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Abstract 

Since the finite element method (FEM) has consolidated itself in the numerical 
computation of electro-magnetic fields as a fundamental tool for solving various 
kinds of complex problems, the demands in accuracy and quantity of the results 
obtained by this solution technique have steadily increased. Therefore, it is necessary 
to continuously improve and adapt the algorithms of finite element solvers. 

This thesis contributes to the numerical computation of nonlinear, three-
dimensional, time-periodic, eddy-current problems solved by the aid of the FEM by 
enhancing and adapting an existing FE-electromagnetic field analysis tool. The 
solution procedures treated focus on obtaining time-periodic, steady-state solutions 
by utilizing harmonic decomposition methods to bypass a time-consuming transient 
solution. 

After an evaluation of the numerical results of the present solver by comparing to 
measurements to determine the impact of the number of considered higher harmonics 
in the computation, a nonlinear magnetic circuit model of a basic benchmark 
transformer was developed, based on FE solution algorithms. Hence it was possible 
to quickly assess the impact of modifications in the solution procedure of various 
potential formulations and nonlinear iteration strategies applied. With that 
knowledge gained, the FEM-solver was enhanced and validated by executing several 
numerical test problems as well as compared with solution approaches of external 
institutions. 

In the final stage of this work, a static initialization procedure has been introduced 
to increase the efficiency in solving nonlinear eddy-current problems including a 
direct-current bias in the excitation. Two procedures to obtain an initial solution by 
first solving the problem without eddy-currents have been addressed in detail. This 
result provides the starting condition of the solution process with eddy-currents 
present. 

 
Keywords: 3-dimensional, computational electromagnetics, DC-bias, eddy-
currents, electro-magnetic field computations, electromagnetic modeling, finite 
element analysis, finite element methods, geomagnetism, nonlinear magnetics, 
nonlinear magnetic-circuit models, transformer problems 

  



 
 

Kurzfassung 

Da sich in der numerischen Berechnung elektromagnetischer Felder die Finite-
Elemente-Methode (FEM) als grundlegendes Werkzeug zur Lösung verschiedenster 
komplexer Problemdomänen etabliert hat, sind die Anforderungen an die 
Genauigkeit und Quantität der Ergebnisse dieser Lösungsstrategie stetig gestiegen. 
Daher ist es notwendig, die Lösungsalgorithmen des Finite-Elemente-Solvers 
kontinuierlich zu verbessern und anzupassen. 

Diese Arbeit leistet einen Beitrag zur numerischen Berechnung von nichtlinearen, 
dreidimensionalen, zeitperiodischen, Wirbelstromproblemen, die mit Hilfe der FEM 
gelöst werden, indem ein bestehendes FE-Elektro-Magnetfeldanalysewerkzeug 
erweitert und angepasst wird. Die untersuchten Lösungsverfahren sind darauf 
ausgerichtet, zeitperiodische, stationäre Lösungen zu erhalten, indem harmonische 
Diskretisierungs-Methoden verwendet werden, um einen zeitaufwändigen transienten 
Lösungsansatz zu umgehen. 

Nach einer Auswertung der numerischen Ergebnisse des vorliegenden FE-Solvers 
durch Vergleich mit Messungen zur Bestimmung der Auswirkung der Anzahl der 
betrachteten höheren Harmonischen in der Berechnung, wurde ein nichtlineares 
Magnetkreismodell, basierend auf den FE-Lösungsalgorithmen, eines grundlegenden 
Benchmark-Transformators entwickelt. So war es möglich, die Auswirkungen von 
Modifikationen im Lösungsverfahren verschiedener Potenzial-Formulierungen und 
nichtlinearer Iterationsstrategien schnell abzuschätzen. Mit diesem Wissen wurde der 
FEM-Solver erweitert und validiert, indem mehrere numerische Testprobleme 
durchgeführt und mit Lösungsansätzen externer Institutionen verglichen wurden. 

In der letzten Phase dieser Arbeit wurde ein Statisches-Initialisierungsverfahren 
eingeführt, um die Effizienz bei der Lösung nichtlinearer Wirbelstromprobleme mit 
Gleichstromanteil in der Erregung, zu erhöhen. Hierzu werden zwei Verfahren, in 
denen das Problem zunächst ohne Wirbelströme gelöst wird, um eine erste Lösung 
zu erhalten, detailliert behandelt. Dieses Ergebnis liefert dann die Anfangsbedingung 
des Lösungsprozesses für die Wirbelstromberechnung. 

 
Schlagwörter: 3-dimensional, rechnergestützte Elektromagnetik, DC-
Überlagerung, Wirbelströme, elektromagnetische Feldberechnung, 
elektromagnetische Modellierung, Finite Elemente Analyse, Finite Elemente 
Methoden, Geomagnetismus, nichtlinearer Magnetismus, nichtlineare 
Netzwerkmodelle, Transformatorprobleme  





 

I 
 

Contents 
CONTENTS ................................................................................................................................ I 

1 INTRODUCTION ............................................................................................................. 1 

1.1 MOTIVATION ................................................................................................................... 1 
1.2 STATE OF THE ART ........................................................................................................... 4 

1.2.1 Finite Element Method ............................................................................................... 4 
1.2.2 Modelling by finite elements ...................................................................................... 5 
1.2.3 Evolution of solving capabilities ................................................................................ 6 

1.3 SCIENTIFIC CONTRIBUTIONS ............................................................................................ 8 
1.4 THESIS OUTLINE............................................................................................................. 10 

2 FUNDAMENTALS ......................................................................................................... 11 

2.1 ELECTROMAGNETISM AND PHYSICAL BACKGROUND ..................................................... 11 
2.1.1 Maxwell´s equations ................................................................................................. 11 
2.1.2 Potential Formulations ............................................................................................ 14 

2.1.2.1 A,V-A-formulation....................................................................................................... 16 
2.1.2.2 Ar,V-Ar-formulation .................................................................................................... 19 
2.1.2.3 T,ϕ-ϕ -formulation ....................................................................................................... 21 

2.1.3 Voltage driven coils .................................................................................................. 24 
2.1.4 Loss computation ..................................................................................................... 25 

2.2 FINITE ELEMENT METHOD ............................................................................................. 27 
2.2.1 Finite element approximations ................................................................................. 27 
2.2.2 Weighted residual method (Galerkin technique) ...................................................... 28 
2.2.3 Domain discretization using finite elements ............................................................. 29 
2.2.4 Finite element potential formulations ...................................................................... 33 

2.2.4.1 Finite element approximation using the A,V-A-formulation ....................................... 34 
2.2.4.2 Finite element approximation using the Ar,V-Ar-formulation ..................................... 36 
2.2.4.3 Finite element approximation using the T,ϕ-ϕ-formulation ......................................... 37 

2.3 TIME-PERIODIC STEADY-STATE SOLUTION ..................................................................... 40 
2.3.1 Harmonic balance method ....................................................................................... 40 
2.3.2 Time periodic approach ........................................................................................... 41 
2.3.3 Fixed-point technique ............................................................................................... 44 

2.3.3.1 Introduction ................................................................................................................. 44 
2.3.3.2 Basic approach ............................................................................................................. 45 
2.3.3.3 Harmonic balance fixed-point technique (HBFP) ........................................................ 50 
2.3.3.4 Time periodic fixed-point technique (TPFP) ............................................................... 51 

2.3.4 Solution techniques for linear equation systems ...................................................... 53 

3 EDDY-CURRENT LOSSES IN A STEEL GRID IN THE VICINITY OF AN AIR 
REACTOR .................................................................................................................................... 56 



 

II 
 

3.1 INTRODUCTION .............................................................................................................. 56 
3.1.1 Problem definition ................................................................................................... 56 
3.1.2 FEM modelling ........................................................................................................ 57 

3.1.2.1 Time-harmonic approach ............................................................................................. 57 
3.1.2.2 Harmonic balance fixed-point technique ..................................................................... 58 

3.2 NUMERICAL INVESTIGATIONS ....................................................................................... 58 
3.2.1 Validation ................................................................................................................ 61 

3.3 CONCLUSION ................................................................................................................. 67 

4 DESIGN OF NONLINEAR MAGNETIC CIRCUIT MODELS ................................... 68 

4.1 INTRODUCTION .............................................................................................................. 68 
4.2 NONLINEAR MAGNETIC CIRCUIT MODEL ........................................................................ 68 

4.2.1 Nonlinear magnetic circuit model corresponding to the T,ϕ-ϕ-formulation ............ 73 
4.2.2 Nonlinear magnetic circuit model corresponding to the A,V-formulation ............... 77 

4.3 NUMERICAL INVESTIGATIONS ....................................................................................... 80 
4.3.1 Evaluation of two approaches for treating the voltage excitation in the T,ϕ-ϕ-

formulation  ................................................................................................................................. 80 
4.3.1.1 Magnetic circuit model of the transformer ................................................................... 81 
4.3.1.2 Numerical results ......................................................................................................... 88 
4.3.1.3 Conclusion ................................................................................................................... 91 

4.3.2 Comparison of two different potential formulations with respect to the fixed-point 
technique applied ........................................................................................................................ 91 

4.3.2.1 Magnetic circuit models ............................................................................................... 92 
4.3.2.2 Presentation of the results ............................................................................................ 93 
4.3.2.3 Conclusion ................................................................................................................... 96 

5 COMPARISON OF DIFFERENT SOLUTION TECHNIQUES .................................. 97 

5.1 INTRODUCTION .............................................................................................................. 97 
5.2 FEM FORMULATIONS .................................................................................................... 98 

5.2.1 Parallel time-periodic finite element method (parallel TPFEM method) ................ 98 
5.2.2 Harmonic balance fixed-point technique (HBFP method)..................................... 100 
5.2.3 Time periodic fixed-point technique (TPFP method) ............................................. 100 

5.3 NUMERICAL INVESTIGATIONS ..................................................................................... 101 
5.3.1 Problem definition ................................................................................................. 102 
5.3.2 Parallel TPFEM technique compared to the HBFP method ................................. 103 

5.3.2.1 Comparison of the numerical results .......................................................................... 104 
5.3.2.2 Conclusion ................................................................................................................. 107 

5.3.3 Parallel TPFEM technique compared to the TPFP method .................................. 107 
5.3.3.1 Comparison of the numerical results .......................................................................... 108 
5.3.3.2 Transient approach ..................................................................................................... 112 
5.3.3.3 Conclusion ................................................................................................................. 116 

6 COMPARISON OF FEM-TECHNIQUES INVOLVING VOLTAGE DRIVEN COILS 
  ....................................................................................................................................... 117 



 

III 
 

6.1 TREATING THE VOLTAGE EQUATIONS WITH THE T,Φ-Φ-FORMULATION ....................... 118 
6.1.1 Formulation of the “combined” and “separated” method .................................... 118 
6.1.2 Numerical results ................................................................................................... 119 

6.1.2.1 Transformer in no-load condition .............................................................................. 121 
6.1.2.2 Transformer in resistive-load condition ..................................................................... 123 
6.1.2.3 Transformer in current-load condition ....................................................................... 125 

6.1.3 Conclusion ............................................................................................................. 127 
6.2 VARYING THE FEM-FORMULATIONS ........................................................................... 127 

6.2.1 Treating the voltage excitation in the A,V-A-formulation ...................................... 128 
6.2.2 Numerical results ................................................................................................... 132 

6.2.2.1 Transformer in no-load condition .............................................................................. 133 
6.2.2.2 Transformer in resistive-load condition ..................................................................... 136 
6.2.2.3 Transformer in current-load condition ....................................................................... 139 

6.2.3 Conclusion ............................................................................................................. 142 

7 INVESTIGATIONS UNDER DC BIAS ........................................................................ 143 

7.1 INTRODUCTION ............................................................................................................ 143 
7.2 FEM FORMULATION .................................................................................................... 144 
7.3 STATIC INITIALIZATION ............................................................................................... 146 

7.3.1 Secant method ........................................................................................................ 147 
7.3.2 Schur-complement .................................................................................................. 149 

7.4 NUMERICAL RESULTS .................................................................................................. 153 
7.4.1 Symmetric single-phase transformer model ........................................................... 157 
7.4.2 Non-symmetric three-phase transformer model ..................................................... 160 

7.5 CONCLUSION ............................................................................................................... 163 

8 SUMMARY OF SCIENTIFIC RESULTS .................................................................... 164 

BIBLIOGRAPHY .................................................................................................................. 166 

APPENDIX ............................................................................................................................ 183 

 
 
 
 
 
 
 
 
 
 
 



 

IV 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction   1.1 Motivation 

1 
 

1 Introduction 

1.1 Motivation 

Electrical power is the most common energy source to energize and run a 
substantial number of devices in daily use. The steady progress in the development 
of electronics and power electronics has led to there being hardly any device we are 
using that is not powered by electricity. Due to this trend, our power consumption 
has increased exponentially in the past decades. On the one hand it is a very 
comfortable power source for consumers: on the other hand it is a quite challenging 
task for providers to guarantee a consistent flow of energy. 

In the early days of electrification it was hardly imaginable that one day electrical 
energy would be this valuable and a shortage of this power source was 
inconceivable. The industry was powered up and machines and devices were 
developed without questioning their efficiency. It seemed that there were no 
restrictions in size and occurring losses at all to achieve the main goal – 
functionality. Even generating electrical energy was wasteful, dissipating crude 
materials not caring about the environment. This lavish evolution claims its toll. 
Pollution increased due to unclean thermal power plants and resources were rapidly 
harvested. 

Due to limits in power generation and the rapid growth in the amount of electrical 
devices new policies in using electric energy emerged. Engineers started to 
investigate the efficiency of electrical devices. The new challenging focus was to 
increase functionality and efficiency. Furthermore, since especially in densely 
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populated areas the available space plays a significant role, a compact design has 
also become an object of great interest. 

In increasing efficiency, the main focus was mostly on devices for power 
generation and distribution to avoid unnecessary losses. As a consequence, new 
design studies and sophisticated analyses of the behavior of electrically driven 
apparatuses gained importance. The most significant losses are the copper, iron and 
eddy current losses which lead to a substantial amount of electrical losses, dissipated 
thermal energy and highly affect the degree of efficiency. It was obvious that 
intensive research had to be done to correctly assess material properties and the 
effects of electromagnetic field distributions. 

Especially in large power transformers [1, 2, 3] these new findings have shown 
that electromagnetically induced eddy currents are a dominant issue in generating 
additional losses influencing the efficiency. These losses occur in the windings of a 
transformer due to the skin-effect and are also due to eddy currents flowing in the 
iron core influencing the magnetic flux distribution and in other conductive materials 
used in the assembly of a transformer as e.g. clamping plates or the housing. To 
account for these losses, the mathematical models of transformers had to be adapted 
considering eddy currents. To handle the losses in the windings of the transformer 
new types of wires were designed to minimize the skin effect (see appendix A) and 
additionally to cut down material demands. Hence so called stranded litz-wires and 
continuously transposed conductors replaced massive conductors [4, 5, 6, 7, 8, 9, 10, 
11]. 

A similar procedure was applied to the magnetically most relevant parts as the 
iron core. Due to proper design of the core material it turned out that using laminated 
steel sheets reduces the influence of eddy currents enormously. In order to achieve 
better flux distributions in the core, more suitable material types were developed and 
oriented material structures were applied for a better flux guidance [12, 13, 14, 15]. 

Due to the mentioned scarcity of available space, the dimensions of power 
transformers needed to be reduced and induced eddy currents in the transformer 
housing became relevant since the magnetic field decays with the distance. Due to 
reductions in the dimensions of the housing, the distances between the active parts 
and the highly permeable steel tank were scaled down hence the additional losses due 
to induced eddy currents in the steel tank increased. It is impossible to cover these 
additional losses with investigations based on analytical studies within such complex 
structures. However these losses are not negligible and are needed to be researched. 

During the analysis of additional losses, environmental influences had also been 
investigated. It turned out that geo-magnetically induced currents [16] (GIC) are also 
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a decisive source for additional losses in transformers. These currents are caused by 
solar activity as e.g. sun flare [17, 18]. The interaction with the earth´s magnetic field 
can produce auroral currents disturbing the dormant magnetic field resulting in 
variations in the earth surface potential (ESP) and producing a current, known as 
geo-magnetically induced current flowing through the grounded neutral of 
transformers and along the transmission lines. These direct current (DC) components 
can cause adverse problems in power distribution infrastructures as power 
transformers by adding a DC bias to the magnetization current of the transformer. As 
a consequence, the core of the transformer gets saturated within the half-period in 
which the magnetization current and the DC bias are in the same direction resulting 
in increasing noise level, additional core losses as well as eddy current losses due to 
higher leakage flux [19, 20, 21]. 

As a consequence of the above demands, numerical methods have been developed 
to assess the characteristics of electrical devices with complex geometries by 
computer aided design. Since numerical investigations are needed, it is obvious that 
improving these computations is a main goal. In the very beginning, the available 
resources were poor and the functionality limited hence the computational costs were 
significant. Since then there has been a continuous progress in developing numerical 
solvers. The major issue is computational time. Determining the characteristics of an 
electrical device as accurately as possible is a complex task. It is not only a matter of 
hardware of a computational unit to save computational time. The algorithms 
implemented in the numerical solving procedure are dominant. Therefore it is 
necessary to investigate mathematical algorithms to speed up the computations by 
simultaneously increasing the accuracy of the results. 

Due to the steady research there are still possibilities to improve numerical 
investigations and it is obvious that the motivation is present to decrease 
computational costs as it will be shown in this thesis. 
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1.2 State of the art 

1.2.1 Finite Element Method 
There is a huge amount of literature dealing with the Finite Element Method 

(FEM) and it is not the topic of this thesis to cover the entire history of FEM. This 
method has been well known for over 50 years and has been steadily developed since 
then. The basic idea of the finite element method is to subdivide a geometrical 
domain of a boundary-value problem into smaller subdomains, called the finite 
elements (FE), and expressing the governing differential equations to be solved 
computationally using linear algebra techniques. An extensive collection of FEM 
strategies has been compiled by O. Zienkiewicz [22] besides plenty of researchers as 
e.g. [23, 24, 25, 26, 27, 28]. This technique can be applied in many fields of interest 
as e.g. mechanical problems to determine mechanical stress or behavior of structures 
as well as in electromagnetic problems to determine electromagnetic field quantities 
as well as gaining information of local attributes as magnetic flux distributions or 
power losses. In this thesis we will focus on the application in electromagnetic field 
investigations. With the aid of FEM it is possible to observe the inside of problem 
domains and to visualize emerging physical processes for one dimensional (1D), two 
dimensional (2D) and of course three dimensional (3D) arrangements.  

For solving a boundary-value problem with FEM one needs to define the problem 
domains and express the FE with continuity conditions and excitations to solve the 
relevant differential equation system. Due to the steady improvement of this 
technique, plenty of formulations to describe the problem domains have been 
researched [29, 30, 31, 32, 33, 34]. In the beginning of numerically solving 
electromagnetic field problems the main focus of investigations was related to 1D 
and 2D problems due to limited computational resources available. The most popular 
formulation developed uses a magnetic vector potential to describe non-conducting 
domains and an electric scalar potential as well as a magnetic vector potential 
covering the partial differential equations for conducting areas. This basic concept 
has its benefits as the magnetic flux density is directly expressed by a magnetic 
vector potential. Besides this approach another technique has been developed using a 
magnetic scalar potential to be used in non-conducting regions and a magnetic 
current vector potential in addition to a magnetic scalar potential to describe 
conducting domains [35, 36, 37, 38]. These formulations will be described in detail 
in sub-section 2.1.2. These techniques have been successfully applied to 2D 
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problems and later on been adapted to cover more complex and practically relevant 
3D model domains. Pioneer work has been conducted e.g. in [39, 40, 41, 42, 43, 44, 
45]. Since the basic idea of applying FEM emerged, a lot of effort has been given to 
improvement and development to achieve practically relevant simulation results. Due 
to limited access to computational resources and enormous computational costs FEM 
simulations were restricted to scientific research facilities as for example universities. 
Reducing the computational costs by finding more efficient solving algorithms and 
sustained availability of improved calculation machines it has now become possible 
to access FEM simulations in everyday procedures in research as well as in computer 
aided design (CAD) in commercial use. Hence nowadays almost every 
electromagnetic application can be specifically investigated with reasonable expense 
based on FEM. 

1.2.2 Modelling by finite elements 
As this thesis is essentially dealing with investigations of three dimensional 

problems, the given elaborations of terms and concepts will refer to this scope. 
Nowadays there are hardly any restrictions in modelling a problem domain in 

conjunction with FEM. To subdivide a 3D problem domain into finite elements two 
approaches have become most popular beside others. On the one hand, tetrahedral 
edge based elements are used to mesh the domain of interest in finite elements and 
on the other hand hexahedral edge based elements are employed. In addition to 
several other parameters, the decision on the density as well on the polynomial order 
of the FEs (linear, quadratic or higher order basis functions) have major impact on 
the accuracy of the computational result. It depends on the problem of interest and 
the postulated accuracy how to select the most efficient FE-mesh. Several works 
validating the advantages and disadvantages of tetrahedral and hexahedral elements 
can be found, mostly proposing that both techniques are eligible with tendency to 
preferring the hexahedral construct due to robustness and providing more accurate 
results accompanied by less effort in optimizing the elements [46, 47, 48, 49, 50]. On 
the other hand, tetrahedral meshes are easier to be generated automatically. Also 
mixed formulations are appropriate, combining the features of tetrahedral, 
hexahedral and other volume structures to mesh model domains [51]. Furthermore, 
non-conforming meshing can also be applied to examine problems involving 
movement [52, 53, 54, 55, 56, 57]. Regarding this work, the FE structures 
implemented in the FEM solver used are 2nd order edge based hexahedral finite 
elements. The governing differential equations in association with the boundary 
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conditions (boundary value problem, BVP) need to be set up in such discretized 
domains to yield an algebraic equation system (or a system of ordinary differential 
equations in time). The two widely spread approaches applied are either a variational 
method by minimizing a functional [58, 59] that represents the energy associated 
with the boundary value problem or a weighted-residual method such as the well-
known Galerkin technique [60]. The latter one is based on generating a residual 
instantly from the BVP without having to resort to a functional at all. Therefore, the 
Galerkin approach has gained popularity and will also be followed in this thesis, see 
section 2.2. 

1.2.3 Evolution of solving capabilities 
The early three dimensional problems investigated by applying FEM were of 

simple geometry involving homogenous as well as linear materials due to limitations 
of the available computational resources and solving algorithms. In order to obtain 
practically applicable results and exploit the constantly improving hardware, the 
solvers had to be adapted. The magnetic materials used in a real world 
electromagnetic device have nonlinear characteristics and neglecting their hysteresis 
is not satisfactory when computing losses. The pioneering scientific findings 
considering hysteresis by C.P. Steinmetz [61, 62, 63, 64] were a major step forward 
in this respect. Besides nonlinearity, anisotropic properties have gained recognition 
in applications and are to be considered for meaningful investigations. Taking into 
account real world material specifications, FEM-solving algorithms have developed 
to highly powerful investigation tools not only to accurately compute 
electromagnetic field properties but also to predict additional losses hard to estimate 
by an analytical approach and occurring in parts of devices not essential for their 
operation [65]. 

The most common way to solve a nonlinear time varying problem is to perform a 
step by step computation with the time domain discretized into suitable time-steps 
and the unknown quantities predicted in each time-step. The quantities obtained are 
then used as initial values for the next time-step. This procedure is also known as 
transient solution and often called brute force method in the literature [66, 67, 68, 69, 
70]. It is obvious that the characteristics of the problem highly affect the duration of 
the computation since the transient solution can take several time-periods before 
achieving steady-state. Thus the computational time increases dramatically. This 
procedure is indispensable when treating transient phenomena as for example inrush 
effects whether a periodic or non-periodic excitation is present. If steady-state 
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solutions due to periodic excitations are needed only, the solving algorithm can be 
adapted to skip the tremendous time consumption of the transient solution. Several 
approaches determining fast steady-state solutions have been investigated and well 
documented in the literature [71, 72, 73, 74, 75, 76]. Besides others, two established 
algorithms are, on the one hand, the ”time-periodic finite element method” taking 
advantage of the symmetry and periodicity of the excitation computing only one half 
of the time-period [77, 78, 79]. On the other hand, the solution can be predicted by 
applying the well-known harmonic balance technique often called “harmonic-
balance finite element method” in the literature [80, 81, 82, 83], decomposing the 
time-periodic solution as the sum of its harmonic components. As these two 
formulations are quite dominant in contemporary solving procedures it is obvious 
that there is a focus on improvement. Thus this thesis deals with both formulations 
and they will be examined in detail in section 2.3. 

The usual excitations in BVPs describing electromagnetic devices are coil 
currents. Since real world problems are frequently voltage driven, methods based on 
coupling the FEM-model with an electrical circuit model have been introduced to 
iteratively determine the unknown winding currents considering the skin-effect as 
well as nonlinear material characteristics [84, 85, 86, 87]. 

The prediction of losses is a major topic in state of the art analysis of real world 
problems. Plenty of books and research work are dealing with losses occurring in 
electrical devices including analytical approaches yielding a good estimation of the 
expected losses, experimental loss models using specific parameter studies well 
designed for the problem at hand or highly sophisticated evaluation strategies [88, 
89, 90, 91, 92, 93, 94]. The spectrum of losses is a wide variety consisting among 
others of resistive losses of the wiring often called copper losses, iron losses mostly 
manifesting in hysteretic behavior due to nonlinearity of the materials as well as eddy 
current losses due to induced eddy currents in active materials as well as adjacent 
passive assembly parts of the construct. The spectrum of losses is well presented in 
literature [3] as well as specifically investigated in Ph.D. theses as e.g. [95]. 

Particularly high losses in a transformer construct can be observed if a direct 
current (DC) is accompanying the exciting alternating current (AC). Such DC 
components are a consequence of geo-magnetically induced currents GIC [16, 96] as 
mentioned earlier. These currents affect the operating conditions by evoking a bias of 
the magnetizing current. Hence the core material is saturated in one half-period 
leading to an increase of magnetization losses. These additional losses are not 
negligible, therefore this issue has gained recognition and many researchers have 
considered the appearance of DCs in FEM based solution strategies [97, 98, 99, 100, 
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101, 102, 103, 104, 105, 106]. Since the implementation in FEM is not 
straightforward and the computational costs are quite extensive, this thesis will 
validate different solution approaches dealing with DC components under voltage 
excitation. 

Constructing a real world problem model with the aid of 3D-FEM considering 
issues as e.g. nonlinear material behavior, eddy-currents, DC bias and voltage excited 
coils in detail and aiming to obtain accurate and meaningful results, is seen to lead to 
equation systems involving a high numbers of degrees of freedom. This results in a 
dramatic increase of computational costs. As the recent development of 
computational resources has been fast and multiple core calculation units are now the 
rule rather than an exception, new approaches in analyzing FEM based models have 
become necessary. The solving algorithms of the equation system of a FEM analysis 
can now be adapted to make parallel computations executable, leading to a 
sustainable saving of computational time. The idea of clustering several 
computational units forming so called “super-computers” has been the next step in 
parallelization. Not only parallel CPUs are nowadays available but also many 
workstations can be connected. It has become possible to split up computable 
sections of the solution processes to several workstations in a parallel way carrying 
out independent computations with a superior process coordinating the 
communication between the computers. Finally, the solutions are merged to obtain 
the results. This technique is called parallel “Message Passing Interface” (MPI) and 
has been successfully implemented in FEM as demonstrated in [107, 108, 109, 110]. 

1.3 Scientific contributions 

The contributions of this thesis to science are briefly summarized below including 
published work as well as some unpublished investigations. 

• In order to validate existing FEM procedures to solve nonlinear, periodic 
eddy current problems, a dry insulated air reactor has been investigated. 
Additional eddy current losses in an adjacent steel grid used as reinforcement 
in concrete constructions have been determined. A reduced vector potential 
formulation was applied to different FEM strategies to compare the results to 
measured values. The findings of this work have first been presented at a PhD 
Symposium [111] as well as at a conference [112] and later on published in 
[113]. 
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• To assess the competitiveness and efficiency of the FEM algorithms, a 
benchmark problem has been defined in cooperation with Professor Yasuhito 
Takahashi from the Doshisha University in Kyoto, Japan. A comparison of 
different techniques with those developed by the Japanese group has been 
done with the initial problem setup of a basic current driven single phase 
transformer. The findings have been presented at a symposium [114], and a 
version with voltage excitation of the primary coil at a conference [115]. In 
order to make the comparisons with the magnetic vector potential formulation 
used by the Japanese group more meaningful, this formulation with voltage 
excitation was then implemented, and a comparison presented at a conference 
[116] and later published in [117]. 

• In order to enable a fast evaluation of the advantages and disadvantages of 
FEM formulation to solve nonlinear, periodic problems, a simplified 
nonlinear magnetic circuit model has been designed based on the 3D 
transformer problem investigated in the works [114] - [117]. Initially, the 
main issue was to set up the solution algorithm of the magnetic circuit 
problem similarly to the one used in the 3D harmonic balance fixed-point 
technique with current vector potential formulation. Hence it was possible to 
quickly examine the procedures for solving the nonlinear equation system 
and their impact on the convergence of the nonlinear iterations. The outcome 
has first been presented at a conference [118] and published in [119]. 
Consequently, the magnetic vector potential formulation applied in the 3D 
FEM was introduced in the magnetic circuit model. It hence became possible 
to compare the magnetic vector potential and the current vector potential 
formulations using the harmonic balance fixed-point nonlinear iteration 
technique. Different load case scenarios were investigated for validation and 
presented at two symposia [120] and [121] and an enhanced version with 
voltage excitation at a conference [122]. 

• A novel solving strategy for improving the FEM analysis of 3D, nonlinear, 
periodic eddy current problems involving voltage driven coils under DC bias 
has been presented at a conference [123] and further published in IEEE 
Transaction on Magnetics [124]. 
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1.4 Thesis outline 

This thesis is subdivided into 8 chapters starting with the first chapter introducing 
the motivation of research and the improvements achieved in this field of expertise. 
Furthermore, a review of relevant literature representing a survey of the development 
in FEM-based problem analysis is given as well as the current state of the art 
procedures of currently applied techniques are briefly described. This establishes the 
starting point for the investigations. 

Chapter 2 summarizes the mathematical background as well as technical 
fundamentals applied in this thesis. This chapter also includes the description of the 
investigated solution algorithms and possibilities for their improvement. 

Chapter 3 examines an initial numerical FEM problem for the evaluation of 
additional eddy current losses in air reactors using different solution approaches. 

In chapter 4 basic nonlinear magnetic-circuit models are designed representing 
different potential formulations to enable quick analyses of the FEM based solution 
algorithms. The circuit models are based on a 3D benchmark transformer problem 
which is investigated in more detail by a nonlinear 3D FEM approach in chapter 5, 
where the fixed-point solution procedures investigated on the thesis are compared to 
methods known from the literature and are hence validated. 

Furthermore, in chapter 6, a detailed validation of the use of various potential 
formulations in the fixed-point context is given based on the transformer problem of 
the chapters 4 and 5. 

In chapter 7, a nonlinear 3D FEM eddy current problem is investigated when a 
DC bias is present. The aim is to determine the benefit of an adapted solution 
algorithm for treating DC biased problems including the influence of a static initial 
solution for the nonlinear iteration approach to yield the dynamic steady state 
solution. 

Finally the research will be summarized in chapter 8 with the scientific results 
recapitulated. 
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2 Fundamentals 

2.1 Electromagnetism and physical background 

The presence of electromagnetic phenomena influencing our lives has an 
astonishing history. The first known discovery is ascribed to the antique Greeks who 
detected a force interaction when scrubbing amber resulted in lifting a papyrus sheet. 
Furthermore, a stone with the ability to attract iron, now known as magnetite, was 
discovered. Since then intense investigations have led to more knowledge of electric 
and magnetic phenomena. Based on these experimental researches, scientists as 
Cavendish, Coulomb, Ampère and Faraday just to name a few, published their 
pioneering results. It was the work of Maxwell in 1864 who presented a set of 
equations completely describing electromagnetically coupled phenomena by 
enhancing Ampère´s law and gathering Faraday´s law of induction as well as Gauss´ 
laws of magnetism and electricity. Later on Hertz verified Maxwell´s theory with the 
discovery of electromagnetic waves. These findings are the basis of modern 
computational electrodynamics and can be found well detailed in literature as e.g. 
[125, 126, 127]. 

2.1.1 Maxwell´s equations 
The so-called Maxwell´s equations use electromagnetic field quantities to fully 

describe electromagnetic phenomena. Since the main focus of this thesis is on low 
frequency time-periodic conditions, quasi static eddy current problems are treated. 
Hence, the influence of the displacement current density is assumed to be negligible. 
The resulting equations in the quasi-static limit [125] are 



2.1 Electromagnetism and physical background 2 Fundamentals 
 

12 
 

 
 ∇× =H J   Ampère´s law,  (2.1) 

 
t

∂
∇× = −

∂
BE   Faraday´s law, (2.2) 

 0∇⋅ =B   Gauss´ law of magnetism (2.3) 
 
where ∇  represents the Nabla operator, H is the vector of the magnetic field 
intensity, J is the current density vector, E is the electrical field intensity vector, the 
vector B is the magnetic flux density and t is time. Equation (2.1) implies the 
principle of charge conversation written as the law of continuity: 

 
 0∇⋅ =J .  (2.4) 
 
These equations can be written in integral form to explicitly show the physical 

relations. On the one hand, Gauss´ theorem can be applied to yield a conversion of a 
volume integral of the divergence of a vector into a surface integral over the surface 
delimiting the volume. On the other hand, Stokes´ theorem states the equivalence of 
a surface integral of the curl of a vector field to a closed line integral over the curve 
delimiting the surface [128]. Taking advantage of these theorems, one can obtain the 
integral form of Ampère´s, of Faraday´s law and of Gauss´ law of magnetism. Hence 
(2.1)-(2.3) can be written as 

 
 d d

∂Γ Γ

⋅ = ⋅∫ ∫H l J Γ ,  (2.5) 

 d d
t∂Γ Γ

∂
⋅ = − ⋅

∂∫ ∫
BΕ l Γ ,  (2.6) 

 0d
∂Ω

⋅ =∫ B Γ ,  (2.7) 

 
where ∂Γ  is the boundary of the surface Γ  and ∂Ω  denotes the bounding surface of 
the volume Ω. Fig. 2.1 and Fig. 2.3 illustrate the physical interpretation of the first 
Maxwell equation showing that the whirls of the magnetic field intensity are 
equivalent to the conductive current. The physical content of the second Maxwell 
equation drawn in Fig. 2.2 and Fig. 2.4 is that a time varying magnetic field density 
causes whirls of the electrical field intensity. 
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The field quantities appearing in Maxwell´s equations are coupled by material 

relations: 
 

 ,µ ν= =B H H B , (2.8) 
 ,σ ρ= =J E E J , (2.9) 

 7
0 0

Vs; 4 10
Amrµ µ µ µ π −  = = ⋅  

 
. (2.10) 

 
The magnetic permeability μ is the product of the relative permeability μr and the 

permeability of free space μ0. The magnetic reluctivity ν is the inverse of μ. σ 
represents the electrical conductivity of a material with its inverse ρ, the electrical 
resistivity. These materials may vary in space and with temperature, frequency or the 
field quantities and are in general described by tensors. In case of isotropic materials, 
these tensors become scalars as assumed in this thesis. 
 
 
 

 
Fig. 2.1: Physical interpretation of (2.1). 

 
Fig. 2.2: Physical interpretation of (2.2). 

  

 
Fig. 2.3: Physical interpretation of (2.5). 

 
Fig. 2.4: Physical interpretation of (2.6). 
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2.1.2 Potential Formulations 
To ensure an efficient treatment of electromagnetic field problems, it is 

advantageous to describe the field quantities appearing in Maxwell´s equations by 
means of potential functions. With the aid of adjunct scalar and vector potentials, 
certain Maxwell’s equations can be automatically satisfied. 

Since this thesis deals with nonlinear eddy-current problems and utilizes potential 
functions, one has to classify the relevant domains with respect to their conductivity. 
Hence, two geometric regions are distinguished as illustrated in Fig. 2.5. The 
conductivity of the coils with given current density in Ωn is irrelevant. 

 

 
Fig. 2.5: Basic topology of an eddy-current problem domain. 

 
Initially it is assumed that the source coils are current driven as indicated in 

Fig. 2.5 with an impressed current density J0. Later on in this thesis the case of 
voltage driven coils will be examined as well. The exciting coils are included in the 
non-conductive domain Ωn where the field quantities are static but time-dependent. 
In the conductive region Ωc eddy currents are to be additionally considered. Hence, 
the governing differential equations to be solved in the non-conducting domain are 

 

 0 in
0 n

∇× = 
Ω∇⋅ = 

H J
B

, (2.11) 

 
and for the conducting domain we have 
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 in

0

ct

∇× = 
∂ ∇× = − Ω∂ 

∇ ⋅ = 

H J
BE

B

 . (2.12) 

 
The material relations have been written in (2.8)-(2.10) with the nonlinearity of 

the magnetic permeability considered by a suitable B-H curve in this thesis. In the 
exciting coils, an impressed total current density or a given voltage source inevitably 
leads to skin effect. This effect will be explained in appendix A, but will be assumed 
to be negligible in this work due to the proper design of the wiring. 

In general, 3D eddy-current problems are formulated as boundary value problems 
(BVP) to allow a FEM investigation. The outer boundaries illustrated in Fig. 2.5 
prescribe either the tangential or the normal component of the relevant field quantity. 
TABLE 2.1 summarizes the possible boundary conditions where n represents the 
surface normal vector. 

 

TABLE 2.1: Boundary conditions for the problem domain in Fig. 2.5 

Boundary Condition 
ΓHc 0× =H n  
ΓEc 0× =E n  
ΓHn × =H n K  
ΓBn b⋅ = −B n  
Γcn and are continuous× ⋅H n B n  

Note that the symbol K represents a surface current density as an impressed vector field and b denotes 
a scalar field representing a magnetic surface charge density. 
 

The tangential component of the magnetic field intensity is prescribed on the 
boundaries ΓHc and ΓHn, whereas the tangential component of the electrical field 
intensity is defined on ΓEc, and the normal component of the magnetic flux density is 
given on ΓBn. To couple the formulations of the conducting domain Ωc and the non-
conducting area Ωn, the continuity of the tangential component of the magnetic field 
intensity and the normal component of the magnetic flux intensity are prescribed on 
the interface Γcn. Utilizing these conditions along with the set of differential 
equations of (2.11) and (2.12) ensures a unique solution [43]. 

Based on the above division of the topology of eddy current problems and in 
accordance with the formulations used in this work, three commonly used potential 
formulations will be introduced to transform Maxwell´s equations to second order 
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elliptic or parabolic partial differential equations. The so called A,V-A-formulation 
and its modified form, the Ar,V-Ar-formulation as well as the T,ϕ-ϕ-formulation are 
introduced in the following sub-sections [129]. 

2.1.2.1 A,V-A-formulation 

This formulation is widely used in FEM based computational problems due to the 
simplicity of introducing a magnetic vector potential A to describe the magnetic flux 
density in the entire problem domain and an additional electrical scalar potential V to 
represent the electric field intensity in the conducting regions Ωc. 

Since the magnetic flux density is source free, i.e. it obeys Gauss´ law for 
magnetism (2.3) and the divergence of the curl of any vector field F is identically 
zero ( )( )0∇⋅ ∇× ≡F , 

 
 = ∇×B A  (2.13) 
 

can be written. Since the divergence of A is not defined, this equation has infinitely 
many solutions. The uniqueness of A can be achieved by appropriate gauging but 
this is not necessary to describe the field quantities uniquely. Substituting (2.13) into 
Maxwell´s equations, Faraday´s law in the quasi static limit can be written as 

 

 
t

∂
∇× = −∇×

∂
AE . (2.14) 

 
Utilizing the fact that the curl of the gradient of any scalar function F is 

identically zero ( )( )0F∇× ∇ ≡  one can introduce a modified electrical scalar 

potential v to guarantee a symmetric equation system when applying Galerkin 
techniques (see sub-section 2.2.2), hence one can obtain the electrical field intensity 
as 

 ( )V
t t

∂ ∂
= − −∇ = − +∇

∂ ∂
AE A v , (2.15) 

 
as well as the current density using the material relations: 

 

 ( )V
t t

σ σ∂ ∂ = − +∇ = − +∇ ∂ ∂ 
AJ A v . (2.16) 



2 Fundamentals   2.1 Electromagnetism and physical background 

17 
 

Furthermore, Ampère´s law can be rewritten as: 
 
 ( )ν∇× ∇× =A J . (2.17) 

 
Having introduced the magnetic vector potential and the modified electric scalar 

potential, one obtains a set of partial differential equations expressing Ampère´s law 
and the continuity law in the conducting domain as: 

 

 
( ) ,

in
0

c
t t

t t

ν σ σ

σ σ

∂ ∂ ∇× ∇× + + ∇ = ∂ ∂  Ω∂ ∂  −∇ ⋅ + ∇ =  ∂ ∂  

AA 0

A

v

v
, (2.18) 

 
and Ampère´s law in the non-conducting domain as 

 
 ( ) 0 in nν∇× ∇× = ΩA J .  (2.19) 

 
The Dirichlet and Neumann boundary conditions on the potentials are 

summarized in TABLE 2.2. 
 

TABLE 2.2: Valid boundary conditions for the A,V-A-formulation 

Boundary Condition 

ΓHc ( ) and v 0
t t

ν σ σ∂ ∂ ∇× × = − − ∇ ⋅ = ∂ ∂ 
AA n 0 n  

ΓEc and  = constantD× = =A n 0 v v  
ΓHn ( )ν∇× × =A n K  
ΓBn ( ) b∇× ⋅ = −A n  

Γcn 
( ) ( )
( ) ( )

and

0
c c c n n n

c c n n

ν ν∇× × + ∇× × =

∇× ⋅ + ∇× ⋅ =

A n A n 0

A n A n
 

Note that the subscript c indicates quantities of the conducting domain and n those of the non-
conductive regions. The relationship between the outer normal vectors is c n= −n n   

 
The tangential component of the vector potential A is continuous on the 

interfacing boundary Γcn between the two regions implying the continuity of the 
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normal component of the magnetic flux density on Γcn, whereas the condition of the 
tangential component of the field intensity being continuous is still to be fulfilled. On 
the Dirichlet-boundary ΓEc the tangential component of the vector potential is zero 
and a constant scalar potential value vD is introduced enabling skin effect problems 
with voltage excitation with the scalar potential given as the time-integral of the 
voltage on the boundary: 

 

 Ec
0

( ) on
t

D U dt t= Γ∫v . (2.20) 

 
In case of skin effect problems with current excitation, vD is an unknown constant 

satisfying the integral condition 
 

 
Ec

d i
t t

σ
Γ

∂ ∂ +∇ ⋅ Γ = ∂ ∂ ∫
vA n , (2.21) 

 
where i represents the given current. 

For effectively treating time-harmonic problems the equations can be transformed 

into the frequency domain by the conversion j
t

ω∂
⇒

∂
 where 1j = −  is the 

imaginary unit and ω is the angular frequency 2 fω π=  with respect to the 
frequency f. Hence the equations for the A,V-A-formulation (2.13)-(2.19) can be 
rewritten as 

 
 = ∇×B A , (2.22) 
 
 jω∇× = −∇×E A , (2.23) 
 
 vj V j jω ω ω= − −∇ = − − ∇E A A , (2.24) 
 
 ( ) ( )vj V jσ ω σ ω= − +∇ = − +∇J A A , (2.25) 

 
 ( )ν∇× ∇× =A J   (2.26) 
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and written for the two domains: 
 

 ( )
( )

,
in

0 c

j j
j j

ν σ ω σ ω
σ ω σ ω

∇× ∇× + + ∇ =  Ω−∇⋅ + ∇ = 

A A 0
A

v
v

, (2.27) 

and 
 
 ( ) 0 in nν∇× ∇× = ΩA J . (2.28) 

 

2.1.2.2 Ar,V-Ar-formulation 

The so-called reduced vector potential formulation is commonly used for current 
excited problems. The major advantage in comparison to the A,V-A-formulation is 
that the field quantities of an exciting coil can be expressed by utilizing Biot-Savart´s 
law in free space and thus it is not necessary to discretize the coils by the finite 
element structure [35, 130, 131, 132]. Hence, the vector potential can be split in two 
parts, a known Biot-Savart source vector potential As and a reduced vector potential 
part Ar as 

 

 0 0with
4

s

s r s
QA

d
r

µ
π Ω

= + = Ω∫
JA A A A , (2.29) 

 
where As denotes the vector potential due to the source currents in free space with 
the Coulomb gauge used to ensure the uniqueness of As, rQA is the distance between 
the reference point and the source point. To compute As, the integration domain Ωs 
has to include all regions where J0 is nonzero. The relationship to the Biot-Savart 
magnetic field is 

 

 
( )

0

0 0

and
.

s s s

s s

µ
ν

∇× = =

∇× = ∇× ∇× =

A B H
H A J

 (2.30) 

 
According to (2.13) the resulting magnetic flux density is obtained as 

 
 0 s rµ= +∇×B H A , (2.31) 
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and the electrical field intensity is 
 

 vs rt t t
∂ ∂ ∂

= − − − ∇
∂ ∂ ∂

E A A . (2.32) 

 
The differential equations derived from Maxwell’s equations in the conducting 

domain are: 
 

 
( ) ( ) ,

in

sr
r s

c
sr

t t t

t t t

ν σ σ σ ν

σ σ σ

∂∂ ∂ ∇× ∇× + + ∇ = − −∇× ∇× ∂ ∂ ∂  Ω∂∂ ∂    −∇ ⋅ + ∇ = ∇⋅    ∂ ∂ ∂    

AAA A

AA

v

v
  (2.33) 

 
and in the non-conducting domain 

 
 ( ) ( )0 0 inr s s s s nν ν ν νµ∇× ∇× = ∇× ∇× − ∇× = ∇× −∇× ΩA A A H H .  (2.34) 

 
Transforming the obtained set of partial differential equations into the frequency 

domain results in 
 

 ( )
( ) ( )

0 ,
inr r s s

c
r s

j j j
j j j

ν σ ω σ ω σ ω νµ
σ ω σ ω σ ω

∇× ∇× + + ∇ = − −∇×  Ω−∇⋅ + ∇ = ∇⋅ 

A A A H
A A

v
v

,  (2.35) 

 
and 

 
 ( ) 0 inr s s nν νµ∇× ∇× = ∇× −∇× ΩA H H . (2.36) 

 
The boundary conditions are defined similarly to the A,V-A-formulation and 

summarized in TABLE 2.3. 
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TABLE 2.3: Boundary conditions using the reduced magnetic vector potential formulation 

Boundary Condition 

ΓHc 
( )

( )

and

0

r s

r st t

ν ν

σ σ

∇× + ∇× × =

∂ ∂ − + − ∇ ⋅ = ∂ ∂ 

A A n 0

A A nv
 

ΓEc 
( )

and  = constant

r s

r s D

t
∂ − + −∇ × = ∂ 
× = − × =

A A n 0

A n A n

v

v v
 

ΓHn ( )r sν ν∇× + ∇× × =A A n K  
ΓBn ( )( )r s b∇× + ⋅ = −A A n  

Γcn 
( )( ) ( )( )

( )( ) ( )( )
and

0
c r s c n r s n

r s c r s n

ν ν∇× + × + ∇× + × =

∇× + ⋅ + ∇× + ⋅ =

A A n A A n 0

A A n A A n
 

 
It is assumed that the source vector potential As satisfies the boundary conditions 

on ΓHc and ΓBn as given for the A,V-A-formulation in TABLE 2.2 which may not be 
exact on the far-boundary but for practical reasons it is accepted that the reaction 
field is negligible. 

Regarding symmetry planes of the model domain in case of the A,V-A-
formulation it is possible to only model a part of the given problem as well as of the 
implemented FEM-structure of the excitations. In case of the Ar,V-Ar-formulation it 
is necessary to determine the source quantities by integrating over the entire source-
volume. Hence, it is sufficient to define the symmetry boundary conditions for the 
reduced vector potential Ar and the scalar potential v only. 

2.1.2.3 T,ϕ-ϕ -formulation 

A very efficient method for quasi-static field problems is the so-called T,ϕ-ϕ-
formulation. Since the displacement current density is neglected in the quasi-static 
case, the current density is source-free resulting in the benefit that, in non-conductive 
regions Ωn, a magnetic scalar potential ϕ can be used instead of a magnetic vector 
potential A. This results in the major advantage of reducing the number of scalar 
unknown functions to one instead of three. 

Since the current density J is source free (see (2.4)) in the quasi-static limit, the 
current vector potential T is introduced in the conductive domain Ωc as 
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 = ∇×J T . (2.37) 
 
Substituting (2.37) into Ampère´s law (2.1) and introducing a known current 

vector potential T0 
 
 0 0∇× =T J  (2.38) 
 

with a good choice to compute T0 for arbitrary coil geometries is utilizing the Biot-
Savart field 

 

 ( ) ( ) ( ) ( )0
0 0 3

' '1 '
4 '

d
π Ω

× −
= = Ω

−∫
J r r r

T r H r
r r

 (2.39) 

 
to describe the current density of the current driven coils, the resulting equation is 

 
 ( )0∇× = ∇× +H T T  (2.40) 

 
where T represents the reduced current vector potential to describe the eddy currents 
in Ωc. Taking advantage of the identity ( ) 0F∇× ∇ ≡  yields 

 
 0 in cφ= + −∇ ΩH T T , (2.41) 

 
 0 in nφ= −∇ ΩH T . (2.42) 

 
Writing Faraday´s law (2.2) and Gauss´ law of magnetism (2.3) along with the 

material relations, the set of partial differential equations of the problem are 
 

 
( )

( ) ( )

0

0

,
in ct t t

φρ µ µ µ

µ µ φ µ

∂∂ ∂ ∇× ∇× + − = −  Ω∂ ∂ ∂ 
∇ ⋅ + ∇ = −∇⋅ 

TTT

T T
, (2.43) 

 
and 

 
 ( ) ( )0 in nµ φ µ−∇⋅ ∇ = −∇⋅ ΩT . (2.44) 
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Transforming (2.43) and (2.44) into the frequency domain they can be written as 
 

 ( )
( ) ( )

0

0

,
in c

j j jρ µ ω µ ωφ µ ω
µ µ φ µ

∇× ∇× + − = −  Ω∇⋅ + ∇ = −∇⋅ 

T T T
T T

,  (2.45) 

 
as well as 

 
 ( ) ( )0 in nµ φ µ−∇⋅ ∇ = −∇⋅ ΩT .  (2.46) 

 
The corresponding boundary conditions to be satisfied by the potentials are 
 

TABLE 2.4: Valid boundary conditions for the T,ϕ-ϕ-formulation 

Boundary Condition 
ΓHc 0 and constantDφ φ× = × = = =T n T n 0  
ΓEc ( ) ( )

( )
0

0

0 andρ ρ

µ φ µ

∇× × = ∇× × =

−∇ ⋅ = − ⋅

T n T n

T n T n
 

ΓHn constantDφ φ= =  
ΓBn 

0bφµ µ∂
= + ⋅

∂
T n

n
 

Γcn ( ) ( )0 0

and
0c c c c n n nµ µ µ φ µ µ

× =

+ − ∇ ⋅ + − ∇ ⋅ =

T n 0
T T n T n

 

 
Using this formulation with holes present in the conducting domain (i.e. when this 

domain becomes multiply connected) results in a multivalued scalar potential in the 
non-conducting region. To solve such problems with the T,ϕ-ϕ-formulation 
additional constraints are required. This can be avoided by inserting a low 
conductivity material in the holes or coupling an electric circuit forcing an equivalent 
impressed current density around the hole. 
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2.1.3 Voltage driven coils 
For simplicity, the previously discussed potential formulations of eddy current 

problems are defined as current driven, where a known current is impressed in the 
excitation coils. Since most practically relevant problems are excited by a given 
voltage, the potential formulations need to be adapted. Hence, additional constraints 
need to be enforced to determine the current of a voltage supply. An explicit 
derivation of including the voltage source into the FEM-formulations is given in [84, 
85, 86, 87, 133]. 

Concerning the problems observed in this thesis the excited conductors are 
supposed to be free of skin effect appearance. This assumption is justified, when 
operating at low frequencies and contemplated measures in geometry design of the 
conductors are taken to avoid demeanor of the skin effect phenomena. Hence in this 
subsection the necessary terms of voltage excited coils without skin effect will be 
discussed. 

With the magnetic scalar potential formulation introduced earlier in mind, we 
assume that the impressed current density J0 can be expressed by the curl of an 
impressed current vector potential T0 introduced in (2.38). 

Since the winding current i is unknown, the current vector potential T0 can be 
expressed as the product of the unknown current and a unit current vector potential t0 
[134] satisfying  

 

 0 0 1
i i

d d
∂Γ Γ

∇× ⋅ = ⋅ =∫ ∫t l t Γ  (2.47) 

 
as 

 
 0 0i=T t , (2.48) 
 

with 0∇× t  being the turn density of the coil. Hence, the given voltage can be 
expressed as 
 

 0 0u Ri d Ri d
tΩ Ω

∂
= + ∇× ⋅ Ω = − ⋅ Ω

∂∫ ∫
Bt E t . (2.49) 

 
Utilizing the definitions of the T,ϕ-ϕ-formulation one can obtain 
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 ( )0 0 0
du Ri i d
dt

µ φ
Ω

= − ⋅ + + −∇ Ω∫ t T T t , (2.50) 

 
where the remaining T0 is a known quantity representing the possibility of current 
driven coils also being present. To solve a problem with given voltage excitation by 
the T,ϕ-ϕ-formulation this equation has to be additionally taken into account. 

Regarding the magnetic vector potential formulation, one can substitute (2.49) by 
(2.15) to yield 
 

 0
du Ri d
dt Ω

= − ⋅∇× Ω∫ t A , (2.51) 

 
as the additional equation to be satisfied in case of voltage driven coils in case of the 
A,V-A-formulation. 

2.1.4 Loss computation 
Many types of losses occur in electrical machines or transformers, such as iron or 

hysteretic losses, copper or resistive losses, stray losses and eddy current losses [3, 8, 
14, 65, 95]. The focus of attention in this thesis is the improvement of FEM solution 
techniques. In comparing the accuracy of different approaches, the loss computation 
is a necessary tool. 

The problems investigated in this thesis are excited by sinusoidal quantities; 
hence, the resulting magnetic field varies in time. Thus if any conductive material is 
present in the vicinity of the time varying magnetic field, eddy currents will be 
induced in the conductive object according to (2.2). As these eddy currents are 
induced by the presence of the magnetic field, they lead to additional losses. 
Concurrently, based on (2.1), the eddy-currents themselves give rise to a magnetic 
field exhibiting effects weakening the induction phenomenon. These effects manifest 
in a significant amount of the cumulative losses occurring in an electrical device. The 
losses due to eddy currents mostly exhibit distinctive non-linear characteristics in 
accordance with the material properties. 
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Fig. 2.6: Simplified design of induced eddy-currents. 

 
Illustrated in Fig. 2.6 is a basic schematic procedure of eddy-currents being 

induced in a conductive domain Ωc, situated adjacent to an alternating magnetic field 
H, B. The coil located in air is assumed to be driven by a time-varying, periodic 
quantity (e.g. a sinusoidal wave form). 

The eddy current losses arising in the conductive material can be computed as 
 

 
2

0

1

c

T
eddy

eddyP d dt
T σΩ

= Ω∫ ∫
J

. (2.52) 

 
In (2.52) Peddy corresponds to the eddy-current losses in a conductive region Ωc, T 

represents a time-period and Jeddy is the eddy current density induced according to 
Faraday´s law in the conductive domain. 
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2.2 Finite Element Method 

A brief introduction to the origin of this method was already given in sub-section 
1.2.1. This section summarizes the underlying FEM strategy implemented in the 
solver used for the numerical investigations of electromagnetic field problems treated 
in this thesis. Fundamental discretization techniques as well as the shape of the finite 
elements and hence the resulting potential formulations as approximated solutions 
will be discussed. Furthermore, different approaches for the non-linear iteration 
procedures of eddy current problems will be discussed. 

2.2.1 Finite element approximations 
The FEM [22, 24, 26, 27, 28, 33] is used to obtain an approximate solution of 

boundary value problems in a domain Ω with boundary conditions given on the 
boundary limiting the domain Γ=∂Ω. Hence the field quantities become unique 
whether by defining constraints as Dirichlet boundary conditions prescribing the 
solution itself or Neumann boundary conditions regarding the derivative of the 
solution on the boundary. Such problems can be expressed as 

 
 Au f= , (2.53) 
 

where A is the differential operator, f represents the known excitation function and 
the unknown quantity u is to be solved for. 

The distribution of the unknown quantity inside a finite element is interpolated 
based on the values at the nodes in case of nodal elements used for scalar variables or 
integrals over the edges using edge based vector elements. The so called basis 
(shape) functions need to be an entire set of polynomials. The approximate solution 
uh with the corresponding coefficients cj is written with the aid of N basis-functions 
nj as 

 

 
1

N

h D j j
j

u u u c n
=

≈ = +∑ , (2.54) 

 
where uD denotes a function satisfying the inhomogeneous Dirichlet boundary 
conditions. The coefficients cj are unknown, they have to be determined during the 
solution process. The solution is obtained after solving a system of equations. Setting 
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up such a system of equations for the BVP, first the system needs to be transformed 
into an algebraic equation system in the frequency domain or into an ordinary 
differential equation system in the time domain. This is achieved by using a weighted 
residual method, the Galerkin technique. Applying this procedure in each finite 
element an assembly of all elements yields a global matrix system. 

The Galerkin technique will be highlighted in the following sub-section. 

2.2.2 Weighted residual method (Galerkin technique) 
A technique proposed by Boris G. Galerkin in 1915 is a variant of the method of 

weighted residuals [26, 33, 60, 135]. The idea is based on the minimization of the 
integral residual. Since uh is the approximate solution of (2.53), substituting uh for u 
in (2.53) will result in a non-zero residual 

 
 0hr Au f= − ≠ . (2.55) 
 
The principle of the weighted residual states that the product of the residual and a 

set of weighting functions wi should vanish when integrated over Ω: 
 
 ( ) 0, 1,2, , .i i hr d Au f d i N

Ω Ω

Ω = − Ω = =∫ ∫ Aw w   (2.56) 

 
The Galerkin technique uses the same set of functions as weighting functions as 

expansion functions in the approximate solution. Hence, substituting (2.54) to (2.56) 
with wi = ni yields the following equation system: 

 

 
1

N

j i j i i D
j

c n An d n f d n Au d
= Ω Ω Ω

Ω = Ω− Ω∑ ∫ ∫ ∫ . (2.57) 

 
This can be rewritten as a matrix system 

 
 [ ]{ } { }A u b= , (2.58) 

 
where the stiffness matrix [A] consists of the coefficients 
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 ij i j jA n A n d
Ω

= Ω∫ . (2.59) 

 
In case of a symmetric differential operator A, the stiffness matrix [A] is 

symmetric as well. The vector {u} gathers the unknown quantities uj whereas the 
right hand side vector {b} is composed of the known quantities 
 

 i i i Db n f d n Au d
Ω Ω

= Ω− Ω∫ ∫ . (2.60) 

 
When using the method of finite elements to realize Galerkin´s technique, the 

continuous domain is replaced by subdomains where the unknown function is 
substituted by a linear combination of simple shape- or basis-functions (interpolation 
functions) with unknown coefficients. Hence the problem involving an infinite 
number of degrees of freedom (DOF) is transformed into a problem with a finite 
number of DOF resulting in an approximation of the original BVP. The equation 
system is obtained by applying Galerkin techniques. The basic recipe for solving 
such a problem includes the following points: 
 

• Domain/space discretization using finite elements 
• Find suitable interpolation functions (also known as shape or basis functions) 
• Develop the corresponding equations for a single element 
• Build the global matrix system by assembling all elements 
• Enforce boundary conditions 
• Solve the system of equations 
• Post-process 

 
The initial step when applying Galerkin´s technique to the FEM implies an 

appropriate space discretization of the problem domain assembling the finite element 
mesh, as discussed in the following sub-section. 

2.2.3 Domain discretization using finite elements 
The most significant step of the finite element approach is how to subdivide the 

problem domain to allow the use of simple basis functions to approximate the 
solution. The so called finite elements resulting from discretizing the domain of 
interest have immediate impact on storage requirements, computational costs and on 
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the accuracy of the numerical solution. The resulting mesh or grid, compromises line 
segments (Fig. 2.7(a)) for a single dimensional (1-D) domain, triangular or 
quadrilateral elements (Fig. 2.7(b) and Fig. 2.7(c)) in case of two dimensions (2-D) 
and, in case of three dimensional (3-D) space, one can expediently use tetrahedra 
(Fig. 2.8(a)), triangular prisms (Fig. 2.8(b)) or bricks (Fig. 2.8(c)). 
 

(a) (b) (c) 

 
  

Fig. 2.7: Examples of 1-D and 2-D finite elements: (a) 1-D line element; (b) 2-D linear triangular 
element; (c) 2-D linear quadrilateral element. 

 

(a) (b) (c) 

   

Fig. 2.8: Examples of 3-D finite elements: (a) linear tetrahedral element; (b) linear triangular prism 
element; (c) linear hexahedral element. 

 
The samples of elements in Fig. 2.7 and Fig. 2.8 comprise several nodes and 

edges corresponding to the shape or basis functions. For the investigations in this 
thesis 2nd order hexahedral elements with edge and node based basis functions are 
used. A single element is defined by 20 nodes and 36 edges as shown in Fig. 2.9 [35, 
43, 46, 48, 49, 50, 51, 136, 137]. 
 

(a) (b) 
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(c) 

Fig. 2.9: Finite element applied to discretize the 
problem domains in this thesis. The quadratic 
hexahedral element comprises 20 nodes shown in 
(a) and 36 edges, as in (b). The numbering when 
merging nodes and edges together do define a 
single element is shown in (c). 
 

 
In case of node based elements, the approximated unknown scalar functions are 

represented by their values in the nodes of the element. One can obtain an 
approximation using continuous and piecewise polynomial basis functions satisfying 
 

 
1 at node ,
0 in all other nodes.j

j
n 

= 


 (2.61) 

 
The basis function can be expressed by transforming the geometry of an element 

into a local coordinate system. In other words, the local order number represents the 
position within the element, whereas the global order number indicates the position 
in the entire geometry. If the transformation between global coordinates (xj,yj,zj) and 
local coordinates (ξ,η,ζ) is also expressed by the basis functions, the element is called 
isoparametric: 
 

( ) ( ) ( )
1 1 1

, , , , , , , , ,
n n nN N N

j j j j j j
j j j

x x n y y n z z nx η z x η z x η z
= = =

= = =∑ ∑ ∑   (2.62) 

 
where Nn is the number of nodes in the element. The use of higher-order shape 
functions enables lower discretization errors when mapping curved boundaries. 

As illustrated in Fig. 2.9, the elements used not only contain nodes but also 
involve edges forming a hybrid element. This is advantageous when approximating 
vector quantities. Indeed, nodal representations demand full continuity of the vector 
fields in both normal and tangential direction, bearing the risk of non-physical 
solutions. This can be prevented by using edge based elements for approximating the 
unknown vector functions. Hence the degrees of freedom are allocated to the edges 
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of the elements implying the continuity of the tangential component with the option 
of the normal component being discontinuous. The vector based basis or expansion 
function satisfies 

 

 
1 if ,
0 if .

i

j
edge

i j
d

i j
=

⋅ =  ≠
∫ n l  (2.63) 

 
Furthermore, the gradients of the node based basis functions should be 

representable as a linear combination of the edge based basis functions: 
 

 ( ),
1

1, 2, ,
eN

j j k k n
k

n c j N
=

∇ = =∑ n . (2.64) 

 
These expansion, basis or shape functions are commonly selected as polynomials 

of first order (linear), second order (quadratic) or even higher order. The latter ones 
are more accurate but may result in a more complex formulation than lower-order 
polynomials. Therefore, the linear interpolation is very popular and widely applied. 
The present solver uses second order elements as a compromise between precision 
and complexity. 

Applying the basis functions as defined in (2.61), (2.63) and (2.64) yields sparse 
singular system matrices. Possible solving techniques for the linear equation systems 
obtained are direct or iterative procedures [138, 139]. Whereas direct methods are 
variants of Gaussian elimination and mostly applied to compact problems with a 
manageable number of degrees of freedom (DOF), the iterative methods as the 
conjugate gradient technique is universally applicable and preferably used for a large 
number of DOF. Since the availability of high-performance computers has developed 
considerably in recent years, also parallel direct solvers are increasingly being used 
for problem domains with a large number of DOF. Additionally, in case of iterative 
methods, suitable preconditioning techniques [140, 141, 142] can be applied to 
improve the convergence rate. Considering non-linear material characteristics the 
system of equations turns non-linear. Hence, non-linear matrix solving procedures 
have to be applied [29, 31, 63]. Such specific techniques are generally based on e.g. 
direct methods or the fixed-point iteration technique. The latter one will be briefly 
discussed in sub-section 2.3.3. 



2 Fundamentals   2.2 Finite Element Method 

33 
 

2.2.4 Finite element potential formulations 
The potential formulations, discussed in sub-section 2.1.2 are used to describe the 

3D electromagnetic field problems under investigation. The problems are solved with 
the aid of the finite element method utilizing the weak form of the Galerkin 
technique considering 2nd order hexahedral finite elements to discretize the problem 
domain, consisting of edge based vector basis functions nj and node based scalar 
basis functions nj as introduced in sub-section 2.2.2. Hence the potentials are 
approximated as 
 

• Electric scalar potential 

 ( ) ( )
1

, , ( ) ( )
nN

h D j j
j

V t V t V V t n
=

≈ = +∑r r r  (2.65) 

• Modified electric scalar potential 

 ( ) ( )
1

, , ( ) ( )v v v v
nN

h D j j
j

t t t n
=

≈ = +∑r r r  (2.66) 

• Magnetic scalar potential 

 ( ) ( )
1

, , ( ) ( )
nN

h D j j
j

t t t nφ φ φ φ
=

≈ = +∑r r r  (2.67) 

• Magnetic vector potential 

 ( ) ( )
1

, , ( ) ( )
eN

h D j j
j

t t A t
=

≈ = +∑A r A r A n r  (2.68) 

• Reduced magnetic vector potential 

 ( ) ( )
1

, , ( ) ( )
eN

r rh rD rj j
j

t t A t
=

≈ = +∑A r A r A n r  (2.69) 

• Unknown current vector potential 

 ( ) ( )
1

, , ( ) ( )
eN

h D j j
j

t t T t
=

≈ = +∑T r T r T n r  (2.70) 

• Impressed current vector potential 
 

 ( ) ( ) ( ) ( )0 0 0
1

, ,
eN

h j j
j

t t T t
=

≈ =∑T r T r n r  (2.71) 
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where in (2.65)-(2.71) r indicates the space coordinates and t represents time. In 
(2.71) the coefficients T0j can be obtained by ensuring that 
 

 0 0

i i

d d
∂Γ Γ

⋅ = ⋅∫ ∫T l J Γ   (2.72) 

 
is satisfied for any closed path ∂Γi in a set of loops in the graph with the cross-section 
Γi limited by the cycle of ∂Γi as proposed in [143]. 

For the sake of simplicity, the notations of dependence on space and time will be 
omitted in the following. 

2.2.4.1 Finite element approximation using the A,V-A-formulation 

For the magnetic vector potential formulation presented in sub-section 2.1.2.1, the 
equations resulting when applying Galerkin techniques to (2.18) and (2.19) are [35, 
144]: 

 

    ( ) 0v
n c c n c

k h k h h k h
dd d d
dt

ν σ
Ω ∪Ω Ω Ω ∪Ω

∇× ⋅ ∇× Ω+ ⋅ +∇ Ω = ∇× ⋅ Ω∫ ∫ ∫n A n A n T , (2.73) 

 
with k = 1,…,Ne and 

 

 ( ) 0v
c

k h h
d n d
dt

σ
Ω

∇ ⋅ +∇ Ω =∫ A , (2.74) 

 
with k = 1,…,Nn. 

In case of voltage driven coils, the impressed current vector potential T0h is 
substituted by the product of a unit current vector potential t0h and the unknown 
current i as in (2.48). Hence the general equation taking account of both voltage and 
current excited coils can be written as 

 

  ( ) ( )0 0 0
n c c

k h k h h k h h
di d d
dt

ν σ
Ω ∪Ω Ω

∇× ⋅ ∇× −∇× ⋅ + Ω+ ⋅ +∇ Ω =∫ ∫n A n t T n A v , (2.75) 

 
with k = 1,…,Ne, and the necessary additional equation (2.51) integrated over time to 
achieve symmetry is for approximate solution: 
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 0h h

t t

udt R idt d
Ω

= − ⋅∇× Ω∫ ∫ ∫ t A , (2.76) 

 
In this system of ordinary differential equations, the unknown coefficients Aj 

affiliated to the edge based basis functions and vj corresponding to the node based 
basis functions as in (2.66) and (2.68) as well as the unknown current i are assembled 
in a vector x to facilitate writing (2.74)-(2.76) in a matrix form as 

 

 ( ) d
dtν σ+ =
xS x x M f . (2.77) 

 
Considering (2.64) and the fact that 0jn∇×∇ ≡ , the obtained system of equations 

(2.77) is singular with a consistent right hand side. It is conspicuous that the so called 
stiffness matrix Sν depends on the reluctivity ν, dependent on x and t. The mass 
matrix Mσ depends on the conductivity σ and the right hand side vector f gathers the 
known values. The matrices can be partitioned as 
 

 
, 1

,
e

k j
k j NT

t

d
ν

ν ν ν
Ω =

 
 

  = = ∇× ⋅ ∇× Ω  
  

  

∫
∫

A 0 g
S 0 0 0 A n n

g 0 R A

, (2.78) 

 

 0 0,
e c c e

T
k h h k

N N N N

d d
Ω Ω× ×

   
= − ∇× ⋅ Ω = − ⋅∇× Ω   
   
∫ ∫g n t g t n , (2.79) 

 

 
, 1

,
e

T
k j

k j N

d
σ

σ σ σ
Ω =

 
  = = ⋅ Ω      
∫

C 0
M h V 0 C n n

0 0 0

h

A

, (2.80) 

 

 
1 , 1 1 , 1

,
e n n e

T
k j k j

k N j N k N j N

n d n dσ σ
Ω Ω= = = =

   
= ⋅ ∇ Ω = ∇ ⋅ Ω   
   
∫ ∫h n h n

A A A A

, (2.81) 
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, 1 n

k j
k j N

n n dσ
Ω =

 
= ∇ ⋅ ∇ Ω 
 
∫V

A

, (2.82) 

 

 1 1 1, , , , , , , , ,v v
e n c

T T T

N N NA A i i
 
       = = = =      
  

x i
i

A
v A vA A A , (2.83) 

 

 ( )

0

v

e n c

k h k D

k D D

t N N N

d

n d

dt

ν

σ
Ω

Ω

+ +

 
∇× ⋅ −∇× ⋅ ∇× Ω 

 
 = − ∇ ⋅ +∇ Ω 
 
 
  

∫

∫

∫

n T n A

f A

u

. (2.84) 

 
Since the boundary conditions are homogeneous, the functions AD and vD vanish in 
(2.84). 

In (2.78) R is a diagonal matrix built of the winding resistances. The unknown 
currents of each coil are gathered in the vector i as in (2.83) where Nc is the number 
of voltage excited coils, and in the same manner the prescribed voltages of the coils 
are written in the vector u as indicated in (2.84). 

2.2.4.2 Finite element approximation using the Ar,V-Ar-formulation 

As the reduced vector potential formulation has its origins in the total vector 
potential formulation with the unknown vector potential component reduced by a 
known source vector potential as introduced in sub-section 2.1.2.2, the finite element 
equations are similar to the previous one and hence not described in detail. Utilizing 
the Galerkin technique to realize a FE–approach and taking into consideration the 
boundary conditions as given in TABLE 2.3, (2.33) and (2.34) lead to [145, 146] 
 

 

( )

( )0 ,

n c c

n c c

k rh k rh h

k s s k s

dd d
dt

dd d
dt

ν σ

νµ σ

Ω ∪Ω Ω

Ω ∪Ω Ω

∇× ⋅ ∇× Ω+ ⋅ +∇ Ω =

∇× ⋅ − Ω− ∇× ⋅ Ω

∫ ∫

∫ ∫

vn A n A

n H H n A
 (2.85) 
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with k = 1,…,Ne and 

 

 ( )v
c c

k rh h k s
d dn d n d
dt dt

σ σ
Ω Ω

∇ ⋅ +∇ Ω = − ∇ ⋅ Ω∫ ∫A A , (2.86) 

 
with k = 1,…,Nn, where the impressed field intensity Hs on the right hand side in 
(2.85) is present in the ferromagnetic area only and vanishes inside the non-
ferromagnetic domain. The left side of the equations (2.85) and (2.86) is equal to the 
left side of the equations obtained for the total vector potential. The right hand side is 
complemented by the impressed vector potential component As as well as Hs. Hence 
the system of ordinary differential equations is analogous to (2.77). 

2.2.4.3 Finite element approximation using the T,ϕ-ϕ-formulation 

The current vector potential formulation [35] has been introduced in sub-section 
2.1.2.3. The potentials in (2.43) and (2.44) are substituted by their approximations 
resulting in 

 

 ( ) 0

c c c

k h k h h k h
d dd d d
dt dt

ρ µ φ µ
Ω Ω Ω

∇× ⋅ ∇× Ω+ ⋅ −∇ Ω = − ⋅ Ω∫ ∫ ∫n T n T n T   (2.87) 

 
with k = 1,…,Ne and 

 

 ( ) 0

n c n c

k h h k h
d dn d n d
dt dt

µ φ µ
Ω ∪Ω Ω ∪Ω

∇ ⋅ −∇ Ω = − ∇ ⋅ Ω∫ ∫T T   (2.88) 

 
with k = 1,…,Nn. 

Additionally the voltage driven case is considered by (2.50) leading to 
 

( )0 0

c c c

k h k h h h k h
d dd i d d
dt dt

ρ µ φ µ
Ω Ω Ω

∇× ⋅ ∇× Ω+ ⋅ + −∇ Ω = − ⋅ Ω∫ ∫ ∫n T n T t n T , (2.89) 

 
with k = 1,…,Ne and 
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 ( )0 0

n c n c

k h h h k h
d dn i d n d
dt dt

µ φ µ
Ω ∪Ω Ω ∪Ω

− ∇ ⋅ + −∇ Ω = ∇ ⋅ Ω∫ ∫T t T , (2.90) 

 
with k = 1,…,Nn. Equation (2.50) is formulated as 

 

 ( )0 0 0 0

n c n c

h h h h h h
d dRi i d u d
dt dt

µ φ µ
Ω ∪Ω Ω ∪Ω

+ ⋅ + −∇ Ω = − ⋅ Ω∫ ∫t T t t T .  (2.91) 

 
Similarly to the A,V-A-formulation, (2.89)-(2.91) can be written in matrix form 

with the unknown vector x now constituted by the unknown coefficients Tj 
corresponding to edge based basis functions and ϕj affiliated with the node based 
basis functions, as well as the unknown currents i in presence of voltage excited coils 
as: 

 

 ( )( )d d
dt dtρ µ ρ µ+ = +S x M x x f f . (2.92) 

 
The stiffness matrix Sρ now depends on the resistivity ρ as indicated by the 

subscript. Hence Sρ is independent of x and t. On the other hand the mass matrix Mμ 
now depends on the magnetic permeability μ which varies with the magnetic field 
and time. With this formulation applied, the right hand side vector fμ contains the 
excitation functions but is also dependent of the permeability μ and the time 
derivative of the vector x. In the system of equations (2.92), the matrices and vectors 
are partitioned as  

 

 
, 1

,
e

k j
k j N

d
ρ

ρ ρ ρ
Ω =

 
  = = ∇× ⋅ ∇× Ω      
∫

A 0 0
S 0 0 0 A n n

0 0 R A

, (2.93) 

 

 
, 1

,
e

T
k j

T T k j N

d
µ µ µ

µ µ µ µ µ

µ µ µ

µ
Ω =

 
  = = ⋅ Ω  
   
∫

C G g
M G L h C n n

g h V A

, (2.94) 
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1 , 1 1 , 1

,
e n n e

T
k j k j

k N j N k N j N

n d n dµ µµ µ
Ω Ω= = = =

   
= − ⋅ ∇ Ω = − ∇ ⋅ Ω   
   
∫ ∫G n G n

A A A A

, (2.95) 

 

 
, 1 n

k j
k j N

n n dµ µ
Ω =

 
= ∇ ⋅ ∇ Ω 
 
∫L

A

, (2.96) 

 

 0 0,
e c c e

T
k h h j

N N N N

d dµ µµ µ
Ω Ω× ×

   
= ⋅ Ω = ⋅ Ω   
   
∫ ∫g n t g t n , (2.97) 

 

 0 0,
n c c n

T
k h h j

N N N N

n d n dµ µµ µ
Ω Ω× ×

   
= − ∇ ⋅ Ω = − ⋅ ∇ Ω   
   
∫ ∫h t h t , (2.98) 

 

 0 0

c c

h h
N N

dµ µ
Ω ×

 
= ⋅ Ω 
 
∫V t t , (2.99) 

 

 1 1 1, , , , , , , , ,
e n c

T T T

N N NT T i iφ φ
 
       = = = =      
  

x i
i

A A A

T
φ T φ , (2.100) 
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( )
( )
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0
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,

e n c
e n c

h D
D

T
h D D

T T
N N N h D D N N N

µ
ρ

ρ µ µ µ

µ µ

φ

φ+ +
+ +

  − ⋅ + − ⋅   
    = = − ⋅ + +    
     − ⋅ + +  

C T TA T
f 0 f G T T L

u g T T h

. (2.101) 

 
In (2.101) it can be assumed that the functions TD and ϕD vanish, as the Dirichlet 

boundary conditions are commonly homogenous. 
R in (2.93) gathers the winding resistances as a diagonal matrix. Further the 

vector i in (2.100) comprises the unknown currents of the voltage driven coils and 
the vector u in (2.101) the given voltages. 
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2.3 Time-periodic steady-state solution 

As the problems investigated in this thesis focus on steady-state solutions, it is 
assumed that the excitations whether voltage driven or excited by a given current are 
time-periodic with a time period 1T f=  defined by the frequency f. Thus the right 
hand side vectors of the systems of ordinary differential equations, regardless of 
which potential formulation is used, are also time periodic i.e. ( ) ( )t t T= +f f . To 
facilitate such investigations, harmonic decomposition methods as the harmonic 
balance method, as well as a time periodic approach are utilized to bypass a time-
consuming transient solving approach. 

2.3.1 Harmonic balance method 
The fundamental idea of this method is a transformation from the time domain 

into the frequency domain [81, 82, 147]. 
Under the assumption that if the Fourier coefficients of two functions are equal, 

then, under appropriate conditions, these two functions are equal. Let us assume that 
the time average over a period is zero, then the solution approximated by a complex 
Fourier series with N harmonics results in 

 

 ( ) ( )
1

Re
N

jm t
N m

m
t t e ω

=

 ≈ =  
 
∑x x X , (2.102) 

 
where j represents the imaginary unit, 2 fω π=  denotes the angular frequency of the 
excitation and Xm is the complex Fourier coefficient of the m-th harmonic at the 
angular frequency mω and can be obtained as 
 

 ( ) ( )
0

1 T
jm t

m m t e dt
T

ω−= = ∫X x xF  (2.103) 

 
where Fm denotes the m-th harmonic of the Fourier transform. This is executed by 
using a fast Fourier transformation [148]. Substituting (2.77) and (2.92) by this 
estimation and calculating the N Fourier coefficients, a system of equations with N 
times as many unknowns is acquired as there are degrees of freedom in x(t). Thus 
(2.77) yields 
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 ( ){ } ( ) , 1, 2, ,m N N m mjm m Nν σω+ ⋅ = =S x x M X f AF F , (2.104) 

 
as well as for (2.92) 

 

 ( )( ) , 1, 2, ,m m N N m
d d m N
dt dtρ µ ρ µ

   + = + =   
   

S X M x x f f AF F . (2.105) 

 
As one can observe in (2.104) and (2.105) the nonlinear terms comprising the 

permeability or the reluctivity couple all Fourier coefficients to each other. Due to 
this coupling, a single harmonic solution cannot be achieved, a fact leading to a 
significant increase of the complexity of the problem. Thus the fixed-point technique 
is applied to achieve decoupled linear equation systems for each harmonic as 
described in 2.3.3.3. 

2.3.2 Time periodic approach 
Alternatively to the harmonic balance technique, a solution can also be obtained 

by a time domain approach. This can be realized by discretizing the time domain 
utilizing equidistant time steps within one time-period t T N∆ = . Hence the periodic 
time-function x(t) can be expressed as sequence ( ) , 1, 2, ,k k t k N= ∆ =x x A  with N 

equidistant time-steps t∆ . Due to the underlying periodicity of x, this sequence is 
cyclic 0 N=x x . Different discretization schemes for the time derivative can be 
employed as e.g. the finite difference scheme applied in [149, 150] or the implicit 
Euler scheme [79, 147], which will be focused on here. This discrete harmonic 
balance method [147] will later be termed as TPFP (time periodic fixed-pint) 
technique in combination with the fixed-point algorithm. The discretized systems of 
equations (2.77) and (2.92) obtained by the FEM approximations can then be written 
as: 

 

 1
, , 1, 2, ,m m
m m m m N

tν σ
−−

+ = =
∆

x xS x M f A , (2.106) 

 
and 
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( ) ( ), , 1 1 , , , 1
1 1 , 1,2, ,m m m m m m m m m N
t tρ µ µ ρ µ µ− − −+ − = + − =

∆ ∆
S x M x M x f f f A  (2.107) 

 
where in (2.107), the right hand side has to be considered for discretization as it 
depends on x and t, containing the time-derivatives, see (2.101). Proceeding with the 
huge block-structured equation systems (2.106) and (2.107) obtained, the following 
notations for the hyper-vectors shall be introduced: 
 

 

[ ] [ ] [ ] [ ]
[ ]

[ ]
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
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 (2.108) 

 
as well as for the block-diagonal matrices 
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 (2.109) 

 
With these notations, (2.106) and (2.107) can be written as 

 

 [ ] [ ] [ ] [ ]1 11 1 0 1
t tν σ σ+ − =

∆ ∆
S M x M x f , (2.110) 
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 [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )1 1 11 1 0 0 1 1 0
t t tρ µ µ ρ µ µ+ − = + −

∆ ∆ ∆
S M x M x f f f , (2.111) 

 
with [1] and [0] indicating the variation in time with respect to the matrices 
depending on the permeability or the reluctivity according to the definitions in 
(2.108). 

To obtain a similar system of equations as in the harmonic balance approach, one 
can take advantage of the discrete Fourier transformation [148] applied to x[1]: 

 

 [ ]( ) [ ] [ ]( ) 2

1 2
1

ˆ ˆ ˆ ˆ ˆ1 , , , , 1 ,

1, 2, , ,

kN j mT N
N m m k

k
e

m N

π−

=

= = = =

=

∑x x x x x x x x

A

D D
 (2.112) 

 
and utilizing the shift theorem [148] for obtaining the discrete Fourier transform of 
x[0] as 
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I
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
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

D , (2.113) 

 
with I representing the unit matrix. Hence the discrete Fourier transform of (2.110) 
and (2.111) yields a system of equations with N times as many unknowns as there are 
degrees of freedom in xk: 

 

 [ ] [ ] [ ]{ }1 1 ˆ1 1 1
t tν σ σ

 
+ − = ∆ ∆ 

S M x M Px fD D , (2.114) 

 

[ ] [ ] [ ] [ ]{ } [ ] [ ]{ }1 1ˆˆ 1 1 0 0 1 0
t tρ µ µ ρ µ µ+ − = + −

∆ ∆
S x M x M x f f fD D  (2.115) 
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where the time-shift corresponds to a multiplication by the block diagonal matrix P 
in (2.114). Whereas in the linear case the elements of x̂ , the discrete harmonics, are 
decoupled and the right hand side of (2.114) can be obtained directly from f[1], 
taking into account the nonlinear terms due to the dependence on μ or ν of the 
unknown solution, all the discrete harmonics are coupled to each other. As, for 
computational reasons, decoupling the harmonics is highly desirable, the fixed-point 
technique is utilized to linearize the system of equations as introduced in the 
following sub-section. 

2.3.3 Fixed-point technique 

2.3.3.1 Introduction 

A nonlinear solution strategy based on the linearization of the nonlinear equation 
systems is the so called fixed-point technique. This procedure is implemented in the 
solver and will be focused on in the upcoming explanations. In the literature, this 
method is sometimes called polarization method, successive substitution method [63] 
or the chord method [151]. The basic idea is finding the root of a nonlinear function 
by constructing an affine approximation corresponding to fixed points of some 
iteration function. Hence, for a mapping, e.g. : n ng    every solution of the 
equation 

 
 ( )x g x= , (2.116) 

 
is a fixed point of the iteration function g. Several theorems guarantee the existence 
of fixed points. It can be postulated that any equation 
 

 ( ) 0f x =  (2.117) 

 
where f is a real function or an operator in the projected space can be rewritten as a 
fixed-point equation with α indicating a constant value for a possible improvement of 
the convergence behavior: 
 

 ( )x x f xα α= + . (2.118) 

 



2 Fundamentals   2.3 Time-periodic steady-state solution 

45 
 

In order to prove the existence of solutions of these equations, fixed-point 
theorems are a significant tool. The most important theorems are  

 
• Banach fixed-point theorem, providing a generalization of the successive 

approximation technique on the use of contractive operators. 
• Schauder fixed-point theorem, as a generalization of selection principles 

and compactness methods by the use of compact operators. 
• Bourbaki-Kneser fixed-point theorem, applying set theoretic ordering 

principles. 
 
These fundamental theorems are well formulated in literature [152, 153] and a 

detailed discussion would be beyond the scope of this thesis. 

2.3.3.2 Basic approach 

Based on the above theorems, a basic approach with dependence on a single 
variable can be established by recasting the initial equation (2.117) in the form of 
(2.116) with some iteration function g. Hence a solution x* of this equation is a fixed 
point of g. With an initial guess x0 a new approximation of x* is computed by setting 
the iteration as 

 
 ( )1n nx g x+ = . (2.119) 

 
The function g with the root x* can then be replaced at some approximation xn of 

x* by a function 
 
 ( ) ( )1g x x f xα −= + , (2.120) 

 
with a suitable slope 0α ≠ . Furthermore, taking the obtained root xn+1 of g a new 
approximation to x* and repeating this procedure with a fixed α, the iteration yields: 
 

 ( )1
1 , 0,1,n n nx x f x nα −
+ = − =  . (2.121) 
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Proceeding in this manner, the iterations will converge to the fixed point 
* ( *)x g x= , if the mapping corresponding to the function ( )g x  is a contraction, i.e. 

there exists a constant 1k <  so that for any x and y the inequality  
 
 ( ) ( )g x g y k x y− ≤ − , (2.122) 

 
holds. 
 

 
Fig. 2.10: Basic iteration scheme of of the function g(x) using the fixed-point iteration procedure with 

an initial value xn. 
 

The solutions obtained for the root x* of the nonlinear equation (2.116) are the 
intersections at x* of the function g(x) with the function x as illustrated in Fig. 2.10. 

Replacing the values in (2.121) with vectors and vector functions, with the 
additional exchange of α with a suitable linear operator A, the method can easily be 
extended to an N-dimensional system as 

 
 ( )1

1 , 0,1,n n n n−
+ = − =x x A f x  , (2.123) 

 
and hence the affine approximation at some iteration xn is assumed to be 
 

 ( ) ( )1−= +G x x A f x . (2.124) 
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Convergence will be ensured for any initial value if G is a contraction fulfilling 
 
 ( ) ( ) k− ≤ −G x G y x y , (2.125) 

 
defined as in [63]: Let S ⊂  . A function :g S S  satisfies a Lipschitz condition 
on S if there exists a constant 0k >  such that, for any two points ,x y S∈ , 
 

 ( ) ( )g x g y k x y− ≤ − . (2.126) 

 
The greatest lower bound for such constants is the Lipschitz constant for g on S. If 

g has Lipschitz constant 1k <  on S, then g is a contraction on S. 
 
The advantages of the fixed-point technique are 
 
• Convergence is guaranteed for contractive problems. 
• The nonlinear function can be given as a piece-wise linear monotonous 

function. 
• It will converge for any initial value. 
• The system matrix is not needed to be updated in each iteration step. 

 
A drawback can be found in the linear rate of convergence, reflecting a slow 

convergence behavior. Hence, additional measures to improve the convergence can 
be taken as e.g. preliminarily finding an optimal initial value for the fixed-point 
iteration procedure, applying an over-relaxation procedure as well as updating the 
linear operator A in each iteration-step. Employing the latter measure, (2.123) can be 
rewritten as 

 
 ( )1n n n n n+⋅ = ⋅ +A x A x f x  (2.127) 

 
where the subscript of A indicates its change in each iteration step. 
 

Considering nonlinear eddy-current problems treated in this thesis, the 
nonlinearity is generated by the materials occurring in electro-magnetic applications 
[154, 155]. Hence, there exists a nonlinear correlation between the magnetic flux 
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density B and the magnetic field intensity H described by the so called B-H curve 
which is defined by the magnetic permeability μ or its inverse the magnetic 
reluctivity ν. Depending on the potential formulation used, the material dependencies 
can be written as 
 

 ( ) ( )orµ ν= =B H H H B B . (2.128) 

 
It is straightforward to apply the linearization technique by defining a linear 

operator with respect to the magnetic permeability μ or the magnetic reluctivity ν to 
be set independent of the magnetic field. It should be mentioned that the fixed point 
values FPµ  or FPν  are not necessarily independent of the space coordinates as the 
distributions may vary in the problem domain but are independent of the field and 
hence time. By the same manner as used for the linear operator A in (2.127), the 
fixed point permeability or reluctivity are updated in each iteration step. In the course 
of this procedure, the functions will be denoted as ( )s

FPµ  or ( )s
FPν , where the superscript 

s indicates the iteration step. In order to accelerate the convergence of the fixed-point 
algorithm, an analysis of the optimal selection of ( )s

FPµ  or ( )s
FPν  has been carried out in 

[149, 150, 156] and the result has been implemented in the 3D FEM solver used to 
investigate nonlinear eddy-current problems. The result of this work for finding an 
optimal choice is  

 

 ( )

( )( )
( )

[ ]
( )( ) [ ]

( )( )

[ ]
( )

( )( ) ( )

2

0

0

0, 0,

0,

,

min max
max ,

2

max 1

T
s

T
s

s s

t T t Ts opt
FP

s
s s

t T

dt

dt

dH B

dB

µ

µ

µ µ
µ

µ µ

∈ ∈

∈

 
 
 
 
 
 
 + 

=  
 
   
   −       
 
 
 

∫

∫

, (2.129) 
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or 

 ( )
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∫

∫

, (2.130) 

 
where T is the time-period. 

To illustrate the nonlinear iteration process of the fixed-point method with respect 
to the nonlinear behavior of the magnetic reluctivity ν, a simple example is given in 
Fig. 2.11 below. 
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Fig. 2.11: Simplified iteration sequence of the fixed-point approach. 

 
In this figure the value of the magnetic flux density B is iteratively determined. 

Assuming that H0 is given, the solution for B0 of ( )0 0H B H=  is sought. 

Convergence is achieved, once ( ) ( ) ( )( )0 0
s s s

FP FPH B B H Hν ν + − = 
 is satisfied. 

Therefore, in each iteration step s, the magnetic flux density is updated as 
 

 ( ) ( )
( )( )

( )
01

s
s s

s
FP

H H B
B B

ν
+

−
= + . (2.131) 

 
Applying the fixed-point technique, the obtained equation systems of the 

harmonic balance method as well as for the time periodic approach are linearized as 
described in the following sub-sections. 

2.3.3.3 Harmonic balance fixed-point technique (HBFP) 

For a fast solution of (2.104) and (2.105), it is preferable to decouple the 
harmonics, yielding N systems of equations, each containing as many unknowns as 
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there are degrees of freedom in the FEM approximation. This can be achieved by 
utilizing the fixed-point technique. The linearized ordinary differential equation 
systems obtained are then solved for the nonlinear iterations 0,1, 2,s = A as 

 

 ( )
( ) ( )

( )
( ) ( )1 , 1, 2, ,

FP FP

s s s s
m mjm m Nσν ν νω +

−
   + = + =   S M X S x f AF , (2.132) 

 

( )
( ) ( )

( )
( ) ( ) ( )1

1, 2, , ,
FP FP

s s s s s
m m m mjm jm jm

m N
ρ ρ µµ µ µω ω ω+

−
      + = + +      

=

S M X M x f f

A

F F F
 (2.133) 

 

where ( )sx  is obtained as 
 

 ( ) ( )

1
Re

N
s s jk t

k
k

e ω

=

 =  
 
∑x X . (2.134) 

 
The nonlinear iterations for solving the linear systems (2.132) and (2.133) are 

terminated once the alteration of ( )sµ  or ( )sν  between two iteration steps will be less 
than an appropriate tolerance. 

2.3.3.4 Time periodic fixed-point technique (TPFP) 

The application of the fixed point technique is justified by the fact that some 
simplifications are valid if the permeability or the reluctivity are assumed to be 
linear. Indeed, in this case, the discrete Fourier transforms in (2.114) and (2.115) 
simplify to 
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resulting in the harmonics being decoupled: 
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 ( ) [ ]{ }1 ˆ 1
tν σ

 + − = ∆ 
S M I P x fD , (2.136) 
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tρ µ ρ µ

 + − = + − ∆ 
S M I P x f I P fD , (2.137) 

 
and can be rewritten as 
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A great advantage here is that only N/2 linear systems have to be solved. Indeed, 

since the matrix M and the vector fμ are real, the m-th and the (m+ N/2)-th equations 
are complex conjugate to each other assuming that N is even. The right hand side 
vectors can directly be computed by discrete Fourier transformation and, having 
solved (2.138) or (2.139), the time values can be found by inverse discrete Fourier 
transformation: 
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In the nonlinear case, this simplifies the use of the fixed-point algorithm necessary 

for linearizing the system of equations by making the permeability or the reluctivity 
constant. Thus, systems similar to (2.138) and (2.139) have to be solved with the 
TPFP-technique. For the A,V-A-formulation, in each nonlinear iteration 0,1,2,s = A 
we have 
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and for the T,ϕ-ϕ-formulation, one obtains 
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with ( ) [ ]1sx  computed from the discrete harmonics by inverse discrete Fourier 

transformation: 
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and a time shift back leads to ( ) [ ]0sx  as defined in (2.108). 

In the same manner as for the HBFP-technique, the nonlinear iteration procedure 
is terminated, if the deviation of the permeability or the reluctivity between two 
iteration steps becomes less than a sufficient threshold to provide a suitably accurate 
result.  
 

The most computational cost is necessary to solve the N linear equation systems 
in case of to the HBFP and N/2 ones when using the TPFP. Indeed, these are solved 
in parallel in such a way, that a single harmonic computation of ( )1s

m
+X  or ( )1ˆ s

m
+x  is 

distributed to any accessible core of the CPU. With these computations being 
finished, the right hand side is updated for the next iteration by first determining the 
time function of the solution as in (2.134) or (2.143) followed by addressing the 
Fourier decompositions as indicated in (2.132) and (2.133) or (2.141) and (2.142). 

2.3.4 Solution techniques for linear equation systems 
In this sub-section, a brief introduction is given for treating linear systems of 

algebraic equations as derived in the previous sub-sections. 
We present an overview of possibilities to solve linear equation systems, as 

described in pertinent literature such as e.g. [29, 31, 138, 139, 157, 158, 159], and 
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point out which strategy is embedded in the software used for the problem 
investigations in this thesis. 

In general, the solution techniques can be categorized as direct or iterative 
methods. Usually, electromagnetic 3D-FEM problems result in a large set of 
algebraic equations. Depending on the underlying formulation used, the system 
matrices obtained can also be sparse, dense, symmetric or non-symmetric, and even 
singular. 

A classical way to solve large systems of ordinary differential equations is an 
iterative approach by utilizing so called Krylov-subspace methods as e.g. conjugate 
gradient (CG) , biconjugate gradient (BiCG) [160], minimum residual (MINRES), 
quasi-minimal residual (QMR) and generalized minimum residual (GMR) 
techniques. These methods are applicable to positive semi-definite matrix structures 
except the BiCG method which is also usable for indefinite matrices. As an 
alternative, iterative methods like the Schur complement [63, 138, 161] or the Uzawa 
iteration technique [162, 163] can be applied for solving so called saddle point 
problems or indefinite systems. Since the CG has been introduced in 1952 it soon 
became very popular and has been improved ever since. As these solvers are very 
robust and suitable even for very large systems, drawbacks in terms of a poor 
convergence can emerge if an ill-conditioned, indefinite system is treated. To restore 
the attractiveness of the iterative procedures in view of this lack of robustness, 
appropriate preconditioning techniques can be applied. Simply speaking, 
preconditioning is a transformation of the original system into a system which is 
easier to solve by iterative methods but having the same solution. A good 
compilation of preconditioning techniques is given in [141] and very detailed 
explanations can be found in e.g. [31, 138]. The solver used for the computations in 
this thesis uses the so called Incomplete Cholesky Conjugate Gradient (ICCG) 
method [142, 164]. 

A possibility to avoid preconditioning in case of ill-conditioned matrices is the use 
of so called direct methods [165, 166] which are based on the principle to decompose 
the given system into directly solvable fractions. Among these factorization methods 
like the Cholesky- or QR-factorization, the LU-factorization is the oldest and the 
most commonly used one. The difference is in the formation of the decomposition of 
a matrix. Whereas the Cholesky-method factorizes a matrix A as T =LL A , where L 
is a lower triangular matrix, the QR-method utilizes the product =QR A , where Q is 
orthogonal and R is upper triangular and the LU-method factorizes as ,=LU A  with 
U representing an upper triangular matrix. A drawback of these techniques is in their 
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incapability of solving singular systems. A well-established way to eliminate 
singularity is the procedure of tree gauging [167, 168] where the vector potential is 
set to zero within a spanning tree in the graph formed by the FE edges in the 
discretized domain. Compared to iterative approaches, the direct solving techniques 
require a larger amount of memory when treating sparse matrices. The demand of 
memory can be reduced by so called fill-in reduction algorithms as e.g. the minimum 
degree procedure [169] or the nested dissection technique as described in [170]. The 
latter one is also implemented in the software library PARDISO (Parallel Direct 
Solver) embedded in the Intel® Math Kernel Library (MKL) for thread-safe solving 
of large sparse linear systems of equations on shared-memory multicore architecture 
[157, 171, 172]. PARDISO is also integrated in the FEM-solver used in this thesis 
and can be applied as an alternative to the iterative solving procedure. 

 
The solution techniques discussed are applicable to linear equation systems. Since 

nonlinearities are an inevitable attribute of material properties in electromagnetic 
field computations, the occurring nonlinear equation systems need to be processed to 
be treated with these linear solvers. Hence, the so called fixed-point linearization 
procedure as described earlier is applied. 
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3 Eddy-current losses in a steel grid in 
the vicinity of an air reactor 

3.1 Introduction 

The idea of this investigation was to determine the additional losses of a dry 
insulated current excited air reactor with the aid of the FEM. In such reactors no iron 
core or insulation fluid is present. Such reactors are used for example in distribution 
networks to compensate reactive power or capacitive currents in long low powered 
distribution lines, short circuit limiting reactors and, due to their linear behavior, in 
measurement setups. They can reach huge dimensions, and one has to guarantee that 
the seating of the reactor is capable to withstand its weight. To ensure this, the 
concrete seating is usually reinforced with a steel grid exposed to the time-varying 
magnetic field of the reactor. The results of this study have been published in [113]. 

3.1.1 Problem definition 
Due to the time-varying magnetic field of the reactor, eddy currents are induced in 

the conducting, highly permeable grid in the vicinity of the reactor. 
These eddy-currents cause additional losses and may heat up the grid structure, 

possibly leading to a burst of the surrounding concrete, and hence rendering the 
seating unable to withstand the reactor’s weight any longer. Since the commonly 
used grid material features ferromagnetic behavior one has to deal with a nonlinear 
problem. The excitation is time-periodic and the steady state periodic solution is of 
interest. To solve the problem, a frequency domain approach has been chosen. At 
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first, a solution using a time-harmonic approximation has been generated. Later, the 
fixed point method introduced earlier in 2.3.3.3 as HBFP technique has been 
employed to take account of higher harmonics. The finite element method has been 
applied to the so called Ar,V-Ar reduced vector potential formulation (see sub-
sections 2.1.2.2 and 2.2.4.2).  

3.1.2 FEM modelling 
To assess the accuracy of the numerical solution, different FEM formulations 

have been used and the findings compared to measured results. As mentioned above, 
a time-harmonic approximation has been chosen in a first approach, and then, to 
consider higher harmonics in the FEM computation, the HBFP technique has been 
applied. 

3.1.2.1 Time-harmonic approach 

Using this method, the differential equation (2.77) is solved in the frequency 
domain [76]. Therefore, the time derivative of the ordinary system of equations is 
replaced by a multiplication by jω, resulting in a complex, nonlinear equation system 
in the frequency domain as 

 
 [ ]jν σω+ =S M X F  (3.1) 

 
where the vector X gathers the unknown complex amplitudes of the vector and scalar 
potentials. The right hand side vector F contains the known quantities. This 
formulation has its benefits in yielding a fast computational result at the expense of 
accuracy due to not considering higher harmonics. The reluctivity is determined in 
each nonlinear-iteration by the peak values of B and H [173]. To solve the system of 
equations a parallel direct solver (PARDISO) was used as briefly introduced in sub-
section 2.3.4. 
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3.1.2.2 Harmonic balance fixed-point technique 

This method has been described in sub-section 2.3.3.3 and is applied here to 
consider higher harmonics. The system of equations to be solved is of the form 
(2.132) 
 

 ( )
( ) ( )

( )
( ) ( )1 , 1, 2, ,

FP FP

s s s s
m mjm m Nσν ν νω +

−
   + = + =   S M X S x f AF , (3.2) 

 
with the superscript 0,1, 2,s = A  denoting the nonlinear iteration steps and the 
subscript m indicates the m-th harmonic of the Fourier transform Fm. 

The nonlinear iterations have been carried out as described in sub-section 2.3.3.2. 
In the course of the nonlinear iteration process, the systems of linear equations have 
been solved by the conjugate gradient method using incomplete Cholesky 
factorization for preconditioning the system matrix. 

3.2 Numerical investigations 

To achieve a meaningful validation, the computational results of the proposed 
FEM formulations have been compared to measured values. The measurements have 
been carried out by TRENCH Austria Ltd. by measuring the losses of a specific air 
reactor at different values of the excitation current, first without a steel grid 
underneath it and then with the reactor placed on the grid (see Fig. 3.1). The 
difference between the two values represents the additional loss caused by the eddy-
currents induced in the highly permeable steel grid. The investigated grid is a 
commercial standard for concrete reinforcements with a round cross-section and a 
diameter of 8 (mm) (CQS 80). Its conductivity has been measured to be 

( )65.8 10 S mσ = ⋅  at a reference temperature of 20° centigrade. The mesh width of 

the grid is 300 (mm) by 300 (mm) and the whole structure underneath the reactor 
spans an area of 4500 (mm) by 4500 (mm). The intersections of the bars are welded 
together. Based on this data, a FEM model has been designed with the symmetry of 
the test arrangement taken into account. Hence it is sufficient to model a quarter of 
the original domain as illustrated in Fig. 3.2. The current density of the coil is 
determined by the given current and the number of turns. The main parameters of the 
air reactor are given in TABLE 3.1. 
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TABLE 3.1: Main data of the air reactor test setup 

Geometry data Operational data 
Values Unit Quantity Values Unit Quantity 

Active winding height mm 3133 Rated voltage kV 35.5 
Average winding diameter mm 2803 Rated power MVar 28.028 
Radial winding width mm 249 Rated current A 1015 
Number of turns - 231.375 Rated reactance Ω 27.206 
Total mass kg 6850 Rated frequency Hz 50 
 

 
Fig. 3.1: Test setup of the loss measurement including 

the eddy-current losses. 

 
Fig. 3.2: Quarter-model of the problem 

domain applied in the FEM. 
 

The coil of the air reactor marked with a) in Fig. 3.1 and colored red in Fig. 3.2 is 
assumed to be excited by a current source. It is hence advantageous to apply the 
reduced vector potential formulation, as it is then not necessary to model the coil in 
the finite element mesh. The steel grid where the eddy-currents are induced is 
indicated green and denoted with c). In Fig. 3.2 , the whole problem domain is shown 
including the finite element mesh marked with b). 

The steel bars in the FEM model have a round cross section except at the welding 
point where the intersection of the bars has a conical shape. This is illustrated in the 
close up of the steel grid in Fig. 3.3. 

a 

b 

c 
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Fig. 3.3: Close up of an intersection of the steel grid. 

 
The nonlinear material properties of the reinforcement steel are described by the 

appropriate B-H curve, provided by the manufacturer and shown in Fig. 3.4. 
 

 
Fig. 3.4: Magnetization curve of the used steel bars. 

 
The HBFP technique was used with up to the 11th harmonics considered. The 

numerical experiments show that considering higher harmonics affects the 
computational results marginally only, but increases the computational costs. The 
eddy-current losses were evaluated as presented in sub-section 2.1.4 evaluating a 
volume integral over the Ar,V domain averaging over a time-period as shown in 
(2.52). 
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3.2.1 Validation 
The computational results of the two FEM formulations applied have been 

compared to the measurement results. The additional eddy-current losses have been 
evaluated for different excitation currents. 

 

TABLE 3.2: Comparison of the measured and computed eddy-current losses 

Value Unit Quantities 
EXCI  A 50 100 300 500 700 1000 
m

eddyP  kW 0.074 0.272 2.777 10.106 20.158 43.364 
t h

eddyP −  kW 0.046 0.185 2.535 9.385 22.468 54.201 
11HBFP th

eddyP −  kW 0.048 0.183 2.389 8.751 20.680 50.140 
23HBFP rd

eddyP −  kW 0.048 0.183 2.389 8.750 20.680 50.110 
 

In TABLE 3.2 the excitation current of the reactor is denoted by EXCI , m
eddyP  

represents the measured additional losses, t h
eddyP −  stands for the eddy-current losses 

obtained by the time-harmonic approximation and 11HBFP th
eddyP −  indicates the computed 

losses of the HBFP technique considering up to 11 harmonics and 23HBFP rd
eddyP −  

represents the computed losses of the HBFP technique considering up to 23 
harmonics. The results are summarized in Fig. 3.5 below with an appropriate 
interpolation of the data points. 
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Fig. 3.5: Interpolated eddy-current losses as a function of the reactor excitation current. 

 
As one can see in Fig. 3.5 the computed losses using the time-harmonic 

approximation differ considerably from the measured ones when the coil current 
rises. This is due to the fact that the saturation of the steel grid is more significant for 
higher currents. This error is less pronounced if higher harmonics are taken into 
account. Since the deviation of the losses at the highest excitation current level is still 
significantly high, a rise of the temperature in the steel grid was considered by 
adapting the electrical conductivity (see appendix B.3) as shown in TABLE 3.3. 

 

TABLE 3.3: Computational losses in dependency of the electrical conductivity of the steel bars 

Value Unit Quantities 

Conductivity σ 6S 10
m
⋅  4.405 3.876 3.139 

Temperature °C 100 150 230 
EXCI  A 1000 

11HBFP th
eddyP −  kW 40.067 37.522 31.817 

m
eddyP  kW 43.364 

 
In TABLE 3.3, it can be seen that considering a rise in the temperature of the steel 

grid by adapting the conductivity has a major impact on the computed eddy-current 
losses. Comparing the computed results to the measurement it can be concluded that 
the steel rods had an approximate temperature of about 90 (°C) to 100 (°C) during 
the measurement at an excitation current level of 1000 (A). 
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Regarding the computational costs, results for three different current levels have 
been summarized in TABLE 3.4. It is observable that the computational time 
increases significantly for high current values if higher harmonics are considered. 
This is due to the saturation effects in the steel bars and is even more dominant when 
higher numbers of harmonics are taken into account. Obviously, the computational 
costs bear no relation to the increase of accuracy if more than 11 harmonics are 
considered. 
 

TABLE 3.4: Computational data 

Value Unit Time-harmonic HBFP 
CPU - 2x Intel Xeon E5-2630 (6x2.00GHz – 12 Cores) 

approx. RAM usage GB 30 (PARDISO) 14 (CG) 
No. of DOF - 2,078,464 

EXCI  A 50 500 1000 50 500 1000 

Computational time h 1.5 3.5 5.5 

up to the 11th harm. 
19.5 41.5 62.5 
up to the 23rd harm. 
26 56.5 106 

 
In addition to the loss validation, the induced currents have been measured and 

computed in several grid elements. For the measurement of the currents, a Rogowski 
coil was wound around the relevant steel bar. 

 



3.2 Numerical investigations 3 Eddy-current losses in a steel grid in the vicinity of an air reactor 
 

64 
 

 
Fig. 3.6: Top view of the reactor and grid setup 
with the provided arrangement of the current 

measurement points. 

 
Fig. 3.7: Top view of the quarter FEM-model 

with the relocated distribution of the measurement 
points according to the symmetry planes. 

 
Fig. 3.6 is a sketch of the current measurement points with the symmetry planes 

marked as red dash-dotted lines. In Fig. 3.7, the measurement points marked as black 
dots have been relocated to be within the quarter model. The currents at all indicated 
points have been calculated and compared to the measured values for each excitation 
current level. To summarize the findings, results for two current values are presented 
in this sub-section, but the complete data set is presented in the appendix B.2. 

 

 
Fig. 3.8: Current distribution in the steel grid with 

an excitation current of the reactor of 50 (A). 

 
Fig. 3.9: Current distribution in the steel grid with 
an excitation current of the reactor of 1000 (A). 
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In Fig. 3.8 and Fig. 3.9 the magnitudes of measured and computed currents 
regarding the HBFP technique through the grid segments marked in Fig. 3.7 are 
plotted. The green stems indicate the calculated root mean square current values 

c
eddyI  , and the red plots represent the values of the measured currents m

eddyI . 

It is observable that when the reactor is energized with lower current levels the 
measured currents are higher than the computed ones and when the coil current 
becomes higher, the computed current values are higher than the measured ones. 
This effect may be attributed to the deviation of the conductivity varying with the 
temperature which is not considered in the computation. 

To illustrate how the nonlinear material behavior affects the induced currents, the 
time response of the current in the segment marked 30 in Fig. 3.7 is shown in 
Fig. 3.10 with the coil energized with 50 (A) and in Fig. 3.11 with an excitation 
current of 1000 (A) applied. It is clearly visible that the deformation of the current 
response increases when the grid gets saturated at higher current levels. 

 

 
Fig. 3.10: Time response of the highest current 
amplitude in the grid at an exciting current of 

50 (A) 

 
Fig. 3.11: Time response of the highest current 
amplitude in the grid at an exciting current of 

1000 (A) 
 

The additional losses caused by the induced eddy-currents can be lowered by 
using a grid made of stainless steel with low electrical conductivity. Indeed, stainless 
steel is barely affected by the time-varying magnetic field and the induced currents 
and hence the additional losses are negligibly low. 

This has been observed in a further set of measurements and validated with FEM 
computations. The air reactor used as test object has not been the same but very 
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similar to the one investigated with the nonlinear steel grid (see appendix B.4 and 
B.5 for details). The measured and computed losses are summarized in TABLE 3.5. 

 

TABLE 3.5: Comparison of the eddy-current losses in the stainless steel grid 

Value Unit Quantities 
EXCI  A 101.96 180.14 399.24 615.18 
m

eddyP  W 148 420 2040 4680 
FEM

eddyP  W 133 415 2039 4842 
 

In TABLE 3.5, m
eddyP indicates the mean value of the measured eddy-current losses 

and FEM
eddyP  denotes the losses computed with the aid of the FEM at different 

excitation current levels EXCI . 
 

 
Fig. 3.12: Comparison of the occurring eddy-current losses in the stainless steel grid. 

 
In Fig. 3.12, the computed and measured eddy-current losses are compared. It can 

be seen that the losses are in a very good agreement. This is due to the linear material 
behavior of the stainless steel grid. The losses are indeed very low compared to those 
occurring in the conventional steel grid, and are negligible compared to the losses of 
the reactor itself. Using a stainless steel material for concrete reinforcements is 
naturally expensive, the acquisition costs are four to eight times higher than the costs 
of conventional steel. 
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3.3 Conclusion 

Concluding the results of these investigations, a FEM approximation with the 
time-harmonic approach is not acceptable due to its insufficient accuracy. For 
practical purposes, the results obtained by the HBFP method are close enough to 
measurements, but the deviations are significant, especially for high current levels. 
This is mainly due to the assumption of a constant electrical conductivity used in the 
computations for each excitation current level. At high currents, the steel rods heat 
up leading to a decrease of the electrical conductivity and hence lessen the induced 
current density and the additional losses. To improve the accuracy of the computed 
additional losses, the conductivity needs to be adjusted for higher excitation current 
levels. 

Furthermore, the hysteresis losses of the steel grid have been neglected in the 
FEM investigation and this may also be a reason for the deviation in the losses 
especially at higher saturation levels. 

It has been shown that increasing the number of harmonics taken into account 
over 11 does not improve the accuracy since their influence is negligible. 
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4 Design of nonlinear magnetic circuit 
models 

4.1 Introduction 

When aiming to improve the convergence of finite element method approaches 
for solving nonlinear, 3D, periodic, eddy-current problems, it is desirable to be able 
to carry out fast analyses in trying different alternative solution algorithms. The full 
FEM solutions are too time-consuming for this purpose. Hence, in order to facilitate 
a quick evaluation of different solving strategies to obtain the steady state solution of 
such problems, it is advantageous to develop simplified nonlinear magnetic circuit 
models governed by differential equations as close as possible to the 3D FEM partial 
differential equations discussed in the sub-section 2.2.4.1 for the magnetic vector 
potential formulation and in 2.2.4.3 for the current vector potential formulation. 
Since the focus of interest is in obtaining steady state solutions only, time periodic 
excitations are assumed and hence one can take advantage of the harmonic balance 
fixed-point technique (HBFP) introduced in sub-section 2.3.3.3. 

4.2 Nonlinear magnetic circuit model 

To generate an adequate planar nonlinear magnetic circuit model related to the 
equation systems obtained by the finite element formulations [86, 87, 174, 175, 176], 
one has to consider the iron parts, air gaps and also how to take account of the coils 
and eddy current regions. One has to define magnetic branches considering the 
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material behavior within a given region, nodes corresponding to a magnetic scalar 
potential, as well as magnetic branches forming loops related to a magnetic vector 
potential as indicated in Fig. 4.1 - Fig. 4.4. 

 

 
Fig. 4.1: Magnetic branch to consider material 

properties. 
 

Fig. 4.2: Magnetic branch coupled with voltage 
excitation. 

 
Fig. 4.3: Magnetic branch coupled with eddy-

current domain. 

 
Fig. 4.4: Magnetic branch coupled with current 

excitation. 
 

In the following notations, bold, symbols represent matrices or vectors of space 
coordinates as used in FEM formulations and non-bold, italic symbols correspond to 
concentrated quantities occurring in the circuit formulation. Furthermore, italic 
symbols with an arrow above are vectors consisting of concentrated quantities, and 
matrices are marked by an overline. 
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Fig. 4.5: Basic coupling of magnetic branches to a node. An exciting loop c is also indicated. 

 
A basic coupling of magnetic branches to a node is shown in Fig. 4.5 where the 

magnetic scalar potential is denoted by ϕn and the subscript n represents the n-th 
node of the circuit. Similarly to an electrical circuit, one can apply Kirchhoff´s nodal 
law to the magnetic fluxes, obtaining 

 
 0 0 0

n

k k
k I

d B
Γ

Γ
∈

∇ ⋅ = ⇒ ⋅ = ⇒ =∑∫B B Γ


, (4.1) 

 
with B representing the magnetic flux density, Γ is the surface of the area where the 
branches are connected, thus In={k∈[1…nB]: k-th magnetic branch connected to the 
n-th node} and nB denotes the number of the magnetic branches involved. 

Further indicated in Fig. 4.5 is an excitation loop c to couple the magnetic branch 
with an electrical source. Here, one can derive 
 

 
u

T i i
i Ic

d dd d u B
t dt dtΓ

Γ
=

∂
∇× = − ⇒ ⋅ = − ⋅ ⇒ = −

∂ ∑∫ ∫
BE E s B Γ


, (4.2) 

 
where E is the electric field intensity, t is time, and uT represent the turn voltage. 
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Fig. 4.6: Mesh of magnetic branches with indicated cycle basis and coupling between the loups. 

 
Kirchhoff´s cycle law for the magnetic circuit formulation is illustrated in 

Fig. 4.6. One has 
 
 

c

i i
i Ic

d I H l I
=

∇× = ⇒ ⋅ = ⇒ =∑∫H J H s


, (4.3) 

 
where J is the current density and I the exciting current and c is the closed path of 
magnetic branches as shown in Fig. 4.6. The excitation and eddy current domains are 
considered by appropriate coupling with electric loops and conductive materials as 
indicated in Fig. 4.1 - Fig. 4.6 instead of edge and nodal basis functions as in the 
FEM model. 

The main goal in developing the magnetic circuit formulations is to be as close as 
possible to the FEM formulations to facilitate similar procedures to solve the 
ordinary differential equations as those used in the 3D FEM case to solve the partial 
differential equations. Therefore, we adapt mathematical expressions similar to those 
used in the FEM formulations to describe the magnetic circuit formulations. 

Let us introduce two operators in the complex space  , between the branch space 
and node space. The first one is : nN nB∇ →   to transform from node space to 
branch space. Here nN denotes the number of nodes and nB denotes the number of 
magnetic branches. nN

 represents the nN dimensional node space and nB
  the nB 

dimensional branch space. The operator is defined as 
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,

, , ,

1 : ,

; 1 : ,

0 : ,

i

i
n

n

B k B

k n k n B k BnN nB

l k

l k

else

γ γ
×

∈


 ∇ = − − ∈ 




 (4.4) 

 
according to Fig. 4.1 - Fig. 4.4 and with i

nB = { [ ]1 ;k nB∈   if the k-th branch is 

incident with the n-th node and pointing towards the node}∪ { [ ]1 ;k nB− ∈   if the 

branch points away from the node}. This operator will be called the discrete gradient 
operator due to its similarity to the continuous gradient operator. 

The next operator transforms the branch space into node space and is denoted as 
: nB nN∇⋅ →   and is defined as 
 

 , ,

: ,

; : ,

0 : ,

i

i
n

n

k B

n k n k k BnB nN

k

k

else

Γ

δ δ Γ
×

∈


 ∇⋅ = − − ∈ 




 (4.5) 

 
according to Fig. 4.5. This operator is called discrete divergence operator due to its 
analogy with the continuous divergence operator. 

Two further operators are introduced between the branch and cycle spaces. Let us 
define the first operator from branch space to cycle space: : nB nC

B∇ × → 
 . Here 

nC denotes the number of cycles and nC
  denotes the nC dimensional cycle space. 

The operator is defined as 
 

 
,

, , ,

: ,

; : ,

0 : ,

i

i
j

j

B k C

B j k j k B k CnC nB

l k

l k

else

β β
×

∈


 ∇ × = − − ∈ 



  (4.6) 

 
according to Fig. 4.6 and i

jC = { [ ]1 ;k nB∈   if the k-th branch is incident with the 

j-th cycle and has the same orientation as the cycle} ∪ { [ ]1 ;k nB− ∈   if it is 

incident with the j-th cycle and is counter-oriented to the cycle}. 
The last operator transforms the cycle space to the branch space and is denoted as 

: nC nB
C∇ × → 

. This operator is defined as 
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 , ,

1 : ,

; 1 : ,
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j

j

k C

C k j k j k CnB nC

k

k

else

Γ

α α Γ
×

∈


 ∇ × = − − ∈ 




 (4.7) 

 
according to Fig. 4.6. These last two operators with the subscripts B and C denoting 
the difference in the affiliation, are called discrete curl operators due to their 
similarity to the continuous curl operators. 

4.2.1 Nonlinear magnetic circuit model corresponding to the 
T,ϕ-ϕ-formulation 

According to the T,ϕ-ϕ-formulation, each eddy current domain is represented by a 

magnetic branch with an additional unknown current vector potential [ ]1
T

nBT T T=


 . 

Each node corresponds to a magnetic scalar potential [ ]1
T

nNφ φ φ=


 . The impressed 

current vector potentials 0 0,1 0,

T
nBT T T =  



  represent the current excited windings. 

To take the voltage excited windings into account, the impressed current vector 
potentials 0

wt  for unit currents are used as 
 

 ,0, ,

1 : ,

0 : ,

i
jj Vw

B ii j

N i
lt

else

 ∈= 



 (4.8) 

 
with i

jV = { [ ]1 :i nB∈   i-th branch belongs to the j-th voltage excited coil}, where 

the j-th coil has Nj electrical turns. 
Expressing the concentrated magnetic field intensities in the magnetic branches as 

[ ]1
T

nBH H H=


 , and using the discrete gradient operator one can obtain 

 
 0 0

w wH T T t iφ= −∇ + + +
  



, (4.9) 
 

where the vector wi


 contains the unknown currents in the voltage excited windings. 
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Introducing the notations 0i


 for the unknown currents in the current excited 

windings, and ei


 for the eddy currents, the current vector potentials can be 
expressed as follows 

 

 0 0 0T t i=




 and e eT t i=




, (4.10) 
 

with  
 

 0,
,0, ,

1 : ,

0 : ,

i
jj V

B ii j

N i
lt

else

 ∈= 



 (4.11) 

 
where 0,i

jV = { [ ]1 :i nB∈   i-th branch belongs to the j-th current excited coil}, 

where the j-th coil has Nj electrical turns, and 
 

 ,,

1 : ,

0 : ,

i
j

e
Ve

B ii j

i
lt

else

 ∈= 



  (4.12) 

 
where i

j

e
V =  { [ ]1 :i nB∈   i-th branch belongs to the j-th eddy-current branch}. 

With this potential formulation, Kirchhoff´s cycle law written in (4.3) is 
automatically satisfied. The equations remaining to be solved are (4.1) and (4.2). 
Applying the discrete operators to the potentials in the circuit formulation, the 
equation for the excitations to be solved is 

 

 , 0, ,
1

, 1, ,
nB

w w
j j j i i B i i j

i

du R i B l t j nB
dt

Γ
=

− = − =∑  , (4.13) 

 
and for the unknowns in the nodes 

 

 ( )0 0 0w wB H T T t iµ φ∇⋅ = ∇ ⋅ = ∇ ⋅ −∇ + + + =
   



, (4.14) 
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where [ ]1
T

nBB B B=


  contains the concentrated magnetic flux densities in the 

branches, µ  is a diagonal matrix of the size [ ]nB nB×  of the magnetic permeabilities 

associated with the magnetic branches. Γi is the cross-section and lB,i is the length of 
the i-th magnetic branch. In (4.13) uj is the voltage of the j-th winding with the 
resistance Rj. 

Summarizing (4.13) and (4.14), the ordinary differential equation system to be 
solved has the form 

 

 



( )
( )
( )

0

0

0

0 0
0 0 0
0 0

e

T T

T T w
T

d C Ti dtA C G g
d dG L h G Tdt dt

R g h V i du g Tdt
ρ µ

ρ µ

µ
ρ µ µ µ

µ µ µ µ

µ µ µ
µ

φ

+

 
 −                 + = −                     −   

 S M x
f f

 









 







(((( ((((

((((

. (4.15) 

 
In (4.15) one can see the similarity to the FEM equation system (2.92) with the 

indicated vectors and matrices expressed by the concentrated circuit quantities and 
the values at the symmetry plane assumed to be zero. The circuit parameters are 
denoted as 

 

 ( ) ( );e wA diag R R diag Rρ
   = =   

 

, (4.16) 

 

where Aρ  is a diagonal matrix of eR


 denoting the resistances of the eddy-current 

branches, and R  is a diagonal matrix of wR


 representing the resistances of to the 
windings. Furthermore, 
 

 ( ) ( ); ;
T Te e e T e

B BC t l t G l t G tµ µ µµ Γ µ Γ µ     = − ⋅ = ∇ = ∇⋅       
, (4.17) 

 

 [ ] ( )0 0; ; ,
Tw T w

BL h t h l tµ µ µµ µ µ Γ  = −∇ ⋅ ∇ = ∇⋅ = ∇    
  (4.18) 

 

( ) ( ) ( )0 0 0 0; ; .
T T Te w T w e w w

B B Bg t l t g t l t V t t lµ µ µµ Γ µ Γ µ Γ     = − ⋅ = − ⋅ = − ⋅          
  (4.19) 
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In order to simplify the notations, some vector and matrix parts are merged as 

highlighted in (4.20) 
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, (4.20) 

 
and hence 
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; ; ;

0 0
T T T

T

gC GA
A C g g g h

hG L
µµ µρ

ρ µ µ µ µ µ
µµ µ

    
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    
, (4.21) 

 
as well as for the vector of unknowns and the right hand side vector 
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. (4.22) 

 
To solve the nonlinear equation system (4.15), the harmonic balance fixed-point 

technique is applied. Thus the equation system is linearized by the fixed-point 
method and the equations are decoupled using the harmonic balance procedure. One 
has to switch to the frequency domain by using a Fourier-transformation to compute 
the complex Fourier coefficient of the m-th harmonic at the angular frequency ω as 
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Since the nonlinearity in the HBFP is due to the dependence of Cµ on the solution, 
it is obvious to define a time independent fixed-point permeability µFP. Hence, one 
has to solve the given equation system in each iteration step s. The resulting equation 
system using (4.23) is obtained as 
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 (4.24) 

 
The equation system in (4.24) is decoupled in each nonlinear iteration step and 

each harmonic solution can be solved parallel, a feature leading to a substantial 
saving of computational time. 

4.2.2 Nonlinear magnetic circuit model corresponding to the 
A,V-formulation 

Similarly to the T,ϕ-ϕ circuit-formulation, one can find an adequate equation 
system for the magnetic vector potential approach satisfying Kirchhoff´s nodal law 
applied to planar magnetic circuit problems. Thus, magnetic branches form loops 
corresponding to the magnetic vector potential and the coupling of these cycles result 
in the magnetic flux density as described below. To consider eddy current domains, 
one has to assign a conductivity σ to the relevant cycle. In case of the magnetic 
circuit formulation the electric scalar potentials are not explicitly needed. 

As indicated in Fig. 4.1, each magnetic branch is described by geometry 
parameters as the cross section Γ and the length lB, as well as by material properties 
as the magnetic permeability μ or the magnetic reluctivity ν to determine the 
relationship between the magnetic flux density B and the magnetic field intensity H. 
Fig. 4.6 (see page 71) shows a basic planar magnetic circuit mesh with a cycle basis 
c [177] corresponding to the unknown vector potential A. Assuming a planar graph 
circuit model, the magnetic flux density of a magnetic branch is determined by the 
adjacent cycles along the boundary of a magnetic branch ∂Γ as 
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 i j k kd d A A B
Γ Γ

Γ
∂

⋅ = ⋅ ⇒ − =∫ ∫B Γ A s


, (4.25) 

where the unknown vector potentials are denoted as [ ]1
T

nCA A A=


  and correspond 

to the cycles. 
Due to (4.25) and using the discrete curl operators, the concentrated field quantity 

B can be written as 
 
 CB A= ∇ ×



. (4.26) 
 
According (4.2), using the discrete curl operator, the following equation is valid: 
 

 C
d dE B E A
dt dt

∇ × = − ⇒ = −
  

. (4.27) 

 
Treating the eddy currents as short-circuit windings with only one turn, the 

concentrated current density results in the current ei


 in the magnetic circuit 
formulation and is expressed as 

 

 :ei Eσ=




, (4.28) 
 

with the conductivity ( ) 1
ediag Rσ

−
 =  



 in the eddy-current domains described by a 

diagonal matrix of the size [ ]nC nC× . Thus equation (4.1) is automatically fulfilled 

and (4.2) and (4.3) remain to be solved for the excitation as 
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and for the unknowns corresponding to the cycles 
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w e w w

B B B C B B
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The reluctivity ν  is represented by a diagonal matrix of the size [ ]nB nB× . 

Summarizing (4.29) and (4.30), one obtains the following equation system 
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where 
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It can be observed that (4.31) has the same structure and properties as the 3D 

FEM equation system (2.77) when the electrical scalar potentials are zero. 
For further reflection the vector of unknowns and the right hand side vector can be 

written as 
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Applying the HBFP technique to (4.31) in the same manner as in case of the 

T,ϕ-ϕ-formulation in sub-section 4.2.1, one obtains the equation system 
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To ensure that these equation systems are regular, the chosen loops to determine 
the unknown magnetic vector potentials have to be independent of each other. 
Therefore, a proper cycle basis has to be chosen in the graph of the planar magnetic 
circuit model [177]. 

4.3 Numerical investigations 

In the following sub-sections, the nonlinear magnetic circuit formulations 
presented previously are applied to an industrially relevant transformer model to 
enable a fast analysis of various solution procedures of the nonlinear equation 
systems and to examine their influence on the convergence of the nonlinear iterations 
and hence computational time. These fast nonlinear magnetic circuit investigations 
should establish the properties of the solution algorithms and help to decide which 
procedure is favorably to be used to solve 3D FEM problems. 

4.3.1 Evaluation of two approaches for treating the voltage 
excitation in the T,ϕ-ϕ-formulation 

The focus of this study is to investigate the impact of selecting various ways to 
treat the additional equations taking account of the voltage excitations. A 3D 
benchmark transformer model with sinusoidal voltage excitation has been simplified 
to a nonlinear magnetic circuit analysis problem. Two options for treating the system 
of equations are investigated: the so-called “separated method” and the “combined 
method”, as published by the author in [119]. The motivation for the separated 
method, i.e. to treat the additional equations due to the voltage excitation separately 
from the remaining equation system during the nonlinear iterations is to ensure a 
better-conditioned system matrix. This is expected to lead to a faster convergence of 
the CG iteration process, a significant result, as the elapsed time for solving a 
problem by FEM is dominated by the CG iterations [106]. Since the fundamental 
solving strategy is the HBFP applied to the T,ϕ-ϕ-formulation presented in sub-
section 4.2.1, the combined equation system was introduced in (4.24). Separating the 
voltage excitations, 
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as well as 
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, (4.36) 

 
emerge where, in (4.36) the unknown winding current due to a given voltage 
excitation is calculated separately, using the field solution determined in (4.35) from 
the current obtained in the previous iteration step. 

The equation system of the combined method (4.24) as well as the equations of 
the separated method (4.35) and (4.36) have been implemented in a 
MathWorks®-MATLAB code to obtain solutions of the magnetic circuit problem. 
The input of this code consists of all known quantities and the connections, such as 
the cross-sections of the magnetic branches, the connection of the nodes, the current 
loops and the affected branches as well as the main parameters of the transformer. 
Based on these parameters the divergence and gradient matrices are assembled to 
solve the equation system. According to the nonlinearity, appropriate B-H curves 
have been implemented. 

4.3.1.1 Magnetic circuit model of the transformer 

Before starting the evaluation, one has to construct a magnetic circuit model of the 
transformer. The device is a basic transformer as drawn in Fig. 4.7. It is a single-
phase transformer enclosed by a steel tank with the iron core and the steel exhibiting 
a nonlinear behavior. Both the primary and the secondary windings are split in two 
halves wound around each limb with the halves connected in series. In order to be as 
close to a practical problem as possible, the primary winding is assumed to be 
voltage-driven in this investigation. This transformer model will also be used as a 
benchmark in further 3D FEM investigations. 
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Fig. 4.7: Geometry of the basic transformer model. 

 
The simplified equivalent magnetic circuit considering an appropriate assembly of 

the magnetic branches by applying the considerations in sub-section 4.2.1, as well as 
utilizing a symmetry plane corresponds to a half of the actual transformer model as 
drawn in Fig. 4.8. 

 

 
Fig. 4.8: Equivalent magnetic circuit model corresponding to the T,ϕ-ϕ-formulation. 
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In Fig. 4.8, the excitation of the coils and the eddy-current domain are represented 

by electrical loops denoted as t0 and te. Here t0 represents the excitation coil 
including one iron branch and two air branches and te includes one iron branch 
considered for the eddy-currents. The positions of the primary and secondary 
windings are indicated by dashed, blue lines between the magnetic branches 
representing the air domains “Air 1”-“Air 3”. The eddy-current domain is only 
considered in the right tank wall indicated in Fig. 4.8 as magnetic branch number 8. 
The iron core of the transformer is represented by the magnetic branches 1, 5 and 6. 
Analogously, the enclosing steel tank is considered by the branches 7, 8 and 9. With 
respect to the air volume between the iron core and the secondary winding the 
magnetic branch “Air 1” is introduced and further “Air 2” considering the air volume 
between the primary and secondary winding, as well as the branch “Air 3” 
characterizing the air domain between the primary winding and the right tank wall. 
The magnetic branches “Air 4” and “Air 5” correspond to the air regions flanked by 
the iron core and the tank at the top and the bottom of the model. 

The dimensions of the magnetic branches are derived from the actual transformer 
model in Fig. 4.7. As for the investigation of the algorithms it is not necessary to 
generate an exact replication of the transformer, the focus was to map the 
transformer core and the air branches between the windings in detail and the tank 
structure and air volumes between the outer winding and the tank as approximated 
geometries as illustrated in Fig. 4.9 and Fig. 4.10. The dimensions of the magnetic 
branches in the circuit model are summarized in TABLE 4.1 and TABLE 4.2. 

 

 
Fig. 4.9: Approximation of the circuit branch 
length of the right tank wall by considering 

relevant parts involved by the stray flux. 

 
 
 

Fig. 4.10: Approximated dimensions for the top 
and bottom yoke circuit branches with indicated 

secondary winding marked green. 
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TABLE 4.1: Definitions of the geometry of the magnetic branches in the circuit model 

nB Labeling Γ 
in mm2 

lB 
in mm Constitution 

1 Iron 
core 11200 235 1 cw cdd dΓ = ⋅ ;    B hsl l=  

2 Air 1 3525 235 
1

1

2

1

2
2

2
2

ws
cw a

ws
cd a

dd d

dd d

Γ

Γ

  = + ⋅ +  
  
  ⋅ + ⋅ + −  

  

 

3 Air 2 10296 227.5 ( ) ( )
2

3
1

cw wa cd wa i
i

d l d lΓ Γ
=

= + ⋅ + −∑ ;  
2

hs hp
B

l l
l

+
=  

4 Air 3 15179 220 
3

4
1

ct st i
i

d lΓ Γ
=

= ⋅ −∑ ;    B hpl l=  

5/6 
Yoke 
top / 

bottom 
11200 125 5,6 1Γ Γ= ;    

2 2 2 2
y ww hs cw cw

B

l l l d dl −
= + + +   

(see Fig. 4.10) 

7/9 
Tank 
top / 

bottom 
150 100 

7,9 ttbdΓ δ= ⋅ , where δ is the estimated penetration 
depth of the induced eddy currents of the iron 
tank wall see (4.37). 

B ttbl l=  

8 Tank 
right 450 250 8 sflΓ δ= ⋅ ;    B wwl l=   

10/
11 

Air 4 
Air 5 40500 20 10,11 sf ctl dΓ = ⋅ ;    B ytl l=  

 
The penetration depth of the induced eddy-currents in the transformer tank wall is 

approximated as 
 

 
( )

( ) ( )

6 7
0

2 2 0.00092 m ,
7.51 10 4 10 5000 50

0.001 m 1 mm .
r f

δ
σ µ µ π

δ

−= = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

≈ =

  (4.37) 
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TABLE 4.2: Estimated distances of the magnetic branches in the circuit model 

Value Distances in mm Description 
lhp 220hpl =  Primary winding height. 
lhs 235hsl =  Secondary winding height. 
lww 250wwl =  Height of the winding window. 
ly 75yl =  Yoke length. 

dcw 80cwd =  Iron core width. 
dcd 140cdd =  Iron core depth. 

1ad  
1

3ad =  Distance between core and secondary 
winding. 

dws 9wsd =  Width of secondary winding. 

2ad  
2

7ad =  Distance between secondary and 
primary winding. 

dwp 13wpd =  Width of primary winding. 

dwpt 18wptd =  Distance from primary winding to tank 
wall. 

lwa 1 2
2

2
wp

wa a ws a

d
l d d d

 
= ⋅ + + + 

 
 Width of windings and air including 

half of the primary winding width. 

dct 2ct cd ctd d l= + ⋅  Width of core, windings and air to tank 
wall. 

lct ( )1 2ct a ws a wp wptl d d d d d= + + + +  Distance from core to tank wall. 

lst 
2
y

st cw ct

l
l d l= + +  Distance from symmetry plane to tank 

wall. 

dttb 150ttbd =  
Estimated width of the top and bottom 
tank chosen as 10 mm larger than the 
core width. 

lttb 100ttbl =  Approximated sufficient length of the 
considered top and bottom tank wall. 

lsf 
( )
( )

2 25 25

25 25
sf cw

cd

l d

d

= ⋅ + +

+ + +
 

Estimated length of the stray flux path 
summing parts of the rear and front tank 
wall as well as of the right tank wall 
(see Fig. 4.9). 

dct 90ctd =  Estimated distance for the stray flux 
path between core and tank. 

lyt 20ytl =  Approximated distance form core yoke 
to tank wall. 
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For this investigation, the transformer is operating in no-load condition. Hence 
only the primary winding is energized by a given sinusoidal voltage whereas the 
secondary winding is open-circuited. The main parameters of the transformer are 
given in TABLE 4.3. 

 

TABLE 4.3: Main parameters of the transformer 

Values Unit Windings 
Primary Secondary 

Voltage URMS V 6600 - 
Resistance of the winding Rw Ω 21.7 - 
Resistance of eddy-current domain Re Ω 0.0006 - 
No. of turns of the primary winding Nw - 1886 - 
No. of turns of eddy-current domain Ne - 1 - 
Frequency f Hz 50 
 

As illustrated in Fig. 4.8, the magnetic scalar potential has to be computed in the 
nodes 1-4. Additionally, two unknowns, one for the excitation and one for the eddy-
current loop are to be considered when solving the equations as a combined system. 
Hence the number of equations to be solved in the system is six. Since the nodes 5-8 
are on the symmetry plane, the scalar potential is set to zero here and hence these 
nodes can be eliminated from the computation. Thus, applying the discrete 
divergence operator results in a matrix of the size [6 x 11], and the discrete gradient 
operator yields a matrix of the size [11 x 6] as there are 11 magnetic branches to be 
considered. For this investigation 40 time-steps per period are taken into account. In 
the harmonic balance method, up to the 11th odd harmonics are considered for this 
computation. This value has been empirically determined as a good compromise 
between computational time and sufficient accuracy of the solution. 

To take into account the nonlinearity of the core and tank materials, two different 
B-H curves are utilized, where the values of μ are generated for each time step. The 
material behaviors are illustrated in Fig. 4.11 and Fig. 4.12. 

 



4 Design of nonlinear magnetic circuit models   4.3 Numerical investigations 

87 
 

 
Fig. 4.11: Applied material properties for the 

transformer core. 

 
Fig. 4.12: Applied material properties for the 

transformer tank walls. 
 
The assembly procedures of the separate and combined methods are identical. For 

the separate solution, the excitation equations are separated from the system matrix 
as in (4.36). The combined method is straightforward, simply solving (4.34) as a 
block matrix system in each nonlinear iteration step in the frequency domain. 

Treating the voltage source equation separately, the initial step in the 0th-iteration 
initializes a time independent constant for the permeability and subsequently obtains 
a solution of the combined equation system (4.34). Based on this result, μ is updated 
for the 1st-iteration step where (4.35) is solved in the frequency domain by the means 
of the fixed-point technique to obtain the field quantities utilizing the current values 
of the previous solution. Thereafter, (4.36) is solved in the time domain with the 
previous computed field quantities to iteratively determine the new current values. 
Then, the fixed-point iteration process is started over again with the new current 
values until a sufficient stopping criterion for convergence is satisfied. 

The exit criterion of the nonlinear iteration procedure is usually given by 
specifying the maximum and average deviation of the material values between the 
iteration steps [150]. For this investigation, however, the exit criterion is set to a limit 
of 4000 iterations to achieve fully converged results in order to get a meaningful 
comparison of the algorithms used. 
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4.3.1.2 Numerical results 

Summarizing the results obtained in no-load condition of the two approaches, the 
computed magnetization currents and the eddy-currents are first presented to point 
out that both the separated and the combined method yield equally accurate results. 

 

 
Fig. 4.13: Magnetization current in no-load condition over one time-period. 

 

 
Fig. 4.14: Eddy-currents in the right tank wall in no-load condition over one time-period. 

 
In Fig. 4.13, the magnetization currents computed by both methods with the 

transformer in no-load condition are plotted over one time-period. In Fig. 4.14 the 
eddy-currents occurring in the right tank wall are plotted over one time-period. 
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Comparing these results, it is observable that after a maximum of 4000 nonlinear 
iteration steps the solutions of the separated and combined approach are the same. 
Thus one can see that both methods converge to an identical result. 

To arrive at a meaningful comparison, the relative error of the current in each 
nonlinear iteration step in the eddy-current domain, as well as the error of computed 
eddy-current losses in the right tank wall of both methods are evaluated. 

 

 
Fig. 4.15: Relative error of the deviation of combined and separated method in each iteration step. 

 
The plotted graph in Fig. 4.15 shows the relative difference of the computed eddy-

currents of the two methods in each nonlinear iteration step normalized to the last 
solution of the combined equation system. As it can be seen, in the first iteration 
steps the calculated currents are significantly different due to the disparity in the 
solving approaches. This discrepancy is getting less for a higher number of iterations 
due to the fact that both methods converge to the same results. 

To establish the necessary number of iterations for convergence in the computed 
quantities in comparison of the two methods, the eddy-current losses in the right tank 
wall are monitored. This evaluation can be directly associated with the computational 
time consumption of the applied magnetic-circuit algorithms and hence hereinafter 
considered in the nonlinear 3D FEM formulation. 
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Fig. 4.16: Validation of the relative error of the eddy-current losses in the tank wall in each time-step. 

 
The relative deviation of the eddy-current losses in the steel tank of the 

transformer are plotted in Fig. 4.16 in each nonlinear iteration step normalized to the 
last solution of the harmonic balance fixed-point iteration of the combined equation 
system. It is evident that the combined solution method needs approximately a third 
as many iterations to converge as the separated method. In practice, an accuracy of 
10-2 (%) of error, would be acceptable for a meaningful result. With this assumption, 
the combined method needs about 250 iterations whereas the separated method needs 
500 iterations to achieve this error value. Evaluating the condition number of the 
system matrix of the two algorithms, the condition number for the separated system 
of 940 and for the combined system the condition number is 2·108. The significantly 
better condition number of the separated equation system leads to the suspicion that, 
in case of a 3D FEM analysis, the computational costs due to the higher number of 
iteration steps of the separate method can be counterbalanced by the lower number of 
CG-iterations needed due to the better condition number. Hence further 
investigations will be done to assess the elapsed time of both approaches for the 3D 
FEM case. These results are summarized in chapter 6. 
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4.3.1.3 Conclusion 

The motivation of this initial investigation by means of the magnetic circuit 
approach has been to compare two solution strategies of the nonlinear equation 
system. As it has been demonstrated, both methods are qualified for nonlinear 
computation and, comparing the final solutions, the methods are equally good. The 
idea of extracting the excitation equations from the system matrix is to arrive at a 
better conditioned matrix. However, in the combined method, the number of 
iterations to achieve a sufficiently accurate result is considerably less than in the 
separated method. As a matter of fact, this reveals a major benefit of using the 
combined method. 

This study provides the basis of considering these formulations in the 3D FEM 
approach for further investigations (see chapter 6). 

4.3.2 Comparison of two different potential formulations with 
respect to the fixed-point technique applied 

The aim of this investigation is to compare the convergence behavior of a Finite-
Element-Method approach for solving nonlinear three-dimensional periodic eddy 
current problems using the T,ϕ-ϕ-formulation and the A,V-A-formulation derived in 
sub-section 2.2.4. Hence, to facilitate a quick comparison, the formulations are 
adapted to a nonlinear magnetic circuit problem according to the previous definitions 
in section 4.2. 

The problem setup for this investigation is the same benchmark transformer 
model as introduced in 4.3.1.1. For a meaningful comparison, two different ways to 
set up the equation system of the circuit model are considered: One for the analysis 
involving a magnetic vector potential (corresponding to the A,V-formulation see 
4.2.2) and a second one using a current vector potential and a magnetic scalar 
potential (corresponding to the T,ϕ-ϕ-formulation see 4.2.1). The focus in developing 
the nonlinear magnetic circuit model was to derive differential equations as close as 
possible to the 3D FEM partial differential equations. Both formulations are 
evaluated using the HBFP. This comparison should point out the benefits of the two 
formulations. The results of this investigation have been presented at a conference, 
see [120]. 
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4.3.2.1 Magnetic circuit models 

The nonlinear circuit model according to the T,ϕ-ϕ-formulation has been derived 
in the previous sub-section 4.3.1.1 and is illustrated in Fig. 4.8. The equation system 
is solved in a combined way according to (4.24). 

Analogously, based on the considerations in sub-section 4.2.2 the transformer 
model presented in 4.3.1.1 can be represented by a simplified equivalent nonlinear 
magnetic circuit model corresponding to the A,V–formulation. The circuit model 
obtained hence is drawn in Fig. 4.17. 

 

 
Fig. 4.17: Equivalent magnetic circuit model corresponding to the A,V-formulation. 

 
The main difference to the T,ϕ-ϕ-formulation is that the field in the magnetic 

branches is determined by the adjacent cycle basis corresponding to the magnetic 
vector potentials. The conductivity has to be considered when the cycle basis 
includes eddy current domains. 

Due to symmetry, one half of the transformer has been modeled only, and the coil 
energized includes the magnetic branches “Air1” and “Air2” and the magnetic 
branch for the iron core as shown in Fig. 4.17. 

The assembly of the equation system using the A,V-formulation is identical to the 
T,ϕ-ϕ-formulation described earlier. The discrete curl operators (4.6) and (4.7) are 
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utilized to create a connection between the branch and the cycle spaces resulting in a 
matrix of the size [7 x 11] for the first discrete curl operator according to the length 
of the magnetic branches and [11 x 7] for the second operator summing up the 
inverse of the cross-sections of the corresponding magnetic branches as illustrated in 
Fig. 4.17. As the circuit model contains seven basic cycles corresponding to the 
unknown magnetic vector potentials A, this is also the number of equations to be 
solved. 

The parameters of the magnetic branches are given in TABLE 4.1 and the main 
parameters of the transformer are given in TABLE 4.3. The exit criterion is again set 
to a number of 4000 nonlinear iterations to achieve fully converged results. In the 
HBFP technique, up to 11th odd harmonics are again considered to obtain the 
computational results. 

In accordance with the results of the investigations in 4.3.1, a combined equation 
system has been used in the present comparison. The equation systems of the 
simplified magnetic circuit formulations solved by the HBFP technique are (4.24) for 
the T,ϕ-ϕ-formulation and (4.34) for the A,V-formulation. 

4.3.2.2 Presentation of the results 

The computed currents are first investigated and compared. The final results for 
the magnetization current illustrated in Fig. 4.18 and the eddy-current in the right 
tank wall drawn in Fig. 4.19 after a maximum of 4000 iterations are the same for the 
two formulations. Thus one can see that both methods converge to identical results. 
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Fig. 4.18: Comparison of the magnetization currents corresponding to the T,ϕ-ϕ- and A,V-formulation 

after a maximum of 4000 iterations. 
 

 
Fig. 4.19: Comparison of the eddy-currents of the T,ϕ-ϕ- and A,V-formulation after a maximum of 

4000 iterations. 
 

The relative deviation normalized to the converged solution of the fixed-point 
iteration of each formulation of the eddy-current in each iteration step has been 
investigated and plotted in Fig. 4.20. As one can see, both formulations lead to the 
same result but it is also obvious that in case of the T,ϕ-ϕ-formulation the current 
converges slower to the final solution than in the A,V-formulation. 
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Fig. 4.20: Relative error of the eddy-currents in each iteration step normalized to the last solution of 

the fixed-point iteration for each formulation. 
 

To compare the number of iterations necessary for convergence of the computed 
values, the eddy-current losses in the tank are also monitored. 
 

 
Fig. 4.21: Validation of the relative error of the eddy-current losses in the steel tank in each iteration 

step normalized to the last solution of the fixed-point iteration for each formulation. 
 

The relative losses caused by the eddy-currents in the tank in each iteration step 
normalized to the converged solution of the fixed-point iteration are shown in 



4.3 Numerical investigations 4 Design of nonlinear magnetic circuit models 
 

96 
 

Fig. 4.21. One can see that the A,V-formulation needs approximately a third as many 
iterations to converge as the T,ϕ-ϕ-formulation. At the same time, the conditioning of 
the system matrix with a condition number of 943 is better for the latter formulation 
than the condition number of the A,V-formulation with a value of 29588. For an 
industrial problem an error threshold of 10-2 (%) would be enough to achieve a 
meaningful computational result for the losses. 

4.3.2.3 Conclusion 

The motivation of this study has been to compare two formulations for solving 
nonlinear periodic eddy-current problems. In fact, the solutions obtained by the 
methods are in good agreement. It turns out that the A,V-formulation as magnetic 
circuit problem needs less nonlinear iterations for convergence. This is an advantage 
for computation of magnetic circuit models. 

It seems that the A,V-formulation has its benefits in the present case. In the 3D 
case one can expect that the advantage of faster convergence is overruled by the 
higher number of unknowns compared to using the T,ϕ-ϕ-formulation. In this case, 
the T,ϕ-ϕ-formulation is advantageous, since it uses a magnetic scalar potential in 
non-conducting domains and node based basis functions instead of a magnetic vector 
potential and edge based basis functions in the A,V-formulation resulting in a higher 
number of unknowns. In 3D real world problems, it is not possible to use direct 
solvers and, using iterative methods, the computational time is highly affected by the 
condition number of the equation system resulting from the used formulations. Due 
to this fact, the T,ϕ-ϕ-formulation can lead to a faster convergence in 3D problems. 
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5 Comparison of different solution 
techniques 

5.1 Introduction 

The focus of this investigation is to compare different finite element method 
approaches applied to nonlinear, 3-dimensional eddy-current problems. Hence, the 
techniques considered allow achieving steady-state without performing a transient 
procedure thus a quick field calculation considering higher harmonics is enabled. 
Such a procedure is highly recommended in case of transformer problems with the 
system reactance being much larger than the resistance resulting in time constants 
substantially exceeding the time period. Consequently it is important to avoid time 
stepping which would cost a lot of computational time [94] which will be pointed out 
in sub-section 5.3.3.2. With this issue in focus, a comparison of two techniques by 
solving a typical transformer problem with time-periodic conditions is executed. 

An efficient technique known from the literature to solve nonlinear time-periodic 
eddy current problems is the so-called parallel time periodic finite element method 
(parallel TPFEM) [107, 109, 160, 178]. It has been proposed by the group of 
Professor Yasuhito Takahashi from the Doshisha University in Japan. A co-operation 
between this Japanese group and the Institute of Fundamentals and Theory in 
Electrical Engineering (IGTE) has made it possible to carry out investigations in 
order to compare the fixed-point techniques studied in this thesis with the parallel 
TPFEM. 
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Especially, the harmonic balance fixed-point technique (HBFP) [149, 156] 
presented in sub-section 2.3.3.3 and the time periodic fixed-point technique (TPFP) 
described in sub-section 2.3.3.4 [78, 82, 147] have been investigated in this 
comparison. Various excitation patterns of the transformer problem defined in sub-
section 4.3.1.1 have been defined in order to explore the properties of the different 
approaches. The resulting problems have been solved by the parallel TPFEM as well 
as the two fixed-point techniques 

Due to the differences in the established solvers of the Japanese and Austrian 
groups, the formulations used and the element orders are different. However, in order 
to achieve a meaningful comparison, the discretization has been selected to lead to an 
approximately same number of unknowns in both cases. The numerical results of the 
topic under investigation have been published in [115, 117]. 

5.2 FEM formulations 

5.2.1 Parallel time-periodic finite element method (parallel 
TPFEM method) 

The parallel TPFEM method [107, 109, 160, 178] uses the A,V-formulation to 
solve Maxwell’s equations. Applying Galerkin techniques to the resulting 2nd order 
partial differential equations leads to the nonlinear ordinary differential equation 
system (2.77) derived in sub-section 2.2.4.1. 

For simplicity, the backward Euler method is adopted for the time integration 
scheme applied to (2.77). 1st order finite elements are implemented in this technique 
since they lead to highly sparse system matrices and a relatively low number of 
degrees of freedom. Taking into account time periodic conditions for a full- or half-
time-period, it is sufficient to discretize a full time-period or a half time-period into n 
time-steps and, taking advantage of i i nx x += ± , the nonlinear equations for a full- or 
half-period can be written as 
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Δt is the time interval, the subscript indicates the time step, and the signs −  and +  in 
(5.1) correspond to either a full time-period condition or a half time-period condition. 
The large nonlinear system of equations (5.1) is solved by using parallel computing 
with pure message passing interface (MPI) programming. 

Utilizing the Newton-Raphson (NR) method [31, 63, 151, 179] as linearization 
technique, the equation system can be written as 
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where Δxi is the increment of xi and Gi denotes the residual. To solve the 
non-symmetric linearized system (5.2), the BiCGstab2 method is applied which has 
been found to be the fastest among several Krylov subspace methods tested [160] 
and the localized ILU(0) preconditioning where a preconditioner matrix is generated 
out of the block diagonal parts of the coefficient matrix [138, 140, 180]. To stabilize 
the convergence of the inexact NR method, the line search technique based on the 
minimization of an energy functional is applied [59, 181, 182]. A detailed 
explanation of the technique for solving (5.2) is given in [107]. Each block in the 
matrix system (5.2) has as many equations as degrees of freedom dictated by the 
geometry, hence each BiCGstab2-iteration is executed for all unknowns in space at 
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each time instant. A major benefit of this method is that the entries in the system 
matrices are real values. 

5.2.2 Harmonic balance fixed-point technique (HBFP method) 
In case of the harmonic balance fixed-point method, 2nd order finite elements are 

implemented (see 2.2.3) as a standard discretization of the FEM solver used. 
Applying Galerkin techniques to the differential equations resulting from the T,ϕ-ϕ-
formulation, one obtains a system of nonlinear, ordinary differential equations (2.92) 
as introduced in sub-section 2.2.4.3. 

Using the HBFP technique, the equation system to solve becomes 
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as explicitly derived in sub-section 2.3.3.3. The equation system in (5.4) is decoupled 
in each nonlinear iteration step and each harmonic solution is solved parallel, a 
feature leading to a substantial saving of computational time. 

5.2.3 Time periodic fixed-point technique (TPFP method) 
Alternatively to the HBFP method, the time periodic fixed-point technique is 

implemented as a solution strategy in the FEM solver used. In these investigations, 
the TPFP method is applied to the A,V-A-formulation leading to a nonlinear ordinary 
differential system of equations. Linearization with the fixed-point technique and 
executing a discrete Fourier transformation developed in detail in sub-section 2.3.3.4 
results in the system to be solved: 
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The system in (5.5) contains symmetric block diagonal matrices and block vectors 

relating to all time values indicated with the notation [1]. The equations in (5.5) are 
decoupled in each nonlinear iteration step and each harmonic solution is solved 
parallel. 
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For both the HBFP and the TPFP method, the nonlinear iterations for solving the 

linearized system of equations are terminated once the change of the permeability or 
the reluctivity within two iteration steps becomes less than a suitable limit. Once 
these parallel computations are completed, the right hand side of the next iteration 
can be determined by first computing the time-function and then carrying out the 
Fourier decompositions. The entries in the system matrices obtained are complex; 
hence the computational handling is somewhat more expensive than for the parallel 
TPFEM method. 

5.3 Numerical investigations 

The above finite element formulations are compared using the basic transformer 
benchmark problem introduced in sub-section 4.3.1.1. 

In a first approach, the parallel TPFEM developed by the Japanese group of 
Professor Yasuhito Takahashi is compared to the HBFP technique. A major issue of 
this validation has been the difference in the adopted potential formulations since, at 
the time of these first investigations, voltage excitation was only implemented for the 
T,ϕ-ϕ-formulation but not for the magnetic vector potential formulation when 
realizing the TPFP or the HBFP technique. Nevertheless the numerical results are 
valuable in validating the techniques and therefore discussed in the sub-section 5.3.2. 

Second, the parallel TPFEM has been compared to the TPFP technique. To 
eliminate the significant difference in the formulations used, the TPFP technique was 
adapted by implementing voltage excitation for the coils in the solver. A remaining 
disparity between the techniques is in the order of the finite elements: the parallel 
TPFEM uses 1st order elements and the HBFP as well as the TPFP are utilizing 2nd 
order elements. To enable a meaningful comparison, a compromise of the finite 
element meshes has been found. On the one hand, the aim was to construct the finite 
element meshes as close to each other as possible. On the other hand, the 
discretization of the problem domain shows some intended differences to guarantee 
an almost equal number of non-zero entries of the system matrices in the two cases. 
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5.3.1 Problem definition 
The problem of interest is a single phase transformer modelled as a benchmark 

problem as earlier defined in the magnetic circuit evaluation in 4.3.1.1. By design, 
the transformer is enclosed by a highly permeable steel tank to ensure a nonlinear 
eddy- current problem. 

Half of the primary and of the secondary winding are wound around each limb 
with the two halves connected in series. Inspired by practical applications, the 
transformer primary winding is voltage driven. The voltage excitation of the coils is 
a sine-function and implemented as described in 2.1.3 according to [85]. 
Nonlinearity is also taken into account in the highly permeable transformer core. The 
main parameters of the transformer are given in TABLE 5.1. 
 

TABLE 5.1: Main parameters of the transformer 

Values Unit Windings 
Primary Secondary 

Voltage URMS V 6600 - 
Resistance of the winding R Ω 21.7 0.0163 
Load resistance RL Ω - 2.2 
Number of turns  N - 1886 60 
Frequency f Hz 50 
 

The parameters in the table are URMS, the root mean square value of the excitation 
voltage, R denotes the resistance of the windings, RL is the load resistance connected 
in series to the secondary winding. N represents the number of turns and f is the 
operating frequency. 

Since the excitation of the coils is time dependent, the resulting time varying 
magnetic field causes eddy-currents in the highly permeable, conductive metal 
housing and hence additional losses. These eddy-current losses are to be investigated. 

The materials of the iron core as well as of the tank walls are characterized by two 
different magnetization curves. These are shown in Fig. 4.11 and Fig. 4.12 (see 
page 87). 
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5.3.2 Parallel TPFEM technique compared to the HBFP method 
In the first stage of the comparison, voltage excitation in the FEM solver used was 

only implemented in conjunction with the T,ϕ-ϕ-formulation in combination with the 
harmonic balance fixed-point technique. This investigation focuses on the 
performance of the parallel TPFEM technique adopting the Newton-Raphson 
linearization algorithm in comparison to the HBFP method utilizing the fixed-point 
linearization scheme. Due to the difference in the potential formulations used, the 
finite element mesh was modified to provide an almost equal number of unknowns 
and non-zero entries in the matrix-system. Hence a meaningful comparison has 
become feasible. 

By taking symmetry planes into account, the FEM model can be reduced to an 8th 
of the actual transformer. The FE-models used are drawn in Fig. 5.1 and Fig. 5.2. 
 

 
Fig. 5.1: Eighth of the FE transformer model for 

the parallel TPFEM. 

 
Fig. 5.2: Eighth of the FE transformer model for 

the HBFP. 
 

With the A,V-formulation used, the coils have to be modelled by the finite 
elements whereas with the T,ϕ-ϕ-formulation, the coils need not to be included in the 
mesh. To be closer to the parallel TPFEM, the mesh was adapted in the HBFP as 
well to consider the coil geometry. 
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5.3.2.1 Comparison of the numerical results 

The deviations of some quantities, i.e. the relative differences of the results 
obtained by the two methods have been investigated. Due to voltage excitation, the 
current of each winding has to be calculated numerically. The primary and the 
secondary currents of the transformer are practically sinusoidal as illustrated in 
Fig. 5.3. 

 

 
Fig. 5.3: Time-function of the computed currents over one time period. 

 
The deviations normalized by the maximum of the current value of the HBFP 

method are shown in Fig. 5.4, plotted over one time period in logarithmic scale. 
 

 
Fig. 5.4: Comparison of the deviation of the computed currents of the coils. 
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Further on, the losses in the housing of the transformer were investigated. In 

Fig. 5.5 the deviations of the losses are shown normalized with the maximum loss 
value of the HBFP method and plotted over one time-period. 
 

 
Fig. 5.5: Deviation of the computed eddy-current losses of the formulations in the tank. 

 

 
Fig. 5.6: Comparison of the time-functions of the computed eddy-current losses over one time-period. 
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In Fig. 5.6 the time-functions of the eddy-current losses are plotted over one time 
period. The effects of the even harmonics in the losses resulting from the odd 
harmonics in the current are clearly visible in the wave form. 

For the computation with TPFEM, 32 time-steps were used for a full time-period 
T of 0.02 seconds. In case of the HBFP, odd harmonics up to the 7th were considered 
as sufficiently accurate in this investigation. The deviation is mostly related to the 
number of time steps used and to the number of harmonics taken into account. 

 

 
Fig. 5.7: Distribution of the magnetic flux density 
of the iron core and the tank wall according to the 

parallel TPFEM at time instance t=T. 

 
Fig. 5.8: Distribution of the magnetic flux density 
of the iron core and the tank wall according to the 

HBFP at time instance t=T. 
 
Illustrated in Fig. 5.7 and Fig. 5.8 are the computed results of the magnetic flux 
density distribution in the iron core and the tank wall at the time t=T, where the load 
currents are almost zero, but due to the sinusoidal voltage excitation in the primary 
coil the peak flux in the core is present. The distributions obtained by the two 
methods agree well with the average flux density in the core being 1.388 (T) for the 
parallel TPFEM and 1.347 (T) according to the HBFP technique. 

As a stopping criterion of the parallel TPFEM, the iteration is terminated when the 
normalized residual of the nonlinear equations is less than 10-2. 

As exit criterion for the BiCG, the tolerance was set to 10-4. If the change in the 
flux density is less than 10-2 (T) for each element at every time step, the NR-iteration 
is terminated in the parallel TPFEM. In case of the HBFP the exit criterion of the 
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iteration is set to 1 (%) for the mean and 3 (%) for the maximum change of the 
permeability. The computation has been performed for the HBFP on an Intel Xeon 
E5-2687W using 16 CPU´s. In case of the TPFEM, the MPI was reduced to a single 
node that is similar to the system used for the HBFP computation. The computational 
data are given in TABLE 5.2. 
 

TABLE 5.2: Overview of numerical data 
Values Parallel TPFEM HBFP 

No. of unknowns 350,141 per time-step 324,538 per harmonic 
No. of non-zero coefficients 17,968,949 per time-step 19,439,494 per harmonic 
No. of BiCGstab2 iterations 6,872 - 
No. of BiCG iterations - 14,898 
Gaussian points in FE 3x3x3 3x3x3 
Computational time in (s) 2,026.0 2,352.6 
No. of nonlinear iterations 20 19 
Order of finite elements 1st 2nd 
No. of computed time-steps 16 odd harmonics up to the 7th 
 

As it is observable in TABLE 5.2, the number of unknowns and the number of 
non-zero entries in each time-step in the matrix system are adjusted to be as close as 
possible. Hence it was possible to provide a suitable basis for a meaningful 
evaluation of the computational costs of each formulation. 

5.3.2.2 Conclusion 

In this validation, the solutions obtained by the methods introduced agree well, 
validating both methods. However, the methods are too different for an exact 
comparison. For further investigation the methods have been extended by the 
missing formulations. 

5.3.3 Parallel TPFEM technique compared to the TPFP method 
To eliminate the major mismatch in the methods of the previous investigations 

due to the difference in the potential formulations used, the voltage excitation has 
been implemented in the A,V-formulation of the time periodic fixed-point technique 
introduced in sub-section 2.3.2. However, the discrepancy in the element orders has 
not been resolved due to the complexity of the solver source code. Nevertheless, to 
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assess a meaningful comparison, the discretization of the finite elements has been 
selected to obtain approximately the same number of non-zero entries in both cases. 

The problem domain is the same as introduced in sub-section 5.3.1. Due to 
applying the A,V-formulation in case of the TPFP the finite element mesh has been 
adapted compared to the T,ϕ-ϕ-formulation used in sub-section 5.3.2. Taking 
advantage of symmetry planes in assembling the FE models the resulting problem 
domains are illustrated in Fig. 5.9 and Fig. 5.10, respectively. 

 

 
Fig. 5.9: Eighth of the transformer model utilized 

in the parallel TPFEM method. 

 
Fig. 5.10: Eighth of the transformer model 

utilized in the TPFP method. 
 

5.3.3.1 Comparison of the numerical results 

The results obtained are evaluated in the same manner as for the previous 
investigation, i.e. the deviations of some quantities of interests of the different 
solution algorithms are compared. The deviations of primary and secondary currents 
are illustrated in Fig. 5.11 where the results are normalized to the maximum current 
value obtained by the TPFP method and plotted over one time-period in logarithmic 
scale. The winding currents are practically sinusoidal and drawn in Fig. 5.12 for both 
methods and for the primary and secondary winding, respectively. 
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Fig. 5.11: Comparison of the relative deviation of the calculated currents normalized to the maximum 

current value of the TPFP method. 
 

 
Fig. 5.12: Time-function of the computed currents over one time-period. 

 
Furthermore, the additional losses due to the induced eddy-currents in the housing 

of the transformer have been investigated. Illustrated in Fig. 5.13 is the relative 
deviation of the computed losses in the tank normalized to the maximum loss value 
obtained by the TPFP method and plotted over one time-period. 
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Fig. 5.13: Deviation of the computed eddy-current losses in the tank normalized to the maximum loss 

value according to the TPFP method. 
 
In Fig. 5.14 the time-functions of the eddy-current losses of both formulations are 

plotted over one time-period. The effects of the even harmonics in the losses 
resulting from the odd harmonics in the current are clearly observable in the wave 
form. A full time-period T of 0.02 seconds was discretized in 32 time-steps in both 
the parallel TPFEM and the TPFP technique. The computed losses are in a good 
agreement for the two formulations. 

 

 
Fig. 5.14: Comparison of the time-functions of the computed eddy-current losses in the tank over one 

time-period. 
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Comparing the resulting magnetic flux density distribution, the formulations agree 
well as shown in Fig. 5.15 and Fig. 5.16. As the maximum core flux density occurs at 
the time instance t=T due to the excitation voltage being a sine-function, this case 
has been chosen for illustration. An average flux density of 1.388 (T) has been 
computed in the core by both the parallel TPFEM and the TPFP, just the color scale 
is somewhat different. 

 

 
Fig. 5.15: Distribution of the magnetic flux 
density in the iron core and the tank wall 

according to the parallel TPFEM method at t=T. 

 
Fig. 5.16: Distribution of the magnetic flux 
density in the iron core and the tank wall 

according to the TPFP method at t=T. 
 

TABLE 5.3: Overview of numerical results 

Values Parallel TPFEM TPFP 

No. of unknowns 350,141 per time-step 299,602 per discrete 
harmonic 

No. of non-zero coefficients 17,968,949 per time-step 17,997,957 per discrete 
harmonic 

No. of BiCGstab2 iterations 6,872 - 
No. of BiCG iterations - 25,161 
Gaussian points in FE 3x3x3 3x3x3 
Computational time in (s) 2,026.0 1,925.7 
No. of nonlinear iterations 20 14 
Order of finite elements 1st 2nd 
No. of computed time-steps 16 time-steps 8 discrete harmonics 
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The computational results are summarized in TABLE 5.3. In case of the parallel 

TPFEM, the BiCGstab2 iteration method is applied and terminated if the normalized 
residual of the nonlinear equations is less than a threshold of 10-2. Furthermore, the 
Newton-Raphson iteration is terminated if the change in the magnetic flux density is 
less than 10-2 (T) for each element at every time-step. Using the TPFP, the exit 
criterion for the BiCG method, was set to the value of 10-6. The nonlinear iterations 
of the fixed-point technique are terminated once the mean change of the magnetic 
permeability is less than 1 (%). The computational hardware was the same as for the 
investigations in sub-section 5.3.2. The chosen exit criteria of the iteration methods 
are appropriate to yield a good agreement in the results. 

5.3.3.2 Transient approach 

To point out the necessity of the formulations introduced to obtain steady-state 
solutions without performing a step by step approach, a comparison to a transient 
computation has been carried. The transient computation was carried out for 20 time-
periods, and still the results have not converged to the steady-state solution and the 
elapsed computational time is very high in comparison to the methods introduced. 
This transient evaluation has been performed by both groups leading to identical 
results. Hence the solutions obtained by the Austrian-group (IGTE) are presented as 
a comparison to the time-periodic result of the TPFP only. 

 

TABLE 5.4: Overview of the results of the transient computation 

Values Austrian-group (IGTE) 
Number of periods 20 
Computational time in (s) 272808.8 
Number of calculated time-steps 640 
 

The most significant results of the transient computation are summarized in 
TABLE 5.4. Taking a look at the computational time of the transient solution in 
TABLE 5.4 compared to the elapsed time for the time-periodic solutions given in 
TABLE 5.2 and TABLE 5.3 the advantage of the presented methods is obvious. As 
mentioned before, after 20 computed time-periods resulting in 640 time-steps the 
eddy-current losses in the steel tank are still not converged as it can be seen in 
Fig. 5.17. 
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Fig. 5.17: Time-function of transient computed eddy-current losses after 20 time-periods. 

 
To see that after 20 time-periods the losses are still not converged in the transient 

analysis, a close up of the last two time-periods is plotted in Fig. 5.18. It is clearly 
visible that the deviation to the time-periodic solution illustrated in Fig. 5.14 is 
significant. The result of the transient solution is practically not usable. Furthermore, 
it is observable that the deviation of the maximum loss value from the previous time- 
period to the next is about 10 (%). Thus it is evident that to achieve steady-state 
many more time-periods would have to be computed. 

 

 
Fig. 5.18: Last two time-periods of the eddy-current losses of the transient analysis. 

 
The time-function of the calculated primary current in the transient analysis is 

plotted over 20 time-periods in Fig. 5.19. Similarly to the losses, the primary current 



5.3 Numerical investigations 5 Comparison of different solution techniques 
 

114 
 

is still not fully converged to the steady-state solution and it is clear that the 
convergence is very slow. 

 

 
Fig. 5.19: Time-function of the transient primary current over 20 time-periods. 

 
To point out the mismatch in the primary currents when comparing the last 

computed time-period of the transient solution to the steady-state solution of the 
TPFP, the current wave forms are illustrated in Fig. 5.20, where it can be seen that 
the inrush effect of the transient current is still present. 

 

 
Fig. 5.20: Comparison of the computed primary currents of the last period in the transient solution and 

the steady-state solution in the TPFP. 
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Considering the current in the secondary winding in the step by step analysis, the 
result is drawn in Fig. 5.21. The secondary current has almost fully converged after 
20 time-periods representing a sinusoidal behavior as expected. 

 

 
Fig. 5.21: Time-function of the secondary current in the transient case plotted over 20 time-periods. 

 
The last computed time-period of the transient secondary current solution is 

compared to the steady-state solution of the TPFP and illustrated in Fig. 5.22. The 
calculated current values are almost matching. 

 

 
Fig. 5.22: Comparison of the last computed time-period of the computed secondary current in the 

transient approach and the steady-state solution of the TPFP. 
 
Just as a remark, a transient computation considering 190 time-periods (6080 

time-steps) was executed with the result that the primary current has almost 
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converged to a sinusoidal wave form but the eddy-current losses in the tank are still 
not converged to the steady-state solution. The elapsed time of this computation 
consumed 1,192,869 seconds. 

5.3.3.3 Conclusion 

Summarizing this investigation, the TPFP method utilizing the A,V-formulation 
was adapted by implementing the voltage excitation to obtain a better basis of 
validation. In case of the parallel TPFEM, all the nonlinear iterations for each time 
steps for a half-time-period are simultaneously solved. If using one process only, the 
computational cost is extremely high due to the large system of equations having to 
be treated. However, the parallel TPFEM can provide large granularity in parallel 
computing even in 2-D problems. Hence, for the purpose of fully exploiting the 
efficiency of the TPFEM it is essential to apply parallel computation environment. 
As nonlinear iteration method, the parallel TPFEM uses the Newton-Raphson (NR) 
technique. The convergence rate of the NR technique is theoretically superior to the 
fixed-point approach but, varying the fixed-point parameters, the convergence rate of 
the TPFP can be increased. A benefit of the parallel TPFEM lies in the entries in the 
system matrices being real values needing less numerical effort compared to the 
complex entries in the system matrices of the TPFP. However, the coefficient matrix 
of the parallel TPFEM is non-symmetric; therefore, a linear iterative solver for non-
symmetric coefficient matrices has to be used. This is less efficient than the CG 
method. The TPFP technique is based on symmetric coefficient matrices hence the 
classical BiCG can be used. The results acquired by the formulations introduced 
agree well, validating both techniques for determining periodic steady-state 
solutions. When comparing the proposed methods to the step by step approach, the 
benefit is evident. In case of the transient method it would be necessary to consider 
many more time-periods to achieve convergence to the steady-state solution. The 
elapsed time of the transient method is not competitive to the time-periodic 
computations. 
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6 Comparison of FEM-techniques 
involving voltage driven coils 

In order to be as close as possible to problems arising in practice, the FEM solver 
utilized has been adapted to enable voltage excitation as discussed in sub-section 
2.1.3 for the time-periodic solution strategies HBFP and TPFP introduced in sub-
sections 2.3.3.3 and 2.3.3.4. The additional equation to consider the voltage source 
has been implemented for the potential formulation involving a magnetic vector 
potential and electric scalar potential (A,V-A-formulation) as introduced in section 
2.2.4.1 with the equation system detailed in (2.78)-(2.84) as well as for the potential 
formulation utilizing a current vector potential and a magnetic scalar potential 
(T,ϕ-ϕ-formulation) derived in section 2.2.4.3 with the resulting equation system 
written in (2.93)-(2.101). This chapter focuses on the numerical treatment of the 
equation systems under consideration of the fixed-point linearization technique. 
Convergence investigations of the methods have been executed by treating a 3D 
nonlinear periodic eddy-current problem. Furthermore, a comparison of the different 
fixed-point techniques using either the magnetic vector potential formulation or the 
current vector potential formulation has been carried out. 
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6.1 Treating the voltage equations with the 
T,ϕ-ϕ-formulation 

To validate the results of the previous investigations on a nonlinear magnetic 
circuit model in sub-section 4.3.1.1, the scope of the research has been extended to a 
nonlinear 3D FEM problem. The aim of this study is to improve the convergence of 
techniques based on the finite element method for solving nonlinear 3D periodic 
eddy-current problems. The type of problem involves voltage-driven coils and the 
formulation applied uses a current vector potential and a magnetic scalar potential 
(T,ϕ-ϕ-formulation). The best way to treat the additional equations accounting for the 
voltage excitation is to be established. Two techniques are investigated: the so called 
“separate method” and the “combined method”. When using FEM, the elapsed time 
for solving a problem is dominated by the process of iteratively solving the large 
linear equation systems arising. The motivation for treating the equations of the 
voltage excitations separately from the rest of the equation system is to achieve a 
better conditioned system matrix to determine the field quantities and hence a faster 
convergence of the CG process. However, preliminary investigations on the 
simplified magnetic circuit model indicate that the number of nonlinear iterations is 
significantly less using the combined method compared to the separated method. 
This is to be verified on a 3D transformer model with sinusoidal voltage excitation as 
formerly introduced in sub-sections 4.3.1.1 and 5.3.1. The outcome of this study has 
been presented at a conference, see [122]. 

6.1.1 Formulation of the “combined” and “separated” method 
To investigate how to treat the additional equation of the voltage source necessary 

for the determination of the coil current, the equation system derived in 2.3.3.3 for 
the HBFP method involving the current vector potential formulation (2.133) is 
applied. This method includes the voltage equation and can be written according to 
(2.93)-(2.101) as 
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Solving the equations in this form corresponds to the combined method. An 

alternative is to solve for the field quantities in the s-th iteration step using the 
currents from the previous iteration as 
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 (6.2) 

 
and excluding the excitation equations to update the current separately by solving 
 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 , , 1 , 1
0

s s T s T s s T s s
h

d d
dt dtµ µ µ µ φ+ + ++ = − + +R V i u g T g T h . (6.3) 

 
Equations (6.2) and (6.3) represent the separated method. The unknowns of the 

equation systems are approximated values with respect to the finite element method, 
constituting coefficients of edge based vector basis functions and node based scalar 
basis functions as defined in sub-section 2.2.1 in (2.65)-(2.71). 

6.1.2 Numerical results 
To assure a meaningful benchmarking of the formulations and comparison to the 

previous analysis, the applied problem of interest is not changed. The basic 
single-phase transformer introduced in 4.3.1.1 as a nonlinear magnetic circuit model 
as well as in 5.3.1 for the in comparison of different solution strategies is used again 
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to determine the convergence behavior of the combined and separated algorithms to 
solve nonlinear, periodic 3D FEM eddy-current problems. 

The basic transformer design is drawn in Fig. 4.7 where the highly permeable core 
and tank materials are represented by two different B-H curves illustrated in Fig. 4.11 
and Fig. 4.12. Due to symmetry, the finite element model incorporates one eighth of 
the actual transformer, as shown in Fig. 5.2. 

When applying the separate method, the permeability is initialized as a constant 
independent of time and the combined equation system (6.1) is solved in the 0th 
iteration step. With the results of this computation, the permeability μ is updated and 
used in the 1st iteration step. Thereupon, (6.2) is solved using the fixed-point 
technique to obtain the field quantities in the frequency domain utilizing the current 
values obtained in the previous iteration step. With the field quantities computed, 
(6.3) is solved iteratively in the time-domain to determine the new current values. 
Once the current is computed, the fixed-point iteration process is started again, until 
an appropriate exit criterion for convergence is satisfied. 

Alternatively, applying the combined method, the equation system in (6.1) is 
solved by means of the fixed-point technique for all harmonics in each nonlinear 
iteration step in the frequency domain, to acquire the unknown quantities. 

 

TABLE 6.1: Main attributes of the 3D FEM computations 

Values Unit HBFP 
T,ϕ-ϕ 

Order of elements - 2nd 
Gaussian points in FE - 3x3x3 
BiCG iteration exit criterion - 10-7 
Nonlinear iteration 
exit criterion 

avg. deviation of μ % 0.1 
max. deviation of μ 0.1 

Number of harmonics - Odd harmonics up to the 15th 
 

The attributes of the FEM computations are summarized in TABLE 6.1. The 
values of the exit criteria for the nonlinear iterations have been chosen to be 
extremely low to facilitate a better evaluation of the algorithms. For practical 
investigations it would not be necessary to define thresholds that low. Usually it is 
sufficient to set the normalized deviations of the permeability μ between two 
iteration steps to 1 (%) in average (avg.) and 5 (%) maximum (max.). The considered 
harmonics have been chosen to include odd harmonics up to the 15th. To guarantee a 
meaningful comparison, all computations were executed on the same workstation 
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equipped with an Intel Xeon E5-2687W - 8x3.10 (GHz) with 16 cores / 32 threads. 
To investigate the combined and separated solving algorithms, different load 
conditions have been applied to the secondary winding of the transformer. The main 
transformer parameters for the different load conditions are given in TABLE 6.2. 
Note, that contrary to the investigations in section 5.3, the resistance of the primary 
winding has been taken to be 0, since this is a good approximation of the real 
situation. 

 

TABLE 6.2: Main parameters of the transformer in different load-conditions 

Values Unit 
Windings 

Primary Secondary 
 No-load R-load I-load 

Voltage URMS V 6600 - - - 
Current IRMS A  - - 95.2 
Resistance of the winding R Ω 0 - 0.0163 - 
Load resistance RL Ω - - 2.2 - 
Number of turns  N - 1886 - 60 60 
Frequency f Hz 50 

6.1.2.1 Transformer in no-load condition 

In the first case, only the primary winding is excited with a sinusoidal voltage. 
The secondary winding is assumed to be open-circuited. The computational results 
are summarized in TABLE 6.3. 

 

TABLE 6.3: Computational data in no-load condition 

Values Unit HBFP using T,ϕ-ϕ formulation 
Separated Combined 

Eddy-current losses mW 116.832 123.304 
Number of DOF - 324,537 324,537 
Overall BiCG iterations / average - 532,595 / 372 435,448 / 260 
BiCG it. 1st harm in 1st nlit / last nlit - 772 / 383 710 / 151 
BiCG it. 3rd harm in 1st nlit / last nlit - 618 / 376 631 / 85 
BiCG it. 15th harm in 1st nlit / last nlit - 336 / 204 442 / 118 
Nonlinear iterations (nlit) - 179 210 
 

As one can see, there is a deviation of about 5 (%) in the eddy-current losses. 
Comparing the BiCG iterations of the different harmonics indicates that the separated 
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method has not converged even though the given exit criterion of the material has 
been reached. 

 

 
Fig. 6.1: Time-function of the computed magnetization current in no-load condition. 

 
Illustrated in Fig. 6.1 is the computed magnetization current or the transformer. 

The currents are in good agreement. 
 

 
Fig. 6.2: Time-function of the eddy-current losses in the steel tank in no-load condition. 

 
In Fig. 6.2, the time functions of the computed losses in the eddy-current domain 

are plotted over one time-period. 
It can be seen that both methods converge to the same results but the deviation is 

clearly visible. 
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Fig. 6.3: Relative error of the eddy-current losses in no-load condition. 

 
In Fig. 6.3 the computed eddy-current losses are normalized to the last solution of 

the fixed-point technique and plotted as an error function in each nonlinear iteration 
step. Also indicated with the vertical lines are the maximum material deviations for 
the permeability μ of 5 (%), 1 (%) and 0.5 (%) to illustrate the effect of the exit 
criterion on the error of the losses. In Fig. 6.3 it can be seen that the exit criterion in 
case of the separated method is not sufficient to obtain a converged result.  

6.1.2.2 Transformer in resistive-load condition 

In this load condition, a resistive load is attached to the secondary winding 
additionally to the secondary winding resistance. The results are summarized in 
TABLE 6.4. 

 

TABLE 6.4: Computational data in resistive-load condition 

Values Unit HBFP using T,ϕ-ϕ formulation 
Separated Combined 

Eddy-current losses mW 715.624 715.560 
Number of DOF - 324,538 324,538 
Overall BiCG iterations / average - 618,403 / 119 568,948 / 332 
BiCG it. 1st harm in 1st nlit / last nlit - 772 / 29 836 / 187 
BiCG it. 3rd harm in 1st nlit / last nlit - 473 / 82 710 / 178 
BiCG it. 15th harm in 1st nlit / last nlit - 175 / 69 630 / 123 
Nonlinear iterations (nlit) - 648 214 
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The computed primary current and secondary current of the transformer are 
practically sinusoidal as drawn in Fig. 6.4. 
 

 
Fig. 6.4: Comparison of the computed current time-functions of both formulations. 

 

 
Fig. 6.5: Time-function of eddy-current losses in resistive-load condition. 

 
In Fig. 6.5 the eddy-current losses are plotted over one time period. The effects of 

the even harmonics in the losses resulting from the odd harmonics in the current are 
clearly visible in the wave form. The relative error of the eddy-current losses is 
plotted in Fig. 6.6 with specific-material deviations indicated. The fact that the 
combined method converges faster to the computed losses with a suitable error is 
even more dominant than in the previous load scenario. 
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Fig. 6.6: Relative error of eddy-current losses in resistive-load condition. 

 
Comparing the results of the CG iterations in TABLE 6.4 for the first and third 

harmonics in the first and last nonlinear iteration step, one can see the benefit of the 
better conditioned system matrix in the separate method but due to the slow 
nonlinear convergence this advantage is not effective in the overall solution. 

6.1.2.3 Transformer in current-load condition 

In this load condition, current excitation is applied to the secondary winding with 
the current derived in the previous simulation with a resistive-load. The results are 
given in TABLE 6.5. 
 

TABLE 6.5: Computational data in current-load condition 

Values Unit HBFP using T,ϕ-ϕ formulation 
Separated Combined 

Eddy-current losses mW 719.968 722.616 
Number of DOF - 324,537 324,537 
Overall BiCG iterations / average - 381,032 / 92 334,728 / 151 
BiCG it. 1st harm in 1st nlit / last nlit - 779 / 3 582 / 24 
BiCG it. 3rd harm in 1st nlit / last nlit - 443 / 3 553 / 78 
BiCG it. 15th harm in 1st nlit / last nlit - 131 / 1 455 / 67 
Nonlinear iterations (nlit) - 519 277 
 

The computed primary currents due to voltage excitation of the primary winding 
are sinusoidal as expected and are identical for both separated method and combined 
method. The time-functions are compared in Fig. 6.7. 
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Fig. 6.7: Time-function of the calculated primary currents in current-load condition. 

 

 
Fig. 6.8: Time-function of eddy-current losses in current-load condition. 

 
In Fig. 6.8 and Fig. 6.9 the same effects as in the previous load condition can be 

observed. Both methods converge to the same results but the separated method has a 
very slow convergence of the computed losses. 
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Fig. 6.9: Relative error of eddy-current losses in current-load condition. 

 

6.1.3 Conclusion 
Concluding this investigation, both methods converge to the same results. Indeed, 

the accuracy of the computational results could be increased by considering a higher 
number of the discrete time-steps in the Fourier transformation. However, increasing 
the number of discrete time-steps leads to a rise in the computational costs but 
doesn´t affect the conclusion that, in this application, the combined method shows 
clear benefits.  

Compared to the investigations executed with a magnetic circuit model in sub-
section 4.3.1, the better conditioned matrix of the separated method has less impact 
in the 3D FEM case than expected. However, the number of nonlinear iterations of 
the two methods shows similar relations as in the circuit investigations. 

In conclusion, the combined method will be used as standard solution strategy for 
further evaluations. 

6.2 Varying the FEM-formulations 

To explore the benefits of different finite element formulations for solving 
nonlinear, three-dimensional periodic eddy-current problems with the focus on 
determining the steady-state solutions only, different potential formulations have 
been compared when utilizing either the harmonic balance fixed-point (HBFP) 
technique or the time periodic fixed-point (TPFP) technique. 
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The comparison involves voltage excited coils and different load conditions 
applied to the same benchmark model based on the 3D transformer model with 
sinusoidal excitation used earlier. The formulations for this investigation involve a 
magnetic vector potential and an electric scalar potential (A,V-A-formulation – see 
2.2.4.1) on the one hand as well as a current vector potential and a magnetic scalar 
potential (T,ϕ-ϕ-formulation – see 2.2.4.3) on the other hand. Various operating 
conditions of the transformer model are simulated to get a meaningful comparison 
and to assess which formulation is preferable to be used for a 3D analysis at optimal 
computational cost. The equation system itself is solved by the combined method in 
accordance with the outcome of the investigation in section 6.1. The results of this 
validation have been presented at a conference, see [121]. 

6.2.1 Treating the voltage excitation in the A,V-A-formulation 
Applying the fixed-point technique the approximated FEM equation systems are 

linearized by introducing the time-independent fixed-point reluctivity νFP and fixed-
point permeability μFP. Thus one obtains a linear equation system. As presented in 
sub-section 2.3.3, either the harmonic balance technique utilizing a Fourier 
transformation to solve the linearized first order differential equation systems in the 
frequency domain can be applied or, as an alternative, the time-periodic technique by 
taking advantage of the discrete Fourier transformation for each time instance can be 
used. The equation systems have been presented in detail in sub-section 2.3.3.3 as 
(2.132) and (2.133) for the HBFP technique and in 2.3.3.4 (2.141) and (2.142) for the 
TPFP technique. 

Hence the equation system for the HBFP, using the A,V-A-formulation is 
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and for the T,ϕ-ϕ formulation, we have 
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The equation system for the TPFP using the A,V-A-formulation is 
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and, for the T,ϕ-ϕ-formulation, we have 
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In (6.4)-(6.7), the superscript s denotes the nonlinear iteration step. Fm represents 

the m-th harmonic of the Fourier transform and Dm that of the discrete Fourier 
transform. Whereas the implementation of the voltage excitation is straightforward 
for the T,ϕ-ϕ-formulation as derived in sub-section 2.1.3 [85], it is not trivial for the 
A,V-A-formulation due to the resistance occurring in the stiffness matrix Sν also 
depending on the nonlinear material properties shown by the presence of ν. Using 
(2.76)-(2.84), the FEM system of equations is 
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In order to represent this system of equations in a more compact form for the 

upcoming analysis, let us introduce some notations: 
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Transforming the system into the frequency domain, (6.8) can be hence rewritten 

as 
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and applying the fixed-point technique yields 
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For a transformer computation in no-load condition, it is practically reasonable to 

assume that the resistance of the excited winding is zero as it is usually significantly 
lower than its reactance. Thus, the entries in the main diagonal of the stiffness matrix 
containing the resistance values become zero and the matrix of the equation system 
to be solved by the CG iteration method is no more positive definite. Hence, the 
system of equations (6.12) results in a saddle-point problem not solvable by 
commonly applied CG iterations. Even if very low values for the resistance are 
considered, convergence may become very poor. In order to obtain a solvable system 
of equations independent of the resistive characteristics given, a Schur-complement 
method [138, 161] is adopted. In the system (6.11) the following notations are 
introduced: 
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where the sizes of the matrices are 1 1, , , ,n n k k n k n k× × × × ×∈ ∈ ∈ ∈ ∈D P B a c      and 

e nn N N= +  and ck N= . With these notations, the equations have the form: 
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Eliminating x from the current equations leads to 
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where I is the identity matrix and in the second row in (6.15), Q is the Schur-
complement of the block D. Eliminating i results in 
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, ,D P B  are covariance matrices [138, 161]. In (6.17) it is necessary to solve for 

 
 1−D a  and 1−D B . (6.18) 

 
Obviously, D is a sparse system matrix (see (6.13)), hence it should not be 

inverted, but the equations are solved with 1cN +  right hand sides corresponding to a 
and the columns of B. 
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Thus, this procedure leads to multiple right hand sides (RHS) when at least one 
coil with voltage excitation is involved. For each voltage-excited coil present, there 
will be a RHS to be considered in each CG iteration step. The system of equations is 
hence solved at an increase of the computational effort. This Schur-complement 
approach has been implemented in the solver for both, the HBFP technique and the 
TPFP technique when utilizing the A,V-A-formulation. 

6.2.2 Numerical results 
A comparison of the formulations applied to various load conditions of the 

transformer has been carried out. The common attributes of the 3D FEM model are 
summarized in TABLE 6.6. 

 

TABLE 6.6: Attributes of the 3D FEM model 

Values Unit TPFP HBFP 
T,ϕ-ϕ / A,V-A 

Order of elements - 2nd 
Gaussian points in FE - 3x3x3 
BiCG iteration exit criterion - 10-7 
Nonlinear iteration 
exit criterion 

avg. deviation of μ / ν % 0.1 
max. deviation of μ / ν 0.1 

Number of computed time-steps - 100 Odd harmonics 
up to the 50th 

 
The values chosen to terminate the nonlinear iteration process by an average 

(avg.) deviation and a maximum (max.) deviation of the permeability μ or the 
reluctivity ν between two iteration steps have been chosen extremely low. This is in 
order to ensure a sound evaluation of the formulations examined. For reasons of 
accuracy of the computed results the number of discrete time-steps as well as the 
number of considered harmonics has been increased in comparison to previous 
investigations in order to avoid deviations due to the different formulations used. 

In order to provide meaningful comparisons for the no-load condition of the 
transformer, the computations were performed on the same computational unit with 
the specifications given in TABLE 6.7. The results for resistive-load and current-load 
were obtained on a different unit with the specifications given in TABLE 6.8. 
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TABLE 6.7: Specifications of the computational unit for the computations under no-load condition 
Values Unit Computational unit 

CPU architecture - Intel Xeon E5-2680V2 
Number of CPU´s and clocking -/GHz 10 / 2.8 
Cores / Threads - 20 / 40 
RAM GB 256 
Operating system - Windows Server 2008 R2 x64 
 

TABLE 6.8: Specifications of the computational unit for the computations under resistive- and 
current-load conditions 

Values Unit Computational unit 
CPU architecture - Intel Xeon X5690 
Number of CPU´s and clocking -/GHz 6 / 3.46 
Cores / Threads - 12 / 24 
RAM GB 192 
Operating system - Windows Server 2008 R2 x64 
 

6.2.2.1 Transformer in no-load condition 

In the first case to be investigated, the transformer is operating in no-load 
condition, i.e. the primary winding is excited with a sinusoidal voltage and the 
secondary winding is assumed to be open-circuited. The main transformer 
parameters in this load condition are given in TABLE 6.2 (see page 121). 

With the parameters and the geometrical data given in Fig. 4.7 (see page 82), the 
resulting maximum magnetic flux density B in the core is 1.4 (T) as illustrated in Fig. 
6.10. According to the B-H curve in Fig. 4.11 (see page 87), the core material is 
saturated. 
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Fig. 6.10: Saturation of the core in no-load 

condition at time-instance t=T with an maximum 
core flux density of 1.4 (T). 

 
The nonlinear material behavior is also clearly reflected in the magnetization 

current shown in Fig. 6.11. The computational results are summarized in 
TABLE 6.9. It can be seen that the eddy-current losses obtained by the formulations 
agree well. 

 

TABLE 6.9: Computational data in no-load condition 

Values Unit TPFP HBFP 
A,V-A T,ϕ-ϕ A,V-A T,ϕ-ϕ 

Eddy-current losses mW 117.94 117.74 123.04 122.84 
No. of DOF - 643,829 324,537 643,829 324,537 
No. of non-zero 
coefficients - 36,652,598 19,400,211 36,652,598 19,400,211 

BiCG iterations - 2,573,184 1,095,642 3,898,424 1,556,260 
BiCG / nonlinear it. - 27,969 3,445 38,598 4,498 
Nonlinear iterations - 92 318 101 346 
Computational time s 248,428.7 133,930.1 285,634.0 154,918.2 

 
The marginal deviations between the losses obtained by the TPFP and the HBFP 

technique are due to the time shift caused by the differential scheme and the way the 
transformation into the frequency domain is executed by the Fourier transformation 
in the HBFP and the discrete Fourier transformation by the TPFP. 



6 Comparison of FEM-techniques involving voltage driven coils   6.2 Varying the FEM-formulations 

135 
 

 

 
Fig. 6.11: Magnetization currents in no-load condition. 

 
In Fig. 6.12, the eddy-current losses are plotted over one time-period. The 

resulting wave forms agree well. Due to the better time-discretization and higher 
number of harmonics considered in case of the HBFP, the deviation in the time-
functions of the losses is marginal compared to the results obtained in previous 
investigations when validating the parallel TPFEM and the HBFP technique 
illustrated in Fig. 5.6 (see page 105). 

 

 
Fig. 6.12: Eddy-current losses in the transformer tank wall in no-load condition over one time-period. 
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Fig. 6.13: Relative error of eddy-current losses in each iteration-step normalized to the last solution of 

the fixed-point iteration in no-load condition. 
 
The relative error of the eddy-current losses in the tank normalized to the last 

solution of the fixed-point iteration is plotted in Fig. 6.13. The A,V-A-formulation 
needs less nonlinear iterations for convergence than the T,ϕ-ϕ-formulation regardless 
of the solution technique selected. This has also been pointed out in sub-section 4.3.2 
devoted to the harmonic balance investigations on a simplified magnetic circuit 
model. Nevertheless, as seen in TABLE 6.9, the computational time using the 
A,V-A-formulation is considerably higher than that of the T,ϕ-ϕ-formulation. The 
main reason is the higher number of DOF due to using a magnetic vector potential in 
the air domain. A further point is that solving the equation system with zero 
resistivity resulting in multiple right hand sides needs more computational effort with 
the A,V-A-formulation than when applying the T,ϕ-ϕ-formulation. 

6.2.2.2 Transformer in resistive-load condition 

In this load condition, a resistive load attached to the secondary winding is 
considered additionally to the winding resistance. The primary winding is again 
excited with a sinusoidal voltage. The transformer parameters are again given in 
TABLE 6.2 (see page 121). 

The computational results in resistive-load condition are summarized in 
TABLE 6.10. 
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TABLE 6.10: Computational data in resistive-load condition 

Values Unit TPFP HBFP 
A,V-A T,ϕ-ϕ A,V-A T,ϕ-ϕ 

Eddy-current losses mW 709.08 708.08 716.224 715.328 
No. of DOF - 643,830 324,538 643,830 324,538 
No. of non-zero 
coefficients - 36,652,598 19,439,494 36,652,598 19,439,494 

BiCG iterations - 3,935,040 1,496,468 5,761,739 2,227,609 
BiCG / nonlinear it.  42,312 4,401 58,793 6,346 
Nonlinear iterations - 93 340 98 351 
Computational time s 582,308.2 213,978.4 833,399.9 260,582.2 

 
Comparing the computational data in resistive-load condition to the data obtained 

in no-load condition similar conclusions can be drawn. The computed eddy-current 
losses agree well in the formulations applied. The number of non-zero coefficients in 
the equation system of the A,V-A-formulation is considerably higher than for the 
T,ϕ-ϕ-formulation. The number of degrees of freedom is increased by one due to the 
secondary winding considered now. 
 

 
Fig. 6.14: Computed currents in the primary winding of the transformer in resistive-load condition. 

 
Fig. 6.14 and Fig. 6.15 show that the numerically calculated currents of the 

primary and secondary winding are practically sinusoidal and overlapping regardless 
of the solution algorithm chosen. 
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Fig. 6.15: Computed currents in the secondary winding of the transformer in resistive-load condition. 
 

 
Fig. 6.16: Eddy-current losses in the tank of the transformer in resistive-load condition. 

 
In Fig. 6.16, the time-function of the eddy-current losses occurring in the 

transformer tank in resistive-load condition are plotted over one time-period. 
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Fig. 6.17: Relative error of eddy-current losses in each iteration-step normalized to the last solution of 

the fixed-point iteration in resistive-load condition. 
 

Illustrated in Fig. 6.17 is the relative error of the eddy-current losses in the tank in 
each iteration-step normalized to the last solution of the fixed-point iteration. Again 
it is clearly visible that the A,V-A-formulation needs less nonlinear iterations to 
obtain convergence than the T,ϕ-ϕ-formulation but comparing the computational 
time the T,ϕ-ϕ-formulation is advantageous. 

6.2.2.3 Transformer in current-load condition 

To conclude these investigations, the last load condition of the transformer is the 
so called current-load condition where the secondary winding is energized with an 
impressed current, given as the computed secondary currents of the previous 
resistive-load investigation. The main parameters are given in TABLE 6.2 (see page 
121). The computational results are summarized in TABLE 6.11. 
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TABLE 6.11: Computational data in current-load condition 

Values Unit TPFP HBFP 
A,V-A T,ϕ-ϕ A,V-A T,ϕ-ϕ 

Eddy-current losses mW 699.792 698.216 713.296 711.872 
No. of DOF - 643,829 324,537 643,829 324,537 
No. of non-zero 
coefficients - 36,652,598 19,400,211 36,652,598 19,400,211 

BiCG iterations - 2,570,366 82,8019 3,695,789 1,092,423 
BiCG / nonlinear it.  27,638 2,326 38,498 3,095 
Nonlinear iterations - 93 356 96 353 
Computational time s 433,689.2 178,470.8 580,980.3 191,058.7 

 
For comparison of the computed currents only the primary winding currents will 

be observed as computed values due to the fact that regarding to the current-load 
condition the secondary winding current is impressed as a sinusoidal current function 
illustrated in Fig. 6.15. The computed primary currents are in a good agreement and 
result again as sinusoidal time-functions as expected, illustrated in Fig. 6.18. 

 

 
Fig. 6.18: Time-function of the computed primary currents in current-load condition. 
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Fig. 6.19: Time-function of the computed eddy-current losses in current-load condition. 

 
The computed eddy-current losses in the transformer housing of the applied 

formulations are compared in Fig. 6.19 and plotted over one time-period. It is 
observable that independent of the solving technique applied, the results are almost 
matching. 

 

 
Fig. 6.20: Relative error of the eddy-current losses in each iteration step in current-load condition. 
 
In Fig. 6.20 the relative error of the eddy-current losses in the transformer metal 

housing are illustrated in each time-step normalized to the value of the last solution 
of the nonlinear fixed-point iteration. Again it is evidently shown that the magnetic 
vector potential formulation needs less nonlinear iteration steps to achieve 
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convergence than the current vector potential formulation but still the computational 
time is much better than using the magnetic vector potential formulation. 

6.2.3 Conclusion 
The motivation of this investigation has been to compare two formulations of 

solving a nonlinear 3D FEM periodic eddy current problem in order to explore the 
advantages and disadvantages of the two approaches. Both methods are suitable for 
such computations and, comparing the results, they are equally good. As a matter of 
fact, the A,V-A-formulation needs much less nonlinear iterations for convergence. 
This is a great advantage when solving nonlinear 2D or magnetic circuit problems, as 
it has been pointed out in sub-section 4.3.2. In 3D real world problems using the 
A,V-A-formulation demands about double the number of DOF´s than when applying 
the T,ϕ-ϕ-formulation. 

Due to the high number of equations occurring in these 3D problems, it is not 
possible to use direct solvers. Since one has to use iterative solvers, the 
computational time is highly affected by the condition number of the system matrix. 
As it has been seen for the magnetic circuit model in sub-section 4.3.2.2, the 
condition number of the A,V-A equation system is worse compared to the condition 
number of the T,ϕ-ϕ system hence the number of BiCG iterations necessary for 
convergence increases which is reflected in the computational results. Also, dealing 
with zero winding resistance causes additional computational costs when applying 
the A,V-A-formulation, since the system matrix is no more positive definite as 
discussed in sub-section 6.2.1. Utilizing the Schur-complement, the system has to be 
solved twice in case of no-load condition or current-load condition or even three 
times in resistive-load condition as the secondary winding is then also assumed to be 
voltage driven. Hence the significantly higher number of unknowns and non-zero 
coefficients of the A,V-A-formulation lead to a substantial increase in computational 
costs compared to the T,ϕ-ϕ-formulation. As a matter of fact this leads to the 
A,V-A-formulation being inferior regarding computational time even if the number 
of nonlinear iterations is less than when applying the T,ϕ-ϕ-formulation. 

The results obtained using either HBFP or TPFP agree well. The number of 
harmonics considered in the HBFP formulation has been half of the discrete time-
steps used in the TPFP. If the exact number of necessary harmonics to be considered 
is known to be less, e.g. it was determined via measurements, the computational 
costs when using the HBFP technique would be less. 
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7 Investigations under DC bias 

7.1 Introduction 

As detailed investigations using models as close to real world problems as 
possible are increasingly feasible, environmental influences can be taken into 
account more and more often. Considering transformer problems, the most 
significant environmental impact is generated by so called geo-magnetically induced 
currents (GIC) [16]. The currents can emerge due to sun flare activity [17, 18] 
interacting with the earth’s magnetic field. Hence auroral currents influence the 
dormant magnetic field by varying the earth surface potential (ESP) generating the 
GIC traversing through the grounded neutral of transformers and along transmission 
lines. These GIC result in a direct current (DC) accompanying the exciting 
alternating source current or voltage of a transformer. Furthermore, adding a DC bias 
to the magnetization current of a transformer considerably affects its operational 
conditions by e.g. leading to a shift in the point of duty in the material hysteresis of 
the transformer iron core. Consequently, saturation effects of the core occur within 
the half-period in which the magnetization current and the DC bias are aligned in the 
same direction yielding an increase of the noise level, additional core losses as well 
as eddy-current losses due to the higher leakage flux resulting. As these effects are 
not negligible, numerical investigations involving such waveforms are mandatory. 

Based on previous work [100, 101, 103, 106], the main goal of this investigation 
is to analyze different ways to predict the steady-state solution of 3D nonlinear eddy-
current problems involving voltage driven coils with a DC bias present. Therefore, 
the simplified benchmark transformer problem introduced previously is adapted to a 
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three-phase transformer problem to be investigated by the means of a 3D FEM 
analysis. The analysis emphasizes different ways to treat the DC components in the 
equation system obtained by the time-periodic fixed-point technique applying the 
T,ϕ-ϕ-formulation. 

The goal was to improve the fixed-point iteration strategy by providing a good 
initial solution yielding faster convergence by reducing the number of nonlinear 
iterations required. Considering transformer problems, the eddy-current regions are 
relatively small compared to the non-conducting domains, hence it is obvious to 
choose the initial solution by neglecting the eddy-currents, a procedure which will be 
called static initialization. The excitations of the magneto-static problem obtained are 
the winding fluxes with an unknown DC bias. As the coils are assumed to be voltage 
driven, the winding currents are unknown but their DC-component is given. Two 
solution strategies have been implemented in the time-periodic FEM solver to 
examine this special static problem. Early results of this work have been published 
by the author in [124]. 

7.2 FEM formulation 

Direct currents form the vector of the time-invariant values defined as 
 

 
0

1 T

DCdt
T

=∫ i i , (7.1) 

 

with T representing the length of one time-period and 1 c

T

Ni i =  i   is the vector of 

unknown currents containing the currents for each voltage driven coil present. 
Hence, it is necessary to consider the FEM formulations for the 0th harmonic, i.e. a 
case with the time-derivative components of the equations vanishing. The equation 
system for the A,V-A-formulation is straightforward to establish, since the time 
derivative only occurs for the mass matrix and thus this term will vanish resulting in 
 

 ( ) ( )( ) ( )
( ) ( )( ) ( )1

0 0 0FP FP

s s s s
ν ν ν

+
−= +S x S x fF F F . (7.2) 

 
Note that in (7.2), the scalar potentials will also vanish as we are using the 

modified scalar potential represented by its time-derivative. 



7 Investigations under DC bias   7.2 FEM formulation 

145 
 

In case of the T,ϕ-ϕ-formulation, the time-derivatives are also present in parts of 
the right hand side and in the unknown variables to be iterated. Obtaining the system 
of equations is not that trivial then, due to the fact that the Maxwell´s equation 

0∇⋅ =B  has to be satisfied in the 0th harmonic, instead of its time-derivative (see 
(2.90)) Hence, let us start by introducing the divergence of B for the 0th harmonic 
(denoted by 0F ) as 

 
 ( ) ( )( )0 0 0 0 0µ φ∇⋅ = ∇ ⋅ + + −∇ =F FB T T t i . (7.3) 

 
With the matrix notation introduced in (2.94), (7.3) can be rewritten as 
 

 ( )0 0
T
µ µ µ µ

  
    =    
    

T
G L h f

i
F Fφ , (7.4) 

 
and, applying the fixed-point linearization technique, the system becomes 
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− − −

  
  
   =    
    

  
  
  +     
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φ

φ

F F

F

T

G L h f

i

T

G L h

i

 (7.5) 

 
According to the relation (7.1), the currents corresponding to the 0th harmonic are 

defined as 
 

 ( )( ) ( )( )1
0 0

s s
DC

+= =i i iF F , (7.6) 

 
and as the direct components of the eddy currents vanish, the current vector potential 
can be assumed to be zero 
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 ( )( ) ( )( )1
0 0

s s+= =T T 0F F . (7.7) 

 
Therefore the system in (7.5) can be simplified to 
 

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )1
0 0 0 0 0 0FP FP

s s s s sT
µ µ µ µ µ µ

+ = + − − −L L f G T h i LF F F F F Fφ φ φ , (7.8) 

 
the resulting equation to be considered in case of a direct current bias present as the 
0th harmonic in addition to the systems derived in sub-sections 2.3.3.3 for the HBFP 
and 2.3.3.4 for the TPFP without DC bias. 

The static initialization process has been implemented for the TPFP as well as for 
the HBFP technique utilizing the T,ϕ-ϕ-formulation only, hence the focus will be 
concentrated on this formulation. 

7.3 Static initialization 

As argued above, the basic idea of providing a good initial solution is to perform a 
static initialization procedure by neglecting the eddy-currents before starting the 
nonlinear iteration process fully considering the eddy current domains. Hence, with 
the assumption that for the 0th harmonic the unknown current vector potential is zero:
{ }0 =T 0F , and the eddy currents as well as the winding resistances are neglected, a 

magneto static problem results where ρ =S 0 . The equation system (2.92) of the 

TPFP applying the T,ϕ-ϕ-formulation simplifies to 
 

 0

0

T
h

T T
h

d d
dt dt

µ µ µ

µ µ µ

        
= −                  

L h G T0
h V g Ti u

φ
. (7.9) 

 
It is obvious that since T = 0, the number of DOF in (7.9) is reduced dramatically 

in comparison to (2.92). The given voltages can be expressed with the time 
derivatives of the magnetic fluxes as 

 

 
d
dt

=
Φu , (7.10) 
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with 
 
 0

t

dt= = +∫Φ u Φ Φ  (7.11) 

 
where 0Φ  represents an unknown vector of time independent constants containing 

the direct components of the magnetic fluxes and Φ  is given. Utilizing that no 
current driven coil is present, the impressed current vector potentials on the right 
hand side vanish and integrating (7.9) over time results in 

 

 
0

T
µ µ

µ µ

    
=     +    

L h 0
h V Φ Φi 

φ
. (7.12) 

 
The system in (7.12) has to be solved in each time-step in a period. Due to the 

dependence on the permeability μ, the nonlinear equations are solved by updating μ 
in each iteration step and once the maximum relative change of the permeability in 
the integration points between two nonlinear iterations becomes less than a suitable 
threshold ε, the nonlinear iteration is terminated. Two approaches to obtain a static 
initial condition are investigated to solve (7.12) with (7.1) taken into account (iDC is 
known). 

7.3.1 Secant method 
The first possibility investigated is based on the secant method [63] applied to 

iteratively obtain the direct components of the magnetic fluxes. This method has also 
been utilized in earlier work of our team [106]. It is assumed, that the DC flux 0 jΦ  of 

the j-th voltage driven coil depends on its DC current iDCj only. Therefore the 
functions 

 
 ( )0 0j ji f Φ=  (7.13) 

 
can be introduced as obtained from the solution of (7.12) for each discretized and 
independent time-step with a fixed 0 jΦ  and 
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 ( )0
1

1 n

j j k
k

i i t
n =

= ∑  (7.14) 

 
where n is the number of time-steps within one time-period. The secant method is 
applied to solve the equation ( )0 0j DCjf iΦ − =  by iteration of 0Φ  until 

0 DCj DCj i DCji i iε− < ⋅  as: 

 

 ( ) ( ) ( )( )( )
( ) ( )

( ) ( )

1
1 0 0

0 0 0 1
0 0

k k
k k k j j
j j j DCj k k

j j

f i
i i

Φ Φ
Φ Φ Φ

−
+

−

−
= − −

−
, (7.15) 

 
with the initial value ( )0

0 0jΦ = . This approach is a fast second order method, but 

numerical experiments demonstrate that its convergence is sensitive to the accuracy 
of evaluating the function f depending on 

DCiε  and hence on the precision of the 

nonlinear material values in each time-step. 
 



7 Investigations under DC bias   7.3 Static initialization 

149 
 

 
Fig. 7.1: Basic flow-chart of the secant method. 

 
The basic flow-chart illustrated in Fig. 7.1 shows the static initialization process 

applying the secant method. Two initial guesses for the DC flux component 0Φ  have 
to be set in the beginning. The nonlinear iteration procedure approximately obtains 

0Φ  and, as mentioned above, its precision is very sensitive to the choice of 
DCiε . 

7.3.2 Schur-complement 
An alternative to obtain a static initial solution is to utilize a Schur-complement 

[138, 161] applied in sub-section 6.2.1 for treating voltage excited coils in the 
A,V-A-formulation. In this approach the Schur-complement is used to calculate the 
DC flux component 0Φ  in each nonlinear iteration-step to solve (7.12) in a way that 
(7.1) is approximately satisfied. According to the simplifications of the static 
initialization, a symmetric matrix system of the form 



7.3 Static initialization 7 Investigations under DC bias 
 

150 
 

 

 

[ ] [ ]

( )
( )

( )
( )

( )

( )

,1 ,1 1

,1 ,1 1 1

, ,

, ,

0

T

n n n
T

n n nn

DC

t
t t

t
tt

n

µ µ

µ µ

µ µ

µ µ

           
           −          
     
     = −
           
           −          
     − −     

L h 0 0
h V I i Φ

L h 00
h V ΦI i

0 I 0 I 0 iΦ



 
 





φ

φ
, (7.16) 

 
is obtained where I is the identity matrix of the size Nc. To determine the DC flux 
component, the Schur-complement is generated for eliminating the unknowns i(tk) 
and ϕ(tk) yielding the equation system 
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to be solved. 

In order to optimize computational performance, the system in (7.17) can be split 
to calculate the components in each time-step in parallel. Indeed, using the notations 
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where k represents a time-step between 1 and n, the Schur-complement solution is 
determined as 
 

 [ ]
1

n

k
k=

= −∑S 0 I D  and [ ]
1

n

DC k
k

n
=

= − − −∑r i 0 I E . (7.19) 
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After Dk and Ek have been evaluated for each time-step by solving Nc+1 linear 
equation systems parallel with the sparse matrices in (7.18), the DC flux component 
of the magnetic flux can be determined as 

 
 1

0
−= −Φ S r , (7.20) 

 
and finally, to obtain the unknown scalar potentials ϕ and currents i for the static 
initialization, 

 

 ( )
( ) 0

k
k k

k

t
t

 
= + 

 
E D Φ

i
φ

  (7.21) 

 
has to be evaluated for all time instances. The iteration procedure of the direct 
component of the magnetic flux 0Φ  is repeated until the change to the previous 

value of 0Φ  is less than a defined threshold 
0

εΦ . If so, 0Φ  is fixed and brought to 

the right hand side of (7.16) as [ ] 0I Φ  and the system is solved in each time-step 

with a single RHS until the permeability converges or the deviation of the DC 
component is higher than a threshold 

DCiε  of the defined DC value. If the DC 

component deviation will be higher than 
DCiε  the Schur-complement iteration process 

has to be started over. 
The final results obtained for the unknowns in the static iteration according to 

(7.21) provide the initial solution for starting the nonlinear iteration process 
including the eddy-currents. 
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Fig. 7.2: Basic flow-chart of the Schur-complement method. 

 
In Fig. 7.2 the basic process of the static initialization utilizing the Schur-

complement is illustrated. The conditions to be checked are 
 

Condition 1 ( ) ( ) ( )
0

1 1
0 0 0
s s sε+ +− ≤ ⋅ΦΦ Φ Φ  

Condition 2 ( )( )1
0 DC

s
DC i DCi i iε+ − ≤ ⋅F   

Condition 3 Convergence of the material μ 
 
This approach is insensitive to the choice of the exit criterion of the permeability 

due to the fact that 0Φ  can be determined exactly in each nonlinear static iteration-
step where in every time-step, Nc+1 linear equation systems are to be solved. 
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7.4 Numerical results 

To analyse the static iteration procedures, a two limb single-phase transformer 
used in earlier investigations (see chapter 4, 5 and 6) to benchmark several FEM 
solution methods is adopted and, in addition, the model is enhanced to a three-limb, 
three-phase transformer. To arrive at a nonlinear eddy-current problem, both models 
are enclosed by a highly permeable steel tank. The transformers are assumed to be in 
no-load condition, hence only the primary winding is modelled as a voltage excited 
coil with a sinusoidal wave form and an operational frequency of 50 (Hz). In addition 
to the previous investigations to guarantee saturation effects in the core material the 
exciting voltage was increased to achieve a maximum core flux density of 1.8 (T). 
The adapted B-H curves are illustrated in Fig. 7.3 and Fig. 7.4. 

 

 
Fig. 7.3: Applied B-H curve for the core material 

in both transformer models. 

 
Fig. 7.4: Applied B-H curve for the tank material 

in both transformer models. 
 

The geometry of the single-phase transformer has been shown in Fig. 4.7 (see 
page 82). In this case Fig. 7.5 illustrates the eighth of the transformer geometry 
applied as FEM model and its saturation, where the chosen time instance corresponds 
to the maximum flux in the iron core. 
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Fig. 7.5: 8th-FEM model of the single-phase transformer with indicated magnetic flux density 

distribution. 
 
The geometry of the investigated three-phase transformer has been developed 

based on the single-phase model with the basic design drawn in Fig. 7.6. 
 

 
Fig. 7.6: Geometry of the basic three-phase transformer model. 



7 Investigations under DC bias   7.4 Numerical results 

155 
 

 
The geometry has been chosen to be non-symmetric to be more close to a real 

world problem since the additional space is needed to include transmission gear 
switches and cable bushings. Hence, the distance to the right tank wall as well as to 
the top wall was extended and the coil window space was stretched at the top end. To 
construct a FEM-model only one symmetry-plane can be considered resulting in half 
of the actual problem domain to be included. The designed half-model implemented 
in the FEM is illustrated in Fig. 7.7. As the exciting voltages applied in each phase 
build a symmetric 3-phase system, the instant chosen for illustration provides a 
maximum flux density in the centre core limb. 

 

 
Fig. 7.7: Half-FEM model of the three-phase transformer problem with indicated magnetic flux 

density distribution. 
 

The parameters for the computations with the aid of the finite element method are 
summarized in TABLE 7.1.  
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TABLE 7.1: Attributes of the 3D FEM computations 

Values Unit TPFP 
T,ϕ-ϕ 

Order of elements - 2nd 
Gaussian points in FE - 3x3x3 
BiCG iteration exit criterion - 10-9 
Number of computed time-steps - 48 

 
The exit criterion for the BiCG iteration has been chosen to be extremely low to 

assure convergence of the BiCG if the exit criterion of the nonlinear fixed-point 
iteration is chosen as a low value too, as it has been set in this investigation. To 
provide a meaningful validation of the obtained results, all the computations have 
been executed on the same workstation with the properties given in TABLE 7.2. 
 

TABLE 7.2: Main parameters of the computational unit 

Values Unit Computational unit 
CPU architecture - Intel Xeon E5-2680V2 
Number of CPU´s and clocking -/GHz 10 / 2.8 
Cores / Threads - 20 / 40 
RAM GB 256 
Operating system - Windows Server 2008 R2 x64 

 
The computations have been carried out with a DC bias of 2 (A) present in each 

voltage-excited winding. To observe the effect of varying the threshold ε for the 
convergence of the material μ when utilizing the Schur-complement method, two 
different values, namely 5 (%) and 1 (%) have been set to terminate the static 
initialization process. Due to the fact that the secant-method is very sensitive to the 
precision of the permeability, a low value of 0.1 (%) in the deviation of the material 
has been selected. This has proved to be essential in order to ensure a stable iteration 
process. Furthermore, the convergence criterion for the current 

DCiε  in case of the 

secant method is set to 1 (%) and in case of the Schur-complement to 5 (%), 
respectively. The threshold 

0
εΦ  for the Schur-complement initialization has been set 

to a value of 1 (%). 
In the fixed-point iterations considering the eddy-currents, the exit criterion value 

for ε has been chosen of 0.1 (%) in the maximum deviation of the permeability μ to 
achieve results as accurate as possible. 
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7.4.1 Symmetric single-phase transformer model 
The computational results obtained for the symmetric single-phase transformer 

problem are summarized in TABLE 7.3. 
 

TABLE 7.3: Computational data of the symmetric single-phase transformer model 

Values Unit No 
Initialization 

Schur-
complement 

Schur-
complement Secant 

DCiε  % - 5 5 1 

0
εΦ  % - 1 1 - 

ε  
Static init. % - 5 1 0.1 
Fixed-point 
iteration % 0.1 0.1 0.1 0.1 

No. of static CG 
iterations - - 49,728 53,815 96,151 

Comp. time of static 
initialization s - 890.1 1,144.1 692.4 

No. of fixed-point 
CG iterations - 15,069,345 12,238,075 11,762,599 11,248,076 

Overall comp. time s 325,807.1 205,896.5 206,238.9 202,192.1 
Eddy-current losses 
in tank W 115.14 100.32 99.82 100.27 

No. of DOF overall - 162,905 
No. of DOF in static 
initialization - - 95,569 

 
Comparing the results in the table above, the different applied static initialization 

procedures are in a good agreement. It turns out that the approximation of the current 
due to the secant method is slightly advantageous in terms of the computational time 
consumed for the static initialization procedure. It is demonstrated that varying the 
accuracy of the material deviation in the Schur-complement initialization has almost 
no influence on the precision of the losses obtained. It can lead to saving 
computational time if the threshold is set to a higher value. This would be even more 
dominant if, for practical reasons, the deviation of the material in case of the fixed-
point iteration process considering the eddy-currents would not be set to a value that 
low as it has been adopted in case of the validation. 
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Fig. 7.8: Time-function of the computed currents after the static initialization procedure. 

 
Fig. 7.8 shows the resulting currents after the static initialization process utilizing 

the Schur-complement and the secant-method. The nonlinearity and the effect of the 
DC bias are clearly visible. Furthermore, it can be seen that the computed current of 
the secant method has a marginal deviation compared to the Schur-complement 
currents due to its approximation procedure. This deviation needs then to be 
compensated in the nonlinear iterations considering the eddy-currents resulting in 
almost the same computational effort as for the Schur-complement solution. 

 

 
Fig. 7.9: Time-function of the currents after the last nonlinear iteration considering the eddy-currents. 

 
Comparing the final results of the computed eddy-currents illustrated in Fig. 7.9, 

it is demonstrated that the solutions obtained utilizing the different static 
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initialization processes are equally good and in a perfect match. Furthermore, the 
computed current without initialization procedure is also shown and it is evident that 
the current waveform has still not converged. This is also reflected in the computed 
eddy-current losses listed in TABLE 7.3. To demonstrate the progress in the 
computational results of the eddy-current losses, these are illustrated in Fig. 7.10 in 
each nonlinear iteration step. It can be seen that the static initialization provides a 
good starting condition for the nonlinear fixed-point iteration considering the eddy-
currents. For an industrial accuracy it would be sufficient to choose a limit of about 
250 nonlinear iterations. However, the eddy-current losses obtained without an 
initialization procedure are not acceptable and show a considerably slower 
convergence behavior. To achieve fully converged results without static 
initialization, a lower threshold in the exit criterion of the material deviation has to be 
defined. Nevertheless, such a measure will evidently increase the computational 
time. 

 

 
Fig. 7.10: Computed eddy-current losses in each nonlinear iteration-step. 

 
The computed eddy-current losses in the transformer tank in no-load condition are 

plotted as a time-function over one time-period in Fig. 7.11. It is observable that the 
time responses of the static initialization solutions are matching whereas the solution 
obtained without initialization significantly differs in the peak values due to the 
results being not fully converged. 
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Fig. 7.11: Time-function of the computed eddy-current losses in the housing of the transformer. 

7.4.2 Non-symmetric three-phase transformer model 
The numerically obtained results for the non-symmetric three phase three-limb 

transformer model are summarized in TABLE 7.4. 
 

TABLE 7.4: Computational data of the 3-phase non-symmetric transformer model 

Vaules Unit No 
Initialization 

Schur-
complement 

Schur-
complement Secant 

DCiε  % - 5 5 1 

0
εΦ  % - 1 1 - 

ε  
Static init. % - 5 1 0.1 
Fixed-point 
iteration % 0.1 0.1 0.1 0.1 

No. of static CG 
iterations - - 1,442,499 1,495,219 2,251,618 

Comp. time of static 
initialization s - 11,641.1 13,314.8 8,856.2 

No. of fixed-point 
CG iterations - 38,965,336 14,859,833 14,780,176 12,604,250 

Overall comp. time s 1,222,624 596,745.6 620,089.6 407,660.4 
Eddy-current losses 
in tank W 55.81 54.63 54.90 54.89 

No. of DOF overall - 340,747 
No. of DOF in static 
initialization - - 179,445 
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Comparing the computed data in TABLE 7.4 with respect to the computational 

time, the benefit of the static initialization procedure is again evident. The consumed 
time without initialization is about double the time needed to achieve convergence 
utilizing the static initialization procedure. In the 3-phase case, the secant method 
turns out to be more advantageous than the Schur-complement as the static iteration 
procedure needs less computational time even if the number of CG iterations is 
higher than for the Schur-complement. This is also observable for the eddy-current 
fixed-point iteration process since Nc+1 CG solutions have to be computed for the 
Schur-complement iteration. 

In Fig. 7.12, the computed currents after the static initialization process are plotted 
for each phase over one time-period. The results are in a good agreement 

 

 
Fig. 7.12: Time-functions of the currents in each phase after the static initialization. 

 
Comparing the final results of the computed currents in Fig. 7.13, the currents 

obtained applying the static iteration procedures are matching whereas the currents 
obtained without an initialization procedure have obviously still not converged. The 
slow convergence behavior without initialization process of the nonlinear eddy-
current computations is also reflected in the computed eddy-current losses in the 
transformer tank wall illustrated in Fig. 7.14 in each nonlinear iteration step. 

 



7.4 Numerical results 7 Investigations under DC bias 
 

162 
 

 
Fig. 7.13: Time-function of the currents after the last nonlinear iteration considering the eddy-currents. 
 

 
Fig. 7.14: Computed eddy-current losses in each nonlinear iteration-step. 

 
Observing the computed eddy-current losses in Fig. 7.14 the benefit of the static 

initialization is evident. After about 300 nonlinear iterations the losses obtained by 
the Schur-complement and the secant initialization are already converged whereas 
the iteration procedure without initialization needs about 1000 iteration-steps. 
Nevertheless it can be seen that the methods converge to the same result. This can 
also be followed in Fig. 7.15 where the final computed eddy-current losses in the 
transformer tank wall are drawn as a time-function over one period. It can be seen 
that the results are matching except for some minor deviations in the peak values. 
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Fig. 7.15: Time-function of the computed eddy-current losses in the housing of the transformer. 

7.5 Conclusion 

Summarizing the numerical investigations, the static initialization procedures 
using the secant method, as well as using the Schur-complement technique, lead to 
the same computational results. Indeed both methods decrease the computational 
costs significantly compared to the calculations without an initialization process. In 
both cases investigated, the secant method turns out to be advantageous compared to 
the Schur-complement approach, provided the exit criterion for the static 
initialization process is chosen properly. Since the secant method is very sensitive to 
the accuracy of the permeability, this exit criterion has to be adjusted carefully for 
each new problem. As a benefit of using the Schur-complement method it turned out 
that the exit criterion of the static initialization is not needed to be defined as 
carefully as for the secant method. Opposing the robustness of the iteration procedure 
applying the Schur-complement is the fact that multiple right hand sides have to be 
solved in each iteration-step which leads to higher computational times compared to 
the secant method. It has been found that, when treating DC biased problems, the 
nonlinear iteration process of the fixed-point eddy-current losses converges very 
slowly in comparison to the problems investigated without DC bias. Therefore, it 
was necessary to define a low threshold in the material deviation as exit criterion. 
This in turn led to the fact that the BiCG accuracy had to be increased to guarantee a 
stable iteration process, as it has been set for this investigation. 
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8 Summary of scientific results 
The aim of this thesis was to validate and adapt an existing numerical electro-

magnetic field analysis tool for treating three-dimensional, nonlinear, time-periodic, 
eddy-current problems. For this purpose, the computational results of the numerical 
solver were first compared to measured induced eddy-currents in a steel grid in the 
vicinity of a dry insulated air reactor to observe the influence of varying the number 
of the considered harmonics in the accuracy of the computational results. It has been 
shown that neither the impact of the higher harmonics nor the temperature-rise in the 
steel rods, influencing their conductivity were negligible for obtaining scientifically 
accurate results. A good agreement in the number of odd harmonics to be considered 
was found as up to the half of the used discrete time-steps. 

Furthermore, a nonlinear, magnetic circuit model enabling fast analyses, based on 
the solution algorithm of the FEM has been developed to quickly validate adaptions 
of the numerical solution procedure. This has been successfully used to investigate 
treating the additional equations in presence of voltage-excited coils separately or 
combined to the system of equations of the field quantities. This magnetic circuit 
model was also utilized to assess the best way of applying voltage-excited coils in 
combination with the magnetic vector potential formulation. Based on these 
investigations, the 3D FEM solver was extended to take account of voltage excitation 
when using the magnetic vector potential formulation and has further been compared 
with the solution techniques of the Japanese group of Professor Yasuhito Takahashi 
from the Doshisha University in Japan. The numerically computed results of both 
teams are in a good agreement validating both techniques. 

In the last section of this work, the numerical approach of solving 3D, nonlinear, 
time-periodic, eddy-current problems with a DC bias has been presented. A static 
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initialization process has been developed to enhance the performance of the solution 
algorithm. The idea was to first obtain a magneto-static solution by neglecting the 
eddy-currents and using the result as initial value to start the computation with the 
eddy-currents considered. Two different static solution procedures have been 
introduced. The validation of these techniques showed benefits and minor drawbacks 
in their application. Nevertheless, both methods provide equally good initial 
conditions resulting in a significant saving of computational costs. 

In conclusion, the goals of validation have been fulfilled and hence improvements 
of the FEM solver have successfully been implemented. The findings have been 
processed in this thesis as well as published in various scientific journals. 
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Appendix 

A Skin effect 

The skin effect was generalized to conductors of any shape by Oliver Heaviside in 
1885. This effect describes the inclination of an alternating electric current (AC) 
distributed within a conductor to exhibit the largest current density in the vicinity of 
the surface of the conductor and progressively decreasing current density in the inner 
regions of the conductor. This is due to an AC in a conductor generating an 
alternating magnetic field in the inside and around the conductor based on Ampère´s 
law (2.1). The change in the intensity of the current also alternates the magnetic field 
and this change, in turn, creates an electric field on the basis of Faraday´s law (2.2) 
counteracting the change in the current intensity. 

This opposing electric field is the so-called counter-electromotive force or often 
referred to as “back EMF” which is most dominant in the center of the conductor and 
suppresses the current flow to the conductor boundaries. Hence, the electric current 
flows primarily at the "skin" of the conductor, between the outer surface and a level 
called the skin depth δ as illustrated in Fig. A.1. This provokes a rise in the effective 
resistance by reducing the actual cross-section of the conductor essentially at higher 
frequencies [125, 183, 184]. 

 

https://en.wikipedia.org/wiki/Electrical_resistance
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Fig. A.1: Illustration of the skin depth due to the displacement of the current density. 

 
The skin depth δ can be computed as 

 

 
0

2

r

δ
σ µ µ ω

=
⋅ ⋅

. 

 
Thus the skin depth of a copper conductor with an electrical conductivity 

75.7 10σ = ⋅  (S/m) and the relative permeability 1rµ ≈ , excited at a frequency of 
50 (Hz) results in a 10δ ≈  (mm). Hence, the skin effect is not negligible in AC 
electrical power and distribution applications, as the required conductor cross-section 
cannot be optimally used utilizing massive conductors. A counter measure is to 
replace massive conductors with continuously transposed litz-wires providing 
suitable cross-sections of each strand to guarantee a homogenous current density 
distribution in the strands [4, 5, 6, 7, 8, 9, 10, 11]. 

As an example of the skin effect, illustrated in Fig. A.2 is a round copper 
conductor with a radius of 1 (mm) and excited by a current of 1 (A) at a frequency of 
50 (Hz). It can be seen that the current density has a homogeneous distribution. 
Whereas in Fig. A.3 the same conductor is excited with 1 (A) at a frequency of 
50 (kHz) and the displacement of the current density to the conductor surface due to 
the skin effect is clearly visible. 
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Fig. A.2: Current density distribution in a round 

conductor at a frequency of 50 (Hz). 

 
Fig. A.3: Current density distribution in a round 

conductor at a frequency of 50 (kHz). 
 

B Additional data of the dry insulated air-reactor 

B.1 Technical data of the air reactor with standard commercial 
steel reinforcements underneath 

The detailed technical data of the air-reactor under investigation with a standard 
commercial steel reinforcement underneath the reactor has been provided by the 
Trench Austria Ltd. who also provided the measurement results. Supplementary data 
for the air reactor investigated in section 3.2 is given in TABLE B.1 

 

TABLE B.1: Additional technical data of the dry insulated air reactor 

Technical data TCR 250/1177/86.6 
Values Unit Quantity 

Insulation level (LIL) kV 250 
Rated Inductance mH 86.6 
Dynamic short circuit current (peak-value) kA 3.6 
Rated short time current (RMS-value) for 
3.0 seconds kA 1.4 

Extension pole height mm 750 
Isolator height mm 490 
Distance from ground to winding mm 1420 
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B.2 Comparison of the measured and computed results 
TABLE B.2 contains the complete set of measured and computed current values 

in the given grid points as illustrated in Fig. 3.6 and Fig. 3.7 for different excitation 
current levels. The computed values refer to the HBFP technique with 11 harmonics 
considered. 

 

TABLE B.2: Comparison of measured and computed current values 

Grid 
point. 

m
eddyI

in A 

c
eddyI

in A 

m
eddyI

in A 

c
eddyI

in A 

m
eddyI

in A 

c
eddyI

in A 

m
eddyI

in A 

c
eddyI

in A 

m
eddyI

in A 

c
eddyI

in A 

m
eddyI

in A 

c
eddyI

in A 
IEXC  50A 50A 100A 100A 300A 300A 500 A 500A 700A 700A 1000A 1000A 

1 3.3 1.42 6.0 2.87 10.0 7.55 15.6 11.01 27.6 14.75 35.0 21.47 
1-1 3.2 1.42 6.6 2.87 13.3 7.55 17.1 11.01 25.0 14.75 37.6 21.47 
2 2.8 1.44 4.1 2.87 8.1 7.62 12.8 11.35 14.9 15.45 22.5 22.89 

2-2 3.6 1.44 6.9 2.87 15.0 7.62 16.5 11.35 25.6 15.45 43.8 22.89 
3 2.7 1.38 4.5 2.77 8.7 6.90 12.6 10.82 17.8 15.39 34.0 23.49 
4 6.3 4.12 9.6 7.36 21.0 19.32 44.4 36.57 64.4 60.88 107.8 109.78 
5 5.2 3.73 9.3 6.67 22.8 18.79 37.3 35.87 58.0 59.51 97.5 106.22 

5-5 8.5 5.81 14.2 9.84 38.2 32.15 66.8 69.45 102.3 121.44 179.0 215.55 
6 8.6 5.84 13.2 9.90 37.6 32.91 74.9 71.38 112.0 124.50 183.0 219.97 

6-6 5.6 3.76 9.3 6.67 20.9 19.30 43.8 37.28 60.0 62.13 103.0 110.56 
7 7.8 5.04 12.6 8.84 36.6 30.42 60.7 65.35 89.6 112.81 135.0 195.68 
8 9.1 6.52 14.1 11.40 47.3 43.76 88.7 99.64 124.0 170.85 191.0 292.37 
9 8.0 5.38 13.6 9.67 40.1 37.42 70.0 84.06 99.0 144.48 140.0 244.14 

9-9 8.9 6.38 15.1 11.38 49.1 46.64 85.7 107.72 123.0 183.73 168.0 307.40 
10 8.6 6.41 14.9 11.48 50.9 47.39 92.7 109.14 124.7 185.45 172.0 309.69 

10-10 7.7 5.42 12.7 9.77 40.9 38.28 74.6 85.92 102.5 146.99 165.0 247.66 
11 6.9 4.94 11.7 8.98 37.9 36.97 67.9 84.55 93.0 144.39 155.0 240.11 
12 7.7 5.63 12.3 10.16 44.1 42.86 78.8 99.42 108.3 168.48 159.5 279.39 
13 5.3 3.85 9.0 6.99 31.6 29.34 52.9 67.94 74.0 115.84 116.6 191.76 

13-13 5.8 4.26 9.9 7.70 31.9 31.80 58.1 74.38 80.8 127.46 118.4 211.83 
14 5.8 4.29 9.7 7.75 32.7 32.26 61.1 75.29 85.5 128.54 118.0 213.04 

14-14 5.4 3.87 9.3 7.07 29.4 29.93 51.3 68.92 75.0 116.94 96.0 193.06 
15 3.5 2.19 5.1 3.97 17.3 16.38 29.5 38.09 41.2 65.42 58.0 108.92 

15-15 3.7 2.44 5.8 4.43 18.0 17.77 31.8 41.66 43.7 71.86 62.5 120.46 
16 3.7 2.44 5.8 4.43 18.0 17.77 31.8 41.66 44.0 71.85 62.0 120.46 

16-16 3.3 2.22 5.3 4.01 17.3 16.84 32.0 39.00 44.5 66.49 59.5 110.12 
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17 3.0 1.38 5.4 2.77 10.4 6.90 12.4 10.82 16.4 15.39 28.0 23.49 
18 7.6 4.24 11.4 7.64 25.0 19.62 42.3 36.17 70.0 59.73 116.0 107.50 
19 2.8 1.26 4.7 2.48 8.5 6.60 10.9 11.23 15.1 16.56 39.0 25.99 

19-19 2.7 1.26 4.6 2.48 8.6 6.60 16.4 11.23 23.9 16.56 28.0 25.99 
20 9.8 6.54 14.9 11.01 39.9 33.88 72.4 72.50 118.0 126.88 193.0 227.45 
21 2.6 1.09 4.0 2.16 7.1 6.30 14.3 11.15 13.4 16.65 32.0 26.05 
22 11.1 8.18 17.7 13.94 52.3 49.39 100.7 111.92 153.0 194.05 230.0 337.66 
23 2.1 0.90 2.9 1.80 5.2 5.72 12.3 10.33 10.0 15.42 28.5 24.02 
25 0.0 0.69 2.3 1.39 4.3 4.80 8.2 8.83 10.7 13.08 21.0 20.11 
26 14.3 10.39 23.0 18.68 76.6 73.74 138.3 167.75 195.6 286.71 318.0 479.99 
27 0.0 0.47 0.0 0.95 3.7 3.54 4.9 6.69 6.5 9.87 8.5 14.93 

27-27 0.0 0.47 0.0 0.95 4.8 3.54 6.0 6.69 8.6 9.87 9.5 14.93 
28 15.4 11.17 26.8 20.50 84.0 82.09 150.7 184.64 204.0 312.83 346.0 520.14 
29 0.0 0.24 0.0 0.49 3.4 1.92 3.5 3.78 4.0 5.67 9.4 8.51 

29-29 0.0 0.24 0.0 0.49 4.2 1.92 3.9 3.78 3.5 5.67 4.2 8.51 
30 16.5 11.81 29.2 22.11 90.7 90.36 159.2 201.23 207.6 337.30 366.0 556.07 

B.3 Dependence of the electrical conductivity on temperature 
Illustrated in Fig. B.1 is the change of the electrical conductivity of commercial 

steel in dependence on temperature [185] as an interpolated function of the values 
summarized in TABLE B.3. 

 

 
Fig. B.1: Dependency of the electrical conductivity of commercial steel on the temperature. 
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TABLE B.3: Dependence of the electrical conductivity of commercial steel on the temperature 

Temp. Cond. Temp. Cond. Temp. Cond. 
°C S/m·106 °C S/m·106 °C S/m·106 

-100 8.547 150 3.876 450 1.852 
-50 6.993 200 3.389 500 1.669 
0 5.848 250 2.985 550 1.504 
20 5.465 300 2.632 600 1.355 
50 5.025 350 2.336 650 1.230 
100 4.405 400 2.079   

 
In case of adapting the electrical conductivity in assumption of higher 

temperatures in the steel grid, the current evaluation in the given measurement points 
has again been performed with the HBFP considering 11 harmonics at an excitation 
current of 50 (A) and 1000 (A). The results are plotted in Fig. B.2 and Fig. B.3. 

 

 
Fig. B.2: Current distribution in the steel grid 

with an adapted σ for 100 (°C) and an excitation 
current of the reactor of 50 (A). 

 
Fig. B.3: Current distribution in the steel grid 

with an adapted σ for 100 (°C) and an excitation 
current of the reactor of 1000 (A). 

 
In case of an exciting current of 50 (A), the modification of the electrical 

conductivity leads to deterioration in the difference of measured and computed eddy-
current values. Hence, the previously assumed value for the conductivity is a better 
match to the temperature in the steel grid at this excitation current level. However, 
when exciting with 1000 (A), the deviation between the measured and computed 
currents improved, leading to the assumption that the electrical conductivity at a 
temperature of about 100 (°C) is a good choice. 
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B.4 Technical data of the air reactor with stainless steel 
reinforcements underneath 

TABLE B.4 concludes the fundamental data of the air-reactor when investigating 
the eddy-current losses with a present stainless steel grid underneath. 

 

TABLE B.4: Main data of the air reactor test setup with stainless steel 
Technical data FVR 125/634/27.5 

Values Unit Quantity 
Active winding height mm 1376 
Average winding diameter mm 2100 
Radial winding width mm 146 
Number of turns - 127.75 
Rated voltage kV 6.8 
Rated power MVar 3.269 
Rated current A 615.18 
Rated reactance Ω 8.639 
Rated frequency Hz 50 
Insulation level (BIL) kV 125 
Rated inductance mH 27.5 
Isolator height mm 490 
Distance from ground to winding mm 650 
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B.5 Comparison of the measured and computed results 
Illustrated in the upcoming figures are the measured and computed eddy-current 

values in the stainless steel grid underneath the air-reactor. 
 

 
Fig. B.4: Provided measured eddy-currents in (A) in the stainless steel grid underneath the air-reactor 

with an excitation current of 101.96 (A). 
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Fig. B.5: Measured eddy-current values in the stainless steel grid of the quarter-domain as considered 

for the FEM computation given in (A). 
 
Illustrated in Fig. B.5 is the quarter-model domain with the measured eddy-

current values in the stainless steel grid when the reactor is excited with a current of 
101.96 (A). 
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Fig. B.6: Computed eddy-current values in the stainless steel grid in (A). 

 
Fig. B.6 shows the quarter FEM-model with the computed eddy-current values 

occurring in the stainless steel grid indicated when the reactor is excited with a 
current of 101.96 (A). The computed and measured values of the eddy-currents are in 
a good agreement. 
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