Requests
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This chapter presents the results obtained in order to answer the research
questions stated in Section 1. First, the outcome of the goal fitting the
community taste is presented. Second, the results of the qualitative evaluation
is described.

5.1 Fitting the Community Taste

In order to measure the overlap between the games suggested by the algo-
rithms and the games recommended by the community, typical metrics (see
Section 2.1.4) had been utilized.
Details about the single steps can be found in section 4.6.

5.1.1 Post-Filtering Weights

Following, the different weights for each applied post-filtering approach
are depicted. The weights were calculated for each fold individually with a
training set. The grid search experiment revealed the same weights for each
fold, hence only one weight per approach is displayed.
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Figure 5.1: Weights for the various post-filtering approaches, obtained from the binary
training sets.

Table 5.1: Weights for the different post-filtering approaches obtained from the binary
training sets.

Filter Weight

Genre 0

Tags (Explicit) 0.1
Tags (Implicit) 0.5
Metacritics 0.3
Review 0.1
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Figure 5.2: Weights for the various post-filtering approaches, obtained from the decimal
training sets.

Table 5.2: Weights for the different post-filtering approaches obtained from the decimal
training sets.

Filter Weight

Genre 0.1
Tags (Explicit) 0.1
Tags (Implicit) 0.3
Metacritics 0.4
Review 0.1
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5.1.2 Test Results

Following, the results of the test sets are depicted for each algorithmic
approach and both rating variants (i.e., the binary, explicit rating and the
decimal, implicit rating obtained from the playing time). The last section
contains a summary of the test folds for each algorithm.

71



5 Results

Binary Item-Based CF

Figure 5.3: F1-Scores with item-based CF on the binary test sets obtained by 10-fold cross
validation. The darker columns represent the score before any post-filtering, the
lighter ones after post-filtering techniques applied.

Table 5.3: Precision, recall and F1-Score of the binary test sets (item-based CF) without any
post-filtering techniques.

Fold Number
1 2 3 4 5 6 7 8 9 10 Mean

Precision 0.11 0.12 0.08 0.12 0.14 0.11 0.18 0.14 0.13 0.23 0.136

Recall 0.099 0.099 0.068 0.104 0.09 0.079 0.094 0.103 0.091 0.168 0.1
F1-Score 0.104 0.108 0.073 0.111 0.109 0.089 0.123 0.117 0.104 0.192 0.113

Table 5.4: Precision, recall and F1-Score of the binary test sets (item-based CF) with post-
filtering techniques applied.

Fold Number
1 2 3 4 5 6 7 8 9 10 Mean

Precision 0.19 0.09 0.18 0.22 0.26 0.27 0.31 0.21 0.28 0.33 0.234

Recall 0.177 0.077 0.159 0.184 0.183 0.177 0.151 0.139 0.204 0.228 0.168

F1-Score 0.183 0.083 0.168 0.198 0.212 0.208 0.202 0.165 0.232 0.265 0.192
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Decimal Item-Based CF

Figure 5.4: F1-Scores with item-based CF on the decimal test sets obtained by 10-fold cross
validation. The darker columns represent the score before any post-filtering, the
lighter ones after post-filtering techniques applied.

Table 5.5: Precision, recall and F1-Score of the decimal test sets (item-based CF) without
any post-filtering techniques.

Fold Number
1 2 3 4 5 6 7 8 9 10 Mean

Precision 0.11 0.1 0.07 0.14 0.17 0.09 0.21 0.12 0.17 0.24 0.142

Recall 0.103 0.084 0.056 0.122 0.12 0.07 0.101 0.088 0.122 0.174 0.104

F1-Score 0.106 0.091 0.062 0.13 0.139 0.077 0.136 0.1 0.139 0.199 0.118

Table 5.6: Precision, recall and F1-Score of the decimal test sets (item-based CF) with
post-filtering techniques applied.

Fold Number
1 2 3 4 5 6 7 8 9 10 Mean

Precision 0.22 0.14 0.15 0.21 0.25 0.24 0.35 0.24 0.23 0.35 0.238

Recall 0.204 0.12 0.139 0.172 0.172 0.156 0.175 0.162 0.164 0.24 0.17

F1-Score 0.211 0.129 0.144 0.188 0.201 0.184 0.232 0.19 0.188 0.28 0.195
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Binary MF

Figure 5.5: F1-Scores with matrix factorization on the binary test sets obtained by 10-fold
cross validation. The darker columns represent the score before any post-
filtering, the lighter ones after post-filtering techniques applied.

Table 5.7: Precision, recall and F1-Score of the binary test sets (MF) without any post-
filtering techniques.

Fold Number
1 2 3 4 5 6 7 8 9 10 Mean

Precision 0.13 0.08 0.1 0.06 0.14 0.08 0.14 0.1 0.06 0.17 0.106

Recall 0.118 0.065 0.087 0.046 0.098 0.055 0.075 0.062 0.037 0.124 0.077

F1-Score 0.123 0.071 0.093 0.051 0.115 0.065 0.096 0.076 0.044 0.142 0.088

Table 5.8: Precision, recall and F1-Score of the binary test sets (MF) with post-filtering
techniques applied.

Fold Number
1 2 3 4 5 6 7 8 9 10 Mean

Precision 0.16 0.06 0.16 0.16 0.15 0.2 0.22 0.14 0.16 0.28 0.169

Recall 0.15 0.05 0.148 0.135 0.095 0.128 0.108 0.093 0.112 0.197 0.122

F1-Score 0.155 0.054 0.154 0.145 0.115 0.153 0.144 0.111 0.13 0.227 0.139
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Decimal MF

Figure 5.6: F1-Scores with matrix factorization on the decimal test sets obtained by 10-fold
cross validation. The darker columns represent the score before any post-
filtering, the lighter ones after post-filtering techniques applied.

Table 5.9: Precision, recall and F1-Score of the decimal test sets (MF) without any post-
filtering techniques.

Fold Number
1 2 3 4 5 6 7 8 9 10 Mean

Precision 0.12 0.04 0.11 0.05 0.05 0.05 0.1 0.17 0.03 0.09 0.081

Recall 0.111 0.03 0.097 0.047 0.034 0.028 0.057 0.097 0.02 0.069 0.059

F1-Score 0.115 0.034 0.103 0.049 0.04 0.035 0.072 0.121 0.024 0.078 0.067

Table 5.10: Precision, recall and F1-Score of the decimal test sets (MF) with post-filtering
techniques applied.

Fold Number
1 2 3 4 5 6 7 8 9 10 Mean

Precision 0.2 0.06 0.18 0.16 0.15 0.17 0.2 0.17 0.09 0.22 0.16

Recall 0.188 0.048 0.159 0.139 0.089 0.118 0.098 0.101 0.062 0.169 0.117

F1-Score 0.193 0.053 0.168 0.148 0.11 0.135 0.131 0.124 0.073 0.19 0.133
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Binary TF-IDF

Figure 5.7: F1-Scores with TF-IDF on the binary test sets obtained by 10-fold cross vali-
dation. The darker columns represent the score before any post-filtering, the
lighter ones after post-filtering techniques applied.

Table 5.11: Precision, recall and F1-Score of the binary test sets (TF-IDF) without any
post-filtering techniques.

Fold Number
1 2 3 4 5 6 7 8 9 10 Mean

Precision 0.06 0.02 0.04 0.07 0.12 0.05 0.11 0.1 0.08 0.13 0.078

Recall 0.057 0.014 0.034 0.068 0.087 0.041 0.052 0.067 0.054 0.091 0.056

F1-Score 0.058 0.017 0.036 0.069 0.099 0.045 0.071 0.078 0.064 0.105 0.064

Table 5.12: Precision, recall and F1-Score of the binary test sets (TF-IDF) with post-filtering
techniques applied.

Fold Number
1 2 3 4 5 6 7 8 9 10 Mean

Precision 0.12 0.04 0.1 0.15 0.22 0.17 0.2 0.21 0.12 0.27 0.16

Recall 0.107 0.034 0.088 0.14 0.153 0.123 0.101 0.132 0.081 0.182 0.114

F1-Score 0.113 0.037 0.093 0.145 0.178 0.141 0.133 0.159 0.097 0.214 0.131

76



5 Results

Decimal TF-IDF

Figure 5.8: F1-Scores with TF-IDF on the decimal test sets obtained by 10-fold cross vali-
dation. The darker columns represent the score before any post-filtering, the
lighter ones after post-filtering techniques applied.

Table 5.13: Precision, recall and F1-Score of the decimal test sets (TF-IDF) without any
post-filtering techniques.

Fold Number
1 2 3 4 5 6 7 8 9 10 Mean

Precision 0.06 0.02 0.04 0.07 0.12 0.05 0.11 0.1 0.08 0.13 0.078

Recall 0.057 0.014 0.034 0.068 0.087 0.041 0.052 0.067 0.054 0.091 0.056

F1-Score 0.058 0.017 0.036 0.069 0.099 0.045 0.071 0.078 0.064 0.105 0.064

Table 5.14: Precision, recall and F1-Score of the decimal test sets (TF-IDF) with post-filtering
techniques applied.

Fold Number
1 2 3 4 5 6 7 8 9 10 Mean

Precision 0.12 0.03 0.08 0.17 0.19 0.18 0.21 0.21 0.12 0.26 0.157

Recall 0.11 0.024 0.071 0.154 0.128 0.129 0.111 0.138 0.084 0.18 0.113

F1-Score 0.115 0.027 0.075 0.161 0.151 0.148 0.144 0.163 0.098 0.21 0.129
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5 Results

Summary

Figure 5.9: Average precision, recall and F1-Score of each algorithm on the binary dataset.
The darker columns represent the score before any post-filtering, the lighter
ones after post-filtering techniques applied.

Table 5.15: Average precision, recall and F1-Score of each algorithm on the binary dataset
without post-filtering.

CF MF TF-IDF Steam

Precision 0.136 0.106 0.78 0.101

Recall 0.1 0.077 0.056 0.071

F1-Score 0.113 0.088 0.064 0.081

Table 5.16: Average precision, recall and F1-Score of each algorithm on the binary test set
with post-filtering techniques applied.

CF MF TF-IDF Steam

Precision 0.234 0.169 0.16 0.101

Recall 0.168 0.122 0.114 0.071

F1-Score 0.192 0.139 0.131 0.081
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Figure 5.10: Average precision, recall and F1-Score of each algorithm on the decimal dataset.
The darker columns represent the score before any post-filtering, the lighter
ones after post-filtering techniques applied.

Table 5.17: Average precision, recall and F1-Score of each algorithm on the decimal dataset
without post-filtering.

CF MF TF-IDF Steam

Precision 0.142 0.081 0.78 0.101

Recall 0.104 0.059 0.056 0.071

F1-Score 0.118 0.067 0.064 0.081

Table 5.18: Average precision, recall and F1-Score of each algorithm on the decimal dataset
with post-filtering techniques applied.

CF MF TF-IDF Steam

Precision 0.238 0.16 0.157 0.101

Recall 0.170 0.117 0.113 0.071

F1-Score 0.195 0.133 0.129 0.081
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5.2 Qualitative Evaluation

Following, the results of the qualitative Evaluation described in Section 4.6.2
are depicted.

Figure 5.11: Absolute numbers of given answers for each approach and option (good,
neutral, bad, unvalued).

Since there have been at least ten community suggestions per submission,
the number of possible answers was a bit higher than the numbers of recom-
mendations generated by the algorithms (which were limited to maximum
ten). On average, 14.6 games were suggested by the community.

Table 5.19: Number of total answers per approach
CF MF TF-IDF Steam Community

Overall answers, including unvalued 3625 3627 3656 3660 4404

Overall answers, without unvalued 3234 3221 3283 3167 3992
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Figure 5.12: Percentages of given answers.

In figure 5.12, the number of answers normalized by the total number of
answers is depicted.
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Figure 5.13: Average qualitative scores per game. The blue columns represent only good
and neutral ratings, the grey columns are with a malus for negative ratings.

The average score is calculated as follows: Good recommendations receive 3

points, neutral recommendations 1 point. For each bad recommendation, -2
points are assigned. The numbers are summed up and divided by the total
amount of answers.
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6 Discussion

In this thesis, a recommendation engine for video games, with the goal of
fitting the community taste of reddit users was implemented. More specifi-
cally, video game data from the steam platform was utilized to build three
state-of-the-art recommendation algorithms. The output of the algorithms
was compared to the suggestions provided by the community and the over-
lap was analyzed. However, with submissions obtained from reddit, the
algorithms revealed great potential for improvement (see Section 5.1.2, espe-
cially Table 5.17 and Table 5.15). Regarding the matching of the community
taste, the algorithmic approaches delivered results which were subject to
fine tuning with post-filtering techniques.
Research question 1,

“How accurately can the community taste from requests posted
on the subreddit r/gamingsuggestions be fitted with RS?”,

is hence answered.

By introducing several post-filtering approaches, the recommendations
could be improved significantly. Depending on the algorithm, the F1-score
almost could be doubled and the baseline recommendation could be topped
by each approach.

Post-filters work by adding contextual information to the computed list of
recommendation. They re-rank the video games in those lists by changing
the overall recommendation score. By analyzing 100 different submissions
and extracting common additional requests, five post-filtering approaches
could be obtained: Genre, explicit Tags, implicit Tags, Metacritic Score and
Reviews. Each post-filter was added to the original recommendation list
with a specific weighting factor. The weighting factors were generated by
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splitting the 100 submissions in training- and test-data via 10-fold-cross-
validation and grid searching with different values. The post-filter weights
all ranged between 0 and 0.5, depending on the dataset (see Section ??,
Table 5.1 and Table 5.2). The Metacritic-Score and the implicit tag score
had the highest values. Thus, highly rated games seem to be superior to
other games and the associated tags for each game play an important role
in improving recommendations. Research question 3,

“Considering post-filtering, how can recommendation results
be influenced with adjusting the recommendation list?”,

is considered as answered.
There are significant improvements with the application of post-filter-
techniques, the community taste could be fitted to about 20 percent, which
equals an improvement of nearly 70 percent in the best case. To verify
whether the recommendations are reasonable or not, and in order to answer
Research Question 2,

“Are the query driven recommendations viable, that is, do
they yield a reasonable and satisfying output?”,

a qualitative evaluation of the results was performed. For each of the 100

submission from the subreddit r/gamingsuggestions, the list of recommen-
dations @10 from each algorithm, ten recommended games from steam
and the suggestions from the community had been merged to one list. A
website containing that list, the submission text and the submission title was
created. An individual link was sent to 20 different participants. Each game
could be rated as either a good, an average or as a bad recommendation. As
depicted in Section 5.2, the results are in the same range for each algorithm
and the community respectively. Considering only good recommendations,
the collaborative filtering approach seems to be the best with 56% good
recommendations, compared to 54.5% from the reddit community. However,
the community seems to give better neutral recommendations, 31.8% com-
pared to 28% from the CF-algorithm. Furthermore, the community gives
the least bad recommendations, 13.7% compared to 15.9% (CF). This could
be to the lack of the implementation of hard filters and is subject to further
investigation. Considering the average score with only good and neutral
ratings, CF yields better results with 1.96 points per game, compared to
1.95 points from the community. To conclude, Research Question 2 can be
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answered with a clear yes, the query driven recommendation algorithms
yield reasonable output.

However, even if the above results look promising, there are a few lim-
itations of this work. First, the amount of testcases is very low with just
100. The test case acquisition is a rather time intensive work, since every
submission has to be searched by hand. Furthermore, each game in the
requirements as well as in the suggestions has to be matched manually
with a corresponding game on the steam platform. The same goes for the
keywords. In order to get statistically significant results, more test cases are
required.

Second, all requests are from a single community, hence all retrieved test
cases might be biased towards for example a specific genre.

Third, although steam provides a huge variety of video games, not all
games could be found. For example, the Diablo-Series or World of Warcraft
are Blizzard-specific games which are not available on steam, however, they
are often requested an suggested.

Fourth, in this thesis, the tags or keywords of a submission where cre-
ated only by a single author. With multiple users, the quality of the explicit
tags filter could be improved.

Fifth, some of the testcases are a few years old. Thus, the algorithms may
produce viable recommendations with newer games which where not re-
leased when the submission was created. Therefore, the games could not
have been suggested, hence the overlap might be different by taking that
into account.

Sixth, at the time of writing this thesis, only soft filters had been imple-
mented. By adding hard filters, for example, if a user specifically states that
she or he wants to play with a female protagonist, games that does not
support that should be removed from the resulting list. Currently, games
are only removed implicitly by ranking games which support that feature
higher.
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6 Discussion

Looking at the qualitative evaluation, more participants are required. Only
one person finished the complete survey, the majority only completed less
than 15%. However, as stated above, the results generated from the algo-
rithms seems to be (however not statistically significant) in line with the
community, even though the overlap is not very high.
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7 Conclusion and Future Work

This thesis was about the realization of a video game recommender engine.
The goal of the recommender engine was to fit the community taste, such
as in the subreddit r/gamingsuggestions. Chapter 1 dealt with the history and
the evolution of RS. The research questions which were answered during
this thesis were also defined:

RQ1 How accurately can the community taste from requests posted on the
subreddit r/gamingsuggestions be fitted with RS?

RQ2 Are the query driven recommendations viable, i.e. do they yield a
reasonable and satisfying output?

RQ3 Considering post-filtering, how can recommendation results be influ-
enced with adjusting the recommendation list?

The chapter was concluded with the motivation and the need of specialized,
query driven RS.

Chapter 2 described the underlying principles of RS. Necessary terms,
for example user, item and translation were introduced. Furthermore, the
theoretical background of the algorithms (collaborative filtering, matrix
factorization and term frequency—inverse document frequency) utilized in
this thesis was treated. Following, a short overview of the used platforms
(Steam, Reddit) was given.

Chapter 3 gave a summary of the already conducted work in the field
of video game recommendation. Moreover, the current state of research in
the domain of narrative driven recommendations was depicted.
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Chapter 4 included every single step to reproduce the work performed
for this thesis. First, the utilized hardware is described. Second, the data
acquisition as well as the data preprocessing process is broken down to de-
tails, covering all necessary development procedures. Since some adaptions
to the standard recommender algorithms were performed, the actually im-
plemented ones were described in this chapter. The chapter was concluded
by depicting the evaluation- and testing process (including 10-fold-cross
validation, qualitative evaluation and unit testing).

In Chapter 5, the results of the conducted experiments were displayed.
For each algorithm, precision, recall and the F1-score compared to the com-
munity as a gold standard was depicted. Furthermore, the post-filtering
weights were described, followed by the results of the qualitative evaluation.

The results were afterwards discussed and interpreted in Chapter 6. The
algorithm which had the highest overlap of recommendations with the
community was the item-based collaborative filtering approach. A cover-
age of roughly 20% was reached. The qualitative evaluation showed, that
the recommendations of the algorithms and the recommendations of the
community nearly were perceived equal by the human testers with good
recommendations in over 50%. Also, the limitations of this work were dis-
cussed.

Naturally, the results could be improved in various ways. One could be
the implementation of a community feedback loop. By releasing the recom-
mender engine on the subreddit, the recommendations could be voted up
or down by the community. Thus, the algorithms could also be trained on
that feedback, likely resulting in better recommendations.

Moreover, hard filters could be implemented to further improve the re-
sults by eliminating no-go options beforehand. Another option would be the
implementation of other algorithmic recommender approaches. Especially
the field of neural network approaches does look quite promising.

Furthermore, natural language processing could be included. By imple-
menting the ability to understand language, testcases could be obtained
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7 Conclusion and Future Work

easier, thus resulting in more training possibilities for the algorithms.
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