
Ilija imi , BSc

VISUALIZER
An Extensible Dashboard for Personalized Visual Data

Exploration

 Master's degree programme: Computer Science

Veas, Eduardo Enrique, Dr.techn. MSc

Institute of Interactive Systems and Data Science

 Master of Science

Sabol, Vedran, Dipl.-Ing. Dr.techn.
 Mutlu, Belgin, Dipl.-Ing.

Graz, January 2017

Kurzfassung

Das Analysieren von Datensätzen in Tabellenform gestaltet sich als sehr
schwierig, sobald die Anzahl der Reihen und Spalten in einem Datensatz zu
steigen beginnt. Um einen gewissen Datenverlauf erkennen zu können, wer-
den typischerweise andere Methoden benutzt, als die Tabelle Zeile für Zeile
zu durchsuchen. Eine solche Methode ist das Visualisieren einer aggregierten
Teilmenge eines Datensatzes welcher für den User von Interesse ist. Es gibt
bereits Programme auf dem Markt, welche Lösungen für dieses Problem
bieten. Diese sind jedoch entweder einschüchternd komplex für neue User,
bieten unzureichende Möglichkeiten für Programmerweiterungen, oder sind
einfach zu teuer.
Deswegen wurde Visualizer entwickelt. Es handelt sich dabei um eine
Webanwendung für clientseitige Datenvisualisierung. Bei der Entwicklung
wurden unerfahrene und erfahrene User gleichermaßen berücksichtigt. Die
Anwendung bietet dem User die Möglichkeit die Plattform anzupassen und
zu erweitern. Zusätzlich kann Visualizer in bestehende Webseiten integriert
werden und ist komplett steuerbar über die URL.

Schlüsselwörter: Visualizer, Visualisierungen, Datenvisualisierung, We-
banwendung, Erweiterung, Anpassung, Personalisierung, Integration,
Aggregation

3

Abstract

Analyzing datasets in tabular form quickly becomes difficult with a growing
number of rows and columns in a dataset. In order to detect certain patterns
in such datasets, going through the table line by line proves to be inefficient,
which is why visual methods are often used for this purpose. One such method
is the aggregation of a subset of interest of the dataset and its visualization in
a chart. Off-the-shelf tools already offer the possibility to open datasets and
display the contents for visual exploration, but they are either intimidating to
new users, limited to a small number of visualizations and not extensible, or
simply too expensive.
Visualizer was developed as a web application for client side data visualiza-
tion which can be used as a stand-alone service or integrated into existing
web-pages. It was created with non-expert and expert users in mind, and
offers the options to extend the platform with new configurable charts and
to fully customize and control it via the URL. For example, an expert user
can create a layout consisting of different charts representing aspects of a
dataset. This layout opens in other users‘ profiles to visualize their data.

Keywords: Visualizer, visualizations, data visualization, web application,
extension, customization, personalization, integration, aggregation

4

Acknowledgment

First I would like to thank my co-supervisor Belgin Mutlu who was my
first contact person regarding the thesis and who offered me great support
and guidance whenever I was stuck somewhere and pushed me to finish this
thesis much faster, than I would have without her. Furthermore, I would like
to thank my supervisor Eduardo Veas and my other co-supervisor Vedran
Sabol for their great ideas and time, which helped make Visualizer the way it
is.
I am also thankful to my sister Marija and my brother in law Krešo, my brother
Filip and my sister in law Tina for supporting me throughout my studies. In
particular I express my gratitude to Marija and Krešo for helping me to settle
in when I came to Graz. They were always there for me whenever I needed
something and I am incredibly thankful for that. I would also like to thank all
of my friends for all the fun we had together in the past years and for helping
me relax when I needed it the most.
A special thanks goes to my fiancée Michaela, who supported me patiently all
this long time it took me to finish my degree, and who made the great effort
to proofread this long thesis.
My biggest gratitude goes to my mother Jela and to my father Ivo, who have
always given me everything they have. Without them I would not have been
able to study in Graz and write this thesis. Therefore, I would like to dedicate
it to them.

Graz, January 18, 2018 Ilija Šimić

5

Za mamu i tatu

6

Contents

1 Introduction 15
1.1 Motivation . 15
1.2 Focus Points . 16
1.3 Structure of Work . 17

2 Related Works 18
2.1 Data Tables . 18
2.2 Visualization Dashboards . 20

2.2.1 Design Considerations for Dashboards 20
2.2.2 Background Information on Visualizations 21
2.2.3 Identifying interactions . 22
2.2.4 Information Provenance . 23
2.2.5 Recommending Visualizations 24
2.2.6 Extension guidelines . 27

2.3 Data Visualization and Recommendation Tools 29
2.3.1 Scientific . 29
2.3.2 Commercial . 34

2.4 Summary . 41

3 Visualizer 42
3.1 Overview . 42
3.2 Architecture and Used Technologies 46

3.2.1 Back End . 47
3.2.2 Front End . 51
3.2.3 External Services . 53

3.3 Dataset Table . 53
3.3.1 Data Preprocessing . 54
3.3.2 Displaying the Table . 56
3.3.3 Components . 56

3.4 Visualization Dashboard . 65
3.4.1 Guest Dashboard . 66
3.4.2 Personalized Dashboard . 77

7

3.5 Summary . 88

4 Applications 89
4.1 Data Preparation and Visual Exploration 89

4.1.1 Data Preparation . 90
4.1.2 Visual Data Exploration . 91
4.1.3 Sorting and Filtering . 95
4.1.4 Conclusion . 97

4.2 Integration of Visualizer into an existing web page 97
4.2.1 Demo Page Overview . 98
4.2.2 Generating a URL . 99
4.2.3 Generating Visualizations . 100
4.2.4 Usages . 105

4.3 Extension of Visualizations . 106
4.3.1 Chart API . 107
4.3.2 Project Structure . 109
4.3.3 Getting Started . 110
4.3.4 Uploading the Visualization 113
4.3.5 Extended functionalities . 115

4.4 Summary . 120

5 Benchmarks 121
5.1 Introduction . 121
5.2 Loading the dataset . 122
5.3 Aggregating data . 125
5.4 Applying configurations . 128
5.5 Summary . 130

6 Conclusion 131
6.1 Summary . 131
6.2 Future Work . 132

List of Abbreviations 134

Bibliography 136

A Config parameter actions description 140
A.1 removeColumns . 140
A.2 mergeColumns . 140
A.3 renameColumn . 141
A.4 aggregate . 141
A.5 filter . 142

A.5.1 filterObj . 143

8

A.6 adddefault . 143
A.7 notactive . 144
A.8 changetype . 144
A.9 sort . 145
A.10replace . 145
A.11replaceall . 145
A.12visualization . 146
A.13brush . 147

B Visualization description 149
B.1 Attributes description . 149

B.1.1 Channel object . 150
B.2 mapping.js . 151

C Chart API 161
C.1 Global Objects . 161
C.2 brushingObserver . 161

C.2.1 registerListener . 161
C.2.2 unregister . 162
C.2.3 update . 162
C.2.4 initializeSelfUpdate . 162
C.2.5 updateEmpty . 163

C.3 Chart Functions . 163
C.3.1 getChannelMappings . 163
C.3.2 getChartRowIndex . 163
C.3.3 getFrom . 163
C.3.4 getTo . 163
C.3.5 filterBy . 163
C.3.6 updateVisualization . 164
C.3.7 sortBy . 164
C.3.8 unregisterVisualization . 164
C.3.9 refreshVisualization . 164
C.3.10showVisualization . 164
C.3.11applyCssToSvg . 165
C.3.12revertCssFromSvg . 165
C.3.13applyFilter . 165
C.3.14drawVisualization . 165

D User visualization code 167
D.1 Sankey diagram - original index.html 167
D.2 Sankey.csv . 170

9

List of Figures

2.1 Show Me! Alternatives dialog [Mackinlay et al., 2007, p. 6] 26
2.2 CODE - Vis Wizard [Mutlu et al., 2013, p. 43, Fig. 1.] 30
2.3 Polaris: User interface description [Stolte and Hanrahan, 2000,

p. 54, Fig. 1.] . 33
2.4 Tableau Desktop: Creating a visualization 36
2.5 Power BI Desktop: Creating a visualization 38
2.6 Qlik Sense: Edit mode . 40

3.1 File selection screen of Visualizer 43
3.2 The Dataset Table with loaded data 44
3.3 The Visualization Dashboard and its components: (1) Visualiza-

tion Space, (2) Field Selection Area, (3) VisPicker and (4) Toolbar 45
3.4 Web Architecture of Visualizer: Split into front end, back end and

external resources . 47
3.5 Layout structure of Dataset Table with Bootstrap 52
3.6 Regions of the Dataset Table: (1) Table manipulation (2) Table

information header (3) Dataset contents table (4) Table navigation
elements (5) Save and accept . 56

3.7 Table manipulation buttons . 57
3.8 Aggregation dialog for merging numerical columns 58
3.9 Aggregation dialog for aggregating whole dataset 58
3.10Isolated information header cell . 59
3.11Information header context-menus: a) numerical without catego-

rization b) numerical with categorization c) categorical without
categorization d) categorical with categorization 60

3.12Information tooltips: a) categorical with categorization b) cate-
gorical without categorization c) numerical d) date 61

3.13Replace all values dialog prefilled with the selected entry 62
3.14Navigational elements . 62
3.15Finalize and save commands . 63
3.16The Visualization Dashboard with the highlighted regions: 1. Vi-

sualization Space 2. Field Selection Area 3. VisPicker 4. Toolbar . 65

10

3.17Preview mode of the Visualization Dashboard 66
3.18VisPicker changes based on field selection: a) Nothing selected

b) Fields of type string and integer selected 68
3.19VisPicker: Tooltip for a visualization and recommendation of com-

patible fields . 69
3.20Testing mapping combinations for bar chart with a match 71
3.21Testing mapping combinations for world map without a match . . 71
3.22Scatter plot created with VisPicker 72
3.23Filter dialog of a visualization . 73
3.24Channel remap dialog of a visualization 74
3.25Only fields compatible with a channel are displayed. a) Color has

only city b) x-Axis allows a swap of price and sq_ft c) selecting a
field swaps it automatically . 74

3.26Selecting data points in one visualization will highlight matching
data points in other visualizations 75

3.27Toolbar with limited features for guests 75
3.28a) Login dialog, and b) Registration dialog 77
3.29Personalized Dashboard with additional highlighted features

compared to the Guest Dashboard 78
3.30Customize Dashboard dialog . 78
3.31Visualization folder structure . 79
3.32a) not filtered bar chart, b) correctly filtered bar chart c) wrongly

filtered bar chart . 82
3.33Upload Visualization dialog . 83
3.34VisPicker with a user added visualization 84
3.35Remove User Visualization dialog 85
3.36Add tags dialog . 85
3.37VisPicker with ranked visualizations 86
3.38Visualization created through the recommended ranked visualiza-

tions . 87
3.39Tag and Rate dialog: This dialog can be used to give feedback for

the generated recommended visualization 88

4.1 Dataset Table with loaded studentInfo.csv 90
4.2 Dataset Table with prepared data from the studentInfo.csv dataset 91
4.3 Visualization Dashboard with loaded data 92
4.4 Visualizations created to for course student compositions 93
4.5 Comparison of effort for female and male students 94
4.6 a) Final results compared to educational level and b) Student who

passed highlighted . 95
4.7 Bar chart as first created (left) and sorted bar chart (right) 96

11

4.8 The filtering dialog of the bar chart (left) and the filtered bar chart
(right) . 97

4.9 Visualizer integration: Demo page 98
4.10Generating Visualizations: (upper left) bar chart, counting final

result occurrences in course AAA (upper right), pie chart with
gender ratio in course BBB (lower left), age ratio in course CCC
(lower right), and credits per education and final result also in
course CCC . 102

4.11Multiple visualizations generated with one click - (left) Average
number of studied credits per region, and (right) Average number
of attempts per region . 103

4.12Multiple visualizations with activated brush 105
4.13Final result configuration applied to different courses: (upper

left) Course AAA, (upper right) Course BBB, (lower left) Course
CCC, and (lower right) Course DDD 106

4.14a) not filtered bar chart, b) correctly filtered bar chart c) wrongly
filtered bar chart . 108

4.15Sankey diagram: Needed libraries highlighted 111
4.16Visualization Upload dialog: Description of Sankey Diagram . . . 114
4.17Sankey diagram (left) and VisPicker with user visualization (right) 115

5.1 Memory consumption of Visualizer before a dataset gets loaded . 122
5.2 Line charts showing linear increase in time and memory for linear

increase in the number of rows . 125
5.3 Line charts displaying the time taken to aggregate the selected

fields for the three cases . 127
5.4 Line charts displaying time taken to apply the configuration link

to different sized datasets . 130

12

List of Tables

3.1 The schema of the users table and the description of the fields . . 48
3.2 Structure of an object in the fields array 54
3.3 Structure of a FilterList object 55
3.4 Visualization API description . 80
3.5 channelMappings object description 81

5.1 The specification of the machine the benchmarks were run on . . 122
5.2 Time taken to load the dataset and memory consumption -

1000000 rows . 123
5.3 Time taken to load the dataset and memory consumption -

2000000 rows . 123
5.4 Time taken to load the dataset and memory consumption -

3000000 rows . 123
5.5 Time taken to load the dataset and memory consumption -

4000000 rows . 124
5.6 Time taken to load the dataset and memory consumption -

5000000 rows . 124
5.7 Time taken in milliseconds to aggregate the data of the selected

fields - 1000000 rows . 126
5.8 Time taken in milliseconds to aggregate the data of the selected

fields - 2000000 rows . 126
5.9 Time taken in milliseconds to aggregate the data of the selected

fields - 3000000 rows . 126
5.10Time taken in milliseconds to aggregate the data of the selected

fields - 4000000 rows . 127
5.11Time taken in milliseconds to apply the configuration link -

1000000 rows . 128
5.12Time taken in milliseconds to apply the configuration link -

2000000 rows . 129
5.13Time taken in milliseconds to apply the configuration link -

3000000 rows . 129

13

14

5.14Time taken in milliseconds to apply the configuration link -
4000000 rows . 129

Chapter 1

Introduction

It is the aim of this thesis to introduce, describe and analyze Visualizer, an ex-
tensible web application for personalized visual data exploration. Being a web
application, it is meant to be platform independent and accessible from every-
where. As a target group, non-experts and experts were considered equally.
For the first group, features for assisted data visualization were integrated
which only allow the user to select visualizations that are compatible with
their fields of interest. For the second group, the experts, powerful features
for data manipulation were added, and an application programming interface
for the visualizations was defined, which allows the extension of the platform
itself to suit the users’ needs.
Analyzing data usually takes several steps of operations on the data in ad-
dition to creating visualizations. Therefore, once a user is satisfied with the
“view” on the dataset showing certain characteristics, it is possible to save it
in a URL. Using this URL with different datasets, which have the same struc-
ture as the one for which the URL was generated will apply all operations
performed on the original dataset and create the same visualizations.

1.1 Motivation

With data collection becoming ubiquitous, the amount of data which can be an-
alyzed skyrockets. However, data is not only being automatically generated,
it is becoming also more common that regular users keep track of certain ac-
tivities by writing them down into spreadsheets. Therefore, data analysis has
become a task, which is not exclusive to data analysts anymore. For instance,
a teacher has to analyze data if he wants to keep track of the progress of his
students. When trying to analyze how the students performed in the previous
semester, or how the whole class performed, it becomes difficult to discover
patterns in tables. Visualizations can help with this problem, but many of the

15

CHAPTER 1. INTRODUCTION 16

available tools on the market require a particular skill set and expect certain
knowledge from the user to be efficiently used. One often has to be partially
an expert in data analysis and partially an expert in data visualization to cre-
ate meaningful charts. In addition to the knowledge barrier, the tools either
cannot be adjusted to the user, or lack the option to be extended with custom
visualizations.
Therefore, Visualizer was developed as a free open-source web application,
which assists beginners in visual data exploration and allows experts to fine
tune their visualizations.

1.2 Focus Points

While developing Visualizer, the following aspects where in focus:

• Wide target group
The tool should have all the functionalities to satisfy power users, yet
have a mild learning curve and assisting features to guide users without
knowledge in this area. A tool for data analysis should not exclusively
target professionals who are ready to spend hours and hours learning
to work with it and discover every possible functionality which the tool
might offer, nor force users to go to lengths as accepting features which
are disruptive, just because the tool might prove useful in other aspects.

• Platform support
With the wide variety of today’s operating systems and platforms, it is
expected that anything runs on everything. Companies often have cer-
tain operating systems which users are not allowed to change; therefore,
cross-platform support becomes even more important.

• Focus on usability and guidance without disruption
The tool should be easily usable, with the access to all features, guide
users if they desire so, and at the same time it must not be obnoxious for
users who want to explore themselves. This issue is tightly coupled with
the range of users.

• Integration and extensibility
It should be possible to integrate the platform in another platform for
usage, ideally with the option to control it. On the other hand, it should
also be possible to extend the tool for custom functionalities.

• Personalization
Every tool should be custom tailored to the user using it.

CHAPTER 1. INTRODUCTION 17

• Price
An aspect often neglected, yet of utmost importance. If possible the tool
should be easily available and free.

1.3 Structure of Work

In the second chapter a look will be taken into all the related scientific work
regarding all the aspects of the application. This will include tables, dash-
boards, visualizations, interaction aspects, data provenance, visualization rec-
ommenders and guidelines for extension support. Additionally, an analysis
will be done of scientific tools that influenced this thesis. Furthermore, the
state of the art tools which are used in this domain of expertise will be in-
vestigated. The third chapter will, at first, give an overview of Visualizer and
subsequently every implemented feature will be presented and thoroughly an-
alyzed. The fourth chapter will cover the major applications for the created
tool. In chapter five the performance and the limitations of the platform will
be analyzed through a set of performed benchmarks. Chapter six will sum-
marize the most important aspects and give an outlook for the next possible
steps.

Chapter 2

Related Works

Similar to the structure of Visualizer, the related works section is also split
into two theoretical parts. After the theory behind the dashboard has been
covered, the current state of technology and the tools that influenced the the-
sis will be reviewed. The first subsection covers the topic about the Dataset
Table in Visualizer. It is a means of initial presentation of the loaded data, a
place to get a quick overview and transform the data. Therefore, this subsec-
tion will give more information about tables in general. The second subsection
gives an overview on the background for the key components of Visualizer.
It will touch on the topics of: dashboards, visualizations, interactions, infor-
mation provenance, visualization recommenders and extensions. There, an
overview will be given over different key components of Visualizer. The third
subsection will focus on existing tools in this domain. The first part of the third
subsection will cover scientific tools for data visualization which were taken
either as a basis, or as metric for this thesis. The industry leaders in this field
will then be presented and analyzed.

2.1 Data Tables

In his Handbook of Biological Statistics McDonald generally suggests, when
given a choice, the usage of graphs for the purpose of displaying informa-
tion and quick comparison of values in different categories [McDonald and
of Delaware, 2009]. On the other hand, graphs obscure and aggregate data,
thus when wanting to explore data in the greatest detail, a table is of better
use.
When thinking about digital tables, the first thing which comes to most peo-
ple’s minds is Microsoft’s Excel1. While being a great tool for tabular calcula-

1https://products.office.com/de-at/excel

18

https://products.office.com/de-at/excel

CHAPTER 2. RELATED WORKS 19

tions and the creation of complex tables with its numerous different calcula-
tion and linking options, it is not designed for a simple and quick preview and
exploration of big datasets. Features like filtering, data type detection, sorting
columns, fast page based browsing, and simple column statistics are not easily
accessible, or need multiple steps to be created. This is no criticism of the tool
itself, because it is not designed for this purpose. It is merely an identification
of the missing aspects of a table with the emphasis on fast data exploration.
Google tried another approach with its table editor in Google Sheets2. They
tried a platform independent approach, where the user creates and edits ta-
bles in the browser, keeping the features limited to the most important ones.
Yet it still lacks the ability for a quick overview, review and simple manipula-
tion of the data, with an emphasis on speed.
A different approach was taken by Chen et al. [Chen and Chung, 2004]. They
presented the TPS, a Table Presentation System, which allows the automatic
generation of reports from databases and visual table transformation. In their
work, Chen et al. focused mostly on the visual transformations of the tables,
after the database has been queried. They defined a set of primitive and de-
rived table operations. The primitive operations cannot be split into multiple
operations. The derived operations on the other hand are just a fixed sequence
of primitive operations. Chen et al. defined the following primitive operations:

- Select: returns a table with the given rows and columns

- Merge: merges a table into the given coordinates of the other table.
Overlapping entries are aggregated

- Contract: merges a fixed number of rows or columns in a single table
together

- Expand: expands a table by splitting entries into multiple cells

- Match: returns the rows or columns in a given order

The derived operations can be reproduced with the following sequences of
primitive operations:

- Flip: Select operation with reverse selected rows and columns

- Rotate: Contract, Expand, Flip

- Transpose: Flip, Rotate

- Resize: Contract, Contract, Expand, Expand

To perform manipulations on a table a connection to a database is needed first.
Afterwards, it is possible to select the tables of interest and perform the listed

2https://docs.google.com/spreadsheets

https://docs.google.com/spreadsheets

CHAPTER 2. RELATED WORKS 20

operations on them. Almost every operation has its specific GUI window fitted
for the intended purpose. Furthermore, when done with the alterations on the
tables, the user can create reports in multiple different formats for displaying
or saving. With the TPS, Chen et al. showed that it is possible to do rather
complicated table manipulations visually and without knowledge about query-
ing the underlying database.
Visualizer’s Dataset Table also allows multiple operations to be performed on
the dataset with a cleaner UI and additionally offers powerful data aggrega-
tion methods and fast navigation inside the table. Furthermore, additional
statistical information is computed about every column, which can be easily
retrieved, to gain more insights into a column.

2.2 Visualization Dashboards

2.2.1 Design Considerations for Dashboards

According to Stephen Few, “a dashboard is a visual display of the most im-
portant information needed to achieve one or more objectives; consolidated
and arranged on a single screen so the information can be monitored at a
glance”. In his book Information Dashboard Design [Few, 2006] he analyzed
many visualization dashboards available at the time, for the purpose of cate-
gorization and the creation of recommendations for good design principles for
dashboards. At first he pointed out the most critical aspects of dashboards.

- Dashboards display information needed to achieve specific objectives

- A dashboard fits on a single computer screen

- Currently the best medium for a dashboard is a web browser

- It should be possible to observe the information at a glance

- Dashboards have small, concise, clear and intuitive display mechanisms

- Dashboards are customizable

In contrast to his most critical aspects, Few also pointed out the thirteen great-
est mistakes a designer can make when creating dashboards. Those thirteen
mistakes can be easily compressed into the following ones:

- overabundance of information and content

- missing key features

- using multiple screens

- colorful dashboards elements and meaningless decoration

CHAPTER 2. RELATED WORKS 21

- not highlighting data

All of Few’s most critical aspects mentioned were taken into consideration
as much as possible while creating Visualizer’s dashboard. While designing
the dashboard component, simplicity and usability were the main focus. With
its simplistic look, Visualizer has no abundance of information or color, yet
every explorative or analytical feature is present and reachable with one click.
All visualizations can be placed on a single screen and in case it becomes
difficult to order them, there is an option of automatic ordering, which puts
them all back into sight. Data is evidently presented in the visualizations, and
important bits can be additionally highlighted. Furthermore, if the user is not
satisfied with the visual appeal of the dashboard, the colors and the fonts can
be freely customized to his liking.

2.2.2 Background Information on Visualizations

Jacques Bertin was the first to describe the components of what is known today
as visualizations in his book Semiology of Graphics [Bertin, 2011]. Carpendale
[Carpendale, 2003] took Bertin’s work as a foundation and applied it to mod-
ern visualizations. When Bertin described the building blocks of graphics, his
views derived from the field of cartography, taking into consideration that the
graphics will be printed on paper and be mostly black and white. Carpendale
on the other hand took Bertin’s defined components and built on them for the
purpose of displaying visualizations on a computer screen.
As a basic unit for displaying information, Carpendale used a mark which was
previously defined by Bertin, representing a symbol in the visualization. The
modifications and alterations which can be applied to a mark were called vi-
sual variables. Marks can be of the following types: Points (zero-dimensional),
Lines (one-dimensional), Areas (two-dimensional), Surfaces (two-dimensional
in three dimensional space) and Volumes (three-dimensional). As for visual
variables, Bertin defined the following: Position, Size, Shape, Value (color
value in the HSV color space), Color, Orientation and Texture. Carpendale
added also motion to the visual variables, because on a computer, a mark does
not have to be static like on a paper, but it can interactively be moved around.
For the purpose of selecting the correct visual variables for the data, Bertin
defined a list of characteristics which visual variables might possess. Thus, a
visual variable can be:

- Selective - Changing a mark in this visual variable makes it more notable

- Associative - Changing marks in this visual variable can make them ap-
pear as a group

CHAPTER 2. RELATED WORKS 22

- Quantitative - Changing this visual variable of a mark, changes the per-
ception of the value of the mark

- Order - changes the perception of order (greater, smaller)

- Length - defines how many changes in the visual mark are noticeable

With those definitions, it is much simpler to dissect visualizations into their
constituent parts, create complete new visualizations tailored to data or
choose the best representations for the selected data. Furthermore, a
vocabulary was created, simplifying discussions between data analysts.

2.2.3 Identifying interactions

When talking about interactions in visualizations, it might prove as useful
to have a categorization of the countless different possible interactions. Yi
et al [Yi et al., 2007] focused on the interaction component of information
visualization (Infovis) systems. They tried to analyze the different interaction
methods in Infovis systems, find common aspects of them and categorize
them. Firstly, they adopted the definition of interaction from Foley et al, which
defined an interaction technique as a way of using a physical input/output
device to perform a generic task in a human-computer dialogue [Foley, 1995].
Yi et al adapted this definition by saying that interaction techniques in Infovis
systems were more designed for changing and adjusting visual representation
than entering data into systems.
After analyzing existing taxonomies of Infovis systems and going through
many commercial tools and papers regarding Infovis techniques, they iden-
tified 311 different interaction techniques, which they then categorized into
seven different categories based on the user’s intent to accomplish a certain
task with a specific interaction technique. Those seven categories are as
follows:

- Select: Highlight certain items. Rearrangement of highlighted items in
the visualization keeps them in focus

- Explore: Show more items, based on a certain selection. Clicking on a
node in a graph loads more items connected with this node.

- Reconfigure: Rearrange the items in the current visualization. For ex-
ample: Sort by name

- Encode: Change the representation of the current selected data. For
example: Change the visualization type

- Abstract / Elaborate: Display more or fewer items.

- Filter: Exclude certain items in the visualization

CHAPTER 2. RELATED WORKS 23

- Connect: Highlight the same item in another visualization (Brushing)

However, the authors did not succeed in assigning every collected Infovis
technique to one of their defined categories, either because the interaction
technique is used as an aid to compare data, or the interaction technique fits
into multiple categories at once. They also considered adding additional tech-
niques, like a compare technique, but decided against it, because they were
higher level end goals of the visualization process and not directly interaction
techniques, based on simple user intents.
Yi et. al’s categorization based on user intent presents a suitable way of as-
signing the actions, which can be performed by a user in Visualizer, to cat-
egories, which makes it immediately clear, what the expected outcome from
the user’s perspective is.

2.2.4 Information Provenance

As Visualizer became functional, it became also clear that in order to arrive to
a dashboard a non-trivial sequence of steps had to be carried out. It also be-
came evident that most users would want to go straight to a view on the data,
and even expert users would not be keen on finding out those steps or repeat-
ing them every time. A way to save the state of the dashboard was necessary.
When thinking about saving the current state, for the most part, there are
two ways to approach this task. Either save the altered version of the dataset,
which completely removes all the steps applied to get from the original dataset
to the transformed one, or you can only save the interactions done in the origi-
nal dataset and apply those interactions the next time the dataset gets loaded.
Saving the altered version of the data is an easy task, but saving the actions
required to get from the original state to the desired required research. This
process is not only about transforming the dataset, but going beyond it and
saving interactions on the dashboard and the state of the visualizations. This
research often leads to the terms information provenance or data provenance.
Groth et al. presented a model for information provenance and annotation in
visualization systems [Groth and Streefkerk, 2006]. This model was designed
to simplify the way information about interactions in the discovery process of
new insights is recorded. Furthermore, this model was designed as a directed
graph. Each node of the graph represented a state of the visualization system
and each edge an interaction which resulted in a transition from one state
to another. Adding annotations to the graph was also made simple, by sim-
ply binding them to a state in this graph. The graph’s structure also makes
collaborations easy, because the graph can be forked. This model makes it
possible to see how a user goes from an initial dataset to conclusions step by
step. Another system for managing information provenance was presented

CHAPTER 2. RELATED WORKS 24

by Silva et al., namely VisTrails [Silva et al., 2007]. VisTrails uses an action
based provenance model to track the user’s interaction with the visualization
system without the user noticing. Beyond simple collection of interactions on
a visualization system, it additionally provides parameter exploration in the
visualizations, which lets the user explore, group and display a set of param-
eters. What makes VisTrails stand out, is that the recorded workflow is not
bound to a single dataset. It is also possible in VisTrails to compare different
workflows. The main advantage of an action based provenance system is that
only the actions have to be saved and not the whole states of the system.
According to Ragan et al. who categorized and described provenance models
and their purpose [D. Ragan et al., 2015], the relevant provenance information
for this work were Data and Visualization provenance. Data provenance de-
scribes the changes of the underlying dataset, the transformations which led
to the state of data before the visualization was realized. Visualization prove-
nance, on the other hand, saves the displayed visualizations and their state. In
Visualizer’s case this would be the sorting of the data in the visualization and
the active brush. As for the purpose of provenance, according to the model of
Ragan et al. replication, collaborative communication and presentation were
relevant for Visualizer. Replication allows to save the current state of work
and continue the work. Presentation, similar to replication, but with the pur-
pose of showing the discovery. Furthermore, collaborative communication to
share the insights with other users.

2.2.5 Recommending Visualizations

Since Visualizer does not contain one, but two different recommenders, it is
important to give an overview over the different types of visualization rec-
ommendation systems. The recently released paper of Kaur et al. [Kaur and
Owonibi, 2017] deals exactly with this topic. Kaur et al. classifies the different
visualization recommenders into four categories.

- Data Characteristics Oriented: Visualizations are recommended based
on the used data

- Task Oriented: Recommendations are based on user’s expected outcome

- Domain Knowledge Oriented: More for support. Share knowledge about
recommended visualizations

- User Preferences Oriented: User actions are tracked and visualizations
recommended upon comparison with users who did similar actions

The data characteristics oriented and the user preferences oriented approach
will be explained in more detail, since the two visualization recommenders

CHAPTER 2. RELATED WORKS 25

used in Visualizer are based on them.
According to Kaur et al., the focus of data characteristics oriented recom-
menders lies on “the definition of new data dimensions or attributes, the
formalization of the process of visual mapping from data attributes to visual
marks, and the introduction of new techniques for visual mapping” [Kaur and
Owonibi, 2017, p. 267]. Basically, the recommenders in this category react
based on a ruleset. If the given selected fields fit the conditions of a visualiza-
tion, the visualization gets recommended. The most prominent recommender
in this category is the Show Me module from Tableau, which inspired the
VisPicker in Visualizer and which will be covered separately in 3.5.1.3. User
preferences oriented recommenders recommend the visualizations based on
the perceived intentions of a user. These types of visualization recommenders
are very scarce, because it is a relatively new research topic. There are differ-
ent methods for this, of which one would be machine and probabilistic learn-
ing. The other, more relevant for this thesis, would be, monitoring the actions
of a user, comparing them to other user recorded actions with similar behav-
ior and based on their outcome, recommending certain visualizations. Mutlu
et. al [Mutlu et al., 2016] proposed such a recommender, which is based on
selected fields and user added tags. This recommender was also used as a
service in Visualizer and will also be explained in more detail in subsection
3.5.2.4.

ShowMe

The Show Me [Mackinlay et al., 2007] module in Tableau was the inspiration
which lead to the creation of the VisPicker component in Visualizer and which
greatly influenced the interaction process for the creation of visualizations in
Visualizer. When creating Show Me, Mackinlay et al. wanted to lower the
entry barrier for new users in Tableau, and improve the speed of data analysis
for skilled users. The idea was to let the user decide what he wants to show
and that he does not necessarily need to know how. Show Me heavily relies on
VizQL [Hanrahan, 2006] for decision making, which is the specification lan-
guage for the visualizations created for Polaris that later on became Tableau.
It is based on Bertin’s definition of components of visualizations and an alge-
bra used in APT [Mackinlay, 1986], which was ’A Presentation Tool’ for the
automatic generation of visualizations. The algebra from APT was extended in
VizQL and it proved to be an effective tool for describing visualizations. Show
Me focuses mostly on the fields which are dropped on the rows and columns in
Tableau, because they get assigned to the axes and headers of the table pane.
The table panes in Tableau represent nested axes. Nested axes are used in
Tableau to display multiple views within one visualization. For example a bar

CHAPTER 2. RELATED WORKS 26

chart displaying the yearly income of markets gets split into twelve displays of
monthly incomes in the same visualization. As a navigation element, Show Me
uses a small window with all the supported visualizations, which can be seen
in Figure 2.1.

Figure 2.1: Show Me! Alternatives dialog [Mackinlay et al., 2007, p. 6]

Show Me actually supports two variations for suggestions. One is when a visu-
alization gets automatically created from the preselected fields and the other
gives recommendations for visualizations compatible with the selection. When
selecting multiple fields, Show Me allows only compatible charts to be gener-
ated. The charts displayed in Show Me also have a ranking, which depends on
the selected fields. For example, when selecting only one categorical field a ta-
ble will be suggested at first. Selecting another quantitative field will always
favor a bar chart in comparison to the other visualizations. Thus, automati-
cally creating a visualization, will always create the one ranked the highest.
This can be seen in the Show Me alternatives dialog. The ranking of the visu-
alizations is following a ruleset determined by Mackinlay et al. by monitoring
experts on their usage of visualizations with fields of specific types. Show Me
has one additional functionality, which is called Add to sheet and which au-
tomatically updates an already existing visualization, when an additional field
has been selected.
To this day, Show Me is still a part of Tableau, which means that it proved to
be a useful tool, thus the incentive to create something based on this became
even stronger.

VizRec

With VizRec, [Mutlu et al., 2016] Mutlu et al. presented a recommender sys-
tem for visualizations. VizRec expects a query in a free-form text as an input
and responds with a ranked list of visualizations. The generation procedure
of personalized visualizations is split into three steps. First, the data passed

CHAPTER 2. RELATED WORKS 27

to VizRec is preprocessed in a common data format. The preprocessing in-
cludes metadata extraction, data type categorization, semantic extraction and
semantic enrichment. Second, the preprocessed data goes through the pro-
cess of visual mapping. According to Mutlu et al., this can be seen as a schema
matching problem [Rahm and Bernstein, 2001]. Expressed in simple terms,
the visual mapping process tries to find matches of data fields to compatible
visual channels of a visualization, thus generating a list of visualizations which
can be used with this data. The third step for generating personalized visual-
izations is the filtering of those compatible visualizations. Mutlu et al. used
three approaches to tackle this problem:

1. Collaborative Filtering

2. Content Based Filtering

3. Hybrid Filtering

The collaborative filtering in VizRec is based on user preferences expressed
as a rating. Users rate visualizations according to the satisfaction of the out-
come of a used visualization. When a recommendation for a new user has
to be generated, the user is compared to a similar user and based on the
ratings of similar users the recommended visualizations are ranked. Content
Based Filtering in contrast to Collaborative Filtering, needs information on the
user’s interest before the recommendations come. The user enters a number
of tags, which represent his interest in certain topics, and gets recommen-
dations based on those tags. The third approach, Hybrid Filtering, utilizes
both filtering methods. The tags are entered before the recommendations are
given and the recommended visualizations are rated, which further improves
the recommender.
In Visualizer, VizRec was integrated as a service. The first two steps in the
generation of personalized visualizations is covered by Visualizer, and when
called, VizRec gets passed the mapping of the fields to the channels of the
visualizations and additionally is fed with the tags and ratings of the visualiza-
tions, returning a ranked list of recommendations.

2.2.6 Extension guidelines

Incorporating an extension interface in applications has become the norm to-
day. When looking at frequently used programs, many of them offer a way to
extend their functionalities. There are many names for them, plug-ins, add-
ins, add-ons or modules, but all of them extend the core software with new
features. The web browser Firefox supports extensions since its version 0.1

CHAPTER 2. RELATED WORKS 28

in 20043 and Chrome since its release in 20084. Even Microsoft’s Office suite
allows the addition of extensions and the email management program thun-
derbird too. Integrated Development Environments like Eclipse, Visual Studio
or IntelliJ have also means to extend their basic functionalities. Offering an
extension interface is a good way to offer the users who like the software to
add additional features if they are not satisfied with the current ones. As can
be seen in Show Me, extensions can even be added to the core software. Aly
et al. [Aly et al., 2012] notes that extensions can be integrated into software
on multiple layers. For example, an extension which adds changes to the GUI
does not necessarily have to do changes to the data. Therefore, extensions
should have some restrictions. Aly et al. presented a list of requirements
which should be followed for better extension integration.

- Controlled Visibility: To what degree have the developers access to the
codebase

- Controlled Extensibility: Limit extensions to a certain scope of the appli-
cation.

- Stable Contract: The extensions are written separately from the core
software

- Support for extensions on multiple layers: It should be possible to add
extensions for every aspect of the application

- Composition Approach: It should be possible to integrate extensions into
the main application

- Invasiveness: It should not be necessary to make changes to the main
application to guarantee that a single extension works

- Multiple extensions: It should be possible to add multiple extensions to
the application

- Simplified consumption of the extensibility model: Make it easy to write
and integrate extensions

Following the rules given in this list of requirements it becomes much simpler
to design an appropriate extension interface for user created visualizations.

3http://website-archive.mozilla.org/www.mozilla.org/firefox_releasenotes/en-
US/firefox/releases/0.1.html

4https://chromereleases.googleblog.com/2008/09/

http://website-archive.mozilla.org/www.mozilla.org/firefox_releasenotes/en-US/firefox/releases/0.1.html
http://website-archive.mozilla.org/www.mozilla.org/firefox_releasenotes/en-US/firefox/releases/0.1.html
https://chromereleases.googleblog.com/2008/09/

CHAPTER 2. RELATED WORKS 29

2.3 Data Visualization and Recommendation

Tools

The analyzed tools were split into two categories. The first one are scientific
tools which had the greatest impact and influence in the design process of Vi-
sualizer or which proposed ideas which can be incorporated into future work.
The second category analyzes the leaders in the commercial world.

2.3.1 Scientific

In the following subsection a look will be taken at some notable data explo-
ration and visualization tools created as parts of scientific projects. The Vi-
sualisation Wizard [Mutlu et al., 2013] was selected because it was the basis
of the Visualizer project. SeeDB was selected because of its approach in se-
lecting which visualizations might be considered as interesting. Lastly, Polaris
was analyzed because it was the predecessor of Tableau.

CODE - Visualisation Wizard

The Visualisation Wizard (Vis Wizard) [Mutlu et al., 2013] as part of the CODE
platform5 is a visualization recommendation and data exploration tool and
can be seen in figure 2.2. As an input, the platform expects data in a Linked
Open Data (LOD) format described with the RDF6 data cube vocabulary. The
data is then analyzed and compatible visualizations are suggested. Multiple
visualizations can be created and the data further explored. As mentioned,
the Vis Wizard encompasses two main functionalities, which will be discussed
in more detail.

5https://code.know-center.tugraz.at
6Resource Description Framework

https://code.know-center.tugraz.at

CHAPTER 2. RELATED WORKS 30

Figure 2.2: CODE - Vis Wizard [Mutlu et al., 2013, p. 43, Fig. 1.]

Visualization Recommendation
In order to suggest data, first a description of the data and the visualizations
is needed. For this, Mutlu. et al. created a Visual Analytics Vocabulary
(VA Vocabulary) representing descriptions of visualizations, which contain
only meaningful attributes for the creation of valid visualizations from the
given data. The VA Vocabulary is a semantic description of the visualizations
defined with an OWL7 ontology. The most important part of this description is
that each visualization was split into the respective visual channels as defined
by Bertin. Additionally, each visual channel has been assigned properties
which have to be fulfilled as a requirement for data to be mappable unto
it. Those properties are: (i) Occurrence - meaning how often data can be
mapped to a channel, (ii) Persistence - meaning if the channel has to have
data mapped unto it (an optional channel) and (iii) compatible datatypes. For
the datatype Mutlu et al. first split the data into categorical and numerical
data. Categorical data represents data on which no mathematical operations
can be performed. Numerical data on the other hand supports computations.
Furthermore, categorical data was split into String, Date and Location and
numerical data into Integer and Number (float). For example, a bar chart
consists of two visual channels: one x-axis and one y-axis. The data has to
be mapped on both of those channels so that the bar chart can be created.
However, it is not possible to map any kind of data to any channel. The x-axis
supports only categorical data and the y-axis has to be numerical. Other

7Web Ontology Language

CHAPTER 2. RELATED WORKS 31

visualizations can be described in a similar fashion.
In order make suggestions, the fields in the RDF data are categorized into cat-
egorical and numerical fields. Now for all fields, it is checked, if a combination
exists which can be mapped correctly on the visual channels of a visualization.
If such a combination exists, the visualization is activated in the user interface.

Data Exploration
After the data has been checked and the visualization suggested, the data can
be explored. Multiple visualizations can be created from one dataset. In order
to assist the user in the exploration, the data can be aggregated in different
ways before a visualization is displayed. For example, when creating a bar
chart, one can choose to average the numerical values. Additionally to data
aggregation, the visualizations are connected with each other i.e. selecting
certain data points in one visualization will highlight the appropriate data
points in other visualizations.

By defining the VA Vocabulary and the rule based suggestions of visual-
izations for data which gets analyzed as a whole, Mutlu et al. presented a new
way of data exploration without the need of knowledge about the structure
of visualizations. The user only needs to load a dataset into the Vis Wizard
and as a result will be presented with valid visualizations, which can then be
explored and analyzed.

SeeDB

With SeeDB, Vartak et al. [Vartak et al., 2014] presented a tool for the au-
tomatic generation and suggestion of visualizations, given an input query to
a database. First, they split the typical workflow of a data analyst into the
following 4 steps: (i) use a query to get data from the database, (ii) generate
different visualizations with the retrieved data, (iii) select “interesting” visu-
alizations from all the generated ones, (iv) share results or start anew. Sub-
sequently, they tried to automate the most time intensive steps, namely steps
(ii) and (iii). In order to achieve this, they created SeeDB, which first finds all
possible visualizations that can be generated by the results of the query and
then compares how much each visualization deviates from the visualization
generated from the whole dataset. Vartak et al. consider visualizations with
a higher deviation as more "interesting", because that shows an abnormality
in the data. SeeDB does not operate as a standalone application. Instead,
it functions as a wrapper over an existing database. Thus, the application is
split in two components: a frontend and a backend. The frontend functions
as a thin client, whose only tasks are: (i) taking the queries and transferring

CHAPTER 2. RELATED WORKS 32

them to the backend and (ii) presenting the results. The backend receives the
query, processes it and generates multiple optimized queries, which are run
on the database. The backend then generates views from the results of those
optimized queries. Views are not visualizations, they are only descriptions of a
visualization. Those views are then compared to the view of the entire dataset.
After the inspection, the top k views with the greatest deviation are sent back
to the frontend, which generates and displays visualizations from them.
With its interest based filtering of visualizations SeeDB presents a very inter-
esting and novel approach to assist the user in data exploration by recom-
mending the most interesting visualizations for the selected fields.

Polaris

Stolte et al. [Stolte and Hanrahan, 2000] showed with Polaris a tool designed
for the visual exploration of data in databases. The data in the databases is
organized in tables. In Polaris, the rows of the tables are referenced as tuples,
and the columns as fields. Stolte et. al characterized the fields in a table as
ordinal and quantitative and additionally partitioned the fields into dimensions
and measures. So ordinal fields get treated as dimensions, and quantitative
fields as measures. Stolte et al. tried to address the following three points
with Polaris: (i) Show huge amounts of information from the database on the
display (ii) Display the information in different ways (iii) Allow exploration of
the displayed data. A detailed description of the user interface can be seen in
figure 2.3.

CHAPTER 2. RELATED WORKS 33

Figure 2.3: Polaris: User interface description [Stolte and Hanrahan, 2000, p.
54, Fig. 1.]

The user interface of Polaris displays only the field names, which allows the
user to create visualizations by dragging and dropping the fields on the shelves
of the visualization window. The state of the currently dropped fields on the
different shelves is called a visual specification. The following actions are
recorded in a visual specification:

- Data sources mapped to the layer

- Number of rows, columns and layers, and their order

- The current selection of records from the database

- Grouping and computations on the data

- Selected visualization

- The mapping of the fields to the retinal properties

The fields can be directly assigned to one of the available retinal variables
(shape, size, orientation, color) as defined by Bertin, with the exception of
texture. Additionally, each visual specification consists of the following three

CHAPTER 2. RELATED WORKS 34

parts: (i) the recorded actions (ii) the used graphics, and (iii) the visual encod-
ing. Furthermore, Polaris provides methods for data transformation. Those
methods include: aggregation, counting of ordinal dimensions, discrete par-
titioning (binning and partitioning), ad hoc grouping and threshold aggrega-
tion. Moreover, the data can also be sorted and filtered. While using Polaris,
the user does not have to be afraid of making mistakes while exploring the
dataset, because the integrated undo and redo functionalities allow a simple
correction of the mistakes. Polaris also supports brushing.
Polaris allows the user to freely explore the dataset and to even perform trans-
formation directly on the data, which can give even more insights into the
dataset. With Polaris Stolte et al. clearly succeeded in creating a great tool
for data exploration, as later on Polaris became the top market leader with the
new name Tableau.

2.3.2 Commercial

According to Gartner’s Magic Quadrant for Business Intelligence and Analyt-
ics Platforms8, these are the three most popular and successful visual analytics
tools:

- Tableau

- Microsoft

- QLIK

There exist different versions of all these three tools, each of which is tai-
lored for a specific group of users. These versions differ from each other in
terms of allowing, creating and sharing visualizations, collaboration between
users, and if they are cloud-based or just directly installed on a machine. Thus,
these products also have different prices.
For my analysis, I focused on those which focus on the creation of dashboards
and data exploration, while keeping the costs as low as possible. Therefore,
the visualization platforms I will analyze in the following section are:

- Tableau Desktop (Professional Edition)

- Microsoft Power BI Desktop

- QLIK Sense

Each of the tools were analyzed with the following aspects in mind:

- Price

8https://www.gartner.com/doc/reprints?id=1-3TYE0CD&ct=170221&st=sb

https://www.gartner.com/doc/reprints?id=1-3TYE0CD&ct=170221&st=sb

CHAPTER 2. RELATED WORKS 35

- Supported platforms

- Supported data sources

- Data manipulation

- Personalization

- Extensibility

- Usability

Tableau Desktop - Professional Edition

Tableau, the market leader, offers a rich variety of business intelligence
solutions. For instance, Tableau Desktop is a powerful tool for creation
of interactive dashboards, defining stories for visual data exploration and
presentation of prepared visualizations. Moreover, Tableau Desktop is a
prerequisite for adding new data sources to the dashboards in other Tableau
versions. In Tableau Server the administrator is required to add a data source
to the system so that other users might use it in their dashboards.
Tableau Desktop (Professional Edition) supports a great variety of file types
(Access, Excel, text files, statistical files, etc.), databases (PostgreSQL,
MySQL, Oracle, etc.), servers and services (Amazon Redshift, Microsoft SQL
Server, Google Analytics, etc.) from which it can extract data. Once the
data is extracted from a data source it can be transformed into a specific
format which can then be applied to the visualizations. In the dashboard
the individual data attributes can be filtered, sorted, merged, split or even
completely deleted. Each data attribute is categorized into two groups:
Dimensions and Measures. Dimensions represent categorical data we cannot
perform arithmetic operations on. Measures, however, represent numerical
values we can aggregate, measure etc.
In its explorative task, Tableau Desktop supports the user with a friendly
user interface, which can be seen in figure 2.4. It has an intuitive way of
structuring data with abundant drag and drop support and samples, and
tutorials for the absolute beginners. It is a compelling tool with a wide
assortment of options for modifications of the presented data.

CHAPTER 2. RELATED WORKS 36

Figure 2.4: Tableau Desktop: Creating a visualization

One of Tableau’s greatest strengths lies in its Show Me feature. It supports
the user in the selection of visualizations which are compatible with the se-
lected attributes. It also enables changing the visualization to another one
which takes the same attributes. An alternative way of creating a visualiza-
tion is to directly drag and drop the attributes of interest and map them onto
the visual channels of the visualizations. This requires a certain amount of
knowledge about visualizations. The created visualizations can be then edited
in different ways until the user is happy with them. This includes changing the
colors, selecting subsets of data in the visualization, sorting, renaming labels
and resizing the visualizations.
Another useful feature for the data analysis aspect of Tableau is the possi-
bility to enrich the visualizations with trendlines, forecasts or to summarize
the data via a boxplot, which makes it easier to detect certain patterns in the
data. Another interesting feature of Tableau is the coordinated view: Interac-
tive changes made in one visualization are automatically reflected in the other
ones.
For presentation purposes, Tableau includes a story mode allowing the user
to create a presentation with multiple dashboards. Furthermore, each dash-

CHAPTER 2. RELATED WORKS 37

board can be annotated to highlight notable points in the data.
To sum up, Tableau is a well-designed program for visual analytics and data ex-
ploration. It is fast, snappy, easy to use. However, it also has some drawbacks.
For instance, when the visualizations become more complicated, it becomes
difficult for the user to keep track of the attributes which were selected be-
fore. Moreover, Tableau is only available for Windows and Mac. The biggest
drawback of Tableau, however, is that it lacks extensibility meaning that it is
unable to include new visualizations in an easy and intuitive way. Moreover,
Tableau does not fulfill the most important requirement for dashboard design
according to Few, namely, that a dashboard has to fit in a single screen. This is
not the case in Tableau, because it assigns each visualization to its respective
screen, and only when creating a special dashboard called a story, it can show
a combination of all.

Microsoft Power BI Desktop

Power BI is Microsoft’s tool for data visualization and data exploration. It of-
fers a familiar design with its top ribbon navigation elements for users who are
already used to working with Microsoft Windows and Microsoft’s Office suite.
There are three different versions of Power BI: Power BI Desktop, Power BI
Pro and Power BI Premium. Power BI Desktop, which can be seen in figure 2.5,
was chosen for this analysis because Power BI Pro and Power BI Premium, in
addition to the features of Power BI Desktop, focus more on cloud based data
storage and user collaboration. Furthermore, Power BI Desktop is completely
free in contrast with the other two.

CHAPTER 2. RELATED WORKS 38

Figure 2.5: Power BI Desktop: Creating a visualization

Power BI does not support many static files for data import, but covers all
of the mostly used ones (Excel, CSV, XML, JSON). Otherwise, it supports
many databases (MySQL, Oracle, Access DB, PostgreSQL, etc.), online ser-
vices (Azure Enterprise, Google Analytics, GitHub, Facebook, etc.) and other
data sources (HDFS, Spark, ODBC, R-Scripts, etc.).
After the data has been loaded, it can be prepared before the data visualiza-
tion is created. Power BI offers a very powerful editor. The most important
features of the editor are that (i) columns can be renamed, removed, merged
or split, (ii) rows removed, (iii) data types automatically detected, (iv) values
grouped (v) statistics about the data calculated (vi) values filtered (vii) values
in columns replaced (viii) r-scripts run on the data (ix) new tables created (x)
and features undone. Therefore, Power BI offers a solution even when the
data is not properly loaded.
In the dashboard, all the attributes are displayed in alphabetical order next
to the buttons for the creation of the visualizations. There are basically two
ways to create a visualization: You can select the attributes of interest and
then click a visualization button, or you can create an empty visualization by
clicking the button and then drag the attributes to the desired channels. The
main disadvantage of Power BI here is that it will not suggest different visual-
izations for different types of attributes, but instead it will take the last used

CHAPTER 2. RELATED WORKS 39

visualization (in case of the first visualization it will be a table) and will try to
fit in all the attributes even if the created visualization does not make sense.
However, after a visualization has been created, it is very customizable. Al-
most every aspect of the created visualization can be changed separately, like
label size, font, color, toggling axis, background, border or line widths. The vi-
sualization buttons themselves have no descriptions of their requirements, so
existing knowledge about how each visualization is structured and how they
work is required and therefore, Power BI is not well suited for non-expert
users.
Linking and Brushing is only applied at single data points and not regions,
therefore it is not possible to highlight one area in a visualization and get a
mapping to the same data points in another.
Power BI offers its own developer tools, which, coupled with NodeJS, offer the
possibility for users to write their own customized visualizations.
Overall, Power BI is a powerful tool for data analysts, which offers many as-
pects expert users might desire, such as a wide variety of supported data
sources, running R-scripts, customizations and extensibility. On the other
hand, its user interface with its crude visualization windows, makes it difficult
to find properties and the lack of user support renders it hard for non-experts
to use the tool. Furthermore, it is only available for Microsoft Windows.

Qlik Sense (Desktop)

Qlik also offers multiple versions of its visualization tool. There are cloud
and desktop based versions for single users, which are free, and then there
are the same versions with additional support for enterprises and businesses
which are paid per user/license. Qlik Sense Desktop was chosen because it
is more powerful than the cloud version concerning the manipulation of the
data and the customization of visualizations and unlike business solutions, it
is free.
In order to be able to use Qlik Sense the user has to first create an account
on the Qlik website and when starting the desktop application, a login is re-
quired.
Even though Qlik offers most of the common connections to data sources
(ODBC, Microsoft SQL Server, PostgreSQL, Oracle), it does not support out
of the box certain online services which are also used widely (Amazon Red-
shift, Google Analytics). However, it is still possible to use those services,
after additionally installing the appropriate connectors. Regarding static file
types, Qlik covers all of the mostly used table files (excel, csv, xml, etc.) and
even very specific ones (kml, fix, dat, etc.)
When editing the loaded data, Qlik offers a very weak data type detection. It

CHAPTER 2. RELATED WORKS 40

only distinguishes between ’general’, ’date’, ’timestamp’ and ’geo data’. Di-
mensions and measures have to be split manually when creating the visualiza-
tions. However, a very useful feature, while editing the loaded data, are the
column statistics. When selecting a column in the table, Qlik will display a bar
chart with the number of occurrences of each value. For columns with numer-
ical values it is additionally possible to display an axis with marked values for
the minimum, maximum, average and median. Again, the user has to change
the column manually to a measure to see those statistics.
The possibilities of editing the table are very limited. It is possible to replace
values, and split columns, but merging 2 columns is cumbersome. The user
has to create a new column and define with a function, how the 2 columns
should be merged. Filtering and removing rows is not possible either in the
data editor, but has to be done with another tool, prior to importing the file in
Qlik Sense Desktop.
In order to create a visualization Qlik Desktop uses an approach, which has
separate modes for inspecting the visualizations and creating them. The dash-
boards are split into sheets and opening a sheet displays the contents in the
viewing mode of the dashboard. Enabling the editing mode, seen in figure 2.6,
Qlik offers the possibility to create visualizations on the dashboard.

Figure 2.6: Qlik Sense: Edit mode

CHAPTER 2. RELATED WORKS 41

Creating a visualization is very simple; the desired visualization just needs
to be dragged to the dashboard and the needed attributes have to be added.
However, if the attributes are not correctly selected, the visualization will still
be created, but wrongly. For example, it is possible to add two categorical
attributes to a bar chart which just produces an empty bar chart. That means
the user has to have knowledge about the structure of the visualizations and
data. However, with a small amount of knowledge it is possible to produce an
entire dashboard with visualizations very fast. A significant drawback of the
tool is that it is not possible to select some attributes and get suggestions of
which visualizations they can be used with. Therefore, it is not well suited for
non-expert users.
The produced visualizations look appealing and are fully customizable con-
cerning colors, label, orientation etc. Furthermore, the created visualizations
are linked with each other; thus a selection in one visualization is also high-
lighted in others.
In conclusion, Qlik Sense is an impressive tool for the creation of visualiza-
tion dashboards. However, due to the lack of suggestions it is not suitable for
entry level users, which restricts its usability. The design of Qlik sense can
be adapted to a user’s preferences via themes and the option to write one’s
own extensions (visualizations) gives developers the opportunity to include
visualizations tailored to their needs. Additionally, Qlik Sense is free, which
increases the likelihood of users trying it out.

2.4 Summary

At first this chapter gave an overview over existing works regarding every
component of Visualizer. After the analysis of the key components and ex-
planations of the vocabulary, different visualization tools were investigated.
Scientific tools - which had novel features at the time when they were devel-
oped - were analyzed and following that, the most popular commercial tools
were examined. Having covered all of those topics in this chapter, the next
chapter will deal with the main aspect of this thesis.

Chapter 3

Visualizer

In this chapter the functionalities and implementation details of this project
will be presented in detail. In the first subsection, an overview over the whole
web application will be given, explaining what it is and what it does. After
that the used technologies and the structure of the web application will be
presented. In this section, the architecture of the web application will be out-
lined, and the responsibilities of each component explained. Furthermore, the
back end functionalities will be analyzed in more detail. Since the focus of
Visualizer lies on the front end, a whole subsection will be dedicated to this
aspect, dividing it into two individual components, one for pure data manipula-
tion and the other for data presentation. Furthermore, the data presentation
section will be divided into two parts, one investigating the features which
are available for all guest users and the second one outlining the additional
personalized functionalities of logged in users. The dataset used for all the
visualizations in this section is the dataset for real estate transactions in the
Sacramento area1. This dataset was chosen, because it covers almost all data
types supported by Visualizer, and it has a great variation in the column en-
tries.

3.1 Overview

Visualizer is a customizable, extendable and personalized web application for
data manipulation and interactive visual data exploration. It runs in a web
browser, hence it is platform independent. The data which can be loaded in
Visualizer is expected to be imported as a Comma-Separated Values file, also
called CSV file. The CSV file can be loaded either locally (from the machine Vi-
sualizer is run) or remotely (from an arbitrary web server). Figure 3.1 depicts
the starting screen of Visualizer with the two selection options.

1http://samplecsvs.s3.amazonaws.com/Sacramentorealestatetransactions.csv

42

http://samplecsvs.s3.amazonaws.com/Sacramentorealestatetransactions.csv

CHAPTER 3. VISUALIZER 43

Figure 3.1: File selection screen of Visualizer

As soon as the data has been imported into Visualizer, the user is presented
with the Dataset Table. This is the first of the two major components. The
Dataset Table displays the data from the CSV file as a table split into multiple
pages in order to ensure loading speed and it offers multiple options to ma-
nipulate the data before going further with the visual data exploration. The
data manipulation includes filtering, sorting, aggregation, quick replacement
of values with user defined entries, merging and removing columns as can
be seen in figure 3.2. Filtering is the only data manipulation which can be re-
verted without affecting any other manipulation. All the other transformations
are permanent for the current session and can only be reverted by reloading
the original document. After the data has been transformed, and the user is
satisfied with the outcome, two options are available before proceeding to the
Visualization Dashboard. In order avoid having to do the same manipulations
every time on the same dataset before proceeding to the dashboard, it is possi-
ble to either download the manipulated CSV file for later use, or alternatively,
save the applied data transformations in a configuration link or configuration
file. Both the configuration link and the configuration file contain the same in-
formation; the only difference is in the usage. The configuration file has to be
uploaded in addition to the local file or added with the URL to the remote file.
However, the configuration link has to be pasted directly into the address bar
of a web browser and is automatically applied to every loaded dataset. In or-
der to ensure that the transformations have the desired outcome, the different
datasets used with the same configuration have to have the same structure,
otherwise unforeseeable outcomes are possible.

CHAPTER 3. VISUALIZER 44

Figure 3.2: The Dataset Table with loaded data

After the user has completed the data transformations on the loaded dataset,
he can proceed to the Visualization Dashboard. While the Dataset Table is a
place to get an overview of the loaded data and to perform alterations on it,
the Visualization Dashboard is the place, where the user does the actual visual
data exploration and data analysis. The dashboard consists of four parts:

1. Visualization Space: The created visualizations are placed here upon
generation

2. Field Selection Area: It contains all the data fields of the Dataset Table

3. VisPicker: This is tool for the selection of compatible visualizations

4. Toolbar: It offers navigation, view, tools, download, upload options and
user login

The dashboard and its individual parts can be seen in figure 3.3. The fields
from the Dataset Table, will be displayed in the Field Selection Area on the
left in the separate windows based on their data type. The dashboard is de-
signed in such a way that users with preknowledge in data visualization will
be instantly familiar with its design and that users without any knowledge
in this area will be supported in generating visualizations. The data visual-
ization process is as follows: the user can select the fields of interest in the

CHAPTER 3. VISUALIZER 45

left sidebar and in the VisPicker compatible visualizations will be displayed.
When clicking on a visualization icon in the VisPicker the user will first be
asked to select how the numerical values should be aggregated and then cre-
ate a new window in the visualization space with the visualization previously
chosen. This window can be freely moved in the visualization space, resized,
minimized, maximized or closed. When multiple visualizations are created,
they may also overlap each other. Every created visualization supports dedi-
cated filtering and sorting which only affects the contents of the visualization.
Furthermore, certain visualizations support channel remapping if more than
one field to visual channel mapping exists for this particular visualization.

Figure 3.3: The Visualization Dashboard and its components: (1) Visualization
Space, (2) Field Selection Area, (3) VisPicker and (4) Toolbar

All of the created visualizations are linked with each other, thus performing
a selection in one visualization will highlight the same data points in another
visualization. Besides saving the configuration of the manipulated data in the
Dataset Table, the dashboard also has its own functionality of saving a session,
namely generating a bookmark link. This bookmark link contains the informa-

CHAPTER 3. VISUALIZER 46

tion of the current state of the dashboard with the displayed visualizations,
the position and size of each visualization and the performed aggregations. As
mentioned, the dashboard is personalized and extensible. Those functionali-
ties are only present if the user is logged in, because the data is saved to the
user’s profile. Personalization of the dashboard includes the customization of
the dashboard, which can be the change of color of almost every aspect of the
dashboard and changing the font types and sizes of the different windows. Ad-
ditionally, a personalized recommender for visualizations is also part of Visual-
izer, which can be accessed only by logged in users. If the user is not satisfied
with the visualizations already included in the dashboard, there is a possibility
to upload and integrate his own visualizations. In order to create a visualiza-
tion a very simple interface has to be implemented which is only responsible
for drawing the passed data. After the visualization has been implemented it
can be uploaded after describing the visualization and the needed data types.
In the next sections all of the mentioned functionalities will be examined in
much more detail. Firstly, a look will be taken at the structure of the web ap-
plication, the used tools and libraries, and how everything works together in
order to understand the technological background behind it. Thereafter, the
Dataset Table and the Visualization Dashboard will be examined and every
functionality explained.

3.2 Architecture and Used Technologies

This subsection will first outline the architecture of the application and all
the decisions which had to be made concerning this aspect. It will also serve
as background information for the detailed explanation of the smaller compo-
nents of the Dataset Table and Visualization Dashboard. While covering each
component of the architecture, the used tools and libraries will also be ex-
plained. Figure 3.4 shows the web architecture of Visualizer, it is divided into
a front end, a back end and external services, which is very common for web
architecture.

CHAPTER 3. VISUALIZER 47

Figure 3.4: Web Architecture of Visualizer: Split into front end, back end and
external resources

3.2.1 Back End

The back end in Visualizers case is very thin. It is not used for any complex
computations and is only for tasks which cannot be performed on the front
end. The back end consists of an Apache2 web server, which executes the
desired Common Gateway Interface scripts, also called CGI3 scripts, written in
Python 34. This combination was chosen because the programmer is familiar
with it, the setup was simple and all the needed functionality is included out
of the box without the need for additional libraries or tools. As a database
SQLite 35 was chosen, again because of the familiarity and the simplicity of
the use case. The database is only needed for user creation, authentication
and session management and therefore consists of only one table with the
schema, which can be seen in table 3.1
The back end has the following functionalities:
User creation - When a user fills in the registration form on the client and
sends it to the server, a new user has to be created in the database and a user
directory has to be generated. For this purpose, first a check is performed

2https://httpd.apache.org
3https://tools.ietf.org/html/rfc3875
4https://www.python.org/download/releases/3.0/
5https://www.sqlite.org

https://httpd.apache.org
https://tools.ietf.org/html/rfc3875
https://www.python.org/download/releases/3.0/
https://www.sqlite.org

CHAPTER 3. VISUALIZER 48

users
Fieldname Type Description
uid integer autoincre-

ment primary key
A unique identification number
which serves as the primary key for
the table

username text not null A unique username. In case a user
tries to take an already reserved
username, a message will be dis-
played to choose another

passhash text not null The hash value of the user pass-
word. It is used for authentication

userdirectory text not null The path to the directory where the
user style sheets and upload visual-
izations are

email text not null The email address of the user
lastrequest integer The timestamp of the last request. It

is used for session timeout
activesessionid text The id of the active session

Table 3.1: The schema of the users table and the description of the fields

if the username has already been taken. The username has to be unique, be-
cause alongside the password it serves for the user’s authentication. However,
the password is not stored as plain text, but as a hash of the password entered
by the user. This is done for security reasons. In case of a breach, no user pass-
word is revealed. If the username is valid, a new entry will be created in the
database for this user and a directory in the filesystem will be created and ini-
tialized with the default structure. The newly created user folder contains only
two folders upon creation: (i) style and (ii) charts. The style folder contains
the initial files for the customized stylesheet. The charts folder on the other
hand contains two user mapping files which describe the uploaded visualiza-
tions. One file is a JavaScript file and the other a JSON file. The JavaScript
file is served to the user and the JSON file is used for easier parsing of the
values on the server. Upon creation they only contain empty mapping objects,
because upon creation no visualizations uploaded by the user are present. The
mappings.js file, utilized by every user, and containing all the descriptions for
the default visualizations can additionally be inspected in Appendix B. After
the successful entry into the database and the creation of the user folder in
the filesystem, the newly registered user can log in into his account.
User authentication and presentation of the correct start page - Visu-
alizer can be used without the need to create an account, but without an

CHAPTER 3. VISUALIZER 49

account, certain features will be missing. Those features include customized
stylesheets, visualizations created by the user and personalized recommenda-
tion of visualizations. Therefore, one of the responsibilities of the back end is
also the authentication of the user and providing of the correct starting page
and files.
After the user has created an account, the back end is responsible to check
whether the login was successful or not, whenever a user tries to log in. When
doing this he has to enter his username and password. First the username is
checked if it exists in the database and the appropriate user row in the table
is selected. Then a hash is generated from the password which was entered
by the user and compared to the saved hash. If it matches, a new session id
and a timestamp are generated of the login time and stored in the database.
Furthermore, the web page gets reloaded and the user is presented with his
personal customized dashboard.
Session management - In the user authentication description it was men-
tioned that the back end stores a session id and a timestamp of the last re-
quest. This is done to guarantee that only the real user has access to his
personal files (stylesheets and visualizations). When the user logs in, a cookie
is set with the session id of the user. This cookie is valid for 12 hours, i.e. the
session will expire after that and a new login will be required. The cookie is
sent to the server on every user request, which could be reloading the page,
accessing visualizations or loading new data. The timestamp is saved on the
server to ensure that the cookie is not manipulated on the client’s side so that
the session actually expires if no request has been sent for 12 hours. On every
request, this timestamp is checked and if the session is still valid, the times-
tamp is updated.
Managing user style sheets - When a user saves the modifications to the vi-
sual style of the dashboard, a script on the server generates a new stylesheet
with the customized values, which is saved in the style directory of the user’s
directory. When the user logs out and logs in again, this stylesheet will be
served to him.
Managing user uploaded visualizations - The charts directory in the user
directory contains all of the needed files to integrate and display the files up-
loaded by the user. As mentioned in the user creation subsection, at first
this folder only contains a file called usermapping.js and usermapping.json,
which contain only empty visualization mapping objects. Every time a new
visualization is uploaded, a new entry is created in those files which describes
the properties of the new visualization. In addition to those two files, which
describe the visualizations, each visualization is put into its own respective
directory. The visualization directories always have the same basic structure,
as it can be seen for the directory exampleChart in the userfolder:

CHAPTER 3. VISUALIZER 50

userfolder/
+-- style/
+-- charts/
+-- +-- usermapping.js
+-- +-- usermapping.json
+-- +-- exampleChart/
+-- +-- +-- css/
+-- +-- +-- fonts/
+-- +-- +-- libs/
+-- +-- +-- mainfile.js
+-- +-- +-- icon.png

It is expected from the user, when uploading new visualizations, to follow this
directory scheme for new visualizations, otherwise the visualizations will not
work properly in Visualizer. After the visualization has been uploaded and
successfully added to the user’s directory it can be used in Visualizer. Like
the user stylesheets, those visualizations are only served to the logged in user
who uploaded them.
Fetching datasets from external data sources - Trying to fetch datasets
from other servers from the client side is not possible, because in every web
browser Cross-Origin Resource Sharing 6 is not allowed per default due to
security reasons. Consequently, the back end becomes responsible to fetch
data from external resources. When a URL to a dataset is entered on the
client’s side, this URL gets passed to the back end. If it is a dataset located
on Visualizer’s server (demo data), it gets served immediately. In the future
this mechanism could also allow users to store their own datasets in their
respective user directories. In case the dataset actually comes from a different
server, the dataset is fetched and temporarily saved in a directory. The content
of this dataset is then passed to the user for inspection.
Communicating to the external recommender - Since the visualization
recommender is an external service and not part of Visualizer’s back end, the
same problem as with the external datasets occurs. Hence, the back end has
to pass the data needed for the recommender to the recommender and then
return it to the user. The visualization mappings, tags and ratings for the
recommender are completely prepared for the recommender in the format
with which the recommender can work on the client. The only information
which the back end adds to this data before passing it to the recommender
is the user id. This is needed so that the recommender can learn more about
the specific user and select the personalized recommendations for this user.
When a response comes back from the recommender, the server sends this

6https://tools.ietf.org/html/rfc6454

https://tools.ietf.org/html/rfc6454

CHAPTER 3. VISUALIZER 51

response to the user. The requests from the client to the server and then to
the recommender are all non-blocking, i.e. when a user performs an action
related to the recommender, he can continue to work without having to wait
for a response.

3.2.2 Front End

Considering that in the overview subsection the basic functionality of the front
end was already explained, in this subsection the focus will be brought on the
technological aspects and used libraries for the creation and functionalities of
the front end. As the fundament for the web application, the newest versions
of HTML and CSS were used, respectively HTML5 and CSS3. Additionally
JavaScript was used with the ECMAScript 67 functionalities. For extended
programming functionalities the well known JavaScript library jQuery8 was
used. This library made the selection and handling of DOM elements much
simpler, the source code cleaner and ensured faster programming. In addi-
tion to jQuery, the jQuery UI9 library was used to add easy mechanisms for
resizing and dragging elements. This library is mostly used for the visual-
ization windows and the VisPicker, allowing them to be moved freely in the
visualization space and additionally the visualization windows can be resized.
Instead of having to implement all of the click, drag and drop handlers individ-
ually, a single call to the library is needed in order to enable an element with
this functionality. For the responsive structure of the layout, the consistent
style of all elements and all the icons except the visualization icons, the boot-
strap10 library was used. This library offers a way to structure a web page in
a grid system which is divided into 12 columns, in which an arbitrary number
of rows can be added. It is the developer’s decision to define in which way
the columns should be ordered. Figure 3.5 shows how the Dataset Table is
structured with the help of Bootstraps grid system.
Furthermore, Bootstrap has a class system for various elements to ensure a
consistent layout. Thus, adding the class “btn” to an element will apply the
appropriate style so that all buttons look and behave the same. This includes
highlighting the buttons and changing the cursor to a pointer when hovering
over a clickable button. An additional feature of bootstrap which was widely
used in Visualizer were the included icons. Bootstrap includes a variety of de-
fault icons called glyphicons, covering most of the icon needs for a web page.
Those icons are integrated in a font and since they are vector graphics they

7http://es6-features.org
8https://jquery.com
9https://jqueryui.com

10http://getbootstrap.com

http://es6-features.org
https://jquery.com
https://jqueryui.com
http://getbootstrap.com

CHAPTER 3. VISUALIZER 52

Figure 3.5: Layout structure of Dataset Table with Bootstrap

always look sharp no matter what size the icon is.
For data extraction and conversion the library PapaParse11 was used. This
library is used for two very important functionalities. The first is for reading
CSV files and converting them to JSON, which can then be parsed with ease
in the browser. The second important functionality is creating a CSV file from
the manipulated table, which then can be downloaded. PapaParse reads either
a local file, or a file from a URL. In case the URL is not from the same domain,
the URL is passed to the server, which then returns a URL with the temporary
file on the server. This URL can be then used by PapaParse.
Another very useful library lodash12 was also included in Visualizer. This li-
brary is used for array manipulation and data aggregation. It has built in
functionalities for operations on sets, like intersections and unions, and also
the most used aggregation operations on arrays with categorical or numerical
values. Moreover, it makes it unnecessary to reimplement those extensively
used utility functionalities.
In addition to those extensively used libraries named before, there are multi-
ple libraries worth mentioning for smaller functionalities which were included

11http://papaparse.com
12https://lodash.com

http://papaparse.com
https://lodash.com

CHAPTER 3. VISUALIZER 53

in Visualizer.

- Moment.js13 was used for easier date manipulation

- Masonry.js14 for the auto tile feature, which organizes the visualization
windows in a manner that they do not overlap

- Spin.js15 was used for the dynamic creation of a loading/computing spin-
ner

- Canvg16 was used for rendering SVG elements into a canvas and en-
abling a direct download of visualization images from the client

3.2.3 External Services

At the time of writing, the only external service used in Visualizer is the vi-
sualization recommender which can only be used when a user is logged in.
The visualization recommender expects two things: (i) a list of tags, describ-
ing the interests of the user (ii) a list of possible configurations of mappings
from selected fields unto visual channels of a visualization. When the list gets
generated it is passed to the back end with the added tags, which then calls
the recommender with the user id. The recommender sends as a response
a ranked list of recommended visualizations with set channel mappings. The
back end redirects the recommender response to the front end, which then
displays the ranked list of visualizations. Furthermore, the user has the option
to rate and tag the visualizations suggested by the recommender as feedback.
Those tags and ratings are then used by the recommender to improve and sug-
gest better personalized recommendations of visualizations for the user giving
the feedback and for other users with similar needs.

3.3 Dataset Table

This subsection will cover every functionality of the Dataset Table in detail. At
first, the processes will be explained that happen immediately after a dataset
has been loaded, the needed computations and preparations for the data to be
presented in the table. Afterwards, it will be explained how the preprocessed
data is used to draw the table and what the links between the dataset object
and the table are. Furthermore, the table will be split into multiple smaller
components which will then be analyzed.

13https://momentjs.com
14https://masonry.desandro.com
15http://spin.js.org
16https://github.com/canvg/canvg

https://momentjs.com
https://masonry.desandro.com
http://spin.js.org
https://github.com/canvg/canvg

CHAPTER 3. VISUALIZER 54

3.3.1 Data Preprocessing

After the selection of a local or remote dataset, the data has to be prepro-
cessed before it is displayed in the Dataset Table. With PapaParse it is pos-
sible to extract the raw data from the CSV file and convert it to JSON, but
for the purposes of Visualizer the data has to be further enriched. For this
enrichment a dataset object gets created. This dataset object contains a fields
array. Every entry in this array comprises the raw data from a column of the
dataset and additional computed information about the field. In table 3.2 the
structure of an object in the fields array is displayed.

Fields object
Type Attribute name Description
array data Each entry in this array is one cell from

the column in the dataset
integer datapoints Total number of different values in this

column
object filterList Contains the filtering constraints for this

column. Detailed description in table 3.3
boolean isActive Should the field be displayed in the dash-

board or not
boolean isIncomplete Does this column have empty cells
string name The name of the column
string type The detected data type of the values in

the column
array uniqueData The unique values of the data array

Table 3.2: Structure of an object in the fields array

When creating the fields objects, the data attribute of a fields object is
assigned the raw data of one column of the dataset. After the data has been
assigned, the real dataset has been loaded into the dataset object. The name
attribute of the fields object is set to the name of the column in the original
dataset, and the isActive attribute is per default set to true. Subsequently,
the data type of each object has to be detected. For this, a maximum of 100
first entries are checked for their data type in each column to determine the
data type of the whole column. Visualizer differentiates between five data
types. (i) integer, (ii) number, (iii) date, (iv) location and (v) string. The checks
are performed in the following order: If two entries in a column have different
data types, the detected column type will be set to string. The exception is
if an integer and number are detected as a data type for a column. In this
case, number is set as the detected data type for the column, and the check

CHAPTER 3. VISUALIZER 55

1. integer: Check if the entry contains only the values between 0 and 9

2. number: In addition to the integer check, check if ’,’ or ’.’ are present

3. date: Parse entry as a JavaScript date object and check if return value is
a number

4. location: Compare entries to an array of supported locations

5. string: If all tests fail, the entry is detected as a string

continues. The data type check finishes, after a maximum of 100 entries in a
column have been checked, or as soon as the detected data type is determined
as string.
In the next step, the unique data entries have to be detected. This task be-
comes trivial, thanks to lodash’s uniq function. This information is needed to
detect if in a column certain values repeat themselves very often so that they
can be handled as categories. An example would be a column with the days of
a week. Even though there could be a thousand entries in a column, only seven
will repeat. After assigning an array of unique elements from the data, the
number of different entries in the column are set to the datapoints attribute
of the fields object. This is done by taking the length of the uniqueData
array. Additionally, after having the uniqueData array, it can be determined
if the column has missing entries. This is done by checking the uniqueData
array for an empty string. If an empty string can be found, the isIncomplete
attribute of the fields object is set to be true.
The filterList attribute is not actually a list, but an object containing con-
straints. The name stayed even though an adoption to the data structure was
performed. This object will later contain all the constraints for its column ac-
cording to which the dataset should be filtered. In table 3.3 the structure of
the filterList object can be seen.

FilterList object
Type Attribute name Description
integer from lowest value that can be used
array keywords entries that can be displayed
integer to highest value that can be used

Table 3.3: Structure of a FilterList object

CHAPTER 3. VISUALIZER 56

3.3.2 Displaying the Table

The dataset object is the actual loaded dataset. The table and the header
only display the current contents of this object. When creating the table of
contents, the data arrays in the fields objects of the respective column are
walked through and the contents displayed. The header, like the contents of
the table, is also a visual representation of certain fields in the fields object.
The displayed name is saved in the name attribute of the fields object and the
data type in the datatype attribute. If a functionality is present in the table to
alter certain values, they will be changed in the dataset object and the table
refreshed. It is also notable that not the whole dataset is displayed in the table
of contents at the start, but only the first 100 entries.

3.3.3 Components

As can be seen in figure 3.6, the Dataset Table can be split into five regions
categorized by functionality. Region 1 is for manipulation of the whole table.
Region 2 is the table header, with the information about each column. Region
3 is the table with the contents of the dataset. In Region 4 are the navigation
elements. Region 5 is for accepting and/or saving the manipulated table.

Figure 3.6: Regions of the Dataset Table: (1) Table manipulation (2) Table
information header (3) Dataset contents table (4) Table navigation elements
(5) Save and accept

CHAPTER 3. VISUALIZER 57

Table Manipulation

The table manipulation buttons can be used to manipulate the table as a whole
as can be seen in figure 3.7.

Figure 3.7: Table manipulation buttons

Almost all of the functionalities in this part of the Dataset Table are self-
explanatory or very simple, except the “Aggregate” and the “Merge Columns”
buttons, which will be explained in more detail. The buttons have the following
functionalities:

- Clear All Filters: Reverts the filterList object to its original state for every
field object

- Remove Incomplete Columns: Removes all fields objects with isIncom-
plete set to true, then refreshes the table

- Remove Incomplete Rows: For every empty entry in a data array of a
field object, removes the entry at the same index in the data arrays of
other field objects. Afterwards the table is refreshed.

- Remove Columns Removes: the field objects from the dataset object
which were selected in the table

- Merge Columns: Merges the field objects of the dataset object which
were selected in the table

- Aggregate: Aggregates the values in the dataset object

- Show Original : Drops all changes and displays the original dataset

Merge Columns - Columns can be selected by clicking on the header while
holding the CTRL key pressed. If two or more columns are selected, the merge
columns button will become active. A merge of columns means for the dataset
object that a new fields object is generated with the merged values, and the
selected fields objects are removed. This is done by first generating the new
data array for the fields object. All entries in the data array of a selected
fields object are iterated and merged with the entries at the same index of
the other data arrays of the selected fields. Merging two or more entries is
different, depending on the data type of the selected fields. As long as not all
selected fields are numerical, the entries will be simply concatenated with an
", " in between. However, if all of the selected fields are of a numerical type,
a dialog will be presented to ask for an aggregation method for those entries.

CHAPTER 3. VISUALIZER 58

Selecting for example “Sum” in the dialog, will add all entries under an index.
The aggregation dialog can be seen in figure 3.8.

Figure 3.8: Aggregation dialog for merging numerical columns

After the new merged data array has been created, it can be assigned to the
data array of the new fields object. The name attribute is set to a concate-
nation of all field names. The rest of the attributes in the fields object are
then computed the same way, when the data gets loaded first. Following the
creation of the new fields object and the removal of the selected ones, the
dataset contents table and the header are refreshed.
Aggregate - Clicking on the “Aggregate” button will open the aggregation
dialog as seen in figure 3.9

Figure 3.9: Aggregation dialog for aggregating whole dataset

The aggregation dialog is split into actions for categorical data and actions for
numerical data. The checkboxes beside the categorical fields indicate what
fields should be taken when performing the aggregation. Below the check-
boxes with the field names is a select box, where it is possible to select if an

CHAPTER 3. VISUALIZER 59

additional aggregation should be performed on the categorical fields. Those
optional aggregations are count and ratio. Count counts the occurrences of a
unique tuple of fields with the same index in the data array of the field objects,
or simply put, the unique rows in the dataset. Ratio displays with a percentage
how often a unique row occurs compared to the total number of occurrences.
The numerical values are in the select boxes below that. In each row, a nu-
merical field can be selected and the type of aggregation to be performed on
it. The possible aggregations are: minimum, maximum, sum and average. Af-
ter clicking on “Accept”, the original dataset object will be swapped with the
aggregated one and the table refreshed.

Information Header

The information header serves the purpose of displaying compact information
about each column. In figure 3.10 an isolated cell of the information header is
displayed.

Figure 3.10: Isolated information header cell

The information header cell consists of five elements. From top-left to bottom-
right: (i) context-menu button, (ii) field name, (iii) activity toggle, (iv) data
type, (v) information element. The context-menu button opens a context menu
in which the entries of the column can be filtered, sorted, or a default value
added if the column misses it. Depending on the data type of the field, the
context menu can look differently as can be seen in figure 3.11. Additionally,
if the field can be categorized, the categories can be directly selected.

CHAPTER 3. VISUALIZER 60

Figure 3.11: Information header context-menus: a) numerical without catego-
rization b) numerical with categorization c) categorical without categorization
d) categorical with categorization

Numerical data types are integer and number, and categorical types are date,
location and string. Numerical values have the additional “from” and “to”
fields. When entering values in the filter fields, the filterList object in the
respective fields object is updated. The structure of the filterList object
can be seen in table 3.3 in the data preprocessing subsection. Thus, entering
values in the “from” and “to” field for numerical values adds them to the same
called fields in the filterList object. The third field adds values directly to
the keywords array of the filterList object. Depending, if the data can be
categorized or not, this field behaves slightly differently. For data which can
be categorized, entering text in this field will filter the categories below it,
which can then be toggled. If the field cannot be categorized, hitting enter af-
ter the text has been entered will add the value directly to the keywords array.
The filtering process of the whole table is applied every time a value has been
added to a filterList object. The filtering mechanisms work as follows: For
every filterList object which is not empty, the entries in the data array of
this field are checked if they satisfy the constraints. If it is true, the indexes
of those entries are saved. For the next field which does not have an empty
filterList object, only the entries with the already limited indexes from the
previous filtering are checked, thus limiting the indexes further. After all fil-
ters have been checked, a list of indexes is created which contains only the
data that satisfies all of the constraints. Those entries are then displayed in
the table.
The field name, as it suggests, is just the name of this field. The activity toggle
(per default on) can disable the field, i.e. it will not be displayed in the dash-
board.

CHAPTER 3. VISUALIZER 61

The displayed data type is the same data type as in the field object represent-
ing this column in the dataset. It can be clicked and the data type changed.
The data types can be only changed to a superset of the detected data type,
otherwise the option will not be available. An integer can be changed to a
number or a string, but not the other way around. The same goes for date to
string and location to string. An integer can also be changed to a date, but
this is the risk of the user. The reason is that a number can be also interpreted
as a year.
The information element displays calculated information about the data in this
column when hovering over it. Depending on the data type of the field, and
again, depending on whether it can be categorized or not, different entries
are displayed. Figure 3.12 displays the different information tooltips for fields
of different data types.

Figure 3.12: Information tooltips: a) categorical with categorization b) cate-
gorical without categorization c) numerical d) date

Strings and location always display the number of entries, how many are
empty and how many are unique. If the data can be categorized, the cate-
gories get displayed with their number of occurrences in this column. Numer-
ical fields display also the number of entries and how many are empty, but in
addition they also show additional information about the values. Date fields
show the range from the starting to the ending date.

Dataset Contents Table

The dataset contents table is the third region of figure 3.6 It is also the region
which takes up the most space. The contents of the table are the contents
of the data array of each field object, with the data array representing one
column in the table. For performance reasons only the first 100 entries in the
data array are written. This is due to the fact that the dataset contents table
is meant as a tool to preview the data, to see what is in the dataset. The other
pages of the data can be loaded on demand by using the table navigation el-
ements which will be covered in the next subsection. The functionalities in

CHAPTER 3. VISUALIZER 62

the dataset contents table are limited, but not without importance. The first
and lesser important functionality is the column resizing. The columns in the
table can be freely resized to better analyze the contents. The second, very
important feature of the dataset contents table is the replace functionality. It
is possible to change the content of every cell. There are two options for re-
placement: (i) replacing the value of a single cell and (ii) replacing all selected
values in the column. Replacing a single value in a cell is very simple. Upon
double clicking a cell it will convert to a text field which can be edited. If the
user is satisfied with the contents, he can just press enter and the new value
will be accepted. This value will automatically be present in the field statistics
and categories. The other option is to replace all occurrences of the contents
of a cell in a column. This is done by right-clicking a cell and clicking on ’re-
place all’ in the context menu. A dialog will open, as can be seen in figure
3.13, which only allows entries that are of the same type as the other entries
in the column.

Figure 3.13: Replace all values dialog prefilled with the selected entry

Table Navigation Elements

At the bottom, on the left, underneath the dataset contents table, the naviga-
tional elements reside. Figure 3.14 shows the navigational elements up close.

Figure 3.14: Navigational elements

The page numbers allow a quick navigation between the multiple pages of the
dataset. In the selectbox below the page numbers it is possible to select the
number of rows displayed per page. The default is set to 100 for performance
reasons, since more entries can slow down the interaction with the page. Only
the first 100 entries of the dataset are displayed when the dataset is loaded.
The other pages are only written to the DOM when they are requested by
clicking on a page number.

CHAPTER 3. VISUALIZER 63

Finalize and Save

The last part of the Dataset Table is used either to discard all changes on the
dataset or to save them in one way or the other. Figure 3.15 shows the buttons
offering different functionalities for saving the data.

Figure 3.15: Finalize and save commands

Clicking the “Accept” button only transfers the displayed content from the
Dataset Table to the Visualization Dashboard. All the transformations are
already performed on the dataset object and clicking the “Accept” button
leaves the dataset object untouched. The “Cancel” button, on the other hand,
discards all the changes performed on the dataset and brings the user back
to the page where he can upload a new file. “Download CSV”, “Get Link”
and “Download Config” allow the user to save the changes performed on the
dataset. “Download CSV” will start a download of a CSV file, which contains
the manipulated Dataset Table. In this way it is possible to save or share an
altered version of a dataset. The generation of the CSV file is done by going
through the dataset object and generating a JSON object with the contents
of valid entries. Valid entries in this case means entries of active fields, which
also satisfy the constraints given by the filters. The unparse method of Papa-
Parse is then called with this JSON which returns a well formatted CSV file
that can be downloaded. “Get Link” and “Download Config” both save the
current configuration of the dataset. This means that only the steps to get
the dataset in the currently presented form are saved and the dataset itself
stays untouched. This is very useful to apply the same transformations on
different datasets with the same structure with different content. It can also
be used to share a certain view of the dataset with someone, without altering
the actual file. The difference between the “Get Link” and “Download Config”
buttons lies in the returned output. “Get Link” will create a configuration URL
and add it to the clipboard that can be pasted into the address bar of a web
browser. When loading a dataset under this URL, the saved transformations
will be automatically applied to a dataset. “Download Config” will download a
configuration file which has to be added to Visualizer when uploading a local
dataset.
In order to explain the generation of the configuration file another very im-
portant data structure which is frequently used in Visualizer needs to be men-
tioned. This data structure is the actionStack. The actionStack is an array,
which contains all actions which modify the dataset. Every time the dataset is

CHAPTER 3. VISUALIZER 64

altered, such as by sorting columns or replacing values, an action describing
the performed interaction is pushed on the actionStack. This allows Visu-
alizer to recreate the current state, starting from the freshly loaded dataset.
The following actions are pushed onto the actionStack in the Dataset Table:
(i) remove columns, (ii) merge columns, (iii) rename columns, (iv) aggregate
dataset (v) filter (vi) add default value (vii) disabled columns (viii) change type
(ix) sort (x) replace (xi) replace all. All of the mentioned actions, except filter
and disabled columns are pushed onto the action stack as soon as they have
been completed on the Dataset Table. The filters and the disabled columns
are only pushed onto the actionStack when a configuration should be cre-
ated. This is done to not needlessly fill the actionStack with actions which
are not required to be in order. The listed actions are only the actions saved
for the Dataset Table. There are also additional actions for the Visualization
Dashboard which will be covered in their appropriate subsections later on.
For a complete explanation on how every action is structured see Appendix A.
When clicking “Get Link” or “Download Config”, the actionStack is first final-
ized, i.e. the filters and disabled fields are pushed to the action stack. Then,
in the case of “Download Config” the actionStack gets stringified before be-
ing downloaded, and in the instance of “Get Link” the stringified actionStack
gets additionally encoded, so that it can be used in a URL. Thus, the contents
of the actionStack will be in the config parameter of the newly created link.
The URL generated by clicking on the “getLink” button consists of three parts:

- host: the URL where Visualizer is hosted

- dataurl (optional): the URL which points to a .csv file on a server (in
case the .csv file is located remotely)

- config: a stringified JSON object which contains all the information
about the performed transformations on the dataset. This is a stringi-
fied JSON array of the actionStack

Thus, a URL with all parameters set would have the following structure:

host + "?dataurl=" + urltocsv + "&config=" + conf

Loading a file into Visualizer with a selected configuration file or under
a configuration link will automatically start the execution of actions in the
configuration, after the file has been loaded. For that, the configuration file
or parameter in the URL will be converted to a JSON object. After that the
old actionStack will be extracted, and all of the saved actions on the action
stack will be applied to the freshly loaded dataset in the same order, as they
have been previously.

CHAPTER 3. VISUALIZER 65

3.4 Visualization Dashboard

This subsection will cover the Visualization Dashboard with its two different
views: (i) the Guest Dashboard and (ii) the Personalized Dashboard. The Per-
sonalized Dashboard has, in addition to the features of the Guest Dashboard,
personalized recommendations for visualizations and options to customize the
dashboard with configurable styles and visualizations, written by the user. The
Visualization Dashboard with its highlighted areas can be seen in figure 3.16.
Each of the highlighted areas will be covered separately in their own subsec-
tion. First the visualization space as a central part of the dashboard will be
explained. Thereafter, the areas will be covered in the order in which they
are usually used. First the field selection area will be explained, because the
process of visual exploration starts by selecting fields of interest which should
be visualized. After that the VisPicker and the process of recommending com-
patible visualizations will be described. Following the VisPicker, the created
visualization windows will be examined, and at last the toolbar. After all of
the features of the Guest Dashboard have been explained, the additional fea-
tures of the Personalized Dashboard will be examined. Those include the user
defined customization of the dashboard, the user uploaded visualizations and
the personalized visualization recommender.

Figure 3.16: The Visualization Dashboard with the highlighted regions: 1.
Visualization Space 2. Field Selection Area 3. VisPicker 4. Toolbar

CHAPTER 3. VISUALIZER 66

3.4.1 Guest Dashboard

Visualization Space

The visualization space is the biggest region in the Visualization Dashboard.
At the beginning, it hosts only the VisPicker, the viewing mode toggle in the
lower right and an empty visualization bar. Every visualization that is created
will be put into this space. The visualization windows and the VisPicker can
be freely moved in the whole visualization space. The visualization bar, as can
be seen in figure 3.16, displays all the created visualizations. An additional
functionality of the visualization bar is that, with a click on a visualization tab,
the visualization window is minimized to the bar. This is especially useful if a
visualization is currently in the way, but is needed in the future. The viewing
mode toggle in the lower right corner serves the purpose of getting a better
view at the visualizations, for a better view. Everything but the visualization
windows is disabled and the visualization windows are locked into place, thus
no moving or resizing is possible anymore, as can be seen in figure 3.17. The
icon changes from an eye to a pencil to indicate that clicking on the button
will change the view back to editing.

Figure 3.17: Preview mode of the Visualization Dashboard

CHAPTER 3. VISUALIZER 67

Field Selection Area

The field selection area on the left side of the Visualization Dashboard contains
all the active field names of the Dataset Table. The fields in the field selection
are divided into two main categories: categorical data and numerical data. In
the categorical data window are all fields which cannot be aggregated. Those
fields are the fields with the selected data types of string, location and date.
In the numerical data window are the fields which are aggregatable, meaning
integers and numbers. The fields are split into those two categories, because
all of the visualization distinguish basically only between numerical and non-
numerical data, so it presents an easy way to fulfill the requirements of the
visualizations, yet it is still possible to have fine categorization for special pur-
pose charts, such as the line chart, which is basically a time series and needs
a date type for the x-axis. In order to reveal the actual data type of a field in
the categorical or numerical data windows, it is sufficient to hover over the
field.
Every time a field is selected the visualizations are checked if they are com-
patible with the current selection. The process of determining the compatibil-
ity of fields for a visualization and mapping the fields correctly on the visual
channels of the visualization will be explained in detail in the following sec-
tion about the VisPicker. After every click, the compatible visualizations will
be highlighted in the VisPicker as active and a visualization can be created.
Additionally, every time a categorical field is selected, a computed field is dis-
played in the numerical data window. This computed field is a concatenation
of the “#” sign and the names of the selected categorical fields. This com-
puted field contains the number of occurrences of each unique tuple of entries
for the selected categorical fields.
The main purpose of the field selection area is to find visualizations suited for
the fields in which the user is interested, simply by clicking on the fields of
interest.

VisPicker

The VisPicker is the central piece for the creation of visualizations. It gives the
user recommendations for compatible visualizations based on the currently se-
lected fields. The VisPicker hosts thirteen different visualizations at the time
of writing. At the beginning, when no fields are selected, all of the visual-
izations are disabled. Starting to select fields in the data selection part, will
activate compatible visualizations. This can be seen in figure 3.18. On the
left, the VisPicker is shown with all of its visualizations disabled. On the right,
visualizations are activated which are compatible with fields of the data type
string and integer.

CHAPTER 3. VISUALIZER 68

Figure 3.18: VisPicker changes based on field selection: a) Nothing selected
b) Fields of type string and integer selected

The recommendation of visualizations with the VisPicker is actually a two way
street. It is not only possible to show compatible visualizations with the se-
lected fields, but it is also possible to receive a recommendation of possible
fields for this particular visualization. By hovering with the mouse over a vi-
sualization icon, a tooltip will be displayed, explaining how many fields are
required for this visualization and what type the fields have to have. Further-
more, if a combination of fields exists to create the visualization, one random
possible combination will be highlighted. This can be seen in figure 3.19. The
tooltip displays that in order to create a bar chart, it is required to select
two fields and that one field has to be of type string, location or date and the
other field of type integer or number and that a possible combination has been
highlighted. In the data selection section two highlighted fields can be seen.

CHAPTER 3. VISUALIZER 69

Figure 3.19: VisPicker: Tooltip for a visualization and recommendation of
compatible fields

In order to create such a mechanism for recommending visualizations based
on selected fields and to recommend fields compatible with the visualizations;
it was first needed to create a description which defines how fields can be
mapped onto visualizations. For this, as a basis, the Visual Analytics Vocab-
ulary was taken from Mutlu et al.[Mutlu et al., 2013]. It was converted from
an OWL ontology to a simple JSON object and further extended to match all
of the needs of Visualizer. Every visualization was described by its number
of visualization channels and the data types which can be mapped to those
visualization channels. Furthermore, there are visualizations which have op-
tional visualization channels, and others where a channel can be duplicated.
This information already suffices to describe a visualization in way that a rule
based recommendation system can be implemented to recommend compati-
ble visualizations for a selected number of fields. Let us take as an example
for a description a bar chart. As visualization channels, it has an x-axis and a
y-axis, both of which are mandatory and can only occur once. On the x-axis,
only categorical data can be mapped onto, thus the supported data types for
this channel are string, location and date. However, the y-axis only supports
numerical data, therefore the supported data types are integer and number.
For every visualization, there exist additional fields which help speed up the
recommendation, like the number of required channels or flags which indicate

CHAPTER 3. VISUALIZER 70

if channels can be duplicated. An exhaustive list with the explanations of all
the fields in the descriptions of each visualization can be found in Appendix B.
Every time, a field is selected or deselected, a check has to be performed if
the visualizations are compatible with this configuration or not. As soon as a
selection of fields has been made, an array with the selected data types and
the field names is created. Before trying out all the possible combinations for
all of the visualizations, the visualizations are filtered by checking the require-
ment of the number of channels. Only the visualizations which can hold all of
the selected fields are further examined. Every visualization which meets the
channel number requirement has to be checked at this point if a mapping of
fields to visualization channels exists. This can be seen as a schema matching
problem according to Rahm et al.[Rahm and Bernstein, 2001]. Meaning, the
mapping from fields to channels.
In order to perform this check, a brute force approach to this problem is taken.
For every visualization, the fields are permuted and checked against the con-
figuration of the visualization channels. If all the types match, the permuta-
tion process is stopped and the current mapping from fields to channels is
returned. If all permutations get performed with no match, the visualization is
not compatible. The problem with this approach lies in the worst case runtime
of trying out all the permutations for the selected fields, which is O(n!). Due
to the runtime, the maximum number of fields, which can be selected, had to
be reduced to ten. There are currently only two visualizations in Visualizer
which can take more than four fields, and those visualizations are scatterplot
matrix and parallel coordinates. A remarkable advantage is that those two
visualizations accept almost all data types for their visual channels; thus a
mapping can be found very fast. For the scatterplot matrix, the mapping is
found in the first iteration, because it has only one channel that can be du-
plicated and it accepts all data types. Parallel coordinates on the other hand,
require that at least two fields get selected and one has to be a category.
Figure 3.20 illustrates the matching process for a bar chart visually for easier
understanding. In the illustration it is assumed that a field of type string has
been selected and a field of type integer. As can be seen, on the first try, the
mapping is not compatible, because neither a string can be mapped on the
y-Axis, nor an integer on the x-Axis. In the second round a compatible match
is found. As was already mentioned, only the fields are permuted, while the
visualization channels stay in place.

CHAPTER 3. VISUALIZER 71

Figure 3.20: Testing mapping combinations for bar chart with a match

Figure 3.21 on the other hand, shows a visualization which matches with the
number of required channels, but a mapping could not be found. The visual-
ization in question is a world map, which needs the data type location for its
country channel.

Figure 3.21: Testing mapping combinations for world map without a match

After those checks have been performed, the VisPicker displays the visual-
izations compatible with the selected fields as active, like in figure 3.18 b).
Clicking on an active visualization icon will open a dialog to prompt the user
to select an aggregation method for the numerical values. In case the dataset
has too many entries, after selecting the aggregation an additional warning
dialog will get displayed, offering the user an option to reduce the number of
data points before creating the visualization. The warning threshold for the
number of data points is set per visualization. After the aggregation has been
selected and eventually the data points reduced to a displayable number, the
visualization is created in the visualization window.

CHAPTER 3. VISUALIZER 72

Visualization Windows

After the VisPicker has been explained, the visualization windows created by
the VisPicker will be now analyzed. Figure 3.22 shows a scatter plot created
with the VisPicker. The data in the scatter plot depicts average sizes and
prices of apartments in different places of the Sacramento area.

Figure 3.22: Scatter plot created with VisPicker

As it can be seen in figure 3.22, the visualization in fact resides in a visual-
ization window. This window can be freely moved around the visualization
space or resized, exactly the way a window is expected to behave. In the ti-
tle bar of the visualization window are a number of different buttons which
allow an interaction with the visualization window. The three buttons residing
in the top right hand corner of the visualization window will be automatically
recognized by most users, especially the users using the Windows operating
systems. Those three buttons are from right to left: (i) for closing the visu-
alization window, (ii) maximizing the window - use all available space on the
web page, and (iii) minimizing the window - the window is put in the visualiza-
tion bar. The windows can also be renamed by double clicking the title of the
visualization window.

CHAPTER 3. VISUALIZER 73

The three buttons on the left are for manipulating the data, displayed in the
visualization. The leftmost button is for sorting. Clicking on it will open a
context menu which presents all the fields which can be sorted. The second
button from the left in the title bar is for filtering. Clicking on the filtering
icon will open a dialog that can be seen in figure 3.23.

Figure 3.23: Filter dialog of a visualization

The filter dialog shows every field of the visualization in a separate region. For
categorical data, entries of interest can be selected by checking the checkbox
beside the entry. The text field on top of all the entries is for filtering in order to
quickly find certain entries. Numerical fields can be filtered by giving a range.
As a help, the minimum and maximum values of the numerical fields are given
as a placeholder. The third button from the left is for channel remapping. Only
visualizations which have multiple mappings of fields onto channels have this
button; this is the case of the scatter plot. Clicking on this button will open a
dialog with the current selection of fields to visual channels. This can be seen
in figure 3.24.

CHAPTER 3. VISUALIZER 74

Figure 3.24: Channel remap dialog of a visualization

Only valid remaps are allowed. Thus, opening the select box for “Color”, will
display nothing except city, but opening the select box for “x-axis”, will show
price and sq_ft (square feet), indicating that a swap is possible. See figure
3.25.

Figure 3.25: Only fields compatible with a channel are displayed. a) Color has
only city b) x-Axis allows a swap of price and sq_ft c) selecting a field swaps it
automatically

In order to support the visual exploration of data, every visualization is linked
with all the other visualizations. Selecting data points in one visualization will
highlight matching data points in others. This is called brushing. Figure 3.26

CHAPTER 3. VISUALIZER 75

depicts such a brush between a scatter plot and a bar chart. A region in the
scatter plot is selected, and the matching bars in the bar chart are highlighted.

Figure 3.26: Selecting data points in one visualization will highlight matching
data points in other visualizations

Toolbar

The toolbar, which can be seen in figure 3.27, was left as the last part of the
Visualization Dashboard, because the actions performed by the toolbar can
influence all the other parts; therefore it was necessary to introduce the rest
beforehand.

Figure 3.27: Toolbar with limited features for guests

View opens a context menu in which the user can hide the VisPicker and the
field selection area to extend the visualization space.
Download Visualization shows a list of all opened visualization windows and
by clicking on an entry in that list the download of the visualization automati-
cally starts. The images have a resolution of 3000px of the larger side with the
aspect ratio kept as it is in the visualization. Because the visualizations are
created with SVG elements, upscaling them does not make the image blurry.
Auto Tile orders all the visualizations in the visualization space in a way that

CHAPTER 3. VISUALIZER 76

they are all visible and do not overlap. This layout is called ’Cascading Grid’
layout and is especially useful when creating multiple visualizations in a row,
because it is possible to order them in a non-overlapping way in just one click.
Change Fields brings the user back to the Dataset Table to make changes
on the dataset. This does not clear the Visualization Dashboard, i.e. it is pos-
sible to change back and forth between the Visualization Dashboard and the
Dataset Table while keeping the previously created visualizations. Change
Dataset drops all the changes that have been done on the dataset and all the
visualizations that have been created and navigates the user back to the file
selection screen.
Fullscreen enters the fullscreen mode of the browser, which gives the user
even more space for visualizations.
Get Bookmark Link extends the functionality of the “Get Link” functionality
of the Dataset Table. In the Dataset Table, upon clicking on “Get Link”, the
current state of the dataset is saved and a configuration link is created. With
this configuration link it is possible to apply always the same transformations
on a dataset with the same structure. “Get Bookmark Link” gets one step
further and in addition to the saved transformations on the dataset, it saves
the state of the dashboard in a link. The state of the dashboard includes all
created visualizations, the positions and sizes of the visualizations, the cur-
rent channel mapping, the selected aggregations for the numerical values and
even the saved brush. This is done similarly to when the configuration link
gets created, by defining visualization actions and pushing them to the action
stack when the “Get Bookmark Link” button is pressed. There are two new
actions in addition to the actions of the Dataset Table; those are the actions
for the created visualizations and for the currently used brush. Appendix A
describes in detail how the visualization and brushing actions are structured
when creating the bookmark link. With this bookmark link it is possible to
create the same visualizations with the same aggregations and positions for
different datasets with the same structure in an instant. When the bookmark
link is pasted in the address bar of the web browser, it is only needed to add a
dataset and all the steps performed get recreated.
Login opens a login dialog. If the user does not already have an account, he
can open the registration dialog and create a new one. Both, the login dia-
log and the registration dialog can be seen in Figure 3.28. After the user has
logged in, he gets presented with the Personalized Dashboard.

CHAPTER 3. VISUALIZER 77

Figure 3.28: a) Login dialog, and b) Registration dialog

3.4.2 Personalized Dashboard

The user login unlocks additional functionalities in the Visualization Dash-
board which are highlighted in figure 3.29. It is worth noting that the toolbar
has additional entries, namely “Customize”, “Upload Visualization”, “Remove
Visualization” and “Get Recommendation”. Instead of the “Login” button in
the toolbar, the name of the logged in user gets displayed. Furthermore, the
VisPicker has a toggle in its title bar, which allows the user to switch to the
recommended visualizations.

CHAPTER 3. VISUALIZER 78

Figure 3.29: Personalized Dashboard with additional highlighted features
compared to the Guest Dashboard

Customize Dashboard

“Customize Dashboard” offers the user an option to tailor the Visualization
Dashboard styling to his preferences. Clicking on the “Customize Dashboard”
button opens a dialog, which contains a great number of different entries
which can be modified, as it can be seen in figure 3.30.

Figure 3.30: Customize Dashboard dialog

CHAPTER 3. VISUALIZER 79

The styling granularity is really fine. All of the colors of the dashboard can
be changed separately from each other and the fonts and font-sizes are also
not bound to each other. Saving the styling configuration in the Visualization
Dashboard will also save this styling configuration on the server in the user’s
profile. Thus, when the user logs out and logs in again, he will get presented
with his saved stylesheet. Furthermore, it is always possible to revert the
styling changes to default if the user is not satisfied with the outcome of his
changes

Upload new Visualization

The most prominent feature of the Personalized Dashboard is the option to
integrate user written visualizations seamlessly into Visualizer. Even though
Visualizer already has thirteen different visualizations, it might be possible
that a user needs a very specific one, tailored to a certain use case, which is
not included. Therefore, Visualizer offers an API, which can be implemented
so that new visualizations integrated into Visualizer can use all the functional-
ities offered by it. Those functionalities include automatic channel swapping,
filtering, brushing and visualization downloading. The visualization created
by the user can also be bookmarked and sent to someone else and it will also
work, as long as the other person has the same integrated visualization. If
a user wants to upload his own visualization, the visualization plug-in has to
have a certain structure. All of the contents of the visualization have to be in
one directory, which can have any arbitrary name. This directory has to have
at least the folders called css and libs, a main .js file with an arbitrary name
and an icon with the name “icon.png” like in figure 3.31.

Figure 3.31: Visualization folder structure

The css folder holds all stylesheets which will be automatically included
when the custom visualization gets generated. The libs folder is for all
the JavaScript libraries which the visualization needs. Currently it is only
possible to put JavaScript files into this folder. Creating subfolders in either
the css or libs folder will cause errors. It is possible to avoid those errors
by loading the desired script manually. The libs folder should generally be

CHAPTER 3. VISUALIZER 80

used for all additional JavaScript files, apart from the main file, irrespective
if they are third party libraries, or own written JavaScript files. The icon.png
will be used as the icon for the visualization. The file type and filename of
the icon is mandatory. As a recommendation, the icon should have a size
of 256 x 256 pixels. The newVisualizationImplementation.js represents the
main implementation file for the visualization functionality. This file can
actually have any arbitrary name which will be specified when uploading the
visualization. This file should implement the API of Visualizer.
Every visualization created by Visualizer is drawn into its own iframe. This
means that the creator of a new visualization can use all the libraries and
styles he wishes, without having to worry that they will interfere with the
main page. All of Visualizer’s current visualizations were created using the
D3 library, which uses SVG elements to create graphic elements, but it is
up to the user to use any libraries; thus it would be also possible to create
visualizations with WebGL. The visualizations which are created with SVG
elements should append the SVG element always directly to the body element.
This ensures that the Download Visualization functionality works as it should.
Visualizations utilizing the HTML5 canvas should also append the canvas
directly to the body tag. Table 3.4 lists the functions of the plugin API which
should be implemented to ensure the visualization works.

Function name Parameters Description
drawVisualization datarows, chan-

nelMappings,
visIndex

Called every time the visualiza-
tion has to be drawn

applyFilter filteredDatarows Called when a new filter is set to
the visualization

applyCssToSvg (none) Called shortly before the down-
load of the visualization starts

revertCssFromSvg (none) Called after the download of the
visualization has finished

Table 3.4: Visualization API description

drawVisualization - Only the drawVisualization method is mandatory
so that the visualization can be displayed. The other methods do not have
to be implemented, but it is strongly recommended. Otherwise, the vi-
sualization will not support all the functionalities. The parameters of the
drawVisualization method have the following structure:

- datarows: This is a two-dimensional array holding the information of a
subset of columns of the main dataset. The data is presented as rows

CHAPTER 3. VISUALIZER 81

and not as columns, because most of the visualizations, which were inte-
grated in Visualizer, expect the data to be in this form.

- channelMappings: This parameter is an array of objects. It describes
what fields were mapped onto which visual channels of the visualization,
which data type the fields have and which aggregation was used on this
field. This array has the same length, as each row in the datarows object.
Table 3.5 shows the structure of the channelMappings parameter.

Attribute name Type Description
aggregation string Aggregation used on this field. Possible val-

ues: min, max, avg, sum and group (only for
categorical fields)

channel string Visualization channel on which the field
should be mapped

datatype string Data type of the field
label string Name of the selected field

Table 3.5: channelMappings object description

- visIndex: The index of the currently created visualization. It is actually
only used as a parameter for the brushingObserver so that it knows
which visualization to update. The brushingObserver will be explained
in detail later on in this subsection.

applyFilter - In order to keep the logic separated from the drawing, the
data filtering mechanism is created outside the visualization. Thus, the
applyFilter method should only apply the already filtered data to the
visualization. As a single parameter, it receives an array of data rows, which
fit into the constraints of the filtering done outside of the visualization and it
should update the current visualization accordingly. The data points in the
visualization should be filtered, i.e. the data points which are not in the data
rows parameter of the applyFilter method should be hidden, and not the
dataset of the visualization simply limited and redrawn. Figure 3.32 shows
a not filtered visualization on the left. In the middle is a correctly filtered
visualization and on the right a wrongly filtered one, with the same filter
applied.

CHAPTER 3. VISUALIZER 82

Figure 3.32: a) not filtered bar chart, b) correctly filtered bar chart c) wrongly
filtered bar chart

applyCssToSvg and revertCssFromSvg - Those two methods are only called
before and after the download of the visualization. The purpose of those two
methods is to apply styles directly to the SVG elements before a download,
and to remove them after. If a visualization has to be downloaded, it has to
be rendered into a canvas before. Since the used library canvg can only use
styles, which are inline, the styles have to applied there. The revert method is
called to revert the changes on time if they might have a negative impact on
the visualizations.
brushingObserver - The brushingObserver is a global helper object, which
all of the visualizations can use. A newly created visualization has the op-
tion to register itself to the brushingObserver and pass to it its visIndex
and a callback function. With the help of the brushingObserver, the visu-
alization has the option, every time a selection has been done in this visual-
ization, to notify the other visualizations to update their view. Consequently,
the visualization also passes a callback to the brushingObserver, which is
called every time another visualization updates their view. In order to be
able to use the brushingObserver, a visualization has to register itself in the
brushingObserver. This is done by calling the registerListener method of
the brushingObserver. The registerListener method expects three param-
eters: (i) a callback function for updating the visIndex (ii) the visIndex of the
current visualization, and (iii) a callback function which is called when an up-
date happened. The passed callback function for updating the visualizations
receives two parameters when it is called, the selected data rows and a list of
field names. With that information the visualization can update its view to the
selected data from another visualization. For example, it can highlight certain
data points in the visualization. The update method in the brushingObserver
is called to signalize that a selection has happened. This method has four pa-
rameters: (i) visIndex of the current visualization, (ii) selected data rows, (iii)
selected dimensions - deprecated, always null and (iv) the list of field names.

CHAPTER 3. VISUALIZER 83

Every time a data point is highlighted in a visualization or a number of data
points get selected, this method should be called. There are also two other
methods in the brushing observer, which are notable:

- unregister(visIndex) - unregisters the visualization from the brushing
Observer. Should be done upon closing.

- updateEmpty(visIndex) - updates other visualizations with an empty se-
lection.

After the visualization has been finished, and the visualization folder has the
same structure, which was already described at the start of the subsection
about the integration of visualizations; the folder can be zipped and uploaded
into Visualizer. Clicking the “Upload Visualization” button will open a dialog
which prompts the user to specify the configuration of the visualization. As can
be seen in figure 3.33 in the dialog, the user is prompted to add the zipped
package and to specify the structure of the visualization.

Figure 3.33: Upload Visualization dialog

This structure specification includes: (i) the name which should be used for
the visualization in Visualizer, (ii) the name of the main file and the configura-

CHAPTER 3. VISUALIZER 84

tion for the visual channels, (iii) a checkbox if aggregation is mandatory, (iv)
the limit for the maximum number of data points before a warning is issued,
and (v) the visualization channel specification. The description of every chan-
nel is separated visually by being in a little box. The channel description is
needed for the rule based recommender, so that it can toggle the visualization
when the criteria for the visualization are met. As mentioned in the subsection
about the chart ontology description, for every channel it has to be specified
what data types are supported, if the channel is mandatory and if it can be
duplicated. Additionally, it is also possible to give a name to the visualization
channel. The name for the visualization channel is only used inside the newly
uploaded visualization. After all the information has been provided, the visu-
alization can be uploaded. As soon as it has been processed on the server, the
newly created visualization is integrated into the VisPicker. As can be seen in
figure 3.34, the visualizations created by the user have an overlay icon to give
the user a visual cue that it is not part of Visualizer’s default visualizations.

Figure 3.34: VisPicker with a user added visualization

Remove User Visualization

The “Remove User Vis” button is only enabled if at least one user uploaded
visualization is present in Visualizer. It enables the removal of the custom
visualizations. This can be done either to replace a custom visualization with
a newly updated one, or to reduce the number of custom visualization to de-
clutter the VisPicker. In figure 3.35 the “Remove User Visualization” dialog
can be seen. It consists only of a selectbox with a list of custom visualization.
Selecting one visualization and clicking on accept will remove it from the user
folder on the server and automatically update VisPicker.

CHAPTER 3. VISUALIZER 85

Figure 3.35: Remove User Visualization dialog

Remove User Visualization

As a part of its personalized component, Visualizer also supports personalized
recommendations for visualizations. This component is still at an experimen-
tal stage. There are multiple reasons for this, but the most important ones
are, that the personalized visualization recommender service is still being de-
veloped and that the use case for the usage of the recommender is not the
exact same one the recommender expects. The recommender was actually
designed to be fed a whole dataset at once, to analyze it itself, and based on
the dataset alone to generate a list of visualization recommendations for this
dataset. In Visualizer this step is skipped and the recommender directly re-
ceives the compatible visualizations and mappings from fields to visualization
channels. Furthermore, the personalized visualization recommender is at its
infancy and consequently lacks enough data for accurate recommendations.
The personalized recommender can be used similarly like the rule based rec-
ommender by first selecting the fields of interest. The only difference is that
the user has to explicitly demand a recommendation by clicking on the “Get
Recommendations” button. Clicking the button opens a dialog, which can be
seen in figure 3.36, prompting the user to enter tags before getting recom-
mendations.

Figure 3.36: Add tags dialog

CHAPTER 3. VISUALIZER 86

Those tags can be seen as a kind of search query. The entered tags represent
the topics of interest. Clicking on “Accept” in the dialog will send the tags
and all the mappings from the fields to visual channels to the recommender
service. Based on those topics and the selected fields, the recommender gen-
erates its ranking for the compatible visualizations. On the client’s side, the
user will notice that after sending the request for a recommendation, in the
VisPicker’s title bar a loading indicator is displayed. This loading indicator
shows that a visualization recommendation is pending. When the recommen-
dation arrives, the indicator is removed and an active R can be seen. Clicking
on this button will change the view in VisPicker to the received ranked visual-
izations, which can be seen in figure 3.37.

Figure 3.37: VisPicker with ranked visualizations

The visualizations are ranked with 1 to 7 stars. 1 indicates that the fields
are not suited for this visualization, while 7 indicates that the fields are well
suited for this visualization. The recommended visualizations already have a
set mapping from fields to channels, thus clicking a recommended visualiza-
tion will open it with this recommended configuration. Figure 3.38 shows such
a visualization created from a visualization recommendation.

CHAPTER 3. VISUALIZER 87

Figure 3.38: Visualization created through the recommended ranked visual-
izations

For the most part, the visualization looks the same as the others, but there
is a slight difference in the title bar of the visualization. First, the option to
remap the channels is gone, because the channel mapping is set as a part of
the recommendation and second there is an additional button. Clicking these
buttons opens a new feedback dialog (figure 3.39) for this recommended vi-
sualization. In this feedback dialog, the user can again enter tags and addi-
tionally to the tags it is also possible to rate the recommended visualization
from 1-7 on a Likert-scale[Likert, 1932]. The tags and the rating are sent to
the recommender as a feedback which the recommender can use to improve
its visualization recommendations in the future.

CHAPTER 3. VISUALIZER 88

Figure 3.39: Tag and Rate dialog: This dialog can be used to give feedback for
the generated recommended visualization

3.5 Summary

This chapter gave an overview over Visualizer as a whole. In addition to the
explanations of every little detail on the front end and the back end, the ar-
chitecture of the web app and the external services were underlined as well.
However, knowing what is included in the tool does not necessarily mean to
know how to use it, or in what this tool excels. Therefore the next chapter
will cover use cases, which will demonstrate what makes the tool something
special.

Chapter 4

Applications

This section will demonstrate the major applications of Visualizer based on
three scenarios. The first scenario will show how to approach the visual ex-
ploration of a dataset. Data will be loaded into Visualizer, the data will be
prepared and then visualizations will be created in the Visualization Dash-
board to detect patterns in the data. Based on this scenario the general usage
will be presented. The second scenario will demonstrate how it is possible to
integrate Visualizer into an existing web page and configure it to display visu-
alizations for different datasets with a set schema. This scenario is interesting
if Visualizer should be used with datasets, which are always generated by the
same schema, but only have different content. An example would be the learn-
ing behaviour of a student during a course. The third scenario will show how
to extend Visualizer’s basic visualization set, by writing and uploading a user
defined visualization.
For the purposes of all the demonstrations in this section, the Open University
Learning Analytics dataset1 was used, specifically the studentInfo.csv, which
contains various information about students taking courses in a virtual learn-
ing environment. The relevant anonymized information includes gender, loca-
tion, education degree, course taken, age band, grade, disability, number of
previous exam attempts and the number of studied credits.

4.1 Data Preparation and Visual Exploration

As mentioned above, the dataset used in this subsection will be the stu-
dentInfo.csv of the Open University Learning Analytics dataset. The loaded
data will be prepared and after the preparation, the different fields will be
visually analyzed in the Visualization Dashboard.

1https://analyse.kmi.open.ac.uk/open_dataset

89

https://analyse.kmi.open.ac.uk/open_dataset

CHAPTER 4. APPLICATIONS 90

4.1.1 Data Preparation

When looking at the loaded dataset in figure 4.1, two highlighted parts can
be noticed. The first interesting aspect is that the dataset contains empty
cells. Generally, empty cells mean missing data, thus two option arise. You
can either remove the rows or columns containing those cells, or you can set a
value to the empty cells; both of it is possible in Visualizer. Even if the empty
cells cannot be directly seen, it can be determined that the dataset contains
empty cells if the buttons for the removal of incomplete rows or columns are
active. For this demonstration the rows containing the empty cells will be
removed by clicking on the “Remove Incomplete Rows” button.

Figure 4.1: Dataset Table with loaded studentInfo.csv

The second highlighted aspect is that the student id under the field
id_student was detected as belonging to the type integer, which is wrong.
The values in this column should actually be detected as categorical fields,
but because all the values in this column are numbers, this field is recognized
as being of the type integer. To fix this, the type of this field will be changed
manually to string, by clicking on the type and selecting in the generated
selectbox the type string.
Furthermore, the imd_band field does not contain any valuable information

CHAPTER 4. APPLICATIONS 91

for non-UK people. When looking at the description of the dataset and the
meaning of the field, it says that the contents of the field represent the index
of multiple deprivation2, which is not of interest for this demonstration, so
it will be deactivated. After changing the data type of the id_student field,
removing the rows containing empty cells and deactivating the imd_band
field, the Dataset Table with the loaded dataset will look as in figure 4.2. At
this point it is possible to proceed to the Visualization Dashboard.

Figure 4.2: Dataset Table with prepared data from the studentInfo.csv dataset

4.1.2 Visual Data Exploration

Due to the difficulty to see and find patterns in tables, it is much better to
resort to visualizations, to aggregate and display data in a form which en-
hances the possibility to draw conclusions. Even if the user does not know
correctly what he is interested in, he has the option to select an arbitrary num-
ber of fields which he thinks he is interested in and create visualizations which
might lead to new insights. Figure 4.3 shows the Visualization Dashboard for
the studentInfo.csv dataset after the manipulations on the dataset have been
performed. As can be seen, the id_student field is in the categorical fields
window and imd_band is missing.

2https://www.gov.uk/government/statistics/english-indices-of-deprivation-
2015

https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015

CHAPTER 4. APPLICATIONS 92

Figure 4.3: Visualization Dashboard with loaded data

Composition of class

The first kind of data, which will be explored, are the student compositions
of the classes. For this, it is possible to make use of the computed count
field. Clicking on a categorical field will create the computed numerical field
consisting of a “#” sign and the concatenation of the names of the selected
categorical fields. Three bar charts will be created, one to show the number
of students per gender, one per age band and one per education. In addition to
the bar charts, pie charts were created for the number of students concerning
their gender and age band, in order to visually show a ratio of the different
groups. The results can be seen in figure 4.4, which shows only the created
charts so that the values can be better seen.

CHAPTER 4. APPLICATIONS 93

Figure 4.4: Visualizations created to for course student compositions

The bar chart and pie chart for the number of male/female students show
that there are noticeably more male students registered for the course. When
looking at the age band, it seems that the group of students aged 35 or lower
dominate the student composition, and that the group of students below 55
take up almost all of the group. Looking at the education level, most of the
students have A level or equivalent education or lower than A level. To clarify,
A level education is an educational level specific to the UK which generally
takes 12 years of education.

Effort and payoff

For the next example, the numerical fields for the number of previous attempts
and studied credits, which are already available, will be explored. For each
of those two numerical fields, gender and code module will be selected and a
grouped bar chart will be created. Thus it is possible to see students of which
gender got more credits and which tried more often per module. The numbers
used for the charts are not absolute numbers, as in the previous example,
but averages. Looking at figure 4.5 it is evident that even though the last
example has shown that there are fewer female students, on average they are
more ambitious than their male colleagues and get more credits. The other

CHAPTER 4. APPLICATIONS 94

chart shows that female university students try exams more often, which could
either mean that they fail at first and then study harder, or that they are not
satisfied with the grade and improve.

Figure 4.5: Comparison of effort for female and male students

Final result and studied credits per educational level

In the last example, two visualizations will be created, one pie chart and one
grouped bar chart. The pie chart will display the final result of the students
as a ratio of the entire number of the students, while the grouped bar chart
will compare the final result with the number of studied credits and the ed-
ucational level of the students. Figure 4.6 a) shows both charts one below
each other. It is very noticeable that not that many students have passed the
courses and that the pattern is very similar across all educational levels. In
order to make it easier to compare the differences in studied credits per ed-
ucational level of students who passed, it is possible to use the feature of the
dashboard which links visualizations with one another. Thus, it is possible
to simply selected “Pass” in the pie chart and only the passed bars will be
highlighted in the grouped bar chart. Figure 4.6 b) shows this selection. It
is interesting to note about this current view that the students who have a
post graduate education have about the same number of studied credits as
students who do not have a degree yet.

CHAPTER 4. APPLICATIONS 95

Figure 4.6: a) Final results compared to educational level and b) Student who
passed highlighted

4.1.3 Sorting and Filtering

Interesting pieces of information are also the number of students per region,
and which particular regions most students come from. For this purpose, a
bar chart can be created by selecting the categorical field region and the
computed numerical field #region. It seems that the bars which get displayed
are in no particular order, neither alphabetically nor based on value. The data
is simply displayed as it comes from the dataset. In order to change that, the
sorting function can be used, and the bar chart is sorted based on value. The
unsorted and sorted bar chart can be seen in figure 4.7.

CHAPTER 4. APPLICATIONS 96

Figure 4.7: Bar chart as first created (left) and sorted bar chart (right)

With the help of the sorting functionality that is part of the visualization, it
is now easily possible to determine the most frequent regions based on the
number of students. Assuming that the regions with over 3000 students are
relevant for examination, it is difficult to see if the “North Western Region” and
“South Region” pass this mark or not. For a fine tuning of the visualization, the
filtering option can be used. By simply setting the lower bound for “#region”
to 3000, all the bars below that threshold are hidden. Figure 4.8 shows the
filtering dialog and the result of the filtering. At this point it is evident when
looking at the filtered bar chart that “North Western Region” has below 3000
students and that “South Region” has more.

CHAPTER 4. APPLICATIONS 97

Figure 4.8: The filtering dialog of the bar chart (left) and the filtered bar chart
(right)

4.1.4 Conclusion

This subsection has shown a procedure how to explore and prepare a dataset
and how to explore the data with Visualizer. It is also possible to share the
insights by creating a bookmark link and sending it to someone else, or to
store the link as a bookmark in the browser for later exploring. There are, of
course many more ways to engage in the exploration of data, and it is up to
the user to find a way which best suits him.

4.2 Integration of Visualizer into an existing

web page

The previous subsection has shown how a dataset can be manually explored,
but which options are there if certain results should be presented to someone
in an easily understandable way, without the need to specify how to arrive
there? The solution for this lies in Visualizer’s ability to store a configuration
in a link which automatically generates the visualizations from the dataset.
In combination with datasets which can be loaded remotely, the usage of a
parameter to automatically disable the navigational UI elements and under-
standing the URL API of Visualizer, it is possible to integrate visualizations
into web pages and display different datasets with the same schema automati-
cally on page load, or even generate them with a button click. This is possible

CHAPTER 4. APPLICATIONS 98

due to the fact that Visualizer is controllable to a great extent via the URL,
and this section will show how it is possible to create navigational elements
which allow content to be displayed automatically on a web page with the help
of Visualizer. In addition to visualizing the data, interactive features such as
brushing, filtering and sorting of the visualizations can also be used in the
integrated visualizations.

4.2.1 Demo Page Overview

For the purpose of this demonstration a local demo page has been created,
which can be seen in figure 4.9, and it consists of: (i) a control area (on the
left side) with a select box for choosing a data source and multiple buttons to
generate visualizations with, and (b) an iframe (the white area) which will be
used to host Visualizer. The iframes source is set to “about:blank” when the
page is loaded and is then later changed when a button is clicked.

Figure 4.9: Visualizer integration: Demo page

As a dataset, the studentInfo.csv of the Open University Learning Analytics
dataset has been chosen again, but in contrast to the previous subsection, this

CHAPTER 4. APPLICATIONS 99

dataset has been sliced by code module. Therefore, there will be six differ-
ent student datasets, and additionally one for the whole class which will be
selectable via the select box. This should demonstrate that the created con-
figuration for Visualizer does not care about the contents of the file, but only
the structure. When clicking the buttons they will generate different visualiza-
tions which are described on the buttons themselves. The visualizations are
created by generating a URL and setting the src attribute of the iframe to this
URL.

4.2.2 Generating a URL

The way the URL is generated is identical to how Visualizer generates the
URL when bookmarking a configuration. The only difference is that the user
has to generate the URL himself. In addition to the steps that Visualizer
goes through when creating a URL, it is possible to add another parameter
to the URL to jump directly to the preview view. This is done by appending
“&presentationMode=true” to the generated URL. All in all, the structure of
the URL with the used presentationMode parameter consists of four parts:

- host: the URL where Visualizer is hosted

- dataurl: the URL which points to a .csv file

- config: a stringified json object which contains all the information about
the displayed visualizations, their size and position

- presentationMode: if set to true, it displays only the visualization win-
dows

Therefore, a URL with all parameters set would have the following structure:

host + "?dataurl=" + urltocsv + "&config=" + conf + "&presentationMode=true"

The host parameter will be set to the same value in all of the following
examples, namely:

https://vizrectest.know-center.tugraz.at

The parameter presentationMode will also be always set to true.
urltocsv will change depending on the value selected in the select box and
point to the dataset of the selected code module. All the datasets are hosted
on the same server as Visualizer.
The value of the config parameter is generated with the following steps:

https://vizrectest.know-center.tugraz.at

CHAPTER 4. APPLICATIONS 100

1. Create an array of action objects in the order in which the actions should
be applied (actionStack)

2. Convert the array into a string with the JSON.stringify() method

3. Encode the string with the encodeURIComponent() method

The mechanics of the actionStack have already been dealt with in section 3.3.3
and section 3.4.1 when talking about the “Get Bookmark Link” feature. Addi-
tionally, all the possible action objects have a detailed description in Appendix
A, therefore the complete explanation will be omitted here, and only the used
actionObjects will be explained.

4.2.3 Generating Visualizations

Each of the buttons on the demo page have similar functionalities. They gen-
erate different actionStacks and then set the URL of the iframe accordingly.
The actionObjects used in the demo page will be used for the generation of
different visualizations and the actionObject for setting a brush.

Single Chart Creation

The four buttons in the demo page generate one visualization which fits the
whole iframe. How this is achieved will be shown by explaining the code of
the function for the “Final result” button and then pointing out the differences
of the others.
Clicking the button calls the onclick handler of this button which looks as
follows:

CHAPTER 4. APPLICATIONS 101

1 function showBarchart(){
2 var actionStack = [];
3 actionStack.push({
4 ’action’ : ’visualization’,
5 ’visualization’ : "barchart",
6 ’labels’ : "final_result|#final_result",
7 ’aggregations’: ["","count"],
8 ’visTitle’ : ’Final Result’,
9 ’sortBy’: {

10 ’ascending’ : true,
11 ’label’: ’final_result’
12 }
13 });
14

15 var csvURL = $("#dataSource").val();
16 var config = encodeURIComponent(JSON.stringify(actionStack));
17 var iframeURL = visualizerHost;
18 iframeURL += "?dataurl=" + csvURL;
19 iframeURL += "&config=" + config;
20 iframeURL += "&presentationMode=true";
21 document.getElementById("visualizerFrame")
22 .setAttribute("src", iframeURL);
23 }

This function generates an actionObject to create a bar chart with the cat-
egorical field “final_result” and the computed numerical field “#final_result”,
which indicates the count of each entry in the field “final_result”. Addi-
tionally, a title is set for the visualization and the visualization is sorted by
name. The sorting method is explicitly set to guarantee the order of labels,
independent of which dataset has been loaded. This action object is pushed
unto a actionStack. Following that, the actual dataset is determined, by
getting the value set in the select box. After that, the URL for the iframe is
generated by concatenating the host URL of Visualizer, the dataurl of the
dataset, the actionStack and the presentationMode. Setting the URL to the
iframes source will generate a bar chart. Similarly to how the bar chart was
generated, the pie charts for “Gender ratio”, “Age ratio” and “Credits per
education and final result” are generated as well.
Gender ratio sets the visualization attribute of the actionObject to “piechart”
and takes “gender” and “#gender” as fields.
Age ratio uses the same visualization as Gender ratio, but uses “age_band”
and “#age_band” as fields.
Credits per education and final result are slightly different, because they
create a “groupedbarchart” with three fields, namely: “highest_education”,
“final_result” and “studied_credits”. Additionally, the “studied_credits” is
aggregated by calculating the average.

CHAPTER 4. APPLICATIONS 102

All four generated visualizations for different courses can be seen in figure
4.10.

Figure 4.10: Generating Visualizations: (upper left) bar chart, counting final
result occurrences in course AAA (upper right), pie chart with gender ratio in
course BBB (lower left), age ratio in course CCC (lower right), and credits per
education and final result also in course CCC

Single Chart Creation

The two buttons at the bottom create two bar charts in one iframe. While
it is not necessary to consider positioning when creating one visualization,
this changes when creating multiple charts. The default position of every
visualization is the top left corner of the iframe and the default width and
height of the visualization are set to 100%. If more than one visualization was
created with this configuration, they would overlap each other and only the
last one would be seen. Therefore, position and size have to be considered as
well when creating multiple charts with Visualizer.
The button with the label “Average credits and attempts per region” creates
two bar charts: The first bar chart uses the fields “region” and the average of
“studied_credits”. This bar chart has a width set to 50% and height to 100%.
The position is set to top: 0 and left: 0, i.e. it will be positioned in the upper

CHAPTER 4. APPLICATIONS 103

left corner, fill the whole vertical space and half of the horizontal space of
the iframe. The second bar chart uses the fields “region” and the average of
“num_of_prev_attempts”. Width, height and top are the same as in the other
bar chart, but left is set to 50, i.e. it should start in the middle and take up the
other half of the horizontal space. Both visualizations are sorted ascending by
value. Thus, it can be easily seen, from which region in average the students
have studied the most, and from which region the students have in average
the least number of attempts. Figure 4.11 shows the generated bar charts for
the course BBB.

Figure 4.11: Multiple visualizations generated with one click - (left) Average
number of studied credits per region, and (right) Average number of attempts
per region

The two actions pushed to the actionStack in order to create those two bar
charts look as follows:

CHAPTER 4. APPLICATIONS 104

1 {
2 ’action’ : ’visualization’,
3 ’visualization’ : "barchart",
4 ’labels’ : "region|studied_credits",
5 ’aggregations’: ["","avg"],
6 ’visTitle’ : ’Average credits per region’,
7 ’left’ : 0,
8 ’top’ : 0,
9 ’width’ : 50,

10 ’height’ : 100,
11 ’sortBy’: {
12 ’ascending’ : true,
13 ’label’: ’studied_credits’
14 }
15 }
16

17 {
18 ’action’ : ’visualization’,
19 ’visualization’ : "barchart",
20 ’labels’ : "region|num_of_prev_attempts",
21 ’aggregations’: ["","avg"],
22 ’visTitle’ : ’Average number of attempts per region’,
23 ’left’ : 50,
24 ’top’ : 0,
25 ’width’ : 50,
26 ’height’ : 100,
27 ’sortBy’: {
28 ’ascending’ : true,
29 ’label’: ’num_of_prev_attempts’
30 }
31 }

If multiple visualizations are created in the same iframe, they are automat-
ically linked with each other. This means that highlighting bars in one bar
chart will highlight the matching bars in the other bar chart. This is especially
useful for comparing different values of the same category. It is also possible
to activate a brush upon creation of the visualizations in order to highlight
certain aspects for the user in advance. This can be done by pushing an
actionObject with the brush action onto the actionStack. It is important to
note that if a selection should be applied, this actionObject has to be pushed
first. The button with the label “Average credits and attempts per region
(brush)” utilizes this actionObject. Clicking on this button will generate
the same bar charts as in figure 4.11, but will always highlight the regions
“Scotland” and “Ireland” after being created, which can be seen in figure
4.12.

CHAPTER 4. APPLICATIONS 105

Figure 4.12: Multiple visualizations with activated brush

This can be achieved by pushing the following actionObject on the action-
Stack, before pushing the objects for the visualizations.

1 {
2 ’action’ : ’brush’,
3 ’labelList’ : [’region’],
4 ’selectedData’ : [["Scotland"],["Ireland"]]
5 }

4.2.4 Usages

The main advantage of this is that web pages do not have to implement the
data visualizations themselves. They can embed Visualizer in their web page
and pass the data and the desired visualizations, without having to worry how
to parse the CSV file, or how to do the actual drawing. The configuration fea-
tures allow to display the same visualizations for different datasets. This could
be utilized for example in a class, in which a CSV file showing his progress is
generated for every user. Therefore, visualizations could be automatically gen-
erated for each student by only loading a different dataset. An example can be
seen in figure 4.13 where the “final_result” is displayed for different courses.

CHAPTER 4. APPLICATIONS 106

Figure 4.13: Final result configuration applied to different courses: (upper
left) Course AAA, (upper right) Course BBB, (lower left) Course CCC, and
(lower right) Course DDD

4.3 Extension of Visualizations

The third major application of Visualizer is the extension of Visualizer itself
by writing and integrating one’s own visualizations. This is done by imple-
menting Visualizer’s chart API and uploading the visualizations to Visualizer
as a logged in user. Before starting to explain the process of writing and
uploading one’s own visualizations, the API will be explained. The responsi-
bilities in Visualizer are clearly divided; the framework handles all the data
manipulations and passes the prepared data to the visualizations so that the
visualizations themselves are only responsible for drawing the data in a re-
sponsive manner. Responsive in this case means that the visualization should
adapt to the size changes of the container into which it gets drawn. Therefore,
the API is limited to passing data to the visualizations and calling the drawing
function. The drawing functionality is the minimum functionality which has
to be implemented for the new visualization to work with Visualizer. There
are additional functionalities (filtering, brushing, downloading) which do not
have to implemented, but which break proper integration of the visualizations
if missing.

CHAPTER 4. APPLICATIONS 107

4.3.1 Chart API

The whole chart API with the description of every variable and function can be
seen in Appendix C. The focus in this subsection will be on the four functions
which are meant to be written by the creator of a new visualization, and which
are implemented by every visualization, namely:

- drawVisualization

- applyFilter

- applyCssToSvg

- revertCssFromSvg

It is suggested that the developer overwrites only those four functions. The
other functions guarantee the proper handling of the calls from the frame-
work. The other functions can be also overwritten for custom functionalities,
but this is not recommended.

drawVisualization

The drawVisualization function is the most important function of the whole
visualization. It is called every time the visualization should be redrawn. This
happens when the visualization window is resized, a channel remap occurs or
the data rows are sorted. The function receives three parameters: datarows
[array] – This is a two-dimensional array. Each entry in this array holds
one row from the selected fields. Therefore, this parameter contains the
raw information which should be drawn. An example of the contents for a
datarows array of a bar chart would be:

1 [
2 ["audi", "10"],
3 ["bmw","15"],
4 ["ford","7"],
5 ["vw","12"]
6]

channelMappings [array] – This is an array of objects. Each object describes
a mapping from a selected field to a visual channel of the visualization. Based
on this parameter, the visualization can determine which index of each of the
rows goes unto which visual channel. In addition to the mapping, this object
also holds the type of the selected field and the aggregation if it is a numerical
field. An example of a channelMappings array based on the datarows shown
previously would be:

CHAPTER 4. APPLICATIONS 108

1 [
2 {
3 "channel" : "x-Axis",
4 "label" : "manufacturer",
5 "datatype" : "string",
6 "aggregation" : ""
7 },
8 {
9 "channel" : "y-Axis",

10 "label" : "soldUnits",
11 "datatype" : "integer",
12 "aggregation" : "sum"
13 }
14]

visIndex [integer] - This is the index of the created visualization, which
is also stored in the global variable gnChartRowIndex. It is only used for
initializing the brushingObserver, which is described in Appendix C.

applyFilter

The applyFilter function should change the visualization so that only the
data rows passed to the function stay displayed, while the others are hidden.
It is important to emphasize that the visualization should be filtered and not
only redrawn with the limited dataset. The difference is that the whole view
stays the same and that the points of interest are accentuated. This can be
seen in figure 4.14. The applyFilter function gets only one parameter, and
this parameter is called filteredDatarows, which is a subset of the data rows
used in the visualization.

Figure 4.14: a) not filtered bar chart, b) correctly filtered bar chart c) wrongly
filtered bar chart

CHAPTER 4. APPLICATIONS 109

applyCssToSvg

The applyCssToSvg function does not receive any parameters and is more of a
helper function. This function is called shortly before the visualization down-
load is started. It should be used to temporarily write all of the styles applied
to the SVGs from the CSS directly inline. This step is necessary, because when
rendering the SVGs into a canvas element, the styles are only applied, if they
are inline. If the download of the visualization should be prohibited, because
it results in broken or faulty images, the function can return false and an alert
will automatically pop up to notify the users that this visualization does not
offer a download option.

revertCssToSvg

revertCssToSvg is also a helper function like applyCssToSvg and does not
receive any parameters either. This function is called after the download of
the image of the visualization has finished and can be used to remove the
redundant inline styling from the SVGs.

4.3.2 Project Structure

Knowing the chart API it is possible to start writing one’s own visualizations,
but before starting to actually write anything, the project structure has to be
set up. When starting a new project, the minimum required file structure
would look as follows:

libs/
css/
icon.png
main.js

The libs folder should hold all the libraries and additional JavaScript files that
the visualization needs. All the files will be automatically loaded in Visualizer
when the visualization gets created. Similarly to the libs folder, the css folder
should contain all the stylesheets needed for the visualization, which will also
load automatically. Both the libs and the css folder do not support hierarchies,
therefore all of the .js and .css files should be put directly into those folders.
As can be seen, there are no html files. It is expected of the developer of the
new visualization to draw the visualizations via JavaScript directly to the html
body. This is possible due to the fact that every visualization exists in its own
iframe and is isolated from the rest of the page. Therefore, the developer of
the visualization can use libraries and stylesheets as needed, without having

CHAPTER 4. APPLICATIONS 110

to worry to ruin anything in the visualization framework. The main.js file
should implement the chart API and will be called when the visualization gets
created. This file does not have to be named main.js, but can have an arbitrary
name, which will be specified when uploading the visualization.
The last file which has to be added is the icon.png, which should be an icon
for the visualization that will be used in the VisPicker. Ideally, it should have a
resolution of 256 x 256px in order to be sharp enough, without being too big.
The main.js file is the only file in the shown project structure which can be
renamed.

4.3.3 Getting Started

After getting familiar with the chart API and setting up the project structure
for the new visualization, it is possible to start implementing a new visualiza-
tion. The next immediate question which arises is, where to start. A good
starting point is bl.ocks.org3 which offers a rich variety of visualizations done
with D3 under a GPLv34 or MIT5 License. Those visualizations can be taken as
a foundation, but still have to be adapted to work with Visualizer. For demon-
stration purposes, a sankey diagram6 from the blocks page will be integrated
into Visualizer.
After having chosen a visualization to start with, the next step would be to
download all of the necessary libraries and files needed for this visualization.
Inspecting the isolated demo page7 with the developer tools (figure 4.15), it is
possible to see that the files d3.v3.min.js and sankey.js are needed to run this
visualization. Therefore, those files have to be downloaded and put into the
libs folder of the project.

3https://bl.ocks.org/mbostock
4https://opensource.org/licenses/GPL-3.0
5https://opensource.org/licenses/MIT
6http://bl.ocks.org/d3noob/c9b90689c1438f57d649
7http://bl.ocks.org/d3noob/raw/c9b90689c1438f57d649/

https://bl.ocks.org/mbostock
https://opensource.org/licenses/GPL-3.0
https://opensource.org/licenses/MIT
http://bl.ocks.org/d3noob/c9b90689c1438f57d649
http://bl.ocks.org/d3noob/raw/c9b90689c1438f57d649/

CHAPTER 4. APPLICATIONS 111

Figure 4.15: Sankey diagram: Needed libraries highlighted

In this demo of the sankey diagram, the css and main script are embedded di-
rectly into the index.html, which can be seen in Appendix D. For the purposes
of Visualizer, this will have to be split up. Consequently, the contents of the
style tag in the index.html will be put in a newly created sankeyStyle.css and
the contents of the script tag in the main.js file. Before pasting the code from
the demo page in the main.js file, the main.js file has to be set up. The basic
structure of the main.js file would look as follows:

1 applyCssToSvg = function () {
2 return false;
3 }
4

5 revertCssFromSvg = function () {
6 }
7

8 applyFilter = function (filteredDatarows) {
9 }

10

11 var drawVisualization = function (datarows, channelMappings, visIndex){
12 }

Those are the four functions which are recommended to be overwritten so that
the visualization works correctly. In the first step, the code from the script
tag of the index.html of the sankey demo will go into the drawVisualization
function. After the contents of the script tag have been pasted to the
drawVisualization function, the code of the sankey diagram has to be
adapted.
Going through the code top-down, it can be immediately noticed that the
width and height of the visualization are hard-coded to 700 and 300 pixels
respectively, minus the margins. This has to be adapted to the responsive de-
sign of the visualization window so that the width and height of the container

CHAPTER 4. APPLICATIONS 112

are taken. The sankey.js file expects the width, height and margin variables
to be global, therefore the var will be omitted. The code for the width and
height will be changed from:

1 var margin = {top: 10, right: 10, bottom: 10, left: 10},
2 width = 700 - margin.left - margin.right,
3 height = 300 - margin.top - margin.bottom;

to:

1 margin = {top: 10, right: 10, bottom: 10, left: 10};
2 width = window.innerWidth - margin.left - margin.right;
3 height = window.innerHeight - margin.top - margin.bottom;

Furthermore, the selector, where the visualization should be appended,
should be changed from "#chart" to "body". Now, the data has to be adapted
to function properly with the visualization. In its current form, the Sankey
diagram loads the data directly from a CSV file, so the wrapper will have to
be removed, and the datarows parameter passed to the drawVisualization
function mapped correctly in the data variable. In order to do that, it is
first necessary to understand how the Sankey diagram expects the data,
and then the datarows have to be mapped the same way. Looking at the
sankey.csv, which is also in Appendix D, there are three columns in the CSV
file: source, target and value. Or differently put: There are two categorical
columns, followed by a numerical. This will be something which will have
to be considered later, to configure the visualization upload properly. The
d3.csv function parses a CSV and creates an array of objects which have
the attributes of the column names, and the values of the index of the row
from the original CSV file. Therefore, the passed datarows will have to be
transformed from a two-dimensional array to an array of objects with the
attributes: source, target and value. This can be done with a simple .map call
on the datarows array, which looks as follows:

1 data = datarows.map((row) => {
2 let elem = {};
3 elem[channelMappings[0].channel] = row[0];
4 elem[channelMappings[1].channel] = row[1];
5 elem[channelMappings[2].channel] = row[2];
6 return elem;
7 });

The assumption is that channelMappings already describes the channels of
the visualization. Therefore, in the channelMappings object at index 0, the
attribute channel would equal to source, at index 1 to target and at index 2
to value. With this, the new visualization can already be used in Visualizer.

CHAPTER 4. APPLICATIONS 113

After adding an icon, the project structure should now look like this:

libs/
d3.v3.min.js
sankey.js

css/
sankeyStyle.css

icon.png
main.js

The project structure can now be zipped and uploaded to Visualizer.

4.3.4 Uploading the Visualization

In order to upload the visualization, a new user profile has to be created in Vi-
sualizer. This is done by loading any dataset, going to the Visualization Dash-
board and clicking on “Login”, then “Register”. A new user with the name
“visUser” will be created for demonstration purposes. After the user has been
created and the user has logged in, the visualization can be uploaded. This
can be done by clicking on the “Upload Visualization” button. After clicking
on the button, the visualization upload dialog pops up. The fields of the upload
visualization dialog will be filled as follows:

- Visualization name: Sankey Diagram

- Main filename: main.js

- Data aggregation mandatory: True

- Skip aggregation: False

- Max datapoints without warning: 20

Three channels will be created: source, target and value, with the following
description:

- Axis name: source

- Supported types: string, data, location

- Necessity: mandatory

- Occurence: one

- Axis name: target

- Supported types: string, data, location

- Necessity: mandatory

CHAPTER 4. APPLICATIONS 114

- Occurence: one

- Axis name: value

- Supported types: integer, number

- Necessity: mandatory

- Occurence: one

After filling everything out, the Upload Visualization dialog should look like in
figure 4.16.

Figure 4.16: Visualization Upload dialog: Description of Sankey Diagram

Clicking on the “Upload” button will upload the visualization to Visualizer and
update the VisPicker. The sample visualization and the VisPicker with the
Sankey diagram and user overlay icon indicating that it is a user visualization,
can be seen in figure 4.17

CHAPTER 4. APPLICATIONS 115

Figure 4.17: Sankey diagram (left) and VisPicker with user visualization
(right)

4.3.5 Extended functionalities

Currently, the sankey diagram was only adapted to display the data in Visual-
izer correctly, but it does not fully support all of the functionalities yet. In this
subsection the applyFilter and the brushingObserver functionalities will be
added. Additionally, for simplicity reasons, the JavaScript library jQuery was
added to the visualization in order to simplify the process of manipulating
DOM elements.

Store Information in the Visualization

Before starting to add those functionalities, it is needed for convenience to
store the information about every data row to the matching structures in
the visualization, so that they can be found more easily when filtering and
brushing. In case of the sankey diagram, the structures of relevance are the
links between the blocks. Three attributes will be added to each link, namely:
data-source, data-target and data-value, respectively for the information
of each channel per row.
The creation of the links will be changed from:

CHAPTER 4. APPLICATIONS 116

1 var link = svg.append("g").selectAll(".link")
2 .data(graph.links)
3 .enter().append("path")
4 .attr("class", "link")
5 .attr("d", path)
6 .style("stroke-width", function(d) {
7 return Math.max(1, d.dy);
8 })
9 .sort(function(a, b) {

10 return b.dy - a.dy;
11 });

to:

1 var link = svg.append("g").selectAll(".link")
2 .data(graph.links)
3 .enter().append("path")
4 .attr("class", "link")
5 .attr("d", path)
6 .style("stroke-width", function(d) {
7 return Math.max(1, d.dy);
8 })
9 .attr("data-source", function(d){

10 return d.source.name;
11 })
12 .attr("data-target", function(d){
13 return d.target.name;
14 })
15 .attr("data-value", function(d){
16 return d.value;
17 })
18 .sort(function(a, b) {
19 return b.dy - a.dy;
20 });

With this information directly attached to the links, it is much easier to find
the links bound to the rows, because each link represents exactly one row in
the data rows.

Implementing applyFilter

It is important to note that the filtering is completely done by the framework.
The visualization only has to adapt the visualization to the filtered rows which
are passed as a parameter to the applyFilter function. The procedure
of applying the filter is then simple. First, all the links have to be hidden.
After that, the passed filteredDatarows parameter is iterated through and
then each link matching a row is shown again. The code for the complete
applyFilter function looks as follows:

CHAPTER 4. APPLICATIONS 117

1 applyFilter = function(filteredDatarows) {
2 $("path.link").hide();
3

4 if(filteredDatarows.length == 0) {
5 $("path.link").show();
6 return;
7 }
8

9 filteredDatarows.forEach(function(row){
10 $(‘path
11 .link
12 [data-source="${row[0]}"]
13 [data-target="${row[1]}"]
14 ‘).show();
15 });
16 }

Implementing the brushingObserver

In order to implement the brushingObserver it is first needed to register the
visualization on it. This is done by calling the registerListener function of
the global brushingObserver like this:

1 brushingObserver.registerListener((newVisIndex) =>
2 {visIndex = newVisIndex;},
3 visIndex,
4 brush);

The first parameter is a callback function to update the visualization index
of the visualization by the brushingObserver, the second is the index of the
current visualization, and the third is a callback function which gets called
when an update in another visualization happens. The full description of the
brushingObserver can be found in Appendix C.
Having registered the visualization on the brushingObserver it is needed
to implement the passed callback function brush. The callback function has
two parameters. The first parameter are the data rows selected by another
visualization, and the second parameter are the matching labels (field names).
A lot of error detection is needed in this function, because it is not certain
if the selection from another visualization matches the selected fields in this
visualization. Therefore, the first thing to do is to find the matching indexes
in the labelList parameter for the source and target channel. Following
that, arrays for the sources and targets get built, which then get iterated
through and the matching links get highlighted, while the not matching
ones get dimmed by increasing and decreasing the opacity of the links. The

CHAPTER 4. APPLICATIONS 118

implemented brush callback function looks like this:

1 function brush(selectedData, labelList) {
2 let sourceIndex = -1;
3 let targetIndex = -1;
4

5 // gaChannelMappings[0] -> source
6 // gaChannelMappings[1] -> target
7 if(typeof(labelList) != "undefined") {
8 sourceIndex = labelList.indexOf(gaChannelMappings[0].label);
9 targetIndex = labelList.indexOf(gaChannelMappings[1].label);

10 }
11

12 if((sourceIndex === -1 && targetIndex === -1)
13 || selectedData.length === 0) {
14 $("path.link").css("stroke-opacity","0.2");
15 return;
16 }
17

18 $("path.link").removeClass("active");
19

20 let sources = [];
21 let targets = [];
22 selectedData.forEach((row) => {
23 if(sourceIndex !== -1)
24 sources.push(row[sourceIndex]);
25 if(targetIndex !== -1)
26 targets.push(row[targetIndex]);
27 });
28

29 if(sourceIndex !== -1 && targetIndex !== -1) {
30 $("path.link").each(function() {
31 let source = $(this).attr("data-source");
32 let target = $(this).attr("data-target");
33

34 if(sources.indexOf(source) !== -1
35 && targets.indexOf(target) !== -1)
36 $(this).css("stroke-opacity","0.2");
37 else
38 $(this).css("stroke-opacity","0.05");
39 });
40 }

CHAPTER 4. APPLICATIONS 119

41 else if(sourceIndex !== -1) {
42 $("path.link").each(function() {
43 let source = $(this).attr("data-source");
44 if(sources.indexOf(source) !== -1)
45 $(this).css("stroke-opacity","0.2");
46 else
47 $(this).css("stroke-opacity","0.05");
48 });
49 }
50 else if(targetIndex !== -1) {
51 $("path.link").each(function() {
52 let target = $(this).attr("data-target");
53 if(targets.indexOf(target) !== -1)
54 $(this).css("stroke-opacity","0.2");
55 else
56 $(this).css("stroke-opacity","0.05");
57 });
58 }
59 }

With this, the implemented sankey diagram can receive updates from other vi-
sualizations. The only thing left to do at this point is to add the functionality to
select links in the visualization and to trigger updates in other visualizations.
In order do that, each link will get an onclick function. This onclick function
has three very simple tasks. The first is to toggle the “active” class on the
link, which should highlight the link. In order to enable the highlighting, the
CSS rule .link.active {stroke-opacity: .5 !important;} will be added
to the sankeyStyle.css. The second task is to gather all the links which have
the “active” class, and for each link a data row based on the data-source and
data-target attributes have to be created. Only the categorical attributes
are relevant for the brushingObserver. Finally, the third task is to call the
update function of the brushingObserver with the selected rows, the index of
the visualization and the labelList. The code for adding and implementing
the click-handler looks as follows:

CHAPTER 4. APPLICATIONS 120

1 $("path.link").on("click", function(event){
2 $(this).toggleClass("active");
3

4 let labelList = [gaChannelMappings[0].label,
5 gaChannelMappings[1].label];
6

7 let selectedData = [];
8 $("path.link.active").each(function() {
9 selectedData.push([$(this).attr("data-source"),

10 $(this).attr("data-target")]);
11 });
12

13 brushingObserver.update(visIndex,
14 selectedData,
15 null,
16 labelList);
17 });

Conclusion

After adding jQuery, implementing the applyFilter function and the
brushingObserver, and updating the sankeyStyle.css, the visualization
project is zipped and uploaded again to Visualizer. The old visualiza-
tion should be removed beforehand to not clutter the VisPicker. The
applyCssToSvg and revertCssToSvg have been omitted from the description
of the upload of a new Visualization, because those functionalities have much
less importance and do not break immersion when exploring data. All in all
a good insight has been given into how simple it can be to integrate new
visualizations in Visualizer.

4.4 Summary

In this chapter, the main applications of Visualizer were demonstrated by go-
ing through different scenarios step by step and showing how different tasks
can be accomplished with relative ease. The next chapter will look at the
performance of Visualizer and what its limitations are.

Chapter 5

Benchmarks

5.1 Introduction

In the previous chapters, the components of Visualizer and its main applica-
tions were explained in detail. This chapter will cover benchmarks for certain
key computations in Visualizer based on differently sized datasets.
For the benchmarks, the dataset for the real estate transactions in the Sacra-
mento area 1 was taken again, and the rows were duplicated to create differ-
ently sized datasets. At first, from the original file the number of rows were
duplicated to create one million rows. Following that, those one million rows
were copied and datasets were created which contained one to five million
rows. This was done to ensure a linear increase in data between the differ-
ently sized datasets.
The following three benchmarks in the most critical parts of the application
were performed:

1. Loading the dataset – This is the time which Visualizer takes to load the
dataset from the file system into memory and display it in the Dataset
Table. Additionally, the memory consumption for the browser tab was
monitored.

2. Aggregating data – The time was measured which Visualizer takes to
aggregate the selected fields prior to displaying the visualization.

3. Applying configurations – The time was measured to apply certain con-
figurations to datasets

The machine on which the benchmarks were performed was a Lenovo
Thinkpad t470p with the following specification:

1http://samplecsvs.s3.amazonaws.com/Sacramentorealestatetransactions.csv

121

 http://samplecsvs.s3.amazonaws.com/Sacramentorealestatetransactions.csv

CHAPTER 5. BENCHMARKS 122

CPU Intel Core i7-7700HQ @2.8 GHZ
RAM 16GB DDR4
SSD 512GB
GPU NVidia GeForce 940MX
Operating System Windows 10 Pro 64-Bit

Table 5.1: The specification of the machine the benchmarks were run on

The web browser in which the benchmarks were performed was Google
Chrome2 with the version 63.0.3239.108.
In order to ensure that the benchmarks were carried out fairly, before starting
each benchmark type, the machine on which the benchmarks were performed
was restarted. After restarting the machine, only the web browser was
started, and all nonessential services were disabled. Additionally, all plug-ins
in the browser were disabled. Every single benchmark was run in a new
incognito window of Chrome to ensure that Visualizer gets loaded every time
with a fresh browser cache.

5.2 Loading the dataset

As was explained in the chapter 3, loading the dataset from the file system
and displaying it in the browser requires multiple steps. First, the CSV file
has to be parsed and the data structure containing the raw entries from the
CSV file has to be created. Following that, certain computations have to be
performed on the raw data, like determining the data type or counting the
unique elements in a column. All of this can take a substantial amount of time
and memory. Therefore, this benchmark should showcase the performance
and limitations regarding the size of the datasets in Visualizer. The time mea-
suring starts when the Accept button is clicked on the file selection page. The
time stops when the complete Dataset Table is displayed. This is also the mo-
ment when the memory consumption is measured in the web browser’s task
manager. Figure 5.1 shows the memory consumption of Visualizer before a
dataset is loaded.

Figure 5.1: Memory consumption of Visualizer before a dataset gets loaded

The benchmarks were performed five times for every dataset to eliminate pos-
sible spikes. The tables 5.2 to 5.6 display the results of the benchmarks.

2https://www.google.com/chrome/browser/desktop/index.html

 https://www.google.com/chrome/browser/desktop/index.html

CHAPTER 5. BENCHMARKS 123

Time in ms Memory in KB
1. 4474,29 933300
2. 4607,92 967292
3. 4606,51 966872
4. 4605,98 966360
5. 4551,89 933552

AVERAGE 4569,318 953475,2

Table 5.2: Time taken to load the dataset and memory consumption - 1000000
rows

Time in ms Memory in KB
1. 10734,76 1555088
2. 9568,18 1569364
3. 9538,96 1569556
4. 9648,87 1557092
5. 9555,59 1569260

AVERAGE 9809,272 1564072

Table 5.3: Time taken to load the dataset and memory consumption - 2000000
rows

Time in ms Memory in KB
1. 16497,33 2317968
2. 14511,47 2320516
3. 14644,07 2321967
4. 14537,47 2320072
5. 14603,3 2319924

AVERAGE 14958,728 2320089,4

Table 5.4: Time taken to load the dataset and memory consumption - 3000000
rows

CHAPTER 5. BENCHMARKS 124

Time in ms Memory in KB
1. 21960,27 2903260
2. 19903,38 2903332
3. 19725,38 2903428
4. 19754,14 2903172
5. 19383,16 2903652

AVERAGE 20145,266 2903368,8

Table 5.5: Time taken to load the dataset and memory consumption - 4000000
rows

Time in ms Memory in KB
1. N/A N/A
2. N/A N/A
3. N/A N/A
4. N/A N/A
5. N/A N/A

AVERAGE N/A N/A

Table 5.6: Time taken to load the dataset and memory consumption - 5000000
rows

Figure 5.2 shows the time and memory consumption as line charts. As can be
seen in this figure, the time taken and the memory consumption grows linearly
with the number of rows. It is noteworthy that the dataset with 5 000 000 rows
could not be loaded. This is due to two reasons:

1. Google Chrome has a memory limitation per browser tab of 4GB. This is
by design, as certain attacks can be performed by allocating more than
4GB of memory3

2. While loading the dataset, the memory consumption temporarily spikes
over the recorded end memory consumption. Monitoring the memory
spikes showed that the last spikes happened at around 3.7 GB of memory
usage in the tab before the crash happened.

Therefore, the dataset with 5 000 000 rows will be omitted from now.

3https://bugs.chromium.org/p/chromium/issues/detail?id=416284#c5

https://bugs.chromium.org/p/chromium/issues/detail?id=416284#c5

CHAPTER 5. BENCHMARKS 125

Figure 5.2: Line charts showing linear increase in time and memory for linear
increase in the number of rows

This benchmark showed that while the time taken to load the dataset into
Visualizer is actually pretty fast, the memory consumption can cause many
troubles and a solution for bigger datasets should be considered.

5.3 Aggregating data

The process of visual exploration of data takes the creation of multiple visu-
alizations, therefore, the time to aggregate the data of the selected fields has
to be fast to ensure the user can progress with his exploration more swiftly.
Each visualization takes a different amount of time to display the data, yet
the aggregation of the data has to be performed in the same way for every
visualization. Therefore, the second performed benchmark measures the time
taken to aggregate a certain number of selected categorical and numerical
fields. The time starts when the Accept button is clicked in the Select aggre-
gations dialog and stops after the data is prepared for the visualization to be
drawn. The benchmarks were performed for three cases:

1. Case 1: 1 categorical field and 1 numerical field were selected. This
case can be used to create a bar chart, a pie chart or a box plot.

2. Case 2: 2 categorical fields and 1 numerical field. This case can be used
to create a scatter plot, a heat map or grouped bar chart

3. Case 3: 5 categorical fields and 7 numerical fields. This case was used
for stress testing. With this selection, a parallel coordinates and a scatter
plot matrix visualization can be created.

The first two cases occur very often and the third case was used to put the
implementation of the data aggregation under a stress test and to show its
limits.

CHAPTER 5. BENCHMARKS 126

Case 1 Case 2 Case 3
1. 239,49 600,96 2322,5
2. 228,89 618,79 2336,26
3. 228,31 592,94 2302,74
4. 233,95 637,84 2313,83
5. 233,58 592,27 2157,19

AVERAGE 232,844 608,56 2286,504

Table 5.7: Time taken in milliseconds to aggregate the data of the selected
fields - 1000000 rows

Case 1 Case 2 Case 3
1. 449,79 1216,73 4760,69
2. 455,77 1198,44 4796,02
3. 476,58 1206,22 4816,2
4. 460,88 1191,09 4797,93
5. 471,75 1211,59 4847,25

AVERAGE 462,954 1204,814 4803,618

Table 5.8: Time taken in milliseconds to aggregate the data of the selected
fields - 2000000 rows

Case 1 Case 2 Case 3
1. 723,69 1862,44 8217,75
2. 733,28 1843,34 8397,69
3. 690,07 1886,21 8300,05
4. 712,02 1822,65 8256,75
5. 684,12 1867,22 7966,12

AVERAGE 708,636 1856,372 8227,672

Table 5.9: Time taken in milliseconds to aggregate the data of the selected
fields - 3000000 rows

CHAPTER 5. BENCHMARKS 127

Case 1 Case 2 Case 3
1. 952,63 3355,58 N/A
2. 973,38 3409,91 N/A
3. 926,26 3411,45 N/A
4. 949,85 3422,04 N/A
5. 956,65 3405,23 N/A

AVERAGE 951,754 3400,842 N/A

Table 5.10: Time taken in milliseconds to aggregate the data of the selected
fields - 4000000 rows

Figure 5.3 shows the increase in time for the different cases. For one selected
categorical and numerical field the time increase between the datasets seems
linear. Having two categorical fields and one numerical field, at first there is a
linear increase and suddenly for the last dataset the time doubles. The reason
for this is that the dataset with the 4 000 000 rows already uses a lot of mem-
ory, as could be seen in the previous benchmark. Selecting two categorical
fields and one numerical field produces a temporary data structure which in
addition to the original dataset uses almost all of the available memory. The
assumption here is that the browser uses the garbage collection quite often to
not run out of memory, which drastically increases the time.
As can be seen from the table and from the line chart, case 3 for 4 000 000
rows could not be performed. The reason was that Visualizer ran out of mem-
ory again. As already mentioned, holding the 4 000 000 rows of the dataset in
memory already takes up a huge chunk of the maximum memory. Performing
the aggregation with that many selected fields produced an additional tempo-
rary data structure which was big enough to exhaust the remaining accessible
memory.

Figure 5.3: Line charts displaying the time taken to aggregate the selected
fields for the three cases

In conclusion, the aggregation works very fast with a linear increase in time
for a linear increase in the number of rows. The only concern again is that,

CHAPTER 5. BENCHMARKS 128

when the memory of the browser tab is running out, the time taken to perform
the aggregation suddenly increases or cannot even be performed.

5.4 Applying configurations

The third benchmark combines the first two benchmarks and performs addi-
tional manipulations on the dataset in the Dataset Table. At first, a number
of actions were performed on the smallest dataset and following that a con-
figuration link was created which applied all of those performed actions in
succession. The same configuration link was then used on all of the datasets.
The time measuring starts upon clicking on the Accept button in the file selec-
tion page and stops when all visualizations have been created. The following
actions were performed in the configuration link after loading the dataset:

1. Filter the dataset by type, so that only the Residential type is displayed.

2. Filter the dataset by price, so that only real estates with a price below
300 000 are displayed.

3. Create a bar chart from the fields city and price. The average price is
taken.

4. Create a heat map from the fields type, sale_date and sq_ft. The aver-
age for sq_ft is taken.

The tables 5.11 to 5.11 show the times it takes for Visualizer to apply all the
actions in the configuration link.

Time taken in ms
1. 6862,18
2. 6826,15
3. 6758,55
4. 6813,27
5. 6839,86

AVERAGE 6820,002

Table 5.11: Time taken in milliseconds to apply the configuration link -
1000000 rows

CHAPTER 5. BENCHMARKS 129

Time taken in ms
1. 14411,14
2. 13700,03
3. 13718,97
4. 14067,53
5. 13690,16

AVERAGE 13917,566

Table 5.12: Time taken in milliseconds to apply the configuration link -
2000000 rows

Time taken in ms
1. 23508,15
2. 23486,7
3. 23436,66
4. 23429,87
5. 23821,12

AVERAGE 23536,5

Table 5.13: Time taken in milliseconds to apply the configuration link -
3000000 rows

Time taken in ms
1. 57451,79
2. 56959,46
3. 59059,97
4. 61160,65
5. 56626,31

AVERAGE 58251,636

Table 5.14: Time taken in milliseconds to apply the configuration link -
4000000 rows

Figure 5.4 shows the increase in time when applying the configuration link
to the differently sized datasets. As is evident from the figure, for the three
smaller datasets, the time taken to apply all of the actions increases linearly,
as does the size of the dataset. But for the last dataset a big jump can be
noticed in the time taken. This is again due to the fact that the memory of
the browser tab is running out, and therefore the garbage collector is used
extensively, which impacts the time it takes to perform the actions from the
configuration link.

CHAPTER 5. BENCHMARKS 130

Figure 5.4: Line charts displaying time taken to apply the configuration link
to different sized datasets

5.5 Summary

This chapter showed the results of the extensive benchmarks of Visualizer. As
can be seen from the results, the computation scales very well with the size
of the dataset, as long as the memory limit of the browser tab is not reached.
On the other hand, a major problem is the memory consumption of the appli-
cation, which will be difficult to solve, because the whole dataset has to be
loaded into memory and the most efficient way to store the data is by storing
the entry of each cell as a string in an array.
In order to make it possible to handle even bigger datasets, the memory con-
sumption would be the main aspect which would have to be solved.
The next chapter will conclude this thesis and give an overview of the tasks
which could be done in the future to further improve Visualizer.

Chapter 6

Conclusion

6.1 Summary

In this thesis Visualizer, a personalized and extensible web application for
client side visual data analysis and data exploration, was presented and ex-
plained in detail. With its easy to use interface, fast data manipulation, user as-
sistance, personalization and extensibility, a stable foundation was laid, upon
which it is possible to expand the application in many different directions.
In order to ensure an easy way of platform independence, Visualizer was im-
plemented as a web application. One of the main aspects of this was also to
move as much as possible of the code and computations to the client side, to al-
leviate the server. This transfer to the client side had many advantages, mainly
regarding the responsiveness of the page and computation speed. However, it
reached limits as far as memory usage was concerned. Therefore, in this area,
much more work could be done in order to optimize the memory handling and
allow the user to load and work with even bigger files. Another aspect which
leaves room for improvement concerns the drawing mechanisms. Visualizer
used SVG to draw its visualizations. While SVG is considerably easy to use
and offers the developer a simple way to generate appealing graphics, it has
its limitations. Drawing many data points slows down the visualization and
makes it difficult to move the visualization window. This is due to the fact that
SVG writes its graphics elements directly to the DOM and therefore, when
moving the visualization, the browser has to update the positions of many
elements. Creating the visualizations with WebGL would increase the perfor-
mance drastically.
In conclusion, within the scope of this thesis a web application was developed
which is equally meant for entry level users and expert users. For entry level
users the recommendation of compatible visualizations and a friendly, easy
to understand interface was added, while the experts can manipulate bigger

131

CHAPTER 6. CONCLUSION 132

datasets and extend the platform itself through the simple visualization API.
Through the customization options, both groups can adapt the interface to
their needs. The integrated personalized visualization recommender might be
still in its infancy, yet when it is finished it will greatly improve the recommen-
dation of suitable visualizations for the users.

6.2 Future Work

There is still a considerable amount of work that can be done on the platform
to further improve the user experience and add many additional features. The
most pressing tasks are the following:

- Extensive user evaluation: Various evaluations could be performed
with this web application with distinct aims: (i) A usability evaluation
of the platform for different user groups. For this evaluation beginners,
semi-experts and experts would be needed (ii) Evaluation of the visual-
ization API. For this many developers would be needed (iii) An evaluation
of the configurability and integration of Visualizer in another platform.
Performing all of those evaluations would give great insight in the areas
which would need improvement.

- Support for more data sources: Currently, Visualizer supports only
CSV, with the option to easily add JSON support as well. Neverthe-
less, it would be of utmost importance to support direct connections to
databases, without the need of dumping the database tables into CSVs.
In order to achieve this, first the JSON support have to be added and in
the next step, connectors would have to be written on the server side
which could connect to databases.

- Loading multiple datasets at once: Currently, it is possible to load and
work with only one dataset at a time in Visualizer. In the future, it should
be possible to load multiple datasets and have the option to seamlessly
switch between the different tables in the Visualization Dashboard and
even to merge datasets to create completely new ones.

- Reimplement visualizations in WebGL: This was already mentioned,
but the visualizations written in SVG reach a limit concerning perfor-
mance, when a big amount of data points have to be created. WebGL
would improve the performance drastically.

- Annotations: Sometimes it is necessary to add annotations to the visu-
alizations. This helps especially when continuing to work on a dashboard
which was previously shared. Those annotations could be placed in the
form of sticky notes directly on the dashboard, or in a comment sidebar.

CHAPTER 6. CONCLUSION 133

- Collaboration: At the moment, it is possible to work on a dashboard
only for one user at a time. The state of the dashboard can be saved
and shared with a bookmark link, but when the other users open this
bookmark, it will only create a new instance which looks the same as the
one of the user that shared the dashboard. The instances would not be
linked. Therefore, real time collaboration on the same dashboard could
drastically reduce the time it takes to create Visualization Dashboards.

- Visualization / theme store: Visualizer already has user management,
and the uploaded visualizations and dashboard customizations are al-
ready stored in a user profile. Therefore, it would be an improvement for
the users to have a store in which they can select the visualizations and
themes which they would like to have in Visualizer and add them to their
dashboards by simply installing the new visualization or theme directly
from the store.

- Connection to cloud services: Connectors to different cloud services,
such as Google Drive1, Dropbox2, or Microsoft’s OneDrive3 could be
added. With those connections it would be possible to directly access
datasets from the users’ personal cloud storage. Additionally, it would
be possible to also store the user visualizations in a dedicated directory
in the cloud service, which would give the user the possibility to add as
many visualizations as he desires.

- Periodic data update: After adding connectors to different databases,
it could be possible to refresh the visualizations periodically based on
changes in the database. The refresh could be triggered, for instance,
when the dataset gets new entries, or, another possible scenario could
be a limitation of the dataset to the last 30 minutes of data. Therefore,
every minute new entries would be added and the old entries would be
dropped and the visualizations updated.

- Reducing the memory consumption: In order to be able to handle
bigger datasets the memory consumption would have to be reduced
as Chapter 5 has shown. This task is not that trivial, because of the
browsers’ memory limitations of 4GB per tab. To circumvent this limit,
either IndexedDB4 could be used, or the dataset could be split across
multiple web workers5.

1https://www.google.com/drive/
2https://www.dropbox.com
3https://onedrive.live.com
4https://developer.mozilla.org/docs/IndexedDB
5https://developer.mozilla.org/de/docs/Web/API/Web_Workers_API

https://www.google.com/drive/
https://www.dropbox.com
https://onedrive.live.com
 https://developer.mozilla.org/docs/IndexedDB
 https://developer.mozilla.org/de/docs/Web/API/Web_Workers_API

List of Abbreviations

API Application Programming Interface

CGI Common Gateway Interface

CORS Cross-Origin Resource Sharing

CSS Cascading Style Sheets

CSV Comma-separated values

DB Database

DOM Document Object Model

ECMA European Computer Manufacturers Association

ES6 ECMAScript6

GPL General Public License

GUI Graphical User Interface

HSV Hue Saturation Value

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

LOD Linked Object Data

MIT Massachusetts Institute of Technology

RDF Resource Description Framework

SVG Scalable Vector Graphics

134

CHAPTER 6. CONCLUSION 135

UI User Interface

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML Extensible Markup Language

Bibliography

Mohamed Aly, Anis Charfi, and Mira Mezini. On the extensibility requirements
of business applications. In Proceedings of the 2012 Workshop on Next
Generation Modularity Approaches for Requirements and Architecture, NE-
MARA ’12, pages 1–6, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1127-4. doi: 10.1145/2162004.2162006. URL http://doi.acm.org/10.
1145/2162004.2162006.

J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. ESRI Press,
2011. ISBN 9781589482616.

M. S. T. Carpendale. Considering visual variables as a basis for informa-
tion visualisation. Technical report, University of Calgary, Calgary, AB,
2003. URL http://pharos.cpsc.ucalgary.ca/Dienst/UI/2.0/Describe/
ncstrl.ucalgary_cs/2001-693-16.

Woei-Kae Chen and Kuo-Hua Chung. A table presentation system for database
and web applications. In e-Technology, e-Commerce and e-Service, 2004.
EEE ’04. 2004 IEEE International Conference on, pages 492–498, March
2004. doi: 10.1109/EEE.2004.1287352.

Eric D. Ragan, Alex Endert, Jibonananda Sanyal, and Jian Chen. Characteriz-
ing provenance in visualization and data analysis: An organizational frame-
work of provenance types and purposes. 22, 08 2015.

Stephen Few. Information Dashboard Design: The Effective Visual Communi-
cation of Data. O’Reilly Media, Inc., 2006. ISBN 0596100167.

James Foley. Computer graphics : principles and practice. Addison-Wesley,
Reading, Mass, 1995. ISBN 0321210565.

D. P. Groth and K. Streefkerk. Provenance and annotation for visual explo-
ration systems. IEEE Transactions on Visualization and Computer Graphics,
12(6):1500–1510, Nov 2006. ISSN 1077-2626. doi: 10.1109/TVCG.2006.
101.

136

http://doi.acm.org/10.1145/2162004.2162006
http://doi.acm.org/10.1145/2162004.2162006
http://pharos.cpsc.ucalgary.ca/Dienst/UI/2.0/Describe/ncstrl.ucalgary_cs/2001-693-16
http://pharos.cpsc.ucalgary.ca/Dienst/UI/2.0/Describe/ncstrl.ucalgary_cs/2001-693-16

BIBLIOGRAPHY 137

Pat Hanrahan. Vizql: A language for query, analysis and visualization. In
Proceedings of the 2006 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’06, pages 721–721, New York, NY, USA, 2006.
ACM. ISBN 1-59593-434-0. doi: 10.1145/1142473.1142560. URL http:
//doi.acm.org/10.1145/1142473.1142560.

Pawandeep Kaur and Michael Owonibi. A review on visualization recommen-
dation strategies. 02 2017.

R. Likert. A Technique for the Measurement of Attitudes. Number Nr. 136-165
in A Technique for the Measurement of Attitudes. publisher not identified,
1932.

J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presentation for
visual analysis. IEEE Transactions on Visualization and Computer Graphics,
13(6):1137–1144, Nov 2007. ISSN 1077-2626. doi: 10.1109/TVCG.2007.
70594.

Jock Mackinlay. Automating the design of graphical presentations of relational
information. ACM Trans. Graph., 5(2):110–141, April 1986. ISSN 0730-
0301. doi: 10.1145/22949.22950. URL http://doi.acm.org/10.1145/
22949.22950.

J.H. McDonald and University of Delaware. Handbook of Biological Statistics.
Sparky House Publishing, 2009.

Belgin Mutlu, Patrick Höfler, Vedran Sabol, Gerwald Tschinkel, and Michael
Granitzer. Automated visualization support for linked research data. In I-
SEMANTICS, 2013.

Belgin Mutlu, Eduardo Veas, and Christoph Trattner. Vizrec: Recommending
personalized visualizations. ACM Trans. Interact. Intell. Syst., 6(4):31:1–
31:39, November 2016. ISSN 2160-6455. doi: 10.1145/2983923. URL http:
//doi.acm.org/10.1145/2983923.

Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. The VLDB Journal, 10(4):334–350, Dec 2001. ISSN 0949-
877X. doi: 10.1007/s007780100057. URL https://doi.org/10.1007/
s007780100057.

C. T. Silva, J. Freire, and S. P. Callahan. Provenance for visualizations: Repro-
ducibility and beyond. Computing in Science Engineering, 9(5):82–89, Sept
2007. ISSN 1521-9615. doi: 10.1109/MCSE.2007.106.

http://doi.acm.org/10.1145/1142473.1142560
http://doi.acm.org/10.1145/1142473.1142560
http://doi.acm.org/10.1145/22949.22950
http://doi.acm.org/10.1145/22949.22950
http://doi.acm.org/10.1145/2983923
http://doi.acm.org/10.1145/2983923
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057

BIBLIOGRAPHY 138

Chris Stolte and Pat Hanrahan. Polaris: A system for query, analysis and
visualization of multi-dimensional relational databases. In Proceedings of
the IEEE Symposium on Information Vizualization 2000, INFOVIS ’00, pages
5–, Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0804-
9. URL http://dl.acm.org/citation.cfm?id=857190.857686.

Manasi Vartak, Samuel Madden, Aditya Parameswaran, and Neoklis Polyzotis.
Seedb: Automatically generating query visualizations. Proc. VLDB Endow.,
7(13):1581–1584, August 2014. ISSN 2150-8097. doi: 10.14778/2733004.
2733035. URL http://dx.doi.org/10.14778/2733004.2733035.

Ji Soo Yi, Youn ah Kang, John Stasko, and Julie Jacko. Toward a deeper un-
derstanding of the role of interaction in information visualization. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1224–1231,
November 2007. ISSN 1077-2626. doi: 10.1109/TVCG.2007.70515. URL
http://dx.doi.org/10.1109/TVCG.2007.70515.

http://dl.acm.org/citation.cfm?id=857190.857686
http://dx.doi.org/10.14778/2733004.2733035
http://dx.doi.org/10.1109/TVCG.2007.70515

Appendix

139

Appendix A

Config parameter actions
description

This chapter describes the different actions which can be used in the config
parameter to control Visualizer via URL.

A.1 removeColumns

Removes columns with given indexes.
JSON structure:

{
"action": "removeColumns",
"columnIndexes": [1,3,5]

}

Attribute description:

- action: Name of action to be executed

- columnIndexes: Array with the indexes of the columns to be removed

A.2 mergeColumns

Merges columns with given indexes after the dataset has been loaded.
JSON structure:

{
"action": "mergeColumns",
"aggregation": "concat",
"columnIndexes": [1,3],

140

APPENDIX A. CONFIG PARAMETER ACTIONS DESCRIPTION 141

"newColumnName": "resultColumn",
"newColumnType": "newColumnType"

}

Attribute description:

- action: Name of action to be executed

- aggregation: Name of aggregation to be performed. Can be one of the
following five : sum, min, max, avg and concat. sum, min, max and avg
should only be used when merging numerical columns. concat can be
used for all columns

- columnIndexes: An array with indexes of the columns to be merged

- newColumnName: Name of the newly created column

- newColumnType: Type of the newly created column

A.3 renameColumn

Changes the name of a column with a given index.
JSON structure:

{
"action": "renameColumn",
"columnIndex": 3,
"newColumnName" : "new name of column"

}

Attribute description:

- action: Name of action to be executed

- columnIndex: Index of column which should be renamed

- newColumnName: New name of the column

A.4 aggregate

Performs an aggregation on the columns with the given indexes and the results
of the aggregation are then saved in the column with the given index.
JSON structure:

APPENDIX A. CONFIG PARAMETER ACTIONS DESCRIPTION 142

{
"action": "aggregate",
"aggregations": ["min","max","’],
"catAggregation": "count",
"columnIndex": 1,
"values": [5,7,8]

}

Attribute description:

- action: Name of the action to be executed

- aggregations: An array with the aggregations which should be per-
formed on the columns with the indexes in the values array. The order
has to be the same as in the values array. Possible aggregations are: min,
max, sum, avg and "". Empty quotes should be used for columns which
are not numeric.

- catAggregation: The type of aggregation for the categorical fields. Pos-
sible aggregations are: group, count and ratio. count - the data will be
aggregated and a new column will be created which consists of the num-
ber of occurrences of data points for the selected columns. ratio - the
data will be aggregated and a new column will be created which displays
the quantitative relation between number of occurrences of data points
for the selected columns and the total number of data points. group - the
data will only be aggregated. No new column will be created

- columnIndex: Index of categorical column in which the values should be
inserted

- values: The indexes of the columns which should be taken for the ag-
gregation

A.5 filter

Filters the whole dataset by a given filter array.
JSON structure:

{
"action": "filter",
"filterArray": [filterObj1, filterObj2]

}

Attribute description:

APPENDIX A. CONFIG PARAMETER ACTIONS DESCRIPTION 143

- action: Name of the action to be executed

- filterArray: An array which contains filterObj"s with information on
how to filter the dataset

A.5.1 filterObj

The filterObj holds all the active filters which should be applied to a column
with the given index.
JSON structure:

{
filterList: {
"from": NaN
"keywords": ["cat", "dog", "bird"]
"to": NaN

}
index: 1

}

Attribute description:

- filterList:

- from: Used only for numerical columns. Indicates minimum value
of range

- to: Used only for numerical columns. Indicates maximum value of
range

- keywords: An array of strings by which the column should be filtered
index

- index: Of the column on which the filter should be applied

A.6 adddefault

Adds a default value to all empty cells in a column with the given index.
JSON structure:

{
"action": "adddefault",
"columnIndex": 1,
"inputValue": 0

}

APPENDIX A. CONFIG PARAMETER ACTIONS DESCRIPTION 144

Attribute description:

- action: Name of the action to be executed

- columnIndex: The index of the column to add the default value to

- inputValue: The new value for the empty cells

A.7 notactive

Disables the columns on the given indexes in the notActiveArray array.
JSON structure:

{
"action": "notactive",
"notActiveArray": [1,3,5]

}

Attribute description:

- action: Name of the action to be executed

- notActiveArray: An array with indexes of columns which should be dis-
abled

A.8 changetype

Changes the data type of a column in the dataset on the given index.
JSON structure:

{
"action": "changetype",
"columnIndex": 1,
"newType": "integer"

}

Attribute description:

- action: Name of the action to be executed

- columnIndex: The index of the column for the data type change

- newType: The new data type of the column. Can be one of the following
values: integer, number, location, date, string

APPENDIX A. CONFIG PARAMETER ACTIONS DESCRIPTION 145

A.9 sort

Sorts the column with the given index in ascending or descending order.
JSON structure:

{
"action": "sort",
"index": 2,
"isDescending": true, // OPTIONAL

}

Attribute description:

- action: Name of the action to be executed

- index: The index of the column by which the dataset should be sorted

- isDescending [optional]: Default is false

A.10 replace

Replaces the value of one cell in a column with the given index.
JSON structure:

{
"action": "replace",
"column": 1,
"row": 132,
"value": "cat"

}

Attribute description:

- action: Name of the action to be executed

- column: The index of the column in which the value of a cell should be
changed

- row: The row in the selected column

- value: The new value to be inserted

A.11 replaceall

Replaces all occurrences of a certain entry in a column, defined by the index
with another one.
JSON structure:

APPENDIX A. CONFIG PARAMETER ACTIONS DESCRIPTION 146

{
"action": "replaceall",
"column": 2,
"oldValue": "dog",
"newValue": "cat"

}

Attribute description:

- action: Name of the action to be executed

- column: The index of the column where the values should be replaced

- oldValue: The value which should be replaced

- newValue: The new value

A.12 visualization

Creates a visualization window.
JSON structure:

{
"action" : "visualization",
"visualization" : "barchart",
"labels" : "resource|hours",
"aggregations": ["group","avg"],
"visTitle" : "Barchart",
"from" : 0,
"to" : 30,
"left" : 0,
"top" : 0,
"width" : 50,
"height" : 100,
"zIndex" : 1,

}

Attribute description:

- action: Name of the action to be executed

- visualization: The name of the visualization which should be created.
Possible visualizations are: barchart, linechart, piechart, scatterplot,
scatterplotmatrix, bubblechart, boxplot, violinPlot, wordcloud, grouped-
barchart, heatmap, geovis, parallelCoordinates

APPENDIX A. CONFIG PARAMETER ACTIONS DESCRIPTION 147

- labels: The names of the columns which should be mapped to the visual
channels of a visualization. The labels are mapped into the respective
channels in the order in which they appear. See Appendix B for the
description of each visualization and their visual channels

- aggregations: The aggregations applied to the columns. Same order
and number as in the labels array. Possible values for numerical fields:
min, max, sum, avg Possible values for categorical fields: group See Ap-
pendix B for more information about which visualizations have manda-
tory aggregations

- visTitle [optional]: The title of the visualization. If a title is not en-
tered, a title will be generated which consists of the name of the visual-
ization and the selected labels

- from [optional]: With the from and to parameters it is possible to re-
duce the number of displayed data points. from is the index of the first
datapoint to be displayed. Default value is 0 (indicating the first data
point)

- to [optional]: Index of the last data point to be displayed. Default
value is -1 (indicating the last data point)

- left [optional]: Relative distance to the left border of the visualiza-
tion window in relation to the parent (in percent). Default value is 0

- top [optional]: Relative distance to the top border of the visualization
window in relation to the parent (in percent). Default value is 0

- width [optional]: Relative width of the visualization window in rela-
tion to the parent (in percent). Default value is 100

- height [optional]: Relative height of the visualization window in rela-
tion to the parent (in percent). Default value is 100

- zIndex [optional]: In the case that the visualizations are overlapping,
the visualization with the highest zIndex will be on top. Default value is
1

- sortBy [optional]: object with the attributes “ascending” and “label”.
“label” defines which field should be sorted “ascending” if true the field
is sorted ascending and if false then descending

A.13 brush

Applies the brushing selection to the created visualizations.
JSON structure:

APPENDIX A. CONFIG PARAMETER ACTIONS DESCRIPTION 148

{
"action": "brush",
"selectedData": [["cat",3], ["dog","1"]],
"labelList": ["animal","quantity"],

}

Attribute description:

- action: Name of the action to be executed

- selectedData: An array with the data points which should be selected
in the visualizations. The order of the elements in each sub-array should
be the same as in the labelList

- labelList: An array of the label names of the columns

Appendix B

Visualization description

This chapter describes the structure of the visualizations and what is required
for a visualization to be created automatically.

B.1 Attributes description

- label [string]: The name of the visualization which the user see on
the dashboard

- fileName [string]: The exact filename of the main file for the visual-
ization

- folderName [string]: The name of the folder where all files regarding
the visualization are saved

- libs [string]: A list of libraries which should be included before the
main visualization file. The different libraries are separated by a pipe
symbol ’|’

- css [string]: A list of style sheets which should be included before the
main visualization file. The different style sheets are separated by a pipe
symbol ’|’

- requiredChannels [integer]: The number of visual channels which
have to be set for the visualization to be displayed

- maxChannels [integer]: The maximum number of channels supported
by a visualization. If the value is equal to -1 then the visualization sup-
ports an arbitrary number of channels

- maxDatapointsWithoutWarning [integer]: After how many data points
should a warning be displayed that the visualization will not be able to
display the data points correctly anymore

149

APPENDIX B. VISUALIZATION DESCRIPTION 150

- hasMultiplicity [boolean]: If the visualization has a channel which
can occur multiple times

- aggregationMandatory [boolean]: Is aggregating the data mandatory
before the visualization will be displayed

- URIPrefix [string]: This value is generated for new visualizations and
is used for the recommender

- URISuffix [string]: This value is generated for new visualizations and
is used for the recommender

- hasVisualAttributes [array]: Contains channel objects which de-
scribe each visualization channel

B.1.1 Channel object

An object which describes how a single visualization channel is structured.
JSON structure:

{
Axis : {
label : "x-Axis",
supportedScaleOfMeasurement : [

DataTypes.STRING,
DataTypes.DATE,
DataTypes.LOCATION

],
hasPersistance : Persistance.MANDATORY,
hasOccurrence : Occurrence.ONE

}
}

Attribute description:

- label [string]: The name of the visualization channel

- supportedScaleOfMeasurement [array]: The datatypes supported by
this channel which is one of the following values: integer, number, loca-
tion, date, string

- hasPersistance [string]: Is a mapping to this channel mandatory or
not. Possible values: mandatory and optional

- hasOccurrence [string]: Can the channel occur once or multiple
times. Possible values: One and Multiplicity

APPENDIX B. VISUALIZATION DESCRIPTION 151

B.2 mapping.js

This is the code of the mapping.js file, which describes all visualizations inte-
grated in Visualizer.

var Persistance = {
MANDATORY: "mandatory",
OPTIONAL: "optional"

}

var Occurrence = {
ONE: "One",
MULTIPLICITY: "Multiplicity"

}

var DataTypes = {
INTEGER: "integer",
NUMBER: "number",
LOCATION: "location",
DATE: "date",
STRING: "string"

}

var mapping = [
// BarChart
{
label: "Bar Chart",
fileName: "d3-bar.js",
folderName: "barchart",
libs: "jquery-3.1.0.min.js|lodash.js|bootstrap.min.js|\

d3-v3.1.7.min.js|filter-svg.js",
css: "bootstrap.min.css|vis.css",
requiredChannels: 2,
maxChannels: 2,
maxDatapointsWithoutWarning: 100,
hasMultiplicity: false,
aggregationMandatory: true,
URIPrefix: "http://eexcess.eu/visualisation-ontology",
URISuffix: "Barchart",
hasVisualAttributes: [{

Axis: {
label: "x-Axis",
supportedScaleOfMeasurement: [DataTypes.STRING,

DataTypes.LOCATION, DataTypes.DATE
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

APPENDIX B. VISUALIZATION DESCRIPTION 152

Axis: {
label: "y-Axis",
supportedScaleOfMeasurement: [DataTypes.INTEGER,

DataTypes.NUMBER
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
}

]
},
// LineChart
{
label: "Line Chart",
fileName: "d3-multiline-class.js",
folderName: "linechart",
libs: "jquery-3.1.0.min.js|lodash.js|bootstrap.min.js|\

d3-v3.1.7.min.js|filter-svg.js",
css: "bootstrap.min.css|vis.css",
requiredChannels: 3,
maxChannels: 3,
maxDatapointsWithoutWarning: 50,
hasMultiplicity: false,
aggregationMandatory: false,
URIPrefix: "http://eexcess.eu/visualisation-ontology",
URISuffix: "Linechart",
hasVisualAttributes: [{

Axis: {
label: "x-Axis",
supportedScaleOfMeasurement: [DataTypes.DATE],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

Axis: {
label: "y-Axis",
supportedScaleOfMeasurement: [DataTypes.NUMBER,

DataTypes.INTEGER
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

Axis: {
label: "Lines",
supportedScaleOfMeasurement: [DataTypes.STRING,

DataTypes.LOCATION

APPENDIX B. VISUALIZATION DESCRIPTION 153

],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
}

]
},
// Pie Chart
{
label: "Pie Chart",
fileName: "pieChart.js",
folderName: "piechart",
libs: "jquery-3.1.0.min.js|lodash.js|bootstrap.min.js|\

d3-v3.1.7.min.js|filter-svg.js",
css: "bootstrap.min.css|vis.css",
requiredChannels: 2,
maxChannels: 2,
maxDatapointsWithoutWarning: 30,
hasMultiplicity: false,
aggregationMandatory: true,
URIPrefix: "http://eexcess.eu/visualisation-ontology",
URISuffix: "PieChart",
hasVisualAttributes: [{

Axis: {
label: "x-Axis",
supportedScaleOfMeasurement: [DataTypes.STRING,

DataTypes.LOCATION, DataTypes.DATE
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

Axis: {
label: "y-Axis",
supportedScaleOfMeasurement: [DataTypes.INTEGER,

DataTypes.NUMBER
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
}

]
},
// ScatterPlot
{
label: "Scatterplot",
fileName: "d3-bubble-class.js",
folderName: "scatterplot",

APPENDIX B. VISUALIZATION DESCRIPTION 154

libs: "jquery-3.1.0.min.js|lodash.js|bootstrap.min.js|\
\d3-v3.1.7.min.js|jquery.tipsy.js|filter-svg.js",

css: "bootstrap.min.css|tipsy.css|vis.css",
requiredChannels: 2,
maxChannels: 3,
maxDatapointsWithoutWarning: 100,
hasMultiplicity: false,
aggregationMandatory: false,
URIPrefix: "http://eexcess.eu/visualisation-ontology",
URISuffix: "Scatterplot",
hasVisualAttributes: [{

Axis: {
label: "x-Axis",
supportedScaleOfMeasurement: [DataTypes.NUMBER,

DataTypes.INTEGER, DataTypes.STRING, DataTypes.LOCATION,
DataTypes.DATE

],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

Axis: {
label: "y-Axis",
supportedScaleOfMeasurement: [DataTypes.NUMBER,

DataTypes.INTEGER, DataTypes.STRING, DataTypes.LOCATION,
DataTypes.DATE

],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

Axis: {
label: "Color",
supportedScaleOfMeasurement: [DataTypes.STRING,

DataTypes.LOCATION, DataTypes.DATE
],
hasPersistance: Persistance.OPTIONAL,
hasOccurrence: Occurrence.ONE

}
}

]
},
// ScatterPlotmatrix
{
label: "Scatterplotmatrix",
fileName: "d3-scatterplotmatrix.js",
folderName: "scatterplotmatrix",

APPENDIX B. VISUALIZATION DESCRIPTION 155

libs: "jquery-3.1.0.min.js|lodash.js|bootstrap.min.js|\
d3-v3.1.7.min.js|filter-svg.js",

css: "bootstrap.min.css|tipsy.css|vis.css",
requiredChannels: 1,
maxChannels: -1,
maxDatapointsWithoutWarning: 99999,
hasMultiplicity: true,
aggregationMandatory: false,
dontUseForRecommender: true,
URIPrefix: "http://eexcess.eu/visualisation-ontology",
URISuffix: "Scatterplotmatrix",
hasVisualAttributes: [{
Axis: {

label: "x-Axis",
supportedScaleOfMeasurement: [DataTypes.STRING,
DataTypes.NUMBER, DataTypes.INTEGER, DataTypes.DATE,
DataTypes.LOCATION

],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.MULTIPLICITY

}
}]

},
// BubbleChart
{
label: "Bubble Chart",
fileName: "d3-bubble-class.js",
folderName: "bubblechart",
libs: "jquery-3.1.0.min.js|lodash.js|bootstrap.min.js|\

d3-v3.1.7.min.js|jquery.tipsy.js|filter-svg.js",
css: "bootstrap.min.css|tipsy.css|vis.css",
requiredChannels: 4,
maxChannels: 4,
maxDatapointsWithoutWarning: 100,
hasMultiplicity: false,
aggregationMandatory: false,
URIPrefix: "http://eexcess.eu/visualisation-ontology",
URISuffix: "Bubblechart",
hasVisualAttributes: [{

Axis: {
label: "x-Axis",
supportedScaleOfMeasurement: [DataTypes.NUMBER,

DataTypes.INTEGER
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

APPENDIX B. VISUALIZATION DESCRIPTION 156

Axis: {
label: "y-Axis",
supportedScaleOfMeasurement: [DataTypes.NUMBER,

DataTypes.INTEGER
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

Axis: {
label: "Size",
supportedScaleOfMeasurement: [DataTypes.NUMBER,

DataTypes.INTEGER
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

Axis: {
label: "Color",
supportedScaleOfMeasurement: [DataTypes.STRING,

DataTypes.LOCATION, DataTypes.DATE
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
}

]
},
// Boxplot
{
label: "Boxplot",
fileName: "brushboxplot.js",
folderName: "boxplot",
libs: "jquery-3.1.0.min.js|lodash.js|bootstrap.min.js|\

d3.v3.min.js|filter-svg.js",
css: "bootstrap.min.css|boxplot.css",
requiredChannels: 2,
maxChannels: 2,
maxDatapointsWithoutWarning: 1000,
hasMultiplicity: false,
aggregationMandatory: false,
URIPrefix: "http://eexcess.eu/visualisation-ontology",
URISuffix: "Boxplot",
hasVisualAttributes: [{

Axis: {
label: "x-Axis",

APPENDIX B. VISUALIZATION DESCRIPTION 157

supportedScaleOfMeasurement: [DataTypes.NUMBER,
DataTypes.INTEGER

],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

Axis: {
label: "Category",
supportedScaleOfMeasurement: [DataTypes.STRING,

DataTypes.DATE, DataTypes.LOCATION
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
}

]
},
// Violin plot
{
label: "Violinplot",
fileName: "violinplot.js",
folderName: "violinPlot",
libs: "jquery-3.1.0.min.js|lodash.js|bootstrap.min.js|\

d3.v3.min.js|filter-svg.js|distrochart.js",
css: "bootstrap.min.css|distrochart.css",
requiredChannels: 2,
maxChannels: 2,
maxDatapointsWithoutWarning: 6,
hasMultiplicity: false,
aggregationMandatory: false,
URIPrefix: "http://eexcess.eu/visualisation-ontology",
URISuffix: "Violinplot",
hasVisualAttributes: [{

Axis: {
label: "x-Axis",
supportedScaleOfMeasurement: [DataTypes.NUMBER,

DataTypes.INTEGER
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

Axis: {
label: "Category",
supportedScaleOfMeasurement: [DataTypes.STRING,

DataTypes.DATE, DataTypes.LOCATION

APPENDIX B. VISUALIZATION DESCRIPTION 158

],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
}

]
},
// Grouped Barchart
{
label: "Grouped Barchart",
fileName: "groupedBarChart.js",
folderName: "groupedbarchart",
libs: "jquery-3.1.0.min.js|lodash.js|bootstrap.min.js|\

d3-v3.1.7.min.js|jquery.tipsy.js|filter-svg.js",
css: "bootstrap.min.css|tipsy.css|vis.css",
requiredChannels: 3,
maxChannels: 3,
maxDatapointsWithoutWarning: 30,
hasMultiplicity: false,
aggregationMandatory: true,
URIPrefix: "http://eexcess.eu/visualisation-ontology",
URISuffix: "Groupedbarchart",
hasVisualAttributes: [{

Axis: {
label: "x-Axis",
supportedScaleOfMeasurement: [DataTypes.STRING,

DataTypes.LOCATION, DataTypes.DATE
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

Axis: {
label: "y-Axis",
supportedScaleOfMeasurement: [DataTypes.NUMBER,

DataTypes.INTEGER
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

Axis: {
label: "Bar",
supportedScaleOfMeasurement: [DataTypes.STRING,

DataTypes.LOCATION, DataTypes.DATE
],
hasPersistance: Persistance.MANDATORY,

APPENDIX B. VISUALIZATION DESCRIPTION 159

hasOccurrence: Occurrence.ONE
}

}
]

},
// Map
{
label: "Map",
fileName: "d3-geovis.js",
folderName: "geovis",
libs: "jquery-3.1.0.min.js|lodash.js|bootstrap.min.js|\

d3-v3.1.7.min.js|jquery.tipsy.js|filter-svg.js",
css: "bootstrap.min.css|tipsy.css|vis.css",
requiredChannels: 1,
maxChannels: 2,
maxDatapointsWithoutWarning: 400,
hasMultiplicity: false,
aggregationMandatory: true,
URIPrefix: "http://eexcess.eu/visualisation-ontology",
URISuffix: "Map",
hasVisualAttributes: [{

Axis: {
label: "Country",
supportedScaleOfMeasurement: [DataTypes.LOCATION],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

Axis: {
label: "Nuance",
supportedScaleOfMeasurement: [DataTypes.NUMBER,

DataTypes.INTEGER
],
hasPersistance: Persistance.OPTIONAL,
hasOccurrence: Occurrence.ONE

}
}

]
},
// Parallel Coordinates
{
label: "Parallel Coordinates",
fileName: "parallelCoordinates.js",
folderName: "parallelCoordinates",
libs: "jquery-3.1.0.min.js|lodash.js|bootstrap.min.js|\

d3-v3.1.7.min.js|jquery.tipsy.js|filter-svg.js",
css: "bootstrap.min.css|tipsy.css|vis.css",
requiredChannels: 2,

APPENDIX B. VISUALIZATION DESCRIPTION 160

maxChannels: -1,
maxDatapointsWithoutWarning: 40,
hasMultiplicity: true,
aggregationMandatory: false,
stopAfterFirstMatch: true,
URIPrefix: "http://eexcess.eu/visualisation-ontology",
URISuffix: "ParallelCoordinates",
hasVisualAttributes: [{

Axis: {
label: "color",
supportedScaleOfMeasurement: [DataTypes.STRING,

DataTypes.DATE, DataTypes.LOCATION
],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.ONE

}
},
{

Axis: {
label: "x-Axis",
supportedScaleOfMeasurement: [DataTypes.STRING,

DataTypes.NUMBER, DataTypes.INTEGER, DataTypes.DATE,
DataTypes.LOCATION

],
hasPersistance: Persistance.MANDATORY,
hasOccurrence: Occurrence.MULTIPLICITY

}
}

]
},

]

Appendix C

Chart API

C.1 Global Objects

- gaDatarows [array]: An array which holds all of the data rows of the
visualization

- gaChannelMappings [array]: An array of objects which describe what
field was mapped to what visual channel of the visualization and how the
field was aggregated and the type of the field

- gnChartRowIndex [integer]: The index of the visualization (needed for
brushing)

- gnFrom [integer]: An integer which has the index of the first value if
the data rows were sliced. -1 if dataset was not sliced

- gnTo [integer]: An integer which has the index of the last value if the
data rows were sliced. -1 if dataset was not sliced

- gaLabelList [array]: The list of labels of the current visualization

- gaFilteredDatarows [array]: A subset of the data rows, which holds
only the data rows filtered by the framework

- brushingObserver [object]: A global object which is used for sending
and getting updates from the other visualizations

C.2 brushingObserver

C.2.1 registerListener

Registers a visualization to the brushingObserver.
Parameters:

161

APPENDIX C. CHART API 162

- callbackUpdateChartRowIndex [function]: Callback function used to
update index of visualization

- chartRowIndex [integer]: Index of visualization to register

- callbackData [function]: Callback function to be called when an up-
date is called based on raw data from

- callbackDimensions [function]: Could be used to check raw data.
Not in use currently

C.2.2 unregister

Called to remove a visualization from the update list of the brushing observer.
This is done automatically when a visualization gets closed.
Parameters:

- chartRowIndex [integer]: Index of the visualization which should be
unregistered

C.2.3 update

Function which should be used to update the views of other visualizations.
Should be called every time a selection on the source visualization happens.
Parameters:

- originChartRowIndex [integer]: Index of visualization from which the
update originates. The origin visualization gets skipped in the update

- selectedData [array]: An array of all the selected values

- selectedDimensions [array]: An array of all raw values

- labelList [array]: An array of field names from which the
selectedData comes

C.2.4 initializeSelfUpdate

Can be used to call a brushingUpdate on itself.
Parameters:

- selfChartRowIndex [integer]: Index of the visualization from which
the update originates

APPENDIX C. CHART API 163

C.2.5 updateEmpty

Calls an update on all the visualizations with no data. Can be used to clear
selections.
Parameters:

- originChartRowIndex [integer]: Index of visualization from which the
update originates

C.3 Chart Functions

C.3.1 getChannelMappings

Returns gaChannelMappings.
Parameters: (none)

C.3.2 getChartRowIndex

Returns gnChartRowIndex.
Parameters: (none)

C.3.3 getFrom

Returns gnFrom.
Parameters: (none)

C.3.4 getTo

Returns gnTo.
Parameters: (none)

C.3.5 filterBy

Handles the filtering of the data rows and fills the gaFilteredDatarows array.
Parameters:

- filterObjs [array]: An array of objects holding the values for each
field to filter by. Each object has two attributes: label and values.

- label [string]: Name of field

- values [array]: Values to filter the field by

APPENDIX C. CHART API 164

C.3.6 updateVisualization

Swaps the fields to visual channel mapping and redraws the visualization.
Parameters:

- labelList [array]: The list of fields in the new order

C.3.7 sortBy

Sorts the gaDatarows array.
Parameters:

- label [string]: Name of field which the data should be sorted

- ascending [boolean]: true -> ascending, false -> descending

C.3.8 unregisterVisualization

Removes the visualization from the global brushingObserver.
Parameters: (none)

C.3.9 refreshVisualization

Redraws the visualization and applies the set filters.
Parameters: (none)

C.3.10 showVisualization

Is called upon creation. Sets the visualization global variables, sorts the data
rows if needed and draws the visualization.
Parameters:

- datarows [array]: A two-dimensional array holding the data rows of
the selected fields

- channelMappings [array]: An array of objects which describe the map-
ping of selected field to visual channels. Each object has the following
attributes:

- channel [string]: Name of visual channel

- label [string]: Name of selected field

- datatype [string]: Datatype of selected field

- aggregation [string]: Aggregation of selected field

APPENDIX C. CHART API 165

- targetSelector [string]: The CSS target selector of the element
where the visualization should be appended. In Visualizer’s case it is
always "body"

- chartRowIndex [integer]: Index of the visualization. The index gets
incremented with each created visualization

- from [integer]: Index of the first element if data was sliced. Only used
for bookmarking purposes

- to [integer]: Index of the last element if data was sliced. Only used
for bookmarking purposes

- sortByName [string]: Name of the field to sort by

- ascending [boolean]: true -> sort ascending, false -> sort descending

C.3.11 applyCssToSvg

To be implemented per chart. It should apply styles inline to the SVG, so that
the visualization can be downloaded.
Parameters: (none)

C.3.12 revertCssFromSvg

To be implemented per chart. It should revert the changes of applyCssToSvg
if needed.
Parameters: (none)

C.3.13 applyFilter

To be implemented per chart. It should apply the filtered datarows to the
visualization.
Parameters:

- filteredDatarows [array]: A subset of gaDatarows, which holds only
the data rows which fulfill the constraints of the filters

C.3.14 drawVisualization

To be implemented per chart. It Should draw the visualization based on the
datarows and channelMappings.
Parameters:

- datarows [array]: the gaDatarows parameter passed from the
showVisualization function

APPENDIX C. CHART API 166

- channelMappings [array]: the channelMappings parameter passed
from showVisualization

- visIndex [integer]: the chartRowIndex parameter passed from
showVisualization. Renamed due to easier understanding

Appendix D

User visualization code

D.1 Sankey diagram - original index.html

The source code was taken from:
http://bl.ocks.org/d3noob/c9b90689c1438f57d649

1 <!DOCTYPE html>
2 <meta charset="utf-8">
3 <title>SANKEY Experiment</title>
4 <style>
5 .node rect {
6 cursor: move;
7 fill-opacity: .9;
8 shape-rendering: crispEdges;
9 }

10

11 .node text {
12 pointer-events: none;
13 text-shadow: 0 1px 0 #fff;
14 }
15

16 .link {
17 fill: none;
18 stroke: #000;
19 stroke-opacity: .2;
20 }
21

22 .link:hover {
23 stroke-opacity: .5;
24 }
25 </style>

167

http://bl.ocks.org/d3noob/c9b90689c1438f57d649

APPENDIX D. USER VISUALIZATION CODE 168

26 <body>
27 <p id="chart">
28

29 <script src="http://d3js.org/d3.v3.min.js"></script>
30 <script src="sankey.js"></script>
31 <script>
32

33 var units = "Widgets";
34

35 var margin = {top: 10, right: 10, bottom: 10, left: 10},
36 width = 700 - margin.left - margin.right,
37 height = 300 - margin.top - margin.bottom;
38

39 var formatNumber = d3.format(",.0f"), // zero decimal places
40 format = function(d) { return formatNumber(d) + " " + units; },
41 color = d3.scale.category20();
42

43 // append the svg canvas to the page
44 var svg = d3.select("#chart").append("svg")
45 .attr("width", width + margin.left + margin.right)
46 .attr("height", height + margin.top + margin.bottom)
47 .append("g")
48 .attr("transform",
49 "translate(" + margin.left + "," + margin.top + ")");
50

51 // Set the sankey diagram properties
52 var sankey = d3.sankey()
53 .nodeWidth(36)
54 .nodePadding(40)
55 .size([width, height]);
56

57 var path = sankey.link();
58

59 // load the data (using the timelyportfolio csv method)
60 d3.csv("sankey.csv", function(error, data) {
61

62 //set up graph in same style as original example but empty
63 graph = {"nodes" : [], "links" : []};
64 data.forEach(function (d) {
65 graph.nodes.push({ "name": d.source });
66 graph.nodes.push({ "name": d.target });
67 graph.links.push({ "source": d.source,
68 "target": d.target,
69 "value": +d.value });
70 });
71

72 // return only the distinct / unique nodes
73 graph.nodes = d3.keys(d3.nest()
74 .key(function (d) { return d.name; })
75 .map(graph.nodes));

APPENDIX D. USER VISUALIZATION CODE 169

76 // loop through each link replacing the text with its index from node
77 graph.links.forEach(function (d, i) {
78 graph.links[i].source = graph.nodes.indexOf(graph.links[i].source);
79 graph.links[i].target = graph.nodes.indexOf(graph.links[i].target);
80 });
81

82 //now loop through each nodes to make nodes an array of objects
83 // rather than an array of strings
84 graph.nodes.forEach(function (d, i) {
85 graph.nodes[i] = { "name": d };
86 });
87

88 sankey
89 .nodes(graph.nodes)
90 .links(graph.links)
91 .layout(32);
92

93 // add in the links
94 var link = svg.append("g").selectAll(".link")
95 .data(graph.links)
96 .enter().append("path")
97 .attr("class", "link")
98 .attr("d", path)
99 .style("stroke-width", function(d) { return Math.max(1, d.dy); })

100 .sort(function(a, b) { return b.dy - a.dy; });
101

102 // add the link titles
103 link.append("title")
104 .text(function(d) {
105 return d.source.name + " ? " +
106 d.target.name + "\n" + format(d.value); });
107

108 // add in the nodes
109 var node = svg.append("g").selectAll(".node")
110 .data(graph.nodes)
111 .enter().append("g")
112 .attr("class", "node")
113 .attr("transform", function(d) {
114 return "translate(" + d.x + "," + d.y + ")"; })
115 .call(d3.behavior.drag()
116 .origin(function(d) { return d; })
117 .on("dragstart", function() { this.parentNode.appendChild(this); })
118 .on("drag", dragmove));

APPENDIX D. USER VISUALIZATION CODE 170

120 // add the rectangles for the nodes
121 node.append("rect")
122 .attr("height", function(d) { return d.dy; })
123 .attr("width", sankey.nodeWidth())
124 .style("fill", function(d) {
125 return d.color = color(d.name.replace(/ .*/, "")); })
126 .style("stroke", function(d) { return d3.rgb(d.color).darker(2); })
127 .append("title")
128 .text(function(d) { return d.name + "\n" + format(d.value); });
129

130 // add in the title for the nodes
131 node.append("text")
132 .attr("x", -6)
133 .attr("y", function(d) { return d.dy / 2; })
134 .attr("dy", ".35em")
135 .attr("text-anchor", "end")
136 .attr("transform", null)
137 .text(function(d) { return d.name; })
138 .filter(function(d) { return d.x < width / 2; })
139 .attr("x", 6 + sankey.nodeWidth())
140 .attr("text-anchor", "start");
141

142 // the function for moving the nodes
143 function dragmove(d) {
144 d3.select(this).attr("transform",
145 "translate(" + d.x + "," + (
146 d.y = Math.max(0, Math.min(height - d.dy, d3.event.y))
147) + ")");
148 sankey.relayout();
149 link.attr("d", path);
150 }
151 });
152 </script>
153 </body>
154 </html>

D.2 Sankey.csv

source,target,value
Barry,Elvis,2
Frodo,Elvis,2
Frodo,Sarah,2
Barry,Alice,2
Elvis,Sarah,2
Elvis,Alice,2
Sarah,Alice,4

	Introduction
	Motivation
	Focus Points
	Structure of Work

	Related Works
	Data Tables
	Visualization Dashboards
	Design Considerations for Dashboards
	Background Information on Visualizations
	Identifying interactions
	Information Provenance
	Recommending Visualizations
	Extension guidelines

	Data Visualization and Recommendation Tools
	Scientific
	Commercial

	Summary

	Visualizer
	Overview
	Architecture and Used Technologies
	Back End
	Front End
	External Services

	Dataset Table
	Data Preprocessing
	Displaying the Table
	Components

	Visualization Dashboard
	Guest Dashboard
	Personalized Dashboard

	Summary

	Applications
	Data Preparation and Visual Exploration
	Data Preparation
	Visual Data Exploration
	Sorting and Filtering
	Conclusion

	Integration of Visualizer into an existing web page
	Demo Page Overview
	Generating a URL
	Generating Visualizations
	Usages

	Extension of Visualizations
	Chart API
	Project Structure
	Getting Started
	Uploading the Visualization
	Extended functionalities

	Summary

	Benchmarks
	Introduction
	Loading the dataset
	Aggregating data
	Applying configurations
	Summary

	Conclusion
	Summary
	Future Work

	List of Abbreviations
	Bibliography
	Config parameter actions description
	removeColumns
	mergeColumns
	renameColumn
	aggregate
	filter
	filterObj

	adddefault
	notactive
	changetype
	sort
	replace
	replaceall
	visualization
	brush

	Visualization description
	Attributes description
	Channel object

	mapping.js

	Chart API
	Global Objects
	brushingObserver
	registerListener
	unregister
	update
	initializeSelfUpdate
	updateEmpty

	Chart Functions
	getChannelMappings
	getChartRowIndex
	getFrom
	getTo
	filterBy
	updateVisualization
	sortBy
	unregisterVisualization
	refreshVisualization
	showVisualization
	applyCssToSvg
	revertCssFromSvg
	applyFilter
	drawVisualization

	User visualization code
	Sankey diagram - original index.html
	Sankey.csv

