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Abstract

The arterial wall such as many soft biological tissues can be seen as a fiber-reinforced
composite material, consisting of collagen fibers embedded in an elastic matrix. Espe-
cially during the pathogenesis of diseases such as the development of abdominal aortic
aneurysms (AAA), changes in the structural components have been shown to play a sig-
nificant role. Hence, there is a pressing need to develop a more profound understanding of
the re-modeling processes.

Towards a better understanding of the pathogenesis of AAA preliminary studies of our
group have first targeted the collagen architecture of healthy abdominal aortas (AA). These
studies suggested a higher distribution of collagen fibers in-plane (the circumferential-axial
plane) than out-of-plane (the radial-axial plane) in AA. Based on these findings, a novel,
non-symmetric collagen fiber dispersion model was introduced, considering both in- and
out-of-plane distributions separately using a bivariate von Mises distribution and utilizing
two independent dispersion parameters κip and κop.

In a subsequent study AA walls and AAA samples were systematically compared regard-
ing their mechanics and structure. To this end, biaxial tensile tests and second-harmonic
generation (SHG) imaging were used, respectively. Significant differences in both me-
chanics and structure were found between AA and AAA samples. AA walls showed three
distinct layers, whereas this typical layered structure was mostly lost in AAA samples. The
out-of-plane dispersion in healthy AAs was significantly lower compared to their diseased
counterparts, which showed a significant out-of-plane dispersion. Additionally, adipocytes
were found in the outer side of AAA walls. The mechanical data were fitted utilizing the
proposed non-symmetric dispersion model. The structural parameters were obtained from
SHG images and subsequently the mechanical data were obtained by fitting to the data
from the biaxial tension tests. Mechanical parameters of AAAs were very heterogeneous
and significantly different compared to AA.

The third study utilized the novel data set of three structural and three mechanical param-
eters for the three AA layers and AAA walls and studied their influence on the mechanical
behavior. Thee different fiber dispersions were studied using the finite element analysis
program FEAP, revealing significant differences of stress distributions and magnitudes,
and hence highlighting the need to include these differences to gain meaningful stress pre-
dictions.

The last study in this thesis drew on the findings of the experimental study, this time ap-
plying not only mechanical tests and SHG imaging but also histology. It was possible to
define three stages of disease progression based on mechanical data and find significant
differences in structural and histological data between these stages. The study resulted in
a novel AAA pathogenesis hypothesis derived directly from the systematic comparison of
the gained data.





Zusammenfassung

Die Arterienwand kann, so wie viele biologische Weichgewebe, als ein faserverstärktes
Kompositmaterial gesehen werden. Besonders während der Pathogenese von Krankheiten,
wie zum Beispiel der Entwicklung eines Aortenaneurysmas (AAA), spielen Änderungen
in den Strukturkomponenten eine zentrale Rolle. Aus diesen Gründen besteht die drin-
gende Notwendigkeit ein tieferes Verständnis der Remodellierungsprozesse von AAAs zu
entwickeln.

Um ein besseres Verständnis der Pathogenese von AAAs zu entwickeln, haben voraus-
gehende Untersuchungen die Kollagenstruktur von gesunden abdominalen Aorten (AA)
analysiert. Diese Studien erkannten eine höhere Verteilung der Kollagenfasern in der Ebe-
ne (zirkumferentiell – axial) als aus der Ebene heraus (radial – axial). Basierend auf diesen
Ergebnissen wurde ein neues Modell entwickelt, welches die nicht-symmetrische Kolla-
genfaserverteilung darstellt und auf einer bivariaten von Mises Verteilung basiert.

In einer darauffolgenden Studie wurden AA und AAA systematisch auf Unterschiede in
ihrer Mechanik (durch biaxiale Zugversuche) und Struktur (durch second-harmonic gene-
ration (SHG) Mikroskopie) verglichen. Signifikante Unterschiede wurden gefunden. AA
zeigten drei unterscheidbare Schichten, während in AAA keine solche Differenzierung
sichtbar war. Auch die Verteilung der Kollagenfasern aus der Ebene heraus war in AAA
deutlich höher als in AA. Zusätzlich wurden Adipozyten im äußeren Teil von AAA ge-
funden. Die mechanischen Daten wurden zu dem nicht-symmetrischen Modell gefittet,
nachdem die strukturellen Daten aus den SHG Bildern ermittelt wurden. Die mechani-
schen Daten von AAA waren sehr heterogen und unterschieden sich stark von AA.

In der dritten Studie wurde der neue Satz von Materialparametern aus drei strukturellen
und drei mechanischen Parametern genutzt, um deren Einfluss auf das mechanische Ver-
halten zu untersuchen. Drei verschiedene Faserverteilungen wurden im Finite Elemente
Programm FEAP untersucht und zeigten signifikante Unterschiede sowohl in der Span-
nungsverteilung als auch in der -höhe, was die Relevanz dieser Unterschiede hervorhob.

Die letzte Studie baute auf den Ergebnissen der experimentellen Studie auf und erweiterte
diese um histologische Daten. Es war möglich, drei Kankheitsstadien anhand der mecha-
nischen Daten zu differenzieren und signifikante Unterschiede sowohl in Struktur als auch
in Mechanik zwischen diesen zu finden. Die Studie war in der Lage eine neue Hypothese
der Pathogenese von AAA vorzustellen, die direkt aus dem systematischen Vergleich der
Daten resultierte.
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1 INTRODUCTION

1.1 Motivation

Every year cardiovascular diseases (CVD) cause almost 4 million deaths in Europe. This
makes CVD the leading cause of death in Europe, accounting for 45% of all deaths. The
overall cost for the EU economy is estimated to 230 billion e a year [1]. Statistics for
the United States and China show similar trends, with 30.8% and 32% of all deaths being
caused by CVD, respectively [2, 3].

One of these CVD are abdominal aortic aneurysms (AAA), which represent a significant
disease in the western population, especially for men over 65 years [4, 5]. AAA are lo-
calized bulges of the abdominal aorta which exceed the normal diameter by more than
50% and are often clinically silent. If not treated, many AAA tend to grow and eventually
rupture, which is associated with a mortality rate up to 85% [6]. However, treatment of
AAAs with elective surgical repair or with endovascular grafts bears a high risk especially
for elderly patients and does not necessarily improve survival [7, 8]. As current criteria
for surgery such as the ‘maximum diameter criterion’ are more a rule of thumb than a
scientific criterion, there is a pressing need for a reliable basis of decision-making. The
acquisition of patient-specific in vivo data has improved over the past decades, and hence
patient-specific finite-element (FE) analysis has become a promising tool to predict stress
states and serve as a more reliable aid for decision making [9]. However, many studies uti-
lize strongly simplified models (see Chapter 4.1). These simplifications, along with other
influences such as AAA shape or diameter, have been shown to have a significant impact
on wall stress magnitudes and locations, and hence the outcome of FE studies should be
treated with caution [10–14].

Understanding the characteristics of both healthy and diseased arteries is the key for ade-
quate computational modeling. Only with a detailed knowledge of the structure and me-
chanics, starting with healthy and extending to diseased tissues, pathogenesis and disease
progression can be understood. Hence, this thesis focuses on both experimental methods
– collecting data on healthy aortas and on changes in both mechanics and structure dur-
ing disease progression – and the simultaneous inclusion of these data into computational
models. This synergy allows for promising and exciting insights into the disease progres-
sion of AAA.

1



2 1 Introduction

1.2 The Healthy Abdominal Aorta

Arteries can be classified into three types: elastic arteries, muscular arteries and arterioles.
Elastic arteries convey oxygenated blood from the heart to the systemic circulation and
include all larger vessels close to the heart. This group consists of the pulmonary artery,
the ascending, thoracic and abdominal aortas, and the branches which originate from the
aortic arch. Muscular arteries cannot be sharply distinguished from elastic arteries as there
is no distinct boundary between these types. However, they are located mostly towards
the periphery of the cardiovascular system and include vessels such as carotid or the coro-
nary arteries. The group of the arterioles are the smallest type of arteries and part of the
microcirculation. [15]

The abdominal aorta (AA) is an elastic artery and provides all the oxygenated blood to the
organs and tissues in the abdomen as well as the pelvis and the lower limbs. It serves as a
conduction tube and assists a continuous blood flow along the tube [15].

1.2.1 Structure

The healthy AA consists of three layers, namely the tunica intima, tunica media and tunica
adventitia as shown in Figure 1.1, which are subsequently described.

Intima

The innermost layer is the tunica intima. It forms the barrier towards the blood flow with
an endothelial lining with flat and elongated cells, oriented towards the blood flow. The
subendothelial layer connects the endothelial lining with the artery, consisting of both
elastin and collagen. Smooth muscle cells (SMC) may be present in this layer, which
secrete collagen, elastin and extracellular ground substance [15]. The border towards the
media is formed by the internal elastic membrane, which is the innermost of up to 90
elastic layers of the aortic wall. In young arteries the intima is very thin, its main purpose
being to provide a non-clotting interface towards the blood flow and serving as a gateway
for nutrient transport to and from the blood stream [17]. In this stage it does not play any
biomechanical role. However, it thickens and becomes mechanically significant with age
[18].

Media

The middle and thickest layer is the tunica media. It consists of 40 to 70 lamellae or fen-
estrated sheets of elastin which facilitate the diffusion of substances in the aortic wall and
provide the elasticity [15]. SMC are present in the media and arranged in layers. They
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Figure 1.1: Idealization (a) and micrograph (b) of a healthy elastic artery, consisting of
the three layers intima, media and adventitia. Note the blood vessels, macrophages and
nerves in the adventitia and the organization of elastic lamellae and SMC in the media.
With permission from [16].

synthesize collagen, elastin and extracellular ground substance and may proliferate and
migrate to the intima in response to certain growth factors. Under physiological condi-
tions the media is mechanically the most important layer with circumferentially oriented
collagen fibers which provide stability under physiological blood pressures [19].

Adventitia

The outermost layer consists of a loose network of elastin and collagen, and is less or-
ganized than the media. The network is interspersed with fibroblasts and macrophages.
The collagen fibers are mostly oriented towards the axial direction, preventing the over-
extension of the artery under super-physiological blood pressures [19]. Vasa vasorum
(blood vessels) and nerves infiltrate the adventitia from outside, providing nutrients and
removing waste products from the outer aortic wall [15]. The adventitia anchors in the
surrounding tissue and is contiguous to perivascular adipose tissue [20, 21].



4 1 Introduction

Collagen

Collagen is the most important structural biological polymer in vertebrates, making up
to 30% of their mass [22]. To date 28 types of collagen have been detected in the hu-
man body, which are categorized according to their structural properties [23]. Collagen
molecules mainly consist of three helically wound peptide chains. The most common
types of collagen in the aortic walls are type I and III [24]. Both type I and III belong
to the fibrillar collagens. In the intima and media, most collagen is synthesized by SMC,
whereas most collagen in the adventitia is synthesized by fibroblasts [25].

Collagen fibers exhibit a highly hierarchical structure as they are built of parallel fibrils
which themselves consist of parallel collagen molecules. This leads to several advantages,
such as the Cook-Gordon effect which describes the arresting of an initial crack at the
surface of a fibril, making crack propagation more unlikely [26]. These characteristics
lead to an ultimate tensile strength of 50−100MPa which makes collagen fibers suited to
withstand high tensile stresses without rupture [27].

The hierarchical structure of collagen leads to special optical properties of collagen fibers,
namely birefringence, autofluorescence and second-harmonic generation (SHG). Birefrin-
gence is responsible for double refraction where a ray of light is split by polarization into
two rays which take different paths. This phenomenon makes imaging of collagen via
polarized light microscopy possible [28]. The positive birefringence of collagen can be in-
tensified with certain stains, the most commonly used being Picrosirius red stain [29, 30].
Autofluorescence [31] and SHG [32] are both types on non-linear light-matter interactions
and utilized in multiphoton microscopy (MPM) [33]. They both yield high contrast and
optical sectioning capabilities without destroying the examined tissue or the addition of
contrast agents.

Elastin

Elastin provides the elasticity and resilience to many tissues in the human body, including
large arteries and constitutes around 30% of the dry weight of arteries. It is a very durable
and insoluble biopolymer. Elastin is a crosslinked array of tropoelastin and forms con-
centric rings around the lumen in large arteries without a specific orientation [34]. Elastin
fibers consist of elastin molecules organized in densely cross-linked filaments. Elastin is
produced by SMC only until maturity and exhibits a half-life of 40-70 years [35]. As col-
lagen fiber bundles are embedded in a dense network of elastin in a wavy configuration,
the mechanical response of the aortic wall is governed by the isotropic elastin under small
loads, which can be stretched up to 70% of its length [36] and provides recoil, and hence
integrity of the arterial wall under the oscillating blood pressure.
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Other Relevant Constituents

Proteoglycans have been shown to have a significant impact on the stress distribution in
aortic walls, being able to regulate residual stresses in aortas [37]. Additionally to all
passive components mentioned previously, SMCs have an impact on the stresses inside
aortic tissues as they are able to actively contract, and hence influence the diameter and
flow resistance in the vessels [15]. Besides exhibiting a contractile phenotype, SMCs can
transit to a synthetic phenotype, where the cell morphology changes. In this phenotype
SMCs can produce substances such as growth factors, proteases and components of the
ECM [38].

1.2.2 Biomechanical Behavior

From the biomechanical point of view the arterial wall is a composite material with colla-
gen fibers embedded in an isotropic ground matrix. It exhibits a characteristic exponential
stiffening behavior under loading which is highly anisotropic [39]. The nonlinear stiff-
ening is due to the gradual reorientation and recruitment of wavy collagen fibers which
are the main load bearing element in arterial walls [40]. At low pressures the stress-strain
behavior is linear and mostly governed by the elastic tissue components. With increasing
loads the stresses are progressively carried by collagen fibers which continuously align in
the direction of load and hence lead to the characteristic progressive stiffening and the high
anisotropy [39].

Stresses are still present in unloaded vessels due to the existence of residual stresses. This
was first observed in 1960 by Bergel et al. [41] who described the opening of an arte-
rial ring after a radial cut and was further investigated by Fung and Vaishnav indepen-
dently [42, 43]. Residual stresses imply that the luminal part of vessels is under compres-
sion, whereas the external part is under tension. This leads to an equilibration of stresses
throughout the wall in vivo due to the internal blood pressure [27, 44, 45]. It is widely ac-
cepted that residual stresses are the result of growth and remodeling [46]. The constituent
mainly responsible for residual stresses is elastin which has been proven by selective di-
gestion of components in the arterial wall [47].

Arterial walls can be assumed to be incompressible due to their high water content (70−
80%). Although there may be small movements of fluids within the tissue, experimental
observations have proven this assumption to hold under a large variety of loads [48–50].

A certain degree of viscoelasticity is present in aortic walls, revealed by a certain stress
relaxation after deformations and a small hysteresis under cyclic loads. This is most likely
due to fluid transport within the extracellular matrix and the friction between the con-
stituents. However, after preconditioning, aortic tissues display a highly repetitive behav-
ior and hence can be considered to behave in a pseudoelastic manner [51].
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1.3 Abdominal Aortic Aneurysms

The world aneurysm is derived from the greek word ανευρυσ µα (aneurusma) which
means ‘widening’. Abdominal aortic aneurysms are, together with intracranial saccular
aneurysms, the most common types of aneurysms. AAA mostly occur in the human in-
frarenal aorta, which is around 12cm long and exhibits an diameter of 2cm and a wall
thickness of around 0.22cm in the healthy case [6]. They are permanent balloon-like di-
latations of the aortic wall which can be saccular, hour glass or fusiform shaped. The latter
shape is the most common one, where the aneurysm bulges out evenly to all sides, whereas
saccular aneurysms bulge out only to one side. The shape of a AAA has been showsn to
influence the stress distribution inside the AAA wall significantly [52]. The thickness of
the aortic wall varies significantly in aneurysms. Depending on the location of the mea-
surement the wall thickness was measured to vary from 0.23mm on rupture sides up to
4.26mm at highly calcified locations, leading to an average thickness of 1.50mm [53].
75% of all AAAs are accompanied by an intraluminal thrombus (ILT), which is a fibrin
structure consisting of blood proteins and cells, platelets and cellular debris [54]. The im-
pact of an ILT on AAA development has not been clarified yet, but it was suggested by
clinical studies that it might contribute to a higher expansion rate [55].

1.3.1 Pathogenesis and Changes in Structural Proteins

As discussed in Chapter 1.2.1, elastin and collagen are important structural proteins in the
AA. The content of both constituents has been shown to be significantly altered in AAA
walls. Early studies revealed a thinning and disruption of the media and a significant loss
of elastin [56]. In 1994 He and Roach [57] quantified the decrease in volume fraction of
elastin from 22.7%±5.7% to 2.4%±2.2%. The same trend was observed for the volume
fraction of SMCs. As Baxter et al. [58] came to a similar conclusion it is widely accepted
that loss in elastin and SMC content contribute to the initiation and dilatation of AAAs.

The mechanism leading to the loss in elastin and SMCs has not been clarified yet. It is
most likely a complex interaction among various risk factors such as cigarette smoking,
hypertension, sex, aging and hemodynamic factors [59, 60]. The pathogenic mechanisms
leading to AAAs have been summarized in 2001 by the Vascular Biology Research Pro-
gram of the National Heart, Lung and Blood institute into four areas: inflammation and
immune response, biomechanical wall stress, proteolytic degradation of connective tissue
within the aortic wall and molecular genetics [61]. Nordon et al. [62] suggested that AAAs
are a systemic disease of the vasculature, and hence a degenerative disease. The main
histological features that can be observed in AAAs are severe atherosclerosis, chronic in-
flammation, destructive remodeling of the media and neovascularization [63]. Although
atherosclerosis has been pointed out as one of the key factors of AAA initiation, several
authors have argued that both diseases might underly different pathological mechanisms.
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One key difference is the localization of macrophages: in AAA they are located in the me-
dia, whereas in atherosclerosis they are observed in the subintima [60]. Figure 1.2 shows
an overview from [64] on mechanisms which are involved in AAA formation, which is
partly discussed in this sub-chapter.
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Figure 1.2: Schematic representation of mechanisms involved in AAA formation with two
processes: inflammation and ECM turnover. The initiation of AAAs is connected to the
recruitment of inflammatory cells to the media and macrophage infiltration. ILT is formed
on the luminal side, where the adhesion of inflammatory cells can be seen. This promotes
SMC apoptosis, elastin degradation and collagen turnover. +: promotes, -: inhibits, APC-
PCI: activated protein C-protein C inhibitor complex, CRP: C-reactive protein, EP: elastin
peptide, IFN: interferon, IL: interleukin, PICP: carboxy-terminal propeptide of type I pro-
collagen, PIIINP: amino-terminal propeptide of type iii procollagen, TGF: transforming
growth factor, TNF: tumor necrosis factor, VEGFA: vascular endothelial growth factor A.
With permission from [64].
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Proteolysis

Persistent stresses, e.g., hemodynamic or oxidative stresses, might induce dysfunctional
remodeling through a production of atypical elastin and collagen by SMCs [65] and favor
proteolytic degradation such as elastase and collagenase [60, 66]. Cohen et al. [66] showed
that the treatment of aortas with elastase leads to dilatation and early stiffening, and treat-
ment with collagenase only does not lead to dilatation but to rupture. Hence, it is widely
accepted that elastin degradation leads to dilatation and collagen degradation ultimately
leads to AAA rupture. Elastolysis is mostly induced by inflammation, medial stress and
aging and has been reported primarily in the adventitia. Proteolysis in the aortic wall is
mainly governed by infiltration of matrix metalloproteinases (MMPs), and countless stud-
ies have reported an increased MMP expression in AAA walls [67]. MMPs are enzymes
which are produced by fibroblasts or by inflammatory cells such as macrophages, among
others. Usually MMP expression is only needed for tissue remodeling in processes like
embryonic development and wound healing. Nevertheless, abnormal MMP expression has
been reported for pathological conditions such as tumor cell invation or rheumatoid arthri-
tis [68]. The most common MMPs in aneurysmatic walls are MMP-2 and MMP-9 which
are both able to degrade both elastin and collagen and are usually found in the media.
MMP-2, predominantly secreted by adventitial SMCs and fibroblasts, mainly degrades
collagen type IV and elastin and was shown to correlate with AAA diameter, hence it es-
pecially influences the early expansion of AAAs [69]. MMP-9, mainly originating from
macrophages, monocytes infiltrating the adventitia and SMC, on the contrary is correlated
to expansion and rupture of AAAs and is rarely found in smaller AAA [70].

Inflammatory Changes

Chronic inflammation is closely associated to formation and progression of AAAs, as
the most striking pathological feature is the infiltration of inflammatory cells such as
macrophages, lymphocytes and plasma cells. Shah et al. [71] suggested that these inflam-
matory cells lead to a release of reactive oxygen species which cause further degradation
of the ECM by activating, e.g., MMPs. Macrophages are found from the onset of AAA
development and are probably recruited by elastin degradation products. They are known
to stimulate cytokine and protease production, B-cells and neovascularization and also to
produce TIMP cells, confirming the important role of macrophages in the immune system
[72]. However, the specific inflammatory cascades which cause aneurysmal growth are
complicated and remain unknown [63].
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Cytokines

TNF (tumor necrosis factor) is a monocyte derived cytotoxin which is believed to play a
central role in AAA dilatation. It can cause SMC apoptosis and induces the release of
proteases, contributing to the weakening of the aortic wall. Additionally, when released
by macrophages it inhibits collagen synthesis [64]. TNF levels have been shown to be
increased in AAA patients and correlate with aneurysm size [73].

Low levels of TGF (transforming growth factor)-β1 have been observed in AAA patients.
It controls proliferation and differentiation and induces apoptosis. This might contribute
to the pathological wall remodeling [64]. However, Lindholt et al. [72] did not find any
correlation between TGF-β1 levels and AAA progression.

IFN-γ (interferon-gamma) inhibits collagen production by SMCs and has been studied as
a potential biomarker for AAA progression and shown to be positively correlated to an
increased AAA expansion rate [74]. The elevation of circulating IFN-γ for AAA patients
has been shown by several studies and stressed the potential involvement in AAA devel-
opment [74]. However, other studies have reported the opposite, i.e. low levels of IFN-γ
[75]. Hence, there is a need for further studies examining the role of IFN-γ in AAAs.

Unfortunately, cytokines are not good biomarkers for AAA progression as they might also
originate from other inflammatory sites, are quickly released and have a short half-life
[64].

Hemodynamic Factors

The arterial wall is subjected to three kinds of forces induced by blood flow, namely pres-
sure, shear stress and circumferential stress leading to axial and radial forces. Turbulent
blood flow has been shown to favor aneurysm growth as it causes injury to the endothelium
and accelerates the degeneration of the vessel wall [63].

Under physiological conditions, mechanical loads on arterial walls are considered to main-
tain a healthy microstructure. However, the mechanical loads are altered when a AAA is
developing. A simple approximation of the stresses acting on the aortic wall is the Law
of Laplace which states that the wall stress is proportional to the diameter of the vessel.
Hence, sites of the AAA with so called ‘blebs’, which are focal saccular outpouchings,
are considered to have a higher risk of rupture, as they represent areas of stress concen-
tration [76]. These outpouchings are characterized by locally decreased elastin contents.
Additionally, MMPs, as described above, are known to be enhanced by the stress in the
aortic wall [77]. Macrophages, SMCs and fibroblasts are known to be able to react to
mechanical stimuli with increased production of proteolytic proteins [76]. Hence, local
changes in wall stresses seem to play an important role in the reported spatial variability
of mechanical properties and wall integrity in AAA [78].
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Influence of the ILT

As mentioned above, the basic pathological mechanism of AAA development seems to be
the degradation of the media by proteolytic processes. Medial SMC have been reported to
be able to initiate cell death or holding signs of apoptosis [79]. SMC death may have an
impact on the reparative maintenance capacity of the ECM. The ILT contains neutrophils
which can regulate MMP-9 activity, thus having a direct influence on their proteolytic ef-
fect [80]. Walls covered with a thrombus have been reported to be thinner and to contain
significantly less elastin, broken elastin bands and disorganized elastic lamellae. Addition-
ally, no change in collagen content was found, however, SMC α-actin was shown to be
significantly decreased. In total it was suggested that the thrombus free wall shows lower
structural integrity and higher tissue destruction than a thrombus free wall [81].

1.3.2 Risk Factors

Risk factors associated with AAA development and enlargement have been found by sev-
eral large scale studies. The most striking, self-inflicted risk factor is undoubtedly tobacco
smoking [82, 83]. Other risk factors are male gender, aging, hypertension, inflammation
and atherosclerosis [84]. Men are six times more likely to develop an aneurysm compared
to women [85], however an aneurysm is more likely to grow in females [86]. The overall
differences in disease progression between the sexes remain unclear. Age is, as for all
cardiovascular diseases, a striking risk factor [82]. Hypertension is another factor, which
leads to stiffening of the aortic wall, leading ultimately to a change in local hemodynamics,
which is regarded as one of the causes for AAA initiation [87]. Lipid levels are discussed
as risk factors, as studies yielded controversial results [88–90]. However, statin intake has
been discussed as a possible therapy for established AAA as it has been observed to inhibit
AAA growth [91], nevertheless, this finding remains to be shown by further studies. Fi-
nally, genetic factors seem to play a key role in aneurysm development, with at least 15%
of patients having a first-degree family member with a AAA [92].

Interestingly, diabetes mellitus was found to have a protective effect against AAA expan-
sion [93, 94]. Collagen glycation and the resistance to MMP digestion which are associated
with diabetes mellitus are most likely the protecting factors here [60, 95].

1.3.3 Biomechanical Behavior

As the previous sub-chapters pointed out, the precise pathogenesis of AAA initiation and
development is still poorly understood. However, as AAA involve a growth up to 800% of
the initial aortic wall, it is reasonable to seek deeper understanding of AAA wall mechanics
to gain insight into the causes and progression of this disease [96].



1.3 Abdominal Aortic Aneurysms 11

The experimental determination of mechanical properties of soft biological tissues is aimed
at capturing the relationship between acting forces and resulting deformations. The usual
approach in materials science is to subject specimen to controlled loads while capturing
the resulting deformation (load-controlled) or vice versa (motion-controlled). However,
biological tissues are not engineering materials existing for themselves. They are rather
part of a complex and poorly understood living entity. Isolation from the natural surround-
ings may affect the results of experiments severely, thus, the possible effects should always
be considered when experimentally analyzing biological tissues. There are two possible
approaches for experiments: in vivo and ex vivo. Both approaches offer advantages and
disadvantages and there is no per se better approach. Experiments performed in vivo of-
fer the advantage that physiological boundary effects and physiological loads act on the
tissue. However, measuring the exact force remains difficult. Experiments ex vivo have
the advantage of precisely measurable forces and motions, but, as discussed before, the
influence of the extraction from its natural environment has to be considered and is not
always known. A third possibility is the utilization of animal models, where many un-
certain factors usually present in in vivo studies can be circumvented. Nevertheless, the
reliability of animal models is questionable, especially when targeting diseases such as
AAA development [96].

The measurement of in vivo distensibility under pulsatile blood pressure provides a first
idea about the mechanical behavior of the aortic wall. Lanne et al. [97] defined distensi-
bility with a pressure-strain elastic modulus dependent on the diameter, the inner pressure
and a stiffness parameter. They reported a higher elastic modulus of AAA walls com-
pared to healthy control samples, similar to MacSweeney et al. [98], who performed alike
experiments in the same year. Recently, Wittek et al. [99] have introduced a novel imag-
ing technique using time resolved 3D ultrasound combined with speckle tracking to gain
full-field displacement and strain measures of AAA wall motions. They were able to differ-
entiate between wall motion of aged, atherosclerotic and AAA patients. 3D displacement
fields such as the one obtained in [99] can be used for inverse FEM analyses to obtain the
in vivo mechanical state utilizing more advanced material models [100]. However, as it is
still difficult to obtain exact fiber orientations in vivo, and as it has been proven that AAA
wall architecture varies significantly depending on the location [53], these inverse FEM
analyses still rely on significant and uncertain assumptions. Other recent studies utilized,
e.g., Doppler ultrasound [101] or time-resolved ECG-gated CT imaging [102].

Experiments performed ex vivo allow for the quantification of intrinsic material proper-
ties due to controlled forces and displacements. Most studies here focused on uniaxial
extension, as they are the easiest to perform and only require a rather small sample size.
Additionally, mounting the specimen is usually easy, and hence tests can be performed un-
til failure. The first to perform ex vivo tests on human AAA walls were Sumner et al. [103]
and Drangova et al. [104], reporting greater stiffness of AAA specimen when compared
to AA. In 1994 He and Roach [57] performed uniaxial extension tests in axial direction
up to a pre-defined load. They assumed incompressibility and calculated the stress-strain
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behavior, showing a non linear stress-strain curve and fitted it to an exponential function,
i.e.

σ = aebε, (1.1)

with σ being the stress, ε the strain and a and b are material parameters. Uniaxial extension
tests in only one direction were also performed by Vorp et al. [105] and Raghavan et
al. [106], testing their specimens until failure and utilizing a modified Michaelis-Menton
model with three material parameters K,A and B, i.e.

ε= [K +A/(B+σ)]σ , (1.2)

assuming an isotropic response of the AAA wall. All three material parameters were stated
to have a physical meaning, namely the contribution to stiffness of elastin, collagen and
the strain needed until complete collagen recruitment. Raghavan et al. [10] introduced a
hyperelastic continuum-based constitutive model in 2000, which has been widely used in
later computational stress analysis studies despite limitations such as an inaccurate pre-
diction of multiaxial relations. The model assumed again isotropy, and consists of two
mechanical parameters α and β as follows

W = α(IB−3)+β (IB−3)2, (1.3)

where IB = trb = tr(FFT) is the first invariant of the left Cauchy Green tensor b, with F
being the deformation gradient. Uniaxial tensile tests in both circumferential and axial
direction until failure were performed by Thubikar et al. [107], Pierce et al. [108] and
Sassani et al. [109], all reporting a stiffer behavior in the circumferential direction.

Despite having several advantages as mentioned above, uniaxial tensile tests are insuffi-
cient to describe multi-axial in vivo conditions as AAA tissues experience inside the body.
The first to perform the more suitable biaxial tensile tests were Vande Geest et al. in 2006
[110]. They reported an increase in anisotropy compared to healthy AA tissue with a stiff-
ening in the circumferential direction. In a subsequent study they introduced an anisotropic
strain-energy function W , which has been extensively used in various studies. Thus,

W = b0exp[(1/2)b1E2
θθ ]+ exp[(1/2)b2E2

zz]+ exp(b3Eθθ Ezz)−3, (1.4)

where Ei j and bi are components of the Green-Lagrange strain tensor and material param-
eters, respectively [111]. Subsequent biaxial extension tests were performed by Tong et
al. [112] and O’Leary et al. [113]. Further studies without own experimental data devel-
oped independent constitutive models to capture the anisotropic behavior of AAA tissue
such as Rodríguez et al. [14], who defined two collagen fiber families contributing to the
anisotropic behavior. The model contained five parameters and was based on [39]. Growth
and remodeling of AAAs have been a target for constitutive modeling as well. An evolv-
ing model was proposed by Watton et al. in 2004 [114], including microstructural changes
such as remodeling of collagen due to loss in elastin. In 2008 Volokh and Vorp [115] pro-
posed a coupled mathematical model to simulate growth and rupture, pointing out that a
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quantitative calibration of their model still needs further clinical data. Gasser et al. [116]
examined the spatial orientation of collagen fibers and related them to their mechanics in
2012, using a Fung-type phenomenological model, assuming a change in collagen fiber
mechanics dependent on their orientation, and a statistically motivated constitutive model,
where the undulation limit changed with fiber orientation in their piecewise analytic ex-
pression for the first Piola-Kirchhoff stress. The study used theoretical assumptions on,
e.g., collagen fiber crimp, without experimental validation, which remains pending.

1.3.4 Rupture Risk Assessment

Most aneurysms are not detected at early stages and remain clinically silent. Usually they
are found during incidental exams or screening programs, which have been established in
some countries for men above the age of 65 [117]. If not treated, many AAA tend to expand
until failure. The incident of rupture is associated with a mortality rate of 75 to 90% [5].
It occurs when, from the mechanical point of view, the local strength of the material (i.e.
the degenerated aortic wall) is not sufficient to bear the pressure-induced peak wall stress
(PWS) [78]. There is currently no medication available to stop AAA expansion and to
prevent rupture. Thus, AAA repair is performed if the rupture risk exceeds the risk of the
intervention, either by surgical or minimal invasive repair. Surgical repair has a 30-day
mortality rate of 4%, whereas for minimal invasive repair the rate is around 2% [118].

It is currently not possible to quantify the patient-specific rupture risk reliably. Therefore,
the standard criterion is still the diameter criterion, which was established based on the
Law of Laplace. It assumes that rupture risk increases with an increased diameter. Lacking
other criteria, it still remains the most frequently used one, although several studies have
proven that a single diameter is not able to predict rupture risk accurately [119, 120].
Based on a large cohort of interventions a diameter of 55mm was chosen as the maximum
diameter for men, and 50mm for women [121]. However, it has been proven that small
AAAs can rupture and that many large aneurysms do not tend to rupture at all [122].

Expansion rate has been proposed as another mean to assess AAA rupture risk, assuming
that a fast expansion rate is linked to a negative remodeling in the AAA wall [123]. An ex-
pansion rate of 6mm per year is considered to bear a high risk for rupture [124]. However,
a recent study found that monitoring maximum diameter expansion is not a good predictor
for the AAA expansion rate [125]. Steinbaeck and colleagues [126] suggested in 2000
that ILT growth was correlated with expansion rate and in 2010 Parr and colleagues [127]
found a median or large ILT volume to be associated with a rapid volumetric growth of the
aneurysm.

Geometry of a AAA has been considered as a potential indicator for rupture risk. Fillinger
et al. [128] were able to find links between tortuosity, asymmetry and rupture risk. On
a basis of 259 patients they found a higher rupture risk for AAA with less tortuosity and



14 1 Introduction

higher asymmetry. Asymmetry was proposed as a rupture risk by Doyle et al. [129],
finding that posterior wall stresses were proportional to AAA asymmetry.

The thickness of the AAA, which has been reported to vary locally [53], was considered
as a potential rupture risk criterion as well. However, wall thickness varied at rupture
sites as well, as a thick wall might suggest severe inflammatory processes and pose the
same rupture risk as thin walls [130]. Martufi and Gasser [125] provided a comprehensive
review on rupture risk assessment and summarized influences on AAA wall strength such
as female gender, presence of ILT, ruptured AAAs in family history, thick walls, hypoxia
and diabetes. All of the mentioned factors were reported as wall weakening factors and
were proposed to be included in future rupture risk predictions.

The prediction of the resulting wall strength underlies various modeling assumptions.
Biomechanical simulations of AAAs are critically dependent on accurate three-dimensional
reconstructions of patient-specific AAA geometries, realistic loading and boundary condi-
tions and appropriate constitutive models for AAA tissues, which consider the underlying
(remodeled) microstructure [125]. The most important factor for precise predictions has
been discussed to be the correct geometrical representation of the AAA [10, 131]. Al-
though these studies claimed that the material model does not have a significant impact
we were able to show that varying microstructure does influence wall stress magnitudes
and locations considerably, and should be considered [132]. Additionally, inclusion of the
ILT and accounting for the non-homogeneous distribution of wall strength and thickness
has been shown to have a considerable impact on the outcome of simulations [133]. For
a summary of recent computational studies on AAA wall stress distributions see Chapter
4.1.

1.4 Organization of the Thesis

The dissertation is a compilation of four scientific papers which cover the experimental
analysis of healthy abdominal aortas and AAAs, and their subsequent computational mod-
eling.

1. G.A. Holzapfel, J.A. Niestrawska, R.W. Ogden, A.J. Reinisch, A.J. Schriefl

Modelling non-symmetric collagen fiber dispersion in arterial walls, Journal of the
Royal Society Interface, 12:20150188, 2015.

The first paper introduces a novel non-symmetric collagen dispersion model, as pre-
vious studies by our group found significantly less dispersion out-of-plane (radial-
axial plane) than in-plane (circumferential-axial plane) in healthy AA. A new struc-
ture tensor was constructed with a bivariate von Mises distribution. The structure
tensor was then included into a strain-energy function which accommodated both
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structural and mechanical features of the material, extending the rotationally sym-
metric dispersion model proposed by Gasser et al. [134]. The main contribution
of the author was the implementation of the model into the finite element analysis
program FEAP, [135] and the simulation of the representative examples, see Chapter
2.4.

2. J.A. Niestrawska, C. Viertler, P. Regitnig, T.U. Cohnert, G. Sommer, G.A. Holzapfel

Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: ex-
perimental analysis and modeling, Journal of the Royal Society Interface, 13:20160620,
2016.

In this study the material properties of layer-specific healthy AA and AAA wall
samples were systematically compared by means of biaxial tensile testing linked to
the 3D microstructure. The microstructure was investigated by a combination of op-
tical clearing, second-harmonic generation imaging and subsequent quantification
of 3D fiber dispersion and alignment. Remarkable differences were found between
healthy and diseased arteries, yielding a novel set of three structural and three mate-
rial parameters. Especially the out-of-plane dispersion of collagen fibers was found
to be significantly increased in AAAs compared to AA walls. The results of this
study highlight the need to incorporate the structural differences into finite element
simulations to reliably predict the actual in vivo state.

3. J.A. Niestrawska, D.Ch. Haspinger, G.A. Holzapfel

The influence of fiber dispersion on the mechanical response of aortic tissues in
health and disease: A computational study, Computer Methods in Biomechanics
and Biomedical Engineering, in press.

The third paper studies the influence of changes in structural components on the
mechanical behavior, utilizing the data which was provided by the second paper: a
novel set of three structural and three material parameters for the three layers of the
AA as well as for the AAA wall. In particular, the influence of three different fiber
dispersions was studied. The results showed significant differences in magnitudes
and distribution of stresses and highlighted the need to incorporate these structural
differences into finite element studies to obtain more accurate stress predictions.

4. J.A. Niestrawska, P. Regitnig, C. Viertler, T.U. Cohnert, G.A. Holzapfel

The role of tissue re-modeling in mechanics and pathogenesis of abdominal aortic
aneu-rysms, submitted.

The final study is a direct continuation of the second paper, studying the changes
in the microstructure, the histology and mechanics in AAAs and linking them to
disease progression. We were able to define three disease stages based on collagen
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recruitment points with significant differences in parameters such as collagen orien-
tation, elastin and SMC content, and neo-adventitia formation. The study yielded
a novel hypothesis for AAA pathogenesis, which was derived from a systematic
comparison of histological, structural and mechanical changes in AAA walls.

This PhD thesis is extended by the following additional journal papers:

• R. Gehwolf, A. Wagner, C. Lehner, A. Bradshaw, C. Scharler, J.A. Niestrawska,
G.A. Holzapfel, H.-C. Bauer, H. Tempfer and A. Traweger, Pleiotropic roles of the
matricellular protein Sparc in tendon maturation and ageing, Scientific Reports,
6:32635, 2016.

This study examined the influence of the protein Sparc on tendons in various aspects
utilizing mouse Achilles tendons. One of these aspects was the variation in the
microstructure, which was examined via SHG image analysis by the author of this
thesis.

• D. Ch. Haspinger, S.-I. Murtada, J.A. Niestrawska, G. A. Holzapfel, A numerical
analysis of the interrelation between extracellular smooth muscle orientation and
the intracellular filament overlap in the human abdominal aorta, in preparation.

In this study the influence of growth and remodeling mechanisms of SMCs on
the mechanical behavior of aortas was analyzed by modifying a recently proposed
chemo - mechanically coupled model with two families of muscle fibers and a non-
symmetric filament overlap behavior. It is based on the Master thesis of D. Ch.
Haspinger, which was supervised by the other three authors.

• G. Sommer, Ch. Benedikt, J.A. Niestrawska, G. Hohenberger, C. Viertler, P. Regit-
nig, T.U. Cohnert, G.A. Holzapfel, Mechanical response of human subclavian and
iliac arteries to extension, inflation and torsion, submitted.

This study examined the mechanical and structural differences between human sub-
clavian and iliac arteries, utilizing extension-inflation experiments and examining
residual stresses and SHG imaging. The author of this thesis contributed with the
analysis of the SHG images to the work.

• M. Frank, J.A. Niestrawska, G.A. Holzapfel, G. Debotton, Micromechanics-based
modeling of the mechanical response of the media, in preparation.

In this paper, a periodic unit cell with periodic boundary conditions was applied
to simulate the mechanical behavior of the media, only based on histological data.
The data, structural data extracted from SHG images of healthy AA specimen and
mechanical data from biaxial tensile tests, were analyzed and provided by the author
of this thesis.
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Finally, the following conference proceedings are also part of this thesis:

• J.A. Niestrawska, A.J. Reinisch, A.J. Schriefl, R.W. Ogden, G.A. Holzapfel, Com-
putational modeling of non-symmetric collage fiber dispersion, 9th European Solid
Mechanics Conference, Madrid, July 6 – 10, 2015

• R. Gehwolf, A. Wahner, C. Lehner, H. Tempfer, A.D. Bradshaw, J.A. Niestrawska,
G.A. Holzapfel, H.C. Bauer, A. Traweger, Age matters: molecular mechanisms con-
tributing to tendon senescence, Bone Joint J October 2015, 97–B (SUPP 11) 20

• J.A. Niestrawska, T.U. Cohnert, G.A. Holzapfel, Mechanics and microstructure of
healthy human aortas and AAA tissues: experimental analysis and modeling, EC-
COMAS 2016, Crete Island, Greece, June 5 – 10, 2016

• J.A. Niestrawska, G.A. Holzapfel, Modelling of microstructure and mechanics of
healthy and aneurysmatic abdominal aortas, CMMBE 2016, Tel Aviv, Israel, Septem-
ber 20 – 22, 2016

• G.A. Holzapfel, J.A. Niestrawska, O. Gültekin, R.W. Ogden The importance of con-
sidering the microstructure of soft biological tissues: A general fiber dispersion
model with related analysis, Workshop: Maths form the body 2017, Brescia, Italy,
29. – 31. May, 2017

• J.A. Niestrawska, D.Ch. Haspinger, G.A. Holzapfel, Modeling the non-symmetric
microstructure of healthy and aneurysmatic abdominal aortas, 23rd Congress of the
ESB, Sevilla, Spain, July 2 – 5, 2017

• J.A. Niestrawska, D.Ch. Haspinger, G.A. Holzapfel, Non-Symmetric Fiber Disper-
sion of the Aortic Wall: A Computational Analysis, COMPLAS 2017, Barcelona,
Spain, September 5 – 7, 2017

J.A. Niestrawska, T.U. Cohnert, G.A. Holzapfel, Modeling tissue re-modeling dur-
ing the pathogenesis of abdominal aortic aneurysms, VAM 2018, Boston, USA, June
21 – 23, 2018

• J.A. Niestrawska, P. Regitnig, Ch. Viertler, T.U. Cohnert, G.A. Holzapfel, The role
of tissue re-modelling in mechanics and pathogenesis of abdominal aortic aneurysms,
WCB 2018, Dublin, Ireland, July 8 – 12, 2018





2 MODELING NON-SYMMETRIC COLLAGEN FIBER
DISPERSION IN ARTERIAL WALLS

New experimental results on the collagen fiber dispersion in human arterial layers have
shown that the dispersion in the tangential plane is more significant than that out-of-plane.
A rotationally symmetric dispersion model is not able to capture this distinction. For
this reason we introduce a new non-symmetric dispersion model, based on the bivari-
ate von Mises distribution, which is used to construct a new structure tensor. The latter
is incorporated in a strain-energy function that accommodates both the mechanical and
structures features of the material, extending our rotationally symmetric dispersion model
(TC Gasser, RW Ogden, GA Holzapfel. Hyperelastic modeling of arterial layers with dis-
tributed collagen fiber orientations. J. R. Soc. Interface, 3:15–35, 2006). We provide spe-
cific ranges for the dispersion parameters and show how previous models can be deduced
as special cases. We also provide explicit expressions for the stress and elasticity tensors in
the Lagrangian description that are needed for a finite element implementation. Material
and structural parameters were obtained by fitting predictions of the model to experimen-
tal data obtained from a human abdominal aortic adventitia. In a finite element example
we analyze the influence of the fiber dispersion on the homogeneous biaxial mechanical
response of aortic strips, and in a final example the non-homogeneous stress distribution is
obtained for circumferential and axial strips under fixed extension. It has recently become
apparent that this more general model is needed for describing the mechanical behaviour
of a variety of fibrous tissues.

2.1 Introduction

Physiological and pathological changes in the cardiovascular system directly influence the
mechanical behaviour of arterial walls [23]. It is therefore of crucial importance to improve
understanding of the mechanical properties of the constituents of arterial walls, including
the inherent features of anisotropy and nonlinearity. These properties, amongst others,
pose formidable challenges in the constitutive modeling and numerical analysis of such
tissues and can be clearly connected to the underlying structure of the tissues. The passive
mechanical behaviour of an arterial wall is governed mainly by the matrix material (which
consists of water, elastin, proteoglycans, etc.) and the collagen fiber reinforcement. The
anisotropy is associated with the local mean alignment of the collagen fibers, which also
stiffen their response when under tension, leading to their significant nonlinear character-
istics. The fibers are not perfectly aligned but are dispersed around their mean direction,
and the amount and character of the dispersion depends on the topography, the particular
layer of the vessel considered and the respective (patho)physiological condition, inter alia.

19
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Fiber dispersion in arterial walls has been documented and analyzed in, for example, [136–
139]; for an overview of the structural quantification of collagen fibers in arterial walls, see
[140]. In particular, the study in [139] identified the presence of two fiber families in the
intima, media and adventitia of human aortas; they are helically and almost symmetrically
arranged with respect to the cylinder axis. Often a third and sometimes a fourth family
is present in the intima in the respective axial and circumferential directions. The recent
work [141] has revealed that while helical fiber structures are present in human elastic ar-
teries, in more muscular arteries (as for the murine basilar artery) and veins (such as the
porcine jugular vein) a transition from the helical arrangement to two nearly orthogonal
fiber families aligned in the circumferential and axial directions can be observed, and it
is suggested that this is to ensure optimal efficiency of the vasculature. Observations of
dispersion for other tissues, including the myocardium, corneas and articular cartilage, can
be found in [142, 143], [144, 145] and [146], respectively.

Several mechanical models accounting for the dispersion of collagen fibers have been pro-
posed. Fiber dispersion can be represented either directly by incorporation in a strain-
energy function via a probability density function (PDF) or by a generalized structure
tensor, for example. Following [147] these two approaches are referred to as ‘angular inte-
gration’ (AI) and ‘generalized structure tensor’ (GST). The authors of [147] compared the
results of the two formulations on the basis of the energy function introduced in [39] and
the generalized structure tensor in [134]. As was pointed out in, for example, [148] one
approach is to consider the strain energy w(λ ) of a single collagen fiber as a function of
the fiber stretch λ and to integrate this over the unit sphere S to obtain the total free-energy
function Ψf of the fibers per unit reference volume, i.e.

Ψf = n
∫
S

ρ(N)w(λ )dS, (2.1)

where n is the numbers of fibers per unit reference volume, N is a unit vector describing the
orientation of an individual fiber, and ρ is the relative angular density of fibers normalized
according to

1
4π

∫
S

ρ(N)dS = 1. (2.2)

The region of the unit sphere where fibers are in tension is defined by the set of N for
which λ > 1, where λ = (C : N⊗N)1/2 is the stretch in the direction N, C is the right
Cauchy–Green tensor and a double contraction is defined by C : N⊗N = (CN) ·N. This
is the AI approach.

In the GST approach the energy function is associated with a generalized structure tensor
H and is given by

Ψf = Ψf(C,H), (2.3)
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where H is defined by

H =
1

4π

∫
Ω

ρ(M)M⊗MdΩ, with trH = 1, (2.4)

the latter following from (2.2).

By comparing these approaches we see that (2.1) requires integration over the unit sphere
at each point, while for the strain-energy function (2.3) no such integration is needed once
H has been determined by (2.4)1 or prescribed. On the one hand, the AI approach allows
identification and exclusion of individual fibers under compression, while on the other
hand this is not quite so straightforward on the basis of (2.4)1. For a detailed discussion of
the latter issue, see [149, 150].

In chronological order we now provide a short overview of the main existing continuum
mechanical models which take fiber dispersion into account. Probably the study [151] was
the first to consider fiber dispersion in the analysis of fibrous connective tissues, with the
tissue structure (fiber orientation) being accounted for in the strain energy via an orienta-
tion density function. The approach [152] incorporates a two-dimensional AI distribution
in a strain-energy function based on the Beta distribution, but neglects the out-of-plane
dispersion of the fibers, while a planar fiber dispersion was used in [153] with a Gaussian
PDF to study the biaxial behaviour of arterial walls and aortic valves. In [154] the Gaus-
sian distribution was used to compute so-called splay invariants to represent 2D and 3D
fiber dispersions, which the authors applied to aortic valve tissues.

In [39] the use of an exponential strain-energy function was motivated following [155],
and this model was extended to the case of fiber dispersion in [134] based on the structure
tensor (2.4)1. Therein, we used a rotationally symmetric distribution of collagen fibers. In
addition, the model [134] was applied to several other tissues, including the cornea [156]
and articular cartilage [157], while in [158], the constitutive model of [39] was applied
with the fiber orientations uniformly distributed over the azimuthal angle. A structure
tensor based on a planar counterpart of that in [134] was defined in [159, 160] and used in
[161].

A PDF based on the von Mises distribution taking account of a non-rotationally symmet-
ric fiber dispersion and based on the micro-sphere model was suggested in [162], and an
ellipsoidal distribution with a power-law strain-energy function, based on the AI formu-
lation, was employed in [163] and applied to cartilage. Based on the AI approach with
the von Mises distribution the authors in [164] derived a closed-form solution for a simple
exponential fiber stress-strain law and applied their model to planar biaxial extension of a
bioartificial tissue. The study [165] adopted the model of [134] and included the limiting
case of an in-plane arrangement of fibers following the AI approach, which was also used
in [166] with a planar von Mises distribution to examine the in-plane dispersion of collagen
fibers. In [116] the Bingham distribution was used and was claimed to be ‘clearly superior
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Table 2.1: Overview of the main existing continuum mechanical models which take fiber
dispersion into account, listed in chronological order of appearance. The column ‘Formu-
lation’ describes the approach originally presented in the cited paper (GST = generalized
structure tensor, AI = angular integration); PDF = probability density function; ‘Param-
eters’ refer to the parameters describing the fiber dispersion (not material or any other
parameters). The abbreviations ‘RS’, ‘NS’ and ‘IP’ refer to rotationally symmetric, non-
symmetric and in-plane, respectively. For the parameters in some of the references listed
we have used notation from the present paper for consistency.

Authors/Reference Formulation PDF Parameters 2D/3D Dispersion
Sacks [152] AI Beta γ,δ 2D IP
Driessen et al. [153] AI Gaussian σ 2D IP
Freed et al. [168] AI/GST Gaussian σ 2D/3D RS
Gasser et al. [134] GST von Mises κ 3D RS
Alastrué et al. [162] AI von Mises various 3D NS
Ateshian et al. [163] AI ellipsoidal ξi, αi, i = 1,2,3 3D NS
Raghupathy and Barocas [164] AI von Mises b 2D IP
Federico and Gasser [165] AI von Mises b 3D RS
Agianniotos et al. [166] AI von Mises b 2D IP
Gasser et al. [116] AI Bingham κ1,κ2 3D NS
Pandolfi and Vasta [167] GST/AI von Mises κ, κ̂ 3D RS
Holzapfel and Ogden [149] AI von Mises A, B, C, D, κ̄ 2D/3D RS/NS
Melnik et al. [150] GST von Mises κ 3D RS
Present work GST bivariate von Mises κip, κop 3D RS/NS/IP

to the π-periodic von Mises distribution in modeling the collagen organization in vascular
tissue’, which we have not found to be the case in the present study. The model [134] was
extended in [167] to incorporate a higher-order statistical measure of dispersion in order
to reduce differences between the GST and AI formulations. In the recent paper [149] we
have introduced a fiber dispersion model with a weighted energy function that allows the
exclusion of fibers which are under compression. The model, based on the AI approach,
has been developed for plane strain and for three-dimensional deformations appropriate for
finite element implementation (see also the discussion in [150] on the exclusion of com-
pressed fibers using the GST approach). A summary of the main models discussed above
is listed in Table 2.1.

The model in [134] has proved to be very successful, but recently it was shown in [139]
that an axisymmetric model of collagen fiber dispersion is not appropriate, and a more
general dispersion model is required to accommodate the new findings. Hence, based on
the structure tensor approach initiated in [134] we introduce here a bivariate von Mises
distribution that enables the dispersion data to be captured. In particular, for arteries, the
out-of-plane dispersion is relatively narrow while the in-plane dispersion is more signifi-
cant. The present work provides a natural extension of the constitutive setting documented
in [39, 134] to a more general context.
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This work is structured as follows. In Section 2.2 we introduce the mathematical frame-
work for describing fiber dispersion illustrated by the use of the bivariate von Mises dis-
tribution. This is particularly appropriate for use with the new experimental data, which
indicate that the current models are not sufficiently general to capture the collagen fiber
structure. Then we introduce a probability density function which accounts for these exper-
imental observations, and it is shown how the new model reproduces several special cases
from the literature. The continuum mechanical framework associated with the dispersion
structure introduced in Section 2.2 is presented in Section 2.3. In Section 2.4 the theory
of Section 2.3 is applied in three representative numerical simulations with the aim of
showing the efficacy and capability of the proposed structural model. Finally, Section 2.5
summarizes the proposed fiber dispersion model and discusses future developments of our
work.

2.2 Mathematical Representation of Fiber Dispersion

2.2.1 Structure Tensor for the Fiber Dispersion

Motivated by the experimental results documented in [19], we introduce the coordinate
system shown in Figure 2.1, where the unit vector N is an arbitrary fiber direction in the
reference (undeformed) configuration, expressed in terms of the two angles Φ and Θ by

N(Φ,Θ) = cosΘcosΦe1 + cosΘsinΦe2 + sinΘe3, (2.5)

where Φ ∈ [0,2π], Θ ∈ [−π/2,π/2] and e1,e2,e3 are unit rectangular Cartesian basis vec-
tors. Locally, e1 and e2 define the tangential plane of a cylindrical coordinate system and
e3 the corresponding outward radial direction. For a circular cylinder, e1 is taken to be
the circumferential direction and e2 the axial direction. Although the coordinate system is
similar to that introduced in [134], there is a subtle but important difference: our approach
does not involve symmetry about a preferred direction since recent experimental results
[19] have suggested that the fiber dispersion is not rotationally symmetric.

We describe ρ(N), which appears in (2.1), as the probability density of the fiber orientation
N in the reference configuration as a function of Φ and Θ. In the following we write either
ρ(N) or ρ(Φ,Θ), and this is normalized according to (2.2), equivalently

1
4π

∫
S

ρ(Φ,Θ)dS = 1, (2.6)

where dS = cosΘdΦdΘ. [Note that the usual spherical polar angles are π/2−Θ and Φ.]
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N

Φ

Θ

e1

e3 e2

Figure 2.1: A unit vector N(Φ,Θ) representing a general fiber direction defined by the
angles Φ and Θ with respect to rectangular Cartesian unit basis vectors e1,e2,e3.

Another requirement is that the PDF has to be independent of the sense of N so that
ρ(N)≡ ρ(−N), which is equivalent to ρ(Φ,Θ) = ρ(Φ+π,−Θ). Based on the experimen-
tal results presented in [19], we introduce two additional symmetries, namely the in-plane
symmetry ρ(Φ,Θ) = ρ(Φ+π,Θ) and the out-of-plane symmetry ρ(Φ,Θ) = ρ(Φ,−Θ).

It is assumed that the material behaviour does not depend on the sense of N, so that the
strain energy depends on N only through the tensor product N⊗N ([39]; see also [134]
and [169]), via a symmetric second-order tensor, introduced in (2.4)1, which we now write
as

H =
1

4π

2π∫
Φ=0

π/2∫
Θ=−π/2

ρ(Φ,Θ)N⊗NcosΘdΦdΘ, (2.7)

the components of which involve only ρ(N) and the sines and cosines of the angles Φ,
Θ. The tensor H is a structure tensor involving the fiber dispersion via ρ(N). This is
associated with a dispersion of fibers about a single mean direction, the mean direction
of N, which, according to the data in [19], has a very small component out-of-plane. We
therefore assume here that the mean fiber direction, say M, lies in the tangential plane
defined by e1 and e2. An explicit expression for M will be written down below.

In terms of its components Hi j we write H = Hi jei⊗ e j and note that, due to the sym-
metries of ρ(N), the off-diagonal components H13 and H23 vanish, and the only non-zero
components of H are therefore H12 and the diagonal components H11,H22,H33. Thus, H
has four non-zero components, and because trH = 1 by (2.4)2, only three of them are
independent:

H11, H22, H12, with H33 = 1−H11−H22. (2.8)

In [19] it was also observed that the dispersions in the two planes are essentially indepen-
dent, which means that the PDF can be decomposed in the form

ρ(Φ,Θ) = ρip(Φ)ρop(Θ), (2.9)
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where ρip(Φ) and ρop(Θ) describe the in-plane and out-of-plane dispersions, respectively.
Since the symmetry of the PDF has to be fulfilled, we require that

ρip(Φ) = ρip(Φ+π), ρop(Θ) = ρop(−Θ).

Without taking explicit account of these symmetries the normalization in equation (2.6) is
now written

1
4π

2π∫
0

ρip(Φ)dΦ

π/2∫
−π/2

ρop(Θ)cosΘdΘ = 1. (2.10)

Without loss of generality we can choose the normalization of ρip so that

1
2π

2π∫
0

ρip(Φ)dΦ = 1 (2.11)

and hence (2.10) reduces to

π/2∫
−π/2

ρop(Θ)cosΘdΘ = 2. (2.12)

Let us now define

κop =
1
4

π/2∫
−π/2

ρop(Θ)cos3
ΘdΘ, (2.13)

which is a measure of the out-of-plane dispersion and is consistent with the definition,
in slightly different notation, given in equation (4.1) in [134] for the case in which the
dispersion is rotationally symmetric. By definition, κop is non-negative and from (2.12)
and (2.13) it must satisfy κop ≤ 1/2. Thus,

0≤ κop ≤ 1/2. (2.14)

If ρop ≡ 1, giving an isotropic distribution, then κop = 1/3. Note that if ρip = 1 then
(2.11) is automatically satisfied, but on the other hand equation (2.11) does not necessarily
imply that ρip = 1. However, when ρip = 1 we obtain H11 = H22 = κop, H33 = 1− 2κop
and H12 = 0 and this corresponds to a transversely isotropic distribution with mean fiber
direction e3. The lower limit κop = 0 corresponds to the case in which all the fibers are in
the e3 direction (no dispersion), while the upper limit κop = 1/2 corresponds to a planar
distribution in the (e1, e2) plane. For isotropy we have ρip = ρop = 1 and κop = 1/3. In
general ρip and ρop are separate measures of the fiber dispersions, in-plane and out-of-
plane, respectively.



26 2 Modeling Non-symmetric Collagen Fiber Dispersion in Arterial Walls

We now define κ̄11, κ̄22 and κ̄12 by

κ̄11 =
1

2π

2π∫
0

ρip(Φ)cos2
ΦdΦ, κ̄22 =

1
2π

2π∫
0

ρip(Φ)sin2
ΦdΦ, (2.15)

κ̄12 =
1

2π

2π∫
0

ρip(Φ)sinΦcosΦdΦ. (2.16)

and hence by (2.11)
κ̄11 + κ̄22 = 1. (2.17)

Together, κ̄11, κ̄22 and κ̄12 characterize the in-plane dispersion. Note that κ̄12 = 0 when
ρip = 1 and also when the mean in-plane direction is either e1 or e2, as discussed below.

In general, we now have

Hab = 2κopκ̄ab, a,b ∈ {1,2}, H11 +H22 = 2κop, H33 = 1−2κop. (2.18)

At this point we note that the structure tensor H has the form

H =
3

∑
j=1

H j je j⊗ e j +H12(e1⊗ e2 + e2⊗ e1), (2.19)

and we emphasize, as noted above, that it is associated with a dispersion that has a single
mean direction. We shall relate this to the model of dispersion discussed in [134] when
considering special cases in Section 2.2.2.

An alternative way of writing the above representation is the form

H = AI+BM⊗M+(1−3A−B)Mn⊗Mn, (2.20)

where the unit vector M = cosα e1 + sinα e2 is the in-plane mean fiber direction, α being
the angle between M and e1, and Mn is a unit out-of-plane vector (see Figure 2.2), while
A and B are constants.

By comparing (2.19) and (2.20) we find that the components Hi j are related to A, B and
the angle α by

H11 = A+Bcos2
α, H22 = A+Bsin2

α, H12 = Bsinα cosα, (2.21)

from which we obtain

2A = 2κop−B, B2 = (H11−H22)
2 +4H2

12, (2.22)
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M
α

e1

e3 = Mn e2

Figure 2.2: Unit vector M in the (e1, e2) plane, α is the angle between M and e1, while
Mn= e3 is the unit out-of-plane vector given by e1× e2.

and
tan2α =

2κ̄12
κ̄11− κ̄22

. (2.23)

By defining B = 2κopB̄ and A = κopĀ we obtain

Ā = 1− B̄, B̄2 = (κ̄11− κ̄22)
2 +4κ̄

2
12, (2.24)

where Ā and B̄ depend only on the in-plane distribution. Note that B̄ is invariant with
respect to the rotation of the in-plane axes.

For any given distribution ρip we can calculate κ̄11, κ̄22 and κ̄12 and hence the angle α and
the constants Ā and B̄, while κop is obtained when ρop is given. Note that H contains only
two independent parameters. Note also that for α = 0 or π/2 the dispersion parameter
κ̄12 = 0.

In the next subsection we consider a particular choice of the density functions ρip and
ρop.

Using the Bivariate von Mises Distribution as the Dispersion Distribution

The work [19] documented angular data sets for the in-plane collagen dispersions of the
intima, media and adventitia of human non-atherosclerotic thoracic and abdominal aortas
and common iliac arteries. The out-of-plane angles were measured separately for each
layer, showing that the out-of-plane dispersions are very similar at all anatomic locations
and for each layer. Moreover, each mean fiber angle was found to be very close to tan-
gential. Motivated by these results we now model, as illustrative examples, each of ρip(Φ)
and ρop(Θ) with π-periodic von Mises distributions [170], so the overall PDF is a bivariate
von Mises distribution, featuring the symmetries that were discussed in Section 2.2.1.

For ρip(Φ) we consider the basic von Mises distribution

ρip(Φ) =
exp(acos2Φ)

I0(a)
, (2.25)
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where the so-called concentration parameter a is a constant and I0(a) is the modified Bessel
function of the first kind of order 0 defined by

I0(x) =
1
π

π∫
0

exp(xcosα)dα, (2.26)

which provides a normalization factor leading to (2.11) independently of a. Equation (2.25)
corresponds to a distribution that is symmetric about Φ = 0. Plots of the circular distribu-
tion (2.25) for different concentration parameters a are shown in Figure 2.3, and we note
that as a→ ∞, ρip becomes a delta function. For this special case of symmetry we use the
notation κ11, κ22 and κ12. It follows from (2.25) using the definitions (2.15) and (2.16)
that κ12 = 0 and

κ11 =
1
2
+

I1(a)
2I0(a)

, κ22 =
1
2
− I1(a)

2I0(a)
, (2.27)

where

I1(x) =
1
π

π∫
0

exp(xcosα)cosαdα, (2.28)

is the modified Bessel function of the first kind of order 1.

If the distribution is symmetrical about Φ = α instead of Φ = 0 then Φ is replaced by
Φ−α in (2.25) and the appropriate values of κ̄11 and κ̄12 are given by

κ̄11 = κ11 cos2
α +κ22 sin2

α, κ̄12 = (κ11−κ22)sinα cosα, (2.29)

and κ̄22 is given by (2.17). From now on, whenever κ12 = 0 we use the notation κip instead
of κ22.

Equation (2.12) is satisfied by taking ρop(Θ) to be a von Mises distribution of the form

ρop(Θ) = 2

√
2b
π

exp[b(cos2Θ−1)]
erf(
√

2b)
, (2.30)

where b is a constant concentration parameter and erf is the error function defined by

erf(x) =
2√
π

x∫
0

exp(−ξ
2)dξ . (2.31)

Note that (2.30) has a similar shape to (2.25) but is marginally different from the distribu-
tion used in [134], and gives a somewhat better fit to the narrow out-of-plane dispersion.
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Figure 2.3: The von Mises distribution (2.25) plotted against Φ for three different values of
the parameter a: (1,3,5), corresponding to the continuous, short dashed and long dashed
curves, respectively. For a = 0 we have ρip ≡ 1, while for a→ ∞, ρip becomes a delta
function.

For the distribution (2.30), a closed form expression for κop from (2.13) is obtained in the
form

κop =
1
2
− 1

8b
+

1
4

√
2

πb
exp(−2b)
erf(
√

2b)
. (2.32)

Figure 2.4 shows a plot of κop as a function of the concentration parameter b. Note in
particular that κop = 1/3 when b = 0.

We use maximum likelihood estimates to obtain the parameters a and b in the PDFs, ρip(Φ)
and ρop(Θ), from the angular data sets of [19]. Although it is possible to determine the pa-
rameters of a PDF by minimizing the sum of squared errors, this method has several disad-
vantages, as pointed out in [19], and hence we prefer to identify the parameters by using a
maximum likelihood estimate. In Figure 2.5 we show experimental data from the adventi-
tia of a human non-atherosclerotic abdominal aorta obtained from picrosirius-polarization,
in combination with a universal stage [19]. To produce the fit we used the maximum like-
lihood estimate to obtain the concentration parameters a and b. In Figure 2.5(a) we show
the in-plane bi-modal distribution of ρip of Φ with α =±47.99◦ giving a = 2.54, which is
obtained from (2.25) using Φ+α and Φ−α instead of Φ. In Figure 2.5(b) we show the
out-of-plane probability density ρop of Θ obtained from (2.30), where b = 19.44.
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Figure 2.4: Plot of κop vs. the concentration parameter b according to equation (2.32).
Note that 0≤ κop ≤ 1/2 and κop = 1/3 when b = 0.

2.2.2 Special Cases of Fiber Dispersions

Our model includes several existing dispersion models as special cases of (2.20), which
are discussed in the following section.

Transversely Isotropic Dispersion

In [134] we considered a transversely isotropic dispersion for which H has the form

H = κI+(1−3κ)M⊗M, (2.33)

where κ is a single dispersion parameter associated with a transversely isotropic dispersion
about M. Note that here we are taking M to lie in the (e1,e2) plane (see Figure 2.2). In
[134] κ had the form

κ =
1
4

π∫
0

ρ(Θκ)sin3
ΘκdΘκ ,
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Figure 2.5: (a) Probability density ρip(Φ+α), ρip(Φ−α) plotted against Φ with the con-
centration parameter a = 2.54 and with two mean fiber directions located at α =±47.99◦;
(b) probability density ρop(Θ) against Θ with the parameter b = 19.44.

where Θκ is measured from M and is different from the Θ used here. The connection
between Θκ and Θ is obtained from M ·N = cosΘκ , with N given by (2.5) and M =
cosα e1 + sinα e2, in the form cosΘκ = cosΘcos(Φ−α).

Equation (2.33) is recovered as a special case of (2.20) by taking κ = 1− 2κop, which
corresponds to A = κ , B = 1−3κ .

Perfect Alignment

If both concentration parameters a and b become infinite, there is no dispersion in either
plane and we obtain the model proposed in [39]. With a→∞, ρip becomes an in-plane delta
function, and with b→ ∞ we have κop→ 1/2. The structure tensor is then H = M⊗M,
and all fibers are oriented in the in-plane direction of M. This corresponds to A = 0, B = 1
in (2.20).

Isotropic Dispersion

An isotropic fiber dispersion is represented by a uniform dispersion in each plane, meaning
that ρ(Φ,Θ) is independent of Φ and Θ, with ρip = ρop = 1, so that, for the von Mises
distributions, a = b = 0, while κop = 1/3, and the structure tensor is given by H = 1

3I.
Thus, there is no preferred direction (κ = 1/3), with A = 1/3, B = 0 in (2.20).
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Table 2.2: Special cases of the present model based on the von Mises distributions (2.25)
and (2.30). The abbreviations used are: TI = transversely isotropic dispersion, ID
= isotropic dispersion, PA = perfect alignment, PD = planar dispersion, PI = planar
isotropic dispersion.

Case Conc. Parameter Dispersion Parameter Structure Tensor H Reference
TI – κ = 1−2κop κI+(1−3κ)M⊗M [134]
PA a→ ∞,b→ ∞ κop→ 1/2, κ = 0 M⊗M [39]
ID a = b = 0 κop = κ = 1/3 1

3 I [18, 134]
PD b→ ∞ κop→ 1/2, κ = κ̄22 κ1+(1−2κ)M⊗M [159, 169]
PI a→ 0,b→ ∞ κop→ 1/2 1

2 1 [116, 169]

Planar Dispersion

A dispersion with fibers oriented only in-plane was presented in [159, 169]. In this case
there is no out-of-plane contribution to H, which can be written as

H = κ1+(1−2κ)M⊗M, (2.34)

where 1 is the two-dimensional identity in the considered plane with the normalization and
dispersion parameter given by

1
π

π/2∫
−π/2

ρ(Θ)dΘ = 1, κ =
1
π

π/2∫
−π/2

ρ(Θ)sin2
ΘdΘ. (2.35)

Note that the normalization (2.35)1 is equivalent to (2.11) bearing in mind the different
range of angles used, and κ is equivalent to κ̄22 as defined in (2.15)2. The in-plane PDF
ρ(Θ) satisfies ρ(−Θ) = ρ(Θ). For the von Mises distribution (2.30) this corresponds to
b→ ∞ and κop→ 1/2. Equation (2.34) is obtained from (2.20) by setting A = κ = κ̄22,
B = 1− 2κ . Note that this is a two-dimensional distribution but its application is not
restricted to use in 2D.

Planar Isotropic Dispersion

If a dispersion features perfect out-of-plane alignment, b→ ∞ and κop→ 1/2, and is fully
dispersed in-plane so that a→ 0, ρip = 1, then it is planar isotropic. For this case, the
structure tensor is simply H = 1

21, corresponding to A = 1/2, B = 0 in (2.20).
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(a) (b) (c) (d) (e)

Figure 2.6: Visualization of the fiber dispersion defined by ρ(N)N, with ρ = ρip(Φ)ρop(Θ)
according to (2.25) and (2.30), where the distance from the centre to the surface represents
the probability of finding a fiber in the direction N. The plots have been scaled differently
and represent (a) a non-rotationally symmetric dispersion, (b) a rotationally symmetric
dispersion, (c) perfectly aligned fibers, (d) a 3D isotropic fiber dispersion and (e) a planar
fiber dispersion. The planar isotropic case corresponds to a circle in (e).

Summary of the Special Cases

The special cases discussed above are summarized in Table 2.2. Figure ?? is a visualiza-
tion of ρ(N)N for (a) the general case for which H is given by equation (2.20), (b) the
transversely isotropic dispersion given in Section 2.2.2 with H given by (2.33), (c) the
case of perfect alignment according to Section 2.2.2, (d) the isotropic case according to
Section 2.2.2 and (e) the case of planar dispersion given by equation (2.34).

2.3 Continuum Mechanical Framework

We consider a (stress-free) reference configuration, denoted Ω0, and a deformed (spatial)
configuration, denoted Ω. The deformation map χ(X) transforms a material point X ∈Ω0
into a spatial point x ∈ Ω. With this deformation map we define the deformation gradient
F(X) = ∂ χ(x)/∂X and its determinant J = detF(X), where J is the local volume ratio; we
require J > 0.
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Following [171, 172] we apply the multiplicative decomposition of F into a spherical (di-
latational) part J1/3I and a unimodular (distortional) part F = J−1/3F, with detF = 1.
We define the right Cauchy–Green tensor and its modified counterpart as C = FTF and
C = FTF, respectively, with the related invariants I1 = trC and Ī1 = trC.

Since we treat an artery as an elastic material, we assume the existence of a strain-energy
function Ψ(C,H4,H6) that depends on the macroscopic deformation through C and the
underlying tissue structure through the structure tensors H4,H6, which describe the fiber
alignment and dispersion for two fiber families. Based on (2.20) these are defined by

Hi = AI+BMi⊗Mi +(1−3A−B)Mn⊗Mn, i = 4,6 (2.36)

and M4 and M6 lie in the (e1, e2) plane, and Mn normal to that plane.

For computational purposes, we assume that it is possible to split the strain-energy func-
tion into two parts as Ψ(C,H4,H6) = Ψvol(J)+Ψiso(C,H4,H6), as shown in [173], [134].
The function Ψvol is a purely volumetric contribution while Ψiso represents the energy con-
tribution of an isochoric (volume preserving) deformation through C. The second Piola–
Kirchhoff stress tensor S is given by S = 2∂Ψ/∂C. Using the decoupled form of Ψ we
can identify two stress contributions so that S= Svol+Siso. Using well-known results from
tensor analysis (see, e.g., [173]), and the chain rule we obtain

Svol = pJC−1, Siso = J−2/3DevS, (2.37)

where p = dΨvol(J)/dJ is the constitutive equation for the hydrostatic pressure and

S = 2
∂Ψiso

∂C
(2.38)

is the so-called ‘fictitious’ isochoric second Piola–Kirchhoff stress tensor. The deviator in
the Lagrangian configuration is defined by Dev(•) = P : (•), where P = I− 1

3C−1⊗C is
a projection tensor that furnishes the correct deviatoric operator in the Lagrangian setting,
and (I)ABCD = 1

2(δACδBD +δADδBC) is a fourth-order identity tensor.

The related elasticity tensor C in the Lagrangian description is written in the decoupled
form

C= 2
∂S(C)

∂C
= Cvol +Ciso, Cvol = 2

∂Svol
∂C

, Ciso = 2
∂Siso
∂C

. (2.39)

According to [173] we have the specification

Cvol = J p̃C−1⊗C−1−2JpC−1�C−1 (2.40)
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and

Ciso = P : C : PT +
2
3

Tr(J−2/3S)P̃− 2
3
(C−1⊗Siso +Siso⊗C−1). (2.41)

In (2.40) we have used the notation C−1�C−1 = −∂C−1/∂C, where the symbol � de-
notes the tensor product according to the rule

(C−1�C−1)ABCD =
1
2
(C−1

ACC−1
BD +C−1

ADC−1
BC ), (2.42)

and the scalar function p̃ is defined by p̃ = p+ Jdp/dJ with the constitutive equation for
p given in the line after equation (2.37). In (2.41) we have also used the definitions

C= 4J−4/3 ∂
2
Ψiso(C)

∂C∂C
, Tr(•) = (•) : C, P̃= C−1�C−1− 1

3
C−1⊗C−1,(2.43)

where C is the fourth-order fictitious elasticity tensor, Tr(•) is the trace and P̃ is the modi-
fied projection tensor of fourth-order. The related spatial stress and elasticity tensors may
be derived by push-forward operations on (2.37) and (2.39)1, respectively [173]. It should
be noted here that the compressible formulation is introduced for computational purposes,
and the incompressibility condition has to be enforced by a numerical scheme, one exam-
ple of which is the Augmented Lagrangian method (see, e.g., [174]).

We emphasize that for a specific material we need to specify Ψiso and hence to calculate
its derivatives with respect to C, which affects the two expressions (2.38) and (2.43)1. In
the next subsection such a specification is provided.

2.3.1 Anisotropic Strain-energy Function

Each of the structure tensors H4 and H6 depends on two dispersion parameters. We assume
that these are the same for each fiber family. Our approach follows the work of [39] in
which the contributions Ψg and Ψf of the ground matrix (non-collagenous material) and
the fibers to the strain energy are added. The artery is treated as an incompressible, elastic
and fiber-reinforced material with the fiber dispersion accounted for both in-plane and
out-of-plane. Hence, superposition of energies reads

Ψiso = Ψg(C)+ ∑
i=4,6

Ψfi(C,Hi). (2.44)

Following [39, 175] we model the ground substance with a neo-Hookean material Ψg =
c(Ī1−3)/2, where the parameter c is the shear modulus in the reference configuration. For
the fiber contributions Ψfi, we adopt the exponential functions [134]

Ψfi(C,Hi) =
k1

2k2
[exp(k2E2

i )−1], i = 4,6, (2.45)
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Table 2.3: Parameters for the proposed model.

Parameter Interpretation Range Identification
c [kPa] Stiffness of (isotropic) ground matrix (0,∞)

Mechanical testsk1 [kPa] Stress-like parameter [0,∞)
k2 [–] Dimensionless parameter [0,∞)
κip Dispersion in-plane [0,1]

 Histology/Imaging
κop Dispersion out-of-plane [0,1/2]
M4, M6 Mean fiber directions α ∈ [0,π/2]
Mn Normal to the mean fiber plane –

where k1 is a parameter with the dimensions of stress and k2 a dimensionless parameter,
while

E i = Hi : (C− I) (2.46)

is a Green–Lagrange strain-like quantity which can be interpreted as an averaged or weighted
fiber strain, depending on the fiber dispersion through the structure tensor Hi and the (iso-
choric) macroscopic deformation through C.

Since trHi = 1, we can write E i = Hi : C−1. Using the definitions (2.36) of the structure
tensors H4 and H6 we obtain

E i = AĪ1 +BĪi +(1−3A−B)Īn−1, (2.47)

where
Īi = C : Mi⊗Mi, i = 4,6, Īn = C : Mn⊗Mn. (2.48)

The invariants Ii = J2/3Īi and In = J2/3Īn are the squares of the stretches in the directions
Mi and Mn, respectively. A summary of the parameters used is provided in Table 2.3.

The strain-energy function used in the proposed model reads

Ψiso =
c
2
(Ī1−3)+

k1
2k2

∑
i=4,6

{
exp
[
k2E2

i

]
−1
}
. (2.49)

Following [39], we make the common assumption that the fibers do not resist any com-
pression and are only active in tension. The invariants Ii are used as switches between
fiber compression and tension so that the anisotropic part Ψfi only contributes to the strain
energy when I4 > 1 or I6 > 1. If one or more of these conditions is not satisfied then the
relevant part of the anisotropic function is omitted from (2.49). For example, if I4 and I6
are less than (or equal to) 1, then the tissue response is purely isotropic. For discussion of
subtle points regarding the choice of switching criteria, see [149].
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In the expressions for the stress and the elasticity tensor we need to calculate ∂Ψiso/∂C
and ∂

2
Ψiso/∂C∂C. By using the chain rule these are obtained as

∂Ψiso

∂C
= cI+ψ

′
i Hi,

∂
2
Ψiso

∂C∂C
= ψ

′′
i Hi⊗Hi, i = 4,6, (2.50)

where Hi is given by (2.36), and we have introduced the notations

ψ
′
i =

∂Ψiso

∂E i
= k1E i exp(k2E2

i ), ψ
′′
i =

∂
2
Ψiso

∂E2
i

= k1(1+2k2E2
i )exp(k2E2

i ). (2.51)

2.4 Representative Examples

Having identified the dispersion parameters of the model in the previous section, we now
identify the mechanical parameters by fitting the constitutive model to uniaxial data. The
parameters are then used to implement the proposed constitutive model into the finite el-
ement analysis program FEAP, the results of which for a simple biaxial extension of an 8
element cube are compared with the analytical (MATLAB) result. Finally, numerical re-
sults are obtained for the stress distribution in the non-homogeneous extension of strips of
an adventitial layer cut out along the axial and circumferential directions.

2.4.1 Parameter Fitting to Experimental Data

In this example we consider the purely incompressible formulation where the strain-energy
function is characterized by Ψ = Ψ(C,H4,H6). The second Piola–Kirchhoff stress tensor
S is then given by

S = 2
∂Ψ

∂C
− pC−1 = 2

(
∂Ψ

∂ I1
I+ ∑

i=4,6

∂Ψ

∂ Ii
Mi⊗Mi +

∂Ψ

∂ In
Mn⊗Mn

)
− pC−1, (2.52)

where p in this case denotes the Lagrange multiplier required to enforce incompressibility.
From (2.52) the Cauchy stress tensor can be computed simply by σ = FSFT.

The strain-energy function in the present formulation reads

Ψ =
c
2
(I1−3)+

k1
2k2

∑
i=4,6

{
exp
[
k2E2

i

]
−1
}
, (2.53)

where
Ei = AI1 +BIi +(1−3A−B)In−1, i = 4,6. (2.54)
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M4

M6

α

α

e1
Circumferential

e3 = Mn

Axial

e2

Figure 2.7: A specimen with two symmetric fiber families with mean fiber directions M4
and M6 lying in the circumferential/axial plane, each making an angle α with the circum-
ferential direction. The normal direction to the plane is Mn.

The anisotropic term in (2.53) only contributes when the fibers are extended, i.e. when
I4 > 1 or I6 > 1. For the case that one or more of these conditions is not satisfied then the
relevant part is omitted from (2.53).

We now consider a tissue specimen with two fiber families in the reference configuration
with mean directions illustrated in Figure 2.7. The unit vectors M4 and M6, which are
symmetrically disposed in the circumferential/axial plane, each make an angle α with the
circumferential direction, so that

[M4] = [cosα, sinα, 0]T, [M6] = [cosα, −sinα, 0]T, (2.55)

while the normal direction to the plane is [Mn] = [0, 0, 1]T. The deformation gradient
matrix and the right Cauchy–Green matrix are

[F] = diag[λ1,λ2,λ3], [C] = diag[λ 2
1 ,λ

2
2 ,λ

2
3 ], (2.56)

where λ1, λ2, λ3 denote the principal stretches. Hence, the required invariants read

I1 = λ
2
1 +λ

2
2 +λ

2
3 , (2.57)

Ii = C : (Mi⊗Mi) = λ
2
1 cos2

α +λ
2
2 sin2

α, i = 4,6, (2.58)

In = C : (Mn⊗Mn) = λ
2
3 . (2.59)

Since Ii is the same for i = 4 and 6 we obtain ψ
′
4 = ψ

′
6, where here, in analogy with (2.51)1,

ψ
′
i = k1Ei exp(k2E2

i ), i = 4,6. By using Ei in the scalar stress function (2.53) we obtain the
derivatives of the strain-energy function as

∂Ψ

∂ I1
=

c
2
+2Aψ

′
4,

∂Ψ

∂ Ii
= Bψ

′
i , i = 4,6,

∂Ψ

∂ In
= 2(1−3A−B)ψ ′4. (2.60)
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Table 2.4: Summary of material and structural parameters.

Material parameters Structural parameters
c [kPa] k1 [kPa] k2 [–] κip [–] κop [–] α [◦]

Value 10.07 5.89 21.62 0.116 0.493 ±47.99◦

R2 0.998 0.877 0.916 [–]

Hence, the non-zero components of the Cauchy stress are

σ11 = [c+4(A+Bcos2
α)ψ ′4]λ

2
1 − p, (2.61)

σ22 = [c+4(A+Bsin2
α)ψ ′4]λ

2
2 − p, (2.62)

σ33 = [c+4(1−2A−B)ψ ′4]λ
2
3 − p. (2.63)

The constants A and B can be deduced from (2.21) and (2.22) as

A = 2κopκip, B = 2κop(1−2κip). (2.64)

Together with the incompressibility condition (λ1λ2λ3 = 1), the implicit equations (2.61)–
(2.63) with σ22 = σ33 = 0 can then be used to obtain p, λ2 and λ3 in terms of λ1, thus
giving an expression for σ11 in terms of λ1, the material parameters c, k1 and k2 and the
structural parameters κip, κop and α .

To determine the material parameters of our model, we use the structural data provided in
Figure 2.5 (mean fiber angle α and concentration parameters a, b) and experimental data
(from uniaxial tension tests) from the adventitia of a human non-atherosclerotic abdominal
aorta. A least–squares objective function is chosen as the L2-norm of the error between
the model prediction of the Cauchy stress in the circumferential and the axial directions,
and the corresponding experimental data. We use the function LSQNONLIN in MATLAB

1,
which utilizes the Levenberg–Marquardt algorithm to find the minimum. The dispersion
parameters κip from (2.27)2 with the value of a, and κop from (2.32) with the value of b
can be determined from the imaging data provided in Figure 2.5. Imaging and material
data were obtained from different but comparable tissues.

To quantify the goodness of the fit, we calculate the coefficient of determination R2, which
is given by

R2 = 1− Serr
Stot

, (2.65)

where Serr and Stot are the sums of squares of the differences between model/experiment
and the mean of experiment/experiment, respectively [176]. We obtained a good fit with
R2 = 0.998. The parameters identified are listed in Table 2.4. Figure 2.8 shows the result
of fitting the proposed model to data from uniaxial tension tests.

1Version R2010b, by The MathWorks Inc., Massachusetts, USA
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Figure 2.8: Fitting of the proposed model to the results of a uniaxial tension test. The good
quality of fit is reflected in the high coefficient of determination, R2 = 0.998. The model
(Cauchy) stresses at a stretch of 1.3 are 16.6 (axial) and 12.2 kPa (circumferential) – see
also Figure 2.11.

2.4.2 Biaxial Extension: Comparison of MATLAB and Finite Element Results

In this section we demonstrate the efficacy of the proposed constitutive model by using
eight hexahedral Q1/P0 finite elements for a cube (10×10×10), which is reinforced by
two symmetric fiber families, as depicted in Figure 2.7. The cube is subjected to homo-
geneous biaxial extension in the 1,2-plane, which here we call ‘in-plane’, as shown in
Figure 2.9; the 2,3-plane we call ‘out-of-plane’. The mesh is unstructured according to
Figure 2.9. The material parameters used are those documented in Table 2.4. We investi-
gate four different cases of fiber dispersion: (I) structural parameters taken from Table 2.4,
which is the reference case; (II) high alignment out-of-plane and isotropy in-plane; (III)
less alignment out-of-plane and isotropy in-plane; (IV) isotropy in both out-of-plane and
in-plane. For a summary see Table 2.5.

The maximum of each stretch, (λ1,λ2) in the 1 and 2 direction, respectively, is 1.15 and
the corresponding Cauchy stresses (σ11,σ22) are computed from equations (2.61)–(2.63)
using MATLAB. In addition, these relationships are compared with results obtained from
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Figure 2.9: Unstructured mesh of a cube discretized by eight hexahedral finite elements.
The cube is reinforced by two symmetric fiber families and subjected to homogeneous
equibiaxial extension in the 1,2-plane, illustrated by arrows.

a finite element computation using FEAP [135]. The cube is stretched simultaneously in
the 1 and 2-directions under displacement-driven conditions using the Newton–Raphson
method. Figures 2.10(a),(b) show plots of the Cauchy stresses σ11 and σ22 versus the
stretches λ1 and λ2, respectively. Note that for case (IV) the stresses in the 1 and 2-
directions are the same since the in-plane and out-of-plane dispersions are isotropic.

2.4.3 Extension of Adventitial Strips

In this section we illustrate the results of the finite element implementation of the proposed
constitutive model, simulating uniaxial extension tests related to experiments on strips per-
formed in our lab in Graz. The strips were taken from an adventitial layer cut out along
the axial and circumferential direction of a human non-atherosclerotic abdominal aorta.
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Table 2.5: Four different cases of fiber dispersion for the homogeneous biaxial extension
of a cube. The material parameters are taken from Table 2.4.

Case Description Dispersion parameters
I Structural parameters from table 2.4 κip = 0.116, κop = 0.493
II High alignment out-of-plane and isotropy in-plane κip = 0.5, κop = 0.48
III Less alignment out-of-plane and isotropy in-plane κip = 0.5, κop = 0.45
IV Isotropy in out-of-plane and in-plane κip = 0.5, κop = 1/3
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Figure 2.10: Homogeneous biaxial extension of a cube (compare with Figure 2.9): panels
(a) and (b) show plots of Cauchy stresses σ11, σ22 versus stretches λ1, λ2 in the 1 and
2-directions. The four different cases of fiber dispersion are listed in Table 2.5, where (I) is
the reference case with parameters given in Table 2.4. The circles represent finite element
results while the curves are obtained from a MATLAB computation.

The strips, each with initial length, width and thickness of 10.0, 3.0 and 0.5 mm, respec-
tively, were subjected to a stretch of 1.3. Both ends of each strip were constrained so as to
model the mounting in the testing machine and were not allowed to deform. The resulting
deformation of each strip was therefore non-homogeneous. We assume uniform material
parameters over the adventitial strips with values provided in Table 2.4. Two symmetric
fiber families, as shown in Figure 2.7, are assumed to make an angle α of ±47.99◦ with
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Figure 2.11: Finite element results of circumferential and axial specimens from the ad-
ventitia, subjected to a stretch of 1.3. The Cauchy stress is plotted in the direction of the
applied displacement. The undeformed (initial) configuration is indicated by solid lines.

the circumferential direction and to show a distribution characterized by κip = 0.116 and
κop = 0.493, as also provided in Table 2.4. We use 3200 hexahedral elements, applying
the mixed Q1/P0 element throughout the simulation. Figure 2.11 shows the finite element
results of the circumferential and axial specimens, subjected to a stretch of 1.3. Both cir-
cumferential and axial specimens show that the Cauchy stresses in the adventitia can be
modelled within the experimentally predicted range of stresses (compare with the experi-
mental results in Figure 2.8). It turns out that the (axial and circumferential) stresses in the
middle of the specimens are slightly higher than the model stresses provided in Figure 2.8,
which is due to the boundary conditions used in the present example.
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2.5 Discussion

As several previous approaches have shown (see, for example, [134, 157, 168]) incor-
poration of fiber dispersion into a continuum mechanical framework for soft biological
tissues is a challenging and important task. Indeed the mechanical response of such tis-
sues depends significantly on the tissue structure, in particular the arrangement of the fiber
dispersion.

One of the main goals of our previous papers, e.g. [39, 134], has been to incorporate the
structure of biological tissues into our models in order to capture the physiological and
pathological mechanical mechanisms. Recent experimental data have shown the need for
a more general model that takes account of the non-symmetric arrangement of collagen
fibers. This motivates the introduction, in the present paper, of the bivariate von Mises
distribution for describing the collagen fiber dispersion. By fitting the bivariate probability
density function to angular distribution data gained from imaging/histological analysis,
we can determine structural parameters that can be integrated within the framework of
continuum mechanics, in particular hyperelasticity. This allows us to define a strain-energy
function from which the stress and the elasticity tensors can be computed, thus facilitating
an efficient implementation of the model into a finite element code.

The proposed constitutive model introduces a new structure tensor which incorporates in-
plane and out-of-plane fiber dispersions in a clear and simple way, leading to an invariant-
based formulation of the strain-energy function, generalizing our previous models [39,
134]. The strain-energy function can incorporate different structure tensors for different
fiber families. In particular, the work [19] showed that the number of fiber families depends
on the location of the artery and the type of layer, although in most cases two collagen fiber
families were reported. For the most general case considered here the structure tensor has
three independent components, and these reduce to two when there is in-plane symmetry
(with parameters κip and κop) or one when there is rotational symmetry about a single
preferred direction (with parameter κ). Various special cases have been highlighted in
Section 2.2.2, capturing the cases of rotational symmetry, in-plane dispersion, transverse
isotropy and isotropy.

We have constructed a specific energy function that illustrates the efficacy of the model
using three specific examples. In the first example we have demonstrated a good fit of the
model to experimental data using identified structural parameters as a fixed set. The model
was then used to illustrate the effect of fiber dispersion on biaxial extension experiments,
including a comparison of analytical and finite element results. Finally, we have analyzed
the three-dimensional non-homogeneous stress response for a given overall extension of
adventitial strips in the circumferential and axial directions obtained from a human abdom-
inal aorta. The resulting stress responses deviate significantly from each other due to the
different mechanical and structural properties in the two directions.
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More data are required to determine the detailed dispersion of collagen fibers, not only for
the arterial wall but also for other types of fibrous tissues. To inform the modeling process,
second-harmonic generation, for example, in combination with optical clearing [177] is
a powerful technique for obtaining collagen fiber dispersion data from various types of
tissues.

In order to analyze the data within a continuum framework two main approaches are used.
First the ‘angular integration’ (AI) approach, which is computationally expensive because
it involves an integration over the unit sphere. It does, however, allow the exclusion of
fibers undergoing compression. With the ‘generalized structure tensor’ (GST) approach, it
is possible to extract structural parameters and to include them in the continuum mechan-
ical framework to account for the fiber dispersion. For an artery that exhibits a dispersion
with a strong alignment in-plane, the GST seems to be a feasible and very efficient method,
although it does require a minor modification in order to exclude fibers which are under
compression [150].

For further development, as mentioned above, many more data are needed to inform the
modeling process. In particular, there is a pressing need to obtain in vivo data in order
to construct more realistic models of tissue and organ mechanics. The model can also
be extended to incorporate inelastic effects such as damage, viscoelasticity and muscle
activation.





3 MICROSTRUCTURE AND MECHANICS OF HEALTHY AND
ANEURYSMATIC ABDOMINAL AORTAS: EXPERIMENTAL
ANALYSIS AND MODELING

Abstract. Soft biological tissues such as aortic walls can be viewed as fibrous compos-
ites assembled by a ground matrix and embedded families of collagen fibers. Changes in
the structural components of aortic walls such as the ground matrix and the embedded fam-
ilies of collagen fibers have shown to play a significant role in the pathogenesis of aortic
degeneration. Hence, there is a need to develop a deeper understanding of the microstruc-
ture and the related mechanics of aortic walls. In this study tissue samples from 17 human
abdominal aortas (AA) and from 11 abdominal aortic aneurysms (AAA) are systematically
analyzed and compared with respect to their structural and mechanical differences. The
collagen microstructure is examined by analyzing data from second-harmonic generation
imaging after optical clearing. Samples from the intact AA wall, their individual layers
and the AAA wall are mechanically investigated using biaxial stretching tests. A bivariate
von Mises distribution was used to represent the continuous fiber dispersion throughout
the entire thickness, and to provide two independent dispersion parameters to be used in
a recently proposed material model. Remarkable differences were found between healthy
and diseased tissues. The out-of-plane dispersion was significantly higher in AAA when
compared with AA tissues, and with the exception of one AAA sample, the characteristic
wall structure, as visible in healthy AAs with three distinct layers, could not be identified
in AAA samples. The collagen fibers in the abluminal layer of AAAs lost their waviness
and exhibited rather straight and thick struts of collagen. A novel set of three structural
and three material parameters is provided. With the structural parameters fixed the material
model was fitted to the mechanical experimental data, giving a very satisfying fit although
there are only three material parameters involved. The results highlight the need to incor-
porate the structural differences into finite element simulations as otherwise simulations of
AAA tissues might not be good predictors for the actual in vivo stress state.

3.1 Introduction

An abominal aortic aneurysm (AAA) is a local bulging of the abdominal aorta character-
ized by segmental weakening of the blood vessel. It is often accompanied by the devel-
opment of an intraluminal thrombus [84, 178]. In general, AAAs are clinically silent and
without medical treatment AAAs may grow until rupture [11]. The event of rupture is asso-
ciated with a significant mortality rate up to 85% [6]. However, the only current treatment
of AAA is elective surgical repair, which carries a high mortality risk, especially in older
patients, and it does not necessarily improve survival [7]. Therefore a reliable prediction
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of rupture risk for individual AAAs is of high relevance in order to assess when the risk
of rupture justifies repair [179]. The decision for elective surgical repair is presently based
on indicators such as the aneurysm diameter [180], which are more a ‘rule-of-thumb’ than
a scientific criterion, and therefore often unreliable, especially as they do not take into
account individual AAA characteristics such as the tissue microstructure.

When seen from a biomechanical point of view, rupture as a material failure occurs when
the peak wall stress exceeds the local strength of the arterial wall [181]. As the mate-
rial properties of the abdominal aorta depend largely on the complex network structure
of elastin and collagen, which are the most important structural and primary load bearing
proteins in the arterial wall [182], changes in the structural components play a significant
role in the pathogenesis of aneurysms. Hence there is a need to develop a deeper under-
standing of the structure in the abdominal aorta and its ongoing (localized) reorganization
during the disease process.

As acquisition of patient-specific three-dimensional (3D) images becomes easier, the uti-
lization of finite element (FE) analysis and biomechanics help to better understand the
influence of structural changes on the mechanics. Related numerical models require phys-
iologically determined material and structural parameters. Some mechanical data are avail-
able on healthy human abdominal aortas [183, 184]. However, mechanical human tissue
data coupled to structural information do not currently exist to be utilized for FE simula-
tions neither for healthy nor for AAA tissues.

Biaxial extension tests on AAAs are documented in, e.g., [110, 112, 113], reporting anisotropic
responses with stiffer behavior in the circumferential direction. The studies [107–109]
performed uniaxial extension tests until failure also reporting a stiffer circumferential di-
rection. In addition circumferential stiffening was reported in the studies [97, 98, 103],
who measured the pressure modulus of AAA tissues. Contrary to these studies isotropy
was claimed in [106], who performed uniaxial extension tests. Following this assumption
uniaxial tension tests were also performed in, e.g., [53, 57, 185–189], testing only one
direction of the specimens (either axial or circumferential).

AAA simulations are often based either on linear material laws and the AAA tissue is
often treated as an isotropic elastic material [190–193] or, if anisotropic material laws
are utilized, simulations are based on structural data obtained from healthy tissues [108].
However, studies such as [13] have shown that a more advanced constitutive description
of AAA tissues is critical for a proper prediction of AAA wall stresses. Additionally,
we have identified substantial differences in the structure between healthy aortic tissues
and tissues taken from AAAs. Especially the out-of-plane collagen dispersion in AAAs
differs significantly in comparison with healthy tissue. Figure 3.1 shows representative
second-harmonic generation (SHG) images of the collagen structure in a healthy abdomi-
nal aortic media and a AAA tissue taken from the middle portion of the wall thickness. The
corresponding histograms of the angular dispersion of fiber angles clearly show a higher
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Figure 3.1: Representative SHG images of the collagen structure in a healthy abdominal
aortic media (above) and a AAA tissue taken from the middle portion of the wall thickness
(below). Corresponding graphs show the angular dispersion (relative amplitude in %) of
collagen fiber orientations, which is narrower for a healthy aortic media (smaller dispersion
of fibers), when compared with AAA tissue (higher fiber dispersion). Scale bar is 100µm.

out-of-plane dispersion for the AAA tissue. This finding highlights the need for the in-
corporation of the AAA structure into related FE simulations as otherwise the numerical
results may not be a good prediction of the in vivo state.

Although the pathogenesis and material properties of AAAs have been topics of several
studies more recently [110, 112, 116, 194–196], the specific events leading to AAA devel-
opment still remain unclear. To the authors’ knowledge, no biaxial mechanical data com-
bined with the corresponding microstructure of both healthy (layer-specific) and aneurys-
matic aortic tissues are yet available. To further increase the understanding and to improve
rupture risk prediction it is necessary to study effects of localized wall changes (shown,
e.g., for cerebral aneurysms in [197]) by combining the microstructure with patient-specific
mechanical data and systematically compare these changes with healthy abdominal aortic
tissues. Such a knowledge can then be used to improve numerical models incorporating
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structure-based nonlinear material models, as was recently performed in [198] where the
biaxial response of porcine aortic tissues was combined with the related microstructure
identified using histological slices.

The aim of the present study is to systematically analyze and compare the material prop-
erties of layer-specific healthy abdominal aortic tissue with tissue taken from AAA wall
samples, by means of biaxial stretching tests and their link with the 3D microstructure
using a combination of optical clearing, SHG imaging and subsequent automated quantifi-
cation of the 3D fiber dispersion and alignment. First the utilized materials and methods are
explained, involving tissue clearing and SHG imaging, biaxial stretching tests, a recently
published material model used to capture the non-symmetric collagen fiber dispersion in
arterial walls and the related mechanics, data fitting and the statistical analysis. Subse-
quently the results are presented, first the structural data and then the biaxial mechanical
data. Differences between structural and material parameters are compared utilizing statis-
tical tools, and correlations between these parameters are investigated. Finally the results
are discussed and put into context with the current literature.

3.2 Materials and Methods

Seventeen human abdominal aortas (AA) with non-atherosclerotic intimal thickening, from
7 women and 10 men (63±11 (SD) yr, range 45-84), were collected as intact tubes within
24 h of death and stored in 0.9% physiological saline solution at 4◦C until testing. Addi-
tionally, eleven wall samples from (true) abdominal aortic aneurysms (AAA) (69±8 (SD)
yr; range 53-76; 1 woman, 10 men) were collected from open aneurysm repair at the an-
terior side at the Department of Vascular Surgery, Medical University Graz, Austria, and
stored in Dulbecco’s Modified Eagle’s Medium (DMEM) at 4◦C until testing. The AAA
samples were mostly small pieces with the longitudinal direction marked by a surgical clip
or suture. Both the use of autopsy and AAA materials from human subjects were approved
by the Ethics Committee of the Medical University of Graz (27-250 ex 14/15).

3.2.1 AA and AAA Microstructure

Sample Preparation

Intact aortic tubes were cut open along the longitudinal direction and small samples, ap-
proximately 15×5 mm in size, were acquired from both the healthy and the aneurysmatic
specimens, with the longer side marking the longitudinal direction. Subsequently, the sam-
ples were cleared using a protocol according to [177]. First the specimen were dehydrated
by submerging them into a graded ethanol series, consisting of 50, 70, 95 and twice 100%
concentrated ethanol solutions. Subsequently the specimen were stored at 100% benzyl
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alcohol – benzyl benzoate (BABB) for at least 12 h after initially submerging them into
a 1 : 2 solution of ethanol:BABB for 4 h. All steps were performed at room temperature.
Whenever the thrombus, covering the corresponding aneurysmatic wall, was available a
small piece was fixed in 4% neutral-buffered formalin (pH 7.4), embedded in paraffin
and prepared for histological investigations to determine the thrombus age according to
[112].

Second-Harmonic Generation Imaging

To identify the 3D collagen structure of the samples SHG imaging was performed at the
Institute of Science and Technology in Klosterneuburg, Austria. An imaging set-up con-
sisting of a ‘Chameleon’ Titan Saphir laser (Coherent, Inc., USA) integrated into a TriM
Scope II confocal microscope (LaVision BioTec GmbH, Germany) was used. The exci-
tation wavelength was tuned to 880 nm and the detection of the backscattered signal was
achieved using a gallium arsenide-phosphide detector and a BP 460/50 emission filter.
Images (z-stacks, 3 µm steps, and cross-section images in (x,z)-plane) were acquired us-
ing a Leica IMM CORR CS2 20× water immersion objective with a working distance of
0.68 mm.

N

Φ

Θ

e1

e3 e2

Figure 3.2: Unit vector N representing a general fiber direction defined by the two angles
Φ and Θ with respect to rectangular Cartesian unit basis vectors e1, e2, e3 [199].

Microstructural Analysis of Collagen fiber Orientation

Morphological collagen data were extracted from 3D images (z-stack) by combining Fourier
power spectrum analysis and wedge filtering, as described in [139, 177]. The analysis
yielded discrete angular distributions of relative amplitudes which resembled the fiber ori-
entations. To describe a general fiber direction a coordinate system characterized by the
unit rectangular Cartesian basis vectors e1, e2, e3, as shown in Fig. 3.2, was used [199],
with the unit vector N representing a general fiber direction in the (unloaded) reference
configuration, defined by the two angles Φ ∈ [0,2π] and Θ ∈ [−π/2,π/2]. For a circular
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cylinder e1 is taken to be the circumferential direction and e3 the radial direction, therefore
we refer to the angles Φ and Θ as the in-plane and out-of-plane angle, respectively.

The in-plane and out-of-plane collagen fiber orientations were fitted using a bivariate von
Mises distribution ρ(Θ,Φ) = ρip(Φ)ρop(Θ) for the probability density ρ of N (in-plane
and out-of-plane dispersions are essentially independent [19]), with the particular choice
[199]

ρip(Φ) =
exp[acos2(Φ±α)]

I0(a)
, ρop(Θ) = 2

√
2b
π

exp[b(cos2Θ−1)]
erf(
√

2b)
, (3.1)

where ρip(Φ) = ρip(Φ+π) and ρop(Θ) = ρop(−Θ) describe the in-plane and out-of-plane
dispersions, respectively. In (3.1) a and b are (constant) concentration parameters, i.e.
fitting parameters, which define the shape of the von Mises distributions, I0(a) is the mod-
ified Bessel function of the first kind of order 0 and α is the angle between the mean fiber
direction and the circumferential direction e1.

According to [199] we introduce the two scalar quantities κip and κop which measure
the in-plane and out-of-plane dispersion, respectively (they are used in the strain-energy
function introduced in Section 3.2.3). Thus,

κip =
1
2
− I1(a)

2I0(a)
, κop =

1
2
− 1

8b
+

1
4

√
2

πb
exp(−2b)
erf(
√

2b)
, (3.2)

where 0 ≤ κip ≤ 1 and 0 ≤ κop ≤ 1/2. If both concentration parameters a and b become
infinite, then the collagen fibers are perfectly aligned.

Layer-specific thicknesses were measured from out-of-plane images using FIJI
(http://fiji.sc/Fiji, Ashburn, VA) [200]. They were used for the calculation of the
dispersion parameters κip and κop and the angle α of the intact AA wall. For example, the
parameter κip for the AA wall was calculated as the sum of the layer-specific κip where the
individual κip was weighted with respect to the layer-specific thickness.

3.2.2 AA and AAA Mechanics

Sample Preparation

In regard to AA tissue, adjacent to the small samples which were prepared for SHG imag-
ing, two squared samples with the dimension 20×20 mm were cut out to obtain one ‘com-
posite’ patch (intact wall) and one medial patch (after the intimal and adventitial layers
were peeled off), used for mechanical testing. In addition, a cruciform sample with the
dimension 35×35 mm adjacent to the other two samples was cut out with a punching tool
so that a central region of the sample with the dimension 5×5 mm remained, see Fig. 3.3
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M

optical clearing

C

I, A circ
axial

Figure 3.3: AA tissue showing contours of the samples, which were prepared from the
specimen (I . . . intima, M . . . media, A . . . adventitia, C . . . composite).

(a) (b) (c) (d)

Figure 3.4: Steps of preparing AA tissue for layer-specific biaxial testing: (a) cruciform
sample of the intact wall; (b) separation of the adventitia (there are still some medial
patches visible on the adventitia which were peeled off later); (c) separation of the thin
intimal layer; (d) medial layer left after the layer separation process. Scale bar is 10 mm.

(the cruciform shape was designed using the FE method to minimize the inhomogeneity of
the stress state in the central region [201]). Subsequently, intimal and adventitial patches
required for testing were manually separated from the media. The layers were clearly dis-
tinguishable and minor fractions of the media could mostly be removed from the intima
and the adventitia, see Fig. 3.4.

For the adventitia and the intima cruciform samples had to be used because the sample
thickness was very thin (< 0.4 mm). Instead of piercing the hooks directly into the sam-
ples the hooks were placed in sandpaper which was then glued to the arms of the samples.
Especially by piercing the hooks directly into the intima we have frequently observed rup-
ture even before mounting the sample into the testing machine. Intima and adventitia were
thin enough to exhibit a homogeneous stress state in the central region of the cruciform
sample. Intact wall and media sample were too thick (> 0.7 mm) to be tested with the
cruciform sample geometry, and hence were tested using the well-established squared ge-
ometry.
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Similar to the healthy squared wall samples, a patch with dimension 20×20 mm was cut
out from the AAA wall (sometimes two patches could be obtained). A clear identification
of separable layers was impossible in most AAA samples, hence only the intact AAA wall
was tested. The mean thickness of both AA and AAA samples was measured according to
[202]. Subsequently, black tissue markers were applied by spraying on the surface of each
sample generating a scattered pattern suitable for optical tracking.

Biaxial Tensile Tests

All samples were mounted in a biaxial testing device via hooked surgical sutures. The
samples were submerged into a bath filled with 0.9% physiological saline solution and
heated up to 37±0.1◦C. During testing normal and shear deformations were quantified
according to [203], and it was found that negligible shear stresses were present throughout
the testing.

A stretch-driven protocol was used for testing, and executed with a stepwise increase of
0.025 stretch until rupture, starting with 2.5% deformation. Each sample was tested using
the following protocol for each stretch increment: λaxial : λcirc = 1 : 1, 1 : 0.75, 0.75 : 1, 1 :
0.5 and 0.5 : 1, where λaxial denotes the stretch in the axial direction while λcirc is the stretch
in the circumferential direction. After each increase in stretch four preconditioning cycles
were conducted and the fifth was then used for data recording and analysis. Throughout
the test the samples were loaded quasi-statically at a rate of 3 mm/min. It is worth noting
that the used biaxial testing protocol covers a large range of deformations including the
in vivo situation, and hence provides data for a unique set of material parameters. As the
results, especially for the adventitial samples, were very sensitive to initial preloads, zero
strain was defined at a tissue configuration under 0.005 N load.

M4

M6

α

α

e1
Circumferential

e3 = Mn

Axial

e2

Figure 3.5: Sample with two symmetric fiber families with mean fiber directions M4 and
M6, each making an angle α with the circumferential direction e1. The normal direction
to the plane is Mn [199].
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3.2.3 Material Model

We introduce the deformation gradient F, the right Cauchy–Green tensor C = FTF [173],
and two symmetric fiber families with the (in-plane) mean fiber directions, i.e.

M4 = cosαe1 + sinαe2, M6 = cosαe1− sinαe2, (3.3)

where the mean fiber directions M4 and M6 make an angle α with the circumferential
direction e1. In addition, we introduce the invariants I1, I4, I6 and In according to

I1 = trC, Ii = C : Mi⊗Mi, i = 4,6, In = C : Mn⊗Mn, (3.4)

where Mn is a unit out-of-plane vector, see Fig. 3.5.

To mathematically quantify the fiber dispersion we use the generalized structure tensors
H4 and H6 which describe the material behavior [199], i.e.

Hi = AI+BMi⊗Mi +(1−3A−B)Mn⊗Mn, i = 4,6, (3.5)

where the constants A and B are

A = 2κopκip, B = 2κop(1−2κip). (3.6)

Assuming that the aorta can be modeled as a purely elastic, incompressible and fiber-
reinforced material, the structure tensors Hi are incorporated into the decoupled strain-
energy function Ψ according to

Ψ = Ψg(C)+ ∑
i=4,6

Ψfi(C,Hi)+ pI, (3.7)

where p represents the Lagrange multiplier which enforces incompressibility and I is the
second-order unit tensor. The strain-energy function Ψg represents the ground matrix,
i.e.

Ψg(C) =
c
2
(I1−3), (3.8)

where c is a parameter, and Ψfi represents the contribution of the two fiber families, i.e.

Ψfi (C,Hi) =
k1

2k2

{
exp
[
k2(I

?
i −1)2

]
−1
}
, i = 4,6, (3.9)

with the stress-like parameter k1 > 0, the dimensionless parameter k2 > 0 and the general-
ized invariants I?i according to

I?i = tr(HiC) = AI1 +BIi +(1−3A−B)In, i = 4,6, (3.10)
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which includes the mean fiber directions Mi in form of the invariants Ii and the two disper-
sion parameters κip and κop, as introduced in Section 3.2.1, in form of the constants A and
B.

The material model utilizes three structural parameters (κip, κop, α) which can be deter-
mined by structural analysis (in the present study using SHG images) and three material
parameters (c, k1, k2), which are determined by fitting the model to the mechanical data
(in the present study to the data obtained from biaxial stretching tests).

3.2.4 Data Fitting and Statistical Analysis

After the structural parameters have been determined as described above, fitting of the
material model to the biaxial experimental data was performed. Data from all five testing
protocols (1 : 1, 1 : 0.75, 0.75 : 1, 1 : 0.5, 0.5 : 1) in both axial and circumferential directions
were fitted simultaneously, utilizing the optimization toolbox ‘lsqnonlin’ in MATLAB
(2012b, The MathWorks, Inc., Massachusetts, United States). As the structural parameters
κip, κop and α were known from structural analysis, and hence kept constant throughout
the fitting procedure, the only three fitting parameter were c, k1 and k2. To evaluate the
‘goodness of fit’ the coefficient of determination R2 was used.

Our study resulted in 3D distributions of amplitudes in 1◦ resolution, representing the in-
plane and out-of-plane collagen dispersions in AAs and AAAs in combination with the
corresponding mechanical data obtained from biaxial stretching tests, and yielded struc-
tural and material parameters for incorporation in a recently proposed micro-structurally
motivated material model [199].

Values for the material parameters are reported as the medians and interquartile ranges
(middle fifties), as we cannot assume a normal distribution due to the small sample cohort
and outliers can affect the mean and standard deviation severely. Linear regression anal-
ysis was carried out to test possible correlations between the material and the structural
parameters as well as patient data, utilizing Pearson’s correlation coefficient. Significant
correlations between the median values of the material and structural properties were tested
by utilizing the Mann-Whitney U-test. Differences were considered statistically significant
if the p value was less than 0.05, corresponding to a 95% confidence. All statistical analy-
sis was performed using MATLAB (2012b, The MathWorks, Inc., Massachusetts, United
States).
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Table 3.1: Patient information of all tested AAA specimens: age, gender (F = female;
M = male), maximum diameter D, smoker, pack years, hypertension, aneurysm ruptured,
thrombus, clinical signs of inflammation (inflam), diabetes, and relative thrombus age (all
in phase III according to [112]; a lower number refers to a younger thrombus).

Patient # Age Gender D Smoker Pack Hypertension Ruptured Thrombus Inflam Diabetes Thrombus
[yr] [mm] y/n years y/n y/n y/n y/n y/n age

AAA-1 75 M 58 y 50 n n y n y 335
AAA-2 74 M 85 y 50 y y y n n 370
AAA-3 74 M 63 y 40 y n y n y N/A
AAA-4 55 M 85 y 40 y n y y n 320
AAA-5 74 M 66 y 20 y n y y y 350
AAA-6 53 M 53 y 50 y n y n y 380
AAA-7 72 F 55 y 20 y n n n n 320
AAA-8 76 M 70 y 25 y n y n y N/A
AAA-9 74 M 74 y 105 y n y n n N/A
AAA-10 61 M 130 y 90 y y y n y N/A
AAA-11 72 M 65 y 30 n n y n y 340

3.3 Results

3.3.1 Study Population

All 17 AA samples could be analyzed for structural data. In total, mechanical testing
succeeded for 4 intimal, 9 medial, 9 adventitial samples and 7 samples for the intact AA
wall. Additionally, all eleven samples of AAA walls could be analyzed structurally and,
except for one, succeeded in being tested biaxially. With the exception of one sample, all
wall samples were covered by a thrombus which was analyzed to obtain its relative age.
According to [112], all thrombi were in phase III (intermediate), in which the erythrocytes
are disrupted and proteins are washed out of the fibrin network. The relative age is here
defined by a number in between 300 and 400 where these two numbers indicate the bounds
to phase II and phase IV, respectively; hence a number closer to 300 corresponds to a
relatively younger thrombus within phase III than a number closer to 400.

With the exception of one AAA sample, all aneurysms exhibited a maximum diameter
of ≥55 mm, which is a size where intervention in men is typically advocated (or 50 mm
in women, or if the maximal diameter increases more than 5–10 mm in one year), see
[85, 180, 204]; the average aneurysm diameter was 73± 20 mm, range 53–130 mm. Two
samples (AAA-2, AAA-10) were collected from a ruptured aneurysm. The sizes of AAA-
1 and AAA-4 were big enough to prepare two samples for the biaxial stretching tests.
Hence, subsequently they are labeled as AAA-1.1, AAA-1.2, AAA-4.1 and AAA-4.2. For
a summary of the patient information of all tested AAA samples see Table 3.1.
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Figure 3.6: Layered structure of a representative healthy abdominal aorta: (a) three SHG
images on the top showing in-plane sections of the intima (I), media (M) and adventitia
(A), while on the bottom an image through-the-thickness is displayed, scale bar is 100 µm;
(b) intensity plot showing collagen fiber orientation and dispersion through the depth of
the aortic wall starting with the intima, followed by a transition layer (TL) around the
location of the membrana elastica interna, then the media, followed by another transition
layer around the location of the membrana elastica externa and finally the adventitia – dark
red depicts no dispersion and blue relates to no fibers.

3.3.2 Structural Data

Abdominal Aorta (AA)

Figure 3.6(a) shows SHG images of a representative sample; the three images on the top
display in-plane sections of the intima (I), media (M) and adventitia (A), while on the
bottom an image through-the-thickness is displayed. Consistent with [19] the healthy ab-
dominal aorta consists of three distinguishable layers with a ‘carpet-like’ structure in (I)
and two families of fibers in (M), more oriented towards the circumferential direction,
while (A) shows wavy and thicker fiber bundles more oriented towards the axial direction.
The image through-the-thickness displays the intima on the left, then a transition layer and
the highly oriented media, and then, after another transition layer, the wavy collagen of the
adventitia.

The intensity plot of Fig. 3.6(b) depicts the collagen fiber orientation and dispersion through
the aortic wall. A fiber angle of 0◦ denotes the circumferential direction, whereas 90◦ de-
notes the axial direction. Dark red depicts no dispersion, whereas blue shows no fibers.
The images were taken starting from the intimal side. Hence the intima can be seen in
the first 100 µm in the intensity plot, showing a rather strong dispersion around the cir-
cumferential direction. That is followed by a transition layer (TL) observed as a (rapid)
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Table 3.2: Structural parameters (κip, κop, α) for the intima, media, adventitia and the
intact wall of the abdominal aortas determined from SHG images; n indicates the number
of samples.

Intima Media Adventitia Intact Wall
Median [Q1;Q3] Median [Q1;Q3] Median [Q1;Q3] Median [Q1;Q3]

κip 0.261 [0.214;0.283] 0.208 [0.165;0.255] 0.232 [0.192;0.282] 0.237 [0.212;0.287]
(n = 7) (n = 17) (n = 16) (n = 7)

κop 0.484 [0.468; 0.488] 0.487 [0.481; 0.489] 0.466 [0.459;0.479] 0.479 [0.473;0.482]
(n = 17) (n = 17) (n = 17) (n = 17)

α 3.25◦ [1.09;6.13] 6.91◦ [5.269;9.715] 77.53◦ [67.04;84.02] 24.46◦ [22.45;30.18]
(n = 7) (n = 17) (n = 16) (n = 7)

orientation change of collagen fibers towards the axial direction around the location of the
membrana elastica interna, which then changes back to the circumferential direction in the
media. The images show two counter-rotating fiber families around the circumferential
direction. Subsequently another transition layer around the location of the membrana elas-
tica externa is reached, displaying a rather smooth transition of thinner medial collagen to
thicker wavy collagen fiber bundles in the adventitia, appearing in two fiber families and
being oriented more towards the axial direction.

Although the tissues were not loaded the fibers displayed a highly organized structure both
in the tangential plane of the aorta and through the thickness of the wall, which enabled the
determination of structural data, i.e. the dispersion parameters κip and κop, and the angle
α between the mean fiber direction and the circumferential direction which were averaged
over the thickness of the separate layers. The structural parameters for the individual layers
and for the intact wall are summarized in Table 3.2.

The out-of-plane dispersion κop was rather low in all three healthy layers. Especially
for the intima and media the fibers were highly aligned, with a median for κop close to
0.5 (0.484± 0.019 and 0.487± 0.008, respectively). The wavy structure of the collagen
fibers in the adventitia in the unloaded configuration resulted in a slightly higher out-of-
plane dispersion, i.e. κop = 0.466± 0.020. The fiber families in the media were aligned
closer to the circumferential direction than reported in [19], with a median angle of α =
6.91◦± 4.4◦, while the fiber families in the adventitia were aligned closer to the axial
direction with α = 77.53◦± 17.0◦. For a summary of the dispersion parameters κip, κop
and the angle α in form of box-and-whisker plots see Fig. 3.7(a)-(c), while Fig. 3.7(d)
shows the thicknesses of the intact AA wall and each individual layer, with a mean ratio
20 : 49 : 31 for Intima:Media:Adventitia, which is consistent with [19].
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Figure 3.7: Box-and-whisker plots of the structural parameters and the wall thickness for
the abdominal aorta (AA), the individual layers, and for the AAA wall: (a) in-plane dis-
persion parameter κip; (b) out-of-plane dispersion parameter κop; (c) mean fiber angle α;
(d) wall thickness. AAA wall data refer to Section 3.3.2.

Abdominal Aortic Aneurysm (AAA)

Within the AAA wall specific layers could not be identified, except for sample AAA-6,
and the characteristic wall structure, as visible in healthy abdominal aortic wall with three
distinct layers, was not present. Even in samples without atherosclerotic alterations the
structure was remarkably different from those obtained from AAs. By comparing the tis-
sue samples with each other a substantial variability in fiber architecture, fiber diameter and
waviness could be identified, even within the same AAA sample. In general, most samples
showed a degenerated luminal layer with calcification and sometimes small fat cells, and
thin straight struts of collagen oriented more towards the circumferential direction. To-
wards the abluminal side these struts thickened, but were still oriented more towards the
circumferential direction. In addition, cystic medial degeneration could be seen, including
larger adipocytes. For the structural analysis only those images were considered which
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Figure 3.8: SHG images and intensity plots for AAA samples: (a) layered structure of sam-
ple AAA-6 (I: intima, M: media, A: adventitia) which was the only AAA sample to exhibit
a layer-specific character. The intensity plot shows three distinct layers – a rather calci-
fied intima, two fiber families in media and adventitia; (b) structure of luminal layer (LL)
and abluminal layer (AL) of two patches taken from adjacent locations (-1, -2) of sample
AAA-4 displaying differences. The lower left image (LL-2) shows wavy collagen fibers
and calcification. The first 450 µm in the intensity plot shows a highly disturbed structure
followed by an adventitia-like structure with two alternating fiber families; (c) collagen
structure of sample AAA-8 in (LL) and (AL). The intensity plot shows collagen prefer-
ably oriented towards the circumferential direction throughout the wall; (d) ruptured sam-
ple AAA-10 containing a (LL) with a highly oriented collagen structure and a significant
number of adipocytes towards the (AL) side. The intensity plot shows a collagen structure
highly oriented towards the circumferential direction followed by a rather isotropic (AL).
All intensity plots start at the top with the (LL). Scale bar is 100 µm.
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Table 3.3: Structural parameters (κip, κop, α) for the AAA wall determined from SHG
images.

Patient # κip κop α

AAA-1 0.290 0.397 26.00
AAA-2 0.229 0.438 3.33
AAA-3 0.276 0.398 13.97
AAA-4 0.223 0.413 24.33
AAA-5 0.261 0.438 9.05
AAA-6 0.202 0.468 9.22
AAA-7 0.216 0.428 29.74
AAA-8 0.265 0.407 8.98
AAA-9 0.207 0.464 18.41
AAA-10 0.158 0.461 7.87
AAA-11 0.269 0.438 15.37
Median 0.229 0.438 13.97
[Q1;Q3] [0.209;0.268] [0.409;0.455] [9.998;22.85]

did not show calcification or adipocytes, as otherwise the averaged dispersion parameter
values would have been distorted.

Sample AAA-6 exhibited a strikingly healthy architecture, had the smallest diameter (53 mm)
and was covered by the oldest thrombus of all samples. It showed a rather isotropic intimal
side, two fiber families oriented more towards the circumferential direction in the media
and an adventitia-like structure with highly aligned fibers oriented more towards the axial
direction, see Fig. 3.8(a). In-plane images of the intima also showed small fat cells and cal-
cification at the luminal side (not considered for structural analysis ), explaining the rather
isotropic structure seen in the intensity plot at the top until a depth of about 400 µm, see
Fig. 3.8(a), while the media showed straight collagen fibers resulting in high and narrow
intensities in the intensity plot (depth between 400 and 1100 µm). Remarkably, the colla-
gen fibers in the abluminal layers of AAAs lost their waviness and exhibited rather straight
and thick struts of collagen. Samples AAA-1, AAA-3, AAA-5, AAA-7, and AAA-11
exhibited a similar collagen structure throughout the thickness as seen in the adventitia
of sample AAA-6, and having lost the layered structure. Samples AAA-1 and AAA-7
showed alternating fiber families with a mean fiber angle α =±26◦ and α =±29.74◦, re-
spectively, whereas the other samples were oriented closer to the circumferential direction,
also exhibiting alternating fiber families.

The two patches taken from adjacent locations of sample AAA-4 showed an intact ablumi-
nal layer (AL) similar to a healthy adventitia layer, see Fig. 3.8(b). However, no media was
visible as the wavy collagen fibers were infiltrated with plaque and adipocytes. The upper
left image (LL-1) in Fig. 3.8(b) (where (LL) stands for luminal layer) shows bright ‘stains’
representing a rather degenerated collagen structure. The lower left image (LL-2) shows
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Figure 3.9: Collagen structure in the circumferential/radial plane of samples AAA-1,
AAA-2 and AAA-3 indicating high dispersion of collagen fibers. Luminal side: left; ablu-
minal side: right. Scale bar is 100 µm.

an adjacent region in the same luminal layer, exhibiting a different structure with wavy
collagen fibers and calcification. The first 450 µm in the intensity plot shows a disturbed
structure merging into two alternating fiber families.

The (AL) of sample AAA-8 showed thickened collagen struts still wavy but oriented more
towards the circumferential direction, see Fig. 3.8 (c). Towards the (LL) the fibers became
thinner and looked more like in a healthy adventitia, merging into a disturbed collagen
structure. The intensity plot shows fibers preferably oriented towards the circumferential
direction throughout the wall, ending with some more anisotropic structure, resembling the
degeneration at the luminal side. Both ruptured samples (AAA-2 and AAA-10) showed a
significant amount of cystic medial degeneration, infiltrated with adiposytes in the (AL),
preceded by a highly organized collagen structure in the (LL) oriented more towards the
circumferential direction, see Fig. 3.8 (d). The (AL) is rather isotropic as can be seen from
the intensity plot. Sample AAA-9 showed a similar structure to the two ruptured samples.
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Figure 3.10: Box-and-whisker plots of the Cauchy stress at 1.15 stretch in the axial and
circumferential directions for the abdominal aorta (AA) (media, n = 6; adventitia, n = 6;
wall, n = 7), and the AAA wall (n = 7).

The structural parameters for the AAA wall determined from SHG images are summa-
rized in Table 3.3 and illustrated in form of box-and-whisker plots in Fig. 3.7(a)-(c), while
Fig. 3.7(d) shows the AAA wall thickness. The structural parameters for the samples
AAA-1 and AAA-4 were only taken from one sample. All AAA samples with the excep-
tion of sample AAA-10, which is the ruptured one, showed a similarly high alignment of
collagen fibers with a median of κip = 0.229±0.057, and the in-plane dispersion did not
show any statistical difference with respect to intact AA walls, compare with Tables 3.2
and 3.3. The out-of-plane dispersion was significantly higher (p < 0.0001) in AAA sam-
ples when compared with healthy (control) samples, as clearly visualized in Fig. 3.7(b)
(lower dispersion parameter κop for AAA walls). In addition, Fig. 3.9 shows the colla-
gen structure of three AAA samples through the thickness indicating a higher out-of-plane
dispersion when compared with the layered structure of a healthy abdominal aorta, see,
e.g., the image on the bottom of Fig. 3.6(a). Finally, when compared with intact AA walls,
AAA samples showed a smaller mean fiber angle α (p = 0.06), see Table 3.2.

3.3.3 Biaxial Mechanical Data

The material parameters (c, k1, k2) for the abdominal aorta samples and the AAA walls
are summarized in Tables 3.4 and 3.5, respectively, whereas the associative structural data,
which were used for fitting the individual samples, are summarized in Tables 3.2 and 3.3.
The median of R2 was 0.95±0.05, 0.98±0.03, 0.95±0.12, 0.96±0.04 and 0.93±0.03
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Table 3.4: Material parameters (c, k1, k2) and related coefficient of determination (R2) for
the intima, media, adventitia and the intact wall of the abdominal aortas determined from
biaxial stretching tests; n indicates the number of samples.

Intima (n = 4) Media (n = 9) Adventitia (n = 9) Intact Wall (n = 7)
Median [Q1;Q3] Median [Q1;Q3] Median [Q1;Q3] Median [Q1;Q3]

c [kPa] 33.86 [6.88;98.76] 16.08 [10.34;30.52] 3.77 [2.18;4.97] 11.59 [4.13;19.93]
k1 [kPa] 7.79 [4.90,55.00] 11.68 [2.32;22.81] 0.36 [0.06;1.70] 2.66 [1.15;11.64]
k2 [-] 139.1 [41.95;243.31] 7.18 [2.94;22.78] 45.88 [21.10;69.85] 19.25 [9.93;26.06]
R2 0.95 [0.93;0.98] 0.98 [0.07;0.99] 0.95 [0.84;0.97] 0.96 [0.94;0.97]

Table 3.5: Material parameters (c, k1, k2) and related coefficient of determination (R2) for
the AAA samples determined from biaxial stretching tests. Samples AAA-2 and AAA-10,
the two which originate from the ruptured aneurysms, were considered as outliers due to
the extreme wall stiffness, and hence were excluded from the statistical analysis of the
material parameters.

Patient # c [kPa] k1 [kPa] k2 [-] R2

AAA-1.1 1.08 0.45 53.33 0.90
AAA-1.2 1.50 1.71 157.89 0.99
AAA-2 0.50 26.94 220.70 0.68
AAA-3 0.23 2.94 28.54 0.89

AAA-4.1 1.66 5.82 99.91 0.98
AAA-4.2 0.54 8.00 100.07 0.94
AAA-5 3.72 2.73 123.52 0.90
AAA-6 3.39 5.49 61.00 0.56
AAA-7 2.47 0.92 12.49 0.97
AAA-8 0.57 4.02 1.44 0.99
AAA-10 600.60 5.70 3315.60 0.76
AAA-11 2.56 0.75 47.33 0.93
Median 1.58 2.84 57.17 0.94
[Q1;Q3] [0.57;2.56] [0.92;5.49] [28.54;100.07] [0.90;0.98]

for the intima, media, adventitia, intact AA wall and AAA wall, respectively. In addition,
Fig. 3.10 shows box-and-whisker plots of the Cauchy stress at 1.15 stretch in the axial and
circumferential directions for the abdominal aorta (AA) and for the AAA wall; stresses
in the circumferential direction of the walls were always higher compared with the axial
direction.

Within the healthy group the intima showed a relatively short toe region with a rapid stiff-
ening at a low stretch (λ ∼ 1.025), as also documented in [184], whereas the adventitia
was rather compliant (c = 3.77±2.79, k1 = 0.36±1.64), stiffened at higher stretches and
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displayed a significantly higher k2 value in comparison with the media and the intact wall
(λ ∼ 1.2, k2 = 45.88±48.75). Therefore only one intima sample, not shown in Fig. 3.10,
reached a stretch of 1.15. In regard to AA walls, the parameter c for AAA walls was
significantly lower (p = 0.0004), see Tables 3.4 and 3.5, and Fig. 3.11. However, the
dimensionless parameter k2 with 57.17± 71.53, resembling the exponential stiffening of
the loading curves due to the collagen fibers, was significantly higher than for AA walls
(k2 = 19.25± 16.13, p = 0.025). Interestingly, by comparing the adventitia of AAs with
AAA tissue the k2 value was not significantly different between the two groups (p = 0.40),
however, AAA tissue differed significantly in both the c value (p = 0.028) and the k1 value
(p = 0.022) with respect to the adventitia of AAs. Figure 3.12 shows equibiaxial mechan-
ical responses (stretch ratio of 1 : 1) of 12 AAA patches.

Linear regression analysis was carried out to test for possible correlations between ma-
terial and structural parameters, and patient data. Two cases were identified to correlate
significantly, see Fig. 3.13.

3.4 Discussion

To the authors’ knowledge this is the first study to provide structural data for healthy human
(layer-specific) abdominal aortic samples and AAA walls in combination with mechanical
data for studying the physiology and pathology of human aortas such as abdominal aortic
aneurysms. We have shown that AAA tissues, in contrast to tissues obtained from healthy
abdominal aortas, display a substantial variability in fiber architecture, fiber diameter and
waviness and in material properties. A combination of optical clearing and SHG imaging
was utilized to analyze the 3D microstructure without damaging the tissue structure due
to cutting, and the mechanical data were obtained from biaxial stretching tests. The used
material model that takes account of the identified non-symmetric arrangement of collagen
fibers (Tables 3.2 and 3.3), documented in [199] and reviewed in Section 3.2.3, was capable
of providing good fits for the samples of the abdominal aorta, their individual layers and the
AAA samples (see Tables 3.4 and 3.5), although there are only three material parameters
involved. A novel set of structural and material parameters for the material model [199] is
provided to be used in finite element simulations.

In the following section we discuss the obtained structural and mechanical data of the two
groups of tissues.

3.4.1 Structural Data

A human abdominal aorta with non-atherosclerotic intimal thickening is composed of three
layers, which can clearly be distinguished and dissected. The obtained structural data
were similar to those documented in [19], however, the angles α between the mean fiber
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Figure 3.11: Box-and-whisker plots of the parameter c for the abdominal aorta (AA), the
individual layers, and for the AAA wall.
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Figure 3.12: Cauchy stress versus stretch behavior of 12 AAA patches obtained from
equibiaxial mechanical tests indicating a substantial variability in the mechanical response:
(a) axial direction; (b) circumferential direction. The two samples AAA-2 and AAA-10
originate from ruptured aneurysms. The red curves depict an exemplary model fit to sam-
ple AAA-1.2.
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Figure 3.13: Significant correlation of material with structural parameters: (a) parameter c
in model (3.8) with out-of-plane dispersion parameter κop for AAA tissues; (b) parameter
k2 in model (3.9) with κop for AA adventitial tissues.

direction and the circumferential direction, especially in the media, were smaller than those
reported in [19] where polarized microscopy was used in combination with a universal
stage. This is most likely due to the different methodology used: in the present study
the aortic wall was not pre-stretched, the structure of the tissues were analyzed in the
(unloaded) reference configuration and SHG imaging was used. For a short and recent
summary of imaging modalities that can reveal the fibrous microstructure including an
original investigation of optical polarization tractography to visualize the fiber structure in
the bovine carotid artery see [205].

The study [116] also performed an analysis of AAA collagen fiber dispersion in order
to gain structural data in the unloaded reference configuration. However, the study has
some drawback, which we could avoid. For example, the measurements were performed
manually during histological imaging using polarized light microscopy, which requires
embedding the sample in paraffin and mechanical sectioning and staining with picrosirius
red so that only a very small thin slice of a fixed sample can be imaged. Our approach has
the advantages that tissue clearing does not change the dimensions of the sample (shown
in [177]), in contrast to [116], who reported a necessary back-calculation to the reference
configuration of the collagen orientation due to thickening of the sample after fixation. We
did not have to cut and stain the samples to prepare histology which may be accompanied
by several artifacts such as shrinkage, distortion, overlapping regions, holes due to calcifi-
cation just to name a few [206]. In the present study we were able to attain a continuous
3D dispersion of the collagen fiber orientations throughout the entire thickness. Finally,
our study protocol enabled a systematic comparison of tissues obtained from healthy AA
and AAA, and we conclude that the out-of-plane dispersion of collagen was significantly
higher in AAA samples than it was in healthy abdominal aortas.

AAA wall samples showed a large variation in tissue composition including plaque, cystic
medial necrosis and adipocytes, consistent with findings reported in [207]. Except for sam-



3.4 Discussion 69

ple AAA-6, the typical layered structure of AA walls, as analyzed in, e.g., [19, 177], could
not be detected. This observation is in accordance with the study [196] which shows a
complete loss of the normal architecture and loss of the distinction between medial and ad-
ventitial collagen organization. Albeit the small sample size we hypothesize that collagen
fibers reorient towards the circumferential direction with disease progression, as the angle
towards the circumferential direction was lower in AAA wall samples compared with sam-
ples obtained from AA walls. This is in accordance with the studies [109, 110, 113, 130],
which reported a pronounced increase in the circumferential stiffness for AAA tissue as
compared with AA tissue. As collagen turnover is governed by local stress and strain rates
[182], supra-physiological stresses in AAAs may be responsible for the collagen fiber re-
alignment towards the circumferential direction. Although in our study the samples were
not pre-stretched, fibers in AAA samples often appeared straight and much thicker than
collagen in healthy samples.

The examination of two patches (AAA-4.1, AAA-4.2) taken from adjacent locations of
sample AAA-4, see Fig. 3.8(b), showed different structural characteristics and some vari-
ation in the mechanical behavior. As the significant influence of the collagen structure on
the mechanics of healthy and diseased collagenous tissues has long been known, the differ-
ent microstructure in adjacent regions of a sample may explain the diversity in local AAA
stress states [10, 11, 53, 113, 208]. We found no significant influence of the aneurysm
diameter on the structural and material parameters, which strengthens the hypothesis that
the diameter criterion is insufficient, which is in line with findings in, e.g, [108, 195].

3.4.2 Mechanical Data

In regard to the mechanical data of AA samples, with a mean age of 63 yr, it is the intima
which exhibited a rather stiff mechanical behavior. In healthy young individuals, however,
the intima is a single layer of endothelial cells resting on a thin basal membrane. It thickens
(and stiffens) with age (arteriosclerosis) so that the mechanical contribution of the intima
on the overall stiffening of the wall is significant. Comparing our results of the intact AA
wall with the behavior reported in [183] we find a similar behavior. Our peak stretches are
in the same range as reported in [183], and the overall mechanical behavior was stiffer in
the circumferential direction for all samples. Unfortunately, in [183] a phenomenological
Fung-type strain-energy function was utilized, which hampers the comparison of the me-
chanical response. Although there are only three material parameters involved, the model
agrees very well with the experimental data of all samples, whereby the three structural
parameters were fixed during the fitting process.

A significant difference in the parameter c, relating to the ground matrix, and k2, relating
to the stiffness of the collagen fabric, between healthy and diseased tissues was observed.
The median parameter c is significantly lower in AAA tissue in comparison to AA wall
samples, indicating a minor isotropic contribution to the strain-energy function for AAAs.
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We also know that the elastin content, which is mainly related to the ground matrix, de-
creases significantly with increasing AAA diameter, see, e.g., [209], which is depicted by
the low c values found in the present study. In addition, [110] discussed a decrease in the
initial slope of AAA samples compared with AA wall samples, which also corresponds to
our findings of a decreased parameter c. The significantly higher value of the parameter
k2 indicates a stiffer behavior of the AAA tissues when compared with healthy AA wall
samples, which was also reported in [108, 110]. However, our samples showed a rather
compliant behavior at low stretches and a rapid stiffening at higher stretches, which, to
the authors’ knowledge, was not yet discussed in previous studies. The present findings
of straight and parallel collagen fibers in AAA samples is also along the findings of [196],
which demonstrate a deposition of aggregated parallel collagen sheets in AAAs that appear
rigid, see, e.g., Fig. 2E in [196].

As can be seen from Fig. 3.12 the biaxial mechanical AAA behavior shows a wide vari-
ability, which underlines the importance of patient-specific modeling to assess rupture risk.
Any difference in the finding to previous studies could be due to this variability which again
highlights the need to acquire structural data in combination with mechanical data in each
individual case. The fits of the used material model to the experimental data were very
good throughout all AAA samples, with the exception of sample AAA-6 (R2 = 0.56). As
the only sample, AAA-6 showed a layered structure, similar to a healthy abdominal aorta.
The bad fit of sample AAA-6 in comparison to all other samples, in which the typical lay-
ered structure was lost, supports the hypothesis that most AAA walls can be captured by
one homogeneous material model. However, healthy abdominal aortas need to be modeled
by three layers with specific parameters.

Despite the small number of available samples we report significant correlations between
material and structural parameters and patient data, which resulted in two cases, see Fig. 3.13:
(i) parameter c, relating to the ground matrix, showed a positive correlation with the out-
of-plane dispersion parameter κop for AAA tissues, with a Pearson correlation coefficient
of r = 0.836; (ii) parameter k2 correlated with a negative correlation of r = −0.612 with
κop for AA adventitial tissues. Although all layers and parameters were investigated for
possible correlations only these two cases showed statistically significant correlations.

3.4.3 Concluding Remarks

The present study documents a novel parameter set consisting of microstructural 3D col-
lagen orientation and dispersion linked to mechanical data of the same specimen obtained
from biaxial stretching tests. To the authors’ knowledge it is the first biaxially determined
data set which is linked to the 3D collagen structure of abdominal aortas, their individual
layers and of AAA wall samples. Our results highlight the need to incorporate the signif-
icantly different AAA wall structure into continuum models as the structure and the me-
chanical response differ remarkably from healthy AA walls. Otherwise, numerical results
from finite element simulations for AAA tissues, often based on parameters for healthy
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aortic tissue, are not a good predictor of the in vivo stress state or the risk of rupture. Com-
pared to previous studies attempting to identify distributed collagen fiber orientations in
artery walls our method yields a continuous distribution of the collagen fabric through-
out the thickness without destroying the tissue, therefore allowing also an investigation
of specific regions of interest. Additionally, we analyzed and compared the structure and
mechanics of samples obtained from healthy abdominal aortas with AAA samples which
allowed new insights. In particular, the out-of-plane dispersion of collagen for AAA tissues
was significantly higher than in healthy abdominal aortas. The mechanical and structural
data showed not only a rather large variability between the samples but also in adjacent
regions of the same sample. This leads to the conclusion that the disease progression in
AAAs is a highly localized process, leading to variations in structure in adjacent regions
of the same AAA wall. Due to the substantial variability in structure and mechanics it is
clear that a ‘one-fits-all’ criterion such as the diameter criterion is not good enough.

In the future, more effort should be made to better investigate collagen fiber undulation
and thickness measurement, as straight and thick collagen struts were spotted on several
samples throughout the thickness. Improved imaging of the aorta may provide in vivo
information regarding aortic geometry, structure and anisotropy, and when combined with
a hemodynamic assessment it may have the potential to identify patients at high risk and to
access rupture risk individually thereby facilitating prophylactic treatment of aneurysms.
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4 THE INFLUENCE OF FIBER DISPERSION ON THE
MECHANICAL RESPONSE OF AORTIC TISSUES IN HEALTH
AND DISEASE: A COMPUTATIONAL STUDY

Abstract. Changes in the structural components of aortic tissues have been shown to play
a significant role in the pathogenesis of aortic degeneration. Therefore, reliable stress anal-
yses require a suitable and meaningful constitutive model that captures micro-structural
changes. As recent data show, in-plane and out-of-plane collagen fiber dispersions vary
significantly between healthy and aneurysmatic aortic walls. The aim of this study is to
computationally investigate the influence of fiber dispersion on the mechanical response
of aortic tissues in health and disease. In particular, the influence of three different fiber
dispersions is studied: (i) non-symmetric fiber dispersion, the most realistic assumption for
aortic tissues; (ii) transversely isotropic dispersion, a special case; (iii) perfectly aligned
fibers (no dispersion in either plane), another special case. Explicit expressions for the
stress and elasticity tensors as needed for the implementation in a finite element code are
provided. Three representative numerical examples are studied: planar biaxial extension,
inflation of residually stressed and pre-stretched aortic segments and inflation of an ide-
alized abdominal aortic aneurysm (AAA) geometry. For the AAA geometry the case of
isotropic dispersion is additionally analyzed. Documented structural and mechanical pa-
rameters are taken from human aortas (healthy media/adventitia and AAA). The influence
of fiber dispersions upon magnitudes and distributions of stresses and deformations are
presented and analyzed. Stresses varied significantly, especially in the AAA case, where
material stiffening is significantly influenced by fiber dispersion. The results highlight the
need to incorporate the structural differences into finite element simulations to obtain more
accurate stress predictions. Additionally, results show the capability of one constitutive
model to represent different scenarios of aortic micro-structures allowing future studies of
collagen reorientation during disease progression.

4.1 Introduction

Aortic tissues can be viewed as fibrous composites assembled from a ground matrix and
embedded families of collagen fibers with orientations that are distributed spatially. It is
well established that the mechanical behavior of fibrous tissues such as arterial walls is
strongly influenced by the underlying collagen structure, in particular, by collagen ori-
entation and dispersion, see, e.g., [210]. It has been shown that during the development
of diseases such as an abdominal aortic aneurysm (AAA) the collagen structure changes
significantly. For example, collagen fibers in healthy abdominal aortas are considerably
dispersed in-plane (circumferential-axial plane), but have a rather small dispersion out-of-
plane (circumferential-radial plane) [19, 211]. AAAs, however, show a significantly higher
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dispersion out-of-plane. In addition, by means of several samples it has been shown that
the characteristic three-layered wall structure, as seen in healthy abdominal aortas, is no
longer present in AAAs [211]. A quantification and analysis of the reorientation of the
micro-structure are key to better understand disease progression. The recently proposed
model by Holzapfel et al. [199] is one that is able to capture the spatially distributed ori-
entations of collagen fibers in arterial tissues, and, therefore, allows to provide a deeper
insight into the (pathological) changes of fibrous tissues as occurring in AAAs.

As mentioned, the mechanical response of aortic tissues is strongly influenced by the un-
derlying collagen structure. Nevertheless, several studies which investigate the magnitude
and location of peak wall stresses in AAAs have utilized either isotropic models (see, e.g.
[10, 52, 190, 191, 193, 212, 213]) or material parameters which were received from healthy
aortic tissues ([108]). Early studies have used the law of Laplace to study the influence of
the geometry on AAA stresses [214, 215] or modeled AAAs as axisymmetric membranes
[52]. Also linear elastic models were used to study AAA stresses [216, 217]; these models
are not able to capture the typical nonlinear behavior of aortic tissues. Studies such as
those by Vande Geest et al. [110], Tong et al. [112], O’Leary et al. [113], Sassani et al.
[109] or Niestrawska et al. [211] have illustrated that AAA tissues are anisotropic, which
requires the consideration of appropriate models and parameters to analysis wall stresses.
Especially as three-dimensional (3D) imaging data of the wall micro-structure become
available it should be combined with mechanical data to ensure more accurate estimates
of wall stress magnitudes and related locations.

The influence of material parameters and models on wall stress predictions was studied by
several groups, with contradicting results. While the studies by Raghavan and Vorp [10]
and Fillinger et al. [11, 12] stated that the peak wall stress is mainly influenced by AAA
shape and/or AAA diameter, Polzer et al. [13] stated that it is important to account for
nonlinearity when simulating AAA responses. On the basis of the same AAA geometry
Rodríguez et al. [14] showed that the use of an anisotropic model yields higher maximum
wall stresses when compared with isotropic models. The same group investigated the influ-
ence of anisotropy on peak wall stresses. They also studied the impact of the model on five
different patient-specific AAA geometries and concluded that the inclusion of anisotropy
scales up the magnitude of peak wall stresses [218]. Additionally they studied the outcome
of two different anisotropic models, one of them was the model by Holzapfel et al. [39]
and the other one by Rodríguez et al. [14], and they deduced that parameters describing
the fiber orientation should always be obtained independently from the fitting of the other
parameters to stress-strain data. However, the authors fitted the models they compared to
different data sets, hence their conclusion on the influence of fiber dispersion is not that
compelling.

To the authors’ knowledge the influence of different fiber dispersions on the basis of the
structural model by Holzapfel et al. [149] using systematic numerical simulations has
not yet been studied. In addition, stress distributions obtained from parameter sets taken



4.2 Continuum Mechanical Framework 75

from healthy and diseased aortic tissues have not yet been compared. The present paper
aims to investigate the influence of three different fiber dispersions: (i) non-symmetric
fiber dispersion, which is the most realistic assumption recently introduced by Holzapfel
et al. [149]; (ii) transversely isotropic (rotationally symmetric) dispersion, according to
Gasser et al. [134], a special case of [149]; (iii) perfectly aligned fibers (no dispersion in
either plane), according to Holzapfel et al. [39], another special case of [149]. All three
dispersion assumptions are studied with material and structural parameters obtained from
the media and adventitia of healthy abdominal aortic walls, and from one AAA sample
[211].

The outline of the paper is as follows. In Section 2 the required continuum mechanical
framework is provided by briefly explaining the utilized non-symmetric fiber dispersion
model [149]. In addition, explicit expressions for the stress and elasticity tensors are pro-
vided, as needed for the implementation in a finite element code. In Section 3 the used
method is described, i.e. different fiber dispersions are studied using three representative
numerical examples, and related finite element simulations are performed. The results of
these simulations are then summarized and discussed in Section 4, which is followed by a
conclusion.

4.2 Continuum Mechanical Framework

This section briefly reviews the required continuum mechanical framework, with notation
according to [173], and summarizes the used non-symmetric fiber dispersion model. It
provides the background for the mathematical description of the stress and elasticity ten-
sors needed for the implementation in the general purpose finite element analysis program
FEAP [135].

4.2.1 Kinematics

Let Ω0 be a reference (or undeformed) configuration and Ω its current (or deformed) con-
figuration. The deformation map χ(X) transforms a material point X ∈ Ω0 into a spatial
point x∈Ω. With this map we define the deformation gradient F = ∂ χ(X)/∂X that allows
to map a tangent vector dX from the reference to the current configuration via dx = FdX.
The determinant of F is denoted by J and describes the ratio between the volume in the
current and the reference configuration. For incompressible materials, as considered in the
present work, J requires to be equal to unity [173]. For subsequent use we decouple F
into a spherical (dilatational) part J1/3I and a unimodular (distortional) part F = J−1/3F,
with detF≡ 1; the second-order unit tensor is denoted by I. The right Cauchy–Green ten-
sor C = FTF and the left Cauchy–Green tensor b = FFT are defined together with their
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modified counterparts C = FTF and b = FFT, respectively, with the related invariants
I1 = trC = trb and Ī1 = trC = trb.

4.2.2 Non-symmetric Fiber Dispersion Model

Let us now introduce the probability density ρ(Θ,Φ) of the (collagen) fiber orientation in
the reference configuration in terms of the two angles Θ and Φ [149]. The experimentally
observed distribution of the collagen fibers in the aorta is non-symmetric [19, 211] so that
we decompose ρ in the form ρ(Θ,Φ) = ρip(Φ)ρop(Θ), where ρip(Φ) and ρop(Θ) describe
the in-plane and out-of-plane dispersions, respectively. For ρip and ρop we consider the
von Mises distributions of the forms

ρip(Φ) =
exp[acos2(Φ±α)]

I0(a)
, ρop(Θ) = 2

√
2b
π

exp[b(cos2Θ−1)]
erf(
√

2b)
, (4.1)

where a and b are constant concentration parameters, I0(a) is the modified Bessel function
of the first kind of order 0, and α denotes the angle between the mean fiber direction and
the circumferential direction of the blood vessel. To include the fiber dispersion into a
strain-energy function, two scalar measures can be defined according to [149], namely

κip =
1
2
− I1(a)

2I0(a)
, κop =

1
2
− 1

8b
+

1
4

√
2

πb
exp(−2b)
erf(
√

2b)
, (4.2)

where I1(a) is the modified Bessel function of the first kind of order 1, and 0≤ κip ≤ 1 and
0≤ κop ≤ 1/2.

We introduce now two symmetric fiber families with the (in-plane) mean fiber directions

M4 = cosαe1 + sinαe2, M6 = cosαe1− sinαe2, (4.3)

where e1 denotes the circumferential direction and e2 the axial direction of the blood ves-
sel. Additionally, we introduce the invariants I4, I6 and In, i.e.

Ii = C : Mi⊗Mi, i = 4,6, In = C : Mn⊗Mn, (4.4)

where Mn is a unit out-of-plane vector. The related modified invariants are simply Īi =

J−2/3Ii and Īn = J−2/3In.

To include the fiber dispersion in the strain-energy function, say Ψ, the generalized struc-
ture tensors H4 and H6, describing the material behavior, are used, i.e.

Hi = AI+BMi⊗Mi +(1−3A−B)Mn⊗Mn, i = 4,6, (4.5)

with the constants
A = 2κopκip, B = 2κop(1−2κip). (4.6)
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According to [173] the strain-energy function Ψ (per unit reference volume) is now addi-
tively decomposed into Ψvol, describing the volumetric elastic response, and Ψ describing
the isochoric elastic response. Thus,

Ψ = Ψvol(J)+Ψ(C,H4,H6), (4.7)

where Ψvol = κ̄(lnJ)2/2 serves here as a penalty function, and κ̄ is a (positive) penalty
parameter (for the subsequent analyses we used 10000 kPa). The isochoric part Ψ of Ψ

has now the form
Ψ = Ψg(C)+ ∑

i=4,6
Ψf,i(C,Hi), (4.8)

where
Ψg(C) =

c
2
(Ī1−3) (4.9)

captures the energy stored in the ground matrix, with c representing the stiffness of the
(non-collageneous) matrix, and the contribution Ψf,i of the two fiber families is captured
by

Ψf,i
(
C,Hi

)
=

k1
2k2

[exp(k2E2
i )−1], i = 4,6, (4.10)

where k1 > 0 is a stress-like parameter and k2 > 0 is a dimensionless parameter, while E i
are quantities according to

E i = tr(HiC)−1 = AĪ1 +BĪi +(1−3A−B)Īn−1, i = 4,6. (4.11)

In (4.11) the mean fiber directions Mi are included in form of the invariants Īi, while the
dispersion parameters κip and κop are considered in the constants A and B.

Stress Tensors

The second Piola-Kirchhoff stress tensor S describes the change of the strain energy with
respect to C and is defined by S = 2∂Ψ/∂C. Using the introduced decoupled form of
the strain-energy function (4.7) two stress contributions can be identified such that S =
Svol +S. The volumetric part is derived by means of the chain rule, which reads

Svol = 2
∂Ψvol(J)

∂J
∂J
∂C

= pJC−1, p =
dΨvol(J)

dJ
, (4.12)

where p denotes the hydrostatic pressure. The isochoric contribution to S is obtained by

S = 2
∂Ψ

∂C
= J−2/3P : S̃, S̃ = 2

∂Ψ

∂C
, (4.13)
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where P= I− 1
3C−1⊗C is the projection tensor in the Lagrangian setting, I is the fourth-

order identity tensor and S̃ is the fictitious second Piola-Kirchhoff stress tensor. According
to the introduced structure of the strain-energy function (4.8) we may write S̃ as

S̃ = S̃g + ∑
i=4,6

S̃f,i, S̃g = 2
∂Ψg

∂C
= cI, S̃f,i = 2

∂Ψf,i

∂C
= 2ψ

′
i Hi, (4.14)

where (4.9)-(4.11) and the abbreviation

ψ
′
i =

∂Ψf,i

∂E i
= k1E iexp(k2E2

i ) (4.15)

have been used.

For the finite element implementation we use the Kirchhoff stress tensor τ , which is the
push forward of S so that

τ = FSFT = τvol + τ, (4.16)

where
τvol = pJI, τ = P : τ̃, (4.17)

P= I− 1
3I⊗ I is the projection tensor (deviatoric operator) in the Eulerian description, and

τ̃ is the push forward of the fictitious second Piola-Kirchhoff tensor given in eq. (4.13)2.
The contributions of the ground matrix and the fibers to the fictitious stress can be split
according to

τ̃ = τ̃g + ∑
i=4,6

τ̃ f,i, (4.18)

which is the analogue of eq. (4.14)1. Hence, from (4.14)2 and (4.14)3 we get the fictitious
Kirchhoff stress tensors by a push-forward operation according to

τ̃g = FS̃gFT
= cb, τ̃ f,i = FS̃f,iF

T
= 2ψ

′
i hi, (4.19)

where the definition for the Eulerian structure tensors

hi = FHiF
T
, i = 4,6, (4.20)

has been introduced.

Elasticity Tensors

The decoupled form of the Eulerian elasticity tensor C can be obtained in an analogous
manner as the decoupled stress tensor (4.16)2, i.e.

C = Cvol +C, (4.21)
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with Cvol = p̃I⊗ I−2pI, where p̃ = p+ Jdp/dJ, and [173]

JC = P : C̃ : P+
2
3

tr(τ̃)P− 2
3
(I⊗ τ + τ⊗ I), (4.22)

where C̃ is the fourth-order fictitious elasticity tensor in the Eulerian description, defined
as the push-forward operation of 2J−4/3

∂ S̃/∂C. By using the specific choice of the strain-
energy function and the derived stress relation (4.14) for C̃ we obtain the explicit form

C̃ = 4J−4/3
ψ
′′
i hi⊗hi, (4.23)

where the definition (4.20) and the abbreviation

ψ
′′
i =

∂
2
Ψf,i

∂E2
i

= k1(1+2k2E2
i )exp(k2E2

i ) (4.24)

have been used. Hence, with (4.23), (4.20) and the stress tensors (4.18) and (4.17)2 the
purely isochoric contribution C to the Eulerian elasticity tensor can be calculated from
relationship (4.22).

By considering minor and major symmetries of the elasticity tensors the Voigt notation was
then used for the implementation in the finite element analysis program FEAP [135].

4.3 Methods

Here we describe three cases of fiber dispersions and the (material and structural) param-
eters used for the analysis of three examples, which are also outlined in detail.

4.3.1 Parameters Used for the Numerical Analyses

We are studying three different cases of fiber dispersions:

(i) Non-rotationally symmetric dispersion (i.e. the general case), as introduced in 2015,
and reviewed in Section 4.2; for more details see Holzapfel et al. [149]. We refer to
this case as NRSD (non rotationally-symmetric dispersion).

(ii) Transversely isotropic (rotationally symmetric) dispersion, as introduced in the GOH
model in 2006, see Gasser et al. [134]. For this case the structure tensors (4.5) have
the special form

Hi = κI+(1−3κ)Mi⊗Mi, (4.25)

where κ ∈ [0,1/3] is a single dispersion parameter. Equation (4.25) is obtained from
(4.5) by taking κ = 1−2κop, which corresponds to A = κ , B = 1−3κ . We refer to
this special case as TID (transversely isotropic dispersion).
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(a)

(b)

(c)

Figure 4.1: Visualization of three cases of fiber dispersions defined by ρ(N)N, with ρ =
ρipρop according to (4.1), where the distance from the center to the surface represents the
probability of finding a fiber in the direction N: (a) non-rotationally symmetric dispersion
(the general case); (b) transversely isotropic dispersion; (c) perfectly aligned fibers. The
plots have been scaled differently.

(iii) Perfectly aligned fibers (no dispersion in either plane), as introduced in the HGO
model in 2000, see Holzapfel et al. [39]. For this special case both concentration
parameters (a, b) become infinite so that κop→ 1/2. The structure tensors (4.5) are
then Hi = Mi⊗Mi. This corresponds to A = 0, B = 1 in (4.5). We refer to this
special case as PA (perfect alignment).

Figure 4.1 depicts a visualization of ρ(N)N (for just one family of fibers), where the unit
vector N is an arbitrary fiber direction in the reference configuration, for (a) the general
case for which Hi is given by (4.5), (b) the transversely isotropic dispersion (TID) with Hi
given by (4.25) and (c), the case of perfect alignment (PA) of collagen fibers.

As mentioned above the fiber dispersions described in (ii) and (iii) are special cases of
the non-rotationally symmetric dispersion model, which is considered to be the reference
model. Subsequently, we use material and structural parameters for the media and adventi-
tia of healthy abdominal aortas (median values) according to Niestrawska et al. [211]. The
material parameters (c, k1, k2) were determined from biaxial stretching tests and adopted
from Table 4 in [211], while the structural parameters (κip, κop, α) were determined from
second harmonic generation images and adopted from Table 2 in [211]. In addition, we
also use structural and material parameters from one AAA wall sample, and adopt the val-
ues from Tables 3 and 5 in [211], i.e. sample AAA-5. The parameters are summarized in
Table 1. For the case of transversely isotropic dispersion we take κop = 0.414, 0.406 for the
media and adventitia of the healthy abdominal aorta, respectively, and 0.397 for the AAA
wall. These values are calculated using the relationship κop = 1/2(1+κip), where κip is
taken from Table 1. That relationship results from the symmetry of the structure tensor
(in-pane and out-of-plane dispersions are symmetric). From these values it is straightfor-
ward to determine the individual dispersion parameter κ and the corresponding constants
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c (kPa) k1 (kPa) k2 (–) κip (–) κop (–) α (◦)

Media 16.08 11.68 7.18 0.208 0.487 6.91
Adventitia 3.77 0.36 45.88 0.232 0.466 77.53
AAA 3.72 2.73 123.52 0.261 0.438 9.05

Table 4.1: Material parameters (c, k1, k2) from biaxial stretching tests and structural pa-
rameters (κip, κop, α) from second harmonic generation images, for healthy medias and
adventitias of human abdominal aortas (median values), and for one AAA wall sample;
taken from Tables 2-5 of Niestrawska et al. [211].

A and B. Finally, for the perfectly aligned fibers we set A = 0, B = 1 (κop = 1/2). These
material and structural parameters are now taken for the subsequent three examples.

4.3.2 Planar Biaxial Extension

On the basis of a planar equibiaxial extension test we study the three different cases of fiber
dispersions, as discussed in the previous section. In particular, we consider samples of a
healthy media and a AAA wall with the dimension 20× 20× 1.5 mm, which resembles
the geometry used for the actually performed biaxial extension experiments documented
in [211].

Four hexahedral mixed Q1-P0 elements (constant pressure and trilinear displacement in-
terpolations) are used for the discretization of a cuboid, which is reinforced by two sym-
metric fiber families located in the (e1, e2) plane, see Fig. 4.2. The samples are subjected
to equibiaxial extension within the (e1, e2) plane up to a stretch of λcirc = λaxial = 1.25,
using a displacement-driven analysis. The analytical solutions are calculated according to
[149] using MATLAB [219] and compared with the finite element solutions computed by
means of FEAP [135].

4.3.3 Inflation of Residually Stressed and Pre-stretched Aortic Segments

Here we study the influence of the fiber dispersion on the mechanical response of resid-
ually stressed and pre-stretched (idealized) aortic segments. In particular, a healthy aorta
consisting of media and adventitia, and an aneurysmatic abdominal aorta are analyzed.

Geometry

The wall thickness and axial length are chosen to be 1.5 mm, whereas the initial inner
radius Ri is 10 mm. For the healthy aortic segment the thickness ratio of media/adventitia is
chosen following experimental findings, see [19] and [211], i.e. 70% of the wall thickness
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Figure 4.2: Cuboid-shaped sample of a healthy media (and a AAA wall) reinforced by two
symmetric fiber families, denoted by M4 and M6, and subjected to equibiaxial extension
within the (e1, e2) plane.

is occupied by the media, and 30% by the adventitia. The AAA segment is modeled
as one single layer with 1.5 mm wall thickness. The initial (stress-free) geometry is a
cylindrical segment cut open with an opening angle of 180◦ (defined according to Fig. 3
in [39]), which is slightly smaller than opening angles reported for healthy abdominal
aortas [220, 221]. For a better comparison of the material responses between healthy and
diseased segments, and as there are no experimental data available on opening angles for
aneurysmatic aortas, the same opening angle is chosen for both cases.

Finite Element Model

The geometry is discretized by one element in the axial direction, 70 elements in the cir-
cumferential direction and 10 elements in the radial direction. For the healthy aortic seg-
ment 7 elements are used for the media in the radial direction, and 3 elements for the
adventitia.

Figure 4.3 shows the steps performed during the simulation. Due to symmetry, only one
eighth of the aortic segment is simulated, therefore, the opening angle is 180◦/2 = 90◦.
In step 1 the segment is closed to form a quarter of the segment by constraining surface
A in the 2 direction and surface B in both the 1- and 2 directions, and by applying the
SPIN command in FEAP to surface B. This command rotates the selected nodes around the
center and respective to a defined axis of rotation. Simultaneously, the lower surface D is
restricted in the 3 direction. Then, the upper and lower surfaces C and D are restricted in the
3 direction and A and B are constrained in the 2 direction only. In step 2 the aortic segment
is stretched by an axial pre-stretch λz of 1.0675, achieved by a displacement-driven loading
on surface C (the pre-stretch is calculated for the corresponding age following the approach
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Figure 4.3: Three steps performed during the simulation of a residually stressed and pre-
stressed (cylindrical) aortic segment. Due to symmetry one eighth of the segment is sim-
ulated. First, the opening angle of 180◦ (90◦ because of symmetry) of the segment with
inner radius Ri is closed; second, an axial pre-stretch of λz = 1.0675 is applied to obtain
the inner radius ri; third, the aortic segment is pressurized with an inner pressure p up to
120 mmHg.

proposed by Horn et al. [222]). At the end of step 2 the inner radius ri is taken for the
normalization of subsequent plots. In step 3 (the last step) the boundary conditions are
left unchanged with respect to step 2, and the aortic segment is inflated with an inner
pressure p of 120 mmHg using a pressure boundary loading (pressure loads depend on the
deformation).
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4.3.4 Inflation of an Idealized AAA Geometry

The final example underlines the importance of using accurate fiber dispersions in AAA
simulations. We are utilizing an idealized AAA geometry to study the effects of fiber dis-
persions on the mechanical AAA response in a repeatable way using a mathematical func-
tion for the AAA shape; therefore, a patient-specific geometry is deliberately not used.
In this example we use again the material and structural parameters from Section 4.3.1,
and, in addition, we analyze a fourth case, namely isotropic fiber dispersion which is rep-
resented by a uniform dispersion in each plane so that ρip = ρop = 1, where the structure
tensor is simply (1/3)I. Hence, we have no preferred direction so that κ = 1/3 in (4.25),
with A = 1/3 and B = 0 in (3.5).

Geometry

The idealized geometry of the AAA segment is generated using the toolkit CUBIT [223]
and MATLAB [219]. The initial AAA thickness is chosen to be the same as in the example
of Section 4.3.3, i.e. 1.5 mm. The (total) length L of the AAA model is 160 mm, while the
AAA shape, i.e. the change in the radius R, is defined by a ‘parabolic-exponential shape’
function proposed by Elger et al. [52], and utilized in, e.g., [14]. Thus,

R(Z) = Ra +

(
Ran−Ra− c3

Z2

Ra

)
exp
(
−c2

∣∣∣∣ Z
Ra

∣∣∣∣c1
)
, (4.26)

where Z denotes the axial coordinate, Ra is the radius of the healthy aorta (for the analyses
we use Ra = 15 mm), Ran is the maximum radius of the aneurysm (at Z = 0), c1 = 0.5 is a
constant and c2 and c3 are defined as

c2 =
4.605

(0.5Lan/Ra)
c1
, c3 =

Ran−Ra

Ra(0.8Lan/Ra)
2 , (4.27)

where Lan is the length of the aneurysm (Rodríguez et al. [14]). For a sketch of one eighth
of the AAA geometry see Fig. 4.4. Following [14] we us the dimensionless geometrical
parameters

FR =
Ran
Ra

, FL =
Lan
Ran

, (4.28)

where FR is the ratio between the AAA radius and the radius of the healthy aorta, and FL is
the ratio between the length of the aneurysm Lan, and the maximum AAA radius; we use
FR = 2.5 and FL = 2.8.
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Figure 4.4: One eighth of the AAA geometry and applied boundary conditions in (a) along
the directions 1 and 2, and (b) along the direction 3; L is the (total) length of the AAA
model, Lan is the length of the aneurysmatic part, Ra is the radius of the healthy aorta (at
Z = 0), Ran is the maximum radius of the aneurysm (at Z = L/2), while Z denotes the local
axial coordinate, see Elger et al. (4.27).

Finite Element Model

The 3D geometry is discretized with CUBIT, and the analysis is performed with FEAP us-
ing 1488 hexahedral mixed Q1-P0 elements. An inner pressure of 16 kPa (∼ 120 mmHg)
is applied to simulate the mean blood pressure. Symmetric boundary conditions are em-
ployed allowing the simulation of only one eighth of the geometry, which reduces the com-
putational time significantly. The axial direction is restricted on both outlets, see Fig. 4.4.

Definition of Fiber Orientation

In order to include the fiber orientation, the local circumferential, axial and radial vectors
of a finite element, say elocal

1 , elocal
2 , elocal

3 , need to be identified. This task is straightforward
for a cylindrical geometry but it is more elaborate for a AAA geometry, where the local
axial direction varies as well. We include the fiber dispersion by using a local coordinate
system for each individual finite element. Three nodes on the upper (top) surface and three
nodes on the lower (bottom) surface of an individual element are used to define two planes.
Hence, two orthogonal vectors to these planes can be identified, i.e. etop

3 and ebottom
3 , see

Fig. 4.5. Consequently, we define the local radial (unit) vector as
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Figure 4.5: Local vectors elocal
1 , elocal

2 , elocal
3 required for the definition of the local fiber

orientations within an individual finite element.

elocal
3 =

etop
3 + ebottom

3

|| etop
3 + ebottom

3 ||
. (4.29)

Subsequently, the local circumferential vector elocal
1 is calculated by using the cross product

of the global axial vector e2 and the calculated local radial vector elocal
3 , i.e.

elocal
1 = e2× elocal

3 . (4.30)

Finally, the local axial vector elocal
2 is calculated as

elocal
2 = elocal

3 × elocal
1 . (4.31)

By utilizing the local coordinate system the mean fiber directions, as introduced in Sec-
tion 4.2.2, are then determined as

M4 = cosαelocal
1 + sinαelocal

2 , M6 = cosαelocal
1 − sinαelocal

2 , (4.32)

and Mn = elocal
3 .

4.4 Simulation Results and Discussion

This section documents the numerical results of the systematically performed simulations
of the three representative examples according to Section 4.3, and it provides short discus-
sions.
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Figure 4.6: Planar equibiaxial extension of a cuboid-shaped sample to examine the differ-
ence in the mechanical behavior due to non-symmetric dispersion (NRSD), transversely
isotropic dispersion (TID) and perfect alignment (PA) of fibers. Analytical and numerical
(FE) solutions are compared: (a) healthy media, (b) AAA wall.

4.4.1 Planar Biaxial Extension

Figure 4.6 displays plots for the Cauchy stress (σcirc, σaxial) versus the related stretch (λcirc,
λaxial) for a sample of the healthy media and one for the AAA wall considering the fiber
dispersions NRSD, TID and PA. The numerical (FE) and the analytical results coincide
very well, which indicates the correct implementation of the material model into FEAP

[135]. As can be seen, the fiber dispersion has a significant influence on the mechanical
behavior of the samples.

Images indicate that collagen fibers exhibit a very small out-of-plane dispersion for the
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HEALTHY MEDIA

Circumferential Axial
Stretch λ 1.15 1.20 1.15 1.20

41.06 92.92 19.50 35.23 NRSD
Stress σ 21.68 35.39 13.84 19.37 TID

56.36 141.10 12.25 15.57 PA
AAA WALL

Circumferential Axial
Stretch λ 1.15 1.20 1.15 1.20

1.99 19.54 1.31 6.84 NRSD
Stress σ 1.42 4.47 1.13 2.49 TID

6.51 879.9 1.14 10.87 PA

Table 4.2: Stresses σ (in kPa) at two stretches λ (in the circumferential and axial direc-
tions) of the equibiaxially loaded cuboid-shaped sample for NRSD, TID and PA of fibers,
for the healthy media and the AAA wall.

healthy media but a significant in-plane dispersion [139, 211]. TID assumes too little
in-plane fibers leading to a weaker material response in both circumferential and axial
direction compared with NRSD, see Fig. 4.6(a). If PA is used (with α = 6.91◦) then too
many fibers reinforce the circumferential direction, therefore, a PA of fibers overestimates
the stiffness in the circumferential direction and underestimates it in the axial direction
when compared with NRSD. The nonlinear stiffening in the axial direction can only be
captured with the use of NRSD. Table 4.2 summarizes the Cauchy stresses (in kPa) at
1.15 and 1.20 stretch. Stresses in the circumferential direction at 1.20 stretch for PA of
fibers are overestimated by 52% compared with NRSD, whereas the axial Cauchy stress is
underestimated by 56%. The TID underestimates both circumferential and axial stresses
by 62% and 45%, respectively.

A similar tendency can be seen for the AAA sample, although the out-of-plane disper-
sion of fibers is (much) higher for AAAs compared with healthy tissues.Especially when
stresses are compared at stretches of 1.05 and 1.10 the differences become clear, see Ta-
ble 4.2. The analysis based on PA of fibers shows a faster stiffness when compared with
TID and NRSD. At λcirc = 1.05 the related stress is already 327% higher compared with
NRSD, and at λcirc = 1.10 the circumferential Cauchy stress is about 45 times higher for
PA with respect to NRSD.



4.4 Simulation Results and Discussion 89

4.4.2 Inflation of Residually Stressed and Pre-stretched Aortic Segments

Figure 4.7 illustrates the thickness change of the aortic wall with respect to the inner pres-
sure p for the healthy aortic and AAA segments. Initial thickness, at p = 0, is with respect
to the configuration ‘end of step 2’, as marked in Fig. 4.3. The closing of the open seg-
ments results in different wall thicknesses before inflation. For the AAA segment the wall
thicknesses at p = 0 are quite dependent on the used fiber-reinforcement (see Fig. 4.7(b)),
because the AAA segment is much stiffer than the healthy aortic segment. As can be seen,
the choice of the fiber dispersion is strongly influencing the results. For both investigated
segments the analyses with PA of fibers provide (by far) the stiffest response, resulting
in a 5.6% smaller wall thickness at 120 mmHg when compared with NRSD for the AAA
segment. On the other hand the segments with TID show the most compliant responses,
while the mechanical responses with NRSD are in between. The difference of the mate-
rial behavior between the two segments (healthy aorta versus AAA) is as pronounced as
already shown in Section 4.4.1.

Figure 4.8 depicts 3D plots of the circumferential and axial stresses versus the inner pres-
sure and the normalized radius for the AAA segment, and compares the influence of the
three different dispersion assumptions. The current radius is here normalized with the in-
ner radius ri, as depicted in the configuration ‘end of step 2’ of Fig. 4.3. Especially, the
circumferential and axial stresses analyzed on the basis of PA of fibers are significantly dif-
ferent with respect to the other two fiber dispersions, with a peak circumferential (Cauchy)
stress of over 300 kPa.

Figure 4.9 depicts the distributions of the circumferential Cauchy stresses with respect to
the geometry at 120 mmHg. Clearly, wall thicknesses and radii differ between the healthy
and aneurysmatic segments, and also between the different fiber dispersions.

4.4.3 Inflation of an Idealized AAA Geometry

Figure 4.10 shows circumferential and axial (Cauchy) stresses versus the (current) inner ra-
dius for different fiber dispersions up to 120 mmHg for (a) the cylindrical segment (healthy
aorta) at the smallest radius (at Z = L/2), and (b) at the maximum radius of the bulged
AAA segment (at Z = 0). All simulations except for the one which considers isotropic dis-
persion show compressive axial stresses in the cylindrical (healthy) part of the aorta, which
occur due to the boundary conditions. In addition, the circumferential stresses are higher
with isotropic dispersion (ISO) as they are with NRSD and TID. The cylindrical segment
with the smallest radius and the maximum radius of the bulged AAA segment (with ISO)
exhibit the largest radial extension (with a value of 53.54 mm at 120 mmHg), not hav-
ing enough fibers located in the circumferential direction to prevent excessive extension
due to the applied pressure. TID exhibits a more compliant behavior in the diseased re-
gion (with respect to NRSD) with a maximal circumferential stress of 760.7 kPa, whereas
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Figure 4.7: FE results of wall thickness versus inner pressure for (a) the healthy aortic
segment and (b) the AAA wall using three different fiber dispersions: non rotationally-
symmetric dispersion (NRSD), transversely isotropic dispersion (TID), perfect alignment
(PA) of fibers.
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Figure 4.8: FE results of circumferential and axial (Cauchy) stresses versus normalized
radius and inner pressure for the AAA segment with three different fiber dispersions: non-
symmetric dispersion (NRSD), transversely isotropic dispersion (TID), perfect alignment
(PA) of fibers.

NRSD reaches 674.2 kPa at a maximal inner radius of 42.9 mm. Note that no solutions for
the AAA with PA of fibers can be displayed, as this case showed numerical instabilities at
higher pressure levels in the neck region. This is most likely due to the significant differ-
ences in stiffness between the compliant ground matrix and the (relatively) stiff fibers. As
there is no fiber dispersion and the fibers are located close to the circumferential direction
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Figure 4.9: FE results of the circumferential stress distributions (in kPa) at 120 mmHg
for (a) the healthy aortic segment and (b) the AAA segment using three different fiber
dispersions: non-symmetric dispersion (NRSD), transversely isotropic dispersion (TID),
perfect alignment (PA) of fibers. Note the different scales for the stress in (a) and (b).

numerical instabilities occur, which may arise due to the used isochoric-volumetric split of
the strain-energy function (see, e.g., [224]).

Figure 4.11 shows circumferential and axial (Cauchy) stresses as a function of the radius
r normalized with Ran for different assumptions of fiber dispersions. The analysis on the
basis of an isotropic dispersion predicts axial stresses almost twice as high as for TID and
NRSD. The prediction of circumferential stresses obtained on the basis of TID is higher
than those using NRSD throughout the wall thickness.

Figure 4.12(a) shows contour plots of the circumferential Cauchy stress for the three simu-
lations at 120 mmHg. The scale of the stress is the same for all simulations. In Fig. 4.12(b)
the stress scale is changed so that the location of the maximal stress is visible in the ISO
stress plot. All three analyses reveal that the peak wall stress is located at the luminal side
of the AAA. The peak circumferential stress (which was almost identical with the maximal
principal stresses) occurs at the maximum diameter except for ISO, where the maximum
stress is located at the transition zone, compare with Fig. 4.12, hence an isotropic model
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Figure 4.10: Circumferential and axial stresses versus (current) inner radius up to
120 mmHg for (a) the cylindrical segment (healthy aorta) at the smallest radius (at Z =
L/2) and (b) at the maximum radius of the bulged AAA segment (at Z = 0). Three dif-
ferent fiber dispersions are investigated: non-symmetric dispersion (NRSD), transversely
isotropic dispersion (TID), isotropic (ISO).
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Figure 4.11: Circumferential and axial stresses versus normalized radius r/Ran for three
different assumptions of fiber dispersions: non-symmetric dispersion (NRSD), trans-
versely isotropic dispersion (TID), isotropic (ISO).

is inappropriate for this type of analysis. The stress distributions between the cases NRSD
and TID are not as pronounced as with respect to ISO, because AAA tissues exhibit a
rather large out-of-plane dispersion, closer to a rotationally symmetric dispersion, than it
is the case for healthy aortas.
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(a) NRSD TID ISO (b) ISO

0 350 700 100 750 1400

Figure 4.12: Contour plots of the circumferential stress (in kPa) on the luminal side at
120 mmHg: (a) three different assumptions of fiber dispersions (using the same scale),
i.e. non-symmetric dispersion (NRSD), transversely isotropic dispersion (TID), isotropic
(ISO); (b) stress plot for the case ISO with a stress scale which makes the location of the
peak wall stress in the transitional zone visible.

Previous studies detected peak wall stresses at inflection points and a pronounced influence
of asymmetry on the location of the peak wall stress [14, 129, 190, 192]. Interestingly, in
the present example only the isotropic model exhibits peak wall stresses at the inflection
point. Rodríguez et al. [218] demonstrated that an anisotropic model yields much higher
wall stresses when compared with an isotropic model; the authors also discussed the in-
fluence of fiber dispersion. However, the models the authors used are not comparable,
as they fitted their models to different data sets, using different fitting procedures. The
present simulation of an idealized AAA geometry shows twice as high maximal stresses
for the isotropic case compared to the anisotropic cases. As the used structural and ma-
terial parameters are not comparable with the ones used by Rodríguez et al. [218] the
differences in the findings highlight the influence of parameters and model assumptions on
stress magnitudes and locations.

4.5 Conclusion

The influence of different fiber dispersions on the mechanical response of aortic tissues in
health and disease has not yet been studied on the basis of the recent constitutive model of
Holzapfel et al. [149]. In the present study we have performed a systematic analysis using
three representative numerical examples. Magnitudes and distributions of stresses and
deformations were presented and discussed. We have used structural and mechanical data
from human aortic samples (healthy media/adventitia and AAA), recently documented by
Niestrawska et al. [211].

Simulations performed with data from healthy aortas show a (more) gradual stiffening,
whereas the simulations with AAA data predict a very compliant response at low stretches,
then a kind of ‘stiffening point’ at which a rapid stiffening of the material response occurs.
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For that stiffening the collagen micro-structure is mainly responsible. Therefore, for AAA
tissues it is even more important to consider the corresponding fiber dispersion. In all three
examples it is visible that structural and material data from healthy aortic tissues yield a
(completely) different material response when compared with AAA tissue. Consequently,
data from healthy tissues should not be used for the prediction of peak wall stresses in
AAAs, or vice versa.

All simulations show a rather remarkable influence of the fiber dispersion on the magni-
tudes and distributions of stresses and deformations. The most severe difference can be
appreciated in the example analyzing the inflation of an idealized AAA geometry. For ex-
ample, the peak circumferential stress is more than twice as high with isotropic dispersion
compared with non-symmetric dispersion, and even the related location of the peak stress
is different. The computational study indicates that small changes in the fiber dispersion
result in a rather different tissue behavior. Hence, as long as structural parameters are
available they should be considered in the analysis, especially as the computational time
is about the same for different arterial micro-structures. Clearly, it is not sufficient to use
phenomenological models to understand disease progression.

Future studies should focus on the inclusion of new imaging data of the micro-structure.
Intermediate stages of AAA formation should also be studied on, e.g., mouse models to
provide data for more detailed micro-structural modeling and analyses. Another key re-
search topic is certainly the collection of structural data in vivo, which would help to estab-
lish more realistic rupture criteria, and to better understand collagen reorientation during
disease progression.

Acknowledgements. The authors would like to thank Jakob Eckmann for the construc-
tive discussion on the computational analysis.



5 THE ROLE OF TISSUE RE-MODELING IN MECHANICS AND
PATHOGENESIS OF ABDOMINAL AORTIC ANEURYSMS

Abstract. Arterial walls can be seen as composite materials consisting of collagen fibers
embedded in an elastic matrix and smooth muscle cells. The remodeling of the structural
proteins has been shown to play a significant role in the mechanical behavior of arteries
during pathogenesis of abdominal aortic aneurysms (AAA).

In this study, we systematically studied the changes in microstructure, histology and me-
chanics to link them to AAA disease progression. We performed biaxial extension tests,
second harmonic generation imaging and histology on 15 samples from the anterior part
of AAA walls harvested during open aneurysm surgery.

Structural data was gained by fitting to a bivariate von-Mises distribution and yielded the
mean fiber direction and in- and out-of-plane fiber dispersion. Mechanical and structural
data was fitted to a recently proposed constitutive model. Additionally, the mechanical data
was used to derive collagen recruitment points in the obtained strain-stress-curves. 14 pa-
rameters were derived from histology such as smooth muscle cell-, elastin-, and abluminal
adipocyte content. In total, 21 parameters were obtained and statistically evaluated.

We were able to define stages of disease progression based on the collagen recruitment
points. Significant differences in elastin content, collagen orientation and adipocyte con-
tent were found. Nerves entrapped inside AAA walls pointed towards a significant deposi-
tion of newly formed collagen abluminally, which we propose as neo-adventitia formation.
We were able to discriminate two kinds of remodeled walls with a high collagen content
- potentially safely and possibly vulnerable walls with a high adipocyte content inside the
wall as well as significant amounts of inflammation.

The study yielded a novel hypothesis for disease progression, derived from the systematic
comparison of histology, structure and mechanical changes in AAAs.

5.1 Introduction

Abdominal aortic aneurysms (AAAs) are local dilatations of the abdominal aorta. The
bulge is weakening the blood vessel wall and appears predominantly in the elderly male
population [4, 180]. AAAs are usually clinically silent and may rupture eventually if not
treated [11]. The mortality rate in these cases lies around 85% [5]. Especially in older
patients the treatment of AAAs with elective surgical repair does not necessarily improve
survival [7]. Hence, a reliable, patient specific prediction of rupture risk is needed to assess
whether the risk of rupture justifies repair [179]. The current criterion for surgery is the
‘maximum diameter criterion’, which is more a rule-of thumb than a scientific criterion

95
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[11, 124]. Other criteria have been proposed, such as the expansion rate [126], aneurysm
asymmetry [129] or peak wall stresses [225, 226]. However, no criterion has been proven
to be reliable up until now. Malkawi et al. [9] suggested that a biomechanical patient
specific screening should be employed as finite element simulations (FEM) are becoming
more promising.

From a mechanical point of view, AAA rupture is a mechanical failure of the material once
the peak wall stress exceeds the local strength [181]. As material properties depend signif-
icantly on the network of the extra cellular matrix (ECM) including elastin and collagen,
which are the primary load bearing proteins in the arterial wall [182]), changes in these
components play a substantial role in pathogenesis. Therefore, a deeper understanding on
the structure and ongoing reorganization during disease progression is essential. Studies
which investigated wall stresses computationally were performed e.g. by [11, 191]. Stud-
ies like this have a pressing need for physiological data on the material and structural level.
Over the past decade AAAs were studied widely especially mechanically. Biaxial exten-
sion tests in AAA were performed by, e.g., [110, 112, 211, 227]. Studies, which performed
uniaxial extension tests and reported a stiffer behavior in circumferential direction were,
e.g. [107–109], whereas, e.g. [53, 57, 185–188] reported an increase in isotropy in uniaxial
extension tests. Additionally, the pressure modulus was investigated as a mechanical pa-
rameter by [98, 103]. The microstructure was linked to mechanics to improve the outcome
of FEM simulations by, e.g. [198], studying porcine aortic tissue. Robertson et al. [197]
studied the reorganization of collagen fibers during loading in cerebral aneurysms. In our
recent study [211] we investigated the differences in microstructure and mechanics be-
tween healthy and AAA. Last but not least, the pathogenesis linked to material properties
was investigated in several studies, such as [110, 116, 194–196]. Monteiro et al. [188] cor-
related the AAA diameter with collagen, smooth muscle cell (SMC), elastin content, the
infiltration of inflammatory cells and the (uniaxial) rupture strength of 90 patients. Spec-
imen with higher diameters showed higher values of failure properties. However, there
was no difference in strain when looking at the diameter and no other correlations were
found, either. However, the specific mechanical events leading to AAA development and
eventually to rupture still remain unclear.

Elastin degradation seems to be accepted as the main reason for the development of an
aneurysmal dilatation [228]. Wilson et al. [229] investigated markers for elastin degrada-
tion linked to a pressure strain elastic modulus and found that elastin degradation correlates
with increased wall distensibility and aneurysm formation. Data on changes in collagen
however is conflicting. Some authors report an increase in collagen fraction [230, 231],
while others report a reduction [194, 232] or no change [58, 233]. The exact order of patho-
logical events leading to AAA initiation is not yet completely understood [234]. However,
a consensus exists on the most important processes during the development of AAA, which
are chronic inflammation, production of matrix degrading proteinases and their inhibitors
[207]. Additionally, immunity seems to play a key role in aneurysm development [235].
After the dilatation caused by the loss of elastin the adventitia is accepted to be the main
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load bearing part in the aortic wall. Eventually, collagen disruption seems to be the cause
of rupture [207].

In our recent study [211] we observed significant amounts of adipocytes abluminally, cov-
ered by collagen within the wall, not adjacent to the outer side of the adventitia as usually
observed in healthy abdominal aortas [15]. Only two groups seem to have mentioned
these entrapped adipocytes, e.g., [236–239] in AAA and [240] in transcranial aneurysms,
but none investigated their influence on the mechanical behavior of the wall. However, the
mentioned studies all hypothesized that adipocyte accumulations within the wall might be
key factors that cause wall degeneration and eventually rupture. In transcranial aneurysms,
adipocyte accumulations were associated with SMCs and were hypothesized to origi-
nate from the thrombus or neo-vessels. In AAA Tanaka et al. [238, 239] and Kugo et
al. [236, 237] performed studies on mouse models and human samples and found that
adipocyte like cells mostly accumulate in the abluminal side of the aneurysmal sack, but
not in the neck. They noted that inflammation is associated with these adipocytes, but did
not provide a hypothesis where the adipocytes may originate from. The adipose tissue
surrounding healthy vessels was mentioned in several studies, such as [21, 241], hypothe-
sizing that this tissue could influence the pathogenesis within the adventitia of the adjacent
vascular wall.

Adipocyte accumulations seem to be an important factor in the mechanical behavior of
AAAs and therefore motivated this study. It is the first study to our knowledge to in-
vestigate systematically the correlations between mechanics, utilizing biaxial extension
tests, microstructure gained by second harmonic generation imaging (SHG) and multiple
histological parameters to define three stages of disease progression and therefore a new
hypothesis on pathogenesis.

5.2 Materials and Methods

5.2.1 Tissue Preparation

Fifteen wall samples from (true) AAAs (with a median (interquartile range (iqr) of 69 (65
to 77) years, 2 women, 13 men) were harvested from open aneurysm repair at the anterior
side of the aneurysm at the Department of Vascular Surgery, Medical University Graz,
Austria. The AAA samples were small pieces with the longitudinal direction marked by
a surgical clip or suture and stored in Dulbecco’s modified Eagle’s medium at 4◦C until
testing.

As a representative control sample for histology one sample from an abdominal aorta with
non-atherosclerotic intimal thickening was collected within 24 h of death and fixed in 4%
formaldehyde solution (pH 7.4) during autopsy. All other data on healthy abdominal aortas
relevant to this study was already collected and reported in our previous study [211].
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The AAA tissue was cut into three separate samples as indicated in Figure 5.1. First, a
rectangular sample with a size approximately 15× 5mm with the long side marking the
circumferential direction was prepared and fixed in 4% formaldehyde solution (pH 7.4) for
further histological analysis as explained in section 5.2.2.

Subsequently a second rectangular sample, similar to the first one, was prepared for optical
clearing, following the protocol in [177]. The specimens were dehydrated by means of a
graded ethanol series consisting of 50%, 70%, 95% and 2× 100% ethanol solutions for
each 30 minutes. The tissue was then cleared by submerging it first into a benzyl alcohol
benzyl benzoat (BABB) solution [177] mixed with ethanol in the ratio 1 : 1 for 4 hours.
Finally the specimens were placed in 100% BABB for at least 12 hours before imaging as
explained in section 5.2.3.

Finally a square sample with dimensions of 20×20mm was prepared for mechanical test-
ing as explained in section 5.2.4 and the circumferential direction was marked with a sur-
gical marker.

circ

axial

histology

optical
10 mm mechanics clearingsurgical suture

Figure 5.1: Abluminal side of a representative AAA specimen showing the contours of the
samples prepared for further testing.

5.2.2 Histology

Arterial segments as indicated in Figure 5.1 were fixed in 4% formaldehyde solution (pH
7.4), embedded in paraffin, sectioned at 3 - 5 µm and stained. To visualize cells hema-
toxylin and eosin (H&E) staining was used to evaluate the general cell content and ar-
chitecture of the specimen, as well as for estimation of inflammatory cell content and
calcification. Elastica van Gieson (EvG) staining was applied to visualize elastin, collagen
and smooth muscle cells.

Additionally, small sections of two unfixed arteries were stained on cry-cut sections with
Sudan Red G to confirm lipids inside voids seen within the wall.
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5.2.3 Second-harmonic Generation Imaging

The 3-dimensional collagen structure was determined by means of second harmonic gener-
ation (SHG) imaging, which was performed on an imaging set-up consisting of a picosec-
ond laser source and an optical parametric oscillator (OPO; picoEmerald; APE, Germany;
HighQ Laser, Austria). These were integrated into a Leica SP5 confocal micorscope (Le-
ica Microsystems Inc., Austria). The excitation wavelength was tuned to 880nm and the
detection of the signal was achieved using a BP 465/170 emission filter. 3-dimensional
image stacks (z-stacks, 3 µm steps and cross-section images in (x,y-plane) were acquired
using a Leica HCX IRAPO L 25× 0.95 water immersion objective (working distance
2.5mm for deep tissue imaging).

5.2.4 Mechanical Testing

The samples were mounted into a biaxial testing device using hooks on surgical sutures.
Subsequently the samples were submerged in a 0.9% saline solution and heated to 37±1◦.
A stretch-driven protocol was used for testing, starting at a deformation of 2.5% and being
increased by increments of 0.01 stretch until failure. As AAA tissue is very sensitive to
initial preloads, zero strain was defined at a configuration of 0.05 N load. To cover a
physiological range of deformations each sample was tested using five different stretch-
ratios as follows: λaxial : λcirc = 1 : 1, 1 : 0.75, 0.75 : 1, 1 : 0.5 and 0.5 : 1, where λcirc and
λaxial denote the stretch in circumferential and axial direction, respectively. The samples
were loaded quasi-statically with a rate of 3mmmin−1. Normal and shear deformations
were quantified following [203] and shear deformation was found to be negligible.

5.2.5 Material Model

We assume that the aorta can be modeled as a purely elastic, incompressible and fiber-
reinforced material. Therefore we introduce the deformation gradient F and the right
Cauchy-Green tensor C = FTF [173] and define the decoupled strain-energy function Ψ

according to [199]
Ψ = Ψg(C)+ ∑

i=4,6
Ψfi(C,Hi)+ pI, (5.1)

where Ψg represents the contribution of the ground matrix, i.e.

Ψg(C) =
c
2
(I1−3). (5.2)

Here, I1 is the first invariant, defined as I1 = trC and c is a material parameter, describing
the stiffness of the ground matrix.
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Ψfi represents the contribution of the two fiber families, which is defined by the two in-
plane mean fiber directions, i.e.

M4 = cosαe1 + sinαe2, M6 = cosαe1− sinαe2, (5.3)

where the fiber directions M4 and M6 make an angle α with the circumferential direction
e1. Additionally, the contribution of the fibers depends on the dispersion parameters κip and
κop, which are incorporated into the generalized structure tensors H4 and H6 as follows:

Hi = AI+BMi⊗Mi +(1−3A−B)Mn⊗Mn, i = 4,6, (5.4)

where the constants A and B are

A = 2κopκip, B = 2κop(1−2κip). (5.5)

This results in the definition of Ψfi as

Ψfi (C,Hi) =
k1

2k2

{
exp
[
k2(I

?
i −1)2

]
−1
}
, i = 4,6, (5.6)

with the stress-like parameter k1 > 0, the dimensionless parameter k2 > 0 and the general-
ized invariants I?i , defined as

I?i = tr(HiC) = AI1 +BIi +(1−3A−B)In, i = 4,6. (5.7)

Here, the invariants I4, I6 and In are defined according to

Ii = C : Mi⊗Mi, i = 4,6, In = C : Mn⊗Mn, (5.8)

It is worth noting that the material model incorporates three material parameters (c,k1,k2),
which can be determined by fitting the model to mechanical data (in this study from biaxial
tensile tests) and three structural parameters (κip, κop, α), which can be determined by
imaging (in this study by SHG imaging).

5.2.6 Data Analsyis

Histological Data

Histological investigation was performed on all samples to measure the wall thickness
and the relative thickness of the individual layers in % of the whole wall. All length
measurements were done on scanned slides using Aperio ImageScope (Leica Biosystems,
Germany). The relative amount of lipids on the luminal and abluminal side in % and
the relative amount of calcification in % of all constituents were quantified semiquanti-
tatively by two experienced pathologist. Additionally the relative elastin, smooth muscle
cell (SMC) and inflammatory cell contents were quantified.
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Microstructural Parameters

Images acquired by SHG imaging were analyzed by extracting data from z−stacks (three-
dimensional images). Fourier power spectrum analysis and wedge filtering as described in
[177] were utilized to gain discrete angular distributions of relative amplitudes, resembling
the fiber orientation. The fiber orientation was defined in the same manner as introduced
in [199, 211], see e.g. Fig. 2 in [211]. The underlying coordinate system was defined by
the unit vectors e1, e2 and e3, representing the circumferential, axial and radial direction,
respectively. The general fiber direction in the (unloaded) reference configuration N was
defined by the two angles Θ∈ [0,2π] (resembling the in-plane angle) and Φ∈ [−π/2,π/2]
(corresponding to the out-of-plane angle). Following [211] the in-plane and out-of-plane
dispersions were fitted assuming their independence [19] with a bivariate von Mises dis-
tribution ρ(Θ,Φ) = ρip(Φ)ρop(Θ) defined as follows [199]:

ρip(Φ) =
exp[acos2(Φ±α)]

I0(a)
, ρop(Θ) = 2

√
2b
π

exp[b(cos2Θ−1)]
erf(
√

2b)
, (5.9)

where a and b are fitting parameters defining the shape of the distributions, α is the angle
between the circumferential direction e1 and I0(a) is the modified Bessel function of the
first kind of order 0.

Following [199] two scalar quantities were introduced to measure the in-plane (κip) and
out-of-plane (κop) dispersions by

κip =
1
2
− I1(a)

2I0(a)
, κop =

1
2
− 1

8b
+

1
4

√
2

πb
exp(−2b)
erf(
√

2b)
, (5.10)

where 0≤ κip≤ 1 and 0≤ κop≤ 1/2. A value of κip = 0.5 corresponds to an isotropic fiber
dispersion in-plane, whereas κip = 0 resembles perfect alignment. For κop = 0.5 all fibers
lie in-plane, whereas κip = 1/3 corresponds to all fibers being dispersed out-of-plane.

Mechanical Parameters

The model was fitted to all five testing ratios (1:1, 1:0.75, 1:0.5, 0.75:1, 0.5:1) in both axial
and circumferential direction simultaneously, utilizing the optimization toolbox lsqnonlin
in Matlab (The MathWorks, Inc., MA, USA). The structural parameters κip,κop and α were
determined as described in section 5.2.6 and used for fitting the material model to the bi-
axial experimental data. Hence, the only three fitting parameters were c,k1 and k2. The
goodness of fit was evaluated by the coefficient of determination R2.
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Inflection Points

To compare the points of all stress-strain curves where the collagen takes over the me-
chanical response and hence the material stiffens rapidly, an ‘inflection point’ was defined.
As mostly the circumferential direction behaved slightly stiffer, the inflection point was
defined as the maximal change of slope of the circumferential 1:1 curve and calculated in
Matlab.

For further analysis three distinct stages were defined: Stage 1 exhibiting an inflection
stretch in circumferential direction in a range of a healthy aortic wall, i.e. 1.10≤ λ < 1.15,
stage 2 to having a circumferential inflection stretch in the range of λ ≥ 1.15 and stage 3
exhibiting an inflection stretch λ < 1.10. The sample size of the groups was 6 for stage 1,
4 for stage 2 and 5 for stage 3.

Statistics

All values are reported in medians and interquartile ranges (iqr), as a normal distribution
could not be assumed due to the small sample cohort and outliers would affect the mean
and standard deviation.

As we could not assume a normal distribution we used the Spearman’s rank correlation to
test for possible correlations between two independent data sets. Additionally, the Mann-
Whitney U-test was utilized to test for significant differences between data sets. Differ-
ences were considered statistically significant if the p-values for both tests were less than
0.05. All statistical analysis was performed using Matlab.

5.3 Results

5.3.1 Study Population

All 15 samples were successfully analyzed for structural, mechanical and histological
data. Table 5.1 gives a summary over all (potentially) relevant patient information. All
aneurysms exhibited a maximum diameter of more than 55mm, which is the size where
a surgery is commonly advocated for men (50mm for women, or if the growth exceeds
5− 10mm per year) [85, 180, 204]. Also, all AAA walls were covered by thrombus
and did not come from a ruptured aneurysm. As statin intake might have an impact on
adipocytes, we included the information about it as well.

Figure 5.2 shows mechanical responses at a stretch ratio of 1 : 1 for all AAA and one
healthy control sample.
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Figure 5.2: Cauchy stress versus stretch behavior of all 15 AAA samples and the AA
control obtained by equibiaxial mechanical tests: (a) circumferential, (b) axial direction.
The black circle indicates the exemplary inflection point of sample AAA 11.

5.3.2 Healthy Control

The healthy sample exhibited a circumferential inflection stretch of λ = 1.12, which is
consistent with the study cohort in [211]. In healthy abdominal aortas three layers are
present with a mean ratio of 20 : 49 : 31 (intima:media:adventitia) [177, 211]. The SMC of
the control sample was 35%, whereas the elastin content was 20%, both lying in the range
of reported contents [15]. The mean fiber direction of healthy abdominal has a median
(iqr) of α = 24.46◦(22.45 to 30.18), showing very little dispersion out-of-plane (median
(iqr) κop = 0.479(0.473 to 0.482)), as reported in [211].

Figure 5.3 shows micrographs of the same sample location of a healthy abdominal aorta,
stained with (a) EvG and (b) H&E. The internal and external elastic lamina, thick elastin
bundles and SMC are clearly distinguishable. Outside the adventitia loose connective
tissue with a few adhering adipocytes can be seen.

The mechanical parameters as reported in [211] were the following (reported in median
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Table 5.1: Patient information of all tested AAA specimen: the ID, age, gender (f: female,
m: male), maximum diameter D, smoker, pack years, hypertension, diameters, statin in-
take, body mass index (BMI), - no information available

# Age D Smoker Pack Hyper- Diabetes Statin BMI
(years) Gender (mm) y/n Years tension y/n y/n

1 78 m 56 n - y n y 24.91
2 62 m 105 n - y n n 24.97
3 76 m 60 n - y y y 25.51
4 78 m 72 n - y n n 27.76
5 68 m 90 y 20 y n y 28.67
6 68 m 58 y 20 y n y 25.93
7 66 f 65 y 62.5 y y y 30.12
8 62 m 72 y 90 - y - -
9 69 m 57 y 55 y n n 28.41
10 75 m 77 y 50 y y y 23.62
11 84 m 66 n - y y y 25.4
12 63 m 60 y 35 y y n 31.01
13 73 m 64 y - y y n 21.78
14 63 m 87 y - n n n 25.26
15 80 f 55 n - y y n 25.39

(iqr)): c = 11.59 kPa (4.13 kPa to 19.93 kPa), k1 = 2.66 kPa (1.15 kPa to 11.64 kPa) and
k2 = 19.25 (9.93 to 26.06). The c-value indicates a pronounced initial stiffening, see the
star-shaped curve in Figure 5.2.

5.3.3 Inflection Point Related Groups

Levels of disease progression were defined in three stages, depending on their ‘inflec-
tion’ points as described in Chapter 5.2.6, as follows:

Stage1 : 1.10≤ λ < 1.15, Stage2 : λ ≥ 1.15, Stage3 : λ < 1.10.

The choice of groups was confirmed by significant differences in both circumferential and
axial strains and stretches between all three groups (p≤ 0.01 for all cases).
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Table 5.2: 21 parameters obtained by mechanical, structural and histological analysis of all
AAA samples. Adv.: Adventitia, Throm: thrombotic material, LL: luminal lipid deposits,
Calc: calcification, Inflam.: inflammatory cells, BMI: body mass index, inflection points
in circumferential direction.

Mechanical Parameters Structural Parameters
c (kPa) k1 (kPa) k2 (-) κip(-) κop (-) α (◦)

Stage 1 median 0.59 1.30 47.51 0.242 0.433 6,55
n = 6 [Q1;Q3] [0.38; 3.96] [0.48;2.21] [24.92;60.41] [0.234;0.260] [0.425; 0.441] [5.19; 11.62]

Stage 2 median 1.83 0.46 17.79 0.224 0.455 33.11
n = 3 [Q1;Q3] [1,55; 2.54] [0.40;1.88] [15.67; 30.83] [0.219; 0.232] [0.433; 0.463] [23.63; 33.62]

Stage 3 median 3.78 8.96 636.29 0.224 0.402 22.90
n = 6 [Q1;Q3] [0.78; 6.77] [2.61; 18.27] [161.29; 2142.10] [0.191; 0.236] [0.379; 0.421] [18.41; 47.02]

Histological Parameters
Intima (%) Media (%) Adv. (%) Neo-Adv. (%) Layers (-) Throm. (%)

Stage 1 median 46.37 17.09 30.78 0.00 3 2.5
n = 6 [Q1;Q3] [32.31; 50.39] [9.03; 24.25] [19.04; 37.86] [0.00; 11.86] [3; 3] [0; 8.75]

Stage 2 median 48.00 18.03 18.81 17.57 3 0
n = 3 [Q1;Q3] [24.00; 48.67] [9.01; 21.81] [16.94; 22.60] [8.78; 49.38] [2;3] [0.00; 7.50]

Stage 3 median 0.00 0.00 33.78 66.22 1,00 0
n = 6 [Q1;Q3] [0.00;0.00] [0.00;0.00] [26.10; 40.96] [57.05; 73.29] [1;1] [0.00; 1.50]

Histological Parameters
LL (%) Calc. (%) Elastin (%) SMC (%) Collagen (%) Inflam (%)

Stage 1 median 0 0 3.00 3.5 60 2.5
n = 6 [Q1;Q3] [0.00; 7.50] [0; 1.50] [0.25; 5.00] [1.25; 5.00] [57.00; 61.50] [0.00; 12.50]

Stage 2 median 2 15 1 1 60 2
n = 3 [Q1;Q3] [1.00; 11.00] [7.50; 17.50] [0.50; 3.00] [0.50; 3.00] [54.50; 63.00] [2.00;6.00]

Stage 3 median 0 0 0.05 0 45 5
n = 6 [Q1;Q3] [0.00;0.00] [0.00; 7.50] [0.00; 0.78] [0;0] [41.25; 75.00] [1.25; 8.75]

Inflection Points
Diameter (mm) BMI (-) λIP (-) σIP (kPa)

Stage 1 median 72 25.26 1.12 2.89
n = 6 [Q1;Q3] [67.50; 75.75] [23.62; 25.40] [1.11; 1.14] [2.38; 7.52]

Stage 2 median 57.00 28.41 1.2 17.38
n = 3 [Q1;Q3] [56.00;58.50] [26.90; 29.71] [1.20; 1.22] [14.06; 19.93]

Stage 3 median 62.5 25.72 1.05 1.4
n = 6 [Q1;Q3] [58.5; 83.75] [25.11; 27.99] [1.03; 1.06] [1.19; 5.78]
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Figure 5.3: Micrographs of the same location of the healthy control sample stained with
(a) EvG and (b) H&E. The three characteristic layers of the abdominal aortic wall (I:
intima, M: media, A: adventitia) can be seen clearly. The EvG stain reveals the internal
elastic lamina (IEL), external elastic lamina (EEL), thick elastin bundles in brown (E) and
collagen fibers in pink. Aidpocytes (L) are visible on the outer side of the adventitia. In
the H&E stain cells such as smooth muscle cells (SMC) can clearly be seen in dark violet.
In the outer part of the adventitia adipocytes from the surrounding fat tissue can be seen.

Stage 1

The circumferential inflection stretch for stage 1 samples exhibited a median (iqr) or 1.12
(1.10 to1.14). In all samples, three layers were present. However, the intima was thick-
ened, resulting in a ratio between the layers of 40 : 30 : 30. The elastin content decreased
drastically to a median (iqr) of 3% (0.25 to 5)% as did the SMC content to a median of
3.5 (1.25 to 5)%.

A micrograph showing a AAA wall in stage 1 is shown in Figure 5.4. The intima is notably
thickened and neither IEL nor EEL are distinguishable anymore. Only a few elastic fibers
(E) are visible in the middle of the wall, as well as SMCs. A small area with inflammatory
cells (IF) is present in the surrounding adipose tissue. Worth of note a the following normal
structures: a nerve (N) is visible inside the transition from the adventitia towards the loose
connective tissue surrounding the vessel. Inside this loose tissue adipocytes (L) are also
visible.

Figure 5.7 shows representative intensity plots for each of the three stages. The left
side shows the plot for stage 1, showing fibers being closely dispersed around the cir-
cumferential direction throughout the thickness. Indeed, the mean fiber angle for stage
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Figure 5.4: EvG stained micrograph showing a AAA wall in stage 1. All three layers are
visible. However, the intima (I) is significantly thickened in comparison to the healthy
sample. Also the IEL and EEL are not clearly distinguishable anymore. A nerve (N) is
visible on the outer part of the wall, as well as adipocytes (L) in the outer part of the
adventitia (A). The media (M) contains notably less elastin fibers (E) and smooth muscle
cells (SMC) in comparison to the healthy sample. Also inflammatory cells (IF) are visible
in the adventitia.

1 is significantly smaller compared to healthy samples (p < 0.001) with a median (iqr)
of 6.55◦ (5.19◦ to 11.62◦). The out-of-plane dispersion increased to a value of κop =
0.43 (0.42 to 0.44), and the stiffness parameter k2 increased with a factor 2 compared to
the healthy aorta to a median (iqr) of 47.51 (24.92 to 60.41). Especially the initial stiffness
decreased significantly compared to the healthy aorta to c = 0.59 kPa (0.38 to 3.96 kPa),
see also Figure 5.2.

Stage 2

The inflection stretch in circumferential direction showed a median (iqr) of 1.20 (1.20 to1.22).
In two samples only the adventitia was the only remaining wall part, whereas one exhibited
two layers and one still all three. The elastin and SMC contents decreased to 1%, and the
adipocytes lying inside the wall (see Figure 5.5) increased to 8.87% (4.39% to 13.17%)
in comparison to no adipocytes present inside the wall in stage 1 or the healthy sample.
Inflammation was visible on the abluminal side of the wall (IF), co-localizing with dis-
rupted adipocytes (DL). Above the abluminal lipids, especially at places showing inflam-
mation, see Figure 5.5, new collagen started to build up, forming a neo-adventitia (NA)
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Figure 5.5: EvG stained micrograph showing a AAA wall in stage 2. No intima, elastin or
SMC are visible. The transition between media and adventitia is not clear. Inflammation
(IF) is visible, located around disrupted adipocytes (DL). Non-disrupted adipocytes (L) are
covered by apparently newly deposited collagen, the neo-adventitia (NA).

(17.57% (8.78% to 49.38%) of the whole wall thickness). No such layer was seen in
neither stage 1 nor the healthy sample.

The middle image in Figure 5.7 shows a representative plot for stage 2. Similar to stage
1, the fibers for the first 600 µm are aligned closely around the circumferential direction.
However, the collagen fibers are isotropically dispersed further on, resulting in a median
(iqr) angle of 33.11◦ (23.63◦ to 33.62◦), being significantly bigger compared to stage 1
(p = 0.02).

Stage 3

The circumferential inflection stretch for samples in stage 3 had a median (iqr) of 1.05 (1.03 to1.06).
In all samples of stage 3 only one layer could be seen except of one sample where media
and adventitia were present. Hence, the amount of intima and media in stage 3 was sig-
nificantly lower compared to stages 1 and 2. SMC and elastin content were once more
significantly decreased in comparison to stage 2 to 0% for all samples (p = 0.01). A sig-
nificantly thickened neo-adventitia was present in the third stage with a median (iqr) of
66.22% (57.05% to 73.29%) of the wall (p = 0.02 to stage 1 but only p = 0.08 to stage
2).
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Figure 5.6: EvG stained micrographs showing (a) a "safely" remodeled AAA wall and
(b) a potentially vulnerable AAA wall in stage 3. Both samples show a significant neo-
adventita and neither media nor intima, the bottom denotes the luminal side. Nerves (N)
appear entrapped within the wall in both samples, significant amounts of inflammation
(IF), remnants of thrombotic material on the luminal side (T) and adipocyte cells (L) can
be seen in (b).

Looking at the mechanical response, the third stage exhibited the stiffest behavior with a
k2 parameter of 636.29 (161.29 to 2142.10) (p = 0.01 compared to both stage 1 and 2).
Also k1 was significantly higher in comparison to stage 1 (p = 0.05) and slightly higher
compared to stage 2 (p = 0.09) k1 = 8.96 kPa (2.61 to 18.27 kPa).

The right image in Figure 5.7 shows a representative intensity plot for stage 3. Similar
to stage 2, the luminal side shows fibers dispersed towards the circumferential direction,
followed by an isotropic fiber dispersion which is more pronounced compared to stage
2. The out-of-plane dispersion was slightly higher compared to stage 1 (p = 0.08) with
κop = 0.402 (0.379 to 0.412)

Figure 5.6 shows two kinds of stage 3 walls. The left wall in (a) shows the remains of
adventitia, followed by a dense collagen layer forming a neo-adventitia. The nerves (N)
lie now inside the wall, emphasizing the thickness of the newly formed collagen. No
inflammation can be seen on the abluminal side anymore, and no adipocytes can be seen
anymore. The right micrograph shows another kind of stage 3 wall: significant amounts of
inflammation (IF) are visible throughout the wall, co-localizing with significant amounts
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Figure 5.7: Representative intensity plots for all three stages, showing the collagen fiber
orientation and distribution through the depth of the aortic wall. A depth of 0 denotes the
luminal side. Stage 1 shows fibers oriented closely towards the circumferential direction
throughout the thickness of the wall. Stage 2 exhibits a similar fiber dispersion until a
depth of around 600 µm, followed by an isotropic fiber dispersion. Stage 3 shows the
same tendency. However, the isotropic fiber distribution starts earlier and continues for
over 1000 µm.

of adipocytes (L). Again, a nerve (N) is entrapped in the middle of the wall, underlining
the newly formed tissue on the abluminal side.

It is worth noting, that all patients except one took statins in stage 3, whereas no patient in
stage 2 took these drugs. Two out of 6 patients in stage 1 took statins.

5.3.4 Statistical Analysis Regardless of Inflection Points

In total, 22 parameters were gained by histological, microstructural and mechanical analy-
sis. All these parameters were examined for correlations where reasonable. A correlation
was assumed significant when p−values were below 0.05. In total, 13 significant correla-
tions could be found, as shown in Table 5.3. Additionally, 6 pairs were found to show a
tendency towards correlation (defined by a p−value > 0.05 and < 0.09), and were chosen
to be shown here since correlation might motivate subsequent studies with a larger study
cohort, see Table 5.4.

Figure 5.9 shows two exemplary correlations: SMC content and the percentage of newly
built neo-adventitia correlate significantly, showing less SMC content in arteries with a
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Table 5.3: All significant correlations with corresponding p− and r−values found in this
study. IP: ‘inflection’ point, LL: luminal lipid deposits, BMI: body mass index, intima %,
media %, adventitia % and neo-adventitia % correspond to the percentage of the individual
layer relative to the whole wall thickness.

Correlated variables p−value r−value
κop and k2 0.000 0.79
IP λcirc and k2 0.022 -0.59
IP λcirc and intima % 0.042 0.53
α and neo-adventitia % 0.050 0.51
Intima % and elastin 0.049 0.52
Intima % and SMC 0.000 0.88
Media % and LL 0.030 0.56
Media % and elastin 0.001 0.77
Media % and SMC 0.000 0.92
Adventitia % and diameter 0.043 -0.53
Neo-adventitia % and SMC 0.003 -0.72
Neo-adventitia % and # layers 0.006 -0.68
Diameter and inflammation 0.018 0.60
BMI and LL 0.009 0.64

Table 5.4: Pairs of parameters showing a tendency towards correlation. IP: ‘inflection
point’, media %, adventitia % and neo-adventitia % correspond to the percentage of the
individual layer relative to the whole wall thickness.

p−value r−value
κop and IP λax 0.080 0.47
IP λcirc and media % 0.085 0.46
IP λcirc and SMC 0.077 0.47
IP λcirc and # layers 0.065 0.49
Intima % and Calcification 0.066 -0.65
Diameter and Calcification 0.086 -0.46
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Figure 5.8: Box-and-whisker plots of (a) the mean angle α and (b) the percentage of neo-
adventitia of the whole wall for all three stages.

thicker neo-adventitia. The dimensionless stiffness parameter k2 is very high for low ‘in-
flection’points and falls rapidly for higher ‘inflection’points. Figure 5.10 shows an ex-
emplary box-and-whisker plot of the amount of neo-adventitia in % of the whole wall in
samples which exhibited one, two or all three layers. It is clearly visible that the amount
of neo-adventitia significantly increases with decreasing layers in the AAA wall.

Additionally to the grouping in inflection point groups, the samples were also grouped
(yes/no) to examine the possible effects of diabetes and statin intake on the examined
parameters. Patients with diabetes exhibited a significantly lower initial stiffness (c =
1.16kPa (0.34to1.82) kPa) compared to patients without diabetes (c = 6.56 kPa (2.11 to
6.83) kPa, p = 0.04). Interestingly, the stiffness parameter k2 was significantly higher in
patients without diabetes (k2 = 636.29 (210.00 to 2142.10)) than in patients with diabetes
(k2 = 43.86 (17.79 to 48.75), p = 0.007).

5.4 Discussion

Several correlations were found, which in the end enabled a definition of three stages of
disease progression. For instance, the ‘inflection point’ strain was significantly correlated
with the stiffness parameter k2, showing a significantly stiffer behavior with earlier colla-
gen fiber recruitment. The parameter k2 was also significantly correlated with the out-of-
plane dispersion parameter κop, indicating a higher out-of-plane orientation with increased
stiffness and hence with disease progression. As the integrity of the AAA wall is lost when
the ECM is degraded, collagen fibers are less aligned in-plane, consistent with our earlier
study [211].
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Figure 5.9: Exemplary plots of significant correlation of (a) SMC content and % of neo-
adventitia of the wall and (b) the mechanical parameter k2 and the strain of the circumfer-
ential ‘inflection’ point. SMC content decreases significantly with a growing percentage
of neo-adventitia. The stiffness parameter k2 increases significantly with a decreasing ‘in-
flection’ point strain in circumferential direction. The highest value of k2 = 7403.3 at an
‘inflection’ point strain of λcirc = 1.04 was not plotted here for clarity of lower values of
k2.
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Figure 5.10: Box-and-whisker plot of the percentage of neo-adventitia of the whole wall
for samples with 1, 2 or all three layers present.

The mean collagen angle α , and the amount of SMC and elastin correlated positively
with the relative thickness of neo-adventitia, indicating the neo-adventitia as a marker of
disease progression, as did the relative thicknesses of intima and media, which correlated
significantly with elastin and SMC contents.

The only significant correlation with the diameter was found with the amount of inflam-
mation, confirming findings by [242].
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5.4.1 Hypothesis of a Mechano-pathogenic Model in Three Stages

Figure 5.11 shows a flowchart depicting our hypothesis of disease progression, derived
from observed changes in mechanics, histology and structure (collagen architecture).

The chart starts with the behavior of a healthy aorta. Mechanically, the artery shows a sig-
nificant initial stiffness (see also Fig. 5.2, sample AA) (median (iqr) cAA = 33.86 (6.88 to
98.76) kPa), and once it stiffens, the slope is moderate (k2AA = 19.25 (9.93 to 26.06))
[211].

Looking at the histology, we can see a thin intima, a clear membrana elastica interna, and a
clear membrana elastica externa, seperating intima from media and media from adventitia,
respectively. The media incorporates collagen and elastin fibers, and has a significant
amount of SMCs. The adventitia exhibits a thicker, wavier type of collagen than the media,
and nerves and adipocytes are visible on the outer side of the wall.

The collagen structure is depicted in the intensity plot, taken from [211], showing an
isotropic intima (starting from the bottom), followed by two counter-rotating fiber families
throughout the media and finally two fiber families pointing towards the axial direction in
the adventitia.

Stage 1

It has been shown in several studies [79, 243–245] that a degradation of the extracellular
matrix occurs, accompanied by a degradation of elastin and SMCs [246] (see Table 5.2).
(For a theory of the initiation of aneurysm formation, see, e.g. [234, 243]). As the elasticity
of elastin is lost, an aneurysm starts to form [243]. Following the bulging, and due to lack
of cells which might deposit new collagen, collagen fibers reorient passively towards the
circumferential direction (αStage1 = 6.55◦ (5.19 to 11.62)◦).

This is clearly visible in the intensity plot of stage 1 - all fibers are oriented closely towards
the circumferential direction throughout the wall thickness. The point where collagen
fibers get recruited is around the same stretch as in healthy samples. However, the initial
stiffness decreases rapidly ( cStage1 = 0.59 (0.38 to 3.96) kPa), see, e.g. Figure 5.2, sample
AAA11. The slope, once collagen gets recruited, is more pronounced, increasing to a value
of (k2Stage1 = 47.51 (24.92 to 60.41)).

The intima starts to thicken, but most severely a significant loss in elastin and SMC content
can be noted. As this leads to a loss of the membrana elastica interna and externa, a clear
distinction between layers becomes difficult (see also Figure 5.4). Adipocytes and nerves
are still located on the outer side of the wall, embedded in loose connective tissue.

We hypothesize that the growing aneurysm presses against the surrounding tissue, and
hence compresses the perivascular adipose tissue, or ‘tunica adiposa’ [241]. Due to the
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Figure 5.11: Flow chart summarizing the disease progression steps. It is divided into me-
chanics, histology and collagen, where changes are illustrated between the healthy aorta
and three disease stages of AAAs. The mechanics are illustrated as a stress-strain curve,
showing an idealized mechanical behavior for the respective case and the inflection point
IP as a red circle. Changes in histology are depicted schematically and color coded as fol-
lows: light pink depicts collagen fibers,brown wavy structures symbolize elastin and brown
circles SMCs, black and white circles are adipocytes, brown circles filled with black are
inflammatory cells, and yellow ovals are nerves. The third part of the flow chart, labelled
‘Collagen’ shows exemplary intensity plots as explained in Figure 5.7.
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pressure force, adipocytes undergo in part necrosis or apoptosis and the evading lipids are
taken over by macrophages. This is a starting point for inflammation which accumulates
inflammatory cells and fibroblasts, which further leads to the production of collagen fibers
comparable to scar formation.

Briton and Fox [21] state that perivascular adipose tissue might be linked to vascular dis-
ease, as adipocytes might contribute with a local toxic effect by migration of immune
cells into the vascular wall. This might promote inflammation there, as obesity is associ-
ated with changes in adipokine secretion. Hence, the local pathogenic effect of a ‘tunica
adiposa’may be either direct by compression of the vessels or indirect by changes in fat
tissue itself with diseases such as obesity [247, 248]. Although the effect of perivascular
fat remains incompletely understood, the mechanisms seem to include a direct effect on
the vasculature such as the stimulation of immune cell migration into the vascular lumen
[21].

Stage 2

We observed inflammation co-localizing with adipocytes in stage 2, which was not ob-
served in healthy arteries or stage 1 AAAs. These inflammatory cells together with fibrob-
lasts have the ability to deposit collagen [249]. As these cells are the only vital appearing
cells we could localize in the AAA walls, we hypothesize that all collagen deposition is
due to this inflammatory process on the abluminal side of the aorta. This theory is sup-
ported by the fact that a significant isotropically distributed layer is visible in the intensity
plots of collagen orientation, which follows fibers closely oriented towards the circumfer-
ential direction. As the aneurysms grows, stresses in the axial direction increase and hence
an isotropic fiber orientation of collagen appears, as also hypothesized in [188, 250]. Also,
adipocytes and nerve cells covered by dense collagen fibers are already visible in micro-
graphs of stage 2 AAA walls, see Figure 5.5. We call this new deposition of collagen at
the outer side of the AAA ‘neo-adventitia’, (NA). Statistically significant differences in the
mean fiber angle α and the thickness of the neo-adventitia further support this hypothesis.
Studies such as [251] have briefly stated that collagen deposition seems only to happen on
the abluminal side, but did not give any explanation for this finding.

In stage 2, the intima seems to burst open, as we could observe in some micrographs.
Hence, only the media and adventitia are left, which are not clearly distinguishable any-
more. The mechanical behavior becomes very compliant, probably because the stiff intima
[184, 211] opens. Newly deposited fibers seem to be quite wavy, although we did not quan-
tify the waviness in this study. This might additionally explain the increased distensibility
of the wall: as the integrity of the wall decreases, the collagen fibers can straighten and
re-orientate without much resistance and get recruited at a later stage with higher stretches
compared to healthy arteries or stage 1 AAA walls (see Table 5.2 and, e.g. Figure 5.2,
sample AAA15).
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Stage 3

The transition towards stage 3 is associated with a built up of a significant neo-adventitia.
Smaller, disrupted adipocytes are cleaned off by macrophages and only non-disrupted
adipocytes remain inside the wall. All walls are common in their stiffness (see, e.g., Fig-
ure 5.2, sample AAA2) and a significant amount of neo-adventitia. This neo-adventitia
is visible in the intensity plot, exhibiting an increased percentage of the wall having an
isotropic fiber orientation with a decreasing percentage of the wall showing fibers oriented
towards the circumferential direction. Indeed, in most micrographs no media could be
seen anymore and only the adventitia with the newly deposited neo-adventitia remained.
This also explains why no significant difference in wall thickness could be seen between
the samples, despite of new collagen deposition. Apparently, both intima and media split
open, as could be observed on some micrographs. However, to further support this latter
theory, a study of whole aneurysms is necessary to confirm the circumferential distribution
of the three aortic layers, as unfortunately we only had access to a small piece of the AAA
walls on the anterior side.

Despite of the common features such as a significant neo-adventitia and no intima nor
media present, we could observe two kinds of remodeled stage 3 walls. The first kind
seemed to have remodeled ‘safely’, see Figure 5.6, (a). Almost no adipocytes were present
inside the wall, only a thick collagen layer was entrapping nerves, which indicated the
new collagen deposition. These samples had a higher relative collagen content compared
to the other stages (89% and 85%). The second kind of walls seemed to have remodeled
to a ‘vulnerable’ state, see Figure 5.6 (b). Here, significant amounts of inflammation and
adipocytes were visible inside the wall.

Interestingly, we did not see any significant differences in diameter between the groups
as this measure seems to be unfit as dependent on too many premises. Monteiro et al.
[188] examined failure strains and stresses by uniaxial tensile testing and could not find
any correlation between failure strains and diameters either.

5.4.2 Connection with Literature

The potentially important role of adipocytes located inside or adjacent to aneurysm walls
has been studied by two groups to the authors knowledge:

Tanaka et al. [239] applied imaging mass spectrometry to analyze the localization of lipid
molecules in human aneurysm walls. They found that the size of adipocytes was markedly
larger compared to those located in the neck and that the integrity of collagen became
disrupted by the infiltration of adipocytes. The group also stated, that high plasma TG
levels may be potential risk factors for AAA rupture, however, serum TG levels were not
elevated for most of the patients. Their hypothesis was that adipocyte accumulations in
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AAA walls may be indicators for an increased rupture risk. However, no hypothesis for
the origin of the adipocytes was given.

Kugo et al. [236] performed an animal study with a hyperfusion-induced animal model
(developed by the same group and described in [238]) for AAAs and additionally collected
30 human samples from AAA surgeries. They found increased amounts of adipocytes in
ruptured vessels compared to non-ruptured walls, but did not state whether the adipocytes
were included inside the wall or adjacent to the wall. The adipocyte like cells were located
in the adventitial side of the AAA sac, but not in the neck in both ruptured and unruptured
groups. Additionally they stated that local inflammation was associated with the observed
adipocytes. They concluded that the appropriate control of adipocytes may treat or even
prevent AAA rupture.

Ollikainen et al. [240] examined 20 ruptured and 16 unruptured saccular intracranial
aneurysms with respect to lipid accumulations. They found that intracellular lipid accumu-
lation was associated with wall remodeling and rupture and that macrophages correlated
with these lipid accumulations. Extracellularly accumulated adipophilin was present in
higher amounts in ruptured than unruptured walls, which reflected the death of lipid-laden
cells, macrophages and SMCs and the release of their intracellular, adipophilin covered
lipids droplets into the ECM. The group hypothesized that the lipids may originate from
the thrombus or from neo-vessels. However, intracranial aneurysms are not surrounded by
perivascular fat and hence the mechanism of lipid accumulation is most likely different to
the one in AAAs.

Several studies reported remodeling in the adventitia, such as Maiellaro et al. [252].
They observed significant thickening of the adventitia, accompanied by a recruitment of
macrophages. This may highlight an inward progression of inflammation from adventitia
towards the luminal side of the AAA wall. However, they also stated that this is most
probably not the first trigger for aneurysm dilatation as no inflammation in adventitia was
seen in small aneurysms.

The ‘tunica adiposa’ was described by several groups as a potential source of inflamma-
tion. For example, Cinti et al. [253] andPolice et al. [242] connected adipocyte death to
macrophages inside the adventitia and hence to enhanced AAA formation. Also Chaldakov
[241] stated that adipocyte tissue, surrounding vessels, might be connected to cellular infil-
tration of inflammatory cells and hence play an important factor in an ‘outside-in’ signaling
in development of diseases such as atherosclerosis and cardiomyopathy. However, the ef-
fects of a ‘tunica adiposa’ around vessels remains incompletely understood and should be
examined further [21].
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5.4.3 Conclusion

To the authors’ knowledge this is the first study systematically comparing and connecting
mechanical data from biaxial tensile tests, histological and structural data to define disease
stages.

The proposed pathogenesis provides an explanation for contradicting studies stating in-
creased anisotropy, e.g. [103, 107, 109, 110, 112, 227], or isotropy, e.g. [106]. According
to our hypothesis, collagen in AAA walls realigns passively towards the circumferential
direction in the first disease stage, which results in an anisotropic behavior. Subsequently,
triggered by inflammation on the abluminal side of the wall, new collagen is deposited
isotropically and hence contributes to a more isotopic behavior. Due to the small sample
size no significant differences were found regarding isotropy or anisotropy, but a trend
towards a more isotropic behavior with disease progression could be seen and should be
investigated in future studies.

Another key observation was that collagen deposition only occurs in conjunction to infil-
tration of inflammatory cells. Hence our theory is that no fibers are synthesized without
inflammation in the wall and therefore no safe remodeling is possible to counteract the lost
elasticity due to ECM degeneration. The application of anti-inflammatory drugs might ac-
tually be counterproductive and more studies should be employed in this direction, as also
stated by [234], referring to a study by Lindemann et al. [254], who reported a rapid AAA
development and rupture in a patient on immunosuppressive drugs. Also Monteiro et al.
[188] suggested that inflammation is not a marker for rupture, but rather for remodeling.

Finally, the significant occurrence of adipocytes in potentially ‘vulnerable’ stage 3 AAA
walls might point towards the possibility to image adipocytes inside the wall even by con-
ventional ex vivo imaging techniques such as ultrasound or MRT.

Unfortunately, our biaxial tensile tests could not determine the final rupture strength of the
tested specimen. Future studies should aim at the determination of biaxial failure prop-
erties to understand the difference in the wall composition of stage 3 AAAs and whether
‘safely’ remodeled walls are indeed stronger that ‘vulnerable’ walls.

As AAAs seem to become first more compliant and then stiffer, monitoring changes in
aneurysm distensibility could be a better predictor for rupture that monitoring the change
in diameter, as proposed by Wilson et al. [255]. They deduced that a reduction in dis-
tensibility of AAA walls over time was associated with a significantly reduced time until
rupture, independent of other risk factors.

To fully understand this progression, AAA walls should be examined on the nano-scale
as well as closely analyzed for collagen undulation and thickness. The impact of diabetes
on mechanics and disease progression should be examined closely in future studies, as we
found significant differences in mechanical behavior in diabetes and non-diabetes patients.
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Additionally we found differences in statin intake between disease stages, hence the intake
of statin should be closely examined in the future, as it may influence the growth of AAA,
as suggested by, e.g., [256–258]. However, no significant correlation between statin intake
and adipocytes inside the wall or neo-adventitia growth could be found in this study.

Another drawback of our study is of course the small sample size and the limited location
from which we gain our samples. Due to patient safety it is not possible for us to gain
samples including both sac and neck region or even whole aneurysms. A future study
should aim at gaining whole AAAs from autopsies to confirm the hypothesis that intima
and media burst open at a certain point in the disease progression.
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