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Abstract

Cloud services provide access to relevant data nearly everywhere at any time. In re-
cent years the increasing usage of cloud-based applications has seriously changed our
interaction with data and how they are stored. Personal data, such as photos and videos,
as well as commercial data, is stored on remote servers, owned and managed by com-
panies such as Dropbox, Amazon, Google and others. This situation makes it essential
to think about, how data is stored and who can access it. Some cloud providers have
implemented actions to secure client data from unauthorized access, such as server-side
encryption of data. In fact, this solves the problem only partially. From a user’s point
of view, it is unclear who manages the cryptographic keys used for encryption and de-
cryption. Hence, there is no way for users to observe or control who is accessing their
data. Furthermore, data could be intercepted and even manipulated during transmission
from and to the cloud server. In this thesis, we developed an USB-stick, called TruStick,
encrypting data locally before transferring them to a cloud provider. We are using an
embedded Linux device, acting as an USB stick, running two operating systems at once.
A rich operating system, where USB emulation and data handling is done and a secure
operating system monitoring the state of the platform and managing the encryption keys
and cryptographic operations. With this approach we can provide data confidentiality and
integrity of data during transmission over the network, as well as for data stored in the
cloud. The keys used for encryption are only stored locally on the device, without a pos-
sibility to extract them from TruStick’s secure operating system. Thereby, TruStick offers
a way to protect data stored on a cloud server, without transferring the responsibility of
managing sensitive key material to any 3rd party, leaving the user the only person able to
access and manage the stored files.





Kurzfassung

Cloud-Dienste bieten Zugang zu persönlichen Daten von überall und zu jeder Zeit.
Die stetig steigende Nutzung von Cloud-basierten Anwendungen hat unseren Umgang
mit Daten und die Art wie sie gespeichert werden drastisch verändert. Private Daten, wie
Fotos und Videos, sowie firmeninterne Daten werden auf Servern gespeichert, die von
Cloud-Dienstleistern wie Dropbox, Amazon, Google und anderen zur Verfügung gestellt
werden. Dieser Umstand macht es notwendig, sich damit zu befassen, wie solche Daten
gespeichert werden und wer darauf zugreifen kann. Cloud-Anbieter haben ihrerseits be-
reits verschiedene Maßnahmen ergriffen, die Daten ihrer Kunden vor unbefugtem Zugriff
zu schützen. Zumeist implementieren Anbieter serverseitige Verschlüsselungstechniken
um die gespeicherten Daten zu sichern. Allerdings beseitigt dieser Ansatz nicht alle Pro-
bleme und Risiken, die sich aus Cloud-basierter Datenspeicherung ergeben. Aus der Sicht
eines Benutzers ist es unklar, wie die kryptographischen Schlüssel für die Verschlüsselung
und Entschlüsselung gespeichert und verwaltet werden. Daher gibt es keine Möglichkeit
für Benutzer, zu überwachen oder zu kontrollieren, wer Zugriff auf ihre Daten hat. Dar-
über hinaus könnten Daten auch während der Übertragung zu einem Cloud-Server ab-
gefangen und im schlimmsten Fall sogar manipuliert werden. Um den eben genannten
Risiken sowohl bei der Datenübertragung als auch der Speicherung vorzubeugen, haben
wir in dieser Arbeit einen USB-Stick entwickelt, den TruStick, welcher Daten noch vor
dem Transfer lokal verschlüsselt und die dabei verwendeten kryptographischen Schlüssel
sicher verwaltet, ohne eine Möglichkeit diese zu extrahieren. Dabei wurde ein Einplati-
nencomputer mit USB Gast Emulation als USB-Stick verwendet, auf dem parallel zwei
Betriebssysteme arbeiten. Neben dem Hauptbetriebssystem, das die USB Emulation und
die Speicherung und Verwaltung der Daten übernimmt, läuft noch ein kleineres siche-
res Betriebssystem, das den Zustand des gesamten Systems überwacht und für sämtliche
kryptographischen Operationen zuständig ist. Mit diesem Ansatz können wir Dateninte-
grität und Vertraulichkeit sowohl auf dem Cloud-Server als auch während der Übertra-
gung sicherstellen. Die für die Verschlüsselung verwendeten Schlüssel sind dabei unter
direkter Kontrolle des Benutzers, da sie den TruStick niemals verlassen.
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1
Introduction

1.1 Motivation

C
LOUD services are an important aspect of today’s life. Availability of data
from everywhere, at any time, has become a common expectation of our so-
ciety. Companies like Dropbox[Droa] or Amazon[Ama] offer limited cloud
storage for free. Operating system distributors like Microsoft (Windows),

Google (Chrome OS), or Apple (iOS) integrated cloud storage functionality into their
systems (SkyDrive, Google Drive, i-Cloud). However, cloud services are not only limited
to storage. Software-as-a-Service (SaaS)[TBB03] allows users to utilize software pro-
vided by cloud servers. For example, documents are created on cloud servers and files are
never stored locally. At the same time servers offer the necessary programs for process-
ing such files, e.g. Google Docs. Google even took one more step and integrated many
services into their cloud client operating system Chrome OS [Goob].

Alongside with many benefits we gain from being able to access our data from any-
where, cloud services also bear risks. Data confidentiality is one of them. Files stored on
public servers always face the risk of being exposed to entities or persons without being
authorized by data owners.

An additional circumstance that influences the accessibility of personal data by others
is the geographic location of cloud servers. Google for example distributes uploaded data
to their data centers that are located in Asia, Europe and America[Gooc]. Users are left
without knowledge which data center is actually used for their files. The location can
play an important role since the applied law depends on the country, the server is located
at. The USA PATRIOT Act[Uni] for example allows public authorities like the NSA, the
CIA, and the FBI to access server data without judicial order.

Furthermore, users have no control, or information about who else might have access
to the server. System administrators, as well as attackers gaining access to such a system
are able to examine and even manipulate all of the data stored there. Therefore, many
cloud providers do apply security mechanisms to protect stored data. Dropbox for ex-
ample encrypts data stored on their servers using 256-bit Advanced Encryption Standard
(AES) encryption and offers two-way authentication[Droc]. But there are still many is-
sues left open. For example, server-side encryption raises the question, where, and how

1



2 Chapter 1. Introduction

the used cryptographic keys are stored, and what happens if those keys get compromised.
Furthermore, it is unclear how providers process data internally. This became clear at
the last, when the NSA was accused to store the entire plaintext data streams between
Google’s data centers[WIR].

The fact that sensitive data, which is stored in the cloud, may be exposed to unautho-
rized persons in different ways makes use of client-side cryptography essential in order
to achieve data confidentiality. Software tools like Boxcryptor[Sec] provide encryption
of data before uploading it to the cloud, using state-of-the art encryption schemes with
strong encryption keys. Such software-based approaches still face the problem, that the
issue of protecting the key material is left to the end-user. If an attacker manages to ex-
tract the private key from a user’s system, he or she will be able to decrypt and access
the protected data stored in the cloud. Hence, requesting users to store their private keys
without ensuring that the keys are protected against theft, constitutes a considerable attack
vector for compromising private data. Thus, the major goal of a system using client-side
encryption in combination with cloud storage is to provide a secure key storage. Only if
the used encryption keys can be protected from unauthorized access, files in the cloud can
be considered confidential.

1.2 Problem Statement

1.2.1 Key Storage

Securely storing sensitive data, such as key material implies that such files are protected
from being accessed by other applications, e.g. malware. Keys that are stored directly to
an operating system’s filesystem are likely to be compromised by attackers. An increas-
ing number of software applications contain software vulnerabilities that can be possibly
exploited to bypass a system’s built-in security mechanisms. Figure 1.1 illustrates the
number of software vulnerabilities in recent years as reported by the US National Vulner-
ability Database [NIS].
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Figure 1.1: Number of reported software vulnerabilities per year[GFI].



1.2. Problem Statement 3

If attackers are able to exploit such vulnerabilities, they can possibly access sensitive
data stored on a system. In order to avoid storing plain cryptographic keys on the filesys-
tem, different approaches are available. Security processors[KL04] or Hardware Security
Modules (HSMs)[Sus11] provide ways to measure a system’s state and decide, whether a
system has been compromised by malware or not (see for example Secure Boot[Dav99]
or Integrity Measurement Architecture (IMA)[Sai+04]). One drawback of such systems is
the need for additional security relevant hardware, since costs of production are increased.

1.2.2 Data Confidentiality

Storing sensitive data in the cloud without applying any security mechanisms bears the
risk that such data might be accessed by unauthorized persons. If attackers manage to
gain access to files on a cloud server, this may have severe consequences for affected
users. A recently reported incident was the theft of private files from several celebrities
including private photo and video material[The]. This applies to companies storing busi-
ness related data in the cloud as well. Gaining access to a company’s cloud storage can
be an interesting topic for industrial espionage.

Even if cloud providers do not store data in plaintext, but use cryptography to pro-
vide data confidentiality, there are many issues left to be discussed. Using server-sided
encryption requires mechanisms to manage and protect used keys. A popular approach
is to use key servers[BAL96] that manage and supervise access to the encryption keys.
However, the weakness of such systems is the fact, that a key server forms a single point
of failure. The worst case scenario involves the leakage of all keys stored on the server,
exposing data of all users to attackers. Even if attackers are not able to extract the needed
keys, they could delete the stored key files, making user data inaccessible, if there is no
appropriate backup service. Moreover, when files are encrypted on the server, an eaves-
dropper could perform a Man-In-The-Middle attack(as shown in figure 1.2), intercepting
file transfer to the server, if communication is not secured properly.

Alice Bob

Eavesdropper

New Connection

Original Connection

Figure 1.2: In a Man-In-The-Middle-Attack an attacker relays a connection be-
tween two parties who believe they are directly talking to each other.
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1.2.3 Data Integrity

Files stored in the cloud have to be protected from being changed by accident or by mali-
cious intention, such as Man-In-The-Middle attacks[Des11]. However, not only external
attackers represent a threat to data integrity, so does the cloud itself. Cloud services as
provided by Dropbox for example include file versioning, storing old file versions for
thirty days before they are deleted. Hence, if we regard the cloud provider untrustworthy,
a mechanism is required to ensure that the cloud provides the actual version of a file, when
downloading it, as long as no other version is requested.

1.3 Proposed Solution

The TruStick presented in this thesis provides an approach of locally storing keys used
for cryptographic operations. TruStick acts as a USB stick allowing users to encrypt
files and upload them to a cloud server and vice versa. When attached to the USB port
of an arbitrary device, TruStick identifies itself as USB mass storage device to the host.
In addition to USB connectivity, the TruStick has a network interface used to upload
and download files from a cloud storage and a Bluetooth module for receiving control
commands via an Android smartphone application named TruTalk, which we developed
for this purpose. We use Dropbox as cloud provider in this thesis. Figure 1.3 shows the
block diagram of the communication between TruStick and connected devices.

TruStick

Cloud
Storage

Smartphone USB Host

Network connection

Bluetooth

connection

USB

connection

Figure 1.3: Trustick block diagram.

Network connection is used to transfer encrypted data between a cloud provider and
TruStick.

USB connection provides data transfer from and to arbitrary devices identifying TruStick
as a regular USB stick.

Bluetooth connection gives a user the ability to trigger operations such as encryption or
decryption via smartphone.
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1.3.1 Goals

We defined three major goals for this project to achieve a proof of concept for the TruStick
to be applicable in practice:

Usability We decided to provide USB connection capabilities to TruStick for transferring
data from any host device to TruStick, since USB is a wide-spread and easy-to-use
interface for connecting devices and transferring data. To achieve this connection,
an emulation of an USB mass storage device on our prototype device is required.

Synchronizing encrypted data with a cloud server requires a local client on Tru-
Stick monitoring the locally and remotely stored files. We chose Dropbox as cloud
provider, since Dropbox provides a comprehensive Application Programming In-
terface (API), that we use to implement a small client application to synchronize
encrypted user data between TruStick and Dropbox.

Furthermore, an easy to use command interface is required to trigger encryption
and decryption operations from a remote device. We decided to implement a smart-
phone application therefor, because it gives an easy to understand way to control op-
erations and manage data stored on TruStick. A connection between a smartphone
and TruStick is established via Bluetooth, since most smartphones are capable of
handling Bluetooth communication.

In addition to file encryption, file sharing between users is a commonly requested
feature for applications dealing with cloud storage. This implies exchanging cryp-
tographic keys between multiple TruSticks, in order to decrypt files received from
another user.

Security In order to ensure data confidentiality, files have to be encrypted automatically
before uploading them to a cloud server. In addition, a mechanism is required to
ensure data integrity and authenticity after download from the cloud server.

Moreover, the cryptographic keys used for encryption and decryption have to be
protected against software attacks.

Scalability Allow multiple files to be encrypted at once, combining them to a single
fileset. This approach grants users the ability to manage an arbitrary number of
files at once, without the need to handle each file separately.

1.3.2 System Architecture

To circumvent the need of additional security hardware (as discussed in section 1.2.1),
such as a Trusted Platform Module (TPM)[Mor11], we decided to implement TruStick
on an embedded system, using ARM TrustZone (TZ) technology. The basic principle of
TZ is to partition a system into a Secure World (SW) and a Normal World (NW), execut-
ing separate operating systems in each world, using only one single physical processor.
The SW monitors the state of the system and can overtake control anytime, if a possible
software attack or similar questionable behavior is detected. This architecture is known
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as Trusted Execution Environment (TEE) [Gloa]. For further details about TZ see sec-
tion 2.5. This environment is meant to prevent attackers from gaining access to sensitive
key material, stored in the SW, by exploiting software vulnerabilities of other applica-
tions installed on the TruStick. We do not claim this approach to be more secure than
using a Trusted Platform Module, but we want to show an alternative solution by storing
the cryptographic keys and protected data in a TEE-only addressable area. In this thesis
we focus on preventing remote or local software attacks. The topic of attackers having
physical access to the device is not covered in this paper.

1.3.3 File Encryption

To ensure data confidentiality, TruStick encrypts files, received via USB, locally before
uploading them to a cloud server. For encryption we use key encapsulation, involving the
symmetric block cipher AES and the asymmetric block cipher Rivest-Shamir-Adleman
(RSA). Key encapsulation significantly increases performance of encryption, since data
is encrypted using fast AES encryption and only AES keys are encrypted using RSA.

The RSA keypair, used for key encryption operations, is created, when a user connects
to TruStick for the first time via the Android application TruTalk. Once this initial setup
is done, this key is used for any further cryptographic operations on AES keys.

Every time a file is encrypted, a new AES Data Encryption Key (DEK) is generated,
and used to encrypt the file content. During the encryption process, the file’s content is
passed from the NW to the SW where the encryption is performed and the encrypted files
are transferred back to NW.

When file encryption is completed, DEK is encrypted using the user’s public RSA
key. Then, the encrypted DEK is also passed on to the NW and is stored in a meta file
next to the encrypted file.

To circumvent the need for an additional Keyed-Hash Message Authentication Code
(HMAC) function – applied to the file after encryption to provide data integrity – we
use the authenticated encryption scheme AES in Offsest Codebook Mode (OCB) mode
[KR] for file encryption. Compared to similar encryption schemes providing same func-
tionality like AES-CCM[DF03] for example, AES-OCB can be considered significantly
faster[Roga].

AES-OCB generates an additional authentication tag during the encryption process,
which is embedded into the ciphertext. When decrypting the ciphertext this tag is used to
validate that the ciphertext has not been altered by accidental or malicious means. This
generated tag is stored in the meta data file, signed with the user’s RSA public key.

1.3.4 Filesets

In addition to encrypting single files, TruStick also provides a way to group multiple files
to a set. Filesets can be used to combine related files that are likely to be used together.
This allows users to structure files according to their personal requirements, like dividing
into work-related and private files for example.
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1.3.5 Dropbox Client

Dropbox provides a comprehensive API[Drob] to develop custom client applications. At
the time of developing TruStick there has been no client for ARM platforms. Therefore,
we have implemented a simple Dropbox client monitoring one folder where encrypted
files and meta files are stored. When a new file appears, the client will automatically
upload it and the corresponding meta file to the associated Dropbox account. In our
design, plain files are deleted after encryption to ensure data confidentiality, even if the
TruStick is lost or stolen. On the contrary, encrypted files remain on the TruStick to
provide availability of data in case no network connection is possible. A drawback of
this design is the fact, that the number of encrypted files is limited by TruStick’s storage
capacity, which is likely to be smaller than the storage available in the cloud.

1.3.6 File Sharing

A commonly wide-spread functionality of cloud storage is the ability to share files among
different users. We decided to use our smartphone app TruTalk for exchanging crypto-
graphic keys, that are needed for file decryption. Thereby, users are able to exchange
keys without requiring the TruStick to be present. To enable file sharing with encrypted
files between multiple TruStick devices, users can export the public part of their Key En-
cryption Key (KEK) via Bluetooth to the TruTalk app and exchange them in form of a
QR-code with other users. After exchanging a key, users are able to transfer such keys
back to their own TruStick using Bluetooth again. TruStick imports a received key into
the SW and stores it for further encryption and decryption operations.

1.3.7 TruTalk

In 2014 smartphone users totalled around 1.75 billion[eMa], making the smartphone a
widely distributed portable device, that can be used to send control commands to the
TruStick and exchange keys, without the need of carrying on the TruStick itself. The
Android application TruTalk has two main purposes. It serves as command interface for
uploading and downloading files and defining file sets. Uploading files can be done in
two different ways: upload all files found on the TruStick, each encrypted as a single file,
or retrieve a list of files from TruStick and specify a fileset with any of the listed files. For
downloading, a list of uploaded files can be retrieved from the TruStick. Users can select
entries, which will be downloaded and made available for the host computer. The second
purpose is to exchange the RSA public key with other users to share encrypted files. After
obtaining the public key from the TruStick TruTalk can generate a QR-code to share this
keys. TruTalk also has a built-in QR-code reader to decode public RSA keys provided by
another user’s smartphone.

1.3.7.1 Authentication

When launching TruTalk for the first time, users have to choose a username and a pass-
word, that will be stored on the smartphone. After this setup procedure any further inter-
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action with TruTalk require the correct user credentials to be provided.
Furthermore, the user credentials are sent to the TruStick, where an RSA keypair is

created in the SW for the given user. The access credentials and the keypair are stored
on the filesystem in the SW and are used for verifying user authorization when issuing
commands that involve the usage of cryptographic key material stored in the SW.

For this prototype we store the SHA-256[Sav] hash of the password as private prefer-
ence[Gooa] of our Android application, not accessible by other applications. Considering
threats that might affect a smartphone, storing the password should be done using a more
advanced approach for further work.

1.3.7.2 Security

Since Bluetooth is known to be prone to Man-In-The-Middle attacks, we use a shared
secret key to increase security during transmission. When establishing a connection be-
tween TruTalk and TruStick, the two parties agree on a shared secret using Diffie-Hellman
key exchange mechanism. After this key setup phase was successful, entire communica-
tion between the devices is encrypted using AES block cipher, with the shared secret used
as AES encryption key.

1.3.7.3 Graphical User Interface

Figure 1.4 shows the user interface for issuing commands to the TruStick. Figure 1.5
represents the interface for exchanging a public RSA key, that is encoded into the QR-
code.

Figure 1.4: TruTalk Command In-
terface

Figure 1.5: Key Exchange via
TruTalk
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1.3.8 Prototype

The use of ARM TrustZone (TZ) requires a System-on-Chip (SoC)[Kla04] with security
extensions. To fulfill this requirement, we implemented our prototype using the Freescale
IMX53 Quick Start Board (IMX53 QSB)[NXP]. The IMX53 QSB has an ARM Cortex-
A8 processor, supporting TZ. We utilize ANDIX OS (see section 2.6) as SW operating
system and a basic Debian Linux OS for the NW. The operating system images are loaded
from a micro SD card. The iMX53 is configured to act as USB Mass Storage Device to
an arbitrary host system. Connection between the host and the i.MX53 board is realized
with the Mass Storage Gadget kernel module from the USB Gadget project[Lin]. This
module simulates an USB Mass Storage Device, allowing data transfer via USB. Addi-
tionally the i.MX53 has a network connection for using cloud services and a USB Blue-
tooth adapter[Cona] with Bluetooth 4.0 standard for communication with our smartphone
application TruTalk.

1.3.9 Outline

In chapter 2 we give an overview of topics that are relevant to understand the functional-
ity of TruStick. After that, chapter 3 discusses projects dealing with similar approaches to
processing sensitive data. Chapter 4 describes our implementation of TruStick and spec-
ifies the implementation of our Android app TruTalk. Chapter 5 explains our results and
itemizes open issues that were not covered in this thesis. Finally chapter 6 concludes this
thesis.
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2
Preliminaries

T
HIS chapter gives a short introduction into the algorithms and technologies
used for implementing TruStick including hash trees and the cryptographic
algorithms Advanced Encryption Standard (AES) in Offsest Codebook Mode
(OCB) and Rivest-Shamir-Adleman (RSA) as well as a brief overview about

the functionality of ARM TrustZone (TZ).

2.1 RSA

RSA is an asymmetric block cipher named after the inventors R. L. Rivest, A. Shamir,
and L. Adleman and was first proposed in 1978[RSA78]. The RSA cryptosystem can be
used for encrypting or digitally signing data (see figure 2.1 and figure 2.2). Since RSA
is an asymmetric cipher, a keypair, consisting of a private and a public key, is used for
operation. The public key is used for encryption and verifying digital signatures and the
private key for decryption and signing data. For performance reasons RSA is commonly
not used for data encryption, but used in combination with a more efficient symmetric
cipher, such as AES. In such a hybrid system, data is encrypted using the symmetric
cipher and the symmetric key is encrypted with RSA.

Alice

Public Key

Message Encrypt

Bob

Private Key

Decrypt MessageEncrypted
Message

Figure 2.1: Message encryption with RSA.

11
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Alice

Private Key

Message Sign

Bob

Public Key

Verify
Valid

Message
Message +
Signature

Figure 2.2: Digital signature with RSA.

2.1.1 Algorithm

This section describes the algorithms for the RSA encryption scheme, including keypair
generation and encryption/decryption as discussed in [MVO96]. Listing 2.1 describes the
generation of the encryption exponent (e), the decryption exponent (d) and the modulus
(n). Listing 2.2 shows the usage of (e,d,n) for encryption and decryption of an arbitrary
message m.

Listing 2.1: RSA key generation

1 Generate two large random and distinct primes p and q.
2 Compute n = pq and φ = (p− 1)(q − 1).
3 Select a random integer e, 1 < e < φ, with gcd(e, φ) = 1.
4 Use the extended Euclidean algorithm to compute the

unique integer d, 1 < d < φ, such that ed ≡ 1 mod (φ).
5 The public key is (n, e); the private key is d.

Listing 2.2: RSA public-key encryption

1 SUMMARY: B encrypts a message m for A, which A decrypts.
2 B obtains A’s authentic public key (n, e).
3 Represent the message as an integer m in the interval

[0, n− 1].
4 Compute c = me mod (n).
5 Send the ciphertext c to A.
6 To recover the plaintext m A uses the private key d and

computes m = cd mod (n).

2.2 Diffie-Hellman Key Exchange

Secure communication over an untrusted channel requires the involved parties to share a
secret cryptographic key. A common way to generate such keys is the Diffie-Hellman Key
Exchange Protocol[DH06]. This protocol allows two parties to generate a shared secret
over an insecure channel without revealing any sensitive information to an eavesdropper.
If two parties Alice and Bob want to exchange a common key, they first have to agree
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upon the public parameters p and g via the insecure channel, where p is a prime number
and g is a primitive root modulo p. Thereafter, Alice and Bob both choose an integer (a
and b) that has to be kept secret and is not transmitted over the channel. Alice computes

A ≡ ga mod p (2.1)

and sends A to Bob via the insecure channel. Vice versa, Bob computes

B ≡ gb mod p (2.2)

and sends B to Alice. Now, both parties can compute the shared secret:

KAB ≡ Ba ≡ gab mod p (Alice) (2.3)
KAB ≡ Ab ≡ gab mod p (Bob) (2.4)

The established shared secret key K can now be used to encrypt further communica-
tion over the insecure channel using a symmetric cryptographic protocol, such as AES.
Figure 2.3 illustrates the required steps for a key exchange.

a, g, p

A = ga mod p

K = Ba mod p

Alice

b

B = gb mod p

K = Ab mod p

Bob

A, g, p

B

Figure 2.3: Basic Diffie-Hellman key exchange.

2.3 AES-OCB

Data encryption on TruStick is done using Authenticated Encryption (AE), namely OCB
(Offset Codebook Mode, Krovetz and Rogaway [KR]) with AES used as block cipher.
The goal of AE is to provide data confidentiality, as well as authenticity. In RFC 7253
these two terms are defined as following:

Confidentiality is defined via "indistinguishability from random bits", mean-
ing that an adversary is unable to distinguish OCB outputs from an equal
number of random bits. Authenticity is defined via "authenticity of cipher-
texts", meaning that an adversary is unable to produce any valid nonce-
ciphertext pair that it has not already acquired.

A more traditional approach of achieving confidentiality and authenticity would involve
separate encryption followed by an authentication scheme, using an own key for each
mechanism. AE combines these two functionality in one cryptographic operation. Since



14 Chapter 2. Preliminaries

AES-OCB is also an Authenticated Encryption with Associated Data (AEAD) scheme,
it is possible to add authenticity to additional plain data, which do not need to be en-
crypted. This might be useful when considering a packet encryption scheme for example,
where the payload has to be encrypted and authenticated and the packet header only needs
authentication.

2.3.1 Properties

The design of OCB includes following properties [Rogb]:

• Authenticated Encryption Scheme: encrypted messages are both private and authen-
ticated.

• Indistinguishability under chosen-ciphertext attack and non-malleability under
chosen-ciphertext attacks.

• Fully parallelizable. Very good for encrypting messages in hardware at the highest
network speeds.

• Works with any block cipher.

• OCB makes a nearly optimal number of block-cipher calls: d|M |/ne+ 2.

• Only a nonce is required (but no IV).

• Only a single block-cipher key is used.

• Key setup in OCB is very cheap (typically one block-cipher call).

• OCB is very memory efficient.

• OCB generates a sequence of offsets, which it does in a very cheap way. Each offset
is computed from the previous one either by xoring the previous offset by a value
looked up in a small table or by doing a few shifts and xors.

• OCB can encrypt messages of arbitrary length. Messages don’t have to be a multi-
ple of the block length, and no additional padding is needed.

• Messages of all lengths are treated in a single, uniform manner.

• The length of an OCB ciphertext is the same as the length of the plaintext.

• OCB avoids 128-bit addition (which is endian-biased and can be expensive in soft-
ware or dedicated hardware). It uses xors instead.

• OCB is simple to understand and implement. It uses GF (2128) arithmetic and a
Gray code, but it all comes down to some xors and shifts.

• OCB is provably secure. It provably meets its goals, as long as the underlying block
cipher meets standard cryptographic assumptions.



2.3. AES-OCB 15

2.3.2 Algorithm

AES-OCB extends the regular encryption process by introducing an additional offset
value. The initial offset is calculated by using an unique nonce of 128-bit length. This
nonce is XORed with a 128-bit string that is generated from encrypting 0 with the used
AES key. The output of the XOR is again encrypted with the same AES key. This encryp-
tion finally yields the initial offset value. Data encryption is done, by XORing plain data
with the offset value and encrypting the result with the given AES key. After encryption,
the output is again XORed with the offset value generating the final cipher block. After
processing one block, the offset value is changed by performing another XOR operation
on the current offset value with a new 128-bit string.

Listing 2.3 describes an encryption process of message M broken into
M[1]M[2]. . . M[m] blocks of size 128-bit each except the last block. Following notation
is used: K denotes an AES encryption key with arbitrary length (128, 192, or 256 bit).
Nonce is a 128-bit nonce and L represents AES(K,0). Define L(0) be L and, for i > 0, let
L(i) be L(i− 1) << 1 if the first bit of L(i− 1) is 0, and let L(i) be (L(i− 1) << 1) xor
0x00000000000000000000000000000087 otherwise. Let L(−1) be L >> 1 if the last
bit of L is 0, and let L(−1) be L >> 1 xor 0x80000000000000000000000000000043

otherwise.

Listing 2.3: AES-OCB encryption algorithm

1 Offset = AES(K, Nonce xor L)
2 Checksum = 0
3 for i = 1 to m-1 do
4 Offset = Offset xor L(i)
5 Checksum = Checksum xor M[i]
6 C[i] = Offset xor AES(K, M[i] xor Offset)
7 end
8 Offset = Offset xor L(m)
9 Pad = AES(K, len(M(m)] xor L(-1) xor Offset)

10 C[m] = M[m] xor (the first |M[m]| bits of Pad)
11 Checksum = Checksum xor Pad xor C[m]
12 FullTag = AES(K, Checksum xor Offset)
13 Tag = a prefix of FullTag (of the desired length)
14 return C[1]...C[m-1] C[m] Tag

Figure 2.4 shows a different representation of AES-OCB encryption process using a
block diagram. The diagram should be read from left to right, whereat ∆ denotes the
Offset. For a more detailed description of OCB, see [KR].
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∆← EK(N)

∆← 2∆

M1

∆

EK

∆

C1

∆← 2∆

M2

∆

EK

∆

C2

∆← 2∆

M3

∆

EK

∆

C3

∆← 2∆

M4

len

∆

EK

C4

∆← 3∆

Checksum

∆

EK

Auth

Tag

Figure 2.4: Block diagram of OCB encryption.

2.4 Merkle tree

A Merkle tree or hash tree can be used to provide integrity among multiple data blocks.
They provide an efficient and secure way to verify the content of large data structures.
Building a Merkle tree involves applying a hash function to each data block. The yielding
hash values are used as the tree’s leaves. Concatenating two or more hashes creates the
next level node of the tree. Most hash trees are binary taking two hash values to create a
node, but they can also use more values. Repeating this procedure finally yields the root
hash denoting the top of the tree. Figure 2.5 shows a Merkle tree built from four leaf
nodes representing arbitrary data.

[Bec08] states that verifying that a leaf node is part of a given hash tree requires
processing an amount of data proportional to the logarithm of the number of nodes of the
tree. Compared to hash lists, where the amount of data is proportional to the number of
nodes, this is a big improvement concerning efficiency. Merkle trees are used by projects
such as BitTorrent [Inc], Git [Conb], and the ZFS file system.

0x1d449..

0xf2996..

0x866b7.. 0x9f661..

0x6c450..

0x42651.. 0x0784e..

Root Hash

Nodes

Leaves

Figure 2.5: Example structure of a Merkle-Tree.
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2.5 ARM TrustZone

In contrary to traditional security solutions in embedded systems where a separate se-
curity processor is required, ARM TrustZone [Lim09] makes use of security extensions,
which are a feature of the processor architecture, integrated into a number of different
ARM processors. These extensions introduce an additional secure mode into all relevant
components of a system, such as CPU, bus interface and address space controller. The
secure mode provides the possibility to split a system into a rich operating system and
a much smaller, secure operating system. Since this separation is done in hardware, TZ
provides a robust platform, on which the upper layers of secure software can be built. This
approach solves some of the disadvantages of which external security processors suffer,
such as lack of programmability or higher system costs caused by additional hardware.

The design of TZ allows a single physical processor to execute code from the secure
world (SW) as well as the normal world (NW). Therefore, a controller is needed to pass
control between the two worlds. To realize these world switches, a new processor mode,
the secure monitor mode, has been introduced. This additional CPU mode monitors all
interactions between the SW and the NW. This mode can be entered from either the SW
or the NW by invoking a Secure Monitor Call. In case unauthorized access to security
relevant memory regions or other critical resources from the NW is detected, the secure
monitor mode is invoked, and the SW should react on this case. Figure 2.6 illustrates the
transitions between the two worlds via the monitor mode.

The world in which the system’s processor is executing is defined by a special bit in
the Secure Configuration Register (SCR). The value of this bit decides the world to be
executed, except the case, the system is in monitor mode. In monitor mode the system is
always executing in the Secure World.

Secure World
User Mode

Secure World
Privileged Mode

Monitor Mode

Normal World
User Mode

Normal World
Privileged Mode

Secure World Normal World

Figure 2.6: Separation between normal and secure world.
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2.6 ANDIX OS

In 2014 Andreas Fitzek proposed ANDIX OS [Fiz14], an operating system designed for
the SW of a system using TrustZone technology. At present, ANDIX OS can be executed
on the IMX53 QSB, as well as on an adapted version of the QEMU ARM emulator with
TrustZone support [Win+12]. The following section will given a short introduction into
ANDIX OS. For further reading see [Fiz14].

2.6.1 Secure World

The kernel of the Secure World (SW) is the core component of ANDIX OS. It manages the
boot process and the security functions provided by ARM TrustZone, such as protection
of the SW memory. Therefore, the SW kernel handles the isolation between the NW and
the SW, since the NW must not access physical memory owned by the SW.

After the boot process, the SW acts as bootloader for the NW system. This includes
verifying the integrity of the NW system before boot.

At runtime, the SW monitors the NW system’s state, detects possible attacks, and
performs counteractions in case of an attack. When an attack is detected, the SW takes
control over the system and stops execution to prevent further malicious actions, such as
access to sensitive memory regions.

2.6.1.1 Trusted Applications

Trusted applications are executed in the SW userspace. They are are statically linked to
the SW kernel and are contained in the system image, together with the SW kernel. The
SW kernel manages the initialization and separation of the Trusted Applications. NW
clients can interact with Trusted Applications via remote procedure calls (RPCs), allow-
ing NW applications to exchange data and trigger operations in the SW, like for example
cryptographic operations with key material stored in the SW. The interface for communi-
cation with Trusted Applications is defined by the Trusted Execution Environment Client
API [Glob].

2.6.2 Normal World

After booting into the SW the normal world kernel is loaded and passed control by the
SW. The SW stays passive and does not influence the NW process until the NW sends a
request to the monitor mode, or a possible attack is detected.



2.6. ANDIX OS 19

2.6.3 World Communication

Communication between a NW application and a SW trusted application is realized by
world switches. Therefore, both worlds use the monitor mode to switch modes of op-
eration. Figure 2.7 shows the real communication path using the monitor mode and the
logical communication path, provided by the TEE Client API [Glob] in the NW and the
TEE Internal API [Gloc] in the SW. When an application initiates a communication chan-
nel with a trusted application, a session is opened between the NW application and the
SW trusted application. This session can be used to store information, that needs to be
available through the whole communication process.

ANDIX OS monitor mode

Normal World
Operating System

Secure World
Operating System

Secure World Normal World

Userspace

Kernelspace

Normal World
Application

Secure World
Application

logical

communication

real communication

Figure 2.7: Communication between normal and secure applications.
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3
Related Work

T
HE following chapter discusses projects related to topics covered by TruStick.
The chapter is divided into projects dealing with cloud security (section 3.1)
and projects providing local or remote attestation involving a HSM using
USB technology (section 3.2).

3.1 Cloud based approaches

DroidVault Li et al. [Li+14] proposed DroidVault, a Trusted Data Vault for processing
sensitive data on mobile devices. DroidVault makes use of TrustZone technology inte-
grated into mobile devices executing Android operating system in Normal World. Users
can retrieve sensitive encrypted data from a trusted remote server and securely decrypt
it within the Secure World without exposing key material to the untrusted Android file
system. The core components of DroidVault are a secure connection to a specified remote
server and a I/O module to allow secure data input and display. For accessing sensitive
data from a remote server, the server has to provide signed code that is loaded into the
DroidVault and used for processing such data. Only if the signature can be verified by
DroidVault, the code will be executed and hence the data will be available. Like TruStick,
DroidVault uses Dropbox as remote server with the prototype, which has also been imple-
mented using the Frescale IMX53 board. But in contrary we do not consider Dropbox to
be trusted, but we limited the boundaries of trust to the TruStick itself. Moreover, TruStick
allows to present decrypted data to a variety of devices, whereas DroidVault is only meant
to provide data access via the smart phone.

DFCLOUD Shin et al. [Shi+12] introduced a project named DFCloud using an ap-
proach similar to Trustick. The DFCloud architecture involves three components: Trust-
Zone enabled mobile client devices, a Server Manager, and backend cloud storages. Be-
sides using TrustZone technology every mobile device has an emulated TPM located in
the Secure World for key management. Crypographic file processing is done in the Se-
cure World on the client devices. The Server Manager is in charge of distributing keys
to additional devices, remote attestation of client devices, and handling third party cloud
storage services. However, the DFCloud prototype was implemented on an emulated
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ARM Cortex-A15 without porting the software to a hardware device. Furthermore, mo-
bile clients are only meant to locally use downloaded files, whereas our Trustick serves as
USB mass storage device, distributing files to other systems. We believe that we are able
to achieve the same level of security without an additional hardware security device.

ZTIC Weigold et al. [Wei+08] implemented an USB stick – the Zurich Trusted Informa-
tion Channel (ZTIC) – basically acting as Man-In-The-Middle, between online services
and a client PC. Therefore, a network proxy running on the used PC passes all traffic to
the USB stick. The ZTIC processes all communication from and to the client as, scanning
exchanged data for sensitive operations such as bank transactions. Such transactions are
intercepted and relevant information is shown on the on-board display of the stick. Only if
a user presses a button on the stick, explicitly stating, that she agrees with the information
shown, the communication gets passed through. This security system prevents malware
and Man-In-The-Middle attacks regarding sensitive communication over the network, e.g.
bank transactions.

EMR Akinyele et al. [Aki+11] use mobile devices to access and view self-protecting
electronic medical records (EMRs) with attribute-based encryption stored on a hospital’s
SSL server. Therefore, a policy encryption engine parses each node of a newly submitted,
XML-based, EMR record to calculate the correct access policies. Such EMRs can then
be stored on external cloud storages or on mobile devices such as smartphones and can be
downloaded by patients and healthcare providers with appropriate permissions.

3.2 USB devices

A couple of previous works use external USB devices for remote or local attestation using
hardware security modules or simulating such devices. Also there are several approaches
to provide a Portable Trusted Module (PTM).

iTurtle McCune et al. [McC+07] proposed a USB device – the iTurtle – aiming to verify
a platform’s state using remote attestation. The iTurtle allows a user to easily distinguish
between trusted and untrusted states by providing a visual feedback, such as a LED light,
stating the verification result. However, such a device has never been realized.

MTA Feng et al. [Fen+13b] developed a Mobile Trusted Agent (MTA) acting as a trusted
medium between a local user and a remote verifier. A remote verifier is used to validate a
platform configuration defined by measurements done by a local TPM. The MTA provides
the cryptograhic functionality to establish a secure connection to this verifier and is also
able to act as TPM for a host platform without a TPM. The MTA can be connected via
USB using the USB Gadget library or via network. The prototype of this project was
implemented on an ARM Real210 development board with a software TPM.
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PTPM Zhang, Han, and Yan [ZHY10] introduced the Portable TPM Based on USB Key,
which is a USB device with Java Card Runtime Environment, a little LCD display, and a
button. It holds a Java Card Applet with several TPM functions implemented for locally
attesting multiple devices with the same Attestation Identity Keys. Such keys are used for
signing values stored in the platform configuration registers. Therefore, the assumption
has to be made, that this key, as well as the Storage Root Key are migratable.

TEEM Feng et al. [Fen+13a] created a trusted computing module, called Trusted Exe-
cution Environment Module (TEEM), that can be used by desktop computers, as well as
by mobile devices. It is deployed in the Secure World on a mobile with TrustZone serving
as Mobile Trusted Module (MTM) there. If connected to a desktop platform via USB it is
configured to behave as PTM. They implemented a prototype using a ARM Real210 de-
velopment board with TPM/MTM emulator, which were adapted to support more Trusted
Computing Modules and crypotgraphic algorithms.

SDM Hein et al. [Hei+12] presented a paper using a Secure Docking Module (SDM)
to provide decentralized method of making trust decisions. The SDM was developed
for crisis management using mobile agents for information exchange in areas without
reliable network infrastructure. A local decision authority is used to determine whether
a mobile agent may access requested information or not. This is achieved by combining
Intel’s Trusted Execution Technology (TXT) with a TPM to a Trusted Docking Station
(TDS). The TPM is used to measure the platform configuration into it’s PCRs. Only if
the platform running on the TDS has a configuration known to the SDM, cryptographic
material needed by the platform will be released.

SecurID RSA distributes a device named SecurID On-Demand Authenticator, deliv-
ering a one-time password (OTP) to a user’s mobile device via an SMS text message or
email, turning that mobile device into a security token.

Some works related to cloud services address the topic of securing existing appli-
cations. Boxcryptor is an Open-Source application, which also automatically encrypts
files like the TruStick before uploading them to cloud storage. Popa et al. [Pop+11] im-
plemented a system, CloudProof, allowing users to detect and even proof violations of
integrity to a third- party. Bessani et al. [Bes+13] introduced DepSky, a mechanism, that
does not rely on storing data in a single cloud, but distributes encrypted data blobs to
different cloud providers.



24 Chapter 3. Related Work



4
Implementation

T
HE implementation of TruStick covers multiple components that are discussed
in the following chapter. Most functionality is implemented in the NW of
TruStick, except parts using sensitive key material for cryptographic opera-
tions (see figure 4.1). Section 4.1 illustrates how USB mass storage function-

ality has been achieved and Section 4.2 gives an overview of file handling on TruStick.
In section 4.3 we will discuss the functionality of our encryption application TruCrypt in
detail. Section 4.4 describes how commands to TruStick are handled by our Bluetooth
communication application TruServer and section 4.5 explains how file synchronization
between TruStick and a cloud server is realized.

Monitor Mode

ANDIX OS

TruCrypt
Trusted

Application

Secure World

Normal World Linux

TZ Driver
USB Mass

Storage Gadget

TruCrypt
Client

Application Dropbox
Client

Bluetooth
Server

Normal World

Figure 4.1: Separation between Normal and Secure World.

25



26 Chapter 4. Implementation

4.1 USB Mass Storage Gadget

TruStick uses the USB Mass Storage Gadget to provide USB storage functionality when
attached to other devices. TruStick reports itself as mass storage device providing data
via a special block device stored in the NW of TruStick. The block device only serves
as gateway to transfer unencrypted data from and to TruStick. The following section
describes in detail how this functionality is implemented.

We use the Linux USB Gadget Framework API to provide USB mass storage func-
tionality with the IMX53 QSB. This framework allows systems to act in USB device
(slave) role. The necessary hardware requirement for this feature is a USB controller that
supports acting as such a slave device, which is provided by the IMX53 QSB. The Gadget
Framework API is split into several layers (see figure 4.2):

• Peripheral Controller Drivers are the only layers directly communicating with
the hardware. They implement the Gadget Drivers and support an arbitrary number
of such drivers, but only one can be used at a time.

• Gadget Drivers use calls to the controller drivers and implement hardware-neutral
USB functions.

• Upper Layers build the upper boundaries for Gadget drivers connecting to further
drivers or frameworks in the operating system.

Upper Layers (network, file system,...)

Gadget Drivers

Peripheral Controller Drivers

Figure 4.2: Linux-USB Gadget Framework API layers.

The Gadget Framework already comes with several public available gadget drivers,
providing common USB functionality. One of the provided drivers is the Mass Storage
Gadget, which we utilize to make the IMX53 QSB act as USB storage device to arbitrary
USB hosts. The gadget takes an arbitrary file or block device as backing store, which has
to be specified when the appropriate kernel module is loaded, and presents it to a host as
SCSI disk drive. On TruStick, the backing store is a separate partition on the SD card. For
interoperability reasons the partition was formatted as FAT32 partition, thus file sizes are
limited to 4 GB.

Integrating the Mass Storage Gadget into TruStick only requires USB support to be
configured into the NW Linux kernel. USB support is contained in Linux kernel 2.2.7
and later. With an appropriately configured kernel, loading the USB kernel module works
flawlessly on the IMX53 QSB. One consideration that has to be made though, is that
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manipulating data in the backing store, while the mass storage device is connected to a
USB host, might cause unwanted behavior or even destroy data on the device, since USB
hosts do not expect data on the device to be changed, when it is connected.

4.2 File Handing

We have implemented three applications, interacting with each other, to achieve the goal
of securely managing files and storing them on a cloud server. Figure 4.3 shows the basic
interaction between these applications within TruStick.

TruServer TruCrypt

Dropbox
Daemon

Backing
Store

Trigger file
encryption/
decryption

Sync local and
remote files

Store/load files

Figure 4.3: Interaction between applications and backing store.

• TruCrypt (section 4.3) is responsible for file encryption and decryption. This also
includes combining files into filesets and verifying data integrity after decryption.
TruCrypt is built of the client application in the NW and the trusted application in
the SW. Commands to TruCrypt are issued by TruServer.

• TruServer (section 4.4) provides the Bluetooth communication interface required
by our TruTalk app(see section 4.6) and triggers the encryption/decryption process
performed by the TruCrypt application. Furthermore, TruServer reports the cur-
rently available files to TruTalk.

• Dropbox Daemon (section 4.5) monitors the local file status and synchronizes files
with Dropbox.
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4.3 TruCrypt

TruCrypt is the client application for interaction with the SW trusted application.
When performing an encryption operation, TruCrypt reads the unencrypted input file

block-wise and transfers the it to the SW. After encryption the encrypted file blocks are
transferred back to the NW and TruCrypt stores them in a file in the backing store, mon-
itored by the Dropbox Daemon. Vice versa, file decryption works in the same way. The
TruCrypt client transfers an encrypted file to the SW and stores the decrypted file after-
wards. In addition, TruCrypt also processes meta files and is responsible for user man-
agement.

The TruCrypt trusted application is executed in the SW and performs encryption and
decryption of file blocks. In addition, the trusted application also encrypts the AES keys
used for file encryption, since these keys have to be stored in meta files in the NW. Fur-
thermore, the TruCrypt trusted application creates the Merkle-Tree structure, when deal-
ing with filesets.

Table 4.1 lists all available commands supported by TruCrypt. The commands are
invoked by a user via the Android application TruTalk (see section 4.6) and are transmitted
via Bluetooth to the TruServer (see section 4.4). The TruServer application then invokes
the TruCrypt application with the appropriate arguments.

Table 4.1: Available commands for TruCrypt.

Command Description

CREATE_USER Create a new user

GET_PUB_KEY Export the user’s public RSA key

SET_PUB_KEY Import a public RSA key

ENCRYPT_FILE Encrypt single file

ENCRYPT_SET Encrypt set of files

DECRYPT_FILE Decrypt single file

DECRYPT_SET Decrypt fileset

SHARE_FILE Share file/set with another user
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4.3.1 User Management

Before the TruCrypt application can be used for file encryption, a user has to be created
by invoking TryCrypt with the CREATE_USER command. TruStick does not accept any
other commands before a user has been set up. As argument a username and a password
have to be passed when invoking the command. The TruCrypt application will then estab-
lish a connection to the SW trusted application and relay the command to the SW. There,
the user credentials will be stored on the SW filesystem, alongside with a newly randomly
generated RSA keypair bound to this specific user. The transmitted user credentials have
to be provided along with every command issued to TruStick verify the user’s identity.

At the moment TruStick does not support multiple users. If the CREATE_USER com-
mand is issued a second time, the credentials and RSA keypair of the first user will be
deleted. Since the RSA private key is not stored elsewhere, this could result in loss of
data, in case the key has already been used for encrypting files.

4.3.2 Public Key Transfer

When a user has been created, TruCrypt can export the user’s RSA public key from the
SW to the NW. Since the file encryption keys are encrypted with this RSA key, it is
necessary to be able to export the local public key and import additional public keys to
provide file sharing among multiple TruStick devices (see section 4.3.7).

When invoking the GET_PUB_KEY command, the trusted application reads the
locally stored public RSA key and passes it to the NW. On the other side, the
SET_PUB_KEY command is invoked with a public key and a username from another
TruStick device. These two arguments are passed to the SW and are stored on the SW’s
filesystem.

4.3.3 Metafiles

The Data Encryption Key (DEK) and authentication tag belonging to a certain file are
stored in a separate meta file. With this approach we can increase performance of mod-
ifying encrypted files, since operations like adding or releasing a key from a file can be
performed without modifying the encrypted file itself. Basically, a meta file for a single
encrypted file contains the encrypted DEK, including the signed authentication tag. If a
file is shared with another user (see section 1.3.6) the new encrypted DEK is appended
to the meta file. In this way, an arbitrary number of additional users can be added with
minimal computational cost.

Since the DEK is only stored in the meta data file, if this file gets lost or corrupted,
there is no way to restore the original file content.

Meta files are used for storing information related to the encrypted files and contain the
encrypted data encryption key (DEK). Figure 4.4 and figure 4.5 show the fields contained
in a meta file for single encrypted files and filesets. In case of a single encrypted file, the
filename of the metafile is equal to the corresponding file with the ending .mf appended.
For filesets, a user has to provide a name for the set on her smartphone when issuing
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the encryption command. This name is then used to denote the metafile, again with the
appended .mf suffix.

File header

Username

Encrypted AES Data Encryption Key

Signed Authentication Tag

Figure 4.4: Meta file content for a single file.

File header

Username

Encrypted AES Key Encryption Key

Filename A

Encrypted AES Data Encryption Key A

Filename B

Encrypted AES Data Encryption Key B

. . .

Signed Merkle-Tree Root Hash

Figure 4.5: Meta file content for a fileset.

• File Header Byte sequence to identify the file as metafile by TruCrypt. Also used
for distinguishing between metafiles for single files or filesets.

• Username The username as provided to TruStick during authentication.

• Encrypted AES Data Encryption Key The AES key used for encrypting the file

• Encrypted AES Key Encryption Key The AES key used for encrypting data en-
cryption keys in case of a fileset.

• Signed Authentication Tag/Merkle-Tree Root Hash The tag or root hash created
after encryption used for verifying file integrity.



4.3. TruCrypt 31

4.3.4 Filesets

Basically, the encryption process does not change, when dealing with a set (see fig-
ure 4.10). Each file is encrypted separately with it’s own DEK. But instead of encrypting
the DEKs with the KEK directly, a new AES KEK is generated and used for encrypting
the DEKs. This newly created AES key is then encrypted using the KEK and stored in
the meta file along with all other DEKs. Figure 4.6 illustrates this key hierarchy.

KEK

AES KEK

DEK1

File1

DEK2

File2

DEK3

File3

RSA Key Encryption Key

AES Key Encryption Key

AES Data Encryption Key

Figure 4.6: Key hierarchy of a fileset.

To verify the integrity of every file in a set a basic approach could be to apply a hash
function to each file and store these hashes for example. Since this has to be done for each
file every time a fileset is decrypted, such a solution would consume a lot of computation
time for large files.

Since we use AES-OCB for file encryption, every encrypted file yields an own au-
thentication tag after encryption. We decided to use a more efficient method and make
use of the generated authentication tags by storing those tags in a dedicated data struc-
ture, known as Merkle-Tree. In our implementation, a Merkle-Tree builds a binary tree
from the tags, yielding in one single value at the root node of the binary tree. The au-
thentication tags are used as the tree’s leaves. A node in the next tree level is created by
applying a pre-image resistant SHA-256 hash function to two adjacent tags that are con-
catenated. For the next level, again the hashes of two nodes are concatenated and hashed.
This procedure is repeated until the root of the tree is reached. The root hash is signed
and stored in the meta file of a fileset. This allows an application to verify the root hash
during decryption without the need for additional hash operations on the files themselves.
Figure 4.7 shows a Merkle-Tree structure built of four authentications tags generated by
encrypting four different files, resulting in two intermediate hashes from which the root
hash is calculated.



32 Chapter 4. Implementation

Root = SHA(S5|S6)

S5 = SHA(S1|S2)

S1 = SHA(Tag1) S2 = SHA(Tag2)

S6 = SHA(S3|S4)

S3 = SHA(Tag3) S4 = SHA(Tag4)

Figure 4.7: Merkle-Tree built from authentication tags.

4.3.5 Encryption

The encryption process of TruStick provides two different modes of operation.
ENCRYPT_FILE triggers the encryption of one single files, each with a corresponding
metafile (see section 4.3.3), containing the encryption key and other additional informa-
tion used for decryption. Whereas, ENCRYPT_SET invokes the encryption of multiple
files, with one metafile for all related files. Basically the encryption process is the same
for single files and filesets. Therefore, we will discuss single file encryption first and,
based on this discussion, the additional steps for fileset encryption afterwards. Figure 4.8
shows a sequence of operation diagram for the encryption process.

Single file encryption

ENCRYPT_FILE encrypts one or multiple files and creates an own metafile for each
encrypted file. The filenames are passed as arguments along with the ENCRYPT_FILE
command. The encryption process includes several steps to be performed:

1. The TruCrypt client application opens a session to the trusted application. During
session creation the user’s RSA keypair is loaded from the SW filesystem and stored
in the session context.

2. After creating the session the client application invokes the generation of a new
random 128-bit AES key and a 128-bit nonce in the SW. The key and the nonce are
used for file encryption and are temporarily stored as a session parameters in the
current session between the TruCrypt client application and the trusted application.

3. On successful key creation, the file to be encrypted is loaded from the NW filesys-
tem in blocks of 1MB. These blocks are sequentially transferred to the SW where
the trusted application encrypts them, using the previously generated AES key.
When a file block has been encrypted, the encrypted block is transferred back to
the NW and stored in the resulting output file.

4. After encryption of the last file block, AES-OCB yields the authentication tag used
for verifying file integrity during decryption. This tag is stored temporarily within
the TruCrypt session context.
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5. In the next step, the trusted application encrypts the AES encryption key using the
user’s public RSA key and passes the encrypted key to the NW. When receiving the
encrypted key, the client application creates the metafile for the encrypted file and
stores the encrypted key in the metafile.

6. Finally, the trusted application signs the authentication tag with the user’s RSA
private key and sends it to the NW, where it is stored in the metafile as well.

NW client
application

SW trusted
application

Open session

Generate AES key

Encrypt file block

Return encrypted file block

Encrypt AES key

Return encrypted AES key

Sign authentication tag

Return signed authentication tag

Figure 4.8: File encryption sequence of operation diagram

Figure 4.9 illustrates the encryption process as a block diagram, including the file
transfer from NW to SW, the AES encryption using a newly generated DEK and the
encryption of the DEK using the locally stored KEK. After successful encryption, the
encrypted DEK is transferred back into the NW and stored in the associated meta file.
Operations taking place in the SW of TruStick are denoted by green colored blocks. Nor-
mal world operations in contrary are represented by blue colored blocks.
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Secure World Normal World

Key
generator

3
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application
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encryption

RSA
encryption

Key
storage 5
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application

Input file

Encrypted file

Meta file

File block
DEK

KEK

DEK

12

4

6

1 Sequentially read a file in blocks of 1MB

2 Transfer the read block to SW

3 Generate a random DEK and encrypt the file block using AES-OCB encryption

4 Send the encrypted file block back to NW and store it in a file

5 Load the KEK and encrypt the DEK using RSA encryption

6 Store the encrypted DEK and the signed authentication tag in a meta file in the NW

Figure 4.9: Single file encryption.
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Fileset encryption

In contrast to single file encryption, there are several differences when combining multiple
files into a fileset:

1. For each file contained in the fileset, an own AES data encryption key is generated.

2. The AES data encryption keys are not directly encrypted with the user’s RSA public
key, but a new AES key encryption key is generated and used for encrypting the
AES data encryption keys. This key encryption key is then encrypted with the RSA
public key and stored in the metafile along with all encrypted file encryption keys.

3. The AES-OCB authentication tags are used for building a Merkle-Tree structure.
This is done by respectively concatenating two authentication tags and applying
a SHA-256 hash functions on them. Thus, the tags depict the leaves of a binary
tree, and the resulting hashes the first level nodes. These nodes are now again
concatenated, two at a time, and again hashed. The resulting hash values represent
the second level of the tree. This procedure is repeated until there is only one single
hash value left. This last hash represents the root of the tree. The root hash is signed
by the trusted application, using the user’s RSA private key, and is then transferred
back to the NW, where it is stored in the metafile.

Figure 4.10 describes the encryption of a fileset containing two files as a block di-
agram. As a first step the two files are loaded into the SW and encrypted as already
discussed in the first part of this section. Additionally, the two data encryption keys gen-
erated for each file are encrypted with a third generated AES key encryption key. This
AES-KEK is then encrypted using the locally stored RSA key encryption key. The file-
set’s root hash and the encrypted AES-KEK are finally transferred to the NW and stored
in the meta file belonging to this fileset. Again, green blocks denote SW operations and
NW operations are colored blue.
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Encryption File A
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1 Single file encryption process for file A
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3 Generate a new AES key and encrypt the DEKs for file A and B

4 Load the KEK and encrypt the AES-KEK using RSA encryption

5 Store the encrypted AES-KEK in the meta file alongside with the signed root hash
of the Merkle-Tree, created from the authentication tags of the AES-OCB file en-
cryption

Figure 4.10: Fileset encryption.
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4.3.6 Decryption

Similar to file encryption there are two modes of operation for file decryption.
DECRYPT_FILE is used for decrypting single encrypted files and DECRYPT_SET in-
vokes decryption of a fileset. Both modes of decryption require the encrypted files and
the corresponding metafiles as arguments. Again we will discuss single file decryption
first and then discuss the differences when dealing with filesets. Figure 4.11 shows a
sequence of operation diagram for the file decryption process.

Single file decryption

1. The TruCrypt client application starts the decryption process by reading the en-
crypted AES key from the metafile. After opening a session with the trusted appli-
cation, the encrypted AES key is sent to the SW. The trusted application decrypts
this key with the user’s private RSA key, which has been loaded into the session
context during session creation.

2. If the AES key has been successfully decrypted, the client application reads the
encrypted file in blocks of 1MB. The read blocks are sequentially sent to the SW
and decrypted by the trusted application. Afterwards, the decrypted blocks are
transferred back to the NW and stored in the result file.

3. After decrypting the last block, the client application reads the signed authentication
tag from the metafile and transfers it to the SW. The trusted application verifies the
signature with the user’s public RSA key and compares the received tag with the
tag yielded from file decryption. If these two tags are equal, the integrity of the
decrypted file has been verified.

Fileset decryption

Basically the decryption process for filesets is the same as for single files, besides the fact
that there is only on single metafile for all files contained in the set and that the meta file
contains an extra key encryption key used for decrypting the data encryption keys:

1. In the first step, the encrypted AES key encryption key is loaded from the meta file
and decrypted in the SW and stored within the session context.

2. Afterwards,the encrypted data encryption keys are loaded and decrypted in the SW
using the previously loaded key encryption key.

3. These keys are then used for decrypting the appropriate file.

4. After every encryption of a file, AES-OCB yields an authentication tag that is tem-
porarily stored in the TruCrypt’s session context.

5. After all files have been decrypted the corresponding Merkle-Tree structure is cre-
ated from all tags.
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NW client
application

SW trusted
application

Open session

Decrypt AES key

Decrypt file block

Return decrypted file block

Verify authentication tag

Figure 4.11: File decryption sequence of operation diagram

6. Afterwards, TruCrpyt loads the signed root hash from the metafile and verifies it
in the SW using the user’s public RSA key. If the root hash of the created tree is
the same as the one loaded from the metafile, the integrity of the fileset has been
verified.

4.3.7 File sharing

To share a file or a fileset the DEK located in the meta file is decrypted and re-encrypted
with the new imported public key. This new encrypted key is finally stored in the meta file
in addition to the file owner’s key. After the meta file has been updated by the Dropbox
client, a user owning the appropriate private part of a KEK can decrypt the shared files
or sets using his or her TruStick. In this thesis we did not implement any mechanisms to
automatically copy files between Dropbox accounts. This has to be done manually by the
users.

If multiple users using TruStick want to share a file or fileset, TruStick is capable of
exchanging these files without decrypting them before. Therefore, users have to exchange
their public RSA keys via TruTalk (see section 4.6). Once a user has imported a public
RSA key of another user, she can issue the SHARE_FILE command to TruStick. When
receiving the SHARE_FILE command TruCrypt will load the meta file of the file or set
to be shared, and read the AES data encryption key, when dealing with a single file or
the AES key encryption key in case of a fileset. This key will then be encrypted with the
previously imported public RSA key of the second user. This newly encrypted key is then
added to the meta file and uploaded to the cloud server. Since the data files themselves
are not modified in this process the signed authentication tags remain valid and the user
receiving the file can verify file integrity after decryption.
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Cancel file share

The approach of using meta files to store additional decryption keys also makes it easy to
cancel a file share if it is no longer desired. Therefore, the additionally added decryption
key has to be removed from the meta file. Since the decrypted data encryption keys are
not stored anywhere, but in the meta file of a file or fileset, users will not be able to recover
the DEK.

4.4 TruServer

TruServer provides the communication interface between the smartphone app TruTalk and
TruStick. This includes receiving commands from TruTalk and relaying them forward to
TruCrypt. Furthermore, TruServer reports available files for encryption and decryption to
the user.

4.4.1 Communication

TruServer is started during the NW boot process. It launches a Bluetooth connection
thread awaiting a Bluetooth connection request. To distinguish between a TruTalk con-
nection request and a connection request sent by any other device, TruServer expects a
unique id to be sent along with the request. If this unique id does not match, TruServer
rejects the request. If a connection request is issued by another device via the TruTalk
application, a shared secret - an AES encryption key - is established using the Diffie-
Hellman key exchange protocol. If the shared secret has successfully been exchanged,
TruTalk sends the user’s username and password encrypted with the shared secret to Tru-
Stick. On TruStick the user credentials are forwarded to the SW via TruCrypt. If the
user credentials could be verified, TruServer is ready to receive further commands from
TruTalk.
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4.4.2 File Monitoring

When files are transferred to the TruStick via USB while attached to a host device,
TruServer monitors the dedicated partition used as USB backing storage. When files
are added or removed from this storage, changes are reported to the TruTalk app via Blue-
tooth.

After successfully encrypting a file or fileset, the original unencrypted files are deleted,
to prevent unauthorized access, in case an attacker manages to gain access to the device.

4.5 Dropbox Daemon

We have developed a simple Dropbox client using the Dropbox Developer API[Drob] to
monitor and synchronize the USB backing store of TruStick. The Dropbox Daemon is
started as background daemon on NW system start. Given that a network connection is
available, the daemon periodically checks, if the local stored encrypted files are up to date
with the files on the server and updates them in case any changes to the files are reported.

To connect the Dropbox Daemon to an existing Dropbox account, the daemon has
to provide an app key, that has to be created via the Dropbox web interface, alongside
with the user’s access credentials. In our thesis, we do not support connection to multiple
accounts, since the app key is stored within the source code of the daemon application.

4.6 TruTalk

We developed an Android application in order to control cryptographic operations and
monitor file status on the TruStick via TruServer. Therefore, we implemented a thread pro-
viding Bluetooth communication capabilities and a QR- code reader used for exchanging
public RSA keys between multiple TruStick devices. Section section 4.6.1 describes how
communication between TruTalk and TruServer is established and how authentication is
achieved. Section 4.6.2 gives an overview of issuing commands to TruStick. Section 4.6.3
explains how public RSA keys can be exchanged with other devices using QR-codes.

4.6.1 Communication

Initial setup

When TruTalk is launched for the first time, users are asked to choose a username and a
password, that are stored locally on the device and have to be provided each time TruTalk
is launched. After these access credentials have been set up, TruTalk starts to search for
TruStick devices via Bluetooth. If a device is discovered, a Diffie-Hellman key exchange
is initiated, yielding a common AES encryption key, that is known by TruTalk, as well
as by TruStick. If the key exchange has been successful, TruTalk encrypts the local user
credentials with the AES key and sends them to TruStick to register the user (see sec-
tion 4.3.1).
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This procedure is the most critical operation in the setup phase, since the user creden-
tials are used to authenticate TruTalk to TruStick and are used for authorizing encryption
and decryption operations. Hence, it is advisable to ensure, that no other Bluetooth de-
vices are in range when the initial setup is done.

4.6.2 Commands

Figure 4.12 illustrates sequence of operations for issuing a command from TruTalk and
execution on TruStick. After a Bluetooth connection has been established, a shared AES
key is created using the Diffe-Hellman key exchange protocol. This secret key is used to
encrypt any communication between TruTalk and TruStick and is kept until the Bluetooth
connection is closed. The next time a connection is established, a new key has to be
generated. Following commands are available on TruTalk:

• CONNECT: Establishes a Bluetooth connection to a TruStick device, including the
Diffie-Hellman key exchange protocol for creating a shared secret used to encrypt
any subsequent communication and transmitting the user credentials for authenti-
cating to TruStick. On success, TruStick accepts file operation commands.

• DISCONNECT: Closes the Bluetooth connection and discards the shared secret. For
further communication, the CONNECT command has to be resent.

• ENCRYPT FILES: Shows a dialog listing all unencrypted files located in the back-
ing store of TruStick. Users can select one or multiple files, that will be encrypted
and uploaded to the cloud. If multiple files are selected, each will be shown as
single file in the decryption dialog.

• DECRYPT FILES: Shows a dialog listing all single encrypted files that have been
downloaded by the Dropbox Daemon. Users can select one or multiple files, that
will be decrypted and available to a USB host via the USB mass storage gadget.

• ENCRYPT FILESET: Encrypts multiple files that have been chosen from the pro-
vided list of available files, combining them to one set, that is represented to the
user in the decryption dialog. When this command is selected, the user is asked to
enter a name for the fileset.

• DECRYPT FILESET: Decrypts a fileset chosen from the file dialog. All files con-
tained in the set will be available via the USB mass storage gadget.

• GET PUBLIC KEY: Requests the public RSA key from TruStick and stores it
within the application context. After this has been done, the SHARE KEY com-
mand is available. Once the public key has been retrieved, it is permanently stored
on the smartphone and can be shared at any time, without requiring the TruStick to
be present.

• SHARE KEY: Converts the previously requested public RSA key into a QR-code
that can be read by other TruTalk devices.
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• READ KEY: Utilize the smartphone’s camera to read a public RSA key encoded as
QR-code and import it to the app storage. If the smartphone does not have a camera,
this command is not available. If a connection to a TruStick device is present, when
the key is decoded, the key is immediately sent to the TruStick. Else, the key is
stored and transmitted as soon as a Bluetooth connection is available.

The corresponding commands triggered on TruStick are listed in table 4.1.
In addition to the commands listed in table 4.1 that are directly relayed to TruCrypt,

TruTalk can implicitly send a LIST_FILES command when invoking any encryption or
decryption command. This request will return two file lists. A list of all encrypted files,
currently stored on TruStick available for decryption, and a list of all files located in the
USB backing store, that can be encrypted.

TruTalk TruServer TruCrypt

Smartphone TruStick

Diffie-Hellman key exchange

Transmit user credentials

Verify user credentials

Request command execution

Execute command

Figure 4.12: Authentication + command execution
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4.6.3 Key Exchange

TruStick offers functionality to share encrypted files with other users. Therefore, users
have to exchange their public RSA keys to be able to decrypt shared files. For this reason,
we have implemented a QR-code generator within TruTalk, that converts a public RSA
key byte array into a QR-code and displays it on the smartphone. Furthermore we also
have implemented a QR-code reader using the smartphone’s built-in camera, that is able
to read RSA keys encoded as QR-code. To achieve QR-code functionality, we use the
open source ZXing (Zebra Crossing)[ZXi] image processing library, that offers QR-code
reading and creating capabilities.
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5
Evaluation

I
N this chapter we summarize the outcome of this thesis. Section 5.1 discusses
the results and compares them to the initially stated goals. Section 5.2 states
to which extent goals were not achieved and describes further problems that
are still left open for future work.

5.1 Results

One primary goal of this thesis was to provide a device, capable of dealing with sensitive
data stored in an untrusted environment, such as cloud storage. Moreover, we defined
a major goal to be usability, since this is a major concern when dealing with security
aspects. Security enhancing devices or software often face the problem, that they require
established technical knowledge for correct handling. We reduced the required skills to
the operation of a simple smartphone application. Using a smartphone application for
controlling data handling on TruStick provides a widely accepted and well-understood
manner of controlling a device.

Furthermore, we defined the goal of providing data integrity and confidentiality to be
a fundamental part of TruStick. Therefore, we chose the symmetric cipher AES in OCB
mode for data encryption and strong asymmetric RSA cipher for encrypting the AES
keys. The combination of those two ciphers yields an efficient way of dealing with data
of arbitrary size. Moreover, AES-OCB provides data confidentiality and integrity at the
same time by creating an additional tag for each encryption process that is used to verify
data integrity during decryption. Since we implemented TruStick on an embedded device,
performance of cryptographic operations also played an important role in the decision
which encryption scheme to use. Table 5.1 shows the results of performing encryption
and decryption operations using AES in OCB mode on TruStick. We also implemented
encryption and decryption using AES-CCM in order to compare the performance of AES-
OCB. The evaluation of both encryption schemes shows that AES-OCB can be considered
approximately twice as fast as AES-CCM.
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Table 5.1: Encryption and decryption results with AES-OCB.

Bytes Encryption[ms] Decryption[ms]

4 KB 19 10

8 KB 29 11

1 MB 1584 853

2 MB 3618 1832

10 MB 18813 9526

Table 5.2: Encryption and decryption results with AES-CCM.

Bytes Encryption[ms] Decryption[ms]

4 KB 25 29

8 KB 38 37

1 MB 3598 3115

2 MB 7180 6089

10 MB 35928 30445

Our third major goal targets scalability. By introducing filesets that can hold an arbi-
trary number of files without the need of dealing with each file separately during encryp-
tion or decryption, our approach is also applicable to vast projects containing many files
without loosing the comfort of issuing a single command to process all files or a subset of
them at once.

5.2 Open Problems

Even though we were able to fulfill our major goals, there are still several issues left
uncovered in this thesis.

Control commands issued to TruStick by TruTalk are secured using AES encryption
with a newly generated key exchanged via Diffie-Helman key exchange. Nevertheless, an
attacker could intercept encrypted messages and resend them, performing a replay attack.
An applicable countermeasure to such attacks could include tagging each message with a
session id and a unique number, invalidating a message after being transmitted once.

Another issue concerns our implementation of a simple client, used for synchronizing
data stored on TruStick with Dropbox. Our client does not include a mechanism of sharing
files with other users and managing permissions each user has. Currently this has to be
done manually by a user via the web interface of Dropbox. If a user is granted write
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access to files shared by another user, he or she could manipulate the meta file, deleting
the file owner’s data encryption key, preventing the owner from being able to decrypt his
own file.

Finally, currently there is no mechanism to notify users sharing content, that there
have been changes on the server. Users have to download and decrypt files manually to
determine whether the content has changed. A system, such as distributed hash tables, as
used by BitTorrent [Inc] could be used to circumvent this process by informing a user via
push notifications on the smartphone every time something has changed.
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6
Conclusions

T
HE goal of this thesis was to implement a device providing a secure and easy-
to-use way to guarantee data integrity when dealing with data stored on a
cloud server. We managed, to create a device emulating USB mass storage
for transferring data between TruStick and arbitrary USB host systems using

the Freescale IMX53 Quick Start Board. The TruStick utilizes ARM TrustZone tech-
nology, executing two operating systems on a single physical core. We use the secure
world operating system Andix OS for securely storing cryptographic key material and,
hence, for executing cryptographic operations on data transferred from the normal world.
Thereby, the cryptographic keys are stored safely in the secure world, which also monitors
the system’s state and takes countermeasures, if possible malicious actions are detected.

We designed a file structure including a meta file for storing encrypted data and all
relevant information required to decrypt and also share files without the need to explicitly
decrypt the files before. The use of meta files for storing additional encrypted keys limits
the operations to be executed in order to share files among users to decrypting and re-
encrypting the used encryption key, without touching the data file itself.

In addition, TruStick offers the ability to group commonly used files together to file-
sets. With this approach users can easily manage a large number of files without the need
to process each file on its own. Since an extra key encryption key is used for encrypt-
ing the data encryption key, it is sufficient to re-encrypt this one key, if a fileset is to
be shared. Thus, we have implemented an efficient way of sharing encrypted files, also
requiring only one decryption and one encryption operation.

Furthermore, we have implemented two communication channels for TruStick. Firstly,
a Dropbox client application responsible for synchronizing locally encrypted files with the
appropriate cloud storage. Secondly an Android application used for issuing file operation
commands to TruStick and report the current file status to a user.

Though, the goal to implement a notification mechanism, notifying users about file
changes in the cloud, using distributed hash tables, has been skipped.

Nevertheless, this thesis shows the successful proof of concept implementation of a
device, using client-side encryption to provide device independent cloud storage.
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