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Abstract

The amount of spacecraft telemetry data is constantly increasing, but the avail-
able bandwidth is generally bounded. Spacecraft operators have to decide which
telemetry to downlink and which not. Furthermore, this is not only causing
a loss of information but also a waste of data storage and bandwidth. When
compressing telemetry data all these drawbacks can be canceled out. Moreover,
data compression can lead to a better signal quality and less transmission
power.
The Advanced Operation Concepts Office at the European Space Operations
Center has been promoting the compressing of spacecraft telemetry data since
2009 and invented an algorithm specifically for that purpose. It is called Pocket+
and its compression is based on bit differences of two fixed length consecutive
packets. Bits which have changed become non-predictable and are added the
the compressed packet. A mask tracks all previous bit flips and is updated
every packet, which is called a negative update, or cyclically, which is called
a positive update. The negative update indicates that more bits became non-
predictable and a positive mask update removes non-predictable bits from the
mask. Moreover, it uses an integrated feature named protection level to cope
with packet loss, which could lead to decompression problems.
The results in terms of compression and execution times of a C implementation
have shown that Pocket+ can easily compete with, or outperform, several
generic compression algorithms such as LZ4, bzip2, or gzip. Pocket+ almost
always showed better a compression in a comparatively short execution time
over these generic algorithms. Therefore, Pocket+ can be applied on raw binary
files with a repetitive bit pattern. This is demonstrated with a picture gener-
ated by the OPS-SAT on-board camera, where Pocket+ surpasses all other
compression algorithms distinctly.
In 2017 it was decided to integrate Pocket+ into the on-board software of OPS-
SAT, which will raise the technology readiness level up to nine and facilitates
the implementation in future space missions.
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1 Introduction

The amount of spacecraft (S/C) data is constantly increasing and in 1966
Goddard Space Flight Center (GSFC) had already operated fourteen satellites
and pointed out that fourteen satellites for which GSFC has complete mission
responsibility, produce data at the average rate of 60 million data points per
day, where a data point is defined as a single complete reading taken from a
sensor. In the near future, it is anticipated that this will grow to more than
200 million data points per day. Edmund J. Habib, 1966, p.1

Satellite sensor or telemetry (TM) data is often stored in mnemonics and writ-
ten to the on-board data pool (OBDP) of the satellite. When a link to a ground
station is established the data is transmitted in data streams. These streams
can contain between 700 and 12,000 or more mnemonics. These mnemonics
must be analyzed to ensure that the satellite is healthy, to assist in resolving
any anomalies, and to determine if there are any trends that would indicate a
possible future problem. N.L. Crowley, 1997, p.1

Hence this amount of data has an impact on mission control systems (MCS) and
S/C operators. As a result, S/C operators have to make hard choices between
which parameters to downlink and which not, in which different situations and
at which sampling rates. David Evans, 2017, p.1

Data compression would drastically increase the amount of received data, how-
ever it would also add additional complexity and demands hardware resources
such as CPU and RAM. This chapter will highlight the impacts of data com-
pression and the following chapters are about Pocket+, a TM data compression
algorithm invented at the European Space Agency (ESA).
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1.1 Compressing TM data

The implementation of data compression leads to new possibilities and draw-
backs, which are discussed in the following subsections.

1.1.1 Bandwith, datarate, and signal quality

For S/C communication the digital modulation scheme Phase-Shift Keying
(PSK) is used most commonly [Takashi Iida, 2000, p. 402], thus the following
calculations refer to PSK modulation schemes. For BPSK, QPSK, 8PSK and
16PSK the required 3.0 dB bandwidth can be calculated with

BBPSK = fb(1 + α), (1.1)

BQPSK =
fb

2 (1 + α), (1.2)

B8PSK =
fb

3 (1 + α), (1.3)

B16PSK =
fb

4 (1 + α), (1.4)

where fb is the channel bit-rate and α is the roll-off factor of the raised-cosine
filter. For simplicity reasons, forward error correction (FEC) is not considered.
When compressing data, the following two options are available:

1. Use the same data rate, which results in more information in the same
time.

2. Decrease the data rate by the average compression, which results in the
same amount of information in the same time.

Approach one is straightforward and the whole transmission configuration stays
the same.
When decreasing the data rate the energy per bit (Eb) increases, which is
defined as

Eb =
C

fb
, (1.5)

where C is the carrier power. Furthermore, the occupied bandwidth of a PSK
modulated signal goes down, which leads to less noise on the receiver side.

2
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However, the ground station measures a signal-to-noise ratio (SNR) according
to equation 1.6 and experiences a bit-error rate (BER) according to figure
1.1.

SNR =
Eb

N0
· fb

B
, (1.6)

where N0 is the spectral noise density. With these equations and figure 1.1 it
can be seen that when decreasing the data rate for a given modulation scheme,
the SNR increases (less noise / higher Eb) and the BER decreases. This leads
to the conclusion that instead of increasing the transmission power the S/C
operator could use data compression in order to improve the signal quality.
Subsequently the transmission power can be readjusted to save power and meet
the SNR requirements for the receiver.

Figure 1.1: BER for BPSK, QPSK, 8PSK and 16PSK. Wikimedia Commons, 2017
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1.1.2 Memory storage and data corruption

TM data is typically stored in separate Mass Memory Banks Formatting Units
(MMFUs), often also called Solid State Recorders (SSRs), which are fast and
large memory areas. Several recorders also provide integrated data compression
units and some suppliers offer external separate units. Most of SSRs are based
on synchronous dynamic random access memory (SDRAM) technology, however
latest recorder generations are based on non volatile flash memory technology
such as electrically erasable programmable read-only memory (EEPROM).
Eickhoff, 2011, p. 82 - 83
In terms of unwanted bit flips such as Single Event Upsets (SEU), the usage of
compression algorithms leads to a higher probability of data loss depending on
the compression algorithm. When data is compressed, most of the redundancy
is removed and the compressed data is stored in a new data format. SEUs
can lead to data corruption within this data structure, which could lead to
uncompressable data or data loss. Certainly this disadvantage can be minimized
by using error correction and detection methods such as a CRC.

1.1.3 Complexity and Technology Readiness Level

The addition of a compression algorithm induces new complexity. Most S/C
use already existing and flight proven systems, which are highly standardized.
Space Agencies such as ESA and NASA require a TRL (Technology Readiness
Level) of eight for new systems. In order to reach a TRL of eight, the system itself
must withstand intensive testing and pass a technology readiness assessment.
In order to ensure that a TRA of an element is objective, it is completed by
independent expertise in the discipline, i.e. not part of the technology developer
engineering team. ECSS-E-HB-11A, 2017, p. 18-23
However, the Advanced Operation Concepts Office at ESA-ESOC and TUG
are working on a satellite called OPS-SAT. The satellite’s goal is to test and
evaluate new software in space. Pocket+ will be part of a new module within
the on-board software (OBSW) and demonstrate the advantages of TM data
compression.

4
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1.1.4 Processing hardware

The hardware of todays S/C is comparable to a degraded Desktop PC from
several decades ago. Since the hardware is flight proven and flew successfully
in past space missions, it is normally not desirable to change a functioning
system.
S/C software modules are separated into systems blocks which are executed
cyclically. Most of these blocks are implemented as individual tasks or threads
on the real time operating system (RTOS). In former on-board computer (OBC)
generations a perfectly optimized OBSW tasking with respect to CPU load
management was essential. Nowadays the situation became more relaxed, but
an efficient tuning of OBSW task scheduling is still necessary. Eickhoff, 2011,
p. 121
When adding a new system such as a compression algorithm, the runtime for
this task must be deterministic and more CPU and RAM resources must be
allocated for that task. Otherwise the entire OBSW scheduling table will not
fulfill its real time requirements.

5
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2 POCKET+ compression

algorithm

2.1 Preamble - The story of POCKET+

The European Space Operations Center (ESOC) has developed and patented
several algorithms that when tested reach average compression of between
5 % and 20 %. In 2011 an algorithm that took this one step further was
invented. It was called POCKET and can compress individual packets in only
a few microseconds on representative flight hardware. This made it suitable for
compressing the real time TM streams. In 2012, the complete end to end chain
was built and tested in an ESA contract with Spacebel SA and will be tested on
PROBA-2 in 2017. Since 2012 the algorithm has undergone some major changes
that have resulted in a new patent and a name change to POCKET+. One
major improvement is that it is now self-adapting, meaning it adapts to changes
in the data without ground intervention for a very small drop in compression
and speed performance. To raise the TRL, POCKET+ will be implemented in
OPS-SAT, the world’s first mission dedicated to in-flight testing of operational
technology like this. David Evans, 2017, p. 1
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2.2 Functional principle

POCKET+ works on fixed length data packets and uses a bit mask to distin-
guish between predictable and non-predictable bits, which can be determined
by the negative and positive mask update.

2.2.1 A look into the past - The mask updates

A constantly updating bit mask is used to split a packet into bits which have the
same value as the last packet and those that may not. It updates every packet
negatively (bits become non-predictable) and every cycle (e.g. 20 packets)
positively (bits become predictable).

Collect every change - The negative mask update

The negative mask update accumulates bit differences of consecutive packets
(the previous packet is termed as reference packet) and updates the mask
negatively. The mask comprises all bit positions, which changed in the past.
These bit positions tend to change frequently and are named non-predictable
bits. All newly added mask bit positions and non-predictable bits are then
written to the compressed packet. Mask bit positions are run length encoded
and non-predictable bits are put in the clear. The basic principle is shown in
figure 2.1.

Compare with the previous cycle - The positive mask update

The positive mask update compares bit differences of two different sampling
cycles (e.g 20 packets). Every cycles, the negative mask, which has been built
by all bits changes in the past, is compared with the bits, which have changed
in the last 20 packets. All bits, which are in the negative mask and not in the
positive mask (here are only bits which changed the last 20 packets), become
predictable. These bits are removed from the negative mask and their positions
are written run length encoded to the compressed packet.The principle is shown
in figure 2.2.

8



DRAFT
2.2 Functional principle

Figure 2.1: Principle of the negative mask update. Every new packet is compared to the
last packet. Bit positions, which have changed, are set in the mask and called
non-predictable bits (red). When an already set mask bit has changed (orange),
the non-predictable bit value itself changes.

Figure 2.2: Principle of the positive mask update. Every cycle (e.g. 20 packets) the negative
mask is compared to the positive mask. Bits which are in the negative mask, and
not in the positive mask, are removed and become predictable (red).

9
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2.2.2 The compression process

In both mask updates, the new mask bit positions are converted into a relative
mask position, termed as delta (see section 2.2.3), run length encoded, and
then written to the compressed packet. Subsequently, the non-predictable bits
are added to the compressed packet. These two processes are called

• Non-predictable bits and
• relative mask bit positions (deltas) extraction.

The compression process is shown in figure 2.3.

Figure 2.3: Principle of the compression process. First, a new mask is generated (mask
update). Afterwards, the deltas and non-predictable bits can be extracted and
written to the compressed packet.

10
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2.2.3 Structure of the compressed packet

All absolute mask bit positions are converted into a relative bit position, termed
as delta, and can be determined by

∆ =

(u− v) − 2, if (u− v) ≥ 2
1, otherwise

(2.1)

where u is a set absolute mask bit position and v the previous one. The usage of
deltas, instead of full bit positions, considerably reduce the number of necessary
bits for the run length encoding process. In figure 2.4, the structure of a
compressed packet and examples for deltas are shown. The maximum number
of bits (nmax) used for a run length encoded delta value can be determined by
the following equation:

nmax = ld(Number of bits in packet) (2.2)

Figure 2.4: Structure of the compressed packet.
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2.2.4 Fields of applications

Since POCKET+ works with the difference of two consecutive packets, the
Hamming distance, of these two packets should be low in order to obtain
good compression ratios. The higher the Hamming distance, the more mask
updates (deltas) and non-predictable bits are necessary to describe these changes.
Therefore, POCKET+ should be implemented in systems which show only low
dynamic properties.

2.3 Decompression

In order to decompress a compressed packet, a valid mask and non-predictable
bit field are required. To obtain a valid mask all received delta fields must
be error-free. With a valid mask, the number of non-predictable bits can be
determined and the actual bits extracted. The decompression uses the following
scheme that is also shown in figure 2.5.

1. Extract the deltas from the compressed packet.
2. Update the old mask.
3. Extract the non-predictable bits from the compressed packet.
4. Add the non-predictable bits to the reference packet, which results in the

uncompressed packet.
5. Make the uncompressed packet the new reference packet and the new

mask the old mask.

12
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Figure 2.5: Principle of the decompression process. First, the deltas are extracted and used
to generate the new mask. Then, the non-predictable bits are extracted and
overwrite the bits in the reference packet according to the set mask bit position.
The result is the uncompressed packet.

13
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2.4 Reliability - Transmission errors

In order to start the compression algorithm a reference packet, which is an
uncompressed original packet, is required. All subsequent mask updates refer
to this reference packet.

2.4.1 Bit errors and packet loss

Error in the delta field

A single bit error in one of the delta fields would lead to incorrect, or even
unrecoverable, future packets. In other words, all packets after the faulty one are
going to be wrong. This is because the original mask can not be reconstructed
anymore. Furthermore, two cases regarding the resumption of the decompression
process can be distinguished:

1. The reference/previous packet is valid (correctly decompressed) and no
positive mask update has been applied. The decompression process is in
the same tracking cycle as the compression process. Both of them are
linked to the same reference packets.

a) An anchor mask update must be requested.
2. The reference/previous packet is invalid (incorrectly decompressed) and

the decompression missed a positive mask update. The decompression
and compression process are in different tracking cycles, meaning that
the ground and S/C mask update process is not synchronized any longer.

a) An anchor mask update and a reference packet must be requested.

The anchor mask update comprises the entire mask build of all previous
packets. If the decompression module missed a positive mask update (case
two), a reference packet of the current tracking cycle is required. If no reference
packet was requested, all future uncompressed packets could be wrong. This
error can be detected by unrealistic values or by a cyclic redundancy check
(CRC). However, when an anchor mask update and a reference packet have
been requested and received, the decompression restarts and even previous

14
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un-compressable packets can be decompressed. To minimize the probability of
these events, the protection level was invented.

Error in the non-predictable bit field

A bit error in the non-predictable bit field would lead to one incorrectly
decompressed packet, but future packets would not be affected. This error can
also be detected by error detection methods such as a CRC.

2.4.2 The protection level - security against packet loss

When the protection level is used, the current compressed packet also includes
the deltas of the previous n packets, whereby the first delta value is always
implemented wraparound. The formula for a wraparound delta is

∆wraparound =

x− y, if x > y

z − y, otherwise
(2.3)

where x is the position of the most significant mask bit (MSMB) of the last
packet, y is the MSMB of the current packet, and z is the total number of bits
in the packet.

2.4.3 The anchor mask update

With an anchor mask update, the entire latest mask can be obtained. It also
consists of run length encoded deltas, but the delta extraction process is applied
on a “HXORed” mask. Thereby, the actual mask has gone through a XOR
gatter with a replica of itself shifted by one bit to the right.

15
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3.1 General software requirements specifications
• Copyrighted intellectual property by others must not be used.

– Action: Only the C standard library and open source software will
be used.

– Testing: Code inspection.
• Software must be portable to other systems such as a micro-controllers,

Windows/Linux PCs, and a ARM architectures.
– Action: A CMake file will be provided, which in turn creates a

Makefile for these systems.
– Testing: All executables have to produce the same data output.

• Implementation must be generic for any kind of input data.
– Action: Implementation works on the bit-level.
– Testing: CCSDS packets and a raw binary files have to be compressed

without any code changes to the compression module.
• Up to 8,191 kilobyte of data per packet must be processable.

– Action: Code is adjusted to at least 16 bit variables.
– Testing: Test procedures with packets up to 8,191 kilobyte.

17
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3.2 Compression (C)

The compression algorithm was written in C since it is the most common
programming language for the OBSW of satellites. Eickhoff, 2011, p.136 This
sections describes the generic implementation, which uses dynamic memory
allocation, and is optimised for Desktop PCs. The implementation used for the
OBSW of OPS-SAT, which fullfills the ECSS software standards for memory
allocation are covered in section 3.4.

3.2.1 Software architecture

A header file (compression.h) and the related source file (compression.c) contain
the source code for the compression module. The software comes with an API,
which shall be used by any user or developer. Static functions declared in
compression.src are needed for the compression process itself and are called by
the API methods in the background. The according function call diagram is
shown in figure 3.2. The compression process itself is fully generic and works
on byte level. The only requirement is a constant input block size. For example,
the compression of a CCSDS datafield would require a packetizer, which splits
the CCSDS packets and inputs the desired datafields into the compression
module. Afterwards, it builds the new CCSDS packet out of the compressed
memory block. This principle is shown in figure 3.1. The algorithm needs a
32 bit memory block as input, and outputs a compressed 8 bit memory block.
Whereas, the maximum size of the input memory block is 8.188 kilobyte. This
limit arises from the range of 16 bit variables and the usage of 32 bit input
data, and was calculated with the following formula.

inputmax =
⌊⌊

216−1
8

⌋
4

⌋
· 4 = 8, 188 (3.1)
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Figure 3.1: Software architecture of the POCKET+ compression. Input and output data are
independent of the compression process.

Figure 3.2: Function call diagram of the POCKET+ compression.
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3.2.2 Configuration parameters

Five configuration parameters are required to initialize Pocket+.

• Size of the input data. (bytes)
• Positive update rate

– Typical values = 20 ... 100
• Anchor mask update rate

– Never output any anchor mask updates = 0
– Always output anchor mask update = 1
– Output an anchor mask update every 5 packets = 5

• Maximum protection level used
– No protection level = 1
– Add mask updates from the previous three packets (up to 3 packets

can be lost) = 4
• Non-predictable word offset

– All non-predictable bits are added to the compressed packet (default)
= 0

– Do not include the non-predictable bits of the the first word (4 bytes)
= 1

– Do not include the non-predictable bits of first three words (12 bytes)
= 3
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3.2.3 Application Programming Interface (API)

The following functions shall be used by any user or developer to interact with
Pocket+.

Start and configure POCKET+
uint_fast16_t startPocket ( uint8_t ** compressedPacket ,

uint32_t * referencePacket , uint_fast16_t
referencePacketSize , uint_fast16_t positiveUpdateRate ,
uint_fast8_t maximumProtectionLevel , uint_fast8_t
anchorUpdateRate , int_fast16_t npOffset );

Listing 3.1: Pocket+ initialization function in compression.h

Description: Initialize variables and allocate memory. This function must be
called in order to compress any data.
Return values:

• Success: <referencePacketSize >
• Failure: 0

Arguments:

• uint8 t ** compressedPacket . . . pointer to the memory pointer in main().
Memory will be allocated in startPocket(. . . ).

• uint32 t * referencePacket . . . pointer to the 32 bit reference packet.
• uint fast16 t referencePacketSize . . . size of the reference / input packets

(bytes).
• uint fast16 t positiveUpdateRate . . . positive update rate.
• uint fast8 t maximumProtectionLevel . . . maximum protection level used.
• uint fast8 t anchorUpdateRate . . . anchor mask update rate.
• int fast16 t npOffset . . . offset for the non-predictable bits extraction

process.
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Compress data

int_fast16_t compressPacket ( uint8_t * compressedPacket ,
uint32_t * uncompressedPaket )

Listing 3.2: Main compression function in compression.h

Description: Compress a 32 bit input data buffer and output a 8 bit com-
pressed data buffer. The input data must have the same size as the reference
packet defined in startPocket(. . . ).
Return values:

• Success: Size of the compressed packet (bytes)
• Failure: -1 (Not enough memory available for the compressed packet)

Arguments:

• uint8 t * compressedPacket . . . pointer to the compressed packet (output).
• uint32 t * uncompressedPaket . . . pointer to the uncompressed packet

(input).

Stop and terminate POCKET+

void stopPocket (void)

Listing 3.3: Memory release and Pocket+ termination function in compression.h

Description: Deallocate the dynamic memory which POCKET+ has used. It
shall be called when POCKET+ has to be terminated.
Return values:

• None.

Arguments:

• None.
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3.2.4 Allocated dynamic memory

For the primary compression process, the following dynamic memory buffers
are required. Their size (bytes) is equal to the variable <referencePacketSize >
defined in startPocket(. . . ).

• static uint32 t * positive . . . pointer to the positive mask.
• static uint32 t * mask . . . pointer to the current mask.
• static uint32 t * oldPacket . . . pointer to the old input packet.
• static uint32 t * newPacket . . . pointer to the new input packet.

The implementation of the protection level leads to the following five additional
buffers. For performance and configuration reasons they are integrated and
part of the compression module. However, if the protection level is not desired,
these buffers are also not required anymore.

• static uint16 t * protectionLevelBufferNegative . . . negative deltas of the
last n packets

• static uint16 t * protectionLevelBufferPositive . . . positive deltas of the
last n packets.

• static uint16 t * newDeltaBuffer . . . buffer for the new deltas of the
current packet

• static uint16 t * protectionLevelNumberOfDeltasNegative . . . number of
negative deltas (counted) for each of the last n packets.

• static uint16 t * protectionLevelNumberOfDeltasPositive . . . number of
positive deltas (counted) for each of the last n packets.

In order to determine the total allocated dynamic memory, the following formula
can be used.

52 · (< referencePacketSize > + < maximumProtectionLevel >) (3.2)

Without the protection level the required memory would go down to

4 ·< referencePacketSize >. (3.3)

The primary cause of this is that the process has to store all bit positions,
which flipped in the previous n packets. For more information about the
implementation of the protection level feature itself, refer to section 3.2.5.
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3.2.5 Protection level

As already pointed out in the end of section 3.2.4, the protection level implemen-
tation requires approximately 50 times more memory then without. Before the
implementation, two different implementation approaches were researched.

• Store the last n packets, process them again, and write these deltas to
the compressed packet.

• Store the deltas of the last n packets and write them to the compressed
packet.

Approach one would require n additional memory buffers for the last n packets.
Each buffer would have the size <referencePacketSize >. Compared to method
two, approach one requires less memory, however the packets have to be
processed again. This approach mainly outsources the new task to the CPU,
which would slow down the compression process by a factor of approximately
n.
The second technique stores all deltas of the last n packets in new memory
buffers. As OBCs are not allowed to allocate memory on the fly, the worst
case scenario of required memory has to be allocated. Every single bit of the
input packet flips, meaning that a delta for each bit is necessary. This means
that for every possible bit position a 16 bit variable (max. packet size is 8.191
bytes) has to be allocated. The natural probability for this event is quite low,
but an incorrect memory access from another process such as a wrong pointer
could trigger this issue. To prevent an internal memory error, this case has to
be taken into account. As faster processing is more important than memory
conservation, method two was chosen.

Implementation of the protection level

The protection level is integrated within the function getMaskChanges(. . . )
and is portrayed in figure 3.3. First, the initialization function startPocket(. . . )
allocates the required memory. Once a packet is received, the total number of
deltas are counted and written into the corresponding buffers. The process for
new incoming packets is similar. The total number of new deltas are counted,
the first delta of the previous deltas is converted into a wraparound and the
entire delta field is shifted to the right. Last but not least, the new deltas are
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inserted into the leftmost position. Furthermore, to reuse the memory, new
deltas can overwrite old delta values. The total number of deltas are stored in
the buffer <protectionLevelNumberOfDeltasNegative > or <protectionLevel-
NumberOfDeltasPositive >. This process is applied separately on both types,
negative and positive deltas.

Figure 3.3: Implementation and demonstration of the buffers used for the protection level.
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3.3 Decompression (C++)

Since the decompression module will not run on a S/C, but rather on ground
hardware, C++ was chosen as the programming language. This allows future
programmers to more easily add additional functionalities such as a graphical
user interface or third party libraries.

3.3.1 Software architecture

The decompression module consists of the class PocketDecompression, which is
located in decompression.hpp. It contains the API functions

• decompressPacket(. . . ),
• and getDecompressedPacket(. . . ).

The according private functions are

• recoverMask(. . . ),
• addNpBits(. . . ),
• and getValueFromCompressedPacket(. . . ).

In figure 3.4 the corresponding function call diagram is shown.
Similar to the compression module, a packetizer is necessary to handle the input
packets. Then, the packetizer processes and forwards the desired compressed
data into Pocket+. This is demonstrated in figure 3.5. The decompression is
done on byte level and processes an input packet until the end of the compressed
packet has been reached. Thus the size of the compressed packet is not required,
only the size of the reference/output packet must be known.
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Figure 3.4: Function call diagram for the C++ decompression class.

Figure 3.5: Software architecture for the decompression process.
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3.3.2 Application Programming Interface (API)

The following functions shall be used by any user or developer to interact with
the decompression module of Pocket+.

Initialize the decompression (class constructor)
PocketDecompression ( uint8_t * referencePacket , uint_fast16_t

referencePacketSize )

Listing 3.4: Constructor for the POCKET+ decompression in decompression.hpp

Description: Allocate the required memory and initialize variables.
Return values:

• None (Constructor)

Arguments:

• uint8 t * referencePacket . . . pointer to the reference packet.
• uint fast16 t referencePacketSize . . . size of the reference / original packets

(bytes).

Decompress the input data
uint_fast16_t decompressPacket ( uint8_t * inputPacket )

Listing 3.5: Function used to decompress data.

Description: Decompress a compressed input packet (8 bit) and return the
size of the compressed input packet. The input data will be processed until
the end of the input packet has been reached. Due to safety reasons, the input
packet should be terminated with at least three zero bytes.
Return values:

• Success: Size of the compressed packet.
• Failure: Not available.

Arguments:

• uint8 t * inputPacket . . . pointer to the compressed input packet.
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Output the decompressed packet
void getDecomressedPacket ( uint_fast8_t *

decompressedPacketOutputBuffer )

Listing 3.6: Function used to output the decompressed data.

Description: Output the latest decompressed packet.
Return values:

• None

Arguments:

• uint8 t * decompressedPacketOutputBuffer . . . pointer to the compressed
output buffer. The uncompressed packet will be copied to that location.

3.3.3 Allocated dynamic memory

For the decompression process the following two dynamic memory buffers are
required.

• uint8 t * mask . . . current mask,
• uint8 t * decompressedPacket . . . pointer to the decompressed packet.

Their total size can be calculated with formula 3.4.

dynamic memory = < referencePacketSize > · 2 (3.4)
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3.4 OPS-SAT

3.4.1 Introduction - The mission

ESA’s and TUG’s new cube-sat named OPS-SAT will test and validate new
techniques in mission control and on-board systems. OPS-SAT is devoted to
demonstrate drastically improved mission control capabilities that will arise
when satellites can fly more powerful on-board computers. It is 30 cm high but
comprises an experimental computer that is ten times more powerful than any
current ESA spacecraft. In general, it is very difficult to perform live testing
in the domain of mission control systems. No-one wants to take any risk with
an existing, valuable satellite, so it is very difficult to test new procedures,
techniques or systems in orbit. The OPS-SAT solution is to design a low-cost
satellite that is rock-solid safe and robust even if there are any malfunctions due
to testing. The robustness of the basic satellite itself, will give ESA flight control
teams the confidence they need to upload and try out new, innovative control
software submitted by experimenters; the satellite can always be recovered if
something goes wrong. The outcome is an open, flying laboratory that will
be available for in-orbit demonstration of new control systems and software
that would be too risky to attempt on a real satellite. Over 100 companies and
institutions from 17 European countries have registered experimental proposals
to fly on OPS-SAT. ESA, 2017

3.4.2 System description

For OPS-SAT, it was decided that only one specific CCSDS SID packet will
be compressed. The compression itself is done by the Pocket+ compression
module, which can be controlled by the OBSW through a given API. The
output of the Pocket+ compression module shall be handled, processed and
transmitted like an ordinary CCSDS SID packet. Compressed packets can be
distinguished from uncompressed packets by their Pocket+ APID. Furthermore,
several new TCs and adaptions of the current MCS are required to control
Pocket+ as S/C operator.
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3.4.3 Compression module for the OBSW

In 2017, ESA decided that Pocket+ will be integrated into the OBC of OPS-SAT.
The OBC used is a Nanomind A3200, which is comprised of

• an AVR32 MPU (8 MHz . . . 64 MHz),
• 512 kB of build-in flash / 128 MB of NOR flash,
• and 32 MB of SDRAM.

In order to integrate the Pocket+ module into a S/C OBSW, several adaptations
and new features of the generic version of Pocket+ are required. These include

• static memory allocation,
• a state-machine,
• a configuration data pool and a
• API for the OBSW.

All these modifications and implementations are explained in detail and are
covered in the following subsections.

Resources management: Memory budget

According to [ECSS-E-HB-40A, 2013, p. 160], the following verification methods
must be used for memory budget analysis.

• Verify that the budget presented is based on compiled object files.
• In addition, the verification of the volatile memory budget intends, at

CDR and following milestones, to verify that the stack allocation has
been analyzed based on the call graph and pre-emption phenomena and
that a margin for it is specified.

• Generally, for flight software there is no dynamic memory mechanism
implementation (state of the art)

For this reason all dynamic memory buffers are replaced by static memory
buffers whose size can be chosen at compile time. Within the compression
module, which is located in compression.c, the following memory buffers are
defined.

• static uint32 t mask[WORDS]
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• static uint32 t positive [WORDS]
• static uint32 t newPacket[WORDS]
• static uint32 t oldPacket[WORDS]
• static uint16 t protectionLevelBufferNegative[WORDS · 32 + 5]
• static uint16 t protectionLevelBufferPositive[WORDS · 32 + 5]
• static uint16 t newDeltaBuffer[WORDS · 32 + 5]
• static uint16 t protectionLevelNumberOfDeltasNegative[5]
• static uint16 t protectionLevelNumberOfDeltasPositive[5]

Since Pocket+ can only handle 32 bit input, one additional buffer, which stores
the 32 bit conversion of the 8 bit input, is required. It is located within the
static structure of PACKETISER CONFIGURATION in pocket.c.

• static uint32 t POCKET INPUT DATA POINTER[WORDS]

The variable WORDS can be calculated with equation 3.5 and the total size of
the required static memory buffers (bytes) can be determined with equation
3.6 .

WORDS =
⌊MAX PACKET INPUT SIZE + 3

4
⌋

(3.5)

Where MAX PACKET INPUT SIZE is a given preprocessor-define at compile
time, which defines the entire CCSDS input packet size (header + data field).
When no preprocessor-define argument is used, the default value is set to 200.

static memory = 212 · WORDS + 50 (3.6)

The compiling was done with the avr32-gcc (4.4.7) compiler and the following
configuration:

• –std=c99 . . . use the c99 standard,
• -Os . . . optimise the code for size,
• -c . . . compile, but don’t link,
• -g . . . add debugging information,
• -fno-exceptions . . . no exceptions,
• -ffunction-sections . . . put each function in a seperate section,
• -masm-addr-pseudos . . . output the pseudo instructions (AVR specific)
• -mpart=uc3c0512c . . . name of the MCU
• -DMAX PACKET INPUT SIZE=200 . . . maximum size of the input

CCSDS packet (Pocket+ specific)
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The results of the object files memory analysis are shown in table 3.1. The stack
analysis is based on a typical configuration where only the mode ACTIVE is
enabled. Two function call diagrams, which were determined with the tools
valgrind and kcachegrind are shown in figure 3.6 (data compresses well) and
figure 3.7 (data compresses badly). In these two figures one can see which
functions are called, how often, and how much runtime they consume relative
to each other. The worst case stack usage was estimated with the tool nm
(list symbols from object files) provided by AVR and sums up to 3,192 bytes
including a safety factor of 1.5.

Table 3.1: Overview of the memory budget of the individual object files when
MAX PACKET INPUT SIZE is set to 200 bytes.

Object file text (bytes) data (bytes) bss (bytes)
packetiser.o 232 0 0
compression.o 2,204 36 10,268
pocket.o 1,068 10 232
total 3,504 46 10,500
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Figure 3.6: Function call diagram of TM data that compresses well. Figure created with
valgrind and kcachegrind.

Figure 3.7: Function call diagram of TM data that compresses badly. Figure created with
valgrind and kcachegrind.
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Statemachine: Modes and States

In order to control Pocket+ with the OBSW through the given API, the
compression and packetizer modules are embedded into a state machine, which
has three states, or more specifically four modes.

1. STANDBY: Do not compress. Output and input packet is the same.
2. REFERENCE: Do not compress, but change the APID of the input

packet.
3. COMPRESS

• ABSOLUTE: Compress and include the anchor deltas.
• ACTIVE: Compress and do not include anchor deltas.

Every state is also a mode except for the state COMPRESS, which is split up
into the two sub-modes ABSOLUTE and ACTIVE. All state transistions are
done automaticly in the background, forced state transitions are not possible.
These automatic transitions are done by comparing the current mode with the
target mode, which can be set with the OBSW via the Pocket+ API. As long
as the current mode is not the target mode, the statemachine goes to the next
mode. When both parameters are equal, the transitions will stop. However, a
compression error is the only exception, which would cause a transition from
COMPRESS back to REFERENCE. This transition can bee seen as a reset
loop. When a compression error occurs, Pocket+ goes into REFERENCE and
then back into COMPRESS. One can see the interactions between the OBSW
and Pocket+ in table 3.2. The architecture of the statemachine is shown in
figure 3.8. Examples for transitions are given afterwards.
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Table 3.2: Operational modes and interactions between the OBSW and Pocket+. The OBSW
only has to call runPocket() and check the output buffer. The configuration data
pool has to be initialized before.

Mode name OBSW Pocket+ and mode de-
scription

STANDBY Copy the CCSDS SID packet
into the input buffer and call
runPocket(). Use the packet
in the output buffer for fur-
ther processing.

Copy the input packet into
the output buffer and return
the size of the packet (header
+ data field).

REFERENCE Copy the CCSDS SID packet
into the input buffer and call
runPocket(). Use the packet
in the output buffer for fur-
ther processing.

Run the Pocket+ logic, copy
the input packet into the out-
put buffer, modify the APID
and return the size of the
packet (header + data field).

ABSOLUTE Copy the CCSDS SID packet
into the input buffer and call
runPocket(). Use the packet
in the output buffer for fur-
ther processing.

Run the Pocket+ compres-
sion and add anchor deltas.
Copy the original CCSDS
header and the compressed
packet into the output buffer,
modify the APID and the
data field length and return
the size of the compressed
packet (header + data field)

ACTIVE Copy the CCSDS SID packet
into the input buffer and call
runPocket(). Use the packet
in the output buffer for fur-
ther processing.

Run the Pocket+ compres-
sion. Copy the original
CCSDS header and the com-
pressed packet into the out-
put buffer, modify the APID
and the data field length
and return the size of the
compressed packet (header
+ data field)
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Figure 3.8: Statemachine of the Pocket+ module.

Example 1: The statemachine is in state/mode STANDBY and the API
method setMode(ACTIVE) is called.

1. Finish the current iteration in state/mode STANDBY.
2. Go to state/mode REFERENCE and stay there for one iteration.
3. Transit to state COMPRESS and go into mode ABSOLUTE. Stay there

for one iteration.
4. Stay in COMPRESS and go into mode ACTIVE.
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Example 2: The statemachine is in mode ACTIVE and receives a TC that it
should go to mode ACTIVE. This command shall be used when the decom-
pression fails due to packet loss.

1. Finish the current iteration in mode ACTIVE.
2. Go to state/mode REFERENCE and stay there for one iteration.
3. Transit to state COMPRESS and go into mode ABSOLUTE. Stay there

for one iteration.
4. Stay in COMPRESS and go into mode ACTIVE.

Example 3: The statemachine is in mode ACTIVE and the compression
fails.1

1. Finish the current iteration in mode ACTIVE.
2. Go to state/mode REFERENCE and stay there for one iteration.
3. Transit to state COMPRESS and go into mode ABSOLUTE. Stay there

for one iteration.
4. Stay in COMPRESS and go into mode ACTIVE.

1Instead of the compressed packet, the original packet is copied to the output memory.
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Control Pocket+: Required Telecommands (TC)

Six telecommands are required to control Pocket+ and are listed in table 3.3. Ev-
ery TC refers to a respective API method, which shall be called after receiving it.

Example 1:

1. MC sents the TC to change the mode of Pocket+.
2. The OBSW calls the API method setMode(newValue)

Example 2:

1. MC sents the TC to change the positive update rate of Pocket+.
2. The OBSW calls the API method setPositiveUpdateRate(newValue).

Table 3.3: List of TCs required to use the Pocket+ compression module with the given API
TC Name Possible values
Set target mode 0 = STANDBY

1 = REFERENCE
2 = ABSOLUTE
3 = ACTIVE

Set positive update rate 6 . . . 32.767
Set maximum protection level used 1 . . . 5
Set new APID for Pocket+ packets 0 . . . 2047 (11 bits)
Set a new non-predictable word offset 0 (default) . . . WORDS
Activate 16 bit CRC 0 = OFF

1 = ON
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Configure Pocket+: Configuration data pool

The configuration data pool is located in pocket.c and uses the following static
structures.

1. struct STATEMACHINE CONFIGURATION
• enum state names CURRENT STATE;
• enum state names TARGET STATE;
• enum mo modes TARGET MODE;
• uint8 t IDENTIFY;

2. Struct packetizer CONFIGURATION
• uint8 t * INPUT PACKET POINTER
• int16 t INPUT PACKET SIZE;
• uint8 t * OUTPUT PACKET POINTER;
• int16 t OUTPUT BUFFER SIZE;
• int16 t OUTPUT PACKET SIZE;
• uint32 t POCKET INPUT DATA POINTER[WORDS];
• uint16 t POCKET APID;

3. Struct COMPRESSION CONFIGURATION
• int16 t POSITIVE UPDATE RATE
• int16 t ANCHOR UPDATE RATE
• int16 t MAXIMUM PROTECTION LEVEL
• int16 t NP WORDS OFFSET
• int16 t SIZE POCKET INPUT DATA

Most of these configurations can be set through the API. In particular the
I/O buffers INPUT PACKET POINTER and
OUTPUT PACKET POINTER and their sizes INPUT PACKET SIZE
and OUTPUT BUFFER SIZE must be set before. Otherwise Pocket+
will not produce any output.
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Interact with Pocket+: The OBSW API

The configuration data pool represents the current status of Pocket+ and most
of the parameters can be configured via the Pocket+ API. Figure 3.9 illustrates
the system architecture and shows the size of the static memory buffers when
MAX PACKET INPUT SIZE is set to 200. All API functions are covered in
detail after the figure. Functions marked with (R) are required for proper
configuration, meaning that they must be called before the actual compression
process. Functions marked with (O) are optional and can be used to change
parameters within the configuration data pool.

Figure 3.9: Interface between the OBSW and Pocket+. The pre-proceser define
MAX PACKET INPUT SIZE is set to 200.

41



DRAFT
3 Implementation

Set the address of the output buffer. (R)
void * setOutputSource ( uint8_t * output_memory );

Listing 3.7: This function shall be used to set the address for the output buffer.

Description: Set the address of the output buffer and return the address.
Return values: Address of the output buffer.
Arguments:

• uint8 t * output memory . . . pointer to the output buffer.

Set the size of the output buffer. (R)
uint8_t setOutputBufferSize ( int16_t output_buffer_size );

Listing 3.8: This function shall be used to set the size of the output buffer.

Description: Set the size (bytes) of the output buffer. The size must be greater
than the input packet size.
Return values:

• SUCCESS: 0
• FAILURE: 1

Arguments:

• int16 t output buffer size . . . size of the output buffer. (bytes)

Set the adress of the input buffer (R)
void * setInputSource ( uint8_t * input_memory );

Listing 3.9: This function shall be used to set the address for the input buffer.

Description: Set the address of the input buffer and return the address.
Return values: Address of the input buffer.
Arguments:

• uint8 t * input memory . . . pointer to the input buffer.
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Set the size of the input CCSDS packet (header + data field) (bytes) (R)

uint8_t setInputPacketSize ( int16_t input_packet_size );

Listing 3.10: This function shall be used to set the size of the input CCSDS packet.

Description: Set the size (bytes) of the CCSDS packet (header + data field),
which should be processed. The size must be greater than six bytes and smaller
than the output buffer size.
Return values:

• SUCCESS: 0
• FAILURE: 1

Arguments:

• int16 t input packet size . . . size of the input CCSDS packet within in
the input buffer (bytes).

Set or change the Pocket+ APID (O)
void setPocketApid ( uint16_t pocket_apid );

Listing 3.11: Function which sets the APID for the Pocket+ specific CCSDS packet.

Description: Set the APID for Pocket+ packets. The default value is zero.
Return values: None
Arguments:

• uint16 t pocket apid . . . value for the Pocket+ APID
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Set the target mode of the statemachine of Pocket+ (O)
void setMode (enum mo_modes mode);

Listing 3.12: This function shall be used to set the target mode of the statemachine.

Description: Set the target mode of Pocket+. The statemachine will do the
state transitions automaticly. The default (entry state/mode) is STANDBY.
Return values: None
Arguments:

• enum mo modes mode . . . name or value of the target mode
– 0 . . . STANDBY
– 1 . . . REFERENCE
– 2 . . . ABSOLUTE
– 3 . . . ACTIVE

Set or change the positive update rate (O)
uint8_t setPositiveUpdateRate ( int16_t positive_update_rate );

Listing 3.13: This function shall be used to set the positive update rate of Pocket+.

Description: Set the positive update rate of Pocket+. This value must be
greater than value for the maximum protection level. The default value is 20.
Return values:

• SUCCESS: 0
• FAILURE: 1

Arguments:

• int16 t positive update rate . . . value for the positive update rate
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Set or change the maximum protection level (O)

uint8_t setMaximumProtectionLevel ( int16_t
maximum_protection_level );

Listing 3.14: This function shall be used to set the maximum protection leve of Pocket+.

Description: Set the maximum protection level of Pocket+. This value has to
be between one and five, and must be less than the positive update rate. The
default value is three.
Return values:

• SUCCESS: 0
• FAILURE: 1

Arguments:

• int16 t maximum protection level . . . value for the positive update rate

Set or change the offset for the non-predictable bits (O)

uint8_t setNpWordsOffset ( int16_t np_words_offset );

Listing 3.15: Function which sets the offset (32 bit words) for the non-predictable bits.

Description: Set the offset (32 bit words) for the non-predictable bits. A
offset of one means that the first 32 bits of a packet are not processed by the
non-predictable bit extraction process. The default value is zero. The value
must no be greater than the variable WORDS (equation 3.5)
Return values:

• SUCCESS: 0
• FAILURE: 1

Arguments:

• int16 t np words offset . . . value for the non-predictable bits offset
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Run the statemachine, process the input packet, and issue the output
packet. (O)
uint16_t runPocket (void);

Listing 3.16: Function which processes the input buffer and writes the corresponding data to
the output buffer.

Description: When Pocket+ has been configured, this function has to be called
in order to output any data. It comprises the statemachine, the packetizer, and
the compression module. The return value is the size of the CCSDS packet
within the output buffer. When the configuration is wrong, or has not been
done, it returns zero.
Return values:

• SUCCESS: Size of the CCSDS (header + data field) (bytes) packet within
the output buffer.

• FAILURE: 0

Arguments: None

Usage: Files and code example

The Pocket+ compression module consists of three file couples.

1. The interface between the OBSW and Pocket+,
• pocket.c and pocket.h

2. the packetizer module,
• packetizer.c and packetizer.h

3. and the compression module.
• compression.c and compression.h

In order to use Pocket+ in a given project, only the header file pocket.h has to
be included. An example is given in listing 3.17.
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# include " pocket .h"

static uint8_t input_memory [200]; // input memory
static uint8_t output_memory [800]; // output memory

int main (){

/* Set the address and size of the output memory . REQUIRED */
setOutputSource ( output_memory );
if( setOutputBufferSize (800)){

return 1; // could not set the size of the output buffer
}

/* Set the address of the input memory . REQUIRED */
setInputSource ( input_memory );

/* Set the size of the CCSDS packet inside the input memory .
REQUIRED */

if( setInputPacketSize (128)){
return 1; // could not set the size of the input packet

size
}

/* Set the APID for the Pocket + CCSDS packet . The default
value is zero. */

setPocketApid (1365) ;

/* BASIC SETUP DONE. Now Pocket + produces an output . */

/* +++ Let ’s do some configuration ! +++ */

/* Set the mode to REFERENCE . Default is STANDBY . */
setMode ( REFERENCE );

/* Set the maximum protection level to 3. */
setMaximumProtectionLevel (3);

/* Process the input packet . */
int16_t outputSize = runPocket ();
if( outputSize ){ // size (bytes) of the CCSDS SID packet

within output_memory .
/* Do something with the output_memory */

}
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/* New packet received . Process the input packet */
int16_t outputSize = runPocket ();
if( outputSize ){

/* Do something with the output_memory */
}

/*
.
.

*/

setMode ( ACTIVE ); // A TC has been received ! Go into mode
ACTIVE

/* New packet received . Process the input packet */
int16_t outputSize = runPocket ();
if( outputSize ){

/* Do something with the output_memory */
}

/* ... thats all you have to know! */
}

Listing 3.17: An example how to use the compression module.
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3.4.4 Decompression module for Mission Control Systems

The implementation of Pocket+ into the OPS-SAT OBC has an impact on
the current mission control system and requires new specifications. SCOS2000,
which is the main mission control system used by ESA, has no functionality
to support compressed packets currently. Thus the following two options were
researched in order to integrate the Pocket+ decompression functionality into
the mission control system. To keep the system as simple as possible, it was
decided to use the APID of a SPP packet to identify compressed Pocket+
packets.

Decomression module before SCOS2000

When no modification of the current MCS is desired, only a Pocket+ module
before SCOS2000 would give the desired decompression functionality. This
concept has to deframe the input frame, look and filter for compressed SPP
packets, decompress these packets and create two new TM frames. Whereas
Pocket+ packets get their own virtual channel and forward them to SCOS2000.
Both types of packets are stored in SCOS2000. This concept is shown in figure
3.10.

Figure 3.10: The incoming TM frame is deframed and the SPP packets go into a filter. The
filter looks for Pocket+ packets and decompresses them. Afterwards, two new
frames are created. One for normal TM and one for Pocket+ TM.
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Decompression module inside SCOS2000

Incoming CCSDS packets, which are recognised as Pocket+ packets, go directly
into the TM packets database table for compresed packets. The decompression
module has access to this table and decompresses these packets. After the
decompression process, the APID is reversed to the original APID and the
uncompressed packet is sent to the database table for uncompressed packets.
Figure 3.11 shows this mission operations extension for Pocket+.

Figure 3.11: All SPP packets are stored into their corresponding database tables. The packets
can be distinguished by their APIDs. All packets with Pocket+ specific APIDs
go into the decompression module, the APIDs are reverted and the resulting
uncompressed packets are stored into their respective database table.
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4.1 Evaluation of the Pocket+ compression

In order to evaluate Pocket+, the execution time and the compression were
compared to other compression algorithms such as LZ4, Gzip, and bzip. Real
TM data of Venus Express (VEX), GAIA, Rosetta, GOCE and Herschel was
used as input data. Furthermore, the algorithm was also tested on RAW pictures
of the OPS-SAT camera. The test setup was

• a 64 bit Linux machine - Debian testing with kernel 4.9.0-3,
• 4.0 GB of RAM,
• Intel i7 CPU with 1.60 GHz and
• a 120 GB SSD.

The following subsections deal with finding the optimal configuration for best
compression results and compare Pocket+ with other compression algorithms
in terms of compression and execution time. The compression itself is defined
as

Compression (%) =
Compressed size

Uncompressed size. (4.1)

4.1.1 Finding the best compression configuration

In order to obtain the best compression, the parameter maximum protection
level must be set to one, and the parameter positive update rate has to be
varied. The value of the positive update rate depends on the dynamic properties
and sampling rate between consecutive packets. For example, when the data of
packets tend to follow a fast trend and the sampling rates are low, some bits,
which flipped in the the last ten packets, will not change anymore. A positive
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update value of ten removes these bits from the mask and the non-predictable
bits field in the compressed packet. However, one can see in figure 4.1 that for
most of the tested TM data the compression fluctuates slightly when a positive
update rate between 5 and 40 was chosen, which turned out to be a good initial
guess.

Figure 4.1: Compression values of real TM data of several space missions when the positive
update rate is changed and the protection level is set to one. Only the data field
of a CCSDS packet was compressed.
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4.1.2 The influence of the protection level

In figure 4.2 the average compression of several space mission is shown when
the parameter maximum protection level is changed and the parameter positive
update rate is set to 15. It can be seen that the compression increases linearly,
which results from the additional deltas of the previous n packets.

Figure 4.2: Compression of real TM data of several space missions when the positive update
rate is set to 15 and the protection level is changed. Only the data field of a
CCSDS packet was compressed.
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4.1.3 Comparison with other compression algorithms

The following generic compression algorithms were chosen for compression, since
all of them are open source and widely used. For this purpose, several CCSDS
binary files full of CCSDS packets (headers and data fields) were compressed.
Pocket+ used a maximum protection level of one and positive update rate of
15.

• LZ4 (fast mode),
• Gzip (fast mode),
• bzip2 (fast mode).

In the following tables the results of the average compression and execution
times of several space missions are shown.

Table 4.1: Comparison of several compression algorithms for telemetry data of Venux Express.
132.50 MB were processed.

Algorithm Average compression (%) Average runtime (s)
Pocket+ 19.30 3.84
LZ4 33.70 1.91
Gzip 26.06 3.61
Bzip2 19.84 24.68

Table 4.2: Comparison of several compression algorithms for telemetry data of Rosetta. 55.60
MB were processed.

Algorithm Average compression (%) Average runtime (s)
Pocket+ 13.89 1.45
LZ4 22.67 0.71
Gzip 17.73 1.46
Bzip2 12.00 11.26
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Table 4.3: Comparison of several compression algorithms for telemetry data of GOCE. 988.50
MB were processed.

Algorithm Average compression (%) Average runtime (s)
Pocket+ 39.79 34.91
LZ4 64.93 9.81
Gzip 55.82 38.34
Bzip2 52.58 204.89

Table 4.4: Comparison of several compression algorithms for telemetry data of GAIA. 346.7
MB were processed.

Algorithm Average compression (%) Average runtime (s)
Pocket+ 27.36 8.14
LZ4 45.66 1.79
Gzip 38.26 8.34
Bzip2 30.75 59.74

Table 4.5: Comparison of several compression algorithms for telemetry data of Herschel.
763.8 MB were processed.

Algorithm Average compression (%) Average runtime (s)
Pocket+ 14.52 13.01
LZ4 28.84 5.79
Gzip 23.14 17.24
Bzip2 14.91 127.97
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4.1.4 A look on Venus Express

Venus Express was launched in 2005, orbited Venus in a highly elliptical 24:00
h polar orbit, and observed the atmosphere. Pocket+ was applied on TM data
generated in a week, and used a positive update rate of 15 and a maximum
protection level of three.

Figure 4.3: Artist’s impression of Venus Express orbiting Venus. ESA, 2003

TM data, which compresses well

Figure 4.4, 4.5 and 4.6 show the compression values of every single packet, the
likelihood of these compression values and the number of non-predictable bits
for TM data which compresses well. The CCSDS packet was sampled with a
rate of 32.0 s and has a data field size of 120.0 bytes.
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Figure 4.4: Compression values, of every single CCSDS packet of VEX TM data, that
compress well. The sampling rate is 32.0 s and the size of one packet is 120.0
bytes. The protection level stays constant, since the compression is never greater
then 100 %.

Figure 4.5: Likelihood for compression values of VEX TM data, which compresses well. The
probability curve is sharp, tight, and far to left of the graph, which indicates a
good compression.
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Figure 4.6: Number of non-predictable bits of VEX TM data, which compresses well. The
CCSDS packet was sampled with a rate of 32.0 s and has a data field size of
120.0 bytes.

TM data, which compresses badly

Figure 4.7, 4.8 and 4.9 show the results of TM data, which compresses badly.
The protection level decreases occasionally, which occurs when the compression
becomes greater then 100 %. Figure 4.10 shows this process in more detail. The
CCSDS packet was sampled with a rate of 4.0 s and has a data field size of
84.0 bytes.

58



DRAFT
4.1 Evaluation of the Pocket+ compression

Figure 4.7: Compression values of every single CCSDS packet of VEX TM data, which
compresses badly. The sampling rate is 4.0 s and the size of one packet 84.0 bytes.

Figure 4.8: Likelihood for compression values of VEX TM data, which compresses badly.
The probability curve is spread and shifted to the right.
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Figure 4.9: Number of non-predictable bits of VEX TM data, which compresses badly. The
CCSDS packet was sampled with a rate of 4.0 s and has a data field size of 84.0
bytes.

Figure 4.10: Automatic reduction of the protection level when the compression becomes
greater then 100 %.
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Mask updates

Several mask updates and the initialization phase of Pocket+ can be seen in
figure 4.11. When the number of non-predictable bits increase, a negative mask
update was done. Conversely, when the non-predictable bits decrease, a positive
mask update was done.

Figure 4.11: Negative and positive mask updates in more detail. When the number of non-
predictable bits increase, a negative mask update was done. A reduction indicates
a positive mask update.

Periodic trends

A frequency analysis (FFT) was applied on the change of non-predictable bits
and is shown in figure 4.12 and figure 4.13. One can see that several peaks can
be found at 6.0, 12.0, and 24.0 hours. When the S/C is at the apocenter it
moves slowly, most of the sensor data stays the same and Pocket+ compresses
well. When the S/C is approaching the pericenter it becomes faster, the sensor
data change and the compression becomes worse. Since Venus Express is in a
highly elliptical 24:00 hour orbit, this circumstance can be seen in the FFT. The
other peaks likely originate from operational procedures, which were scheduled
and executed every 6.0 and 12.0 hours.
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Figure 4.12: FFT applied on the number of non-predictable bits of VEX TM data, which
compresses well. The sampling rate is 32.0 s. The 12.0 hour peak could indicate
a scheduled operational procedure. The sampling rate is 32.0 s.

Figure 4.13: FFT applied on the number of non-predictable bits of VEX TM data, which
compresses badly. The sampling rate is 4.0 s. The 24.0 hour peak could reflect
the 24:00 hour orbit and the peaks at 12.0 and 6.0 could indicate scheduled
operational procedures.
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4.1.5 Pictures

Since the Pocket+ compression comes from the difference of two consecutive
packets it can also be applied on raw binary files, which contain similar bit
patterns. For example, the RAW format of the OPS-SAT camera is a Bayer
matrix (R-G-R-G) with two bytes per pixel and a default resolution of 2,048 x
1,944 pixel. Thus each horizontal line of a RAW picture can be interpreted as
a data packet with a a size of 4,096 bytes. So for the OPS-SAT camera, there
are 1,944 data packets with a size of 4,096 bytes. A sample picture is shown in
figure 4.14 and table 4.6 shows the compression results of several algorithms
applied on that picture.

Figure 4.14: Sample image taken from the OPS-SAT CAM.

Table 4.6: Results of the compression of a RAW picture of OPS-SAT.
Algorithm Compression (%) Average runtime (s)
Pocket+ 48.39 0.269
LZ4 91.36 0.06
Gzip 55.85 0.36
Bzip2 41.90 1.08
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Pocket+ has turned out to be a robust and fast way of compressing data,
which can compete with, and outperform other generic compression algorithms,
in terms of compression ratios and execution times. Although the Pocket+
compression is not optimized for multi-core processing or does not have any
integrated parallelization yet, the execution times showed remarkable results.
LZ4, which was always the fastest algorithm, also had the worst compression
values. Pocket+ had similar execution times as Gzip, but compressed much
better. However, it should be pointed out that a whole binary file was used
for the generic compression algorithms. These algorithms were not aware of
the single CCSDS packets within the binary file. Since those algorithms look
for similarities and repeating byte patterns, it can be assumed that their
compression performances are getting worse when only small CCSDS packets
are used as input.
The research on Venus Express telemetry showed that Pocket+ also reveals
operational procedures and orbital properties, which could again be used as
input for mission control systems.
Moreover, it turned out that Pocket+ can be used on raw binary files with a
known bit pattern. For this case, a packetizer splits and puts the data into an
appropriate structure and inputs them into Pocket+. Only the difference of
two consecutive packets are decisive. This means that Pocket+ will not work
with different types of packets. For every type of data an instance of Pocket+
must be created. However, since current S/C OBCs and OBSWs are highly
deterministic, Pocket+ would perfectly fit into this pattern.
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