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Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
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Abstract
This thesis will illustrate the determinant quantum Monte Carlo method and apply it to strongly
correlated many-body problems. At the same time two models will be studied using three dif-
ferent Hubbard-Stratonovich transformations. The organization of this work is as follows:

The first part will provide all the fundamental concepts that lay behind the determinant quan-
tum Monte Carlo algorithm and apply it to the Hubbard model.

In the second part we will modify the Hubbard model and the determinant quantum Monte
Carlo algorithm that we will have introduced in the previous part by using the real continuous
Hubbard-Stratonovich transformation instead of the real discrete one.

In the third and last part we will for the first time introduce the Hubbard-Holstein model,
a simple model capturing the physics of itinerant electrons with both electron-electron and
electron-phonon interactions. In this model the motion of the lattice sites is described by a
set of independent harmonic oscillators, one at each site i. The electron-electron interaction is
treated as usual and the electron-phonon interaction arises from a linear coupling of the local
density ni to the atomic displacement xi.
At the same time we will present a totally new approach where we will be using the complex
continuous Hubbard-Stratonovich transformation to derive an expression for the grand canon-
ical partition function of the Hubbard-Holstein model with the phonon degrees of freedom
being explicitly integrated out in order not to have to sample the phonon fields.
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Kurzfassung
Diese Diplomarbeit erklärt die Determinanten-Quanten-Monte-Carlo-Methode und wendet
sie auf stark wechselwirkende Vielteilchenprobleme an. Dabei werden zwei Modelle mit-
tels dreier verschiedener Hubbard-Stratonovich-Transformationen untersucht. Die Gliederung
dieser Arbeit lautet wie folgt:

Der erste Teil liefert alle grundlegenden Konzepte, die sich hinter dem Determinanten-Quanten-
Monte-Carlo-Algorithmus verbergen und wendet diesen auf das Hubbard-Modell an.

Im zweiten Teil modifizieren wir das Hubbard-Modell und den Determinanten-Quanten-Monte-
Carlo-Algorithmus, die wir im vorigen Teil eingeführt haben, indem wir die reelle kontinuier-
liche Hubbard-Stratonovich-Transformation statt der reellen diskreten verwenden.

Im dritten und letzten Teil führen wir zum ersten Mal das Hubbard-Holstein-Modell ein,
ein einfaches Modell, das die Physik von umherziehenden Elektronen mit beiden, Elektron-
Elektron- und Elektron-Phonon-, Wechselwirkungen erfasst. In diesem Modell wird die Be-
wegung der Gitterplätze durch eine Menge unabhängiger harmonischer Oszillatoren beschrieben,
einer auf jedem Platz i. Die Elektron-Elektron-Wechselwirkung wird wie gewöhnlich be-
handelt und die Elektron-Phonon-Wechselwirkung entsteht aus einer linearen Kopplung der
lokalen Dichte ni an die atomare Verschiebung xi.
Dabei präsentieren wir einen völlig neuen Ansatz wo wir die komplexe kontinuierliche Hubbard-
Stratonovich-Transformation verwenden, um einen Ausdruck für die großkanonische Zus-
tandssumme für das Hubbard-Holstein-Modell herzuleiten, bei dem die Phononen-Freiheitsgrade
explizit aufintegriert sind um keine Stichproben von Phononen-Feldern nehmen zu müssen.
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1 Introduction
Markov Chain Monte Carlo (MCMC) is an efficient approach to perform importance sampling
in many dimensions, where configurations x are created iteratively in such a way that their dis-
tribution corresponds to a desired distribution p(x) [1]. Because of this iterative construction,
consecutive configurations are usually highly correlated and thus one needs to make sure to
skip enough configurations such that two consecutive samples in average values are uncorre-
lated in order to get useful and reliable results. With these samples one can then evaluate the
high-dimensional integrals/sums that arise in the formulation of the many-body problem. But
it is assumed that the reader of this work is familiar with the basics of MCMC and thus they
will not be treated here.
Instead, we will directly dive into the realm of strongly correlated many-body problems, where
the number of basis states for a reasonably sized lattice is extremely large, and concern our-
selves in detail with the determinant quantum Monte Carlo (DQMC) method. With this highly
efficient technique one can carry out simulations within the grand canonical ensemble. In ad-
dition, we will make use of matrix decomposition methods to allow ourselves to study systems
at low temperatures.
This first part of the thesis will provide all the fundamental concepts that lay behind the DQMC
algorithm and apply it to the Hubbard model.
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2 The Hubbard model
The Hubbard model is a simple model for interacting electrons in narrow bands [2]. Assuming
localized orbitals and a strong screening of the Coulomb interaction, only the local density-
density repulsion is allowed. The mere on-site interaction is certainly a crude approximation
to the Coulomb interaction, but, for certain phenomena, it bears already the essential features
of strongly correlated electrons.

The model is defined by

H = H − µN = Hkin + HC − µN =

= −t
∑
σ=↑,↓

∑
<i, j>

(
c†iσcjσ + c†jσciσ

)
+ U

N∑
i=1

(
ni↑ −

1
2

) (
ni↓ −

1
2

)
− µ

N∑
i=1

(
ni↑ + ni↓

)
, (1)

where c†iσ (ciσ) create (annihilate) fermions of spin σ = ↑, ↓ in a Wannier orbital centered
at site i. niσ denotes the occupation number operator niσ = c†iσciσ. The electrons move in
tight-binding bands, with a transfer integral t between nearest-neighbor sites, as indicated by
< i, j >. The strength of the Coulomb interaction is U and µ is the chemical potential.
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3 The determinant quantum Monte Carlo approach
For the following discussion we will write the Hamilton operator of the Hubbard model (1) as

H = H − µN =

= U
∑

i

(
ni↑ −

1
2

) (
ni↓ −

1
2

)
︸                        ︷︷                        ︸

CV

+
∑
σ=↑,↓

−t
∑
<i, j>

(
c†iσcjσ + c†jσciσ

)
− µ

∑
i

niσ

︸                                         ︷︷                                         ︸
CKσ︸                                                ︷︷                                                ︸

CK

=

= V + K, (2)

where K is the kinetic energy operator plus the chemical potential term and V the operator of
the Coulomb repulsion.

3.1 The Suzuki-Trotter decomposition
A quantity of central interest is the thermodynamic expectation value of an operator O in a
grand canonical ensemble

〈O〉 =
1
Z

tr
(
Oe−β(H−µN)

)
(3)

with β = 1
kBT the inverse temperature and Z = tr

(
e−β(H−µN)

)
the grand canonical partition func-

tion [2].

Rewriting the grand canonical partition function by dividing the imaginary-time interval
0 < τ < β into L intervals of width ∆τ =

β

L yields

Z = tr
(
e−β(H−µN)

)
= tr

(
e−L∆τ(V+K)

)
.

Furthermore, taking into account the identity

ex(A+B) = exAexB + O(x2),

which holds for any two non-commuting operators A and B, and applying it to each factor in
e−L∆τ(V+K) =

(
e−∆τ(V+K)

)L
, (

e−∆τ(V+K)
)L

=
(
e−∆τVe−∆τK + O(∆τ2)

)L
,

the grand canonical partition function becomes

Z = tr
((

e−∆τVe−∆τK + O(∆τ2)
)L

)
≈ tr

((
e−∆τVe−∆τK

)L
)
. (4)

This is the only approximation in DQMC. Apart from that, it is exact.
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3.2 The Hubbard-Stratonovich transformation
The key element of the DQMC algorithm, to determine thermodynamic expectation values, is
the elimination of the electronic degrees of freedom to obtain an effective action for (auxil-
iary) boson fields to which standard Monte Carlo techniques can be applied [2]. This approach
yields immediately the exact result for independent electron theories.

To eliminate the electronic interaction we perform the Hubbard-Stratonovich transformation,
which is in general based on either one of the integrals

e
a
2 x2

=
1
√

2πa

∞∫
−∞

e−
1
2a y2−xy dy (5)

e−
a
2 x2

=
1
√

2πa

∞∫
−∞

e−
1
2a y2−ixy dy, (6)

depending on the sign of the argument of the exponential function to be transformed (a has to
be real and positive). We will use it to linearize the density operator in the Coulomb repulsion
term and introduce an auxiliary scalar field. By this, our particle theory will be converted into
its respective field theory.
Here, for our endeavor to eliminate the electronic interaction, we will choose to perform the
so-called real discrete Hubbard-Stratonovich transformation by claiming

e−∆τU(ni↑−
1
2 )(ni↓−

1
2 ) = e−∆τU

4
1
2

(
e−∆τλ(ni↑−ni↓) + e∆τλ(ni↑−ni↓)

)
(7)

for an arbitrary i ∈ {1, . . . ,N}.

Proof.
Because ni↑ and ni↓ can just be either 0 or 1, we get:

ni↑ ni↓ ni↑ − ni↓ e−∆τU(ni↑−
1
2 )(ni↓−

1
2 ) e−∆τU

4 1
2

(
e−∆τλ(ni↑−ni↓) + e∆τλ(ni↑−ni↓)

)
0 0 0 e−∆τU

4 e−∆τU
4

1 0 1 e∆τU
4 e−∆τU

4 cosh(∆τλ)
0 1 -1 e∆τU

4 e−∆τU
4 cosh(∆τλ)

1 1 0 e−∆τU
4 e−∆τU

4
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This means that we have to choose λ in such a way that

cosh(∆τλ) = e∆τU
2 ,

i.e. λ = 1
∆τ

arcosh(e∆τU
2 ). �

The transformation reduces the quartic self-interaction of the electrons to a quadratic inter-
action with the auxiliary Hubbard-Stratonovich field variables ±λ, which represent bosonic
degrees of freedom, but have no true physical interpretation [3]. However, this representa-
tion is amenable to numerical treatment as the summation of the fields can be performed by
simulation (e.g. Monte Carlo) methods.

3.3 Transformation of the grand canonical partition function
Next, we introduce (7) at each lattice point i and each imaginary-time slice l ∈ {1, . . . , L} in (4)
yielding

Z ≈ tr
((

e−∆τVe−∆τK
)L

)
= tr

((
e
−∆τU

∑
i

(ni↑−
1
2 )(ni↓−

1
2 )

e−∆τK
)L)

=

= tr


∏

i

(
e−∆τU(ni↑−

1
2 )(ni↓−

1
2 )
)

e−∆τK

L = tr


∏

i

e−∆τU
4

1
2

∑
S∈{±1}

e−∆τλS (ni↑−ni↓)

 e−∆τK


L =

=

e−β
U
4

2L

N ∑
S∈{±1}N×L

tr

 1∏
l=L

e
−∆τλ

∑
i

Sil (ni↑−ni↓)e−∆τK︸                    ︷︷                    ︸
Ce−∆τH (l)

 =

=

e−β
U
4

2L

N ∑
S∈{±1}N×L

tr

 1∏
l=L

e−∆τH (l)

 , (8)

where we have chosen the time ordering, which is arbitrary, in decreasing order. We have
also used the fact that the arguments of the exponentials are single-particle operators and have
introduced effective single-particle Hamilton operators (in second quantization)
H (l) =

∑
σ=↑,↓

∑
i j

h(l)
i j,σc†iσcjσC

∑
σ=↑,↓

H (l)
σ [2]. It is clear-cut that the two spin contributions decouple

and (8) becomes

Z =

e−β
U
4

2L

N ∑
S∈{±1}N×L

tr↑

 1∏
l=L

e−∆τH (l)
↑

 tr↓

 1∏
l=L

e−∆τH (l)
↓

 . (9)

Now we want to prove that the product of exponentials of (effective) one-particle Hamilton
operators, H (l)

σ =
∑
i j

h(l)
i j,σc†iσcjσ, is again an exponential of an effective one-particle operator

H̃σ =
∑
i j

h̃i j,σc†iσcjσ [2], i.e.

Uσ B
1∏

l=L

e−∆τH (l)
σ = e−∆τH̃σ .
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Proof.
We start out with the time evolution of an arbitrary electron creation operator c†kσ in an effective
one-particle system described by H (l)

σ =
∑
i j

h(l)
i j,σc†iσcjσ,

c†kσ(τ) = e−τH
(l)
σ c†kσeτH

(l)
σ .

∣∣∣∣∣ d
dτ

=⇒

=⇒
d
dτ

c†kσ(τ) = e−τH
(l)
σ

(
−H (l)

σ

)
c†kσeτH

(l)
σ + e−τH

(l)
σ c†kσH

(l)
σ eτH

(l)
σ =

= −e−τH
(l)
σ

[
H (l)

σ , c†kσ
]

eτH
(l)
σ =

/ [
H (l)

σ , c†kσ
]

=
∑

i j

h(l)
i j,σ

[
c†iσcjσ, c

†

kσ

]
=

=

/ [
c†iσcjσ, c

†

kσ

]
= c†iσcjσc†kσ − c†kσc†iσcjσ = c†iσcjσc†kσ + c†iσc†kσcjσ =

= c†iσ
{
cjσ, c

†

kσ

}
= c†iσδjk

/
=

=
∑

i j

h(l)
i j,σc†iσδjk =

∑
i

c†iσh(l)
ik,σ

/
= −e−τH

(l)
σ

∑
i

c†iσh(l)
ik,σ

 eτH
(l)
σ =

= −
∑

i

c†iσ(τ) h(l)
ik,σ ⇐⇒

d
dτ

#»cσ†(τ) = − #»cσ†(τ) h(l)
σ =⇒

=⇒ #»cσ†(τ) = #»cσ†e−τh(l)
σ (10)

h(l)
σ is the matrix defining the operator H (l)

σ . We learn from (10) how an arbitrary one-particle
orbital a†µσ B

∑
i

c†iσAiµ evolves:

a†µσ(τ) =
∑

i

c†iσ(τ) Aiµ =
∑

i

∑
j

c†jσ
(
e−τh(l)

σ

)
ji

Aiµ =
∑

j

c†jσ
∑

i

(
e−τh(l)

σ

)
ji

Aiµ
!
=

!
= e−τH

(l)
σ a†µσeτH

(l)
σ ⇐⇒

⇐⇒ e−∆τH (l)
σ a†µσ =

∑
j

c†jσ
∑

i

(
e−∆τh(l)

σ

)
ji

Aiµe−∆τH (l)
σ =⇒

=⇒ Uσa†µσ =

1∏
l=L

e−∆τH (l)
σ a†µσ =

∑
j

c†jσ
∑

i

 1∏
l=L

e−∆τh(l)
σ


ji︸          ︷︷          ︸

C
(
e−∆τ̃hσ

)
ji

AiµUσ =

=
∑

j

c†jσ
∑

i

(
e−∆τ̃hσ

)
ji

AiµUσ ⇐⇒

⇐⇒ Uσa†µσ
(
Uσ

)−1
=

∑
j

c†jσ
∑

i

(
e−∆τ̃hσ

)
ji

Aiµ = e−∆τH̃σa†µσe∆τH̃σ

So,Uσ can be viewed as a single exponential of an effective one-particle operator H̃σ. �
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Next, we want to prove that for the traces in (9) one can obtain

trσ

 1∏
l=L

e−∆τH (l)
σ

 = trσ

 1∏
l=L

e
−∆τ

∑
i j

h(l)
i j,σc†iσcjσ

 = trσ

 1∏
l=L

e−∆τ #»cσ†h
(l)
σ

#»cσ

 = det

1 +

1∏
l=L

e−∆τh(l)
σ

 .
Proof.
To this end we first diagonalize the effective one-particle Hamilton operator
H̃σ =

∑
i j

h̃i j,σc†iσcjσ = #»cσ†̃hσ
#»cσ being introduced in the paragraph preceding the last proof by

defining a matrix B, whose columns are the orthonormal eigenvectors of h̃σ [2]. This means
that B is a unitary matrix, B† = B−1 and BB† = B†B = 1, i.e. the rows and columns are
orthonormal to each other. So, B is the transformation matrix that diagonalizes h̃σ:

H̃σ = #»cσ†̃hσ
#»cσ = #»cσ†B︸︷︷︸

C
#»
bσ†

B†̃hσB︸ ︷︷ ︸
Cε̃σ

B† #»cσ︸︷︷︸
C

#»
bσ

=
#»
bσ†ε̃σ

#»
bσ =

=
∑

i

ε̃i,σb†iσbiσ =⇒ (11)

=⇒ −∆τH̃σ =
∑

i

(−∆τ) ε̃i,σ︸     ︷︷     ︸
Cεi,σ

b†iσbiσ =
∑

i

εi,σb†iσbiσ =⇒

=⇒ trσ

 1∏
l=L

e−∆τH (l)
σ

 = trσ
(
e−∆τH̃σ

)
= trσ

(
e
∑
i
εi,σb†iσbiσ

)
=

∑
#»nσ∈{0,1}N∑

i
niσ=1

〈 #»nσ | e
∑
i
εi,σniσ

| #»nσ〉 (12)

| #»nσ〉 are the eigenstates of H̃σ in the occupation number representation. The summation over
all possible particle number configurations, for one particle with spin σ, can immediately be
performed yielding

trσ

 1∏
l=L

e−∆τH (l)
σ

 =
∏

i

1∑
niσ=0

eεi,σniσ =
∏

i

(1 + eεi,σ) =
∏

i

(
1 + e−∆τε̃i,σ

)
=

=

∣∣∣∣∣∣∣∣∣
1 + e−∆τε̃1,σ 0. . .

0 1 + e−∆τε̃N,σ

∣∣∣∣∣∣∣∣∣ = det
(
1 + e−∆τε̃σ

)
. (13)
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Rotating the result back to the original basis gives us what we wanted to prove,

trσ

 1∏
l=L

e−∆τH (l)
σ

 = trσ
(
e−∆τH̃σ

)
= det

(
1 + e−∆τε̃σ

)
= det

(
1 + e−∆τB†h̃σB

)
=

= det
(
1 + B†e−∆τ̃hσB

)
= det

(
B†

(
BB† + e−∆τ̃hσ

)
B
)

=

= det
(
B†

)︸  ︷︷  ︸
=±1

det
(
1 + e−∆τ̃hσ

)
det(B)︸︷︷︸

=±1

= det
(
1 + e−∆τ̃hσ

)
=

= det

1 +

1∏
l=L

e−∆τh(l)
σ

 .
�

We finally obtain for the grand canonical partition function of the Hubbard model (9)

Z =

e−β
U
4

2L

N ∑
S∈{±1}N×L

det

1 +

1∏
l=L

e−∆τh(l)
↑

 det

1 +

1∏
l=L

e−∆τh(l)
↓

︸                                              ︷︷                                              ︸
Cρ(S )

=

e−β
U
4

2L

N ∑
S∈{±1}N×L

ρ(S ) .

The grand canonical partition function has now been expressed to a classical Monte Carlo
problem and, through our discussion, we have also shown that every d-dimensional quantum
system can be mapped onto a (d + 1)-dimensional classical system. The required matrices are
the respective operators’ matrix representations for one particle and the information content
of the many-body problem has been cast into the summation over all field values [2]. The
number of auxiliary fields is extremely large and statistical methods have to be invoked to
obtain estimates for the relevant quantities. The importance sampling idea is well suited for
this task.

3.4 Thermodynamic expectation values
Next, we want to outline how to evaluate thermodynamic expectation values [2]. For an equal-
time correlation function of operators A and B, 〈AB〉, we have, using (3) and (8),

〈AB〉 =
1
Z

e−β
U
4

2L

N ∑
S∈{±1}N×L

tr

AB
1∏

l=L

e−∆τH (l)

 C 1
Z

e−β
U
4

2L

N ∑
S∈{±1}N×L

gS(AB) ρ(S ) , (14)

so the Green’s function for a given Hubbard-Stratonovich configuration S is defined as

gS(AB) B
1

ρ(S )
tr

AB
1∏

l=L

e−∆τH (l)

 . (15)
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Equation (14) is in a form amenable to importance sampling with the probability density

P(S ) =
ρ(S )

Z
=

1
Z

det

1 +

1∏
l=L

e−∆τh(l)
↑

 det

1 +

1∏
l=L

e−∆τh(l)
↓

 . (16)

Given a single Hubbard-Stratonovich field value S we are dealing with a one-particle prob-
lem. Therefore Wick’s theorem applies and it suffices to consider the one-particle Green’s
function gS(ciσc†jσ). The correlation effects come into play through the sum over all Hubbard-
Stratonovich fields.

We will now prove that for gS(ciσc†jσ) one can derive the expression

gS(ciσc†jσ) =


1 +

1∏
l=L

e−∆τh(l)
σ

−1
i j

. (17)

Proof.
We consider the equal-time Green’s function for a single Hubbard-Stratonovich configuration
S [2]. According to its definition (15), the Green’s function reads

gS(ciσc†jσ) =

trσ

(
ciσc†jσ

1∏
l=L

e−∆τH (l)
σ

)
trσ

(
1∏

l=L
e−∆τH (l)

σ

) . (18)

Just like in the previous proof, we will first rotate the problem to diagonal form and then rotate
the result back to the original basis. To this end we again define a unitary matrix B, whose
columns are the orthonormal eigenvectors of h̃σ. We use the equations (12) and (13) in the
previous proof to rewrite (18):

gS(ciσc†jσ) =

trσ

(
ciσc†jσe

∑
µ
εµ,σb†µσbµσ

)
∏
µ

(1 + eεµ,σ)
(19)

Now we want to expand the electron operators in the eigenstates of H̃σ. In (11) in the previous
proof we introduced

#»
bσ = B† #»cσ , with which we immediately get #»cσ = B

#»
bσ and further:

ciσ =
∑
ν

Biνbνσ =
∑
ν

〈i| B |ν〉 bνσ =
∑
ν

〈ei|ν〉 bνσ =⇒

=⇒ c†jσ =
∑
ν′

〈ej|ν
′〉
∗ b†ν′σ =

∑
ν′

〈ν′|ej〉 b
†

ν′σ

=⇒ ciσc†jσ =
∑
νν′

〈ei|ν〉 〈ν
′|ej〉 bνσb†ν′σ (20)
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〈ei| and |ej〉 are canonical basis vectors and |ν〉 and 〈ν′| are, just like in the previous proof,
the eigenstates of H̃σ in the occupation number representation (for one particle with spin σ).
Inserting the expansion of the electron operators in the eigenstates of H̃σ (20) into (19) yields

gS(ciσc†jσ) =
∑
νν′

〈ei|ν〉 〈ν
′|ej〉

trσ

(
bνσb†ν′σe

∑
µ
εµ,σb†µσbµσ

)
∏
µ

(1 + eεµ,σ)
=

=
1∏

µ
(1 + eεµ,σ)

∑
νν′

〈ei|ν〉 〈ν
′|ej〉

∑
#»nσ∈{0,1}N∑

i
niσ=1

〈 #»nσ | bνσb†ν′σe
∑
µ
εµ,σnµσ

| #»nσ〉 =

=
1∏

µ
(1 + eεµ,σ)

∑
ν

〈ei|ν〉 〈ν|ej〉
∑

#»nσ∈{0,1}N∑
i

niσ=1

〈 #»nσ |
(
1 − nνσ

)
| #»nσ〉

∏
µ

eεµ,σnµσ =

=
1∏

µ
(1 + eεµ,σ)

∑
ν

〈ei|ν〉 〈ν|ej〉

1∑
nνσ=0

(
1 − nνσ

)
eεν,σnνσ

∏
µ,ν

1∑
nµσ=0

eεµ,σnµσ =

=
1∏

µ
(1 + eεµ,σ)

∑
ν

〈ei|ν〉 〈ν|ej〉 1 ·
∏
µ,ν

(1 + eεµ,σ) =

=
∑
ν

〈ei|ν〉 〈ν|ej〉
1

1 + eεν,σ
= 〈ei|

∑
ν

1
1 + e−∆τε̃ν,σ

|ν〉 〈ν|

 |ej〉 =

= 〈ei|

(
1

1 + e−∆τε̃σ

)
|ej〉 .

Rotating the result back to the original basis gives us (17),

gS(ciσc†jσ) = 〈ei|

(
1

1 + e−∆τB†h̃σB

)
|ej〉 = 〈ei|

(
1

1 + B†e−∆τ̃hσB

)
|ej〉 =

= 〈ei|

 1

B†
(
BB† + e−∆τ̃hσ

)
B

 |ej〉 = 〈ei|

(
BB†

1 + e−∆τ̃hσ

)
|ej〉 = 〈ei|


1

1 +
1∏

l=L
e−∆τh(l)

σ

 |ej〉 =

=


1 +

1∏
l=L

e−∆τh(l)
σ

−1
i j

.

�

By this we derived the expression for the one-particle Green’s function, which is entirely
determined by N × N matrices and is therefore well suited for numerical treatment [2].



3 THE DETERMINANT QUANTUM MONTE CARLO APPROACH 13

3.5 An efficient update scheme
At first glance the algorithm looks far too inefficient to be of practical use [2]. There ex-
ists, however, an efficient scheme to update matrices and determinants if successive Hubbard-
Stratonovich configurations S and S ′ in the Markov chain differ only in one spin (single spin-
flips) and if the time slice l, where the spin-flip is to happen, stands at the very beginning of

the product
1∏

l=L
e−∆τh(l)

σ , which means we need the cyclic permutation

e−∆τh(l)
σ · · · e−∆τh(1)

σ e−∆τh(L)
σ · · · e−∆τh(l+1)

σ .

We now say, on time slice l, the spin at site i is being flipped. In this case the matrix e−∆τh(l)
σ is

changed.

In order to get the matrix e−∆τh(l)
σ defining the operator e−∆τH (l)

σ = e
∓∆τλ

∑
i

Sil niσe−∆τKσ , we need
the matrix representations of the operators Kσ and

∑
i

Sil niσ. From (2) we get for Kσ

Kσ = #»cσ† (−t) hkin
#»cσ + #»cσ† (−µ) 1 #»cσ = #»cσ† (−thkin − µ1)︸         ︷︷         ︸

Ck

#»cσ = #»cσ† k #»cσ . (21)

And for the interaction term we simply get∑
i

Sil niσ = #»cσ† v(l) #»cσ , (v(l))i j = δi j Sil.

So, we finally get the matrix

e−∆τh(l)
σ = e∓∆τλv(l)e−∆τk C B↑/↓l , (v(l))i j = δi j Sil, (22)

with its own set of spin variables S1l, . . . , SNl ∈ {±1}. From now on we will call the matrix
e−∆τh(l)

σ “single-particle propagator” B↑/↓l .

Next, we will introduce the so-called “fermion matrix” M↑/↓(l) and discuss its change with
the spin at site i being flipped, Sil → −Sil:

M↑/↓(l) B 1 + e∓∆τλv(l)e−∆τk · · · B↑/↓1 B↑/↓L · · · B
↑/↓
l+1 =⇒

=⇒ M↑/↓(l)′ = 1 + e∓∆τλv(l)′e−∆τk · · · B↑/↓1 B↑/↓L · · · B
↑/↓
l+1 =

/
exe∓∆τλSil = e±∆τλSil ⇐⇒ ex =

= e±2∆τλSil C
(
∆↑/↓(i, l)

)
ii

+ 1
/

=

= 1 +
(
1 + ∆↑/↓(i, l)

)
e∓∆τλv(l)e−∆τk · · · B↑/↓1 B↑/↓L · · · B

↑/↓
l+1︸                                  ︷︷                                  ︸

CA↑/↓(l)

= 1 +
(
1 + ∆↑/↓(i, l)

)
A↑/↓(l) =

= M↑/↓(l) + ∆↑/↓(i, l) A↑/↓(l) ,
(
∆↑/↓(i, l)

)
jk

= δji δki

(
e±2∆τλSil − 1

)
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For the Metropolis-Hastings algorithm that we will be using throughout this whole thesis the
ratio R =

P(S ′)
P(S ) is needed. With (16) we get

R =

1
Z ρ(S ′)
1
Z ρ(S )

=
det

(
M↑(l)′

)
det

(
M↑(l)

)︸        ︷︷        ︸
CR↑

det
(
M↓(l)′

)
det

(
M↓(l)

)︸        ︷︷        ︸
CR↓

= R↑R↓. (23)

From now on we will also write our Green’s functions for the successive Hubbard-Stratonovich
configurations S and S ′ as gσ(l) = (Mσ(l))−1 and gσ(l)′ = (Mσ(l)′)−1.

So the ratio of the determinants after and before the spin-flip is

Rσ = 1 +
(
1 − (gσ(l))ii

)
(∆σ(i, l))ii .

Proof.

Rσ =
det(Mσ(l)′)
det(Mσ(l))

= det
(
Mσ(l)′

)
det

(
(Mσ(l))−1

)
= det

(
(Mσ(l) + ∆σ(i, l) Aσ(l)) (Mσ(l))−1

)
=

= det
(
1 + ∆σ(i, l) (Mσ(l) − 1) (Mσ(l))−1

)
= det(1 + ∆σ(i, l) (1 − gσ(l))) =

= (1 + ∆σ(i, l) (1 − gσ(l)))ii = 1 +
(
1 − (gσ(l))ii

)
(∆σ(i, l))ii

�

Next, we will apply the Sherman-Morrison formula to relate the new gσ(l)′ to the old gσ(l).
The Sherman-Morrison formula states that(

A + #»u #»v t
)−1

= A−1 −
A−1 #»u #»v tA−1

1 + #»v tA−1 #»u
, (24)

where A is an invertible square matrix, #»u , #»v ∈ CN and 1 + #»v tA−1 #»u , 0.

Proof.
The right-hand side of (24), defined as the matrix Y , is the inverse of A + #»u #»v t, defined as the
matrix X, if and only if XY = YX = 1.

XY =
(
A + #»u #»v t

) (
A−1 −

A−1 #»u #»v tA−1

1 + #»v tA−1 #»u

)
=

= AA−1 + #»u #»v tA−1 −
AA−1 #»u #»v tA−1 + #»u #»v tA−1 #»u #»v tA−1

1 + #»v tA−1 #»u
=

= 1 + #»u #»v tA−1 −

#»u
(
1 + #»v tA−1 #»u

)
#»v tA−1

1 + #»v tA−1 #»u
= 1

Analogically, it is verified that YX = 1. �

So, if the inverse of A is already known, the formula provides a numerically cheap way to
compute the inverse of A corrected by the matrix #»u #»v t, as it does not have to be computed
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from scratch (which in general is expensive), but can be computed by correcting A−1.
Now we apply the Sherman-Morrison formula to relate the new gσ(l)′ to the old gσ(l), which
leads to

gσ(l)′ = gσ(l) −
gσ(l) ∆σ(i, l) (1 − gσ(l))

1 +
(
1 − (gσ(l))ii

)
(∆σ(i, l))ii

. (25)

Proof.

gσ(l)′ =
(
Mσ(l)′

)−1
= (Mσ(l) + ∆σ(i, l) Aσ(l))−1 =

(
Mσ(l) + (∆σ(i, l))ii

#»ei (Aσ(l))i∗
)−1

=

= (Mσ(l))−1
−

(Mσ(l))−1 ∆σ(i, l) Aσ(l) (Mσ(l))−1

1 + (Aσ(l))i∗ (Mσ(l))−1 #»ei (∆σ(i, l))ii

=

= gσ(l) −
gσ(l) ∆σ(i, l) (1 − gσ(l))

1 + (Aσ(l))i∗ (gσ(l))∗i (∆σ(i, l))ii
= gσ(l) −

gσ(l) ∆σ(i, l) (1 − gσ(l))
1 + (Aσ(l) gσ(l))ii (∆σ(i, l))ii

=

= gσ(l) −
gσ(l) ∆σ(i, l) (1 − gσ(l))

1 + (1 − gσ(l))ii (∆σ(i, l))ii
= gσ(l) −

gσ(l) ∆σ(i, l) (1 − gσ(l))
1 +

(
1 − (gσ(l))ii

)
(∆σ(i, l))ii

((Aσ(l))i∗ denotes the i-th row of Aσ(l) and (gσ(l))∗i denotes the i-th column of gσ(l).) �

So, if the equal-time Green’s function gσ(l) for an electron propagating through the field pro-
duced by the Sil is known, and the spin Sil is flipped, then its new value, gσ(l)′, can be evaluated
through this relation [3].

After all the spins on time slice l have been updated, we can obtain the equal-time Green’s
function on the next time slice l + 1 through the relation

gσ(l + 1) = Bσ
l+1 gσ(l)

(
Bσ

l+1
)−1 . (26)

Proof.

gσ(l + 1) = (Mσ(l + 1))−1 =
(
1 + Bσ

l+1Bσ
l · · · B

σ
1 Bσ

L · · · B
σ
l+2

)−1
=

=
(
Bσ

l+1
(
1 + Bσ

l · · · B
σ
1 Bσ

L · · · B
σ
l+2Bσ

l+1
) (

Bσ
l+1

)−1
)−1

=
(
Bσ

l+1 Mσ(l)
(
Bσ

l+1
)−1

)−1
=

= Bσ
l+1 (Mσ(l))−1 (

Bσ
l+1

)−1
= Bσ

l+1 gσ(l)
(
Bσ

l+1
)−1

�

Next, we update all spins on time slice l + 1 following the same procedure that we described
before. After all the spins on time slice l + 1 have been updated, we need to “wrap” the equal-
time Green’s function again and continue this process until all spins on all time slices have
been updated.
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3.6 The UDR decomposition
As we have seen, the Green’s function, and not the grand canonical partition function, is the
central object of the simulations [4]. It is needed to perform importance sampling and to make
measurements. Unfortunately, numerical instabilities prevent the use of this algorithm [3]. In
order to remove these instabilities, we must first understand their cause. They are not associ-
ated with the updating of the equal-time Green’s function given in (25). On the other hand, the
process of advancing the equal-time Green’s function to a new time slice given in (26) does
introduce numerical errors, as round-off errors will accumulate from the repeated adding-on of
factors and the subsequent deletion by inverse multiplication. So one must periodically recom-
pute the Green’s function from scratch. The more serious difficulty is that at low temperatures,
as β becomes large, the Green’s function cannot be computed at all [4]. The reason is that as
many Bσ

l matrices are multiplied together, the product becomes more and more ill-conditioned,
with exponentially divergent numerical scales. And one simply cannot numerically compute
the inverse (or the determinant) of an ill-conditioned matrix. This problem, however, can be
dealt with in a relatively straightforward manner using matrix factorization methods such as
the singular value decomposition (SVD) or the modified Gram-Schmidt (MGS) factorization,
which happens to be even more efficient than SVD, and which we will just call “UDR decom-
position.”

Next, we will use the UDR decomposition to stabilize the numerical computation of inverses
(and determinants) of ill-conditioned matrices [3]. Suppose that one can multiply m of the Bσ

l
matrices without losing numerical accuracy. We then use the Gram-Schmidt orthogonalization
procedure to write this product in the form

aσ1 (l) B Bσ
l+mBσ

l+m−1 · · · B
σ
l+1 = Uσ

1 Dσ
1 Rσ

1 ,

where Uσ
1 is an orthogonal matrix, Dσ

1 a diagonal matrix and Rσ
1 a unit right triangular matrix.

The orthogonal matrix Uσ
1 is necessarily well-conditioned. Rσ

1 need not be well-conditioned,
but in practice it is. Only the diagonal matrix Dσ

1 has large variations in the size of its elements.
Next, we perform four operations in a very specific order, which is important.
We first multiply Uσ

1 on the left by Bσ
l+2m · · · B

σ
l+m+1. By assumption, m is small enough so that

this matrix can be computed accurately.
We then multiply it on the right by Dσ

1 . This only rescales the columns of the matrix and thus
does no harm to the numerical stability of the next step, a UDR decomposition of this partial
product,

ãσ2 (l) = Uσ
2 Dσ

2 R̃σ
2 .

For the last step we multiply the resulting unit right triangular matrix R̃σ
2 on the right by Rσ

1 to
obtain

aσ2 (l) = Uσ
2 Dσ

2 R̃σ
2 Rσ

1 = Uσ
2 Dσ

2 Rσ
2 .
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This process is repeated L
m times to obtain

Aσ(l) = aσL
m

(l) = Uσ
L
m

Dσ
L
m

Rσ
L
m
.

To form Mσ(l), we must add the unit matrix to Aσ(l), but care must be taken to isolate the
diagonal matrix Dσ

L
m

, whose elements have large variations in size. We therefore write

Mσ(l) = 1 + Aσ(l) = 1 + Uσ
L
m

Dσ
L
m

Rσ
L
m

= Uσ
L
m

((
Uσ

L
m

)−1 (
Rσ

L
m

)−1
+ Dσ

L
m

)
Rσ

L
m

and make a final UDR decomposition of
(
Uσ

L
m

)−1 (
Rσ

L
m

)−1
+ Dσ

L
m

leading to

Mσ(l) = Uσ
L
m

Ũσ︸ ︷︷ ︸
CUσ

Dσ R̃σRσ
L
m︸︷︷︸

CRσ

= UσDσRσ.

Finally, we can form gσ(l) in a very trivial way,

gσ(l) = (Mσ(l))−1 = (UσDσRσ)−1 = (Rσ)−1 (Dσ)−1 (Uσ)−1 .

In all, we define numerical stability in an operational fashion.

Just as it is possible to multiply m of the Bσ
l matrices without losing numerical accuracy, it is

also possible to advance the Green’s function to a new time slice, using (26), m′ times with-
out introducing unacceptable errors [3]. Thus, one must completely recalculate the Green’s
function L

m′ times per lattice sweep.

3.7 The checkerboard breakup
For our numerical study of the Hubbard model we will first examine a 4 × 2 lattice, so N = 8.
Hence we get for the matrix k in (21)

k = −t



0 1 0 1 2 0 0 0
1 0 1 0 0 2 0 0
0 1 0 1 0 0 2 0
1 0 1 0 0 0 0 2
2 0 0 0 0 1 0 1
0 2 0 0 1 0 1 0
0 0 2 0 0 1 0 1
0 0 0 2 1 0 1 0


− µ1.

Next, we will choose to break the matrix e−∆τk in (22) further, because it is a dense matrix
making the number of operations needed to perform a matrix multiplication scale as N3 [4].
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A sparse and extremely convenient approximate form for e−∆τk results from a further applica-
tion of the Suzuki-Trotter decomposition to it,

e−∆τk = e−∆τ(−thkin−µ1) = e
−∆τ

( ∑
<i, j>

k(i j)−µ1

)
≈

∏
<i, j>

e−∆τk(i j)
· e∆τµ, (27)

where the k(i j) are sparse matrices with only
(
k(i j)

)
i j

=
(
k(i j)

)
ji
C ki j nonzero. These sparse

matrices are easily exponentiated giving

e−∆τk(i j)
= e

−∆τ



0 · · · 0 · · · 0 · · · 0
...

...
...

...
0 · · · 0 · · · ki j · · · 0
...

...
...

...
0 · · · ki j · · · 0 · · · 0
...

...
...

...
0 · · · 0 · · · 0 · · · 0


=

=



1 · · · 0 · · · 0 · · · 0
...

...
...

...
0 · · · cosh(∆τki j) · · · −sinh(∆τki j) · · · 0
...

...
...

...
0 · · · −sinh(∆τki j) · · · cosh(∆τki j) · · · 0
...

...
...

...
0 · · · 0 · · · 0 · · · 1


,

with only the elements ii, i j, ji and j j differing from those of the unit matrix. If we replace
the multiplication of the dense matrix by the series (27) of sparse-matrix multiplications, the
number of operations for multiplication onto a N × N matrix is reduced from N3 to N2.
(27) is referred to as the “checkerboard breakup.” Not only is the checkerboard breakup of
e−∆τk reasonably fast, the evaluation of the inverse e∆τk requires no extra work: one only has
to reverse the sign of the off-diagonal elements.
In the checkerboard breakup we use, we write e−∆τk as a product of four sparse matrices and
the scalar factor e∆τµ. One of these matrices, a, allows hopping between sites (ix, iy) and sites
(ix + 1, iy) with ix even, a second, b, with ix odd. The third and fourth matrices, c and d, allow
for hopping between sites (ix, iy) and (ix, iy + 1) with iy even and odd.



3 THE DETERMINANT QUANTUM MONTE CARLO APPROACH 19

Explicitly, these matrices are:

a = −



0 0 0 t 0 0 0 0
0 0 t 0 0 0 0 0
0 t 0 0 0 0 0 0
t 0 0 0 0 0 0 0
0 0 0 0 0 0 0 t
0 0 0 0 0 0 t 0
0 0 0 0 0 t 0 0
0 0 0 0 t 0 0 0


b = −



0 t 0 0 0 0 0 0
t 0 0 0 0 0 0 0
0 0 0 t 0 0 0 0
0 0 t 0 0 0 0 0
0 0 0 0 0 t 0 0
0 0 0 0 t 0 0 0
0 0 0 0 0 0 0 t
0 0 0 0 0 0 t 0



c = d = −



0 0 0 0 t 0 0 0
0 0 0 0 0 t 0 0
0 0 0 0 0 0 t 0
0 0 0 0 0 0 0 t
t 0 0 0 0 0 0 0
0 t 0 0 0 0 0 0
0 0 t 0 0 0 0 0
0 0 0 t 0 0 0 0


With these we can write e−∆τk as

e−∆τk ≈ e−∆τa︸︷︷︸
CA

e−∆τb︸︷︷︸
CB

e−∆τc︸︷︷︸
CC

e−∆τd︸︷︷︸
CD

· e∆τµ = ABCD · e∆τµ

and e∆τk as

e∆τk ≈
(
ABCD · e∆τµ

)−1
= e−∆τµ · D−1C−1B−1A−1.

So we finally get for the single-particle propagator in (22)

B↑/↓l = e∓∆τλv(l)e−∆τk ≈ e∓∆τλv(l)ABCD · e∆τµ,

which means that the particles diffuse in real space for a small imaginary time ∆τ according to
ABCD, their propagators are amplified or attenuated through the scalar factor e∆τµ, and finally
are scattered by the external fields described by e∓∆τλv(l), to which the up and down fermions
couple differently [4].

3.8 The sign problem
The so-called “sign problem” is encountered when the functional integrals, which are to be
evaluated, do not have a positive-semidefinite measure [2]. It is not related to any approxi-
mations or fundamental errors in our DQMC algorithm, it just describes the situation that the
statistical error can become very large.
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In general, the expectation value of any observable O can be written as

〈O〉 =

∫
O(x) p(x) dx∫

p(x) dx
,

where O(x) and p(x) are known real functions of the (continuous) field variable denoted by
x. If p(x) changes its sign, it cannot be considered as a probability distribution. The standard
trick that is used to avoid this difficulty is to write p(x) as |p(x)| sgn(p(x)) and to absorb the
sign of p(x), sgn(p(x)), in the quantity to be measured,

〈O〉 =

∫
O(x) |p(x)| sgn(p(x)) dx∫
|p(x)| sgn(p(x)) dx

=

∫
O(x) sgn(p(x)) |p(x)| dx∫

|p(x)| dx∫
sgn(p(x)) |p(x)| dx∫

|p(x)| dx

=
〈Os〉
〈s〉

. (28)

However, if the average sign, 〈s〉, is close to zero, this estimator for 〈O〉 is very noisy [3].

We will illustrate this point guided by the average sign [2]. Denoting the probability for
measuring a positive sign by p+ and that for measuring a negative one by p− (p+ + p− = 1),
we get

〈s〉 = (+1) p+ + (−1) p− = p+ − p−.

Now, if p− ≈ p+, we get 〈s〉 ≈ 0 and hence for the variance

σ2 =
〈
(∆s)2

〉
= (1 − 〈s〉)2 p+ + (−1 − 〈s〉)2 p− ≈ p+ + p− = 1.

Furthermore, we get for the standard deviation σ =
√
σ2 ≈ 1, which means that we finally get

a relative statistical error

rel =
σ

〈s〉
� 1.

So in practice, one needs 〈s〉 > 0.1 in order to obtain useful estimates for 〈O〉.

3.9 First measurements and comparison of the results with those
obtained from exact diagonalization

In the half-filled Hubbard model, 〈n〉 = 1, even though det(Mσ(l)) < 0, particle-hole symmetry
dictates sgn

(
det

(
M↑(l)

))
= sgn

(
det

(
M↓(l)

))
and so the product det

(
M↑(l)

)
det

(
M↓(l)

)
in (23) is

never negative. Off half-filling, 〈n〉 , 1, however, the product is negative for some configu-
rations and one must use

∣∣∣∣det
(
M↑(l)

)
det

(
M↓(l)

)∣∣∣∣ as the probability distribution for the Monte
Carlo simulation [3], and the expectation value of an observable O is calculated via (28).

Here we want to, for the first time, apply our DQMC algorithm to our 4×2 lattice at half-filling
and compare the results with those obtained from exact diagonalization. To this end we first
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need to figure out “good” values for the simulation parameters that we need. As mentioned
in the very beginning, the expression (4) is only approximate since V and K do not commute.
However, the approximation becomes better and better as ∆τ decreases (L increases). The
errors should be pretty small if

t U ∆τ2 <
1

10
.

For typical parameters, t = 1 and U = 4, we choose ∆τ = 1
30 . And we have set m, the number of

Bσ
l matrices one can multiply without losing numerical accuracy, as well as m′, the number of

times one can advance the Green’s function to a new time slice, using (26), without introducing
unacceptable errors, requiring that m and m′ are roughly equal [3] and

t ∆τm ≤ 1.5,

both to 10. Furthermore, since we know gS(ciσc†jσ) = (gσ)i j, we immediately get the expression
for gS(c†iσcjσ),

gS(c†iσcjσ) = gS(δi j − cjσc†iσ) = gS(δi j) − gS(cjσc†iσ) = δi j − (gσ)ji .

With this expression we can immediately write down the expression for the average electron
density of spin σ on site i,

〈niσ〉 =
〈
c†iσciσ

〉
= gS(c†iσciσ) = 1 − (gσ)ii ,

as well as that for the average double occupancy rate on site i,〈
ni↑ ni↓

〉
=

〈
ni↑

〉 〈
ni↓

〉
=

(
1 −

(
g↑

)
ii

) (
1 −

(
g↓

)
ii

)
.

With that and (1) in mind, we can now easily perform the evaluation of 〈H〉.

For the exact diagonalization method, one needs to find all eigenvalues E(ν)
N↑,N↓

for all possi-
ble particle number pairs for our 4 × 2 lattice, and then, using (3), calculate

Z =
∑
N↑N↓

∑
ν

e
−β

(
E(ν)

N↑ ,N↓
−µ(N↑+N↓)

)
and

〈H〉 =
1
Z

∑
N↑N↓

∑
ν

E(ν)
N↑,N↓

e
−β

(
E(ν)

N↑ ,N↓
−µ(N↑+N↓)

)
.

The results are shown in figure 1.
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Figure 1: 〈H〉 vs β for a 4 × 2 lattice and comparison with the exact diagonalization method.

For a given inverse temperature β, the data point is obtained by doing 8000 full sweeps of
the lattice for each of eight independent Markov chains, where unequal-time measurements
are performed every second full sweep, yielding 32000 data points in total [5]. The statistical
error bar is obtained from the sample variance over the eight independent chains.
In fact, for all simulations that are still to come throughout this work, we use exactly this set
of simulation parameters, if not otherwise mentioned.
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4 Numerical results
Here we just want to present a few results for a band off half-filling.

Figure 2 shows the average density 〈n〉 =
〈N̂〉

N = 1
N

∑
i

(〈
ni↑

〉
+

〈
ni↓

〉)
as a function of the chemi-

cal potential µ for various lattice sizes and inverse temperatures.

Figure 2: 〈n〉 vs µ for various lattice sizes and inverse temperatures.

As one can see, the curves are never less than zero, which corresponds to zero particles on
the lattice, they are never greater than two, which means N↑ + N↓ = 2N, and they all represent
half-filling, 〈n〉 = 1, at µ = 0.
Figure 3 shows the average sign as a function of band-filling for the same parameter set as in
figure 2.
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Figure 3: Average sign vs 〈n〉 for various lattice sizes and inverse temperatures.

As one can see, the sign problem is absent at half-filling, 〈n〉 = 1, as well as at an empty band,
〈n〉 = 0. In the region between zero and N particles on the lattice, the average sign decreases
as the spatial and temporal sizes of the lattice increase [3]. The peak at a filling of 0.625 for
the 4× 4 lattice is striking. This filling corresponds to the presence of ten particles, which just
fills the five lowest k-states, leaving a gap to the next empty k-state.



II The Hubbard model using the
real continuous Hubbard-Stratonovich

transformation
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5 Introduction
In this second part of the thesis we will modify the Hubbard model and the DQMC algo-
rithm that we have introduced in the previous part by using the real continuous Hubbard-
Stratonovich transformation instead of the real discrete one. The reason for this is it lay the
foundation to what we will be doing in the next part of the thesis, where we will be using
the complex continuous Hubbard-Stratonovich transformation and apply it to the Hubbard-
Holstein model. But, contrary to the previous part, we will not again explain the whole algo-
rithm in detail, but instead only discuss what changes in our efficient update scheme.
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6 A new transformation of the grand canonical partition
function

We start out with the Hamilton operator of the Hubbard model (2)

H = H − µN = U
∑

i

(
ni↑ −

1
2

) (
ni↓ −

1
2

)
+ K.

Taking into account the useful relation

(
ni↑ ± ni↓

)2
= ni↑

2 + ni↓
2 ± 2ni↑ni↓ ⇐⇒ ni↑ni↓ = ±

1
2

((
ni↑ ± ni↓

)2
−

(
ni↑ + ni↓

))
,

we get for the Coulomb repulsion on lattice point i

U
(
ni↑ −

1
2

) (
ni↓ −

1
2

)
= U

(
ni↑ni↓ +

1
4
−

1
2

(
ni↑ + ni↓

))
=

= U
(
−

1
2

(
ni↑ − ni↓

)2
+

1
2

(
ni↑ + ni↓

)
+

1
4
−

1
2

(
ni↑ + ni↓

))
=

= −
U
2

(
ni↑ − ni↓

)2
+

U
4
, (29)

where we have let it couple to the magnetization.
With that we can now, using (5), derive the expression for the real continuous Hubbard-
Stratonovich transformation,

e−∆τU(ni↑−
1
2 )(ni↓−

1
2 ) = e−∆τU

4 e∆τU
2 (ni↑−ni↓)2

= e−∆τU
4 e

2∆τU(ni↑−ni↓)2

4 =

= e−∆τU
4

1
√
π

∞∫
−∞

e−σ
2−σ
√

2∆τU(ni↑−ni↓) dσ =

= e−∆τU
4

1
√
π

∞∫
−∞

e−σ
2−σλ(ni↑−ni↓) dσ , λ =

√
2∆τU.
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We have now assembled all of the ingredients necessary to derive the new expression for the
grand canonical partition function of the Hubbard model,

Z = tr
(
e−β(H−µN)

)
= tr

e−L∆τ

(
U

∑
i
(ni↑−

1
2 )(ni↓−

1
2 )+K

) = tr
((

e
−∆τU

∑
i
(ni↑−

1
2 )(ni↓−

1
2 )

e−∆τK + O(∆τ2)
)L)
≈

≈ tr


∏

i

(
e−∆τU(ni↑−

1
2 )(ni↓−

1
2 )) e−∆τK

L = tr


∏

i

e−∆τU
4

1
√
π

∞∫
−∞

e−σ
2−σλ(ni↑−ni↓) dσ

 e−∆τK


L =

=
e−∆τU

4 NL

π
NL
2

∫
RN×L

tr

 L∏
l=1

∏
i

(
e−σ

2
il −σil λ(ni↑−ni↓)

)
e−∆τK

 dσ =

=

e−β
U
2

πL

 N
2 ∫
RN×L

e−|σ
2| tr

 L∏
l=1

e
−λ

∑
i
σil(ni↑−ni↓)

e−∆τ(K↑+K↓)
 dσ =

=

e−β
U
2

πL

 N
2 ∫
RN×L

e−|σ
2|

∏
s∈{±1}

trs

 L∏
l=1

e
s(−λ)

∑
i
σil nis

e−∆τKs

 dσ =

=

e−β
U
2

πL

 N
2 ∫
RN×L

e−|σ
2|

∏
s∈{±1}

trs

 L∏
l=1

e
#»cs
†s(−λ)G(l) #»cs e

#»cs
†(−∆τ)k #»cs

 dσ =

=

e−β
U
2

πL

 N
2 ∫
RN×L

e−|σ
2| det

1 +

L∏
l=1

e−λG(l)
e−∆τk

 det

1 +

L∏
l=1

eλG(l)
e−∆τk

︸                                                                ︷︷                                                                ︸
Cρ(σ)

dσ =

=

e−β
U
2

πL

 N
2 ∫
RN×L

ρ(σ) dσ,

where
∣∣∣σ2

∣∣∣ B L∑
l=1

∑
i
σ2

il and
(
G(l)

)
i j

= δi j σil. This time we have chosen the time ordering in

increasing order and, with B↑/↓l B e∓λG(l)
e−∆τk, the fermion matrix M↑/↓(l) is now defined as

M↑/↓(l) B 1 + B↑/↓l · · · B
↑/↓
L B↑/↓1 · · · B

↑/↓
l−1.
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7 Changes in the Monte Carlo simulation
So our grand canonical partition function has become continuous and we will from now on be
using normally distributed random numbers for the Hubbard-Stratonovich fields in the Monte
Carlo simulations instead of uniformly distributed ones.
In general, the probability density function (PDF) of the normal distribution with expectation
value x0 and variance v2, N (x0, v2), is

f (x|x0, v2) =
1
√

2πv2
e−

(x−x0)2

2v2 .

We will sample our Hubbard-Stratonovich fields σ from N (0, 1
2 )N×L, hence we get for our

PDF for the continuous field variable σil (for site i and imaginary-time slice l)

f (σil|0,
1
2 ) =

1
√
π

e−σ
2

il . (30)

In order to get the ratio R =
P(σ′)
P(σ) for our Metropolis-Hastings algorithm we start out with the

detailed balance condition,

P
(
σ′|σ

)
P(σ) = P

(
σ|σ′

)
P
(
σ′

)
⇐⇒

P(σ′|σ)
P(σ|σ′)

=
P(σ′)
P(σ)

.

Writing the transition probability P(σ′|σ) as a product of the proposal distribution g(σ′|σ) and
the acceptance distribution A(σ′|σ) leads to

g(σ′|σ) A(σ′|σ)
g(σ|σ′) A(σ|σ′)

=
P(σ′)
P(σ)

⇐⇒
A(σ′|σ)
A(σ|σ′)

=
P(σ′)
P(σ)

g(σ|σ′)
g(σ′|σ)

=
ρ(σ′)
ρ(σ)

1
Z g(σ|σ′)
1
Z g(σ′|σ)

. (31)

Now, in order to propose a σ ∈ N (0, 1
2 )N×L, we must introduce (30) for each site i and each

time slice l in (31) yielding

A(σ′|σ)
A(σ|σ′)

=
ρ(σ′)
ρ(σ)

(
1
√
π

)NL L∏
l=1

∏
i

e−σ
2

il

(
1
√
π

)NL L∏
l=1

∏
i

e−σ′
2

il

=
e−|σ

′2| det
(
M↑(l)′

)
det

(
M↓(l)′

)
e−|σ2| det

(
M↑(l)

)
det

(
M↓(l)

) e−|σ
2|

e−|σ′2|
=

=
det

(
M↑(l)′

)
det

(
M↑(l)

) det
(
M↓(l)′

)
det

(
M↓(l)

) . (32)

So, we finally get for the acceptance probability A(σ′|σ) that fulfills the condition above,

A
(
σ′|σ

)
= min

1,
∣∣∣∣∣∣∣∣
det

(
M↑(l)′

)
det

(
M↑(l)

) det
(
M↓(l)′

)
det

(
M↓(l)

)
∣∣∣∣∣∣∣∣
 .
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The sign of the probability distribution for a given Hubbard-Stratonovich field value σ, ρ(σ),
simply is

sgn(ρ(σ)) =
ρ(σ)
|ρ(σ)|

=
e−|σ

2| det
(
M↑(l)

)
det

(
M↓(l)

)
e−|σ2|

∣∣∣det
(
M↑(l)

)
det

(
M↓(l)

)∣∣∣ =
det

(
M↑(l)

)
det

(
M↓(l)

)∣∣∣det
(
M↑(l)

)
det

(
M↓(l)

)∣∣∣ .
Furthermore, the matrix ∆↑/↓(i, l) turns into(

∆↑/↓(i, l)
)

jk
= δji δki

(
e∓λ(σ

′
il−σil) − 1

)
.

Apart from everything that we have just discussed, the rest of the ingredients for our efficient
update scheme stays the same, except for the wrapping of the Green’s function, which now
goes according to

g↑/↓(l + 1) =
(
B↑/↓l

)−1
g↑/↓(l) B↑/↓l .
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8 Comparison of the new results with those obtained from
exact diagonalization

Here we just want to apply the changes in the Monte Carlo simulation to our 4 × 2 lattice
at half-filling and, just as we did before, compare the results with those obtained from exact
diagonalization. The results are shown in figure 4.

Figure 4: 〈H〉 vs β for a 4 × 2 lattice and comparison with the exact diagonalization method.



III The Hubbard-Holstein model using
the complex continuous Hubbard-

Stratonovich transformation
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9 Introduction
In this third and last part of the thesis we will for the first time introduce the Hubbard-Holstein
model, a simple model capturing the physics of itinerant electrons with both electron-electron
and electron-phonon interactions [6]. In this model the motion of the lattice sites is described
by a set of independent harmonic oscillators, one at each site i. The electron-electron interac-
tion is treated as usual and the electron-phonon interaction arises from a linear coupling of the
local density ni to the atomic displacement xi.
When carrying out simulations for the Hubbard-Holstein model, one usually needs to focus on
the additional aspect associated with the treatment of the phonon degrees of freedom, meaning
that one needs to sample the phonon fields separately. This will lead to a sign problem at half-
filling for a nonzero electron-phonon coupling strength, because most phonon configurations
x ∈ RN×L break the particle-hole symmetry.
But here, we will present a totally new approach where we will be using the complex con-
tinuous Hubbard-Stratonovich transformation to derive an expression for the grand canonical
partition function of the Hubbard-Holstein model with the phonon degrees of freedom being
explicitly integrated out in order not to have to sample the phonon fields. This will solve the
sign problem at half-filling for any electron-phonon coupling strength, but only there.
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10 The Hubbard-Holstein model
For the Hubbard-Holstein model the Hamilton operator is

H = Hel + Hph + Vel-ph,

where

Hel = H = Hkin + HC − µN =

= −t
∑
σ=↑,↓

∑
<i, j>

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

(
ni↑ −

1
2

) (
ni↓ −

1
2

)
− µ

∑
i

(
ni↑ + ni↓

)
,

Hph =
∑

i

(
p2

i
2m + mω2

2 x2
i

)
describes longitudinal vibrations of the N sites, and

Vel-ph = −g
∑

i

ni

(
a†i + ai

)
is the Holstein electron-phonon coupling.
Using the useful representation of xi in terms of the ladder operators ai and a†i for a
N-dimensional harmonic oscillator,

xi =

√
~

2mω

(
a†i + ai

)
,

we can rewrite Vel-ph as

Vel-ph = −g

√
2mω
~

∑
i

(
ni↑ + ni↓

)
xi.

For simplicity we set m = ~ = 1, which finally leads to

H = −t
∑
σ=↑,↓

∑
<i, j>

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

(
ni↑ −

1
2

) (
ni↓ −

1
2

)
− µ

∑
i

(
ni↑ + ni↓

)
+

+
∑

i

(
p2

i
2 + ω2

2 x2
i

)
− α

∑
i

(
ni↑ + ni↓

)
xi, (33)

where αB g
√

2ω is now our coupling constant.
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Next, we will use the asymmetric particle-hole transformation

c†i↑ → c†i↑
ci↑ → ci↑

c†i↓ → ei
#»
Q t #»x i ci↓

ci↓ → e−i
#»
Q t #»x i c†i↓

, (34)

which turns (33) into

H̃ = −t

∑
<i, j>

(
c†i↑cj↑ + c†j↑ci↑

)
+

∑
<i, j>

(
ei

#»
Q t #»x i ci↓ e−i

#»
Q t #»x j c†j↓ + ei

#»
Q t #»x j cj↓ e−i

#»
Q t #»x i c†i↓

) +

+ U
∑

i

(
ni↑ −

1
2

) (
ei

#»
Q t #»x i ci↓ e−i

#»
Q t #»x i c†i↓ −

1
2

)
− µ

∑
i

(
ni↑ + ei

#»
Q t #»x i ci↓ e−i

#»
Q t #»x i c†i↓

)
+

+
∑

i

(
p2

i
2 + ω2

2 x2
i

)
− α

∑
i

(
ni↑ + ei

#»
Q t #»x i ci↓ e−i

#»
Q t #»x i c†i↓

)
xi =

= −t

∑
<i, j>

(
c†i↑cj↑ + c†j↑ci↑

)
+

∑
<i, j>

(
ei

#»
Q t

(
#»x i−

#»x j

) (
−c†j↓ci↓

)
+ ei

#»
Q t

(
#»x j−

#»x i

) (
−c†i↓cj↓

)) +

+ U
∑

i

(
ni↑ −

1
2

) (
1
2 − ni↓

)
− µ

∑
i

(
ni↑ + 1 − ni↓

)
+

∑
i

(
p2

i
2 + ω2

2 x2
i

)
− α

∑
i

(
ni↑ + 1 − ni↓

)
xi.

Because #»x i and #»xj are the position vectors of the two neighboring sites i and j we have

#»x i −
#»xj = −

(
#»xj −

#»x i

)
∈

{(
1
0

)
,

(
0
1

)
,−

(
1
0

)
,−

(
0
1

)}
,

and with
#»
Q =

(
π
π

)
we get

ei
#»
Q t

(
#»x i−

#»x j

)
= e±iπ = −1 and

ei
#»
Q t

(
#»x j−

#»x i

)
= e∓iπ = −1 ∀ < i, j >,

and hence

H̃ = −t
∑
σ=↑,↓

∑
<i, j>

(
c†iσcjσ + c†jσciσ

)
− U

∑
i

(
ni↑ −

1
2

) (
ni↓ −

1
2

)
− µ

∑
i

(
ni↑ − ni↓

)
︸          ︷︷          ︸

=M̂

−µN+

+
∑

i

(
p2

i
2 + ω2

2 x2
i

)
−α

∑
i

(
ni↑ − ni↓

)
xi − α

∑
i

xi︸                                ︷︷                                ︸
CHα

=

= Hkin − HC − µM̂ − µN + Hph + Hα. (35)
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So, the actual transformation was

ni↑ → ni↑

ni↓ → 1 − ni↓

(36)

leaving the kinetic energy operator and the harmonic oscillator invariant, changing the sign
of the Coulomb repulsion, which means that the interaction is now attractive instead, and
introducing a homogeneous magnetic field.
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11 Transformation of the grand canonical partition function
This time we will transform all parts of the Hamilton operator (35) that contain the occupation
number operators ni↑ and ni↓, i.e.

f ( #»n↑ , #»n↓) B −U
∑

i

(
ni↑ −

1
2

) (
ni↓ −

1
2

)
−

∑
i

(
ni↑ − ni↓

) (
µ + αxi

)
.

Using (29), we get for the i-th term of the function above

f (ni↑, ni↓) = −U
(
ni↑ −

1
2

) (
ni↓ −

1
2

)
−

(
µ + αxi

) (
ni↑ − ni↓

)
=

=
U
2

(
ni↑ − ni↓

)2
−

U
4
−

(
µ + αxi

) (
ni↑ − ni↓

)
.

With that we can now, using (6), derive the expression for the complex continuous Hubbard-
Stratonovich transformation,

e−∆τ(−U(ni↑−
1
2 )(ni↓−

1
2 )−(µ+αxi)(ni↑−ni↓)) = e∆τU

4 e−∆τ
(

U
2 (ni↑−ni↓)2

−(µ+αxi)(ni↑−ni↓)
)

=

= e∆τU
4 e−∆τU

(
1
2 (ni↑−ni↓)2

−
µ+αxi

U (ni↑−ni↓)
)

= e∆τU
4 e−

2∆τU(ni↑−ni↓)2
−4∆τU

µ+αxi
U (ni↑−ni↓)

4 =

= e∆τU
4 e−

(√2∆τU(ni↑−ni↓)−√2∆τU
µ+αxi

U )2
−2∆τU (µ+αxi)2

U2
4 =

= e∆τU
4 e

∆τ
2U (µ+αxi)2 1

√
π

∞∫
−∞

e−σ
2−iσ

√
2∆τU(ni↑−ni↓−

µ+αxi
U ) dσ =

= e∆τU
4 e

∆τ
2U (µ+αxi)2 1

√
π

∞∫
−∞

e−σ
2−iσλ(ni↑−ni↓−

µ+αxi
U ) dσ , λ =

√
2∆τU.
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By writing (35) as

H̃ = f ( #»n↑ , #»n↓) + Hkin + Hph − α
∑

i

xi − µN,

we have assembled all of the ingredients necessary to derive the expression for the grand
canonical partition function of the Hubbard-Holstein model,

Z = tr
(
e−βH̃

)
= tr

e−L∆τ

(
f ( #»n↑, #»n↓)+Hkin+Hph−α

∑
i

xi−µN
) =

= tr


e−∆τ f ( #»n↑, #»n↓)e

−∆τ

(
Hkin+Hph−α

∑
i

xi−µN
)
+ O(∆τ2)

L ≈
≈ tr


e−∆τ

∑
i
(−U(ni↑−

1
2 )(ni↓−

1
2 )−(µ+αxi)(ni↑−ni↓))

e
−∆τ

(
Hkin+Hph−α

∑
i

xi−µN
)L ≈

≈ tr


∏

i

(
e−∆τ(−U(ni↑−

1
2 )(ni↓−

1
2 )−(µ+αxi)(ni↑−ni↓))

)
e
−∆τ

(
Hkin+Hph−α

∑
i

xi−µN
)L =

= tr


∏

i

e∆τU
4 e

∆τ
2U (µ+αxi)2 1

√
π

∞∫
−∞

e−σ
2−iσλ(ni↑−ni↓−

µ+αxi
U ) dσ

 e
−∆τ

(
Hkin+Hph−α

∑
i

xi−µN
)

L =

=

/
∆τ

U
4

+
∆τ

2U
(
µ + αxi

)2
− σ2 − iσλ

(
ni↑ − ni↓ −

µ + αxi

U

)
=

=
∆τU

4
+

∆τ

2U

(
µ2 + α2x2

i + 2µαxi

)
− σ2 − iσλ

(
ni↑ − ni↓ −

µ + αxi

U

)
=

=
∆τU

4
+

∆τ

2U
µ2 − σ2 + iσλ

µ

U
− iσλ

(
ni↑ − ni↓

)
+ αxi

(
∆τ

U
µ +

iσλ
U

)
+

∆τ

2U
α2x2

i =

=

/
µ

U
C c

/
=

=
∆τU

4
+

∆τU
2

c2 − σ2 + iσλc − iσλ
(
ni↑ − ni↓

)
+ αxi

(
∆τc +

iσλ
U

)
+

∆τ

2U
α2x2

i

/
=

=
e

∆τU
4 NLe

∆τU
2 c2NL

π
NL
2

∫
RN×L

tr

 L∏
l=1

∏
i

(
e−σ

2
il +iσil λc−iσil λ(ni↑−ni↓)+αxi

(
∆τc+

iσil λ
U

)
+ ∆τ

2U α
2 x2

i

)
·

· e
−∆τ

(
Hkin+Hph−α

∑
i

xi

)
e∆τµN

 dσ ≈
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≈ eβµN

eβU(c2+ 1
2 )

πL

 N
2 ∫
RN×L

e−|σ
2|+i|σ|λc tr

 L∏
l=1

e
∑
i

(
−iσil λ(ni↑−ni↓)+αxi

(
∆τc+

iσil λ
U

)
+ ∆τα2

2U x2
i

)
·

· e
−∆τ

(
Hkin+Hph−α

∑
i

xi

) dσ, (37)

where c =
µ

U ,
∣∣∣σ2

∣∣∣ B L∑
l=1

∑
i
σ2

il and |σ| B
L∑

l=1

∑
i
σil. Again, it is clear-cut that the two spin

contributions decouple, as well as ni↑ − ni↓ and xi.
By writing (37) as

Z = eβµN

eβU(c2+ 1
2 )

πL

 N
2 ∫
RN×L

e−|σ
2|+i|σ|λc tr

 ∏
s∈{±1}

 L∏
l=1

e
s(−i)λ

∑
i
σil nis

e−∆τHs
kin

 ·
·

L∏
l=1

e
∑
i

(
∆τα2

2U x2
i +αxi

(
∆τc+

iσil λ
U

))
e
−∆τ

(
Hph−α

∑
i

xi

) dσ,

the trace is of the form tr
(
O↑O↓Oph

)
, where all three operators only act in their respective

subspaces [7]. So, the trace can again be written as a product of the subtraces tr↑, tr↓ and trph,

Z = eβµN

eβU(c2+ 1
2 )

πL

 N
2 ∫
RN×L

e−|σ
2|+i|σ|λc

∏
s∈{±1}

trs

 L∏
l=1

e
#»cs
†s(−i)λG(l) #»cs e

#»cs
†(−∆τ)(−t)hkin

#»cs

 ·
· trph

 L∏
l=1

e
∑
i

(
∆τα2

2U x2
i +αxi

(
∆τc+

iσil λ
U

))
e
−∆τ

(
Hph−α

∑
i

xi

) dσ =

= eβµN

eβU(c2+ 1
2 )

πL

 N
2 ∫
RN×L

e−|σ
2|+i|σ|λc

∣∣∣∣∣∣∣det

1 +

L∏
l=1

e−iλG(l)
e∆τthkin


∣∣∣∣∣∣∣
2

·

· trph

 L∏
l=1

e
∑
i

(
∆τα2

2U x2
i +αxi

(
∆τc+

iσil λ
U

))
e
−∆τ

(
Hph−α

∑
i

xi

) dσ. (38)
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Next, we will modify the phonon trace, which is the integral over the expectation values with
respect to all phonon eigenstates | #»x 〉 [7]:

trph

 L∏
l=1

e
∑
i

(
∆τα2

2U x2
i +αxi

(
∆τc+

iσil λ
U

))
e
−∆τ

(
Hph−α

∑
i

xi

) =

=

∫
RN

〈 #»x (1)|

L∏
l=1

e∑
i

(
∆τα2

2U x2
i +αxi

(
∆τc+

iσil λ
U

))
e
−∆τ

∑
i

(
p2

i
2 +ω2

2 x2
i −αxi

) | #»x (1)〉 d#»x (1) ≈

≈

∫
RN

〈 #»x (1)|

L∏
l=1


∫
RN

| #»x (l)〉 〈 #»x (l)| d#»x (l)e
∑
i

(
− ∆τ

2

(
ω2− α

2
U

)
x2

i +αxi

(
∆τ(c+1)+ iσil λ

U

))
·

· e
−∆τ

∑
i

p2
i
2

∫
RN

| #»x (l+1)〉 〈 #»x (l+1)| d#»x (l+1)

 | #»x (1)〉 d#»x (1) =

=

/
c + 1 C c̃

/
=

=

∫
RN×L

L∏
l=1

〈 #»x (l)| e
∑
i

(
− ∆τ

2

(
ω2− α

2
U

)
x2

i +αxi

(
∆τ̃c+

iσil λ
U

))
e
−∆τ

∑
i

p2
i
2
| #»x (l+1)〉

 d#»x =

=

∫
RN×L

L∏
l=1

e∑
i

(
− ∆τ

2

(
ω2− α

2
U

)
x(l)

i
2
+αx(l)

i

(
∆τ̃c+

iσil λ
U

))
〈 #»x (l)| e

−∆τ
∑
i

p2
i
2
| #»x (l+1)〉

 d#»x , c̃ = c + 1, c =
µ

U

In order to make this integral work, i.e. to make it converge, ∆τ
2

(
ω2 − α2

U

)
needs to be greater

than zero leading to

ω2 >
α2

U
. (39)

Now, since we have set ~ = 1, we have #»p = ~
#»
k =

#»
k and further

〈 #»p | #»p ′〉 = δ( #»p − #»p ′) = δ(
#»
k −

#»
k ′) = 〈

#»
k |

#»
k ′〉 ⇐⇒ | #»p 〉 = |

#»
k 〉 .

Furthermore, we have

〈 #»x | #»p 〉 = 〈 #»x |
#»
k 〉 =

(
1

2π

) N
2

ei #»x t #»
k =

(
1

2π

) N
2

ei #»x t #»p ,

where 〈 #»x | #»p 〉 is the scalar projection of | #»p 〉 onto | #»x 〉, which is an eigenstate of the (continuous)
position space.
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Let {| #»p 〉} be a full set of momentum eigenstates, #»p ∈ RN . Then,

〈 #»x | e
−∆τ

∑
i

p2
i
2
| #»y 〉 =

∫
RN

〈 #»x | e
− ∆τ

2
∑
i

p2
i
| #»p 〉 〈 #»p | #»y 〉 d#»p =

∫
RN

e−
∆τ
2 |

#»p |2
(

1
2π

) N
2

ei #»x t #»p

(
1

2π

) N
2

e−i #»y t #»p d#»p =

=

(
1

2π

)N∫
RN

e−
∆τ
2 |

#»p |2−i( #»y − #»x )t #»p d#»p .

Taking into account (6), or rather the N-dimensional “version” of it,(
1
√

2πa

)N∫
RN

e−
1
2a |

#»y |2−i #»x t #»y d#»y = e−
a
2 |

#»x |2 ,

we get

〈 #»x | e
−∆τ

∑
i

p2
i
2
| #»y 〉 =

(
1

∆τ

) N
2
(

1
2π

) N
2
(
∆τ

2π

) N
2
∫
RN

e−
∆τ
2 |

#»p |2−i( #»y − #»x )t #»p d#»p =

(
1

2π∆τ

) N
2

e−
1

2∆τ |
#»y − #»x |2 =

=

(
1

2π∆τ

) N
2

e−
1

2∆τ |
#»x − #»y |2 . (40)

This solution can now be used to simplify the phonon trace,

trph

 L∏
l=1

e
∑
i

(
∆τα2

2U x2
i +αxi

(
∆τc+

iσil λ
U

))
e
−∆τ

(
Hph−α

∑
i

xi

) =

=

∫
RN×L

L∏
l=1

e∑
i

(
− ∆τ

2

(
ω2− α

2
U

)
x(l)

i
2
+αx(l)

i

(
∆τ̃c+

iσil λ
U

)) (
1

2π∆τ

) N
2

e−
1

2∆τ |
#»x (l)− #»x (l+1)|

2

 d#»x =

=

(
1

2π∆τ

) NL
2

∫
RN×L

L∏
l=1

(
e
∑
i

(
− ∆τ

2

(
ω2− α

2
U

)
x(l)

i
2
+αx(l)

i

(
∆τ̃c+

iσil λ
U

))
− 1

2∆τ

∑
i

(
x(l)

i
2
+x(l+1)

i
2
−2x(l)

i x(l+1)
i

))
d#»x =

=

(
1

2π∆τ

) NL
2

∫
RN×L

L∏
l=1

(
e
∑
i

(
−

(
∆τ
2

(
ω2− α

2
U

)
+ 1

∆τ

)
x(l)

i
2
+αx(l)

i

(
∆τ̃c+

iσil λ
U

)
+ 1

∆τ x(l)
i x(l+1)

i

))
d#»x .

As there is no coupling between the sites i, the trace can be written as a product of traces
acting only on a single site [7]. But because of the coupling between #»x and #»y in (40), this
separation is not possible for the time slices l.
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trph

 L∏
l=1

e
∑
i

(
∆τα2

2U x2
i +αxi

(
∆τc+

iσil λ
U

))
e
−∆τ

(
Hph−α

∑
i

xi

) =

=

(
1

2π∆τ

) NL
2 ∏

i

∫
RL

e
L∑

l=1

(
−

(
∆τ
2

(
ω2− α

2
U

)
+ 1

∆τ

)
x(l)2

+αx(l)
(
∆τ̃c+

iσil λ
U

)
+ 1

∆τ x(l) x(l+1)
)
d#»x =

/
#»x →

√
∆τ #»x

/
=

=

(
1

2π

) NL
2 ∏

i

∫
RL

e
L∑

l=1

(
−

(
∆τ2

2

(
ω2− α

2
U

)
+1

)
x(l)2

+α
√

∆τx(l)
(
∆τ̃c+

iσil λ
U

)
+x(l) x(l+1)

)
d#»x

Using the identity

∫
RL

e
L∑

l=1
(−ax2

l +(vl+b)xl+xl xl+1) d#»x =

√
(2π)L

(ΩL − 1) (1 −Ω−L)
e

#»v tR #»v

4(1−Ω−L)
√

a2−1
+

b(2| #»v |+Lb)
4(a−1)

,

where a > 1 arbitrary, Ω = a +
√

a2 − 1, R = (Rll′) ∈ RL×L, Rll′ = Ω|l−l′ |−L + 1
Ω|l−l′ | ,

#»v ∈ CL,

|
#»v |B

L∑
l=1

vl and b ∈ R, the phonon trace finally becomes

trph

 L∏
l=1

e
∑
i

(
∆τα2

2U x2
i +αxi

(
∆τc+

iσil λ
U

))
e
−∆τ

(
Hph−α

∑
i

xi

) =

=

(
1

2π

) NL
2 ∏

i

√
(2π)L

(ΩL − 1) (1 −Ω−L)
e
−α2∆τλ2U−2 #»σi

tR #»σi

4(1−Ω−L)
√

a2−1
+
α
√

∆τ3 c̃(2iα
√

∆τλU−1 | #»σi |+Lα
√

∆τ3 c̃)
4(a−1)

=

=

(
1

(ΩL − 1) (1 −Ω−L)

) N
2

e
α2 c̃(2i∆τ2λU−1 |σ|+NL∆τ3 c̃)

4(a−1) e
α2∆τλ2

4U2(Ω−L−1)
√

a2−1

∑
i

#»σi
tR #»σi

=

=

(
1

(ΩL − 1) (1 −Ω−L)

) N
2

e
α2 c̃(2iλU−1 |σ|+Nβ c̃)

2(ω2−α2U−1) e
α2∆τ2

2U(Ω−L−1)
√

a2−1

∑
i

#»σi
tR #»σi

,

where c̃ = c + 1, c =
µ

U , a = ∆τ2

2

(
ω2 − α2

U

)
+ 1, which is greater than one because of (39),

Ω = a +
√

a2 − 1, R = (Rll′) ∈ RL×L, Rll′ = Ω|l−l′ |−L + 1
Ω|l−l′ | , σ ∈ RN×L, |σ|B

L∑
l=1

∑
i
σil and

#»σi =
(
σi∗

)t
.
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This is now the analytic expression of the phonon trace in (38). So, we finally obtain for the
grand canonical partition function of the Hubbard-Holstein model (38)

Z = eβµN

eβU(c2+ 1
2 )

πL

 N
2 ∫
RN×L

e−|σ
2|+i|σ|λc

∣∣∣∣∣∣∣det

1 +

L∏
l=1

e−iλG(l)
e∆τthkin


∣∣∣∣∣∣∣
2

·

·

(
1

(ΩL − 1) (1 −Ω−L)

) N
2

e
α2 c̃(2iλU−1 |σ|+Nβ c̃)

2(ω2−α2U−1) e
α2∆τ2

2U(Ω−L−1)
√

a2−1

∑
i

#»σi
tR #»σi

dσ =

=

/
e
α2 c̃(2iλU−1 |σ|+Nβ c̃)

2(ω2−α2U−1) = e
iα2 c̃λ|σ|
Uω2−α2 +

α2 c̃2UNβ

2(Uω2−α2) = e
iα2(c+1)λ|σ|

Uω2−α2 e
α2(c+1)2UNβ

2(Uω2−α2)
/

=

= eβµN

 eβU
(
c2+ 1

2 +
α2(c+1)2

Uω2−α2

)
πL (ΩL − 1) (1 −Ω−L)


N
2 ∫
RN×L

e
−

∑
i

#»σi
t

1− α2∆τ2

2U(Ω−L−1)
√

a2−1
R

 #»σi +i|σ|λc
1+ α2

Uω2−α2 + α2

c(Uω2−α2)


·

·

∣∣∣∣∣∣∣det

1 +

L∏
l=1

e−iλG(l)
e∆τthkin


∣∣∣∣∣∣∣
2

dσ =

=

 eβU
(

(c+1)2Uω2

Uω2−α2 −
1
2

)
πL (ΩL − 1) (1 −Ω−L)


N
2 ∫
RN×L

e
−

∑
i

#»σi
t

1+ α2∆τ2

2U(1−Ω−L)
√

a2−1
R

 #»σi +i|σ|λ cUω2+α2

Uω2−α2
·︸                                                                                                  ︷︷                                                                                                  ︸

·

∣∣∣∣∣∣∣det

1 +

L∏
l=1

e−iλG(l)
e∆τthkin


∣∣∣∣∣∣∣
2

︸                                 ︷︷                                 ︸
Cρ(σ)

dσ =

=

 eβU
(

(c+1)2Uω2

Uω2−α2 −
1
2

)
πL (ΩL − 1) (1 −Ω−L)


N
2 ∫
RN×L

ρ(σ) dσ, (41)

where c =
µ

U , a = ∆τ2

2

(
ω2 − α2

U

)
+ 1, Ω = a +

√
a2 − 1, R = (Rll′) ∈ RL×L, Rll′ = Ω|l−l′ |−L + 1

Ω|l−l′ | ,

σ ∈ RN×L, |σ|B
L∑

l=1

∑
i
σil,

#»σi =
(
σi∗

)t
and

(
G(l)

)
i j

= δi j σil.

We have again chosen the time ordering in increasing order and, with Bl B e−iλG(l)
e∆τthkin , the

fermion matrix M(l) is defined as

M(l) B 1 + Bl · · · BLB1 · · · Bl−1.
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12 Ingredients for the Monte Carlo simulation
So we are having a complex continuous grand canonical partition function and we will there-
fore again be using normally distributed random numbers for the Hubbard-Stratonovich fields
in the Monte Carlo simulations and sample them from N (0, 1

2 )N×L.
Defining a constant γ as

γ B
α2∆τ2

2U (1 −Ω−L)
√

a2 − 1
(42)

and assuming σ′αβ , σαβ and σ′il = σil ∀ (i, l) , (α, β), we get for the ratio of the acceptance
distributions A(σ′|σ) and A(σ|σ′) (32)

A(σ′|σ)
A(σ|σ′)

=
ρ(σ′)
ρ(σ)

e−|σ
2|

e−|σ′2|
=

e
−

∑
i

#»σi
′t(1+γR) #»σi

′+i|σ′ |λ cUω2+α2

Uω2−α2
|det(M(l)′)|2

e
−

∑
i

#»σi t(1+γR) #»σi +i|σ|λ cUω2+α2

Uω2−α2
|det(M(l))|2

e−|σ
2|

e−|σ′2|
=

=
e−γ

#»σα
′tR #»σα

′

e−γ #»σαtR #»σα
eiλ cUω2+α2

Uω2−α2

(
σ′αβ−σαβ

) ∣∣∣∣∣det(M(l)′)
det(M(l))

∣∣∣∣∣2 =

= e
−γ

Rββ(σ′2αβ−σ2
αβ

)
+
(
σ′αβ−σαβ

) ∑
l,β
σ
αl(Rβl+Rlβ)


eiλ cUω2+α2

Uω2−α2

(
σ′αβ−σαβ

) ∣∣∣∣∣det(M(l)′)
det(M(l))

∣∣∣∣∣2 .
So, we get for the acceptance probability A(σ′|σ) that fulfills the condition above,

A
(
σ′|σ

)
= min

(
1,

∣∣∣∣∣A(σ′|σ)
A(σ|σ′)

∣∣∣∣∣) = min

1, e−γ
Rββ(σ′2αβ−σ2

αβ

)
+
(
σ′αβ−σαβ

) ∑
l,β
σ
αl(Rβl+Rlβ)

 ∣∣∣∣∣det(M(l)′)
det(M(l))

∣∣∣∣∣2
 .

The sign of the probability distribution for a given Hubbard-Stratonovich field value σ, ρ(σ),
is

sgn(ρ(σ)) =
ρ(σ)
|ρ(σ)|

=
e
−

∑
i

#»σi
t(1+γR) #»σi +i|σ|λ cUω2+α2

Uω2−α2
|det(M(l))|2

e
−

∑
i

#»σi t(1+γR) #»σi
|det(M(l))|2

= ei|σ|λ cUω2+α2

Uω2−α2 C

C phase(ρ(σ)) , (43)

which means that the sign has now turned into a phase factor.
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It is convenient to define a dimensionless electron-phonon coupling constant Λ as the ratio of
the lattice deformation energy Eph = α2

2mω2 = α2

2ω2 to half the non-interacting bandwidth
W
2 ≈ 4 [6],

Λ B
Eph

W
2

=

α2

2ω2

W
2

=
α2

ω2W
, (44)

with which we can rewrite (43) as

phase(ρ(σ)) = ei|σ|λ µ+ΛW
U−ΛW . (45)

From now on we will use Λ as the measure of the electron-phonon coupling strength instead
of α.

Furthermore, the matrix ∆(i, l) turns into

(∆(i, l))jk = δji δki

(
e−iλ(σ′il−σil) − 1

)
.

Apart from everything that we have just discussed, the rest of the ingredients for our efficient
update scheme stays the same as for the real continuous Hubbard-Stratonovich transformation,
except that this time we are using the SVD instead of the UDR decomposition to stabilize the
numerical computation of inverses (and determinants) of ill-conditioned complex matrices.
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13 Sampling the average density under the asymmetric
particle-hole transformation

The only thing where one really has to be careful is when sampling thermodynamic expecta-
tion values after one has used the asymmetric particle-hole transformation (34) to transform
the Hamilton operator for a system. For our numerical study of the Hubbard-Holstein model
we will mostly be interested in the average phase factor and the average density. The phase
factor of the probability distribution for a given Hubbard-Stratonovich field value σ, ρ(σ), is
simply calculated via (45). For the average density, however, we will present two methods,
with which it can be calculated.

13.1 Sampling the average density using Green’s functions
The first method to calculate 〈n〉, for a given σ and hence Green’s function g is the same that
we used before, except that this time we need to take into account (36),

〈n〉 =

〈
N̂
〉

N
=

1
N

∑
i

(〈
ni↑

〉
+

〈
ni↓

〉)
=

1
N

∑
i

(〈
ni↑

〉
+ 1 −

〈
ni↓

〉)
=

=
1
N

∑
i

(
1 −

(
g↑

)
ii

+ 1 −
(
1 −

(
g↓

)
ii

))
=

1
N

∑
i

(
1 − gii + (g∗)ii

)
.

13.2 Sampling the average density using Hubbard-Stratonovich fields
On the other hand, we can derive an expression for 〈n〉 that only contains the Hubbard-
Stratonovich fields we are sampling.

Starting out with the (transformed) Hamilton operator of the Hubbard-Holstein model (35),
we get for the grand canonical partition function

Z = tr
(
e−βH̃

)
= tr

(
e−β(Hkin−HC−µM̂−µN+Hph+Hα)

)
,

and for its partial derivative with respect to the chemical potential µ

∂Z
∂µ

= tr
(
e−β(Hkin−HC−µM̂−µN+Hph+Hα)

(
βM̂ + βN

))
= tr

(
e−βH̃

(
βM̂ + βN

))
=

= β tr
(
e−βH̃ M̂

)
+ βN tr

(
e−βH̃

)
= β tr

(
e−βH̃

)  tr
(
M̂e−βH̃

)
tr
(
e−βH̃

) + N

 = βZ
(〈

M̂
〉

+ N
)

=

= βZ

〈∑
i

(
ni↑ − ni↓

)〉
+

〈∑
i

1
〉 = βZ

〈∑
i

(
ni↑ + 1 − ni↓

)〉
= βZ

〈∑
i

(
ni↑ + ni↓

)〉
=

= βZ
〈
N̂
〉

= βZN 〈n〉 ,
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which gives us

〈n〉 =
1
βN

∂Z
∂µ

Z
=

1
βN

∂

∂µ
ln Z. (46)

Next, we rewrite the grand canonical partition function (41) using (42), (44) and c =
µ

U :

Z =

 e−
βU
2

πL (ΩL − 1) (1 −Ω−L)


N
2

e
βNU

2
Uω2

Uω2−α2

(
µ2

U2 +2 µ
U +1

) ∫
RN×L

e
−

∑
i

#»σi
t(1+γR) #»σi +i|σ|λ µ+ΛW

U−ΛW
·

·

∣∣∣∣∣∣∣det

1 +

L∏
l=1

e−iλG(l)
e∆τthkin


∣∣∣∣∣∣∣
2

dσ =

=

 eβU( U
U−ΛW −

1
2 )

πL (ΩL − 1) (1 −Ω−L)

 N
2

︸                           ︷︷                           ︸
CZ0

CZ1(µ)︷            ︸︸            ︷
e

βN
2(U−ΛW)µ

2+
βNU

U−ΛW µ

∫
RN×L

e
−

∑
i

#»σi
t(1+γR) #»σi

·

︸                                                 ︷︷                                                 ︸
·

∣∣∣∣∣∣∣det

1 +

L∏
l=1

e−iλG(l)
e∆τthkin


∣∣∣∣∣∣∣
2

ei|σ|λ µ+ΛW
U−ΛW dσ︸                                                   ︷︷                                                   ︸

CI

=

= Z0 Z1(µ) I (47)

With that we can finally derive our alternative expression for 〈n〉,

βN 〈n〉 =
∂

∂µ
ln Z =

Z′

Z
=

Z0 Z′1 I
Z0 Z1 I

+
Z0 Z1 I′

Z0 Z1 I
=

=
∂

∂µ
ln Z1 +

∫
RN×L

|ρ(σ)| ei|σ|λ µ+ΛW
U−ΛW

i|σ|λ
U−ΛW dσ∫

RN×L

|ρ(σ)| ei|σ|λ µ+ΛW
U−ΛW dσ

=

=

(
βN

2 (U − ΛW)
µ2 +

βNU
U − ΛW

µ

)′
+

iλ
U − ΛW

∫
RN×L

|σ| ei|σ|λ µ+ΛW
U−ΛW |ρ(σ)| dσ∫

RN×L

|ρ(σ)| dσ∫
RN×L

ei|σ|λ µ+ΛW
U−ΛW |ρ(σ)| dσ∫

RN×L

|ρ(σ)| dσ

=
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=
βN

U − ΛW
(µ + U) +

iλ
U − ΛW

〈
|σ| ei|σ|λ µ+ΛW

U−ΛW

〉
〈
ei|σ|λ µ+ΛW

U−ΛW

〉 ⇐⇒

⇐⇒ 〈n〉 =
µ + U

U − ΛW
+

1
βN

iλ
U − ΛW

〈
|σ| ei|σ|λ µ+ΛW

U−ΛW

〉
〈
ei|σ|λ µ+ΛW

U−ΛW

〉 .
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14 Analytically exact results without hopping
Here we want to analytically evaluate the grand canonical partition function and with that the
average density and the average phase factor without hopping, i.e. for t = 0, and compare our
later numerical results with the analytically exact solutions.

14.1 Analytic evaluation of the grand canonical partition function
First, we want to analytically evaluate the grand canonical partition function (47) for t = 0.

With the definition BB 1 + γR we get

Z̃ B Z(t = 0) = Z0 Z1(µ) I(t = 0) = Z0 Z1(µ)
∫

RN×L

e
−

∑
i

#»σi
tB #»σi +i|σ|λ µ+ΛW

U−ΛW

∣∣∣∣∣∣∣det

1 +

L∏
l=1

e−iλG(l)


∣∣∣∣∣∣∣
2

dσ =

= Z0 Z1(µ)
∫

RN×L

e
−

∑
i

(
#»σi

tB #»σi−i
L∑

l=1
σil λ

µ+ΛW
U−ΛW

) ∣∣∣∣∣∣∣∏i

1 + e
−iλ

L∑
l=1
σil


∣∣∣∣∣∣∣
2

dσ =

= Z0 Z1(µ)
∏

i

∫
RL

e
− #»σi

tB #»σi +i
L∑

l=1
σil λ

µ+ΛW
U−ΛW

∣∣∣∣∣∣∣1 + e
−iλ

L∑
l=1
σil

∣∣∣∣∣∣∣
2

d #»σi =

= Z0 Z1(µ)


∫
RL

e−
#»σ tB #»σ e

i
L∑

l=1
σl λ

µ+ΛW
U−ΛW

2 + e
−iλ

L∑
l=1
σl

+ e
iλ

L∑
l=1
σl

 d #»σ


N

=

/
L∑

l=1

σl C S

µ + ΛW C µ̃

U − ΛW C Ũ

/
=

= Z0 Z1(µ)


∫
RL

e−
#»σ tB #»σ

(
2eiSλ µ̃

Ũ + eiSλ
(
µ̃

Ũ
−1

)
+ eiSλ

(
µ̃

Ũ
+1

))
d #»σ


N

=
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=

/
Sλ

µ̃

Ũ
= 2

λ

2
µ̃

Ũ︸︷︷︸
Cλ1

#»
1 t

︸    ︷︷    ︸
C

#»
λ1

t

#»σ = 2
#»
λ1

t #»σ

Sλ
(
µ̃

Ũ
− 1

)
= 2

λ

2

(
µ̃

Ũ
− 1

)
︸      ︷︷      ︸

Cλ2

#»
1 t

︸           ︷︷           ︸
C

#»
λ2

t

#»σ = 2
#»
λ2

t #»σ

Sλ
(
µ̃

Ũ
+ 1

)
= 2

λ

2

(
µ̃

Ũ
+ 1

)
︸      ︷︷      ︸

Cλ3

#»
1 t

︸           ︷︷           ︸
C

#»
λ3

t

#»σ = 2
#»
λ3

t #»σ

/
=

= Z0 Z1(µ)


∫
RL

e−
#»σ tB #»σ

(
2e2i

#»
λ1

t #»σ + e2i
#»
λ2

t #»σ + e2i
#»
λ3

t #»σ
)

d #»σ


N

=

/∫
RL

e−(
#»σ tB #»σ−2i

#»
λα

t #»σ) d #»σ C Iα

/
=

= Z0 Z1(µ) (2I1 + I2 + I3)N .

The argument of the exponential function in Iα can be written as

#»σ tB #»σ − 2i
#»
λα

t #»σ =
(

#»σ − i #»σ0
)t B

(
#»σ − i #»σ0

)
+ C = #»σ tB #»σ − 2i #»σ0

tB #»σ − #»σ0
tB #»σ0 + C ⇐⇒

⇐⇒ C = #»σ0
tB #»σ0 and #»σ0

tB =
#»
λα

t.

Because Rll′ = Ω|l−l′ |−L + 1
Ω|l−l′ | = Ω|l

′−l|−L + 1
Ω|l
′−l| = Rl′l ∀ l, l′ ∈ {1, . . . , L}, B is a symmetric

matrix meaning B = Bt and B−1 =
(
B−1

)t
. Hence we get

#»σ0
tB =

#»
λα

t ⇐⇒ #»σ0
t =

#»
λα

tB−1 ⇐⇒ #»σ0 =
(
B−1

)t #»
λα = B−1 #»

λα

and

C = #»σ0
tB #»σ0 =

#»
λα

tB−1 #»
λα.

With that we get for Iα a multidimensional Gaussian integral, which can easily be solved
analytically,

Iα =

∫
RL

e−(
#»σ−iB−1 #»

λα)t
B( #»σ−iB−1 #»

λα)− #»
λα

tB−1 #»
λα d #»σ = e−

#»
λα

tB−1 #»
λα

(√
π
)L

√
det(B)

.
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And with

#»
λα

tB−1 #»
λα =

∑
ll′

(
B−1

)
ll′︸      ︷︷      ︸

Cκ̃

λ2
α = κ̃λ2

α

Iα can be simplified to

Iα =

(
πL

det(B)

) 1
2

e−̃κλ
2
α , κ̃ =

∑
ll′

(
B−1

)
ll′
.

So the integral yields

Ĩ B 2I1 + I2 + I3 =

(
πL

det(B)

) 1
2 (

2e−̃κλ
2
1 + e−̃κλ

2
2 + e−̃κλ

2
3

)
=

=

(
πL

det(B)

) 1
2

e−̃κλ
2
1

(
2 + e−̃κ(λ

2
2−λ

2
1) + e−̃κ(λ

2
3−λ

2
1)
)

=

=

(
πL

det(B)

) 1
2

e−̃κ
λ2
4

µ̃2

Ũ2

(
2 + e−̃κ

λ2
4

((
µ̃

Ũ
−1

)2
−
µ̃2

Ũ2

)
+ e−̃κ

λ2
4

((
µ̃

Ũ
+1

)2
−
µ̃2

Ũ2

))
=

=

(
πL

det(B)

) 1
2

e−̃κ
λ2
4

µ̃2

Ũ2

(
2 + e−̃κ

λ2
4

(
1−2 µ̃

Ũ

)
+ e−̃κ

λ2
4

(
1+2 µ̃

Ũ

))
=

=

/
e−̃κ

λ2
4

(
1−2 µ̃

Ũ

)
+ e−̃κ

λ2
4

(
1+2 µ̃

Ũ

)
= e−̃κ

λ2
4

(
ẽκ

λ2
2

µ̃

Ũ + e−̃κ
λ2
2

µ̃

Ũ

)
= e−̃κ

λ2
4 2 cosh

(̃
κ
λ2

2
µ̃

Ũ

) /
=

= 2
(

πL

det(B)

) 1
2

e−̃κ
λ2
4

µ̃2

Ũ2

(
1 + e−̃κ

λ2
4 cosh

(̃
κ
λ2

2
µ̃

Ũ

))
,

which finally leads to

Z̃ = Z0 Z1(µ) Ĩ N .

14.2 Analytic evaluation of the average density and the average phase
factor

With that we can now, using (46), analytically evaluate 〈n〉 for t = 0,

βN 〈n〉t=0 =
∂

∂µ
ln Z̃ =

∂

∂µ

(
ln Z0 + ln Z1 + N ln Ĩ

)
=

=
βN (µ + U)
U − ΛW

+ N
∂

∂µ

ln
2 (

πL

det(B)

) 1
2
 − κ̃ λ2

4
(µ + ΛW)2

(U − ΛW)2 +
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+ ln
(
1 + e−̃κ

λ2
4 cosh

(̃
κ
λ2

2
µ + ΛW
U − ΛW

)))
=

=
βN (µ + U)
U − ΛW

+ N

−̃κ λ2

2
µ + ΛW

(U − ΛW)2 +
e−̃κ

λ2
4 sinh

(̃
κ λ2

2
µ+ΛW
U−ΛW

)
κ̃ λ2

2
1

U−ΛW

1 + e−̃κ
λ2
4 cosh

(̃
κ λ2

2
µ+ΛW
U−ΛW

)
 =

=
βN (µ + U)
U − ΛW

+ N κ̃
λ2

2
1

U − ΛW

− µ + ΛW
U − ΛW

+
e−̃κ

λ2
4 sinh

(̃
κ λ2

2
µ+ΛW
U−ΛW

)
1 + e−̃κ

λ2
4 cosh

(̃
κ λ2

2
µ+ΛW
U−ΛW

)
 =

=
βN (µ + U)
U − ΛW

+ N κ̃
λ2

2
1

U − ΛW

− µ + ΛW
U − ΛW

+
sinh

(̃
κ λ2

2
µ+ΛW
U−ΛW

)
ẽκ

λ2
4 + cosh

(̃
κ λ2

2
µ+ΛW
U−ΛW

)
 ⇐⇒

⇐⇒ 〈n〉t=0 =
µ + U

U − ΛW
+
κ̃

L
U

U − ΛW

− µ + ΛW
U − ΛW

+
sinh

(̃
κ∆τU µ+ΛW

U−ΛW

)
ẽκ

∆τU
2 + cosh

(̃
κ∆τU µ+ΛW

U−ΛW

) . (48)

Next, we want to explicitly evaluate κ̃. To this end we will first have a look at the matrix R and
prove that, no matter the index l,

∑
l′

Rll′ = const and then explicitly calculate that constant.

So first we prove that∑
l′

Rll′ =
∑

l′
Ω|l−l′ |−L

︸       ︷︷       ︸
CS1(l)

+
∑

l′

1
Ω|l−l′ |︸     ︷︷     ︸
CS2(l)

= S1(l) + S2(l) C S (l) = const

for all l = 1, . . . , L.

Proof.
The proof will be made by induction with respect to l.

1 Induction basis: l = 1

S (1) =
1

ΩL +
1

ΩL−1 + · · · +
1
Ω

+ 1 +
1
Ω

+ · · · +
1

ΩL−1 = 1 + 2
(

1
Ω

+ · · · +
1

ΩL−1

)
+

1
ΩL =

= const C Γ

2 Induction step: l→ l + 1

S (l + 1) =
∑

l′
Ω|l+1−l′ |−L +

∑
l′

1
Ω|l+1−l′ |

=
∑

l′
Ω|l−(l′−1)|−L +

∑
l′

1
Ω|l−(l′−1)| =

=

L−1∑
l′′=0

Ω|l−l′′ |−L +

L−1∑
l′′=0

1
Ω|l−l′′ |

= S1(l) + Ωl−L −Ω−l + S2(l) +
1
Ωl −

1
ΩL−l =

= S1(l) +
1

ΩL−l −
1
Ωl + S2(l) +

1
Ωl −

1
ΩL−l = S1(l) + S2(l) = S (l) = Γ

�
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And now we want to explicitly calculate that constant Γ,

S (l) = Γ = 1 + 2
(

1
Ω

+ · · · +
1

ΩL−1

)
+

1
ΩL =

1 + 2
(
Ω + · · · + ΩL−1

)
+ ΩL

ΩL =

=
(1 + Ω)

(
1 + · · · + ΩL−1

)
ΩL =

(1 + Ω)
ΩL

L−1∑
l′′=0

Ωl′′

︸  ︷︷  ︸
CS̃ (L)

=
(1 + Ω)

ΩL S̃ (L).

We claim that

S̃ (L) =

L−1∑
l′′=0

Ωl′′ =
−1 + ΩL

−1 + Ω
.

Proof.
Because this is a statement depending on L, we again have to prove it by induction, but this
time with respect to L.

1 Induction basis: L = 1

S̃ (1) = 1 =
−1 + Ω

−1 + Ω

2 Induction step: L→ L + 1

S̃ (L + 1) =

L∑
l′′=0

Ωl′′ =
−1 + ΩL+1

−1 + Ω
⇐⇒

−1 + ΩL

−1 + Ω
+ ΩL =

−1 + ΩL+1

−1 + Ω
⇐⇒

⇐⇒ −1 + ΩL −ΩL + ΩL+1 = −1 + ΩL+1 ⇐⇒ −1 + ΩL+1 = −1 + ΩL+1

�

So we finally get

S (l) = Γ =
(1 + Ω)

(
−1 + ΩL

)
ΩL (−1 + Ω)

∀ l ∈ {1, . . . , L} ,

which of course means

∑
l′

Rll′ = Γ =
(1 + Ω)

(
−1 + ΩL

)
ΩL (−1 + Ω)

∀ l ∈ {1, . . . , L} .

Hence we get further∑
l′

Bll′ =
∑

l′
(1 + γR)ll′ = 1 + γΓ ∀ l ∈ {1, . . . , L} .
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Due to symmetry we have

1 =
∑

l′
δll′ =

∑
l′

1ll′ =
∑

l′

(
BB−1

)
ll′

=
∑

l′

∑
l′′

Bll′′

(
B−1

)
l′′l′

=
∑

l′′
Bll′′

∑
l′

(
B−1

)
l′′l′

=

= (1 + γΓ)
∑

l′

(
B−1

)
l′′l′

⇐⇒
∑

l′

(
B−1

)
l′′l′

=
1

1 + γΓ
.

So we finally get for κ̃

κ̃ =
∑

ll′

(
B−1

)
ll′

=
L

1 + γΓ
.

So,

L
κ̃

= 1 + γΓ
(42)
= 1 +

α2∆τ2

2U (1 −Ω−L)
√

a2 − 1

(1 + Ω)
(
−1 + ΩL

)
ΩL (−1 + Ω)

=

= 1 +
α2∆τ2ΩL

2U (ΩL − 1)
√

a2 − 1

(1 + Ω)
(
ΩL − 1

)
ΩL (−1 + Ω)

= 1 +
α2∆τ2

2U
√

a2 − 1

1 + a +
√

a2 − 1

−1 + a +
√

a2 − 1
=

= 1 +
α2∆τ2

2U
√

a2 − 1

(
1 + a +

√
a2 − 1

)2

−1 +
(
a +
√

a2 − 1
)2 =

= 1 +
α2∆τ2

2U
√

a2 − 1

1 + a2 + a2 − 1 + 2a
√

a2 − 1 + 2a + 2
√

a2 − 1

−1 + a2 + a2 − 1 + 2a
√

a2 − 1
=

= 1 +
α2∆τ2

2U
√

a2 − 1

2a2 + 2a + 2a
√

a2 − 1 + 2
√

a2 − 1

−2 + 2a2 + 2a
√

a2 − 1
=

= 1 +
α2∆τ2

2U
√

a2 − 1

(a + 1)
(
a +
√

a2 − 1
)

−1 + a2 + a
√

a2 − 1
= 1 +

α2∆τ2

2U

(a + 1)
(
a +
√

a2 − 1
)

√
a2 − 1

(
a2 − 1

)
+ a

(
a2 − 1

) =

= 1 +
α2∆τ2

2U

(a + 1)
(
a +
√

a2 − 1
)

(
a2 − 1

) (
a +
√

a2 − 1
) = 1 +

α2∆τ2

2U
a + 1

(a + 1) (a − 1)
= 1 +

α2∆τ2

2U
1

a − 1
=

=

/
a =

∆τ2

2

(
ω2 −

α2

U

)
+ 1 =

∆τ2

2
ω2

U
(U − ΛW) + 1 =

∆τ2ω2Ũ
2U

+ 1
/

=

= 1 +
α2∆τ2

2U
2U

∆τ2ω2Ũ
= 1 +

ΛW

Ũ
=

Ũ + ΛW

Ũ
=

U

Ũ
⇐⇒

κ̃

L
=

Ũ
U
.

With this relation we get for the average density in (48) the simple expression

〈n〉t=0 = 1 +
sinh(β (µ + ΛW))

e
β
2 (U−ΛW) + cosh(β (µ + ΛW))

.

One can immediately see here that 〈n〉t=0 = 1 ⇐⇒ µ + ΛW = 0.
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We can also easily evaluate the average phase factor for t = 0,

〈
phase

〉
t=0 =

∏
i

∫
RL

e
i

L∑
l=1
σil λ

µ+ΛW
U−ΛW e−

#»σi
tB #»σi

∣∣∣∣∣∣∣1 + e
−iλ

L∑
l=1
σil

∣∣∣∣∣∣∣
2

d #»σi

∏
i

∫
RL

e− #»σi tB #»σi

∣∣∣∣∣∣∣1 + e
−iλ

L∑
l=1
σil

∣∣∣∣∣∣∣
2

d #»σi

=
Ĩ N(

Ĩ (µ + ΛW = 0)
)N =

=

e−̃κ
λ2
4

µ̃2

Ũ2 N
(
1 + e−̃κ

λ2
4 cosh

(̃
κ λ2

2
µ̃

Ũ

))N

(
1 + e−̃κ

λ2
4

)N = e−̃κ
λ2
4

µ̃2

Ũ2 N

 ẽκ
λ2
4 + cosh

(̃
κ λ2

2
µ̃

Ũ

)
ẽκ

λ2
4 + 1


N

=

= e−L Ũ
U

2∆τU
4

µ̃2

Ũ2 N

eL Ũ
U

2∆τU
4 + cosh

(
L Ũ

U
2∆τU

2
µ̃

Ũ

)
eL Ũ

U
2∆τU

4 + 1


N

=

= e−
βN

2(U−ΛW) (µ+ΛW)2

e
β
2 (U−ΛW) + cosh(β (µ + ΛW))

e
β
2 (U−ΛW) + 1

N

.

For µ+ΛW = 0 the average phase factor is one. The envelope is given by a Gaussian prefactor
with variance

σ2 =
U − ΛW
βN

and width

σ =

√
U − ΛW
βN

,

so it decreases with
√
βN.
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15 Numerical results
Here we want to present some results for the Hubbard-Holstein model without and with hop-
ping. All of the following results are obtained by generating (and saving) 400000 Hubbard-
Stratonovich fields, or more precisely their sum over all their elements, and their respective
Green’s functions for a specific Λ and µ = −ΛW, i.e. at half-filling.

15.1 Without hopping
We start out with the Hubbard-Holstein model without hopping, i.e. for t = 0, and compare
our numerical results with those obtained from the analytic evaluation of the average density
and the average phase factor.

In figure 5 we first show the normalized histogram of our 400000 sampled |σ| for a
4 × 4 lattice for β = 1 and Λ = 0.25.

Figure 5: Normalized histogram of 400000 |σ| for a 4 × 4 lattice for β = 1 and Λ = 0.25.

As one can see, the histogram follows a normal distribution with expectation value zero.
Figure 6 shows the real part of the average phase factor and the analytically exact solution as
a function of the chemical potential µ shifted by ΛW such that they are one at µ + ΛW = 0.
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Figure 6:<(
〈
phase

〉
) vs µ + ΛW and comparison with the analytically exact solution.

As one can see,<(
〈
phase

〉
) and its error bars are clearly above zero only for µ+ΛW ∈ [−2, 2].

Figure 7 shows the real part of the average density using both of the methods that we described
before and the analytically exact solution as a function of µ + ΛW.

Figure 7:<(〈n〉) vs µ + ΛW using both methods and comparison with the analytically exact
solution.

As one can see, using Hubbard-Stratonovich fields might have some advantages over using
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Green’s functions for the calculation of 〈n〉. Nevertheless, none of the two methods gives any
useful results for µ + ΛW < [−2, 2].
What’s very interesting here is that we have <(〈n〉) = 1 at µ + ΛW = 0. This is because of a
shift in the equilibrium position of the lattice due to the coupled system minimizing its energy
by exploiting the electron-phonon interaction energy Eel-ph = −α

∑
i
〈ni〉 〈xi〉 at the expense of

the lattice potential energy Eph,pot = ω2

2

∑
i

〈
x2

i

〉
paid for the shifted equilibrium position [6].

For a uniform charge density, 〈ni〉 = 1, which one would expect for the half-filled case, this
lattice shift can be obtained by minimizing the total energy (see (33)) with respect to the
phonon displacement xi for an arbitrary i ∈ {1, . . . ,N}.
The new equilibrium position is given by

d
dxi

(
ω2

2
x2

i − α 〈ni〉 xi

)
= 0,

which, for 〈ni〉 = 1, yields xi = α
ω2 =

√
ΛW
ω

.
This demonstrates that at half-filling the lattice shifts to a new equilibrium position and elec-
trons couple to fluctuations around this point.
Figure 8 shows the real part of the average phase factor as a function of the real part of the
average density using Hubbard-Stratonovich fields and their respective analytically exact so-
lutions.

Figure 8:<(
〈
phase

〉
) vs <(〈n〉) using Hubbard-Stratonovich fields and comparison with the

analytically exact solutions.

Also here the results are most accurate for<(
〈
phase

〉
) clearly above zero.

So by now we can be sure that our DQMC algorithm for the Hubbard-Holstein model works
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perfectly fine as long as one considers a band-filling where <(
〈
phase

〉
) and its error bars are

clearly above zero.

15.2 With hopping
Next, we consider the Hubbard-Holstein model with hopping (t = 1) and apply our DQMC
algorithm to a 4 × 4 and a 2 × 1 lattice.

In figure 9 we show the real part of the average phase factor as a function of the shifted
chemical potential µ + ΛW for a 4 × 4 lattice for Λ = 0.25 and Λ = 0.5.

Figure 9:<(
〈
phase

〉
) vs µ + ΛW for a 4 × 4 lattice for Λ = 0.25 and Λ = 0.5.

As one can see, for Λ = 0.25 <(
〈
phase

〉
) and its error bars are clearly above zero only for

µ + ΛW ∈ [−2.5, 2.5] and for Λ = 0.5 only for µ + ΛW ∈ [−2, 2].
Figure 10 shows the real part of the average density using again both methods as a function of
µ + ΛW.
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Figure 10:<(〈n〉) vs µ + ΛW using both methods.

Also here, using Hubbard-Stratonovich fields seems to have some advantages over using
Green’s functions for the calculation of 〈n〉.
Figure 11 shows the real part of the average phase factor as a function of the real part of the
average density using Hubbard-Stratonovich fields.

Figure 11:<(
〈
phase

〉
) vs<(〈n〉) using Hubbard-Stratonovich fields.

What’s interesting here is that, although in figure 9<(
〈
phase

〉
) was slightly better for
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Λ = 0.25 than for Λ = 0.5, if plotted against <(〈n〉), it is better for the greater Λ. That’s
because for a given interval of µ + ΛW, let’s say [−2.5, 2.5], the difference in band-filling
between the two curves is greater (figure 10) than it is in<(

〈
phase

〉
).

In figure 12 we show again the real part of the average phase factor as a function of the
shifted chemical potential µ + ΛW, but this time for a 2 × 1 lattice for Λ = 0.1, Λ = 0.2 and
Λ = 0.3.

Figure 12:<(
〈
phase

〉
) vs µ + ΛW for a 2 × 1 lattice for Λ = 0.1, Λ = 0.2 and Λ = 0.3.

As one can see here, we won’t expect any useful results for Λ = 0.1 for µ + ΛW < [−5, 5], for
Λ = 0.2 for µ + ΛW < [−4, 4] and for Λ = 0.3 for µ + ΛW < [−3, 3].
Figure 13 shows the real part of the average density using Hubbard-Stratonovich fields as a
function of µ + ΛW.
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Figure 13:<(〈n〉) vs µ + ΛW using Hubbard-Stratonovich fields.

Figure 14 shows the real part of the average phase factor as a function of the real part of the
average density using Hubbard-Stratonovich fields.

Figure 14:<(
〈
phase

〉
) vs<(〈n〉) using Hubbard-Stratonovich fields.

In contrast to the 4×4 lattice from before (figure 11), here, the greater Λ, the worse<(
〈
phase

〉
).

And finally, figure 15 shows the compressibility κ ∝ ∂〈n〉
∂µ

using the data of the results in figure
13, but for smaller intervals, as a function of µ + ΛW.
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Figure 15: κ vs µ + ΛW using the data of the results in figure 13.

In these results one starts to see indications of competition between the attractive interaction
mediated by the phonons and the Coulomb repulsion [6]. We can demonstrate this quite easily
as we have explicitly integrated out the phonon degrees of freedom and obtained an effective
Coulomb interaction strength Ũ = U − ΛW. For Λ = 0.1 the Coulomb repulsion dominates,
showing a Mott gap in the system which manifests as a minimum located at µ + ΛW = 0. As
the electron-phonon coupling strength increases, the attractive interaction grows. This reduces
the influence of the Coulomb repulsion and the size of the Mott gap diminishes. This is evident
in figure 13, where the curves are the steeper and more linear the greater Λ, and in figure 15
in the rise in the minimum. Only for Λ = 0.1 we had sufficient accurate data in order to show
that the system has a finite compressibility and κ→ 0 as the band completely fills or empties.
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Conclusion
All the fundamental concepts that lay behind the DQMC algorithm were provided and it was
applied to the Hubbard model. At the same time the real discrete and the real continuous
Hubbard-Stratonovich transformations were used. Numerical results were compared with
those obtained from exact diagonalization. In addition, a few results were presented for a
band off half-filling.

For the Hubbard-Holstein model we presented a totally new approach where we were using
the complex continuous Hubbard-Stratonovich transformation to derive an expression for the
grand canonical partition function of the Hubbard-Holstein model with the phonon degrees of
freedom being explicitly integrated out in order not to have had to sample the phonon fields.
This solved the sign problem at half-filling for any electron-phonon coupling strength, but
only there. At the end some results were presented for the Hubbard-Holstein model without
and with hopping, where those for that without hopping were compared with those obtained
from the analytic evaluation of the average density and the average phase factor. It turned out
that our DQMC algorithm for the Hubbard-Holstein model works perfectly fine as long as one
considers a band-filling where<(

〈
phase

〉
) and its error bars are clearly above zero.
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