
Johannes Lüftenegger, BSc

Development and Evaluation of a User
Interface Concept for an Industrial Wind

Turbine Diagnosis Application

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa
Dipl.-Ing. Dipl.-Ing. Roxane Koitz-Hristov, BSc

Institute for Softwaretechnology

Graz, November 2017

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to tugrazonline is identical to the
present master‘s thesis.

Date Signature

ii

Abstract

Since industrial systems are becoming more and more complex, diagnosis
applications are required in order to identify the system’s health status as
well as identifying faulty components. Model-based and knowledge-based
diagnosis are methods to identify parts that cause abnormal behavior of a
system. In contrast to knowledge-based diagnosis systems, the advantage of
the model-based method lies in the updatability of the knowledge base.
Decades ago, the theoretical background of model-based diagnosis systems
was researched, and various prototypes have been implemented to show
performance enhancements. Yet, industrial applications are sparse. Whereas
knowledge-based systems are widely used in different domains, only few
model-based applications have been published. The existing prototypes mainly
demonstrate the implemented algorithms, leaving users outside the research
field behind. Further, there is no research about design and layout require-
ments in the context of model-based diagnosis applications.
This work introduces best practices for the design of a model-based diagnosis
application with focus on user acceptance factors, i.e. usability and usefulness.
Furthermore, the processes for designing and evaluating such systems is
described, taking the needs and requirements of users with different levels
of experience into account. A general interface was developed to suit a large
variety of diagnosis purposes and a usability test was conducted to identify
design issues for which possible solutions were stated.
In order to close research gap regarding user interface design of industrial
model-based diagnosis systems, the requirements for such a system in the
context of wind turbine maintenance were described. Moreover, a clickable
prototype was created to support the fault identification process of wind
turbine maintenance personnel. The interface was developed in an iterative
design process, where the needs of several stakeholders needed to be consid-
ered. In order to evaluate the usability of the interface, the service technicians
responsible for the wind turbine maintenance participated in a usability test.

iii

The identified issues were analyzed and sparked ideas of alternative design
solutions to further improve the usability of the interfaces. The proposed
interface designs can be used to bring model-based diagnosis systems into
industrial applications. It has been shown that users are able to interact
with such systems using this interface, even when they have no technical
background.

iv

Kurzfassung

Da industrielle Systeme in den letzten Jahren deutlich an Komplexität gewon-
nen haben, ist es notwendig, Diagnoseanwendungen zur Überwachung und
Identifikation fehlerhafter Komponenten einzusetzen. Mithilfe von modell-
oder wissensbasierten Diagnoseanwendungen können jene Komponenten
identifiziert werden, die ein fehlerhaftes Verhalten eines Systems verursachen.
Dass die Wissensbasis bei modellbasierten Diagnosesystemen gewartet und
wiederverwendet werden kann, stellt einen Vorteil gegenüber wissensbasierten
Diagnosesystemen dar.
Obwohl der theoretische Hintergrund von modellbasierten Systemen in den
letzten Jahrzehnten erforscht wurde, konnte sich die modellbasierte Diagnose
in industriell verwendeten Anwendungen nicht durchsetzen. Im Gegensatz
zu wissensbasierten Systemen, die bereits in vielen Bereichen Anwendung
gefunden haben, wurden bisher nur wenige modellbasierte Anwendungen en-
twickelt. Es handelt sich hierbei hauptsächlich um Forschungsprototypen, um
verbesserte Algorithmen zu demonstrieren. Außerhalb des wissenschaftlichen
Umfelds finden diese Programme jedoch keine Anwendung. Die Anforderun-
gen an das Design und Layout modellbasierter Diagnosesysteme sind bislang
unerforscht.
Die vorliegende Arbeit zeigt die Anforderungen an eine modellbasierte Diag-
noseanwendung im Bereich der Benutzerakzeptanz hinsichtlich der Faktoren
“Benutzbarkeit” und “Brauchbarkeit”. Um die Forschungslücke im Zusam-
menhang mit modellbasierten Diagnosesystemen im Bereich des Interface-
Designs zu schließen, wird in der vorliegenden Arbeit zunächst ein generelles
Design einer modellbasierte Diagnoseanwendung vorgestellt, das in vielen un-
terschiedlichen Anwendungsgebieten eingesetzt werden kann. Zur Identifika-
tion allfälliger Designfehler wurde das Programm mittels eines Usability-Tests
evaluiert. Für die dabei festgestellten Probleme wurden Lösungen erarbeitet.
In der Folge wurden die konkreten Anforderungen einer Diagnoseanwendung
für die Wartung von Windturbinen ermittelt. Es wurde ein Interface-Prototyp

v

mit dem Ziel entwickelt, Servicetechnikerinnen und Servicetechniker bei
der Fehlerdiagnose zu unterstützen. Die Benutzeroberfläche wurde in einem
iterativen Entwicklungsprozess stetig verfeinert, wobei die Anforderungen
verschiedener Stakeholder berücksichtigt wurden. Um die Tauglichkeit des
Prototyps zu ermitteln, wurde ein Usability-Test durchgeführt, an dem jene
Techniker teilnahmen, die für die Wartung von Windturbinen zuständig sind.
Für die dabei identifizierten Fehler des Systems wurden Lösungsansätze erar-
beitet. Die entwickelte Benutzeroberfläche bildet die Grundlage für weitere
industriell verwendbare modellbasierte Diagnoseanwendungen. Da die Be-
nutzeroberfläche intuitiv bedienbar ist, kann sie auch von Anwenderinnen
und Anwendern mit geringem oder durchschnittlichem Grad an Erfahrung
bedient werden.

vi

Contents

Abstract iii

1. Introduction 1

2. Preliminaries 4
2.1. Fault Detection and Isolation Approach 4

2.2. Approaches to Model-Based Diagnosis 6

2.2.1. Consistency-Based Diagnosis 6

2.2.2. Abductive Model-Based Diagnosis 9

3. Related Work 13
3.1. Knowledge-Based Systems . 14

3.1.1. Expert System for Tuberculosis Diagnosis 14

3.1.2. Expert System for Physical Examination of Skin Disease 18

3.1.3. Fault Diagnosis in Manufacturing Industry 23

3.2. Tools for Model-Based Diagnosis 29

3.2.1. RODON . 30

3.2.2. Assumption-Based Truth Maintenance System 38

3.2.3. Diagnosis with Possible Conflicts (DxPCs) 43

3.2.4. JDiagEngine . 48

3.3. Discussion . 51

4. Usability 52
4.1. Usability Inspection Methods . 53

4.1.1. Heuristic Evaluation . 54

4.1.2. Cognitive / Pluralistic Walkthrough 56

4.2. Usability Testing Methods . 58

4.2.1. Thinking Aloud Test . 61

4.2.2. A/B Testing . 62

4.2.3. Query Techniques . 62

vii

Contents

4.3. Mobile Usability Guidelines . 63

5. General Design of a Model-Based Diagnosis Application 65
5.1. Identified Best Practices . 66

5.2. Requirements . 68

5.3. Scenario . 68

5.4. Basic Layout . 71

5.5. Design . 72

5.5.1. Control Area . 72

5.5.2. Diagnosis Area . 75

5.5.3. Report Area . 76

5.6. Evaluation . 79

5.6.1. Participants . 80

5.6.2. Usability Test Setup . 82

5.6.3. Tasks . 85

5.7. Results . 88

5.7.1. Critical Issues . 89

5.7.2. Major Issues . 90

5.7.3. Minor Issues: . 93

5.7.4. Issues Identified as Non-usability Problems: 93

5.7.5. Interview I: Interface Comparison 93

5.7.6. Interview II: Post-Test Interview 95

5.7.7. Evaluation of the System Usability Scale Questionnaire 95

5.7.8. Usability Metrics . 97

6. Design of a Model-Based Application for Wind Turbine Fault Di-
agnosis 101
6.1. Design Process . 102

6.2. Requirements . 104

6.3. Workflow and Interface Design 106

6.4. Evaluation . 111

6.4.1. Participants . 111

6.4.2. Usability Test Setup . 113

6.4.3. Tasks . 113

6.5. Results . 116

6.5.1. Critical Issues . 117

6.5.2. Major Issues . 118

viii

Contents

6.5.3. Minor Issues . 118

6.5.4. Issues Identified as Non-usability Problems 121

6.5.5. Post-Test Interview . 121

6.5.6. Evaluation of the System Usability Scale Questionnaire 121

6.5.7. Usability Metrics . 123

7. Conclusions and Future Work 127

A. General Diagnosis Interface Study 131
A.1. Background Questionnaire for the General Diagnosis Interface

Study . 131

A.2. Tasks from the Evaluation of the General Interface 136

B. Wind Turbine Diagnosis Interface Study 137
B.1. Background Questionnaire for the Wind Turbine Diagnosis

Interface Study . 137

B.2. Tasks from the Evaluation of Wind Turbine Fault Diagnosis
Interface . 141

B.2.1. Operations Center Tasks 141

B.2.2. Mobile Application Tasks 141

C. SUS Questionnaire 143

Bibliography 145

ix

List of Figures

2.1. Boolean circuit [67] . 8

3.1. GUI of the tuberculosis expert system [47] 15

3.2. Layout for medical history review of prototype I [60] 19

3.3. Layout for medical history review of prototype II [60] 19

3.4. Layout of prototype I [60] . 21

3.5. Layout of prototype II [60] . 22

3.6. User interface and fault-finding process of the diagnosis tool [25] 26

3.7. RODON composer environment [22] 32

3.8. Simulations with RODON analyser [22] 36

3.9. Diagnosis with RODON analyser [22] 37

3.10. Basic architecture of an ATMS system [66] 39

3.11. User interface of LRS . 40

3.12. Result window of LRS . 42

3.13. Tank system example [51] . 45

3.14. Interface of DxPCs [51] . 46

3.15. Result the simulation [51] . 47

3.16. JDiagEngine interface [49] . 50

4.1. Setup of a Pluralistic Walkthrough session [53] 57

4.2. Setup of a single room, single camera usability test [1] 60

4.3. Usability lab test setup [1] . 60

4.4. Interpretation of the SUS score [2] 63

5.1. Abductive approach for a MBD process [27] 66

5.2. Example for the system . 70

5.3. Basic layout . 71

5.4. Design of the application interface 73

5.5. Screen design of the control area 74

5.6. Screen design of the diagnosis area 76

x

List of Figures

5.7. Mockup of a desktop diagnosis application; Results screen . . 77

5.8. Mockup of a desktop diagnosis application; Diagnosis refine-
ment screen . 77

5.9. Screen design of the report area 78

5.10. Gender distribution of the participants 81

5.11. Distribution of the participants’ age 81

5.12. Educational background of the participants 82

5.13. Illustration of the used single room, single camera setup 83

5.14. Video scheme for the usability test analysis 85

5.15. Identified critical usability issues 91

5.16. Identified usability issues with high priority 92

5.17. Interface of Prototype I . 96

5.18. Interface of Prototype II . 96

5.19. Semantic differential of the SUS ratings of each user group . . 97

5.20. SUS scores (adapted from [2]) . 98

5.21. User success rate . 99

5.22. Error rate . 99

6.1. Iterative design process (adapted from [17]) 103

6.2. Initial low fidelity mockups of the diagnosis application’s interface105

6.3. Identified workflow of a wind turbine repair/replacement task
[27] . 107

6.4. Design of the Operations Center [27] 108

6.5. Design of the mobile application interface [29] 109

6.6. Comparison between flat and deep website navigation hierarchy
[64] . 110

6.7. Distribution of the participants’ age 112

6.8. Distribution of the participants’ educational background 112

6.9. Critical issues [29] . 119

6.10. Major issues [29] . 120

6.11. Minor issues [29] . 122

6.12. SUS scores (adapted from [2]) . 123

6.13. User success rate . 124

6.14. User error rate . 124

6.15. Results of the SUS questionnaire 125

xi

List of Abbreviations

AB Abnormal Behavior
ATMS Assumption-based Truth Maintenance System
ARR Analytical Redundancy Relation
COMPS Set of Components
CU Casual User
CBD Consistency-based Diagnosis
DP Diagnostic Problem
DxPCs Diagnosis with Possible Conflicts
EU Expert User
FDI Fault Detection and Isolation
GUI Graphical User Interface
KB Knowledge Base
MBD Model-based Diagnosis
NAB Not Abnormal Behavior
NU Novice User
OBS Set of Observations
PC Possible Conflict
PHCAP Propositional Horn Clause Abduction Problem
SUS System Usability Scale
SM System Model
SME Subject Matter Expert
SD System Description
TAM Technology Acceptance Model
TTF Task-technology Fit Model
UI User Interface

xii

1. Introduction

Since the early 1960s, artificial intelligence (AI) has been a popular topic
in computer science. Expert systems are the most commercially successful
approaches to AI [19], with the purpose of replacing human experts. Shortliffe
et al. [59] develop the expert system MYCIN, which gives doctors recommen-
dations for antimicrobial therapies. Although MYCIN was able to provide
acceptable recommendations in 75% of the cases, it could not overcome the
lack of trust in computer systems in 1975. Nevertheless, it was an important
milestone in the research of knowledge-based systems.
The knowledge base of expert systems typically consists of IF-THEN clauses,
where the IF-statement consists of symptoms or conditions and the THEN-part
provides the consequence. In a large knowledge base, some rules may depend
on other rules. Therefore, inserting new rules might cause unexpected effects
[19] which causes high costs to maintain and extend such systems. Once the
limitations of expert systems had been discovered, several other methods
(e.g. model-based systems, neural networks) followed to assist humans in
fault-identification processes and decision-making tasks. In various papers,
prototypes including a graphical user interface (GUI) have been published to
demonstrate the functionality or improvements of the underlying algorithms.
Few publications showed the importance of usability and usability testing
of diagnosis or fault identification systems for industrial applications. This
is particularly troublesome since user acceptance is an important aspect in
order to introduce a new technology. Davis [9] proves that user acceptance is
strongly related to usefulness of a product. Freiberg, Striffler and Puppe [14]
suggest to introduce an agile software development process to keep interface
and interaction design in a central spot during the engineering process. Nur-
minen, Karonen and Hätönen [45] state the importance of usability and the
involvement of experts during an interactive development process.

1

1. Introduction

In order to bring MBD into industrial applications, this thesis has been part
of a project in cooperation with Uptime Engineering GmbH. This company
has many years of experience in wind turbine maintenance and is currently
developing an application for fault identification of wind turbines. Since
no research of usability and interface design in the field of model-based
diagnosis systems exists, the aim was to identify the requirements for such
systems. Additionally, the integration of the diagnosis system in their existing
monitoring software was another prerequisite to be considered. Since the
company runs strict style guidelines, the interface of the diagnosis system
needs to follow their design conventions. The design of the interface should
be extensible to be suitable for diagnosis scenarios outside the wind turbine
environment.

This work gives an overview of existing diagnosis applications with focus
on the usability of the user interface. Several research tools for model-based
diagnosis are presented, analyzed and potential usability issues identified.
The evaluation of the presented applications’ user interfaces is based on
operating system manufacturers’ guidelines and recommendations of usability
experts. Based on the findings, best practices were identified, which build the
foundation for interface design to bring model-based diagnosis to industrial
applications.

The main contributions of this master’s thesis are:

• Identification of best practices based on existing diagnosis applications

• Development of the workflow and requirements for an general interface
for model based diagnosis

• Design and evaluation of a general interface for model-based diagnosis
applications

• Identification of the requirements of an interface for diagnosis of wind
turbines

• Design and evaluation of a clickable prototype for wind turbine mainte-
nance

2

1. Introduction

Two interface prototypes for abductive model-based diagnosis systems are
presented. First, a general interface was developed which can be used for
different applications and domains. Currently, smart home devices are very
popular in consumer electronics. Therefore, the diagnosis interface was in-
tegrated into an application where users were able to interact which such
devices and perform diagnosis activities for different fault scenarios. In order
to evaluate the usability of the interface, several users with different levels of
experience in computer systems participated in a usability test. The second
interface was designed to support the maintenance personnel of an energy
provider with their repair and replacement tasks of wind turbines. The needs
of several stakeholders had to be taken into account to identify the require-
ments for such a system. After several design iterations, a clickable prototype
was developed and evaluated.

The preliminaries of model-based diagnosis are summarized in Chapter 2.
In this chapter, various approaches of model-based diagnosis are discussed.
Since there is no literature available for usability in the area of model-based
diagnosis, Chapter 3 presents usability studies of knowledge-based systems
as well as research tools for model-based diagnosis. The fundamentals of
usability testing and inspection methods are presented in Chapter 4. Chapter
5 introduces the requirements of a general interface for model-based diagnosis.
The scenario used is presented as well as the screen design of the resulting
application. Furthermore, the setup of the performed usability test and the
results of this study are presented and discussed. Chapter 6 describes the
iterative design process and the requirements of the wind turbine diagnosis
system. Based on the identified workflow, the design of the clickable pro-
totype is presented as well as the performed evaluation method and the
observed usability issues. Chapter 7 concludes the thesis and points out some
opportunities for future work.

3

2. Preliminaries

This chapter presents the logical principles required for model-based diagno-
sis and provides a comparison of the various approaches.
Two research communities exist in the field of model-based diagnosis: Con-
trol engineering and artificial intelligence, where in this work the former is
defined as FDI (Fault Detection and Isolation) and the latter as MBD (Model-
based Diagnosis) approach. The FDI method is based on analytical models
and linear algebra where MBD deals with logical symbolic and qualitative
models. Cordier et al.[6] provided a comparison between these two different
approaches, which are presented in the following sections.

2.1. Fault Detection and Isolation Approach

The system model of the FDI method contains a set of constraints which
describe the behavior of the components of the system and a set of sensors
providing the observation. Definition 1 by Cordier et al. [6] formalizes the
system model.

Definition 1. System model [6]: The system model SM is defined as the behavioral
model BM, i.e. the set of relations defining the system behavior, together with the
observation model OM, i.e. the set of relations defining the observations that are per-
formed on the system and the sensor models. The set V of variables can be decomposed
into the set of unknown variables X and the set of observed variables O.

In order to check the consistency of the observations against the system model,
the analytical redundancy relation (ARR) is used. The ARR is a constraint
which is satisfied if the observed behavior of a system satisfies the constraints
of the system model, i.e. the observed sensor values are appropriate. Definition
2 illustrates the formalization of ARR [6].

4

2. Preliminaries

Definition 2. Analytical redundancy relation [6]: An analytical redundancy
relation (ARR) is a constraint deduced from the system model which contains only
observed variables, and which can therefore be evaluated from any OBS. It is noted r
= 0, where r is called the residual of the ARR.

If presence of a fault Fj does not affect ARRi, then the fault signature sij is
zero. If some sij is non-zero, the fault Fj is expected to influence ARRi. The
fault signature for a specific F and ARR is stored in a matrix, i.e. the signature
matrix. Definitions 3 and 4 by Cordier et al.[6] formalize fault signature and
signature matrix.

Definition 3. Fault signature [6]: Given a set ARR of ARRi: ri = 0, with Card(ARR)
= n, the (theoretical) signature of a fault Fj is given by the binary vector FSj = [s1j,
s2j, ..., snj]T in which sij is given by the following application:

s:
ARR × F → {0,1}
(ARRi, Fj) → sij = 1 if the component affected by Fj is involved in ARRi

sij = 0 otherwise

Definition 4. Signature matrix [6]: Given a set ARR of n ARRs, the signatures
of a set of faults F = {F1, F2, , Fm} all put together constitute the so-called signature
matrix FS of dimensions n×m.

Further, a diagnosis result can be obtained by comparing the theoretical fault
signature with the observed fault signature. Noise and disturbance models
are used in order to consider inaccuracies. The actual comparison is stated
as a decision-making problem which is solved by defining a consistency
criterion.

Definition 5. Consistency criterion [6]: An observed signature OS = [OS1, ...
,OSn]T is consistent with a fault signature FSj = [s1j, ... ,snj]T if and only if OSi =
sij for all i.

Since this definition is not practicable in most situations, a weaker similarity-
based consistency criterion is used to get feasible results.

5

2. Preliminaries

2.2. Approaches to Model-Based Diagnosis

In contrast to the previously presented control engineering approach, this
section summarizes the AI approach of MBD. While the FDI variant uses quan-
titative models, the MBD approach uses qualitative / symbolic descriptions
of the system to diagnose. The following subsections present the consistency-
based and the abductive approach of MBD.

2.2.1. Consistency-Based Diagnosis

The MBD approach was introduced by de Kleer & Williams [12] and Reiter
[52]. In their definitions, a system (e.g. electrical circuit, car, power plant, ...) is
represented by a system description (SD) which defines the normal behavior.
The purpose of a diagnosis system is to determine a faulty component that
causes the abnormal behavior of the system. Once the observed behavior of a
system differs from the predicted behavior defined by the system model, a
diagnostic problem can be formed, meaning the observed behavior is incon-
sistent under the assumption that all components of the system show normal
behavior.

As mentioned before, the goal of MBD is to detect discrepancies between
the observed behavior and the behavior of the logical model. A diagnostic
problem is present once the observations are inconsistent with the assumption
that the system’s components are working properly. Definition 6 illustrates
Picardi’s [48] formalization of a diagnostic problem.

Definition 6. Diagnostic problem [48]: A diagnostic problem is a triple
〈
SD,

COMPS, OBS
〉
where

• SD is a system description
• COMPS is a set of component names mentioning the components that can be

faulty
• OBS is a set of ground atomic formulas expressing the observations made on

the system, such that the set of formulas SD ∪ ok(c) | c ∈ COMPS ∪ OBS is
inconsistent.

6

2. Preliminaries

In order to find a solution for a diagnostic problem DP, the assumption ok(c)
from a component c is replaced by its negation ¬ok(c). If the assumption that
the component c is faulty causes consistency, ∆ = {c} is a diagnosis for the
diagnostic problem. Definition 7 shows the formalization of the solution of a
diagnostic problem, i.e. diagnosis [48].

Definition 7. Diagnosis [48]: Let DP =
〈
SD, COMPS, OBS

〉
be a diagnostic

problem. We say that a set ∆ ⊆ COMPS is a consistency-based diagnosis for DP if
it is a minimal set such that SD ∪ {ok(c) | c ∈ COMPS ∆ } ∪ {¬ok(c) | c ∈ ∆ } ∪
OBS is consistent.

A conflict set is a set of assumptions about the components’ health status. At
least one component inside the conflict set is not working as expected. The
definition of a conflict set is stated below [48].

Definition 8. Conflict set [48]: A set of components {c1, . . . , ck} ⊆ COMPS
is a conflict set for a diagnostic problem DP if SD ∪ OBS ∪ ok(c1), . . . , ok(ck)
is inconsistent. A conflict set is minimal if there is no other conflict set properly
contained in it.

Each diagnosis result should have at least one component in common, there-
fore combining elements from different conflict sets form a hitting set. Defini-
tion 9 states Picardi’s [48] formalization of a hitting set.

Definition 9. Hitting set[48]: Given a collection C of sets, a hitting-set for C is a
set H ⊆ ⋃s∈cS such that H ∩ S 6= Ø for each S ∈ C. A hitting set is minimal if no
proper subset of it is a hitting set for C.

Example

Consider the simple boolean circuit [67] of two and-gates and two inverters
depicted in Figure 2.1. The output of an and-gate (A1, A2) is only true, if both
inputs are true. The output of an inverter (I1, I2) is the negated input value.

Providing the input values a = true, b = true, and c = true, the circuit computes
f = false and g = true, which is obviously an incorrect behavior. In order to
identify the faulty component using the consistency-based diagnosis approach,

7

2. Preliminaries

Figure 2.1.: Boolean circuit [67]

the normal behavior of the components is represented as propositional rules,
where Nab(X) states the normal behavior of the component X [67]:

% I n v e r t e r I1

Nab(I1) , val (b , f a l s e) −> val (d , t rue) .
Nab(I1) , val (b , t rue) −> val (d , f a l s e) .
Nab(I1) , val (d , t rue) −> val (b , f a l s e) .
Nab(I1) , val (d , f a l s e) −> val (b , t rue) .
% And gate A1

Nab(A1) , val (a , t rue) , val (d , t rue) −> val (e , t rue) .
Nab(A1) , val (a , f a l s e) −> val (e , f a l s e) .
Nab(A1) , val (d , f a l s e) −> val (e , f a l s e) .
Nab(A1) , val (e , t rue) −> val (a , t rue) .
Nab(A1) , val (e , t rue) −> val (d , t rue) .
Nab(A1) , val (e , f a l s e) , val (a , t rue) −> val (d , f a l s e) .
Nab(A1) , val (e , f a l s e) , val (d , t rue) −> val (a , f a l s e) .
% I n v e r t e r I2

Nab(I2) , val (e , t rue) −> val (f , f a l s e) .
Nab(I2) , val (e , f a l s e) −> val (f , t rue) .

8

2. Preliminaries

Nab(I2) , val (f , t rue) −> val (e , f a l s e) .
Nab(I2) , val (f , f a l s e) −> val (e , t rue) .
% And gate A2

Nab(A2) , val (c , t rue) , val (d , t rue) −> val (g , t rue) .
Nab(A2) , val (c , f a l s e) −> val (g , f a l s e) .
Nab(A2) , val (d , f a l s e) −> val (g , f a l s e) .
Nab(A2) , val (g , t rue) −> val (c , t rue) .
Nab(A2) , val (g , t rue) −> val (d , t rue) .
Nab(A2) , val (g , f a l s e) , val (d , t rue) −> val (c , f a l s e) .
Nab(A2) , val (g , f a l s e) , val (c , t rue) −> val (d , f a l s e) .

Using the observations val(a, true), val(a, true), val(b, true), val(c, true), val(f,
false), and val(g, true) leads to the following conflicts:

{Nab(I1) , Nab(A2) }
{Nab(I1) , Nab(A1) , Nab(I2) }

By computing the minimal hitting sets {Nab(I1)}, {Nab(A2), Nab(A1)}, and{Nab(A2), Nab(I2)}
it can be concluded, that I1 alone, A1 and A2, or A2 and I2 are faulty.

2.2.2. Abductive Model-Based Diagnosis

The abductive approach defines a diagnosis result as a set of causes that imply
the symptom itself [48]. The difference between consistency-based and abduc-
tive diagnosis is, that the consistency-based method requires only knowledge
about the correct behavior of the system where abductive approach addi-
tionally requires knowledge about the faulty behavior of the components.
Compared to the consistency-based approach, the abductive method requires
a stronger relationship between diagnosis and observation. It requires knowl-
edge of the faulty behavior in order to derive explanations for the observed
symptoms by relying on the notion of logical entailment (see Definition 10).

Definition 10. Logical entailment [29]: A set of premises ψ logically entails a
conclusion φ if and only if for any interpretation in which ψ holds φ is also true. This
relation is written as ψ |= φ and φ is called a logical consequence of ψ.

9

2. Preliminaries

Similar to the definitions of the propositional Horn clause abduction problem
(PHCAP) proposed by Friedrich, Gottlob, and Nejdl [15], Wotawa, Rodriguez-
Roda, and Comas [68] defined an abductive knowledge base as follows.

Definition 11. Knowledge base [68]: A knowledge base (KB) is a tuple (A,Hyp,Th)
where A denotes the set of propositional variables, Hyp ⊆ A the set of hypotheses, and
Th the set of Horn clause sentences over A.

The set of hypotheses describe the possible causes in form of propositional
variables, which can either be true or false. The theory Th represents the
system description containing rules to describe the connections between
hypotheses and their effects. A diagnosis problem is formed by a KB and a
set of observations.

Definition 12. Propositional Horn Clause Abduction Problem (PHCAP) [68]:
Given a knowledge base (A,Hyp,Th) and a set of observations Obs ⊆ A then the tuple
(A,Hyp,Th,Obs) forms a propositional Horn clause abduction problem (PHCAP).

A solution ∆ for a PHCAP is a set of hypotheses which logically entails the
observations Obs together with the theory Th. Since anything can be deduced
from inconsistencies, only consistent solutions are taken into account.

Definition 13. Diagnosis [68]: Given a PHCAP (A,Hyp,Th,Obs). A set ∆ ⊆ Hyp
is a solution if and only if ∆ ∪ Th |= Obs and ∆ ∪ Th 6|= ⊥. A solution ∆ is
parsimonious or minimal if and only if no set ∆′ ⊂ ∆ is a solution.

As the results of a diagnosis may lead to an exponential number of expla-
nations, methods are required to lower the possible solutions and support
efficient fault identification.
First, the space of possible solutions is decreased by inserting additional ob-
servations to the diagnosis engine. To do so, probing points with the highest
entropy (i.e. the highest information gain) are computed in order to select
observations with high discrimination capabilities [29].

Definition 14. Observation discrimination [29]: Given a PHCAP (A,Hyp,Th,Obs)
and two diagnoses ∆1 and ∆2. A new observation o ∈ A \ Obs discriminates two
diagnoses if and only if ∆ is a diagnosis for (A,Hyp,Th,Obs ∪ {o}) but ∆2 is not.

10

2. Preliminaries

The calculation of the entropy for an observation is shown in Equation 2.1.
The probability of an observation p(o) is defined as the ratio between the set
of possible explanations and the total number of explanations.

H(o) = −p(o)× log2 p(o)− (1− p(o))× log2(1− p(o)) (2.1)

p(o) =
|{∆ | ∆ ∈ ∆-Set, ∆∪ Th |= {o}}|

|∆-Set| (2.2)

It can be assumed, that in most practical scenarios multiple diagnosis re-
sults will be computed. In order to ensure efficient maintenance activities,
a prioritization of the diagnosis results is performed. Koitz et al. [29] show
the ranking of diagnosis results using Bayes’ rule for conditional probability.
Assuming independence amongst faults and uncertainty in the measurement,
the probability of each result is calculated using the a priori probabilities p(h)
of the hypotheses, shown in Equation 2.3.

p(∆) = ∏
h∈∆

p(h) ∏
h/∈∆

(1− p(h)) (2.3)

The probabilities of all results are computed and ranked accordingly. If infor-
mation such as failure likelihood, costs for repair / replacement, and the like
is available, these data can be used to influence the ranking of the diagnosis
solutions as well [29].

Example

Koitz et al. [29] give an example diagnosing lubrication issues of a wind
turbine gearbox. Lubrication is important as it protects the gears and bearings
of the gearbox from mechanical damage and it is also responsible for the
cooling of internal components. Consider the following fault scenarios:

1. A damaged oil pump leads to a loss of oil pressure and causes an oil
flow reduction through the system.

11

2. Preliminaries

2. A blocked filter inside the oil cooling system causes overheating of the
oil which reduces the oil film thickness on the components.

The description of the scenarios leads to the root causes blocked filter and
damaged oil pump which form the set of hypotheses, e.g. the faults that can be
identified during the diagnosis process.

Hyp = damaged_pump, blocked_ f ilter

Effects and hypotheses are part of the set of propositional variables A:

A =

damaged_pump, blocked_ f ilter, reduced_pressure, overheating,

reduced_ f ilm_thickness_bearing_contacts,
reduced_ f ilm_thickness_gear_contacts, poor_lubrication

The Horn theory Th represents the conditions leading to insufficient lubrica-
tion:

Th =

damaged_pump→ reduced_pressure,
reduced_pressure→ poor_lubrication,

blocked_ f ilter → overheating,
overheating→ reduced_ f ilm_thickness_bearing_contacts;

overheating→ reduced_ f ilm_thickness_gear_contacts,
reduced_ f ilm_thickness_bearing_contacts∧

reduced_ f ilm_thickness_gear_contacts→ poor_lubrication

Given the observation Obs = {poor_lubrication}, two minimal explanations,
e.g. solutions to the PHCAP can be derived.

∆-Set = {{damaged_pump}, {blocked_ f ilter}}

The diagnosis results state that either a damaged oil pump causes a reduced
oil flow or a blocked filter is responsible for poor oil cooling.

12

3. Related Work

Although MBD is an active research topic, the use of this technology in in-
dustrial applications is still insignificant. In recent years, there have been
several attempts to raise the awareness of MBD systems. The INDIA (Intelli-
gent Diagnosis in Industrial Applications) project attempted to bring MBD
to industrial diagnosis applications. During the project, eight German aca-
demic and industrial partners collaborated on research and development of
models and model-based reasoning techniques for real industrial applica-
tions [21] as well as integrating MBD into existing work processes [33]. The
MONET project attempted to provide a technological strategy plan for MBD
systems in industrial applications. In total, 50 member organizations from
European universities, high technology enterprises and end users participated
the project. Travé-Massuyès [61] states that the technical, human, and econom-
ical gap could not be closed during the project. Today, successful industrial
model-based diagnosis applications are still barely developed.

This chapter presents interfaces of knowledge-based diagnosis systems as well
as tools for model-based diagnosis. Since research on usability within MBD
systems is unavailable, usability studies evaluating knowledge-based systems
have been consulted. Some of the interfaces and their studies are presented
and analyzed in the following sections.
Although industrial applications for MBD are sparse, several research tools
and prototypes exist. Considering the interface of these tools, requirements
for a general MBD application can be derived. Combining the findings from
the interfaces of the knowledge-based applications and the MBD tools leads
to the definition of surrounding conditions for designing a general interface
for MBD systems.

13

3. Related Work

3.1. Knowledge-Based Systems

Knowledge-based systems (KBS) apply rules to given facts in a knowledge
base trying to solve real world problems. Developed in the 1960s, the first KBS
were called expert systems. Expert systems were the first form of artificial
intelligence and specifically designed to replace human experts. A KBS consists
of a knowledge base and an inference engine [19]. The knowledge base
provides facts about a domain, while the inference engine supplies logical
rules connecting observations to results. These rules are typically represented
by “IF-then” rules [44]. A KBS is developed by a knowledge engineer and a
domain expert. The domain expert provides deep knowledge of a particular
domain while the knowledge engineer then translates the knowledge into
a computer usable language. The inference engine applies the rules to the
knowledge-base and provides explanations for the user query.

KBS are used in a broad range of different scenarios, like diagnosis, patient
support, interpretation, or prediction tasks [30]. The following chapter presents
applications for KBS that cover some of the previously mentioned areas. A
comparison of these systems can be found in Chapter 3.3.

3.1.1. Expert System for Tuberculosis Diagnosis

Osamor, Azeta and Ajulo [47] developed a rule-based expert system to di-
agnose tuberculosis. The web based system was designed to assist people
without access to medical experts checking their health status. The imple-
mentation was verified by a usability study with doctors and patients. The
Tuberculosis-Diagnostic Expert System consists of a knowledge database, a
rule database, and a database for patient data. The inference engine receives
user data and displays the processed response of the system to the user inter-
face. The basic concept of the rule-based model consist of “if-then" statements.
The statements represent heuristics that hold under certain circumstances.
Osamor, Azeta and Ajulo [47] showed an example whether tuberculosis is
suspected or not. The following arithmetic rule describe the given symptoms
indicating a Mycobacterium infection. Therefore tuberculosis is suspected.

14

3. Related Work

Figure 3.1.: GUI of the tuberculosis expert system [47]

If <symptom is cough AND
(NOT symptom is headache)
AND (symptom is bloody sputum)
AND symptom is swollen lymph/neck/joint>
then <Notify (Patient), “Tuberculosis is very likely, please go and see your doctor">.

Figure 3.1 shows the GUI of the tuberculosis expert system. The main area
is placed in the middle column where the user is supposed to answer the
displayed questions (e.g. “Do you have cough through the last one week?”) by
clicking on radio buttons. Possible answers are YES, NO, and UNKNOWN.
Below the user can proceed or return to the previous question. The left
column contains the navigation menu, where the user has access to additional
information about the system. The right column contains medical advice and
doctors’ sections.

15

3. Related Work

Evaluation

The usability test was performed via a user questionnaire in which four doc-
tors and six patients participated. The questionnaire contained four sections
(background information, effectiveness of the system, efficiency of the system
and user satisfaction) with four questions each. The user was asked to answer
the questions using a 5-point Likert scale, where 1 = strongly disagree, 2

= disagree, 3 = undecided, 4 = agree, and 5 = strongly agree. The survey
questions and the evaluation results are shown in Table 3.1. The table contains
the questions asked, the average rating (AVG), standard deviation (SD), and
variance (VAR). The interpretation of the results is based on the work of Sauro
and Kindlund [58]. The average result of the usability test was 4.08, therefore
Osamor, Azeta and Ajulo [47] concluded the system has “Good Usability".

User Interface Analysis

The three-column layout of the tuberculosis expert system provides a good
structure of the content. Users are able to navigate easily through the different
screens using the navigation menu. The main content is located in the middle
of the screen and additional information is displayed in the right most col-
umn. Overall, this layout is a good choice since it is standard for many web
applications. However, there is plenty of unused screen space between the
columns which creates an incomplete look of the system. The horizontal bar
below the banner only contains the date, which is redundant information, as
the date is displayed anyway in the taskbar of the operating system. The font
size in the diagnosis section is too small and the chosen font color makes the
questions hard to read, especially in combination with the dark background
color. To respect a potential color blindness of users, green and red text colors
should be avoided. Further, a font color with high contrast to the background
color is needed to improve readability of the content. To remain consistent, the
options for Previous and Next should be provided with the same style element,
i.e. either both buttons or both text links.

16

3. Related Work

Questions AVG SD VAR

Background information
Would you support the use of computer diagnosis for
tuberculosis in your hospital? (yes/no)

6/4

Do you need more computing skills/training/time to
be able to use the system? (yes/no)

5/5

Effectiveness
I was able to complete my task successfully and cor-
rectly using the application.

4.10 0.57 0.32

The system did not show error message(s) while using
it.

4.00 0.82 0.67

I was able to recover from my mistakes easily. 4.00 0.47 0.22

I feel comfortable using the application. 3.90 0.32 0.10

AVG 4.00 0.55 0.33

Efficiency
Using the system saves me time. 4.10 0.57 0.32

I was able to complete my task on time. 4.00 0.47 0.22

I was well able to navigate the user interface on time
when using the system.

4.20 0.42 0.18

I didn’t have to carry out too many/difficult steps
before completing my task.

4.10 0.57 0.32

AVG 4.10 0.51 0.26

User satisfaction
The system was easy to learn. 4.00 0.67 0.44

The system was easy to use and user-friendly. 4.40 0.52 0.27

I am satisfied using the system. 3.90 0.57 0.32

I feel the system met my need. 4.30 0.48 0.23

AVG 4.15 0.56 0.32

Result AVG rating 4.08 0.54 0.30

Table 3.1.: Survey questions and results of the usability questionnaire of the Tuberculosis-
Diagnostic system [47]

17

3. Related Work

3.1.2. Expert System for Physical Examination of Skin Disease

Suryani, Muhimmah and Kusumadewi [60] designed and evaluated two pro-
totypes for physical examination of skin disease in a healthcare environment.
The first prototype (prototype I) is a combination of several interaction style
models such as a windowing system (WS), an icon-based (IB) system, a sys-
tem menu (SM), a form-filling dialog (FFD), and natural language processing
(NLP). A WS is an interaction style model for displaying information in one
or more windows, SM is used to display a list of options, FFD is a screen like
paper form for data entry and data retrieval, NLP enables interaction between
user and computer, and the SBI model uses symbols to indicate the selection
of specific activities. The second prototype (prototype II) is designed on a
GUI-based dialog window. Prototype II reduces the amount of text input by
replacing text input fields with an interactive graphical representation of the
human body.

Workflow for Diagnosing a Skin Disease

Three steps are required to diagnose a skin disease with the support of
the expert system: (1) acquire the patient’s medical history, (2) perform the
physical examination, and (3) diagnose the skin disease.

(1) Figure 3.2 shows the user interface of the first prototype for medical
history review and physical examination. The location of the skin disease
has to be typed in manually. Figure 3.3a depicts the second prototype
where checkboxes can be ticked to identify the main symptoms of the
patient. The location of the skin disease can be determined by a graphic
representation of the human body, depicted in Figure 3.3b.

(2) Next, the physical examination needs to be performed. Prototype I (see
Figure 3.4a) provides five drop-down menus for selecting type, shape,
boundary, size, and color of the skin lesion. The middle section displays
a scrollable list box in order to select other symptoms. Afterwards,
the selection needs to be transferred to the right box. The group box
Palpation on the bottom of the screen contains a text field and several
radio buttons as well as the possibility to insert and view images.

18

3. Related Work

Figure 3.2.: Layout for medical history review of prototype I [60]

(a) General information (b) Visual representation

Figure 3.3.: Layout for medical history review of prototype II [60]

19

3. Related Work

Prototype II simplifies the necessary user interactions (see Figure 3.5a).
The list box for inserting lesions got replaced with a checkbox list.
The items were structured in different categories and can be selected by
ticking the check boxes. An info box on the bottom of the screen provides
hints and useful information for the user. The three icon-based buttons
on the bottom right can be used to navigate through the different screens.
The group box Other symptoms and Palpation are located in a second
screen. The buttons for moving the selected symptoms (see Figure 3.4a)
are no longer icon-based to clarify their functionality.

(3) Last, the differential diagnosis is performed to identify the skin dis-
ease. The result screen is similar in both prototypes. The top section
contains the summary of the inserted data and the differential diagnosis
is displayed on the bottom of the screen (see Figure 3.4b and 3.5c).

Evaluation

To evaluate the usability, a focus group discussion was performed for each
prototype. The prototypes were presented to eight young doctors aged 23 to
25 years. Each of them had to assess each screen of both prototypes by filling
out a technology acceptance model (TAM) [8] questionnaire. Each participant
was also expected to provide their personal feedback and opinion on each
prototype.

The results of the evaluation are depicted in Table 3.2. Prototype II was
evaluated with an average of 81% while prototype I only scored 77% out of
100%. This shows that prototype II was preferred by the participants. It took
less time to insert data and the GUI was more attractive compared to the
prototype I. The GUI for physical examination shows higher user acceptance
than the first prototype. It could be concluded, that this prototype supports
the users’ needs by providing the right information at the right time. It took
less time to get used to the system and the users were interested in future use
of the software.
During the focus group discussion the participating doctors requested an
additional feature: the system should support a complete medical history
review of the patient and his or her family members.

20

3. Related Work

(a) Physical examination information

(b) Differential diagnosis

Figure 3.4.: Layout of prototype I [60]

21

3. Related Work

(a) Physical examination information (b) Physical examination information

(c) Differential diagnosis

Figure 3.5.: Layout of prototype II [60]

Prototype Details of prototype AVG [in %]
medical history review of physical examination 78

I physical examination 75

for differential diagnosis 78

medical history review 79

physical examination step 1 84

II physical examination step 2 81

physical examination step 3 79

differential diagnosis 82

Table 3.2.: Results of the usability questionnaire [60]

22

3. Related Work

User Interface Analysis

The application provides a structured layout based on group boxes. Generally,
prototype II was designed to offer a more natural way of inserting information
compared with prototype I. The groupbox Insert Image (depiced in Figure
3.3a) only contains a placeholder image while the buttons below are placed
outside the groupbox. A user might expect that clicking on the image will
open the "insert-image" dialog, since this is the common behaviour of many
applications. Both prototypes contain listboxes with several items. A search bar
should be provided to minimize the users search time and avoid frustration.
The Figure 3.5b shows two listboxes inside the groupbox OTHER SYMPTOM
with the buttons OK and DELETE. The text inside the listbox is unnecessary
long and could be replaced by keywords. Again, a search bar should be
provided to support the user. The buttons on the right side should be renamed
to Insert and Remove since OK and DELETE is semantically misleading.

3.1.3. Fault Diagnosis in Manufacturing Industry

Kluge and Termer [25] describe the design and the evaluation of a mobile
application which supports maintenance workers in the fault finding process.
A human-centered design approach was used to create the prototype. The
evaluation of the mobile application with 42 maintenance workers showed
that the problem solving task could be done twice as fast.

The design process included four major activities. First, an analysis was
performed to identify the needs of the users, under which conditions the
software will be used, and which features the users expect from it. After
that, the prototype was designed and the last step was design evaluation
with real users. In order to create software that is accepted, the system must
be able to enhance the cognitive and associative skills of the users. Two
theoretical constructs have been used to assess technology acceptance. First,
the technology acceptance model (TAM) by Davis [9] describes how to lead
users to accept and voluntarily use new information systems. Second, the

23

3. Related Work

task-technology fit model (TTF) by Goodhue and Thompson [18] identifies
the characteristics of technology in order to have a positive impact on the task
solving performance. In particular, new technology will only be accepted by
the users if the individual performance is enhanced or workload is relieved.
Kluge and Termer assumed, that their information system will improve the
fault finding process of the employees. The application is expected to support
users to solve fault scenarios faster and make fewer errors than users which
do not have access to the system. The hypotheses are stated as follows:

1. The group using the mobile application will solve the fault scenarios
faster than the group without the application

2. The group using the mobile application will make fewer mistakes com-
pared to the other group

Since the consideration and integration of target groups is an integral part
of human-centered design, maintenance workers and subject matter experts
(SMEs) are involved in the development stage of the fault diagnosis tool. Fur-
ther, it is assumed that the input of domain experts will have a positive impact
on the technology acceptance and task-technology fit. With the expertise of
the SMEs, fault scenarios were developed. In order to test the performance of
the software, two groups of maintenance workers had to solve these scenarios.
The first group (experimental group) used the developed software and the
second group (control group) used the current fault finding process. The time
required to complete a scenario and the errors made during the fault diagnosis
were recorded for both groups and compared against each other.

Implementation Process

During in-depth interviews with eight maintenance workers, the workflow of
the diagnosis process was charted. The goal was to gain information about
the communication between workers, how potential causes for a fault can
be identified, which information is accessible, and how a fault is fixed. It
was discovered that the plant operator calls the maintenance personnel and
provides initial information such as symptoms and what kind of investiga-
tion was already performed. Thus, the maintenance worker is reliant on the

24

3. Related Work

qualitative and quantitative information provided by the plant operator. Ex-
perience is stated to be the most important factor to reduce diagnosis time.
An experienced maintenance worker is able to predict the right solution. The
maintenance workers suggested to place manuals and error code lists closer
to the manufacturing station, since they currently use a bicycle to reach them
within the manufacturing hall. Some robotic systems provide information
which is accessible via touch screen interfaces, which are reported to be not
very user-friendly. Other systems provide error codes, but do not provide
information about causes or repair instructions. Some maintenance workers
carry handwritten notebooks where they note frequently occurring error codes
and instructions for repair tasks. Although it is not allowed to use private
smartphones within the manufacturing hall, some workers use apps from
suppliers to have quicker access to instruction manuals. Maintenance workers
reported, that the use of a smartphone would reduce the fault-finding process.
Thus, Kluge and Termer decided to create a mobile application to support
fault finding process.

Test Scenarios

In order to test the user interface of the diagnosis system, three fault scenarios
were created. The fault scenarios represent the majority of possible faults.
Three SMEs with several years of work experience were interviewed to gain
knowledge about the problem solving process in respect to the fault diagnosis
task. The interviews followed the Critical Decision Method [7], a structured
interview method to focus on non-routine, challenging events. The interview
is structured into four stages:

(1) Incident identification: Select non-routine events

(2) Timeline: Decision point verification

(3) Deepening: Get deeper understanding of events and decisions

(4) “What if” queries: Hypothetical questions to illuminate expert differ-
ences

25

3. Related Work

Figure 3.6.: User interface and fault-finding process of the diagnosis tool [25]

The SME provided information about the strategy used once a fault occurs,
the available and relevant information, the symptoms, the probability for
a certain cause of a fault, and the estimated time needed for the diagnosis
task. The evaluation of the interviews provided information about the general
requirements of the system and usability goals. The system should include
a navigation, search function and visualization of faulty components. The
workflow of the diagnosis process was modeled into a logical structure. A
web-based prototyping framework was used to develop the layout and design
of the mobile application. The rules and concepts of TAM and TTF were
followed during the development stage. Hence, mockups were presented to
the SME and the prototype was changed accordingly to their feedback.

26

3. Related Work

Evaluation

To evaluate the usability of the prototype, a field study with 42 participants
from the maintenance department of the manufacturer was conducted. The
participants were divided into two separate groups, where the experimental
group used the prototype to complete the tasks and the control group worked
without the application. From each group, seven users were assigned to work
on one of the three fault scenarios. The study was performed in a manu-
facturers’ training center, where the three fault scenarios were implemented
to ensure a consistent environment for all participants. The following three
scenarios where simulated during the test:

• Scenario 1: Communication problem of several components caused by
defective optical fiber.

• Scenario 2: Fault at the gate system caused by a defective cable. The
system generated an error code and the gate could neither be opened
nor closed.

• Scenario 3: Misalignment of robot axis caused by a defective connector
in the communication module.

Scenario 1 is depicted in Figure 3.6. Each participant was individually asked
to perform the tasks of one of the three fault scenarios, either with or without
the use of the mobile application. The maintenance workers had a maximum
time frame of twenty minutes to complete the task and were instructed not
to talk to any peer workers about the contents of the study. The diagnosis
performance was measured by timestamps in the application as well as
manual time measurement. Further, errors were noted by an observer. Lastly,
the time savings were computed for each scenario as well as the overall
time saving. After completing the task, the participants were asked to fill
out a questionnaire where they could rate the application according to their
subjective impressions. The questionnaire was based on the recommendations
of Davis [9] and was used to evaluate the prototype according to TAM and
TTF. The TAM part contained two distinct scales. The first scale consisted
of six items about perceived usefulness, measuring how much users believe

27

3. Related Work

that an information system can enhance their work performance. Second, the
ease of use scale consists of four items, measuring how easy it is for users to
interact with a technology. To evaluate the TTF model, the users were asked
to rate whether or not the right information was displayed at the right time,
whether the level of detail met their requirements, and how difficult it was
for them to interact with the software. Last, additional open questions were
added to get feedback about the general impressions, particularly good and
bad aspects or if there were any missing features.

Results

After the data analysis, the two hypothesis were proven for correctness. The
first hypothesis claimed that users will complete the diagnosis task faster
using the mobile application. The evaluation of the data showed, that users
performed 24% better in Scenario 1, 47% better in Scenario 2 and 46% better
in Scenario 3, compared with the users from the control group, which had to
solve the task without using the mobile application. The second hypothesis
stated that users supported by the diagnosis application will make fewer
errors during the diagnosis task. This could also be confirmed, since the
experimental group made 15 errors, whereas users from the control group
made 36 errors in total. The analysis of the questionnaire (Likert scale from 1

to 5 where 5 denotes the ideal rating) showed a technology acceptance score of
4.1, a task-technology fit score of 3.1 and an ease of use of the software score of
4.57. The users rated the intuitive interaction with the application with a score
of 4.34 and the visual attraction with 4.46. The evaluation of the open questions
encouraged the data from above. The participants described a positive overall
impression of the software, in particular that it enables faster diagnosis and is
useful for inexperienced workers. The graphical representation of the faults
and the clarity of the content was also positively remarked. Users criticized
missing details for faults as well as the interaction with the mobile device.
For additional features, a technical documentation, a tree structure of the
diagnostic steps, and an extended level of detail to enhance learnability from
the software was requested.

28

3. Related Work

User Interface Analysis

This system was designed with flat navigation, which can be seen in many
native applications for Apple’s mobile operating system iOS. At the top of
the screen, the navigation bar shows the description of the current diagnosis
task and a menu button. The functionality of the button is to open the search
bar where the user inserts error codes from the diagnosis device. In contrast
to Google’s mobile operating system Android, Apple’s iOS styleguides1 do
not contain this type of button. The functionality of the iOS navigation bar is
to navigate through the different screens of the application, but may contain
controls like search, edit, or done. If no navigation is used (like in this prototype),
a toolbar can be used to perform content relevant actions. According to the
iOS guidelines, this toolbar has to be displayed at the bottom of the screen. In
order to be consistent with the styleguide, either the navigation bar should be
reworked or replaced by a toolbar. Both options require to change the menu
icon to a magnifier icon, which is more strongly related to the underlying
function. The interface is minimalistic and clean, i.e. only relevant information
is displayed. The layout consists of a top section which displays the next
action the users is supposed to perform, an image illustrating this action, and
a bottom section where a question is asked to validate the performed action.
The buttons to answer to questions are located at the bottom of the screen. The
“Yes" button is colored orange and the “No" button is colored gray (see Figure
3.6). Usually orange or red colors are used to indicate an alert or danger. Thus,
a neutral color for both buttons could help avoid irritation since questions are
formulated positively and negatively. In some cases, a user might be unsure
whether or not the error is resolved. An additional option Skip or Unknown
should be added in order to prevent random user inputs.

3.2. Tools for Model-Based Diagnosis

The following section describes several tools that apply MBD. A comparison
of the tools can be found in section 3.3.

1https://developer.apple.com/ios/human-interface-guidelines/overview/
design-principles/

29

https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/

3. Related Work

3.2.1. RODON

RODON is a model-based simulation, monitoring, and diagnosis tool devel-
oped by Uptime Solutions AB. As stated by Lunde [31], the major features of
RODON are:

• Requirements analysis (design layout)

• Design verification

• Risk analysis

• Process monitoring

• Model-supported diagnosis

• Model-based diagnosis (on or off board)

RODON provides an equation-based object oriented language named Rodelica,
which is related to Modelica [13]. Modelica is a language to describe physical
systems in a component-oriented way. In contrast to Modelica, Rodelica is
using constraints rather than differential equations to satisfy the requirements
of MBD since the behavior of the model is often underdetermined. RODON’s
reasoning is based on the consistency-based MBD approach by determining
if a consistent instantiation of the mathematical model is derivable using
the data provided by system sensors. The system works properly, if the
sensor values lead to a consistent solution. A fault is present in the system
if no consistent solution can be found. RODON can perform a diagnosis by
removing equations describing each component and solve the model with
the provided sensor data. In order to determine the faulty component, the
provided sensor data needs to lead to a consistent solution for a removed
component. Additionally, fault modes can be included into the model. During
a diagnosis, these fault modes are substituted for the nominal behavior of the
component. The fault mode is presented as diagnosis result, if a consistent
solution exists [50]. Rodelica’s basic data type is defined as interval and not as
real number. This value representation enables requirement analysis or design

30

3. Related Work

verification since product specifications may contain tolerances. The model
of the system is created in RODON’s composer environment. The properties
of components are described by model classes. These classes represent the
components of the system and describe their behavior in form of constraints.
The declarative modeling concept leads to simpler and more flexible models
since components are modeled independently of their context and can be
reused [31]. The development of classes can be done by writing the respective
code in Rodelica or using the GUI to “drag and drop" classes from libraries to
the model. Further, model topology can be imported automatically from CAD
data. The component models are then chosen from existing libraries [32].

RODON Composer Environment

The model of a system can be created using the composer environment.
RODON includes several standard libraries for electrical, hydraulical, and
mechanical applications which contain a graphical representation as well
as the behavior of the components. Figure 3.7a depicts the electrical library
with the expanded bulb package. The components inside the package can be
modified with additional attributes or different behavior constraints. Further,
attributes or the behavior of classes (base classes) can be inherited.

The “drag and drop" feature of the RODON composer allows fast and simple
development of a model. Figure 3.7b depicts a model of a simple electrical
circuit. The circuit consists of a 12 Volt battery and a 10 Watt bulb connected
by two wires, which may be disconnected. The bulb has three states:

• bright - if it consumes enough power

• off - if it consumes no power

• dimmed - otherwise

Each component behavior can be modified by manipulating the underlying
Rodelica code. Listing 3.1 shows the Rodelica code of how the wire connecting
the battery with the bulb has been modeled. It consists of two WirePin variables
p1 and p2 which are the component’s interface to the outside. The FailureMode

31

3. Related Work

(a) Electrical library (b) Top level model

Figure 3.7.: RODON composer environment [22]

32

3. Related Work

variable fm has the states ok and disconnected. The section behaviour describes
the behaviour of the component according to the failure mode. If the failure
mode is zero (i.e. ok), the sum of the current through the wire is zero and there
is no voltage drop between p1 and p2. Once the system is modeled, RODON
can perform MBD, automatic generation of decision trees, and automatic
generation of diagnostic rules for on-board diagnosis.

33

3. Related Work

model WireBasic

public
/*Electrical pin 1 of component*/
WirePin p1 ;
/*Electrical pin 2 of component*/
WirePin p2 ;
/* Failure mode variable*/
FailureMode fm (max=1 , mapping="ok , disconnected ") ;

protected
/*General pin type of wire to be replaced by individual connector types, so

that wires transferring different quantities basically can be described by the
same model. */

replaceable connector WirePin = Pin ;

behaviour
/*Constraints for health state "ok":*/

i f (fm == 0) {
/* Current balance: */
p1 . i + p2 . i = 0 ;
/*No voltage drop between pins 1 and 2:*/
p1 . u − p2 . u = 0 ;

}

/*Constraints for failure mode "disconnected:*/
i f (fm == 1) {
/* There is no current: */

p1 . i = 0 ;
p2 . i = 0 ;

}
end WireBasic

Listing 3.1: Rodelica code of the wire model [22]

34

3. Related Work

RODON Analyzer Environment

Consider the model from Figure 3.7b. The system shows nominal behavior,
either when the wires are connected to the battery and the bulb shines brightly,
or when one of the wires is disconnected, leading to the bulb being off. To
prove the correctness, the model can be loaded into the RODON analyzer
environment. The constraints in the behavior sections (see Listing 3.1 as
example for the wire model) describe the physical behavior of a component.
The nominal behavior of the wire follows Kirchhoff’s law, i.e. the sum of
currents flowing into a node is equal to the sum of currents flowing out of
that node. A different behavior indicates a faulty wire or, if the current is zero,
a disconnected wire.

The behavior sections of all components form the equation system. Once the
simulation is started, RODON tries to solve the equations. If the result does
not lead to any inconsistencies, the nominal behavior of the system can be
concluded. Figure 3.8 depicts the result of the simulation for nominal behavior.
The simulation result for “both wires connected” leads to the state bright of
the variable bulb.lightEmittance (see Figure 3.8a).

Disconnecting a wire from the bulb should prevent the bulb from shining.
Figure 3.8b shows the result of the simulation with wire2 disconnected from
the bulb. The status of bulb.lightEmittance changed to off as expected.

Consider the situation that all wires are connected properly but the bulb
is still not shining. This behavior can not be described with the nominal
behavior modes of the components. Thus, a conflict is created. RODON
searches for combinations of failure modes, that are an explanation of the
given observation. Figure 3.9 depicts the result of the diagnosis. Possible
explanations for the observation bulb off are bulb disconnected, wire1 disconnected,
and wire2 disconnected.

RODON User Interface Analysis

The layout of RODON consists of a menu bar, icon bar, tree structure, and a tab
strip for the main content. This layout is used in many Windows applications.
Several icons inside the icon bar are not easy to recognize for inexperienced

35

3. Related Work

(a) Wire 2 connected (b) Wire 2 disconnected

Figure 3.8.: Simulations with RODON analyser [22]

36

3. Related Work

Figure 3.9.: Diagnosis with RODON analyser [22]

37

3. Related Work

users. Microsoft faced the same problem in their office products and therefore
changed the icon bar design in Office 2007, where a label was added to
unrecognizable icons. Additionally, the tooltip was extended to provide a
short description of the functionality of the item. A similar design could
improve the users’ understanding for the functionality behind the icons.

The tree structure on the left contains all used components and their parame-
ters. The project label, components, and parameters share the same icon which
could cause confusion to the users. The diagnosis result screen depicted in
Figure 3.9 provides a good highlighting of the faulty components, unlike the
confusing number (“1") the end of the diagnosis results.

3.2.2. Assumption-Based Truth Maintenance System

The Assumption-based Truth Maintenance System (ATMS) is a concept to
deal with inconsistencies in logical theories. The facts describing a system are
stored as nodes and the rules describe the connections between the nodes. A
node represents a datum, i.e. the smallest unit of information of interest. Each
node has a set of consistent environments where each environment contains
a set of assumptions from which the node can be derived. The basic task of
an ATMS is to compute minimal, consistent, sound, and complete labels for
every node. The definitions below formalize the properties of the ATMS labels
[67].

Definition 15. Consistent A label for node is consistent if all of its environments
are consistent.

Definition 16. Sound A label L for node n is sound iff n is derivable from every
environment E L.

E ∪ Th |= n

Definition 17. Complete A label L for a node n is complete iff every consistent
environment E /∈ L for which E ∪ Th |= n is a superset of some E’ in L, i.e., E’ ⊂ E.

Definition 18. Minimal A label L for node n is minimal iff for every element E of L
there exists no subset E’ ⊂ E from which n can be derived E’ ∪ Th |= n.

38

3. Related Work

Figure 3.10.: Basic architecture of an ATMS system [66]

The labels are updated whenever a new rule is applied. Since two propositions
cannot be true and false at the same time, contradictions might occur. These
contradictions are represented within the NOGOOD node and can also be
used for computing diagnoses [52]. The ATMS uses rules and facts repre-
sented as propositional Horn clauses. It identifies the beliefs and disbeliefs of
propositions depending on the given assumptions. Since the ATMS performs
deductions based on a node’s validity, a problem solver is used to perform
deduction grounded on the datum’s semantics. The ATMS takes justifications
(propositional rules and facts) and maintains consistency by adapting the
truth state of the assumptions. The communication between the ATMS and
the problem solver is depicted in Figure 3.10.

Logic Reasoning System (LRS)

The tool Logic Reasoning System (LRS)2 developed by Wotawa [67] is written
in Java and based on the ATMS by DeKleer [10] [11]. The GUI (depicted in
Figure 3.11) contains a menu bar, a large text field for user input, and a smaller
text field for status messages. The menu bar element File contains options
to save and load models; the menu bar element Proving contains the option
Start. Models can be represented using Prolog clauses or rules, where ’,’ is
interpreted as the and-operator and ’->’ as an implication. Assumptions have
to start with a capital letter. If propositions cannot be true at the same time,
the predicate false can be used to specify the logical contradiction. Each line
has to end with a ’.’. Comments are indicated with a ’%’ sign.

2http://www.ist.tugraz.at/amor/software.html

39

http://www.ist.tugraz.at/amor/software.html

3. Related Work

Figure 3.11.: User interface of LRS

40

3. Related Work

Interface of the LRS

Consider the example from the previous section. The logical model is depicted
in Figure 3.11. Again, the two wires are connected but the bulb is not shining.
The statement val(bulb, off)->explain. is used to find explanations for this
observation. Once the theorem proving has finished, a new window appears. It
contains the nodes, which can be a proposition, an assumption or a NOGOOD.
Since the model is designed for abductive diagnosis, the node explain is of
interest. It shows explanations for the given observations, i.e. both wires are
connected but the bulb is not shining. Figure 3.12 depicts the result window
after proving has finished with the explain node expanded (per default, all
nodes are collapsed). The result set contains the same explanations as already
found in the previous section.

LRS User Interface Analysis

The user interface (Figure 3.11) of the LRS tool is very simple and clean.
The two menu items File and Proving contain the necessary functionality.
Since the Proving item only contains the option Start, this menu item is
unnecessary. Instead, the option Start could be provided as button on the top
level of the interface. This would also save one user interaction in order to
run the diagnosis. The ‘?’-symbol on the top right could easily be overlooked
by users but contains an option Help, which is currently not implemented.
Debug and error messages are displayed in the Messages textbox at the bottom
of the interface. Since this textbox is writeable as well, this could lead to
confusion if users unintentionally type or copy content to it. Another issue
is the height which scales with the height of the whole application frame.
This can be uncomfortable when dealing with larger models and there is no
option to change the height manually or hide the textbox. When a diagnosis
is started, a second window appears on top of the LRS interface (see Figure
3.12). The result nodes (represented as folder-icons) contain the environments
(represented as file-icons). Since for consistency-based diagnosis only the
NOGOOD, and for abductive diagnosis only the explain node (see Figure 3.12)
are of interest, the nodes represented as folder-icons should be highlighted to
reduce users’ search time. Most likely, a user will be interested in the results
of only one of the folders. Therefore, an option could be implemented where

41

3. Related Work

Figure 3.12.: Result window of LRS

42

3. Related Work

the user can decide for which diagnosis type the model is designed. Based on
this setting, folders can be rearranged and expanded to reduce periodic user
interactions. Once the user starts a new diagnosis, LRS will open a new result
window without closing the old one. This behavior can be used for comparison
between different diagnosis results, but can easily lead to confusion, if various
windows are open.

3.2.3. Diagnosis with Possible Conflicts (DxPCs)

DxPCs (Diagnosis with Possible Conflicts)3 is a tool to perform consistency-
based diagnosis of continuous dynamic systems, developed by Pulido, Alonso-
González, and Bregon [51]. The tool itself is written in Java but relies on
the Matlab environment to perform numerical simulations. It implements a
comprehensive equation-based approach to MBD which incorporates fault
detection and isolation capabilities for diagnosing continuous systems. The
system behavior is modeled using Ordinary Differential Equations(ODEs). The
residual signal computed from the model can be used for fault detection. A
residual is the value between the real and estimated system output at a given
time. Given a set of ODEs, DxPCs is able to generate an input/output model
to create a set of Possible Conflicts (PC), which are computed offline and can
become conflicts online. The system model M(Σ, U, Y, X, Z, Θ) requires the
following parameters:

• a set of ODEs Σ

• a set of input measurements U

• a set of output measurements Y

• a set of state variables X

• a set of intermediate variables Z

• a set of fault parameters Θ

3https://www.infor.uva.es/~belar/SoftwareCPCs/PCs3.0_Setup.exe

43

https://www.infor.uva.es/~belar/SoftwareCPCs/PCs3.0_Setup.exe

3. Related Work

In order to compute the PCs, the model M is abstracted to HSD = {V, R},
where V is a set of variables and R is a set of relations among those variables.
Two steps are required to compute the PC. First, a search for any minimally
overdetermined subsets of equations in HSD is performed. Those subsets are
called Minimal Evaluable Chain (MEC). Second, for each MEC, every potential
causal assignment for each relation is considered. If one globally valid causal
assignment is found, it is called Minimal Evaluable Model (MEM). A PC is a
set of constraints in a MEC, that gives rise to at least one MEM. If the tracking
of one MEM detects a discrepancy, the corresponding PC is considered a real
conflict. Through the set of PCs it is possible to compute the set of faulty
candidates.

The features of DxPCs are:

• Create models for simulation and PC

• Simulate nominal and fault scenarios

• Visualize and store simulations

• Fault detection and localization using PC-based approach

DxPCs Interface

Pulido, Alonso-González, and Bregon [51] used the following example (de-
picted in Figure 3.13) to demonstrate the usage of DxPCs. Three tanks T1, T2,
and T3 are connected via pipes q1 and q2. Water can run through the pipe to
the different tanks if valves R1 and R2 are opened or closed accordingly. The
input flow of T1 is stated by qi and the output flow is stated by q3 of T3. The fill
levels hT1*, hT2*, and hT3* of the tanks are measured by sensors. The behavior
of the system is modeled using OEDs. Figure 3.14 depicts the interface of the
DxPCs tool. The model of the system is shown on the left hand side inside
the System Model box.

To model the transient behavior of the state-variables (hT1, hT2, and hT3), an
explicit equation must be present to include the change over time. This is

44

3. Related Work

Figure 3.13.: Tank system example [51]

realized by the equations d_hT1, d_hT2, and d_hT3. There must be an explicit
equation for the output variables (the sensor values hT1*, hT2*, and hT3*)
as well. To avoid confusion with the multiplication operator in Matlab, the
notation hT1mes is used.

In order to perform a diagnosis, a diagnosis scenario must be defined. The
setup of the scenario consists of an input file, a fault profile, and the initial
conditions for the simulation. The input file contains different kinds of values
for each input variable. The values can be fixed or periodically changing and
may contain noise. The fault profile can provide single or multiple faults and
contains the time instance, the ordinal number for faulty parameter, and the
fault magnitude. The values of the state variables for the initial integration
step and the nominal value for each fault parameter are provided by the initial
conditions. To perform a diagnosis experiment, the system model, the set
of PC models, and the diagnosis scenario are loaded into DxPCs. The PC
simulation models are fed with the output values of the diagnosis scenario.
For each simulation step, the residual is computed and analyzed. Once the
residual activation is triggered, an incremental version of the minimal hitting
set algorithm is used to compute the set of faulty components. The results of
the simulation is depicted in Figure 3.15.

45

3. Related Work

Figure 3.14.: Interface of DxPCs [51]

46

3. Related Work

Figure 3.15.: Result the simulation [51]

47

3. Related Work

DxPCs User Interface analysis

The layout of DxPCs is based on a tab strip (depicted in Figure 3.14), where
each tab contains different elements and functionality. The groupbox Options
inside the first tab contains buttons to load, save, and translate the model. A
user would expect these options typically in an icon bar or inside the menu
item File. In addition, there is unused screen space between the group boxes
Options and System Model which could be used to display more content of the
system model. The tables in Figure 3.15 contain the results of the simulation.
In some cases, a user might want to investigate specific results; therefore
a search option should be added. The Matlab generated charts displayed
in external windows could be integrated into the layout. In order to make
the charts more interactive, a option for range selection and zoom could be
added.

3.2.4. JDiagEngine

The tool JDiagEngine4 was developed by Weber and Wotawa [49]. It imple-
ments the consistency-based diagnosis approach of Reiter [52]. The diagnosis
problem has to be prepared as a set of Horn clauses. Consider the example
a1, ..., an → b1. The implication denotes that if a1, ..., an is true, b1 is true. While
b1 can represent only propositions, a1, ..., an may be propositions or assump-
tions. In order to negate a proposition, the prefix “n_" can be added. The
identifier for the negation can be changed in the interface. Assumptions define
the operational mode of an item. NAB(X) represents the normal operation
mode and AB(X) the abnormal mode. The interface provides a possibility to
change this as well. JDiagEngine provides also a telnet-based interface which
allows the program to run on an independent server.

JDiagEngine interface

Figure 3.16 depicts the interface of JDiagEngine. The interface consists of three
textboxes to insert the propositions, system description, and observations. A

4http://www.ist.tugraz.at/modremas/downloads/jdiagengine.zip

48

http://www.ist.tugraz.at/modremas/downloads/jdiagengine.zip

3. Related Work

settings box is located on the left hand side to define the maximum number
and size of explanations. It also provides the option to customize prefixes. The
buttons on the bottom left make it possible to check the consistency of the
model and compute the minimal hitting sets. The two textboxes on the bottom
of the screen contain the result set of the diagnosis. The menu bar item File
contains open, reload, and save options for propositions, system description,
and observations. It is not possible to save or load the complete scenario as in
the previously described tools. Again, the example from the previous sections
is modeled. Since JDiagEngine implements consistency-based diagnosis, the
model requires only knowledge of the correct behavior of the system. Figure
3.15 shows the diagnosis results of the previously presented example. Since a
consistency-based diagnosis was performed, the minimal hitting set denotes
the components that cause inconsistencies with the given observations.

JDiagEngine User Interface Analysis

Similar to the tool LRS, the interface of JDiagEngine represents the model and
the results in textboxes. In contrast to LRS, the user is able to change the width
and height of the textboxes which is useful when dealing with larger models.
The model is split into Propositions, System Description, and Observations where
each of the parts are stored in different files. Unfortunately, a user has to
save, load, or reload these files manually every time the file changes. The
settings area on the left side of the interface is structured with group boxes
Settings and Edit Actions. The latter is aligned to the bottom of the settings
area which leads to plenty of unused screen space. Further, the group box
Edit Actions contains a search box, which is semantically confusing. Generally,
a user would expect a search box somewhere in the top-right corner or by
pressing the keyboard combination CTRL + F. The textbox on the bottom left
contains the result of the diagnosis, while the textbox on the bottom right
displays no obvious data.

49

3. Related Work

Figure 3.16.: JDiagEngine interface [49]

50

3. Related Work

3.3. Discussion

The purpose of this work is to analyse existing diagnosis applications and
identify best practices and mistakes to avoid. The gained impressions are
important for the design process of a new user interface. The MBD tools
introduced in Section 3.2 show how the behaviour of a system can be translated
into a computer-usable language. The tool LRS provides a simple and clean
user interface (see Figure 3.11). The icon bar from the RODON interface (see
Figure 3.8) provides useful shortcuts, if icons are recognisable. Some icons are
well known (like the printer icon), others are not. DxPCs does not use an icon
bar but provides shortcuts using the tab strip. This ensures to provide only
necessary options for the particular purpose of the tab. DxPCs provides a
two-column layout, where the model is presented in the first column and the
translated simulation model is displayed in the second column. This layout
could be a useful feature for RODON, where the first column could contain
the graphical representation and the second column could contain the textual
representation of the model. LRS and JDiagEngine share almost the same
interface, except JDiagEngine has separate textboxes for system description,
propositions and observations while LRS combines them in one window.

The KBS introduced in Section 3.1 are diagnosis systems designed for a
specific domain. The task of the tuberculosis expert system is to inform the
user about a potential risk of getting tuberculosis. Apart from the obvious
layout issues, the three-column layout is a good choice and standard for many
web applications. Patients might have problems to read the tiny font, especially
when green font color on green background is used (see Figure 3.1). The skin
disease system is a good example for a window based application. The layout
is based on group boxes which structures similar items. This supports the
user’s orientation when inserting data though multiple input methods. In
order to avoid confusion, the groupboxes need to consistently contain items
that belong together. The diagnosis system for manufacturing industry is
designed to use on an Apple iPad. The application asks the user to enter one
observation at a time, which ensures a straight-forward navigation. The three-
section layout is consistent through out the whole application, containing
explicit instructions and images to support the users’ visual perception.

51

4. Usability

The term Usability denotes how well users can interact with a system to
achieve certain goals. Nilsen [37] shows five attributes which are essential
for a usable system, namely Learnability, Efficiency, Memorability, Errors, and
Satisfaction. The ISO standard 9241-11 [23] defines usability as “the extent
to which a product can be used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified context of use". Andrews [1]
combined the attributes from Nilson and the ISO standard leading to the
following six usability attributes:

1. Learnability:
It should not take users long to learn the system. Providing an interface
with a brief learning time shortens the period of time users need to start
using the system efficiently.

2. Efficiency:
Once the user has learned the application, a high level of productivity
should be possible.

3. Effectiveness:
Users should be able to achieve the goals they are aiming for.

4. Memorability:
After a period of time of not using the system, users should be able to
remember the application and not have to learn it again.

5. Errors:
If users make mistakes, they should be able to easily recover from them.

52

4. Usability

6. Satisfaction:
Users should feel comfortable using the system. In order to ensure that
users like to use the application, subjective satisfaction is important
especially in non-work systems.

In order to rate the usability of a system, these attributes need to be measured
[38]. The attribute Learnability can be determined by recording the time a
novice user needs to perform specific tasks. The results can be compared
with the users’ overall computer experience. To identify the Efficiency of a
system, the time to complete tasks is measured and compared with the level
of expertise of expert users. Effectiveness is rated by the number of tasks a user
was able to perform successfully. The time casual users who have not used
the system for a certain duration need to perform specific tasks determines
the Memorability. Major and minor Errors users make while performing tasks
can be counted and compared against the optimal path to complete the tasks.
After using the system and performing some tasks, users can be asked about
their opinions in order to gather information about the Satisfaction.
These attributes can be measured using usability inspection or test methods.
While the former takes heuristics and guidelines into account, the latter
requires real users to interact with the product to be evaluated. The different
approaches and variants of these two methods are described in the following
sections.

4.1. Usability Inspection Methods

In some cases it might be practicable to evaluate an interface without including
real users. Therefore, usability inspection methods can be used where a group
of usability experts analyses and judges an interface whether it follows specific
usability principles [38]. These methods provide meaningful outcomes while
being relatively easy and cost-effective to execute. Valid results can also be
achieved by developers acting as evaluators since inspection methods are very
easy to perform [41]. However, better results are usually obtained by usability
experts.
The following sections provide an overview of the most common usability
inspection methods.

53

4. Usability

4.1.1. Heuristic Evaluation

The most common usability inspection method is the Heuristic Evaluation
developed by Nielson and Molich [43]. Usability experts evaluate whether
each dialog of an application follows certain usability principles, i.e. heuristics.
Nielson and Mack improved the heuristics resulting in the following ten
usability principles [41]:

1. Visibility of system status:
"The system should always keep users informed about what is going on,
through appropriate feedback within reasonable time."

2. Match between system and the real world:
"The system should speak the users’ language, with words, phrases and
concepts familiar to the user, rather than system-oriented terms. Follow
real-world conventions, making information appear in a natural and
logical order."

3. User control and freedom:
"Users often choose system functions by mistake and will need a clearly
marked "emergency exit" to leave the unwanted state without having to
go through an extended dialogue. Support undo and redo."

4. Consistency and standards:
"Users should not have to wonder whether different words, situations,
or actions mean the same thing. Follow platform conventions."

5. Error prevention:
"Even better than good error messages is a careful design which prevents
a problem from occurring in the first place. Either eliminate error-prone
conditions or check for them and present users with a confirmation
option before they commit to the action."

6. Recognition rather than recall:
"Minimize the user’s memory load by making objects, actions, and op-
tions visible. The user should not have to remember information from
one part of the dialogue to another. Instructions for use of the system

54

4. Usability

should be visible or easily retrievable whenever appropriate."

7. Flexibility and efficiency of use:
"Accelerators – unseen by the novice user – may often speed up the
interaction for the expert user such that the system can cater to both
inexperienced and experienced users. Allow users to tailor frequent
actions."

8. Aesthetic and minimalist design:
"Dialogues should not contain information which is irrelevant or rarely
needed. Every extra unit of information in a dialogue competes with the
relevant units of information and diminishes their relative visibility."

9. Help users recognize, diagnose, and recover from errors:
"Error messages should be expressed in plain language (no codes), pre-
cisely indicate the problem, and constructively suggest a solution."

10. Help and documentation:
"Even though it is better if the system can be used without documenta-
tion, it may be necessary to provide help and documentation. Any such
information should be easy to search, focused on the user’s task, list
concrete steps to be carried out, and not be too large."

Nielson showed, that the individual results of each evaluator reveal only up to
50% of the usability errors. In order to achieve sufficient results, the findings
of each evaluator are consolidated in a large list of usability problems. The
evaluators individually assign a rating based on the severity of the problem.
Afterwards, the average rating for the each usability problem is calculated
and the list is sorted accordingly. The resulting list of errors can be discussed
to find possible solutions.

Performing a Heuristic Evaluation is a cost-effective and intuitive method
to find usability problems. It can be performed in the early development
stage, since a fully functional prototype is not necessarily required and also
developers can act as evaluators although better results are usually gained
when usability experts are evaluating the interface.

55

4. Usability

4.1.2. Cognitive / Pluralistic Walkthrough

In contrast to the previously described Heuristic evaluation, the Cognitive
Walkthrough [63] is an inspection method used to determine how easy it
is for new users to solve specific tasks when using the system for the first time.
The participants of a Cognitive Walkthrough are a mixed group of designers,
developers, and usability experts. In order to perform such a walkthrough, a
task is chosen with defined start and end conditions. To complete the task, a
series of steps is required by the user. After each step, the participants discuss
the required interactions and answer the following questions:

1. Will the user be trying to achieve the right effect?

2. Will the user know that the correct action is available?

3. Will the user associate the correct action with the effect they are trying
to achieve?

4. If the correct action is performed, will the user see that progress is being
made towards to the solution of their task?

If one of the above questions leads to a negative answer, a usability error has
been found. With the team of designers and developers, a redesign can be
discussed at the end to resolve the issue.

The Cognitive Walkthrough is a valid method to find task-oriented usabil-
ity problems. It can be performed in the early development stage since no
working prototype is required. Analyzing an interface from a user’s point of
view requires some training and might be a challenge for the walkthrough
participants.

The Pluralistic Walkthrough is an inspection method which involves a group of
real users in the interface analysis process. This method was first presented
by Bias [4] where Riihiaho [53] applied some important changes. Other partic-
ipants are a group of developers, designers, and usability experts, where one
person of this group acts as moderator of the inspection session. The basic
setup of a Pluralistic Walkthrough is depicted in Figure 4.1. All evaluators need
to be present in the same room and the moderator gives a brief overview

56

4. Usability

Figure 4.1.: Setup of a Pluralistic Walkthrough session [53]

of the general interface. The session starts by presenting hardcopy panels of
the system. These are presented in the same order as they would appear in
the real system. In order to simulate an interaction with the interface, each
participant receives their own stack hardcopy panels, where they are asked
to circle buttons or menu items they would click to proceed with the task.
The task is presented and all participants write down all the required steps
as detailed as possible to solve the task. The developers and usability experts
try to solve the tasks from a user’s point of view. The users start to present
their solutions, followed by the findings of the other evaluators. Afterwards,
the moderator reveals the optimal path and the divergences of the different
solutions are discussed. During the discussion, potential usability errors can
be identified as well as solutions for a redesign.

The Pluralistic Walkthrough is a suitable inspection method to gain insight
into various human factors, since designers, usability experts, and users are
participating in one session. Subsequently, design solutions can sometimes be
developed on the fly. On the downside, the representatives of each group have
to be present at the same time. Also, the group discussion can not start until

57

4. Usability

every participant has completed the task, which can slow down the progress
of the session. Thus, the moderator needs to ensure that the group is working
as a team and everybody stays in a good mood.

4.2. Usability Testing Methods

In contrast to the inspection methods presented in the previous sections,
usability testing is an empirical technique which requires representative users.
Designers think that a system is very easy to use based on their own experience.
In reality, users might be less experienced with certain techniques or have
different expectations of an application. Usability testing requires more effort
than inspection methods, but provides an opportunity to analyze the behavior
of users and understand why users interact differently than initially predicted.
Usability tests can be performed in different stages of the development process.
The following presents three types of usability tests [54]:

(1) Formative Test:
A formative usability test is performed in the early development stage
with the purpose of analyzing the effectiveness of the design principles
used. In order to perform such a test, a mockup of the interface or a
clickable prototype is required, where users are asked to perform repre-
sentative tasks. Since this test is performed so early in the development
process, users can also “walk through” (i.e. review the prototype and
answer questions from the moderator) the interface rather than try to
solve tasks. The objective of a formative usability study is to identify
confusing areas and get the user’s opinion on how this issue can be
solved. Further, it can be determined if the product supports the user’s
needs and if missing or redundant features are present.

(2) Summative Test:
In order to test how effectively a user is able to interact with an inter-
face, summative usability tests are used. In contrast to the previously
described formative test, this method always uses realistic tasks and less
interaction between moderator and participant is preferred. Summative
testing is also viable for collecting performance measurements.

58

4. Usability

(3) Verification Test:
Verification (or validation) testing is performed at the end of the de-
velopment cycle. The main objective is to verify if the issues identified
in the previous tests have been resolved. Further, performance data
is compared against company standards, or used to set performance
goals for further products. Another objective is to identify how well
all components and features of a product work together, since they are
often developed and tested independently from each other. Also, this
test method is used to benchmark the risk of “hotfixes” or patches after
the release.

To perform a usability test, it is essential to have a quiet room outside the
usual working environment. All disturbance factors should be eliminated (e.g.
disable phones, doorbells, ...) to keep the test users’ attention focused on the
system. Several test setups are suitable to perform a usability test, depending
on the environmental circumstances. Figure 4.2 depicts a single room, single
camera setup. The user sits in front of the computer monitor and the facilitator
next to him. The test session is recorded via a screen capturing software, a
microphone, and an external camera. Another option is to use an observer
who follows a live stream of the monitor and takes notes of important events.
Figure 4.3 depicts the setup within a usability lab, which consists of to room
with separate doors. The usability experts enter the observer room from the
left and the participants enter the test room from the right. The observers
can follow the test session via live stream and through a one-way mirror.
This setup is suitable for environments where usability tests are performed
frequently.

Test users are typically divided into user groups based on their experience and
characteristics. In order to get valid results, at least five users from each group
should be tested [42]. Each user has to perform a set of realistic tasks within
the system. Before the test starts, the facilitator gives an introduction about
the method used and collects some data about the user with a background
questionnaire. The first task is usually an introduction to make the user feel
comfortable. Depending on the complexity of the system, a training task can
be considered. Each task is presented to the user on a separate sheet in typical
order. During the test, the facilitator and/or observer document the time
required to complete a task, any mistakes that were made, important user
comments, and other unexpected interactions. Andrews [1] presents a simple

59

4. Usability

Figure 4.2.: Setup of a single room, single camera usability test [1]

Figure 4.3.: Usability lab test setup [1]

60

4. Usability

Code Event
S Start of task.
E End of task.
O Observation (problem).
G Positive impression.
Q Verbatim user comment.
X Error or unexpected action.
H User given help by facilitator.
P Prompted by test facilitator.
T Timeout, exceeded maximum time.
? Probe this activity during debriefing.
C Comment by facilitator.
* Very important action

Table 4.1.: Scheme for classifying events during a usability test

Test:
Date: Time:
Task Time Observations

Table 4.2.: Sample form for collection data during a usability test [1]

scheme and form (see Table 4.1 and 4.2) for logging and classifying events.
After the test the user is asked about his or her personal opinion on the system.
Also unexpected behavior and other important events that occurred during
the test can be discussed.

4.2.1. Thinking Aloud Test

Using one of the setups described in the previous section, users are asked
to “think out loud” while trying to solve typical tasks. This means, that they
should say what they are trying to do, ask questions that arise during a
task, and mention what they find confusing. In contrast to Formal Experiments
where users perform tasks without explaining their actions in order to be able

61

4. Usability

to evaluate the performance with statistical analysis, this method provides
qualitative data about the users’ expectations about the product and beliefs
about every feature they use. The Thinking aloud method reveals a lot of
usability errors and also gives information why these problems occur. It
makes it possible to analyze the intention of users and understand their
decision making process. On the downside, this method slows the users down
since they are asked to talk all the time. Therefore, no performance data can
be collected [38]. Some users may find it unnatural and confusing to work
and speak simultaneously which can influence the concentration level of the
participants [54]. Also, this method is more expensive and requires more effort
compared to inspection methods.

4.2.2. A/B Testing

A/B testing is typically performed to evaluate changes in websites. Visitors are
randomly assigned either to variant A (the standard interface) or variant B
(the modified interface). Data (e.g. click rate, sales rate, ...) is automatically
collected and compared over a longer period of time [26]. A/B testing is a
very cheap method which allows to measure performance differences and the
actual behavior of users under real conditions. On the downside, this method
requires a fully implemented system and only automatically collected data
can be used to confirm or negate the goals of a system.

4.2.3. Query Techniques

Query techniques are a cheap and useful extension to Thinking aloud tests.
After the test, the user is asked about his personal opinion on the system
either in form of an interview or a questionnaire. The Post-Test Interview is a
flexible method which allows the facilitator to investigate interesting issues
that came up during the test but is time-consuming and hard to compare.
In contrast, the Post-Test Questionnaire filled out by the user is less time-
consuming, easy to analyze, compare, and repeat [1].

A popular post-test questionnaire is the System Usability Scale (SUS) [5]. This
quantitative method consists of ten questions which have to be answered

62

4. Usability

Figure 4.4.: Interpretation of the SUS score [2]

using a Likert scale from 1 to 5, where 1 is totally disagree and 5 is totally agree.
The SUS questionnaire can be found in Appendix C. To evaluate the SUS, all
odd numbered questions are assigned with values from 0 to 4 and all even
numbered questions are assigned with 4 to 0. All scores are summed up and
multiplied by the factor 2.5, which leads to a number between 0 and 100 as
final result. It is worth mentioning that the SUS score cannot be interpreted
as percentage value of how usable a system is. Research has shown that a
score above 68 is considered to be above average [57]. Figure 4.4 shows the
interpretation of the SUS score by applying different scales [2].

4.3. Mobile Usability Guidelines

In contrast to desktop programs, mobile applications have to be suitable for a
small screen and are used in a dynamic environment. In order to ensure the
same software to be usable for both desktop and mobile devices, Jendryschik
[24] suggests the following six general mobile usability principles:

1. Provide a mobile optimized interface: In order to provide the best ex-
perience, a mobile optimized version of an interface should be available.

2. Use same target location: When dealing with web applications, the sys-
tem should automatically detect the size of the screen and display the
optimized page accordingly.

63

4. Usability

3. Reduce text to minimum: Users do not read long and complicated texts
on small screens. The content should be reduced to a minimum in order
to keep the users attention to the important information.

4. Focus on primary content: Since desktop interfaces can provide a large
amount of functionality, mobile interfaces need to focus on the primary
content. Also long loading times of content generates a negative user
experience.

5. Ensure recognition of interactable UI elements: Most users know how
to interact with standard UI elements (e.g. swipe gesture to navigate
through a carousel gallery). The interface needs to indicate the elements
the user can interact with and ensure that the UI element shows the
behavior the user expects.

6. Ensure that UI elements can be used with the thumb: Most users
interact with a mobile interface using only their thumbs. Therefore, the
UI elements need to be large enough to prevent users from accidental
interactions.

64

5. General Design of a Model-Based
Diagnosis Application

The applications from Section 3.2 show the necessary features required in
order to perform a model-based diagnosis. In order to integrate the MBD
approach into industrial applications, Koitz and Wotawa [28] defined a process
for real-world scenarios (depicted in Figure 5.1). The offline section states the
generation of the knowledge base, which can be created automatically using
Failure Mode Effect Analysis (FMEA). A FMEA is a table where each row
consists of a component, a fault mode, and a set of effects the component is
causing for the given fault mode [65]. The online part consists of the detection
of an anomaly in the system, which can either be accomplished automatically
(using a condition monitoring system) or manually. The observed symptoms
together with the created model are then used to compute abductive diagnoses.
Ranked diagnosis results can be obtained using a priori probabilities (see
Section 2.2.2). In order to refine the diagnosis results, observations on probing
points can be made and send to the diagnosis engine, which influence the
probability, and therefore the ranking of the diagnoses.

Two main design goals were identified to apply abductive model-based diag-
nosis on a faulty system:

(1) The representation of faults: Most importantly, users need to get a clear
idea of what is wrong with the system. Since the result might be a large
number of faults, a vertical scrollable list is a suitable choice. The fault
list may consume most of the vertical available screen space to indicate
the importance of this information. The faults need to be specified in a
simple and clear human-readable language based on the domain and
the skill level of the target users. Error codes and similar terms need to
be avoided, since most users cannot achieve any knowledge from such
phrases. Additionally, users might want to know why the faults occur.

65

5. General Design of a Model-Based Diagnosis Application

Figure 5.1.: Abductive approach for a MBD process [27]

This information is less important than the actual fault and might not
be relevant for all users, therefore it can be displayed in a popup box or
similar UI element.

(2) A possibility to discriminate faults: In order to discriminate faults, the
user needs to perform observations on the real system and insert them
into the diagnosis system. This is accomplished by asking the user if
certain observations can be confirmed or negated. The application pre-
sented in Section 3.1.2 showed that users prefer to interact with a visual
representation of the human body. Subsequently, visualizing compo-
nents should assist users to find the right location for the observation to
be made.

The following sections describe the requirements, design, and evaluation of a
model-based application.

5.1. Identified Best Practices

In order to build the foundation for model-based diagnosis interfaces, the
GUIs of the applications presented in Section 3 have been analyzed. The
interfaces and the usability studies of the knowledge-based systems show

66

5. General Design of a Model-Based Diagnosis Application

successful and problematic design approaches. Although the existing model-
based tools were developed for users in the area of research and development,
the user interfaces were investigated and compared in terms of functionality
and usability. The gained information is used to identify best practices for the
design of a new user interface for an MBD system. The requirements heavily
depends on the environment where the diagnosis application will be used. For
office use a desktop software is preferred due to stationary computer systems.
If the environment changes, laptops as well as smartphones or tablet PCs
can be used to perform diagnostic tasks. In Section 3.1.3, the evaluation has
shown that mobile devices are suitable for diagnosis applications. Since the
development of native applications for different operating systems is not cost-
efficient and users might want to use the software on their own devices, an
alternative solution needs to be found. For example, providing the diagnosis
system as a web application allows users to work with their preferred devices.
In order to support the different screen sizes of the users’ devices, the web
application needs to be fully responsive to take full advantage of the available
screen space. Frameworks like Bootstrap1, Foundation2, or Skeleton3 provide
predefined classes which resize the content according to the device screen
dimensions. Whenever the user is forced to select items from a list, the system
should provide a search bar to support the users’ search process. Input fields
and options that belong together should be visually grouped together as
described in Section 3.2.4 and 3.1.2. All GUI components should be displayed
on the screen where a user most likely will expect it. If options are represented
by icons, these need to be recognizable or replaced by buttons containing a
meaningful label. Even though the evaluation in Section 3.1.1 showed, that
the usability of an application does not necessarily depend on the design,
the newly designed interface should have a professional look and feel. The
frameworks mentioned before include style classes for common components
which guarantee a consistent style throughout the whole system. The default
behavior of GUI elements should not be changed to avoid confusion and
ensure an intuitive user interaction. The application should be usable in a way
that no additional help or tutorial is needed. In order to improve readability,
the font size should not be smaller than 12 pixels and high contrast font colors

1http://getbootstrap.com/
2http://foundation.zurb.com/
3http://getskeleton.com/

67

http://getbootstrap.com/
http://foundation.zurb.com/
http://getskeleton.com/

5. General Design of a Model-Based Diagnosis Application

are mandatory. To respect the potential color blindness of users, the colors red
and green should not be used. As shown in Section 3.1.3, images can be useful
to support users’ visual perception. Thus, it is important to display images in
a way, that they do not distract the user from the primary task or action on
the screen. Given the analysis of the previously described tools, a summary of
the best practices for an MBD interface can be found in Table 5.1.

5.2. Requirements

The identified requirements for a model-based diagnosis system are presented
in Section 5.1. In order to develop an application for general domains, the
following three areas have been identified:

(1) Control area: Users are able to interact with the system and perform
defined operations.

(2) Diagnosis area: Once an error is detected, the user can start the diagnosis
system and identify the fault.

(3) Report area: In this area, users can document identified faults and send
their findings to a higher instance for report or repair purposes.

5.3. Scenario

The example from Section 3.2.1 was adapted to create an understandable
and practical scenario for an abductive model-based diagnosis application.
Currently, Smart Home is a popular topic in consumer electronics, therefore
the example was adjusted to behave accordingly. The scenario consists of two
bulbs which can be switched on or off by the control area of the smartphone
application. Additionally, the light of the bulbs can be set either to red, green,
or blue. The Base is responsible for the communication between the bulbs and
the control-device. In order to work properly, the Router needs to provide a

68

5. General Design of a Model-Based Diagnosis Application

Layout Smartphones are suitable for diagnosis applications.

Desktop or native mobile applications limit the group of
users, therefore consider web-based applications.

The layout should be flat, clear, and consistent.

Use responsive design to take full advantage of available
screen space.

Provide a search bar if listboxes contain a high number of
items.

All functions need to be self explanatory in such a way, that
no manual/help function is required.

Use images to support the user’s visual perception, but do
not distract from the main action on the screen.

Design Ensure a consistent and professional design.

Use standard behavior of GUI elements.

Use groupboxes or other elements to structure items that
belong together.

Use recognizable icons or provide additional text.

Typography Provide content in a suitable font size.

Use high contrast font colors.

Respect potential color blindness of users.

Table 5.1.: Best practices for a diagnosis interface

69

5. General Design of a Model-Based Diagnosis Application

Figure 5.2.: Example for the system

connection to the internet. In case of a fuse breakdown, the bulbs might no
longer be controllable. Figure 5.2 shows the modified bulb circuit. In order to
test the diagnosis system, three faults are injected into the system which have
to be identified by the user:

• Communication issue between base and user device

• Breakdown of a fuse

• Breakdown of internal components of the base

This scenario is used to develop a general application for model-based diagno-
sis, which should also be adaptable for other application areas. The advantage
of this example is that users are aware of the Smart Home domain, but do not
necessarily have used such devices.

70

5. General Design of a Model-Based Diagnosis Application

(a) Layout of the content container (b) Layout of the menu

Figure 5.3.: Basic layout

5.4. Basic Layout

The general layout (depicted in Figure 5.3) consists of a colored header with
a menu button on the right side (see Figure 5.3b). The font size of the active
screen description is 18px. Each menu item has a total height of 60px and
a font size of 16px to ensure accurate navigation even with broader fingers
or gloves. Figure 5.3a shows the content container with a padding of 10px
on each side and displays all other UI elements. It is worth noting, that the
smallest font size throughout the application is 16px in order to ensure a good
readability even on small devices.

71

5. General Design of a Model-Based Diagnosis Application

5.5. Design

Regarding the requirements from Section 5.1 and 5.2, it was decided to design
a web-application for mobile devices using the mobile-first design approach
[16]. In order to follow this design principle, the layout for the smallest
supported screen size is created first. Afterwards, the layout is scaled to larger
dimensions. The advantage of this design method is that the application is
usable on a variety of different devices. Compared to the JAVA applications
presented in Chapter 3, web-application are not only platform-independent
(since only a web-browser is required), using the mobile-first responsive
design approach device-independency is accomplished. In order to ensure
the responsiveness of the application, the framework Bootstrap was used. It
provides a lot of predefined style classes, UI elements, and Java Script functions
which ensures a consistent “look-and-feel” throughout all application screens.
Figure 5.4a depicts the design of the diagnosis area. The menu-bar design at
the top of the screen consists of a dark purple background with white color
and menu icon. The dark gray colored control-bar at the bottom contains a
button to operate with the diagnosis engine. Once the Improve diagnosis button
is pressed, the application toggles to the observation area, where the icons for
camera and gallery are added to the control-bar (see Figure 5.4b). Depending
on the domain, additional features can be added. In order be consistent with
common applications, the content area is kept white with back font color.

5.5.1. Control Area

Figure 5.5 depicts the screen for the control area which contains all options to
interact with the system described in Section 5.3. Each bulb can be switched on
or off by pressing the toggle-button on the left side. Once a bulb is activated,
the color option is enabled and the user can choose between the colors red,
green, and blue.
In certain domains, a control area might be not needed. Instead, performance
parameters, system conditions, or other values can be displayed.

72

5. General Design of a Model-Based Diagnosis Application

(a) Design of the diagnosis area (b) Design of the observations area

Figure 5.4.: Design of the application interface

73

5. General Design of a Model-Based Diagnosis Application

(a) Interface of control centre (b) Bulb control demonstration

Figure 5.5.: Screen design of the control area

74

5. General Design of a Model-Based Diagnosis Application

5.5.2. Diagnosis Area

This area allows the user to identify faults in the system. The user input is sent
to an ATMS (presented in Section 3.2.2) which returns a set of sets explaining
the inserted observations. The data sent and received from the diagnosis
system is mapped against database values in order to convert human-readable
text to machine code and vice versa. The diagnosis system has to be triggered
manually by an initial observation. Once the user selects the diagnosis entry
from the menu, he is asked to enter the faulty behavior in the input field
(depicted in Figure 5.6a). In some systems, a large number of symptoms can be
possible. Therefore, the overlay under the input field shows the filtered results
based on the user input. Currently, only one symptom is supported to calculate
the initial diagnosis. Once the user clicks on the Diagnose button, the diagnosis
engine is triggered computing the initial results. Figure 5.6b shows the initial
diagnosis results, where each list item represents one possible fault. The More
info button opens a collapsible panel which contains information about the
cause of the fault and the repair/replacement task. The likelihood for each
fault is based on an initial value and increases or decreases whenever new
observations are added to the system. In order to discriminate the possible
faults, the Update diagnosis button is used to navigate to the Observations screen
depicted in Figure 5.6c. The Observations screen contains a scrollable list where
each list-item represents an observation not yet considered in this diagnosis
problem. The left part of the list-item informs the user about the component,
where the right part contains the observation to be made. The questions can
either be approved (Yes), denied (No), or not answered (?). Once the Update
diagnosis button is pressed, the system updates the likelihood of the diagnosis
results with respect to the inserted observations. Further, the list of faults is
rearranged and arrows indicate if the fault converges or not. The diagnosis
can be improved several times until an acceptable certainty for a fault has
been accomplished.

In some cases, users might prefer larger devices for the diagnosis process. The
mobile-first design principle allows the interface to scale up to any display
size. Since more screen space is available, additional content can be displayed.
Figure 5.7 and 5.8 show screen mockups for a desktop diagnosis with a three-
column layout where the menu is present on the left, the diagnosis results are
displayed in the middle, and additional domain specific information is located

75

5. General Design of a Model-Based Diagnosis Application

(a) Start diagnosis (b) Diagnosis results (c) Diagnosis refinement

Figure 5.6.: Screen design of the diagnosis area

in the right column. On desktop system, the mouse is used as general input
device. Therefore, UI elements optimized for touch input can appear smaller
to save screen space and display more important information. The items in the
fault list are displayed inline and a default height of 35px is used. Further, the
scalable interface ensures an easy integration in existing applications. Since
the interface only contains standard UI elements, the visual appearance can
be easily modified to conform with company guidelines.

5.5.3. Report Area

After completing the diagnosis process, users should be able to document
their findings. Depending on the domain, users might want to document the
performed work process to their company or schedule a repair/replacement
request in order to solve the identified problem. The general design of the
report area is shown in Figure 5.9a. Clicking the Add diagnosed fault button,
users are asked to insert the diagnosed fault by selecting the list item accord-
ingly. In some cases, the fault might not be diagnosed within the system,

76

5. General Design of a Model-Based Diagnosis Application

Figure 5.7.: Mockup of a desktop diagnosis application; Results screen

Figure 5.8.: Mockup of a desktop diagnosis application; Diagnosis refinement screen

77

5. General Design of a Model-Based Diagnosis Application

(a) Report page (b) Fault input (c) Documentation

Figure 5.9.: Screen design of the report area

therefore users are able to report a custom fault using the input field at the
bottom of the dialog depicted in Figure 5.9b. The system automatically logs
the performed observations and displays them in the Performed checks section.
If other observations are required to identify the fault, users have the possi-
bility to insert them using the Add performed check button. This information
can be used to update the underlying logical model to achieve more accurate
results. In order to solve the identified problem, serial numbers of the faulty
components or modules may have to be reported. Since smartphones provide
high resolutions cameras, users can simply take pictures by clicking on the
Add image button (see Figure 5.9c) which are then automatically inserted into
the report. Additionally, the report area provides a text field, where users can
leave notes or comments about their findings. The Send report button stores
the entered information in a database for further processing.

78

5. General Design of a Model-Based Diagnosis Application

5.6. Evaluation

To evaluate the usability of the system described in the previous sections, a
Thinking aloud test was performed. The purpose of the test was to identify
usability issues in the layout and design. One important criterion when
conducting a thinking-aloud test is how the moderator interacts with the
participants during the test session. Olmsted-Hawala et al.[46] state three
types of thinking-aloud protocols:

• Traditional protocol: Remind the participant to keep talking after 15

seconds of silence.

• Speech-communication protocol: Verbal feedback in form of “um-hmm”
and “un-hmm” is allowed as well as formulating a question with the last
word the participant said (e.g. Participant: “This was weird...” Moderator
after a pause: “Weird?”).

• Coaching protocol: Active intervention during the test session is possi-
ble, e.g. ask direct questions or assist when the participant struggles.

The conducted thinking-aloud test followed the Coaching protocol. This pro-
tocol was chosen in order to get the most information why participants are
struggling in certain areas of the application. Barnum [3] lists the require-
ments for an unbiased and effective moderator. The following questions have
been used to assist users to keep talking when they are stuck during the task
(Questions adopted from [3]):

1. “What are you trying to do?”

2. “What would you expect here?”

3. “What do you think should have happened?”

4. “Can you tell me what you are thinking right now?”

5. “What are you looking for?”

79

5. General Design of a Model-Based Diagnosis Application

6. “Can you read the task again?”

5.6.1. Participants

Since the general interface needs to be usable for the vast majority of users,
three user groups were defined [37]:

1. Novice users: Users that did not grow up with digital technology and
use smartphones and computers only occasionally.

2. Casual users: Users that grew up with digital technology and use smart-
phones and computers on a regular basis.

3. Expert users: Users that grew up with digital technology and have a
technical education/background.

In order to get valid results, three to five users per user group need to be
tested [42]. Therefore, five novice users, eight casual users, and seven expert
users participated the usability test study.

The users were selected by convenience sampling, where seven females and
13 males participated in the usability study. The gender distribution is shown
in Figure 5.10. Unfortunately, no female expert user was available during the
period of the usability evaluation.

The distribution of the participants’ age is depicted in Figure 5.11. The age
of the casual and expert users lies between 20 and 39. The participants from
the group of novice users were between 53 and 65 years old. Figure 5.12

illustrates the educational background of the users. Most novice users stated
that they completed an apprenticeship while the group of casual users stated
a Master’s degree and A-levels as their highest completed education. The
expert users quoted to apply to a Bachelor’s / Master’s degree program in
computer science or software engineering.

80

5. General Design of a Model-Based Diagnosis Application

Figure 5.10.: Gender distribution of the participants

Figure 5.11.: Distribution of the participants’ age

81

5. General Design of a Model-Based Diagnosis Application

Figure 5.12.: Educational background of the participants

5.6.2. Usability Test Setup

The usability test was performed in a separate quiet room following the
Single room single camera setup described in Section 4.2. Figure 5.13 illustrates
the setup used for the usability study. The application was installed on an
Apache webserver and accessed via a 5.5 inch smartphone. The scenario was
presented on a 15 inch laptop. Users were able to interact with the smartphone
and see the consequences of their actions on the laptop screen. To record all
user interactions, a screen recording software was used on the laptop and
the smartphone. The entire test session was recorded from a distance with a
camera attached to a tripod. Additionally, the users’ facial expressions were
recored using the laptop’s front facing camera.

The test session was structured into five parts:

1. Background questionnaire: In order to assign the test user to an user
group, each user was asked about education, computer-, and smart-
phone experience. The background questionnaire (adapted from [1]) as

82

5. General Design of a Model-Based Diagnosis Application

Figure 5.13.: Illustration of the used single room, single camera setup

83

5. General Design of a Model-Based Diagnosis Application

well as the results can be found in Appendix A.1.

2. Explanation of the scenario and test process: Each user got a brief
introduction to the Smart home scenario, where the two bulbs can be
controlled by the smartphone application. It was mentioned that the ap-
plication includes a system for fault identification, in case an unexpected
behavior can be noticed. Finally, the test methodology was explained
and the users were asked to verbalize their thoughts while performing
the tasks. Afterwards, questions regarding the scenario or test method
were answered.

3. Test session: The Thinking aloud test consisted of five challenges with
increasing complexity. Since challenge 1, 2, and 3 consisted of two tasks,
each user had to perform eight tasks in total. A list of the tasks can be
found in Appendix A.2.

4. Interview I: After the usability test, the users were asked about their
opinion on the application, especially what they most liked and disliked.
If there were interesting interactions noticeable during the test, the users
were confronted with their actions and the required steps as well as
possible redesigns were discussed.

5. Interview II: Afterwards, the users were asked their opinions of two
different interfaces presented on a paper panel. The purpose of this
comparison was to find out which interface the users would prefer and
why.

6. Quantitative evaluation method: Finally, the users were asked to fill
out an SUS questionnaire. This quantitative evaluation method gives
comparable results and provides a score identifying the average usability
of a system.

The recorded video material from each test session was synchronized and
prepared for the analysis using the scheme depicted in Figure 5.14. The screen
capture of the smartphone is located in full height on the left side of the
analysis schema with the video of the laptop’s front facing camera right
next to it. Thus, an efficient analysis of the user’s emotions after an activity
can be performed. The recording of the laptop screen is located at the top

84

5. General Design of a Model-Based Diagnosis Application

Figure 5.14.: Video scheme for the usability test analysis

while the video of the observation camera is placed in the bottom right. This
arrangement of the different video sources helps to analyze the performed
actions while taking the user’s emotions and gestures into account.

5.6.3. Tasks

The following tasks were used for the usability study. In order to avoid
language barrier, the tasks were translated to German (see Appendix A.2).
Each task was presented to the participants on a separate sheet of paper.

Task 0: Introduction task

Challenge:
Run the application and get an overview of the available functions.
Goal:
The users get to know the application, exploring the different menu items,
screens, and should feel comfortable using the software.

85

5. General Design of a Model-Based Diagnosis Application

Task 1a: Automatically triggered diagnosis

Challenge:
Turn on Bulb 1. If you recognize any problems, please run the diagnosis
system and diagnose the observed error.
Goal:
After pressing the button to activate the bulb, the user should recognize
the error message at the bottom of the screen and tap on the button Start
diagnosis.

Task 1b

Challenge:
You want to fix the error. Find informations about the cause of the problem
and repair instructions.
Goal:
Users should identify the list item as diagnosis result and tap the More info
button to receive repair / replacement instructions.

Task 2a

Challenge:
Turn on Bulb 2. If you recognize any problems, please run the diagnosis
system and diagnose the observed error.
Goal:
Users should recognize that the bulb is not turning on. In order to start the
diagnosis engine, the user needs to tap on the menu icon and press the menu-
item Diagnosis. The appearing UI contains an input field, where the user is
asked to enter the observed symptom, i.e. “Cannot turn on Bulb 2”. The task
is completed once the user confirms the input by pressing the Diagnose button
next to the input field.

86

5. General Design of a Model-Based Diagnosis Application

Task 2b

Challenge:
Refine the diagnosis results until you receive an acceptable result.
Goal:
The user should recognize the Improve Diagnosis button at the bottom of the
screen. Once the button is tapped, the observation area appears where the user
is asked to inspect three components and confirm or deny the corresponding
questions. The task is completed once the user answered the questions and
pressed the Update Diagnosis button.

Task 3a

Challenge:
Turn on Bulb 1 and change the color. If you recognize any problems, please
run the diagnosis system and diagnose the observed error.
Goal:
Users should recognize that the color of the bulb does not change. In order to
start the diagnosis engine, the user needs to tap on the menu icon and press
on the menu-item Diagnosis. The appearing UI contains an input field, where
the user is asked to enter the observed symptom, i.e. “Can not change color of
Bulb 1”. The task is completed once the user confirms the input by pressing
the Diagnose button next to the input field.

Task 3a

Challenge:
Refine the diagnosis results until you receive an acceptable result.
Goal:
Once the users enters the first three observations, three possible results remain.
The user should recognize that the diagnosis results can be further refined by
pressing the Improve Diagnosis button. The task is completed when the user
enters three more observations and a single fault remains.

87

5. General Design of a Model-Based Diagnosis Application

Task 4

Challenge:
In order to get a replacement for the faulty device, send a report to the
manufacturer of the bulb system. Add the diagnosed fault into the report.
Insert an picture of the base to help the service center identifying the model
of the device.
Goal:
The users need to tap on the menu-icon and select the menu-item Report,
which opens the report area. There, users need to press the Add diagnosed
fault and select the identified fault. In order to insert an image of the defect
component, users need to scroll down to the bottom of the screen and press
the Insert image button. Once a picture has been taken, it is automatically
inserted to the report. The task is competed, if the users confirm their inputs
by tapping on the Send report button.

5.7. Results

The analysis of the recorded test sessions revealed several usability issues. The
issues identified can be classified as layout, design, and workflow issues as
well as missing features. In order to determine the severity of usability issues,
Nielsen [35] recommends the following scale:

5 - Critical usability problem: An issues classified with this rating needs
to be resolved before the product can be released.

4 - Major usability problem: Finding and implementing a solution for
this issue has high priority.

3 - Minor usability problem: Fixing this type of issue has low priority.

2 - Cosmetic problem: Issues of this type do not need to be fixed unless
extra time for this project is available.

1 - No problem: This issue can be classified as a non-usability problem.

88

5. General Design of a Model-Based Diagnosis Application

A complete list of the identified issues is depicted in Table 5.2. The table shows
a description, the classification, the priority, and the number of users affected
by this issue, where novice users (NU), casual users (CU), and expert users
(EU) as well as the total number of affected users are listed.

5.7.1. Critical Issues

Three of the issues identified are caused by missing or inefficiently imple-
mented features.

Missing input validation in troubleshooting field: Figure 5.15a shows the in-
put field where the user input validation is missing. Users clicked the
Diagnosis button without entering any information. Therefore, a blank
diagnosis result was presented which caused confusion and users were
not able to recover from that mistake. Users claimed during the post test
interview, that they thought they only needed this field to enter addi-
tional information. This issues can be fixed by implementing a proper
input validation, informing the user to click on the field and enter the
observed behavior.

Back button functionality not implemented properly: During the test, users
tried navigate backwards or correct their mistakes by using the Back
button on the device. When users tried to navigate from the observa-
tions to the diagnosis results screen, the system failed to display the
expected content. Since this is a standard functionality of all Android
and Windows phone devices, a proper implementation of the Back button
functionality has high priority.

Swipe gesture not implemented: Another missing feature occurred in the
control area of the application. Users tried to switch on the bulb using
a left to right swipe gesture on the according UI element shown in
Figure 5.15b. Since only a click event was recognized by the system, any
movement over the UI element would not trigger the event.

Performed inspections cause confusion: Users did not remember that the
listed Performed checks (depicted in Figure 5.15c) were answered in the
previous step. Since the automatically collected data is important infor-
mation for documentation purposes but is not necessarily shown to the
user at this location of the screen, the Performed checks can be hidden and

89

5. General Design of a Model-Based Diagnosis Application

only displayed if the user requests it. This redesign will keep the user’s
attention on the available functions, since less information is displayed.

5.7.2. Major Issues

“Add diagnosed fault” button not recognizable: Although the Add diagnosed
fault button depicted in Figure 5.16a is in a very prominent spot, users
had problems recognizing it. The analysis of the video material revealed,
that the list of performed checks distracted the users from finding this
important function (see Figure 5.15c). Removing the list of Performed
Checks from the Report area gives this important functionality more
visibility.

“Add diagnosed fault” procedure unclear: It could be observed, that the users
had problems adding the diagnosed fault to the report. The evaluation
of the recorded sessions showed that users thought the fault was already
added to the report since it was present in the list (see Figure 5.16b). In
order to fix this issue, a text label needs to be present where the user is
asked to select the according fault from the list. Subsequently, the system
needs to prevent the user from sending a report without including a
fault.

“Improve diagnosis” button hard to find: Three casual as well as two expert
users had problems recognizing the Improve diagnosis button in the
control-menu at the bottom of the screen (depicted in Figure 5.16c)
when they entered the Diagnosis area for the first time. This issue could
be resolved by setting the background color of the control-bar to the
same color as the menu-bar to visually indicate a similarity to these
areas of the screen.

Wrong symptom for initial diagnosis chosen: Figure 5.16d depicts the drop-
down menu, where four users selected the wrong symptom for the
initial diagnosis without noticing. This issue can be solved by displaying
a confirmation screen where users have the possibility to approve or
correct their selection.

90

5. General Design of a Model-Based Diagnosis Application

(a) Missing input valida-
tion

(b) Swipe gesture not im-
plemented

(c) Unnecessary informa-
tion

Figure 5.15.: Identified critical usability issues

91

5. General Design of a Model-Based Diagnosis Application

(a) Improve diagnosis button
hard to find

(b) Add fault procedure un-
clear

(c) Improve diagnosis button
hard to find

(d) Wrong symptom for diag-
nosis selected

Figure 5.16.: Identified usability issues with high priority

92

5. General Design of a Model-Based Diagnosis Application

5.7.3. Minor Issues:

Three usability problems could be identified as minor issues. These problems
did not affect many users and also require little effort to correct.

Negative question is confusing: The users were asked by the diagnosis sys-
tem, if a certain status is not observable. Some users were confused
whether to confirm or deny this question. Therefore, all questions should
be formulated positively and clearly.

Scroll up issue after updating diagnosis: After updating the diagnosis, the
system did not reset the scroll position of the list containing the diagnosis
results, which caused confusion to two users. This can be fixed by
automatically resetting the position of the list after the Update diagnosis
button is pressed.

Trash can icon not recognized: One user misinterpreted the Trash icon. In
order to fix this issue, icons need to be displayed in combination with a
text label.

5.7.4. Issues Identified as Non-usability Problems:

“Add image” procedure unclear: Two novice users had problems inserting
images into the report using the default android camera application.
Since the users admitted not using their smartphone camera too often,
the issues is caused by the lack of experience with such devices.

Wrong observation value inserted: Two users inserted the wrong observa-
tion to the system. This was caused by not reading the question carefully
enough.

Menu icon not recognized: Although only standard icons were used, two
novice users could not identify the Menu icon.

5.7.5. Interview I: Interface Comparison

After the usability test, users were asked on their opinion on two different
prototype interfaces (see Figure 5.17 and 5.18) for a model-based diagnosis
application. Prototype I used collapsible panels to represent the diagnosed
faults (see Figure 5.17a). Clicking on a panel expands the observations area

93

5. General Design of a Model-Based Diagnosis Application

Is
su

e
D

es
cr

ip
ti

on
Ty

pe
Pr

io
ri

ty
N

U
C

U
EU

To
ta

l
1

M
is

si
ng

in
p

u
t

va
lid

at
io

n
in

tr
ou

-
bl

es
ho

ot
in

g
fie

ld
Fe

at
ur

e
5

4
/5

1
/8

2
/7

7
/2

0

2
Ba

ck
bu

tt
on

fu
nc

tio
na

lit
y

no
ti

m
pl

e-
m

en
te

d
pr

op
er

ly
Fe

at
ur

e
5

3
/5

2
/8

2
/7

7
/2

0

3
Sw

ip
e

ge
st

ur
e

no
t

im
pl

em
en

te
d

Fe
at

ur
e

5
1
/5

3
/8

3
/7

7
/2

0

4
Pe

rf
or

m
ed

in
sp

ec
tio

ns
ca

us
e

co
nf

u-
si

on
La

yo
ut

5
3
/5

2
/8

2
/7

7
/2

0

5
"A

dd
fa

ul
t"

bu
tt

on
no

tr
ec

og
ni

za
bl

e
D

es
ig

n
4

1
/5

3
/8

2
/7

6
/2

0

6
"A

dd
fa

ul
t"

pr
oc

ed
ur

e
un

cl
ea

r
W

or
kfl

ow
4

2
/5

2
/8

2
/7

6
/2

0

7
"I

m
pr

ov
e

di
ag

no
si

s"
bu

tt
on

ha
rd

to
fin

d
D

es
ig

n
4

0
/5

3
/8

2
/7

5
/2

0

8
W

ro
ng

it
em

fo
r

di
ag

no
si

s
ch

os
en

In
te

ra
ct

io
n

4
2
/5

2
/8

0
/7

4
/2

0

9
N

eg
at

iv
e

qu
es

ti
on

is
co

nf
us

in
g

La
ng

ua
ge

3
1
/5

1
/8

1
/7

3
/2

0

1
0

Sc
ro

ll
up

is
su

e
af

te
r

up
da

ti
ng

di
ag

-
no

si
s

W
or

kfl
ow

3
2
/5

0
/8

0
/7

2
/2

0

1
2

W
ro

ng
ob

se
rv

at
io

n
va

lu
e

in
se

rt
ed

W
or

kfl
ow

3
1
/5

1
/8

0
/7

2
/2

0

1
4

Tr
as

h
ca

n
ic

on
no

t
re

co
gn

iz
ed

D
es

ig
n

3
1
/5

0
/8

0
/7

1
/2

0

1
3

M
en

u
ic

on
no

t
re

co
gn

iz
ed

D
es

ig
n

0
2
/5

0
/8

0
/7

2
/2

0

1
1

"A
dd

im
ag

e"
pr

oc
ed

ur
e

un
cl

ea
r

D
es

ig
n

0
2
/5

0
/8

0
/7

2
/2

0

Ta
bl

e
5

.2
.:

Id
en

ti
fie

d
us

ab
ili

ty
is

su
es

94

5. General Design of a Model-Based Diagnosis Application

Prototype Novice user Casual user Expert user
I 3 4 3

II 2 4 4

Table 5.3.: Results of the comparison of the two prototype interfaces

depicted in Figure 5.17b where also the root cause and the repair task are
displayed. Figure 5.18a shows Prototype II which uses list items to represent
faults and a separate area for observations (see Figure 5.18b). Table 5.3 shows
the results of the comparison of the two interfaces. Since there is no difference
between the users’ preferred interface, it can be concluded, that both layouts
are usable for a model-based diagnosis application.

5.7.6. Interview II: Post-Test Interview

Users were asked to state their opinions on the tested application. The users
reported that they really enjoyed interacting with the software. The interface
was said to be nice and clean with good looking colors and appropriate
font size. Users pointed out that the overall speed of the application was
great as well as the fluent interaction. The negative aspects of the application
were the missing swipe gesture, the functionality of the Back button, and the
procedure to add the identified fault to the report. Two users mentioned that
the likelihood of the diagnosed faults were unclear and that they would prefer
a simpler representation of possible errors.

5.7.7. Evaluation of the System Usability Scale Questionnaire

Figure 5.19 depicts the average SUS rating of each user group visualized as
semantic differential. Users with higher experience in digital technology tend
to use such systems frequently, while users with less experience reported that
they would need more practice and assistance in order to feel comfortable
using such an application. Surprisingly, the novice users thought that the
system will be easy to learn for other people, whereas experienced users gave
a more conservative rating. Figure 5.20 visualizes the evaluation of the SUS
ratings. Based on the average score of the novice users (75.5), the casual users

95

5. General Design of a Model-Based Diagnosis Application

(a) Results area (b) Observations area

Figure 5.17.: Interface of Prototype I

(a) Results area (b) Observations area

Figure 5.18.: Interface of Prototype II

96

5. General Design of a Model-Based Diagnosis Application

Figure 5.19.: Semantic differential of the SUS ratings of each user group

(93.4), and the expert users (86.1), the application achieved an overall mean
SUS score of 86.4. This result confirms that the software is accepted and usable
even for users with less experience in digital technologies.

5.7.8. Usability Metrics

In addition to the previously identified issues, quantitative data can be gath-
ered from the video analysis. Nielsen [36] introduces the user success rate that
provides a percentage value of how many tasks a user was able to complete
correctly. Partially successful tasks were also taken into account. In order
to compute a percentage value for the success rate, a completely successful
task is rated with 1 point, a partially successful task with 0.5 points, and an
unsuccessful task with 0 points. Figure 5.21 depicts the average user success

97

5. General Design of a Model-Based Diagnosis Application

Figure 5.20.: SUS scores (adapted from [2])

rate and standard deviation (SD) of each user group. The novice users scored
53.7% (SD: 12.6), the casual users 94.6% (SD: 5.4), and the expert users 94.9 (SD:
5.8). The results show that users with more experience could also complete
more tasks successfully. As Nielsen [36] states, these results can be used in
a future usability test to determine if the suggested redesign proposals have
had a positive impact on the overall usability.

The chart in Figure 5.22 shows the total number of mistakes the users made
while performing each task. It can be concluded that users with less experience
in digital technologies make far more mistakes compared to experienced
users.

The average error rate (AER) for each group of users is depicted in Table
5.4. Sauro [56] shows that the average number of mistakes per task is 0.7.
Calculating the average error rate for the tested interface leads to 1.4 for novice
users, 0.4 for casual users, and 0.2 for expert users.

98

5. General Design of a Model-Based Diagnosis Application

Figure 5.21.: User success rate

Figure 5.22.: Error rate

99

5. General Design of a Model-Based Diagnosis Application

Task AER novice users AER casual users AER expert users
Task 0 0.8 0.4 0.4
Task 1a 0.9 0.0 0.0
Task 1b 0.0 0.1 0.0
Task 2a 2.0 0.4 0.7
Task 2b 1.0 0.3 0.1
Task 3a 1.0 0.6 0.1
Task 4b 3.0 0.9 0.0
Task 4 3.4 0.5 0.4

Table 5.4.: Average error rate

100

6. Design of a Model-Based
Application for Wind Turbine
Fault Diagnosis

In order to bring model-based diagnosis into industrial applications, Graz
University of Technology and Uptime Engineering GmbH founded the project
EXPERT. Within this corporation, an application is developed to support the
self maintenance activities of an local wind energy provider. Usually, mainte-
nance and repair tasks are covered within a service contract and performed by
an external company, i.e. the manufacturer of the wind turbines. The company
performing the repair or maintenance activities schedule the appointments
on their behalf without taking the current wind situation into account, which
can have an negative impact on the efficiency of a wind turbine. Considering
the highly competitive energy marked, reducing all type of operation costs
is necessary to defend the current market position. Therefore, the energy
provider decided to install their own service center in order to reduce the
maintenance costs. The following optimization factors could be identified:

• To maximize the efficiency of a wind power plant, all maintenance activ-
ities are scheduled based on the wind forecast.

• Rather than replace expensive modules, faulty parts should be replaced
and the reworked modules reused.

• Non-critical repairs should be performed at the next planned mainte-
nance appointment.

• Service technicians should carry potentially required parts and tools
with them to reduce travel time.

101

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

Currently, the troubleshooting of wind turbines is based on the alarm codes
reported by the turbine. Since the reported alarm code does not provide
information about the faulty component and does not necessarily have to
be related to the cause of the problem, the troubleshooting is mainly based
on the experience of the service technicians. Therefore, the EXPERT project
focuses on the development of an intuitively usable MBD application which
should reduce the service technicians’ troubleshooting time and support their
workflow.

This section describes the design and evaluation process for a model-based
diagnosis application in the field of wind turbine maintenance. Based on the
resulting prototype, an abductive model-based fault identification system will
be implemented into an existing condition monitoring system for industrial
wind turbines. The design of the interface considers the current workflow
of the maintenance personnel and aims to enhance their performance. An
iterative design process was applied and continuous feedback from several
stakeholders was taken into account. After the final iteration, a clickable
prototype was developed and evaluated using the Thinking aloud method in
combination with a SUS questionnaire.

6.1. Design Process

The development of the interface followed an iterative design process [34].
In this process, several steps are repeated until an acceptable result has been
achieved. The process is depicted in Figure 6.1. Based on an initial plan, the
following steps are performed iteratively:

1. Definition of the requirements

2. Creating a design

3. Implementation of the functionality

4. Test of the implementation

102

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

Figure 6.1.: Iterative design process (adapted from [17])

5. Evaluation of the resulting product

The process starts over, if the evaluation of the product shows that the goal
has not been reached. As Nielsen [34] shows, developing a software product
using an iterative design approach reduces the number of usability issues by
38% on average per iteration.

In order to derive the requirements for the interface, all stakeholders needed to
be identified. During the design process, three stakeholders were involved:

1. The service technicians who will use the software for troubleshooting
remotely at the service center and in the field.

2. The management department of the energy provider which plans to
extend and optimize their maintenance activities.

3. The company Uptime Engineering GmbH who is developing condition
monitoring software for wind turbines and wants to extend their portfo-

103

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

lio.

During the first meeting with Uptime Engineering, an initial set of require-
ments was developed. It could be concluded, that the main goal of the ap-
plication is to not cause additional effort but support the service technicians’
current workflow. This ensures usefulness, which is a key aspect in technology
acceptance [9]. The general structure of the system was defined as well as
the overall workflow and a small set of features. Based on the identified
requirements, a low fidelity paper prototype was created (depicted in Fig-
ure 6.2). The layout was refined several times in order to prepare a paper
mockup for the first meeting with the management department and the users.
The feedback from the four participating service technicians revealed some
usability and wording issues. The maintenance personnel provided detailed
knowledge about the work process and the typical activities throughout the
fault correction tasks. The information gained was used to adapt the mockup
accordingly. Based on the paper mockup, the the focus on the next iteration
was to develop a clickable prototype.

6.2. Requirements

The requirements were identified during the various meetings with the three
stakeholder groups. Each of them reported different requests which had to be
analyzed and prioritized. Since the service technicians were the target user
group, their suggestions were considered with special attention. The following
requirements could be identified:

• The current fault detection of the maintenance technicians relies mainly
on visual inspection, therefore images of components should be used to
improve the detection speed.

• After the fault has been identified, the repair or replacement task is
performed according to the instruction manual provided by the wind
turbine manufacturer. This information needs to be included in the
application in order to increase the usefulness of the software.

104

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

(a) Layout of the diagnosis results

(b) Layout of the diagnosis refinement

Figure 6.2.: Initial low fidelity mockups of the diagnosis application’s interface

105

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

• Once the repair or replacement task is completed, the service technicians
are required to create a report where performed activities are docu-
mented. Since documentation is an essential part of the current work
process, the application need to provide an adequate solution.

• The working environment inside a wind turbine is uncomfortable, there-
fore a strictly defined path through the system with minimal user inter-
action is required.

• The management department of the energy provider wants to follow
the trend of industrial digitalization. Further, safety and productivity
are topics of the management’s interest. In order to ensure minimal
downtime, the application should support the technicians to prepare all
required spare parts and tools before traveling to the turbine.

• Given the dangerous working environment inside the wind turbines,
the system should also take the current safety processes into account.

• The requirements and specifications of the industrial partner Uptime
Engineering GmbH needed to be satisfied. The interface of the appli-
cation needs to be compatible with the company’s design guidelines,
which strictly define the representation of information and guarantee a
consistent interface throughout the monitoring system.

• In order to extend and update the knowledge base of the diagnosis
system, users should be able to report new faults which have not yet
been considered.

• To support other domains for future projects, the interface should be
extendable and adaptable.

6.3. Workflow and Interface Design

This section describes the workflow design of the diagnosis application. Figure
6.3 illustrates the identified work process. Wind turbines are equipped with

106

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

send alarms triggers diagnosis

Service Center Employee

1. prepares tools, spare parts and safety equipment at
service center

2a. performs part
inspection at turbine,

adds additional
measurements

3. repairs/replaces
faulty

component(s)

4. creates report of maintenance activities

2b. manually restarts
diagnosis

Service Technician

selects
work assignments

based on diagnosis
results

Uptime
Engineering
Condition
Monitoring

Figure 6.3.: Identified workflow of a wind turbine repair/replacement task [27]

sensors which measure critical values (e.g. rotation speed, produced power, ...).
A basic monitoring system reports alarm codes if the sensor values differ from
the expected range. Uptime Engineering’s monitoring software processes the
received data to allow more precise anomaly detection. The software identifies
a symptom and triggers the diagnosis system by supplying the observations
from the wind turbine and the system model to an MBD diagnosis engine.
The initial diagnosis is displayed in the Operations Center depicted in Figure
6.4.

Each diagnosis result is represented as collapsible panel and contains the
diagnosed faults. The main panel consists of the representation of the wind
turbine as well as the detected symptom responsible for triggering the diag-
nosis. The diagnosed faults are represented as list items where the location
of the fault, the faulty component, and the root cause are displayed. The
right area of a list item is used to display the likelihood of the fault as well
as a button for additional information. It is worth noting that this area is
designed to contain additional UI elements for different purposes (e.g. links to

107

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

Figure 6.4.: Design of the Operations Center [27]

data-sheets, repair instructions, ...). Considering the current workflow of the
maintenance personnel, a service technician in the Operations Center creates
work assignments for one of his colleagues for one or more turbine instances.
The work assignment contains possible faults for consideration, which could
be identified in similar situations during the field work and information about
previous issues with this specific turbine. The interface of the Operations Center
is designed for desktop computers since the work assignments are distributed
from the service technicians’ headquarters.

The service technicians requested not to use laptops during the diagnosis
process regarding the narrow environment inside a wind turbine. Therefore, it
was concluded that the system in the field is most usable on a mobile device,
since the technicians have to carry a smartphone for safety purposes anyway
and they currently use it to take pictures of the identified faulty components
for their work reports. In order to ensure a practicable interface, design guide-
lines [62, 20] and best practices for mobile applications [40] were taken into
account. The prototype features a flat navigation since this is used in many
other web applications for mobile devices. In contrast to a deep navigation

108

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

(a) Overview of tasks (b) Preparation stage (c) Diagnosis results

(d) Expanded panel for
diagnosis refinement

(e) Report diagnosed
fault / repair task

(f) Custom fault with au-
tocomplete function

Figure 6.5.: Design of the mobile application interface [29]

109

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

Figure 6.6.: Comparison between flat and deep website navigation hierarchy [64]

hierarchy, it is touch input friendly, ensures minimal user interactions, and
gives every screen a defined role in the work process. Figure 6.6 depicts a com-
parison between flat and deep hierarchy for the same amount of information.

Once the user starts the application, the Home screen (depicted in Figure
6.5a) provides an overview of all service tasks assigned to the technician. The
Preparation screen in Figure 6.5b provides a checklist to ensure that all spare
parts and tools for the work assignment are taken. This is usually performed
at the service center, where the stockroom is located. The screen also provides
a verification of the personal safety equipment which has to be checked in
order to continue the workflow. Afterwards, the service technician travels to a
turbine for which a maintenance task has been assigned to him.
At the turbine, the Diagnosis screen (see Figure 6.5c) provides the possible
faults which are ranked according to the calculated probabilities. The diagnosis
results are represented as collapsible panels to provide an overview of all
possible faults. Once the user clicks on the panel, the expanded area contains
information about the root cause, the repair/replacement task, and a subset of
the next best observations to discriminate the results (shown in Figure 6.5d).
The application asks the user to answer questions which represent the ideal
probing points. The displayed images next to the textual description supports
the user in the identification of the correct component for the measurement.
Each question can be confirmed (Yes), denied (No), or not answered (?). Each
measurement can be documented separately using the camera icon at the
bottom of the question area. The recorded pictures are included automatically
in the maintenance report.
Given the new information from the observations, the diagnosis engine is
restarted manually from the device in order to receive a newly computed
diagnosis result. The probabilities and the arrangements of the faults are
updated with arrows indicating whether a fault converges or not. This process

110

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

can be repeated several times until an acceptable assurance is reached or the
fault could be detected during the measurements. Once the fault has been
identified, the Report area can be used to inform the Service center about the
confirmed diagnosis, performed repair/replacement task, consumed spare
parts, and made observations.
Figure 6.5e depicts the Report area with the diagnosed fault and replacement
task inserted. In certain scenarios, the fault might not be considered within
the abductive model, therefore the user can insert a custom fault (see Figure
6.5f). Once the user clicks the Send button, the maintenance task report is
automatically created out of the inserted data and sent to the Operations Center
where it is stored and post-processed. The interface for the report management
is not shown here, but it is already considered within Uptime Engineering’s
monitoring system.

6.4. Evaluation

The usability of the interface was evaluated using a Thinking aloud test and
an SUS questionnaire. Again, the Coaching protocol (described in Section 5.6)
was used. Before the usability test, a background questionnaire (adopted
from [1]) was conducted to collect some data about the participants. The
background questionnaire as well as the results can be found in Appendix
B.1 This section describes the participants, setup of the usability test, and the
presented tasks.

6.4.1. Participants

Five service technicians from the local energy provider participated in the
usability test. The distribution of the participants’ ages is depicted in Figure
6.7, where 26 was the youngest and 42 the oldest user.

The educational background of the service technicians is depicted in Figure
6.8. Three technicians completed electrician apprenticeships, one finished
a secondary technical college, and one has a Master’s degree in electrical
engineering.

111

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

Figure 6.7.: Distribution of the participants’ age

Figure 6.8.: Distribution of the participants’ educational background

112

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

6.4.2. Usability Test Setup

The usability test was performed in a separate room at the energy providers’
service center where five maintenance technicians participated the test. It is
worth noting, that the test users were involved in the design process of the
interface. Thus, some usability issues may not have been revealed during
the Thinking aloud test session. Each user was tested individually and asked
not to talk to any colleagues after finishing the test. The whole session was
recorded using a screen capture software on the mobile phone, and a camera
to record the users’ faces. The session was started with an introduction of
the test methodology and the basic functions of the interface. Afterwards, the
users had to perform four tasks using the interface of the Operations Center and
seven tasks using the mobile interface. The prepared tasks simulated a typical
maintenance task, where an error is reported by the condition monitoring
software, a service technician receives a maintenance task, diagnoses the fault
at the turbine and creates a report with the performed repair/replacement
activity. In order to avoid a potential language barrier, the tasks were translated
to German. The originally presented tasks can be found in Appendix B.2.
At the end of the usability test, users were asked about their opinions on
the interface. Further, an SUS questionnaire was filled out by each of the
five service technicians. In order to avoid the language barrier, a German
translation [55] was used (see Appendix C).

6.4.3. Tasks

The following tasks were presented to the service technicians, where each task
was presented on a separate sheet of paper.

Desktop Task 1: Investigate diagnosis results

Challenge:
Your supervisor informs you that a new diagnosis result from turbine instance
100111 was reported in Uptime Harvest.

113

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

• Go to the diagnosis area and investigate the results.

Goal:
Users should recognize the menu item Diagnosis Results and click on it to
open the diagnosis area. The first collapsible panel inside the tab-bar is the
error report from turbine instance 100111. The task is completed once the user
clicks on the panel and notices the three IGBT fault candidates.

Desktop Task 2: Create a repair task

Challenge:
Create a repair task for instance 100111.

• The repair task should be performed by service technician A, B and C.
• Supervisor should be service technician B

Goal:
Users should click on the Create task button and enter the provided information.
The task is completed once the user clicks on the Send button.

Mobile Task 1

Challenge:
You have received a new repair task. The “Home”-Screen gives you an
overview of the available repair tasks.

• Open the menu and get an overview of the available menu options.

Goal:
To complete the task, the user needs to click on the menu icon.

Mobile Task 2

Challenge:
Navigate to the “Preparation”-screen and prepare spare parts and tools. Con-
firm when preparation is done.
Goal:

114

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

The users need to recognize the menu item Preparation and click on it. The
task is completed once the user clicks on the Continue button in the Preparation
area.

Mobile Task 3

Challenge:
You are at turbine 100111. Before continuing with the repair task, the enforce-
ment permit needs to be requested.
Goal:
Users should navigate to the Overview area of the turbine instance. The task is
completed once the user clicks on the Acquire enforcement permit button.

Mobile Task 4

Challenge:
The alarm code reported by the turbine is equal to the alarm code in the repair
task assignment. Confirm the alarm code.
Goal:
Users should click on the menu item Alarm code. To complete the task, users
need to click on the Confirm button.

Mobile Task 5

Challenge:
Navigate to the diagnosis screen and get an overview of the possible faults.
Goal:
Task is completed once the user clicks on the menu item Diagnosis.

Mobile Task 6

Challenge:
You make the following observations:

115

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

• Deviation of the power output
• No component damage observable
• No burn marks observable

Insert the observations and update the diagnosis results.

• Which fault has the highest probability after the update?
• How would you proceed to get a more precise result?

Goal:
The user need to enter the provided probing points and answer the ques-
tions. The task is completed once the user identifies the fault with 100%
probability.

Mobile Task 7

Challenge:
You have identified a thermo-mechanical fatigue. The IGBT module with serial
number 313125 has been replaced.

• Navigate to „Report“-screen
• Enter the diagnosed fault.
• Enter the performed repair task.
• Enter the serial number of the module.
• Enter the work time.

Goal:
The users need to click on the menu item Report and enter the provided
information. The task is completed, once the user clicks on the Send report
button.

6.5. Results

The analysis of the recorded video material revealed several usability issues.
The collected issues were rated based on their severity using the following
scale [35]:

116

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

5 - Critical usability problem: An issue classified with this rating needs
to be resolved before the product can be released.

4 - Major usability problem: Finding and implementing a solution for
this issue has high priority.

3 - Minor usability problem: Fixing this type of issue has low priority.

2 - Cosmetic problem: Issues of this type do not need to be fixed unless
extra time for this project is available.

1 - No problem: This issue can be classified as a non-usability problem.

An overview of the identified usability errors is depicted in Table 6.2.

6.5.1. Critical Issues

Four usability issues with critical priority have been identified.

Users overlook location and component information: During the diagnosis
refinement, all five service technicians had problems recognizing the
location or the component where the observation should be made (see
Figure 6.9a). In order to direct the users’ attention to this important
information, the font size can be increased. Further, the padding of the
headline needs to be decreased to create a stronger relationship between
the location information and the question.

Add diagnosed fault button hard to find: Although the Add diagnosed fault
button (depicted in Figure 6.9b) is in a very prominent spot, users did
not recognize the button. A solution to this issue can be achieved by
adding a background color to buttons. However, it could be observed
that users got distracted by the list of performed checks. Since this is
redundant information, it should only be displayed if requested by the
user.

Continue button has wrong label: To complete the Preparation stage, users
had to click on the Continue button depicted in Figure 6.9c. This caused
irritation, since this action was required to proceed to the next step but

117

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

the screen did not change. Therefore, the label of the button needs to be
renamed to “Confirm”, “Acknowledge”, or similar.

Option for acquiring enforcement permit hard to find: Before entering a
wind turbine, the service technicians have to acquire an enforcement
permit. This option (depicted in Figure 6.9d) is located at the bottom
of the Preparation screen of the maintenance task and not easy to find.
The button should be placed below the Overview section in order to be
visible without scrolling.

6.5.2. Major Issues

Two issues with high priority could be identified.

Highlight of selected list items: In order to add the diagnosed fault to the
report, users had to select the fault from a list (see Figure 6.10a) and click
on the OK button. Users got confused when they selected the identified
fault from the list since the background of the item changed to gray,
which was not easy to recognize. Rather than changing the background
color, this issue can be resolved by inserting the fault to the report once
the user clicks on the list item.

Adding a serial number is not obvious: During the report task, users were
asked to enter a serial number to a consumed spare part. The icon
(depicted in Figure 6.10b) which enabled this function was missing a
label, therefore users could not associate the icon with the underlying
functionality.

6.5.3. Minor Issues

The two low prioritized issues consist of minor design aspects.

Misinterpretation of colored calendar days: A caption needs to be added
to clarify the maintenance schedule calendar entries of the desktop
interface shown in Figure 6.11a.

118

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

(a) Invisible information (b) Button gets overlooked

(c) Button has wrong label (d) Button hard to find

Figure 6.9.: Critical issues [29]

119

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

(a) Highlight color too bright (b) Icon is not understandable

Figure 6.10.: Major issues [29]

120

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

Creation date missing: The diagnosis results in the desktop interface in-
cluded the creation date in the headline which was not present in the
mobile interface (see Figure 6.11b).

6.5.4. Issues Identified as Non-usability Problems

Probability not obvious: One user had problems identifying the increased
probability after refining the diagnosis results.

Interaction with time picker is hard: One user was unable to interact with
the time picker.

6.5.5. Post-Test Interview

During the interview, all users mentioned that they are curious how the sys-
tem will perform in the pilot phase. Further, three users remarked that they
need more time to interact with the software in order to feel comfortable using
it. One user pointed out, that it is hard to operate on a mobile phone with cold
fingers. Another user thought that the diagnosis system is too much effort
for troubleshooting wind turbines and results of diagnosis systems are often
unreliable based on his personal experience.

6.5.6. Evaluation of the System Usability Scale Questionnaire

The results of the SUS questionnaire are depicted in Figure 6.12. Overall, the
prototype was rated with a SUS mean score of 71.5 which is slightly above
the average score of 68. The semantic differential (depicted in Figure 6.15)
shows, that users had some oppositional opinions on the interface. From
the evaluation of the SUS questionnaire follows, that the service technicians
would like to use the system more frequently, yet not all of them felt confident
using it. User B found the interface was too inconsistent, but also admitted
that other people would learn the system very easily and he personally needs
more experience with the software.

121

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

(a) Caption is missing

(b) Date is missing

Figure 6.11.: Minor issues [29]

122

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

Figure 6.12.: SUS scores (adapted from [2])

6.5.7. Usability Metrics

As Nielsen [39] states, usability metrics can be used to measure the success of
a redesigned interface compared with the original design. The user success
rate [36] is a percentage value of how many tasks a user was able to complete
successfully. Each completed task was rated with a score of 1, partial success-
ful tasks with 0.5 and unsuccessful tasks with 0 points. The sum of the ratings
are divided by the amount of tasks in order to get the success rate. The results
of each user is depicted in Figure 6.13.

Figure 6.14 depicts the total number of errors the users made while performing
the tasks. In order to determine the error rate, the sum of errors is divided
by the number of users. The average error rate is shown in Table 6.1. Again,
these values can be used to determine the impact of a redesign.

123

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

Figure 6.13.: User success rate

Figure 6.14.: User error rate

124

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

Task Average number of errors per user
Task 1 Desktop 0.2
Task 2 Desktop 1.4
Task 1 Mobile 0.0
Task 2 Mobile 0.2
Task 3 Mobile 1.2
Task 4 Mobile 0.4
Task 5 Mobile 0.2
Task 6 Mobile 1.6
Task 7 Mobile 2.6

Table 6.1.: Average error rate

Figure 6.15.: Results of the SUS questionnaire

125

6. Design of a Model-Based Application for Wind Turbine Fault Diagnosis

Is
su

e
D

es
cr

ip
ti

on
Pr

io
ri

ty
U

se
rs

1
U

se
rs

ov
er

lo
ok

lo
ca

ti
on

or
co

m
po

ne
nt

s
an

d
ge

t
co

n-
fu

se
d

si
nc

e
th

e
as

ke
d

qu
es

ti
on

s
ar

e
th

e
sa

m
e,

bu
t

be
lo

ng
to

di
ff

er
en

t
co

m
po

ne
nt

s

5
5

/
5

2
U

se
rs

ov
er

lo
ok

or
d

o
no

t
re

co
gn

iz
e

ho
w

to
en

te
r

a
re

pa
ir

ta
sk

to
a

fa
ul

t
5

5
/

5

3
U

se
rs

th
in

k
th

at
th

e
C

on
tin

ue
bu

tt
on

lin
ks

to
a

lo
ca

tio
n

5
4

/
5

4
U

se
rs

d
o

no
t

kn
ow

w
he

re
to

ac
qu

ir
e

en
fo

rc
em

en
t

pe
rm

it
5

4
/

5

5
T

he
u

se
d

hi
gh

lig
ht

co
lo

r
of

se
le

ct
ed

lis
t

it
em

s
is

to
o

br
ig

ht
an

d
ha

rd
to

se
e

4
3

/
5

6
U

se
rs

ha
ve

pr
ob

le
m

s
fin

d
in

g
th

e
bu

tt
on

to
en

te
r

th
e

se
ri

al
nu

m
be

r
fo

r
a

re
pl

ac
ed

co
m

po
ne

nt
4

3
/

5

7
U

se
rs

ha
ve

pr
ob

le
m

s
in

te
rp

re
tin

g
th

e
co

lo
re

d
da

ys
in

ca
le

nd
ar

3
2

/
5

8
W

he
n

cr
ea

ti
ng

a
ne

w
re

pa
ir

ta
sk

,u
se

rs
cl

ai
m

ed
th

at
th

ey
w

er
e

lo
ok

in
g

fo
r

a
da

te
bu

t
co

ul
d

no
t

fin
d

an
y

3
1

/
5

9
U

se
r

ca
nn

ot
im

m
ed

ia
te

ly
sp

ot
th

e
in

cr
ea

se
d

pr
ob

ab
il-

it
y

0
1

/
5

1
0

U
se

rs
ha

ve
pr

ob
le

m
s

us
in

g
th

e
tim

e
pi

ck
er

to
in

se
rt

a
sp

ec
ifi

c
ti

m
e

0
1

/
5

Ta
bl

e
6

.2
.:

Id
en

ti
fie

d
us

ab
ili

ty
is

su
es

126

7. Conclusions and Future Work

The main purpose of this work was to design and evaluate an interface for
model-based diagnosis applications. Since industrial model-based applications
are sparse and research in terms of interface design is missing, knowledge-
based systems and model-based research tools were investigated and their
user interfaces analyzed. Based on the results of the interface inspections, a
list of best practices for a new GUI design was created. In order to validate
the usability of an interface, several usability inspection and testing methods
were presented.
Diagnosis applications can be used in various different domains. Therefore,
a scenario for the vast majority of users was developed. The Smart Home
domain was viable to develop an interface supporting the needs of novice,
casual, and expert users. Given the scenario and the target user groups, a
general interface for a model-based diagnosis application was created with
respect to the previously defined best practices. The performed Thinking aloud
test revealed several usability issues and the continuous comments from the
users during the test were used to identify the interface design errors. The
evaluation of the SUS questionnaire showed that the interface is practicable
for all three user groups.
The results of the usability study confirmed, that the designed user interface
is suitable even for users with less experience in digital technologies. The
participants of the test pointed out that they liked the design, layout, and
interaction speed with the application. With an overall score of 86.4, the
evaluation of the SUS questionnaire could confirm the positive feedback.
Novice users rated the interface with 75.5, casual users with 93.4 and expert
users with 86.1 points, which are all above the average score of 68. Therefore,
the general interface proposal can be used as foundation for the successful
integration of MBD applications in industrial environments.

In collaboration with Uptime Engineering Gmbh, a prototype for wind turbine

127

7. Conclusions and Future Work

troubleshooting was created. During several meetings with all stakeholders,
the requirements for this application were identified and the design refined
after each iteration. Since the diagnosis system should support the service
technicians, their current workflow was analyzed and taken into account.
Although the service technicians were involved in the development process
of the interface, the performed Thinking aloud test uncovered several usability
issues. During the interview session, all users mentioned their skepticism on
the diagnosis system as they had had negative experience with such systems
in the past. They pointed out that the system will need to provide valid
diagnosis results during the pilot phase under real working conditions in
order to be useful. The results of the SUS questionnaire showed, that the mean
SUS score of 71.5 points is slightly above the average value. The user success
rate shows, that on average 77.7% of the tasks could be performed successfully.
The calculated error rate underlines the importance of usability testing. Once
the identified usability issues are resolved, the provided data can be used to
benchmark the impact of the redesign.

The general interface presented in this work can be used as foundation for di-
agnosis applications for different domains. However, opportunities for future
work exist. In certain scenarios, a web-application might not be practicable
since a connection to a server is required. Depending on the target device,
alternative solutions (e.g. native applications for mobile devices or desktop
programs) can be built based on the interface specifications. Since style guide-
lines of other platforms might conflict with the presented design, an additional
usability test will be required. Although the diagnosis engine is capable of
determining multiple fault diagnoses, only single fault solutions were taken
into account. If this additional feature is needed, a reevaluation of the the
interface is required.
The interface prototype for wind turbine maintenance is currently imple-
mented and integrated into Uptime Engineering’s condition monitoring suite.
Since the service technicians were very skeptical about the prototype, the
feedback of the users during the pilot stage needs to be evaluated to confirm
the users’ acceptance.

Not covered within the interface proposal is the representation of the root-
cause effect chain, which, for example, provides a possibility for the users
to understand how the system computes the diagnoses. This could be an
important factor for users to trust the results of the system and therefore

128

7. Conclusions and Future Work

increase user acceptance. In order to ensure the correctness of the knowledge
base, there is currently no possibility for users to update the abductive model.
Additional data could be used to refine and improve the diagnosis process.
Also, if a failure remains in the system after a repair task, the diagnosis needs
to be repeated and the failure report should be updated accordingly.

129

Appendix

130

Appendix A.

General Diagnosis Interface Study

A.1. Background Questionnaire for the General
Diagnosis Interface Study

131

Date: _______________ Time: _______________ Test Nr.: __________ User Nr.: __________

Background questionnaire
Thank you for participating this usability test.
Please answer the following questions:

1. General Information:

Gender: [] male [] female

Age: ___________________________________

Job: ___________________________________

Education: [] None [] Apprenticeship [] Master [] High school [] Studies

else __________

2. Sight Impairment

1. Do you use a sight aid when working on a computer?

[] None [] Glasses [] Contact lenses [] else __________

2. Are you color blind?

[] No [] Yes, namely __________

3. Experience with computers:

1. How long have you been using personal computers?

_____ Years

2. In a typical week, how many hours do you spend on a computer?

________ hours

3. Which computer programs do you use at work?

__

4. Which kind of personal computer do you use most?

[] Microsoft Windows [] Apple Macintosh [] Unix [] else __________

5. How many hours do you use mobile devices (Smartphone, PDA, eBook-Reader, ...)?

_____ hours

6. What kind of smartphone do you use?

[] Android Phone [] iPhone [] Windows Phone [] else __________

7. How many apps do you have installed on your smartphone?

[] < 5 [] 5-10 [] 11-15 [] > 15

4. Web Experience

1. How many hours per week do you use the World Wide Web??

________ hours

2. Which kind of device do you use most often to access the World Wide Web?

[] Desktop PC [] Laptop [] Tablet
[] Smartphone [] else __________

3. Which web browser do you normally use?

[] Microsoft Internet Explorer [] Firefox [] Safari
[] Chrome [] Opera [] else __________

6. Experience with Usability tests

1. Have you ever participated in a usability study?

[] participant [] member of test team

If so, what kind of study did you participate in?

[] Thinking Aloud [] Formal Experiment [] else __________

Appendix A. General Diagnosis Interface Study

Highest education qualification
Novice users Casual users Expert users

Compulsory education 1 0 0

Apprenticeship 2 1 0

A Levels 0 1 3

Specialized secondary school 0 2 0

University degree 2 4 4

Current job
Student 0 1 6

Employee 1 6 0

Entrepreneur 2 1 0

Retiree 2 0 0

Sight Impairment
Glasses 3 3 4

Contact lenses 0 2 1

None 2 3 2

PC experience (in years)
< 10 1 0 0

10 - 15 1 3 1

16 - 20 1 3 3

> 20 2 0 2

PC usage per week (in hours)
< 10 3 2 0

10 - 15 1 3 0

16 - 20 0 0 0

> 20 1 3 7

Applications used at work (multiple selections)
Browser 3 4 3

Office 2 6 3

Job specific software 2 2 7

PC operating system
Windows 5 7 1

Apple 0 1 2

Unix 0 0 4

Smartphone usage per week (in hours)

134

Appendix A. General Diagnosis Interface Study

< 10 4 1 3

10 - 15 0 5 3

16 - 20 0 1 0

> 20 1 1 1

Smartphone
Android 5 6 5

iPhone 0 2 2

Number of installed apps
< 5 4 0 0

5 - 10 1 3 2

11 - 15 1 0 0

> 15 0 5 5

Internet usage per week (in hours)
< 10 4 3 0

11 - 15 1 4 0

16 - 20 0 1 6

> 20 0 0 1

Preferred device for surfing the web
Laptop 1 2 5

Desktop 3 1 2

Smartphone 1 5 0

Used browser (multiple selections)
Chrome 0 4 4

Firefox 4 2 4

Opera 0 1 0

Safari 0 1 1

Internet Explorer 1 0 0

Experience with usability tests
Participant 0 2 0

Member of test team 0 0 5

None 5 6 2

Table A.1.: Results of the background questionnaire

135

Appendix A. General Diagnosis Interface Study

A.2. Tasks from the Evaluation of the General
Interface

Task 0
Starten Sie das Programm und verschaffen Sie sich einen Überblick über die
vorhandenen Funktionen.
Task 1a
Schalten Sie Lampe 1 ein. Sollte ein Problem auftreten, starten Sie bitte das
Diagnose-System und diagnostizieren Sie das beobachtete Problem.
Task 1b
Sie wollen das Problem beheben. Finden Sie Informationen über die Ursache
und Optionen zur Behebung des Fehlers.
Task 2a
Schalten Sie Lampe 2 ein. Sollte ein Problem auftreten, starten Sie bitte das
Diagnose-System und diagnostizieren Sie das beobachtete Problem.
Task 2b
Verbessern Sie die Diagnose mittels Beobachtungen, bis Sie ein zufriedenstel-
lendes Ergebnis erzielen.
Task 3a
Schalten Sie Lampe 1 ein und ändern Sie die Farbe. Sollte ein Problem
auftreten, starten Sie bitte das Diagnose-System und diagnostizieren Sie das
beobachtete Problem.
Task 3b
Verbessern Sie die Diagnose mittels Beobachtungen, bis Sie ein zufriedenstel-
lendes Ergebnis erzielen.
Task 4
Senden Sie einen Bericht an den Hersteller des Lampensystems, um den Aus-
tausch des defekten Gerätes zu veranlassen. Fügen Sie den diagnostizierten
Fehler in den Bericht ein. Fügen Sie ein Bild der Base in den Bericht ein, um
die Bearbeitung in der Servicestelle des Herstellers zu beschleunigen.
Task 5
Interface Vergleich

136

Appendix B.

Wind Turbine Diagnosis Interface
Study

B.1. Background Questionnaire for the Wind Turbine
Diagnosis Interface Study

137

Datum: _______________ Uhrzeit: _______________ Test Nr.: __________ User Nr.: __________

Hintergrundbefragung
Danke, dass Sie sich als Freiwilliger für unseren Test zur Verfügung stellen.
Bitte beantworten Sie die folgenden Fragen:

1. Angaben zur Person

Geschlecht: [] männlich [] weiblich

Alter: ___________________________________

Beruf: ___________________________________

Abgeschlossene Lehre: ___________________________________

Bei Verbund seit: ___________________________________

2. Sehvermögen

1. Verwenden Sie eine Sehhilfe bei der Arbeit am Computer?

[] Keine [] Brille [] Kontaktlinsen [] sonstige __________

2. Sind Sie farbenblind?

[] Nein [] Ja, und zwar __________

3. Umgang mit Computern

1. Wie lange benutzen Sie bereits einen Personal Computer?

_____ Jahre

2.Wie viele Stunden pro Woche verwenden Sie einen Personal Computer?

________ Stunden

3. Welche Computer-Programme verwenden Sie regelmäßig am Arbeitsplatz?

__

4. Welches Betriebssystem verwenden Sie am häufigsten?

[] Microsoft Windows [] Apple Macintosh [] Unix [] sonstige __________

5. Wie viele Stunden pro Woche verwenden Sie mobile Geräte (Smartphone, PDA, eBook-Reader, ...)?

_____ Stunden

6. Welches Smartphone verwenden Sie?

[] Android Phone [] iPhone [] Windows Phone [] sonstiges__________

7. Wie viele Apps haben Sie auf Ihrem Smartphone installiert?

[] < 5 [] 5-10 [] 11-15 [] > 15

4. Umgang mit dem Internet und Web

1. Wie viele Stunden pro Woche benutzen Sie das World Wide Web?

________ Stunden

2. Welches Gerät verwenden Sie am häufigsten zum Surfen?

[] Desktop PC [] Laptop [] Tablet
[] Smartphone [] sonstiges__________

3. Welchen Web-Browser verwenden Sie normalerweise?

[] Microsoft Internet Explorer [] Firefox [] Safari
[] Chrome [] Opera [] sonstiges __________

6. Erfahrung mit Usability Tests

1. Haben Sie schon an einer Usability Studie teilgenommen?

[] als Testperson [] als Mitglied des Testteams

Wenn ja, was war das für eine Studie?

[] Thinking Aloud [] Formal Experiment [] sonstiges __________

Appendix B. Wind Turbine Diagnosis Interface Study

U
se

r
A

U
se

r
B

U
se

r
C

U
se

r
D

U
se

r
E

G
en

de
r

m
m

m
m

m
A

ge
3
2

2
6

3
6

4
2

3
2

Jo
b

w
in

d
tu

rb
in

e
se

rv
ic

e
te

ch
ni

ci
an

s
Ed

uc
at

io
n

A
pp

re
nt

ic
es

hi
p

El
ec

tr
.e

ng
in

ee
r

M
as

te
r’

s
de

gr
ee

Si
gh

t
ai

d
no

gl
as

se
s

no
no

no
C

ol
or

bl
in

dn
es

s
no

no
re

d/
gr

ee
n

no
no

PC
ex

pe
ri

en
ce

(y
ea

rs
)

1
5

1
2

1
5

1
6

2
0

PC
us

ag
e

pe
r

w
ee

k
(h

ou
rs

)
1
5

1
2

2
0

2
4

3
0

A
pp

lic
at

io
ns

us
ed

O
ffi

ce
,H

ar
ve

st
,I

nt
er

ne
t

Ex
pl

or
er

PC
W

in
do

w
s

W
ee

kl
y

m
ob

ile
us

ag
e

(h
ou

rs
)

2
0

2
4
0

1
0

8

M
ob

ile
iP

ho
ne

In
st

al
le

d
ap

ps
<

5
5

-
1
0

<
5

5
-

1
0

<
5

W
ee

kl
y

in
te

rn
et

us
ag

e
(h

ou
rs

)
1
0

6
1
0

8
4

D
ev

ic
e

us
ed

fo
r

su
rfi

ng
La

pt
op

La
pt

op
D

es
kt

op
Sm

ar
tp

ho
ne

La
pt

op
Pr

ef
er

re
d

br
ow

se
r

IE
C

hr
om

e
IE

Sa
fa

ri
IE

Ta
bl

e
B.

1
.:

R
es

ul
ts

of
th

e
ba

ck
gr

ou
nd

qu
es

ti
on

na
ir

e

140

Appendix B. Wind Turbine Diagnosis Interface Study

B.2. Tasks from the Evaluation of Wind Turbine
Fault Diagnosis Interface

B.2.1. Operations Center Tasks

Task 1: Sie erhalten einen Anruf von ihrem Vorgesetzten, der sich gerade
im Urlaub in der Karibik befindet. Er teilt Ihnen mit, dass er sich gerade
mit seinem Smartphone in der Hotel-Lobby befindet und über die „Mobile
Ansicht“ von Uptime Harvest bemerkt hat, dass eine Diagnose für Turbinen-
Instanz 100111 aus der Gruppe „Uptime 1“ berechnet wurde.

• Navigieren Sie zu dem Diagnosebereich.

Task 2: Erstellen Sie einen Störungsbehebungsauftrag für die Instanz 100111.

• Der Auftrag soll so bald wie möglich von den Service Technikern A, B
und C durchgeführt werden.
• Arbeitsverantwortlicher soll Service Techniker B sein.

B.2.2. Mobile Application Tasks

Task 1: Sie haben einen neuen Störungsbehebungsauftrag bekommen. In der
Übersicht sehen Sie die verfügbaren Aufträge.

• Öffnen Sie das Menü und verschaffen Sie sich einen Überblick über die
Menüpunkte.

Task 2: Navigieren Sie zum Vorbereitungs-Bereich und bereiten Sie die Er-
satzteile und Werkzeuge vor. Bestätigen Sie die Vorbereitung von Ersatzteilen
und Werkzeugen.

Task 3: Sie befinden sich vor der Windkraftanlage 100111. Bevor Sie mit
der Arbeit beginnen, muss die Durchführungserlaubnis vom Anlagenverant-
wortlichen eingeholt werden.

Task 4: Der Alarm Code der Turbine stimmt mit dem Alarm Code der Auf-
tragsbeschreibung überein. Bestätigen Sie den Alarm Code.

141

Appendix B. Wind Turbine Diagnosis Interface Study

Task 5: Navigieren sie zum Diagnosebereich und verschaffen Sie sich einen
Überblick über die möglichen Fehler.

Task 6: Sie machen folgende Beobachtungen:

• Ausgangsleistung am Konverter weicht ab
• Keine Bauteilbeschädigungen erkennbar
• Keine Brandmale an Bauteilen erkennbar

Geben Sie die oben angeführten Beobachtungen ein.

• Aktualisieren Sie die Diagnose-Ergebnisse
• Bei welchem Fehler konnte die Wahrscheinlichkeit erhöht werden?
• Wie würden Sie vorgehen, um den Fehler weiter einzugrenzen?

Task 7: Sie konnten eine thermo-mechanische Ermüdung als Fehler identi-
fizieren und die zugehörige IGBT-Platine mit Seriennummer 313125 wurde
getauscht.

• Navigieren Sie zum Report-Bereich.
• Fügen Sie den diagnostizierten Fehler in den Report ein.
• Fügen Sie die durchgeführte Störungsbehebung in den Report ein.
• Geben Sie die Seriennummer des eingebauten Moduls ein.
• Geben Sie die Arbeitszeit ein.
• Wie könnte ein zusätzliches Bild eingefügt werden?
• Wie könnten Sie Text in den Report eingeben?

142

Appendix C.

SUS Questionnaire

143

Fragebogen zur System-Gebrauchstauglichkeit
1. Ich denke, dass ich das System gerne häufig benutzen würde.

Stimme
überhaupt nicht zu

1

2

3

4

Stimme
voll zu

5

2. Ich fand das System unnötig komplex.
Stimme

überhaupt nicht zu
1

2

3

4

Stimme
voll zu

5

3. Ich fand das System einfach zu benutzen.
Stimme

überhaupt nicht zu
1

2

3

4

Stimme
voll zu

5

4. Ich glaube, ich würde die Hilfe einer technisch versierten Person benötigen, um das System benutzen zu
können.

Stimme
überhaupt nicht zu

1

2

3

4

Stimme
voll zu

5

5. Ich fand, die verschiedenen Funktionen in diesem System waren gut integriert.
Stimme

überhaupt nicht zu
1

2

3

4

Stimme
voll zu

5

6. Ich denke, das System enthielt zu viele Inkonsistenzen.
Stimme

überhaupt nicht zu
1

2

3

4

Stimme
voll zu

5

7. Ich kann mir vorstellen, dass die meisten Menschen den Umgang mit diesem System sehr schnell lernen.
Stimme

überhaupt nicht zu
1

2

3

4

Stimme
voll zu

5

8. Ich fand das System sehr umständlich zu nutzen.
Stimme

überhaupt nicht zu
1

2

3

4

Stimme
voll zu

5

9. Ich fühlte mich bei der Benutzung des Systems sehr sicher.
Stimme

überhaupt nicht zu
1

2

3

4

Stimme
voll zu

5

10. Ich musste eine Menge lernen, bevor ich anfangen konnte das System zu verwenden.
Stimme

überhaupt nicht zu
1

2

3

4

Stimme
voll zu

5

Bibliography

[1] Keith Andrews. Human-Computer Interaction, Course notes. 2017 (cit. on
pp. 52, 59–62, 82, 111).

[2] Aaron Bangor, Philip Kortum, and James Miller. “Determining what
individual SUS scores mean: Adding an adjective rating scale.” In:
Journal of usability studies 4.3 (2009), pp. 114–123 (cit. on pp. 63, 98, 123).

[3] Carol M Barnum. Usability testing essentials: ready, set... test! Elsevier,
2010 (cit. on p. 79).

[4] Randolph G Bias. “The pluralistic usability walkthrough: coordinated
empathies.” In: Usability inspection methods. John Wiley & Sons, Inc. 1994,
pp. 63–76 (cit. on p. 56).

[5] John Brooke et al. “SUS-A quick and dirty usability scale.” In: Usability
evaluation in industry 189.194 (1996), pp. 4–7 (cit. on p. 62).

[6] M-O Cordier, Philippe Dague, François Lévy, Jacky Montmain, Marcel
Staroswiecki, and Louise Travé-Massuyès. “Conflicts versus analytical
redundancy relations: a comparative analysis of the model based di-
agnosis approach from the artificial intelligence and automatic control
perspectives.” In: IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics) 34.5 (2004), pp. 2163–2177 (cit. on pp. 4, 5).

[7] Beth Crandall, Gary A Klein, and Robert R Hoffman. Working minds: A
practitioner’s guide to cognitive task analysis. Mit Press, 2006 (cit. on p. 25).

[8] Fred D Davis. “A technology acceptance model for empirically testing
new end-user information systems: Theory and results.” PhD thesis.
Massachusetts Institute of Technology, 1985 (cit. on p. 20).

[9] Fred D Davis. “Perceived usefulness, perceived ease of use, and user
acceptance of information technology.” In: MIS quarterly (1989), pp. 319–
340 (cit. on pp. 1, 23, 27, 104).

145

Bibliography

[10] Johan De Kleer. “An assumption-based TMS.” In: Artificial intelligence
28.2 (1986), pp. 127–162 (cit. on p. 39).

[11] Johan De Kleer. “Problem solving with the ATMS.” In: Artificial Intelli-
gence 28.2 (1986), pp. 197–224 (cit. on p. 39).

[12] Johan De Kleer and Brian C Williams. “Diagnosing multiple faults.” In:
Artificial intelligence 32.1 (1987), pp. 97–130 (cit. on p. 6).

[13] H Elmqvist, F Boudaud, J Broenink, D Brück, T Ernst, P Fritzson, A
Jeandel, K Juslin, M Klose, SE Mattsson, et al. “Modelica - A unified
object-oriented language for physical systems modeling.” In: Tutorial
and Rationale (1999) (cit. on p. 30).

[14] Martina Freiberg, Albrecht Striffler, and Frank Puppe. “Extensible pro-
totyping for pragmatic engineering of knowledge-based systems.” In:
Expert Systems with Applications 39.11 (2012), pp. 10177–10190 (cit. on
p. 1).

[15] Gerhard Friedrich, Georg Gottlob, and Wolfgang Nejdl. “Hypothesis
classification, abductive diagnosis and therapy.” In: Expert Systems in
Engineering Principles and Applications (1990), pp. 69–78 (cit. on p. 10).

[16] Brad Frost. Creating a Mobile-First Responsive Web Design. Apr. 2012. url:
https://www.html5rocks.com/en/mobile/responsivedesign/ (cit. on
p. 72).

[17] Amir Ghahrai. Iterative Model. Nov. 2008. url: https://www.testingexcellence.
com/iterative-model/ (cit. on p. 103).

[18] Dale L Goodhue and Ronald L Thompson. “Task-technology fit and
individual performance.” In: MIS quarterly (1995), pp. 213–236 (cit. on
p. 24).

[19] Georg Gottlob, Thomas Frühwirth, and Werner Horn. Expertensysteme.
Springer Vienna, 1990 (cit. on pp. 1, 14).

[20] Galen Gruman. Heed these 10 expert tips for mobile app design. Oct. 2013.
url: https://www.infoworld.com/article/2612190/mobile-apps/
heed-these-10-expert-tips-for-mobile-app-design.html (cit. on
p. 108).

[21] T Guckenbiehl, L Hotz, and P Struss. “INDIA - Intelligente Diagnose in
der industriellen Anwendung.” In: (2000) (cit. on p. 13).

146

https://www.html5rocks.com/en/mobile/responsivedesign/
https://www.testingexcellence.com/iterative-model/
https://www.testingexcellence.com/iterative-model/
https://www.infoworld.com/article/2612190/mobile-apps/heed-these-10-expert-tips-for-mobile-app-design.html
https://www.infoworld.com/article/2612190/mobile-apps/heed-these-10-expert-tips-for-mobile-app-design.html

Bibliography

[22] O Isaksson. “Model-based diagnosis of a satellite electrical power system
with RODON.” PhD thesis. Thesis-Linköpings University, 2009 (cit. on
pp. 32, 34, 36, 37).

[23] W Iso. “9241-11. Ergonomic requirements for office work with visual
display terminals (VDTs).” In: The international organization for standard-
ization 45 (1998) (cit. on p. 52).

[24] Michael Jendryschik. Mobile Usability – Gebrauchstauglichkeit für unter-
wegs. Dec. 2011. url: http://webkrauts.de/artikel/2011/mobile-
usability-gebrauchstauglichkeit-fuer-unterwegs (cit. on p. 63).

[25] Annette Kluge and Anatoli Termer. “Human-centered design (HCD)
of a fault-finding application for mobile devices and its impact on the
reduction of time in fault diagnosis in the manufacturing industry.” In:
Applied Ergonomics 59 (2017), pp. 170–181 (cit. on pp. 23, 26).

[26] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M
Henne. “Controlled experiments on the web: survey and practical
guide.” In: Data mining and knowledge discovery 18.1 (2009), pp. 140–
181 (cit. on p. 62).

[27] Roxane Koitz, Johannes Lüftenegger, and Franz Wotawa. “Model-Based
Diagnosis in Practice: Interaction Design of an Integrated Diagnosis
Application for Industrial Wind Turbines.” In: International Conference on
Industrial, Engineering and Other Applications of Applied Intelligent Systems.
Springer. 2017, pp. 440–445 (cit. on pp. 66, 107, 108).

[28] Roxane Koitz and Franz Wotawa. “From theory to practice: Model-
based diagnosis in industrial applications.” In: Proceedings of the annual
conference of the prognostics and health management society. 2015 (cit. on
p. 65).

[29] Roxane Koitz, Franz Wotawa, Johannes Lüftenegger, Christopher S.
Gray, and Franz Langmayr. “Wind Turbine Fault Localization: A Practi-
cal Application of Model-Based Diagnosis.” In: Diagnosis and Diagnos-
ability of Hybrid Dynamic Systems: Challenges, Methods and Applications.
Springer. 2017 (cit. on pp. 9–11, 109, 119, 120, 122).

[30] Shu-Hsien Liao. “Expert system methodologies and applications - a
decade review from 1995 to 2004.” In: Expert systems with applications
28.1 (2005), pp. 93–103 (cit. on p. 14).

147

http://webkrauts.de/artikel/2011/mobile-usability-gebrauchstauglichkeit-fuer-unterwegs
http://webkrauts.de/artikel/2011/mobile-usability-gebrauchstauglichkeit-fuer-unterwegs

Bibliography

[31] Karin Lunde. “Object-oriented modeling in model-based diagnosis.” In:
Proceedings of Modelica Workshop, Lund, Sweden. 2000, pp. 111–118 (cit. on
pp. 30, 31).

[32] Karin Lunde, Rüdiger Lunde, and Burkhard Münker. “Model-based
failure analysis with RODON.” In: Proceedings of the 2006 conference
on ECAI 2006: 17th European Conference on Artificial Intelligence August
29–September 1, 2006, Riva del Garda, Italy. IOS Press. 2006, pp. 647–651

(cit. on p. 31).

[33] Heiko Milde, Thomas Guckenbiehl, Andreas Malik, Bernd Neumann,
and Peter Struss. “Integrating model-based diagnosis techniques into
current work processes–three case studies from the INDIA project.” In:
AI Communications 13.2 (2000), pp. 99–123 (cit. on p. 13).

[34] Jakob Nielsen. “Iterative user-interface design.” In: Computer 26.11

(1993), pp. 32–41 (cit. on pp. 102, 103).

[35] Jakob Nielsen. “Severity ratings for usability problems.” In: Papers and
Essays 54 (1995), pp. 1–2 (cit. on pp. 88, 116).

[36] Jakob Nielsen. “Success rate: the simplest usability metric.” In: Jakob
Nielsen’s Alertbox 18 (2001) (cit. on pp. 97, 98, 123).

[37] Jakob Nielsen. Usability engineering. Elsevier, 1994 (cit. on pp. 52, 80).

[38] Jakob Nielsen. “Usability inspection methods.” In: Conference companion
on Human factors in computing systems. ACM. 1995, pp. 377–378 (cit. on
pp. 53, 62).

[39] Jakob Nielsen. Usability Metrics. Jan. 2001. url: https://www.nngroup.
com/articles/usability-metrics/ (cit. on p. 123).

[40] Jakob Nielsen and Raluca Budiu. Mobile usability. MITP-Verlags GmbH
& Co. KG, 2013 (cit. on p. 108).

[41] Jakob Nielsen and Robert L. Mack. Usability Inspection Methods. John
Wiley & Sons, 1994 (cit. on pp. 53, 54).

[42] Jakob Nielsen and Thomas K. Landauer. “A Mathematical Model of
the Finding of Usability Problems.” In: Proceedings of the INTERACT ’93
and CHI ’93 Conference on Human Factors in Computing Systems. CHI ’93.
Amsterdam, The Netherlands: ACM, 1993, pp. 206–213 (cit. on pp. 59,
80).

148

https://www.nngroup.com/articles/usability-metrics/
https://www.nngroup.com/articles/usability-metrics/

Bibliography

[43] Jakob Nielsen and Rolf Molich. “Heuristic evaluation of user interfaces.”
In: Proceedings of the SIGCHI conference on Human factors in computing
systems. ACM. 1990, pp. 249–256 (cit. on p. 54).

[44] Divya Mishra Deepak Painuli Nirvikar. “Rule Based Expert System for
Medical Diagnosis - A Review.” In: International Journal of Engineering
Technology, Management and Applied Sciences (2016) (cit. on p. 14).

[45] Jukka K Nurminen, Olli Karonen, and Kimmo Hätönen. “What makes
expert systems survive over 10 years-empirical evaluation of several
engineering applications.” In: Expert Systems with Applications 24.2 (2003),
pp. 199–211 (cit. on p. 1).

[46] Erica L Olmsted-Hawala, Elizabeth D Murphy, Sam Hawala, and Kath-
leen T Ashenfelter. “Think-aloud protocols: a comparison of three think-
aloud protocols for use in testing data-dissemination web sites for
usability.” In: Proceedings of the SIGCHI conference on human factors in
computing systems. ACM. 2010, pp. 2381–2390 (cit. on p. 79).

[47] Victor C Osamor, Ambrose A Azeta, and Oluseyi O Ajulo. “Tuberculosis-
Diagnostic Expert System: An architecture for translating patients in-
formation from the web for use in tuberculosis diagnosis.” In: Health
Informatics Journal 20.4 (2014). PMID: 24448278, pp. 275–287 (cit. on
pp. 14–17).

[48] Claudia Picardi. A Short Tutorial on Model-Based Diagnosis (cit. on pp. 6,
7, 9).

[49] Ingo Pill, Gerald Steinbauer, and Franz Wotawa. “A practical approach
for the online diagnosis of industrial transportation systems.” In: IFAC
Proceedings Volumes 42.8 (2009), pp. 1318–1323 (cit. on pp. 48, 50).

[50] Scott Poll, David L Iverson, and Ann Patterson-Hine. “Characterization
of model-based reasoning strategies for use in IVHM architectures.”
In: AeroSense 2003. International Society for Optics and Photonics. 2003,
pp. 94–105 (cit. on p. 30).

[51] Belarmino Pulido, Carlos J Alonso-González, Anibal Bregon, Alberto
Hernández, and David Rubio. “DxPCs: A software tool for consistency-
based diagnosis of dynamic systems using Possible Conflicts.” In: 25st
Annual Workshop Proceedings, DX-14. 2014 (cit. on pp. 43–47).

149

Bibliography

[52] R. Reiter. “A theory of diagnosis from first principles.” In: Artificial
Intelligence 32.1 (Apr. 1987), pp. 57–95 (cit. on pp. 6, 39, 48).

[53] Sirpa Riihiaho. “The pluralistic usability walk-through method.” In:
Ergonomics in Design 10.3 (2002), pp. 23–27 (cit. on pp. 56, 57).

[54] Jeffrey Rubin and Dana Chisnell. Handbook of usability testing: howto plan,
design, and conduct effective tests. John Wiley & Sons, 2008 (cit. on pp. 58,
62).

[55] Bernard Rummel. System Usability Scale – jetzt auch auf Deutsch. Jan.
2015. url: https://experience.sap.com/skillup/system-usability-
scale-jetzt-auch-auf-deutsch/ (cit. on p. 113).

[56] Jeff Sauro. A Practical Guide to Measuring Usability: 72 Answers to the Most
Commom Questions about Quantifying the Usability of Websites and Software.
Measuring Usability LLC, 2010 (cit. on p. 98).

[57] Jeff Sauro. A practical guide to the system usability scale: Background, bench-
marks & best practices. Measuring Usability LLC, 2011 (cit. on p. 63).

[58] Jeff Sauro and Erika Kindlund. “A method to standardize usability
metrics into a single score.” In: Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM. 2005, pp. 401–409 (cit. on
p. 16).

[59] Edward H Shortliffe, Randall Davis, Stanton G Axline, Bruce G Buchanan,
C Cordell Green, and Stanley N Cohen. “Computer-based consultations
in clinical therapeutics: explanation and rule acquisition capabilities
of the MYCIN system.” In: Computers and biomedical research 8.4 (1975),
pp. 303–320 (cit. on p. 1).

[60] Fajar Suryani, Izzati Muhimmah, and Sri Kusumadewi. “Preferred
model of dialog style in expert system of physical examination of skin
disease.” In: Science in Information Technology (ICSITech), 2015 International
Conference on. IEEE. 2015, pp. 247–252 (cit. on pp. 18, 19, 21, 22).

[61] Louise Travé-Massuyès and Robert Milne. “Gaps between research
and industry related to model based and qualitative reasoning.” In:
Proceedings of the European workshop on Model based systems and qualitative
reasoning. 1998, pp. 54–57 (cit. on p. 13).

150

https://experience.sap.com/skillup/system-usability-scale-jetzt-auch-auf-deutsch/
https://experience.sap.com/skillup/system-usability-scale-jetzt-auch-auf-deutsch/

Bibliography

[62] Ivo Weevers. App Design Guidelines For High-Performance Mobile User
Experiences. July 2011. url: https://www.smashingmagazine.com/2011/
07/seven-guidelines-for-designing-high-performance-mobile-
user-experiences/ (cit. on p. 108).

[63] Cathleen Wharton, John Rieman, Clayton Lewis, and Peter Polson. “The
cognitive walkthrough method: A practitioner’s guide.” In: Usability
inspection methods. John Wiley & Sons, Inc. 1994, pp. 105–140 (cit. on
p. 56).

[64] Kathryn Whitenton. Flat vs. Deep Website Hierarchies. Nov. 2013. url:
https://www.nngroup.com/articles/flat-vs-deep-hierarchy/ (cit.
on p. 110).

[65] Franz Wotawa. “Failure Mode and Effect Analysis for Abductive Diag-
nosis.” In: DARe ECAI. 2014 (cit. on p. 65).

[66] Franz Wotawa. Non-monotonic Reasoning in Artificial Intelligence. 2010

(cit. on p. 39).

[67] Franz Wotawa. The Logic Reasoning System (cit. on pp. 7, 8, 38, 39).

[68] Franz Wotawa, Ignasi Rodriguez-Roda, and Joaquim Comas. “Abduc-
tive Reasoning in Environmental Decision Support Systems.” In: AIAI
workshops. 2009, pp. 270–279 (cit. on p. 10).

151

https://www.smashingmagazine.com/2011/07/seven-guidelines-for-designing-high-performance-mobile-user-experiences/
https://www.smashingmagazine.com/2011/07/seven-guidelines-for-designing-high-performance-mobile-user-experiences/
https://www.smashingmagazine.com/2011/07/seven-guidelines-for-designing-high-performance-mobile-user-experiences/
https://www.nngroup.com/articles/flat-vs-deep-hierarchy/

