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Abstract

In the present thesis we introduce a new approach to solve impurity models
for Dynamical Mean Field Theory (DMFT) working directly on the real fre-
quency axis - Fork Tensor Product States (FTPS). FTPS is a tensor network
with a fork-like graph, that is especially suited for multi-orbital Anderson Im-
purity Models (AIM). The main idea of this approach, the decoupling of the
bath degrees of freedom, that allows to employ a large number of bath sites
and therefore to describe the bath hybridization with high precision. This
enables us to resolve high energy features in the impurity spectral function
that often turn out to be atomic multiplets. We not only show that within
DMFT such multiplets exist, but also demonstrate why the state of the art
method, Continuous Time Quantum Monte Carlo (CTQMC), fails to resolve
them. To obtain real-frequency spectra, CTQMC relies on an ill-posed an-
alytic continuation. Such methods are not able to reproduce high-energy
multiplets, if the imaginary time Green’s function is subject to statistical
noise.

After a general introduction of AIMs, we show how to use them to rep-
resent the bath of free fermions obtained from the DMFT. We also mention
the most important aspects of how to combine Density Functional Theory
(DFT) with DMFT, among others, the choice of correlated subspace and the
number of correlated orbitals.

The FTPS solver is based on the Density Matrix Renormalization Group
(DMRG) with Matrix Product States (MPS). Therefore, we introduce MPS
in some detail and discuss how to use MPS for the calculation of Green’s
functions. Since unitary transformations acting non-trivially only on the
bath degrees of freedom do not change any observable of the impurity, several
equivalent representations of the bath exist. In the present thesis we focus on
the so called star geometry of the bath and show how to efficiently use it in
MPS calculations, despite the long-range hopping terms of the star geometry.

One of the crucial properties of the FTPS tensor network is that its graph
is loop-free. This allows us to find the Schmidt decomposition for each bond,
which in turn means we can safely truncate the tensor network. We show



how to formulate DMRG (ground state search), as well as how to perform
the time evolution with FTPS - the two necessary ingredients to calculate
Green’s functions.

Finally, we use FTPS as a DMFT impurity solver on the real frequency
axis for two real-materials. First, for the benchmark compound SrVO3, where
we use a three-band model for the description of the correlated subspace of
the t2g bands. We find a distinct three-peak structure in the impurity spec-
tral function and show that it is a direct result of the atomic multiplets of the
interaction Hamiltonian employed. To validate our approach, we compare to
CTQMC on the real-, as well as on the imaginary frequency axis. For the lat-
ter, we find very good agreement, while the differences on the real frequency
axis can be attributed to the already mentioned analytic continuation.

The second compound is the strongly correlated insulator SrMnO3. There,
we focus on the influence of the choice of correlated subspace and number
of orbitals on the impurity spectral function. In the simplest case, using a
small energy window and only three correlated orbitals for the t2g bands, we
find a typical Mott insulator with a lower and an upper Hubbard band. But
since the lower Hubbard band is close (in energy) to hybridizations of the
oxygen p-bands with the t2g -bands, the small energy window calculation is
not fully justified. Including these hybridizations in a so called dp-model,
we find that the lower Hubbard band splits into several peaks due to the
additional hybridizations. In this model, the distinction between Mott- and
charge transfer insulator is not clear anymore. Our results shed some light on
this intermediate regime. At the same time, one can argue that also the eg
-bands are important for SrMnO3, since they are located directly above the
Fermi energy. In including them, we perform a DMFT calculation for the full
Mn-3d shell, i.e. for a five orbital model, including hybridizations. The re-
sulting spectral function of this calculation is in good agreement with Photo
Emission Spectroscopy (PES) and X-ray Absorption Spectroscopy (XAS)
experiments. Most importantly, the XAS measurement shows a three-peak
structure of alternating eg -t2g -eg character, a feature that our calculation
shows as well. This emphasizes the importance of real-frequency solvers,
since they allow us to resolve these kind of multiplets.



Kurzfassung

In dieser Arbeit wird ein neuer Impurity Solver 1 für Dynamical Mean Field
Theory (DMFT), genannt Fork Tensor Product States (FTPS), vorgestellt.
Mit diesem Impurity Solver ist es möglich die Spektralfunktion direkt auf
der reellen Frequenzachse zu brechnen. Er eignet sich besonders für Mehr-
Orbital Modelle, da der Graph dieses Tensor Netzwerk eine gabelartige Struk-
tur aufweist. Die grundlegende Idee hinter FTPS ist es die Freiheitsgrade der
Bäder verschiedener Orbitale zu trennen. Dies erlaubt es die Bad-Hybridisierung
präzise darzustellen, da eine große Anzahl an Badplätzen benutzt werden
kann. Damit können hochenergie Anregungen in der Spektralfunktion aufgelöst
werden, bei denen es sich oftmals um atomare Multiplets handelt. Es wird
nicht nur gezeigt, dass FTPS erlaubt solche atomaren Anregungen aufzulösen,
sondern auch warum Continuous Time Quantum Monte Carlo (CTQMC)
- der bisherige Stand der Technik - dazu nicht in der Lage ist. CTQMC
benötigt nämlich eine analytische Fortsetzung, um die Spektralfunktion auf
der reelen Frequenzachse zu berechnen. Da die analytische Fortsetzung ein
sehr schlecht konditioniertes Problem darstellt, ist sie nicht in der Lage Mul-
tiplets aufzulösen, vor allem wenn die Greensche Funktion auf der imaginären
Zeitachse verrauscht ist.

Nach einer kurzen Einführung in Anderson Impurity Modelle (AIM),
wird gezeigt wie man sie in DMFT einsetzt um das Bad freier Fermionen
zu beschreiben. Außerdem werden die wichtigsten Aspekte, wie man DMFT
mit Dichtefunktionalstheorie (DFT) kombiniert, erwähnt. Darunter fallen
unter anderem die Wahl des korrelierten Unterraumes, sowie die Anzahl der
korrelierten Orbitale.

Da FTPS auf der Methode der Density Matrix Renormalization Group
(DMRG) mit Matrix Product States (MPS) basiert, werden diese Konzepte
im Detail diskutiert. Außerdem wird eine der Möglichkeiten vorgestellt mit
der Greensche Funktionen mit MPS berechnet werden können. Dies er-

1Die Umgangssprache in der Physik ist Englisch. Deshalb hab Ich mich dazu
entschlossen Eigennamen, deren Gebrauch in der deutschen Sprache unüblich sind auf
Englisch zu schreiben und, um sie zu markieren, Kursiv zu stellen. Das selbe gilt für Eigen-
namen deren deutsche Form nicht mit der dafür benutzten Abkürzung übereinstimmt.



möglicht es Impurity Modelle zu lösen, worunter im Allgemeinen die Berech-
nung der Greenschen Funktion der Impurity gemeint ist. Da diese Größe
(sowie jede andere Observable der Impurity) durch unitäre Transformation
die nur auf das Bad wirken nicht verändert wird, gibt es eine Vielzahl von
Möglichkeiten das Bad darzustellen. Diese Arbeit legt den Schwerpunkt auf
die sogenannte Stern-Geometrie. Es wird gezeigt, dass, obwohl in Stern-
Geometrie die Kopplungen langreichweitig sind, man sie effizient für MPS
einsetzen kann.

Da der Graph eines FTPS Netzwerks schleifenfrei ist, kann für jeden In-
dex des Tensornetzwerkes die Schmidt Zerlegung des quantenmechanischen
Zustands gefunden werden. Dies erlaubt eine sichere Trunkierung des FTPS
Tensor Netzwerks, sowie DMRG und Zeiteintwicklungsalgorithmen zu for-
mulieren um Greensche Funktionen zu berechnen.

Im Folgenden wird FTPS als Impurity Solver für DMFT bei zwei ver-
schieden Materialien eingesetzt. Zuerst für das Benchmark-Material SrVO3,
indem die t2g Bänder in einem drei-Orbital Modell behandelt werden. In
diesem Modell weist das obere Hubbard Band drei markante Spitzen auf,
bei denen es sich um atomare Anregungen des Wechselwirkungsoperators
handelt. Ein Vergleich von FTPS mit CTQMC zeigt, dass beide Methoden
zwar auf der imaginären Frequenzachse übereinstimmen, es jedoch für reele
Frequenzen Unterschiede gibt. In der Spektralfunktion von CTQMC (nach
analytischer Fortsetzung) sind solche Spitzen nicht auffindbar, was auf die
analytische Fortsetzung zurückzuführen ist.

Danach wird FTPS für den stark korrelierten Isolator SrMnO3 einge-
setzt. Dabei wird die Frage beantwortet, wie sich die Wahl des korrelierten
Unterraums, sowie die Anzahl der korrelierten Orbitale auf das Spektrum
auswirken. Zuerst wird der einfachste Fall betrachtet: ein kleines Energiefen-
ster nur für die t2g Bänder. Die daraus resultierende Spektralfunktion zeigt
einen typischen Mott Isolator mit oberem und unterem Hubbard Band. Es
stellt sich jedoch heraus, dass das untere Hubbard Band energetisch sehr
nahe bei Hybridisierungen von Sauerstoff p-Bändern mit den t2g Bändern
liegt. Dies bedeutet, dass das kleine Energiefenster eigentlich nicht gerecht-
fertigt war, da es diese Hybridisierungen vernachlässigt. Eine Rechnung für



ein größeres Energiefenster, ein sogenanntes dp-Modell zeigt, dass sich das un-
tere Hubbard Band durch die Hybridisierungen aufspaltet und es daher keine
klare Trennung zwischen Mott- und charge transfer Isolator mehr gibt. Diese
Arbeit liefert wichtige Erkenntnisse über dieses Zwischenregime. Neben den
Hybridisierungen, sind auch die eg Bänder von Bedeutung, da sie direkt über
der Fermi -Energie liegen und deshalb eine Rechnung für die gesamte Mn
3d-Schale durchgeführt werden müsste. Die daraus resultierende Spektral-
funktion stimmt gut mit Photo-Emissionsspektroskopie (PES) und Röntgen-
Absorptionssepktroskopie (XAS) Experimenten überein. Vor allem das XAS
Experiment zeigt drei Spitzen die abwechselnd von eg , t2g und eg Orbitalen
stammen. Eine solche Struktur ist auch in den FTPS Rechnungen vorhan-
den. Dies zeigt, dass Impurity Solver, die direkt reele Größen berechnen
können, einen wichtigen Beitrag für das Verständnis von stark korrelierten
Materialien liefern.
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1 Introduction

According to the Cambridge dictionary [5], interaction is defined as: “an
occasion when two or more people or things communicate with or react to
each other”. When such a reaction occurs, objects stop being independent
of each other and their future becomes intertwined, leading to a plethora
of exciting phenomena. As a physicist I would call this something along
the lines of a failure of the single-particle description. Here and now, the
objects/particles we consider are electrons, described within the framework
of quantum mechanics and they interact with each other through the well
known Coulomb repulsion.

In physics, the most interesting cases of interactions can be found when
the energy due to the interactions, let us parametrize it with a single param-
eter U , is of a similar magnitude than the kinetic energy, parametrized by t.
In these cases neither of them dominates and therefore perturbation theory
fails. For example, in order to describe magnetic impurities in a metallic host,
Anderson proposed his nowadays famous Anderson Impurity Model (AIM).
The interactions in this model lead to an emergence of a new energy scale
∼ t2

U
[6, 7], describing spin-spin interactions and ultimately leading to the

Kondo-effect [8]. For the present thesis, the importance of AIMs comes from
its close connection to Dynamical Mean-Field Theory (DMFT). Originally
developed for models with infinite connectivity [9, 10], DMFT can be con-
sidered an approximation for finite-dimensional systems, neglecting spatial
correlations. In DMFT we focus on a single site of the model Hamiltonian,
and map its original environment onto an effective model - usually an AIM.
The most challenging part of a DMFT calculation is then the solution of the
AIM thus obtained. DMFT is not only applicable to model Hamiltonians.
On the contrary, the combination of DMFT with Density-Functional Theory
(DFT) [11–13] soon became one of the most important methods for the ab
initio description of strongly-correlated materials.

Therefore, an impurity solver (a method that calculates the impurity
Green’s function of an AIM), is at the heart of our understanding of strongly-
correlated materials with DMFT. For realistic scenarios, the state of the art
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impurity solvers are variants of Continuous Time Quantum Monte Carlo
(CTQMC) [14, 15] (see Sec. 2.2 for methods other than CTQMC). CTQMC,
while statistically exact on the imaginary frequency axis, relies on an ill-posed
analytic continuation to obtain real-frequency properties. Furthermore, it is
in some cases plagued by a Fermionic sign problem, disallowing CTQMC
to reach low temperatures. Therefore, an impurity solver working directly
on the real-frequency axis and, at the same time, being able to perform
calculations for multiple orbitals (needed for the description of real-materials)
is highly desirable.

The present thesis aims to close this gap. Based on the immense success
of the Density Matrix Renormalization Group (DMRG) with Matrix Prod-
uct States (MPS) [16, 17], we propose a tensor network especially suited for
multi-orbital AIMs. The graph of this tensor network is a fork-like struc-
ture giving our approach its name: Fork Tensor Product States (FTPS).
We show that it is a viable impurity solver for at least five orbitals on the
real frequency axis. This allows us to obtain high-resolution results for the
real-frequency spectrum and to resolve atomic multiplets within DMFT, also
found in experiments.

This thesis is structured as follows. In Sec. 2, we introduce the Anderson
Impurity Model (AIM). We start with a single orbital and then discuss the
multi-orbital case. There, we especially focus on the Kanamori interaction
that we use as interaction Hamiltonian throughout this thesis. Then, we
briefly discuss existing impurity solvers, as well as their strengths and weak-
nesses. Sec. 3 is devoted to the Dynamical Mean-Field Theory (DMFT) and
how to combine it with Density-Functional Theory (DFT) for an ab initio
description of strongly-correlated materials. In Sec. 4, we introduce Matrix
Product States (MPS) as well as the Density Matrix Renormalization Group
(DMRG) and time evolution algorithms working with MPS. The application
of MPS to the single-orbital AIM is discussed in Sec. 5, with a special focus
on the star geometry representation of the bath. Then, we give a possible
explanation why MPS perform poorly for multi-orbital models. To solve this
issue, we introduce the FTPS tensor network in Sec. 6, where we show how
to obtain Schmidt decompositions. This allows us to efficiently search for

3



ground states with DMRG and perform the time evolution. In Sec. 7, we
use the FTPS solver for DMFT calculations for the benchmark compound
SrVO3. The main text of this section was published in Ref. [1]. Finally, in
Sec. 8 we present the paper published recently in Ref. [4], where we performed
DMFT calculations for the strongly-correlated insulator SrMnO3.

4



2 Anderson Impurity Models

In 1961 Anderson introduced the Anderson Impurity Model (AIM) [18] to
describe magnetic impurities in a metallic host. In its simplest form, for a
single orbital, the Hamiltonian in second quantization is given by:

H =
∑

kσ

εknkσ

︸ ︷︷ ︸
Hbath

+
∑

kσ

Vk

(
c†0σckσ + h.c.

)

︸ ︷︷ ︸
Hhyb

+
∑

σ

ε0n0σ + Un0↑n0↓

︸ ︷︷ ︸
Hloc

(2.1)

c†kσ (ckσ) creates (annihilates) an electron in a Bloch state labeled by mo-
mentum k and spin σ, while nkσ = c†kσckσ is the usual number operator.
The impurity degrees of freedom are labeled by an index k = 0 for conve-
nience. The first term, Hbath is the bath of free electrons of the metallic host,
while Hloc describes the local degrees of freedom of the interacting impurity.
The hybridization term Hhyb couples the metallic host to the impurity via a
hopping from the impurity to one of the bath states with strength Vk. Al-
though impurity models are of great importance in their own right, in the
present thesis we will use them exclusively within the framework of Dynam-
ical Mean-Field Theory (DMFT), introduced in the next section. In this
section we discuss a few general properties of impurity models, as well as
introduce the basic notation that will accompany us throughout this thesis.

Although the impurity in Eq. 2.1 consists only of a single orbital, this
model can be used to understand the appearance or absence of a magnetic
moment from d- or f-shell electrons of the impurity. In what is called the
local moment regime, the ground state ofHloc is the doubly degenerate single-
occupation. Employing a Schrieffer-Wolff transformation [6, 7] one can inte-
grate out the charge fluctuations of the doubly occupied and empty impurity.
In that case, that the low-energy description of the AIM in Eq. 2.1 is given
by the Kondo or s-d model [7, 8], responsible for the low-energy Kondo-peak
in the impurity spectral function. On the other hand, the high energy charge

5



fluctuations of the AIM with an energy scale proportional to U are respon-
sible for the Hubbard bands. Being able to describe these two energy scales,
AIMs are an important tool in our understanding correlated materials.

In the following, we will mostly be interested in the retarded real-time
Green’s function of the impurity:

G(t) = −iΘ(t)〈{c0σ(t), c†0σ}〉 (2.2)

and its energy (frequency) representation,

G(ω) =

∫
G(t)eiωtdt. (2.3)

In the following we will discuss the spin symmetric case, so we drop the
spin index σ in the above definitions of the Green’s functions. Solving an
AIM means to calculate one of these Green’s function, which is a highly non-
trivial task in general. In the non-interacting limit (U = 0) the solution can
be found analytically and the Green’s function can be written as [7]:

G0(ω) =
1

ω − ε0 −∆(ω) + i0+
, (2.4)

where the bath hybridization function ∆(ω) describes the influence of the
bath on the impurity and is given by:

∆(ω) =
∑

k

|Vk|2
ω − εk + i0+

. (2.5)

Since ∆(ω) is a weighted sum of bare propagators (ω− εk + i0+)−1, it obeys
Kramers-Kronig relations and is therefore completely defined by the spectral
function − 1

π
=∆(ω) =

∑
k |Vk|2δ(ω − εk).

Unitary transformations that act non-trivially only on the bath degrees
of freedom do not change any measurable quantity on the impurity. This is
reflected in Eq. 2.4 by the fact that the impurity Green’s function depends
on a single function ∆(ω), not on the precise Hamiltonian of the bath. Such
unitary transformations relate different representations of the bath to each

6



Figure 1: Depiction of an AIM in star geometry (left) and in Wilson chain
geometry (right). In star geometry the Hamiltonian supports hopping terms
from the impurity to all bath sites, but not between bath sites. In the Wilson
chain the impurity couples only to the first bath site while the Hamiltonian
of the bath is essentially a tight binding model with site-dependent on-site
energies ε̃n and hopping amplitudes tn.

other. In Eq. 2.1 the bath is in the so called star geometry. A different
representation is the Wilson chain [19] with Hamiltonian:

H = Hloc + t0

(
c†0σc1σ + h.c.

)
+
∑

nσ

ε̃nnnσ + tn
(
c†nσcn+1σ + h.c.

)
. (2.6)

It can be obtained from the star geometry using a Lanczos-like tridiagonaliza-
tion [20]. The conceptual differences between star-geometry and the Wilson
chain are depicted in Fig. 1. TheWilson chain is essentially a one-dimensional
nearest-neighbor tight binding model with an interacting impurity. In star
geometry on the other hand, hoppings from the impurity to every bath site
exist, but no hoppings between bath sites. Imagining the star geometry on
a one-dimensional chain, the hopping terms would be long-range.

Usually the bath of an AIM is considered to represent a continuum of
states described by the bath spectral function. Solving an AIM with wave
function based numerical methods, restricts the maximal number of bath
sites to some value Nb. Therefore, we can only find an approximation to the
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true, continuous bath hybridization:

− 1

π
=∆Nb(ω) =

Nb∑

k=1

|Vk|2δ(ω − εk) ≈
Nb∑

k=1

|Vk|2
η

π
(
(ω − εk)2 + η2

) , (2.7)

where we used the representation of the δ-distribution as a Lorentz function
and introduced a finite broadening η to get rid of the non-analyticities. For
an approximate description of the continuum model, one needs to make sure
that in the limit of infinite number of bath sites the two spectral functions
must be identical, i.e.:

lim
Nb→∞

∫
|=∆(ω)−=∆Nb(ω)|2dω = 0. (2.8)

Finding bath parameters εk and Vk for given bath spectral function is called
discretization of the bath. The choice of discretization scheme defines the ob-
tainable resolution in energy. For example, the great success of the Numerical
Renormalization Group (NRG) [19, 20] is based on a logarithmic discretiza-
tion in energy. It uses only a few bath sites for high energies, but places more
and more sites the closer one gets to the Fermi energy. Intuitively, it is clear
that this method excels at describing the low-energy physics, but has a harder
time giving correct descriptions of the high-energy charge fluctuations. By
a subsequent transformation to Wilson chain geometry, Wilson was able to
implement a renormalization group approach adding one bath site at a time
and solving the long standing Kondo-problem [7, 8, 19]. Sacrificing resolu-
tion at very low energies allows us to use more equally spaced discretization
schemes. One of the the easiest discretizations is to split the ω-axis into Nb

equidistant intervals Il of size ∆ε for l ∈ {1 · · ·Nb} and calculate the bath
parameters from [20]:

|Vk|2 =

∫

Il

− 1

π
=∆(ω)

εk = min Il +
∆ε

2
. (2.9)

We note that the accuracy of the bath representation, given by ∆ε, defines a
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time scale after Fourier transform. Therefore, from ∆ε we can estimate the
time scale where time evolution will not show finite size effects (for example
during the calculation of the Green’s function). Apart from this way of
discretization, we also employ a different scheme, where we choose the bath
energy εk such that all hybridizations Vk are equal (see Sec. 6).

2.1 Multi-Orbital Models

In order to describe the physical situation of an open f- or d-shell, the simple
single-orbital model in Eq. 2.1 needs to be extended. Since in the multi-
orbital case the impurity also has orbital degrees of freedom, the hybridiza-
tion function, as well as all other Green’s functions become a matrix with
orbital indices2 ∆m,m′(ω) (m and m′ label the different orbitals). In the
most general case, one has to deal with non-diagonal entries that cannot
be diagonalized for all energies ω. In the present thesis we will not fo-
cus on non-diagonal hybridizations, but treat only hybridization functions
∆m,m′(ω) = ∆m(ω)δm,m′ . In this case the bath spectral function can be
represented by a separate bath for each impurity orbital and the different
orbitals couple only via the interaction part of the local Hamiltonian Hloc.
This construction keeps the overall form of the AIM in Eq. 2.1 intact. Thus,
the Hamiltonian of a multi-orbital 3 AIM is given by:

H = Hloc +
∑

mkσ

εmknmkσ + Vmk

(
c†m0σcmkσ + h.c.

)
(2.10)

Hloc =
∑

mσ

εm0nm0σ +Hint.

Hint contains the interactions that act only on the impurity degrees of free-
dom. Importantly, the Hamiltonian in Eq. 2.10 does not include hopping
terms between bath sites of different orbitals. Contrary to the single-orbital
model, where Un↑n↓ is the only possible interaction, the choice of interaction
Hamiltonian is much more involved in the multi-orbital case. Depending on

2Note that already in the single level case ∆(ω) is formally a diagonal matrix with spin
indices σ and σ′

3Such a model is also called multi-channel AIM.
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the symmetry of the impurity states different interaction Hamiltonians are
possible. Especially important for the present work is the so called Kanamori
Hamiltonian [21] discussed in the following.

Kanamori Hamiltonian and Atomic Multiplets

Since the impurity is supposed to describe localized d (or f) states, it is only
natural to respect their symmetry properties in the interaction Hamiltonian
as a first approximation. For a full d-shell this would correspond to the Slater
Hamiltonian [22]. The symmetry of the host material often breaks the full
rotational atomic symmetry, leading to different interaction Hamiltonians.
For example, the crystal field of the octahedral oxygen environment in cubic
transition metal oxides splits the otherwise 5-fold degenerate transition metal
d-orbitals into two high energy eg orbitals and three t2g orbitals at lower
energy. For the t2g subspace, the most general interaction respecting the
rotational symmetry is the so called Kanamori Hamiltonian [21, 23]:

Hint = U
∑

m

nm0↑nm0↓ + U ′
∑

m′>m,σ

nm0σnm′0σ̄ + (U ′ − J)
∑

m′>m,σ

nm0σnm′0σ

︸ ︷︷ ︸
HDD

(2.11)

+
∑

m′>m

(
J
(
c†m0↑cm0↓cm′0↑c

†
m′0↓ + h.c.

)
− J

(
c†m0↑c

†
m0↓cm′0↑cm′0↓ + h.c.

))

︸ ︷︷ ︸
HSF-PH
m,m′

.

The parameters U , U ′ and J are Coulomb integrals of the screened inter-
action [23]. Throughout this thesis we use U ′ = U − 2J , needed for rota-
tional symmetry. The first term in Eq. 2.11 is the energy cost of having two
electrons in the same orbital with opposite spin, i.e.: a double occupation.
Compared to the other density-density terms it has the highest magnitude.
The second term (intermediate magnitude) is the interaction between two
electrons in different orbitals with opposite spin. The third term (lowest
magnitude) gives the cost of having electrons in different orbitals with the
same spin. When filling the orbitals it is hence energetically favorable to first
add the electrons in different orbitals with the same spin, reflecting Hund’s
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Table 1: Eigenenergies (atomic multiplet structure) and degeneracy of
the first three sectors of particle number N of the Kanamori Hamiltonian
Eq. 2.11.

Particle Number N Eigenenergies Degeneracy
0 0 1
1 0 6
2 U − 3J 9
2 U − J 5
2 U + 2J 1
3 3U − 9J 4
3 3U − 6J 10
3 3U + 4J 6

rule. The terms in the second line of Eq. 2.11 are the so called spin-flip and
pair-hopping terms. The former exchanges two particles in different orbitals
if their spins are anti-parallel, while the latter can be interpreted as a hopping
of a double occupation from one orbital to another.

The spectrum of the Kanamori Hamiltonian for the first three sectors of
total particle numberN is shown in Tab. 1. We find that most particle sectors
have more than one non-degenerate eigenenergy. Single particle excitations
add a particle to the ground state which is located in one sector of particle
number. The ground state determines which of the atomic excitations are
reproduce by these single-particle excitations. For example, consider the
ground state to be the paramagnetic combination of all 6 degenerate states
in the N = 1 particle sector:

|GS〉 =
1√
6

(|↑, 0, 0〉+ |↓, 0, 0〉+ |0, ↑, 0〉+ · · · ) . (2.12)

Then we expect the single-particle excitation (of this atomic problem) to
show all 3 multiplets of the N = 2 particle sector:

c†1↑ |GS〉 =
1√
6

(|↑↓, 0, 0〉+ |↑, ↑, 0〉+ |↑, ↓, 0〉 · · · ) . (2.13)

For the Kanamori Hamiltonian, the first two states above already give all
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three possible excitations. The double occupation is part of two states with
different excitation energies and the second state in 2.13 is part of the re-
maining one.

If, on the other hand, the ground state is in the N = 3 particle sector it
is given by (Hund’s rule):

|GS〉 =
1√
2

(|↑, ↑, ↑〉+ |↓, ↓, ↓〉) . (2.14)

Removing a particle4 leads to:

c1,↑ |GS〉 =
1√
2
|0, ↑, ↑〉 , (2.15)

which is an eigenstate of the Kanamori Hamiltonian. Both, the pair-hopping
(no double occupations) and the spin-flip term, trivially annihilate this state.
Therefore, in this case, we expect only a single excitation energy.

Hence, depending on the GS, multiplet structures can be present in
single-particle excitations. From a theoretical viewpoint, these considerations
are reflected in the spectral function of the single-particle Green’s function
(Eq. 2.3):

A(ω) = − 1

π
=G(ω). (2.16)

It shows a delta-peak at each reachable excitation energy relative to the
ground state. When using the Kanamori Hamiltonian as interaction term
of a multi-orbital AIM, it would be very surprising if none of these atomic
charge fluctuations survives the coupling to the bath. In other words, we
expect that the impurity Green’s function of a multi-orbital AIM should
show signs of the atomic excitations, similar to the one band case, where
the atomic excitations are the lower- and upper Hubbard band [24]. Yet, so
far, none of the existing impurity solvers has been capable of resolving such
multiplet structures.

4Adding one would be equivalent regarding the number of excitations.

12



2.2 Impurity Solvers

The importance of impurity models, especially for DMFT (see next section)
led to the development or adaptation of many numerical methods to solve
impurity problems. A non-exhaustive introduction to the most important
methods is given below.

Exact Diagonalization (ED) [25–27] is a zero-temperature method and
provides the Green’s function directly on the real frequency axis. Its major
weakness is the limited system size (number of bath sites) it can deal with,
due to the exponential growth of the Hilbert space. This disadvantage is
especially severe for multi-orbital models, since only a very small number of
bath sites per orbital can be employed. Even for a single orbital, ED shows
finite size effects in the impurity spectral function (see Sec. 5).

Also ideas originating from quantum chemistry are used to solve impu-
rity models. Configuration Interaction (CI) based methods use an expansion
of the ground state in excitations around one or more reference determi-
nants [28–30]. Although using ED techniques, CI solvers focus only on a
restricted part of the full Hilbert space. Excitations from one (or more) ref-
erence determinants build up this restricted subspace. CI-methods provide
real frequency spectra and can be employed for a large number of orbitals
(so far up to eight using 2 bath sites per orbital in Ref. [31]). For a single
orbital, a large number of bath sites (O(100)) can be employed [28]. Still, for
multi-orbital calculations, the number of bath sites has so far been limited
(O(20)).

The already mentioned Numerical Renormalization Group (NRG) [19,
20] does not suffer from a limited number of bath sites. On the contrary, it is
built around adding bath sites with ever decreasing energy scale. NRG allows
to obtain the impurity spectrum on the real frequency axis with exceptional
resolution around the Fermi energy due to the logarithmic discretization of
the bath. That way the low-energy spin-fluctuations are included with high
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accuracy. At the same time, this is also a weakness of NRG, as the logarith-
mic discretization only allows for poor resolution of the high-energy charge
fluctuations. NRG can be applied to multi-orbital problems, see Refs. [32–
34] for three band calculations and Ref. [35] for a five-band calculation by
exploiting non-abelian symmetries. Finally let us note, that NRG can be
formulated with Matrix Product States [36].

Quantum Monte Carlo (QMC) [37], and especially the Continuous Time
(CTQMC) variants [14, 15] are nowadays considered to be the state of the
art methods for solving multi-orbital impurity problems. CTQMC relies on
a sampling from the path-integral formulation of the partition function and
is therefore a finite temperature method. It usually calculates the Greens
function on the imaginary frequency axis, where the method is statistically
exact. However, to obtain real-frequency spectra, one is forced to perform
an ill-posed analytic continuation. In Sec. 7 we show that such an analytic
continuation is not able to resolve high energy features in the impurity spec-
trum (see Fig. 28), when the Greens function is subject to statistical noise.
For more complicated Hamiltonians (spin-orbit coupling, more complicated
interactions, non-diagonal hybridizations), CTQMC suffers from a fermionic
sign problem disallowing access to arbitrary low temperatures. With re-
spect to the number of orbitals, CTQMC has been successfully used for a
full f-shell [38, 39], i.e.: a seven-orbital calculation. Although real-frequency
approaches for CTQMC exist [40], they have so far only been employed for
a single-orbital model. Nevertheless, real-time CTQMC is promising new
development.

The solution of impurity models with MPS-based algorithms has a long
history [24, 41–61] and a large number of methods capable of calculating the
spectral function exist. For selected publications that demonstrate the capa-
bilities of MPS based methods see [24, 46, 48, 49]. While finite temperature
formulations of DMRG 5 exist [17], MPS-based methods usually calculate

5Here we use DMRG in a much broader context meaning all sorts of algorithms that
use MPS.
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the impurity Green’s function at zero temperature. Compared to CTQMC,
the biggest advantages of DMRG is that it does not suffer from a fermionic
sign problem and the impurity spectrum can be calculated directly at the
real-frequency axis. Another major advantage of DMRG is that it allows
to use a large number of bath sites (O(100)), as well as to employ any dis-
cretization of the bath. The latter is the most important difference to NRG,
in that MPS allows to resolve charge fluctuations in the spectrum with much
higher precision. For example, sharp high-energy excitations in the Hubbard
band were found [24] and later interpreted as originating from effective low-
energy doublon-holon interactions [62]. The biggest challenge for MPS based
algorithms is the small number of orbitals it can deal with. To describe the
low-lying t2g bands of transition metal oxides in cubic symmetry, a three
orbital solver would be needed. Using real-time evolution, the solution of
an AIM within DMFT was achieved for a two orbital model [24]. Unfortu-
nately, three orbital models proved to be very difficult using this method,
because the matrix dimension needed grows very fast with the number of
orbitals. Although by mixing real- and imaginary time evolution it was pos-
sible to effectively solve a six-orbital model, this came at the cost of a rather
small bath [47]. Overall, MPS based algorithms show great potential also
for multi-orbital calculations. Therefore we decided to base our approach on
MPS.

Before we introduce MPS, we stay a little longer with impurity models
and show how they are used in the context of DMFT in the next section.
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3 Dynamical Mean Field Theory

Metzner and Vollhardt demonstrated that fermions in the limit of infinite-
dimensional systems possess non-trivial correlations and that diagrammatic
calculations actually become easier than in the finite dimensional case [9].
Based on this publication, it was shown that in the same limit, lattice mod-
els with on-site interactions can be mapped exactly onto AIMs [10] (Eq. 2.1).
Since this mapping is far from trivial, the solution has to be found self con-
sistently. Finding such a self consistent mapping between a lattice model
and an AIM is essentially Dynamical Mean Field Theory (DMFT) [11, 63].
For the derivation of the DMFT self-consistency equations and for details
about DMFT itself, we refer to one of the several extensive reviews on this
topic [11, 13, 63].

In the present thesis we will explain the steps necessary to perform a
DMFT calculation for the single-orbital Hubbard model:

H = −t
∑

<ij>σ

(c†iσcjσ + h.c.) + U
∑

i

ni↑ni↓ + ε0
∑

iσ

niσ. (3.1)

The first term in Eq. 3.1 is the kinetic energy, described by a nearest-neighbor
hopping process with strength t. The second term, an on-site interaction
penalizing double occupations. The third term, is just a chemical potential
determining the total occupation number. In passing we note that for ε0 =

−U
2
the Hubbard model is particle-hole symmetric (only for nearest-neighbor

hoppings). To derive the DMFT self-consistency equations, we start with the
statement that in finite dimensional systems DMFT is an approximation on
the level of the self energy:

Σ(k, ω) = G0(k, ω)−1 −G(k, ω)−1, (3.2)

with G0(k, ω) = 1
ω−(εk−ε0)+i0+ . The dispersion εk is obtained from diagonal-

ization of the kinetic energy of the lattice Hamiltonian (Eq. 3.1) by a Fourier
transform. As stated in Eq. 3.2, the self energy is a function of momentum
k (spatial correlations) and energy ω (temporal correlations). The DMFT
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approximation now is to neglect spatial correlations, i.e.: the k-dependence
of the self energy:

Σ(k, ω) ≈ Σ(ω). (3.3)

Using the k-independent self energy, we can calculate the local Green’s func-
tion Gloc(ω) = Gii (inverting the Fourier transform from real-space to k-
space):

Gloc(ω) =
∑

k

G(k, ω) =
∑

k

1

ω − (εk − ε0)− Σ(ω) + i0+
. (3.4)

Since the self energy is k-independent, it is local in real-space and we obtain
a local Green’s function with removed local interactions by:

G0(ω)−1 = Gloc(ω)−1 + Σ(ω). (3.5)

In literature, G0(ω) is called quantum Weiss effective field, which is the dy-
namical analog of the Weiss field in standard mean-field theory [11]. It is
important not to confuse G0(ω) with the local non-interacting lattice Green’s
function. On the contrary, G0(ω) is the combined effect of the environment
of site i, obtained from the interacting lattice model by only taking local cor-
relations into account, i.e.:, from the frequency-dependent self energy Σ(ω)

(Eq. 3.5). In other words, the influence of all other sites onto site i is en-
coded in the Weiss field, a single frequency-dependent function. Hence, for
site i the precise form of the Hamiltonian describing all other sites becomes
unimportant, as long as its effect on site i is given by G0(ω). Therefore, we
can choose an effective model that couples to site i, as long as it gives the
correct Weiss field G0(ω). An AIM (Eq. 2.1) is especially suited for this task,
since we can use the bath parameters εl and Vl to represent the Weiss field 6.

We identify the Green’s function of a non-interacting impurity model
(Eq. 2.4) with the Weiss field, and calculate the bath spectral function ∆(ω):

∆(ω) = ω − ε0 − G0(ω)−1. (3.6)
6In this section, we label the bath indices with l instead of k to avoid confusion with

the lattice momentum k
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This then defines the bath parameters (Eq. 2.9) and with it the impurity
model.

The major difficulty in this mapping is that in order to calculate the
Weiss field G0(ω), we would need to know the self energy. Since this is of
course not the case, one uses a self-consistent approach in practice:

1. Start with a self energy Σlatt(ω) = 0 or any other valid guess.

2. For given Σlatt(ω), determine the chemical potential of the lattice model
ε0 to obtain the correct filling (for example from Gloc(ω) in Eq. 3.4) 7.

3. Calculate Gloc(ω) using Eq. 3.4 and obtain the bath spectral function
∆(ω) from Eqs. 3.5 and 3.6.

4. Obtain bath parameters, for example from Eq. 2.9 (only necessary for
Hamiltonian based solvers).

5. Calculate the impurity self energy Σimp(ω) with an impurity solver:

Σimp(ω) =

(
Gimp

0 (ω)

)−1

−
(
Gimp(ω)

)−1

with Gimp
0 (ω) and Gimp

0 (ω)

defined in Eq. 2.4 and Eq. 2.3 respectively.

6. Σimp(ω) is a new guess for the lattice self energy Σlatt(ω) = Σimp(ω).
Iterate this procedure by going back to step (2) until convergence.

Finally, we note that DMFT is not only exact in infinite-dimensional systems,
but has two more exact limits. First: DMFT is trivially exact in the non-
interacting limit (U = 0), as the self energy is zero and therefore definitely
k-independent. Second: DMFT becomes exact for t = 0. In this case, all
sites are independent. Therefore, the self energy is local in real-space and
again k-independent after Fourier transform.

7For a one-orbital model there is no distinction between chemical potential and on-site
energy. For multi-orbital models one needs to keep them separated by replacing ε0 → ε0−µ,
since the on-site energies can be orbital-dependent, but the chemical potential cannot.
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3.1 Density-Functional Theory + DMFT

Density-Functional Theory (DFT) gives excellent descriptions of the elec-
tronic structure of many classes of real materials [64–66]. It describes the
spectrum of the Hamiltonian with bands, labeled by the single-particle Bloch-
momentum. However, for strongly-correlated materials, DFT can fail dras-
tically, e.g., by wrongly predicting a material to be metallic, while in fact it
is insulating. DMFT on the other hand is capable of treating such strongly-
correlated systems with local interactions in a non-perturbative way.

The combination of these methods is therefore one of the most successfully
employed schemes to describe strongly-correlated materials [11–13]. In the
present thesis we will not discuss the details on how to combine DFT with
DMFT, but only mention the most important aspects.

The idea of DFT+DMFT is to use the low-energy bands (close to the
Fermi energy) of the DFT calculation to construct the kinetic-energy part
of a Hubbard model. Depending on the number of bands studied, this will
be single- or a multi-orbital (multi-channel) Hubbard model. In the present
thesis we employ projective Wannier functions [67, 68] to construct such
localized orbitals.

The interaction parameters of this Hubbard model (U and J in our case,
see Eq. 2.11) can be estimated, with the constrained Random-Phase Ap-
proximation (cRPA) [69–72] or the constrained Local-Density Approximation
(cLDA) [73]. Here, we do not use these methods, but either estimate values
for the interaction parameters by comparing calculated and experimentally
measured spectra, or use values from the literature.

DFT already incorporates some of the electronic correlations, including
the Hartree and exchange correlations. Since DMFT would account for them
a second time, a so called Double-Counting (DC) correction ΣDC is necessary.
It acts as a static shift of the self energy, by replacing Σ(ω) → Σ(ω) − ΣDC

in the DMFT self-consistency equations. Exact expressions for the DC are
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not known, but several approximations exist [74–78]. In the present thesis
we use the so called Fully-Localized-Limit (FLL) DC (Eq. (45) in Ref. [78])
and adjust it if it gives physically incorrect spectra.
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4 Matrix Product States and Density Matrix

Renormalization Group

The Density Matrix Renormalization Group (DMRG) [16], originally intro-
duced as a variant of the NRG, quickly became one of the most powerful
methods to treat one dimensional quantum systems. Soon, the connection of
DMRG to MPS was realized [79, 80], i.e.: that DMRG can be interpreted as
a variational method on the space of MPS. Nowadays, this connection is so
strong that it seems difficult to think of DMRG without MPS. For this rea-
son, we will not introduce DMRG as done by White [16], but start with MPS
and use the variational principle to search for ground states. This approach
to some extent limits the understanding of the basic ideas behind DMRG for
which we refer to the standard literature [16, 17, 81]. This section largely
follows the thorough review by Schollwöck [17].

4.1 Singular Value Decomposition

In the following sections we will make extensive use of Singular Value De-
compositions (SVD). For any matrix M with dimension (NA × NB) there
exists a decomposition as:

M = USV †, (4.1)

with the following properties:

• U has dimensions (NA × N), with N = min(NA, NB) and is what we
call left-normalized i.e.: U †U = 1

• V † has dimensions (N × NB) and is right-normalized i.e.: V †V =

(V †)(V †)† = 1

• S is a diagonal matrix of dimension (N ×N) with non-negative entries
S1, S2 · · ·SN called singular values.

We choose the singular values in descending order S1 ≥ S2 ≥ S3 · · · ≥ SN .
The number of non-zero singular values is called the rank of matrix M .

21



s1 s2 s6

Figure 2: Graphical representation of an MPS. Every circle corresponds to
a tensor Asi and each line to an index of this tensor. In this picture, the
physical indices are the vertical lines, while the horizontal lines correspond
to the bond indices. Connected lines mean that the corresponding index is
summed over. Fixing all the physical indices si for each site results in a
tensor of rank zero with the value of the coefficient cs1,··· ,sN .

For our purpose, one of the most important properties of the SVD is that
it allows to approximate a matrix M of rank m with a different matrix M̃
of smaller rank m̃ < m. With the Frobenius norm

(
||M ||F =

∑
ij |Mij|2

)
as

a measure of distance, one finds that the optimal solution to this problem is
given by:

M̃ = US̃V † , with S̃ = diag(S1, S2, · · · , Sm̃, 0, · · · , 0). (4.2)

I.e.: the best low-rank approximation can be found by taking only the m̃
largest singular values, but keeping U and V † unchanged [82].

The computational complexity of a SVD scales as O(N2
ANB) for NA <

NB. For a square matrix, this gives a O(N3) scaling that will be the bottle-
neck of the algorithms presented below.

4.2 MPS Construction

Consider a (one dimensional) lattice consisting of N sites with local state
space |si〉 of dimension di at site i. To keep the notation simple, we often
omit subscripts in site indices and use di = d, but keep in mind that the local
state space can be site-dependent. Any quantum state |ψ〉 can of course be
expanded in this local basis:

|ψ〉 =
∑

{si}
c(s1···sN ) |s1 · · · sN〉 . (4.3)
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In basic quantum mechanics one is taught to view the coefficient c(s1···sN ) as
an entry in a vector (rank one tensor). Hence, we put brackets around the
indices, indicating that they are actually grouped into a single vector-index.
A much more natural perspective is to think of it as a rank N tensor with
d entries for each tensor index. We denote this by omitting the brackets:
cs1···sN . By regrouping indices, we can arrive at different representations of
this tensor. For example, interpreting s1 as the first group of indices and
s2 · · · sN as the second, we can rewrite it as a highly asymmetric matrix
c(s1),(s2···sN ). A SVD of this matrix gives:

c(s1),(s2···sN ) =
∑

a1

Us1,a1 Sa1,a1(V †)a1,s2···sN︸ ︷︷ ︸
ca1,s2···sN

=
∑

a1

Us1,a1ca1,s2···sN . (4.4)

Us1,a1 , is a rank two tensor (matrix) where the first index s1 labels the actual
basis state, while the second index a1 is an artificial index resulting from the
SVD. In MPS-notation we treat them differently and write As1a1

= Us1,a1 , with
an upper index s1. In a second step we repeat the above procedure, but now
for the tensor ca1,s2···sN . We write it as a matrix c(a1,s2),(s3···sN ), perform a SVD
c(a1,s2),(s3···sN ) =

∑
a2
U(a1,s2),a2Sa2,a2(V †)a2,s3···sN and define U(a1,s2),a2 = As2a1,a2

,
yielding:

cs1,s2··· ,sN =
∑

a1,a2

As1a1
As2a1,a2

ca2,s3···sN . (4.5)

We continue to perform these steps until:

cs1,s2···sN =
∑

{ai}
As1a1

As2a1,a2
· · ·AsN−1

aN−2,aN−1
AsNaN−1

, and hence

|ψ〉 =
∑

{si},{ai}
As1a1

As2a1,a2
· · ·AsN−1

aN−2,aN−1
AsNaN−1

|s1, · · · , sN〉 . (4.6)

This factorization of the rank N tensor cs1,s2···sN into N tensors of rank three 8

is what we call an MPS. For fixed physical index si the rank three tensor
8Except the first and N -th tensor which are of rank two.
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Asiai−1,ai
becomes a matrix, hence the name Matrix Product State. We could

obtain the coefficient of the expansion in Eq. 4.3 from multiplication (con-
traction) of the matrices 9:

cs1,s2···sN = As1As2 · · ·AsN , (4.7)

with the first (last) matrix being actually a column (row) vector. We call the
basis-state index si physical index and the matrix -index ai bond index. This
construction demonstrates that any quantum mechanical state can be repre-
sented as an MPS. For the present manuscript it is often more useful to think
about the matrices Asi as being rank three tensors with indices Asi,ai−1,ai .
This allows to understand generalizations of MPS (tensor networks) much
easier. Hence, throughout this work we will mostly use the term tensor to
denote for Asi .

Being confronted with expressions like in Eq. 4.6 for the first time can
be a bit overwhelming, because of the large number of indices to keep track
of. Therefore, the so called graphical representation, shown in Fig. 2, is
usually used to represent tensor networks. It allows to quickly understand
the underlying tensor structure. Every circle (or other shape) in the graphical
representation corresponds to one of the tensors Asi and each line to an index
of this tensor. Connected lines denote a summation of the corresponding
index. For example, the horizontal connected lines in Fig. 2 give rise to the
matrix products of the MPS.

4.3 Canonical Forms

It turns out that an MPS-representation of a quantum state |ψ〉 is not
unique. The transformation [83] Asiai−1,ai

→∑
mA

si
ai−1,m

Gm,ai and A
si+1
ai,ai+1 →∑

l(G
−1)ai,lA

si+1

l,ai+1
leaves the state invariant for any invertible matrix G. Such

a transformation is shown in Fig. 3. This gauge degree of freedom enables us
to find different MPS representations for the same state |ψ〉, with useful prop-
erties. In the last section, during the construction of the MPS, we already

9In practice the coefficient is never evaluated. Calculations are performed exclusively
in MPS-form.
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G G−1

1

Figure 3: The representation of a quantum mechanical state as MPS is not
unique. For any invertible matrix G we can multiply G to the right of Asi
and G−1 to the left of Asi+1 on any bond i, leaving the state |ψ〉 invariant.

encountered one of these representations. The A-tensors of the MPS are
nothing but reshaped U -matrices from a SVD, with the property U †U = 1.
For the MPS-tensors this means:

∑

ai−1,si

(Asi†)ai,ai−1
Asiai−1,a′i

= δaia′i . (4.8)

This property is called left normalization, shown in Fig. 4 (a). If an MPS
consists exclusively of left-normalized tensors we call it left-canonical.

In the above construction of the MPS we started at the first site and
moved from the left to the right to obtain the A-tensors. Of course, we could
also have started at the last site and move to the left. In this case we use the
V †-matrices of the SVD as MPS tensors and denote them Bsi to discriminate
them from the left-normalized A-tensors:

|ψ〉 =
∑

{si},{ai}
Bs1
a1
Bs2
a1,a2
· · ·BsN−1

aN−2,aN−1
BsN
aN−1
|s1, · · · , sN〉 . (4.9)

We call the normalization property of the B-tensors right-normalized mean-
ing that: ∑

ai,si

Bsi
a′i−1,ai

(Bsi†)ai,ai−1
= δai−1a′i−1

. (4.10)

This property is shown in Fig. 4 (b). If every tensor in an MPS is right-
normalized we call it right-canonical MPS.

We can use SVDs not only to construct MPS, but also to change for
example from right to left normalization. Assume we have a right-normalized
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a.) b.)= =
A†

A

B†

B

Figure 4: a.)
∑

s (As)†As of a left-normalized tensors A yields the identity
matrix which we depict as an arc. b.) Similarly BB† gives the identity matrix
if B is right-normalized. It is convention to represent daggered tensors like
A† with the physical index pointing downwards.

MPS consisting only of B-tensors as in Eq. 4.9. To obtain an A-tensor we
take the first B-tensor and perform a SVD:

Bs1
a1
≡ B(s1),(a1) =

∑

ã1

Us1,ã1Sã1,ã1(V †)ã1,a1 . (4.11)

Then we multiply SV † onto Bs2 , removing the index a1 (since it is summed
over) and rename ã1 → a1 giving the following tensors:

Bs1
a1
Bs2
a1,a2

= As1ã1
M s2

ã1,a2
, with

M s2
ã1,a2

=
∑

a1

Sã1,ã1(V †)ã1,a1B
s2
a1,a2
→M s2

a1,a2

As1ã1
= Us1,ã1 → As1a1

. (4.12)

Above, we introduced M -tensors to signal that they have no normalization
property, since the multiplication of SV † onto Bs2 destroys its right normal-
ization. After this, we obtain another MPS, still describing the exact same
quantum mechanical state but neither in right nor left-canonical form:

|ψ〉 =
∑

{si},{ai}
As1a1

M s2
a1,a2

Bs3
a2,a3
· · ·BsN

aN−1
|s1, · · · , sN〉 . (4.13)

If we continue with these steps for all sites, we end up with a left-normalized
MPS consisting only of A-tensors.

For algorithms, left and right-canonical MPS are of minor importance.
What makes DMRG and all other methods so powerful is the intermediate
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form given by Eq. 4.13. Assume we performed the steps to go from right to
left-canonical form for all sites k < i. The MPS then is given by:

|ψ〉 =
∑

{si}
As1 · · ·Asi−1M siBsi+1 · · ·BsN |s1, · · · , sN〉 . (4.14)

This is called the mixed-canonical form with orthogonality center i, where
all tensors of sites k < i are A-tensors and all sites k > i are B-tensors.
From now on, we will often suppress bond indices to make the notation more
readable and only use them when needed. From the mixed-canonical form,
we can go one step further and use a SVD on the matrix M(si,ai−1),(ai)

M siBsi+1 = USV †Bsi+1 = AsiS V †Bsi+1︸ ︷︷ ︸
B̃si+1

|ψ〉 =
∑

{si}
As1 · · ·Asi−1AsiSB̃si+1 · · ·BsN |s1, · · · , sN〉 . (4.15)

It can be checked easily that B̃si+1 is again a right-normalized tensor. The
importance of this representation is that Eq. 4.15 is actually the Schmidt
decomposition of |ψ〉 with respect to the two subsystems A consisting of all
sites k ≤ i and B consisting of all other sites. To prove this statement, we
define the following states:

|ai〉A =
∑

s1···si
(As1As2 · · ·Asi)1,ai |s1 · · · si〉

|ai〉B =
∑

si+1···sN
(Bsi+1Bsi+2 · · ·BsN )ai,1 |si+1 · · · sN〉 . (4.16)

With the normalization properties of the A- and B-tensors it is easy to
show [17] that |ai〉A is a set of normalized, orthogonal vectors, i.e.: a basis
if it is complete10. The same is true for |ai〉B. Hence, we can directly write

10In all, but the simplest calculations the bond dimension is restricted, meaning that
{|ai〉A} is not complete. Still, it is often referred to as a basis.
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down the Schmidt composition from Eq. 4.15:

|ψ〉 =
∑

i

Si |ai〉A |ai〉B . (4.17)

This means that, the singular values Si of the center tensorM are the Schmidt
values of |ψ〉 in the bi-partition A - B.

4.4 Entanglement and MPS-Approximation

All of the above does not yet explain the success of MPS-based algorithms.
To represent a general state of the Hilbert space as MPS, we would need an
exponentially growing bond dimension. The largest tensor is then situated in
the middle of the chain and would have

(
d
L
2 × dL2

)
= dL entries, as large as

the whole Hilbert space. Hence, the two previous sections would be not more
than a nice linear algebra exercise if it were not for the so called area law
of the von Neumann entanglement entropy (also entanglement entropy) [84].
The entanglement entropy is defined as the Shannon entropy of the reduced
density matrix

ρA = trBρ = trB |ψ〉 〈ψ| =
∑

i

S2
i |ai〉 〈ai| . (4.18)

trB means the partial trace over subsystem B, i.e.: summation over a com-
plete set of eigenvectors of system B. Hence, we find for the entanglement
entropy SA:

SA := −tr (ρA log ρA) = −
∑

i

S2
i logS2

i . (4.19)

If we assume all Schmidt coefficients equal Si = S = m−1 (m is the number
of Schmidt values), we find for the entropy SA = logm. As it turns out, this
is the maximal value obtainable from m Schmidt values. Hence, to describe
states with a high von Neumann entropy, one needs at leastm ∼ eSA Schmidt
values. Since the number of Schmidt values is the bond dimension, MPS are
a very efficient representation of states with low entanglement even when
using only manageable tensor dimensions.
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Fortunately, the area law of entanglement states that the entropy of
ground states of gapped, quantum systems with short range interactions
is not extensive (proportional to the volume), but proportional to the sur-
face of the bipartition. For one-dimensional systems, this surface consists of
a single point, and the entropy is thus constant SA ∼ const. This means,
that ground states in 1d occupy only a tiny fraction of the full Hilbert space,
namely those states with non-extensive entanglement entropy. This is the
same subset that MPS are able to describe well, explaining the huge success
of MPS-based methods. In practice this means, that we approximate the
exact wave function |ψ〉 by an MPS with restricted bond dimension (typi-
cally O(100) to O(1000)). To obtain tensors of manageable size, we need
to truncate the MPS matrices. Truncation is defined as keeping only the m
largest eigenvalues of ρA. The error of this approximation is called truncated
weight:

tw = 1−
∑

i>m

S2
i . (4.20)

To avoid loss of normalization, the density matrix has to be re-normalized
after truncation, i.e.: ρA → 1

1−tw ρA.

To summarize, the area-law of entanglement allows us to represent ground
states of one-dimensional systems using MPS with a limited, i.e.: numeri-
cally manageable bond dimension. The normalization of the reduced density
matrix guarantees

∑
i S

2
i = 1, enabling us to discern which Schmidt coeffi-

cients are large and which are not and hence can be discarded (truncation).
It is important to note that if the MPS is not in mixed-canonical form (no
orthogonal vectors) truncation is NOT safe and can be numerically unstable.

This argument does not only hold for MPS. For general tensor networks,
safe truncation is possible as long as for each bond, some part of the system
can be defined as being strictly to the left and the other part strictly to its
right. This allows to calculate the Schmidt decomposition and to truncate
the tensor network safely. This insight strongly influences the tensor network
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s1 s6

s′1 s′6

Figure 5: We can represent operators as MPOs the same way we represent
states as MPS. The difference is that MPOs have two physical indices instead
of one, since operators always consist of bra and ket vectors.

that we propose in Sec. 6 to solve AIMs.

4.5 Matrix Product Operators (MPO)

In complete analogy to the construction of MPS we can start with the ex-
pansion of an operator in the same basis |s1 · · · sN〉 and write it as a Matrix
Product Operator (MPO):

H =
∑

{si},{s′i}
c(s1···sN ),(s′1···s′N ) |s1 · · · sN〉 〈s′1 · · · s′N |

=
∑

{si},{s′i}
W s1,s′1W s2,s′2 · · ·W sN ,s

′
N |s1 · · · sN〉 〈s′1 · · · s′N | . (4.21)

Contrary to MPS, the W -tensors of MPOs are in general rank four ten-
sors, with rank three tensors at the first and last site as shown in Fig. 5. We
see that the difference to an MPS is that an MPO has two physical indices
corresponding to the bra and ket vectors of the operator. For Hamiltoni-
ans with short range interactions it is not hard to find MPO representations
with small bond dimensions [17, 85]. Even for certain classes of long range
interactions this is possible, see for example [86] and Sec. 5.1 of the present
thesis.

MPOs allow us to treat states and operators on the same footing i.e.:
as a product of tensors. For example, the expectation value of the energy
(Eq. 4.22) can be depicted as in Fig. 6 11. Similarly, overlaps 〈φ|ψ〉 = 〈φ|1|ψ〉

11Without the 〈ψ|ψ〉 normalization in the denominator
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Figure 6: The true power of the graphical representation shows itself when
calculating expectation values like 〈ψ|H |ψ〉. At a glance we see which indices
we have to sum over (contract) and we also see whether the result is a scalar
(as in this case) or a different tensor (if it has open lines sticking out).

can be calculated as shown in Fig. 6 by imagining the operator to be the
identity or, easier, just omitting it. The concept of MPOs will simplify the
search for ground states which we discuss in the next section.

4.6 Density Matrix Renormalization Group (DMRG)

Thinking of MPS as a clever parametrization of one-dimensional ground
states, the basic idea behind DMRG seems almost natural. If we view the
tensor elements of the MPS as variational parameters we can minimize the
expectation value of the energy:

E = min
{Asi}

〈ψ|H |ψ〉
〈ψ|ψ〉 . (4.22)

Since the optimization of every tensor at once is a much too high-dimensional
problem, DMRG uses a different approach. In a single step of DMRG, all
but one tensors stay fixed. After the minimum with respect to this tensor
is found, we move to one of the neighboring tensors resulting in a right-left-
right sweep (assuming we start on the left). The tensor on site i minimizing
the energy can be found, from the extrema of a Lagrange function L with
Lagrange multiplier λ, ensuring normalization:

L = 〈ψ|H |ψ〉 − λ〈ψ|ψ〉
dL

dAsiai−1,ai

!
= 0. (4.23)
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L RW si,s
′
i

Figure 7: Graphical representation of the effective Hamiltonian Heff in
Eq. 4.24. It is a matrix given as a tensor product of 3 tensors L, R and
W si,s

′
i . Therefore, we can efficiently find the lowest eigenvector and eigen-

value using an iterative eigenvalue solver.

If we use the mixed-canonical form of the MPS with orthogonality center at
site i, this results in a standard eigenvalue problem [17]:

∑

s′i,a
′
i−1,a

′
i

Heff
(si,ai−1,ai),(s′i,a

′
i−1,a

′
i)
A(s′i,a

′
i−1,a

′
i)

= λA(si,ai−1,ai). (4.24)

Instead of writing detailed formulas for the effective Hamiltonian, we only
show its graphical representation in Fig. 7. It is a matrix with dimension
(dm2 × dm2) assuming left and right bond indices of the MPS both have
dimension m. Because Heff is a tensor product of three tensors L, R and
W , the full matrix never needs to be built. This allows for a solution with
an iterative eigenvalue solver that finds the lowest energy eigenstate (e.g.:
Lanczos). When the tensor Asi minimizing the energy is found, we move to
the next site i+ 1 or i− 1 depending on whether we perform a sweep to the
right or to the left. There, we again set the orthogonality center to this site,
calculate the effective Hamiltonian and obtain the eigenvector minimizing
the energy. Of course there are many more details on how one can do this
very efficiently that can be found in [17]. Nevertheless, for the purpose of
the present thesis, this very crude description of DMRG suffices.

We note that it is often better to optimize two neighboring tensors at site
i and i + 1 in a single step. This approach, called 2-site DMRG, allows to
dynamically optimize the bond dimension and usually does not get stuck in
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=

Figure 8: The application of an MPO with bond dimension w to an MPS
with bond dimension m results in an MPS with bond dimension mw. In
order to avoid unbounded growth of bond dimension the MPS has to be
truncated.

local minima as often. Finally, we want to stress that as in the last section,
DMRG works as long as we can define some part of the tensor network
being strictly to the left and the rest being to the right of the site currently
optimized.

4.7 Time Evolution

MPS not only allow us to search for ground states, but there also exist
powerful algorithms to perform time evolution in real- or imaginary time.
Since time evolved states are no ground states anymore, there is no guarantee
that we can represent them well using MPS. In practice this shows itself in
that we can time evolve only up to some maximal time, at which the bond
dimension needed grows too large to continue. In the worst case scenario
for closed quantum systems, the entropy grows linearly in time, producing
an exponential growth of the bond dimension. Nevertheless, time evolution
based on MPS can be a powerful tool, as long as one is not interested in
the very long time behavior, or if the entanglement saturates or grows very
slowly in time. In open quantum systems, MPS based time evolution can
even access the steady state [87, 88]. In the present thesis, we use a mix of
two algorithms: the first we call MPO-based and the second is the so called
time-dependent DMRG (tDMRG) [17, 89].

MPO-based time evolution

Assume that we found an MPO (see Fig. 5) representation of the time evolu-
tion operator e−iH∆t for some small time step ∆t. Then we can simply apply
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the operator to the MPS over and over again.

|ψ(N∆t)〉 = (e−iH∆t)N |ψ(0)〉 (4.25)

The application of an MPO with bond dimension w to an MPS with bond
dimension m yields another MPS with bond dimension mw i.e.: the bond
dimensions multiply. This would lead to an unbounded growth of tensor
dimensions (see Fig. 8). The simplest possibility to prevent this is to trun-
cate the MPS using SVDs in a two sweep process. The MPO destroys any
normalization property of the MPS, which needs to be restored, before we
are allowed to truncate. Therefore, we first have to bring it into e.g.: right-
canonical form. This is done by starting at the last site and performing SVDs
for each tensor without truncation. In doing this we obtain an orthonormal
basis and are allowed to truncate in a left-to-right sweep.

In the present thesis we use a shortcut proposed in Ref. [90]. A good
approximation to an orthonormal basis can be found by also bringing the
MPO into right-canonical form. Then one can apply the MPO and truncate
in the same step. It should be mentioned that there are more elaborate
methods of applying MPOs. For our purpose this simple method suffices
though, since the MPOs we will be interested in do not act on the whole
lattice, but only on a few sites.

Time-Dependent DMRG

tDMRG is based on a Suzuki-Trotter [91] decomposition of the time evolution
operator e−iH∆t. Often the Hamiltonian consists of nearest-neighbor terms
H =

∑
i hi,i+1. Then we can write it as H =

∑
i:even hi,i+1 +

∑
i:odd hi,i+1 =

heven +hodd, decomposing it into a sum of operators starting at even and odd
bonds. All terms of each individual sum commute, but the sums itself do
not. Still, we can approximate the time evolution operator using a second
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a.) =

b.)
e−ih∆t

=

c.) SV D
= U S V †

Asi Asi+1

Figure 9: Application of a two-site gate acting on sites i and i+1 of an MPS.
a.) First the two tensors Asi and Asi+1 are combined into a 4-legged tensor
by summation over its common bond index.
b.) Apply the gate e−ih∆t onto this tensor by contraction over the two phys-
ical indices. The result is again a tensor of rank four.
c.) A SVD decomposes this rank four tensor back into two MPS-tensors. If
the MPS is in the mixed-canonical form, centered at site i or i + 1 we can
truncate safely at this point. Depending on whether the next gate is to the
left or to the right we multiply the S-matrix of the SVD onto the left or the
right MPS-tensor (the picture shows S added to the right tensor).

order decomposition:

e−iH∆t = e−iheven
∆t
2 e−ihodd∆te−iheven

∆t
2 +O(∆t3)

e−iheven
∆t
2 =

∏

i:even

e−ihi,i+1
∆t
2

e−ihodd∆t =
∏

i:odd

e−ihi,i+1∆t. (4.26)

Eq 4.26 consists of products of operators acting non-trivially only on two
neighboring sites. We will call such operators time evolution gates or just
gates. We proceed by applying these gates one at a time. The steps nec-
essary to apply a single gate are shown in Fig. 9. This scheme allows to
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dynamically increase (decrease if one is very fortunate) the bond dimension
during time evolution, ensuring that the truncation error does not grow out
of bounds. Finally we want to stress that tDMRG as well as the Suzuki-
Trotter decomposition are not restricted to nearest-neighbor Hamiltonians
only. The Trotter decomposition is used just to separate exponentials of
non-commuting operators. As we will see in the next section, the combina-
tion of a Suzuki-Trotter decomposition with tDMRG, can used to time evolve
certain kinds of long-range interactions as well.

4.8 Real-Time Green’s Functions

The combination of DMRG with time evolution algorithms allows us to cal-
culate Green’s functions (Eq. 2.2) in real time at zero temperature using
MPS. First, we split the propagator into the usual greater (G>) and lesser
Green’s function (G<)12:

G(t) = −iΘ(t)
(
〈c(t)c†〉+ 〈c†c(t)〉

)

= −iΘ(t)


〈ce−iHtc†〉eiE0t

︸ ︷︷ ︸
G>(t)

+ 〈c†eiHtc〉e−iE0t

︸ ︷︷ ︸
G<(t)


 , (4.27)

with E0 the ground state energy. To calculate G> we perform the following
steps:

• Calculate the ground state |ψ0〉 and its energy E0 with DMRG.

• Apply the creation operator c† |ψ0〉

• Time evolve this state |ψ(t)〉 = eiHtc† |ψ0〉.

• Calculate the overlap to obtain the Green’s function
G>(t) = 〈ψ0| ceiHtc† |ψ0〉 e−iE0t =

(
c† |ψ0〉

)† |ψ(t)〉 e−iE0t.

12We omit any indices (spin or site) for the creation/annihilation operators
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The same recipe works for G<, by swapping creation and annihilation opera-
tors and changing the sign of the time evolution. In practice one can improve
on this by splitting the time evolution evenly between the bra and the ket
vector [92]:

G>(t) =

(
e−iH

t
2 c† |ψ0〉

)†(
eiH

t
2 c† |ψ0〉

)
e−iE0t. (4.28)

The two separate time evolutions, both to t
2
, allow to reach longer times,

since the entanglement produced during time evolution is split between the
bra and ket vector.
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5 MPS Impurity Solver

As discussed in Sec. 2.2, there exist a large number of methods to solve impu-
rity problems using MPS-based techniques. Here, we will focus on real-time
evolution, since it allows to resolve sharp features in the spectral function [24].

First, let us discuss the single-orbital case. Before we start with algorith-
mic details, we have to choose a local basis, the order in which we arrange the
sites in the MPS, as well as the fermionic order. It turned out to be numeri-
cally favorable to separate the two spin species [24], since they only interact
at the impurity (see Eq. 2.1). Hence, we place the impurity in the middle
of the MPS, the spin-up degrees of freedom to its left and the spin-down
degrees of freedom to its right. This arrangement is depicted in Fig.10 and
we see that the lattice consists of a total of N = 2Nb + 2 sites. At this point
it is important to make a clear distinction between two types of geometry.
The first type is the representation of the bath of an AIM. The bath can
be represented either in the star- (Eq. 2.1), or chain geometry (Eq. 2.6), see
also Fig. 1. The second type is the geometry of the tensor network, in our
case the MPS which always has a linear (i.e.: also chain-like) arrangement of
tensors. Those two geometries are a priori independent of each other, but
one bath representation might be better suited for MPS than the other (see
below). The fermionic order we choose is the same order in which we arrange
the sites, i.e.: we represent any basis state in Fock space as:

(c†1↑)
n1↑ · · · (c†Nb↑)

nNb↑(c†0↑)
n0↑(c†0↓)

n0↑(c†Nb↓)
nNb↓ · · · (c†1↓)n1↓ |0〉 . (5.1)

MPS and Star Geometry

Traditionally, impurity solvers using MPS performed the calculation in the
chain geometry representation of the bath (Eq. 2.6). There are several reasons
for this. First, the construction of ever decreasing energy scales in NRG
depends on the chain geometry and hence, it was the first choice for impurity
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Figure 10: Arrangement of sites when using MPS for a AIM with 4 bath sites
(Nb = 4). a.) We choose to place the impurity (green) in the middle and the
spin-up (spin-down) bath degrees of freedom to its left (right). b.) Indices of
the AIM-Hamiltonian for this arrangement. The bath site with index k = 4
is closest to the impurity for each spin. The index decreases towards the left
(right) for spin up (down) respectively. Note that the impurity has index
k = 0. This picture might look similar to the picture of the chain geometry
in Fig. 1, but it is important to understand that we have not yet specified any
representation of the bath. In the chain geometry, every hopping term would
act on two neighboring sites in the MPS. In the star geometry on the other
hand, the hoppings would be long range, coupling the impurity to every bath
site.

solvers using the closely related DMRG. More importantly though, the star
geometry seems to be incompatible with the linear tensor geometry of an
MPS, because hopping terms from the impurity to all bath sites exist. At first
glance, it is not clear how to construct MPOs and especially how to perform
the time evolution in the star geometry. However, the chain geometry has
one disadvantage: At particle hole symmetry, its bath on-site energies ε̃n are
exactly zero. We therefore expect the ground state to be a complicated linear
combination of all the possibilities of distributing the particles on all sites.
This means that we anticipate to need rather large bond dimensions in the
MPS.

This is very different when we represent the bath in star geometry. Wolf et
al. [49] demonstrated that the star geometry can be a superior representation
than the chain geometry in terms of tensor size of the MPS. Their argument
is that on-site energies εk are direct excitations of the bath spectral function
− 1
π
=∆(ω) in Eq. 2.5. If we assume − 1

π
=∆(ω) to be non-zero only inside

an interval [−D,D], we will find some bath on-site energies εk close to −D
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and D, i.e.: with high and low energies. Most likely the ground state has
most contributions from occupied low-energy bath sites and unoccupied high-
energy bath sites. Therefore, these bath sites have small entanglement to
the rest of the lattice, which implies low bond dimensions when placed at
the borders of the MPS. In the present thesis, we hence focus on the star
geometry representation of the bath. Therefore, we order the bath sites
according to their on-site energy in ascending order and place the low-energy
sites at the edges of the MPS (i.e.: the sites with highest on-site energy are
placed close to the impurity). In the following section we will show how to
construct the MPO, which to the best knowledge of the author has not been
published before. Furthermore, we devise an efficient scheme how to perform
time evolution in the star geometry, first published in [1] - one of the main
publications of the author. Contrary to Wolf et al. [49], who used Krylov-
based time evolution, the approach presented here, is much closer to the well
established tDMRG [17].

5.1 Construction of the MPO in Star Geometry

MPOs (Eq. 4.21) are tensor networks of tensors with four indices [93] i.e.:
two physical indices and two bond-indices (Fig. 5). We usually think of
these tensors as a matrix (two indices) of local operators (two indices), see
for example Eq. 5.5. The matrix indices correspond to the bond indices, and
the operator indices are of course the physical indices. The first and the
last MPO-tensors are row and column vectors respectively. If we multiply
all vectors and matrices in the correct order, we obtain the Hamiltonian.
For the construction of MPOs, the first insight we need is that when writing
Hamiltonians we use in fact an abbreviation. The term c†2c3, for example, is
a shorthand for:

1⊗ c†2 ⊗ c3 ⊗ 1⊗ · · · ⊗ 1. (5.2)

Each Hamiltonian is a sum of such terms. Our goal is to find matrices that,
when multiplied, produce every one of them. To find the MPO of an AIM
with the bath in star geometry, we apply the following rules, starting at the
leftmost tensor:
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• Every site (except the first) has a matrix index coming from the left
given by the left bond index of the MPO in Fig. 5. Each entry of this
index has a string (possibly a sum of strings) of operators from all sites
to its left, corresponding to the first few terms in Eq. 5.2 (e.g.: 1⊗ c†2
if the current site is the third site).

• Find the operator strings, which will be needed separately at later sites
and give each of them a separate outgoing matrix index by adding the
corresponding local operators of the current site. This outgoing matrix
index corresponds to the right bond index of the MPO in Fig. 5

• If operator strings are not needed separately at later sites, e.g., when
only their sum is needed, combine these into a single outgoing index
by adding the corresponding local operators of the current site.

• Move on to the next site, at which the outgoing index of the current
site becomes the incoming index of the next.

So called finite state machines [85, 94] essentially formalize these steps. To
make this rather abstract recipe easier to understand let us try to construct
the MPO for the Hamiltonian of an AIM in star geometry. First, let us
repeat the Hamiltonian:

H =
∑

kσ

εknkσ +
∑

kσ

Vk

(
c†0σckσ + h.c.

)
+
∑

σ

ε0n0σ + Un0↑n0↓ (5.3)

We start at the first site, a bath site with spin-up. The Hamiltonian consists
of four operators for this site: the on-site term ε1n1↑, the identity 1 and the
hybridization terms V1c1↑ and V1c

†
1↑. Each of them is needed separately at

later sites. Since we have no incoming index from the left, the first MPO
tensor is given by:

W1 =
(
ε1n1↑ 1 V1c1↑ V1c

†
1↑

)
. (5.4)

The second tensor is a bit more interesting. The Hamiltonian has the exact
same four terms again, but we do not need them separated. To the right of
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both on-site energy terms ε1n1↑ and ε2n2↑, only identities appear. Therefore,
we can put them in the same outgoing index. The second incoming index is
the identity of site 1. At later sites we need the identity from site 1 multiplied
with the identity from site 2. The third incoming index is one of the long-
range hopping terms. At the impurity we do not need every term Viciσ

separately, just their sum to obtain the hybridization c†0σ (
∑

i Viciσ) + h.c..
Hence, it is not necessary to give each hopping term a separate MPO-index.
Instead, we can put the sum of all terms into a single index and the MPO
for the second site is then given by:

W2 =




1 0 0 0

ε2n2↑ 1 V2c
†
2↑ V2c

†
2↑

0 0 p 0

0 0 0 p




⇒ W1W2 =
(∑2

k=1 εknk↑ 1
∑2

k=1 Vkck↑
∑2

k=1 Vkc
†
k↑

)
. (5.5)

Above, we introduced the Fermi-operator p = (−1)n (n is the particle number
operator) taking care of the Fermi sign, that appears when applying the
operator to any basis state i.e.: from the Jordan Wigner transformation [95].
Similar to the identity operator we omit p-operators in results (for example
in the bottom tensor in Eq. 5.5) in the following, but write them explicitly
for all MPO tensors. We need these p-operators, since the actual operator
string of the long range hoppings for fermions in star geometry is given by:

(
k−1⊗

1

1

)
⊗ c†k↑ ⊗ p⊗ · · · ⊗ p

︸ ︷︷ ︸
Spin up bath

⊗c0↑ ⊗ 1⊗
(

Nb⊗

1

1

)

︸ ︷︷ ︸
Spin down bath

(5.6)

for a hopping from site k to the impurity.
After multiplication, we find that the tensor W1W2 has the same entries

asW1, just the on-site energy term, as well as the hopping terms are summed
over the first two sites. Therefore, we can repeat the matrix of W2 for all the
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following spin-up sites until we reach the first impurity site:

Wk =




1 0 0 0

εknk↑ 1 Vkc
†
k↑ Vkc

†
k↑

0 0 p 0

0 0 0 p




, for k ∈ {2, · · · , Nb}

⇒
Nb∏

k=1

Wk =
(∑Nb

k=1 εknk↑ 1
∑Nb

k=1 Vkck↑
∑Nb

k=1 Vkc
†
k↑

)
. (5.7)

Instead of continuing with the spin-up impurity, let us first construct the
MPO tensors for the spin-down bath. We start at the rightmost site and
move to the left, towards the impurity. Using similar arguments as above,
the MPO-tensors of the spin-down bath are given by:

WN =




ε1n1↓

1

V1c1↓

V1c
†
1↓




, with N = 2Nb + 2

WN−(k−1) =




1 εknk↓ 0 0

0 1 0 0

0 Vkc
†
k↓ p 0

0 Vkc
†
k↓ 0 p




, for k ∈ {2, · · · , Nb}

⇒
Nb∏

k=1

WN−(k−1) =




∑
k εknk↓

1∑
k Vkck↓∑
k Vkc

†
k↓



. (5.8)

This leaves us with the two impurity tensors. At this point this task is not
too difficult and we just state the result:
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WNb+1 =




0 1 0

1 ε0n0↑ n0↑

0 c†0↑ 0

0 c0↑ 0




WNb+2 =




1 ε0n0↓ c†0↓ c0↓

0 1 0 0

0 Un0↓ 0 0


 . (5.9)

Indeed, if we multiply all tensors we find that we retrieve the Hamiltonian of
the AIM in star geometry given by Eq. 2.1. With this MPO representation
we can find ground states using DMRG. Next, we discuss how to time evolve
in star geometry in order to be able to calculate Green’s functions.

5.2 Time Evolution in Star Geometry using Swap Gates

After finding the ground state of an AIM and application of creation (an-
nihilation) operator, we need to calculate the time evolution of this excited
state to obtain the Green’s function (Eq. 2.2 via Eq. 4.28). One possibility
is to use Krylov based algorithms as in Ref. [49] that only need the MPO
for time evolution. In the present thesis we employ a new approach which
is much closer to tDMRG and is therefore simpler in the sense that the only
approximation is to perform a Suzuki-Trotter decomposition.

Our first goal is to find a product of two-site gates that approximates
the time evolution operator e−iH∆t. To do so we define Hkσ = εknkσ +

Vk

(
c†kσc0,σ + h.c.

)
and first split off the local term Hloc, using a Suzuki-

Trotter decomposition:

e−iH∆t ≈ e−iHloc
∆t
2

(∏

σ

e−i
∑
kHkσ∆t

)
e−iHloc

∆t
2 . (5.10)

As the interaction in Hloc is the only term coupling the two spin species, the
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2 1 3

1 2 3

Figure 11: The application of a swap gate, depicted as two crossing arcs.
The application of a swap gate acting on sites 1 and 2 gives an MPS in which
the actual degrees of freedom of site 1 are located in the second MPS tensor
and vice versa. This implies that site 3 is now a neighbor of the degrees of
freedom of site 1, which then allows to apply a two-site gate acting only on
the degrees of freedom of site 1 and site 3.

remaining time evolution operator trivially splits into a product over spins
after this decomposition. Since the two impurity sites are already nearest-
neighbors in the MPS, the application of e−iHloc

∆t
2 is straight forward (see

Fig. 9). Next, we deal with the terms involving the bath e−i
∑
kHkσ∆t. By

repeated use of Suzuki-Trotter decompositions, we first split off HNbσ, then
H(Nb−1)σ etc. until we are left with the term H1σ:

e−i
∑
kHkσ∆t ≈

(
e−iHNbσ

∆t
2

)(
e−iH(Nb−1)σ

∆t
2

)
· · ·
(
e−iH1σ∆t

)
· · ·
(
e−iHNbσ

∆t
2

)

=

(
2∏

k=Nb

e−iHkσ
∆t
2

)
e−iH1σ∆t

(
Nb∏

k=2

e−iHkσ
∆t
2

)
(5.11)

While Eq. 5.11 is indeed a product of two-site gates, we only know how to
apply the first term e−iHNbσ

∆t
2 . All other gates couple the impurity to non

nearest-neighbor sites. To overcome this issue we use so called swap gates
(See Refs. [17, 90, 96, 97] and App. A of the present thesis). Their purpose is
to swap the position of two neighboring sites in the MPS. For example, after
the application of a swap gate acting on the first and the second site, the
degrees of freedom of the first site are now actually on the second tensor of
the MPS. Hence, the third site is a nearest-neighbor of the degrees of freedom
of the first site. This allows us to apply a gate acting only on the degrees of
freedom of site 1 and site 3. This process of swapping two sites is depicted
in Fig. 11.
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∆t
2

Combine Gates

∆t
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∆t
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∆t

∆t
2

∆t
2

Figure 12: Depiction of the time evolution given by Eq. 5.11 of the spin-down
bath in star geometry. The long range hoppings make the use of swap gates
necessary. Since we can combine every swap gate with a time evolution gate,
this comes with no additional computational cost. The green line visualizes
the position of the degrees of freedom of the impurity as it is moved towards
the end of the MPS and back again by the swap gates. All gates, except the
one at the end of the MPS, need to be applied with half the time step ∆t

2
.

It is important to note that when swapping the impurity outwards we apply
the swap gates after the time evolution gate. When swapping the impurity
back inwards we need to first swap, then time evolve. If we would do it the
other way around, we would need to take care of an additional sign stemming
from the ξ = −1 contributions in Eq. A.1.
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Swap gates allow us to perform the time evolution in star-geometry very
efficiently. We will explain the time evolution for the spin down bath. The
algorithm for the spin-up bath is equivalent. The process discussed below is
shown in Fig. 12 for a bath with Nb = 3 sites.

Eq. 5.11 tells us to first apply the term e−iHNbσ
∆t
2 . After this we usually

would perform a SVD as shown in Fig. 9, separating the tensor to retrieve an
MPS representation. Here, before we do this, we apply a swap gate, swapping
the impurity site with the bath site with index Nb, preparing us for the next
time evolution with the term e−iH(Nb−1)σ

∆t
2 . Now we perform the SVD and

obtain an MPS where the impurity and the bath site with index Nb − 1 are
nearest-neighbors. Next we apply the time evolution gate e−iH(Nb−1)σ

∆t
2 and

again prepare for the next time evolution by application of a swap gate before
the SVD. These steps are repeated, until we arrive at the bath site with index
1, which we time evolve as usual, but with full time step ∆t (see Eq. 5.11) .

At this point, the impurity degrees of freedom are located at the second
last site in the MPS. Since we performed a second order Suzuki-Trotter de-
composition, we need to re-apply all time evolution gates again. This gives
us the opportunity to swap the impurity back into the middle, which is neces-
sary anyways. Hence, we first apply a swap gate swapping the impurity one
site to the left, time evolve with e−iH(2)σ

∆t
2 and perform a SVD. We repeat

this process of swapping first and then applying time evolution gates until
every gate is dealt with and the impurity is again in the middle of the chain.
One of the advantages of this procedure is that we add every swap gate to
an actual time evolution gate requiring no additional SVDs.

Before we continue, let us discuss the errors due to the Suzuki-Trotter
decomposition. With respect to the time step ∆t, all errors are of order
(∆t)3, since we use a second order breakup. I.e.: terms in the third order
of the series expansion differ in the two expressions. More interesting is the
error due to the system size Nb, especially compared to the chain geometry.
There, we usually use a second order breakup to separate even and odd
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hopping terms of the Hamiltonian H = Heven +Hodd:

e−i∆tH ≈ e−i
∆t
2
Hevene−i∆tHodde−i

∆t
2
Heven . (5.12)

As we show in App. B, the error of the even-odd breakup scales as O(Nb),
while the breakup in Eq. 5.11 scales at most with O(N2

b ). Surprisingly we
find a different behavior in Fig. 13. There, we show the error of the greater
Green’s functionG>

exact−G>
DMRG for the star geometry and the chain geometry

for several bath sizes. We find that in all cases the star geometry is superior
by more than an order of magnitude. While the error in chain geometry
seems to grow linearly with the system size (as expected), in star geometry
it does not grow and stays at the surprisingly small value of about 7 · 10−7

for all bath sizes studied. In these calculations, we found that the maximal
bond dimension needed in star geometry (approximately 50) is only about a
third of the bond dimension needed for the chain geometry (approximately
150). This emphasizes the huge advantage of the star geometry, since for
the computation time this means a speed-up by a factor of 30, while giving
results more accurate by more than an order of magnitude.

In Fig. 14 we present the greater Green’s function G>(t) for a one-band
AIM for U = 0 and compare to the exact solution. We note that calculations
without interactions suffice to show that this algorithm gives correct results,
since the interaction part has been split-off at the beginning in Eq. 5.10,
making the time evolution of e−iHloc

∆t
2 algorithmically independent of the

terms connecting the bath and the impurity.

Time evolution in star geometry using swap gates was used in Ref. [3] to
benchmark an impurity solver based on Cluster Perturbation Theory (CPT)
and exact diagonalization. The contribution of the author of the present
thesis to this publication was to perform the MPS calculations and to give
support in writing the paper. In Fig. 15 we compare spectral functions
obtained from MPS in star geometry to the CPT solver. We find that the
MPS-based solver gives smooth spectra without any visible finite size effects,
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Figure 13: Difference of G>(t) between the exact solution (for U = 0) to
the DMRG result in star and chain geometry for several bath sizes. Top:
Nb = 29,Middle: Nb = 59 and Bottom: Nb = 109. The bath parameters were
obtained from a semi-circular bath spectral function − 1

π
=∆(ω) = 1

2π

√
1− ω2

using the linear discretization in energy (Eq. 2.9). Note that the exact results
differ by O(10−7), because the mapping between star and chain geometry
slightly changes the non-interacting Greens function. Therefore, we plot
the difference to the respective exact result. The truncated weight of these
calculations was 10−12 without restricting the bond dimensions. The errors
of the star geometry are surprisingly small with a maximal value of about
7 · 10−7 in all three calculations.
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Figure 14: Comparison of the greater Green’s function G>(t) of a one-band
AIM between an MPS calculation in star geometry and the exact solution for
U = 0. Bath parameters are taken from a semi circular bath density of states
− 1
π
=∆(ω) = 1

2π

√
1− ω2 (normalized to 0.25). The MPS calculation used

Nb = 63 bath sites with an equidistant discretization in energy (Eq. 2.9).
The spectral function of this Green’s function is shown in the top plot of
Fig. 15.
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since it is able to include a large number of bath sites (Nb = 63). The purpose
of this comparison is to show that even with advanced techniques, a small
bath leads to finite size effects in the form of sharp δ-peaks. Hence, a large
number of bath sites is necessary to represent the bath hybridization function
∆(ω) well enough to avoid such artifacts. In these calculations we used the
linear discretization in energy given by Eq. 2.9, allowing for high resolution
results at all energies i.e.: not only around the Fermi energy, but also in the
Hubbard bands.

5.3 MPS and Multi-Orbital AIMs

The procedure to solve impurity models with MPS as described above is in
principle not restricted to one-orbital models, but can be extended to the
multi-orbital case (Eq. 2.10). In order to place the sites in the MPS, i.e:,
a linear arrangement of tensors, one usually builds super-sites [24, 99]. For
the single-orbital model discussed above, the local state space for each site
is just two states, empty or occupied (|0〉 and |1〉). For an M -orbital model
one usually combines M sites (one for each orbital) to a single super-site
which then has a local state space of occupied and empty for each orbital,
thus dimension 2M . For example, the local state space for M = 2 would be
|0, 0〉, |0, 1〉, |1, 0〉 and |1, 1〉 on each site. Hence, we find that the local state
space increases exponentially with the number of orbitals. This exponential
growth could be cured by placing the sites one after the other, but this often
introduces problems in the convergence of DMRG.

Furthermore, we also expect the bond dimension of the MPS to grow
very fast with the number of orbitals: Consider a two orbital model with
degenerate orbitals (both orbitals have the same bath parameters and on-
site energies of the impurity). If these two orbitals do not interact, every
eigenstate of this system can be written as a tensor product of eigenstates of
each individual orbital:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 . (5.13)

For simplicity, we take |ψ1〉 = |ψ2〉 = |ψ〉 and assume that |ψ〉 can be rep-
resented as an MPS with bond dimension m. This means that its Schmidt
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Figure 15: Comparison of impurity spectra obtained with MPS in star ge-
ometry to the CPT solver published in [3]. The plot shows results for U = 0
(top), U = 1 (middle) and U = 2 (bottom), for a one band model with the
same semi-circular bath as in Fig. 14. The MPS calculation used Nb = 63
bath sites and the spectra were obtained by post processing G(t) using lin-
ear prediction [98]. The gray dashed-dotted line shows the pinning criteria,
stating that A(ω = 0) = 2

π
for any value of the interaction strength U .

We see that MPS gives very accurate results, even around the Fermi energy
ω = 0, where the long time behavior of the Green’s function determines the
spectrum. Furthermore, the large bath allows for smooth spectral functions
without any visible finite size effects, contrary to the CPT solver.
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decomposition on a relevant bond 13 is given by:

|ψ〉 =
m∑

i=1

Si |Li〉 ⊗ |Ri〉 , (5.14)

with left- and right bases |Li〉 and |Ri〉. Inserting |ψ〉 into Eq. 5.13, we obtain:

|ψ〉 =
m∑

i,j=1

SiSj (|Li〉 ⊗ |Lj〉)⊗ (|Ri〉 ⊗ |Rj〉) . (5.15)

This is exactly the Schmidt decomposition of the system using super-sites.
It consists of a left basis (|Li〉 ⊗ |Lj〉) and a right basis (|Ri〉 ⊗ |Rj〉), both
with dimension m2. Hence, if we want to represent this state as MPS with-
out loosing accuracy, we need a bond dimension of m2 = m#orbitals. The
same can be done for more than two orbitals and we find that if they are
non-interacting, the bond dimension grows exponentially with the number
of orbitals. In a sense, this growth is artificial, since for non-interacting or-
bitals, the best way to place the sites on the lattice would be to arrange
the two orbitals one after the other and achieve a representation with bond
dimension m. In other words, building the super-sites increases the bond
dimensions unnecessarily in some sense. The crucial point why the above
assumption of non-interacting orbitals is a good starting point for the dis-
cussion of interacting orbitals is that in a multi-orbital AIM (Eq. 2.10) the
different orbitals only interact via the impurity. The bath degrees of freedom
do not couple to each other directly. Electrons move from one bath site to
the other exclusively by first hopping onto the impurity. We note that even
non-diagonal hybridization functions ∆(ω)m,m′ can be represented as a bath
only coupled to impurity degrees of freedom, see Sec. 7. This special form
of the Hamiltonian of AIMs can make one doubt the efficiency of building
super-sites. To the best knowledge of the author, for MPS such super-sites
are necessary 14 when the orbitals are interacting, since otherwise the im-

13A bond at which the bond dimension m is needed, not at the beginning or end of the
MPS.

14For the bond dimension it does not matter whether we truly build super sites, or place
the sites one after the other, since we find equivalent Schmidt decompositions in both cases
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purity orbitals are far away from each other in the MPS and entanglement
between the impurity orbitals needs to be transported over the bath bond
indices. In the interacting case, we were not able derive similar results as
Eq. 5.13. Still, model calculations showed that the bond dimension increases
very quickly with increasing number of orbitals, pointing towards a similar
problem.

Nevertheless, Ganahl et al. demonstrated that for two orbital models the
super-sites approach allows to obtain high resolution results employing real
time evolution [24] with a large number of bath sites (O(100)). Adding a
third orbital, in order to describe the t2g subspace of real materials, seems
to be very difficult with this approach though. One possibility would be to
exploit non-abelian symmetries in the MPS formalism [35, 100]. Their imple-
mentation is rather involved, and for many real materials this symmetry is
not realized. Another possibility would be to sacrifice resolution by restrict-
ing the number of bath sites and mix real- and imaginary time evolution as
for example shown in Ref. [47]. None of these methods to deal with multi-
orbital models is completely satisfactory. We would like to find an approach
that allows us to use a large bath to represent the bath hybridization well
and, at the same time, benefit from the potentially high resolution by per-
forming real-time evolution. In this section we identified a possible problem
in the standard super-site approach, namely a strong (and maybe artificial),
increase in bond dimension with the number of orbitals. In the next section
we will try to solve this problem by proposing a tensor network in which we
explicitly try to not build these super-sites at all.

and hence, also need the same bond dimension.
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6 Fork Tensor-Product States

In the previous section we identified a possible cause of why multi-orbital
AIMs are very difficult to solve with MPS. The Hamiltonian of such an AIM,
given in Eq. 2.10, does not directly couple bath sites of different orbitals.
Conventional methods to solve them with MPS combine these bath sites to
a super-site and suffer therefore from a fast growth of bond dimension with
the number of orbitals. In this section we introduce a different approach
in which the basic idea is to keep the bath degrees of freedom separated as
much as possible. We propose a tensor network, whose geometry is a fork-like
structure, shown for a two-orbital model in Fig. 16. For every orbital-spin
combination we have a row of tensors. The leftmost tensor represents the
impurity, while all other tensors incorporate the bath degrees of freedom. The
rows are connected only at the impurity tensors, which makes the impurity
tensors in the middle of rank 4, i.e.: they have three bond indices and one
physical index. Written out, the tensor network in Fig. 16 represents states
|ψ〉 as:

|ψ〉 =
∑

{s}{i}{b}

(
Is1
i1,b1Nb

Bs2
b1Nb

,b1Nb−1
· · ·BsNb+1

b11

)
·
(
I
sNb+2

i1,i2,b2Nb
B
sNb+3

b2Nb
,b2Nb−1

· · ·Bs2(Nb+1)

b21

)

(
I
s2(Nb+1)+1

i2,i3,b3Nb
B
s2(Nb+1)+2

b3Nb
,b3Nb−1

· · ·Bs3(Nb+1)

b31

)

(
I
s3(Nb+1)+1

i3,b4Nb
B
s3(Nb+1)+2

b4Nb
,b4Nb−1

· · ·Bs4(Nb+1)

b41

)
|s1, s2 · · · s4(Nb+1)〉 . (6.1)

Above, we introduced different letters for impurity tensors (I) and bath
tensors (B). Similarly, we label indices connecting two impurity tensors by
a lower case im and bath indices by lower case bmj meaning that it is the
index coupling the bath site j to bath site j + 1 (impurity tensor if j = Nb)
for orbital m. Note that the rightmost tensor has bath index j = 1 and the
tensor coupling to the impurity has index j = Nb. Also note that the physi-
cal index in, e.g., B

s3(Nb+1)+2

b41,b
4
2

has a very long subscript 3(Nb + 1) + 2. In the
following we will often omit the subscript of the physical index for notational
simplicity. Similarly we will often omit the orbital index m of bmj and just

55



B ↓

B ↑

A ↓

A ↑

Impurity site Bath site

Figure 16: Graphical representation of an FTPS for a two-orbital AIM with
orbitals A and B. For the numbering of sites, see Eq. 6.1. In the FTPS we
try to avoid super-sites by separating the bath degrees of freedom. This is
achieved by representing the bath for each orbital-spin combination using a
chain of tensors similar to an MPS, but with an open link pointing towards
its impurity tensor. The different orbitals are coupled only at the impurity
tensors which introduces two rank four tensors (A ↓ and B ↑) in the middle.
This tensor network geometry resembles the geometry of the Hamiltonian of
an AIM, since also there the bath degrees of freedom for each orbital-spin
combination are only coupled to its impurity. To add another orbital C, we
would add two more bath chains (below orbital B). The impurity tensors
B ↓ and C ↑ would have three bond indices, while the impurity C ↓ would
have two.
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write bj or even only b, if it is distinctive. At this point, the reader should
be convinced that the graphical representation (Fig. 16) is much more con-
venient than Eq. 6.1, overloaded with indices. We call such a tensor network
Fork Tensor-Product State (FTPS). Similarly, we can define operators in
this tensor geometry which we call Fork Tensor-Product Operators (FTPO).
As before, the difference between FTPS and FTPO is that the latter has 2
physical indices corresponding the the bra- and ket-vector of the operator.
In the following, we call the MPS-like chains representing the bath tensors
the arms of the FTPS.

Before we continue, a word on related literature. A very similar tensor
network was proposed by Holzner et al. [50] who used it for an NRG calcula-
tion for a two-orbital model. Every impurity tensor with three bond-indices
can be interpreted as a Y-junction [101], where it has been shown how to
perform DMRG. FTPS is also a special case of so called Tree Tensor Net-
works (TTN) [102–105]. Except for the idea of FTPS, which was inspired by
the paper by Holzner et al. [50], all algorithms used for FTPS were devel-
oped independently by the author of the present thesis with AIMs in mind.
Nevertheless, many similar algorithms can be found in related literature, see
for example Ref. [104] for DMRG on a TTN or Ref. [102] for time evolution
algorithms.

6.1 Schmidt Decomposition and Mixed Canonical Form

In Sec. 4 we emphasized that the algorithms (DMRG, tDMRG etc.) working
on MPS can be employed as long as we can find a Schmidt decomposition
for each bipartition defined by cutting a bond index. Here, we will show
that for FTPS this is indeed possible. To find the Schmidt decomposition for
MPS, we introduced left- and right-normalized tensors and defined the mixed
canonical form that finally allowed us to obtain the Schmidt decomposition.
For FTPS, the only major difference is that some of the impurity tensors have
three bond indices. Hence, they also have three normalization properties
which we call left-, down-, and up- normalization. We define them for the
tensor Isim,im+1,b

and denote Īsim,im+1,b
for its complex conjugate:
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L

L

=a.)

D

D

b.) =

T

T

c.) =

Figure 17: Graphical representation of all three normalization properties of
impurity tensors. (a) left-normalized tensors L, (b) down-normalized tensors
D and (c) up-normalized tensors T . The bath index points towards the
bottom right, while the two impurity indices point top right and bottom left,
similarly to Fig. 16.

• left-normalization: summation over the two impurity indices im and
im+1, as well as the physical index s yields the identity with respect
to the bath index (b) i.e.:

∑
s,im,im+1

Isim,im+1,b
Īsim,im+1,b′ = δb,b′ . The

graphical representation of this property is shown in Fig. 17 (a). We
denote left-normalized tensors by L.

• down-normalization: summation over the impurity index pointing down-
wards (im+1), the bath index b as well as the physical index s yields
the identity with respect to im i.e.:

∑
s,im+1,b

Isim,im+1,b
Īsi′m,im+1,b

= δim,i′m .
The graphical representation of this property is shown in Fig. 17 (b).
We denote down-normalized tensors by D.

• up-normalization: summation over the impurity index pointing up-
wards (im), the bath index b as well as the physical index s yields the
identity with respect to im+1 i.e.:

∑
s,im,b

Isim,im+1,b
Īsim,i′m+1,b

= δim+1,i′m+1
.

The graphical representation of this property is shown in Fig. 17 (c).
We denote up-normalized tensors by T .

Note that a tensor can only be in one of these three normalizations at a
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time and that we can change between them using an SVD (see below). Also
note that since the first (last) impurity tensor only has one impurity link
it can only be down- (up-) and right-normalized. All tensors representing
the bath have at most two bond indices and can therefore only be left- or
right-normalized, similar to MPS tensors.

First, let us try to construct the mixed canonical form with the orthogo-
nality center on a bath tensor of some arm m and bath index k. The process
is depicted in Fig. 18 and involves three steps. We start from an FTPS with
no orthogonality properties at all, shown in Fig. 18 (a). First, we completely
right-normalize each arm m′ 6= m, starting at the rightmost bath tensor (of
rank two) and moving to the left, towards the impurity tensors. As with
MPS tensors, we reshape Bs

bm
′

i bm
′

i−1

into a matrix B(bm
′

i ),(bm
′

i−1s)
and perform an

SVD:
B(bi),(bi−1s) =

∑

b

U(bi),(b)Sb,b(V
†)(b),(bi−1s). (6.2)

We multiply the matrices US onto the tensor to the left of the current site
and keep V † as the new FTPS tensor of the bath site. The orthogonality
properties after these steps are shown in Fig. 18 (b). The right-normalization
of V † ensures that after the last bath tensor, we obtain an orthogonal basis
for each arm m′:

|um′bNb 〉 =
∑

{bi}{sm′}

(
Bs
bNb ,bNb−1

· · ·Bs
b1

)
|{sm′}〉

〈um′bN′
b

|um′bNb 〉 = δ(bN′
b
),(bNb ), (6.3)

where {sm′} is the set of all bath sites of armm′. The graphical representation
of |um′bNb 〉 for one arm is shown Fig. 19 (a).

Next, we up-normalize all impurity tensors for arms m′ < m starting at
m′ = 1. We achieve this by regrouping the physical index s, the bath index
b, as well as the impurity index from above im′−1 (if it exists) into a single
matrix index and the impurity index from below im′ into the other matrix
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a.)

center tensor M

R R R R

R R R R

R R R R

b.)

D R R R R

D R R R R

L

T R R R R

c.)

D R R R R

D R R R R

L L M R R

T R R R R

d.)

Figure 18: Construction of the mixed canonical form, starting from an FTPS
with no orthogonality properties at all (a). The center tensor will be located
at the second arm (m = 2) with bath index k = 3. First, we right-normalize
all bath tensors for all arms m′ 6= m, as shown in (b). Then, we down-
normalize all impurity tensors below m, up-normalize the impurity tensors
abovem and left-normalize the impurity tensor atm, as shown in (c). Finally,
we left-normalize all bath tensors with index i > k and right-normalize all
bath tensors i < k on arm m (see Eq. 6.1 for numbering convention). The
resulting state is shown in (d). A final SVD of center tensor M gives us the
Schmidt decomposition on one of the two bonds of M , depending on which
indices are the column- and row indices of the matrix. Since the singular
values are the Schmidt values, we can truncate safely.
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D R R R R

D R R R R

L

T R R R R

|vm
b 〉 =

∑
{s} b.)

R R R R|um′
bNb

〉 =
∑

{sm′} a.)

D R R R R

D R R R R

L L

T R R R R

|Lm
bk
〉 =

∑
{s} c.)

R R|Rm
bk−1

〉 =
∑

{s} d.)

Figure 19: Graphical representation of (a) |um′bNb 〉 of a single arm, (b) |vmb 〉,
(c) left basis of orthogonality center |Lbk〉 and (d) right basis of orthogonality
center |Rbk−1

〉 (d). Summations run over every physical index present in each
tensor network.
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index and perform an SVD:

Isim′−1,im′ ,b
= I(im′−1,b,s),(im′ ) =

∑

i

U(im′−1,b,s),(i)
Si,i
(
V †
)

(i),(im′ )
,

with
(
U †U

)
i,i′ =

∑

s,im′−1,b

Ū(i),(im′−1,b,s)
U(im′−1,b,s),(i)

= δi,i′ . (6.4)

The second line above is exactly the up-normalization property defined be-
fore. Hence, we keep U as the new impurity tensor and multiply SV † onto
the impurity below, where we repeat these steps until we arrive at impurity
m. Similarly, we down-normalize all impurity tensors m′ > m by using the
impurity index from above as one matrix index and all other indices as the
other matrix index i.e.: Isim′−1,im′ ,b

= I(im′ ,b,s),(im′−1). Then, we left-normalize
the impurity tensor of impurity m by reshaping Isim′−1,im′ ,b

= I(im′ ,im′−1s),(b)
,

subsequent SVD and multiplication of SV † onto the bath tensor of arm m

connected to this impurity tensor. The orthogonality properties after these
steps are shown in Fig. 18 (c). Again, we find an orthogonal basis, which
now describes all arms m′ 6= m and all impurity degrees of freedom:

|vmb 〉 =
∑

{b}6=bmNb ,{s}I ,{i}
T si1,b1 · · ·Lsim−1,im,bm

· · ·Ds
iNorb ,bNorb

⊗

m′ 6=m

(
|um′bNb 〉

)
|{s}I〉 ,

with 〈vmb′ |vmb 〉 = δb,b′ . (6.5)

Norb is the number of arms and {s}I are the impurity degrees of freedom.
Using the graphical representation, |vmb 〉 is shown Fig. 19 (b).

Finally, we only need to left-normalize all bath tensors on arm m with
index i > k and right-normalize all tensors for i < k. This gives us the mixed
canonical form with the center tensor at arm m and bath index k, shown in
Fig. 18 (d). This construction provides two orthogonal bases, one to the left
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and one to the right of the orthogonality center with tensor M :

|Lmbk〉 =
∑

bNb ···bk+1

LsbNb ,bNb−1
· · ·Lsbk+1,bk

|vmbNb 〉 ⊗ |{s}L〉

with 〈Lmb′k |L
m
bk
〉 = δb′k,bk .

|Rm
bk−1
〉 =

∑

bk−2···b1
Rs
bk−1,bk−2

· · ·Rs
b2,b1

Rs
b1
|{s}R〉

with 〈Rm
b′k−1
|Rm

b′k−1
〉 = δb′k−1,bk−1

.

|ψ〉 =
∑

bk,bk−1,s

M s
bk,bk−1

|Lmbk〉 |s〉 |R
m
bk−1
〉 (6.6)

|vmbNb 〉 is given in Eq. 6.5. |{s}L〉 are the bath degrees of freedom of arm m to
the left of site k and |{s}R〉 those to the right. The graphical representation
of the two bases is shown in Fig. 19 (c) and (d). From the mixed canonical
form in Eq. 6.6, we can easily determine the Schmidt decomposition for any
of the two bonds bk and bk−1 by performing a last SVD of the center tensor
M .

To obtain the mixed canonical form for an impurity tensor with index
m, we perform similar steps. First, we right-normalize all arms. Then, we
down-normalize all impurity tensors below and up-normalize all impurity
tensors above (starting from the top (bottom) respectively). Again, a last
SVD of center tensor M gives us the Schmidt decomposition. Depending
on how we arrange the indices of M s

im−1,im,b
when reshaping it as a matrix,

we obtain Schmidt decompositions separating different regions of the lattice.
For example, if we SVD M(im−1,im,s),(b), the separation is between all bath
sites of arm m and all other sites (every impurity site as well as every bath
m′ 6= m).

With this, we have shown how to find the Schmidt decomposition for
every FTPS bond. During time evolution or DMRG we will need to truncate
the tensor network at some point to prevent unbounded growth of bond
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dimension. The Schmidt decomposition allows us to perform this truncation
safely, since the Schmidt values correspond to the eigenvalues of the reduced
density matrix [17].

As a final remark, we note that the crucial property of our tensor network
which enables us to find the Schmidt decomposition is that its graph is loop-
free (i.e.: there is only one unique way to get from any point A to any point
B). Therefore, for each bond it is always possible to define some part of the
lattice to be strictly to the left and the other strictly to the right allowing us
to find the left- and right bases of the Schmidt decomposition.

6.2 DMRG

The approach of DMRG for FTPS is the same that we used for MPS: DMRG
is a variational method on the space of FTPS. We view the tensor entries as
variational parameters, and minimize with respect to one (two) tensor(s) at
a time. For the single-site DMRG this results in (see Eq. 4.24):

L = 〈ψ|H |ψ〉 − λ〈ψ|ψ〉

dL
dBs

bi−1,bi

!
= 0,

=⇒
∑

s′,b′i−1,b
′
i

Heff
(s,bi−1,bi),(s′,b′i−1,b

′
i)
B(s′,b′i−1,b

′
i)

= λB(s,bi−1,bi)

and
dL

dIsim−1,im,bm

!
= 0.

=⇒
∑

s′,i′m−1,i
′
m,b
′
m

Heff
(s,im−1,im,bm),(s′,i′m−1,i

′
m,b
′
m)I(s′,i′m−1,i

′
m,bm) = λI(s,im−1,im,bm)

(6.7)

The effective Hamiltonian Heff is defined as a contraction of the tensor net-
work of 〈ψ|H|ψ〉 with the optimized tensor from 〈ψ| as well as |ψ〉missing. Its
graphical representation during the optimization of a bath tensor is shown in
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Figure 20: Graphical representation of the effective Hamiltonian Heff for a
single-site DMRG step for the tensor on arm m = 3 with index k = 3.

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

Figure 21: Fermionic order used in FTPS calculations. See also App. C (this
is the same order as the physical indices in Eq. 6.1).
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Fig. 20. We solve these eigenvalue equations using a sparse eigenvalue solver.
To obtain the action of Heff 15, we need the Hamiltonian of a multi-orbital
AIM in FTPO-form. For the Kanamori interaction with the bath in star
geometry, we show how to construct it in App. C. Furthermore, we need to
decide on the fermionic order. It turns out that the most convenient order
is the one depicted in Fig. 21 (see also Eq. C.1). After the optimization step
on one site, we perform the next optimization on a neighboring tensor. For
MPS this resulted in the right-left sweeps. Here, it is important to realize,
that because DMRG is a variational method, the actual sweeping order in
which we optimize the tensors is usually not important 16. For the single-
site DMRG we sweep through the tensor network the same way as presented
below for the two-site approach.

As in standard DMRG, it is often better to minimize with respect to two
neighboring tensors, since it allows to adjust the bond dimension during the
DMRG simulation [17]. The resulting eigenvalue equations for such a two-
site scheme are equivalent to Eq. 6.7. The only difference is that the effective
Hamiltonian, as well as the optimized vector posses all indices of the two
tensors that are optimized. We perform the two-site DMRG by repeating
the following steps for each arm m (starting at m = 1) until convergence:

• Optimize the m-th impurity tensor and the bath site connected to it
(for m = 1 sites 1 and 2 in Fig. 21).

• In a right-left sweep optimize the m-th bath by minimizing two neigh-
boring bath tensors (for m = 1 the sweep consists of optimization steps
for the sites (2, 3), (3, 4), (4, 5), (3, 4), (2, 3) in Fig. 21).

• Optimize the m-th impurity tensor and the bath site connected to it a
second time.

• If m 6= Norb, optimize the m-th impurity tensor and and the (m+1)-th
impurity tensor (for m = 1: sites 1 and 6 in Fig. 21).

15Remember we never calculate Heff directly [17].
16It might affect convergence though.
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When performing a DMRG step on two impurity tensors, we optimize
with respect to a rank six tensor possessing 2 physical indices and 4 bond
indices (2 pointing towards the bath and one to the impurity above as
well as below). After the optimization, we need to SVD this tensor which
will be computationally very expensive. If we assume all bond indices to
have bond dimension m, the SVD of such a rank six tensor would scale as
O((dm2)3) = O(d3m6). Hence, the optimization of two impurity tensors
will be the bottleneck of the ground state search. Fortunately, in numeri-
cal practice it is very often the case that the bond dimension of the bath
link is much smaller than the bond dimension of the impurity-impurity links,
making the above m6-scaling a bit less severe. For example, if we assume
the impurity bonds to have bond dimension m and the bath indices to have
bond dimension n, the SVD scales as O(dmn)3. While optimization of the
impurity tensors will be very expensive, we expect the bath tensors to be
much cheaper than in the super sites approach, since they will need only
rather small tensor dimensions.

After two-site DMRG we often switch to the single-site approach which
is much faster, since it does not show the m6-scaling.

6.3 Time Evolution

Time evolution for multi-orbital AIMs with Kanamori interaction is very
similar to time evolution for MPS. As in the single-orbital case (see Sec. 5),
we first split off the interactions and time evolve the remaining terms coupling
the baths to the impurities using swap-gates. For the Kanamori interaction
(Eq. 2.11), we need to be careful with the fermionic sign, since the spin-flip
and pair-hopping terms locally change the occupation of the impurity. This
in turn affects the bath, since in the fermionic order the bath tensors are in
between impurity tensors (see Fig. 21). Therefore, we decompose the time
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evolution operator e−i∆tH into:

e−i∆tH ≈
( ∏

m′>m

e
−i∆t

2
HSF-PH
m,m′

)
· e−i∆t

2
HDD·

×e−i∆t
∑
kσmHkσm · e−i∆t

2
HDD ·

( ∏

m′>m

e
−i∆t

2
HSF-PH
m,m′

)
. (6.8)

The terms
∑

kσmHkσm connecting bath and impurity, factor into a product
over every orbital-spin combination without any additional approximation.
As already mentioned, we time evolve these terms in star geometry using
swap gates, shown in Sec. 5.2.

To time evolve the density-density interactions, we directly construct the
FTPO of e−i

∆t
2
HDD and apply it. Since HDD does not change the particle

number, its action onto the bath tensors is trivial and we only need to con-
struct the 4Norb × 4Norb matrix of HDD which we then exponentiate. This is
possible even for a 5-band model, since the size of the matrix stays manage-
able (1024 × 1024). Using repeated SVDs on this matrix, we finally obtain
the FTPO of the time evolution operator.

To time evolve the spin-flip and pair-hopping terms this strategy does not
work, because of the fermionic sign already mentioned. Both, the spin-flip
as well as the pair hopping operator (for example the spin-flip operator is
given by c†m0↑cm0↓cm′0↑c

†
m′0↓ + h.c.), individually have the property A3 = A.

For such operators we can simplify the exponential using its series expansion
as we have shown in [1]:

e−i∆tJA = I + A2
(

cos (∆tJ)− 1
)
− iA sin (∆tJ) . (6.9)

The right hand side of Eq. 6.9 can be written in FTPO form, since we know
how to incorporate the fermionic sign for A as well as for A2. The construc-
tion of this operator is given in App. D.

Now, we only need to apply all operators and gates in the correct order
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to time evolve by one time-step ∆t.
With this, we are capable of calculating the Green’s functions of a multi-

orbital AIM. The general strategy is outlined in Sec. 4.8. In the following two
sections we will show the capabilities of FTPS used as a solver for DMFT
for real-material calculations.
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7 Fork Tensor-Product States: Efficient Multi-

orbital Real-Time DMFT Solver (Phys. Rev.
X 7, 031013)

In this section I present the results published in Ref. [1], which is one of the
main publications of the author. The author implemented the FTPS impu-
rity solver, performed all FTPS calculations and was the main contributor in
writing the publication. Manuel Zingl performed the DFT calculation and
implemented the DMFT self consistency on the real frequency axis within the
TRIQS library (v1.4) [106]. Furthermore, he performed the CTQMC calcu-
lations that were used to compare our results with, and helped in writing the
paper. Robert Triebl performed the analytic continuation of the imaginary
time Green’s functions and also played an important role in interpreting the
results and writing the paper. Since this section is a direct copy of Ref. [1]
(Phys. Rev. X 7, 031013), it will repeat some of the basics of the theory
already discussed in the previous sections.

In this publication we used the FTPS solver for the typical benchmark
compound SrVO3. As low energy subspace we use the three t2g bands i.e.:
we employ a three-orbital model in DMFT. Our major insight was that the
real-time (real-frequency) approach of FTPS allows to resolve a multiplet
structure in the spirit of the atomic excitations discussed in Sec. 2.1. We
also show that such a multiplet structure cannot be found with CTQMC,
since the ill-posed analytic continuation cannot resolve it, especially if the
imaginary time Green’s function is subject to statistical noise. Finally, we
show that the FTPS solver can be applied for 5-orbital models as well.

The paper is included in its entirety in the following. To obtain a single,
coherent bibliography for the present thesis the citations are merged into one
list of references at the end of the thesis.
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7.1 Abstract

We present a tensor network especially suited for multi-orbital Anderson
impurity models and as an impurity solver for multi-orbital dynamical mean-
field theory (DMFT). The solver works directly on the real-frequency axis
and yields high spectral resolution at all frequencies. We use a large number
(O(100)) of bath sites, and therefore achieve an accurate representation of
the bath. The solver can treat full rotationally-invariant interactions with
reasonable numerical effort. We show the efficiency and accuracy of the
method by a benchmark for the three-orbital testbed material SrVO3. There
we observe multiplet structures in the high-energy spectrum which are almost
impossible to resolve by other multi-orbital methods. The resulting structure
of the Hubbard bands can be described as a broadened atomic spectrum
with rescaled interaction parameters. Additional features emerge when U is
increased. Finally we show that our solver can be applied even to models
with five orbitals. This impurity solver offers a new route to the calculation
of precise real-frequency spectral functions of correlated materials.

7.2 Introduction

Strongly correlated systems are among the most fascinating objects solid-
state physics has to offer. The interactions between constituents of such
systems lead to emergent phenomena that cannot be deduced from the prop-
erties of non-interacting particles [107].

One of the most widely used methods to describe strongly-correlated elec-
trons is the dynamical mean-field theory (DMFT) [9, 63]. DMFT treats lo-
cal electronic correlations by a self-consistent mapping of the lattice problem
onto an effective Anderson impurity model (AIM). Calculating the single
particle spectral function of this impurity model in an accurate and efficient
way is at the heart of every DMFT calculation. To this end, many numerical
methods have been developed or adapted. These are based for instance on
continuous-time quantumMonte Carlo (CTQMC) [14, 15], exact diagonaliza-
tion (ED) [25–27], the numerical renormalization group (NRG) [19, 20], con-
figuration interaction (CI) based solver [28, 29], and also the density-matrix
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renormalization group (DMRG) with matrix-product states (MPS) [16, 17].
Every algorithm has strengths and weaknesses: CTQMC is exact apart

from statistical errors on the imaginary axis and can deal with multiple
orbitals, but it is in some cases plagued by the fermionic sign problem.
Additionally, an ill-posed analytic continuation is necessary to obtain real-
frequency spectra, which therefore become broadened, especially at high en-
ergies. ED directly provides spectra on the real axis, but it is severely lim-
ited in the size of the Hilbert space, i.e. in the number of bath sites. Quite
recently, NRG was shown to be a viable three-band solver by exploiting non-
abelian quantum number conservation [32–34]. NRG works on the real axis
and captures the low-energy physics well, but it has by construction a poor
resolution at higher energies. Another interesting route that has been pro-
posed recently are solvers that tackle the problem of exponential growth of
the Hilbert space using ideas from quantum chemistry, i.e. the configuration
interaction [28, 29]. They allow to go beyond the small bath sizes of ED,
keeping all the advantages such as absence of fermionic sign problems. How-
ever, in multi-orbital applications (see Appendix of Ref. [29]), the spectral
resolution has so far been restricted by the restricted number of bath sites
(O(20)).

MPS based techniques like DMRG, finally, do not suffer from a sign prob-
lem and can be used on the real- as well as on the imaginary-frequency axis.
The price to pay for the absence of the sign problem is an, in general, very
large growth of bond dimension with the number of orbitals.

Dynamical properties and spectral functions can be calculated within
DMRG and have been used for impurity solvers, e.g. with the Lanczos-like
continued-fraction expansion [41, 108]. Other solvers using the more stable
correction vector [109] and dynamical DMRG (DDMRG) [110] methods were
developed [42–45]. Both algorithms produce very accurate spectral functions,
but have the disadvantage that a separate calculation for each frequency has
to be performed. The Chebyshev expansion [111] with MPS [112], supple-
mented by linear prediction [98], was used for impurity solvers in the single
band case [46] and for two bands [48]. Recently, some of us introduced a
method based on real-time evolution [89, 113–115] and achieved a self con-
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sistent DMFT solution for a two-band model [24]. In such calculations, the
physical orbitals for each spin direction are usually combined to one large
site in the MPS. Three or more orbitals have not been feasible with this ap-
proach, because of a large increase in computational cost with the number of
orbitals. Another MPS-based solver, which works on the imaginary axis, was
recently introduced [47] and it was applied as a solver for three bands in two-
site cluster DMFT. It was supplemented by a single real-time evolution to
compute the spectral function, avoiding the analytic continuation. However,
this method is restricted by the number of bath sites which can be employed.
In the calculation mentioned, only three bath sites per orbital were used,
limiting the energy resolution for real-frequency spectral functions.

In the present paper, we introduce a novel impurity solver which works
directly on the real-frequency axis. To this end, we use a tensor network
that captures the geometry of the interactions in the Anderson model better
than a standard MPS. Our approach is to some extent inspired by the work
of Ref. [50], which used a similar network for a two orbital NRG ground
state calculation. We are not restricted to a small number of bath sites.
This is imperative for exploiting the spectral resolution achievable with real-
time calculations. We emphasize that (i) our method is by construction free
of any fermionic sign problem, (ii) one can fully converge the DMFT self-
consistency loop on the real-frequency axis and (iii) we can achieve an almost
exact representation of the bath spectral function. We apply this method to
multi-orbital DMFT for the testbed material SrVO3 and show that one can
resolve a multiplet structure in the Hubbard bands, keeping at the same time
a good description of the low-energy quasi-particle excitations.

The paper is structured as follows. First we show how impurity solvers
with tensor networks work in general and introduce our new tensor network
approach which we call fork tensor-product states (FTPS) (Sec. 7.3). Next
we explain in detail how our solver is used in the context of multi-orbital
DMFT (Sec. 7.4). In Sec. 7.5, we apply our approach to SrVO3 and discuss
the multiplet structure that the FTPS solver allows to resolve. In order to
check the accuracy of the method, we also compare the FTPS results to
CTQMC for SrVO3. Finally, we show the efficiency of the FTPS solver by

73



applying it to a five-orbital model.

7.3 Tensor Network Impurity Solvers

The Anderson impurity model (AIM) describes an impurity (with Hamilto-
nian Hloc) coupled to a bath of non-interacting fermions hybridized with it.
A typical AIM Hamiltonian is given by:

H = Hloc +Hbath (7.1)

Hloc = ε0
∑

mσ

nm0σ +HDD +HSF-PH

HDD = U
∑

m

nm0↑nm0↓

+ (U − 2J)
∑

m′>m,σ

nm0σnm′0σ̄

+ (U − 3J)
∑

m′>m,σ

nm0σnm′0σ

HSF-PH = J
∑

m′>m

(
c†m0↑cm0↓cm′0↑c

†
m′0↓ + h.c.

)

− J
∑

m′>m

(
c†m0↑c

†
m0↓cm′0↑cm′0↓ + h.c.

)

Hbath =
∑

mlσ

εlnmlσ + Vl

(
c†m0σcmlσ + h.c.

)
,

where c†mlσ (cmlσ) creates (annihilates) an electron in band m (m ∈
{1, 2, 3} for a three-orbital model) with spin σ at the l-th site of the sys-
tem (the impurity has index l = 0, the bath degrees of freedom have l ≥ 1),
and nmlσ are the corresponding particle number operators. HDD describes
density-density (DD) interactions between all orbitals and HSF-PH are the
spin-flip and pair-hopping terms. This three-orbital Hamiltonian is not only
important in the context of real-material calculations. It has also been stud-
ied extensively on the model level, most importantly because it hosts un-
conventional correlation phenomena. For a selection of recent work, see for
instance Refs. [23, 32, 116–118]
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An impurity solver calculates the retarded impurity Green’s function G(t)

G(t) = −iθ(t) 〈ψ0| [c†(t), c(0)] |ψ0〉 (7.2)

of the interacting problem (7.1), either in real or imaginary time t. In the
present paper, we introduce a new tensor network similar to an MPS, which
can be used as a real-time impurity solver for three orbitals. We first in-
troduce MPS before moving on to what we call fork tensor-product states
(FTPS) in Sec. 7.3.2.

7.3.1 Matrix Product States (MPS) and DMRG

MPS are a powerful tool to efficiently encode quantum mechanical states.
Consider a state |ψ〉 of a system consisting of N sites:

|ψ〉 =
∑

s1,s2,··· ,sN
cs1,··· ,sN |s1, s2, · · · , sN〉 . (7.3)

Each site i has a local Hilbert space of dimension di spanned by the states
|si〉. Through repeated use of singular-value decompositions (SVDs), it is
possible to factorize every coefficient cs1,··· ,sN into a product of matrices [17],
i.e. into an MPS,

|ψ〉 =
∑

s1,s2,··· ,sN
As11 · As22 · · ·AsNN |s1, s2, · · · , sN〉 . (7.4)

Each Asii is a rank-3 tensor, except the first and last ones (As11 , AsNN ), which
are of rank two. The index si is called physical index, and the matrix indices,
which are summed over, are the so called bond indices. A general state of the
full Hilbert space is unfeasible to store, but it can be shown that ground states
are well described by an MPS with limited bond dimension m (dimension of
the bond index) [119].

In complete analogy to the states, one can factorize an operator into what
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A1 A2 A3 A4 A5 A6

s1 s2 s6

W1 W2 W3 W4 W5 W6

s′
1

s1

s′
6
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Figure 22: (a) Graphical representation of an MPS. Every circle corresponds
to a tensor Asii and each line to an index of this tensor. In this picture,
the physical indices are the vertical lines, while the horizontal lines show the
bond indices. Connected lines mean that the corresponding index is summed
over. Fixing all the physical indices si for each site results in a tensor of rank
zero with the value of the coefficient cs1,··· ,sN .
(b) Graphical representation of an MPO. The difference to an MPS is that
an MPO has incoming indices si and outgoing indices s′i corresponding to
the bra- and ket vectors of the operator.

is called a matrix-product operator (MPO) [17],

H =
∑

s1,··· ,sN
s′1,··· ,s′N

W
s1,s′1
1 · · ·W sN ,s

′
N

N |s′1, · · · , s′N〉 〈s1, · · · , sN | , (7.5)

where each W si,s
′
i

i is a rank-4 tensor. Tensor networks in general have a very
useful graphical representation, which is shown for an MPS and an MPO
in Fig. 22. Note that when we use the term MPS we always mean a one-
dimensional chain of tensors as shown in Fig. 22.

To calculate Green’s functions within the MPS formalism, one usually
first applies the DMRG [16, 17], which acts on the space of MPS and finds a
variational ground state |ψ0〉 and ground-state energy E0. It minimizes the
expectation value

E0 = min
|ψ〉

〈ψ|H|ψ〉
〈ψ|ψ〉 (7.6)

by updating usually two neighboring MPS tensors before moving on to the
next bond. This procedure also yields the Schmidt decomposition of the
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state at the current bond on the fly. The DMRG approximation is to keep
only those states with the largest Schmidt coefficient. It is important to note
that one can perform a DMRG calculation for any tensor network, as long
as one can generate a Schmidt decomposition [104].

For obtaining the Green’s function, we employ an evolution in real time.
Eq. (7.2) is split into the greater G> and lesser Green’s function G<:

G(t) = −iΘ(t)

(
G>(t) +G<(t)

)

G>(t) = 〈ψ0|ce−iHtc†|ψ0〉 eiE0t

G<(t) = 〈ψ0|c†eiHtc|ψ0〉 e−iE0t, (7.7)

which are calculated in two separate time evolutions. This is done by first ap-
plying c† (or c) and then time evolving this state and calculating the overlap
with the state at time t = 0. The time evolution is the most computationally
expensive part, since time evolved states are not ground states anymore, and
the needed bond dimensions usually grow very fast with time.

7.3.2 Fork Tensor Product States (FTPS)

So far, the usual way of dealing with Hamiltonians like Eq. (7.1) using
MPS [24, 46, 48] has been to place the impurity in the middle of the system
and the up- and down-spin degrees of freedom to its left and right, resp. The
local state space of each bath site then consists ofM spinless-fermion degrees
of freedom, with dimension 2M , where M is the number of orbitals in the
Hamiltonian Eq. (7.1). This exponential growth is usually accompanied by a
very fast growth in bond dimension when using the above arrangement. We
did indeed encounter this very fast growth upon calculating the ground state
of some one- two- and three-orbital test cases.

For treatment by MPS, the general Hamiltonian Eq. (7.1) with hopping
terms from the impurity to each bath site is usually transformed into a Wil-
son chain with nearest-neighbor hoppings only, i.e. of the form ti(c

†
ici+1 +

h.c.) [20]. This was thought to be necessary since long-range interactions
look problematic for MPS-based algorithms. Quite recently, though, it was

77



V1

V2

B ↓

B ↑

A ↓

A ↑

Impurity site Bath site

Figure 23: Graphical representation of a fork tensor product state (FTPS)
for multi-orbital AIM. The idea to separate bath degrees of freedom leads
to a fork-like structure. In this picture, a two-orbital model with four bath
sites each is shown. Orbitals are labeled A and B and the arrows denote
the spin. Each spin-orbital combination has its own bath sticking out to the
right. As in Fig. 22, the vertical lines are the physical degrees of freedom (all
of dimension two, for empty, resp. occupied bath sites). All other lines are
bond indices and like in the MPS they are summed over. As mentioned in
the text, the bath is represented in star geometry due to the smaller bond
dimensions needed. The bath sites are ordered according to their on-site
energies. Two example hoppings V1 and V2 are drawn.
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discovered that MPS can deal with the original form of Hbath in Eq. (7.1)
better [49]. Because all hopping terms in Hbath originate from the impurity,
this is called the star geometry. The reason for the better performance is
that in the star geometry one has many nearly fully occupied (empty) bath
sites with very low (high) on-site energies εl.

Since basis states with many unoccupied low-energy sites have a very low
Schmidt coefficient, these states are discarded from the MPS. The same holds
for occupied high energy sites. However, when dealing with multi-orbital
models, the star geometry is not enough to be able to calculate Green’s
functions using MPS. The growth of the bond dimensions still makes those
calculations unfeasible.

The key idea of the present work is to construct a tensor network which
is beyond a standard MPS, but similar enough to be able to use established
methods like DMRG and time evolution. From Hamiltonian (7.1) one can
immediately notice that there are no terms coupling bath sites of different
orbitals. Hence, it might not be advantageous to combine those, not directly
interacting, degrees of freedom into one large physical index in the MPS.

Our proposed tensor network, therefore, separates the bath degrees of
freedom as much as possible. It consists of separate tensors for every orbital-
spin combination, each connected to bath tensors as shown in Fig. 23. This
tensor network is no MPS anymore, since there are some tensors (labeled
A ↓ and B ↑ in the example of Fig. 23) that have three bond indices and
one physical index, i.e. which are of rank 4. Cutting any bond splits the
network into two separate parts. Therefore, one can calculate the Schmidt
decomposition in a way very similar to an MPS, which means that also
DMRG is possible. The main bottleneck of calculations with FTPS is to
perform SVDs of the rank-4 tensors representing the impurities. When all
bond indices have the same dimension χ, it is necessary to do a SVD for a
χ2d×χ matrix with computational complexity O(χ4d). However, as we show
below, this operation does not pose a substantial problem for calculations
using FTPS. Since the impurity tensors pose the biggest challenge, our tensor
network would likely also allow us to deal with the chain geometry without
a drastic increase in computational cost. In the present paper we will only
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use FTPS with baths in star geometry.
The proposed FTPS are similar to the tensor network used by Holzner et
al. [50] to perform NRG calculations for ground state properties of an AIM
with two orbitals.

The three-legged tensors in our network (Fig. 23) can also be interpreted
as two coupled junctions with three legs in the language of Ref. [101], where
it has been shown that DMRG is possible on such junctions. Furthermore,
our approach has similarities with the so called Tree Tensor Networks (TTN)
[102–105].

Time Evolution
Time evolution with the Hamiltonian Eq. (7.1) is not straightforward,

since it features long-range hoppings. Possible methods include Krylov ap-
proaches [120], the time-dependent variational principle [83, 121] and the
series expansion of eiHt proposed by Zaletel et al. [86]. In this work, how-
ever, we use a much simpler approach.

First, we split the Hamiltonian into the following terms: (i) the spin-flip
and pair-hopping termsHSF-PH

m,m′ for each orbital combination, with
∑

m′>mH
SF-PH
m,m′ =

HSF-PH (see Eq. (7.1)), (ii) the density-density interaction terms HDD, and
(iii) all other terms Hfree = Hbath + ε0

∑
mσ nm0σ. With these terms, we write

the time-evolution operator for a small time step ∆t using a second-order
Suzuki-Trotter decomposition [91],

e−i∆tH ≈
( ∏

m′>m

e
−i∆t

2
HSF-PH
m,m′

)
· e−i∆t

2
HDD·

×e−i∆tHfree · e−i∆t
2
HDD ·

( ∏

m′>m

e
−i∆t

2
HSF-PH
m,m′

)
. (7.8)

Note that in this decomposition, the order of the spin-flip and pair-hopping
terms is important. The order of operators in the second product must be
opposite to the one in the first.

We see that Eq. (7.8) involves three different operators HSF-PH
m,m′ , HDD and

Hfree, each of which will be treated differently.
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Time evolution of the density-density interactions is performed with an
MPO-like representation of the time-evolution operator e−i

∆t
2
HDD . For a

three-orbital model, first the full matrix (43 × 43) of e−i
∆t
2
HDD is created,

which is then decomposed into MPO-form by repeated SVDs. Since HDD

only consists of density-density interactions, no fermionic sign appears in
e−i∆tHDD .

Time evolution of the spin-flip and pair-hopping terms is more involved
than the density-density interactions, since the operators change the particle
numbers on the impurity sites. Therefore, it can be difficult to deal with
the fermionic sign of the time evolution operator when the impurities are
not next to each other in the fermionic order. It turns out that the spin-flip
and the pair-hopping terms have the property Â3 = Â individually, with Â
being either the spin-flip or the pair-hopping operator, resp. Furthermore
they commute with each other allowing us to separate them without Trotter
error. The time-evolution operator of JÂ is then given by:

e−i∆tJÂ = I + Â2
(

cos (∆tJ)− 1
)
− iÂ sin (∆tJ) . (7.9)

For this operator, an MPO can be found for which the fermionic sign can
easily be determined17.

To time evolve the bath terms we use an iterative second-order Suzuki-
Trotter breakup for each term in Hfree. Neglecting orbital (m) and spin
(σ) indices, the first step in this breakup is the following: e−i∆t

∑Nb
l=1Hl ≈

e−i
∆t
2
H1 ·e−i∆t

∑Nb
l=2Hl ·e−i∆t

2
H1 . Next we split off H2 and iterate this procedure

until we end up with

e−i∆tHfree ≈
∏

mσ

[(
Nb−1∏

l=1

e−i
∆t
2
Hmlσ

)
· e−i∆tHmNbσ

·
(

1∏

l=Nb−1

e−i
∆t
2
Hmlσ

)]
, (7.10)

17Note that we use the term MPO a bit loosely here. What we mean is an operator
factorized in the same fork-like structure as the state in Fig. 23.
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with Nb the number of bath sites and Hmlσ = εlnmlσ + Vl

(
c†m0σcmlσ + h.c.

)
.

In the above equation, we neglected the term ε0nm0σ that we add to Hm1σ.
Eq. (7.10) is a product of two-site gates (an operator acting non-trivially
only on two sites) with one of the two sites always being the impurity. This
means that those two sites are not nearest neighbors in the tensor network.
To overcome this problem, we use so called swap gates [17, 90]. The two-site
operator

Sij = δsi,s′jδsj ,s′i · (−1)ninj (7.11)

swaps the state of site i (si with occupation ni) with the state of site j (sj
with occupation nj). The factor (−1)ninj gives the correct fermionic sign and
is negative if an odd number of particles on site i gets swapped with an odd
number of particles on site j. To be more precise, the matrix representation
of the swap gates used in this work is:

Sij = |00〉 〈00|+ |10〉 〈01|+ |01〉 〈10| − |11〉 〈11| . (7.12)

It turns out that every swap gate can be combined with an actual time evolu-
tion gate without additional computational time. For example, the first step
in this time evolution would be to apply e−i

∆t
2
Hm1σ . Immediately afterwards,

even before the SVD (to separate the tensors again), the swap gate is applied
so that the impurity and the first bath sites are swapped. By repeating this
process one moves the impurity along its horizontal arm in Fig. 23. Because
a second-order decomposition is used, now all time evolution gates except
the one at site Nb have to be applied again. But now, the impurity and bath
site needs to be swapped before time evolution.

Note that the algorithm presented above cannot only be used to perform
real-time evolutions, but it is applicable also to evolution in imaginary time
simply by replacing idt by dτ .

7.4 Multi orbital DMFT with FTPS

In this section we present details of our impurity solver.
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We refer to Refs. [11, 63] for DMFT in general, and to Refs. [13, 122]
for DMFT in the context of realistic ab-initio calculations for correlated
materials.

In the latter approach, called density-functional theory (DFT)+DMFT,
the correlated subspace is described by a Hubbard-like Hamiltonian. Within
DMFT, this model is mapped onto the AIM Hamiltonian (7.1). This mapping
defines the bath hybridization function ∆(ω) describing the influence of the
surrounding electrons.

Since FTPS provide the Green’s function of the AIM on the real-frequency
axis, also the self-consistency loop is performed directly for real frequencies.
For calculating the bath hybridization, we use retarded Green’s functions
with a finite broadening ηSC in order to avoid numerical difficulties with
the poles of the Green’s function. Throughout this work, we use ηSC =

0.005 eV18.
The impurity solver calculates the self energy Σ(ω) of the AIM, given

the bath hybridization function ∆(ω) and the interaction Hamiltonian on
the impurity. To this end, our solver performs the following steps, which are
explained in more detail in the text below:

1. Obtain bath parameters εl and Vl by a deterministic approach based
on integration of the bath hybridization function ∆(ω).

2. Calculate the ground state |ψ0〉 and ground-state energy E0 of the
interacting problem.

3. Apply impurity creation or annihilation operators, and time evolve
these states to determine the interacting Green’s function ( Eq. (7.2) ).

4. Fourier transform Eq. (7.2) to obtain G(ω) and calculate the local self-
energy,

Σ(ω) = G0(ω)−1 −G(ω)−1. (7.13)
18For stability reasons, a larger broadening of ηSC = 0.01 eV was used in the first two

DMFT-cycles.
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To perform step 1 we use

V 2
l =

∫

Il

[
− 1

π
Im ∆(ω)

]
dω

εl =
1

V 2
l

∫

Il

ω

[
− 1

π
Im ∆(ω)

]
dω, (7.14)

similar to Refs. [20] (NRG) and [49]. Each interval Il corresponds to a bath
site. This discretization can be interpreted as representing each interval Il as
a delta peak at position εl and weight V 2

l . Sum rules for such discretization
parameters can be found analytically [123]. In this work we choose the length
of each interval such that the area of the bath spectral function − 1

π
Im ∆(ω)

is approximately constant for each interval [124]. For the case at hand, this
discretization was found to be numerically more stable than using intervals
of constant length. Unless stated otherwise, we use Nb = 109 bath sites
per orbital and spin. We note that this scheme is not restricted to diag-
onal hybridizations. In the general case of off-diagonal hybridizations the
hybridization function is a matrix ∆. Therefore, instead of taking the imag-
inary part we can use the bath spectral function i

2π
(∆ − ∆†). Similarly to

Eq. (7.14), we represent each interval by one delta-peak for each orbital. For
instance, fixing εl to the center of the interval, the hopping parameters Vl can
be found systematically from the Cholesky factorization of

∫
Il

i
2π

(∆−∆†)dω.
Most importantly, this scheme does not involve any fitting procedure on the
Matsubara axis. A very similar approach was developed independently in
Ref. [125].

In step 2 we use a DMRG approach with the following parameters, unless
specified otherwise. The truncated weight tw (sum of all discarded singular
values of each SVD) is kept smaller than 10−8. When spin-flip and pair-
hopping terms are neglected, we use an even smaller cutoff of 10−9. Note that,
except in the five-band calculation, we do not restrict the bond dimensions
by some hard cutoff (see App. 7.7.2).

During time evolution (step 3), we use a truncated weight of tw = 2 ·10−8,
or 10−8 with density-density interactions only. We time evolve to t = 16 eV−1,
with a time step of ∆t = 0.01 eV−1. Green’s functions are measured every
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fifth time step. The time-evolution operator of Hloc is applied using the
zip-up algorithm [90]. Afterwards the Green’s functions are extrapolated in
time using the linear prediction method [24, 98] up to t = 250 eV−1. Time
evolution is split into two runs one forward and one backwards in time [126]
to be able to reach longer times.

In the Fourier transform to ω-space (step 4), we use a broadening in the
kernel eiωt−ηFT |t| of ηFT = 0.02 eV to avoid cutoff effects remaining after the
linear prediction. The influence of the linear prediction on our results is
discussed in App. 7.7.1. We want to stress that although a calculation with
full rotational symmetry is more demanding, the computational effort is still
very feasible. With the parameters mentioned above one full DMFT-cycle
takes about five hours on 16 cores.

To verify that our implementation of DMRG and time evolution produces
correct results when used with our tensor network, we first compared Green’s
functions and ground-state energies for U = J = 0 for several bath parameter
sets. The next step of our testing was to include density-density interactions,
one term at a time. For example, we only included (U ′ − J)n10↑n30↑ and
compared energy and Green’s function to a standard one-orbital MPS solver.
Finally, we also compared our method to the MPS two-band solver used in
Ref. [24]. Indeed all tests performed produced correct energies and Green’s
functions.

7.5 Results

We performed DMFT calculations based on a band structure obtained from
density functional theory (DFT) for the prototypical compound SrVO3, using
the approximation of the Kanamori Hamiltonian (Eq. (7.1)). It has a cubic
crystal structure with a nominal filling of one electron in the V-3d shell
19. Due to the crystal symmetry, the five orbitals of the V-3d shell split
into two eg and three t2g orbitals. The latter form the correlated subspace.

19 Indeed, model calculations done for fillings of N = 2 and N = 3 electrons, the latter
in the insulating phase, show that these calculations are of comparable computational
effort. For any N we do expect increased numerical effort close to the Mott transition
though.
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Figure 24: Spectral functions A(ω) for density-density interactions (DD) only
(blue line), and with spin-flip and pair-hopping terms included (red line). In
both calculations we used U = 4.0 eV and J = 0.6 eV. Both spectra show a
three-peak structure in the upper Hubbard band and additional features at
high energies (around 8 eV).

We performed the DFT calculation with Wien2k [127], and used 34220 k-
points in the irreducible Brillouin zone in order to reach an energy resolution
comparable with the ηSC = 0.005 eV broadening.

The TRIQS/DFTTools package (v1.4) [68, 128, 129], which is based on
the TRIQS library (v1.4) [106], was used to generate the projective Wannier
functions and to perform the DMFT self-consistency cycle.

Fig. 24 shows the main results of this paper, the DMFT spectral function
A(ω) for SrVO3, (i) in the approximation of density-density interactions only
and (ii) with full rotational invariance including spin-flip and pair-hopping
terms. Overall, both cases show the well known features of the SrVO3 spec-
tral function [130, 131]. We see a hole excitation at around −2 eV, and the
quasi-particle peak at zero energy whose shape and position does not de-
pend on the inclusion of full rotational invariance. In the upper Hubbard
band, a distinctive three-peak structure can be seen. This structure has
not been resolved in other exact methods like CTQMC (problem with ana-
lytic continuation, see below) or NRG (logarithmic discretization problem).
In our real time approach, high energies correspond to short times, where
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Figure 25: (a) We take the bath spectral function ∆(ω) from the DMFT
self-consistent solution for Nb = 109 and represent it using various numbers
of bath sites. It is obvious that Nb = 9 is too small to represent the bath well.
(b) Converged DMFT spectral function using the AIM with different numbers
of bath sites. Only the smallest bath shows a noticeable difference. This is
mostly due to the fact that in this case a higher broadening of ηFT = 0.1 eV
had to be used in the Fourier transform and time evolution was only possible
to t = 14 eV−1. The additional small structure at ω = 0 for Nb = 59 bath
sites is most likely a linear prediction artifact.
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the calculations are particularly precise20. Most methods allow to resolve
structures in the Hubbard bands only in special cases (see Ref. [132] for
an example using ED). Of course, atomic-limit based algorithms such as
the Hubbard-I approximation or non-crossing approximation (NCA) show
atomic-like features, but they have very limited accuracy for the description
of the low-energy quasi-particle excitations in the metallic phase [133]. Thus,
our FTPS solver combines the best of the two worlds, with atomic multiplets
at high energy and excellent low-energy resolution at the same time.

The energies of the three peaks in the upper Hubbard band differ depend-
ing on whether SF-PP terms are taken into account or not. Details of this
peak structure, as well as additional excitations visible at higher energies,
will be discussed below in Sec. 7.5.3.

First we examine the convergence of our results with respect to the num-
ber of bath sites and compare our spectrum to CTQMC. The following dis-
cussion is mostly based on calculations without spin-flip and pair-hopping
terms. In this case, the calculations can be done faster and with higher
precision, since there is no particle exchange between impurities. In all sub-
sequent plots, we show results from calculations with DD interactions only.

7.5.1 Effect of Bath Size

In order to achieve a reliable high resolution spectrum on the real-frequency
axis, it is imperative to have a good representation of the hybridization func-
tion ∆(ω) in terms of the bath parameters, for which a sufficient number of
bath sites is needed. Fig. 25 shows how well a hybridization function can
be represented with our approach (Eq. (7.14)) using a certain number of
bath sites. We see that for Nb = 9 bath sites (we always denote sites per
orbital), ∆(ω) can be reconstructed only very roughly, which in turn gives an
incorrect spectral function (Fig. 25 bottom). To some extent, the difference
in the spectrum is due to the shorter time evolution and therefore a higher
broadening ηFT we were forced to use. For such a small bath, the finite
size effects from reflections at the bath ends appear much earlier in the time

20We note that high energy peaks already appear in the first DMFT iteration, for which
the bath does not have any spectral weight at high energies.
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Figure 26: DMFT spectral functions A(ω) from CTQMC+MaxEnt (blue
line) at β = 200 eV−1, and from FTPS (red line). The FTPS result shows a
distinctive three-peaked structure in the upper Hubbard band.

evolution.
Increasing the number of bath sites to Nb = 29, we observe that the

reconstructed bath spectral function already shows the relevant features of
∆(ω). The spectrum is well converged for the largest bath sizes Nb = 59 and
Nb = 109.

7.5.2 Comparison to CTQMC

In Fig. 26 we compare the converged spectral function of our approach
(FTPS) with a spectrum obtained from CTQMC and analytic continuation.
In both calculations, we used the same interaction Hamiltonian with density-
density interactions only. The CTQMC calculation was performed with the
TRIQS CTHYB-solver (v1.4) [134, 135] with 3.2 · 107 measurements and at
inverse temperature β = 200 eV−1. For the analytic continuation we applied
the ΩMaxEnt method [136].

The three-peak structure in the upper Hubbard band is not present in
the CTQMC spectrum. We will show below in an example that even for
a Green’s function that does contain these peaks the analytic continuation
does not resolve this structure.

For another comparison, we consider the imaginary time Green’s func-
tions G(τ) in Fig. 27. Apart from the effect of statistical errors, CTQMC pro-
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Figure 27: Comparison of imaginary time Green’s functions G(τ) from
CTQMC (GCTQMC, blue line) and FTPS using Eq. (7.15) (GA(ω), red
squares). The agreement is equally good also at β = 100 eV−1 and
β = 400 eV−1 (not shown). The difference between the two Green’s func-
tions is shown in the bottom panel. Note that on both ends GA(ω) is smaller
than GCTQMC. The normalization of the spectral function demands that
G(τ = 0) + G(τ = β) = −1. The CTQMC data deviates in the order of
10−2 from this constraint due to statistical noise, while FTPS gives (by con-
struction) the correct result to a precision of 10−8. This explains the bigger
differences of the Green’s functions around τ = 0 and τ = β. For better
visibility of the τ > 0 data, the value of 9 · 10−3 at τ = 0 is not shown.
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Figure 28: Spectral functions from analytically continued imaginary-time
Green’s functions G(τ) calculated by CTQMC (blue line) and by FTPS (red
line). Clearly, the analytic continuation cannot resolve the peak structure in
the upper Hubbard band.

vides an exact self consistent solution of DMFT on the imaginary-frequency
axis. As mentioned above, when we use the FTPS solver, we formulate the
DMFT self-consistency equations on the real-axis. To obtain an approximate
finite temperature imaginary-time Green’s function from FTPS that we can
compare to the CTQMC result, we need to take the finite temperature of the
CTQMC calculation into account. Therefore, we use the FTPS spectrum
A(ω) and assume that we would obtain the same spectrum for a finite (but
high enough) inverse temperature β, and use:

G(τ) =

∫
dω

2π
A(ω)

e−ωτ

e−βω + 1
(7.15)

The results in Fig. 27 show very good agreement on a logarithmic scale.
Another important indication of the validity of our results is the value of

A(ω = 0). To get a comparable number, we use the CTQMC imaginary time
Green’s function G(τ) and Fourier transform it to get G(iωn):

G(iωn) =

∫
eiωnτG(τ)dτ .

Looking at the last few DMFT-cycles, we estimate it to be around A(ω =

0) = − 1
π

limiωn→0=G(iωn) ≈ 0.272 eV−1 with fluctuations in the last digit.
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For the FTPS, the exact height of A(ω = 0) of the FTPS spectrum changes
a little for each DMFT iteration, mainly due to slight variations in the linear
prediction. Using the same prescription as for CTQMC, we estimate it to be
A(ω = 0) = 0.28 eV−1, with fluctuations of about 0.01 eV−1. This agreement
is very good considering that linear prediction has its strongest influence at
small energies. Further benchmarks concerning the linear prediction can be
found in App. 7.7.1.

Finally, we show that the ill-posedness of the analytic continuation is the
most likely explanation for the missing peak structure in the upper Hubbard
band of the spectral function obtained from the CTQMC data. To do so, we
take the FTPS spectrum A(ω), calculate G(τ) as described above, and per-
form the same analytic continuation that we did for the G(τ) from CTQMC.
We added noise of the order of the CTQMC error to the FTPS data. The
resulting spectrum is shown in Fig. 28, and indeed the peak structure in the
upper Hubbard band vanishes.

7.5.3 Discussion of Peak Structure - Effective Atomic Physics

In order to understand the peak structure observed in the spectral functions,
we take a look at the underlying atomic problem, where for simplicity we
start with density-density interactions only. We will show that the same
arguments hold for full rotationally invariant interactions.

Tab. 2 shows the relevant atomic states and their corresponding energies.
The atomic model has a hole excitation at energy −ε0 and three single elec-
tron excitations with energies U + ε0, U − 2J + ε0 and U − 3J + ε0 relative
to the ground state. If we measure the energy differences between the three
peaks of the upper Hubbard band in our results, we find values of 1.27 eV and
0.69 eV, which is close to the atomic energy differences of 1.2 eV and 0.6 eV
(J = 0.6 eV). We also find the hole excitation at −2.0 eV. This indicates that
we can describe the positions of the observed peaks approximately by atomic
physics with effective parameters ε̄0, Ū and J̄ and widened peaks. Further-
more, the heights of the peaks roughly correspond to the degeneracy of the
states in the atomic model (see Tab. 2).
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Figure 29: (a) Closeup of the three-peak structure for various values of J .
Additionally, we show vertical lines for the J = 0.6 eV spectrum at energies
ωM (position of the middle peak) and at ωM+2J and ωM−J . We see that the
width of the upper Hubbard band is close to 3J . (b) Closeup of the small
spectral peaks at high energies. These correspond to excitations into the
N = 3 sector of the atomic model (see Tab. 2). The height of each peak can
be estimated by the degeneracy of the atomic states. Effective parameters J̄
are 0.53 eV (J = 0.5 eV), 0.59 eV (J = 0.6 eV) and 0.68 eV (J = 0.7 eV). They
are obtained from the difference between the two peaks highest in energy.
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Table 2: Relevant states of the atomic problem of Hamiltonian (7.1) without spin-flip
and pair-hopping terms. The energy is given as energy difference to the ground state.

type states energy degeneracy
N = 1, ground state |↑, 0, 0〉 |↓, 0, 0〉 |0, ↑, 0〉 · · · 0 6
N = 0 |0, 0, 0〉 −ε0 1
N = 2, same spin |↑, ↑, 0〉 |↑, 0, ↑〉 |0, ↑, ↑〉 · · · U − 3J + ε0 6
N = 2, different spin |↑, ↓, 0〉 |↑, 0, ↓〉 |↓, ↑, 0〉 · · · U − 2J + ε0 6
N = 2, double occupation |↑↓, 0, 0〉 |0, ↑↓, 0〉 |0, 0, ↑↓〉 U + ε0 3
N = 3, all spins equal |↑, ↑, ↑〉 |↓, ↓, ↓〉 3U − 9J + 2ε0 2
N = 3, one spin different |↑, ↑, ↓〉 |↑, ↓, ↑〉 |↓, ↑, ↑〉 · · · 3U − 7J + 2ε0 6
N = 3, double occupation |↑↓, ↑, 0〉 |↑↓, ↓, 0〉 |↑↓, 0, ↑〉 · · · 3U − 5J + 2ε0 12

Table 3: Atomic parameters and their effective values obtained from the
spectral functions shown in Fig. 26 and 29. For J the values itself were
obtained from the energy difference of the highest peak to the lowest peak,
whereas the uncertainty is estimated from ωM + 2J and ωM − J .

parameter atomic value (eV) effective value (eV)
ε0 -0.86 -2.00
U 4.00 5.97
J 0.50 0.59(6)
J 0.60 0.66(3)
J 0.70 0.72(2)

We can determine Ū = 5.97 eV (where U = 4.00 eV) from the energy
difference of the peak highest in energy to the hole excitation. This increase
of Ū compared to U is plausible considering the following. When coupling
the impurity to the bath, particles have the possibility to avoid each other
by jumping into unoccupied sites of the bath. This results in a decrease of
〈n↑n↓〉. To model this situation using atomic physics, one needs to increase
the interaction strength. Finally, it is well known that J is much less affected
by the surrounding electrons than U , since the latter is screened significantly
stronger [137].

Tab. 3 shows how bare atomic parameters change when adding a bath and
we see that our qualitative arguments give a correct idea of how parameters
are rescaled.
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Further evidence that the observed three-peaked structure is indeed a re-
sult of atomic physics can be seen in Fig. 29. It shows a closeup of the upper
Hubbard band for three different values of J . The corresponding effective
parameters J̄ are shown in Tab. 3. We observe that also J is rescaled slightly,
but the rescaling gets smaller for higher J . Furthermore, increasing J also
increases the total width of the Hubbard band, which scales mostly linearly
with J . At the same time, measuring the quasi-particle spectral weight as a
function of J at constant U shows that it increases with increasing J , imply-
ing also an increasing critical Uc for the metal-to-insulator transition [23].

Upon a careful inspection of the spectral function in Fig. 26, we observe
small peaks at energies around 8 eV. A closeup of this energy region for
different values of J is shown in Fig. 29. The energy difference between the
peaks is close to 2J and can, again, be well explained by atomic physics,
namely excitations into states with 3 electrons on the impurity (Tab. 2) 21.
These excitations originate from small admixtures of N = 2 states to the
ground state.

With atomic physics in mind, let us take a look again at the spectrum us-
ing full rotational symmetry (Fig. 24). The spin-flip and pair-hopping terms
only contribute if there are two or more particles present. Thus, the quasi-
particle peak and the hole excitation do not change. The atomicN = 2 sector
does change, however. Diagonalizing the Hamiltonian, we find eigenstates
with three different energies and differences of 3J = 1.8 eV and 2J = 1.2 eV,
resp. Measuring the energy differences in Fig. 24, we find 3J̄ = 1.75 eV and
2J̄ = 1.32 eV. Estimating Ū = 5.81(5) we see that it does not change much
compared to DD only22. Again, we can describe the spectrum approximately
by atomic physics with effective parameters. Like in the case with density-
density terms only, we also see the tiny excitations to states belonging to the
atomic N = 3 sector.

21Nevertheless, the effective parameters J̄ differ a little from those obtained from the
main Hubbard band.

22Note that the peak highest in energy has an atomic energy of E = U + 2J + 2ε0.
Therefore, Ū can only be determined after J̄ is found.
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7.5.4 Beyond Atomic Physics

The previous section showed that at U = 4.0 eV the spectral features in
the Hubbard bands can be well described by atomic physics with effective
parameters and widened peaks. It is not clear whether this picture is valid
for higher interaction strengths U in the metallic regime. In Fig. 30 we show
results with U = 5.5 eV at constant J = 0.6 eV. We see a shift of the upper
Hubbard band to higher energies, but little shift of the hole-excitation. Also
the central peak is shifted and gets slimmer since more weight is transferred
into the Hubbard bands. Most importantly, as we approach the strongly-
correlated metallic regime, we clearly leave the realm where atomic physics
can describe all the spectral features.

We find that the three-peak structure of the upper Hubbard bands smears
out, and even vanishes. The closeup of the upper Hubbard band in Fig. 30
shows that with the help of the bare energy differences all three atomic
peaks can be discerned again, accompanied by an additional structure at the
low-energy side of the Hubbard band, which is reminiscent of the Hubbard
side peaks found in the one- and two-band Hubbard model on the Bethe
lattice [24] upon increasing U . We leave further investigation of this feature
to future work.

It might at first seem counter-intuitive that increasing U makes the physics
less atomic-like. Indeed, at very high interaction strengths, in the insulat-
ing regime, the spectrum must become atomic-like again. Here, however,
we identify an intermediate regime where additional structures appear when
increasing U , since we get closer to the Mott metal-to-insulator transition.

7.5.5 Solution of a five-band AIM

In this section we show that FTPS can not only deal with three-band models,
but also work in the case of five orbitals. To do so, we use the bath parameters
εk and Vk from the converged Nb = 59 calculation for SrVO3 and construct an
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Figure 30: (a) Increasing U results in a slimmer central peak and a shift of
the upper Hubbard band. Also the three-peaked structure gets smeared out.
(b) Closeup of the upper Hubbard band. As in Fig. 29, additional vertical
lines are plotted at ωM (position of the middle peak) and at ωM + 2J and
ωM − J as a rough guide to where the atomic peaks would be located. With
the help of these lines one can discern a three-peaked structure again, but
extended by a feature at the inside of the Hubbard band.
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artificial degenerate five-band AIM. Interaction parameters are U = 4.0 eV
and J = 0.6 eV. We decrease the on-site energy ε0 to get a similar occupation
of each impurity orbital as for SrVO3 (〈nm,0,σ〉 ≈ 1

6
). Note that in doing so

we have a model with, in total, 5
3
electrons on the impurity. We only use

density-density interactions and carry out the time evolution to t = 16 eV−1.
We set the truncated weight to tw = 10−8, but restrict the bond dimension
of the impurity-impurity links to χmax = 200.

In Fig. 31 we compare the results obtained for this five-band model to
results from CTQMC, where we used the same discretized bath hybridization
as input to CTQMC. We again see excellent agreement, even on a logarithmic
scale. The spectrum A(ω) (not shown) again exhibits strong structure in the
upper Hubbard band. Of course, the computational complexity is larger than
in the three-orbital case and it grows during time evolution. Calculating
the Green’s function took about 190 hours on the processors specified in
App. 7.7.2. We want to stress tough that the resulting spectrum (as well
as Fig. 31) was already fully converged at t = 12 eV−1 (70 hours). We
note that even with only one CPU hour (t = 6 eV−1) the resulting spectrum
is almost converged and barely distinguishable from the final result. The
benchmark therefore shows that with our FTPS approach a full five-orbital
DMFT calculation is well within reach.

7.6 Conclusions

We have presented a novel multi-orbital impurity solver which uses a fork-like
tensor network whose geometry resembles that of the Hamiltonian. The net-
work structure is simple enough to generate Schmidt decompositions, allow-
ing us to truncate the tensor network safely and to use established methods
like DMRG and real time evolution. The solver works on the real frequency
axis, and hence allows to formulate the full DMFT self consistency procedure
for real frequencies. Therefore, results are not plagued by an ill-conditioned
analytic continuation. Our approach exhibits no sign problem, tough it does
become more involved for larger numbers of orbitals.

We tested the solver within DMFT on a Hamiltonian typically used for
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Figure 31: Comparison of imaginary time Green’s functions G(τ) from
CTQMC (GCTQMC, blue line) and FTPS using Eq. (7.15) (GA(ω), red
squares). As in Fig. 27 they compare very well.

the testbed material SrVO3 and investigated the influence of full rotational
invariance on the results. We found clear spectral structures in particular in
the upper Hubbard band that have not been accessible by CTQMC, for which
the necessary analytic continuation prohibits the resolution of fine structures
in the spectral function at higher energies. For our calculations with U =

4.0 eV, each peak in the spectrum corresponds to an atomic excitation. Even
excitations into states with three particles on the impurity are resolved, as
tiny spectral peaks at high energies. Furthermore, upon increasing U , an
additional structure appears on the inside of the Hubbard bands, similar to
the precursors of the sharp Hubbard side peaks found for the one- and two-
band Hubbard models on the Bethe lattice [24, 46]. We have also shown
that our approach is feasible for five-orbital models, by comparing results
from the FTPS solver to CTQMC for an artificial five-band model.

99



−2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

ω (eV)

A
(ω

)

pinv = 10-6, N=160

pinv = 10-8, N=160

pinv = 10-6, N=50

No LP, ηFT=0.1

Figure 32: Spectrum A(ω) using different linear prediction (LP) parameters
for a calculation without spin-flip and pair-hopping terms. The calculations
with LP were performed with a broadening of ηFT = 0.02 eV. Except for
small changes around ω = 0, the effect of the various LP parameters is
minor. The blue line directly lies below the red and green line. We also show
a DMFT calculation without any LP. Even then the main features are still
present.
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Figure 33: Different truncation values tw in the time evolution do not influ-
ence the shape of the spectrum A(ω).

7.7 Appendix

In this appendix we show that our results are very stable over a wide range
of computational parameters. First we focus on the linear prediction method
(Sec. 7.7.1). Then we show that the results are converged with respect to
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the usual MPS-approximation (Sec. 7.7.2).

7.7.1 Linear Prediction

In order to obtain smooth and sharp spectra, we used linear prediction (LP)
to extrapolate the Greens function in time [24, 98]. Without going into detail,
we state the fact that linear prediction has two parameters, the pseudo inverse
cutoff pinv and the order N of the linear prediction. Fig. 32 shows that the
results are converged in these parameters.

We also show a DMFT run without any linear prediction, which is only
possible if we increase the broadening parameter of the Fourier transform to
ηFT = 0.1 eV, since otherwise we would get oscillations due to the hard cutoff
of the time series. Except for a shift towards the right, omitting the linear
prediction only changes the height (and width) of the peaks, but not the
overall structure. This is a strong indicator of the stability of these features.

7.7.2 Truncation of the Tensor Network

One, if not the most important, parameter in any MPS-like calculation is
the sum of discarded singular values in each SVD (truncated weight tw).
We want to emphasize that this parameter is the only approximation in the
representation of a state as a tensor-product state, as we do not impose any
hard cutoff on the bond dimensions. Fig. 33 shows that the spectrum is well
converged with respect to the truncation error during time evolution.

Finally, we want to comment on the required computational effort. In the
calculation without full rotational symmetry, the size of the largest tensor
to represent the ground state was23 35 × 22 × 9 × 2 (tw = 10−9) and at
the end of time evolution 127 × 79 × 30 × 2 (tw = 10−8). For a truncated
weight of tw = 10−7, calculating the Greens function took about 17 minutes
on a node with two processors (Intel Xeon E5-2650v2, 2.6 GHz with 8 cores,
and G> and G< each calculated on one processor). This time increases to
five hours for the lowest truncated weight of tw = 5 · 10−9. Using the full

2335 and 22 correspond to the impurity links, 9 is the bond dimension to the first bath
site and 2 is the physical bond dimension.
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rotationally invariant Hamiltonian, the biggest tensor in the ground-state
search was 90 × 40 × 10 × 2 (tw = 10−8) and at the end of time evolution
79×46×21×2 (tw = 2 ·10−8). The Greens function takes about three hours,
and we need five hours for one full DMFT-cycle on the same two processors
as above.
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8 SrMnO3 Atomic- and Hybridization Multi-

plets (arXiv:1712.08055 )

In this section we present the results published in Ref. [4], which is one of the
main publications of the author of the present work. The author implemented
the FTPS impurity solver, performed all FTPS calculations and was the main
contributor in writing the publication. Manuel Zingl performed the DFT
calculation and implemented the DMFT self consistency on the real frequency
axis within the TRIQS library (v1.4) [106]. Furthermore, he performed the
CTQMC calculations that we used to compare our results with, and helped
with writing the paper. Robert Triebl performed the analytic continuation
of the imaginary time Green’s functions and together with the author was
responsible for the development and discussion of the toy models presented
below. Furthermore, he played an important role in writing the paper.

In this publication we used the FTPS solver for the strongly correlated
insulator SrMnO3 with a nominal filling of three electrons. Therefore, the
half filled t2g subspace tends to become a Mott insulator with a lower- and
upper Hubbard band. In addition to the low energy t2g bands, the DFT
band structure shows eg bands directly above the Fermi energy. Further-
more, hybridizations of the Mn-3d bands with oxygen p-bands are close to
the lower Hubbard band. Including them would mean to increase the en-
ergy window in which the low-energy Hubbard Hamiltonian is constructed.
Therefore, we asked the following question. How does the number of corre-
lated orbitals and the size of the energy window affect the DMFT spectral
function? Since differences between these low-energy models are most ap-
parent in the high-energy spectral features, it is vital to have high resolution
on the real frequency axis, calling for a real-frequency solver such as FTPS.
We found that the hybridizations of the t2g bands with the oxygen p-bands
lead to a splitting of the lower Hubbard band into a more complex structure.
This shows that this compound is neither a pure Mott- nor a pure charge
transfer insulator. Furthermore, we found that also the eg bands should be
included, as their spectrum shows a multiplet structure through interactions
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with the half filled t2g bands. We therefore argue that in order to describe
the spectrum of SrMnO3, a five band calculation including the full Mn-3d-
shell and using a large energy window has to be performed. We found that
the spectral function of such a calculation is in good agreement with XAS
and PES experiments. Especially, the XAS measurement shows a three peak
structure of alternating eg -t2g -eg character, a feature that we can observe
in the DMFT spectrum as well.

The paper is included in its entirety in the following. To obtain a single,
coherent bibliography for the present thesis the citations are merged into one
list of references at the end of the thesis.

8.1 Abstract

We investigate the electronic structure of SrMnO3 with Density Functional
Theory (DFT) plus Dynamical Mean-Field Theory (DMFT). Within this
scheme the selection of the correlated subspace and the construction of the
corresponding Wannier functions is a crucial step. Due to the crystal field
splitting of the Mn-3d orbitals and their separation from the O-2p bands,
SrMnO3 is a material where on first sight a 3-band d-only model should be
sufficient. However, in the present work we demonstrate that the resulting
spectrum is considerably influenced by the number of correlated orbitals and
the number of bands included in the Wannier function construction. For
example, in a d-dp model we observe a splitting of the t2g lower Hubbard
band into a more complex spectral structure, not observable in d-only mod-
els. To illustrate these high-frequency differences we employ the recently
developed Fork Tensor Product State (FTPS) impurity solver, as it provides
the necessary spectral resolution on the real-frequency axis. We find that the
spectral structure of a 5-band d-dp model is in good agreement with PES and
XAS experiments. Our results demonstrate that the FTPS solver is capable
of performing full 5-band DMFT calculations directly on the real-frequency
axis.
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8.2 Introduction

The combination of density functional theory (DFT) and dynamical mean-
field theory (DMFT) has become the work-horse method for the modeling of
strongly-correlated materials [12, 13, 122]. For DMFT, a (multi-orbital) Hub-
bard model is constructed in a selected correlated subspace, which usually
describes the valence electrons of the transition metal orbitals in a mate-
rial. An adequate basis for these localized orbitals are projective Wannier
functions [67, 68]. In contrast to the Bloch wave functions, these functions
are localized in real space, and therefore provide a natural basis to include
local interactions as they resemble atomic orbitals and decay with increasing
distance from the nuclei. However, the selection of the correlated subspace
itself and the Wannier function construction are not uniquely defined.
In the present work, we use SrMnO3 to analyze the differences of some com-
mon models. This perovskite is an insulator 24 with a nominal filling of three
electrons in the Mn 3d shell. There are various works concerning its electronic
structure, both on the experimental [138–143] as well as on the theoretical
side [144–147]. For the construction of the correlated subspace, we explicitly
identify the following meaningful cases: The first is a three orbital model for
the t2g states only. For the second choice, usually denoted as d-dp model,
the transition metal 3d-states and the oxygen 2p-states are considered in the
Wannier function construction, but the Hubbard interaction is only applied
to the 3d-states. The correlated subspace is then affected by the lower lying
oxygen bands due to hybridizations. In both cases, the full 3d manifold can
be retained by including the eg orbitals in genuine 5 orbital models.
To assess the consequences of the different low-energy models, a good resolu-
tion of the spectral function on the real-frequency axis is beneficial. Due to
its exactness up to statistical noise, Continuous Time Quantum Monte Carlo
(CTQMC) is often used as a DMFT impurity solver [14, 15, 135]. However,
when using a CTQMC impurity solver, an analytic continuation is necessary,
which results in spectral functions with a severely limited resolution at higher

24Although most published work suggest that the compound is insulating, the experi-
mental magnitude of the gap ranges from approximately 1.0 eV to 2.0 eV, see citations in
the main text.
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frequencies [1]. This can make it difficult to judge the influence of the choices
made for the correlated subspace. In the present paper, we therefore employ
the real-frequency Fork Tensor Product States (FTPS) solver [1]. This re-
cently developed zero temperature impurity solver was previously applied to
SrVO3, making it possible to reveal an atomic multiplet structure in the up-
per Hubbard band [1]. This observation of a distinct multiplet structure in
a real-material calculation is an important affirmation of the atom-centered
view promoted by DMFT.
The present work also serves as a deeper investigation of the capabilities of
the FTPS solver. We show that the FTPS solver can be applied to d-dp
models, leading to new insight into the interplay of the atomic physics of the
transition metal impurity and hybridization effects with the oxygen atoms
as a natural extension to the atom-centered view. Furthermore, the physics
of SrMnO3 is different from SrVO3, since the manganate is an insulator, and
thus it constitutes a new challenge for the FTPS solver. While we presented
a proof of concept for FTPS on a simple 5-band model before [1], we now
perform full 5-band real-frequency DFT+DMFT calculations for both d-only
and d-dp models.
We find that the choices made for the correlated subspace strongly affect the
resulting spectral function and its physical interpretation. Additionally, we
show that the interplay of atomic and hybridization physics can already be
found in very simple toy models.
This paper is structured as follows. In section 8.3 we discuss the methods
employed, namely DFT, the different models obtained from different Wan-
nier constructions, DMFT, and the impurity solvers used. Section 8.4 focuses
on the results of the DMFT calculations and the underlying physics of these
different models. This knowledge will then be used in Sec. 8.5 to compare
the spectral function to experiments by Kim et al. [143].
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8.3 METHOD

8.3.1 DFT and WANNIER BASIS

We start with the DFT density of states (DOS) from a non-spin-polarized
DFT calculation for SrMnO3 in the cubic phase (shown in Fig. 34). The
calculation was performed with Wien2k [127], using 969 k-points in the ir-
reducible Brillouin zone and a lattice parameter of a = 3.768Å. Around the
Fermi energy EF , SrMnO3 has the characteristic steeple-like shaped DOS,
stemming from the Mn-t2g bands with a bit of O-px/y contribution. Below
−2.0 eV, the DOS is mainly determined by oxygen bands which also exhibit
manganese hybridizations. With the exception of some additional weight
below −5.0 eV, the Mn-eg states lie mainly in the energy range from 0.0 eV

to 5.0 eV.
In this work we use projective Wannier functions, where an energy interval
has to be chosen as a projection window [67, 68]. The bands around EF have
mainly t2g character, suggesting a selection of only a narrow energy window
for the Wannier function construction (−2.0 eV to 0.82 eV). We call this set
of projective Wannier functions the 3-band d-only model. However, the t2g
orbitals also show a considerable hybridization with the O-2p states below
−2 eV, and hence, one might want to enlarge the projective energy window
by setting its lower boundary to −10 eV. We refer to this model as the 3-
band d-dp model.
At the same time, we realize that also the eg orbitals are not entirely sepa-
rated from the t2g orbitals in energy and that they have even some weight
around EF (see middle graph of Fig. 34). These states lie directly above EF
and therefore their influence on the resulting spectrum needs to be checked.
One should then use a window capturing 5 bands, the eg and t2g , as a cor-
related subspace (from −2 eV to 5 eV). This is a 5-band d-only model. Note
that empty orbitals do not pose a problem for the FTPS solver. Like before,
we can again enlarge the energy window to include the oxygen hybridization
(−10 eV to 5 eV). We denote this model as the 5-band d-dp model.
In total, we end up with 4 different choices. The settings for these 4 models
are summarized in Tab. 4. All of them are justified, have different descrip-
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Table 4: Summary of models with their projective energy windows and the
parameters used in the FTPS solver: number of bath sites NB, Fourier trans-
form broadening ηFT , truncated weight tw and maximal bond dimension al-
lowed for the links between impurities as well as for the links between an
impurity and the first bath tensor. We keep at most this number of states
and increase tw if needed. The number in brackets is the maximal bond di-
mension during ground state search, while the first number is used for the
time evolution. The bath links were not restricted to any maximal bond
dimension. The FTPS time evolution is performed up to tmax, given in eV−1.

Model Window (eV ) Comments NB ηFT tw Bond dim. tmax

3-band d-only −2.0 - 0.82 only major t2g weight around EF 79 0.08 5 · 10−9 - 14.0
5-band d-only −2.0 - 5.0 include eg , neglect hybridizations 49 0.15 1 · 10−8 200 (150) 12.0

3-band d-dp-model −10.0 - 5.0 include hybridized t2g weight on oxygen bands 59 0.1 1 · 10−8 450 (150) 14.0
5-band d-dp-model −10.0 - 5.0 t2g and eg bands with hybridizations 49 0.2 1 · 10−8 200 (150) 7.0

tive power, and have been employed in various DFT+DMFT calculations for
SrMnO3 [144, 145, 147].

8.3.2 DMFT

Once the correlated subspace is defined, we use DMFT [9, 13, 63, 122] to solve
the resulting multi-band Hubbard model. As interaction term we choose the
5/3-band Kanamori Hamiltonian [21]. Within DMFT, the lattice problem is
mapped self consistently onto an Anderson impurity model (AIM) with the
Hamiltonian
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Figure 34: Top: Total DFT-DOS for SrMnO3. Middle: partial Mn-3d DOS.
Bottom: partial O-2p DOS for SrMnO3. Below approximately −1.5 eV, the
band structure consists of oxygen bands that have mostly p-character but
also have some eg and t2g weight due to hybridizations. The t2g bands are
located around the Fermi energy from −1.5 eV to about 0.5 eV, which have
small p-character. Directly above the Fermi energy and partly overlapping
with the t2g bands we find the eg bands that have small p-contributions as
well.
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H = Hloc +Hbath (8.1)

Hloc =
∑

mσ

εm0nm0σ +HDD +HSF-PH

HDD = U
∑

m

nm0↑nm0↓

+ (U − 2J)
∑

m′>m,σ

nm0σnm′0σ̄

+ (U − 3J)
∑

m′>m,σ

nm0σnm′0σ

HSF-PH = J
∑

m′>m

(
c†m0↑cm0↓cm′0↑c

†
m′0↓ + h.c.

)

− J
∑

m′>m

(
c†m0↑c

†
m0↓cm′0↑cm′0↓ + h.c.

)

Hbath =
∑

mlσ

εmlnmlσ + Vml

(
c†m0σcmlσ + h.c.

)
.

Here, c†mlσ (cmlσ) creates (annihilates) an electron in orbital m, with spin σ
at site l (site zero is the impurity). nmlσ are the corresponding particle num-
ber operators. εm0 is the orbital dependent on-site energy of the impurity
and εml as well as Vml are the bath on-site energies and the bath-impurity
hybridizations, respectively.
The interaction part of Hamiltonian (8.1), HDD +HSF-PH, is parametrized by
a repulsive interaction U and the Hund’s coupling J . For each of the models
presented in Tab. 4, we choose these parameters ad hoc in order to obtain
qualitatively reasonable results. In addition, for the full 5-band d-dp model
we also estimate them quantitatively via a comparison to an experiment.
Within DFT+DMFT, a so-called double counting (DC) correction is nec-
essary, because part of the electronic correlations are already accounted for
by DFT. For general cases, exact expressions for the DC are not known, al-
though there exist several approximations [74–77]. In the present work we use
the fully-localized-limit (FLL) DC (Eq.(45) in Ref. [78]). When needed, we
adjust it to account for deviations from the true, unknown DC. Note that in

110



the d-only models, the DC is a trivial energy shift that can be absorbed into
the chemical potential [76], which is already adjusted to obtain the correct
number of electrons in the Brillouin zone. This step, as well as all other inter-
facing between DFT and DMFT, is performed using the TRIQS/DFTTools
package (v1.4) [68, 106, 128, 129].

8.3.3 CTQMC + MaxEnt

We compare some of our results to CTQMC data at an inverse temperature
of β = 100 eV−1 obtained with the TRIQS/CTHYB solver (v1.4) [134, 135].
We calculate real-frequency spectra with an analytic continuation using the
freely available Ω-MaxEnt implementation of the Maximum Entropy (Max-
Ent) method [136]. However, the analytic continuation fails to reproduce
high-energy structure in the spectral function, as we have shown in Ref. [1]
on the example of SrVO3. This is especially true when the imaginary-time
Green’s function is subject to statistical noise, which is inherent to Monte
Carlo methods.

8.3.4 FTPS

For all models studied we employ FTPS [1]. This recently developed im-
purity solver uses a tensor network geometry which is especially suited for
AIMs. The first step of this temperature T = 0 method is to find the ab-
solute ground state including all particle number sectors with DMRG [16].
Then the interacting impurity Green’s function is calculated by real-time
evolution. Since entanglement growth during time evolution prohibits access
to arbitrary long times [17], we calculate the Green’s function up to some
finite time (see Tab. 4) and predict the time series using the linear prediction
method [1, 98] up to times O(100eV −1). The linear prediction could poten-
tially produce artifacts in the spectrum, and therefore we always make sure
that every spectral feature discussed in this work is already present in the
finite-time Green’s function without linear prediction.
The main approximations that influence the result of the FTPS solver are
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the broadening ηFT used in the Fourier transform 25, and the truncation
of the tensor network [1]. The former corresponds to a convolution with
a Lorentzian in frequency space making its influence predictable, while the
truncation can be controlled by including more states. This control over the
approximations allows us to analyze spectral functions in greater detail than
what would be possible with CTQMC+MaxEnt. The parameter values for
our FTPS calculations are listed in Tab. 4.
Note that we choose ηFT larger than in our previous work [1]. The reason for
doing this is two-fold: First, some of the calculations we show in this work
have a large bandwidth, which lowers the energy resolution if we keep the
number of bath sites fixed. Second, FTPS uses a discretized bath to represent
the continuous non-interacting lattice Green’s function Gcont

0 . When calculat-
ing the self energy Σ = G−1

0 −G−1, we can either use the discretized version
of Gdiscr

0 or the continuous one, Gcont
0 . In this work we choose Gdiscr

0 , which is
formally the correct choice. This then requires to use a larger broadening to
obtain causal self energies that do not show finite discretization effects from
inverting Gdiscr

0 . However, when calculating the final impurity spectral func-
tion shown in all figures, we employ a very small broadening of ηFT = 0.01 eV

in order to obtain optimal resolution.
The real-frequency approach of FTPS allows to resolve spectral features with
higher precision than CTQMC+MaxEnt. This is especially true for high en-
ergy multiplets. On the other hand, with FTPS and real-time evolution it is
difficult to obtain perfect gaps, since the results are less precise at small ω,
encoded in the long-time properties of the Green’s function which we obtain
only approximately using linear prediction [98].
With FTPS we calculate the greater and lesser Green’s functions separately [1].
Since the greater (lesser) Green’s function has no contribution at ω < 0

(ω > 0) we restricted the contributions of the calculated Green’s functions
in frequency space.
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Figure 36: 5-band d-only calculation: correlated spectral function of the eg
and the t2g orbitals for U = 4.0 eV and J = 0.6 eV.
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8.4 RESULTS

8.4.1 d-only models

First we focus on d-only calculations using a projective energy window with a
lower energy boundary of −2.0 eV for the Wannier-function construction, ne-
glecting the occupied Mn-3d weight at lower energies (see Tab. 4 and middle
graph of Fig. 34). With this choice of the correlated subspace, the occupa-
tion of the eg orbitals is nearly zero and the three degenerate t2g orbitals are
half-filled.

3-band calculation
Considering only the t2g subspace, the resulting impurity spectral function
(Fig. 35) is gapped for the chosen interaction values. The peaks of the lower
and upper Hubbard bands are separated by 5.0 eV in energy, which is roughly
U + 2J = 5.2 eV, as expected from atomic physics [23].
Contrary to SrVO3, where a distinct 3-peak multiplet structure in the upper
Hubbard band is present [1], both SrMnO3 Hubbard bands show only one
dominant peak. The structure observed in SrVO3 was well explained by the
atomic multiplets of the interaction Hamiltonian Hloc in Eq. 8.1 for a ground
state with one electron occupying the t2g orbitals. The absence of such an
atomic multiplet structure in this model for SrMnO3 can be understood in a
similar way: The large Coulomb repulsion in combination with Hund’s rules
(due to the density-density interaction strengths U , U −2J and U −3J) lead
to a ground state |ψ0〉 which consists mostly of the states |↑, ↑, ↑〉 and |↓, ↓, ↓〉
on the impurity. Adding a particle, when calculating the Green’s function,
produces a single double occupation, e.g., c†1,↓ |ψ0〉 = |↑↓, ↑, ↑〉. This state is
an eigenstate of the atomic Hamiltonian, because it is trivially an eigenstate
of HDD, and both the spin-flip and pair-hopping terms annihilate this state.
Hence, all t2g single-particle excitations from the ground state have the same
energy, and as a consequence, only one atomic excitation energy is observed.
Although not included in the low-energy model, the uncorrelated states still

25We Fourier transform with a kernel eiωt−ηFT |t|
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need to be taken into account for the single-particle gap of SrMnO3. On
the unoccupied side, the onset of the eg orbitals leads to a reduction of the
single-particle gap to about half the size of the t2g gap (see Fig. 35). On the
occupied side, depending on U and J , either the lower Hubbard band or the
O-bands (at about −1.5 eV) determine the gap size, and thus also the type
of the insulating state (Mott or charge transfer insulator [148]). For SrMnO3

to be clearly classified as Mott insulator, U +2J < 3.0 eV would be required.
However, it is questionable if the d-only picture is correct, as in this case the
lower Hubbard band is not influenced by the t2g /O-2p hybridizations be-
tween −6.0 eV and −2.0 eV (see Fig 34). We will discuss the effect of these
hybridizations in detail in Sec. 8.4.2 and Sec. 8.4.3.

5-band calculation
Next, we add the eg orbitals to the correlated subspace, which now comprises
the full Mn-3d manifold. The resulting impurity spectral functions of the eg
and t2g orbitals are shown in Fig. 36. The t2g spectral weight does not change
much compared to the 3-band calculation. This is to be expected, because
the eg orbitals remain nearly empty during the calculation of the t2g Green’s
function.
The eg spectral function, on the other hand, becomes much broader in com-
parison to the DFT-DOS, showing spectral weight above 4.5 eV. The unoc-
cupied part of the spectrum is encoded in the greater Green’s function, i.e.,
adding a particle in an eg orbital to the ground state. If we again assume
|ψ0〉 ∝ |↑, ↑, ↑〉+ |↓, ↓, ↓〉 as the t2g ground state, we can add a particle to the
eg orbitals either in a high-spin or low-spin configuration:

c†eg↑ |ψ0〉 ∝ |↑, ↑, ↑〉︸ ︷︷ ︸
t2g

⊗ |↑, 0〉︸ ︷︷ ︸
eg

+ |↓, ↓, ↓〉 ⊗ |↑, 0〉 . (8.2)

Using the Kanamori Hamiltonian, the high-spin configuration (first term
in Eq. 8.2) generates a single atomic excitation energy, while the low-spin
configuration (second term in Eq. 8.2) leads to two energies (due to the spin-
flip terms). According to this atomistic picture, the splitting of the eg peaks
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Figure 37: 3-band d-dp model: spectral functions for different J (top) and
different U (bottom). All interaction parameters are given in eV. Upon in-
creasing both parameters the gap increases. Changing J shifts the peak at
around −6.0 eV, while changing U only shifts the one at −8.0 eV.

is proportional to Hund’s coupling J (see Fig. 36). Their position relative to
the upper t2g Hubbard band is influenced by the crystal field splitting and J .
From this clear atomic-like structure we see that even empty orbitals need
to be included in the correlated subspace because of correlation effects with
other occupied orbitals.

8.4.2 3-band d-dp model

In the energy region where the lower Hubbard band is located, we also find
t2g weight stemming from the Mn-3d/O-2p hybridization (see middle plot of
Fig. 34). This suggests that those states should be included in the construc-
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tion of the projective Wannier functions, i.e., a d-dp model. In the following
we will use the term High Energy Spectral Weight (HESW) to denote the
Wannier function weight on the oxygen bands (located below −1.5 eV). The
first and most obvious consequence of a larger projective energy window is
an increased bandwidth of the Wannier DOS. To obtain a similar insulating
behavior as in the d-only model we increase U and J . Secondly, now also
the DC correction has a non-trivial effect, since it shifts the correlated t2g

states relative to the oxygen bands. The t2g weight on the oxygen bands is
rather small, which means that the effect of the DC correction on the HESW
is equally low. Thirdly, in the 3-band d-dp model the impurity occupation
grows (the exact value depending on U and J), changing the character of
the ground state to a mix of states with mainly three and four particles on
the impurity, while in the 3-band d-only calculation the occupation of the
impurity was three electrons. Due to the increased complexity of the ground
state, we expect a richer dependence of the spectrum on the interaction pa-
rameters U and J .
In Fig. 37 we compare calculations for different values of J (top) and dif-

ferent values of U (bottom). Overall, the spectral functions consist of a
(smaller) lower Hubbard band connected to states from the hybridized oxy-
gen bands and an upper steeple-like Hubbard band of similar shape as in the
d-only calculation. By comparing the two peaks at −6.0 eV and −8.0 eV, we
observe that they behave differently when changing U or J . While the former
is only affected by J , the latter is not, but shifts with U . The resolution of
the structure in the lower-Hubbard-band/HESW complex demonstrates the
capabilities of the FTPS solver.
The t2g gap grows when increasing either U or J , which is a typical sign of
Mott physics at half filling [23]. Nevertheless, in the d-dp model the gap size
increases slowly: when increasing U by 1.0 eV, the gap only grows by about
half of that. Considering also the uncorrelated eg orbitals, we observe that
the single-particle gap is not much affected by the interaction values studied.
An artificial lowering of the DC correction by −0.5 eV, which corresponds
to a relative shift in energy between the correlated subspace and the uncor-
related states, also increases the t2g gap (Fig. 38). This growth of the gap
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Figure 39: Spectrum of a one-band AIM with one interacting site coupled to
a single non-interacting site (Eq. 8.3). The spectrum is calculated with the
absolute ground state over all particle number sectors. The on-site energy ε1
is shown as gray dashed-dotted vertical line. The gray dashed lines visualize
the evolution of the location of the three peaks as a function of the interaction
strength U . The colored dotted peaks show the atomic spectrum with peaks
at −U/2. The upper Hubbard band (additional peak at ω > 0) is not shown.
All spectra have been broadened by ηFT = 0.2 eV.

is mostly due to a shift of the t2g upper Hubbard band, since the chemical
potential is pinned by the eg bands. The first excitation below EF has a
mix of t2g and O-p character. This indicates that in this model, SrMnO3 is
not a pure Mott insulator, but a mixture between Mott- and charge transfer
insulator. This classification is consistent with previous results [139, 140,
142, 144].
Let us employ a simple toy model to qualitatively understand this interme-
diate regime. We use a correlated site coupled to only one non-interacting
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site:

H =U(n0,↑ − 0.5)(n0,↓ − 0.5)

+
∑

σ

V1(c†0,σc1,σ + h.c.) + ε1n1,σ (8.3)

The purpose of the non-interacting site is to mimic the effect of the HESW.
We set the on-site energy to ε1 = −2.0 eV and use a coupling to the impurity
of V1 = 1.0 eV. Since we want to understand the occupied part of the spec-
trum, we focus on negative energies only. In Fig. 39 we show the resulting
spectral functions (ω < 0) for various values of the interaction strength U

(full lines). The atomic excitation spectra of this model (corresponding to
V1 = 0), whose peaks are positioned exactly at −U/2, are indicated by dotted
lines. This toy model shows three important features:
First: The peak highest in energy (above −2.0 eV) corresponds to the lower
Hubbard band for small values of U 26. We see that it does not cross the
on-site energy ε1 with increasing U , but approaches it asymptotically. The
bath site repels this level and upon increasing U its weight decreases.
Second: The peak lowest in energy shows the opposite behavior. The uncor-
related site repels it towards lower energies and the spectral weight increases
when we increase U . For large U this level asymptotically approaches the
atomic limit at energy −U/2 and eventually becomes the lower Hubbard
band. These two peaks together form what one could call a split lower Hub-
bard band.
Third: The excitation at the on-site energy ε1 shifts to lower energy and
splits under the influence of U . Upon increasing U , one part develops into
the lower Hubbard band discussed above, and the other approaches ε1 from
below, with diminishing weight.
The DMFT spectral functions (Fig. 37) also show roughly a 3-peak structure,
where the peaks at about −1.5 eV (−8.0 eV) could be the first (last) peak of
the split lower Hubbard band of our toy model. The region in between then

26If we use a larger bath energy ε1, for example ε1 = −5.0 eV, the position of the first
peak of the impurity spectrum is proportional to U at small U , showing that it is indeed
a lower Hubbard band.
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corresponds to the small, middle peak in the toy model stemming from the
HESW.
The repulsion of the first peak explains why increasing U (Fig. 37 lower
graph) has only a relatively weak effect on the size of the gap. On the other
hand, effectively shifting the oxygen bands with the DC correction to lower
energies (Fig. 38) corresponds to shifting the bath energy ε1. This means
that the repulsion gets weaker, which explains the growth of the gap. Fur-
thermore, when increasing U we find that the peak highest in energy gets
smaller, while spectral weight is transferred to the lowest energy peak, which
is also shifted to lower energies (Fig. 37). Additionally, a lowering of the
DC correction leads to an opposite behavior, where the first peak below EF

grows at the expense of the lowest one in energy. Note that the middle region
of our DMFT spectrum shows a J-dependence (Fig. 37 top), which cannot
be explained by a one-orbital toy model. Using a similar toy model with two
orbitals and Kanamori interaction, we indeed observe a splitting proportional
to J in the spectra (not shown here). Since the effect is small we will refrain
from discussing it in more depth.
We emphasize that the close relation between the toy model and the actual
impurity Green’s function of SrMnO3 in the d-dp model suggests that the
HESW has the effect of splitting the lower Hubbard band into two bands;
their separation increases with the hybridization strength. Therefore, in-
cluding the oxygen states in the model strongly influences the size of the
gap.

8.4.3 5-band d-dp model

From the DFT-DOS in Fig. 34, we see that the eg orbitals are actually not
empty. They possess additional spectral weight at around −7.0 eV, stemming
from hybridizations with the oxygen bands. Similarly to the previous section
where we included hybridizations of t2g and O-2p, we now also include the
hybridizations of eg and O-2p.
As mentioned at the beginning, only approximations to the DC correction
are known. For the present 5-band calculation we find that using the FLL
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Figure 40: Comparison of the spectral functions for the 5-band d-dp model
between FTPS and CTQMC+MaxEnt. Top: eg orbitals. Middle: t2g or-
bitals. For both calculations we use U = 6.0 eV and J = 0.8 eV. Bottom:
Combined spectral function.
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DC does not produce a pronounced gap. This can be traced back to the ad-
ditional hybridizations of eg with O-2p (see discussion below). Furthermore,
the FLL formula is based on five degenerate orbitals. In the case at hand we
find an approximately half filled t2g impurity (〈nt2g0σ〉 ≈ 0.5) and about one
electron in total on the eg part of the impurity (〈neg0σ〉 ≈ 0.2). One therefore
needs to adapt the DC correction to reproduce experimental results. In or-
der to obtain a pronounced gap, we decrease the FLL DC energy by 2.0 eV.
Note that it has been argued that very often the FLL-DC is too high [74].
A reduction of the DC can also be accomplished by adjusting U in the FLL
formula [75, 144].
Fig. 40 shows the spectral function of the full 5-band d-dp calculation with
adjusted DC as well as the respective spectral function obtained by a DMFT
calculation using CTQMC+MaxEnt. Overall, the FTPS spectrum is in good
agreement with the CTQMC+MaxEnt result. However, FTPS provides a
much better energy resolution at high energies, which is especially apparent
from the pronounced peak structure in the eg spectrum. From this compar-
ison we also see that the sharp, step-like shape of the eg spectrum at EF is
not an artifact of the FTPS solver. We note that for the 5-band calculation
presented in Fig. 40, FTPS (720 CPU-h) and CTQMC (600 CPU-h) need
similar computational effort for one DMFT iteration 27.
The unoccupied part of the total spectrum (sum of the eg and t2g spectra
shown in the bottom plot of Fig. 40) consists of a three peak structure with
alternating eg -t2g -eg character, which is much more pronounced than in the
5-band d-only calculation (Fig. 36). Compared to the 3-band d-dp model
we find differences mainly in the occupied part of the t2g spectral function
(Fig. 42). This is especially apparent in the lowest peak, which seems to be
shifted from −9.0 eV to −13.0 eV. Although this high energy excitation is
small, the FTPS solver can reliably resolve it.

The differences in the position of this peak are again similar to the be-
havior of a toy model. Here we use a two-orbital AIM with a single bath site

27CTQMC used 128 · 106 measurements and the calculations were performed on the
same processors: Intel Xeon E5-2650v2, 2.6 GHz with 8 cores.
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Figure 41: Effect of the eg hybridizations on the t2g spectrum of the toy
model (Eq. 8.4). Parameters (in eV): U = 10.0, J = U/10, Et2g = −U/2,
Eeg = −U/2 + 1.0, εt2g = εeg = −5.0 and Vt2g = 1.5. The gray dashed
dotted line shows the bath energy levels. All spectra have been broadened
by ηFT = 0.2 eV.

for each orbital:

H =Hint +
∑

m∈(t2g ,eg)

Emn0,m+

∑

σ

Vm(c†0,m,σc1,m,σ + h.c.) + εmn1,m,σ. (8.4)

For the interaction Hint we choose the Kanamori Hamiltonian. As before,
we use a single bath site for each orbital to mimic the effect of the HESW.
We are interested in the influence of the hybridizations of eg and O-2p on
the t2g spectral function. In Fig. 41, we compare the spectrum without eg
-HESW states (Veg = 0) with the one obtained from Veg = 2Vt2g

28. Although
one would expect the eg hybridization to only have a minor influence on the
t2g spectrum, we observe a rather surprising behavior. The additional hy-

28In the full 5-band calculation, the eg bath spectral function is much larger than the
one for the t2g orbitals in the energy region of the oxygen bands, which we mimic by a
factor of 2 in Veg .
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Figure 42: Comparison of the t2g spectral functions of the 3-band d-dp and
5-band d-dp calculations at U = 6.0 eV and J = 0.8 eV, taken from Figs. 37
and 40. In the 5-band calculation we shifted the double counting by −2.0 eV
to increase the gap. The influence of the number of bands is most apparent
in the high-energy features. The increased repulsion of the first peak of
the lower-Hubbard-band/oxygen complex (Fig. 41) makes a shift in the DC
necessary, if the single particle gap should remain the same.

bridization leads to a stronger repulsion of the lowest energy peak from the
bath energy, qualitatively explaining the shift from −9.0 eV to −13.0 eV in
Fig. 42.
Additionally, this toy model provides an explanation for the necessary ad-
justment of the DC correction in the 5-band calculation: The peak highest in
energy in Fig. 41 is repelled more strongly with the additional eg hybridiza-
tions, therefore the gap decreases. If we would want to obtain a similar t2g
gap as with Veg = 0, the interaction in the toy model would need to be in-
creased to U ≈ 20 eV (keeping J = U/10). Since this is unphysical, the only
other option is to shift the bath site energies of the toy model. In the DMFT
calculation this corresponds to a shift in the DC correction, effectively shift-
ing the HESW to lower energies. This behavior can be observed in Fig. 42,
where we compare the spectra of the 3- and 5-band d-dp models. The onset
of the lower-Hubbard-band/HESW complex is exactly at the same position
in both spectra, although the DC shift differs by 2.0 eV.
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Figure 43: Photo Emission Spectroscopy (PES) and X-ray Absorption
Spectroscopy (XAS) compared to the 5-band d-dp DMFT-FTPS results
(U = 5.0 eV and J = 0.6 eV). The experimental curves are reproduced from
Ref. [143], Fig. 5. We normalized the experimental curves to

∫ 0

−9
APESdω =∫ 0

−9
AFTPSdω and

∫ 6

0
AXASdω =

∫ 6

0
AFTPSdω. FTPS as well as the experi-

ments show a 3-peak structure of alternating eg - t2g - eg character in the
unoccupied part of the spectrum (indicated by arrows). For the arrow labels
we adopted the notation of Ref. [143], where e↑g means an excitation into the
eg spectrum with majority spin, while t↓2g and e↓g are excitations into the t2g
and eg spectrum with minority spin (see also Eq. 8.2).
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8.5 Comparison to experiment

Equipped with a good understanding of the model-dependent effects on the
spectral function, we are finally in a position to compare our results to exper-
iments. Several studies concluded that the unoccupied part of the spectrum
consists of three peaks with alternating eg - t2g - eg character [141–143]. As
we have shown, with DMFT+FTPS we are able to resolve such a structure
when including the eg states as correlated orbitals in a genuine 5-band model.
Additionally, we need to choose the energy window, i.e., whether the HESW
should be included in the construction of the projective Wannier functions.
The nature of the insulating state (Mott or charge transfer) has been debated
in the literature [139, 140, 142, 144], but it is likely that SrMnO3 falls in an
intermediate regime where a clear distinction is difficult. In the present work
we have come to the same conclusion. This implies that the lower Hubbard
band and the O-2p bands are not separated in energy, which favors the use of
a d-dp model. We therefore conclude that a 5-band d-dp model is necessary
to fully capture the low-energy physics of SrMnO3.
Having decided on the model for the correlated subspace, we still need to
determine the interaction parameters U and J as well as the DC. To do
so we use PES and XAS data for the Mn-3d orbitals obtained by Kim et
al. [143] and compare to our total impurity spectrum (6At2g (ω) + 4Aeg (ω)

from Fig. 40). According to Ref. [143], the XAS (PES) spectrum can be
considered to represent the unoccupied (occupied) Mn-3d spectrum. In the
measured spectrum the chemical potential is in the middle of the gap. In
all our calculations, the chemical potential is determined by the onset of the
unoccupied eg spectrum. However, the absolute position in energy is not
exactly known in XAS [149]. Our calculation is in good agreement with
the experiment when we use a rigid shift of the XAS spectrum by 0.8 eV to
lower energies. Additionally, we deduce from the peak positions in the ex-
periment that the interaction parameters used for the calculations presented
in Fig. 40 are too high. The separation of the two eg peaks (∼ J) and also
the relative position of the t2g upper Hubbard band is different than in the
experiment. Therefore, we decrease the interaction parameters to U = 5.0 eV
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and J = 0.6 eV but keep the static shift of the FLL DC by −2.0 eV. Note
that these parameters are similar to the ones used in other DFT+DMFT
studies on SrMnO3 [144, 145].
The resulting spectral function for the new set of parameters is compared to
the experimental spectrum in Fig. 43. Notably, the bandwidths of both, the
unoccupied and the occupied spectrum, agree very well with the experiment.
The unoccupied part of the experimental spectrum (XAS) shows that the
first eg peak is just a shoulder of the t2g upper Hubbard band, and that the
separation of the two eg peaks is about 3.2 eV, which is in agreement with
our result. Since this separation is proportional to the Hund’s coupling, we
conclude that J ≈ 0.6 eV for this compound. The t2g upper Hubbard band
at 2.0 eV is still slightly too high in energy.
The experiment also shows a lower-Hubbard-band/oxygen complex with two
main peaks at about −6.0 eV and −2.0 eV. As discussed in the previous sec-
tions (bottom plot of Fig. 40), our results identify the first peak at −2.0 eV

to have mainly t2g character and to correspond to the largest part of the split
lower Hubbard band, whereas the second peak at −6.0 eV has both eg and
t2g character and stems from the hybridizations with the oxygen bands. We
note that the region between these two peaks has larger spectral weight in
the experiment than in our calculations. Importantly, no prominent spec-
tral features are observed in the experiment around −8.0 eV, strengthening
our conclusion that the 3-band d-dp model is not sufficient to describe the
experiment (see also Fig. 42).

8.6 Conclusions

We have studied the influence of the choice of the correlated subspace, i.e.
the number of bands and the energy window, on the DFT+DMFT result
for the strongly correlated compound SrMnO3. For d-only models (neglect-
ing p-d hybridizations), we have shown that the empty eg orbitals should be
included in the correlated subspace because interactions with the half-filled
t2g bands affect the spectrum, leading to a multiplet structure and a broad-
ening of the eg DFT-DOS. Including the Mn-3d/O-2p hybridizations in a
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3-band model for the t2g bands only, i.e., the 3-band d-dp model, we found a
situation similar to avoided crossing, which leads to an interesting interplay
of atomic physics (lower Hubbard band) and Mn-d/O-p hybridizations. In
SrMnO3, the lower Hubbard band hybridizes with the t2g Wannier-weight on
the oxygen bands, giving rise to a spectrum that can be approximated by
three peaks. This result provides new perspectives on an intermediate regime,
where both Mott and charge transfer physics are found. By performing a 5-
band calculation including the p-d hybridization, we investigated the effect
of the eg hybridization on the t2g spectrum. The splitting due to avoided
crossing is heavily increased, which strongly affects the 3-peak structure and
also decreases the gap. Equipped with a good understanding of the different
correlated subspaces and the effects of the model parameters (U , J , DC) we
were able to obtain a spectral function in good agreement with experimental
data. We conclude that the choice of a suitable model for the correlated
subspace is important, since the inclusion of both the O-2p hybridizations
and the eg states is essential for a correct description of the observed spectral
function in SrMnO3.
Finally, we would also like to stress that we have shown that FTPS is a viable
real-time impurity solver for real material calculations with five bands.
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9 Conclusions

In the present thesis, we have introduced an Fork Tensor Product States
(FTPS) tensor network that can be used as a real-frequency impurity solver
for Dynamical Mean Field Theory (DMFT). The fork-like geometry of an
FTPS resembles the geometry of the Hamiltonian of a multi-orbital AIM.
It allows us to represent the bath with high accuracy by employing a large
number of bath sites. Although FTPS are more involved than Matrix Prod-
uct States (MPS), they share one important similarity. The graphs of both
tensor networks are loop-free, allowing us to find Schmidt decompositions for
each bond-index. This in turn allows us to truncate the tensor network in
a controlled way and to find efficient representations of quantum mechanical
states. Therefore, the theory of how to use FTPS is largely based on MPS,
discussed in detail in Sec. 4.

In Sec. 5 we showed how to use MPS for impurity models for a single or-
bital. We emphasized that it is favorable to use the so called star geometry
of the bath in which the impurity is coupled to all bath sites in a star-like
manner (see Fig, 1). Although such long-range hopping terms seem to be
incompatible with MPS, we have shown how to efficiently encode the Hamil-
tonian as a Matrix Product Operator (MPO) and how to time evolve using
swap-gates. Then we set the stage for the FTPS-tensor network by discussing
one possible reason of why MPS fail for multi-orbital models: AIMs usually
do not couple bath degrees of freedom of different orbitals directly with each
other. Instead of combining these separated bath sites into one super-site
in the MPS, FTPS keep bath tensors of different spin and orbital degrees of
freedom separated. In Sec. 6, we discussed the tensor network thus obtained.
Since FTPS are loop-free, we were able to show how to obtain the Schmidt
decomposition for each bond of the tensor network. Then, we explained how
to to find ground states using DMRG and how to time evolve in star geome-
try using the results of Sec. 5 as a starting point. This allows us to calculate
Green’s functions (self energies) on the real frequency axis, enabling us to
use FTPS as a real-frequency solver for DMFT.

In Sec. 7 we used this approach for the typical benchmark compound
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SrVO3. We described its low energy subspace by a three-orbital model for the
t2g bands of the V-3d shell. We found that FTPS agrees very well with Con-
tinuous Time Quantum Monte Carlo (CTQMC) on the imaginary frequency
axis (where CTQMC is statistically exact), but shows significant differences
for real frequencies. The reason for this is the ill-posed analytic continua-
tion required to transform imaginary-time Green’s functions to real-energy
spectra in CTQMC (see Fig. 28). On the real frequency axis, the FTPS
impurity spectral function shows a distinct three-peak structure in the upper
Hubbard band. The position of these three peaks depends on whether we
use the full Kanamori interaction or neglect the spin-flip and pair-hopping
terms. We found that the origin of these peaks are atomic excitations of the
local part of the AIM-Hamiltonian Hloc (as also discussed in Sec. 2) with
effective interaction parameters U and J .

Finally, in Sec. 8 we used the FTPS solver for the compound SrMnO3. It
has a half-filled Mn 3d-shell, and therefore tends to become Mott-insulating.
This is exactly what we found when using only the t2g bands for the correlated
subspace in a three-band model. Since the t2g lower Hubbard band is in close
proximity (in energy) to hybridizations of the t2g bands with oxygen p-bands,
we found that it is necessary to include these hybridizations, resulting in
a so called dp-model. Indeed, including hybridizations, we found that the
spectral function changes considerably giving rise to an intermediate regime
between Mott- and charge transfer insulator. Not only hybridizations play
a crucial role in SrMnO3, but also the eg bands are important, although
they appear to be mostly empty at a first glance. Performing DMFT for
the full 3d-shell (t2g - as well as eg -bands) in a five band model showed
that FTPS is a viable impurity solver for real material calculations for at
least five bands. We compared the spectrum of this five band calculation
(including hybridizations) to XAS and PES experiments and found very good
agreement. Notably the XAS measurement shows a three-peak structure
of alternating eg -t2g -eg character. The spectrum of the FTPS solver has
the same three peaks, showing the importance of a real-frequency solver in
describing strongly correlated materials (see Fig. 43).
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As far as future developments are concerned, I can think of three im-
portant directions. First, throughout this work, we used the star geometry
representation of the bath. With FTPS the bath sites are already separated
in the tensor network and operations on the bath tensors are computationally
cheap. Although star geometry seems to be far superior (see Fig. 13), chain
geometry might show better convergence in the DMRG 29. Second, it would
be interesting to try to use FTPS for finite temperature calculations, for ex-
ample employing the purification method [17]. This would only need a local
doubling of the Hilbert space which should not be an issue, since it already
has the smallest possible value (d = 2). Third, so far, FTPS can only treat
diagonal hybridizations of the impurity with its bath. Lattice distortions,
for example, introduce off-diagonal terms though. It is possible to repre-
sent such off-diagonal terms by only coupling bath sites to impurity sites,
which should allow FTPS to be a good representation of quantum mechani-
cal states. Although we can find an FTPO for such terms, the time evolution
is more challenging. The TDVP or Krylov-space based methods would allow
time evolution using only the Hamiltonian and hence might be an interesting
future development. If successful, this would allow FTPS to treat the most
general case of an AIM describing the full 3d-shell in the presence of lattice
distortions or spin-orbit coupling at zero temperature.

29The transformation from star- to chain geometry is a unitary transformation only
acting on the bath degrees of freedom. Therefore, this can only change the bond dimensions
of the bath tensors.
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A Swap Gates

In this appendix we prove that swap gates Sij change the ordering of sites in
a tensor network. We assume i < j in the fermionic order such that A ⊗ B
means that operator A acts on site i and operator B acts on site j. To do
this it suffices to show that:

Sij (Ak ⊗Bl)S
ij = ξ (Bl ⊗ Ak) (A.1)

for a complete basis of operators Ak and Bl. ξ = −1 if Ak and Bl anti-
commute and ξ = 1 otherwise. In the present the the case ξ = −1 is never
needed, since if a term c†icj appears we apply it before we swap. Eq. A.1
means that swapping first, applying Ak⊗Bl and swapping back has, up to a
sign, the same effect as applying Bl⊗Ak. The operator basis we choose is 1,
n = c†c, c† and c. The basis for the vectors is the standard particle number
basis for which the swap gate has matrix representation:

Sij =

|0, 0〉 |0, 1〉 |1, 0〉 |1, 1〉






1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

(A.2)

The minus sign in the last entry is due to the fermionic sign when two
fermions swap their places. Calculating all 16 possible combinations is a
tedious but straight forward linear algebra exercise that will be left to the
reader. Only note that the swap gate takes already care of the fermionic
sign. For example: Sij (c⊗ 1)Sij = p⊗ c, with p = (−1)n.
It is also instructive to look at the matrix representation of some operator O
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in bra-ket notation:

O =




〈0, 0|O|0, 0〉 〈0, 0|O|0, 1〉 〈0, 0|O|1, 0〉 〈0, 0|O|1, 1〉
〈0, 1|O|0, 0〉 〈0, 1|O|0, 1〉 〈0, 1|O|1, 0〉 〈0, 1|O|1, 1〉
〈1, 0|O|0, 0〉 〈1, 0|O|0, 1〉 〈1, 0|O|1, 0〉 〈1, 0|O|1, 1〉
〈1, 1|O|0, 0〉 〈1, 1|O|0, 1〉 〈1, 1|O|1, 0〉 〈1, 1|O|1, 1〉



. (A.3)

Then we find for the transformed operator:

SijOSij =




〈0, 0|O|0, 0〉 〈0, 0|O|1, 0〉 〈0, 0|O|0, 1〉 −(−1)〈0, 0|O|1, 1〉
〈1, 0|O|0, 0〉 〈1, 0|O|1, 0〉 (−1)〈1, 0|O|0, 1〉 −〈1, 0|O|1, 1〉
〈0, 1|O|0, 0〉 (−1)〈0, 1|O|1, 0〉 〈0, 1|O|0, 1〉 −〈0, 1|O|1, 1〉

−(−1)〈1, 1|O|0, 0〉 −〈1, 1|O|1, 0〉 −〈1, 1|O|0, 1〉 〈1, 1|O|1, 1〉



.

The (−1) are the ξ = −1 in Eq. A.1 for the four pairs of c†c†, c†c, cc† and cc.
We see that in the bra- as well as in the ket vector the entries are swapped and
we get a minus sign if 2 particles are moved past each other. This behavior is
exactly what we expect from swap gates. To obtain a better understanding
of the basis transformation from applying swap gates, let us take a look at
a few examples. First, for the operator c†icj (i < j) with only one non-zero
matrix element:

〈10| c†icj |01〉 = 1

〈10|Sij︸ ︷︷ ︸
〈01|

Sijc†icjS
ij

︸ ︷︷ ︸
ξcic
†
j

Sij |01〉︸ ︷︷ ︸
|10〉

= 1

〈01| − ξc†jci |10〉 = 1

ξ(−1) = 1→ ξ = −1.

In the second line we used (Sij)2 = 1. This confirms that we need to use
ξ = −1 for anti-commuting operators. As a different example let us look at
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the operator cinj, for which we should use ξ = 1 according to Eq. A.1:

〈01| cinj |11〉 = 1

〈01|Sij︸ ︷︷ ︸
〈10|

SijcinjS
ij

︸ ︷︷ ︸
nicj

Sij |11〉︸ ︷︷ ︸
−|11〉

= 1

−〈10|nicj |11〉 = 1

1 = 1.

Indeed, for commuting operators the ξ = 1 choice is correct. In the last
example we show how a hopping term tc†icj − t∗cic†j (i < j in the fermionic
order) transforms under swap gates.

Sij
(
tc†icj − t∗cic†j

)
Sij

= tSijc†icjS
ij − t∗Sijcic†jSij

= − tcic†j + t∗c†icj

= t∗c†icj − tcic†j.

This shows that for hopping terms, a swap results in complex conjugation of
the amplitude t. Therefore, when using swap gates, one must be very careful
with the fermionic sign. In the present thesis, we circumvent this difficulty
by applying hopping terms always before the application of the swap gate.
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B Error Estimates of Suzuki Trotter Decompo-

sitions

In this appendix we discuss the error of the second order Suzuki Trotter
decompositions of AIMs with respect to the number of bath sites Nb for the
star geometry as well as for the chain geometry. Since we use a second order
breakup, differences occur in the third order of the series expansion and a
single breakup separating operators A and B is given by

e−i(A+B)∆t = e−i
∆t
2
Ae−i∆tBe−i

∆t
2
A +O

(
(∆t)3

(
[A, [A,B]] + [B, [A,B]]

))
.

(B.1)
The influence of the number of bath sites is encoded in the double commu-
tators. Therefore let us analyze them for the two geometries. In the chain
geometry (a nearest neighbor tight binding chain), we use a standard even-
odd breakup [17], i.e. A = Heven and B = Hodd. The commutator [A,B] is
of order O(Nb), since each term in A does not commute with at maximum
two terms in B. For the double commutators [A, [A,B]] and [B, [A,B]] this
means, both are of order O(N

)
b .

For star geometry, the situation is a bit more involved (see Eq. 5.11). To
proceed, we first calculate the commutator of two different hopping terms
(omitting the amplitudes V in the following):

Hk→l = [Hkσ, Hlσ] = c†kcl − c†l ck. (B.2)

The first step of the breakup in Eq. 5.11 separates HNbσ from the hoppings
to all other sites, i.e. A = HNbσ, B =

∑
k<Nb

Hkσ (from now on omitting the
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spin index σ). We find:

[A,B] =
∑

k<Nb

[HNb , Hk] =
∑

k<Nb

HNb→k

[A, [A,B]] =
∑

k<Nb

[HNb , HNb→k] = O(Nb)

[B, [A,B]] =
∑

k,k′<Nb

[Hk′,, HNb→k]︸ ︷︷ ︸
∼δk,k′

= O(Nb). (B.3)

And we see that the error of the first step scales with O(Nb). In the second
step, we separate HNb−1 from all remaining terms with index k < Nb − 1.
Using the same arguments as before, we find that the error of this step scales
as O(Nb− 1), since the number of sites in the remaining terms decreased by
one. Iterating this, we find that the total breakup given in Eq. 5.11 has an
error of the order of:

O(Nb) +O(Nb − 1) +O(Nb − 2) + · · ·+O(1) = O(N2
b ). (B.4)

This proves that the error of the breakup we use for the star geometry
(Eq. 5.11) has at most a scaling of N2

b . Although this suggests that chain
geometry should be superior for large baths, the results presented in Fig. 13
show that the error in star geometry does not seem to scale with bath size.
We leave this very curios finding for future investigations.
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C FTPO for Multi-Orbital AIM

In this appendix we construct the FTPO of a multi-orbital AIM with Kanamori
interaction (see Eq. 2.10 and Eq. 2.11). The construction is valid for any
number of orbitals, since we find repeating matrices. Not included are for
example hopping terms First, we need to choose the fermionic order. Every
basis state in Fock space is given by:

(
c†1

)n1
(
c†2

)n2

· · ·
(
c†N

)nN |0〉 , (C.1)

where Fig. 21 shows the labels 1 · · ·N for each site. The spin-flip and pair-
hopping terms can be written as

Jc†m↑cm↓cn↑c
†
n↓ + Jcm↑c

†
m↓c

†
n↑cn↓+

(−J)c†m↑c
†
m↓cn↑cn↓ + (−J)cm↑cm↓c

†
n↑c
†
n↓, (C.2)

for any pair (m,n). The bath tensors we use are nearly the same that as
in Eq. 5.7. The only difference is that all spin-up baths need to carry an
additional Fermi-sign operator p to encode the spin-flip and pair-hopping
terms. Hence, the bath FTPO tensors are given by:

W ↑
1 =




ε1n1

I

p

V1c1

V1c
†
1




B

, W ↓
1 =




ε1n1

I

V1c1

V1c
†
1



B

W ↑
k =




I εknk 0 0 0

0 I 0 0 0

0 0 p 0 0

0 Vkck 0 p 0

0 Vkc
†
k 0 0 p




B

, W ↓
k =




I εknk 0 0

0 I 0 0

0 Vkck p 0

0 Vkc
†
k 0 p



B

. (C.3)

Above, we introduced a small subscript B to indicate that the matrix indices
correspond to bath-indices. Similarly, we will later use a subscript I to denote

138



for impurity-impurity indices. Multiplying these FTPO tensors, we obtain
for each spin-up and spin-down arm:

Nb∏

k=1

W ↑
k =




∑
k εknk

I

p∑
k Vkck∑
k Vkc

†
k




B

,
Nb∏

k=1

W ↓
k =




∑
k εknk

I∑
k Vkck∑
k Vkc

†
k



B

.

(C.4)

The bath parameters εk and Vk can be orbital and spin-dependent, but we
omit the indices for notational simplicity. The spin-up matrices have an ad-
ditional entry with a p-operator that will be used exclusively for the spin-flip
and pair-hopping terms (note our choice of fermionic order). The vector in-
dex of the tensors for bath m above, is the FTPO bond index connecting the
impurity to the bath tensor of bathm (for example tensor 6 and 7 in Fig. 21).

Let us continue with the impurity tensors. Since some of the impurity ten-
sors have 3 indices, we introduce a new convention to be able to write them
down. For the bond indices connecting impurity tensors we use matrix in-
dices. Additionally, we find that most entries in these matrices need only a
single operator from the bath, i.e.:, the identity I or the Fermi-operator p.
Therefore, for any local operator O acting on an impurity orbital, we use
the notation O(k) to mean that this operator connects to the k-th entry of
the bath tensor. For example for the Hubbard terms Un↑n↓ we need identity
operators from the bath. Therefore, in the FTPO tensors we write n↑(2) to
abbreviate:

n↑(2) =




0

n↑

0

0

0




B

, (C.5)
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where the vector index of this tensor corresponds to the bond index connect-
ing the impurity to the bath and n↑ thus multiplies the identity operator in
Eq. C.4. The impurity FTPO-tensor then is a matrix of such entries. To
connect the non-trivial terms of the bath with the impurity it is convenient
to define the following vectors in the sense of Eq. C.5 on the spin-up and
spin-down impurities:

H↑IB =




I

ε0n

0

c†

c




B

, H↓IB =




I

ε0n

c†

c



B

. (C.6)

We note that the on-site energy ε0 can be orbital and even spin dependent,
but we omit indices for notational simplicity. For the sake of concreteness
we will use A,B · · ·E to denote 5 different orbitals, but remember that the
following construction is valid for any number of orbitals. With this the first
FTPO tensor for orbital A with spin-up is given by:

WA↑ =




H↑IB
I(2)

nA↑(2)

c†A↑p(3)

cA↑p(3)




I

. (C.7)

Expressions like c†A↑p(3) = (c†A↑p)(3) mean, that the local operator we use is
c†A↑p and that it connects to the third bath index, the string of p-operators
in this case (see Eq. C.4). From here on out, all vector/matrix indices of
the tensors correspond to impurity-impurity links. Hence, the vector index
above corresponds to the bond connecting site 1 and 6 in Fig. 21. Note
that the annihilation operator cA↑ does not commute with p. Therefore, it
is important to let p act before annihilation. Also note that c†A↑p = c†A↑, but
we keep writing it for consistency reasons. For the second impurity tensor
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we find the 5× 8 matrix:

WA↓ =




I(2) H↓IB UnA↓(2) . .

. I(2) . . .

. . I(2) . .

. nA↓(2) . . .

. . . cA↓(2) .

. . . c†A↓(2) .

. . . . c†A↓(2)

. . . . cA↓(2)



I

. (C.8)

For orbital B ↑ the FTPO tensor is given by the 8× 13 matrix:

WB↑ =




I(2) H↑IB (U ′ − J)nB↑(2) U ′nB↑(2) . . . .

. I(2) . . . . . .

. . I(2) . . . . .

. . . I(2) . . . .

. nB↑(2) . . . . . .

. . . . I(2) . . .

. . . . . I(2) . .

. . . . . . I(2) .

. . . . . . . I(2)

. c†B↑p(3) . . . . . .

. cB↑p(3) . . . . . .

. . . . cB↑p(3) . . .

. . . . . cB↑p(3) . .

. . . . . . c†B↑p(3) .

. . . . . . . c†B↑p(3)




I

.

(C.9)
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It turns out that we can repeat the two tensors in Eq. C.9 and Eq. C.10
for all orbitals except the last one, orbital E in our example. Their tensors
are very similar to Eq. C.9 and Eq. C.10, but not all entries are needed
anymore, so that WE↑ is only 8× 8-dimensional:

WE↑ =




I(2) H↑IB (U ′ − J)nE↑(2) U ′nE↑(2) . . . .

. I(2) . . . . . .

. . I(2) . . . . .

. . . I(2) . . . .

. nE↑(2) . . . . . .

. . . . cE↑p(3) . . .

. . . . . cE↑p(3) . .

. . . . . . c†E↑p(3) .

. . . . . . . c†B↑p(3)




I

WE↓ =
(
I H↓IB U ′nE↓ (U ′ − J)nE↓ UnE↓ Jc†E↓ −JcE↓ JcE↓ −Jc†E↓

)
I
.

(C.11)

Again, each operator (except H↓IB) inWE↓ connects to the second bath index
i.e.: JcE↓ = JcE↓(2).
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D FTPO for Time Evolution of Spin-Flip and

Pair-Hopping Terms

In this appendix we construct the FTPOs to time evolve the spin-flip and
pair-hopping terms of the Kanamori Hamiltonian 2.11 used in Sec. 6.3:

HSF
m,m′ = J

(
c†m↑cm↓cm′↑c

†
m′↓ + cm↑c

†
m↓c

†
m′↑cm′↓

)
= JASF

m,m′ (D.1)

HPH
m,m′ = −J

(
c†m↑c

†
m↓cm′↑cm′↓ + cm↑cm↓c

†
m′↑c

†
m′↓

)
= −JAPH

m,m′ . (D.2)

We note that [HSF
m,m′ , H

PH
m,m′ ] = 0. According to Eq. 6.9 we need the square

of these operators, given by:

(
ASF
m,m′

)2
= nm↑(1− nm↓)(1− nm′↑)nm′↓ + (1− nm↑)nm↓nm′↑(1− nm′↓)

(D.3)
(
APH
m,m′

)2
= nm↑nm↓(1− nm′↑)(1− nm′↓) + (1− nm↑)(1− nm↓)nm′↑nm′↓.

(D.4)

Hence, the time evolution simplifies to (note the sign change of the sine-term
due to the negative coupling −J above):

e
−i∆tHSF

m,m′ = I + (cos(∆tJ)− 1)
(
ASF
m,m′

)2 − i sin(∆tJ)ASF
m,m′ (D.5)

e
−i∆tHPH

m,m′ = I + (cos(∆tJ)− 1)
(
APH
m,m′

)2
+ i sin(∆tJ)APH

m,m′ . (D.6)

To construct the FTPOs we use the same conventions as in App. C. We will
only show how to construct the spin-flip term. The pair hopping operator can
be obtained by changing J → −J and swapping the corresponding creation
annihilation operators as well as n and (1− n) operators. Most importantly
the structure of the FTPO tensors is the same. The FTPO we write down
below, time evolves all spin-flip terms between orbital m and m′ > m at
once. To time evolve one step, we therefore need to apply one such FTPO
for each m.
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The bath tensors only need to provide Fermi-operators and the identity.
Therefore, they are given by:

W ↑
1 =

(
I

p

)

B

, W ↓
1 =

(
I
)
B

W ↑
k =

(
I 0

0 p

)

B

, W ↓
k =

(
I
)
B
. (D.7)

Since for the down-spin bath the FTPO tensors are trivial we will omit the
bath index for the impurity tensors with spin-down. For m 6= 1, the impurity
tensors before m are trivial:

Wnσ =
(
I(1)

)
I

for n < m (D.8)

The first two non-trivial tensors are located at orbital m:

Wm↑ =




.

I(1)

a1nm↑(1)

a1(1− nm↑)(1)

a2c
†
m↑p(2)

a2cm↑p(2)



I

Wm↓ =




. . . . . .

. I . . .

. . (1− nm↓) . . .

. . . nm↓ . .

. . . . c†m↓ .

. . . . . cm↓



I

, (D.9)

with a1 = (cos(∆tJ)− 1) and a2 = −i sin(∆tJ). For the next orbital we
find (omitting orbital and spin indices of the operators from now on):
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W(m+1)↑ =




I(1) . . . . .

. I(1) . . .

. . (1− n)(1) . . .

. . . n(1) . .

. . . . cp(2) .

. . . . . c†p(2)

. . I(1) . . .

. . . I(1) . .

. . . . I(1) .

. . . . . I(1)



I

W(m+1)↓ =




I . n (1− n) c† c . . . .

. I . . . . . . . .

. . . . . . I . . .

. . . . . . . I . .

. . . . . . . . I .

. . . . . . . . . I



I

(D.10)

We repeat the two tensors in Eq. D.10 for all orbitals m′ 6= Norb. Those for
the last orbital finally are given by:

WNorb↑ =




I(1) . . . . .

. I(1) . . .

. . (1− n)(1) . . .

. . . n(1) . .

. . . . cp(2) .

. . . . . c†p(2)



I

WNorb↓ =
(
I I n (1− n) c† c

)
I
. (D.11)
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