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Abstract

The major motivation for assessing environmental indicators for epidemio-
logical studies is to provide information about diseases conditions arising
from the physical environment to policy-makers and health authorities.
Communicable diseases such as malaria, dengue fever, west nile virus or
yellow fever are transmitted by different mosquito species (vector-borne
diseases). Thus, the evaluation of potential breeding habitats contributes to
diseases conditions and dynamics. Yellow fever, occurring in the tropics and
subtropics, is transmitted by the Aedes mosquito species. The aim, there-
fore, is to identify and define the most important environmental indicators
detected by remote sensing imagery that imply to the distribution of the
vector and consequently the potential abundance of yellow fever. The risk
zone mapping and the assessment of environmental indicators are based
on the random forest classifier, a state-of-the-art ensemble machine learn-
ing approach. To evaluate the use of multiple remote sensing data active
and passive remote sensing products are employed on variable importance
models. The model solely based on active microwave remote sensing data
shows better results than the other implemented models, indicating that
microwave remote sensing products are more suitable for predicting the
abundance of yellow fever in endemic countries.
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Zusammenfassung

Die Evaluierung von Umweltindikatoren für epidemiologische Untersuchun-
gen liefert nützliche Informationen für Entscheidungsträger und Gesund-
heitsministerien über Krankheiten, welche durch eine sich veränderte Umwelt
auftreten. Übertragbare Krankheiten wie Malaria, Dengue Fieber, das Zika-
oder das West Nil Virus sowie Gelbfieber werden mittels unterschiedlicher
Stechmückenspezies übertragen (durch Moskitos übertragene Krankheiten).
Resultierenden daraus sollten potenzielle Brutstätten und Habitate dieser
Stechmückenspezies identifiziert werden. Gelbfieber, welches ausschließlich
in subtropischen sowie tropischen Regionen vorkommt, wird durch die
Stechmückenspezies Aedes übertragen. Das Ziel dieser Arbeit ist es da-
her, die wichtigsten und ausschlaggebendsten Umweltindikatoren, welche
sich durch Fernerkundungsdaten ableiten lassen, zu identifizieren und
definieren und welche auf das Vorkommen von Stechmücken und daraus
möglicherweise auf das Auftreten von Gelbfieber schließen lassen. Die
Kartierung von Risikozonen sowie Beurteilung von Umweltindikatoren
basiert auf der Verwendung des Random Forest Algorithmus, welcher aus
dem Bereich des maschinellen Lernens stammt. Aktive sowie passive Fern-
erkundungsdaten werden verwendet und anhand von Modellen evaluiert,
welche den Einfluss jeder Variable bestimmt. Jenes Modell, welches nur auf
Mikrowellendaten aus aktiven Fernerkundungssensoren beruht, liefert das
beste Klassifikationsergebnis. Resultierend daraus kann abgeleitet werden,
dass Indikatoren basierend auf Mikrowellensensoren besser für die Vorher-
sage des Auftretens von Gelbfieber in endemischen Regionen geeignet sind
als jene von passiven Sensoren.
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2 Introduction to Vector Borne
Diseases and Habitat Analysis

2.1 Background

Current evidence suggests that human health is dependent on the dynam-
ics of the Earth’s climate system. Global change including environmental,
climatic, societal and demographic change, has a significant impact on hu-
mans as well as natural systems. Several direct and indirect effects of global
change have been observed, including the increase of extreme weather
events such as droughts or floods leading to insufficient food production
and freshwater supplies or the re-emerge of vector-borne diseases (VDBs)
(IPCC, 2014; Hagenlocher, 2014).

According to the World Health Organization (WHO), vector-borne diseases
such as malaria, dengue fever or yellow fever account more than 17% of all
infectious diseases, causing more than 1 million deaths annually. Vectors
are living organisms such as mosquitoes or ticks that transmit contagious
diseases between humans or from animals, mostly vertebrates to humans.
Many of these vectors are blood-soaking insects, which get infected by the
blood meal from infected hosts (humans, animals) and later inject it to
new hosts (WHO, 2014). This thesis focuses on one mosquito-borne disease
which was selected due to recent outbreaks in Africa and impacts on vulner-
able populations and national and international health systems: yellow fever.

Yellow fever (YF) virus is an arthropod-borne virus (arbovirus) from the
Flavivirus genus, occurring in tropical and subtropical areas, which strikes
an estimated 84 000 – 170 000 persons worldwide each year and causes an
estimated 29 000 – 60 000 deaths. It is transmitted by the Aedes species in
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2 Introduction to Vector Borne Diseases and Habitat Analysis

Africa and Haemagogus species in South America (Jentes et al., 2011; WHO,
2016a). The “yellow” refers to jaundice that appears during the disease
progression. Symptoms include high fever, headache, muscle pain, nausea,
vomiting, and fatigue. Epidemics occur when infected humans introduce the
virus into populated areas with high vector density and where most people
lack vaccination, because of poor maintenance of vaccination campaigns or
an increasing number of people borne since the last epidemics. Under these
circumstances, infected vectors (mosquitoes) transmit the virus from person
to person. The transmission is divided into three cycles: the sylvatic yellow
fever cycle (jungle yellow fever cycle), the intermediate yellow fever cycle
(savannah yellow fever cycle) and the urban yellow fever cycle. Depending
on the cycle different vectors and hosts are responsible for the spread of the
disease (WHO, 2016a).

Figure 2.1: Yellow Fever Transmission Cycle

Redrawn from WHO 2016

The transmission stages are best understood if ecological zones and indica-
tors such as rainfall patterns and vegetation are considered. The transmis-
sion cycle is visualized in figure 2.1. Within the jungle cycle, characterized
by tropical rainforest, the transmission is predominantly monkey-monkey
via the mosquito species Aedes africanus, and human infection is sporadic.
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2 Introduction to Vector Borne Diseases and Habitat Analysis

The cycle zone is characterized by year-round enzootic transmission. How-
ever, the virus activity is generally at a low level and local outbreaks rarely
occur. The second cycle occurs within the moist savannah zone. During the
rainy season this zone is responsible to repeated emergence of YF activity,
because of a high vector abundance including the vector Ae. Africanus, Ae.
Luteocerphalus, Ae. Furcifer and Ae. Simpsoni. The urban area is character-
ized by dry savannah, precipitation tends to be lower than in the moist
savannah and the rainy season is abbreviated. The virus is introduced to the
urban area by the Ae. Aegypti vector, which occur predominately in urban,
populated areas, where humans provide artificial breeding containers. If
the virus is introduced in urban areas, because of migrating humans, that
travel between different ecological zones, explosive outbreaks of Ae. Aegypti
– borne yellow fever may induce (Vainio and Cutts, 1998).

Despite the availability of a vaccine and mass vaccination campaigns, yellow
fever (YF) is considered as a reemerging disease caused by an increase in
incidences in the past 25 years (Barrett, Higgs, 2007). The virus originates in
Africa and was imported to America during the 16th century and claimed
thousands of lives during the 18th and 19th centuries. In 1937, Max Theiler
invented a yellow fever vaccine that is still in use today and provides lifetime
immunity in up to 99%. However, outbreaks continue to occur especially
in Western Africa and Southern America. Beginning in December 2015, a
large yellow fever outbreak has been reported in Angola and the Democratic
Republic of Congo (DRC), with 7293 suspected cases and 137 deaths. The
outbreak, which was first detected in Angola, spread to the entire country
and to the neighboring country DRC, where local transmission was first
detected in March 2016 (Kraemer et al., 2017; Paules and Fauci, 2017; WHO,
2017).

The physical environment is characterized by many aspects including land
cover, air and climate characteristics. Remote sensing and earth observation
is applied to health studies when the physical environmental and physical
indicators need to be assessed. One main scope of remote sensing in health
studies is the characterization of environmental indicators for vector-borne
diseases. Remote sensing imagery offer several advantages compared to
traditional health studies. They enable surveys on large or inaccessible areas
on different spatial and temporal resolutions and a growing rate of images
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are free available. And the availability of long archives provides the possi-
bility of performing long term studies to investigate the influence of global
environmental change on human health (Kotchi et al., 2016).

2.2 Objectives and Research Questions

The overall aim of this thesis is to investigate the relations between environ-
mental characteristics derived from satellite remote sensing imagery and the
risk of yellow fever occurrence in Africa. The central aspect is to assess the
distribution of yellow fever vectors (mosquitos) using environmental and
spatial indicators. The major advantage will be that the proposed method,
which is based on data level machine learning, avoids cost-extensive in-situ
surveys and thus easy access to information about the risk of the disease
distribution.

The research is based on active and passive remote sensing products in-
cluding an ESA CCI Land Cover Map and imagery from SENTINEL-2A,
LANDSAT-8, MODIS Terra and Aqua, and ASCAT. Concerning the study
objective, several aspects will be considered and analyzed. SENTINEL-2A
image data will be preprocessed using the recommended Sen2Cor preproces-
sor and further classified using automated image classification. LANDSAT-8
scenes will be preprocessed and used for extracting pixel values and cal-
culation of several data-level metrics and indices. MODIS Terra and Aqua
data will be applied to the study to assess the importance of land surface
temperature, vegetation indices, leaf area index and the fraction of photo-
synthetically radiation. ASCAT soil moisture data, which is provided by
the Vienna University of Technology, will be employed to investigate the
importance of soil moisture on the occurrence of the yellow fever vector. A
land cover map provided by the Climate Change Initiative of the European
Space Agency will be utilized to evaluate the use of different remotely
sensed land cover types. With regard to all data sources, the impact of each
remote sensing product for epidemiological studies will be assessed.

Thus, this research is located at the interface of ecological and environ-
mental aspects, earth observation science (remote sensing) and public health.

6



2 Introduction to Vector Borne Diseases and Habitat Analysis

The following research questions (RQs) are addressed to fulfill the objectives:

RQ 1: What are possible environmental indicators influencing the occur-
rence of the yellow fever virus (YFV) in Africa?

RQ 2: What kind of environmental indicators can be derived from remote
sensing data and be applied for habitat analysis of hosts and vectors?

RQ 3: Is it possible to infer a yellow fever virus risk hazard index?

7



3 State of the Art in
Epidemiological Research

The following chapter is a summary of the impact of Remote Sensing (RS)
and Earth Observation (EO) in health science, including the modeling of
VBDs and habitat analysis using remotely sensed data, and environmental
and ecological indicators that affect the abundance of Ae. Species and
distribution of Yellow Fever. It is based on a systematic review of the
available literature. The research was realized using Internet search engines
and keywords associated to VBDs, RS, and epidemiology (e.g., RS and
VBDs or RS and yellow fever, malaria, dengue fever), as well as indices
of relevant scientific journals. Articles referring to similar research studies
were clustered together in groups.

3.1 Mapping of Habitats regarding Vector-Borne
Diseases

The accessibility of multi-temporal satellite imagery for 45 years now, ex-
pedites the use of RS in epidemiology to gain a better understanding of
disease dynamics. Since the launch of the satellite LANDSAT-1 in 1972 (ini-
tially named Earth Resource Technology Satellite ERTS-1), remotely sensed
data had been used to acquire information about objects or phenomena on
the Earth’s surface, without direct physical contact. However, only a small
number of researchers have applied RS data for detecting environmental
indicators that might have impacts on VBDs (Beck et al., 2000; Herbreteau
et al., 2006; Zhang et al., 2013).

8



3 State of the Art in Epidemiological Research

One of the first research in RS and epidemiology was conducted by Cline
in 1970, who highlighted the use of aerial photography and remote sens-
ing techniques for epidemiological study. During the HAO (High Altitude
Observatory) initiative by NASA scientists in 1971 color and color-infrared
aerial photography was employed to map vegetation assemblages associ-
ated with the abundance of Aedes species, which are intermediate hosts
for several infectious diseases such as Yellow Fever, Rift Valley Fever or
Dengue Fever (Hay et al., 1997). Eight years later Wagner et al. (1979) con-
ducted research also using color-infrared aerial photography to map open
wetlands, marshes and residential areas (mosquito habitats) for mosquito
control in Michigan (Wagner et al., 1979). Several studies in the following
years highlighted the fact that the usage of aerial photography is more
cost-effective than conventional ground surveys of mosquito breeding sites.
The known flight range of the mosquitoes in combination with the distance
to residential areas and classified habitats were used to identify control
priorities (Hay et al., 1997). Rejmankova et al. (1988) investigated that the
NDVI (Normalized Difference Vegetation Index) is considered as an essen-
tial variable for the abundance of mosquitoes. They demonstrated that rice
crop cover is positively correlated with mosquito larval production. Higher
NDVI values were associated with high mosquito producing rice fields.
A discriminant analysis was conducted to distinguish between high and
low mosquito producing fields resulting in an overall accuracy of about
75 % (Rejmankova et al. 1988). Wood and Muir (1988) proposed to use
remote sensing imagery to derive environmental indicators such as land
cover, precipitation or temperature for understanding vector abundances
and dynamics. They highlighted to focus on monitoring the environmental
consequences of deforestation and resources to detect potential breeding
habitats (Wood and Moor, 1988).

During the 1990 various researchers have investigated the hypothesis that
the spatial and temporal aspects of mosquito population dynamics can be
predicted to environmental indicators observed by remotely sensed imagery.
In 1990 the second phase of the HAO initiative started (Hay et al., 1997).

“The second phase of the project investigated the population dynamics of Anopheles
albimanus and Anopheles pseudopunctipennis in the tropical wetlands of Chiapas,
Mexico, where malaria is endemic (Roberts et al. 1991). Pope et al. (1994) used two
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Landsat-TM scenes of the area, one from the dry and one from the wet season, to
provide an unsupervised classification of the region. The resulting clusters were
assigned to land-cover types on the basis of color-infrared aerial photographs and
field inspection of 30 test sites. These sites were independently sampled for mosquito
density and information was collected on environmental variables affecting water
and vegetation characteristics (Rejmankova et al., 1991). These sites were then
grouped into 16 habitat types using cluster analysis, and correlations were per-
formed between the habitat types and land-cover units (Rejmankova et al. 1992).
The cover-units were subsequently ranked as having high, medium or low mosquito
production potential on the basis of these correlations. Incorporating this infor-
mation into a GIS, sites of high mosquito production [. . . ] were found to occupy
only 9 percent of the designated control area, allowing the potential for substantial
streamlining of control campaign effort and resources.” (Hay et al., 1997)

Dry and wet season LANDSAT-TM scenes were again used by Beck et
al. (1994) for stepwise discriminant analysis and linear regression to assess
the relationship between the abundance of vectors and landscape (Hay et
al., 1997).

“Rejmakova et al. (1995) have also shown that the density of Anopheles albimanus
mosquitoes around villages in Belize could be reliably predicted using multi-spectral
Satellite Pour l’Observation de la Terre (SPOT) High-Resolution Visible (HRV)
data. Productive larval habitats were first identified as marshes containing relatively
few emergent aquatic plants and high coverage of cyanobacterial mats. An unsu-
pervised Bayesian maximum likelihood classification was then applied to a single
SPOT scene [. . . ]. The classes generated were subsequently assigned to individual
‘landscape elements’ based on field observations. Human settlements were identified
with ancillary map data and located more precisely on subsequent field visits with a
global positioning system (GPS).” (Hay et al., 1997)

At about the same time two researchers were conducted using coarse
resolution satellite imagery such as the AVHRR (Advanced Very High-
Resolution Radiometer) from the US National Environment Satellite, Data
and Information Service (NOAA) to predict Rift Valley Fever (RVF) in
Kenya. Satellite-derived green vegetation associated with RVF resulting in
the assumption that satellite data may become a forecasting tool for RVF
(Linthicum et al., 1987). Regional scale NDVI values were derived to identify
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shallow wetlands (dambos), which are highly suitable for mosquito breeding.
Based on that work RVF epidemics were correctly predicted in 1989 in
Kenya following exceptional NDVI values (Bailey and Linthicum, 1989).

Besides, the importance of soil moisture for prediction malaria transmission
factors was investigated. Patz et al. (1998) conducted a study to get insights
how modeled soil moisture influences malaria in Kenya using a water bal-
ance model. The authors concluded that modeled soil moisture improves the
prediction of biting rates compared to usually used environmental indicator
precipitation.

Further, additional airborne Synthetic Aperture Radar (SAR) data was inves-
tigated to detect the flooding status of wetland areas. In a study conducted
by Pope et al. (1992) passive (LANDSAT-TM) and active (SAR) satellite
imagery was combined to examine the feasibility of detecting RVF habitats
by analyzing soil and land cover. Thomson et al. (1995) studied AVHRR data
together with the Cloud Coverage Data (CCD) from the Food and Agricul-
tural Organization (FAO) to predict malaria in the Gambia. They also noted
the connection between malaria and environmental indicators including
precipitation and land cover derived from satellite data is complex since
sociological factors may play an essential role in the epidemiology of the
disease. Because in areas where the biting rates were high due to a higher
abundance of malaria mosquitoes people protect themselves using bed nets
and insect repellents (Hay et al., 1997). Hay et al. (1997) conclude that there
might be a possibility to initiate mosquito efforts before disease outbreaks
using RS imagery and that the cost-effectiveness of RS data compared to
ground surveys is a decisive factor to investigate further the use of remotely
sensed imagery in vector control and epidemiology.

Hay et al. 1997 concluded: “Our understanding of the spatial and temporal
distribution of invertebrate intermediate hosts and the disease they transmit has
been enhanced by understanding the statistical associations between the ecological
variables and processes observed remotely [. . . ].” (Hay et al., 1997)

Masuoka et al. (2003) employed LANDSAT 7 ETM+ and IKONOS data,
which is a commercial very high-resolution satellite operated by Digital-
Globe, to estimate the area covered by the malaria mosquito larval habitats
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in the Democratic Republic of Korea (Satellite Imaging Corporation, 2017).
Larval samples were collected to validate the classification results. Several
potential larval habitats were identified: (1) rice fields, (2) streamside ponds,
(3) irrigation ponds, (4) irrigation ditches, (5) drainage ditches, (6) swamps,
and (7) rivers. They implemented multiple classification algorithms on both
LANDSAT 7 and IKONOS scenes, a minimum distance, a maximum like-
lihood and a parallel-epiped classifier. The parallel-epiped classifier with
a maximum likelihood as a tiebreak was the most accurate on both im-
ages. Though, small habitats such as small ponds were not classified on the
LANDSAT scene due to the moderate resolution of the product. They con-
cluded rough estimates of habitats of the malaria vector could be performed
by LANDSAT 7 ETM+ images on local level; however, a very high-resolution
product from satellites such as IKONOS allows better distinctions of vector
habitats.

A similar study on malaria at the same year was conducted by Vascon-
celos and Novo (2005). They investigated the influence of precipitation,
deforestation and human operations on malaria incidences using precipita-
tion and water level information as well as RADARSAT-1 and LANDSAT 5
Thematic Mapper (TM) remote sensing data. RADARSAT-1 was launched
by the Canadian Government in 1995 to provide SAR images. It acquired im-
ages of the Earth day and night, in all weather and through clouds and haze.
It was designated to provide information on risk assessment, interferometry,
agriculture and other earth observing fields of application (Canadian Space
Agency, 2014). They found out that malaria incidence locations are spatially
related to deforestation areas and area with human operations such as road
construction areas.

The use of IKONOS and LANDSAT 7 ETM+ data was again explored
in 2006 identifying Culex quinquefasciatus which are responsible for transmit-
ting West Nile Virus (WNV) and Rift Valley Fever (RVF) in Kenya (Jacobs
et al., 2006). A LULC classification was conducted using a maximum likeli-
hood classification to identify potential breeding habitats. Results show that
LULC rice-cultivation fields are associated with high Culex abundance. Con-
cluding the study LULC change especially the increase in rice-cultivation
fields contribute the abundance and transmission of WNV and RVF.
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Zeng et al. (2006) highlighted the fact that environmental conditions may
be important determinants of VBDs outbreak and transmission. They de-
fined several indicators that may influence the abundance and transmission
vectors. First, climate as essential indicators including temperature, precip-
itation, pressure, humidity and short-term climatic variations such as El
Nino events or the minimum/maximum of the mean monthly temperature.
Second, land use land cover (LULC) including vegetation type and density.
Third, hydrological indicators such as precipitation, runoff and water con-
tent may influence the abundance of VBDs. And fourth, terrain indicators
are associated with VBDs because of the fact the different terrain features
support different land cover types, thus, provide specific habitats for vec-
tors. Further three types of epidemiological risk assessment are defined:
(1) Identifying breeding habitats of vectors, (2) linking between environ-
mental indicators and disease outbreaks and transmission, and (3) risk
assessment based on landscape elements. Rotela et al. (2007) went further
and investigated the use of RS and GIS for vector surveillance of dengue
fever classifying indicators in several spatial scales ranging from micro to
macro scale. The spatial pattern of dengue is a cooperative result of multiple
indicators that can be clustered in environmental, demographic, entomo-
logic and epidemiologic indicators. These indicators may be classified into
micro-scale (e.g., small-scale vector breeding habitats), medium-scale (e.g.,
houses), and macro-scale (e.g., blocks of houses, roads, agricultural fields).
The macro-scale includes some environmental indicators such as vegetation
types derived from LULC classification, wetness or temperature, which may
be observed by remote sensing images. The authors created an incidence
map of Tartagal, a city in Northern Argentina, showing the hot spot areas
during the outbreak of dengue fever in 2004. A maximum likelihood classi-
fication was implemented to classify rivers, roads and vegetation coverage
and vegetation indices were calculated the examine the vegetation’s green-
ness and wetness using LANDSAT 5 TM data. The authors concluded river
nearness and humidity are the most relevant indicators are probably linked
to the abundance of the dengue fever vector (Rotela et al., 2007).

Another research on malaria was conducted comparing three satellite sen-
sors at three different spatial scales to predict larval presence in the US.
Beside a larval survey, images from the LANDSAT-5 TM satellite, ASTER
satellite as well as Hyperion hyperspectral satellite were acquired (Brown
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et al., 2008). The Advanced Spaceborne Thermal Emission and Reflectance
Radiometer (ASTER) is on board of the Terra satellite operated by NASA
providing data for a wide range of science research including land surface
climatology, vegetation and ecosystem dynamics, volcano monitoring, haz-
ard monitoring, hydrology, geology and land surface and land cover change.
Aster delivers high spatial resolution data in 14 bands, ranging from the
visible to the thermal infrared wavelengths (NASA, 2004). The Hyperion
sensors as part of the Earth Observing-1 satellite launched by NASA pro-
vide hyperspectral images consisting of 220 spectral bands with a 30-meter
resolution. Hyperspectral imaging has wide-ranging applications in agricul-
ture, environmental studies forestry (USGS, 2011). Within the study, Brown
et al. (2008) extracted several vegetation indices such as the NDVI or the
Disease Water Stress Index (DWSI), a measure of leaf water content from
all acquired images of the three sensors. A stepwise regression model was
implemented to identify the abundance of Anopheles larvae at three different
scales: pixel, wetland perimeter, and wetland area. The best models were
developed using ASTER data on wetland area scale. Thus, models based on
higher spatial and spectral resolution (ASTER and Hyperion) are resulting
in more accurate products than LANDSAT 5 TM.

Tran et al. (2008) employed an object-based classification approach on
LANDSAT-7 ETM+ images to determine and quantify the spatial distri-
bution of Anopheles mosquitoes in France. Referring to changes in climate
and landscape, the evaluation of the risk of emergence of re-emergence of
such major diseases is of great importance in Europe. They investigated the
relationship between vector breeding sites and land cover, and their results
highlighted a strong link between land cover and presence or absence of
Anopheles larvae. Irrigated cropland, rice-cultivation fields are positively
correlated with the abundance of the vector.

Besides malaria, several other VDBs were investigated at the beginning
of the new century. Nakhapakorn and Tripathi (2005) explored the relation-
ship between the climate factors rainfall, temperature and humidity and the
occurrence of dengue fever (DF). The environmental indicators were derived
from LULC classification implementing a maximum likelihood classifier on
LANDSAT-TM imagery. Medical data was applied to validate the results.
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Another approach is using time-series analysis of remotely sensed data
for modeling the abundance and transmission of VDBs. Ugorji et al. (2009)
proposed to process a time series with LANDSAT-5 TM+ and LANDSAT 7
ETM+ performing a supervised image classification of the land use and land
cover change in Nigeria to infer to climate and landscape as determinates
of the prevalence of malaria. They found out that although climate has the
most significant impact on the Anopheles mosquito, the detection of land use
change may be used to limit the spread of arthropod vectors.

In the last few years, several studies focused on the global and regional
distribution of Ae. Species, which are responsible for the transmission of
several VDBs including dengue fever, yellow fever or the chikungunya virus.
The underlying assumption behind the modeling of global Ae. Species distri-
bution is that diseases can only persist where mosquito vectors are present.
Understanding the distribution may help to overcome VDBs. Therefore,
several approaches were tested including time series analysis, analysis of
environmental indicators, which favor the abundance of mosquito species
and analysis including socio-economic factors such as demographic factors
or migration. A study in 2015 was conducted based on literature research
combined with the environmental indicators temperature, vegetation in-
dices, precipitation and land cover to a regression tree machine learning
model. Resulting in a global distribution map of Ae. Species (Kreamer et
al., 2015). Another study on the worldwide distribution of the dengue fever
and yellow fever vectors Ae. Aegypti and Ae. Albopictus using temperature
and precipitation time series data was conducted by Santos and Meneses
(2017). The authors applied a Maxtent Correlative model, which rely on
the association between the species distribution and a set of environmen-
tal indicators, to predict the global distribution of the vectors. The model
output revealed areas with a high probable abundance of Ae. Aegypti
and Ae. Albopictus. However, they also highlighted the fact that environ-
mental suitability for virus transmission in an area does not necessarily
mean that the virus will arrive and become established at suitable territories.

Besides studies on global scale, also studies on regional level were per-
formed to correlate remote sensing data with the abundances of Ae. Species.
A study in Central Mexico was undertaken by Moreno-Madrinan et al. (2014)
using field survey data, remotely sensed data from the MODIS, TRMM and
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SRTM satellites. Spearmen correlation models were applied using spectral
bands including the visible and near-infrared range from the TRMM satel-
lite, land surface temperature derived from MODIS and elevation from
the SRTM mission, resulting in the fact that land surface temperature was
positively and significantly correlated with the abundance of Ae. Species.
Elevation estimated through SRTM also showed a correlation with the pres-
ence of Ae. Species.

Another modeling approach to assess the temporal and spatial patterns of
Ae. Species is to employ hotspot and cluster analysis socio-economic and
environmental indicators. A study conducted by Espinosa et al. (2016) using
hotspot and cluster analysis examined the abundance of Ae. Species in
Argentina. The authors concluded that land cover has the most significant
impact on the distribution of the vector within the study site.

A more complex model introduced by Buczak et al. (2012) was used for the
epidemiological prediction of dengue fever using local and remote sensing
data in Peru. Temperature, vegetation indices, the southern oscillation index,
sea surface temperature, socio-economic and demographic data as well as
elevation data were employed on a fuzzy data mining model using artificial
neural networks, resulting in a reliable prediction of dengue fever for up
to seven weeks. Thus, environmental indicators may have the potential to
predict the abundance of Ae. Species and model the probability of VBDs
outbreaks at different spatial scales.

LULC indicators derived from classification may be used to describe the
habitats of Aedes species. A study conducted by Landau and Leeuwen (2012)
on fine-scale urban land cover indicators and factors assessed to potential
use of land cover classes for the distribution modeling of Aedes species in
Tucson, Arizona. The authors performed an in-situ mosquito collection and
realized a LULC classification using 1 m spatial resolution multi-spectral
aerial imagery and LiDAR elevation data. The LULC classification was
composed of eleven classes including bare soil, pavement, structure, pool,
water, shadow, herbaceous, shrub, low height tree, medium height tree, and
high height tree. The LULC classes structure and medium height tree were
positively correlated with the abundance of Aedes mosquitoes, whereas
bare soil had a negative correlation. They concluded that land cover classes
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may influence the distribution of the Aedes mosquito within an urban
environment and should be therefore further investigated.

Vanwambeke et al. (2011) performed a study on the abundance of Aedes
species on the island of Oahu, Hawaii. Land cover data including 13 land
cover classes were obtained from the National Oceanic and Atmospheric
Administration Coastal Services Centre. Mosquito abundance data was
acquired from the Department of Health, which regularly traps different
mosquito species. Regarding LULC highest abundances were associated
with areas with mixed vegetation and built-up areas.

Vegetation coverage, in general, is associated with the abundance of Aedes
species. A study conducted by Vezzani et al. (2005) demonstrated the im-
portance of vegetation in the context of habitat suitability for the Aedes
species. The study assessed microhabitats of Aedes species in Argentina
using in-situ mosquito collection and several indicators including the height
of vegetation. Areas with greater vegetation heights were associated with
the abundance of the mosquito, whereas areas with little or no vegetation
coverage were not associated with the abundance. The authors concluded
that vegetation might have favorable effects on the abundance and develop-
ment of the species. However, the authors do not provide information about
the data source for obtaining vegetation coverage and height.

A similar study was conducted by Hayden et al. (2010) who assessed mi-
croclimate and human indicators that influence habitats of Aedes species
in Tucson, Arizona. They defined several microclimatic variables including
temperature, relative humidity, and vegetation coverage and performed
in-situ mosquito collections. Climate indicators such as hourly average,
minimum and maximum temperature and relative humidity were acquired
from weather stations. Further human factors such as the presence/absence
of running water in households or mosquito nets were investigated. A
visual assessment of vegetation coverage at the test site was performed
categorized into three classes of low, medium and high vegetation coverage.
Additionally, to the visual assessment vegetation coverage was examined
using IKONOS 1m remote sensing satellite imagery. The authors found
out that more significant vegetation coverage is favorable for Aedes species
habitats. Further moisture was identified as an important indicator of the
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abundance of the mosquito. Thus, they concluded the land cover type vege-
tation and the climatic variable moisture play a vital role in the distribution
of Aedes habitats.

Rey et al. (2006) investigated the importance of LULC for defining Aedes
mosquito habitats in South Florida. Favorable habitats were identified by
using areal imagery for each test site, visual image interpretation for ob-
taining LULC classes and mosquito sampling. The study revealed that only
built-up areas were positively correlated to the abundance of Aedes species,
whereas bare soil and open areas had a significant negative influence on
the habitats. Hence, urbanization and the increasing expansion of built-up
areas may favor mosquito habitats.

Further research was carried out by Lockaby et al. (2016) who tried to asso-
ciate climatic, ecological and socioeconomic indicators with the abundance
of the West Nile Virus in Atlanta, Georgia. They investigated the use of the
land cover classes forest, water, impervious surfaces and non-impervious
surfaces using mosquito collection and object-based image classification on
high-resolution areal images. Besides, precipitation, temperature, evapo-
transpiration, and moisture was acquired from the US National Weather
Service. Linear regression and correlation analysis were implemented to
assess the importance of LULC. Lockaby et al. (2016) concluded that the
class impervious (built-up areas) is having the most significant impact on
the abundance of the West Nile Fever vector. Consequently, Aedes habitats
more likely occur in regions with anthropogenic activities.

Consequently, LULC classes especially vegetation and built-up areas are
having a significant influence on Aedes mosquito habitats and therefore on
the distribution. Thus, vegetation coverage, as well as impervious surfaces,
should be considered as indicators. To analyze the seasonal variation and
density of vegetation in addition to the LULC vegetation class, vegetation
indices may be employed. The Enhanced Vegetation Index (EVI) and the
Leaf Area Index (LAI), which are derived from time-series remote sensing
imagery, are the most widely used indices for extracting information about
phenology (Wang et al., 2017). Messina et al. (2016) demonstrated the usage
of the EVI for mapping the global environmental suitability for Zika virus,
which is transmitted via Aedes species. The mean EVI product is indicative of
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amount of photosynthesis taking place in the environment over the course of a year,
which is positively correlated with the density of vegetation, and is thus a proxy
for the level of moisture available given the relationship between precipitation and
vegetation growth.”

3.2 Mapping of Habitats using Machine Learning
Techniques

Machine learning approaches such as Support Vector Machine (SVM), Arti-
ficial Neural Networks (ANN) or Random Forest Ensemble Learning (RF)
are more and more used in a wide variety of applications including habitat
suitability mapping since the past decades. A detailed definition of machine
learning and the above-quoted methods will be given in chapter 3.

Several authors propose to use random forest classifiers for mapping avian
species habitats via absence and presence modeling (Martinuzzi et al., 2009;
Wilsey et al., 2012). Another application field for random forest classifiers is
mapping land cover classes for suitable modeling habitats for large mam-
mals (Bleyhl et al., 2017). Further, random forest is employed to link the
abundance and distribution of mosquitoes which are responsible for several
VBDs (Ibañez-Justicia and Cianci, 2015). Regarding oceanographic applica-
tions, machine learning algorithms such as linear and generalized additive
models (GAM), bagging, RF, boosted regression trees and SVM may be em-
ployed to map reef fish habitats and benthic habitats (Zhang, 2015; Knudby
et al., 2010). Beside animal habitats, vegetation habitats may also be modeled
using machine learning. Several studies examined the usage of random
forest in mapping natural and semi-natural habitats of agricultural land-
scape using airborne and spaceborne remote sensing imagery (O’Connell
et al., 2015; Duro et al., 2014). Mangrove and grassland habitats may be
detected by using support vector machine (SVM). Moreover, SVM is used for
mapping habitats for bogs. Further, decision tree rules may be employed to
model invasive insects which cause damage to forests (Williams et al., 2017).
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Forest habitats may be detected using multi-task learning based machine
learning algorithms or ensemble learning (Li et al., 2017; Healey et al., 2018).

3.3 Environmental Indicators

Indicators in general quantify and simplify information about complex
phenomena (e.g., ascending barometric pressure may introduce excellent
weather conditions). Thus, indicators may reveal trends or events, which
are not straightly detectable (Hammond et al., 1995). One definition by the
US Environmental Protection Agency quotes: ”an environmental indicator
is a numerical value that helps provide insight into the state of the environment
or human health. Indicators are developed based on quantitative measurements or
statistics of environmental conditions that are tracked over time. Environmental
indicators can be developed and used at a wide variety of geographic scales, from
local to regional to national levels.” (EPA, 2017)

Remote sensing imagery provides an efficient way to, directly and indirectly,
measure biodiversity and species distribution. Environmental indicators are
applied to make predictions about the earth’s biodiversity. Indicators may be
derived from measurements of the physical environment. Temperature and
moisture, for example, are well-known environmental drivers of biodiver-
sity, which can be linked to vegetation productivity. Other indirect remotely
sensed indicators such as land use and land cover (LULC), terrain, climate
or the fraction of photosynthetically active radiance are employed for habitat
suitability and distribution modeling of different species (Michaud et al.,
2014).

According to the ESA Centre for Earth Observation (ESRIN, 2016) remotely
sensed environmental indicators have three primary purposes including the
support of policy-makers regarding environmental problems, to identify
critical factors that cause pressure on the environment and to monitor re-
sponses of policy-makers.
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The World Health Organization published a working document on risk
assessment on yellow fever virus circulation in endemic countries in 2014,
with the goal to prevent yellow fever (YF) epidemics. As part of the Initiative,
a strategy to control and reduce the risk of YF outbreaks was implemented.
The working document was implemented in two African YF endemic coun-
tries, Cameroon and the Central African Republic. The report includes risk
assessment methodologies, assessment of ecological and environmental
indicators influencing the distribution of YF, data handling and analysis
methods as well as ethical considerations regarding the work with health
data. For the present thesis, the attention is directed to ecological and en-
vironmental factors. According to the WHO ecological and environmental
indicators may provide complementary information for risk assessment of
YF in endemic countries. Indicators may support the interpretation analysis
of yellow fever virus activity and offer potential relevant details. Table 3.1
shows environmental, ecological and general indicators that potentially
impact yellow fever virus activities according to the WHO and the London
School of Hygiene and Tropical Medicine and if the defined indicators are
detectable using remote sensing imagery (RS):
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Table 3.1: Environmental indicators

Indicator Relevance Detectable

Climate Temperature: min.,
max., average

Mosquito
distribution,
transmission

Yes

Precipitation: min.,
max., average,
spatial distribution

Mosquito
distribution,
transmission

Yes

Humidity
Mosquito
distribution,
transmission

Yes

Environment Elevation max. altitude for
habitats is 2300 m Yes

Vegetation coverage Mosquito
distribution Yes

Human Land use

Understanding
socio-demographic
factors including
demographic change

Yes

Population movement Human migration No

Human behavior

Creating artificial
breeding containers,
hunting monkeys (YF hosts),
political unrest,
forestry practice

Partly

Medical Virus Amount of virus,
virulence No

Vector
and host Ae. Species

Abundance, number of
blood meals, length of
incubation of YF virus
in the vector,
vector competence

Yes:
suitable
habitats

Non-human primates Abundance, immunity
rate, susceptibility

Yes:
suitable
habitats
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Environmental indicators include temperature, precipitation, vegetation
coverage and land use. Regarding the indicator temperature, several statis-
tics should be considered such as the average temperature over a specified
period (daily, monthly) or the range between minimum and maximum tem-
perature. Temperature may increase the understanding of the relationship
between climate and YF transmission and outbreaks caused by Ae. Species.
Precipitation should be analyzed as it is critical for the development of the
vector. The best period of conducting research on yellow fever is according
to the WHO at the end of the rainy season. Therefore, parameters such as
minimum or maximum rainfall and average rainfall should be involved in
the study. Areas above 2300 m altitude are considered as non-endemic for
the transmission of YF via Ae. Species. Thus, elevation should be regarded
as in mountainous territories. Land use may give insights including socio-
demographic changes such as urbanization because increasing urbanization
will burden future outbreaks (see studies above). Beyond those indicators,
human behavior may be considered in studies. Population movement and
migration should be considered especially when conducting cross-border
studies as human migration increases the spread of YF between countries
and regions. Further, the creating of artificial breeding containers by hu-
mans have a significant influence on the abundance of the vector. When
applying studies cycle overlapping scales, primarily if the jungle cycle is
investigated, the hunting behavior of monkeys and forestry practices should
be incorporated. Regarding the medical aspect of YF the virus and the
amount of virus takes a central role in the transmission and spread of the
disease. Finally, depending on the study and expected results the vector and
host should be modeled to deduce convincing information about the proba-
bility of transmission and spread of YF (WHO, 2014; Vainio and Cutts, 1998).
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Regarding the abundance of Ae. Species several indicators may have signifi-
cant influence. One crucial environmental indicator is average temperature.
Although Ae. Species survive at low temperatures near 0 �C and very high
temperatures above 30 �C the optimal temperature for breeding is between
18 �C and 26 �C. Another significant variable is the precipitation. According
to several studies, the peak of the Aedes distribution is at the beginning
of the rainy season, following a dry season with low precipitation. Aedes
species, especially Aedes aegypti species prefer breeding in artificial breed-
ing containers that collect rainfall water. Consequently, the Aedes mosquito
is counted to the domestic mosquitoes living in urban areas and therefore
near humans. Further, vegetation indices such as the Normalized Difference
Vegetation Index (NDVI) were positively correlated with the abundance of
the vector. Greater vegetation coverage is favorable for the mosquito habitats.
Several land cover types including bare soil, urban areas or vegetated areas
were also positively correlated with the abundance of Ae. Species. Consider-
ing the optical remote sensing data, information from spectral bands may
be used to identify mosquito habitats. The LANDSAT 7 ETM+ blue, green,
NIR and thermal Infrared spectral bands were successfully associated with
the occurrence of Ae. Species. Table 3.2 gives a summary of all indicators,
which can be detected with remotely sensed data and therefore employed
for the study:
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Table 3.2: Remote sensing environmental indicators

Indicator Specification Source

Temperature
Optimum between
18 C
and 26 C

Nakhapakorn
and Tripathi (2005);

Precipitation
Peak at the
beginning of
the rainy season

Regis et al. (2005) ;
Diallo et al. (2011);
Wilke et al. (2017)

Habitat
Artificial breeding
containers that
collect rainwater

Gubler and Clark (1995)

Vegetation Indices
(NDVI)

High NDVI values
were associated with
Ae. Species abundance

Hay et al. (1998);
Estallo et al. (2016)

Land Cover Bare soil, urban
areas, water bodies

Espinosa et al.
(2016)

Vegetation cover
(medium height trees),
urban areas

Landau and van
Leeuwen (2012)

Dry river beds and
shorelines Samson et al. (2015)

Land surface
temperature
(day and night)

positive correlation
with abundance

Moreno-Madriñán
et al. (2014);
Estallo et al. (2016)

LANDSAT ETM 7+
spectral bands B1, B2, B4, B6 Arboleda et al.

(2012)

Soil Moisture Increase in biting
rates Patz et al. (1998)
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4 Machine Learning in Habitat
Modelling

Automated image classification in remote sensing is the process of sep-
arating different types of patterns within a digital image. Thus, image
classification is strongly related to computer science and pattern recognition
and therefore also connected to machine learning. Each pixel in remote
sensing data is a pattern describing a specific phenomenon. Depending on
the decision rule of the classifier, spectral or spatial pattern recognition can
be distinguished. Spectral classification is based on the spectral reflectance
or radiance of the digital image band. Whereas, spatial classification solely
relies on the size or shape of objects. Classifications are usually conducted
in features spaces, which containing all measurements for pixels for all
wavelengths. The classification as a complex process requires the considera-
tion of several factors including the selection of suitable remotely sensed
imagery, the choice of training data, the data pre-processing, the feature
extraction and, the selection of an appropriate classifier (Lu and Weng Q,
2007; Richards and Jia X., 1999).

Table 4.1 gives a summary of classification categories, examples and specifi-
cations (Lu and Weng, 2007):
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Table 4.1: Remote sensing classification approaches

Criteria Categories
Examples of

Classifier
Specification

Use of training data Unsupervised
classification

MLC, DT, ANN,
Min. Distance Cluster-based

Supervised
classification

K-means, ISODATA,
DT, ANN, SVM

Reference and
training data

Use of parameters
(e.g., covariance,
mean vector)

Parametric
classifier

MLC,
Linear Discriminant
Analysis

Gaussian
distribution
of data is assumed

Non-parametric
classifier ANN, DT (RF), SVM

No assumption
about the data is
required

Use of pixel
information

Per-pixel
classifier

MLC, DT, ANN,
Min. Distance

Development of a
signature

Sub-pixel
classifier

Fuzzy-set
Classifiers,
Sub-pixel Classifiers

Spectral value of
each pixel is
assumed to
be linear

Object-based
classifiers

Object-based
Classifier

Image segmentation
merges pixels into
objects

Output of
classification Hard classifier Most of the

Classifier
Final land cover
classification

Soft classifier
Fuzzy-set
Classifier, Sub-pixel
Classifier

Similarities of
pixels

Use of spatial or
spectral information Spectral classifier MLC, ANN Spectral values

Spatial classifier Contextual
Classifier

Spatially
neighboring
pixel information
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Non-parametric Classifiers and Machine Learning

The following chapter gives an overview of non-parametric classifiers and
state-of-the-art machine learning approaches in remote sensing and the
application for the present thesis.

Machine learning algorithms have the goal to optimize performances iter-
atively via learning from data and are powerful for regression and classi-
fication of nonlinear systems. Thus, a machine learning algorithm enables
the computer to determine from existing data using inference strategies.
Over the past two decades, machine learning has been an active research
field in several disciplines for exploring patterns and relationships in data.
Applications of machine learning are often connected to pattern recognition,
data mining and artificial intelligence. In opposite to parametric models,
which assume that data underlies the theory of Gaussian distribution, non-
parametric machine learning models are mostly flexible enough to discover
complex nonlinear relationships. Machine learning algorithms are applied
where the theoretical knowledge of the studied phenomenon is insufficient
but for which enough observations exist. Machine learning is a powerful
tool for a wide variety of remote sensing based applications including land,
ocean and atmosphere studies. The most implemented algorithms in remote
sensing are artificial neural network (ANN), support vector machine (SVM),
decision trees (DT), ensemble methods such as random forest (RF), etc.
Consequently, statistical parameters are not calculated for separating classes
within the classification procedure. Therefore, non-parametric classifiers
are suitable for spectral and non-spectral input data. (Zhao et al., 2011;
Benediktsson, 2015).

The artificial neural network (ANN) machine learning approach, used
as non-parametric classifier was developed in the 1990s to model high non-
linear functions. A neural network is an interconnection of neurons in a
network, similar to the neurons in the human brain. As all non-parametric
classifiers, ANN does not rely on statistical relationships. Thus, continuous
functions are estimated from data without specifying mathematically how
outputs depend on inputs. The network learns the function during an au-
tomatic training process. The goal of the process is to find a suitable set of
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parameters which describe the input-output relation. The architecture of
an ANN is composed of processing elements or nodes (the neurons), the
network topology and the weighted connections between the processing
elements (the graphs)(Gopal and Woodcock, 1996; Gardner and Dorling,
1998; Mas and Flores, 2008).

“A neuron has a set of inputs x1, . . . , xm. Each connection from the input to
the processing unit is affected by different strengths called synaptic weights. A
signal xj at the input of synapse or connection j, connected to neuron k, is multiplied
by synaptic weight wkj. An adder sums all inputs forming a linear combination of
them. An activation function is used for limiting the output of the neuron.” (Mas
and Flores, 2008)

Depending on the input, single layer perceptron models or multi-layer
perceptron models are distinguished. The single layer perceptron model is
the simplest from an ANN, using one layer as input including all nodes or
source elements, connected to an output layer. The multi-layer perceptron
model, a so-called feedforward ANN model is based on a set of input nodes
and a set of output nodes, connected on a layer-to-layer basis (Mas and
Flores, 2008)

Support vector machine (SVM), a non-parametric supervised statistical
learning technique locates optimal boundaries between classes. The algo-
rithm aims to find a hyperplane that separates the dataset into a predefined
number of classes. The simplest form of an SVM classifier is a linear binary
classifier that assigns a test sample a class from one or two possible labels.
One central aspect is that not all available training samples are used for the
definition of the hyperplane. In remote sensing SVM is used primarily with
small training data, resulting in a higher classification accuracy than tradi-
tional parametric methods such as the maximum-likelihood classifier. The
fundamental principle behind the SVM is the structural risk minimization
(SRM). SVM minimize misclassifications without prior knowledge of the
distribution of data (Mountrakis et al., 2011; Huang, 2002).

Decision tree classifiers, such as Random Forest, are multi-stage hierar-
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chical classifiers meaning that a series of decisions are taken to determine
the correct label (class) of a pixel. The simplest approach in decision tree
classification is to apply a binary tree in which each component classifier
performs a classification into only one or two possible classes. Within deci-
sion tree algorithms different data sources and different sets of data may be
used. The design of decision tree classifiers is composed of three principle
tasks: the finding of the optimum structure of trees, the selection of the
optimum variables and the selection of the tree to use at each node (Richards
and Jia, 1999).

The random forest (RF) machine learning algorithm is part of the so-called
ensemble learning algorithms, which iteratively produce multiple classifica-
tions. Either one base classifier or a combination of various base classifiers
is applied to the classification process. The underlying assumption behind
the RF classifier is that several classifiers perform better than an individual
classifier. Ensemble learning methods are based on two principle concepts
boosting and bagging. Bagging trains many classifiers on bootstrapped
samples from the training data and boosting uses iterative re-training.
(Rodriguez-Galiano et al., 2012). Random forest uses decision trees for the
classification process. Decision trees are part of non-parametric supervised
learning methods and are applied to create a model that predicts values of
a target variable by learning decision rules derived from input data. The
process within the RF classifier is based on the growth of several trees (clas-
sifiers) and the combination of their results through a voting process. Trees
are created by drawing a subset of training samples trough replacement,
meaning that each sample can be selected multiple times, while others may
not be selected at all during the classification process. About one-third of
the samples are not used to train the classification trees. Those samples
are the so-called out of bag (oob) data. The algorithm needs two input
parameters, the number of trees that are grown during the process and
the number of predicted variables. The number of predicted variables is
constant during the whole classification process (Breiman and Cutler, no
date; Rodriguez-Galiano et al., 2012; Gislason et al., 2004).

Figure 4.1 shows three decision trees and a classification obtained from each
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Figure 4.1: Random Forest Trees

Source: Venkata, 2017

of the trees. The final prediction is based on a majority voting, whereby
each tree votes for one class.

In remote sensing random forest is increasingly applied to land cover
classifications using multi- and hyperspectral data, radar – and LiDAR data
or a combination of different types of data. In contrast to other ensemble
learning algorithms, RF is computationally lighter, resulting in the fact
that RF is efficient also on large data sets, which means it can estimate
the importance of hundreds of input variables. Thus, multisource remote
sensing data may be used to extract as much information as possible for the
area being classified. The random forest classifier overcomes the problem of
the Hughes phenomenon, which can occur when the number of variables
is larger than the number of training samples. Besides, high dimensional
remote sensing data may be used as the classifier computes the importance
for each variable within the classification tree (Rodriguez-Galiano et al.,
2012; Gislason et al., 2006; Belgiu and Drăguţ, 2016).

Within this thesis, a non-parametric random forest approach was imple-
mented as the density function of the available data is unknown, which
is the case in most classification applications. No additional assumptions
can be assumed and therefore only available information is the training
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data from which the classification rules must be determined. Moreover, the
number of variables is much more significant than the available training
samples. 38 training samples are employed to evaluate the importance of 274
indicators. Thus, to overcome the occurring Hughes phenomenon, machine
learning is applied to the present study (Cortijo et al. 1996).

Besides, the classification approach is mainly based on data-level. In contrast
to semantic approaches, were image patches extracted from multiple remote
sensing images that contain specific semantic classes (e.g., built-up areas,
agriculture, and vegetation) are used, data-level approaches employ statis-
tics on image bands (Cheng et al., 2017). The data-level method was chosen
due to the limited available optical remote sensing data from SENTINEL-2
and LANDSAT-8 for the study area. However, an ESA CCI land cover map
was used to assess the importance of semantic information for the present
research. Beyond that, the primary objective of the thesis is to investigate
the significance of multiple remote sensing environmental indicators. Apart
from semantic land cover information, additional indicators including tem-
perature, vegetation indices, and soil moisture are employed assessing the
distribution of the yellow fever vector and the potential abundance of the
disease (chapter 7).
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5.1 SENTINEL-2A

5.1.1 SENTINEL-2A System Overview

For this thesis, SENTINEl-2A images were obtained from the Copernicus
Open Access Scientific Data Hub. The SENTINEL-2 mission is part of the
Copernicus previously known as the Global Monitoring for Environment
and Security (GMES) joint initiative of the European Commission (EC)
and the European Space Agency (ESA) providing continuous operational
monitoring information for various fields of application. ESA’s role is the
allocation of space- and ground related system elements. SENTINEL-2 of-
fers wide-swath, multi-spectral, high-resolution optical data over a global
terrestrial surface. SENTINEL-2A has been successfully launched on 23 June
2015, and roughly 20 months later SENTINEL-2B has been equally success-
fully sent to the orbit on 3 March 2015. The system design is based on the
simultaneous operations of two identical satellites (SENTINEL-2A and 2B)
flying on a single sun-synchronous orbit but phased at 180� at an altitude
of 186 km, each hosting a Multi-Spectral Instrument (MSI) covering a broad
spectral range from the visible to the shortwave range and providing high
spatial and temporal resolution imagery.

The twin satellites of SENTINEL-2 provide image data on the behalf of
Copernicus services and applications including risk management (floods
and forest fires, subsidence and landslides), European land use/land cover
states and change mapping, forestry (forest monitoring), agriculture (food
security and early warning), water management and soil production, urban
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mapping, natural hazard mapping and terrestrial mapping for humanitar-
ian aid and development. The SENTINEL-2 mission addresses several new
necessities in remote sensing such as the need for high temporal coverage
and high revisit frequency, the need for large-scale coverage for global land
mass acquisition and the need for data in a broad spectral range (Drusch et
al., 2012; ESA, 2017; Gatti A., Bertolini A., 2015; Suhet, 2013, Gatti A., Naud
C., 2017).

5.1.2 Specifications

”The SENTINEL-2 orbit is sun-synchronous. Sun-synchronous orbits are used to
ensure the angle of sunlight upon the Earth’s surface is consistently maintained.
Apart from small seasonal variations, anchoring of the satellite’s orbit to the angle of
the sun minimizes the potential impact of shadows and levels of illumination on the
ground. This ensures consistency over time and is critical in assessing time-series
data.” (Suhet, 2013)

Both satellites operate at a mean altitude of 786km with an orbit incli-
nation of 98.62�. The Mean Local Solar Time (MLST) during the descending
operation is 10:30 a.m. and ensures a suitable level of solar illumination.
Regarding the geographical coverage, SENTINEL-2 acquires global data
over land and coastal areas from 56� South to 83� North.

The temporal resolution, the revisit frequency of the satellite to a loca-
tion is 5 days in the two-satellite constellation configuration and 10 days in
a single configuration. The radiometric resolution defines the capacity of
the instrument to distinguish differences in intensity or reflectance. The MSI
has a 12-bit radiometric resolution. Thus, intensity values ranging from 0 to
4095 can be acquired by the system. SENTINEL-2A is designed to measure
the earth reflected radiance trough the atmosphere in 13 spectral bands
(spectral resolution) ranging from Visible (VIS) and Near-Infra-Red (NIR)
to the Short Wave Infra-Red (SWIR) in different high spatial resolutions
(Figure 5.1). Depending on the spectral three different spatial resolutions
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are available. Four bands at 10m spatial resolution (Table 5.1) including blue
(B2), green (b3), red (B4) and NIR (B8) ensure the comparability with SPOT4
and SPOT5 image data (Drusch et al., 2012; Gatti and Bertolini, 2015; Suhet,
2013).

Table 5.1: Sentinel-2 10m Spectral Bands

SENTINEL-2A SENTINEL-2B

Band
Number

Central
Wavelength (nm)

Band-
width (nm)

Central
Wavelength (nm)

Band-
width (nm)

2 496.6 98 492.1 98
3 560 45 559 46
4 664.5 38 665 39
8 835.1 145 864 32

Six bands at 20m spatial resolution (Table 5.2) including three vegetation
red edge bands (B5, B6, B7) a narrow NIR band (B8a) and two SWIR bands
(B11, B12) are designed for applications including vegetation, snow, and ice
detection as well as cloud discrimination:

Table 5.2: Sentinel-2 20m Spectral Bands

SENTINEL-2A SENTINEL-2B

Band

Number

Central
Wavelength (nm)

Band-
width (nm)

Central
Wavelength (nm)

Band-
width (nm)

5 703.9 28 703.8 20
6 740.2 18 739.1 18
7 782.5 28 779.7 28
8a 864.8 33 864 32
11 1613.7 143 1610.4 141
12 2202.4 242 2185.7 238

35



5 Data Source

Further, three bands at 60m spatial resolution (table Table 5.3) allow cloud
screening and atmospheric corrections of the acquired data. B1 in the domain
of 443nm enables an aerosol correction. The design of the water vapor band
(B9) allows the correction of atmospheric water vapor and B10 facilitates
cirrus correction:

Table 5.3: Sentinel-2 60m Spectral Bands

SENTINEL-2A SENTINEL-2B

Band
Number

Central
Wavelength (nm)

Band-
width (nm)

Central
Wavelength (nm)

Band-
width (nm)

1 443.9 27 442.3 45
9 945 26 943.2 27
10 1375.5 75 1376.9 76

Figure 5.1: Sentinel-2 Spectral Bands

Source: Gatti and Bertolini, 2015
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5.1.3 Product Type Overview

Different product types are available to the user including Level-0, Level-1,
and Level-2. The processing of Level-0 is performed in real-time during the
data-reception operations. The processing of Level-0 consists of packaging
the MSI and satellite ancillary raw-data with annotations and metadata to
ensure further processing. The Level-0 User products contain raw image
data and all the information required to generate Level-1 (and upper) prod-
uct levels organized per granules (Gatti and Naud, 2017).

The Level-1A User products are obtained by decompressing image data
and implementing a geometric model to locate any pixel in the image. Each
image pixel value of Level-1 is encoded on 12 bits, and image data are pro-
vided as separated files in GML/JPEG2000 file format. Following Level-1A,
Level-1B products are radio-corrected and geo-refined by performing radio-
metric corrections on Level-1A and refining the geometric model. Level-1C
products are resampled to 10m, 20m, and 60m. The projection of the product
is UTM (WGS 84). Level-1C products are delivered in tiles, and each tile is
defined by its projection code, ground coordinates of the upper-left pixel
of the tile, pixel size in line and column, and tile size. The image data are
provided in separated raster files in GML/JPEG200 file format (Gatti and
Naud, 2017).

5.2 LANDSAT-8 OLI

LANDSAT-8 data was obtained from the USGS Earth Explorer, which allows
the user to view and download different earth observing product includ-
ing satellite images, aerial photography, and cartographic products. The
LANDSAT-8 mission is part of the National Aeronautics and Space Admin-
istration’s (NASA’s) Science Directorate (SMD) LANDSAT program, which
is a component of the U.S. Global Change Research Program (USGCRP).
The mission provides long-term studies of the Earth’s global environment.
LANDSAT-8 is the latest satellite in a series of 7 operational satellites
(LANDSAT 6 was lost immediately after the launch in 1993) starting in
1972 with the launch of the first satellite. Thus, LANDSAT data have been
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used in a variety of disciplines including agriculture, pollution monitoring,
global change research, forestry, geology, land cover mapping, resource
management, water, and coastal studies (USGS, 2013; Zanter, 2016).

5.2.1 LANDSAT-8 System Overview

LANDSAT-8 has been successfully launched on 11 February 2013 from the
Vandenberg Air Force Base California (U.S.A) providing ongoing moderate-
resolution multispectral data from the Earth’s surface. The LANDSAT-8
satellite carries two sensors on board, the Operational Land Imager (OLI)
and the Thermal Infrared Sensor (TIRS) (Figure 5.2). The satellites orbits
in 705 km height, repeating in a 16 days cycle. The OLI collects image
data from nine spectral bands ranging from Aerosol to SWIR with a 30m
spatial resolution in the multi-spectral (MS) bands and 15m resolution in the
panchromatic (PAN) band. The thermal infrared sensor (TIRS) measures the
energy emitted by the Earth’s surface in two bands at a spatial resolution of
100 m (USGS, 2013; Zanter, 2016).

5.2.2 Specifications

LANDSAT operates in a sun-synchronous near-polar orbit at a mean altitude
of 705 km with a 16-days repeat cycle. The satellite makes a complete orbit
every 99 minutes and completes about 14 orbits per day. Two sensors on
board of the satellite, the Operational Land Imager (OLI) and the Thermal
Infrared Sensor (TIRS), simultaneously image every scene (USGS, 2013).

The OLI sensor collects data from nine spectral bands (Table 5.4) with
a 14-bit radiometric resolution and over a 190km swath. However, only
12-bits are recorded to the Solid-State Recorder (SSR) and transmitted to the
ground by the satellite. The spatial resolution of all bands is 30m, except
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the 15m panchromatic band (B8). The Coastal band (B1) is mainly used for
coastal studies and shallow water observation as well as aerosol and smoke
detection. The Blue band (B2) helps scientist in bathymetric mapping for
understanding the aquatic system geomorphology. Further, it is used in
soil and vegetation discrimination studies and forest type mapping. Peak
vegetation on the earth’s surface can be assessed using the Green band (B3).
The Red and NIR bands (B4, B5) are used primarily in vegetation detec-
tion analysis. For vegetation moisture or drought analysis and mapping of
burned areas, the two SWIR bands (B6, B7) on board of LANDSAT-8 could
be used. The panchromatic band (B8) is used for sharpening multispectral
imagery to higher resolution. And the cirrus band (B9) at 30m resolution
facilitates the detection of clouds.

Table 5.4: Landsat-8 OLI Spectral Bands

Band Number Wavelength Range (nm) Spatial Resolution and
Name

1 435 – 451 30 m Coastal/Aerosol
2 452 – 512 30 m Blue
3 533 – 590 30 m Green
4 636 – 673 30 m Red
5 851 – 879 30 m NIR
6 1566 – 1651 30 m SWIR 1
7 2107 – 2294 30 m SWIR 2
8 503 – 676 15 m Panchromatic
9 1363 – 1384 30 m Cirrus

The TIRS sensor uses Quantum Well Infrared Photodetectors (QWIPs) to
measure Thermal Infrared energy emitted by the earth’s surface. Image data
from two spectral bands (Table 5.5) over a swath of 190km and with a 100m
spatial resolution are obtained (USGS, 2016; Zanter, 2016; USGS, 2013)
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Table 5.5: Landsat-8 TIRS Spectral Bands

Band Number Wavelength Range (nm) Spatial Resolution and
Name

10 10600 – 11190 100 m TIRS 1
11 11500 – 12510 100 m TIRS 2

Figure 5.2: Landsat Sensors Spectral Bands

Source: USGS, 2017

5.2.3 Product Type Overview

Level-1 products are available to the user and are produced by the Level
1 Product Generation System (LPGS). The Level-1 processing algorithm is
composed of several essential processing steps and two refinement pro-
cessing tasks. The basic processing includes the ancillary data processing,
the geometric model generation, the correction grid generation and the
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terrain-corrected image resampling. After the basic processing, two refine-
ment tasks are applied to the image data, the geometric model precision
using GCPs and the refinement of the terrain-corrected image resampling
task. The L1 product consists of 13 files in GeoTIFF format, including the
11 image bands (9 bands from the multispectral sensor OLI and two bands
from the thermal infrared sensor TIRS), a product specification metadata
file and a quality assessment image (could mask, fill data) (Zanter, 2016).

5.3 MODIS Terra and Aqua

5.3.1 MODIS System Overview

The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments
onboard of the Terra and Aqua satellites are part of the NASA Earth Observ-
ing System (EOS). The two satellites are operating in a sun-synchronous,
near-polar orbit at a mean altitude of 705 km above the earth’s surface.
The Terra satellite (originally known as EOS AM-1) collects data from
the earth’s bio-geochemical and energy system using five sensors the Ad-
vanced Spaceborne Thermal Emission and Reflectance sensor (ASTER), the
Clouds and Earth’s Radiant Energy System sensor (CERES), the Multi-Angle
Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spec-
troradiometer sensor (MODIS) and the Measurements of Pollution in the
Troposphere sensor (MOPITT). The Terra satellite was launched on Decem-
ber 18, 1999 (NASA, 2017).

The second satellite Aqua (originally known as EOS PM-1) collects data
about the earth’s water cycle, including evaporation from the oceans, water
vapor in the atmosphere, clouds, precipitation, soil moisture, sea ice, land
ice, and snow. Aqua was launched on May 4, 2002, and acquires data via six
sensors including the Atmospheric Infrared Sounder (AIRS), an Advanced
Microwave Sounding Unit (AMSU), CERERS, MODIS, reduced quality data
from an Advanced Microwave Scanning Radiometer for EOS (AMSR-E).
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The sixth sensor, the Humidity Sounder for Brazil (HSB) failed after a nine
months operation. The viewing swath of both satellites is 2330km; thus the
revisit frequency at a location is about one to two days. The ground track
repeat cycle is every 16 days. The MODIS sensor acquires image data in
36 spectral bands with a spatial resolution of 1000m, 500m and 250m. The
spectral wavelength range of the 36 bands ranges from 400 to 14400 nm.
The radiometric resolution of the image data is 12-bits (NASA, 2017).

5.3.2 Land Surface Temperature

MODIS Land Surface Temperature (LST) products are available with a
temporal resolution of one day, an eight-day, and a monthly composite.
MODIS LST data is achieved in Hierarchical Data Format (HDF) files con-
taining metadata information and scientific data sets (SDS). Several LST
datasets are available for the user. The MOD11 L2 is an LST product at a
1km spatial resolution for a swath. The MOD 11A1/2 products are tiles of
LST with a temporal resolution of one day/eight days. The MOD11 B1/2/3
products are tiles including information on the LST and emissivities. The
MOD11 C1/2/3 products include information on the LST, but in contrary
to the MOD B and MOD A products in a geographic projection.

For this thesis, the MOD11A2 product was obtained via Reverb, a NASA
Earth Science Discovery Tool. The MOD11A2 is an eight-day composite
calculate with a simple average method from MOD11A1. The MOD11A2
product includes 12 SDS, Day Land Surface Temperature (+ Quality Indi-
cators), Night Land Surface Temperature (+ Quality Indicators), local time
and view zenith of day and night observations, band 31 emissivity, band 32
emissivity and clear day coverage during day and night. The image data is
projected in in Sinusoidal projection (Wan, 2015).

42



5 Data Source

5.3.3 Vegetation Indices

The MODIS 13 series provide consistent information about global vegetation
conditions via vegetation indices (VI) calculated at each pixel. Two indices,
the Normalized Difference Vegetation Index (NDVI) and the Enhanced Veg-
etation Index (EVI) are used. Six products are available within the MODIS
Vegetation Indices series. Three daily level 2 products, MOD13Q1 (16-days
composite at 250m spatial resolution), MOD13A1 (16-days composite at
500m spatial resolution) and MOD13A2 (16-days composite at 1km spatial
resolution) are available. Further, three products are available at a finer
resolution (MOD13A3, MOD13C1, MOD13C2). The MOD13A2 product,
which was used for this thesis, provides 12 SDS layers including 16-days
composite EVI and NDVI average values, the bands Red, NIR, Blue and
MIR, Quality indicators and the view and sun zenith angle (Didan et al.,
2015).

Vegetation indices such as the NDVI or EVI are based on spectral reflectance
signatures of leaves. Within the visible spectrum, the reflectance is very low
due to high absorption of energy caused by photosynthesis of plants. Little
absorption and therefore high reflectance can be detected within the near-
infrared wavelength range of the electromagnetic spectrum. Consequently,
comparing red and NIR spectral bands may indicate the vegetation amount,
with a maximum red-NIR difference over a full canopy and minimum over
areas with little or no vegetation (Didan et al., 2015).

The NDVI is a normalized transform of the NIR to the red reflectance
ratio, calculated using standard equation:

NDVI = NIR–Red/NIR + RED (5.1)

The second index, which can be acquired from the MOD11A2 product is
the Enhanced Vegetation Index (EVI) and implemented using the equation:

EVI = G ⇤ (NIR–Red/NIR + C1 ⇤ Red–C2 ⇤ Blue + L) (5.2)

Where NIR, Red and Blue are the reflectance values of the MODIS bands, L
the canopy background adjustment, C1 and C2 the coefficients of the aerosol
resistance term, and G the scaling factor (2.5).
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Using rations for assessing vegetation cover has several advantages such as
the fact that certain types of band-correlated noise may be reduced or influ-
ences caused by variations in could cover, sun and view angle, topography
or atmospheric attenuation may be minimized. One of the main drawbacks
in using ratio-based is their non-linearity exhibiting asymptotic behaviors.
Thus, over certain land coverage ratios tend to be insensitive to vegetation
variation (Didan et al., 2015).

5.3.4 LAI and FPAR

The MODIS 15 (older Version 5) series provide information about the
Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation
(FPAR). The LAI is defined as the total one-sided leaf area per unit ground
area in broadleaf canopies and as one-half to total needle surface area per
unit ground area in coniferous canopies. Thus, LAI is one of the most signif-
icant variables to model canopy photosynthesis and evapotranspiration. The
second, the FPAR is a relative measure of the vegetation absorbed radiation
in the 400 – 700 nm spectral region, and indicate the energy used during
the process of photosynthesis (Weiss, 2004; Zhu, 2013).

Four different standard products are available within the MODIS 15 series.
Two identical products MOD15A2 and MYD15A2 from platform Terra and
Aqua with a spatial resolution of 1000 m and a temporal resolution of eight
days. Further, a combined Terra and Aqua platform product (MCD15A2) is
available with a spatial resolution of 1000 m and a temporal resolution of
eight days. The fourth product MOD15A3 is also a combined product from
both satellites, but with a finer temporal resolution of four days. MYD15A2
products were acquired including the eight-days composites of the FPAR
and LAI at 1km spatial resolution (Myeni, 2012).
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5.4 Metop ASCAT

5.4.1 Metop ASCAT System Overview

MetOp ASCAT soil moisture data were obtained from the Vienna University
of Technology (TU Wien). MetOp is a series of three polar orbiting satellites
from monitoring weather and climate from space operated by the European
Organization of Meteorological Satellites (EUMETSAT) as part of the Coper-
nicus Earth Observation Programme. MetOp-A (launched on October 19,
2006) and MetOp-B (launched on September 17, 2012) are operating at a
mean altitude of 817km proving observation data of the atmosphere, oceans,
and continents. MetOp carries several sounding and imaging instruments
including the real aperture radar Advanced Scatterometer (ASCAT). ASCAT
is operating at 5.255 GHz using C-Band and vertically polarized antennas,
with morning and evening overpasses at approximately 09:30 a.m. and 09:30
p.m. local time. The spatial resolution of ASCAT is 25km. ASCAT provide
useful information for several applications including soil and vegetation
analysis, sea ice and ice extent monitoring and monitoring of permafrost
or desertification. Two sets of three antennas measure the electromagnetic
backscatter from the earth’s surface in 500km swaths (EUMETSAT, 2017).

5.4.2 ASCAT Soil Moisture Retrieval Algorithm

The TU Wien soil moisture retrieval algorithm is based on a change detec-
tion approach and underlies the following assumptions:

“One basic assumption for the change detection method is that backscatter, ex-
pressed in decibels, is linearly related to surface soil moisture content. Furthermore,
backscatter is strongly dependent on incidence angle, and the slope and curvature of
the relationship between backscatter and incidence angle are assumed affected only
by vegetation density but not by changes in soil moisture. Subsequently, the slope
and curvature obtained from the backscatter observations under different incidence
angles are used to parameterize the vegetation for every day of the year and for every
grid point. To account for noise in the backscatter measurements and to ensure that
an entire range of incidence angles is covered, 366 slope and curvature pairs (i.e.,
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one for each day of the year) are determined by averaging backscatter observations
of several years.”

5.5 ESA CCI Land Cover Maps

A global CCI Land Cover (LC) map, which provides information about land
cover classes, was obtained from the TU Wien from the year 2010. CCI Land
Cover maps are part of the ESA Climate Change Initiative (CCI), Global
Monitoring of Essential Climate Variables. Three LC maps were developed,
representing the epoch 1998-2002 (LC maps 2000), the epoch 2003-2007 (LC
map 2005) and 2008-2012 (LC map 2010) on a spatial scale of 300m. Multiple
suitable data were combined using a multi-year and multi-sensor strategy
for producing consistent global Land Cover maps including sensors such
as the Moderate Resolution Imaging Spectrometer (MERIS), SPOT or the
Advanced Very-High Resolution Radiometer (AVHRR). The World Geodetic
System 84 (WGS-84) was used as a reference system. Land cover types were
defined using the Food and Agriculture Organization (FAO) Land Cover
Classification System (LCCS) (Defourny et al., 2017).
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The study area is covered by 18 land cover classes (Table 5.6) including
agriculture, vegetation, urban areas and water bodies:

Table 5.6: ESA CCI LULC classes

ID Land cover type

10 Cropland rainfed

11 Cropland rainfed -
Herbaceous cover

30 Mosaic cropland
(>50%) / natural vegetation (tree/shrub/herbaceous cover) (<50%)

40 Mosaic natural
vegetation (tree/shrub/herbaceous cover) (>50%) / cropland (<50%)

50 Tree cover broadleaved
evergreen closed to open (>15%)

60 Tree cover broadleaved
deciduous closed to open (>15%)

61 Tree cover broadleaved
deciduous closed (>40%)

62 Tree cover broadleaved
deciduous open (15-40%)

100 Mosaic tree and shrub
(>50%) / herbaceous cover (<50%)

110 Mosaic herbaceous cover
(>50%) / tree and shrub (<50%)

120 Shrubland
122 Shrubland deciduous
130 Grassland

160 Tree cover flooded
fresh or brackish water

170 Tree cover flooded
saline water

180 Shrub or herbaceous
cover flooded fresh/saline/brackish water

190 Urban areas
210 Water bodies
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5.6 Training Data Preparation

To train the random forest algorithm a response vector including training
areas needs to be created. The training data preparation consisted of com-
bining Ae. Species occurrence and YF occurrence (during the outbreak 2016)
by a spatial overlay and empirically defining a buffer around each located
occurrence point (Figure 5.3).

Figure 5.3: Training Data Preparation

Because medical data is difficult to access especially in developing countries
Doctors without Borders (MSF) provided a map including all YF cases
during the outbreak 2016. Unfortunately, no medical data was supplied due
to restriction from MSF. MSF requests a full research protocol, an approval
from the Institutional Ethics Committee, and a plan to obtain approval from
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the National Ethics Committee (the country where the data subjects are
coming from). Thus, the YF map was taken as first training data source (fig.
msf).

Figure 5.4: Yellow Fever Cases during the Outbreak 2016 in the DRC

Source: MSF, 2017

The map (Figure 5.4) shows suspected and confirmed YF cases during the
outbreak in 2016 on medical zones level. The map was produced by the
Manson Unit, which is a team of experts that aims to improve the quality
of MSF’s medical programmes worldwide. The team consists of medical
doctors, laboratory specialists, epidemiologists, a GIS officer, and a medical
editor (MSF; no date).
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Further, a global Ae. Aegypti and Ae. Albopictus database, which was com-
piled by including several sources such as published literature or primary
occurrence data from national and international surveys, was used to ana-
lyze the Ae. Occurrence for the study area (Kraemer et al., 2015)

The first step for preparing the training data was to locate the suspected and
confirmed YF cases by using the ArcGIS editor. The editing was conducted
by identifying the locations of the cases (blue and red circle on the map,
Figure 5.4) and manually placing a point within the center of each circle,
resulting in 32 points including detected YF cases during the outbreak.
Following the first step, a database query was conducted on the global Ae.
Species point database created by Kraemer et al., 2015). The query detected
six occurrence points within the study area (Figure 5.5). Thus, 38 points
including YF cases and Ae. Species occurrences were edited. A combination
of both was necessary to create enough training points for the random
forest. As YF appears solely jointly with the abundance of Ae. Species both
data sources may be combined and taken as training data. Subsequently, an
empirically defined buffer of 1000 m (approx. flight range of the Ae. Species
is 600 m) was created around all points. The assumption behind the use of
buffers was that the risk of infection is not limited to one location defined
by a point, but to a larger area (polygon). By editing features in ArcGIS
attribute tables are created. In this case, attribute tables including coordi-
nates of the edited points were generated. Additionally to the coordinates,
a column including information about occurrence (0 = no occurrence, 1 =
occurrence), was added to the table. After that, both point data sets were
converted from vector into raster files for conducting a spatial overlay.
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Figure 5.5: Yellow Fever Cases and Ae. Occurrence

Finally, the data frame table including the training data information was
exported and imported again as a data frame in R to apply the random
forest. Regarding the reliability of the training data, it can be assumed
that MSF is providing reliable medical data as the NGO is working in
cooperation with national health authorities in the Democratic Republic
of Congo. However, the uncertainty of using an empirically defined buffer
for estimating infection zones remains. Besides, the number of training
areas need to be discussed. In order to gain convincing classification results,
comprehensive training data is required. In this case, since the training
data preparation was solely based on the YF cases map (Figure 5.4) and the
Aedes occurrence data, a limited amount of training areas were available.
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Further, to obtain fully reliable data sets field surveys, need to be conducted,
or medical data from national health authorities need to be requested.
Though working with medical data remains critical concerning several
aspects including the protection of humans privacy.
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6 Study Area

To test the machine learning classifier using environmental indicators a
study site within the Democratic Republic of Congo was chosen (Figure 6.1).
The study area extends over the capital of the Democratic Republic of Congo,
Kinshasa and covers about 4.550 square kilometers (Figure 6.2).

Figure 6.1: Democratic Republic of Congo

Source: Open Street Map, 2017
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Figure 6.2: Study Area

Source: Open Street Map, 2017
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According to the Food and Agriculture Organization of the United Nations
(FAO) global ecological zoning for the global forest resources assessment
2000 the study site is located within the tropical rainforest ecological zone.
The tropical rain forest zone covers the central part of Africa, on both sides
of the Equator and is characterized by high precipitation, ranging from 1000
to over 2000 mm/year. The dry season with lower precipitation exceeds
not more than 3 to 4 months. Temperature is high in the low latitude areas,
generally more than 20 �C, except in mountainous areas (FAO, 2017). Ac-
cording to the Köppen and Geiger climate classification, the study site is
characterized by the Aw zone. The equatorial (A) savannah zone is charac-
terized by dry winter months (w) with mean min precipitation lower than
60 mm (Kottek et al., 2006).

Figure 6.3: Monthly Mean Temperature and Precipitation Kinshasa

Source: Climate-data.org, 2017
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Figure 6.4: Monthly Mean Precipitation Kinshasa

Source: Climate-data.org, 2017

Figure 6.3 and Figure 6.4 show the mean precipitation and temperature
from Kinshasa between 1982 and 2012. According to the figure June, July
and August are the driest months with average precipitation lower than 5
mm. The rainy season start in October, following a peak in November with
a mean precipitation of about 250 mm and ends in May. The mean annual
precipitation averages at 1368 mm. The mean temperature hardly varies
within a yearly cycle, ranging from an average of 22.5 �C in July to 26.9 �C
in April.

According to the Climate Change Initiative (CCI) from the European Space
Agency, the study site is characterized by several land use and land cover
classes:
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Table 6.1: CCI LULC in Square Kilometres and Percent

Land
Use Land Cover Class Area in km2 Area

in %

Cropland, rainfed 190 4.83
Herbaceous cover 305 7.7
Mosaic cropland (>50%) /
natural vegetation (<50%) 409 10.41

Mosaic natural vegetation
(>50%) / cropland (<50%) 58 1.48

Tree
cover, broadleaved, evergreen, closed to open (>15%) 203 5.18

Tree
cover, broadleaved, deciduous, closed to open (>15%) 144 3.67

Tree
cover, broadleaved, deciduous, closed (>40%) 1.4 0.04

Tree
cover, broadleaved, deciduous, open (15-40%) 865 22.02

Mosaic
tree and shrub (>50%) / herbaceous cover (<50%) 366 9.34

Mosaic
herbaceous cover (>50%) / tree and shrub (<50%) 67 1.71

Shrubland 81 2.08
Shrubland deciduous 1.9 0.05
Grassland 78 2.01
Tree
cover, flooded, fresh or brackish water 25 0.66

Tree
cover, flooded, saline water 61 1.55

Shrub
or herbaceous cover, flooded, fresh/saline/brackish water 176 4.48

Urban areas 483 12.32
Consolidated bare areas 0.9
Water bodies 410 10.44
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7 Workflow for Risk Zone
Mapping and Modeling

The risk zone mapping (Figure 7.1) consists of the preprocessing of the
different data sources, the pixel value extraction and calculation of metrics
and indices and the random forest modeling approach. First, a SENTINEL-
2A scene was preprocessed using the recommended Sen2Cor preprocessor.
Further, the scene was resampled, cropped and re-projected. Water bodies
from the SENTINEL-2A scene were extracted using a maximum likelihood
classifier to calculate the mean distances to water bodies (Figure 7.4). Then
an accuracy assessment was undertaken to assess the classified water bod-
ies using training data. LANDSAT-8 scenes were acquired and resampled,
cropped and re-projected. Data from the MODIS Terra and Aqua sensors
and the ASCAT sensor were converted into TIFF format and preprocessed
using the same processing steps as with LANDSAT-8 images. Beyond, a
CCI Land cover map was acquired and preprocessed by resampling and
cropping the map to conduct a plausibility check.

After the preprocessing steps, pixel values were extracted and converted
into data frame format to process the data further using R. The LANDSAT-8
pixel values were converted into top-of-atmosphere (TOA) reflectance values
and at-satellite brightness temperature using the proposed NASA equations.
Following the conversion of the LANDSAT-8 data, time series metrics from
all bands and vegetation indices were calculated. Moreover, MODIS data
scaled and land surface temperature values were converted from Kelvin to
Degree Celsius. Time series metrics were computed from both MODIS and
ASCAT data. Although several SENTINEL-2 images were acquired from the
ESA Science Hub, only one scene was used due to the risk zone mapping
due to the high cloud coverage especially covering the metropolitan area.
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Consequently, the limited availability and utility of SENTINEL-2 images
for the study area lead to the use of LANDSAT-8 data. Thus, instead of
calculating indices and metrics from SENTINEL-2 data, indices and metrics
from nine LANDSAT-8 scenes were computed. However, as mentioned
above, the SENTINEL-2 image was employed to determine water bodies.

Following the computation of metrics and indices a data frame includ-
ing values from all available data sources was implemented (Table 7.8).
Training data was prepared using geocoding of recorded YF cases in the
study area to train the random forest models. Several random forest models
were implemented, and the importance of each indicator was assessed.
Finally, a risk zone map for the study area was created from the predicted
locations.
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Figure 7.1: Workflow for Risk Zone Mapping and Modelling
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7.1 Preprocessing

SENTINEL-2A Preprocessing

Atmospheric Correction with Sen2Cor

For SENTINEL-2 data products the SENTINEL-2 Level-2A Prototype Proces-
sor, which is labeled ”Sen2Cor for Sentinel 2 (atmospheric) Correction”, was
used. The processor corrects the effects of the atmosphere from SENTINEL-
2 Level-1C products. Further, it performs the tasks of terrain and cirrus
correction. The implementation of the Sen2Cor Processor, which can be
operated either as a purely command line application or from the Sentinel-2
Toolbox (SNAP), combines several state-of-the-art techniques for performing
Atmospheric Correction (AC) and a Scene Classification (SC) (Mueller-Wilm,
2016). In this thesis, one SENTINEL-2 Level 1C product was acquired from
the ESA Science Hub and processed to Level 2A. Level 1C products pro-
vide geo-coded TOA reflectance values. The first processing step using
the Sen2Cor command line application performs an atmospheric correc-
tion. The atmospheric correction is based on the Atmospheric/Topographic
Correction for Satellite Imagery algorithms, which performs a libRadtran
radiative transfer model. The atmospheric correction algorithm is divided
into subtasks including Aerosol Optical Thickness (AOT), Water Vapor (WV)
and terrain retrieval. The atmospheric correction generates three different
user outputs: AOT and WV tables on pixel level as well as the Bottom-of-
Atmosphere (BOA) corrected reflectance images for all available bands. The
AOT retrieval method is based on the Kaufmann Y.J. et al. (1997) algorithm,
which mainly can be divided into the following three steps: (1) detection
of dark pixels in the infrared wavelength range, (2) reflectance estimations
at 0.47 µm and 0.66 µm and (3) exploration of optical thickness and mass
concentration from the identified radiance. However, some small alterations
were applied to the algorithm including reduction of negative reflectance
values and fixed rural/continental aerosol types. The AOT can be deducted
from the images themselves above reference areas, which are characterized
by known reflectance behavior. Those reference areas are either dark, dense
vegetation (DDV) targets or water bodies. The DDV uses the short-wave
infrared (SWIR) and correlates its reflectance with the red and blue band.
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Water vapor is a crucial driver for weather and absorption of solar radiation
in the atmosphere. WV is performed using the Atmosphere Pre-Corrected
Differential Absorption algorithm, which is applied to band B8a (reference
channel in the atmospheric window) and B9 (measurement channel in the
absorption region). Water vapor together with aerosol retrieval defines the
accuracy of the surface reflectance product. (Mueller-Wilm, 2016; Makarau
et al., 2017; Drusch et al., 2012; Kaufmann, 1997).

“The absorption depth is evaluated by calculating the radiance for an atmosphere
with no WV, assuming that the surface reflectance for the measurement channel is
the same as for the reference channel.” (Mueller-Wilm U., 2016)

A Cirrus Correction is required to minimize the cirrus could affect in
the visible, near- and short-wave infrared spectral bands. Cirrus clouds are
partially transparent and therefore difficult to detect, especially over inho-
mogeneous land cover. To overcome these affects the cirrus band reflectance
was employed to correlate with the visible- and near-infrared (VNIR) and
SWIR using the Cirrus Correction Algorithm (Mueller-Wilm, 2016). The
cirrus correction was applied on the acquired SENTINEL-2 scene, resulting
in a cirrus corrected image.

Figure 7.2: Cirrus Correction of the SENTINEL-2 scene

Figure 7.2 shows the Level 1-C product, the cirrus band, and the Level 2-A
product. As can be seen from the visualization, clouds at lower levels of the
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atmosphere remain after the cirrus correction.

Further, during the surface reflectance retrieval performance a Digital Eleva-
tion Model (DEM) may be employed to enhance the scene classification and
to improve the terrain correction for rugged terrain. To assess if terrain cor-
rection needs to be performed, slopes from the SRTM DEM were calculated
using the ArcGIS Spatial Analyst (Figure 7.3).

Figure 7.3: Terrain Analysis

Further statistics on the basis of the calculated slope were computed (Ta-
ble 7.1). The slope was classified into nine classes based on the maximum
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rate of change per pixel (in %). Then raster statistics were computed, to
analyze the percentage of each class.

Table 7.1: Slopes

Slope in % % of class

0 – 1.9 43.82
2.0 – 2.9 12.21
3.0 – 3.9 10.41
4.0 – 4.9 8.42
5 – 7.9 12.85
8.0 – 8.9 3.02
9 – 12.9 7.32
13.0 – 15.9 1.2
16.0 - 21 0.74

A terrain correction is recommended if more than 5 % of the pixels have
slopes greater than 8�. In this case, more than 98 % of the pixels are having
slopes smaller than 12.9% (= 7.407�). Thus, assuming the SRTM DEM is
reliable, the terrain can be considered as flat, and no terrain correction is
applied (Richter et al., 2012).

“The atmospheric model of SEN2COR (L2A AtmCorr) is dependent on the calcula-
tion of radiative transfer functions for different sensor and solar geometries, ground
elevations, and atmospheric parameters [. . . ]. The processor reads the parameter
in the form of Look Up Tables (LUTs) pertaining to this parameter space and in-
terpolates if required. The LUTs have been generated via libRadtran, a library for
the calculation of solar and thermal radiation in the Earth’s atmosphere. The LUT
selection is configurable via the user configuration file”. (Mueller-Wilm, 2016).

Three different parameters for calculating LUTs were set within the con-
figuration file: the aerosol type, the, and the ozone content. The aerosol
type can either be set to Auto, which enables the processor to automatically
determine the aerosol type, Maritime or Rural. The mid-latitude can either
be set to Auto or Summer/Winter. Further, six different types of ozone
concentrations may be set depending on the mid-latitude configuration.
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For the processing of the downloaded L1C scene the following settings
were selected: the aerosol type was chosen to be rural, the mid-latitude was
selected to summer as the scene was acquired on March 2017, which during
the summer period on the southern hemisphere, and the ozone content
which is measured in Dobson Units (DU) was selected based on the mid-
latitude summer atmosphere to be 331 DU (standard ozone concentration)
(Mueller-Wilm U., 2016).

Water Body Extraction

One crucial indicator for the risk zone mapping is the mean distance to
water bodies. Therefore, after employing the SENTINEL-2 Prototype Proces-
sor to generate a level 2A product, water bodies were extracted and mean
distances to water bodies were calculated using a buffer and zonal statistics
(Figure 7.4).

Figure 7.4: Water Body Extraction Workflow
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The first step was to pan-sharpen the both SENTINEL-2 20-m SWIR bands.
To perform a supervised classification on images with different spatial reso-
lution either bands with higher resolution need to be upscaled or those with
lower resolution downscaled. Concerning downscaling, the two most popu-
lar approaches are spatial interpolation and image fusion. Pan-sharpening
which is one image fusion technique is applied to coarser multispectral
bands and a high-resolution panchromatic band. Pan-sharpening requires a
correlation between the bands; therefore the both SWIR and the NIR band
were stacked together and correlated (Figure 7.5), resulting in a positive
correlation of both the SWIR 1 (Band 3) and SWIR 2 (Band 2) with the NIR
(Band 1) band. However, the fact the the bands do not fully correlate (100%),
residual errors remain and further classification errors might occur. To pro-
duce a high-resolution stack the spatial resolution of both SWIR bands were
enhanced by treating the NIR band as a PAN-like band. Thus, the 10-m NIR
band was used during SWIR pan-sharpening process. The pan-sharpening
was performed using the ERDAS Imagine wavelet resolution merge, which
allows multispectral images to be sharpened using panchromatic images
(Kaplan and Avdan, 2017; Du et al., 2016; Intergraph, 2013).
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Figure 7.5: Correlation of NIR and SWIR SENTINEL-2 bands

The next step was comprised of a supervised Maximum Likelihood Classifi-
cation (MLC) to extract water bodies using the 10-m spatial resolution bands
Blue, Green, Red and NIR and the 10-m spatial resolution pan-sharpened
bands SWIR1 and SWIR2. The classification process was implemented on
the classes water, non-water, clouds and cloud shadows. Despite correcting
cirrus clouds within the level-2 preprocessing clouds in lower levels of the
atmosphere remained; thus, clouds were classified within the Maximum
Likelihood Classification. The MLC assumes a Gaussian distribution of data
and is based on an estimated probability function for each of the reference
classes (chapter 4.1.). Within the MLC pixels are allocated to their most
likely class of membership (Foody M.G. et al., 1992).

The classification was conducted using the ERDAS Imagine MLC which is
based on the following equation:

D = ln(ac)� [0.5ln(Covc)]� [0.5(X � Mc)T(Covc � 1)(X � Mc)] (7.1)
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“Where D is the weighted likelihood, c a class, X the measurement vector of the can-
didate pixel, MC the mean vector of the sample of class c, ac the percent probability
that any candidate pixel is a member of class c, Covc the covariance matrix of the
pixels in the sample of class c and T the transposition function.”(Intergraph, 2013)

The Maximum Likelihood Classifier was applied for the classification pro-
cess, since spectral unmixing was not required to apply for this study.

To conduct an accuracy assessment training data was selected on the basis
of the SENTINEL-2 scene. Therefore, solely training areas were selected,
which can be detected by the use of the SENTINEL-2 spatial resolution. The
training data selection was performed using the ArcGIS training sample
manager. 18 well over the scene distributed training polygons were created
for each class including water, non-water, clouds and cloud shadows (Ta-
ble 7.2, Figure 7.6).

Table 7.2: MLC Training Data

Class Name Pixels Count

Clouds 37889
Water 208832
Non-water 259904
Cloud
shadows 7762

68



7 Workflow for Risk Zone Mapping and Modeling

Figure 7.6: MLC Training Polygons and Water Groundtruth Polygons

A significant drawback in solely using the SENTINEL-2 scene for the se-
lection of training polygons is the resolution of the data, meaning small
ponds or pools cannot be detected. Thus, those small aquatic habitats may
not be identified during the classification process. One possible solution
for this problem would be using VHR remote sensing imagery and com-
paring the SENTINEL-2 scene and the VHR data. However, an accurate
assessment of the water bodies was performed using R and the package
caret, which enables a simple accuracy assessment. Since only water bodies
were needed for the calculation of the mean distance to water bodies, only
the class water was evaluated during the accuracy assessment. The function
confusion matrix calculates statistics about observed and predicted classes.
The input arguments for the function are the predicted classes and reference
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classes. Several statistics are calculated including the sensitivity, specificity,
positive predictive value and negative predictive value (Kuhn M., 2017).
To validate the classification results validation data is needed. Because of
the fact, that no validation was available for the test site, observation data
was created by comparing the Sentinel-2 image stack with Google Maps
images from the test site. Consequently, the accuracy assessment might be
unrepresentative, since the the training data, which was derived from HR
SENTINEL-2 imagery was validated with VHR Google Maps data. One ap-
proach, which might overcome this drawback would be in using VHR data
(e.g. Google Maps imagery) to create training and validation data. However,
18 polygons including 121586 pixels for water bodies were compiled using
the ArcGIS training sample manager (Figure 7.6). Then, the polygons were
converted into a raster file and imported in R. Within the R script both the
classification and the validation data were clipped using the crop function.
All classes besides water were removed and assigned to 0 as only the water
bodies were validated. And finally, the confusion matrix was calculated via
the confusionMatrix function (Table 7.3, Table 7.4)

Table 7.3: Confusion Matrix
Reference

Prediction Non-water Water
Non-Water 40.001.743 3.571
Water 0 283.054

Table 7.4: Accuracy Assessment Water Body Extraction
Accuracy 0.9999
95% CI (0.9999, 0.9999)
Kappa 0.9937
Mcnemar’s Test P-Value <2.2e-16
Sensitivity 1.0000
Specificity 0.9875
Detection Rate 0.9929
Balanced Accuracy 0.9938

The confusion matrix (Table 7.3) shows that 3.571 non-water pixels were

70



7 Workflow for Risk Zone Mapping and Modeling

classified as water pixels. This could be affiliated with the fact that some
could shadow pixels were falsely classified as water body pixels. The overall
accuracy with 0.999 and the Kappa parameter (0.9937) give an indication
that the classification process was successfully applied on water bodies.

Figure 7.7: Results of the Water Body Extraction
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Figure 7.8: Results of the Water Body Extraction - Details

The water bodies were extracted over the whole Sentinel-2 MWR scene
(Figure 7.7, Figure 7.8) The extraction was most accurate for the Congo river
and its branches. Further, by visually interpreting the classification result
most of the small rivers and ponds were classified successfully. However,
classification problems arose during the classification of cloud shadows as
the signatures of cloud shadows differ only slightly from the water body
signatures (see Appendix 2). Moreover, it is not possible to accurately define
the minimum size of successfully classified water bodies. It would have been
meaningful to validate a subset area, which includes smaller ponds using
additional ground truth polygons derived from VHR imagery. Nonetheless,
it is assumed that small ponds were successfully classified.

Calculation of mean Distances to Water Bodies

Following the water body extraction, mean distances to water bodies were
calculated. First, a buffer of 600 m (estimated flight range of the Ae. Species)
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was calculated using the QGIS buffer function representing the mean dis-
tances to water bodies (including the water areas itself). A better strategy
might have been calculating mean distances to water bodies and then ex-
cluding areas covered by water since the risk of infection remains low on the
surface of the water. However, a constant grid of 1*1 km was computed to
reach the same resolution as the other data sources. Further, zonal statistics
for the 1*1 km were calculated using the zonal statistics function in QGIS.
Resulting in a 1*1 km grid including the percentage of each pixel covered
by water including the distances to water bodies. Consequently, a table
was created including a column consisting of the percentage of water plus
the surrounding water buffer. To prepare the grid for further processing, a
cropping function using R was used to create a subset of the water grid.

Finally, the grid (including the table with the information about the per-
centage of water and buffer) was converted to a data frame object using
the R base function as.data.frame which is defined as follows: as.data.frame(x)
where x is the R object that should be converted.

Landsat-8 Preprocessing

Six LANDSAT-8 OLI scenes were acquired from the USGS Earth Explorer
download portal in GeoTIFF format including eleven spectral bands and a
metadata file for each scene. The metadata file includes information about
image attributes, radiometric rescaling factors, and projection parameters.
To analyze a time series over 2016 scenes from five months with minimal
cloud coverage were acquired:
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Table 7.5: Acquired Landsat-8 Scenes

Landsat Product Identifier Acquisition date

LC08 L1TP 182063 20161211 20170316 01 T1 December 11, 2016
LC08 L1TP 182063 20161125 20170317 01 T1 November 25, 2016
LC08 L1TP 182063 20161109 20170318 01 T1 November 09, 2016
LC08 L1TP 182063 20160906 20170321 01 T1 September 06, 2016
LC08 L1TP 182063 20160618 20170323 01 T1 June 18, 2016
LC08 L1TP 182063 20160211 20170330 01 T1 February 11, 2016

Conversion to TOA radiance and reflectance

For LANDSAT-8 products several applications and algorithms are available
to process level 1 products to Top-of-Atmosphere (TOA) corrected level
2 products. The LANDSAT-8 satellite is equipped with two different sen-
sors, the Operational Land Imager (OLI) and the Thermal Infrared Sensor
(TIRS). Preprocessing has the goal to minimize sensor, solar, atmosphere,
and topographic effects, which can emerge during the image acquisition
process. LANDSAT level 1 products are delivered as digital numbers (DNs),
which need to be converted in absolute reflectance and radiance values
(TOA products). One major processing step is the conversion from the DNs
to TOA reflectance and radiance values via solar correction. The following
equation is applied to convert DNs to TOA radiance values for all 11 bands
(Young et al., 2017):

Ll = ML ⇤ Qcal + AL (7.2)

where L is the TOA spectral radiance in Watts/( m2 * srad * µm), ML the
band-specific multiplicative rescaling factor, Qcal the DN values and AL
the additive rescaling factor. Both the radiance multiplicative and additive
rescaling factors can be obtained from the delivered metadata file, RADI-
ANCE MULT BAND x and RADIANCE ADD BAND x, where x is the band
number (Zanter, K., 2016; USGS, 2017).

The acquired Landsat-8 data was processed using R and the following
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function. The radiance was calculated via a function based on the equation
above.

Furthermore, a conversion from DNs to TOA reflectance values is nec-
essary. Therefore, a conversion using the following equation on band 1 – 9
is implemented:

pl = MP ⇤ Qcal + Ap (7.3)

where p is the TOA spectral reflectance value, Mp the reflectance multi-
plicative scaling factor for the band, Qcal the DN pixel values and Ap the
reflectance additive scaling factor. Both the reflectance multiplicative and
additive scaling factor can be obtained from the delivered Metadata file
specified as REFLECTANCEW MULT BAND N and REFLECTANCE ADD
BAND N, where N is the band number (Zanter, K., 2016; USGS, 2017).

The reflectance conversion was done by using the R package ’Landsat 8’.
The function which is the following: reflconv(x, Mp, Ap) uses three input
parameters. X is the scene to be converted either in matrix, data frame or
SpatialGridDataFrame type. Mp is as can be obtained from the equation
the reflectance multiplicative scaling factor and Ap the additive scaling
factor.

The first line reads the data, in this case the blue (band 2) Landsat-8 OLI
band. The second line takes the input and writes it in a matrix. And the third
line converts the DN value to TOA reflectance values using the function
reflconv with the band 2 DNs and the multiplicative and additive scaling
factors from the metadata file (Santos A., 2017).

Conversion to At-Satellite Brightness Temperature

Finally, the thermal infrared bands (TIRS) 10 and 11 need to be converted
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to At-Satellite Brightness Temperature to get temperature values in Kelvin.
The following equation was implemented in R to get temperature values
from the TIRS bands:

T =
K2

ln(K1
Ll ) + 1

(7.4)

where T is the temperature in Kelvin, K1 and K2 are the band-specific
thermal conversion constants, and L the TOA radiance values calculated in
the previous step. The thermal constants can be obtained from the metadata
file specified as K1 CONSTANT BAND N and K2 CONSTANT BAND N,
where n is the number of the band which is processed (Zanter, K., 2016;
USGS, 2017).

Preparation for Processing

After the calculation of TOA and At-Satellite Brightness Temperature val-
ues, further pre-processing including image resampling and cropping was
conducted. The resampling of the LANDSAT-8 scenes was performed using
the ERDAS Imagine 2015 resampling software tool, to fit the LANDSATt-8
scenes to the MODIS scenes. The nearest neighbor resampling was applied
to all LANDSAT-8 scenes to obtain images with the same spatial resolution
as the MODIS data (1*1 km). A significant drawback of this resampling
approach is that the nearest neighbor algorithm assigns output pixel values
using the values of the nearest neighbors (Pouncey et al., 1999). Thus, this
resampling method might be a source of error in assigning pixels to neigh-
bors that do not have the same or similar pixel values. However, one novel
approach would be the calculation of the mean of all pixels within an area
of 1*1 km.

All images were cropped to the study area extent to guarantee the overlap-
ping of all input data using the crop function implemented in the R package
raster. Finally, the image data from all acquired and processed scenes was
converted to a data frame object using the R base function as.data.frame.
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MODIS Terra/Aqua Preprocessing

Several MODIS products from 2016 were downloaded from the Reverb
Portal including global Surface Temperature and Emissivity 8-day data
(MOD11A2), Vegetation Indices 16-day data (MOD13A) and global Leaf
Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR)
8-day data (MOD15A2). Table 7.6 specifies the used MODIS products, the
temporal granularity, the pixel size in meters, the coordinate system and
the scaling factors for each product:

Table 7.6: My caption

Product Product Type Temporal
Granularity

Pixel size
(m)

Scaling
Factors

MOD 11 A2 LST Day and
Night 8-Day 1000 0.02

MOD 13 A2 EVI and NDVI 16-Day 1000 0.0001
MOD 15 A2 LAI and FPAR 8-Day 1000 0.1 / 0.01

A spatial resolution of 1000m was chosen for the risk zone mapping because
of the further processing of the random forest. A finer resolution with all
the used variables would result in extensive computation time. However,
the coarse spatial resolution may also have some limitations concerning the
microhabitats of the investigated mosquito species.

Product type conversion and re-projection

After the acquisition, the MODIS products were re-projected to the WGS-84
reference frame and converted from HDF to GeoTIFF using the MODIS
Reprojection Tool (MRT).

“The MODIS Reprojection Tool (MRT) was developed to support higher level
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MODIS Land products which are distributed as Hierarchical Data Format-Earth
Observing System (HDF-EOS)2 files projected to a tile-based Sinusoidal grid. MRT
software facilitates the use of MODIS Land tiles by providing map projection,
format conversion, and spectral and spatial subsetting options and is compiled for
use on multiple operating systems.”

The tool can either be run from a Graphical User Interface or the command
line. For this thesis, the MODIS data was processed from the Graphical User
Interface using a parameter file, which contained all needed information for
re-projection and format conversion.

Preparation for Processing

Both the Land Surface Temperature (LST) and Leaf Area Index (LAI) and
Fraction of Photosynthetically Active Radiation (FPAR) were aggregation
to 16-days composites as the vegetation index products are delivered only
as 16-days composites. The aggregation was conducted by conflating two
images each time and calculating pixel value averages resulting in 23 scenes
for all products for 2016. The aggregation process was conducted using the
overlay function from the raster package in R. The overlay function creates
a new raster object based on two or more input raster objects (Hijmans et
al., 2017).

The example code above shows how the aggregation works. A subset was
calculated from the first and second scene in 2016, and the first combined
layer a1 was calculated via the overlay function using the computation
function “mean”, resulting in one scene including a 16-day composite of the
input values.

After the aggregation process, all products were rescaled using the rescaling
factors from the MODIS product specification table. Several functions were
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implemented for rescaling the products:

Where sfactor 1 is the rescaling factor for the vegetation index products and
r the MODIS input.

The Land Surface Temperature products were converted from Kelvin to
Degree Celsius to ensure easier readability of temperature values. The tem-
perature conversion was performed using the convert temperature function
from the ’weather metrics’ packages implemented in R (Anderson et al.,
2016).

The convert temperature function needs the input, the old metric and new
metric as arguments. In this example, the rescaled Day Land Surface Tem-
perature (LSTD rescale) was taken as input, the old metric was defined as
Kelvin and the new desired metric was set to Degree Celsius.

After the rescaling process all products were clipped to the study area
extent using the crop function and converted into data frame format. Re-
sulting in three data frames, one for each product, with all pixel values.
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ESA CCI Land Cover

The CCI Land Cover Map 2015 at a spatial resolution of 300 * 300 m was
provided by TU Vienna. The map is delivered in TIF format in the WGS-84
reference frame (EPSG: 4326). The Land Cover Map was preprocessed using
the ERDAS Imagine nearest neighbor resampling approach. The Map was
resampled from 300 * 300 m to 1 * 1 km. Further, it was clipped to the
study area extent. The following table shows the appearing LULC types, the
total area of each type in square kilometers and approximated percentage.
The area statistics were calculated using the QGIS GRASS r.stats algorithm
(Shapiro, 2017).
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Table 7.7: CCI LULC before and after resampling

Land Cover Type Area in % Area in %
(resampled)

Area in km
(resampled)

Cropland, rainfed 4.83 % 54.14% 2106.92
Cropland
irregated and post flooded 7.77% 0.18% 6.87

Herbaceous cover 4.47 % 0.15% 6.01
Mosaic cropland (>50%) /
natural vegetation (<50%) 10.41% 4.28% 166.66

Mosaic
natural vegetation
(>50%) / cropland (<50%)

1.48% 6.58% 256.01

Tree
cover, broadleaved,
evergreen,
closed to open (>15%)

5.18% 0.24% 9.45

Tree
cover, broadleaved,
deciduous,
closed to open (>15%)

3.67% 0.77% 30.06

Tree
cover, broadleaved,
deciduous, closed (>40%)

0.04% 0.09% 3.44

Tree
cover, broadleaved,
deciduous, open (15-40%)

22.02% 3.82% 148.64

Mosaic
tree and shrub (>50%) /
herbaceous cover (<50%)

9.34% 4.28% 166.68

Mosaic
herbaceous cover (>50%) /
tree and shrub (<50%)

1.71% 0.86% 33.51

Shrubland 2.08% 1.99% 77.32
Shrubland deciduous 0.05% 0.26% 10.31
Grassland 2.01% 3.97% 154.64
Tree
cover, flooded, saline water 1.55% 0.07% 2.58

Shrub
or herbaceous cover, flooded,
fresh/saline/brackish water

4.48% 0.60% 23.19

Urban areas 12.32% 8.06% 313.51
Consolidated bare areas 0.01 % 0.04% 1.72
Water bodies 10.04 % 10.04% 390.87
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As can be seen from Table 7.7 the most essential LULC classes are rainfed
cropland with more than 2106 square kilometers, covering more than 54
percent of the study area, water bodies which cover about 390 square kilo-
meters and roughly 10 percent, and urban or built-up areas which cover
about 313 square kilometers and more than 8 percent of the total study area.

ASCAT Soil Moisture

Spatial Interpolation and Preparation

ASCAT soil moisture data is produced on 12.5 * 12.5 km. Thus, the soil
moisture data needed to be interpolated to 1 * 1 km. The interpolation
was performed and provided by TU Vienna using SciPy interpolation algo-
rithm. SciPy is a collection of mathematical algorithms built on the Numpy
extension of Python. The interpolation sub-package includes several ap-
proaches for interpolating data: 1) 1-D interpolation, 2) Multivariate data
interpolation for multidimensional data, 3) Spline interpolation in one- or
two dimensions and procedural and object-oriented, and 4) Radial basis
functions for smoothing and interpolation (SciPy, 2017). The interpolation
was conducted using a radial basis function.
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Figure 7.9: Soil Moisture Content Kinshasa

The three Figure 7.9 show the soil moisture measured within the study after
the wet season in May 2016, the before wet season in August 2016 and after
the wet season in November 2016. The post-wet season is characterized by
soil moisture contents between 46 and 68 %. The pre-wet season between
August and October, which is after the dry season during the winter months
June, July, and August, is characterized by lower soil moisture contents
between 29 and 48 %. The wettest season, which is during the southern
hemisphere summer in November, December and January, is characterized
by overall high soil moisture contents with low variability over space. The
soil moisture content is between 68 and 78 %.

After interpolating the soil moisture scenes, the projection was set to WGS
84 reference frame. Then subsets of scenes were created and rescaled by
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dividing the soil moisture values by two. Finally, the soil moisture values
were converted to a data frame.

7.2 Calculation of Risk Zone Variables

After the processing, the input data including resampling to 1*1 km spa-
tial resolution, cropping and calculation of TOA reflectance values and
At-Satellite Brightness Temperature values from the available LANDSAT-8
scenes, several indices, and metrics were computed. Table 7.8 shows beside
the already compiled mean distances to water bodies and the land cover
classes all calculated indices (from LANDSAT-8) and metrics. Further, all
SENTINEL-2 bands (B1 – B12) were employed as input variables.
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Table 7.8: Risk Zone Variables

SENTINEL-2A Spectral
Bands

B1, B2, B3,
B4, B5, B6, B7, B8, B9,
B10, B11, B12

Mean
Distance to Water Bodies

Percentage
of Water within 1*1km

MODIS EVI Mean, Var,
Std, Min, Max, Q

NDVI Mean, Var,
Std, Min, Max, Q

LST Day Mean, Var,
Std, Min, Max, Q

LST Night Mean, Var,
Std, Min, Max, Q

LAI Mean, Var,
Std, Min, Max, Q

FPAR Mean, Var,
Std, Min, Max, Q

LANDSAT-8 Indices:
EVI, NDVI, SAVI, MSAVI, NDWI

Mean, Var,
Std, Min, Max, Q

Metrics Mean, Var,
Std, Min, Max, Q

ASCAT Metrics Mean, Var,
Std, Min, Max, Q

The computation of the applied metrics and indices is described in the
following two chapters. The first chapter describes the calculation of metrics
from all MODIS input data including the land surface temperature, the
vegetation indices, the leaf area index and the fraction of photosyntheti-
cally active radiation. The second chapter elaborates on the computation
of vegetation indices from the LANDSAT-8 scenes and the calculation of
metrics (LANDSAT-8). The calculation of the ASCAT metrics in not further
described in detail as it was calculated in the same way as the MODIS and
LANDSAT-8 metrics.
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Calculation of MODIS Metrics

For this thesis, several metrics were calculated from the MODIS data in-
cluding the standard deviation, variance, mean, minimum, maximum and
quantiles. The following equation for calculating metrics based on pixel
values was implemented in R:

The mean for all pixel in all 23 available scenes was calculated using the
R base package and the function rowMeans. The rowMeans function is
defined as rowMeans(x, na.rm = FALSE, dims = 1), where x is input values
for the mean calculation, na.rm defines if missing values (NaN) should be
ignored and dims which dimensions are regarded as rows (ETH, no date).
Further, the standard deviation was calculated using the R matrixStats pack-
age. Where x are values, and N the number of data points (Science Buddies,
2017). The rowSds function is defined as rowSds(x, rows = NULL, cols =
NULL, ...), where x are the input values and rows, and col can be defined if
the standard deviation of a subset of the rows and columns within matrix
should be processed. Where x are again the values, and N the number of
data points (Science Buddies, 2017). The variance is computed by applying
the following function in R: It estimates the variance for each row in the
data frame.

The minimum and maximum pixel values within the 23 layers were calcu-
lated using the apply function from the base R package, which returns a
vector or array by applying a function. In this case, the function was set to
minimum and maximum (Becker et al., 1988).

Finally, the quantiles for each row were calculated. Quantiles can efficiently
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be computed using the matrixStats R package (Bengtsson et al., 2017).

The following code example shows the implementation of the functions
above on the Normalized Difference Vegetation Index (NDVI):

The first line accesses the NDVI data via indices from all.16. The second line
convert the format from data frame to matrix. This needs to be performed
in order to work with the matrix statistics package matrixStats. The third
line uses the rowMeans function to calculate NDVI mean values from all
available NDVI values. The next few lines calculate all the metrices listed
above. Then names of the columns are assigned according to the metrices
and finally the metrices are merged to one data frame for further processing.

Thus, for each MODIS product including EVI, NDVI, LSTD Day, LSTD
Night, LAI and FPAR all metrices as defined above were calculated result-
ing in six data frames.
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Calculation of LANDSAT-8 Metrics and Vegetation Indices

The further processing of the LANDSAT-8 images was composed of the cal-
culation of metrics and vegetation indices from the LANDSAT pixel values.
The first step was comprised of the computation of vegetation indices from
different bands.

The first vegetation index, which was computed, was the Normalized Dif-
ference Vegetation Index (NDVI). According to the Landsat Product Guide
(2017), which describes LANDSAT surface reflectance-derived spectral in-
dices, the NDVI ratio should be calculated from the Red (band 4) and NIR
(band 5) spectral bands using the standard NDVI equation:

NDVI =
Red � NIR
Red + NIR

(7.5)

The NDVI investigates the contrast in the reflectance of vegetation in the
Red and NIR spectra. It is commonly used in remote sensing for examining
vegetation dynamics. The NDVI has been extensively used in epidemio-
logical studies as vegetation is influenced by variation in precipitation and
temperature. Thus, a combination of remotely sensed surface reflectance
values and vegetation indices derived from reflectance values and climate
variables has been employed to model vector dynamics (Kalluri et al., 2007;
USGS, 2017).

The second index, the Enhanced Vegetation Index (EVI) was implemented
by using the NIR, Red and Blue spectral band. The usage of the Blue band in
calculating vegetation index has the advantages that it reduces background
reflectance and the effects of atmospheric aerosols. The EVI is applied to
model vegetation dynamics as predictors for vector-borne diseases. For
LANDSAT-8 images the EVI should be calculated using the equation (Fuller
et al., 2009; USGS, 2017):

EVI = 2.5 ⇤ (Band5–Band4)
(Band5 + 6 ⇤ Band4–7.5 ⇤ Band2 + 1)

(7.6)
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The implementation was realized by the following function based on the
equation and has three input arguments, band 5, band 4, and band 2:

The soil adjusted vegetation index (SAVI) is a ratio between the Red and
NIR band including a soil brightness correction factor (0.5). The modified
soil adjusted vegetation index (MSAVI) is calculated using the Red and
NIR band and an inductive soil brightness factor function. The function is
applied to reduce the soil effects on the vegetation signal. The SAVI and
MSAVI indices were developed from the traditional vegetation indices EVI
and NDVI to overcome the effect of soil assuming that the relationship
between NIR and Red reflectance from bare soil is linear. Both indices
are implemented using the formulas below (Rondeaux et al., 1996; USGS,
2017):

SAVI = 2.5 ⇤ (Band5–Band4)
(Band5 + Band4 + 0.5) ⇤ 1.5

(7.7)

MSAVI = 2 ⇤ Band5 + 1–

r
((2 ⇤ Band5 + 1)2–8 ⇤ (Band5–Band4))

2
(7.8)

Further a Normalized Difference Moisture Index (NDMI) was calculated
from the available LANDSAT scenes using the NIR and SWIR1 bands:

NDWI =
Band5 � Band6
Band5 + Band6

(7.9)

The indices were stacked together in one data frame and exported for fur-
ther processing.

Metrics were calculated from a stack of each LANDSAT-8 band and the
previously calculated vegetation indices. Metrics from each band and all
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indices were calculated to assess the importance of each LANDSAT-8 band
and evaluate if vegetation indices calculated from LANDSAT-8 are having a
significant impact on the definition of risk zones. Thus, first bands from all
images were stacked together using the cbind function, resulting in eleven
(11 LANDSAT-8 bands) data frames with six columns from six different
images. Second, all vegetation indices from all scenes stacked together, re-
sulting in five (all calculated indices) data frames with six columns from six
different images. These two data frames were then used to calculate metrics
including the mean, the variance, the minimum, the maximum, the standard
deviation and the quantiles. The following code shows the stacking and
calculation of the spectral band 1.

The first two lines stack the Coastal Blue LANDSAT bands from six images
together using the cbind function. The following lines calculate the metrics
described in the previous section and the last two lines are responsible for
the binding the metrics results.
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7.3 Habitat Modelling using Ensemble Learning

Figure 7.10: Data Frame Design

A data frame object was created to further analyze the acquired and pre-
processed data in R using Ensemble Learning. A data frame, which is a list
of vectors with equal length, stores data tables in R. The first row, which
is called the header, contains the variable names. Figure 7.10 visualizes the
data frame design. The first two columns contain the geographic latitude
and longitude, the location of each pixel within the study area. The pixel
values of the variables are added as vectors to the location. The length of
each vector within the data frame is 4.550, resulting from 65*70 pixels from
each image, resulting in a data frame with the dimension of 4.550 rows and
245 columns.

Random Forest Ensemble Learning

The classification was based on the random forest ensemble learning algo-
rithm (chapter 4). The algorithm was implemented using the R package
’randomForest’. The random forest implemented in R is based on Breiman’s
random forest algorithm.
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The function, which is called randomForest, can have several input arguments.
X consists of a data frame or matrix of predictors. Y is the response vector, if
it is a factor (categorical variable), classification is assumed otherwise regres-
sion will be computed. XTest and YTest may be implemented when a test set
is used (equal to X and Y). Ntree is the number of trees to grow. The number
of trees to grow is set to 500 by default. However, the number should not be
set too small, to ensure that all input rows get predicted at least a couple of
times. The Mtry argument is the number of variables randomly sampled as
candidates at each split. The default value is calculated via the square root
of all input variables. Replace indicates if the sampling should be done with
or without replacement. The importance input argument can either be set
to true or false, if true the importance of each variables within the random
forest algorithm is assessed.

According to Liaw and Wiener (2015) a random forest object is calculated
using the function above with a list of the following values:

Values

• Call: the original call to randomForest
• Type: one of regression, classification, or unsupervised
• Predicted: the predicted values of the input data based on out-of-

bag samples
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• Importance: a matrix with nclass + 2 (for classification) or two (for
regression) columns. For classification, the first nclass columns
are the class-specific measures computed as mean descrease in
accuracy. The nclass + 1st column is the mean descrease in ac-
curacy over all classes. The last column is the mean decrease
in Gini index. For Regression, the first column is the mean de-
crease in accuracy and the second the mean decrease in MSE. If
importance=FALSE, the last measure is still returned as a vector.

• importanceSD: The “standard errors” of the permutation-based
importance measure. For classi- fication, a p by nclass + 1 matrix
corresponding to the first nclass + 1 columns of the importance
matrix. For regression, a length p vector.

• localImp: a p by n matrix containing the casewise importance
measures, the [i,j] element of which is the importance of i-th
variable on the j-th case. NULL if localImp=FALSE.

• Ntree: number of trees grown
• Mtry: number of predictors sampled for spliting at each node
• Forest: (a list that contains the entire forest; NULL if randomFor-

est is run in unsupervised mode or if keep.forest=FALSE
• err.rate: (classification only) vector error rates of the prediction

on the input data, the i-th element being the (OOB) error rate for
all trees up to the i-th

• Confusion: (classification only) the confusion matrix of the pre-
diction (based on OOB data)

• Votes: (classification only) a matrix with one row for each input
data point and one column for each class, giving the fraction or
number of (OOB) ‘votes’ from the random forest

• oob.times: number of times cases are ‘out-of-bag’ (and thus used
in computing OOB error estimate)

• proximity: if proximity=TRUE when randomForest is called, a
matrix of proximity measures among the input (based on the
frequency that pairs of data points are in the same terminal
nodes)

• Mse: (regression only) vector of mean square errors: sum of
squared residuals divided by n

• Rsq: (regression only) “pseudo R-squared”: 1 - mse / Var(y)
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Selection of Variables

To assess the importance of the acquired indicators several habitat models
were tested using different subsets of the data (Table 7.9):

Table 7.9: Random Forest Models

Model Name Input Data Indicators Count

M 1 All Indicators 243
M 2 MODIS Indicators 60
M 3 SENTINEL-2A Spectral Bands 13
M 4 LANDSAT-8 Time Series Metrics of Spectral Bands 109
M 5 LANDSAT-8 Indices 50
M 6 MODIS and ASCAT Indicators 70
M 7 MODIS and LANDSAT-8 Indicators 169
M 8 MODIS and SENTINEL-2A Indicators 83
M 9 MODIS, ASCAT and LANDSAT-8 Indicators 179
M 10 MODIS, ASCAT and SENTINEL-2A Indicators 83
M 11 ASCAT Indicators 10

M 12 Subset of Indicators with Mean Gini Decrease Index
>3 35

M 13 ASCAT and LANDSAT-8 119
M 14 ASCAT and SENTINEL-2A 23

M 15 ASCAT and subset of Indicators with Mean Decrease
Index >3 40

M 16 ASCAT and most important Indicator 11
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Figure 7.11: Flowchart of Model 1

The first model was determined using all available input variable (Ta-
ble 7.9) to assess the overall importance of each variable (7.11) including the
SENTINEL-2 bands and the derived mean distances to water bodies, the
LANDSAT-8 indices and metrics, the MODIS indices and metrics and the
ASCAT soil moisture content. The CCI land cover map was not included as
input variable, but applied for the plausibility check (chapter 7.4.3)

The models M 2, M 3, M 4, M 5 and M 11 tested the usage of only one
remote sensing imagery source to assess the importance of each sensor
for habitat modelling. Model 2 (M 2) was implemented to assess the ac-
quired MODIS indicators EVI, NDVI, LST, LAI and FPAR. Model 3 (M 3)
was based on the SENTINEL-2A scene to explore SENTINEL-2A spectral
bands for modelling Ae. Species. Model 4 (M 4) and model 5 (M 5) were
used to evaluate the usage of time series and indices derived from the two
Landsat-8 sensors OLI and TIRS. Model 11 was implemented using ASCAT
soil moisture content indicators.
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Further, a combination of several data sources was utilized. M 6, M 7 and
M 8 were used to evaluate the importance of MODIS data in combina-
tion with ASCAT indicators, LANDSAT-8 time series and indicators, and
SENTINEL-2A indicators. A combination of three different remote sensing
products was implemented within model 9 (M 9) and model 10 (M 10).
Beyond that, two models were developed using ASCAT and LANDSAT-8
(M 13), and ASCAT and SENTINEL-2 (M 14).

Model 12 (M 12) was developed using the mean Gini Decrease Index of
the first random forest model (M 1). The most important variables were
explored and employed as input indicators for model 12. The basic assump-
tion behind model 12 was that the classification might improve, if only
those variables are considered, which were most important during the first
classification based on model 1.

Finally, two models were tested using the soil moisture data derived from
the ASCAT sensor and a subset of the most important variables (M 15) and
the most import indicator beside soil moisture (M 16).
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7.4 Results and Accuracy Assessment

7.4.1 Results and Accuracy

Table 7.10 shows the results of the random forest habitat models. The table
consists of the model number and the employed data. The classification was
based on two habitat classes: (1) non-suitable means that those habitats are
not suitable for the presence of Ae. Species using the specified variables;
and (2) suitable implies habitats were Ae. Species might be present. The
class error for each class is indicating to what extent the random forest
model was able to predict the classes.

Table 7.10: Results of the Random Forest Habitat Models

Model No. Model Description Class Error
Non-suitable

Class Error
Suitable

1 All indicators 0.0032 0.3670
2 MODIS 0.0056 0.4249
3 SENTINEL-2 band metrics 0.0107 0.6154
4 LANDSAT-8 band metrics 0.0051 0.5018
5 LANDSAT-8 indices 0.0072 0.5934
6 MODIS and ASCAT 0.0051 0.3297
7 MODIS and LANDSAT-8 0.0044 0.3640
8 MODIS and SENTINEL-2A 0.0061 0.4579
9 MODIS, ASCAT, and LANDSAT-8 0.0040 0.3736
10 MODIS, ASCAT, and SENTINEL-2 0.0047 0.3590
11 ASCAT 0.0065 0.1905
12 Most important indicators 0.0049 0.3480
13 ASCAT and LANDSAT-8 0.0047 0.4066
14 ASCAT and SENTINEL-2 0.0061 0.3626
15 ASCAT and subset of all 0.0047 0.3223
16 ASCAT and LST 0.0047 0.1538

Table 7.11 gives an overview of the classification results, detailed discussions
of the models will be given in chapter 7.4. The best classification results
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were obtained using model 16, which was a combination of the ASCAT data
and the night land surface temperature derived from MODIS. Regarding
the accuracy, the model is able to predict using the prepared training data,
the class which is suitable for the abundance of Ae. Species and therefore
the probability of occurring YF cases with 84.62 % (Table 7.10: 1 - 0.0.1538).
The accuracy of the non-suitable class is 99.5 % (Table 7.10: 1 - 0.0047). Con-
sidering model 11, the accuracy of the class suitable is 80. 95 % (Table 7.10:
1 - 0.1905) and for the non-suitable class 99.35% (Table 7.10: 1 - 0.0065).
Similar classification accuracies for the class suitable were obtained using
ASCAT plus a subset of all variables (model 15) and ASCAT in combination
with MODIS data (model 6), which were approx. 67 %. Classification results
with an accuracy over 60 % were received using a subset of all variables
and all variables (model 12 and model 1), and combinations including AS-
CAT, MODIS, SENTINEL-2, and LANDSAT-8 metrics (Table 7.10). Finally,
using one or two different data source input resulted in less than 60 %
predictability of the class suitable. The predictability of class non-suitable is
not discussed on further detailed but remains high with more than 99 % for
all implemented models (Table 7.10).
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Table 7.11: Classification Accuracies for all models

Model ID Model Description Classification Accuracy
Class Suitable in %

16 ASCAT and LST 84.62
11 ASCAT 80.95
15 ASCAT and subset of all 67.77
6 ASCAT and MODIS 67.03
12 Subset of all 65.20

9 ASCAT,
MODIS, and SENTINEL-2 64.10

14 ASCAT and SENTINEL-2 63.74
7 MODIS and LANDSAT-8 63.60
1 All indicators 63.30

10 ASCAT,
MODIS, and SENTINEL-2 62.64

13 ASCAT and LANDSAT-8 59.34
2 MODIS 57.51
8 MODIS and SENTINEL-2A 54.21
4 LANDSAT-8 band metrics 49.82
5 LANDSAT-8 indices 40.66

3 SENTINEL-2
band metrics 38.46
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Figure 7.12: Error Rates of Class Suitable

To assess the influence of the built trees during the random forest clas-
sification process error rates of the class suitable (Figure 7.12) and error
rates of the class non-suitable (Figure 7.13) are plotted against the built
random forest trees. It seems that the random forest tree building process
(1500 trees were built) over time considering all class errors. This might
be affiliated to the fact that the random forest takes a subset of all vari-
ables with replacement at each iteration, which means if one variable is
not considered significant in one iteration it is not excluded for the next
iterations. Assuming that non-important variables are excluded after each
iteration, the curve might be smoother. However, regarding the first plot
(Figure 7.12) including model 1 – 7 all models perform moderate of the tree
building process, resulting in moderate classification results (Table 7.11). All
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models are characterized by significant variations in the first 50 built trees.
Model 3, which uses the SENTINEL-2A spectral bands metrics as indicators,
has an average error rate of 0.6161. A similar moderate performance is
obtained by applying the LANDSAT-8 indices including EVI, NDVI, SAVI,
MSAVI, and NDWI from model 5. Model 5 has a mean error rate of 0.5978.
Slightly better performance can be achieved using the calculated LANDSAT-
8 metrics. However, the mean error rate is still moderate with 0.4979. Better
classification results can be obtained using model 1 and 2 (Figure 7.12), and
model 6 and 7. Those models have an average error between 0.32 and 0.42.
The models 8 – 10 and 12 – 15 (Figure 7.12) behave similar to the models
from plot 1, and all error rates are between 0.3 and 0.5. The last plot includ-
ing model 11 and model 16 perform considerably better the other models.
Model 11 uses the ASCAT soil moisture metrics for the classification process.
The mean error rate of model 11 is 0.1922, which is significantly smaller
than the mean error rates of the other models. The last model consists of
indicators including the ASCAT soil moisture metrics and one of the most
crucial variables the Land Surface Temperature performs much better than
the other models with an average error of 0.1597.
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Figure 7.13: Error Rates of Class Non-Suitable

Considering the error rates of the class Non-suitable, all models perform
similar (Figure 7.13). Within the first ten decision trees, all models are char-
acterized by moderate error rates. When ten decisions were made, the error
rates decrease to a mean error rate of about 0.005. However, model 3, 5 and
11 are characterized by higher error.

However, in lack of validation data, which would be needed to evalu-
ate all models independently from the training data, uncertainty remains
within the classification accuracy of all models. Consequently, solely the
training data is employed to assess the importance of the variables within
each model, but no validation is applied to evaluate the results. To reliably
assess the importance of the variables, all models need to be rerun using
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independent validation data instead of the training data. Therefore, consid-
ering the training data conclusions about the classification accuracies and
variables are limited.

7.4.2 Variable Importance

The following section presents and discusses in detail the variable impor-
tance for selected models. A detailed description of the variables as well
as the other models are attached to this thesis in appendix 1. The variable
importance of the other models, which are not described in this section, can
be obtained from appendix 1. The Mean Decrease in Accuracy (MDA) and
the Mean Decrease in Gini Index (MDG) of each variable are visualized.

“The index MDA, utilizes permuting OOB samples to compute the importance
of the variable. The OOB sample is the set of observations which are not used for
building the current tree. It is used to estimate the prediction error and then to
evaluate variable importance. The OOB error importance is defined as follows: For
each tree, the prediction error on the out-of-bag portion of the data is recorded (error
rate for classification, mean square error (MSE henceforth) for regression). Then the
same is done after permuting each predictor variable. The differences between the
two are then averaged over all trees. The larger of MDA value, the more important
of the variable.” (Han et al., 2016)

Model 1

Model 1 was implemented employing all potential indicators for defining
suitable Ae. Species habitats. The first model aimed to test the importance
of the products from each sensor including SENTINEL-2, LANDSAT-8,
MODIS, and ASCAT

The first model is characterized by a class error rate of 36.70 % for the
class suitable, resulting in 174 correctly predicted test areas and 99 wrongly
predicted (Table 7.12) test areas using all input variables. Regarding class
non-suitable, the random forest was able to correctly predict 4254 test areas,
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which are non-suitable for the abundance of Ae. Species and the potential
risk of occurring YF, resulting in a classification accuracy using the training
data of 99.68 % (class error 0.32%) (Table 7.12). The average classification
results may be ascribed to the use of too many predictive variables.

Table 7.12: Accuracy Model 1
Non-suitable Suitable Class Error

Non-suitable 4254 15 0.0032
Suitable 99 174 0.3670

Figure 7.14: Variable Importance of Model 1
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Figure 7.14 shows the 30 most important variables of model 1. According
to the MDA, the most significant variables for the classification in suit-
able and non-suitable habitats is the mean of the at-satellite Brightness
Temperature values of the LANDSAT-8 Thermal Infrared (TIRS) 2 time
series stack (all.16$LC08.11 Mean). Referring to several studies (chapter 3.1.,
table 3.2.) temperature is known to be an essential variable for defining
Ae. Species habitats. The second vital variables, which is surprising, is
to forth quantile of the ninth LANDSAT-8 band (all.16$Q.9.4.), the Cirrus
band. This may be traced to the fact, that several LANDSAT-8 scenes were
characterized by moderate cloud coverage. If the training points are located
under cloud-covered areas, the random forest might take the information
of the Cirrus band as an important variable. Further, the mean at-satellite
Brightness Temperature values of the LANDSAT-8 TIRS 1 time series stack
(all.16$LC08.10 Mean) and the mean soil moisture content of the ASCAT
sensor (all.16$ASCAT mean) are considered essential for the classification
process. Similar to the TIRS 2 band, TIRS 1 (all.16$LC08.10 Mean) includes
information about temperature and is, therefore, a significant variable. The
soil moisture content is also considered as important variable referring to the
defined environmental indicators (chapter 3.1, table 3.2.). Further, the third
quantile of the Cirrus band (all.16$Q.9.3.) is vital for the classification process
(cloud coverage). The variance of LANDSAT-8 TIRS 2 (all.16$LC08.11 Var),
the second quantile of the LANDSAT-8 TIRS 2 (all.16$Q.11.2), the standard
deviation of the LANDSAT-8 TIRS 2 (all.16$LC08.11 Std) and the forth quan-
tile of the LANDSAT-8 TIRS 2 (all.16$Q.11.4) are considered significant, all
capturing information about temperature. Beyond that, the first (all.16$Q1),
second (all.16$Q2), and forth quantile (all.16$Q4) of the ASCAT soil moisture
is significant for model 1. Besides, the Aerosol band (band 1) seems to have
an influence on the classification results (all.16$LC08.1 Min, all.16$Q1.1),
which is also surprising as no previous publication defines the LANDSAT-8
Aerosol band as important. In addition to LANDSAT-8 and ASCAT de-
rived metrics, the MODIS night land surface temperature (all.16$LSTN Var,
all.16$LSTN Mean, all.16$LSTN Min and all.15$LSTN Std) seems to capture
significant information.

Concluding that for model 1, when using all available variables, the most
critical variables are the temperature from LANDSAT-8 and MODIS, the
Cirrus and Aerosol band from LANDSAT-8 and the soil moisture derived
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from the ASCAT sensor.

Model 2

Model 2 was created to the test different products from the MODIS Terra
and Aqua sensors for predicting habitats of mosquitoes.

The second model uses variables from all acquired MODIS products includ-
ing land surface temperature (LST), vegetation indices (VI), leaf area index
(LAI) and the fraction of photosynthetically active radiation (FPAR). The
model was able to successfully predict 157 suitable test areas, resulting in
an accuracy of 57.51 %. However, 116 test areas were classified wrongly.
Considering the prediction of non-suitable areas 24 areas were mispredicted
eventuating in a classification accuracy of 99.44% (class error 0.56%).

Table 7.13: Accuracy Model 2
Non-suitable Suitable Class Error

Non-suitable 4253 24 0.0056
Suitable 116 157 0.4249
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Figure 7.15: Variable Importance of Model 2

The most significant MODIS variables were metrics from the day land
surface temperature (all.16$Q.LSTD.2, all.16$LSTD Std, all.16$LSTD mean,
all.16$LSTD Var, all.16$LSTD Max, all.16$Q.LSTD.4, and all.16$LSTD Min),
which has as already been mentioned with model 1 and which can be traced
back to several publications (chapter 3.1, table 3.2.). In general, land surface
temperature (LSTN and LSTD) seems to be more informative than metrics
from the two vegetation indices NDVI and EVI. However, the LAI and the
FPAR are considered not crucial for model 2.

In conclusion, for the available test sites, the land surface temperature
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is more informative for the prediction than the vegetation indices, the leaf
area index and the fraction of photosynthetically active radiation. Thus, in
this case, temperature captures more information than vegetation.

Model 3

The third model, which was employed to test the use of SENTINEL-2 spec-
tral bands, performed moderate with a classification accuracy of 57.51 %,
resulting in 157 correctly predicted test sites. Considering the non-suitable
classification accuracy, model 3 is characterized by the same performance
as model 2, 99.44 % (class error 0.56%) test areas were predicted correctly
(Table 7.14).

Table 7.14: Accuracy Model 3
Non-suitable Suitable Class Error

Non-suitable 4253 24 0.0056
Suitable 116 157 0.4249
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Figure 7.16: Variable Importance of Model 3

Figure 7.16 visualizes the importance of each SENTINEL-2 band for the
prediction in suitable and non-suitable areas. The most significant spectral
band is the near infrared band B8 (all.16$sen.8.num), which is used to in-
vestigate biomass content (Barsi et al., 2014).

Additionally, to the near-infrared spectral band, the vegetation red-edge
bands B7, B6 and B5 (all.16$sen.7.num, all.16$sen.6.num, all.16$sen.5.num)
are considered as essential variables for the classification process. Further,
the Cirrus band B10 and both SWIR bands B11 and B12 are influencing
the classification. The influence of Cirrus band may be based on the same
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assumption as the influence of the LANDSAT-8 Cirrus band. Moderate
remaining clouds (Figure 7.2) are probably influencing the classification. A
combination of different bands or the implementation of vegetation indices
might have been more informative than single bands. Further, the use of
time series would probably give more insights for predicting habitats.

In conclusion, for the present research, the scene from the SENTINEL-
2 sensor is limited revealing. However, testing band combination or the use
of several scenes would be more revelatory.

Model 4

Model 4 was implemented to test the use of time series metrics of the
11 LANDSAT-8 spectral bands. Several studies investigated the use of
LANDSAT data for mapping mosquito habitats (chapter 3.1.). Therefore, for
present thesis, LANDSAT-8 data was chosen to examine the possibility of
predicting potential habitats.

Regarding class suitable, about the half of the test areas (49.82%) were
classified correctly using the random forest algorithm. 50.18% were clas-
sified wrongly, leading to a moderate performance of model 4. The class
error of the non-suitable class is again low at 0.51%, resulting in a successful
prediction of non-suitable habitats for the abundances of Ae. Species.

Table 7.15: Accuracy Model 4
Non-suitable Suitable Class Error

Non-suitable 4255 22 0.0051
Suitable 137 136 0.5018
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Figure 7.17: Variable Importance of Model 4

The 4. Quantile of the LANDSAT-8 Cirrus band (all.16%Q.9.4) is the most
critical variable for model 4. As already mentioned within the discussion of
model 1, it is assumed that some of the random forest test sites are located
below cloud covered areas. Further, the Aerosol band B1 (all.16$LC08.1 Min,
all.16$Q.1.1) is again significant for the prediction. Based on the literature
review (chapter 3.1., chapter 3.2.), the LANDSAT-8 Aerosol band was never
mentioned to be an essential indicator for the determination of vector habi-
tats or risk zones. However, B1 useful for identifying water and aerosols in
the blue region, which could lead to the hypothesis that B1 might capture
information about the LULC class ’water’, which is an indicator for the

111



7 Workflow for Risk Zone Mapping and Modeling

abundance of the Ae. Mosquito (Barsi et al., 2014).

Besides, according to the variable importance, the near infrared band B5
(all.16$Q.5.3) is considered as a significant variable. The infrared band is
useful for mapping biomass content, which comprises information about
vegetation density, which in turn is associated with the abundance of Ae.
Species (Vezanni et al. 2005; Barsi et al., 2014). The blue band, which is
employed for distinguishing soil from vegetation, is another crucial variable
(all.16$Q1.1). According to Rey et al. (2006) who investigated LULC for
predicting the abundance of Ae. Species concluded that soil is having a
negative impact on the abundance of the mosquito. Thus, information about
soil captured by LANDSAT-8 blue band may be revealing for the habitat
prediction (Barsi et al., 2014).

Additionally, the mean of the two SWIR bands B10 and B11 are informative
variables, for estimating soil moisture, which is known to be a significant
indicator for mosquito habitat mapping (Barsi et al., 2014; Patz et al., 1998).

Noticeable when examining model 4 is that the most important metrics are
those from the calculated quantiles, whereas the computed variances and
standard deviations are not considered as significant as in model 1 (Fig-
ure 7.14). It can be assumed, when solely using LANDSAT-8 metrics instead
of a variable combination of different remote sensing products, quantiles of
spectral bands are more important than other statistical parameters.

Model 11

To test the importance of soil moisture derived from the active ASCAT
sensor, a model was created using calculated soil moisture metrics.

The accuracy of predicting class suitable using the test polygons was re-
markably improved. 221 test sites out of 273 were successfully predicted,
resulting in an accuracy of 80.95%. Model 11 was the first model with
accuracy for class suitable of more than 80%. However, the class error of
class non-suitable increased by more than 0.1% compared to the other built
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models, resulting in a class error of 0.65% (Table 7.16).

Table 7.16: Accuracy Model 11
Non-suitable Suitable Class Error

Non-suitable 4249 28 0.0065
Suitable 52 221 0.1905

Figure 7.18: Variable Importance of Model 11

Figure 7.18 includes all calculated soil moisture metrics from the ASCAT
sensor. The most critical variables are the third and fourth quantile of the
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ASCAT time series stack. Further, the mean soil moisture content has a
significant impact on the classification of habitats. Less significant are the
standard deviation, the variance and the minimum parameters, similar to
the model 4 (LANDSAT-8 time series metrics of spectral bands). Considering
the study by Patz et al. (1998) soil moisture is known to be an essential indi-
cator for predicting mosquitoes. The authors tested the use of soil moisture
for predicting malaria transmission factors and concluded that soil moisture
as indicators improves the prediction of biting rates compared to the usually
employed precipitation. Compared to the present study, the soil moisture
variables derived from ASCAT improved the classification result of suitable
habitats by at least 10% (Table 7.11).

Model 15

Following the surprisingly good classification results of model 11, a combi-
nation of ASCAT and a subset of other relevant variables were tested. The
subset was defined by investigating the importance of all variables from
model 1. The variables with a Mean Decrease Gini more than 3, were taken
as input variables, which resulted in a decreased accuracy compared to
model 11 of 67.77%. Nevertheless, model 15 performs better than most of
the other compiled models (Table 7.11). The classification accuracy of class
non-suitable slightly improved again eventuating in a class error of 0.47%
including 20 wrongly predicted test areas.

Table 7.17: Accuracy Model 15
Non-suitable Suitable Class Error

Non-suitable 4257 20 0.0047
Suitable 88 185 0.3223
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Figure 7.19: Variable Importance of Model 15

Considering the variable importance of model 15 (Figure 7.19) the most
critical variables are those derived from the LANDSAT-8 time series, the
Cirrus band (all.16$Q.9.4) and the SWIR 2 band (all.16$Q11.2). The impor-
tance of the Cirrus band might be again ascribed to the hypothesis of the
cloud coverage, and the SWIR 2 captures information soil moisture, which
is as already mentioned, a significant variable (Barsi et al., 2014) Beyond
that the mean of the ASCAT (all.16$ASCAT mean) time series and the vari-
ance of night land surface temperature (all.16$LSTN Mean) are vital for the
prediction of potential habitats. The land surface temperature, which was
already identified as relevant variables within model 2 (Figure 7.15), has a
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significant impact again, yet in this case the night land surface temperature.
The ASCAT data seems to be less critical when applying a combination of
ASCAT and a subset of all variables, which leads to the hypothesis that a
combination of several data sources might decrease the classification results.
Therefore, another model was tested (Figure 7.20) to confirm the hypothesis.

Model 16

Model 16 was implemented to explore the combination of ASCAT soil
moisture and MODIS temperature and to investigate the previous hypothe-
sis from model 15. Therefore, the importance of ASCAT soil moisture data
and the mean of the night land surface temperature, which was one of
the most critical variable for the classification process, were used as input
variables.

The last model resulted in the best classification results for class suitable. 231
test areas were classified successfully using the combination of temperature
and soil moisture. 42 test sites were classified wrongly though, which may
be affiliated to missing variables, resulting in a classification accuracy of
84.62%. Considering the classification result of the class non-suitable, 4257
out of 4277 test sites were classified adequately. Thus, the classification
accuracy is high with 99.53% (Table 7.18).

Table 7.18: Accuracy Model 16
Non-suitable Suitable Class Error

Non-suitable 4257 20 0.0047
Suitable 42 231 0.1538
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Figure 7.20: Variable Importance of Model 16

Here the most important variable is the mean of the night land surface tem-
perature (all.16$LSTN Mean) derived from MODIS. Further, the mean of the
soil moisture (all.16$ASCAT mean) and the third, fourth and fifth quantiles
(all.16$Q3, all.16$Q4, all.16$Q5) are considered essential. Various studies
examined the use of temperature (chapter 3.1.) to investigate mosquito habi-
tats and concluded the divers’ temperature metrics are meaningful variables.
In this case, the mean of the night land surface temperature is the most
important variable for the classification. Considering the ASCAT metrics,
especially quantiles are highly ranked within the mean decrease accuracy,
meaning that the quantiles are capturing significant information. This might
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be affiliated to the fact the fourth and fifth quantiles are containing values
of high soil moisture content.

In conclusion, a combination of soil moisture and land surface temperature
is eminently suitable for predicting the available test sites (Figure 7.21).

Figure 7.21: Potential risk zones
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7.4.3 Plausibility Check using CCI land cover

To assess the plausibility of the classification results and further investigate
the use of CCI land cover data a plausibility check was applied using the
training data and the LULC classes.

After the preprocessing, which included the resampling and cropping,
the CCI land cover classes were split into single variables, resulting in 17
land cover classes (Figure 7.22). Each variable was binary coded (0/1) using
the ArcGIS attribute query function and further a random forest model
was applied. The class error is with both, suitable and non-suitable, com-
pared to the classification results of the applied models (Table 7.10), high.
Considering class suitable, 105 training areas were classified successfully,
whereas 168 training areas were not classified correctly, resulting in a class
error of 61.54 %, thus an accuracy of 38.46 % was reached. Regarding class
non-suitable, 140 training areas were classified wrongly, which leads to
a class error of 3.27 %. Consequently, the CCI land cover classes are not
suitable for determining habitats and YF risk zones. The information loss
(Table 7.7), which arose from the resampling during the preprocessing of
the land cover data, might be responsible for the poor results of the applied
random forest (Table 7.19).

Table 7.19: Accuracy Plausibility Check
Non-suitable Suitable Class error

Non-suitable 4137 140 3.27
Suitable 168 105 61.54
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Figure 7.22: Variable Importance Plausibility Check

However, considering the variable importance (Figure 7.22), the class urban
(190) and further the class water (210) are having a significant impact for
describing the habitats and risk zones. Several studies (chapter 3.1) investi-
gated the use of LULC classes for describing habitats and concluded that
both classes, urban and water are significant indicators.
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Figure 7.23: Plausibility Check

Figure 7.24: CCI Land Cover Classes Legend
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Almost all predicted risk zones are located within the class urban (Fig-
ure 7.23). Considering the plausibility of the classification results soil mois-
ture, which appeared as important variable, might be connected to both
classes urban and water bodies. Regarding the class urban, impervious
surfaces and artificial structures such as roads, buildings or parking lots
are characterized by low soil moisture contents since asphalt and concrete
do not accumulate water. Thus, low soil moisture content can be expected
within those areas, which means a low soil moisture content might be a
significant indicator for the abundance of the Ae. species and therefore
for the risk of YF occurrence. While, water bodies and flooded areas are
characterized by high soil moisture contents. Consequently, it is assumed
that especially high and low soil moisture is an important variable for the
habitat description. Further, land surface temperature is known to be a sig-
nificant indicator for describing habitats and risk zones (chapter 3.3). Again,
connecting the classes urban and water to surface temperature, impervious
surfaces are characterized by relatively high land surface temperature (urban
heat islands), whereas water bodies are characterized by low land surface
temperature. Thus, it can be assumed that both indicators, soil moisture
content and land surface temperature can be connected to the classes urban
and water. Therefore, additional research should be conducted to assess the
connection between LULC, soil moisture and temperature for investigating
Ae. species habitats and the risk of the occurrence of YF fever within urban
areas.
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7.5 Discussion

The models implemented in this thesis are used to identify areas with high
predictive probability for the abundance of Ae. Species using environmental
indicators derived from remote sensing data. Therefore, multiple environ-
mental indicators, which can be detected using remote sensing imagery
were identified including temperature, precipitation, vegetation indices,
land cover and soil moisture and compared with other studies. The results
of the models are partly similar to those from previous studies (chapter 3.1.)
including the importance of land surface temperature and soil moisture,
whereas vegetation indices were considered less important. Although the
plausibility check, which was implemented to test the plausibility of the
results and further examine the use of LULC classes for predicting suitable
habitats, resulted in moderate classification results, it confirmed the impor-
tance of the classes urban and water.

However, several findings provide incentives for further investigation. First,
the importance of the Cirrus band from both LANDSAT-8 and SENTINEL-2
sensors, which has not been considered significant in other recent studies,
should be further discussed. The fundamental hypothesis behind the signif-
icance of the Cirrus band is that partly cloud covered scenes were acquired
and test sites are located below cloud covered pixels. An expedient approach
would have been to conduct a LULC classification using the classes water,
vegetation, clouds, cloud shadows and urban areas on both, the LANDSAT-8
and SENTINEL-2 scene. Following this approach, a cloud mask could have
been created and employed to confirm the hypothesis (Huang et al., 2010).

Other possible error sources, which should be discussed in this section,
is the data preprocessing. A comprehensive preprocessing was necessary
due to the use of data from multiple sensors and sources. The use of nearest
neighbor resampling for aggregating the LANDSAT-8 scenes and CCI land
cover map might have resulted in position errors, especially along linear
features (Santosh and Renuka, 2010). Referring to the resampling of the CCI
land cover map (chapter 7.1.) a severe information loss regarding several
land cover classes appeared, which might be a reason for the moderate
classification results within the plausibility check. Further, the interpolation

123



7 Workflow for Risk Zone Mapping and Modeling

of the ASCAT soil moisture data, which was conducted by TU Vienna might
have caused errors, as the spatial resolution of the original data is 12.5*12.5
km.

Another aspect that should be considered is that the mean distance to
water bodies is not significant. Although the classification results of the
MLC of water bodies was successful, the mean distances are not vital for
the prediction of potential habitats. This could be explained by the fact that
the Ae. Aegypti mosquito, which is responsible for the transmission of YF
in urban areas in Africa, favors artificial breeding containers such as cans or
tires that collect rainfall water and not natural water habitats such as rivers
or ponds (Gubler and Clark, 1995; Vainio and Cutts, 1998). To overcome
this issue, VHR remote sensing data could be applied to detect smaller
objects. However, VHR data is barely available and accessible, especially in
developing countries.

Further, the use of the random forest ensemble learning algorithm for
estimating the importance of the various environmental indicators may have
introduced errors. One major disadvantage that needs to be discussed is that
the random forest is a “black-box” classifier, which means relationships be-
tween predictive variables and the response may not be detected. Referring
to the random forest use in this study, 1500 trees were built for each model
and investigating 1500 trees for each model is virtually impossible. However,
to classification process allows examining the importance of each variable
(Wiesmeier et al., 2011). Moreover, the classification accuracy depends on
the user-defined selection of variables. Thus, it is certain that implemented
16 models did not detect the optimal variable combination. Beyond that,
the classification accuracy also depends on the training data, which gives
rise to another error source, the training data. Since training data was only
available to a limited extent as map provided by MSF, the preparation of
test sites was problematic. The sample points are not well allocated over
the whole study area. Consequently, the training data set lacks of test sites
within sub-urban and rural areas, where YF outbreaks emerge (chapter 5.6.).
Further, the defined possible infection zones around test sites were selected
empirically. Field surveys and expert knowledge of epidemiologists would
be necessary to define convincing infection zones.
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However, the random forest ensemble learning also has several advantages.
The random forest is one of the most accurate machine learning algorithms,
not only for remote sensing applications but also for other research fields.
Further, it is suitable for large data sets using numerous variables. For this
research, the random forest was implemented since many variables from
various data sources were tested. Besides, it estimates the importance of
each variable. Therefore, it was possible to predict the significance of each
environmental indicator for each classification process. The random forest
can handle missing data, which was especially important when using land
surface temperature from MODIS data. Some scenes were characterized
by missing values, which might be caused when the scene is not acquired
under clear-sky conditions (Jha, 2012).

The initial motivation behind conducting research in epidemiology us-
ing environmental indicators was to use the results determined from the
implemented models to support doctors and national health authorities.
However, since the results of most models give little satisfaction, the use of
the approach in medical studies may be limited. Though model 11 using
soil moisture and model 16 using soil moisture and night land surface
temperature resulted in a classification accuracy of more than 80 %, which
means assuming that error sources are limited to preprocessing and con-
sidering the lack of validation data, the majority of potential Ae. mosquito
habitats were classified successfully. Nevertheless, it must be admitted that
the abundance of the vector does not necessarily involve a YF outbreak
since several indicators beside environmental must be considered (chapter
3.3., table 3.1.). Further, to field-test the approach during outbreaks higher
degree of automatization would be necessary to save precious time.

Regarding the credibility and reliability of the results, the lack of validation
data needs to be discussed. To validate the classification results indepen-
dently, validation data is necessary. For the present thesis, validation data
was not available, due to restriction from MSF and the health ministry of
the Democratic Republic of Congo (DRC). Thus, the classification was not
validated. Consequently, the results are solely based on the training data
and might be therefore not suitable for health studies and in field use.

Further, the applicability of the proposed approach on other test sites and
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with other VBDs should be illuminated. Using the approach on other test
sites is generally possible since the employed remote sensing data is globally
available. It should be considered though, that training data is needed to
train the random forest ensemble learning algorithm. Besides, as already
mentioned validation would be necessary to verify the classification result.
Beyond that applying the approach on other test sites is only reasonable
when both, the vector and host (non-human primates), are present, which
applies solely in endemic or partly endemic countries (WHO, 2016a). Re-
garding the application of the approach on other VBDs, it may be applied to
diseases which are also transmitted via the Ae. mosquito species including
dengue fever, chikungunya or the zika virus (ECDC, 2016).
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8 Conclusion

This thesis introduced a methodology for investigating the relation between
environmental characteristics derived from satellite remote sensing imagery
and the risk of yellow fever occurrence in Africa. The approach investigated
the use of a combination of active and passive remote sensing products in-
cluding imagery from SENTINEL-2, LANDSAT-8, MODIS Terra and Aqua,
and ASCAT. Further, a plausibility check was employed using CCI land
cover classes, to cross-check the classification results. The proposed method
was based on data level machine learning and avoids cost-extensive in-situ
surveys.

Environmental indicators that influence the presence of the yellow fever vec-
tor and thus the potential occurrence of yellow fever were assessed. Based
on the assessment of possible influencing environmental indicators, further
environmental indicators were defined which can be derived from remote
sensing data. The results confirmed the use of environmental indicators for
predicting potential vector habitats. Applying soil moisture content derived
from ASCAT and land surface temperature derived from MODIS resulted
in acceptable accuracies, while other indicators including vegetation indices,
mean distance to water bodies, metrics from spectral bands from different
sensors, the leaf area index and the fraction of photosynthetically active
radiation are less significant. For the present thesis, it is not possible to infer
a yellow fever virus risk hazard index, since the random forest classification
does not allow statements about environmental conditions which need to be
fulfilled to favor the abundance of the Ae. species and the possible outbreak
of the disease. Thus, it is not possible to define for example the threshold of
soil moisture content that needs to be reached to facilitate the development
of habitats and therefore the abundance of the Ae. species.

The real distribution of the mosquito vector is influenced by a variety
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8 Conclusion

of indicators though, not just those investigated in the present study. Be-
yond that the presence of the Ae. species does not necessarily introduce
disease outbreaks since numerous complex parameters are involved in the
emerging of an epidemic. Nevertheless, the proposed method might not
only help policymakers and stakeholders but also might support health
ministries. It is therefore anticipated that the approach and results presented
in this thesis play a part in contributing further research on yellow fever
and its vector.

A limited amount of studies has included complex and long-term data.
Thus, further assessment of predicted areas should consider time series data
to infer future Ae. species habitats. These results combined with human
exposure and other factors such as demographic change would be essential
to identify potential risk zones and future outbreaks in endemic countries.
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Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing. A review
of applications and future directions. ISPRS Journal of Photogrammetry and
Remote Sensing, 114, 24–31.

129

https://cran.r-project.org/web/packages/weathermetrics/weathermetrics.pdf
https://cran.r-project.org/web/packages/weathermetrics/weathermetrics.pdf
https://www.rdocumentation.org/packages/base/versions/3.4.1/topics/apply
https://www.rdocumentation.org/packages/base/versions/3.4.1/topics/apply


9 Bibliography

Benediktsson, J.A. (2015). Spectral-Spatial Classification of Hyperspectral
Remote Sensing Images. Norwood: Artech House.

Bleyhl, B., Baumann, M., Griffiths, P., Heidelberg, A., Manvelyan, K., Rade-
loff, V.C., Zazanashvili, N., & Kuemmerle, T. (2017). Assessing landscape
connectivity for large mammals in the Caucasus using Landsat 8 seasonal
image composites. Remote Sensing of Environment, 193, 193–203.

Breiman, L., & Cuttler, A. (no date). Random Forest. Description. https:
//www.stat.berkeley.edu/~breiman/RandomForests/cc_copyright.htm

Brown, H.E., Diuk-Wasser, M.A., Guan, Y., Caskey, S., & Fish, D. (2008).
Comparison of three satellite sensors at three spatial scales to predict larval
mosquito presence in Connecticut wetlands. Remote Sensing of Environ-
ment, 112, 2301–2308.

Buczak, A.L., Koshute, P.T., Babin, S.M., Feighner, B.H., & Lewis, S.H. (2012).
A data-driven epidemiological prediction method for dengue outbreaks
using local and remote sensing data. BMC medical informatics and decision
making, 12, 124.

Canadian Space Agency (2014). RADARSAT-1. from http://www.asc-csa.
gc.ca/eng/satellites/radarsat1/default.asp

Castillo, J.A.A., Apan, A.A., Maraseni, T.N., & Salmo, S.G. (2017). Esti-
mation and mapping of above-ground biomass of mangrove forests and
their replacement land uses in the Philippines using Sentinel imagery. ISPRS
Journal of Photogrammetry and Remote Sensing, 134, 70–85.

Cheng, G., Han, J., & Lu, X. (2017). Remote Sensing Image Scene Clas-
sification. Benchmark and State of the Art. Proceedings of the IEEE, 105,
1865–1883.

Climate-Org (2017). Climate Data for Cities Worldwide. https://en.climate-data.
org/
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Appendix 1 

Results and Accuracy Assessment 

 

Variable Description Variable Description 
all.16$class mean distance to water 

bodies 
all.16$LC08.1_Max … 
all.16$LC08.11_Max 

LANDSAT-8 B1 
maximum … LANDSAT-8 
B11 maximum 

all.16$sen.1.num … 
all.16$sen.12.num 

SENTINEL-2 B1 … 
SENTINEL-2 B12 

all.16$Q.1.1 … 
all.16$Q11.1  

LANDSAT-8 B1 1. 
quantile … LANDSAT-8 
B11 1. quantile 

all.16$cci_landcover CCI land cover all.16$Q.1.2 … 
all.16$Q11.2 

LANDSAT-8 B1 2. 
quantile … LANDSAT-8 
B11 2. quantile 

all.16$EVI_Mean MODIS EVI mean all.16$Q.1.3 … 
all.16$Q11.3 

LANDSAT-8 B1 3. 
quantile … LANDSAT-8 
B11 3. quantile 

all.16$EVI_Var MODIS EVI variance all.16$Q.1.4 … 
all.16$Q11.4 

LANDSAT-8 B1 4. 
quantile … LANDSAT-8 
B11 4. quantile 

all.16$EVI_Std MODIS EVI standard 
deviation 

all.16$Q.1.5 … 
all.16$Q11.5 

LANDSAT-8 B1 
5.quantile … LANDSAT-8 
B11 5. quantile 

all.16$EVI_Min MODIS EVI minimum all.16$LS_EVI_Mean LANDSAT-8 EVI mean 
all.16$EVI_Max MODIS EVI maximum all.16$LS_EVI_Var LANDSAT-8 EVI variance 
all.16$Q.EVI.1 MODIS EVI 1. quantile all.16$LS_EVI_Std LANDSAT-8 EVI standard 

dev. 
all.16$Q.EVI.2 MODIS EVI 2. quantile all.16$LS_EVI_Min LANDSAT-8 EVI 

minimum 
all.16$Q.EVI.3 MODIS EVI 3. quantile all.16$LS_EVI_Max LANDSAT-8 EVI 

maximum 
all.16$Q.EVI.4 MODIS EVI 4. quantile all.16$Q1.EVI LANDSAT-8 EVI 1. 

quantile 
all.16$Q.EVI.5 MODIS EVI 5. quantile all.16$Q2.EVI LANDSAT-8 EVI 2. 

quantile 
all.16$NDVI_Mean MODIS NDVI mean all.16$Q3.EVI LANDSAT-8 EVI 3. 

quantile 
all.16$NDVI_Var MODIS NDVI variance all.16$Q4.EVI LANDSAT-8 EVI 4. 

quantile 
all.16$NDVI_Std MODIS NDVI standard 

dev. 
all.16$Q5.EVI LANDSAT-8 EVI 5. 

quantile 
all.16$NDVI_Min MODIS NDVI minimum all.16$LS_NDVI_Mean LANDSAT-8 NDVI mean 
all.16$NDVI_Max MODIS NDVI maximum all.16$LS_NDVI_Var LANDSAT-8 NDVI 

variance 
all.16$Q.NDVI.1 MODIS NDVI 1. quantile all.16$LS_NDVI_Std LANDSAT-8 NDVI 

standard dev. 
all.16$Q.NDVI.2 MODIS NDVI 2. quantile all.16$LS_NDVI_Min LANDSAT-8 NDVI 

minimum 
all.16$Q.NDVI.3 MODIS NDVI 3. quantile all.16$LS_NDVI_Max LANDSAT-8 NDVI 

maximum 
all.16$Q.NDVI.4 MODIS NDVI 4. quantile all.16$Q1.NDVI LANDSAT-8 NDVI 1. 

quantile 
all.16$Q.NDVI.5 MODIS NDVI 5. quantile all.16$Q2.NDVI LANDSAT-8 NDVI 2. 

quantile 
all.16$LSTD_Mean MODIS LST day mean all.16$Q3.NDVI LANDSAT-8 NDVI 3. 

quantile 



all.16$LSTD_Var MODIS LST day variance all.16$Q4.NDVI LANDSAT-8 NDVI 4. 
quantile 

all.16$LSTD_Std MODIS LST day standard 
dev. 

all.16$Q5.NDVI LANDSAT-8 NDVI 5. 
quantile 

all.16$LSTD_Min MODIS LST day 
minimum 

all.16$LS_SAVI_Mean LANDSAT-8 SAVI mean 

all.16$LSTD_Max MODIS LST day 
maximum 

all.16$LS_SAVI_Var LANDSAT-8 SAVI 
variance 

all.16$Q.LSTD.1 MODIS LST day 1. 
quantile 

all.16$LS_SAVI_Std LANDSAT-8 SAVI 
standard dev. 

all.16$Q.LSTD.2 MODIS LST day 2. 
quantile 

all.16$LS_SAVI_Min LANDSAT-8 SAVI 
minimum 

all.16$Q.LSTD.3 MODIS LST day 3. 
quantile 

all.16$LS_SAVI_Max LANDSAT-8 SAVI 
maximum 

all.16$Q.LSTD.4 MODIS LST day 4. 
quantile 

all.16$Q1.SAVI LANDSAT-8 SAVI 1. 
quantile 

all.16$Q.LSTD.5 MODIS LST day 5. 
quantile 

all.16$Q2.SAVI LANDSAT-8 SAVI 2. 
quantile 

all.16$LSTN_Mean MODIS LST night mean all.16$Q3.SAVI LANDSAT-8 SAVI 3. 
quantile 

all.16$LSTN_Var MODIS LST night 
variance 

all.16$Q4.SAVI LANDSAT-8 SAVI 4. 
quantile 

all.16$LSTN_Std MODIS LST night 
standard dev. 

all.16$Q5.SAVI LANDSAT-8 SAVI 5. 
quantile 

all.16$LSTN_Min MODIS LST night 
minimum 

all.16$LS_MSAVI_Mean LANDSAT-8 MSAVI mean 

all.16$LSTN_Max MODIS LST night 
maximum 

all.16$LS_MSAVI_Var LANDSAT-8 MSAVI 
variance 

all.16$Q.LSTN.1 MODIS LST night 1. 
quantile 

all.16$LS_MSAVI_Std LANDSAT-8 MSAVI 
standard dev. 

all.16$Q.LSTN.2 MODIS LST night 2. 
quantile 

all.16$LS_MSAVI_Min LANDSAT-8 MSAVI 
minimum 

all.16$Q.LSTN.3 MODIS LST night 3. 
quantile 

all.16$LS_MSAVI_Max LANDSAT-8 MSAVI 
maximum 

all.16$Q.LSTN.4 MODIS LST night 4. 
quantile 

all.16$Q1.MSAVI LANDSAT-8 MSAVI 1. 
quantile 

all.16$Q.LSTN.5 MODIS LST night 5. 
quantile 

all.16$Q2.MSAVI LANDSAT-8 MSAVI 2. 
quantile 

all.16$LAI_mean MODIS LAI mean all.16$Q3.MSAVI LANDSAT-8 MSAVI 3. 
quantile 

all.16$LAI_var MODIS LAI variance all.16$Q4.MSAVI LANDSAT-8 MSAVI 4. 
quantile 

all.16$LAI_std MODIS LAI standard dev. all.16$Q5.MSAVI LANDSAT-8 MSAVI 5. 
quantile 

all.16$LAI_min MODIS LAI minimum all.16$LS_NDWI_Mean LANDSAT-8 NDWI mean 
all.16$LAI_max MODIS LAI maximum all.16$LS_NDWI_Var LANDSAT-8 NDWI 

variance 
all.16$LAI.1 MODIS LAI 1. quantile all.16$LS_NDWI_Std LANDSAT-8 NDWI 

standard dev. 
all.16$LAI.2 MODIS LAI 2. quantile all.16$LS_NDWI_Min LANDSAT-8 NDWI 

minimum 
all.16$LAI.3 MODIS LAI 3. quantile all.16$LS_NDWI_Max LANDSAT-8 NDWI 

maximum 
all.16$LAI.4 MODIS LAI 4. quantile all.16$Q1.NDWI LANDSAT-8 NDWI 1. 

quantile 
all.16$LAI.5 MODIS LAI 5. quantile all.16$Q2.NDWI LANDSAT-8 NDWI 2. 

quantile 



all.16$FPAR_mean MODIS FPAR mean all.16$Q3.NDWI LANDSAT-8 NDWI 3. 
quantile 

all.16$FPAR_var MODIS FPAR variance all.16$Q4.NDWI LANDSAT-8 NDWI 4. 
quantile 

all.16$FPAR_std MODIS FPAR standard 
dev. 

all.16$Q5.NDWI LANDSAT-8 NDWI 5. 
quantile 

all.16$FPAR_min MODIS FPAR minimum all.16$ASCAT_mean ASCAT mean 
all.16$FPAR_max MODIS FPAR maximum all.16$ASCAT_var ASCAT variance 
all.16$FPAR.1 MODIS FPAR 1. quantile all.16$ASCAT_std ASCAT standard dev. 
all.16$FPAR.2 MODIS FPAR 2. quantile all.16$ASCAT_min ASCAT minimum 
all.16$FPAR.3 MODIS FPAR 3. quantile all.16$ASCAT_max ASCAT maximum 
all.16$FPAR.4 MODIS FPAR 4. quantile all.16$Q1 ASCAT 1. quantile 
all.16$FPAR.5 MODIS FPAR 5. quantile all.16$Q2 ASCAT 2. quantile 
all.16$LC08.1_Mean … 
all.16$LC08.11_Mean 

LANDSAT-8 B1 mean … 
LANDSAT-8 B11 mean 

all.16$Q3 ASCAT 3. quantile 

all.16$LC08.1_Var … 
all.16$LC08.11_Var 

LANDSAT-8 B1 variance 
… LANDSAT-8 B11 
variance 

all.16$Q4 ASCAT 4. quantile 

all.16$Lc08.1_Std ... 
all.16$LC08.11_Std 

LANDSAT-8 B1 standard 
dev. … LANDSAT-8 B11 
standard dev. 

all.16$Q5 ASCAT 5. quantile 

all.16$LC08.1_Min … 
all.16$LC08.11_Min 

LANDSAT-8 B1 minimum 
… LANDSAT-8 B11 
minimum 

  

 

  



Model 5: LANDSAT-8 Indices 

 Non-suitable Suitable Class Error 
Non-

suitable 
4246 31 0.0072 

Suitable 162 111 0.5934 
 

 

 

Model 6: MODIS and ASCAT Indicators 

 Non-suitable Suitable Class Error 
Non-

suitable 
4255 22 0.0051 

Suitable 90 183 0.3297 
 

 



 

Model 7: MODIS and LANDSAT-8 Indicators 

 Non-suitable Suitable Class Error 
Non-

suitable 
4258 19 0.0044 

Suitable 101 172 0.3640 

 

 

Model 8: MODIS and SENTINEL-2A Indicators 

 Non-suitable Suitable Class Error 
Non-

suitable 
4251 26 0.0061 

Suitable 125 148 0.4579 
 

 



 

Model 9: MODIS, ASCAT and LANDSAT-8 Indicators 

 Non-suitable Suitable Class Error 
Non-

suitable 
4260 17 0.0040 

Suitable 102 171 0.3736 
 

 

 

Model 10: MODIS, ASCAT and SENTINEL-2 Indicators 

 Non-suitable Suitable Class Error 
Non-

suitable 
4257 20 0.0047 

Suitable 98 175 0.3590 
 

 



Model 12: Subset of all indicators 

 Non-suitable Suitable Class Error 
Non-

suitable 
4256 21 0.0049 

Suitable 95 178 0.3480 
 

 

 

Model 13: ASCAT and LANDSAT-8 

 Non-suitable Suitable Class Error 
Non-

suitable 
4257 20 0.0047 

Suitable 111 162 0.4066 
 

 



 

Model 14: ASCAT and SENTINEL-2 

 Non-suitable Suitable Class Error 
Non-
suitable 

4251 26 0.0061 

Suitable 99 174 0.3626 
 

 



 

 

Appendix 2 

Signature Analysis of Class Water (blue) and Cloud Shadows (black) 

Band_1 = Blue, Band_2 = Green, Band_3 = Red, Band_4 = NIR, Band_5 = SWIR 1, Band_6 = SWIR 2 

 

 

 

 

 



 

 

 

 


