

Birgit Schlager, BSc

Low-Cost IoT Device Framework
with Long-Term Availability

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn., Bernd Deutschmann

Institute of Electronics (IFE)

in cooperation with linked IP GmbH

Graz, März 2018

IP

2

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which

has been quoted either literally or by content from the sources used. The text document

uploaded to TUGRAZonline is identical to the present master‘s thesis.

 Date Signature

3

Abstract

The aim of this thesis is designing an internet of things (IoT) device framework as a basis for

the development of mechatronic IoT devices. An IoT device framework is a generic solution

for recurring problem definitions in individual applications. The goal is to combine the

advantages of commercial off-the-shelf (COTS) devices and the advantages of individual

devices, that are developed from scratch. The high reusability of the framework results in a

shorter time-to-market (TTM) and in a reduced total-cost-of-ownership (TCO).

Currently used hardware concepts for IoT devices are evaluated and compared. Based on

these evaluations, the schematics of the IoT device framework and the layout of an exemplary

IoT device are developed. Furthermore, possible software concepts are explained and the

most suitable concept is described in more detail. During the design of the IoT device

framework several challenges for both, schematics and printed circuit board (PCB) design,

occurred and several guidelines had to be considered. This aspects are listed in the thesis. At

the end the life-cycle relevant points are stated.

4

Kurzfassung

Das Ziel der Arbeit ist es, ein „Internet of Things“ (IoT) Device Framework zu entwickeln, das

als Ausgangspunkt für die Entwicklung mechatronischer IoT-Geräte dient. Es werden die

Vorteile von commercial off-the-shelf- (COTS-) Komponenten mit den Vorteilen von Geräten,

die zur Gänze neu entwickelt werden, kombiniert. Ein IoT Device Framework stellt eine

generische Lösung für wiederkehrende Problemstellungen in individuellen Anwendungsfällen

dar. Im Vergleich zu derzeitigen Lösungen bringt das IoT Device Framework durch den hohen

Wiederverwendbarkeitsgrad ein kürzeres time-to-market (TTM) und geringere total-cost-of-

ownership (TCO) mit sich.

Im Rahmen der Arbeit werden verschiedene Hardware-Konzepte für IoT-Geräte verglichen

und basierend darauf passende Konzepte und Komponenten für das Framework gewählt. Als

Beispiel wurde ein Layout mit allen Komponenten des Frameworks entwickelt. Weiters werden

verschiedene Softwarelösungen gegenübergestellt. Aspekte, die während dem Schaltplan-

und Layoutdesign beachtet werden müssen, werden diskutiert. Am Ende der Arbeit werden

Life-Cycle relevante Punkte erläutert.

5

Acknowledgement

I would like to thank everyone who helped me and who has contributed to this work. Particularly

I want to thank…

… Prof. Bernd Deutschmann for being a great supervisor for both, my master’s but also for my
bachelor’s thesis. Besides, he was an instructive mentor for my master’s program and helped

me to compile my individual electronics study program.

… the Linked IP GmbH for providing a comfortable working environment and all the working

tools but also for being a great employer during my entire study program.

… Dr. Rudolf Golser for being an incredible supervisor. He supported me with a lot of know-
how and had an answer for every of the uncountable questions I had, but most importantly he

provided the needed motivation to carry out this project.

… Prof. Marcel Baunach for being a great guidance when I was about to write this thesis. He
supported me with lots of theoretical background and literature to the considered topics.

... my family and my friends. In particular I want to thank my mum, my dad, my little brother
and Eva for being the essential support all over the time.

6

Contents

1 Introduction and Terminology ... 11

2 Comparison of IoT Device Development Concepts 16

2.1 Levels of Integration: SoC, SoM and SBC/DBC ... 16

2.2 Comparison of SBC Solutions with DBC Solutions 17

2.2.1 Calculation: Crossover Point of SBC Solution 20

2.3 Comparison Standard SBC with Individual SBC .. 22

2.3.1 Calculation: Crossover Point of Individual SBC 23

3 IoT Device Framework .. 24

3.1 Basic System ... 25

3.1.1 SoC as the Computing Unit ... 26

3.1.2 Power Management ... 28

3.1.3 Memory .. 29

3.2 Optional System Extensions .. 31

3.2.1 Supervisory Processing Unit .. 31

3.2.2 Power Management IC .. 31

3.2.3 Interfaces ... 32

4 Survey on Appropriate Software Solutions .. 36

4.1 Comparison of Bare-Metal Programs with Using Operating Systems as an

Abstraction Layer ... 36

4.2 Comparison of Real-Time Operating Systems with General-Purpose

Operating Systems... 38

4.3 Real-Time Extensions for General-Purpose Operating Systems 40

5 Latency and Data Rates of Interfaces ... 43

6 Features of the IoT Device Framework ... 46

6.1 Block Diagram .. 47

7

6.2 Hardware .. 48

6.2.1 Overview .. 49

6.2.2 SoC .. 54

6.2.3 Power Management ... 55

6.2.4 Memory .. 57

6.2.5 Supervisory Processing Unit .. 58

6.2.6 Power Management IC .. 58

6.2.7 Interfaces ... 58

6.3 Software ... 59

6.4 Board Bring-Up .. 59

7 Challenges in Schematics Design of the IoT device framework 60

7.1 Multiplexing Power Supply Alternatives .. 60

7.2 Power over Ethernet (PoE) .. 63

7.3 PMIC .. 63

7.4 Power Supply for Production Mode .. 64

7.5 Switch Concept for Production Mode and Standard Mode of Operation 64

7.5.1 USB connector ... 64

7.5.1 EEPROM ... 65

7.5.2 I2C interface ... 65

7.6 Interfaces ... 66

7.7 Parallel Single-Ended Display Interface ... 68

8 Considered Aspects for PCB Development of the IoT Device Framework .. 69

8.1 Placement of the Connectors ... 69

8.2 Floor Planning .. 70

8.3 Number of PCB layers .. 71

8.4 Separation of Analog and Digital Ground ... 71

8

8.5 Routing of the Power Supply .. 71

8.6 Routing of High Frequency Signals .. 72

8.7 Usage and Placement of Decoupling Capacitors ... 72

8.8 Placement of Components ... 73

9 Product Lifecycle Management ... 74

10 Conclusion .. 75

11 References .. 76

12 Appendix ... 80

12.1 List of Figures ... 80

12.2 List of Tables .. 81

9

List of Abbreviations

6LoWPAN ... IPv6 over Low power Wireless Personal Area Network
AMBA .. Advanced Microcontroller Bus Architecture
API .. Application Programming Interface
BOM .. Bill Of Materials
CAN ... Controller Area Network
CISC .. Complex Instruction Set Computer
COTS .. Commercial Off-The-Shelf
CPU ..Central Processing Unit
DBC .. Dual Board Computer
DDR ...Double Data Rate
DMA ... Direct Memory Access
DMIPS .. Dhrystone Million Instructions Per Second
DRAM ... Dynamic Random Access Memory
DTC... Device Tree Compiler
ECC .. Error Correction Code
eCos... embedded Configurable operating system
EEPROM ... Electrically Erasable Read Only Memory
EMC .. ElectroMagnetic Compatibility
ESL ... Equivalent Series L (inductance)
ESR.. Equivalent Series Resistor
FPGA ... Field Programmable Gate Array
GPOS ... General Purpose Operating System
GPU ... Graphics Processing Unit
HDMI .. High-Definition Multimedia Interface
HSIC ... High-Speed Inter Chip
HSYNC .. Horizontal SYNChronization
I/O .. Input/Output
I2C .. Inter-Integrated Circuit
I2S ... Inter-IC Sound
IC .. Integrated Circuit
IETF .. Internet Engineering Task Force
IoT .. Internet of Things
IP ... Intellectual Property
LED .. Light-Emitting Diodes
LTS ... Long Term Support
LVDS..Low Voltage Differential Signal
MCU .. MicroController Units
MDI ... Media Dependent Interface
MII ... Media Independent Interface
MLCC ... Multi Layer Ceramic Chip
MMC .. MultiMedia Card
MMU .. Memory Management Unit
MPU ... Memory Protection Unit, Micro Processing Unit
MTD ... Memory Technology Device
MTU .. Maximum Transmission Unit
ONFi.. Open Nand Flash interface
OS ... Operating SystemOperating System
OSI .. Open Systems Interconnection
PC ... Personal Computer
PCB... Printed Circuit Board

10

PHY... PHYsical layer
PLM... Product Lifecycle Management
PMIC .. Power Management Integrated Circuit
PoE ... Power over Ethernet
QR ... Quick Response
RAM ... Random Access Memory
RISC ... Reduced Instruction Set Computer
RMII ...Reduced Media Independent Interface
RT .. real time
RTAI ..Real Time Application Interface
RTC.. Real Time Clock
RTOS ... Real Time Operating System
SBC... Single Board Computer
SDRAM .. Synchronous Dynamic Random Access Memory
SiP .. System-in-Package
SoB .. System-on-Board
SoC .. System-on-Chip
SoM.. System-on-Module
SPI .. Serial Peripheral Interface
SPU... Supervisory Processing Unit
SSD... Solid State Drive
TCO .. Total-Cost-of-Ownership
TCP/IP .. Transmission Control Protocol/Internet Protocol
TFTP ... Trivial File Transfer Protocol
TTM.. Time-To-Market
TVS ... Transient Voltage Suppressor
UART ... Universal Asynchronous Receiver Transmitter
UBI .. Unsorted Block Image
UBIFS ... Unsorted Block Image File System
ULPI .. UTMI+ Low Pin Interface
USB.. Universal Serial Bus
USB OTG .. USB On-The-Go
UTMI ... USB 2.0 Tranceiver Macrocell
VSYNC ... Vertical SYNChronization

11

Introduction and Terminology

1 Introduction and Terminology

The term internet of things (IoT) was introduced since more and more mechatronic devices got

connected to the internet. The trend is to connect even smallest devices to the internet with

the main approach to distribute data collection devices as good as possible. Collected data

from each device is then transferred using the internet and often merged in a central cloud

storage.

A lot of recent surveys show that the IoT market was growing in the last years and forecasts

show that it will even grow much more in the next years [1]. As an example, a forecast of

Gartner, Inc. predicts that the number of used IoT devices worldwide will increase from 8.4

billion in 2017 to 20.4 billion connected devices in 2020 [2]. According to GrowthEnabler &

MarketsandMarkets, the IoT market volume will grow from 194.68 billion USD in 2017 to

457.29 billion USD in 2020 [3].

This market growth makes the IoT market attractive for putting effort into studying and

developing IoT technologies. IoT gateways and IoT devices are atomic computing units in the

internet of things. Typically, the IoT gateway is the link between one or more IoT devices and

the internet which can be seen in Figure 1. Its task is to translate communication protocols.

Often the separation between IoT gateway and IoT device is not completely clear. Therefore,

an IoT gateway and an IoT device can also be combined in one system.

Figure 1 Internet of Things.

12

Introduction and Terminology

Within the scope of this thesis an IoT gateway and device framework is set up. The framework

consists of several schematic modules which can be reused for developing a new IoT gateway,

a new IoT device or a new combined IoT gateway and device (Figure 2). Due to the high

degree of reusability, the developed IoT device framework provides an easy and fast

development of customer and application specific IoT devices. Within the thesis, all schematic

modules of the IoT device framework are used to develop an example printed circuit board

(PCB), so an example IoT device. The functional blocks are separated clearly on schematic

level but also on PCB level. Therefore, layout snippets of the PCB, which belong to a specific

schematic module of the framework, can be reused.

Figure 2 Basic Idea of IoT Device Framework.

The thesis first describes and compares theoretical solution concepts for developing an IoT

device. Both, hardware and software aspects are considered while developing the IoT device

framework. As the name of the thesis implies, further focuses lie on the long-term availability

and the low-cost of the components that are used for the IoT device framework. The thesis

consists of the following chapters:

13

Introduction and Terminology

In Chapter 2 several IoT hardware development concepts are discussed and compared:

The computing part of an IoT device can be classified in different levels of integration. In

Section 2.1, System-on-Chip (SoC), System-on-Module (SoM) and Single-Board-
Computer (SBC) which are commonly used levels of integration are compared.

The main two approaches to develop an IoT device are the Single-Board-Computer (SBC)
on the one hand, and the Dual-Board-Computer (DBC) on the other hand. An SBC integrates

an SoC and all the other components of the IoT device on one PCB. In contrast to that, the

DBC solution consists of two PCBs: an SoM and a carrier board which integrates and expands

the SoM. The SoC as the processing unit of the device is integrated in the SoM when using

the DBC approach. These two approaches are described in more detail in Section 2.2.

Focusing on Single-Board-Computers, it can be distinguished between two main types:

standard SBCs and individual SBCs, respectively. Standard SBCs are off-the-shelf SBCs

without any further need of hardware development. Compared to standard SBCs, individual

ones are developed and designed for a specific application. The advantages and

disadvantages of both solutions are compared and evaluated in Section 2.3.

In Chapter 3 the idea and the components of an IoT device framework are described in general:

The IoT device framework can be separated into two main parts: the basic system which

contains the mandatory modules, and the optional system extensions. The basic system

includes the modules, which guarantee the basic processing functionalities of the developed

IoT device. Therefore, the components listed in 3.1 have to be part of the IoT device

necessarily. According to the application’s needs, optional extensions listed in 3.2 can be

added to the IoT device. In this section, especially the structure and properties of possible

interfaces are highlighted since one main property of the IoT device framework is the

abstraction of peripherals.

In Chapter 4 possible software solutions are evaluated and compared:

There are two main approaches of running a software application on an IoT device which are

described in more detail in Section 4.1. On the one hand, an application can be executed on

bare-metal, therefore on the hardware directly. On the other hand, an operating system can

be used as an abstraction layer between the hardware and the user application.

When it comes to select an operating system, the first step is to choose between a real-time
operating system (RTOS) and a general-purpose operating system (GPOS). The

14

Introduction and Terminology

advantages and disadvantages of both operating system approaches are compared in Section

4.2.

Furthermore, solutions how a GPOS can become real-time capable are discussed in Section

4.3. There are two main kernel architectures: monolithic kernels as a single-kernel approach

and microkernels as dual-kernel approaches. The two main solutions for Linux are the

PREEMPT_RT patch as a monolithic kernel approach and Xenomai as a microkernel

approach.

In Chapter 5 latencies and data rates of interfaces are listed and discussed:

To ensure real-time capability also for abstracted periphery the timing properties of
interfaces have to be considered. The most-common interfaces are compared regarding their

latencies and data rates. Furthermore, these properties are compared to the latencies of the

operating system. It is assessed if the interface or the operating system is the slower part and

therefore constraining for the real-time capability of the periphery.

In Chapter 6 features of the developed and implemented IoT device framework are stated:

After considering several aspects and comparing different solutions for an IoT device, the IoT

device framework which was developed so the practical implementation of the IoT device
framework is described. Section 6.1 shows a block diagram of the framework. The used

components are listed and discussed in Section 6.2. An SBC with all the modules of the IoT

device framework has been designed. Properties like power consumption and dimensions of

that developed SBC as a specific example for an IoT device. In Section 6.3 the software

approach and in Section 6.4 the commissioning of the SBC are described.

In Chapter 7 the challenges of the schematic design are described:

Parts of the schematic are described in more detail. Since the SBC can be supplied by either

Power over Ethernet (PoE) or by one of the two Mini-Universal Serial Bus (USB) connectors,

especially the multiplexing of these different power supply alternatives is described in more

detail. Furthermore, the power supply in production mode, so during commissioning, was a

challenge and is described in this chapter.

15

Introduction and Terminology

In Chapter 8 the considered aspects while designing the PCB are listed:

Besides designing the schematics also designing the PCB came with a lot of challenges.

Especially guidelines to achieve a high electromagnetic compatibility (EMC) were considered

for the design of the PCB. Furthermore, the constraints for routing high speed signals (e.g.

signals to the Dynamic Random Access Memory (DRAM)) are stated.

In Chapter 9 life-cycle relevant aspects are discussed:

As the IoT device framework should provide long-term availability, life-cycle relevant aspects

such as component tracking, configuration management, software deployment and update

functionality are stated.

16

Comparison of IoT Device Development Concepts

2 Comparison of IoT Device Development Concepts
2.1 Levels of Integration: SoC, SoM and SBC/DBC

A system can be implemented in several levels of integration. There are three main levels. The

first and smallest level of integration is the so-called System-on-Chip (SoC). As an extension

of a SoC, a System-on-Module (SoM) can be developed which usually includes the parts of an

SoC and some additional components. Extending the SoM further leads to either a Single-

Board-Computer (SBC) or a Dual-Board-Computer (DBC). The three levels of integration are

illustrated in Figure 3. A bigger ellipse stands for a higher number of components integrated.

These definitions can also be found on many websites of SoM and SBC developers like in [4],

[5].

Figure 3 Levels of Integration.

A System-on-Chip integrates a system on a single chip. Similar to SoCs, a system can be

integrated as a System-in-Package (SiP) which includes several chips in a package of an

integrated circuit (IC). A SoC usually includes the processor core, caches, internal memory,

interfaces for external memory, interfaces for connectivity, interfaces for multimedia, a real-

time clock, direct memory access (DMA) controllers, timers, pulse width modulators,

watchdogs and units for hardware security aspects [6]. Furthermore, physical layers (PHYs)

for some interfaces are already part of the SoC but some PHYs still have to be added externally

to the SoC as a separate IC. As an example, the block diagram of the i.MX6UL integrates the

USB PHY whereas the Ethernet PHY has to be added externally [7]. A more detailed

explanation of the integration of PHYs and a list of example interfaces is given in Section 3.2.3.

System-on-Modules are the next level of integration compared to SoCs. An SoM is a printed

circuit board (PCB) which includes an SoC as one component. Additionally, it consists of

external memory, so external random-access memory (RAM) as volatile memory and NAND

flashes or NOR flashes as non-volatile memory. Such SoMs are typically attached to another

PCB which is called carrier board or baseboard. On a carrier board, application specific

SoC SoM SBC/DBC

17

Comparison of IoT Device Development Concepts

components for example application specific interfaces and connectors can be added

individually. As mentioned before, some PHYs are not integrated in the SoC so they are part

of the SoM or the SBC. Since SoMs include the components which are necessary to do the

main computing, in some literature the term Computer-on-Module (CoM) is used alternatively

to SoM [4], [5].

Single-Board-Computers (SBCs) and also Dual-Board-Computers (DBCs) represent a

further level of integration compared to SoMs. The difference between SBCs and DBCs is

described in Section 2.2 but basically both have the same scope regarding the parts included.

An SBC/DBC consists of the same components as an SoM, so it includes an SoC and external

memory. Additionally, application specific interfaces and connectors are included on the

SBC/DBC as well. Sometimes the term System-on-Board (SoB) is used for such SBCs but

further in the thesis the term SBC will be used. The term SBC is used frequently by

manufacturers like Toradex [4] and Phytec [5] whereas the term DBC is rarely used in the

literature and by manufacturers.

2.2 Comparison of SBC Solutions with DBC Solutions

As described in Section 2.1, SBCs integrate an SoC, external memory and connectors on one

PCB. In contrast to that, another main development concept is to design DBCs. As the name

says, this solution implements the system on two PCBs. One PCB is a SoM which includes

the SoC and external memory and the other PCB, called carrier board, integrates the SoM as

the main component and extends it with the required connectors. DBCs can be realized in two

ways. The SoM can either be soldered onto the carrier board or the SoM can be attached to

the carrier board via connectors. The SoM as an additional intermediate development stage

for DBCs compared to SBCs is shown in Figure 4.

Figure 4 Comparison: SBC and DBC.

In the following the two solutions are described in more detail. Table 1 summarizes the

properties of the two approaches.

SoC SoM DBCSoC SBC

18

Comparison of IoT Device Development Concepts

The fact that SBCs only consist of one PCB has the big advantage that SBCs are more robust

against mechanical stress than DBCs. Especially, if the SoM and the carrier board are

combined via connectors a lot of mechanical stress can lead to a damage and therefore a high

failure rate. In contrast to that, the development time, so the time-to-market (TTM), is lower

when using DBC solutions instead of SBC solutions. An SBC has to be designed from scratch

for each application as a whole. Contrary to SBCs, DBCs use an already developed SoM as

the main part. Therefore, only the carrier board which is much simpler (lower number of layers,

broader trace width, higher distance between tracks, bigger vias) has to be developed for the

specific application. This leads further to the advantage that the layout of the SoC and the

extending memory, which is the most critical part, is already done and verified. So, considering

the development point of view, DBC solutions have a lower risk for failure than SBC solutions.

When using the DBC approach, the SoM can either be developed in-house or it can be

outsourced. The disadvantage of outsourcing the SoM is the dependency on the SoM

manufacturer which leads to less flexibility in redesign. A further factor for deciding whether to

implement the required system as an SBC or a DBC are the cost. An SBC is only profitable

from a certain quantity since the higher development cost for an SBC have to be covered by

the lower variable cost and therefore higher gross margin. This calculation is done in Section

2.2.1 [8].

As described above, both, SBCs and DBCs have advantages regarding different aspects. In

the following table these advantages are summarized:

 SBC DBC (SoM + Carrier Board)
time-to-market (TTM) longer shorter
development risk higher lower
profitability higher quantities lower quantities
mechanical robustness higher lower
prototype cost higher lower
bill of materials (BOM) longer shorter
redesign flexibility higher lower

Table 1 Comparison of SBCs and DBCs.

19

Comparison of IoT Device Development Concepts

A lot of literature discusses on whether to choose an SBC or a DBC solution. The following

two articles state advantages and disadvantages of the two solutions.

As a first example, the German electronics magazine “Elektronik: Fachmedien für industrielle

Anwender und Entwickler” discusses the importance of DBCs in embedded applications in the

article “Modular ohne Module“, which can be translated to “Modular without modules“. Having

a modular system which contains a main board with several extension cards is common in the

PC market but not suitable for a lot of applications, especially not for embedded and IoT

applications. Such a modular system leads to the problem that it requires much space and the

power supply unit is often oversized because also possible extensions have to be supplied

with power too. On the opposite, implementing the system as an SBC leads to a static and

non-scalable implementation. Therefore, the idea is to design a DBC consisting of an SoM and

a carrier board as an intermediate solution [9].

As a second example, Toradex states that DBC solutions are more suitable for embedded

product development than SBC solutions because of their design flexibility and design

scalability [4], [10]. Besides Toradex having their Colibri product line, Phytec is another

provider of DBC solutions with their phyBOARD product line. Phytec uses the term SBC but in

this thesis it is referred as a DBC solution since it consists of a SoM and a carrier board. Both,

Toradex and Colibri, extend their standard SoMs with an application specific carrier board [5].

As described in more detail in Chapter 3, the IoT device framework is designed for the

development of SBC solutions. The IoT device framework which consists of several reusable

schematic modules and reusable PCB snippets has the benefit that the typical disadvantages

of a conventional SBC solution are minimized. If the IoT device framework is used for the

development of SBCs the time-to-market is much lower than developing it from scratch.

Furthermore, the critical parts like the schematic and layout of the SoC and RAM are already

designed and verified so reusing it lowers the development risks.

20

Comparison of IoT Device Development Concepts

2.2.1 Calculation: Crossover Point of SBC Solution

SBC solutions only pay off from a higher quantity compared to DBC solutions. The higher

development cost of SBCs compared to DBCs have to be covered by their higher gross margin.

A crossover point calculation, which should result in a specific quantity for the SBC solution,

can be done. The crossover quantity can be calculated by using Equation (10).

The following formula symbols are used:

𝜋…𝑃𝑟𝑜𝑓𝑖𝑡

𝑇𝑅…𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑣𝑒𝑛𝑢𝑒	

𝑇𝐶 …𝑇𝑜𝑡𝑎𝑙	𝐶𝑜𝑠𝑡	

𝑇𝐹𝐶 …𝑇𝑜𝑡𝑎𝑙	𝐹𝑖𝑥	𝐶𝑜𝑠𝑡	

𝑇𝑉𝐶 …𝑇𝑜𝑡𝑎𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒	𝐶𝑜𝑠𝑡	

𝑁𝑅𝐸…𝑁𝑜𝑛 − 𝑅𝑒𝑐𝑢𝑟𝑟𝑖𝑛𝑔	𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔

𝑉𝐶 …𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒	𝐶𝑜𝑠𝑡	𝑝𝑒𝑟	𝑢𝑛𝑖𝑡	

𝑄…𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟	𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦

𝑃…𝑃𝑟𝑖𝑐𝑒	𝑝𝑒𝑟	𝑢𝑛𝑖𝑡

The profit is the difference between the total revenue and the total cost. The total revenue can

be calculated as the product of the quantity sold and the price per unit. The total cost consists

of the total fix cost and the total variable cost where the total fix cost is the non-recurring

engineering and the total variable cost are the variable cost per unit multiplied by the quantity.

Calculation of the profit for the SBC solution:

𝜋@AB = 𝑇𝑅@AB − 𝑇𝐶@AB (1)

𝜋@AB = 𝑇𝑅@AB − (𝑇𝐹𝐶@AB + 𝑇𝑉𝐶@AB) (2)

𝜋@AB = 𝑄 ∙ 𝑃 − 𝑁𝑅𝐸@AB − 𝑄 ∙ 𝑉𝐶@AB (3)

21

Comparison of IoT Device Development Concepts

Calculation of the profit for the DBC solution:

𝜋HAB = 𝑇𝑅HAB − 𝑇𝐶HAB (4)

𝜋HAB = 𝑇𝑅HAB − (𝑇𝐹𝐶HAB + 𝑇𝑉𝐶HAB) (5)

𝜋HAB = 𝑄 ∙ 𝑃 − 𝑁𝑅𝐸HAB − 𝑄 ∙ 𝑉𝐶HAB (6)

The following calculations result in the minimum quantity for which the SBC solution is more

profitable than the DBC solution:

𝜋@AB > 𝜋HAB (7)

𝑄 ∙ 𝑃 − 𝑁𝑅𝐸@AB − 𝑄 ∙ 𝑉𝐶@AB > 𝑄 ∙ 𝑃 − 𝑁𝑅𝐸HAB − 𝑄 ∙ 𝑉𝐶HAB (8)

−𝑁𝑅𝐸@AB − 𝑄 ∙ 𝑉𝐶@AB > −𝑁𝑅𝐸HAB − 𝑄 ∙ 𝑉𝐶HAB (9)

𝑄 >
𝑁𝑅𝐸@AB − 𝑁𝑅𝐸HAB
𝑉𝐶HAB − 𝑉𝐶@AB

 (10)

22

Comparison of IoT Device Development Concepts

2.3 Comparison Standard SBC with Individual SBC

SBCs can be divided into two groups. On the one hand, standard SBCs and on the other hand

individual SBCs. In this Section the properties of both solution are described in more detail and

are summarized in Table 2.

Standard, so commercially off-the-shelf (COTS) SBCs, are solutions which are static and

inflexible. They are sold as an already developed and finished product. Standard SBCs

integrate a lot of functionalities and interfaces which are not used by the individual application.

This overhead leads to unnecessary complex IoT devices which require a lot of space.

Furthermore, the form factor of the PCB cannot be adapted to specific mechanical

requirements. Since standard SBCs are usually designed generically, the needed application

specific periphery has to be abstracted to separate PCBs which leads to a larger overall

system. The big advantage of such off-the-shelf SBCs is that there are no non-recurring

engineering cost [11].

Compared to standard IoT devices, an individual and therefore custom SBC is a solution

developed for a specific application. It is possible to include only the needed interfaces and to

adapt the PCB to its mechanical requirements such as PCB contour and component

placement. An individual IoT device is paying off from a certain quantity on. The cost

comparison between standard SBCs and individual SBCs is similar to the cost comparison

between SBCs and DBCs. The calculation of the crossover quantity is done in Section 2.3.1

[11].

The following table summarizes the properties of standard SBCs compared to individual SBCs:

 Standard SBC Individual SBC
time-to-market shorter longer
flexibility and scalability only provided implementations fully scalable
profitability lower quantities higher quantities
development risk lower higher

Table 2 Comparison of Standard SBC to Individual SBC.

23

Comparison of IoT Device Development Concepts

2.3.1 Calculation: Crossover Point of Individual SBC

Similarly to SBC solutions in Section 2.2.1, individual SBCs pay off from a higher quantity

compared to standard SBC solutions. The occurring development cost of the individual SBC

have to be covered by its lower variable cost and therefore higher gross margin. Compared to

an individual SBC, standard SBCs come without any non-recurring engineering cost. The

crossover quantity can be calculated by using Equation (20).

The same formula symbols as in Section 2.2.1 are used.

Calculation of the profit for the individual SBC solution:

𝜋JKL = 𝑇𝑅JKL − 𝑇𝐶JKL (11)

𝜋JKL = 𝑇𝑅JKL − (𝑇𝐹𝐶JKL + 𝑇𝑉𝐶JKL) (12)

𝜋JKL = 𝑄 ∙ 𝑃 − 𝑁𝑅𝐸JKL − 𝑄 ∙ 𝑉𝐶JKL (13)

Calculation of the profit for the standard SBC solution:

𝜋MNL = 𝑇𝑅MNL − 𝑇𝐶MNL (14)

𝜋MNL = 𝑇𝑅MNL − 𝑇𝑉𝐶MNL (15)

𝜋MNL = 𝑄 ∙ 𝑃 − 𝑄 ∙ 𝑉𝐶MNL − 𝑁𝑅𝐸MNLOPQPR
ST

 (16)

The following calculations result in the minimum quantity for which the individual SBC solution

is more profitable than the standard SBC solution:

𝜋JKL > 𝜋MNL (17)

𝑄 ∙ 𝑃 − 𝑁𝑅𝐸JKL − 𝑄 ∙ 𝑉𝐶JKL > 𝑄 ∙ 𝑃 − 𝑄 ∙ 𝑉𝐶MNL (18)

−𝑁𝑅𝐸JKL − 𝑄 ∙ 𝑉𝐶JKL > −𝑄 ∙ 𝑉𝐶MNL (19)

𝑄 >
𝑁𝑅𝐸JKL

𝑉𝐶MNL − 𝑉𝐶JKL
 (20)

24

IoT Device Framework

3 IoT Device Framework

The comparisons regarding different IoT device development concepts, which are done in

Chapter 2, lead to the idea of an IoT device framework.

The two main development concepts of IoT devices, which are described in Section 2.2, are

SBCs and DBCs. SBCs have the disadvantage that they have to be designed from scratch for

every new IoT device which can take a lot of development time. Therefore, a common way to

decrease the time-to-market is to use DBC solutions instead of SBC solutions. The big

disadvantages with DBC systems are that they require more space and the mechanical

robustness decreases because of the required connection between the main board and the

baseboard. The IoT device framework is a solution which provides low-cost single board

computers with a low time-to-market. Due to the fact that the already verified and tested

functional parts are clearly separated regarding schematics and layout, these parts can be

reused easily for the development of a new application specific SBC. The reusability of the

parts of the framework lead to a very fast development.

The IoT device framework is a modular hardware framework which consists of the basic

system which is described in 3.1 and several extensions which are described in 3.2. The basic

system includes the minimum functionalities for building up an IoT device. So, without any

extensions it mainly includes the parts of a previously described SoM. By adding extensions

to the basic system an IoT device can be configured to comply with the requirements for a

specific and individual application. For example, the included power management extension

with a power management IC (PMIC) or a supervisor controller can be added as an optional

feature.

Besides the application specific extensions to the basic system, the basic system is scalable

itself. The parts of the basic system have to be used mandatorily but they can be scaled-down

or scaled-up regarding their performance and size of memory. For example, the RAM which is

part of the basic system can be varied in size because it has a standardized package footprint,

a standardized pin assignment and it is connected to the controller via standardized interfaces

(JEDEC memory standard, e.g. DDR3 SDRAM standard which was published in 2012 [12]).

Furthermore, the bus width of the connection to the RAM and the storage bandwidth can be

scaled-down or scaled-up.

25

IoT Device Framework

The idea of having a modular system with already defined and tested parts is commonly used

in the area of SoC designs. Similar to the IoT device framework but on another level of

abstraction, SoC designers reuse and integrate parts of the schematic and layout in integrated

circuits (ICs). Such reusable parts are so-called intellectual property cores (IP cores) which

should be designed as generic as possible. When developing a new SoC, the needed,

reusable and already verified parts are selected, integrated and connected to the internal bus.

A common bus architecture is the Advanced Microcontroller Bus Architecture (AMBA) which

consists of several buses. After integrating the parts, the SoC has to be verified and tested as

a whole [6], [13]. As a specific example, such a reusable design for SoCs is described and

particularly evaluated for a Bluetooth baseband processor in [6]. In this thesis, such a modular

hardware solution is described and developed on PCB level. Modules and therefore entire

schematic sheets and layout snippets can be reused and integrated in a solution for an IoT

device.

3.1 Basic System

The basic system consists of the mandatory parts which are shown in Figure 5. The main part

of the basic system is the SoC as the computing unit. Further parts are the power management

and the memory. The power management ensures that the main power supply voltage rails of

the SBC are established properly. The main parts of the power management are the power

supply voltage rails, the power sequencing and the reset logic. Furthermore, external memory

on the SBC, including volatile and non-volatile memory, belongs to the basic system.

Figure 5 Components of a basic SBC.

SoC Basic
System

power
management memory

26

IoT Device Framework

3.1.1 SoC as the Computing Unit

The first thing that has to be selected appropriate to the system and its requirements is the

computing unit of the basic system and therefore of the IoT device. Conventional computing

units can be separated into central processing units (CPUs), micro processing units
(MPUs) and microcontroller units (MCUs).

Among these types of computing units, the CPU is most powerful regarding processing power.

In the past, a single CPU was used for centralizing the processing tasks of many smaller

modules. Due to the fact that more and more devices are connected to a single CPU, the

overall data became too high for only one processing unit. The resulting idea was to

decentralize the computing power from one CPU to many MPUs or MCUs which have the

advantage that the data is processed locally. CPUs are still used for personal computers (PC)

but it is likely to use scaled down MPUs or MCUs for IoT devices.

Selecting between MPUs and MCUs depends on the factors of price, performance, power

consumption, scalability of memory and connectivity. The basic difference between the

architecture of MPUs and MCUs is that MCUs have a flash memory and power management

units included. The included flash memory has the advantage that the start-up and the

execution of applications is fast. The big disadvantage in embedding the flash memory is that

it is not scalable so it has a constrained memory size. The limited memory size is an important

aspect when it comes to the decision whether to run the application on bare-metal or if an

abstraction layer like a real-time operating system (RTOS) or a general-purpose operating

system (GPOS) needs to be implemented. An operating system is especially important if the

security aspect plays an important role for the application. Due to the fact that the memory is

inside the MCU, also the power supply for the memory can be embedded in the MCU. In

contrast to that, choosing an MPU with separate memory ICs leads to the disadvantage that

also the required power supply parts have to be added externally. Regarding memory

protection and memory management, an MCU includes only a memory protection unit (MPU)

whereas an MPU includes the more extensive memory management unit (MMU). Furthermore,

MCUs have lower power consumption and power saving modes can be handled easier.

Regarding performance MPUs are more powerful. For example, an MCU with an ARM Cortex-

M4 has 150 DMIPS compared to an MPU with an ARM Cortex-A5 with 850 DMIPS. Since a

general-purpose operating system requires about 300 to 400 DMIPS a MCU would be not

suitable for running such an operating system. An RTOS on the contrary only requires 50

DMIPS so an MCU would be powerful enough. For high speed interfaces an operating system

27

IoT Device Framework

and thus an MPU is needed. A main advantage of the MCU is that it is cheaper than an MPU.

As a result, MCUs are used for power and cost saving relevant applications where no operating

system is used. MPUs are for more performance intensive and scalable solutions. [14]

Depending on these comparisons, it was concluded that an MPU would be more suitable for

the IoT device framework than an MCU. It is important to implement an operating system

especially because of the required degree of security if a device is connected to the internet.

The importance of security for devices in the internet is also shown in [15] where security is

stated as the most important concern when developing an IoT device. Other advantages of

using an operating system are stated in Chapter 4.

The trend in the last years was to develop so-called SoCs for embedded applications.

According to the “Linux-Magazin”, such SoCs include, besides the general-purpose processing

unit, components like a graphics processing unit (GPU), memory, a USB controller and USB

PHY, power management units and wireless radios [16]. The integration of these components

lead to a lot of benefits like the requirement of less space and lower cost. Therefore,

considering the state-of-the-art shows that SoCs are the type of computing units that should

be used for IoT applications.

The main architectures for such MPUs implemented in form of an SoC, are currently Intel,
ARM and MIPS. In contrast to the Reduced Instruction Set Computer (RISC) architecture

which is used in ARM and MIPS technologies, Intel uses the Complex Instruction Set Computer

(CISC) architecture. The CISC architecture has longer instruction words than the RISC

architecture. Therefore, a CISC needs fewer instructions to execute the same tasks. The CISC

architecture is used for powerful PCs where a lot of computational power is needed. IoT

devices usually do not need that much computational power, so the RISC architecture is

sufficient to execute the tasks of an IoT device. Furthermore, the low power consumption of a

RISC is essential for IoT devices. At first, it was a challenge to use the RISC architecture

because it was not capable to run full general-purpose operating systems. In the last years

operating systems which can be run on a RISC were developed (e.g. Windows 10 IoT

Core) [17].

Intel has a very high share in the PC market but by using the CISC architecture, Intel was not

able to enter in and contribute to the IoT market at the beginning. Due to the fact that the IoT

sector was rapidly growing, Intel wanted to enter this market. To achieve that goal, they

developed the Intel Atom E3900 series [18]. Furthermore, Intel licensed intellectual properties

(IPs) of ARM about one year ago according to bloomberg.com [19]. The ARM architecture is

28

IoT Device Framework

the most suitable architecture for the IoT Device Framework. Also comparable solutions for

IoT devices on the market mainly use the ARM architecture.

The ARM IP cores can be split up in several families: ARM Cortex-M, ARM Cortex-A and

ARM Cortex-R. The ARM Cortex-M family is designed for implementing MCUs. So, the

Cortex-M family is not suitable for the IoT Device Framework which requires an MPU to run an

operating system. The ARM Cortex-M family can be used in very small end nodes of an IoT

network where issues like security are not that important. So, the ARM Cortex-M family can be

used for devices which abstract periphery and which are connect to the SBC or DBC via

interfaces like CAN or USB. The Cortex-R family is hard real-time capable and is used for more

critical applications (e.g. automotive or medical applications). For the IoT Device Framework

the most suitable family is the ARM Cortex-A where the A stands for application. The A family

supports operating systems like Linux, Android and Chrome. According to ARM, the family is

qualified for applications such as smartphones, automotive systems, servers, wearables,

tablets and robotics. Currently, the seventh version of the ARM architecture (ARMv7) is used

most. The ARM Cortex-A5, ARM Cortex-A7, ARM Cortex-A9, ARM Cortex-A15 and ARM

Cortex-A17 belong to that version of the ARM architecture. The ARM Cortex-A5, ARM Cortex-

A7 and ARM Cortex-A9 are for low-power applications, whereas the ARM Cortex-A15 and

ARM Cortex-A17 are used for applications which require higher performance [20].

3.1.2 Power Management

The power management of an SBC consists of three main parts:

• power supply voltage rails,
• power sequencing and
• reset logic.

The first task is to guarantee that the needed power supply voltage rails are generated with

linear and switching regulators. Mostly linear regulators are implemented in the SoC already,

whereas switching regulators have to be added externally. Common required power supply

voltage rails are 1.2V, 1.35V, 1.8V, 2.5V and 3.3V.

The power sequencing is used to turn on or turn off power supply voltage rails in a specific

order. As an example, some MPUs require the I/O voltage before the core voltage or the other

way around, otherwise they do not behave properly and could be damaged. A further example

is that the CPU has to be powered up before co-processors like a GPU [21].

29

IoT Device Framework

The reset logic resets the entire system until all of the power supply voltage rails are turned

up in the specific sequence. Otherwise a damage would be possible in the case that one

component is already transmitting data but the receiving component is not powered on

properly.

3.1.3 Memory

The memory blocks of the basic system are a Double Data Rate Synchronous Dynamic

Random-Access Memory (DDR SDRAM) as a volatile memory and an Electrically Erasable

Programmable Read-Only Memory (EEPROM), a NOR and a NAND flash as non-volatile

memories. While starting up the system, the program code is loaded into the volatile RAM,

which operates at faster speeds compared to the non-volatile memory.

Considering the DDR SDRAM there are several architectures: DDR2, LP-DDR2, DDR3 and

DDR3L. The LP-DDR2 is the low power version of the DDR2 which is the predecessor of the

DDR3 technology. Both, the DDR2 and the LP-DDR2 operate with a nominal voltage of 1.8 V.

Compared to the DDR2, the LP-DDR2 has additional modes of operation if the SDRAM is not

or rarely used. If the full bandwidth is used, the LP-DDR2 does not save much power compared

to the DDR2. The DDR3L SDRAM is the low-voltage version of the DDR3 SDRAM. According

to the JEDEC standard, the DDR3 and DDR3L are compatible to each other. For the power

supply of a DDR3L SDRAM 1.35 V are used instead of 1.5 V which are used for driving a

DDR3 SDRAM. The low-voltage supply comes along with less power consumption and

therefore less heating of the DDR SDRAM but also less heating of the DDR SDRAM controller.

A further advantage of using the DDR3L technology is that the core voltage of the processing

unit is the same as the required voltage for the DDR3L SDRAM. The DDR3L technology is

already commonly used by providers of SBCs. The most recent technology is the DDR4

SDRAM with a nominal voltage of 1.2 V [22], [23].

Besides the DDR3L SDRAM, non-volatile memory blocks (NOR and NAND flash) are used

as non-volatile storage of the software. The properties of NOR and NAND flashes differ from

each other. Basically, a NOR Flash has a shorter read latency. It does not need error correction

codes (ECCs) because NOR Flashes have no problem with bit flipping. Since a NOR flash

does not have any bad blocks, the bad block management which is necessary for NAND

flashes is not needed. Compared to that, NAND flashes require ECCs, bad block management

and wear-leveling to operate properly. On the one hand, this can be achieved by using a raw

NAND flash with a filesystem, a device driver or a controller that guarantees the ECC, the bad

30

IoT Device Framework

block management and the wear-leveling. On the other hand, these functionalities can be

guaranteed by using a managed NAND flash, which often has a high-speed MultiMediaCard

(MMC) controller integrated for that task. The disadvantage of the NOR Flash is that it is more

expensive than the NAND Flash for the same capacities [24]. Therefore, the NAND Flash is

used to store the operating system, which has a too big memory footprint for storing it in a

NOR Flash. The NOR Flash is used for the relatively small bootloader which often includes the

unsorted block image (UBI) and UBI filesystem (UBIFS). Physical blocks of the memory

technology device (MTD) are abstracted by logical blocks which belong to the UBI layer. The

UBIFS is the filesystem which further abstracts the UBI layer [25]. The UBI layer does the wear

leveling and the bad block management.

The difference between a raw NAND flash and a managed NAND flash can be seen in Figure

6. If a raw NAND is used, the common interface between the NAND controller and the NAND

flash is the standardized Open NAND Flash Interface (ONFi). In contrast to that, if the NAND

blocks are embedded into an e.MMC or an Solid State Drive (SSD) which are managed NAND

flashes, the interface between the NAND controller and the memory is an MMC bus or a

SDCard bus [26].

Figure 6 Comparison: Raw NAND Flash and Managed NAND Flash [24].

The EEPROM is used in applications where the needed amount of memory is low, so typically

it is used for saving device specific information like the serial number of the device. Its

advantage is that it has a very low power consumption. The most common interfaces for

connecting an EEPROM are SPI, I2C and Microwire [27].

31

IoT Device Framework

3.2 Optional System Extensions

The basic SBC, which consists of the SoC as a computing unit, the power management and

the memory, can be extended by further components considering the needs of the specific

application. Extensions developed within the IoT device framework are a supervisory

processing unit, a power management IC and some interfaces which can be seen in Figure 7.

Figure 7 Components of an Extended SBC.

3.2.1 Supervisory Processing Unit

The supervisory processing unit (SPU) can be added as an option. The following tasks are

done by the SPU:

• Configuration of the power management IC (PMIC),
• Power on PMIC and
• Continuous monitoring of power supply voltage rails

3.2.2 Power Management IC

Optionally, a Power Management IC (PMIC) can be added to the SBC for achieving advanced

and easier power management which is described in Section 3.1.2.

The tasks of a power management IC are

• Providing power supply voltage rails,
• Power sequencing,
• Reset logic,
• Battery back-up logic,
• Manage stand-by modes and
• Power monitoring

SoC Basic
System

power
management memory

PMIC

interfaces

supervisor

Extended
System

32

IoT Device Framework

Adding a PMIC is especially recommendable, if a lot of interfaces with different voltage rails

are used. Furthermore, a PMIC makes required power sequencing easier, than without using

a PMIC. A further task of the PMIC is to provide the needed reset logic and current limits can

be set easily. It is advisable to use a PMIC if the SBC is not constrained in terms of space and

if the needed quantity of the SBC is not high.

3.2.3 Interfaces

Interfaces can be added to the IoT device for connecting both, ICs within the system so on-

board interfaces, but also for connecting other devices to the IoT device, so for example to

abstract periphery. The High-Speed Inter-Chip (HSIC) interface is used for connecting ICs on-

board. For the connectivity to other devices Ethernet, USB and CAN are typical interfaces that

are used. For multimedia extensions, there is the possibility to add audio, display, touch panel

and camera interfaces. A very important standard for wireless connections is Bluetooth.

In Figure 8 some possible interfaces are listed. The figure further shows on which level (SoC,

SoM or SBC) the specific components of an interface especially the PHYs are located. A PHY

or transceiver is the connection of the link layer (layer 2) and the physical layer (layer 1) of the

Open Systems Interconnection (OSI) model.

As an example, the Universal Serial Bus (USB) PHY is mostly part of general-purpose SoCs

whereas an FPGA can either integrate the PHY on-chip or it can be added externally. The

integration of USB PHYs is possible, compared to Ethernet PHYs, because there is only one

standardized physical layer for USB interfaces. The interface for USB 2.0 on the link layer is

called USB 2.0 Tranceiver Macrocell Interface (UTMI). The UTMI standard was only defined

for USB peripherals first. As an extension of the UTMI standard the UTMI+ standard was

introduced later which provides the standardization for USB hosts and USB On-The-Go (USB

OTG) peripherals [28]. According to an article of EE Times, another interface called UTMI+

Low Pin Interface (ULPI) was introduced in 2004. The new interface reduces the number of

signals from up to 80 pins to only 12 or even only 8 pins [29]. The smaller number of signals

and also the smaller package size of an USB PHY using ULPI instead of UTMI/UTMI+ makes

it possible to connect a USB PHY externally (e.g. if an FPGA is used instead of a general-

purpose SoC).

A further interface if a USB HUB is used, is the High-Speed Inter-Chip (HSIC) interface

between the USB controller and the USB HUB. Since the PHY is typically included in the SoC,

33

IoT Device Framework

only the connector has to be added for implementing a USB host, a USB device or a USB

OTG. In the case of a USB host and a USB OTG it is recommendable to further add an

overcurrent switch. Another PHY interface is the PHY Interface for PCI Express, SATA, USB,

DisplayPort and Converged IO Architectures (PIPE) [30].

In contrast to the USB PHY, which is mostly integrated in the SoC, Ethernet PHYs have to be

chosen and added as separate ICs. On one side the PHY is connected to the SoC with the

media independent interface (MII). On the other side the PHY is connected to the physical

medium with the medium dependent interface (MDI). For Ethernet, there are several forms of

MIIs. The type of MII depends on the speed (10BASE for 10 Mbit/s, 100BASE for 100 Mbit/s,

1000BASE for 1 Gbit/s, …) whereas the type of the MDI depends on the physical medium

(coaxial cable, optical fiber, twisted pair). Considering these two dimensions, the Ethernet PHY

exists in several combinations of MIIs and MDIs [31].

A CAN interface requires a so-called CAN transceiver between the CAN controller and the

physical CAN bus. The connection to the SoC is realized with a CAN_Rx and a CAN_Tx signal.

The physical interface is realized with twisted-pair wires with the differential signals CAN_HIGH

and CAN_LOW. The typical used connector for CAN interfaces is the D-SUB DE-9 connector.

An audio interface is realized using an audio codec (coder and decoder) between the

controller and the connector. The interfaces Inter-Integrated Circuit (I2C) for configuring and

Inter-IC Sound (I2S) for data transmission are used for the communication between the

controller and the audio codec [32]. An alternative standard for that connection is Audio Codec

’97 (AC’97) [33].

High-definition multimedia interface (HDMI) can be used as a general multimedia interface

since it transmits both, video and audio data [34]. Standard display interfaces are parallel

single-ended signals, low-voltage differential signal (LVDS), MIPI DSI and the VESA

DisplayPort [35]. A touch panel is typically connected via I2C, SPI and MIPI Touch. A camera

is connected to the controller via parallel single-ended signals, LVDS or MIPI CSI [36]. These

interfaces are directly driven with the respective controller. IOs are typically connected with

single-ended lines to a buffer. The buffer converts voltage levels and converts signal-ended

signals to differential-signals if required. A Bluetooth chip or Bluetooth module for wireless

transmission can be connected I2C, SPI or Universal Asynchronous Receiver Transmitter

(UART).

34

IoT Device Framework

A further important aspect of the designed IoT device framework is that periphery can be

abstracted easily to another PCB, due to the fact that standard interfaces like USB and CAN

are implemented. This can be also seen in Figure 8 where an example USB device and an

example USB composite device are connected. In bigger systems which require bigger

bandwidths a PCIe is recommendable.

35

IoT Device Framework

Figure 8 IoT Device Framework: Interfaces.

So
C

So
M

D
BC

So
C

SB
C

Et
he

rn
et

U
SB

 H
os

t w
/o

 H
ub

U
SB

 H
os

t w
 H

ub

U
SB

 D
ev

ic
e

Au
di

o

CA
N

D
isp

la
y

To
uc

h

Ca
m

er
a

IO
s

Bl
ue

to
ot

h

Et
he

rn
et

 C
on

tr
ol

le
r

Et
he

rn
et

 P
H

Y
M

II

RG
M

II
Co

nn
ec

to
r

M
D

I

Co
nn

ec
to

r
Tr

an
ce

iv
er

CA
N

 C
on

tr
ol

le
r

Co
nn

ec
to

r
O

ve
r C

ur
re

nt
 S

w
itc

h
U

SB
 C

on
tr

ol
le

r +
 P

H
Y

Co
nn

ec
to

rs
O

ve
r C

ur
re

nt
 S

w
itc

he
s

U
SB

 C
on

tr
ol

le
r +

 P
H

Y
U

SB
 H

ub

Co
nn

ec
to

r
U

SB
 C

on
tr

ol
le

r +
 P

H
Y

Co
nn

ec
to

r
Au

di
o

Co
de

c
I2

C
/ I

2S
 C

on
tr

ol
le

r

Co
nn

ec
to

r
D

isp
la

y
Co

nt
ro

lle
r

Co
nn

ec
to

r
To

uc
h

Co
nt

ro
lle

r

Co
nn

ec
to

r
Ca

m
er

a
Co

nt
ro

lle
r

Co
nn

ec
to

r
Bu

ffe
r

IO
 C

on
tr

ol
le

r

Bl
ue

to
ot

h
Ch

ip
 /

Bl
ue

to
ot

h
M

od
ul

e
Bl

ue
to

ot
h

Co
nt

ro
lle

r

pa
ra

lle
l s

in
gl

e-
en

de
d

M
IP

I D
SI

, L
VD

S,
 H

D
M

I,
D

isp
la

y
Po

rt

pa
ra

lle
l s

in
gl

e-
en

de
d

M
IP

I C
SI

, L
VD

S

I2
C

fo
r c

on
fig

, I
2S

 fo
r d

at
a

al
t.

AC
97

, P
CM

U
SB

U
SB

U
SB

H
SI

C

CA
N

I2
C,

 S
PI

M
IP

I t
ou

ch

U
SB

U
SB

U
SB

CA
N

_R
x

&
CA

N
_T

x

IO
s (

sin
gl

e-
en

de
d)

I2
C,

 S
PI

, U
AR

T

an
al

og

PD
M

IO
s

Co
nn

ec
to

r
I/O

s H
ID

Ke
yb

oa
rd

 H
ID

Au
di

o
Co

de
c

Co
nn

ec
to

r

Co
nn

ec
to

r

D
isp

la
y

Co
nt

ro
lle

r
D

isp
la

y

U
SB

Co
m

po
sit

e
D

ev
.

Io
T

D
ev

ic
e/

Io
T

G
at

ew
ay

/
Io

T
G

at
ew

ay
 &

 D
ev

ic
e

To
uc

h
Pa

ne
l

To
uc

h
Co

nt
ro

lle
r

U
SB

Co
m

po
sit

e
D

ev
.

Ba
ck

lig
ht

 V
ol

t.
Re

g.
Ba

ck
lig

ht
 L

ED
s

36

Survey on Appropriate Software Solutions

4 Survey on Appropriate Software Solutions

The previous Chapters 2 and 3 describe the IoT device framework regarding its hardware

aspects. This chapter discusses and compares several software concepts which can be

implemented for the IoT device.

The first question which has to be considered when designing the software concept is whether

an operating system is needed or a bare-metal solution is enough. Further in this chapter it

is discussed if the chosen operating system has to be real-time capable and which techniques

can be used to achieve real-time capability in an operating system. Operating systems can be

classified regarding the type of kernel they use. There are two main types of kernels. On the

one hand, monolithic kernels as a single kernel approach and on the other hand

microkernels as a dual kernel approach. Microkernels can be classified into pure micro

kernels and hybrid micro kernels. It is further focused on Linux as a GPOS. The two main

approaches (PREEMPT_RT patch and Xenomai) to make Linux OS real-time capable are

discussed in more detail.

4.1 Comparison of Bare-Metal Programs with Using
Operating Systems as an Abstraction Layer

Bare-metal programming means that the written program code is executed on the hardware,

so the computing unit, directly. In contrast to a bare-metal program, a user application can be

executed as a process in an operating system. Therefore, the operating system is the interface

between the hardware and the user application. Its tasks are to manage the available hardware

resources [37].

Having an operating system comes with a lot of additional overhead regarding memory,

computing performance and power but accepting this compromise brings a lot of positive

features compared to a bare-metal solution: management of tasks, time, memory, interrupts

but also mechanisms for synchronization and communication. These features of an operating

system lead to a software solution which is more fault-prone than a software which runs on

bare-metal [38].

Using an operating system makes software development easier because a big problem can

be broken down to several small problems which can be implemented using different tasks. A

bare-metal solution on the other side, is just one big program. Therefore, software using an

37

Survey on Appropriate Software Solutions

operating system is easier to develop in a team because smaller problems can be easily split

up and distributed to the developers [38]. As a further advantage, software debugging is easier.

These facts do not only lead to an easier and faster software development but also software

maintenance afterwards.

An operating system brings the advantage that the synchronization between tasks is easier

and safer. Messages are passed between tasks in a safe way whereas the synchronization in

bare-metal is often realized using global variables which leads to a solution that is unsafe and

prone to errors [38].

Due to the fact that the operating system abstracts the hardware, software applications are a

hardware independent solution which can be ported to another hardware easily. Especially,

when it comes to update the hardware of a system, using an operating system saves a lot of

time [38].

Furthermore, standard drivers and standard protocols are often provided by an operating

system and, compared to bare-metal programs, it is not required to use low-level languages

which can be another source of errors. Depending on the operating system, security

mechanisms are implemented.

Table 3 summarizes the aspects mentioned above.

 bare-metal operating system
processing overhead lower higher
hardware portability difficult easy
Software
development/maintenance fault-prone and slower easier and faster

synchronization unsafe safer
standard protocols and drivers not provided provided
memory footprint smaller larger
low-level programming
languages required not required

security mechanisms difficult to implement already included
Table 3 Comparison of Bare-Metal with Operating System as an Abstraction Layer.

The following paragraph shows the increasing fault-tolerance when an operating system is

used compared to the bare-metal program. [37] analyzes the behavior of an application after

injecting soft errors (bit-flips in memory) in the embedded software which is running on an ARM

Cortex-A9. On the one hand, the application is executed as bare-metal code, so directly on the

38

Survey on Appropriate Software Solutions

hardware. On the other hand, the applications are executed within an operating system. The

fault classification after injecting the soft errors is done by the simulation platform OVPSim into

three classes: no error detected, the application hung and the application has finished but the

data memory is corrupted (silent data corruption). The results show that the error rate which

means hangs and silent data corruptions summed up, compared to injected error, is by far

lower in the Linux environment than running the applications on bare-metal [37].

The high number of advantages lead to the conclusion that an operating system should be

used to abstract the hardware of the IoT device. Especially, high security is required by devices

which are connected to the internet because the internet is a potential point of attack of a

system. Since the available memory is large enough, the larger memory footprint which comes

with the operating system does not matter.

4.2 Comparison of Real-Time Operating Systems with
General-Purpose Operating Systems

In the previous Section of the thesis it was concluded that an operating system should be used

for internet of things applications. Operating systems which can be used as an abstraction

layer for IoT devices can be divided into real-time operating systems (RTOS) and general-

purpose operating systems (GPOS). This Section describes the advantages of both and states

their applicability for IoT purposes. The properties of RTOS and GPOS are summarized in

Table 4.

For determining whether an RTOS or a GPOS is the suitable operating system it is necessary

to divide IoT devices in two classes: low-end IoT devices and high-end IoT devices. Low-End

IoT devices usually run an RTOS whereas high-end IoT devices run a GPOS like Linux [39].

Low-End IoT devices:

Requirements for operating systems of low-end IoT devices are a small memory footprint,

support for heterogeneous hardware, network connectivity, energy efficiency, real-time

capabilities and security. Regarding the small memory footprint both, volatile and persistent

memory have to be considered. The challenge is to lower the memory footprint but also having

a good performance and a convenient API. It is important to support heterogeneous hardware

which means to support different types of microcontroller/microprocessor architectures and

families, different memory sizes and different communication technologies. Furthermore, it is

very important to consider network connectivity, therefore supporting an IP protocol based

39

Survey on Appropriate Software Solutions

network stack to ensure a proper end-to-end communication over both, wireless links like IEEE

802.15.4 and Bluetooth but also wired links like Ethernet or bus systems. Besides, it is

important that the timing is deterministic so the operating system should be real-time capable.

This means having a maximum execution time and maximum latencies. Security can be

increased if open source software is used and updates are installed on already running IoT

devices [39].

The Internet Engineering Task Force (IETF) introduced the term “constrained nodes” for low-

end IoT devices. According to the Internet Engineering Task Force (IETF), constrained nodes

are limited regarding the maximum possible code complexity (flash memory), the size of state

and buffers (RAM), the amount of computation feasible in a period of time, so the processing

power, the available power, user interfaces and accessibility in deployment. Such constrained

nodes are further separated into three classes [40]:

• Class 0 devices: << 10 kB data size (e.g. RAM) and << 100 kB code size (e.g. Flash),
• Class 1 devices: ~ 10 kB of data size (e.g. RAM) and ~ 100 kB code size (e.g. Flash),
• Class 2 devices: ~ 50 kB of data size (e.g. RAM) and ~ 250 kB code size (e.g. Flash).

Such low-end IoT devices do not have the capability to run a GPOS like a Linux. Therefore, it

is common to choose an RTOS. Common used ones are FreeRTOS, RT-Thread, Contiki OS,

RIOT and TinyOS which are open source [39].

High-End IoT devices:

Compared to RTOSs, GPOSs like Linux have the advantage that standard protocols are

already integrated even on higher levels of the OSI model (layer 5, 6 and 7). Some RTOS

support standard protocols only for lower layers of the OSI model (e.g. TCP/IP). Standard

application programming interfaces (APIs) like the POSIX standard which are provided by

GPOS make the development and adoption of applications much easier than applications that

are written for RTOS. Due to the widespread usage of GPOS the technical support is good

and they provide up-to-date security mechanisms which is an essential feature for devices

connected to the internet. GPOS are typically processor and hardware compatible so they can

be adapted to another processor or hardware platform easily. High-end IoT devices use mostly

MPUs instead of MCUs. Therefore, it is required to handle the integrated memory management

unit (MMU) in the MPU. An RTOS is not capable of running such an MMU, so high-end devices

require a GPOS. On the contrary to that, RTOSs are more suitable for applications where an

MCU with an integrated memory protection unit (MPU) is used.

40

Survey on Appropriate Software Solutions

The following table shows the differences between RTOS and GPOS summarized:

 RTOS GPOS
timing determinism provided not provided
task scheduling priority-based fair

preemptive kernel supported not supported (only with
patch as extension)

priority inversion no yes
memory footprint smaller larger
standard APIs no yes
network stack (standard
protocols) OSI Layer 2-4 (e.g. TCP/IP) also higher levels

(6LoWPAN)
use low-end IoT devices high-end IoT devices

Table 4 Comparison of RTOS with GPOS.

To conclude a GPOS should be chosen if the required resources are provided. Also, the IoT

developer survey in 2016 shows that Linux is the most used operating systems for IoT devices

with 73.1% [15]. This percentage increased for the year 2017 to 81.5% [41]. Due to the fact

that the IoT device framework provides enough resources, a GPOS is the chosen solution.

Compared to RTOS, a GPOS does not provide timing determinism of any kind typically. To

overcome this problem, it is possible to add extensions to GPOSs which is described in Section

4.3.

4.3 Real-Time Extensions for General-Purpose Operating
Systems

This section focuses on Linux as a general-purpose operating system in more detail. Due to

the fact that the real-time capability is an important and required feature of the IoT device, two

main approaches (PREEMPT_RT patch and Xenomai) for making a Linux real-time capable

are compared [42].

A standard Linux distribution includes a monolithic kernel (single kernel) which is written in

standard C. A big advantage of Linux compared to RTOS is its multitasking capability. A further

advantage of using Linux is that standard protocols and drivers are already implemented and

therefore easy to use. Since Linux is widely used, software bugs and security issues are fixed

and patched fast.

Due to the fact that the standard Linux implements a fair scheduling algorithm, it is not real-

time capable. An important fact about real-time systems is that they should have enough

41

Survey on Appropriate Software Solutions

priority levels and priority inversion should not happen. The two main methods PREEMPT_RT

patch and Xenomai to extend the standard non-real-time capable Linux, that it becomes real-

time capable, so deterministic regarding time, are compared. These different methods to make

the standard Linux real-time capable can be compared regarding their latencies, jitters, context

switching time, preemption time, priority functionality, deadlock breaktime and semaphore

shuffle breaktime [43], [44]. The limits for the speed of a real-time operating system are set by

the hardware so the ARM architecture in this case.

Using a monolithic kernel means that the Linux has just a single kernel. This can be achieved

by adding the PREEMPT_RT patch which changes the scheduling strategy from a non-

preemptive one as used in the standard Linux to a preemptive one. This has the big advantage

that real-time critical parts of the code do not have to be compiled as kernel modules. They

can be run in user space in real-time [42]. Furthermore, the PREEMPT_RT patch implements

a high resolution timer.

Besides, operating with a single kernel a second kernel, a so-called microkernel, can be added.

In the case of Linux, one implementation of the microkernel approach is Xenomai (Adeos) [44].

It can be added as a patch to the standard Linux. Xenomai uses a real-time co-kernel and

assigns real-time tasks to this second kernel. Another very similar solution which is called Real

Time Application Interface (RTAI) exists. Comparing these two solutions, RTAI is more focused

on very low latencies whereas Xenomai considers properties like maintainability and

portability [45].

Besides PREEMPT_RT patch and Xenomai (co-kernel approach), real-time capability can also

be achieved by using a real-time co-processor. Therefore, real-time tasks are assigned to this

high priority co-processor.

Comparing the PREEMPT_RT patch with Xenomai leads to the conclusion that the worst

latency is the same for both solutions but Xenomai leads to a lower jitter in the latency. Since

the worst latency is the important parameter when real-time capability is evaluated, both

solutions are almost equal regarding real-time capability. The big advantage of the

PREEMPT_RT patch compared to Xenomai is that it is integrated into the Mainline Linux and

it is much simpler to use [42].

In [46] the latencies and jitters of a Linux with the PREEMPT_RT patch and the Linux with

Xenomai are compared. For a userspace task the worst latency for both solutions is about

42

Survey on Appropriate Software Solutions

95 µs but the jitter is much lower with the Xenomai solution. If kernel-tasks are compared

Xenomai has worst latency of about 30 µs whereas the PREEMPT_RT patch has worst latency

of about 90 µs.

A further benchmarking and analysis of different operating system is described in [44]. The

metrics within this study are interrupt latency, task switching time, preemption time and

deadlock break time. Compared to a real-time operating system in this case embedded

configurable operating system (eCos), the RT patch and Xenomai have higher interrupt latency

because eCos handles interrupts in a better way. Furthermore, also the deadlock breaktime is

low, compared to the real time (RT) patch and Xenomai. In contrast to that, both, the RT patch

and Xenomai, are better in task switching because Linux is designed for handling multiple

tasks whereas eCos is designed for handle a single task. A further aspect where the RT patch

and Xenomai can score is the preemption time [43], [44].

43

Latency and Data Rates of Interfaces

5 Latency and Data Rates of Interfaces

The latencies and data rates of used interfaces have to be considered to ensure that the

maximum time (deadline) defined for the real-time system is not exceeded.

The latency for periphery is the sum of the following timing parameters [47]:

• Operating system processing delay (host),
• Interface transfer latency,
• Processing latency (periphery).

In a typical case, the three parameters listed above have to be taken into account twice since

a request is done by the host and the periphery responds to the request. Regarding the

operating system processing delay it has to be considered whether the requesting thread is a

kernel space or user space thread. The processing latency of the periphery is either the

operating system processing delay or the interrupt latency if the software is realized in bare-

metal. The overall latency represents the time deadline for the real-time system.

Table 6 shows the data rate of SPI, USB, Ethernet, CAN and PCIe which are common

interfaces for abstracting peripherals. In general, the latency can be calculated by using the

specific payload size and dividing it by the data rate (Equation (21)) as this is the time needed

to fill the buffer before the next frame is sent. In contrast to SPI, Ethernet, CAN and PCIe the

latency of USB is specified in the standard.

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 	
𝑓𝑟𝑎𝑚𝑒	𝑠𝑖𝑧𝑒
𝑑𝑎𝑡𝑎	𝑟𝑎𝑡𝑒

 (21)

For example the SPI interface can be used with different data rates. Assuming a data rate of

20 Mbit/s with a payload size of 32 bit leads to a latency of 1.6 µs as it is calculated in Equation

(22). SPI can also be used with other data rates.

𝑙𝑎𝑡𝑒𝑛𝑐𝑦@XY = 	
𝑓𝑟𝑎𝑚𝑒	𝑠𝑖𝑧𝑒@XY
𝑑𝑎𝑡𝑎	𝑟𝑎𝑡𝑒@XY

=
32	𝑏𝑖𝑡

20	
	

𝑀𝑏𝑖𝑡
𝑠

= 1.6	𝜇𝑠 (22)

The latencies for the USB interface are specified in the standard which also takes the

maximum number of USB hubs into account. It is specified with 1000 µs for full-speed USB

44

Latency and Data Rates of Interfaces

and with 125 µs for high-speed and SuperSpeed. The maximal cable length for full-speed and

high-speed USB is 5 m whereas the maximum cable length for SuperSpeed USB is 3 m.

The Ethernet standard specifies the maximum transmission unit (MTU) with 1500 bytes which

leads to a frame of 1536 bytes. This is 12288 in bits. Assuming a data rate of 1 Gbit/s the

latency for a frame with maximum payload is 12.29 µs (Equation (23)). With 10 Gbit/s the

latency is 1.23 µs (Equation (24)). This latency can be guaranteed if no collision occurs.

𝑙𝑎𝑡𝑒𝑛𝑐𝑦bNcdeKdN,ghi/M = 	
𝑓𝑟𝑎𝑚𝑒	𝑠𝑖𝑧𝑒bNcdeKdN

𝑑𝑎𝑡𝑎	𝑟𝑎𝑡𝑒bNcdeKdN,ghi/M
=
12288	𝑏𝑖𝑡

1000	𝑀𝑏𝑖𝑡𝑠
= 12.29	𝜇𝑠 (23)

𝑙𝑎𝑡𝑒𝑛𝑐𝑦bNcdeKdN,gThi/M = 	
𝑓𝑟𝑎𝑚𝑒	𝑠𝑖𝑧𝑒bNcdeKdN

𝑑𝑎𝑡𝑎	𝑟𝑎𝑡𝑒bNcdeKdN,gThi/M
=

12288	𝑏𝑖𝑡

10000	𝑀𝑏𝑖𝑡𝑠
= 1.23	𝜇𝑠 (24)

According to the CAN standard, the fastest specified data rate is 1 Mbit/s. A standard CAN

frame with a frame ID of 11 bits has an overall length of 111 bits so the latency is calculated

with 111 µs (Equation (25)). Using only half of the data rate, leads to a latency of 222 µs

(Equation (26)). Since a frame with a lower frame ID has a higher priority this latency cannot

be guaranteed in general. The latencies stated in Table 6 for CAN are ensured if a point to

point connection is used instead of a bus with several nodes. The maximum cable length for a

1 Mbit/s connection is 40 m whereas the maximum cable length for a 500 kbit per second

connection is 100 m.

𝑙𝑎𝑡𝑒𝑛𝑐𝑦Bmn,goi/M = 	
𝑓𝑟𝑎𝑚𝑒	𝑠𝑖𝑧𝑒Bmn

𝑑𝑎𝑡𝑎	𝑟𝑎𝑡𝑒Bmn,goi/M
=
111	𝑏𝑖𝑡

1	𝑀𝑏𝑖𝑡𝑠
= 111	𝜇𝑠 (25)

𝑙𝑎𝑡𝑒𝑛𝑐𝑦Bmn,pTTqi/M = 	
𝑓𝑟𝑎𝑚𝑒	𝑠𝑖𝑧𝑒Bmn

𝑑𝑎𝑡𝑎	𝑟𝑎𝑡𝑒Bmn,pTTqi/M
=

111	𝑏𝑖𝑡

500	 𝑘𝑏𝑖𝑡𝑠
= 222	𝜇𝑠 (26)

PCIe can be classified in five generations at the moment where fifth generation is still under

development. The higher the generation, the higher is the data rate. Nowadays, generation 2

or 3 are commonly used for embedded applications. Furthermore, a PCIe connection can use

either 1, 4, 8 or 16 lanes. Therefore the speed of each generation can be multiplied by the

specific number of lanes. Table 5 states the data rates for different generation and number of

45

Latency and Data Rates of Interfaces

lane combinations in MB/s (line codes 8b/10b for generation 1 and 2 and 128b/130b for

generation 3 and 4 are already considered). Therefore, the number stated in that table has to

be multiplied by 8 bits/byte to get the data rate in Mbit/s for the calculations of Table 6. The

latency of three different PCIe modes (Gen1 x1, Gen3 x8, Gen4 x16) have been calculated as

examples (Equations (27), (28) and (29)).

𝑙𝑎𝑡𝑒𝑛𝑐𝑦XBYd,hdKg	tg = 	
𝑓𝑟𝑎𝑚𝑒	𝑠𝑖𝑧𝑒XBYd

𝑑𝑎𝑡𝑎	𝑟𝑎𝑡𝑒XBYd,hdKg	tg
=

4096	𝑏𝑖𝑡

2000	 𝑘𝑏𝑖𝑡𝑠
= 2.05	𝜇𝑠 (27)

𝑙𝑎𝑡𝑒𝑛𝑐𝑦XBYd,hdKv	tw = 	
𝑓𝑟𝑎𝑚𝑒	𝑠𝑖𝑧𝑒XBYd

𝑑𝑎𝑡𝑎	𝑟𝑎𝑡𝑒XBYd,hdKv	tw
=

4096	𝑏𝑖𝑡

63040	 𝑘𝑏𝑖𝑡𝑠
= 0.065	𝜇𝑠 (28)

𝑙𝑎𝑡𝑒𝑛𝑐𝑦XBYd,hdKx	tgy = 	
𝑓𝑟𝑎𝑚𝑒	𝑠𝑖𝑧𝑒XBYd

𝑑𝑎𝑡𝑎	𝑟𝑎𝑡𝑒XBYd,hdKx	tgy
=

4096	𝑏𝑖𝑡

252000	 𝑘𝑏𝑖𝑡𝑠
= 0.016	𝜇𝑠 (29)

PCIe
generation

x1
in MB/s

x4
in MB/s

x8
in MB/s

x16
in MB/s

Gen1 250 1000 2000 4000
Gen2 500 2000 4000 8000
Gen3 984.6 3938 7877 15754
Gen4 1969 7877 15754 31508
Gen5 3900 15800 31500 63000

Table 5 Data Rates of Different PCIe Generations.

Interface Variant Data Rate in
Mbit/s

Maximum
Payload Size in

bit
Latency in µs

SPI 20Mbit/s, 32bit 20 32 1.6

USB

Full Speed
(USB 1.1) 12 [48] 512 1000

High Speed
(USB 2.0) 480 [48] 8192 125

SuperSpeed
(USB 3.0) 5 000 [49] 8192 125

Ethernet 1Gb 1 000 [50] 12000 12
10Gb 10 000 [50] 12000 1.2

CAN 1Mb 1 131 131
500kb 0.5 131 262

PCIe
Gen1 x1 2000 4096 2.05
Gen3 x8 63040 4096 0.065
Gen4 x16 252000 4096 0.016

Table 6 Latency and Data Rate of Interfaces for Abstracted Peripherals.

46

Features of the IoT Device Framework

6 Features of the IoT Device Framework

In this chapter the features of the developed IoT device framework are described and listed.

Section 6.1 shows a block diagram with a rough overview of the hardware system. Section 6.2

describes the hardware in more detail. Relevant aspects such as the physical dimensions, the

power consumption and the used components of the device are described. A possible software

solution is evaluated in Section 6.3 and also the board bring up process which has to be done

within the production process is described in Section 6.4. Figure 9 shows the IoT device

framework with all modules of the schematics design included from a side view. As described

in Chapter 3 not all of the schematic design modules have to be used to develop a new IoT

device. Therefore, the PCB can be adapted to any specifications of a new IoT product. It is

scalable regarding many parameters. The physical dimensions can be changed easily and

also the power consumption can be reduced essentially.

Figure 9 Developed IoT Device Framework.

47

Features of the IoT Device Framework

6.1 Block Diagram

Figure 10 shows the block diagram of the developed IoT device framework.

Figure 10 Block Diagram of Developed IoT Device Framework.

48

Features of the IoT Device Framework

6.2 Hardware

The PCB, with all the components of the developed IoT device framework included can be

seen in Figure 11 and Figure 12 where Figure 11 shows the top view and Figure 12 shows the

bottom view of the PCB.

Figure 11 IoT Device Framework: PCB Top View.

Figure 12 IoT Device Framework: PCB Bottom View.

49

Features of the IoT Device Framework

6.2.1 Overview

When the hardware of an IoT device is developed, several aspects should be taken into

account: physical dimensions, power consumption, data storage and processing, connectivity,

and cost [51].

Including the basic system and all of the optional extensions, the physical dimensions of the

PCB are 120 mm x 75 mm. The highest component on the top side is the RJ45 connector with

a height of 13.95 mm and on the bottom side the multi-layer ceramic chip (MLCC) capacitors

with a height of about 2 mm.

The used components for the IoT device framework are:

• SoC: NXP i.MX 6UL G2, ARM Cortex-A7, 528 MHz
• Power supply:

o Power over Ethernet, 13 W
o USB Mini (used as an USB Device), 2.5 W
o USB Mini (used for the console), 2.5 W

• PMIC: NXP PF3000
• Memory:

o DRAM: 256 M x 16 (4 GB)
o NOR Flash: 2 M x 8 (16 MB)
o NAND Flash: 128 M x 8 (1 GB)

• Supervisory processing unit: NXP KL27
• Real Time Clock (RTC)
• Interfaces:

o Micro SD card
o USB host
o USB device
o Ethernet incl. PoE
o CAN interface
o USB to serial
o Display incl. touch panel

50

Features of the IoT Device Framework

The power consumption is another important factor when a device is evaluated. It depends

on many aspects like the mode of operation of the SoC, the used memory, the used interfaces

and the mode (speed) of memory operations and data rates of the used interfaces.

The board can be supplied by one of the two Mini-USB connectors or by the PoE power

adapter. The USB connectors provide 2.5 W and the PoE power adapter is designed to provide

13 W.

The calculation of the power consumption for full operation of the device can be seen in Table

7 where the power consumption of each component is the product of the voltage and the drawn

current. Since the DC/DC converters between the input voltage and the supply voltage of the

components have constrained efficiencies the calculated power consumption has to be divided

by the efficiency of the DC/DC converter to get the actual power consumption. The efficiency

of the converters in the PMIC and the TPS63000 have to be considered and in the case of a

supply by PoE the efficiency of the PoE controller has to be taken into account as well. For

calculating the power consumption of the display the efficiency of the led driver TPS61165 for

the backlight has to be considered.

The calculation of the power consumption was separated into the power consumption of the

basic system and the power consumption of the optional extensions as it can be seen in Table

7. The i.MX6UL, the DDR3L SDRAM, the NAND flash and the Ethernet PHY are the essential

components for calculating the power consumption of the basic system (green boxes in Figure

13). The NOR flash is not considered in the calculation since it has a negligible power

consumption and since it is only in operation at the boot process when all the other components

are turned off or are not in full operation. The most important optional extensions for calculating

the power consumption are the USB host, the micro SDCard, the touch panel, the CAN

interface, the KL27 and the display.

The power consumption of the i.MX6UL core is about 675 mW since it is supplied by 1.35 V

and the maximal supply current is 500 mA. For the high level of the i.MX6UL 3.3 V are used

and the maximum current rating is 125 mA. Therefore the power consumption is

412.5 mW [52].

The DDR3L SDRAM is supplied by the 1.35 V power supply voltage rail. According to the

document “i.MX 6UltraLite Power Consumption Measurement” the DDR3L SDRAM draws a

51

Features of the IoT Device Framework

current of about 100 mA for the case of a video playback. This leads to a power consumption

of 135 mW.

In the datasheet of the NAND flash the maximal operating current for programming, reading

and erasing is 30 mA. As the supply voltage is 3.3 V, the power consumption of the NAND

flash is 99 mW.

The power consumption of the Ethernet PHY depends on the mode of operation. First it

depends on the current which is drawn by the transceiver and the digital I/Os. These values

are given for different nominal operating voltages (VDDA and VDDIO). In that case VDDA and

VDDIO are both 3.3 V. Furthermore, the power consumption depends on the transfer mode of

the interface. In the example, the highest possible power consumption has been taken from

the datasheet. The maximum power consumption is achieved with a 100BASE-TX Full-duplex

connection with 100 % utilization. The current consumption by the transceiver itself is 34 mA

and the current consumption of the digital I/Os is 13 mA. Since both are supplied by 3.3 V, the

two currents are adding up to 47 mA. The power consumption for that mode is 155.1 mW.

The USB host can provide up to 500 mA at a voltage level of 5 V. Therefore, the power

consumption can achieve a level of 2500 mW.

The nominal voltage of the CAN interface is 5 V. According to the CAN transceiver datasheet,

a typical current of 50 mA and a maximal current of 70 mA is drawn in normal mode when the

bus is dominant. This leads to a power consumption of maximal 350 mA.

The microSD interface uses 3.3 V as a nominal voltage. The needed current depends on the

speed mode. For the standard mode with 25 MHz the current during read or write operations

is 100 mA. Considering high performance mode with 50 MHz this leads to a current of 200 mA

which is a power consumption of 660 mW.

The touch panel is supplied by 3.3 V and draws a current of 12 mA. This leads to a power

consumption of 39.6 mW. The backlight of the LCD display uses a nominal voltage of 26.5 V

at 20 mA which means that the power consumption is 512 mW. The LCD display itself is

supplied by 3.3 V. Assuming that it draws a current of about 30 mA, leads to a power

consumption of about 99 mW.

52

Features of the IoT Device Framework

In contrast to the components mentioned before, which are part of the i.MX6UL, the SPU has

to be taken into account. The SPU is supplied by the 5 V power supply voltage and draws a

current of about 50 mA. The power consumption is therefore about 250 mW.

The power consumption calculated for the different components has to be divided by the

efficiency of the specific DC/DC converter to get the overall power consumption for the

component. Figure 13 shows the hierarchy of the DC/DC converters of the PCB. The

TPS63000 provides the stable 5 V and has a efficiency of about 90%. The TPS61165 for

backlight of the display has an efficiency of about 85% for an output voltage of 24 V, an input

voltage of 5 V and a current of 20 mA. The power consumption of the 5 V/4.2 V converter of

the PMIC is the product of the voltage drop of 0.8 V and the output current of about 1.81A

(0.81 A for the SW3 regulator with 1.35 V and 1 A as the maximum output current for the SW1A

regulator). Therefore, the power consumption is 1.448 W (Equation (30)). The SW1A and SW3

regulators have an efficiency of about 85 %.

𝑃pz/x.{z = 𝑈Le}~ ∙ 𝐼}�N = (𝑈JK − 𝑈}�N) ∙ (𝐼@�gm + 𝐼@�v) = (5	𝑉 − 4.2	𝑉) ∙ (1	𝐴 + 0.81	𝐴)

= 1.448	𝑊 (30)

Component Voltage
in V

Current
in mA

Power
of SoM
in mW

Power of
Periphery

in mW
i.MX6UL Core
(VDD_SOC_IN) 1.35 500 675

DDR3L SDRAM
(DRAM) 1.35 100 135

Total 1.35 V 810

VDD_HIGH_IN 3.3 125 412.5
NAND 3.3 30 99
Ethernet PHY (ENET1) 3.3 47 155.1
microSD (SD1) 3.3 200 660
Touch Panel (UART4) 3.3 12 39.6
display 3.3 30 99
Total 3.3 V 666.6 798.6

USB Host
(USB_OTG_2) 5 500 2500

CAN (UART2) 5 70 350
KL27 (SPU) 5 50 250
Total 5 V 3100

Backlight of display 26.5 20 512
Total 26.5 V 512

Table 7 Power Consumption without Efficiency of DC/DC converters.

53

Features of the IoT Device Framework

Figure 13 Efficiencies of Regulators.

Calculation:

𝑃i�MJ�	M�MNd� =
666.6	𝑚𝑊
0.85 + 810	𝑚𝑊0.85 + 1448	𝑚𝑊

0.90
= 3539.08	𝑚𝑊 (31)

𝑃}~NJ}K��	dtNdKMJ}KM =
798.6	𝑚𝑊
0.85 + 1448	𝑚𝑊 + 512	𝑚𝑊0.85

0.90
= 3322.09	𝑚𝑊 (32)

𝑃N}N�� =
𝑃i�MJ�	M�MNd� + 𝑃}~NJ}K��	dtNdKMJ}KM

𝜂X}b,�}KNe}��de
=
3539.08	𝑚𝑊 + 3192.68	𝑚𝑊

0.84
= 8168	𝑚𝑊 (33)

Ptotal (Equation (33)) represents the total power consumption of the device. In case of a PoE

supply this total power consumption has to be divided by the efficiency of the PoE controller.

The evaluation board described in [53] shows an efficiency of 84%. This efficiency is taken for

the calculation (Equation (33)). To be sure another 10 % can be added to this result so the

power consumption of the device supplied by USB can be approximated with 9 W.

If the PCB is supplied by one of the two mini USB connectors not all of the periphery can be

used since USB only provides 2.5 W.

54

Features of the IoT Device Framework

6.2.2 SoC

As described in Section 3.1.1, the ARM architecture for the SoC is most suitable for IoT device

applications. The ARM architecture is used by NXP for different embodiment variants. The

i.MX6 series of NXP consists of eleven families. The last added families are the i.MX6UL and

the i.MX6ULL. The trend is to scale-down the processors with the aim to make the

development of very small IoT devices possible. As it can be seen in the table [54] even the

smallest variants support security mechanisms, which is very important for devices in the

internet [54].

Considering the stated aspects, the i.MX6UL was chosen for designing the IoT Device

Framework. The i.MX6UL is based on an ARM Cortex-A7 core which is suitable for low-power

devices. The ARM Cortex-A7 has a higher performance compared to the similar ARM Cortex-

A5. According to NXP, is the i.MX6UL providing two important aspects of an IoT device: low-

power operability and security. It can even run Linux. Furthermore, a big advantage which

comes with using the i.MX6UL is that the IoT Device Framework is a solution which is scalable

regarding the processing power because it is compatible with the entire i.MX MPU family [55].

Furthermore, the IoT Device Framework can be easily modified to use the i.MX6ULL due to its

compatibility.

Four different device options of the i.MX6UL are provided by NXP. The IoT Device Framework

uses the MCIMX6G2 which has compared to the MCIMX6G0 and the MCIMX6G1 a 24-bit

parallel camera interface (CSI) and a 24-bit parallel display interface (LCD). Furthermore, it

has two CAN interfaces, two Ethernet interfaces and two ADC converters with 10 channels.

Therefore, the IoT Device Framework can be scaled down using the device options

MCIMX6G0 or MCIMX6G1. There is the device option MCIMX6G3 which has more security

features than the MCIMX6G2 option.

The i.MX6UL with ARM Cortex-A7 has 528 MHz with a factor of 1.9 DMIPS/MHz which equals

to 1322 DMIPS. An operating system requires at least 300 to 400 DMIPS.

55

Features of the IoT Device Framework

6.2.3 Power Management

There are three options to power the IoT device. The IoT device can be powered by using

Power-over-Ethernet (PoE), by using the USB Device Connector or the USB connector which

is used for the serial interface.

PoE uses the Ethernet cabling to get both, power supply and data. The provided power by PoE

is 13 W according to the standard IEEE 802.3 af whereas the provided power when USB is

used as a USB device is 2.5 W.

Power Supply Voltage Rails

The i.MX6UL should be supplied by a voltage between 1.275 V and 1.5 V and the DDR3L

requires a voltage of 1.35 V. Due to the fact, that the power supply can be within a given

tolerance both, the i.MX6UL and the DDR3L are supplied with the same voltage of 1.35 V.

Furthermore, a voltage of 3.3 V have to be provided to the i.MX6UL for having basic

functionalities. If other interfaces are used, other voltage rails have to be provided to the

i.MX6UL as well.

Table 8 lists typical power supply voltage rails for different components of the SBC.

SBC component Power supply voltage rail
SoC 1.35 V
DDR3L 1.35 V
GPIO, SDCard, Ethernet, touch panel,
NAND flash, NOR flash 3.3 V

Table 8 Power Supply Voltage Rails.

Power Sequencing

As it is described in the datasheet of the i.MX6UL the power-up sequence, the power-down

sequence and the steady state guidelines have to be considered while designing the system.

Otherwise the current could be too high during power-up, the device is not booting or the

processing unit can be even damaged in the worst case.

The power-up sequence is:

• The VDD_SNVS_IN supply must be available or connected to VDD_HIGH_IN before

all the other power supplies,

56

Features of the IoT Device Framework

• VDD_HIGH_IN must be available before VDD_SOC_IN and

• Further requirements: POR_B must be asserted at power-up until the last power level

is turned on, guarantee that there is no back voltage from a supply to the 3.3 V voltage

rail, no power-on restriction for USB_OTG1_VBUS and USB_OTG2_VBUS.

The power-down sequence is:

• VDD_SNVS_IN must be turned off after all the other voltage rails.

Further, an IO pin should not be driven when the power supply voltage rail for that pin is not

available. In the datasheet it is stated that this could lead to an internal latch-up and

malfunctions.

Reset Logic

Besides the power supply rails and the power sequencing, the reset logic is an important part

of the power management.

The PMIC is first configured over I2C by the SPU. When the configuration is finished the

PWRON signal from the SPU to the PMIC is set. If the PWRON signal is set and the input

voltage VIN is higher than the threshold UVDET the PF3000 goes into the ON mode. The

power supply voltage rails are turned on and the power sequencing is done, as it is set in the

configuration. If the power sequencing was done properly the PMIC sets the RESETBMCU to

HIGH since it is an active LOW signal. If a fault occurs the signal RESETBMCU is set to LOW.

The reset signal which is an open drain signal is furthermore connected to the JTAG connector.

57

Features of the IoT Device Framework

6.2.4 Memory

DDR3L SDRAM:

The i.MX6UL supports the Low Power DDR2 (LP-DDR2), DDR3 and DDR3L versions of DDR

SDRAMs with 16-bit. The DDR3L SDRAM is chosen for the IoT device, because it is the

newest version provided by the i.MX6UL and it has a low power consumption.

NOR Flash and NAND flash:

The partitions of the NOR flash and NAND flash are shown in Figure 14. The NOR flash has

a size of 1 MB where 768 kB are used for storing u-boot, 64 kB for storing the u-boot

environment and 192 kB of unused memory which can be used for application specific data.

The NAND flash has a size of 1 GB and consists of two equal sized UBI partitions with 512 MB.

Each partition holds a Linux consisting of the Linux kernel, the root file system and the device

tree.

Figure 14 Partitions of NOR Flash and NAND Flash.

EEPROM:

Device specific information like the serial number is stored in the EEPROM as described further

in Chapter 9. The memory size is 64 kbit.

58

Features of the IoT Device Framework

6.2.5 Supervisory Processing Unit

The IoT Device Framework uses an NXP KL27 controller as a supervisor. The Kinetis KL27

Microcontroller uses an ARM Cortex-M0 core. The supervisor is used for loading the

bootloader into the NOR Flash and the Linux into the NAND Flash. Furthermore, several

voltages can be monitored and in case of an error the system can be shut down. Besides,

hardware can be controlled before starting the SoC.

6.2.6 Power Management IC

The PF3000 which is recommended to use as a PMIC for the i.MX6UL by NXP is used. The

PF3000 contains four buck regulators, a boost regulator and six linear regulators. It is

controlled via I2C and includes a one-time programmable memory for the configuration of the

PMIC. The configuration includes the start-up sequence, start-up timing and the selection of

the output voltage, frequency and soft start. The PF3000 includes a coin cell charger and

provides the reference voltage for the DDR SDRAM.

6.2.7 Interfaces

The provided interfaces by the configured IoT device are:

• USB Host,
• USB Device,
• Ethernet,
• Parallel single-ended display interface,
• CAN and
• microSD.

59

Features of the IoT Device Framework

6.3 Software

As a bootloader u-boot is recommendable. It is the most used bootloader. Its task is to initialize

the hardware.

Linux includes the kernel, the device tree and the root file system. The kernel versions 4.1 and

4.4 as long-term support (LTS) mainline kernels are used. The device tree is compiled by the

device tree compiler (DTC) and is forwarded as a parameter at the start of the kernel. The

driver reads the data. The root file system is based on Debian.

6.4 Board Bring-Up

The commissioning consists of several steps. Firstly, the supervisor firmware is loaded over

the serial wire debug (SWD) interface which uses two signals (SWDIO and SWCLK). It

represents an alternative to JTAG [56]. Afterwards the bootloader u-boot is loaded into the

serial NOR flash over USB and the supervisory processing unit. Then the commissioning Linux

is transferred via the Ethernet interface to the DDR3L SDRAM. Therefore, the Trvial File

Transfer Protocol (TFTP) protocol is used. After loading the soft- and firmware into the

memories the commissioning Linux is booted with initrd which then loads the production Linux

from the TFTP server into the RAM first and into the NAND flash afterwards. The system has

to be rebooted to set the environment variables in the u-boot. It has to be set that the production

Linux is booted from the NAND flash by default. Restarting the system again, the Linux is

booted from the NAND flash.

60

Challenges in Schematics Design of the IoT device framework

7 Challenges in Schematics Design of the IoT device
framework

The challenges in the schematics design of the IoT device framework were connecting memory

and interfaces but also finding solutions for the power supply logic and for switching between

different modes of operations (e.g. production mode and normal mode of operation).

7.1 Multiplexing Power Supply Alternatives

One challenge was the power supply. Since the board can be supplied by three different

variants, a method for multiplexing these variants has to be designed. The board can either be

supplied by the RJ45 connector so PoE, by the USB device connector, or by the USB

connector which is used for the console.

For multiplexing, a current-limited power switch (AP2553A) shown in Figure 15 is used for each

of the three power supply possibilities. Each current-limited power switch has an enable signal

(+5V_PoE_EN, +5V_USB_EN, +5V_SER_EN) which is controlled by the SPU. So, only one

of the three power supplies is forwarded to the +5V_MUX signal. The current-limited power

switches signal the SPU in case of a fault with the specific signals (+5V_PoE_FT,

+5V_USB_FT, +5V_SER_FT). The currents are limited with the externally added resistors to

the ILIM pin of the switch. In the case of PoE this resistor has a value of 10 kW, which limits

the current to about 2.1 A. If the +5V_USB or the +5V_SER are used, the current is limited to

about 510 mA with a 39 kW resistor.

61

Challenges in Schematics Design of the IoT device framework

Figure 15 Current-Limited Power Switches for Power Supply Alternatives.

The +5V_MUX signal is connected to a buck-boost converter (TPS63000) which has the +5V

power supply as an output. This is shown in Figure 16. The values for the external circuitry of

62

Challenges in Schematics Design of the IoT device framework

the buck-boost-converter have been selected according to the data sheet. The values for R618

and R619 have been calculated with the following formula [57]:

𝑅ygw
𝑅yg�

= �
𝑈}�N
𝑈�A

− 1� (34)

Since the desired output voltage is 5 V and the feedback voltage is 500 mV the ratio between

the two resistor values should be 9 as shown in Equation (35).

𝑅ygw
𝑅yg�

= �
𝑈}�N
𝑈�A

− 1� =
5	𝑉

500	𝑚𝑉
− 1 = 9 (35)

The value for R618 is therefore chosen with 27 kW and the value for R619 is chosen with 3 kW.

Figure 16 5 V Buck-Boost Converter.

For visualizing if the power supplies are available, light-emitting diodes (LEDs) with their

specific pre-resistors are used (Figure 17). To ensure that the LEDs have the same brightness,

the current has to be equal. Therefore, the resistors have to be chosen depending on the

supply voltage. Since the typical forward voltage of the used LED is 2.2 V the voltage drop for

63

Challenges in Schematics Design of the IoT device framework

the resistor of the 3.3 V supply is 1.1 V. The current is chosen with 5 mA. Therefore the resistor

has to be 220 W. For the 5 V power supply the voltage drop for the resistor is 2.8 V. So, a

resistor with 560 W is chosen to limit the current to 5 mA.

Figure 17 Power Supply LEDs.

7.2 Power over Ethernet (PoE)

The power adapter for PoE mainly consists of a power interface port and a pulse width

modulation (PWM) controller which drives the PoE transformer. A 13 W PoE transformer is

chosen with an output voltage of 5 V. Therefore, a current of 2.6 A is possible as it is calculated

by using Equation (36).

𝐼X}b =
𝑃X}b
𝑈X}b

=
13	𝑊
5	𝑉

= 2.6	𝐴 (36)

The controller requires a feedback circuit which is realized with an optocoupler.

7.3 PMIC

The PMIC PF3000 is supplied by the 5 V power supply voltage rail. The PMIC generates the

voltage which is needed as the input for its internal switching regulators itself. The switching

regulators of the PMIC generate 3.3 V, 1.8 V and 1.35 V. The 1.8 V are currently not used by

the PCB. Furthermore, the PMIC integrates several LDOs which are not used in this design.

Also, the DRAM reference voltage which is required by the i.MX6UL is generated by the PMIC.

A lithium coin battery is connected to the PMIC for supplying the RTC. For configuring the

PMIC an I2C interface is used.

64

Challenges in Schematics Design of the IoT device framework

7.4 Power Supply for Production Mode

Since the PMIC is not set up in production mode from the very beginning, it has to be ensured

that the SPU, the EEPROM and the reset generator are supplied in another way.

The 3.3 V supply in production mode is provided by the connector which is used for

programming the SPU over the SWD interface at the very beginning.

In a further step, the SPU is supplied by +5 V, which is regulated by the SPU to 3.3 V. The

+5 V supply for the SPU comes from one of the three alternatives as explained before: PoE,

USB device connector or the USB connector which is used for the serial interface. Instead of

using the current-limited power switches and the buck-boost converter, the three alternatives

are connected via Schottky diodes in parallel as it can be seen in Figure 18.

Figure 18 +5 V Supply of the SPU.

7.5 Switch Concept for Production Mode and Standard Mode
of Operation

7.5.1 USB connector

The USB connector which is used for communicating with the SPU in production mode is used

for the console in the standard mode of operation. Therefore, a jumper has been implemented

which is set in production mode. This jumper controls a high-speed USB 2.0 switch which

connects the USB connector to the SPU in production mode and to the UART to USB converter

in the standard mode of operation. A second switch is used to connect the SPU in the normal

mode of operation to the USB interface of the i.MX6UL, if the device is not connected over the

USB device connector. This concept is shown in Figure 19.

65

Challenges in Schematics Design of the IoT device framework

Figure 19 Switch Concept for Production Mode and Normal Mode of Operation.

7.5.1 EEPROM

The WP is pulled to VSS in production mode. Therefore, the read and write operations can be

done in production mode. In the normal mode of operation it is pulled to VDD to inhibit write

operations of the EEPROM.

7.5.2 I2C interface

Dependent on the mode of operation different devices are connected to the I2C interface. The

three different modes of operation are: config PMIC mode, production mode and the normal
mode of operation. Figure 20 shows a flow chart with the different modes of operation.

If the CONF-PMIC signal is set to high the board is in the config PMIC mode regardless of

the PROD-SW signal. In the config PMIC mode the i.MX6UL is just connected to the display

and disconnected from all the other components (PMIC, EEPROM, temperature sensor, SPU).

In this mode the SPU is connected to the temperature sensor, the EEPROM and the PMIC.

Therefore, these components can be configured with the SPU.

If the CONF-PMIC signal is low, the PROD-SW controls whether the board is in production

mode or in the normal mode of operation.

Since the PROD-SW signal is implemented as an active low signal, the board is in production
mode if the PROD-SW signal is low. In this mode the i.MX6UL is connected to the display and

the SPU is connected to the temperature sensor and the EEPROM. The PMIC is disconnected

in that mode of operation.

66

Challenges in Schematics Design of the IoT device framework

If the PROD-SW signal is low the board is in its normal mode of operation. The i.MX6UL is

connected to the temperature sensor, the EEPROM and the display. The SPU is disconnected

in this mode.

Figure 20 I2C in Different Modes of Operations.

7.6 Interfaces

The signals of the JTAG interface are connected to the controller by 220 W resistors.

The Ethernet PHY is connected to the RJ45 connector via the differential pair signals for

receive and transmit (RX_P/RX_N and TX_P/TX_N). It is good practice to use transient voltage

suppressor (TVS) diodes at the connector to comply with the standard IEC 61000-4-2 level 4

to 8 kV contact discharge and 15 kV air discharge. The PHY is connected via a reduced media

independent interface (RMII) to the i.MX6UL. The Ethernet PHY requires its own 25 MHz

quartz oscillator.

The differential pair of the USB host can be connected almost directly to the USB controller.

It is good practice to add TVS diodes and a common-mode choke at the USB signals.

Furthermore, ferrite beads should be connected to the 5V and the GND pin. The 5V supply

signal for the connected USB device is controlled by a precision adjustable current-limited

power switch. The switch limits the current dependent on the externally added resistor which

is about 0.73 A (0.73 A @ 5 V = 3.65 W) in that case.

67

Challenges in Schematics Design of the IoT device framework

The USB Device connector is connected similar to the USB Host connector to the specific

USB controller. It is recommendable to add TVS diodes, a common-mode choke and ferrite

beads in the same way. Since the current is provided by the host device and the IoT device

framework just draws current from the host device the current-limited switch is not needed.

This switch has to be added on the host device.

The CAN interface uses a D-SUB DE-9 connector. Between the connector and the CAN

controller there is a transceiver for converting the logic levels from 5 V to 3.3 V and for

converting the differential CAN signal to a receive and transmit signal. Furthermore, the

interface requires a 120 W termination resistor on both ends of the bus. Therefore, one is

included in the framework, whereas the second one has to be implemented in the node on the

other side of the bus. It is good practice to add TVS diodes to the CAN_HIGH and the

CAN_LOW signals.

The NAND flash is connected via the Open NAND Flash interface which is described in the

ONFi specification [58].

The NOR flash is connected via SPI, so it only requires four signals: Master Out Slave In

(MOSI), Master In Slave Out (MISO), the clock signal and a chip select signal [52].

The SD Card interface consists of four data signals, a command signal, a clock signal and a

card detect signal. The card detect signal shows if a card is inserted or not [52].

68

Challenges in Schematics Design of the IoT device framework

7.7 Parallel Single-Ended Display Interface

The connector for the display is connected via 18 parallel single-ended data signals, a clock

signal, a data enable signal, a horizontal synchronization (HSYNC) and a vertical

synchronization (VSYNC) signal. Besides, I2C is used for configuring the display and a reset

signal is provided to the display connector. For controlling the backlight of the display an LED

driver is used [52].

The components which were used for the LED driver shown in Figure 21 were calculated

according to the datasheet. The only component which had to be calculated was the R1219

which is called RSET in the datasheet. The feedback voltage between the FB pin and ground is

regulated to 200 mV by the LED driver. The nominal current for the backlight of the display is

given with 20 mA in the datasheet. The formula for calculating the value for RSET is stated in

the datasheet [59]:

𝑅@b� =
𝑈�A
𝐼�bH

=
200	𝑚𝑉
20	𝑚𝐴

= 10	Ω (37)

Figure 21 LED Driver Circuitry.

69

Considered Aspects for PCB Development of the IoT Device Framework

8 Considered Aspects for PCB Development of the
IoT Device Framework

Developing the PCB requires the conformity with several design guidelines to achieve a good

electromagnetic compatibility (EMC). The compliance of these guidelines avoids the need to

redesign the PCB several times before it passes the tests for the EMC relevant certificates.

According to the lecture “Design of Electronic Instruments and Systems” at the University of

Technology in Graz, important aspects which have to be considered in the development stage

of a PCB are [60]:

• placement of the connectors,
• floor planning of the PCB,
• number of PCB layers,
• separation of analog and digital ground,
• routing of the power supply tracks,
• routing of high frequency signals,
• usage and placement of decoupling capacitors,
• placement of components.

Furthermore, the document “Hardware Development Guide for the i.MX 6UltraLite Applications

Processor” provided by NXP was considered for the development of the IoT device

framework [61].

8.1 Placement of the Connectors

Connectors should be placed on the same side of the PCB if it is possible. Placing the

connectors on opposite sides of the PCB comes with high electromagnetic emissions, due to

the fact that a bigger distance between the ground signals of two connectors causes a bigger

voltage drop. This is because the resistance increases proportional to the distance. Having the

connectors on the same side of the PCB minimizes the distance and therefore the voltage drop

between them.

In the case of the IoT device framework it was not possible to follow this guideline in all cases

because of the lack of space on just a single side for all the connectors. Placing all the

connectors on the same side is often not possible because mechanical requirements restrict

it.

70

Considered Aspects for PCB Development of the IoT Device Framework

8.2 Floor Planning

The floor planning of the PCB already starts with the development of the schematic. Separating

the functional blocks to different schematic sheets is essential for a good overview and a fast

PCB design. In a simple design these functional separations could be just the separation to

power, digital, analog and supply circuits. A good practice is to assign three or four digit

designators where the first digit or digits represent the number of the corresponding schematic

sheet. This method helps especially when it comes to design the PCB. It should be considered

to place noisy parts close to the connector. Furthermore, susceptible parts should be placed

further away from noisy parts on the PCB.

In the case of the developed IoT device framework the design was separated to the following

schematic sheets:

• A block diagram which is the top schematic sheet of the hierarchy. It connects all the
other subordinated schematic sheets,

• Supervisory processing unit: with the KL27 controller and the console,
• Power-over-Ethernet (PoE): with the RJ45 connector, the PoE interface IC, the 13 W

transformer and the feedback loop with an optocoupler,
• Ethernet: Ethernet signals from the RJ45 connector of the PoE sheet and the Ethernet

PHY,
• USB: USB host and USB device with an overcurrent switch,
• Power supply: the three power supplies for the PCB with an overcurrent switch each

and a buck-boost converter for guarantee stable 5 V power supply,
• PMIC with a coin cell,
• i.MX6 power: with the circuitry of the power pins of the i.MX6,
• i.MX6 control: with a JTAG connector, an EEPROM and a temperature sensor,
• NOR, NAND, SDCard and CAN interface are placed on one schematic sheet but

clearly separated within this sheet,
• DDR3 SDRAM and
• Display: with parallel display interface to a connector and a switching regulator for the

backlight.

71

Considered Aspects for PCB Development of the IoT Device Framework

8.3 Number of PCB layers

Easy designs can be implemented with two layers either with or without a solid ground plane.

Having a more complex design requires more layers.

A good way to implement a layer stack for a four layer design:

• Layer 1: signal,
• Layer 2: ground,
• Layer 3: power supply and
• Layer 4: signal.

The advantage of having the ground plane and the power supply plane on adjacent layers

leads to a good decoupling between the signal layers. It should be avoided that the ground

planes or power supply planes are separated by slots (e.g. because of vias in a row or tracks).

In the case of the developed IoT device framework eight layers are used. The layer stack is
implemented as followed:

• Layer 1: signal,
• Layer 2: ground,
• Layer 3: signal,
• Layer 4: power with two zones: 3.3 V for the supervisor and 5 V,
• Layer 5: power with two zones: 3.3 V and 1.35 V,
• Layer 6: signal,
• Layer 7: ground and
• Layer 8: signal.

8.4 Separation of Analog and Digital Ground

The ground plane for digital and analog parts should be separated but it has to be considered

that the current path of a signal and the current return path on the ground plane do not form a

big loop. Therefore, a signal should be routed the same way on the signal plane as the current

flows back on the ground plane.

8.5 Routing of the Power Supply

The routing of the power supply is a further important aspect. Big loops in tracks for the power

supply should be avoided to achieve high EMC.

72

Considered Aspects for PCB Development of the IoT Device Framework

8.6 Routing of High Frequency Signals

It is very important to route high frequency (HF) signals as short as possible. A good way to

achieve short tracks is to route them first so before all other signals. Furthermore, they should

not be routed over a slot of any ground or power plane. It is further good practice to shield high

frequency signal tracks with ground tracks on both sides of the HF track. Changing the layers

should be avoided with HF tracks. In the IoT device framework the DDR3 SDRAM and USB

use HF signals.

There are several constraints which have to be considered for routing the DDR3 SDRAM

tracks. Especially, the maximum length of the tracks and the maximum mismatch of lengths to

each other have to be considered when routing the DDR3 SDRAM. As recommended for HF

signals, it should be avoided to change layers. Especially, the signals of the same byte lane

should be routed on the same layer.

USB.org specifies the layout guidelines in [62]. For the USB interface a 90 Ohm differential

impedance is required.

8.7 Usage and Placement of Decoupling Capacitors

Ripple and noise can lead to a lower noise margin and to a higher clock jitter of ICs. Decoupling

capacitors stabilize voltages which are used to supply an IC. Furthermore, they decrease the

size of the current loop from the source to the IC and back to the source because they are

placed close to the supply pins of the IC. An ideal placement of the decoupling capacitor can

be seen in Figure 22. The via to the ground plane should be placed right after the capacitor,

so that the current return path is on the ground plane.

Figure 22 Placing of Decoupling Capacitors [63].

73

Considered Aspects for PCB Development of the IoT Device Framework

Besides, placing decoupling capacitors close to the supply pin, the current return path, so the

connection to the ground pin, should be also as short as possible. In a lot of cases a 100 nF

decoupling capacitor is used on the PCB. Sometimes another 10 µF capacitor is used in

parallel. The 100 nF has the advantage that its equivalent series resistor (ESR) is lower and it

therefore has a faster response. Since a capacitor behaves like an inductor from a specific

frequency the resonant frequency has to be considered for the selection. This can be explained

by its equivalent series inductance (ESL). The resonant frequency can be calculated by using

Equation (38).

𝑓 =
1
2𝜋

∙ √𝐿𝐶 (38)

For selecting the decoupling capacitor for the supply pins of the i.MX6UL, Table 9 in the

“Hardware Development Guide for the i.MX 6UltraLite Applications Processor” was used as a

reference [61].

8.8 Placement of Components

Especially placing inductors and capacitors for example in form of a filter is critical. It has to be

avoided that there is a coupling between inductors and capacitors.

74

Product Lifecycle Management

9 Product Lifecycle Management

The product lifecycle management (PLM) includes the component and product tracking, the

configuration management, the software deployment and the update functionality of the

device. A common way to solve the component tracking of a device is to introduce a barcode

which includes all the relevant information of the device. Such information can be the name of

the device, the article number and a unique serial number. In contrast to one-dimensional

barcodes, the Quick Response (QR) code or the DataMatrix code are two-dimensional

barcodes which are used more and more nowadays. Often the two-dimensional DataMatrix-

Code according to the ISO/IEC 16022 with the error-correction code ECC200 is used. So even

if there is a scratch, it is possible to correct the barcode. It is good practice to store the barcode

and device specific information electronically in a non-volatile memory for example in an

EEPROM or an unused partition of the NOR Flash. The software should be able to read out

the used components and the versions of these components. The configuration
management is separated into the device configuration and the applications configuration.

The configuration management should evaluate if the specific hardware configuration (option

or variant) is valid. The software consists of only one binary which contains all the parts

(kernel, device tree, root file system, application and the update functionality). During

production process an initial software package is loaded into the device. This initial package

can be updated later via a browser where the web server runs on the device.

75

Conclusion

10 Conclusion

Using the internet of things (IoT) device framework to develop a new IoT device leads to an

individual Single-Board-Computer (SBC) solution. The idea of an IoT device framework came

up after the comparison of different hardware development concepts for an IoT device.

Basically, the advantages of the usual SBC solution and the advantages of the DBC solution

are combined and the disadvantages of both are reduced essentially. Using the IoT device

framework for development of an IoT device leads to an application specific and robust solution

in a short time because modules of the framework are reused and integrated in a new design.

Since the development time is reduced significantly the time-to-market (TTM) and the total-

cost-of-ownership (TCO) are reduced compared to standard SBCs which have to be designed

from scratch.

Furthermore, using Linux for being the interface between the hardware and an application is

the best solution since the device framework has enough resources for running such an

operating system. A very important aspect is the real-time capability of the IoT device.

Therefore the PREEMPT_RT patch can be used which is a simple solution compared to others.

The framework is designed in a way that periphery can either be integrated on the SBC so on

the IoT device directly, or it can be easily abstracted over standard interfaces like CAN or USB

to another device.

76

References

11 References

[1] L. Columbus, “2017 Roundup Of Internet Of Things Forecasts,” Forbes, 2017. [Online].
Available: https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-
internet-of-things-forecasts/#4e2f39d31480. [Accessed: 30-Dec-2017].

[2] R. van der Meulen, “Gartner Says 8.4 Billion Connected ‘Things’ Will Be in Use in 2017,
Up 31 Percent From 2016,” 2017. [Online]. Available:
https://www.gartner.com/newsroom/id/3598917. [Accessed: 30-Dec-2017].

[3] GrowthEnabler, “Market Pulse Report, Internet of Things (IoT),” 2017.

[4] Toradex, “Kundenspezifische Single Board Computer,” 2018. [Online]. Available:
https://www.toradex.com/de/customized-single-board-computer. [Accessed: 28-Jan-
2018].

[5] Phytec, “Single Board Computer | PHYTEC,” 2018. [Online]. Available:
http://www.phytec.de/produkte/single-board-computer/. [Accessed: 28-Jan-2018].

[6] R. Saleh et al., “System-on-chip: Reuse and integration,” Proc. IEEE, vol. 94, no. 6, pp.
1050–1068, 2006.

[7] NXP Semiconductors, “IMX6UL-BD.png (800×480),” 2018. [Online]. Available:
https://www.nxp.com/assets/images/en/block-diagrams/IMX6UL-BD.png. [Accessed:
28-Jan-2018].

[8] Viewpoint Systems, “Comparing Off-The-Shelf To Custom Designs For Industrial
Embedded Systems - Viewpoint Systems.” [Online]. Available:
https://www.viewpointusa.com/IE/wp/comparing-off-the-shelf-to-custom-designs-for-
industrial-embedded-systems/. [Accessed: 13-Mar-2018].

[9] J. Kroll, “Single-Board-Computer: Modular ohne Module | Elektronik,” Elektronik
Fachmedium für industrielle Anwender und Entwickler, 2012. [Online]. Available:
http://www.elektroniknet.de/elektronik/embedded/modular-ohne-module-85390.html.
[Accessed: 26-Dec-2017].

[10] P. Mohapatra, “Why choose System on Module over SBC for Embedded
Development?,” 2015. [Online]. Available: https://www.toradex.com/de/blog/system-on-
module-over-single-board-computer-for-embedded-development. [Accessed: 31-Dec-
2017].

[11] J. Sarantakes, “COTS vs Custom: Top 5 Reasons to Go Custom for Enterprise
Applications - Headspring,” 2016. [Online]. Available:
https://headspring.com/2016/03/09/cots-vs-custom-top-5-reasons-go-custom-
enterprise-applications/. [Accessed: 28-Jan-2018].

[12] Jedec, “DDR3 SDRAM STANDARD | JEDEC.” Jedec, 2012.

[13] S. Sinha, R., Roop, P., Basu, Correct-by-Construction Approaches for SoC Design,
ISBN: 978-1-4614-7863-8. 2013.

[14] F. Gaillard and A. Eieland, “Microprocessor (MPU) or Microcontroller (MCU)?,” Atmel.
pp. 1–4, 2013.

[15] Eclipse IoT Working Group, IEEE IoT, and AGILE IoT, “IoT Developer Survey 2016.”
pp. 1–39, 2016.

[16] A. Busse, “ARM-Chips für Einplatinen-Computer,” Linux-Magazin, 2015. [Online].
Available: http://www.linux-magazin.de/ausgaben/2015/01/arm-socs/. [Accessed: 24-

77

References

Jan-2018].

[17] R. Mitchell, “Understanding the Differences Between ARM and x86 Processing Cores -
News,” 2017. [Online]. Available: https://www.allaboutcircuits.com/news/understanding-
the-differences-between-arm-and-x86-cores/. [Accessed: 26-Dec-2017].

[18] R. Merritt, “Intel, ARM Battle over IoT: Explosion of end nodes makes MCUs strategic,”
EE Times, 2016. [Online]. Available:
https://www.eetimes.com/document.asp?doc_id=1330662. [Accessed: 26-Dec-2017].

[19] I. King, “Intel Licenses ARM Technology to Boost Foundry Business - Bloomberg,” 2016.
[Online]. Available: https://www.bloomberg.com/news/articles/2016-08-16/intel-
licenses-arm-technology-in-move-to-boost-foundry-business. [Accessed: 26-Dec-
2017].

[20] Arm Limited, “Processors – Arm,” 2018. [Online]. Available:
https://www.arm.com/products/processors. [Accessed: 28-Jan-2018].

[21] I. Maxim Integrated Products, “Multiple Voltage Systems Need Supply-Voltage
Sequencing,” 2002. [Online]. Available: https://www.maximintegrated.com/en/app-
notes/index.mvp/id/1133. [Accessed: 01-Jan-2018].

[22] N. Rossetti and R. Lenk, “DDR Memories Require Efficient Power Management,” 2001.
[Online]. Available: http://www.powerelectronics.com/content/ddr-memories-require-
efficient-power-management. [Accessed: 28-Jan-2018].

[23] Micron Technology Inc., “DRAM | Memory and Storage,” 2018. [Online]. Available:
https://www.micron.com/products/dram. [Accessed: 28-Jan-2018].

[24] Micron Technology Inc., “NOR / NAND Flash Guide,” no. Mlc. pp. 1–8, 2013.

[25] J. Jung, “Application of UBIFS for Embedded Linux Products,” LinuxCon Japan. pp. 1–
21, 2010.

[26] Micron Technology Inc., “Choosing the Right NAND,” 2018. [Online]. Available:
https://www.micron.com/products/nand-flash/choosing-the-right-nand. [Accessed: 24-
Jan-2018].

[27] ON Semiconductor, “EEPROM Overview and Applications Tutorial - On Semiconductor
| DigiKey,” 2016. [Online]. Available: https://www.digikey.com/en/ptm/o/on-
semiconductor/eeprom-overview-and-applications/tutorial. [Accessed: 28-Jan-2018].

[28] B. Vertenten et al., “UTMI+ Specification, Rev. 1.0.” pp. 1–26, 2004.

[29] EE Times, “Low-pin-count USB transceiver spec is released,” 2004. [Online]. Available:
https://www.eetimes.com/document.asp?doc_id=1148806. [Accessed: 31-Dec-2017].

[30] B. Hosler et al., “PHY Interface For the DisplayPort , and Converged IO Architectures,
Version 5.0.” pp. 1–145, 2017.

[31] Microchip Technology Inc., “Ethernet theory of operation,” Microchip Technology Inc.,
Application Note …. pp. 1–26, 2008.

[32] Silvaco, “I2S Audio Interface,” 2018. [Online]. Available:
https://www.silvaco.com/products/IP/i2s-audio-interface/index.html. [Accessed: 28-
Jan-2018].

[33] Intel Corporation, “Audio Codec ’ 97, Rev. 2.3.” pp. 1–108, 1998.

[34] HDMI Licensing, “HDMI :: Manufacturer,” 2018. [Online]. Available:
https://www.hdmi.org/manufacturer/index.aspx. [Accessed: 28-Jan-2018].

78

References

[35] Toshiba, “Display Interface Bridge | TOSHIBA Semiconductor & Storage Products
| Asia-Pacific,” 2018. [Online]. Available: https://toshiba.semicon-storage.com/ap-
en/product/assp/interface-bridge/display-interface.html. [Accessed: 28-Jan-2018].

[36] Toshiba, “Camera Interface Bridge (HDMI(R) Interface Bridge included) | TOSHIBA
Semiconductor & Storage Products | Asia-Pacific,” 2018. [Online]. Available:
https://toshiba.semicon-storage.com/ap-en/product/assp/interface-bridge/camera-
interface.html. [Accessed: 28-Jan-2018].

[37] L. G. Casagrande and F. L. Kastensmidt, “Soft error analysis in embedded software
developed with & without operating system,” 2016 17th Latin-American Test
Symp., pp. 147–152, 2016.

[38] T. N. B. Anh and S.-L. Tan, “Real-Time Operating Systems for Small Microcontrollers,”
IEEE Micro, vol. 29, no. 5, pp. 30–45, 2009.

[39] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating Systems for Low-End
Devices in the Internet of Things: A Survey,” IEEE Internet Things J., vol. 3, no. 5, pp.
720–734, 2016.

[40] C. Bormann, M. Ersue, and A. Keranen, “RFC7228: Terminology for Constrained-Node
Networks,” 2014. [Online]. Available: https://tools.ietf.org/html/rfc7228. [Accessed: 26-
Dec-2017].

[41] Eclipse IoT Working Group, IEEE IoT, and AGILE IoT, “IoT Developer Survey 2017.”
pp. 1–53, 2017.

[42] J. Altenberg, “Linux und Echtzeit.” pp. 1–38, 2006.

[43] H. Shah, R. Shah, U. Shah, and S. Deshmukh, “Performance parameters of RTOSs;
Comparison of open source RTOSs and benchmarking techniques,” 2013 Int. Conf.
Adv. Technol. Eng. ICATE 2013, no. 101, 2013.

[44] M. D. Marieska, P. G. Hariyanto, M. F. Fauzan, A. I. Kistijantoro, and A. Manaf, “On
Performance of Kernel Based and Embedded Real-Time Operating System :
Benchmarking and Analysis,” 2011 Int. Conf. Adv. Comput. Sci. Inf. Syst., pp. 978–979,
2011.

[45] P. Feuerer, “Benchmark and Comparison of Real-Time Solutions Based On Embedded
Linux,” Hochschule Ulm, German. pp. 1–95, 2007.

[46] J. H. Brown and B. Martin, “How fast is fast enough? choosing between Xenomai and
Linux for real-time applications,” proc. 12th Real-Time Linux Work., pp. 1–17, 2010.

[47] S. K. Maharana, “IMPROVING USB 3.0 WITH BETTER I/O MANAGEMENT,” EE
Times, no. June, pp. 1–8, 2016.

[48] C. Peacock, “USB in a Nutshell, Making Sense of the USB Standard, Third Release,”
2002.

[49] A. Gupta, “USB 3.0 vs USB 2.0: A quick reference summary for the busy engineer |
Embedded,” 2014. [Online]. Available:
https://www.embedded.com/design/connectivity/4437961/USB-3-0-vs-USB-2-0--A-
quick-reference-summary-for-the-busy-engineer. [Accessed: 02-Feb-2018].

[50] Qlogic, “Introduction to Ethernet Latency An Explanation of Latency and Latency
Measurement, SN0330915-00 Rev. E,” Qlogic Reports, pp. 1–4, 2017.

[51] A. Gerber, “Choosing the best hardware for your next IoT project,” 2017. [Online].
Available: https://www.ibm.com/developerworks/library/iot-lp101-best-hardware-

79

References

devices-iot-project/index.html. [Accessed: 28-Jan-2018].

[52] NXP Semiconductors, “Applications Processors for Industrial Products, Rev. 2.2.” pp.
1–132, 2017.

[53] Texas Instruments, “AN-1358 LM5070 (AE) Evaluation Board.” pp. 1–11, 2013.

[54] NXP Semiconductors, “i.MX 6 Series Applications Processors: Multicore, Arm®
Cortex®-A9 Core, Arm Cortex-M4 Core|NXP,” 2018. [Online]. Available:
https://www.nxp.com/products/processors-and-microcontrollers/applications-
processors/i.mx-applications-processors/i.mx-6-processors:IMX6X_SERIES.
[Accessed: 26-Dec-2017].

[55] J. Zeng, “IoT evolution: Taking processing and analytics to the edge,” 2016. [Online].
Available: https://blog.nxp.com/internet-of-things-2/iot-evolution-taking-processing-
and-analytics-to-the-edge. [Accessed: 26-Dec-2017].

[56] Silicon Laboratories Inc., “Programming Internal Flash Over the Serial Wire Debug
Interface 1 Debug Interface Overview, Application Note AN0062, Rev. 1.02.” pp. 1–27,
2013.

[57] Texas Instruments, “TPS6300x High-Efficient Single Inductor Buck-Boost Converter
With 1 . 8-A Switches.” pp. 1–17, 2015.

[58] Hynix Semiconductor et al., “Open NAND Flash Interface Specification : Block
Abstracted NAND, Rev. 2.0.” pp. 1–169, 2008.

[59] Texas Instruments, “TPS61165 High-Brightness , White LED Driver in WSON and SOT-
23 Packages.” pp. 1–23, 2016.

[60] B. Deutschmann and G. Winkler, “EMC Aware PCB Design, Lecture Notes ‘Design of
Electronic Instruments and Systems’, University of Technology, Institute of Electronics.”
pp. 1–97, 2017.

[61] NXP Semiconductors, “Hardware Development Guide for the i . MX 6UltraLite
Applications Processor, Rev. 2.” pp. 1–55, 2017.

[62] Intel Corporation, “High Speed USB Platform Design Guidelines, Rev. 1.0.” pp. 1–19,
2000.

[63] Analog Devices, “Decoupling Techniques,” Application Note, MT-101 Tutorial. pp. 1–
14, 2009.

80

Appendix

12 Appendix
12.1 List of Figures

Figure 1 Internet of Things. .. 11
Figure 2 Basic Idea of IoT Device Framework. ... 12

Figure 3 Levels of Integration. .. 16

Figure 4 Comparison: SBC and DBC. .. 17
Figure 5 Components of a basic SBC. .. 25

Figure 6 Comparison: Raw NAND Flash and Managed NAND Flash [24]. 30

Figure 7 Components of an Extended SBC. ... 31
Figure 8 IoT Device Framework: Interfaces. ... 35

Figure 9 Developed IoT Device Framework. ... 46

Figure 10 Block Diagram of Developed IoT Device Framework. ... 47
Figure 11 IoT Device Framework: PCB Top View. .. 48

Figure 12 IoT Device Framework: PCB Bottom View.. 48
Figure 13 Efficiencies of Regulators. .. 53
Figure 14 Partitions of NOR Flash and NAND Flash. ... 57

Figure 15 Current-Limited Power Switches for Power Supply Alternatives. 61
Figure 16 5 V Buck-Boost Converter. ... 62
Figure 17 Power Supply LEDs.. 63
Figure 18 +5 V Supply of the SPU. ... 64

Figure 19 Switch Concept for Production Mode and Normal Mode of Operation. 65
Figure 20 I2C in Different Modes of Operations. ... 66
Figure 21 LED Driver Circuitry. ... 68

Figure 22 Placing of Decoupling Capacitors [63]. ... 72

81

Appendix

12.2 List of Tables

Table 1 Comparison of SBCs and DBCs. ... 18

Table 2 Comparison of Standard SBC to Individual SBC. ... 22
Table 3 Comparison of Bare-Metal with Operating System as an Abstraction Layer. 37

Table 4 Comparison of RTOS with GPOS. ... 40

Table 5 Data Rates of Different PCIe Generations. .. 45
Table 6 Latency and Data Rate of Interfaces for Abstracted Peripherals. 45

Table 7 Power Consumption without Efficiency of DC/DC converters................................... 52
Table 8 Power Supply Voltage Rails... 55

